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Abstract

Fungi are central components of almost all ecosystems through their role as de-

composers and symbiotic agents while also having significant impacts on many

aspects of human livelihood. In these settings, fungal interactions, either with

other fungi or in response to their local environment, are common but their study

in vivo is complicated due to the multitude of processes involved. Thus, in vitro

experiments are performed where fungi is grown on Petri dishes in a laboratory.

However, even in these carefully controlled settings, experimental studies are com-

plicated due to the scales involved: while a Petri dish is measured in centimetres,

some species of fungi in the terrestrial environment can span kilometres while the

underlying unit of growth is measured in microns. The mathematical models de-

scribed and constructed in this thesis naturally link these different growth scales

and includes the interactions experienced by growing fungi, thus complementing

experimental approaches.

A set of previously published coupled partial differential equations describ-

ing the growth of a fungus are investigated and new solutions obtained. A number

of these new solutions involve the application of a decomposition method resulting

in semi-analytical formulations that agree with numerical integration, particularly

concerning the growth rates of the fungus at both small and large times.

These models are adapted to focus on interactions between competing fungi

and their response to domains containing toxic material. These new models, also

sets of partial differential equations, are investigated using a combination of ana-

lytical, semi-analytical and numerical methods. For the first time in the literature,

a mathematical model is constructed that includes a mechanism allowing fungi to

obtain iron, a heavy metal essential for growth, through the production, release

and reacquisition of siderophores which are molecules that bind and transport

iron.

The results constructed in this thesis are of great significance and relevance

to all instances involving the application of fungal interactions. In particular,

nutrient availability influences fungal interactions and thus careful manipulation

of this resource can improve the outcome of biotechnological applications involving

fungi.
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parameter values. . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

8.3 The initial velocity and acceleration of the leading edge for the

siderophore concentration profile obtained analytically. . . . . . . 254

8.4 The initial velocity and acceleration of the leading edge for the iron

concentration obtained analytically. . . . . . . . . . . . . . . . . . 255

xv



Chapter 1

Introduction

1.1 Biology and uses of fungi

Until relatively recently, it was widely believed that fungi were part of the plant

kingdom but this changed when ecologist Robert Whittaker separated fungi into

their own respective kingdom (Myceteae) (Whittaker, 1959, 1969; Whittaker and

Margulis, 1978; Hagen, 2012). Fungi are made of Eukaryote cells, which mean they

are more closely related to animals than plants and hence their study is in fact

more applicable to humans than to bacteria (Prokaryotes). It is estimated that

there are between 700000 and 5.1 million species of fungi in the world (O‘Brien

et al., 2005; Taylor et al., 2010; Blackwell, 2011).

Fungi are widespread throughout the terrestrial and built environments

and affect our everyday lives ranging from the food we consume to industrially

important products to plant pathogens to human diseases. Hence the better we

understand fungal biology, the more we will be able to control or exploit them for

our own purposes. Fungi are tremendously important to human society. Many

foods we consume are produced under the influence of fungi, e.g. bread, beer, blue

cheese, soy sauce. The species of fungi that make citric acid used in fizzy drinks

is of the Aspergillus species (see Efiuvweuwere and Chynyere, 2001; Flores-Maltos

et al., 2011). Yeasts are also a species belonging to the kingdom of fungi (although

their colonies often resemble that of bacteria, Váchová et al., 2012). Yeasts have

been used for baking and brewing for many centuries. Fungi are also used as

a meat substitute in branded products like ‘Quorn’ as Mycoprotein, (Peberdy,

1994). Indeed some studies have shown that a specific type of mushroom (Boletus

edulis) even exceeds meat in protein content (Manjunathan et al., 2011). The
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uses of fungi are not restricted to food production, but are also involved in plant

life, medicine, science and industry to mention a few.

In the plant kingdom, many studies (e.g. Smith and Read, 1997; Selosse

et al., 2006) have found that over 90% of plants in the terrestrial environment

have a symbiotic connection with some species of fungi attached to their roots

called Mycorrhizae, which help to uptake essential minerals from nutrient poor

soils. This is due to the flexibility of fungi having the ability to scour greater

distances to a nutrient source than the roots of the plant are able to achieve on

their own (see Figure 1.1(a)).

(a) Mycorrhiza is the association between
fungi and the roots of higher plants. Be-
tween 86% and 94% of plants are mycorrhizal
(Brundrett, 2009; Asio, 2010).

(b) A culture of Royal Sun Blazei (Agar-
icus brasiliensis) growing on a Petri dish
(Stamets, 2010).

Figure 1.1: Examples of fungal networks.

In the industrial sector many companies (e.g. Ecovative) are using fungi to

create biodegradable structural products including building materials and packing

materials (Bayer and McIntyre, 2011). A material being used recently in indus-

try as an alternative to traditional petroleum polymer foam is called Mycobond,

which is heat resistant, fire resistant and also biodegradable and is created out

of the natural growth of the vegetative structure of fungal mycelium (Bayer and

McIntyre, 2014). Fungal enzymes (Trichoderma species) are used to soften denim
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jeans on large scales in industry (Carlile et al., 2001).

Mycoremediation is another use of fungi on an industrial scale to remove

toxins from polluted landscapes (Sang et al., 2004; Gadd, 2010; Ramachandran

and Gnanados, 2013; Gupta and Shrivastava, 2014, and references therein). It

is an environmental and economical alternative to extracting, transporting and

storing toxic waste. In agriculture huge losses occur due to various pathogenic

species of fungi such as Rhyzoctonia, Sclerotinia, Phytophthora and Fusarium

(Lucca, 2007; Koutb and Ali, 2010). Rhyzoctonia (root killer) is the causal agent

of violet root rot of carrots, cucumber, sheath blight of rice, black scurf of pota-

toes and other vegetables (Chyu et al., 1996). Strains of Sclerotinia plant fungi

are responsible for completely invading a plant host and having an adverse af-

fect on carnation flowers and economically important crops including soybean,

sunflower, lettuce, spinach, tomato, cabbage, pepper and sweet potatoes (Saha-

ran and Mehta, 2008). Phytophthora fungus pathogen causes extensive damage

and mortality to a wide range of trees and plants, e.g. oak trees (Brasier, 1996;

Marçais et al., 2011). Fusarium produce mycotoxin in cereal crops that can affect

human and animal health if they enter the food chain (Czembor et al., 2015).

Some species of Fusarium affect plants e.g. barley, while others pervade humans

directly when the immune system is weak (Olsen et al., 2011; Antonissen et al.,

2014). The most widely used method for attempting to deal with these problems

is via the use of chemicals (fungicides). This method is not particularly efficient

as the fungicides need to be upgraded periodically due to fungi developing ways

to become immune to the chemicals (Hobbelen et al., 2014). Although pathogenic

fungi maybe controlled using fungicides, the chemicals used leave residues within

the harvested crops which can be harmful for human/animal consumption (Shep-

hard, 2008; Wu and Khlangwiset, 2010; Zain, 2011). Thus an alternative biological

control is sought (Sanzani et al., 2016). Several studies indicate the use of fungal

species as promising, extremely effective and successful bio-control agents used

against diseases of agronomic and vegetable crops caused by pathogenic fungi

(Dorner et al., 2003; Cotty et al., 2007; Koutb and Ali, 2010; Mehl and Cotty,

2013; Vankudoth et al., 2016).

Common agents used in biological terrorism are bacterial, viral and fungal

pathogens and toxins from living organisms. Indeed fungal strains such as Fusar-

ium, Aspergillus, Myrothecium, Trichoderma, Trichothecium, Cephalosporium,

Verticimonosporium, Stachybotrys and other filamentous fungi have had more
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devastating effects on human populations than that of fission nuclear weapons

(Dudley and Woodford, 2002; Bennett and Klich, 2003).

In medicine, the positive influence of fungi have been extraordinarily pow-

erful and have provided advances that have revolutionised human health. Antibi-

otics such as Penicillin and Cephalosporin are produced by fungi. The immuno-

suppressive anti-rejection transplant drug Cyclosporin is produced by the fungus

Tolypocladium inflatum (Bushley et al., 2013). Steroids, hormone and birth con-

trol pills are commercially produced by various fungi. In recent developments in

medicine, particular species of fungi (Trametes Versicolor) have even been suc-

cessfully used to treat patients with breast cancer and prostate cancer (Luk et al.,

2011; Torkelson et al., 2012).

As fungi contribute to many attributes of our lives, it is important to pur-

sue a greater understanding of its species in a scientifically sound manner. We

can observe that some species of fungi span several kilometres but initial scale

of growth are measured in microns (Boswell and Davidson, 2012). Most fungal

research carried out in laboratories are of the order of a few centimetres as it is not

always feasible to grow fungi on large acres of land for scientific purposes. Hence

mathematical modelling provides a powerful augmentative tool for a number of

reasons. Firstly, it provides the ability to carry out the research by naturally link-

ing the different growth scales. Secondly, modelling is able to create quantitative

predictions by focussing attention on key processes involved in growth. Also a

mathematical model is able to quantify certain growth parameters, which is cru-

cial to optimising strategies when fungi are used in industrial or biotechnological

environments.

Furthermore, in addition to their direct use and application, fungi provide a

good experimental system in which to study the control of shapes and growth rates

of tissue. Due to their various species and forms, they can be easily cultured in a

laboratory setting. This provides the opportunity to investigate variations of their

colonies by varying the conditions of growth. This is usually undertaken by placing

a small fungal colony on a nutrient-based medium Petri dish (see Figure 1.1(b)).

Within a short period of time the fungi can be observed to develop into a radially

expanding colony. After an initial transient phase, the expansion of a fungal

colony usually takes place at a constant rate depending on the characteristics of

its species and environment (Boswell et al., 2002).

An ideal approach is to construct a model of a fungal species and interpret
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it using the laws of mathematics. As fungi are living organisms and due to their

high complexity, it is conceivable that fungi can be described and understood in a

comprehensive manner similar to that of a systems biology approach. It will not

be feasible to explore every single variable. Thus, an appropriate model has to be

devised carefully starting from a minimal model capturing the essential features

of a fungal species and then try to incorporate additional features into the model

to obtain realism in the outcome.

1.1.1 Fungal morphology and fungal interactions

Fungi consist of long branched filaments called hyphae. Hyphae only grow in their

apical portion (tips) and thus hyphal tips possess the unique capability of continu-

ously generating new growth (Edelstein, 1982; Jackson and Heath, 1993; Gooday,

1995; Schmitz et al., 2006). If a spore of cultivated fungi is placed on a suitable

nutrient agar medium, a hypha may germinate. Nutrients are absorbed from the

agar medium which excites growth, nuclear division and hyphal branching that

blossom into a circular colony, increasing in diameter at a uniform rate (see Fig-

ure 1.2). The hyphae of a growing colony form a thick mat-like floor termed the

mycelium.

Figure 1.2: Radial growth of fungi on a Petri dish (Online).

Growth of a colony is achieved by a combination of two effects. A few

leading hyphae proceed the colony in exploring uncolonised space. The branching

of these hyphae produce secondary hyphae that fill the colonised space and give

a characteristic shape to the colony interior.
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There are many detailed accounts of the microscopic events that take place

in a mycelium (Manteca et al., 2007). The two key processes that are deemed

essential, at least for the current investigation, are branching and anastomosis.

Branching is the production of new growing tips, which can take place

along the length of existing hyphae (lateral branching, Figure 1.3(a)). Branching

could also take place by division of a single tip into two daughter tips (dichoto-

mous branching, Figure 1.3(b)). Elongation and branching of hypha is the key

mechanism in establishing a fungal mycelium. There are other types of branching

(i.e. scorpioid and geniculate) that are observed in some species of fungi (e.g.

Monilinia laxa) (Byrde and Willetts, 1977) but we will not be exploring these

types in detail and instead focus on the more prevalent branching pattern, lateral

branching (Harris, 2008). Nonetheless, the techniques developed in this thesis

can easily be applied to these alternative morphologies. The branching of hyphae

is highly effective in absorbing a substratum of nutrients. When a nutritionally

rich location has been exhausted the fungus must reach other sources of nutrients

to survive. Growth in areas lacking nutrients would quickly be terminated and

inactive hyphae could be destroyed by insect attacks, autocatalytic behaviour or

lysis by other microorganisms (Falconer et al., 2008, 2015).

Much research has been carried out where a single strand of hypha has been

inspected microscopically (Carlile et al., 2001; Steinberg, 2007). It has been de-

termined that the splitting of a single hypha is due to the accumulation of vesicles

clustering in particular regions of the hyphal apex which lead to the birth of new

branches. The Spitzenkörper is a region of the tip where the vesicles accumulate

(Brunswik, 1924) and is an important feature for hyphal growth (Bartnicki-Garcia

et al., 1995; Steinberg, 2007) since its position in the growing hyphae determines

the direction of growth (Girbardt, 1969; Reynaga-Pena et al., 1997; Steinberg,

2007).
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(a) Lateral branching. (b) Dichotomous branching.

Figure 1.3: Types of branching.

Anastomosis is the reconnection of a hypha via its tip with a neighbour-

ing hypha to form a complex interconnected network. It was found in a study

by Buller (1931) that in the interior of a colony each hypha often produce side

branches that grow towards each other and merge with hyphae to form closed net-

works. Such networks can facilitate the transportation of nutrients to any point

in a mycelium and facilitate the growth of large fruiting bodies. An example is

the common edible mushroom which is a fruiting body of the species Agaricus

bisporus. Although the fruiting body is a unique feature of the cultivated mush-

room, it is completely dependent on its mycelium for the absorption of nutrients.

Examples of anastomosis are shown in Figure 1.4 and an in depth review of the

anastomosis process can be found in the work of Providencia et al. (2005).

In their natural settings, fungi grow in environments where resources are

heterogeneous. In such settings a fungal mycelium uptakes nutrients from its

source and forms hyphal tubes around its colony margins. These hyphal tubes

are called leading hyphae that propagate by elongation in search of new nutrient

sources. As the existing nutrient source starts to deplete, the hyphae in the interior

of the colony start to fuse with neighbouring hyphae to form closed networks

and transport the nutrients efficiently to its leading hyphae via a process called

translocation. Once the nutrient source reaches a critical level, cell walls and

internal substrate of old hyphae in the colony interior are degraded and exported

to new sites of growth where they are recycled. We do not intend to model

recycling specifically and instead classify hyphae into two types depending on
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whether they are actually involved in growth or not (see Falconer et al., 2005,

2010, for models including recycling, also known as autocatalytic behaviour).

(a) Tip-Hyphae anastomosis. (b) Tip-Tip anastomosis.

Figure 1.4: Types of fusion.

We will discuss a number of key existing fungal models found in the liter-

ature in the following section.

1.2 Historical modelling approaches

Over the last few decades, an enormous amount of research has been carried out

in the field of mycology, in an attempt to understand the profuse complexities

involved in fungal growth, mobility and interactions. Considerable attention has

been devoted towards formulating concise mathematical models to try and identify

parameters that capture the essence of organisms, without over simplification or

unnecessary complication. One of the key issues faced by researchers modelling

fungi is determining the correct choice of scale. This is in essence determined by

the objective of the researcher.

Fungal models explored in this work fall into either the intermediate or

“single colony” level. Models of the latter nature are typically continuous, discrete

or both (i.e. hybrid). Each approach has their advantages and disadvantages as

is now described.

There are numerous mathematical models that describe fungal function

and morphology using a continuum approach. In a series of papers, Edelstein-

Keshet (Edelstein, 1982; Edelstein and Segel, 1983) developed a simple pair of
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hyperbolic partial differential equations modelling the motion of hyphal tips and

subsequent creation of hyphae, initially in a single spatial dimension, and later in a

two-dimensional setting (Edelstein and Ermentrout, 1989). Due to their simplistic

nature, a variety of branching and anastomosis types were considered and through

phase-plane analysis, a number of travelling wave solutions were shown to exist

with some displaying morphology observed in laboratory settings, for example,

the formation of striations along a colony radius. However, while these models

captured the simple dynamics of an expanding mycelium, they do not relate this

expansion to the nutrients essential for growth and hence the models are incapable

of simulating biomass growth in heterogeneous environments.

Davidson and co-authors (e.g. Davidson, 1998) expanded Edelstein-

Keshet’s models by using a set of reaction-diffusion equations. Unlike Edelstein-

Keshet’s approach, these models incorporated an explicit nutrient responsible for

biomass expansion and the movement of this nutrient, i.e. translocation, was

explicitly included. Numerical simulations of the model equations were in good

qualitative agreement with associated experimental configurations.

There is a major limitation with the use of reaction-diffusion equations,

namely they allow the hyphal arrangements to diffuse whereas in practice they

are static structures. While Davidson argued that biomass diffusion could repre-

sent the recycling of old hyphae, Boswell et al. (2002, 2003a) adopted an approach

that combined the simplistic elegance of Edelstein-Keshet’s models with the ex-

plicit nutrient status outlined in Davidson’s approach. Boswell’s model were thus

of mixed hyperbolic-parabolic type and were calibrated for the fungus Rhizoctonia

solani. Due to the complexity of the model equations, bespoke integration rou-

tines were developed to obtain numerical solutions and these were shown to be in

excellent qualitative and quantitative agreement with experimental data (Boswell

et al., 2002). Falconer et al. (2005, 2008) expanded on Davidson’s models by in-

cluding an explicit recycling component whereby biomass was reabsorbed into the

model fungus, moved and used to generate further growth. While the resultant

equations were far easier to work with than those of Boswell, their calibration was

complicated because of the explicit diffusion of hyphal structures used in such

models.

Cohen (1967) laid the foundation for discrete models by demonstrating

how it was possible to generate realistic fungal structures with minimal growth

parameters namely, extension and branching. The model was restricted to growth
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only occurring at the apex of each branch, while branching occurred solely behind

the growing tips. The fundamental disadvantage of Cohen’s model and with

discrete approaches in general, is that only small networks are computationally

efficient. That may suffice in modelling basic dynamics of a fungal growth on a

microscopic level, but not containing enough complexity to develop a pattern of

a realistic mycelium. Although Cohen did not aim to exclusively model fungal

mycelia, his work inspired the work of Meskauskas et al. (2004a,b) that did.

Meskauskas et al. (2004a) proposed a discrete three-dimensional vector

based model, termed a Neighbour-Sensing model, that investigated several forms

of autotropic behaviour in fungal networks. The paper discussed the vast quantity

of structural forms that can be achieved by varying parameters such as fruiting-

body like structures as well as the typical filamentous networks. However, despite

the striking resemblance of actual fungal mycelium topology obtained using a

discrete modelling approach, the model undoubtedly had severe limitations. For

example focus of the model was primarily on rules designed to produce the de-

sired outputs and little emphasis is on actual biological validation. Furthermore,

the model was not sufficiently flexible to consider the fundamental biological phe-

nomenon of anastomosis, which was a consequence of the three-dimensional ap-

proach employed and thus the model produced formations that were similar to

tree structures rather than mycelial networks. Finally, the model also suffered the

same restriction as with Cohen’s and in general most discrete models, i.e. large

time simulations require significant computational resources.

By focussing on the advantages of the continuum and discrete modelling

approaches various authors have proposed hybrid models (e.g. Yang et al., 1992;

Boswell et al., 2007; Hopkins and Boswell, 2012). Yang et al. (1992) proposed a

model that generated an explicit network representing the growth of filamentous

fungi. The model divided the process of modelling into two stages; a deterministic

approach was adopted to model biological and morphological development and

a stochastic approach for factors that appear random like the direction of tip

extension. Statistical data collected via quantitative analysis of genuine mycelial

networks showed that branching and tip growth angles were normally distributed.

Emphasis was on the identification that biological interpretations and a stochastic

influence are both necessities to capture the true character of a developing fungal

colony. Boswell et al. (2007) developed a hybrid model consisting of a Cellular

automata approach to model filamentous fungi. The model allowed for the key
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hyphal interactions of branching and anastomosis that could be simulated over

heterogeneous environments. The model comprised the inclusion of uptake and

active translocation, traditionally overlooked in discrete models, to be thoroughly

investigated.

Hopkins and Boswell (2012) devised a model similar to Boswell et al. (2007)

in that a generic substrate was assumed to exist in two forms: free in the exter-

nal environment where it could diffuse and contained within the biomass network

where it was translocated and used to fuel tip extension. An important feature

of the model was the manner in which the orientation of hyphae were modelled.

Previously, model tips were typically assumed to change direction according to

a random variable drawn from a normal distribution (Yang et al., 1992). There-

fore, restricting the predictive aspects of the reorientation of the tips to statisti-

cal properties obtained from experimental data limiting to situations resembling

the calibration experiment. Hopkins and Boswell (2012) utilised a biased circu-

lar random walk to model tip orientation and related this to the corresponding

Fokker-Planck partial differential equation, which described statistical properties

of the random walk.

It is important to note that the hybrid models proposed by Boswell et al.

(2007); Boswell (2008) are lattice-based. A Lattice-based random walk model

typically represent the spatial domain as a one, two or three dimensional regular

lattice. Computationally, the evolution of the system can be represented by a

discrete time-stepping mechanism, in which, during each time step of duration

t, each agent has problem-specific probabilities of moving and of proliferating

(Plank and Sleeman, 2004). Therefore, non-interacting models are relevant only

for problems where the density is so low that hypha to hypha contacts and crowd-

ing effects are unimportant (i.e. a discrete model requirement). Lattice-based

models have achieved more in relating discrete processes to the mechanistic ele-

ments in a system but are hindered by their dependence on predefined geometry,

for example limiting the angles at which hyphae extend and branch. Although

the simplification allows the generation of a larger network, it places a bound on

the accuracy of the processes of hyphal interactions within the model mycelium

and could potentially impact on the quantitative and qualitative predictions of

both fungal growth and function made by such models (Hopkins, 2011).

On the other hand, lattice-free random walk models represent motility

and proliferation on a continuous domain (Hillen and Othmer, 2000) and are
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more realistic than lattice-based models (Boswell and Carver, 2008; Hopkins and

Boswell, 2012; Plank and Simpson, 2012). Lattice-free models allow the direction

of movement to be a continuous variable, rather than restricting to a discrete set

of directions corresponding to nearest neighbour lattice sites. A variety of lattice-

free approaches have been developed over the last couple of decades, each offering

differing degrees of flexibility and applicability (Boswell and Davidson, 2012).

Almost all such models have relied on a mixture of deterministic and stochastic

elements. The complexity and computational costs associated with such models

often force compromises resulting in important biological features to be simplified

or even omitted. The challenge is to find a meaningful balance between biological

function and mathematical computability.

In a broad sense, discrete models are advantageous when explicit details

of a development of a filamentous fungal structure is sought (e.g. growth of

individual hyphae or vesicle influence on tip elongation Balmant et al., 2015).

Simulations produced by discrete models can also provide accurate representation

when compared to an actual fungal colony. The major disadvantage of discrete

modelling is the intricate detail required to form an appropriate model which is

computationally very expensive to simulate and the model is often limited to a

single colony. Another major drawback of most discrete models is the lack of

anastomosis which is sometimes even completely ignored due to computational

difficulties. Anastomosis is a fundamental process responsible for hyphal growth,

thus models without this process will not yield accurate representations of a fungal

colony.

A hybrid approach consists of combining the discrete and continuum ap-

proach to form a model and is often very useful when using a lattice-free approach

but a major limitation is the requirement of a predefined geometry in lattice based

approaches. A large amount of data has to be recorded and processed which is

problematic for large time based analysis due to the number of parameters growing

exponentially (Hopkins, 2011).

A continuum approach generally prevails when attempting to capture the

true biological functions of a moderately sized fungal mycelium. Complex struc-

tures of a fungal network are often simplified into biomass densities which allow for

computational efficiency and simulations of large colonies. Although a continuum

approach can simplify a complex fungal structure, exploring biological features

such as translocation and uptake of nutrients can quickly over complicate the
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formulation of a single colony model (Boswell et al., 2002; Falconer et al., 2005)

and thus giving rise to difficulty in identifying key parameters or analysis of an

investigation. Nevertheless, with the advancement of technology, powerful soft-

ware are readily available to numerically integrate the model equations. Therefore

a continuum approach, in the author’s view, is the most appropriate choice for

modelling fungal behaviour of the kind interested in this thesis, particularly since

attention will be on the interactions between multiple fungal species.

Despite the plethora of laboratory based experimental studies involving

fungal interactions, there are still only a hand-full of mathematical models that

possess the capability to simulate such behaviours. Davidson et al. (1996) rep-

resented a fungal mycelium and its nutrients as activators and substrates and

demonstrated that spatially heterogeneous structures could be formed through

the collision of two fungal biomasses; however the abstract nature of the model

meant it was unable to make qualitative predictions and was difficult to differenti-

ate between the rival biomasses. Falconer et al. (2011) formed a system of partial

differential equations accounting for the interactions between rival model fungal

phenotypes in response to inhibitors. Through the creation of demarcation zones,

this modelling showed that such inhibitors resulted in greater fungal biodiversity.

More recently, Boswell (2012) investigated pairwise competition by using an alter-

native continuum model whose structure and formation allowed for its calibration

and it was shown that nutrient availability influenced the outcome of competition.

However, due to the complexity of the underlying partial differential equations,

only numerical solutions could be obtained and consequently the predictive power

of the model was limited and general principles could not be extracted. In par-

ticular, repeated numerical solutions provided the only mechanism to determine

critical nutrient levels to alter the outcome of competition.

Our focus will essentially be on modelling fungal interactions utilising

mathematical modelling techniques to formulate and provide solutions to com-

plex systems of partial differential equations that portray typical behaviour such

as biomass competing with other biomasses and biomass reacting to toxic com-

pounds.
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1.3 Summary

The above discussion provided clear motivation for studying fungi. The versatile

nature of fungi having so much impact on our everyday lives cannot be ignored.

Thus the need for a better understanding of fungi is crucial for the betterment of

human well-being, survival, protection and much more. Mathematical modelling

is a great tool to enhance our understanding of fungi. Many historical models have

been proposed in the field of fungal studies ranging from continuous, discrete and

hybrid models. A continuum modelling approach will be pursued in this body of

work.

In Chapter 2 we explore the work of Edelstein-Keshet, who developed the

pioneering model of fungal growth (Edelstein, 1982). Edelstein-Keshet’s models

will be investigated using a combination of numerical integration and algebraic

techniques, including phase plane analysis. In particular, we also construct new

solutions for the system of equations proposed by Edelstein-Keshet, modelling

specific fungal phenotypes (i.e. specific branching and anastomosis morphologies).

In Chapter 3, we introduce a decomposition method (Laplace Decomposi-

tion Method (LDM)) and use it to validate novel solutions obtained in Chapter 2.

Thereafter we use LDM to produce semi-analytical solutions for a coupled system

of PDEs that hitherto have required the use of numerical methods. We exploit

the technique further and propose a novel method that can predict the initial

kinematics of an expanding fungal colony.

In Chapter 4, we extend the system of equations from Chapter 2 to model

intra-species competition with limiting resources. A mathematical model is con-

structed to represent competition between two fungal colonies that have access

to different resources. It is shown that the model equations display a multitude

of travelling wave solutions and that the outcome of competition between two

fungal biomasses can be controlled through the simple manipulation of the nutri-

ent resources available to each species. The model equations are also numerically

integrated to illustrate the range of outcomes arising from fungal competition and

these results are placed in context of established experimental observations.

In Chapter 5 we extend the work from Chapter 4 to a more robust and

realistic model comprising a mixed hyperbolic-parabolic system of partial dif-

ferential equations to represent competing species in two dimensions (depicting

experiments involving a Petri dish). The model is used to simulate various ex-

perimental studies and predictions are made on the outcome of specific nutrient
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limited competition.

In Chapter 6 a two-dimensional model is formulated to investigate the

influence of nutrient manipulation on fungi in a toxic domain. The primary in-

spiration for this work is based around the experimental work of Fomina et al.

(2000, 2003). The model successfully captures the primary findings of Fomina

et al. (2003) and provides further possible explanations for some previously unex-

plainable phenomenon observed in experimental studies.

In Chapter 7 we present a comprehensive continuous model involving

siderophores. Siderophores are released by fungi to search for iron, which is a

critical mineral required for fungal survival. We present a two-dimensional math-

ematical model that captures experimental observations seen in a laboratory set-

ting and provides additional insight to potential causality for certain observations

arising in experiments.

In Chapter 8 we investigate a reduced one-dimensional model involving

siderophores and construct algebraic solutions on their spatial and temporal dis-

tributions.

Finally, in Chapter 9, a discussion on the main results of the thesis is

presented and potential avenues for future work are stated.
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Chapter 2

The Basis for Mathematical

Modelling of Filamentous Fungi

2.1 Mathematical modelling fundamentals

For the purpose of constructing a mathematical model capturing the essential

features of fungal growth, we will regard a mycelium and its constituents as con-

tinuous entities. Thus, rather than accounting for individual hypha, the average

properties, such as distribution of hyphal densities, are described. Since hyphal

length increment occurs only in the presence of a moving tip, the locations, den-

sity and flux of tips must be of significance in determining where growth takes

place. Hence mycelial interactions can be summed up briefly as follows:

• Tip movement creates new hyphal filaments.

• Tips and hyphae can branch and create more tips or tips can vanish through

anastomosis.

• Tips can cease to be active (i.e. ‘die’). Also, established hyphae can degrade.

2.2 Edelstein’s modelling approach

Edelstein-Keshet was the first to construct a continuous model of hyphal interac-

tions in dense hyphal mycelia (Edelstein, 1982). Her approach was inspired by the

work of Cohen (1967) where he identified the density of mycelium with respect to

space as a key feature in fungal growth.
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The work carried out by Edelstein (1982) will be revisited in this chapter

as it lays the foundation of the work which follows in the forthcoming chapters of

the thesis. Here we also present new solutions to her model equations.

It will initially be assumed that the mycelium grows over a continuously

replenished nutrient supply so that all cellular events take place at maximal rates,

which depend on the environmental conditions and fungal species. The follow-

ing model is a one-dimensional model, representing growth along a radius of the

colony, in line with the radially symmetric behaviour observed in experiments

(Ryan et al., 1943; Rotheray et al., 2008; Boddy et al., 2010).

Let ρ(x, t) denote the hyphal density in units of filament length per unit

area (measured in cm of hyphae cm−2) and n(x, t) denote the tip density number

per unit area (number of tips cm−2). Note that this choice of units allows for

the experimental testing of the model’s predictions in a non-destructive manner;

the length of hyphae or number of tips in a region of a mycelium can be easily

obtained through the observation of enlarged images of a fungus. The radius of

a fungal colony typically expands by the order of 1 cm per day and hence time

is typically measured in days (e.g. Boswell et al., 2002). Since hyphae is fixed in

space it can be regarded as the trail left behind a hyphal tip as it moves. Thus the

rate at which hyphae are created is proportional to the number of tips present,

with the constant of proportionality corresponding to the velocity of tips. Thus

the model equations are

∂ρ

∂t
= nv− d(ρ), (2.1)

∂n

∂t
= −∂(nv)

∂x
+ σ(n, ρ), (2.2)

where v is the tip velocity (the rate of apex extension in length per unit time),

σ(n, ρ) is the net creation of tips (the rate of tips created per unit area in time)

and d(ρ) is the hyphal death rate (the rate of filament length loss per unit area

in time). The quantity nv can be viewed as a tip flux and so corresponds to the

rate of creation of new hyphae.

2.2.1 Formulation of d(ρ) and σ(n, ρ)

The term d(ρ) represents the loss of hyphae, which may be a density-dependent

process. However for simplicity it is assumed that autolysis of hyphae is modelled
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as:

d(ρ) = γρ (2.3)

where γ is the rate constant for hyphal loss per unit time.

Several forms can be used to represent the net creation of hyphal tips

depending on the precise morphology of the fungus under study. Dichotomous

branching, where a single hyphal tip splits in two (see Figure 1.3(b)), can be

modelled via

σ = α1n (2.4)

where α1 is the rate of splitting per unit time.

Lateral branching (or Apical branching), where a new branch emerges from

a hyphal wall distant from a current tip (see Figure 1.3(a)), may be modelled by

σ = α2ρ (2.5)

where α2 is the number of branches produced per unit hyphae length per unit

time.

Tip elimination can also be incorporated into the process modelled by σ

but with negative contributions. For simple tip death, which might result from

atrophy of the apical compartment of hyphae (Edelstein, 1982; Al-Taie, 2011), the

corresponding expression is

σ = −α3n (2.6)

where α3 is the death rate (decay constant) of tips per unit time.

In interactions involving fusion (such as anastomosis, where a tip is elim-

inated at a potential site of extension) the encounter of two tips, or one tip and

one of its neighbouring hyphae is required. The actual process of anastomosis is

not well understood (Glass et al., 2000; Roca et al., 2003; Glass et al., 2004; Read

et al., 2012) but appears to be governed by a combination of local and global

conditions. For simplicity we will assume the fusion of a hyphal tip, with either

another tip or a hyphae occurs at a rate proportional to the local density of either

tips or hyphae respectively. Thus anastomosis can be modelled by

σ = −β1n
2 (2.7)

or

σ = −β2nρ (2.8)
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where β1 and β2 are the rate of fusion per Tip-Tip and Tip-Hyphae encounter

respectively.

Other cellular interactions have also been hypothesised (Edelstein, 1982).

For example, suppose an overcrowding of hyphae causes accumulation of (toxic)

substances to growing tips. A term representing this could be

σ = −β3ρ
2 (2.9)

where β3 is the rate of tip elimination per unit time by the effect of neighbouring

hyphae. The term is quadratic in ρ so that this term would dominate over lateral

branching (2.5) for large hyphal densities.

Combining a single branching type with a single tip-degrading influence

yields numerous distinct phenotypes of fungi. Of these, four apply somewhat

more broadly to fungi in which true anastomosis is absent (Edelstein, 1982) and

potential anastomosis is present. These are

σ = ρ(α2 − β2n), (2.10)

σ = ρ(α2 − β3ρ), (2.11)

σ = n(α1 − β1n), (2.12)

σ = n(α1 − β2ρ). (2.13)

These could be interpreted as density dependent branching rates that di-

minish as filament or tip crowding reach threshold levels. Above these thresholds,

such terms predict negative branching or a cumulative effect tending to reduce

the population of tips. Also tips formed in their places would be eliminated as

they grow through a location in which σ is negative.

In theory, a combination of any number of the branching types could be

expressed during phases of growth of a particular species of fungi. For ease of

notation these will be abbreviated as indicated in Table 2.1, consistent with the

notation of Edelstein (1982).
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Biological Type Mathematical Notation Symbol
Lateral Branching σ = α2ρ F
Dichotomous Branching σ = α1n Y
Tip-Hyphae Anastomosis σ = −β2nρ H
Tip-Tip Anastomosis σ = −β1n

2 W
Tip Death σ = −α3n T
Tip Death Overcrowding σ = −β3ρ

2 X
Hyphal Death d = γρ D

Table 2.1: Description and notations of possible combinations of fungal
branching and anastomosis.

2.2.2 Non-dimensionalisation of model equations

Incorporating (2.3)-(2.9) into equations (2.1) and (2.2) yields

∂ρ

∂t
= nv− γρ, (2.14)

∂n

∂t
= −∂(nv)

∂x
+ (α1 − α3)n+ α2ρ− β1n

2 − β2nρ− β3ρ
2, (2.15)

where the parameters have been previously described.

It is convenient to reformulate equations (2.14) and (2.15) in terms of

dimensionless quantities. Hence introducing τ , x̄, ρ̄ and n̄, which are to be deter-

mined, so that t∗ = t/τ , x∗ = x/x̄, ρ∗ = ρ/ρ̄, n∗ = n/n̄, where t∗, x∗, ρ∗ and n∗

are now dimensionless variables. Therefore equation (2.14) is non-dimensionalised

to

∂ρ∗

∂t∗
=

(
τ n̄v

ρ̄

)
n∗ − (γτ)ρ∗. (2.16)

Equation (2.15) is non-dimensionalised to

∂n∗

∂t∗
=−

(τv

x̄

) ∂n∗
∂x∗

+ (α1 − α3)τn∗ +
(α2τ ρ̄

n̄

)
ρ∗ (2.17)

− (β1n̄τ)n∗
2 − (β2τ ρ̄)n∗ρ∗ −

(
β3τ ρ̄

2

n̄

)
ρ∗

2

.

The form of the leading coefficients in equations (2.16) and (2.17), (which

are retained for all fungal types since they represent the basic feature of tip growth)

suggest the particular choices x̄ = τv, τ = γ−1 and ρ̄ = x̄n̄. After dropping stars
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for convenience, (2.16) and (2.17) become,

∂ρ

∂t
= n− ρ, (2.18)

∂n

∂t
= −∂n

∂x
+(α1−α3)τn+(α2τ

2v)ρ−τ n̄
[
β1n

2 + (β2τv)nρ+ β3(τv)2ρ2
]
. (2.19)

Depending on the exact processes in the model fungus, (i.e. whether α1,

α2, α3, β1, β2 or β3 are non-zero) further simplification is possible by choosing n̄

suitably.

2.3 Specific phenotype of fungi

To illustrate the basic behaviour of the non-dimensional model equations (2.18)

and (2.19), four particular forms for σ(n, ρ) will be considered, focussing on the

branching and anastomosis process represented by

• FHD (i.e. lateral branching, tip-hypha anastomosis)

• FXD (i.e. lateral branching, tip death due to overcrowding)

• YWD (i.e. dichotomous branching, tip-tip anastomosis)

• YHD (i.e. dichotomous branching, tip-hypha anastomosis)

and are modelled by dimensionless versions of the equations (2.10), (2.11), (2.12)

and (2.13) respectively. These represent four distinct phenotypes.

These four cases are now investigated in more detail, using a combination

of numerical and algebraic approaches where possible. Somewhat unexpectedly,

algebraic solutions for these model phenotypes have not been published previously.

The models have been numerically integrated in Matlab using ‘pdepe’ and typical

solutions with zero-flux boundary conditions are shown at time intervals of 2

for 0 ≤ t ≤ 20 over the domain x ∈ [0, 50]. A zero-flux boundary condition was

appropriate for our investigation as the behaviour at the boundaries of the system

was not investigated because it has been assumed that no material enters or leaves

the domain at the edges. This is consistent with laboratory experiments where

material is confined to the interior of a Petri dish. Note that the simulations are

halted before the biomass visibly arrives at the boundary. The initial conditions
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were chosen to be

ρ(x, 0) =

{
ρ0, if x ≤ x0

0, if x > x0

n(x, 0) =

{
n0, if x ≤ x0

0, if x > x0

(2.20)

with x0 = 3, where

ρ0 = n0 =
1− tanh(x)

2
. (2.21)

A depiction of the function in equation (2.21) is shown in Figure 2.1.

Figure 2.1: Plot of the initial function.

Notice there is a discontinuity at x0 for the initial data. This was selected

to avoid non-zero densities for large values of x at small times but did not cause

any integration issues in Matlab.

2.3.1 Phenotype FHD

The phenotype FHD models fungi that display lateral branching coupled with

tip-hypha anastomosis. These two processes are represented by σ = α2ρ− β2nρ.

By choosing the dimensional parameters n̄ = α2

β2
, with α1 = α3 = β1 = β3 = 0,

(2.19) is further simplified. The mathematical equations that model the basic
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characteristics of this phenotype are

∂ρ

∂t
= n− ρ, (2.22)

∂n

∂t
= −∂n

∂x
+ ξρ(1− n), (2.23)

where ξ = α2v
γ2 . Numerical solutions (Figure 2.2(a) and 2.2(b)) suggest that the

hyphae and tips propagate in a uniform manner in time as a travelling wave,

where profiles move at a constant speed in one direction without altering their

shape.

(a) (b)

Figure 2.2: Wave profile for the FHD phenotype with (2.20) and ξ = 1 shown
at time intervals of 2 from left to right for 0 ≤ t ≤ 20 over the domain

0 ≤ x ≤ 50 where (a) is biomass (ρ) and (b) is tips (n).

2.3.1.1 Particular travelling wave solution for FHD

Previous studies have investigated the system of equations (2.22) and (2.23) using

numerical solutions or phase-plane analysis (see later). However, it is possible to

construct a particular travelling wave solution of these equations by seeking a

solution of the form

ρ(x, t) = a+ b tanh(θx+ ct) (2.24)

where a, b, c and θ are chosen so that equation (2.23) is satisfied. Substituting the

function in equation (2.24) with n = ρ + ρt from equation (2.22) into (2.23) and

comparing terms, we obtain a set of values for the parameters a = 1
2
, b = c = −1

2

and θ = 1
2
− ξ

4
that satisfies the equations and thus provides the following particular
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travelling wave solution

n(x, t) =
1

4
(1− Λ) (3 + Λ) , (2.25)

ρ(x, t) =
1

2
− Λ

2
,

where Λ = tanh
((

2−ξ
4

)
x− t

2

)
which is physically realistic for ξ < 2. An illustra-

tion of equations (2.25) is shown in Figure 2.3.

Figure 2.3: Plot of the particular solution (2.25) with ξ = 1 at time t = 1.

We see in Figure 2.3 that n and ρ are monotonic decreasing in x and the

wave is propagating to the right with a speed of 2
2−ξ . To the author’s knowledge,

this is the first time a closed form solution has been obtained to the “tip and

trail” equations widely used in the mathematical modelling of fungi.

2.3.2 Phenotype FXD

The phenotype FXD models lateral branching coupled with tip death due to

overcrowding of hyphae. The biological interpretation is that the hyphae create

a toxic substance in its tips which kills off other tips. These two processes are

modelled by equation (2.11), namely σ = ρ(α2 − β3ρ). By choosing n̄ = α2γ
β3v

with

α1 = α3 = β1 = β2 = 0, equation (2.19) is further simplified. The mathematical
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equations that model the basic characteristics of this phenotype are

∂ρ

∂t
= n− ρ, (2.26)

∂n

∂t
= −∂n

∂x
+ ξρ(1− ρ), (2.27)

where ξ = α2v
γ2 .

(a) (b)

Figure 2.4: Wave profile for the FXD phenotype with equation (2.20) and
ξ = 1 shown at time intervals of 2 from left to right for 0 ≤ t ≤ 20 over the

domain 0 ≤ x ≤ 50 where (a) is biomass (ρ) and (b) is tips (n).

Through numerical integration (Figures 2.4(a) and 2.4(b)) it can be seen

that a propagating behaviour is present in both hypha and tip distributions.

Interestingly the densities can be seen to proliferate in an alternating manner.

This phenomenon is observed for various species of fungi in laboratory based

experiments (e.g. Nissen, 2012) where mycelia are seen to form concentric rings in

solid medium. A possible cause for such behaviour was proposed as being due to

circadian rhythm, where a fungi is exposed to alternating exposure to light and

temperature during growth (Nissen, 2012), but the above shows an alternative

possible cause.

2.3.2.1 A particular travelling wave solution for FXD

A similar approach as used in Section 2.3.1.1 for the FHD phenotype can be

applied to the FXD phenotype to yield particular travelling wave solutions. We

seek a solution to the equations (2.26) and (2.27) of the form
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ρ(x, t) = a+ b tanh(θx+ ct) + d tanh(θx+ ct)2 (2.28)

where a, b, c, d and θ are chosen so that equation (2.27) is satisfied. Substituting

the function in equation (2.28) with n = ρ+ρt from equation (2.26) into (2.27) and

comparing terms, we find that a = 3
4
, b = −1

2
, c = − 1

10
, d = −1

4
and θ = 1

10
− 5ξ

12

that satisfies the equations and thus provides the following particular travelling

wave solution

n(x, t) =
1

20
(1−Υ)(16 + 7Υ + Υ2), (2.29)

ρ(x, t) =
1

4
(1−Υ)(3 + Υ),

where Υ = tanh
((

6−25ξ
60

)
x− t

10

)
which is physically realistic for ξ < 6

25
. An

illustration of equations (2.29) is shown in Figure 2.5.

Figure 2.5: Plot of the particular solution (2.29) with ξ = 1 at time t = 1.

We see in Figure 2.5 that n and ρ are monotonic decreasing in x and the

wave is propagating to the right with a speed of 6
6−25ξ

.

2.3.3 Phenotype YWD

This phenotype represents dichotomous branching coupled with tip-tip anasto-

mosis and the corresponding branching and anastomosis terms are modelled by
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σ = (α1 − α3)n − β1n
2. In respect to modelling the phenotype YWD, we will

only consider α1n in our model as this depicts the splitting of hyphae into two

tips whereas the term −α3n represents tip elimination/death. Hence using the

dimensional parameters n̄ = α1

β1
in (2.19) and by setting α2 = α3 = β2 = β3 = 0,

the mathematical equations formed are

∂ρ

∂t
= n− ρ, (2.30)

∂n

∂t
= −∂n

∂x
+ ζn(1− n),

where ζ = α1

γ
.

(a) (b)

Figure 2.6: Wave profile for the YWD phenotype with (2.20) and ζ = 1 shown
at time intervals of 2 from left to right for 0 ≤ t ≤ 20 over the domain

0 ≤ x ≤ 50 where (a) is biomass (ρ) and (b) is tips (n).

The numerical simulation of equation (2.30) (Figures 2.6(a) and 2.6(b))

show that again a uniform propagation behaviour is present in both hyphae and

tips.

2.3.3.1 General analytical solution

It is interesting to note that these model equations can be solved analytically

but no solution has, to the author’s knowledge, previously been published. This

aspect of this model was not explored by Edelstein-Keshet. The dimensionless
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form of the system of equations will be used, i.e.

∂ρ

∂t
= n− ρ, (2.31)

∂n

∂t
= −∂n

∂x
+ ζ(n− n2),

which can be more conveniently expressed as

∂ρ

∂t
+ ρ = n, (2.32)

∂n

∂x
+
∂n

∂t
= ζ(n− n2).

The first equation of (2.32) can be solved using the integrating factor

method to give the solution

ρ(x, t) = e−t
(∫ t

0

n(x, t̂)et̂dt̂+ F (x)

)
(2.33)

where F (x) = ρ(x, 0) is introduced through integration. The second equation

of (2.32) can be solved using the method of characteristics. The characteristic

equations of (2.32) can be expressed as

dx = dt =
dn

ζ(n− n2)
. (2.34)

Integrating the first two terms ∫
dx =

∫
dt (2.35)

gives x = t + s̄ where s̄ was obtained from integration. The second term in

equation (2.34) can be integrated in two parts∫
dt =

∫
dn

ζ(n− n2)
(2.36)

i.e.

t =

∫
dn

ζ(n− n2)
(2.37)

where ζ 6= 0. The right hand side of (2.37) can be expressed in terms of its partial
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fractions and then integrated to give

ζt = ln

(
n

1− n

)
+ ζG(s̄) (2.38)

where G(s̄) is introduced via integration. Rearranging equation (2.38) yields

n =
1

e−ζ(t−G(s̄)) + 1
. (2.39)

Therefore the analytical solution of equation (2.31) is

ρ = e−t
(∫ t

0

n(x, t̂)et̂dt̂+ F (x)

)
, (2.40)

n =
1

1 + e−ζ(t−G(x−t)) .

If ρ(x, 0) = ρ0(x) and n(x, 0) = n0(x) then equation (2.40) can be expressed as

the following

ρ(x, t) = e−t
(∫ t

0

n(x, t̂)et̂dt̂+ ρ0(x)

)
, (2.41)

n(x, t) =
1

1 + e−ζt
(

1
n0(x−t) − 1

) .
This is the only type of phenotype out of the four we have chosen to analyse

that provides us with a general closed form solution for any initial data. We will

use this result in later analysis.

2.3.4 Phenotype YHD

This phenotype represents dichotomous branching coupled with tip-hyphae anas-

tomosis and the corresponding branching and anastomosis terms are modelled

by σ = α1n − β2nρ. In respect to modelling the phenotype YHD, we will only

consider α1n in our model as this depicts the splitting of hyphae into two tips

whereas the term −α3n represents tip death. Hence using the dimensional pa-

rameters n̄ = α1γ
β2v

and setting α2 = α3 = β1 = β3 = 0 in (2.19), the mathematical
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equations formed are

∂ρ

∂t
= n− ρ (2.42)

∂n

∂t
= −∂n

∂x
+ ζn(1− ρ)

where ζ = α1

γ
.

(a) (b)

Figure 2.7: Wave profile for the YHD phenotype with (2.20) and ζ = 1 shown
at time intervals of 2 from left to right for 0 ≤ t ≤ 20 over the domain

0 ≤ x ≤ 50 where (a) is biomass (ρ) and (b) is tips (n).

The numerical solutions (Figures 2.7(a) and 2.7(b)) show a propagating

distribution of hyphal and tip populations. Notice, striations similar to that ob-

served in FXD phenotype are also seen here. We were unable to obtain physically

realistic travelling wave solutions of the form similar to the other phenotypes

above.

2.4 Phase space analysis

2.4.1 Travelling wave solutions

One of the features of fungal colonies is their ability to spread over space as has

been seen in the previous simulations. The radial expansion of a colony normally

occurs at a constant rate. This can be described mathematically by saying that the

density distributions behave like travelling waves. Hence, in such circumstances,
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the particular solutions to equations (2.1) and (2.2) can be given by

ρ(x, t) = P (z),

n(x, t) = N(z),

where z = x−ct. Here P (z) and N(z) represent density profiles and c is the speed

of propagation of the colony. P and N are bounded, non-negative functions of z.

Hence equations (2.1) and (2.2) can be written as

− cdP
dz

= N − d(P ) (2.43)

and

(1− c)dN
dz

= σ(N,P ) (2.44)

where the equations are now a pair of ordinary differential equations in which the

distance and the death term has been non-dimensionalised. These equations can

be analyzed using phase plane techniques by looking for bounded, non-negative

solutions to these equations. For the solutions to represent a travelling wave the

following conditions must be satisfied (Edelstein, 1982):

1. The system has more than one equilibrium point (i.e
dP

dz
= 0,

dN

dz
= 0)

2. There is a heteroclinic trajectory connecting these in the (P,N) plane

3. The trajectory remains in the positive (P,N) quadrant

4. One of the steady states is necessarily (P0, N0) = (0, 0)

Condition (4) is necessary since ahead of the colony before growth has ar-

rived no hyphae or tips are present. Hence this steady state must be the attractor

for flow along the heteroclinic trajectory since it represents the limit as z → +∞
densities. If it exists, a second equilibrium of equations (2.43) and (2.44) (P1, N1)

would represent density levels into the interior of the colony as z → −∞.

2.4.2 Phase plane analysis

Here the attention is focussed on travelling wave solutions of the models considered

in the previous section, namely equations (2.23), (2.26), (2.30) and (2.42) coupled

with the hyphae equation
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−cdP
dz

= N − P

1. FHD: (1− c)dN
dz

= ξP (1−N),

2. FXD: (1− c)dN
dz

= ξP (1− P ),

3. YWD: (1− c)dN
dz

= ζN(1−N),

4. YHD: (1− c)dN
dz

= ζN(1− P ).

To illustrate the construction and analysis of the phase plane, consider the

FHD phenotype.

−cdP
dz

= N − P, (2.45)

(1− c)dN
dz

= ξP (1−N).

From equation (2.45) we obtain the coordinates for the stationary points,

which are (0, 0) and (1, 1) respectively. The eigenvalues, λ, of the Jacobian matrix

evaluated at (0, 0) are the roots of

λ2 − 1

c
λ+

ξ

c(1− c) = 0. (2.46)

For a travelling wave solution to exist there has to be a trajectory connect-

ing the two stationary points that lie in the positive quadrant. If 0 < c < 1
4ξ+1

then both λ are positive and so (0, 0) is an unstable node and if 1
4ξ+1

< c < 1

then λ are complex conjugates with positive real parts and so (0, 0) is an unstable

spiral, implying the existence of trajectories that leave the positive quadrant. If

c > 1 then the eigenvalues have opposite signs which would suggest that (0, 0) is

a saddle point.

The eigenvalues of the Jacobian matrix evaluated at (1, 1) are given by

solutions of (
λ− 1

c

)(
λ+

ξ

1− c

)
= 0 (2.47)
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i.e. λ = 1
c

and λ = ξ
c−1

. If c > 1 then both eigenvalues are positive and so (1, 1)

is an unstable node, if 0 < c < 1 then the eigenvalues have opposite signs which

would suggest that (1, 1) is a saddle point. If c < 0 then both eigenvalues are

negative, so (1, 1) is a stable node.

The results for the other phenotypes can be determined in a similar manner

and have been conducted by other authors (e.g. Edelstein, 1982). Figure 2.8 show

sample phase plane diagrams for different phenotypes, obtained using pplane8 in

Matlab.

(a) (b)

(c) (d)

Figure 2.8: Phase plane diagrams for (a) FHD, (b) FXD, (c) YWD and (d)
YHD phenotype, plotted using pplane8 with c = 2 and ξ = ζ = 1. Travelling wave

solutions are illustrated by the light blue trajectories connecting (1, 1) to (0, 0).
The red and orange lines correspond to the P and N nullclines respectively.
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2.5 Summary

We have computed numerical simulations of four distinct phenotypes explored by

Edelstein-Keshet and briefly explained their behaviour. We have shown that all

four phenotypes (i.e. FHD, FXD, YWD and YHD) display propagating behaviour.

This is true provided a death term is included in the model equations to represent

hyphal death. This result is also confirmed by Edelstein (1982) where she used

phase plane techniques to carry out an in depth analysis to determine which of

the phenotypes had bounded non-negative solutions. We have briefly explored

the key aspect of phase plane analysis from her work.

We also carried out a phase portrait analysis to reproduce Edelstein-

Keshet’s results. Edelstein-Keshet stressed that an expectation for all fungal

colonies to propagate is not realistic or possible if only reliance is on reaction terms

alone, which correspond to branching and anastomosis. Hence the death/autolysis

term is as important to fungi as branching and anastomosis and is necessary to

produce a travelling wave solution.

The numerical solutions for the FHD and YWD phenotypes depicted ‘tiny’

oscillations for small times (t = 2 and t = 4). These oscillations are numerical

errors that smoothed out over time to yield monotonic propagation of a travelling

wave (see Figures 2.2 and 2.6). However, the oscillations observed for the FXD and

YHD phenotypes are not numerical artefacts; rather these are intrinsic behaviours

of the model system and are predicted from the phase plane analysis (see Figure

2.8) that depicted a spiral heteroclinic trajectory from the stationary point (1, 1)

to (0, 0) for the FXD and YHD phenotype. There is no single driving force that

defines this different characteristic and thus the only conclusion is that the growth

characteristic arises as a response to a combination of branching, anastomosis and

hyphal death. A more in depth analysis can be found in Edelstein (1982).

We have seen in this section some analysis of the four common phenotypes

observed in fungal development. They all can be solved numerically as shown in

each respective subsections. We have also obtained a general analytical solution

for the phenotype YWD and a particular analytical solution for the FHD and FXD

phenotypes, which to the author’s knowledge has not been obtained in previous

studies.

The objective of this chapter has been to illustrate how different branching

and anastomosis processes (as well as tip death) can influence the morphology of

a fungal mycelium. It should be noted that these models have been investigated
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in the Cartesian coordinate system, and so are consistent with the previous inves-

tigations of Edelstein (1982), Boswell and Davidson (2012), and as a consequence

have generated travelling wave solutions for certain model phenotypes. Due to

the circular growth of fungal colonies, at least in uniform domains, an alterna-

tive analysis using polar coordinates could have been presented. While travelling

waves would no longer have arisen, for large times the leading edge of the resultant

distributions would still resemble those constructed above due to the similarity

between polar coordinate systems for large r and the Cartesian coordinate system.

In the following chapter we construct semi-analytical solutions for partic-

ular phenotypes and develop a method that describes the initial kinematics of an

expanding colony.
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Chapter 3

Decomposition Method Applied

to the Study of Filamentous

Fungi

3.1 A decomposition method

In Section 2.3.1.1 we determined a closed form solution (2.25) to the lateral

branching coupled with tip-hypha anastomosis phenotype (FHD). The solution

was restricted by choosing initial data of a specific form. In Section 2.3.3.1 for

the dichotomous branching coupled with tip-tip anastomosis phenotype (YWD),

a general solution (2.40) was obtained for the tips but for the hyphae only an inte-

gral solution was obtained. In this section we will venture an alternative approach

to obtain an approximate solution and verify the results with the closed form

solution. We will then use this new approach to generate an approximate semi-

analytical solution for the lateral branching coupled with tip-hypha anastomosis

phenotype (FHD), which in general is required to be solved numerically. This

alternative approach is the technique called the Laplace Decomposition Method

(LDM) inspired from the work developed by George Adomian. We choose to focus

on two phenotypes. Firstly YWD, as it was the only phenotype that resulted in

a general analytical solution. Thus the forthcoming technique developed in this

chapter can be tested against an exact result. The FHD phenotype is frequently

observed in experiments involving filamentous fungi and indeed it was found in

Boswell et al. (2002) that the fungi R. solani adheres to the morphological pattern

FHD and hence this phenotype is also considered here. Note, however, that the
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methods developed here can be applied to all possible phenotypes proposed in the

previous chapter.

3.1.1 Brief history

George Adomian developed the Adomian Decomposition Method (ADM) in a se-

ries of papers starting in the 1980s (Adomian, 1986, 1988, 1991a). It is based on

the search for a solution in the form of a series by decomposing the terms (linear or

non-linear) into a series in which the terms are calculated recursively using Ado-

mian polynomials (Adomian, 1991b; Adomian and Rach, 1991; Adomian, 1994;

Biazar et al., 2004).

The formation of mathematical models related to actual physical problems

arising in various areas of applied science (e.g. hydraulics), biology (e.g. popula-

tion models), engineering (e.g. transfer of heat) and physics (e.g. plasma physics)

often requires the investigation of a class of ordinary differential equations (ODEs)

and partial differential equations (PDEs) or a system of these, which are often

strongly non-linear or even stochastic. The models are usually formed with the

most realistic representation of the key attributes of interest of the problem. Due

to the complexity of the equations there is usually the need for simplifying as-

sumptions, typically linearisation. Although linearisation has been greatly useful

for problems of this nature, sometimes its use may mean the problem being solved

has skewed away from the realism of the physical problem (Adomian, 1991a; Khan

et al., 2010; Mohamed and Torky, 2013). Thus the result obtained, however ele-

gant, may not be physically realistic. The decomposition method does not change

the problem into a convenient approximate form, but instead provides a non-linear

algebraic solution.

Adomian and co-workers have solved many differential equations in a wide

class of non-linear problems including polynomials (Adomian and Rach, 1985a),

exponentials (Adomian and Rach, 1985b), hyperbolic (Adomian and Rach, 1984)

and negative-powers (Adomian and Rach, 1985c). Hence ADM can be used to

determine a series solution for many types of non-linear problems. It can be found

in literature that the decomposition method provides the solution in a convergent

series. The rapid convergence of the solution is guaranteed by the work conducted

by Cherruault (1990) and Dehghan and Tatari (2006).

Shueil Kuhri introduced a variation on the ADM termed Laplace Decom-

position Method (LDM) (Khuri, 2001, 2004). This algebraic technique illustrates
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how the Laplace transform may be utilised to approximate the solution of nonlin-

ear PDEs by manipulating the decomposition method (Khuri, 2001, 2004; Fadaei,

2011). The Laplace decomposition method has assisted in the work of many au-

thors to determine the solution to a variety of problems as well as many complex

systems (Agadjanov, 2006; Elgazery, 2008; Fadaei, 2011; Safari and Danesh, 2011;

Mohamed and Torky, 2013; Al-Hayani, 2013). There have also been modifications

to the LDM introduced by numerous authors (e.g. Wazwaz, 2006; Hussain and

Khan, 2010; Fadaei, 2011).

3.1.2 Adomian decomposition method

We will now discuss the processes involved in the Adomian decomposition method.

The ADM will be explained first because the LDM is simply a manipulated version

of the ADM. We begin with an equation of the form Fu(x, t) = h(x, t), where

F represents a general differential operator involving both linear and nonlinear

terms. The linear terms can be decomposed into L and R, where L is easily

invertible and R is the remainder of the linear operator. The equation may be

written as follows

Lu(x, t) +Ru(x, t) +Nu(x, t) = h(x, t) (3.1)

where L, for the current application, will be regarded as L = ∂
∂t

(but L may be

taken as the highest order derivative in general), R is the remainder of the linear

operator of the equation, N represents a general nonlinear operator acting on u

and h(x, t) is a source term. Equation (3.1) can be rearranged to

Lu(x, t) = h(x, t)−Ru(x, t)−Nu(x, t). (3.2)

Since L is linear, it is invertible and so an equivalent equation is

L−1Lu(x, t) = L−1h(x, t)− L−1Ru(x, t)− L−1Nu(x, t). (3.3)

If equation (3.1) corresponds to an initial/boundary value problem, the

inverse operator L−1 may be regarded as integration where the constants are

evaluated from the given conditions. Thus equation (3.3) can be written as

u(x, t) = K(x, t)− L−1Ru(x, t)− L−1Nu(x, t) (3.4)

38



where K(x, t) = L−1h(x, t). The next step is to express the solution as an infinite

series

u(x, t) =
∞∑
n=0

un (3.5)

where un are functions of x and t. The nonlinear operation on u(x, t) is decom-

posed into a second series

Nu(x, t) =
∞∑
n=0

An (3.6)

where An are the Adomian polynomials (Adomian, 1991b) of u0, u1, u2 . . . and

are functions of x and t. These polynomials can be generated from the standard

definition of the Adomian polynomials

An =
1

n!

dn

dλn

[
N

(
∞∑
i=0

λiui)

)]
λ=0

for n = 0, 1, 2, . . . (3.7)

but in application can be more readily formed from applying the nonlinear oper-

ator onto the series solution for u. Thus substituting (3.5) and (3.6) into (3.4) we

obtain

∞∑
n=0

un = K(x, t)− L−1R
∞∑
n=0

un − L−1

∞∑
n=0

An. (3.8)

The polynomials of An are generated for each nonlinearity so A0 depends

only on u0, A1 depends on u0 and u1, A2 depends on u0, u1 and u2 and so on. It

can be seen that the series
∑∞

n=0An for Nu(x, t) is equal to a generalised Taylor

series about u = u0 and
∑∞

n=0 un is a generalised Taylor series about u = u0.

Therefore we can write equation (3.8) in iterative form as

u0 = K(x, t) (3.9)

u1 = −L−1Ru0 − L−1A0

u2 = −L−1Ru1 − L−1A1

u3 = −L−1Ru2 − L−1A2

...

un+1 = −L−1Run − L−1An.

Thus the solution u can be constructed by summing its constituent parts (the
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uns).

3.1.2.1 Example of ADM

To illustrate the Adomian decomposition method, consider the following transport

equation

∂u

∂t
= −∂u

∂x
(3.10)

with initial data

u(x, 0) = sin(x). (3.11)

The closed form solution of equation (3.10) is clearly u(x, t) = sin(x − t),
which can be easily verified by differentiation. To apply the ADM, we write

equation (3.10) in the form of equation (3.3), i.e.

L−1

(
∂u

∂t

)
= L−1

(
−∂u
∂x

)
(3.12)

where the differential operator L = ∂
∂t

and the inverse operator L−1(·) =
∫ t

0
(·) dt

(and so consistent with Adomian’s notation: Adomian, 1986, 1988, 1991a). Hence

equation (3.12) becomes

u(x, t) = −
∫ t

0

(
∂u

∂x

)
dt. (3.13)

The Adomian Decomposition Method assumes that the unknown function u(x, t)

can be expressed by an infinite series of the form

u(x, t) =
∞∑
n=0

un, (3.14)

where un+1 = −
∫ t

0
∂un
∂x

dt. From (3.11), we set u0 = sin(x) and use the iterative

formula from equation (3.9). In equation (3.10) there is no source term hence the

h(x, t) term in equation (3.1) is zero here. Thus our initial function (u0) is only a

function of x, i.e. independent of t. Hence the first few terms are
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u0 = sin(x)

u1 = −
∫ t

0

(
∂u0

∂x

)
dt = − cos(x)t (3.15)

u2 = −
∫ t

0

(
∂u1

∂x

)
dt = − sin(x)

t2

2!
...

Therefore using the general formula to generate a few more consecutive

terms and summing them we get

u(x, t) = sin(x)− cos(x) t− sin(x)
t2

2!
+ cos(x)

t3

3!
+ sin(x)

t4

4!
− cos(x)

t5

5!
+ · · ·

= sin(x)

[
1− t2

2!
+
t4

4!
+ . . .

]
+ cos(x)

[
−t+

t3

3!
− t5

5!
+ · · ·

]
(3.16)

= sin(x) cos(t)− cos(x) sin(t)

= sin(x− t)

which is the exact solution of equation (3.10) stated at the start of this example.

3.1.3 Laplace decomposition method

As mentioned earlier, the Laplace decomposition method was introduced by Khuri

(2001). Consider the general form of an inhomogeneous nonlinear partial differ-

ential equation:

Lu(x, t) = h(x, t)−Ru(x, t)−Nu(x, t), (3.17)

with initial data

u(x, 0) = f(x), (3.18)

where all the operators are the same as before except f(x) represents the initial

conditions. We first take the Laplace transform of both sides of equation (3.17)

L[Lu(x, t)] = L[h(x, t)]− L[Ru(x, t)]− L[Nu(x, t)], (3.19)
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and using the standard differential property of the Laplace transform we obtain

sL[u(x, t)]− f(x) = L[h(x, t)]− L[Ru(x, t)]− L[Nu(x, t)]. (3.20)

Thus rearranging equation (3.20) we obtain

L[u(x, t)] =
f(x)

s
+

1

s
L[h(x, t)]− 1

s
L[Ru(x, t)]− 1

s
L[Nu(x, t)]. (3.21)

We use the same representation for un and Nu as we did for the ADM in equations

(3.5), (3.6) and (3.7), thus

u(x, t) =
∞∑
n=0

un and Nu(x, t) =
∞∑
n=0

An. (3.22)

Substituting equation (3.22) in equation (3.21) we get

L
[
∞∑
n=0

un

]
=
f(x)

s
+

1

s
L[h(x, t)]− 1

s
L
[
R
∞∑
n=0

un

]
− 1

s
L
[
∞∑
n=0

An

]
. (3.23)

Hence by grouping terms carefully we obtain

L[u0] =
f(x)

s
+

1

s
L[h(x, t)] = K(x, s), (3.24)

L[u1] = −1

s
L[Ru0]− 1

s
L[A0],

...

L[un+1] = −1

s
L[Run]− 1

s
L[An], for n ≥ 0 (3.25)

where K(x, s) is used to represent the Laplace transformed source term and the

initial condition. Now we take the inverse Laplace transform of equations (3.24)

and (3.25) to get

u0 = L−1 [K(x, s)] , (3.26)

un+1 = −L−1

[
1

s
L[Run] +

1

s
L[An]

]
, for n ≥ 0.

Therefore we obtain the functions for u1, u2, u3, . . . from equation (3.26) allowing

one to construct a series solution.

42



3.1.3.1 Example of LDM

We will solve the same first order transport equation, solved earlier using ADM,

by the Laplace decomposition method, i.e.

∂u

∂t
= −∂u

∂x
with u(x, 0) = sin(x).

We write the equation in the same form as equation (3.19):

L
[
∂u

∂t

]
= −L

[
∂u

∂x

]
, (3.27)

where the differential operator L is the Laplace transform operator. Hence eval-

uating the Laplace transform in equation (3.27) we obtain:

sL[u]− u(x, 0) = −L
[
∂u

∂x

]
. (3.28)

We rearrange equation (3.28) and take the inverse Laplace transform to get

u(x, t) = L−1

[
u(x, 0)

s

]
− L−1

[
1

s
L
[
∂u

∂x

]]
. (3.29)

We know that the unknown function can be written as an infinite series shown in

equation (3.22). Hence we have

∞∑
n=0

un = u(x, 0)− L−1

[
1

s
L
[
∂

∂x

(
∞∑
n=0

un

)]]
. (3.30)

Hence we obtain

u0 = u(x, 0) = sin(x)

u1 = −L−1

[
1

s
L
[
∂(u0)

∂x

]]
= −L−1

[
1

s2
cos(x)

]
= − cos(x) t

u2 = −L−1

[
1

s
L
[
∂(u1)

∂x

]]
= −L−1

[
1

s3
sin(x)

]
= − sin(x)

t2

2!
...

As before, we can clearly see, u(x, t) = sin(x− t).
In practice, the series will be truncated after a given number of terms.
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The convergence or divergence of a series is typically not known, thus choosing

the point to truncate a series should be considered in obtaining a useful result.

3.1.4 YWD Phenotype revisited

3.1.4.1 A particular solution

In Section 2.3.3.1 a closed form solution was obtained for the phenotype YWD

(the fungal colony with the dichotomous branching and tip-tip anastomosis char-

acteristics) for non-dimensionalised parameters. Edelstein (1982) stressed that

some parameters are crucial to ensure propagating behaviour in fungi and thus

should not be overlooked. Crucial parameters such as the speed of the tips, death

of hyphae and the branching and anastomosis terms were not explicitly included

in the non-dimensionalised models seen in the previous chapter. These parame-

ters are fundamental to understanding important properties of fungal kinematics.

Therefore we will use the dimensional form of the system of equations for the

phenotypes YWD and FHD in this chapter.

We start by writing equation (2.31) in an alternative but equivalent form

and use particular initial conditions to obtain an analytical solution

ρt = nv− γρ, (3.31)

nt = −vnx + αn− βn2.

The general solutions to the equations in (3.31) are given by

ρ = e−γt
(∫ t

0

vneγt̂dt̂+ F (x)

)
, (3.32)

n =
α

β + e−αtG(x− vt) , (3.33)

where F (x) and G are the same as before but for notational convenience we

set α = α1 and β = β1. For illustrative purposes, suppose the following initial

conditions are used

ρ(x, 0) =
αv

2βγ
(1− tanh(θx)), n(x, 0) =

α

2β
(1− tanh(φx)). (3.34)

This choice of initial conditions were influenced by the anticipation of a het-

eroclinic orbit between the two equilibrium points, often seen in these studies
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(Edelstein, 1982) and where the behaviour at the boundaries matches the spa-

tially uniform equilibria. Hence using simple algebra, the initial condition for the

tip equation (3.33) is

G(x) = β

(
1 + tanh(φx)

1− tanh(φx)

)
= βe2φx. (3.35)

Therefore

n(x, t) =
α

β(1 + e2φ(x−( α
2φ

+v)t))
=

α

2β

(
1− tanh

(
φ

(
x−

(
α

2φ
+ v

)
t

)))

and so the distribution propagates as a travelling wave with velocity α
2φ

+ v.

Substituting the above into equation (3.32) we obtain the analytical solutions for

the system of equations (3.31)

ρ(x, t) = e−γt
(
v

∫ t

0

α

2β

(
1− tanh

(
φ

(
x−

(
α

2φ
+ v

)
t̂

)))
eγt̂ dt̂+ F (x)

)
,

(3.36)

n(x, t) =
α

2β

(
1− tanh

(
φ

(
x−

(
α

2φ
+ v

)
t

)))
. (3.37)

3.1.4.2 Applying LDM on phenotype YWD

In this section we will apply the Laplace decomposition method to phenotype

YWD. The model equations are

ρt = nv− γρ,
nt = −vnx + αn− βn2.

Applying Laplace transforms to both equations we obtain

L[ρt] = L[nv− γρ],

L[nt] = L[−vnx + αn− βn2]. (3.38)

Hence

sL[ρ]− ρ(x, 0) = L[nv− γρ],

sL[n]− n(x, 0) = L[−vnx + αn− βn2]. (3.39)
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Rearranging and applying inverse Laplace transforms, we get

ρ(x, t) = ρ(x, 0) + L−1

[
1

s
L[nv− γρ]

]
,

n(x, t) = n(x, 0) + L−1

[
1

s
L[−vnx + αn− βn2

]
. (3.40)

LDM assumes a series solution of the functions ρ(x, t) and n(x, t), so we suppose

ρ(x, t) =
∞∑
m=0

ρ̂m(x, t),

n(x, t) =
∞∑
m=0

n̂m(x, t). (3.41)

Therefore substituting (3.41) into (3.40) we obtain

∞∑
m=0

ρ̂m(x, t) = ρ(x, 0) + L−1

[
1

s
L
[

v
∞∑
m=0

n̂m(x, t)− γ
∞∑
m=0

ρ̂m(x, t)

]]
∞∑
m=0

n̂m(x, t) = n(x, 0) + (3.42)

L−1

[L[−v
∑∞

m=0(n̂m(x, t))x + α
∑∞

m=0 n̂m(x, t)−∑∞m=0 Am]

s

]
where the nonlinear term βn2 is decomposed as

Am = β
m∑
i=0

(n̂i × n̂m−i), for m = 0, 1, 2, . . . (3.43)

where Am are Adomian polynomials of n̂0, n̂1, n̂2, . . . , n̂m. The Am terms are

therefore

A0 = β(n̂0n̂0)

A1 = β(n̂0n̂1 + n̂1n̂0)

A2 = β(n̂0n̂2 + n̂1n̂1 + n̂2n̂0)

...
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From equation (3.42) we can deduce the recursive relation for ρ(x, t) and n(x, t)

using

ρ̂0(x, t) = ρ(x, 0),

ρ̂m+1(x, t) = L−1

[L[v
∑∞

m=0 n̂m(x, t)− γ∑∞m=0 ρ̂m(x, t)]

s

]
for m ≥ 0 (3.44)

n̂0(x, t) = n(x, 0), (3.45)

n̂m+1(x, t) = L−1

[L[−v
∑∞

m=0(n̂m(x, t))x + α
∑∞

m=0 n̂m(x, t)− Am]

s

]
, for m ≥ 0.

Hence using the same initial conditions from equation (3.34), we obtain the

series solution for ρ and n, which for convenience were computed using Maple:

ρ(x, t) =
αv

2βγ
(1− tanh(θx))− αv

2β
(tanh(φx)− tanh(θx)) t (3.46)

+
αv

8β
((2φv + α) sech2(φx) + 2γ(tanh(φx)− tanh(θx))) t2 + . . .

n(x, t) =
α

2β
(1− tanh(φx)) +

α

4β
(2φv + α) sech2(φx) t (3.47)

+
α

8β
(2φv + α)2 sech2(φx) tanh(φx) t2 + . . .

From equation (3.47) we notice that these terms are identical to

the Taylor series about t = 0 of the closed form solution n(x, t) =
α
2β

(
1− tanh

(
φ
(
x−

(
α
2φ

+ v
)
t
)))

. We cannot easily conclude the same for

the series generated for ρ in equation (3.46), since the series for equation (3.36)

cannot be easily generated. However the result obtained for ρ can still be used to

plot the distribution of the hyphae and predict the kinematic state of the system

(see Section 3.3). Furthermore using computer software such as Maple, we can

take the small t limit of (3.32) and find that it does indeed equal (3.46).

3.1.4.3 Comparing LDM to numerical solutions

The numerical solution to the system of equations in equation (3.31) representing

the YWD phenotype, has been plotted in Maple with initial conditions (3.34)

using ‘pdesolve’. This will be used to compare to the series solution for equation

(3.46) and (3.47). All parameters will be set to unity (i.e. α, β, γ, θ, φ and v) for

simplicity in this section.
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(a) (b)

Figure 3.1: Plot of YWD phenotype propagation represented by equation (3.31)
with initial conditions in (3.34) using parameter values

α = β = γ = θ = φ = v = 1 shown at times t = 0, 0.5 and 1. (a) shows typical
propagation of hyphae and (b) shows typical propagation of tips.

A propagating wave can be seen in Figures 3.1(a) and 3.1(b). This kind

of behaviour was observed earlier in Section 2.3.3, where the system of equations

were solved numerically in Matlab (see Figure 2.6(b)). Interestingly a delay in the

proliferation of ρ is observed prior to forming a travelling wave in Figure 3.1(a).

This delay is expected since ρ should follow behind n, but this shift is not included

in the initial conditions for ρ and n.

Using the Laplace decomposition method with initial conditions (3.34),

the leading terms for ρ and n were generated, as depicted in equations (3.46)

and (3.47), by utilising Maple to perform the algebraic manipulations. Figure 3.2

compares the sum of the first 10 terms for n(x, t) against the exact solution.
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(a) (b)

Figure 3.2: A comparison plot of the numerical solutions generated from
equations (3.36) and (3.37) of YWD phenotype with initial data (3.34) with 10
terms generated using LDM from equations (3.44) and (3.45) using parameter
values α = β = γ = θ = φ = v = 1 are shown at times t = 0, 0.5 and 1. Figure

(a) is a plot of hyphae and (b) is a plot of tips.

It can be seen that for small times, 10 terms in the truncated series are more

than sufficient to produce propagating behaviour at the leading edge. However,

for larger times oscillations seems to arise at the peaks of the curve behind the

leading edge suggesting the series diverges but the leading edge of the wave front

appear to be in good agreement with the exact solution. This maybe due to the

number of Adomian polynomials used. Hence in our example, our series for n(x, t)

was truncated at n10, so as time increases, it creates spurious oscillations. If we

compute more terms for n(x, t) then we should anticipate a smoother plot at later

times and a more accurate result. This can be observed in Figures 3.3 and 3.4

where the series has been computed for 20 and 50 terms respectively.
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(a) (b)

Figure 3.3: A comparison plot of the numerical solutions generated from
equations (3.36) and (3.37) of YWD phenotype with initial data (3.34) with 20
terms generated using LDM from equations (3.44) and (3.45) using parameter

values α = β = γ = θ = φ = v = 1 are shown at times t = 0, 0.5 and 1. (a) is a
plot of hyphae and (b) is a plot of tips.

(a) (b)

Figure 3.4: A comparison plot of the numerical solutions generated from
equations (3.36) and (3.37) of YWD phenotype with initial data (3.34) with 50
terms generated using LDM from equations (3.44) and (3.45) using parameter

values α = β = γ = θ = φ = v = 1 are shown at times t = 0, 0.5 and 1. (a) is a
plot of hyphae propagation and (b) is a plot of tip propagation.
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Clearly from Figures 3.2 to 3.4 as the number of terms in the series ap-

proximation for n(x, t) increases, the series solution generated via LDM produce

a smoother distribution that more closely resembles the exact solution (Figure

3.1(b)).

For the LDM-generated solutions to avoid spurious oscillations, it is es-

sential that the resultant series converges. This convergence is guaranteed for

small times but not necessarily for larger times. The convergence theory of ADM

or LDM will not be explored in this thesis but has been extensively discussed by

various authors (Cherruault, 1990; Abbaoui and Cherruault, 1994a,b; Abdelrazec,

2008; Rach, 2008; Abdelrazec and Pelinovsky, 2011). Therefore we conclude that

the semi-analytical solution produced by the Laplace decomposition method is a

very good approximation, at least for small times, for the fungal phenotype YWD.

3.1.5 FHD Phenotype revisited

The phenotype FHD introduced in Chapter 2 corresponds to

ρt = vn− γρ,
nt = −vnx + αρ− βρn, (3.48)

and had no general solution, except for specific initial data. Hence, solving equa-

tion (3.48) using initial conditions (3.34) we obtain the following particular solu-

tions:

ρ(x, t) =
αv

2βγ
− αv

2βγ
tanh

((
2γ2 − αv

4γv

)
x−

(γ
2

)
t

)
, (3.49)

n(x, t) =
3α

4β
− α

2β
tanh

((
2γ2 − αv

4γv

)
x−

(γ
2

)
t

)
(3.50)

− α

4β
tanh

((
2γ2 − αv

4γv

)
x−

(γ
2

)
t

)2

.

Similar to the previous section, we apply the Laplace transform to both

equations (3.48), rearrange and apply inverse Laplace transforms, to get

ρ(x, t) = ρ(x, 0) + L−1

[L[vn− γρ]

s

]
,

n(x, t) = n(x, 0) + L−1

[L[−vnx + αρ− βρn]

s

]
. (3.51)
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LDM assumes a series solution of the functions ρ(x, t) and n(x, t), thus we suppose

ρ(x, t) =
∞∑
m=0

ρ̂m(x, t),

n(x, t) =
∞∑
m=0

n̂m(x, t). (3.52)

Therefore substituting equations in (3.52) into (3.51) we obtain

∞∑
m=0

ρ̂m(x, t) = ρ(x, 0) + L−1

[L[v
∑∞

m=0 n̂m(x, t)− γ∑∞m=0 ρ̂m(x, t)]

s

]
∞∑
m=0

n̂m(x, t) = n(x, 0)+ (3.53)

L−1

[L[−v
∑∞

m=0(n̂m(x, t))x + α
∑∞

m=0 ρ̂m(x, t)−∑∞m=0Am]

s

]
where the non-linear term βρn is decomposed as

Am = β
m∑
i=0

(ρ̂i × n̂m−i), for m = 0, 1, 2, . . . (3.54)

where Am are Adomian polynomials and are given by

A0 = βρ̂0n̂0

A1 = β(ρ̂0n̂1 + ρ̂1n̂0)

A2 = β(ρ̂0n̂2 + ρ̂1n̂1 + ρ̂2n̂0)
...

Therefore from equation (3.53) we can deduce the recursive relation for ρ̂m(x, t)

and n̂m(x, t) to be

ρ̂0(x, t) = ρ(x, 0),

ρ̂m+1(x, t) = L−1

[L[vn̂m(x, t)− γρ̂m(x, t)]

s

]
, for m ≥ 0 (3.55)

n̂0(x, t) = n(x, 0), (3.56)

n̂m+1(x, t) = L−1

[L[−v(n̂m(x, t))x + αρ̂m(x, t)− Am]

s

]
, for m ≥ 0.
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Hence using the same initial conditions from equation (3.34), we obtain

the leading terms for ρ and n which for convenience were computed using Maple.

ρ(x, t) =
αv

2βγ
(1− tanh(θx))− αv

2β
(tanh(φx)− tanh(θx)) t (3.57)

− αv

8βγ

[
−2φγv − αv + (αv + 2γ2 + αv tanh(φx)) tanh(θx)+

(−αv − 2γ2 + 2φγv tanh(φx)) tanh(φx)
]
t2 + . . .

n(x, t) =
α

2β
(1− tanh(φx)) (3.58)

− αv

4βγ
[(tanh(φx) + 1)(2φγ tanh(φx) + α tanh(θx)− 2φγ − α)] t+ . . .

The results were obtained on a machine with ‘AMD E-300 APU with

Radeon(tm) HD Graphics 1.30 GHz’ processor and 8GB of RAM. The total time

taken to generate 30 terms on average was 2000 seconds. Setting all parameters

to unity and plotting the first 30 terms for ρ and n we obtain a familiar travelling

wave profile (Figure 3.5).

(a) (b)

Figure 3.5: A comparison plot of the numerical solution for equations in (3.48)
with initial data (3.34) of FHD phenotype propagation with 30 terms generated

using LDM from equations (3.55) and (3.56) using parameter values
α = β = γ = θ = φ = v = 1 shown at times t = 0, 0.5 and 1. Figure (a) is a plot

of hyphae propagation and Figure (b) is a plot of tip propagation.

We have successfully constructed a semi-analytical approach to solving a

system of partial differential equations using the Laplace decomposition method,
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which has not been previously obtained. The LDM produces a good approxima-

tion as we can observe by comparing Figure 3.5 to the behaviour we saw earlier

when we solved the set of equations numerically in Matlab (Figure 2.2(b)). Fur-

ther investigation is required to compare the accuracy of the solution for larger

times. Initially we have explored the current system for large times and found

that the wave front is accurately depicted by the series, whereas behind the wave

front was not very accurate, as will now be explained.

3.2 Application of LDM to track the position of

leading edge of wave front

In this section we will explore the dynamics of the leading wave front for large

times for the YWD and FHD phenotypes. The system of equations for the YWD

phenotype in (3.31) and FHD phenotype (3.48) was shown previously to display

a travelling wave distribution.

It was shown previously that the series generated with LDM for the system

of equations in (3.31) is in excellent agreement with the closed form solutions for

small time (e.g. Figures 3.1, 3.2, 3.3 and 3.4). As more terms were added, the plot

of the profile became smoother and approached the closed form solution and for

large times there appeared to be spurious oscillations forming behind the leading

edge. However, the leading edge did not seem to be affected and we found that

by adding more terms to the series, the position of the wave front for larger times

could be obtained with greater accuracy.

To track the leading wave position we suppose x0 is the greatest value of

x such that the distribution is equal to some arbitrary value at time t0, (e.g. for

tips, n(x0, t0) = nc). The position x0 at time t0 will then be compared between

the closed form solutions (3.36) and (3.37) (for YWD phenotype) and the series

generated using LDM, i.e. (3.44) and (3.45). Due to the lack of an explicit

solution, the FHD phenotype in equation (3.48) with initial condition (3.34), will

be solved numerically and the solution will be compared to the series generated

via LDM in equations (3.55) and (3.56).
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3.2.1 Wave front of YWD

The closed form solution (3.36) and (3.37) was used to determine the position x

of the leading edge of the distribution at various times t, i.e. the greatest value xc

such that n(xc, t) = nc or ρ(xc, t) = ρc where nc = ρc = 0.1 and other parameters

were taken to be unity. These critical values of x were solved numerically using

Maple (Tables 3.1 and 3.2). Additionally the LDM generated series (3.46) and

(3.47) were used to determine the same position but where different numbers of

terms were used in the series expansion.

Time Equation (3.36) Series (3.46): 5 terms Series (3.46): 10 terms Series (3.46): 50 terms
0 1.0986 1.0986 1.0986 1.0986
2 3.3369 3.0426 3.3883 3.3369
4 6.3361 4.5081 5.9282 6.3386
6 9.3361 5.4382 7.7109 9.2996
8 12.3361 6.1172 9.0456 12.3585
10 15.3361 6.6515 10.1037 15.4451

Table 3.1: The position of the leading edge of hyphae for YWD phenotype from
the system of equations (3.31) determined by the greatest value of xc where
ρ(xc, t) = 0.1 with α = β = γ = θ = φ = v = 1 and with initial data (3.34) is

calculated using the analytical solution (3.36) and from truncated series in
equation (3.46) comprising respectively the first 5, 10 and 50 terms.

Time Equation (3.37) Series (3.47): 5 terms Series (3.47): 10 terms Series (3.47): 50 terms
0 1.0986 1.0986 1.0986 1.0986
2 4.0986 3.7420 4.1096 4.0986
4 7.0986 5.2033 6.6219 7.0987
6 10.0986 6.1338 7.7109 10.0948
8 13.0986 6.8133 9.7382 13.1151
10 16.0986 7.3480 10.7969 16.1456

Table 3.2: The position of the leading edge for tips for the YWD phenotype
from system of equations in (3.31) determined by the greatest value of xc where
n(xc, t) = 0.1 with α = β = γ = θ = φ = v = 1 and with initial data (3.34) is

calculated using the analytical solution (3.37) and from truncated series in
equation (3.47) comprising respectively the first 5, 10 and 50 terms.

It is clear from Tables 3.2 and 3.1, as more terms are added to the series

generated by LDM the accuracy for the position of the leading edge for the tips

and hyphae do indeed increase greatly.
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3.2.2 Wave front of FHD

Using the same approach as in the previous section we obtain Tables 3.3 and

3.4 containing information regarding the comparisons made between the semi-

analytical result generated via LDM and numerical solutions for the tips and hy-

phae of the FHD phenotype. The position of the leading wave of the distributions

have been calculated at an arbitrary critical value of nc = ρc = 0.1.

Time Equation (3.49) Series (3.57): 5 terms Series (3.57): 10 terms Series (3.57): 50 terms
0 1.0986 1.0986 1.0986 1.0986
2 2.8600 2.8779 2.8779 2.8606
4 5.1686 4.0981 5.0514 5.1690
6 7.4762 7.4751 6.7156 7.4751
8 9.7831 5.6531 8.001 9.7691
10 12.0902 6.1761 9.0359 12.0937

Table 3.3: The position of the leading edge of hyphae for FHD phenotype from
the system of equations (3.48) determined by the greatest value of xc where
ρ(xc, t) = 0.1 with α = β = γ = θ = φ = v = 1 and with initial data (3.34) is
calculated numerically. The truncated series in equation (3.57) comprising

respectively the first 5, 10 and 50 terms are shown at times t ≥ 0.

Time Equation (3.50) Series (3.58): 5 terms Series (3.58): 10 terms Series (3.58): 50 terms
0 1.0986 1.0986 1.0986 1.0986
2 3.5000 3.5079 3.5079 3.4997
4 5.8078 4.7112 5.6507 5.8057
6 8.1148 8.1097 7.3126 8.1097
8 10.4214 6.2788 8.5982 10.4118
10 12.7276 6.8059 9.6323 12.7245

Table 3.4: The position of the leading edge for tips for the FHD phenotype from
system of equations in (3.48) determined by the greatest value of xc where

n(xc, t) = 0.1 with α = β = γ = θ = φ = v = 1 and with initial data (3.34) is
calculated numerically. The truncated series in equation (3.58) comprising

respectively the first 5, 10 and 50 terms is shown at times t ≥ 0.

From Tables 3.4 and 3.3 it can be seen that the accuracy for large times of

the position of the leading wave front increases with the addition of higher order

terms.

Our investigation in this section demonstrates that the Laplace decompo-

sition method accurately tracks the position of the leading wave. Its advantages

over numerical methods lies in the fact that cumulative errors are not introduced
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as in other numerical methods, while also boundary conditions do not need to

be considered to obtain useful results. Also once a general series is determined,

solutions can be obtained for different parameters without the need for solving

the system of equations with each change.

Despite the advantages, there is also a noticeable disadvantage, namely the

solution behind the leading edge is problematic. In Figures 3.2 - 3.4 ‘wiggles’ can

be seen immediately behind the leading edge for large times. These wiggles seem

to reduce by including more terms in the series generated.

3.3 Kinematic properties of an advancing wave

front

3.3.1 Inspiration and motivation

Many systems of partial differential equations (PDEs) display travelling wave solu-

tions. Traditionally, and especially in a single spatial dimension, the development

of such systems is investigated analytically, e.g. by using substitutions of the form

z = x− ct. However, for highly non-linear functions, or complicated initial data,

it may be too complex to extract such solutions, even if they exist. While numer-

ical simulations can provide insight into the behaviour of the system, parameter

values and initial data have to be chosen in advance and it is therefore often dif-

ficult to isolate the influence of either on the entire system. Furthermore, such

solutions may only describe the long term behaviour and not the initial develop-

ment of the system which is influenced by initial data (Safuan et al., 2016) and

can be especially important when considering population dynamics. For example,

in infectious diseases, the early dynamics of the disease in a spatially organised

population is determined by its initial distribution (Keeling and Rohani, 2008), in

ecology the progress of non-native species invading an otherwise empty environ-

ment is of interest (Lockwood et al., 2013) and in medicine the progress of a drug

towards a tumour is dependent on the initial concentration of the drug (Giráldez

and Herrero, 2009).

An additional problem faced in applications when using PDEs is that the

equations can predict the presence of a population at low densities that are in

practice, impossible to measure in the physical system being considered. Thus

the tracking of a leading edge of the population, namely the position at which a
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population can be measured, is crucial to allow comparison between theoretical

and experimental results. This is certainly the case with fungi where hyphae

can have diameters of order 10 microns. In the following section, an analytical

approach is proposed that can be used to describe the initial behaviour of such

leading edges by constructing algebraic expressions for their initial velocity and

acceleration. This novel approach is based on constructing a series solution of the

model equations utilising the Laplace decomposition method (LDM) and allows

the influence of the initial data and all model parameters to be easily observed.

To illustrate the method we will use many of the same PDEs used in the previous

section in particular the YWD and FHD phenotypes, i.e. equations (3.31) and

(3.48) respectively.

3.3.2 Formulation of method

Suppose u(x, t) satisfies ut = f(x, t, ux, uxx, . . .) for a specified function f , which

may also include a large number of parameters, with given initial data u(x, 0) =

u0(x) representing an ‘invasive’ population, i.e. u0(x)→ 0 as x→∞ and u0(x) >

0 as x→ −∞. As time passes, the function umoves. To track how the distribution

of u develops over time, suppose x0 is the greatest value of x such that u(x0, t0) =

uc for some arbitrary uc at time t0 taken to be in the range of u and that satisfies

ux(x0, t0) < 0. The value uc, denoting the leading edge of the distribution, could

represent a critical density below which the population cannot be detected. After

a time ∆t has elapsed, suppose the leading edge has moved a distance ∆x so that

u(x0 + ∆x, t0 + ∆t) = uc. More precisely, suppose

∆x = a1∆t+ a2∆t2 + a3∆t3 + . . . (3.59)

since ∆x is position and ∆t is time. The velocity is given by

d∆x

d∆t
= a1 + 2a2∆t+ 3a3∆t2 + . . .

while acceleration is
d2∆x

d∆t2
= 2a2 + 6a3∆t+ . . .
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Thus the instantaneous velocity and acceleration are a1 and 2a2 respectively.

Using Taylor series about (x0, t0) i.e. ∆x→ 0 and ∆t→ 0 we get

u(x0 + ∆x, t0 + ∆t) = u(x0, t0) + ∆x
∂u

∂x
+ ∆t

∂u

∂t

+
1

2!

[
∆x2∂

2u

∂x2
+ 2∆x∆t

∂2u

∂x∂t
+ ∆t2

∂2u

∂t2

]
+ . . .

When tracking the position of the leading edge, at the critical value then

u(x0 + ∆x, t0 + ∆t) = u(x0, t0) = uc. It follows that

0 = ∆x
∂u

∂x
+ ∆t

∂u

∂t
+

1

2!

[
∆x2∂

2u

∂x2
+ 2∆x∆t

∂2u

∂x∂t
+ ∆t2

∂2u

∂t2

]
+ . . . (3.60)

Substituting (3.59) into equation (3.60) and collecting terms in ∆t, ∆t2 etc, we

obtain the following

0 = ∆t[a1ux + ut] + ∆t2
[
a2ux +

a2
1

2
uxx + a1uxt +

1

2
utt

]
+O(∆t3). (3.61)

Neglecting higher order terms and comparing coefficients allows a1 and a2 to be

determined. Hence comparing ∆t terms the instantaneous velocity of the wave

front at (x0, t0) is

0 = a1ux + ut

∴ Initial velocity = − ut
ux
. (3.62)

The acceleration is determined by comparing the ∆t2 terms and substituting

equation (3.62) into equation (3.61), i.e.

2a2 = 2
uxtut
u2
x

− uxxu
2
t

u3
x

− utt
ux
. (3.63)

After some algebraic manipulation the acceleration equation in (3.63) can be

expressed as

Initial acceleration =
2utuxuxt − u2

xutt − u2
tuxx

u3
x

(3.64)

provided ux is non-zero.
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Simple example: transport equation

The equation ut = −vux has a solution u(x, t) = u0(x− vt) corresponding to the

initial distribution u(x, 0) = u0(x) propagating with a constant velocity v. Notice

−ut/ux = v as above. Further, by noting that utt = −vuxt, the acceleration is

easily shown to be zero. More examples on the utilisation of this technique can

be found in Choudhury et al. (2016).

While these formulae provide simple estimates of the velocity and accelera-

tion of the leading edge of an advancing wave front, they often require the solution

of the corresponding PDE to be known. If such a solution is unknown, a series

solution can be obtained using the Laplace Decomposition Method to generate

the corresponding formulae in terms of the original model parameters.

3.3.3 LDM series solution utilisation

We observed in Section 3.1 that the series generated by the decomposition method

corresponds to a Taylor series about t = 0 of the solution. The resultant series

can therefore be written as,

u(x, t) = ū0 + ū1(x)t+ ū2(x)t2 + . . .

which note, is only true for homogeneous PDEs. Hence the initial velocity of the

leading wave front (i.e. when t = 0 at x = x0) is from equation (3.62)

− ut
ux

= − ū1

ū
′
0

(3.65)

and from equation (3.64) the initial acceleration is

2utuxuxt − uttu2
x − u2

tuxx
u3
x

=
2ū
′
0ū1ū

′
1 − 2ū2(ū

′
0)2 − ū2

1ū
′′
0

(ū
′
0)3

(3.66)

where primes denotes differentiation with respect to x and the functions are eval-

uated at x = x0.
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3.3.3.1 YWD phenotype: decoupled equations

In the previous chapter we looked at a model which depicted the fungal phenotype

YWD and was represented by the system of equations

ρt = nv− γρ, (3.67)

nt = −vnx + αn− βn2. (3.68)

These equations have previously been shown to display a travelling wave

solution. For particular initial data, it was even possible to construct a closed

form solution (see Section 2.3.3.1). Since the equations (3.67) and (3.68) are

decoupled, the second equation (3.68) can be considered in isolation. Recall the

initial conditions used previously

ρ(x, 0) =
αv

βγ

(
1− tanh(θx)

2

)
, n(x, 0) =

α

β

(
1− tanh(φx)

2

)
, (3.69)

where αv/βγ and α/β correspond to the non-zero equilibria of the system of

equations in (3.67) and (3.68). Equation (3.68) then has the closed form solution

n(x, t) =
α

2β

(
1− tanh

(
φ

(
x−

[
v +

α

2φ

]
t

)))
. (3.70)

It can clearly be seen that this is a travelling wave solution with wave speed

v+α/2φ. Upon applying the LDM to equations (3.67) and (3.68) with the initial

conditions in (3.69) generates

ρ(x, t) =
αv

2βγ
(1− tanh(θx))− αv

2β
(tanh(φx)− tanh(θx)) t (3.71)

+
αv

8β
((2φv + α) sech2(φx) + 2γ(tanh(φx)− tanh(θx))) t2 + . . .

n(x, t) =
α

2β
(1− tanh(φx)) +

α

4β
(2φv + α) sech2(φx) t (3.72)

+
α

8β
(2φv + α)2 sech2(φx) tanh(φx) t2 + . . .

(see Section 3.1.4.2). Thus using the terms from equation (3.72) and substitut-

ing them into equations (3.65) and (3.66) accordingly, we see that for the tip

61



distribution gives an initial velocity of

− n̄1

n̄
′
0

= v +
α

2φ
, (3.73)

and the initial acceleration is

2n̄
′
0n̄1n̄

′
1 − 2n̄2(n̄

′
0)2 − n̄2

1n̄
′′
0

(n̄
′
0)3

= 0. (3.74)

Equations (3.67) and (3.68) were solved numerically using initial data from

(3.69) and the velocities and acceleration of the wave front were computed at small

times and compared against those predicted by equations (3.73) and (3.74) (Table

3.5). Clearly there is excellent agreement between the analytical and numerical

methods over small times.

Parameters Wave front velocity Wave front acceleration
v α β γ φ θ Equation (3.73) t = 0.001 t = 0.01 t = 0.1 t = 1 Equation (3.74) t = 0.0001
1 1 1 1 1 1 1.50 1.50 1.50 1.50 1.50 0 0.00
2 1 2 2 2 3 2.25 2.25 2.25 2.25 2.25 0 0.00
4 2 3 1 2 2 4.50 4.51 4.47 4.47 3.26 0 0.00

Table 3.5: Equation (3.67) and (3.68) were solved numerically and the
velocities and accelerations of the leading edge of the wave fronts starting at

x0 = 0 were calculated at the times indicated. The initial velocity and
acceleration of the leading edge for the tip density of YWD phenotype obtained

analytically from equations (3.73) and (3.74) are shown for comparison.

The above analysis focused entirely on the propagation of the tips. How-

ever, the same technique can be applied to the hyphal density denoted by ρ.

Using the terms generated via LDM in equation (3.71), we see that at

x0 = 0 the velocity is

− ρ̄1

ρ̄
′
0

= 0, (3.75)

and the acceleration is

2ρ̄
′
0ρ̄1ρ̄

′
1 − 2ρ̄2(ρ̄

′
0)2 − ρ̄2

1ρ̄
′′
0

(ρ̄
′
0)3

=
γφ

θ

(
v +

α

2φ

)
. (3.76)
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Parameters Wave front acceleration Wave front velocity
v α β γ φ θ Equation (3.76) t = 0.001 t = 0.01 t = 0.1 t = 1 Equation (3.75) t = 0.0001
1 1 1 1 1 1 1.50 1.44 1.49 1.34 0.74 0 0.00
2 1 2 2 2 3 3.00 3.04 3.04 2.69 2.24 0 0.00
4 2 3 1 2 2 4.50 4.56 5.02 8.85 3.27 0 0.00

Table 3.6: Equations (3.67) and (3.68) were solved numerically and the
velocities and accelerations of the leading edge of the wave fronts starting at

x0 = 0 were calculated at the times indicated. The initial velocity and
acceleration of the leading edge for the hyphal density of YWD phenotype

obtained analytically from equations (3.75) and (3.76) are shown for comparison.

From Table 3.6 it can be seen that the initial velocity at the wave front

of hyphae is zero, due to the growth of hyphae being solely dependent upon the

movement of the tips. The initial acceleration of hyphae on the other hand is

positive and identical to the velocity of the leading tips multiplied by a scalar.

This is because as the velocity of tip density increase from its initial state, the

velocity of hyphal density is zero but quickly accelerates to match the velocity of

the tips. This seems to indicate a ‘lagging’ effect between the hyphae and tips.

This is indeed the case and if we look at the structure of the model equations for

all phenotypes, notice that the ‘creation’ term for hyphae is identical to the flux

term for the tips. Therefore there must be a distance between the tip and the

hyphae. Indeed a plot of the hyphal and tip densities for the YWD phenotype on

the same graph illustrates the lag clearly (Figure 3.6).
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Figure 3.6: Plot of YWD phenotype (3.67) and (3.68) numerically solved using
initial conditions in (3.69) with parameters values α = β = γ = θ = φ = v = 1

shown at time t=2.
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3.3.3.2 FHD phenotype: coupled equations

The fungal phenotype ‘FHD’ investigated in earlier chapters is a coupled system

of PDEs with no known analytical solution, except for specific initial data. Recall,

the model equations are

ρt = nv− γρ, (3.77)

nt = −vnx + αρ− βnρ. (3.78)

Since the equations in (3.77) and (3.78) are coupled, they cannot be considered

in isolation. Applying the LDM with initial data (3.69) generates

ρ(x, t) =
αv

2βγ
(1− tanh(θx))− αv

2β
(tanh(φx)− tanh(θx)) t+ (3.79)

− αv

8βγ

[
(−2φγv − αv) + (αv + 2γ2 + αv tanh(φx)) tanh(θx)+

(−αv − 2γ2 + 2φγv tanh(φx)) tanh(φx)
]
t2 + . . .

n(x, t) =
α

2β
(1− tanh(φx))− αv

4βγ
[(tanh(φx) + 1) (3.80)

(2φγ tanh(φx) + α tanh(θx)− 2φγ − α)] t+ . . .

(see Section 3.1.5). Thus substituting the terms generated by LDM equations

(3.79) and (3.80) into equations (3.65) and (3.66) we obtain the initial tip velocity

− n̄1

n̄
′
0

= v +
αv

2φγ
, (3.81)

while the initial tip acceleration is given by

2n̄
′
0n̄1n̄

′
1 − 2n̄2(n̄

′
0)2 − n̄2

1n̄
′′
0

(n̄
′
0)3

=
αv2(αφ− 2αθ − 2γφθ)

4φ2γ2
. (3.82)

As there is no analytical solution to compare this result, we shall resort to

using numerical methods to gain some insight into the initial state of the system

for a selection of parameter values.
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Parameters Wave front velocity Wave front acceleration
v α β γ φ θ Equation (3.81) t = 0.001 t = 0.01 t = 0.1 t = 1 Equation (3.82) t = 0.0001
1 1 1 1 1 1 1.50 1.50 1.49 1.43 1.16 -0.75 -0.75
2 1 2 2 2 3 2.25 2.25 2.23 2.11 1.80 -1.75 -1.75
4 2 3 1 2 2 6.00 5.98 5.77 4.30 3.04 -24.00 -24.21

Table 3.7: Equations (3.77) and (3.78) were solved numerically and the
velocities and accelerations of the leading edge of the tip wave fronts starting at

x0 = 0 were calculated at the times indicated. The initial velocity and
acceleration of the leading edge for the tip of FHD phenotype obtained

analytically from equations (3.81) and (3.82) are shown for comparison.

From Table 3.7 it can be seen that the values for the acceleration from

equation (3.82) are all negative, predicting that the tips may be slowing down

from its initial state. When we compare with numerical results, we can see there

is some indication that the initial velocity is decelerating from its initial state as

predicted by equation (3.82). As our approximation is centred around x0 = 0,

the result produced via (3.81) and (3.82) are in excellent agreement near zero as

shown in Table 3.7.

An interesting observation, similar to the YWD phenotype, is that using

the terms generated from the LDM in equation (3.79) we see that at x0 = 0 the

hyphal velocity is

− ρ̄1

ρ̄
′
0

= 0 (3.83)

and the hyphal acceleration is

2ρ̄
′
0ρ̄1ρ̄

′
1 − 2ρ̄2(ρ̄

′
0)2 − ρ̄2

1ρ̄
′′
0

(ρ̄
′
0)3

=
αv

2θ
+
γφv

θ
. (3.84)

For small times (i.e. t = 0.0001) it was found that the velocity of the

hyphae is indeed zero (see Table 3.8), thus confirming equation (3.83). Similar to

the tips, the hyphal acceleration for small times (i.e. t = 0.001) was found to be

identical to tip velocity (see Table 3.7) as predicted.
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Parameters Wave front acceleration Wave front velocity
v α β γ φ θ Equation (3.84) t = 0.001 t = 0.01 t = 0.1 t = 1 Equation (3.83) t = 0.0001
1 1 1 1 1 1 1.50 1.48 1.44 1.30 0.6252 0 0.00
2 1 2 2 2 3 3.00 3.05 3.03 2.68 −0.54 0 0.00
4 2 3 1 2 2 6.00 5.98 5.77 4.30 3.04 0 0.00

Table 3.8: Equations (3.77) and (3.78) were solved numerically and the
velocities and accelerations of the leading edge of the hyphal wave fronts starting

at x0 = 0 were calculated at the times indicated. The initial velocity and
acceleration of the leading edge for the hyphal density of FHD phenotype

obtained analytically from equations (3.83) and (3.84) are shown for comparison.

Again this is in agreement with the biology of the system. Initially the

wave front velocity of hyphae is indeed zero due to the growth of hyphae solely

being dependent upon the movement of the tips. The initial acceleration of the

hyphae is positive and identical to the velocity of the leading tips. Therefore we

can predict that the initial state of the hyphae for a fungal colony that satisfies the

phenotype modelled (FHD) in the system of equations in (3.77) and (3.78) which

also satisfies the initial conditions used, will have zero initial velocity but will

accelerate up to the same rate as the tips of the colony and then may decelerate

to its asymptotic speed for large times.

It must be emphasised, the accuracy of the velocity and acceleration results

obtained in the analysis are highly dependent on the choice of initial conditions.

Under different initial conditions the conclusion for FHD phenotype would be

different. For illustration purposes consider the particular solution obtained in

Section 3.1.5 (from equations (3.49) and (3.50)) and set the initial data to be

ρ(x, 0) =
αv

2βγ
− αv

2βγ
tanh

((
2γ2 − αv

4γv

)
x

)
, (3.85)

n(x, 0) =
3α

4β
− α

2β
tanh

((
2γ2 − αv

4γv

)
x

)
− α

4β
tanh

((
2γ2 − αv

4γv

)
x

)2

.

(3.86)

Constructing the first three terms using LDM and substituting into (3.65)

and (3.66) yields the initial velocity of the tips as

− n̄1

n̄
′
0

=
2γ2v

2γ2 − αv (3.87)
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and the initial acceleration for the tips as

2n̄
′
0n̄1n̄

′
1 − 2n̄2(n̄

′
0)2 − n̄2

1n̄
′′
0

(n̄
′
0)3

= 0. (3.88)

Likewise the equations for hyphal velocity is given by

− ρ̄1

ρ̄
′
0

=
2γ2v

2γ2 − αv (3.89)

and hyphal acceleration is given by

2ρ̄
′
0ρ̄1ρ̄

′
1 − 2ρ̄2(ρ̄

′
0)2 − ρ̄2

1ρ̄
′′
0

(ρ̄
′
0)3

= 0. (3.90)

Solving the system of equations (3.77) and (3.78) numerically with initial

conditions (3.85) and with all parameters set to unity, we get the velocity for

tips and hyphae to be equal to 2 and acceleration to be zero. Using the same

parameters in equations (3.87), (3.88), (3.89) and (3.90), we get the approximation

solution to be in perfect agreement with the analytical and numerical solution.

Notice under these initial conditions, the approximations successfully de-

termined the wave speed of tips and hyphae for the FHD phenotype. Also notice

the acceleration when all parameters are set to unity is zero indicating constant

velocity.

3.4 Conclusion

The decomposition method has been utilised by many researchers who have

stressed the advantages the technique offers e.g. its efficiency, the ability to solve

problems without linearisation and the range of applicability to various types of

problems and fields.

However, the technique undeniably has some limitations. First, the series

solution must be truncated for practical application, which hinders the accuracy

of the solution in a wider region. Also the region of convergence of the series

must be considered and this is potentially a major weakness of the technique,

especially for problems where results are required for larger times. For example,

we have seen in Section 2.3.3.1 that an analytical solution exists for the YWD

phenotype and using the initial conditions in equation (3.34), we observed that
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LDM computed the first few terms of a Taylor series of the analytical solution for

the tips (3.72). Thus we could infer that the series converges to the solution.

However, the approximate series solution is usually only valid for a small

region in the space - time plane regardless of the number of terms generated in

the series. It was hypothesised initially that greater number of terms included in

the series could determine the convergence for larger times. Due to the recursive

nature of the decomposition methods, the computation of terms greater than 50

can be computationally expensive. For example the FHD phenotype, equations

(3.55) and (3.56), took several hours to compute only 50 terms on a standard

computer.

To overcome the computation limitation, techniques such as the reduced

differential transform method (RDTM) (Keskin and Oturan, 2009, 2010) can be

utilised. The RDTM produces identical terms to that of the LDM. The RDTM

is a modification of the differential transform method and is much more robust

and efficient when implementing in a computer when computing terms of higher

order of an infinite series. Thus we computed terms exceeding 100 terms and

observed that the solution did not get any better for t > 1 (data not shown).

Furthermore, the solution was good only at locating the position of the leading

wave and extremely weak behind the wave front which consisted of ‘wiggles’ for

large times regardless of the number of terms used. From this it is reasonable to

deduce that the series could possibly be of a divergent nature.

There have been a number of studies on the convergence of the Laplace

decomposition method (Cherruault, 1990; Abbaoui and Cherruault, 1994a,b). It

is difficult to prove the convergence of a decomposition method when it is applied

to PDEs with initial and boundary conditions (Ngarhasta et al., 2002) using

traditional approaches used by Cherruault et al. but in recent publications there

have been promising results which prove the existence and uniqueness of a series

solution produced via decomposition methods (El-Kalla, 2007; Ray, 2014). We

did not focus on the convergence analysis as this diverges away from the applied

nature of this thesis, but note that this remains an important open problem.

In the plethora of literature related to the Adomian/Laplace decomposition

method (and other decomposition techniques of similar nature) it is clear that the

semi-analytical solutions of problems are usually in excellent agreement with the

closed form solution (if one exists) and thus must converge. Such results have been

of immense benefit in real life applications e.g. food and chemical industries,
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firefighting, structural material sciences to mention a few (Tataria et al., 2007;

Helal and Mehanna, 2007; Meher and Meher, 2013; Gledson et al., 2013).

It is worthy of mention that despite the potential lack of convergence of the

generated series, we observed an interesting phenomena occurring in our system

of equations for the fungal YWD phenotypes. Using a number of terms from

the semi-analytical solution, the position of the leading wave did not appear to

be affected by the spurious oscillations behind it and seemed to be in perfect

alignment with the closed form solution for large times. Due to the nature of the

system of equations used to model fungal phenotypes, there are similarities in the

structure of the equations (i.e. FHD, FXD, YWD and YHD). Hence, despite the

lack of any known analytical solutions for the other phenotypes, we expect the

methodology used for the YWD phenotype to gain crucial information regarding

the wave properties of other phenotypes. As an example, the series generated via

LDM for the FHD phenotype was shown to be in excellent agreement with the

numerical solution.

In addition to approximating the initial kinematic properties of the leading

edge, we provided an alternative means of tracking the position of the leading

edge of the distribution for larger times. Truncated series of equations (3.44) and

(3.45) were constructed and solved to determine the position of the leading edge

of the distribution, i.e. the maximum value of x such that uc =
∑k

m=0 um(x, t)

for different series length k at various times t, where uc = 0.1 (Tables 3.2 and

3.1). When compared with the exact solution obtained from equation (3.37), the

accuracy of the position of the leading edge obtained from the series decreases

with time but improves with the inclusion of more terms, similar to a Taylor

series approximation of a function (Adomian, 1988). The methods developed to

determine the initial velocity and acceleration ((3.62) and (3.64)) can be extended

further to include initial jerk, snap, crackle and pop.

Typically the development of the type of system of equations investigated

in this chapter is achieved by looking for travelling wave solutions of the corre-

sponding model equations but these may be too complex to extract such solutions,

even if they exist. Alternatively, numerical simulations can provide insight into

the behaviour of the system. One main drawback of relying on numerical solu-

tions is that parameter values have to be calibrated in advance and it is therefore

often difficult to isolate the influence of one parameter on the system. Numerical

solutions are also useful in determining asymptotic behaviour for large times but
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often fail to provide any information around its initial state. Hence using the

velocity and acceleration equations (3.65) and (3.66) proposed, we can predict

with great accuracy the initial development of a system. This information can be

of great relevance for researchers concerned with determining the initial speed of

a complex system of equations. In the context of fungi, testing the predictions

of this approach in relation to the initial movement of the leading edge of the

colony is complicated by the discrete nature of individual hyphae and the contin-

uum approximation required to generate the partial differential equation model.

Nonetheless, by visually inspecting enlarged images of the position of the edge of

a mycelia, it should be possible to detect, and hence quantify, how that position

changes over time. However, the greatest difficulty in comparing these model pre-

dictions to experimental data relates around the correct choice of the initial data

in the model.

We explored some well established fungal species models in Chapters 2

and 3, providing insight that have not been explored previously i.e. analytical

solutions for YWD and FHD phenotypes. An elegant derivation to determine key

information of initial wave properties was proposed and explored. It is worthy to

mention the analysis in this section is not limited to fungal models but can be

applied to various systems.

All the analysis seen thus far has been concerned with a single fungal colony

growing in a homogenous environment. One of the most important observations in

a real life fungal habitat is that of fungi competing with other fungi for survival.

We will explore this phenomena in the following chapters and make use of the

methodology developed here to understand the initial kinematics of fungi growing

in toxic domains.
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Chapter 4

One Dimensional Models of

Fungal Competition

4.1 Competing fungi

Fungi rarely grow in isolation and instead compete against other species for com-

mon resources including various nutrients (e.g. carbon, nitrogen and oxygen), wa-

ter and even simply territory (which influences the ability of the fungus to acquire

further resources). Consequently the success of any application of fungi depends

on its ability to grow and suitably function in the presence of rival species.

4.1.1 Experimental studies

Such interactions are usually investigated experimentally by inoculating a Petri

dish with two non-mutually compatible species and observing their subsequent

growth and behaviour over a range of conditions (Boddy, 2000; Evans et al.,

2008; Boddy et al., 2010). Typically the early growth of both species is radially

symmetric until the periphery of the colonies collide after which one of three dis-

tinct outcomes are observed. Certain combinations of fungi display intermingling

(also termed overgrowth or coexistence), where there is a continued and increas-

ing overlap in the extent of both species. Other fungal pairings display deadlock,

where neither species is able to invade territory held by the other and a stalemate

is reached. The third outcome is displacement where one fungus takes over the ter-

ritory held by the other and thereby locally eliminating its rival. The mechanisms

behind these outcomes have been well studied (e.g. Carlile et al., 2001; Utermark

71



and Karlovsky, 2007; Sempere and Santamarina, 2010). The experiment carried

out by Ibarra-Medina et al. (2010) depicted some of these behaviours explicitly,

between the fungi strains of Trichoderma against phytopathogenic fungi Sclero-

tinia sclerotiorum (Figure 4.1).

Figure 4.1: Study of fungal interaction conducted by Ibarra-Medina et al.
(2010). Control strains of Trichoderma(T) (1a, b, c), Control strains of

Sclerotinia sclerotiorum(Ss) (3a, b, c) and Sclerotinia minor(Sm) (5a, b, c).
Interaction of T vs Ss (2a, b, c) and T vs Sm (4a, b, c).

Under laboratory conditions the two species were placed on a Petri dish

and left for a significant amount of time, on average between “8 - 10 days”. In

Figure 4.1 displacement can be seen in 2b and 2c whereas a state of deadlock can

be seen in 2a, 4a, 4b and 4c. Another study conducted by Iluyemi and Hanafi

(2009) using 5 strains of fungi, Sclerotium rolfsii, Aspergillus niger, Trichoderma

harzianum, Trichoderma longiobrachiatum and Trichoderma koningii show inter-

mingling behaviours between various type of fungi (see Figure 4.2).

The fungal interactions in Figure 4.2 also display common fungal be-

haviours. Figures (e) and (f) shows dominance (displacement) of S.rolfsii by

T.longibrachiatum and T.koningii by S.rolfsii. Figures (a), (b) and (g) show

deadlock between the species. Figure (d) show stalemate with the right fungi

covering greater surface area (a mutual line can be seen where neither fungi

grew over). Lastly, Figure (c) also shows intermingling (coexistence) where T.

harzianum has grown over A.niger but A.niger still exists at a lower density seen
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Figure 4.2: Experimental study on fungal interactions by Iluyemi and Hanafi
(2009). Interactions of 5 fungal strains where left Petri dish contains 2nd day of

inoculation and the right Petri dish is 13th day of inoculation.
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on the upper and lower surfaces of the Petri dish. Barua et al. (2012) is yet an-

other experimental-based paper depicting the intermingling behaviours discussed

above.

4.1.2 Historical modelling approaches

The outcomes seen above arise because fungi produce a combination of volatile

organic compounds (VOCs) and toxic metabolites that inhibit the growth of ri-

vals and degrade their existing biomass (Hynes et al., 2007). Most commonly,

one fungus will lyse its rival on contact as observed by the bursting of cells, the

vacuolisation of compartments and the withdrawal of cytoplasm (Horio and Oak-

ley, 2005). These mechanisms are resource intensive and experimental studies

have shown that the outcome of pairwise interactions is in part determined by the

availability of nutrient resources (Kennedy, 2010; Mehl and Cotty, 2013). There-

fore the success of any biotechnological application involving fungi depends on the

provision of suitable nutrients.

There have been a multitude of mathematical models describing fungal

growth and function as discussed in Chapter 1. However the most useful mod-

els of fungal interactions have been based on continuum approaches since they

efficiently represent entire fungal communities while capturing the microscopic

characteristics of colony dynamics (but see Halley et al., 1994, for a cellular au-

tomaton formulation).

In this chapter a mathematical model of fungal pairwise competition will be

constructed that simulates observed experiments and allows general principles to

emerge. To maintain the generality of the model, the resource being competed for

is regarded as space or territory rather than an explicit source of nutrient. Thus,

the outcome of competition is solely governed by independent resources available

to the two fungi and this scenario is designed to reflect experiments investigating

the outgrowth of fungi from isolated nutrient resources (see, for example, Tlalka

et al., 2008).

We initialize our investigation by exploring nutrient independent interac-

tions before extending to nutrient dependent interactions.
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4.2 Nutrient independent interactions

4.2.1 Model equations

In laboratory-based experiments a Petri dish is inoculated with a species of fungi

that expand outwards in a radially symmetric manner and the overall outcome

of pairwise competition is determined by observing how the colony peripheries

behave immediately before and then following their collision. Thus, due to the

radial symmetry involved, a one-dimensional mathematical model is sufficient to

investigate such competition corresponding to the growth along the line connecting

the centres of the inoculation sites.

In Chapter 2 we explored the models formulated by Edelstein (1982) where

fungal growth was modelled by the populations of hyphae and hyphal tips. The

creation of hyphae corresponded to the trail left behind a moving tip. This same

“tip and trail” structure has been used successfully in other investigations (e.g.

Boswell et al., 2002). Thus we introduce ρj and nj to denote the density of

hyphae and the density of hyphal tips respectively in fungal biomass j where

j = 1, 2 represent two different fungal phenotypes. During fungal competition,

combinations of VOCs and toxic metabolites are produced along the lengths of

hyphae that comprise the mycelium. Since these compounds restrict the ability

of a rival biomass to create new hyphal material as well as degrading existing

hyphae, they essentially cause hyphal tips in a rival to cease functioning and

reduce the density of existing biomass. For convenience these substances are not

represented explicitly but instead their influence on rival biomasses is modelled.

Therefore the process of tip inhibition/degradation and hyphal degradation in

biomass j by biomass i (i 6= j) is modelled using terms proportional to ρinj and

ρiρj, respectively.

The mathematical model is described by four coupled partial differential

equations

∂ρ1

∂t
= v1n1 − γ1ρ1 − Eρ2ρ1,

∂n1

∂t
= −∂(v1n1)

∂x
+ α1ρ1 − β1ρ1n1 − Aρ2n1, (4.1)

∂ρ2

∂t
= v2n2 − γ2ρ2 − Fρ1ρ2,

∂n2

∂t
=
∂(v2n2)

∂x
+ α2ρ2 − β2ρ2n2 −Bρ1n2,
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where constants γj denote the natural loss of hyphae, αj represent the branching

rates, βj represent the anastomosis rates and A, B, E and F are the propor-

tionality constants of the rates of degradation of biomass and associated tips due

to competition, which may be different between the two biomass “phenotypes”.

Notice that the sign of the fluxes for the hyphal tips are reversed ensuring that

both biomasses expand in opposite directions and thus will collide with suitable

initial data; an approach that has successfully been used in previous studies (e.g.

Boswell, 2012). [Note: The equations in (4.1) are simply two FHD phenotype

equations (3.48) seen in Section 3.1.5 with combat ability.]

The model equations are to be solved on the spatial interval (−L,L) and

to be consistent with typical experimental protocols described above require zero-

flux boundary conditions because in the associated experimental configuration no

material enters or leaves the Petri dish after inoculation. Furthermore, suitable

initial data, representing the inoculation of the Petri dish, requires that the two

rival biomasses start on opposite sides of the interval with no overlap. Hence the

initial data is taken to be of the form

ρ1(x, 0) =

{
0, if x ≥ 0

ρ̂1(x), otherwise

ρ2(x, 0) =

{
ρ̂2(x), if x ≥ 0

0, otherwise

n1(x, 0) =

{
0, if x ≥ 0

n̂1(x), otherwise

n2(x, 0) =

{
n̂2(x), if x ≥ 0

0, otherwise

(4.2)

where ρ̂j and n̂j are specified functions. Hence we assume biomass 1 starts on the

left hand side of the domain and biomass 2 starts on the right hand side of the

domain.

When considered in isolation, each of the biomasses and corresponding

tips from equation (4.1) generate a stable travelling wave solution (see Chapter

2). Thus to ensure the biomasses have attained stable distributions prior to their

contact, the initial distributions ρ̂j(x) and n̂j(x) are chosen to be similar to their

travelling wave profile. Consequently, and solely for the purpose of numerical

integration of the system of equations in (4.1), the initial data in equation (4.2)
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is

ρ̂1(x) =
α1v1

2β1γ1

erfc

(
x̄+ x

2

)
, n̂1(x) =

α1

2β1

erfc

(
x̄+ x

2

)
,

ρ̂2(x) =
α2v2

2β2γ2

erfc

(
x̄− x

2

)
, n̂2(x) =

α2

2β2

erfc

(
x̄− x

2

)
, (4.3)

where 2x̄ represents the initial distance between the two model biomasses and

erfc(x) is the complementary error function. Note that while these functions are

not the final travelling wave profiles obtained by the biomasses, when considered

in isolation of each other, provided x̄ is sufficiently large, these initial profiles

quickly converge to their stable distributions before any interactions hence why

the biomass terms have been multiplied by αivi
2βiγi

and the tip terms by αi
2βi

.

In order to isolate the key parameters of the system, it is reasonably as-

sumed that the two rival biomasses have similar growth characteristics and differ

only in their ability to degrade and inhibit the growth of their rivals. Thus we

henceforth set v1 = v2 = v, α1 = α2 = α, β1 = β2 = β and γ1 = γ2 = γ.

The resultant model equation (4.1) can be non-dimensionalised by introducing

ρ∗j =
ρjβγ

αv
, n∗j =

njβ

α
, ψ = αv

γ2 , A∗ = A
β

, B∗ = B
β

, E∗ = αv
βγ2E, F ∗ = αv

βγ2F , x∗ = γx
v

and t∗ = γt giving rise to

∂ρ1

∂t
= n1 − ρ1 − Eρ2ρ1,

∂n1

∂t
= −∂n1

∂x
+ ψ(ρ1 − ρ1n1 − Aρ2n1), (4.4)

∂ρ2

∂t
= n2 − ρ2 − Fρ1ρ2,

∂n2

∂t
=
∂n2

∂x
+ ψ(ρ2 − ρ2n2 −Bρ1n2),

where asterisks have been dropped for notational convenience.

4.2.2 Mutual tip suppression equations

In this scenario both species are assumed to be able to produce some toxic metabo-

lite proportional to its biomass (i.e. hyphae), which can suppress the tips of its

competitor only. Thus to model this effect, attention is focussed on the impact

of tip suppression when hyphal degradation is neglected (i.e. by assuming E and

F are both zero). The corresponding non-dimensionalised model equations are
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therefore

∂ρ1

∂t
= n1 − ρ1,

∂n1

∂t
= −∂n1

∂x
+ ψ(ρ1 − ρ1n1 − Aρ2n1), (4.5)

∂ρ2

∂t
= n2 − ρ2,

∂n2

∂t
=
∂n2

∂x
+ ψ(ρ2 − ρ2n2 −Bρ1n2).

4.2.2.1 Analysis

The equilibria of equation (4.5) satisfy

0 = n1 − ρ1,

0 = ψ(ρ1 − ρ1n1 − Aρ2n1),

0 = n2 − ρ2,

0 = ψ(ρ2 − ρ2n2 −Bρ1n2),

generating the four stationary points,

(ρ∗1, n
∗
1, ρ
∗
2, n

∗
2) = (0, 0, 0, 0), (1, 1, 0, 0) , (0, 0, 1, 1) ,(

1− A
1− AB,

1− A
1− AB,

1−B
1− AB,

1−B
1− AB

)
.

In order for the fourth stationary point to be biologically realistic it is required that

either A,B < 1 or A,B > 1. The corresponding Jacobian matrix J(ρ1, n1, ρ2, n2)

has characteristic equation

∣∣∣∣∣∣∣∣∣∣
−1− λ 1 0 0

ψ(1− n1) −ψ(ρ1 + Aρ2)− λ −ψAn1 0

0 0 −1− λ 1

−ψBn2 0 ψ(1− n2) −ψ(ρ2 +Bρ1)− λ

∣∣∣∣∣∣∣∣∣∣
= 0

and can be expressed as the product of two quadratics minus a constant term(
λ2 + (1 + ψ(Bρ1 + ρ2))λ+ ψ(Bρ1 + ρ2 + n2 − 1)

)
×(

λ2 + (1 + ψ(Aρ2 + ρ1))λ+ ψ(Aρ2 + ρ1 + n1 − 1)
)
− ψ2ABn1n2 = 0.

(4.6)
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Now we analyze the stationary points. Substituting the first, second and third

stationary points into equation (4.6) yields respectively

(
λ2 + λ− ψ

) (
λ2 + λ− ψ

)
= 0,

(λ+ 1)(λ+ ψ)
(
λ2 + (1 + ψB)λ+ ψ(B − 1)

)
= 0,

(λ+ 1)(λ+ ψ)
(
λ2 + (1 + ψA)λ+ ψ(A− 1)

)
= 0.

Using the Routh-Hurwitz criteria, it can be seen that the first stationary point is

unstable. The second stationary point is stable iff B > 1 and the third stationary

point is stable iff A > 1.

The eigenvalues of the Jacobian evaluated at the fourth stationary point

produces an equation that can be factorised

(λ+ 1)(λ+ ψ)

(
λ2 + (1 + ψ)λ+

ψ(A− 1)(1−B)

AB − 1

)
= 0.

Thus −1 and −ψ are two of the eigenvalues, both being negative. Hence

the quadratic factor determines the stability of the fourth equilibria. From the

quadratic factor, the eigenvalues have negative real part iff 1 + ψ > 0 and
ψ(A−1)(1−B)

AB−1
> 0 which is satisfied when 1 > A and 1 > B. Hence the fourth

stationary point corresponding to coexistence is stable iff 1 > A and 1 > B.

Thus there will always be coexistence between the species if these inequalities are

satisfied.

The stationary point analysis above can be represented on a A−B param-

eter space divided into four regions (Figure 4.3).
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Figure 4.3: The A−B parameter space for equation (4.5) for the different
regions where the stationary points are stable. SP2 corresponds to the stationary

point (1, 1, 0, 0), SP3 corresponds to the stationary point (0, 0, 1, 1) and SP4
corresponds to the stationary point

(
1−A

1−AB ,
1−A

1−AB ,
1−B

1−AB ,
1−B

1−AB

)
. Region R

corresponds to where the biomass initially starting on the right will displace that
initially on the left. Region L corresponds to where the biomass initially starting
on the left will displace that initially on the right. Region C corresponds to where

coexistence (or intermingling) of biomasses arises. Region M corresponds to
where multiple stable equilibria are found, which can include deadlock.

4.2.2.2 Numerical results

The system of equations in (4.5) with initial conditions (4.2) and (4.3) are solved

in Matlab using the routine pdepe (see Figures 4.4 - 4.6). Notice that due to the

nondimensionalisation applied, the corresponding initial data (4.3) are monotonic

functions taking values between 0 and 1 and consequently there is a symmetry

between the initial profiles.
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(a) (b)

Figure 4.4: System of equations in (4.5) with initial conditions (4.2) and (4.3)
are solved with parameters α = β = γ = v = 1 and therefore ψ = 1 is represented
in (a) with A = 1 and B = 3. The species on the left is displacing the species on
the right. Solving the system of equations with parameters values, A = 3, B = 1
and ψ = 1 is represented in (b) where it can be seen that species on the right is

displacing the species on the left. All shown at times t = 0, 25 and 75.

Figure 4.4(a) shows that species 1 (starting on the left) is the dominant

biomass as it is able to displace its rival’s tips faster than the rival species. There-

fore both species approach the second stationary point (1, 1, 0, 0) and the left

biomass displaces the right. Similarly, if A > 1 (and B < A) then the parameter

values of A and B are reversed and species 2 (staring on the right) displaces its

rival species (see Figure 4.4(b)).
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Figure 4.5: System of equations in (4.5) with initial conditions (4.2) and (4.3)
are solved with parameters using parameter values α = 3, β = γ = v = 1,
A = B = 1

3
and 1 > AB. Coexistence can be seen between both species. All

shown at times t = 0, 25 and 75.

The analysis above predicted the species would coexist if 1 > A and 1 > B.

This is illustrated in Figure 4.5 where A = B = 1
3

and ψ = 3. If we use the values

B = 1
2
, A = 3

4
and ψ = 2 we also get coexistence of both species but with species

2 at a greater density (Figure 4.6(a)). Similarly species 1 has a greater density

level with appropriate parameter values (Figure 4.6(b)).
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(a) (b)

Figure 4.6: System of equations in (4.5) with initial conditions (4.2) and (4.3)
are solved with parameters α = 2, β = γ = v = 1, A = 3

4
, B = 1

2
and ψ = 2 is

represented in (a) where coexistence of both species with the species on the right
at greater density. Solving with parameter values α = 4, β = γ = v = 1, A = 1

4
,

B = 3
4

and ψ = 4 is represented in (b) where coexistence of both species with
species on the left at greater density. All shown at times t = 0, 25 and 50.

4.2.2.3 Conclusion

In this model we have successfully modelled the basic interaction of two species of

fungi. Both species have been assumed to have developed the ability to compete

against each other via releasing a form of toxic material at a rate proportional

to its hyphal density which eliminates the rival’s tips. In the analysis we have

obtained four stationary points. The first was always unstable, which makes sense

as it is the trivial point, corresponding to the complete absence of biomass. A

second stationary point, corresponding to the right-starting biomass displacing

the left arose if A > 1 > B with the reverse arising when B > 1 > A from a third

stationary point. If both A,B > 1 then since both the second and third equilibria

are stable, the initial data along with relative values of A and B determine which

equilibria is reached. A fourth stationary point, corresponding to co-existence,

was asymptotically stable provided A,B < 1.
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4.2.3 Tips suppression and hyphal degradation in single

species

Some species of fungi do not evolve with attacking abilities but have instead devel-

oped great defensive capabilities e.g. Cytostereum murraii and Phlebia centrifuga

(Boddy, 2000). In this section we model an invasive fungi attacking a rival’s hy-

phae as well as its tips using the relevant reaction terms seen in Section 4.2.1. To

model the impact of tip suppression and hyphal degradation by one species we

set B and F to zero. Thus equation (4.4) becomes the following,

∂ρ1

∂t
= n1 − ρ1 − Eρ1ρ2,

∂n1

∂t
= −∂n1

∂x
+ ψ(ρ1 − ρ1n1 − Aρ2n1), (4.7)

∂ρ2

∂t
= n2 − ρ2,

∂n2

∂t
=
∂n2

∂x
+ ψ(ρ2 − ρ2n2).

4.2.3.1 Analysis

The corresponding stationary points from equation (4.7) are,

(ρ∗1, n
∗
1, ρ
∗
2, n

∗
2) = (0, 0, 0, 0), (1, 1, 0, 0), (0, 0, 1, 1),(

1− A− AE
1 + E

, 1− A− AE, 1, 1
)
,

which is biologically realistic provided A(1 + E) < 1. To determine the stability

of the stationary points the characteristic equation is required,∣∣∣∣∣∣∣∣∣∣
−1− Eρ2 − λ 1 −Eρ1 0

ψ(1− n1) −ψ(ρ1 + Aρ2)− λ −ψAn1 0

0 0 −1− λ 1

0 0 ψ(1− n2) −ψρ2 − λ

∣∣∣∣∣∣∣∣∣∣
= 0.

The characteristic equation can be expressed as the product of two quadratics(
λ2 + (1 + ψρ2)λ+ ψ(ρ2 + n2 − 1)

)
×(

λ2 + (1 + Eρ2 + ψ(Aρ2 + ρ1))λ+ ψ(EAρ2
2 + Eρ1ρ2

+Aρ2 + ρ1 + n1 − 1)) = 0.

(4.8)
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Now we analyze the stationary points. Substituting the stationary points

into equation (4.8) gives

(
λ2 + λ− ψ

) (
λ2 + λ− ψ

)
= 0

(λ+ 1)(λ+ ψ)
(
λ2 + λ− ψ

)
= 0

(λ+ 1)(λ+ ψ)
(
λ2 + (1 + E + ψA)λ+ ψ(AE + A− 1)

)
= 0

(λ+ 1)(λ+ ψ)

(
λ2 +

(
1 + E +

(
ψ

1 + E

))
λ+ ψ(1− A(E + 1))

)
= 0.

Using the Routh-Hurwitz criteria, it can easily be seen that the first two stationary

points are unstable. The third stationary point is stable iff A(E + 1) > 1.

The eigenvalues of the first two factors of the final stationary point are

always negative. The Routh-Hurwitz criteria applied to the third factor ensure

stability iff the real part of 1 + E + ( ψ
1+E

) > 0 and ψ(1 − A(E + 1)) > 0. The

former is always true and the latter is only true iff 1 > A(E + 1) which, recall, is

the condition for the existence of the stationary point. Thus both species of fungi

can coexist if these conditions are satisfied.

4.2.3.2 Numerical results

The system of equations in (4.7) have been solved numerically in Matlab using

the built in function pdepe with the values E = A = ψ = 1 and so satisfy

(A(E + 1) > 1) (Figure 4.7).
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Figure 4.7: System of equations in (4.7) with initial condition (4.2) have been
solved numerically using parameter values α = β = γ = v = 1, E = A = 1 and
ψ = 1, so to satisfy (A(E + 1) > 1). All shown at times t = 0, 25 and 50.

Species on the right displaces species on the left.

In Figure 4.7 it can be seen that species 2 (which starts on the right)

eliminates species 1 (which starts on the left), corresponding to the solution of

equation (4.7) approaching the third stationary point (0, 0, 1, 1). It is interesting

to note that if the elimination of tips is less than the elimination of hyphae i.e.

A < E then it takes longer for the extinction of the entire species. On the other

hand, if the elimination of tips is greater than the elimination of hyphae i.e. A > E

then the species approaches its demise quicker. This is illustrated with values of

A = 1
2

and E = 3 in Figure 4.8(a) and A = 3 and E = 1
2

in Figure 4.8(b) (with

all other parameters remaining the same).
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(a) (b)

Figure 4.8: System of equations in (4.5) with initial conditions (4.2) and (4.3)
are solved with parameters α = β = γ = v = 1, A = 1

2
, E = 3 and ψ = 1 is

represented in (a) where species on the right displaces species on the left at a
slower rate. Solving with parameter values ψ = 1, A = 3 and E = 1

2
is

represented in (b) where species on the right displaces species on the left at a
faster rate. All shown at times t = 0, 25 and 50.

We will now numerically solve the system of equations in (4.7) with initial

conditions in (4.2) using the parameter values E = A = 2
5

and ψ = 5
2

so that

A(E + 1) < 1. Thus the first three stationary points are unstable and the fourth

stationary point corresponding to coexistence is stable (Figure 4.9).
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Figure 4.9: System of equations in (4.7) with initial condition (4.2) have been
solved numerically using parameter values α = 5

2
, β = 25

4
, γ = v = 1, E = A = 2

5

and ψ = 5
2
. All shown at times t = 0, 25 and 50. Both species can be seen to

coexist with species on the right dominating.

It can be seen from Figure 4.9 that both species coexist with species 1

existing at a reduced density than species 2. This is due to the reduction of

hyphae and tips of species 1 by species 2. As the growth term imbedded in ψ is

greater than the rate of the attack (A and E), it is able to survive.

We have so far observed that there will always be coexistence between the

species as long as A(E+1) < 1 is satisfied. By assuming that the rate of attack of

the hyphae and tips in species 1 by species 2 is the same, it has been established

that species 1 will survive at a lower density. We will now examine the effect of

varying these parameter values to observe the behaviour. The result is similar to

that obtained earlier (where it was found that when the depletion of tips is lower

than the depletion of hyphae, species 1 takes longer to reach extinction and vice

versa, see Figure 4.10(a) and 4.10(b)).
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(a) (b)

Figure 4.10: System of equations in (4.5) with initial conditions (4.2) and
(4.3) are solved with parameters α = 5

2
, β = 25

6
, γ = v = 1, A = 1

5
, E = 3

5
and

ψ = 5
2

is represented in (a) where species on the left’s hyphal and tip densities
are depleting slower. Solving with parameter values α = 5

2
, β = 25

2
, γ = v = 1

A = 3
5
, E = 1

5
and ψ = 5

2
is represented in (b) where species on the left’s hyphal

and tip densities are depleting faster. All shown at times t = 0, 25 and 50.

The results obtained show that the hyphae density of species 1 depend on

the rate of interaction of its tips with the hyphae of species 2. If species 2 tend

to target the hyphae of its rival more than its tips, then it could dominate the

species without pushing it to extinction and letting it coexist in the same vicinity

but at a reduced density.

4.2.3.3 Conclusion

In this model we have explored the effect of two species of fungi, one of which has

the ability to reduce its rivals tips and hyphae and the other does not. We have

found that both species can survive and coexist together with the less dominant

fungi existing with a lower density than its rival only if the rival fungi eliminates

the hyphae of the opponent at a greater rate than it reduces its tips (see Figure 4.8

where A < E). On the other hand if the fungi reduces the tips of its opponent at

a faster rate than its hyphae, then the less dominant species of fungi is displaced

(Figure 4.10(b)). If the dominant species eliminates the tips and hyphae at the

same rate (A = E) but the defending fungi is able to generate tips faster then

coexistence would occur (Figure 4.9). In this type of environment the dominant

fungi can benefit from its rival in many ways, for example the existing fungi can
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have farther reach of nutrient or might even be contributing by bonding to a

nutrient source, which is favourable to its rival.

For the species of fungi to coexist it has been determined in the analysis

the inequality 1 > A(E + 1) must hold true. Thus, if the growing fungus cannot

generate growth faster than it is being attacked then it is bound to be eliminated.

The rate of elimination can depend on the style of attack from its rival. If the

rival targets its hyphae more rapidly than it targets the tips, the fungi will remain

in existence for a longer period of time but its ultimate fate still depends on the

relative values of the model parameters A and E.

4.3 Nutrient dependent interactions

In the previous section, it was tacitly assumed there was a constant and uncon-

trollable quantity of nutrient available to the fungi. In particular, the nutrient

influence on hyphal extension, branching and toxin production was not explicitly

incorporated in to the model for simplicity purposes. This hinders the applica-

bility of the results obtained and is contrary to some studies that have shown

hyphal extension rates and branching rates are influenced by localised nutrient

concentrations (e.g Gruhn et al., 1992). Therefore in this section we will extend

the model to include nutrient influence.

4.3.1 Model equations

Since the process of hyphal tip extension is the culmination of a cascade of

metabolic processes each requiring suitable nutrients, consistent with previous

studies (e.g. Prosser and Trinci, 1979) it is reasonably assumed that the speed

of tip movement is proportional to the concentration of nutrients available to

that fungal biomass. Nutrient uptake in fungal models are usually represented by

the Michaelis-Menton kinetics (e.g. Goyal et al., 2013). Since the purpose of the

current investigation is to understand the role of nutrient availability on the out-

come of competition, it is assumed that the nutrients are represented by a single

generic substrate and that cj denotes the concentration of that substrate available

to biomass j. Thus the speed of the model tip movement in biomass j is given by

vjcj and the creation of biomass is given by the corresponding flux of the model

tips. Also, to capture the natural turnover in hyphal segments, it is assumed that
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material in biomass j has a constant degradation rate of γj independent of any

competition.

Experimental investigations have long since established that an increase in

glucose concentrations within a mycelium is associated with an increase in hyphal

branching (Gruhn et al., 1992). Consequently, and consistent with previous mod-

elling studies (Boswell et al., 2003a, 2007; Boswell and Davidson, 2012; Hopkins

and Boswell, 2012), it is assumed that the production of new model tips in biomass

j is proportional to cjρj capturing the dependence of this process on both the con-

centration of substrate and the hyphal length from which new tips can emerge.

Anastomosis, the fusion of tips with other hyphae, is a process that regulates the

density of hyphal tips. Again, consistent with previous studies (Edelstein, 1982;

Boswell and Davidson, 2012), it is assumed that the per capita loss of model tips

in biomass j is proportional to the density of biomass j, namely ρj.

During fungal competition, combinations of VOCs and toxic metabolites

are produced along the lengths of hyphae that comprise the mycelium. Due to the

concomitant energy costs, the production of these compounds is reasonably as-

sumed to be proportional to the energy available to the biomass, i.e. proportional

to c1 or c2. Further, since these compounds restrict the ability of a rival biomass

to create new hyphal material as well as degrading existing hyphae, they essen-

tially cause hyphal tips in a rival to cease functioning and reduce the density of

existing biomass. For convenience these substances are not represented explicitly

but instead their influence on rival biomasses is modelled. Therefore the process

of tip inhibition/degradation and hyphal degradation in biomass j by biomass

i (i 6= j) is modelled using terms proportional to ciρinj and ciρiρj respectively.

This approach is consistent with observed behaviour of competing fungi where

the amount of VOCs produced changes during competition and depends on the

degree of contact between the two species (Hynes et al., 2007).

Thus the mathematical model is described by four coupled partial differ-
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ential equations

∂ρ1

∂t
= v1c1n1 − γ1ρ1 − Ec2ρ2ρ1,

∂n1

∂t
= −∂(v1c1n1)

∂x
+ α1c1ρ1 − β1ρ1n1 − Ac2ρ2n1, (4.9)

∂ρ2

∂t
= v2c2n2 − γ2ρ2 − Fc1ρ1ρ2,

∂n2

∂t
=
∂(v2c2n2)

∂x
+ α2c2ρ2 − β2ρ2n2 −Bc1ρ1n2,

where all the parameters are consistent with equations (4.1).

The main purpose of the current investigation is to focus on the role of nu-

trient availability and its involvement in determining the outcome of pairwise com-

petition between fungi. As previous studies have shown (e.g. Edelstein, 1982), tip

velocity and local branching and anastomosis rates dictate the densities achieved

by biomasses in the absence of competition which in turn impact on the compet-

itive ability of the biomass. Therefore, in order to isolate the key role of nutrient

availability on competition, it is reasonably assumed that the two rival biomasses

have similar growth characteristics and only differ in their local nutrient resources

and their ability to degrade and inhibit the growth of their rivals. Thus nutrient

resources provide the main drivers for differences in biomass competition. There-

fore, we use the same assumption and non-dimensionalisation parameters as in

Section 4.2.1 to get

∂ρ1

∂t
= c1n1 − ρ1 − Ec2ρ2ρ1,

∂n1

∂t
= −∂(c1n1)

∂x
+ ψc1ρ1 − ψρ1n1 − Aψc2ρ2n1, (4.10)

∂ρ2

∂t
= c2n2 − ρ2 − Fc1ρ1ρ2,

∂n2

∂t
=
∂(c2n2)

∂x
+ ψc2ρ2 − ψρ2n2 −Bψc1ρ1n2,

where stars have been dropped for notational convenience. While alternative non-

dimensionalisations are possible, the particular choice adopted here, which retains

independent parameters relating to the two substrate concentrations, is central to

the results obtained from the following analysis.

Previous modelling investigations (e.g. Boswell et al., 2002, 2003a) explic-

itly simulated the distribution of a substrate, representing a growth promoting
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carbon, inside the biomass structure, accounting for not only its uptake from the

external environment and depletion due to growth costs, but also its movement

within the biomass network. Indeed, when the external resource was continually

replenished, the internally-held substrate distribution was the same order of mag-

nitude throughout the majority of the biomass (Boswell, 2012). Consequently, it

is assumed that the variables c1 and c2 are constant throughout the biomass and

also do not change over time corresponding to biomass expansion and competition

in a continually-replenished or nutrient-rich environment.

As previously explained, the suppression of hyphal tip extension and the

degradation of hyphae represent the two major processes used by fungal biomasses

during competition. To isolate the effect of each, attention is focussed first on the

impact of tip suppression when hyphal degradation is neglected (by assuming E

and F are both zero) before extending the analysis to include both processes

acting simultaneously.

4.3.2 Model tip suppression only

In the absence of hyphal degradation (E = F = 0), the corresponding model

equations (4.10) become

∂ρ1

∂t
= c1n1 − ρ1,

∂n1

∂t
= −∂(c1n1)

∂x
+ ψ(c1ρ1 − ρ1n1 − Ac2ρ2n1), (4.11)

∂ρ2

∂t
= c2n2 − ρ2,

∂n2

∂t
=
∂(c2n2)

∂x
+ ψ(c2ρ2 − ρ2n2 −Bc1ρ1n2).

4.3.2.1 Equilibria and stability

Edelstein (1982) and work in Chapter 2 showed that model equations similar

to those in equation (4.11) gave rise to travelling wave solutions and hence if

there are travelling wave solutions the spatially-uniform stationary points provide

information on such solutions. The system of equations in (4.11) has four such

stationary points that can be found and classified. The spatially-uniform equilibria

93



of the non-dimensionalised equations (4.11) satisfy

0 = c1n1 − ρ1,

0 = ψ(c1ρ1 − ρ1n1 − Ac2ρ2n1),

0 = c2n2 − ρ2,

0 = ψ(c2ρ2 − ρ2n2 −Bc1ρ1n2).

There are four equilibria, three of which can be easily determined after some

trivial algebraic manipulation

(ρ∗1, n
∗
1, ρ
∗
2, n

∗
2) =(0, 0, 0, 0), (SP0)(

c2
1, c1, 0, 0

)
, (SP1)(

0, 0, c2
2, c2

)
. (SP2)

There is a fourth stationary point corresponding to coexistence (or intermingling).

After some lengthy algebra the stationary point is shown below(
Ac3

2 − c2
1

ABc1c2 − 1
,

Ac3
2 − c2

1

c1(ABc1c2 − 1)
,
Bc3

1 − c2
2

ABc1c2 − 1
,

Bc3
1 − c2

2

c2(ABc1c2 − 1)

)
, (SP3a)

which is biologically realistic when both Ac3
2 < c2

1 and Bc3
1 < c2

2, or when both

Ac3
2 > c2

1 and Bc3
1 > c2

2. Clearly stationary points (SP0), (SP1) and (SP2) are

biologically realistic (i.e. non-negative) for all non-negative parameter values. The

stability of the stationary points found above are determined from the character-

istic equation∣∣∣∣∣∣∣∣∣∣
−1− λ c1 0 0

ψ(c1 − n1) −ψρ1 − Aψc2ρ2 − λ −Aψc2n1 0

0 0 −1− λ c2

−Bψc1n2 0 ψ(c2 − n2) −ψρ2 −Bψc1ρ1 − λ

∣∣∣∣∣∣∣∣∣∣
= 0.

SP0

The characteristic equation obtained from the above matrix evaluated at the sta-

tionary point (0, 0, 0, 0) can be easily factorised into two quadratics

(
λ2 + λ− ψc2

2

)(
λ2 + λ− ψc2

1

)
= 0.
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Hence the stability of this stationary point is determined by the roots of two

quadratic equations. Since the coefficient of the constant term is negative in at

least one of the quadratics, the Routh-Hurwitz criteria for polynomials of degree

2 implies that there is an eigenvalue with a positive real part and hence the

stationary point (SP0) is unstable. Furthermore, due to the structure of the

quadratics, this stationary point is clearly a saddle point.

SP1

Substituting the equilibria (c2
1, c1, 0, 0) into the above characteristic equation yields

an equation that can be easily factorised:

(λ+ 1)(λ+ ψc2
1)
(
λ2 + (1 + ψBc3

1)λ+ ψBc3
1 − ψc2

2

)
= 0.

Since two of the eigenvalues are clearly negative, the roots of the quadratic de-

termine the stability of stationary point (SP1). Again, using the Routh-Hurwitz

criteria for polynomials of degree 2, the stationary point (SP1) is stable provided

the constant term is positive, i.e. Bc3
1 > c2

2 and hence is otherwise a saddle point.

SP2

Similar to above, the characteristic equation evaluated at the stationary point

(SP2) can be factorised:

(λ+ 1)(λ+ ψc2
2)
(
λ2 + (1 + ψAc3

2)λ+ ψAc3
2 − ψc2

1

)
= 0.

Hence an application of the Routh-Hurwitz criteria implies that stationary point

(SP2) is stable provided Ac3
2 > c2

1 and is otherwise a saddle point.

SP3a

After significant algebraic manipulation, the characteristic equation evaluated at

the fourth stationary point (SP3a) can be written as

(λ+ 1)

[
λ3+

(
1 + ψ(c2

1 + c2
2)
)
λ2 + ψ

(
c2

1(u− 1) + c2
2(w − 1)

uw − 1
+ ψc2

1c
2
2

)
λ

−ψ2c2
1c

2
2

(
(u− 1)(w − 1)

uw − 1

)]
= 0,

(4.12)
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where, u = Ac3
2/c

2
1 and w = Bc3

1/c
2
2. Clearly λ = −1 is an eigenvalue and hence

the roots of the remaining cubic determines the stability of the equilibria. Recall

the stationary point (SP3a) is biologically realistic (i.e. the variables are non-

negative) provided either u,w > 1 or u,w < 1. We investigate these two cases

below but first recall from the Routh-Hurwitz criteria that the cubic equation

λ3 + aλ2 + bλ + c = 0 has all roots with negative real parts if a, b, c > 0 and

ab − c > 0. With u,w > 1 the constant term in the cubic of equation (4.12)

is negative and so the Routh-Hurwitz condition fails. Therefore the coexistence

stationary point (SP3a) is unstable when u,w > 1.

Assuming u,w < 1 and then by examining the cubic in equation (4.12) it

is easily seen that a, b, c > 0 is satisfied (i.e. the quadratic, linear and constant

coefficients are all positive). The remaining condition for stability is investigated

by examining the term ab− c. After some lengthy algebra, the expression ab− c
can be written as(

c2
1(u− 1) + c2

2(w − 1)

uw − 1

)
ψ

+

(
c4

1(u− 1) + c4
2(w − 1) + 2(uw − 1)c2

1c
2
2

uw − 1

)
ψ2

+ (c4
1c

2
2 + c4

2c
2
1)ψ3.

(4.13)

Since u,w < 1 and the remaining parameters are positive, it is clear that all three

terms in (4.13) are positive. Therefore the Routh-Hurwitz criteria implies that

the stationary point (SP3a) is stable provided u,w < 1, i.e. provided Ac3
2 < c2

1

and Bc3
1 < c2

2, and is otherwise a saddle point (or biologically unrealistic if it takes

negative values).

Consequently from the above analysis the c1-c2 parameter space is divided

into four regions by the curves Ac3
2 = c2

1 and Bc3
1 = c2

2 (Figure 4.11 with E = F =

0).
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R M

C L

c1

2

Figure 4.11: The c1-c2 parameter space for equations (4.10) is divided into
regions by the curves Ac3

2(1 + Ec3
2) = c2

1 (solid line) and Bc3
1(1 + Fc3

1) = c2
2

(dashed line). Region R corresponds to where the biomass initially starting on
the right will displace that initially on the left. Region L corresponds to where
the biomass initially starting on the left will displace that initially on the right.

Region C corresponds to where coexistence (or intermingling) of biomasses
arises. Region M corresponds to where multiple stable equilibria are found,

which can include deadlock.

In essence, when either c1 is significantly larger than c2, or c2 is significantly

larger than c1, one fungal biomass will displace the other. If both c1 and c2 are

sufficiently large then multiple stable equilibria arise and so precise values of c1

and c2, along with initial data, determine the outcome of competition. Finally, if

both c1 and c2 are similarly and sufficiently small then the only stable equilibrium

corresponds to the coexistence (i.e. intermingling) of biomasses.

The area of the region between the curves in Figure 4.11 can be determined

using integration and is equal to 1/(5AB) (for E = F = 0). Thus it is clear that

the region of coexistence gets smaller as the competitive ability of the biomass

increases, which is intuitively appealing.

4.3.2.2 Phase-plane analysis

To prove the existence of travelling wave solutions, it is necessary to prove the

existence of trajectories in the four-dimensional state space connecting the equi-

libria constructed above. To this end, introduce z = x− st, where s is a constant

corresponding to the speed of a travelling wave. Equations (4.11) can then be
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represented as

ρ′1 = −1

s
(c1n1 − ρ1) ,

n′1 = − ψ

s− c1

(c1ρ1 − ρ1n1 − Ac2ρ2n1) ,

ρ′2 = −1

s
(c2n2 − ρ2) ,

n′2 = − ψ

s+ c2

(c2ρ2 − ρ2n2 −Bc1ρ1n2) ,

(4.14)

where prime denotes differentiation with respect to the wave variable z. The

parameter ψ can be regarded as separating the reaction terms of equation (4.11)

into two classes: those that change in proportion to ψ, representing the change of

the hyphal tip population, and those independent of ψ, representing the change

of the hyphal biomass population.

For small values of ψ the change in the model variables n1 and n2 can

be regarded as varying slower than the change in both ρ1 and ρ2. Due to the

construction of the model equations, in particular that the change in the biomass

concentrations ρj (j = 1, 2) is dictated by the movement of model tips nj, the

change in biomass concentration lags behind a change in tip concentration (effec-

tively the biomass concentration is continually “catching up” with the tip con-

centration). Thus there is an inherent stability embedded in the model equations

for ρj and therefore it is reasonable to take the approximations ρ1 = c1n1 and

ρ2 = c2n2 along trajectories in the four-dimensional state space. Thus the system

of equations (4.14) then reduces to

n′1 = − ψn1

s− c1

(
c2

1 − c1n1 − Ac2
2n2

)
,

n′2 = − ψn2

s+ c2

(
c2

2 − c2n2 −Bc2
1n1

)
.

(4.15)

This pair of equations can be investigated using standard phase plane analysis.

Consistent with the construction of Figure 4.11, there are four distinct ways in

which the nullclines of equations (4.15) can intersect. Additionally, the direction

of flow in the phase planes of each of these instances depends on the sign of the

expressions s−c1 and s+c2 corresponding to the three cases s > c1, −c2 < s < c1

and s < −c2. The twelve possible phase portraits are illustrated in Figure 4.12.
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Figure 4.12: Phase portraits of equations (4.15) with small ψ for the cases
outlined in Figure 4.11 where s takes the values indicated and n̂1 = c2

2/(Bc
2
1),

n̂2 = c2
1/(Ac

2
2). The n1- and n2-nullclines are represented by the dashed (blue)

and dotted (red) lines respectively with typical trajectories represented by solid
black lines. Trajectories in bold illustrate biologically relevant travelling wave

solutions of equations (4.11) for small ψ with E = F = 0.

The existence of travelling wave solutions in model equations (4.11) re-

quires the presence of trajectories in the phase portraits connecting equilibria in a

meaningful manner (e.g. the direction of flow in the state space is consistent with

the sign of s and corresponds to biomass expansion in the appropriate direction).

In region L of the parameter space of Figure 4.11 (where the biomass starting

on the left displaces that on the right, and hence indicates a positive value of s),

the only physically realistic trajectories connecting equilibria arise when s > c1

(Figure 4.12(a)), thus generating a lower bound for the travelling wave speed.

Notice that there are two heteroclinic trajectories in this instance representing

the movement of biomass into an empty domain and the movement following col-

lision with the biomass initially starting on the right. A similar situation arises in

region R of Figure 4.11, except the wave speed satisfies s < −c2 (Figure 4.12(k)).
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In region M of Figure 4.11, where multiple outcomes of biomass competition are

possible, the only travelling waves that can exist must satisfy −c2 < s < c1 (Fig-

ure 4.12(f)). Finally, in region C of Figure 4.11, corresponding to the coexistence

(or intermingling) of biomasses, the only physically realistic trajectories satisfy

either s > c1 or s < −c2 (Figure 4.12(d), (l)). (Note that in Figure 4.12 (e), (g)

there are no heteroclinic orbits and hence no corresponding travelling waves while

in Figure 4.12(b, c, h, i, j) the direction of the trajectories is incompatible for

the existence of travelling wave solutions for the corresponding values of s or is

not consistent with the stability of the four equilibria of equations (4.11) found

above.) The resultant bounds on wave speed for the small ψ case are summarised

in Table 4.1. Consequently, given the bounds on the wave speeds constructed

above, the instance of deadlock, which corresponds to stationary distributions,

can only arise for values of c1 and c2 lying in Region M of Figure 4.11.

Figure 4.11 Region Outcome Condition Wave speed (s)
L Left biomass displaces right c2

2 < Bc3
1, Ac

3
2 < c2

1 s > c1

M Multiple outcomes c2
2 < Bc3

1, Ac
3
2 > c2

1 −c2 < s < c1

R Right biomass displaces left c2
2 > Bc3

1, Ac
3
2 > c2

1 s < −c2

C Coexistence / intermingling c2
2 > Bc3

1, Ac
3
2 < c2

1 s > c1 or s < −c2

Table 4.1: Travelling wave solutions of equations (4.11) for small ψ.

A similar technique can be applied when ψ is large so that it is reasonable

to make the approximations n1 = c1ρ1/(ρ1 + Ac2ρ2) and n2 = c2ρ2/(ρ2 + Bc1ρ1)

along trajectories. Under these conditions equation (4.14) reduces to the pair of

equations

ρ′1 = − ρ1

s(ρ1 + Ac2ρ2)

(
c2

1 − ρ1 − Ac2ρ2

)
,

ρ′2 = − ρ2

s(ρ2 +Bc1ρ1)

(
c2

2 − ρ2 −Bc1ρ1

)
.

(4.16)

As before, there are four alternative ways the nullclines can intersect and

the direction of flow depends on the sign of s yielding a total of 8 distinct phase

portraits (Figure 4.13). Depending on parameter values, there are trajectories

connecting various equilibria similar to the previous case for small ψ but in this

instance there are no restrictions on s and hence no bounds on the speed of the

travelling waves can be constructed.
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Figure 4.13: Phase portraits of equations (4.16) for the different regions of
Figure 4.11 where s > 0 and s < 0 as indicated and ρ̂1 = c2

2/(Bc1),
ρ̂2 = c2

1/(Ac2). The ρ1- and ρ2-nullclines are represented by the dashed (blue)
and dotted (red) lines respectively. Sample trajectories are indicated along with

specific trajectories (in bold) connecting equilibria illustrating biologically relevant
travelling wave solutions of equations (4.11) for large ψ with E = F = 0.

4.3.2.3 Numerical results

When considered in isolation, each of the biomasses and corresponding tips from

equation (4.11) generate a stable travelling wave solution. Thus to ensure the

biomasses have attained stable distributions prior to their contact, the initial

distributions ρ̂j(x) and n̂j(x) are chosen to be similar to their travelling wave

profile. Consequently, and solely for the purpose of numerical integration of the

system of equations in (4.9), the nondimensionalised version of the initial data in

equation (4.2) is

ρ̂1(x) =
c2

1

2
erfc

(
x̄+ x

2

)
, n̂1(x) =

c1

2
erfc

(
x̄+ x

2

)
,

ρ̂2(x) =
c2

2

2
erfc

(
x̄− x

2

)
, n̂1(x) =

c1

2
erfc

(
x̄− x

2

)
, (4.17)

where 2x̄ represents the initial distance between the two model biomasses and

erfc is the complementary error function. Note that while these functions are not

the final travelling wave profiles obtained by the biomasses when considered in

isolation of each other, provided x̄ is sufficiently large, using these initial profiles,

nj and ρj quickly converge to their stable distributions before any interactions.
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The model equations (4.11) with initial data (4.2), (4.17) were solved nu-

merically for a range of parameter values c1 and c2 for small and large values of ψ

(Figs. 4.14, 4.15, 4.16). In all instances, the initial distributions of model biomass

ρj and model tips nj (j = 1, 2) rapidly converged on a stable travelling wave profile

taking values of zero in front of the wave and ρj = c2
j and nj = cj (j = 1, 2) behind

it, consistent with the equilibria found above. These profiles propagated towards

the centre of the domain with a constant velocity sj (j = 1, 2), that was calculated

numerically, and in all cases s1 > c1 and s2 < −c2, in line with the above analysis.

The leading edge of the model tips marginally preceded the leading edge of the

model biomasses, which is consistent with the model structure where biomass cre-

ation was proportional to tip flux and further justifies the methodology applied in

the small and large ψ analysis investigated above. The rival distributions collided

with each other close to the origin but the exact position varied with the values

of c1 and c2 due to the differences in the propagation speeds s1 and s2. Following

their collisions, the distributions took numerous forms depending on parameter

values and the speed of the travelling fronts changed accordingly.

For ψ = 0.1, representing a small value of this parameter, the outcome

depended upon the values of A,B, c1 and c2. When c2 < A−3/5B−2/5 (correspond-

ing to the value of c2 at the non-trivial intersection of the curves identified in

Figure 4.11) three outcomes arose consistent with the above analysis. If c1 was

sufficiently small, i.e. c1 < (Ac3
2)

1/2
and so in Region R of Figure 4.11, then the

biomass initially starting on the right displaced that initially starting on the left

and a corresponding travelling wave solution arose (Figure 4.14(a)) where the re-

sultant wave speed satisfied s < −c2. If (Ac3
2)

1/2
< c1 < (c2

2/B)
1/3

, corresponding

to Region C of Figure 4.11, then the biomasses coexisted after their collision at

reduced densities and both wave fronts continued to propagate at reduced speeds

(Figure 4.14(b)) where s1 > c1 and s2 < −c2. If c1 > (c2
2/B)

1/3
, corresponding to

Region L of Figure 4.11, then the biomass initially starting on the left displaced

that on the right (Figure 4.14(c)) and the resultant wave speed satisfied s > c1.

When c2 > A−3/5B−2/5, consistent with the parameter space of Figure 4.11, the

biomass initially starting on the right displaced that on the left if c1 < (c2
2/B)

1/3

(i.e. in Region R) and vice-versa if c1 > (Ac3
2)

1/2
(i.e. in Region L). However, for

(c2
2/B)

1/3
< c1 < (Ac3

2)
1/2

(corresponding to region M in Figure 4.11) different so-

lutions were obtained depending on the precise values of c1 and c2 corresponding

to the right biomass displacing the left (Figure 4.15(a)); deadlock, where nei-
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ther distribution moved following collision (Figure 4.15(b)); and the left biomass

displacing the right (Figure 4.15(c)). In all these cases, the speeds of the travel-

ling wave fronts satisfied −c2 < s < c1, consistent with the bounds presented in

Table 4.1.
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Figure 4.14: Numerical solutions of equations (4.11) with initial data (4.2),
(4.17) over the interval (−300, 300) with x̄ = 35, A = B = 1 and ψ = 0.1.

Distributions are shown at times t = 0, 30 and 350 where values of c1 and c2

belong to (a) region R, (b) region C and (c) region L of Figure 4.11. (a)
c1 = 0.4, c2 = 0.6 (with travelling wave speeds of s1 = 0.43, s2 = −0.65 before

collision, s1 = s2 = −0.64 after collision). (b) c1 = 0.65, c2 = 0.6 (with travelling
wave speeds of s1 = 0.72, s2 = −0.65 before collision, s1 = 0.69, s2 = −0.61 after

collision). (c) c1 = 0.8, c2 = 0.6 (with travelling wave speeds of
s1 = 0.87, s2 = −0.65 before collision, s1 = s2 = 0.87 after collision).
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Figure 4.15: Numerical solutions of equations (4.11) with initial data (4.2),
(4.17) over the interval (−300, 300) with x̄ = 35, A = B = 1 and ψ = 0.1.

Distributions are shown at times t = 0, 30 and 200 where values of c1 and c2

belong to region M of Figure 4.11, where multiple outcomes from competition are
possible. (a) c1 = 1.15, c2 = 1.2 (with travelling wave speeds of

s1 = 1.30, s2 = −1.35 before collision, s1 = s2 = −0.33 after collision). (b)
c1 = 1.2, c2 = 1.2 (with travelling wave speeds of s1 = 1.35, s2 = −1.35 before

collision, s1 = s2 = 0 after collision, i.e. deadlock). (c) c1 = 1.3, c2 = 1.2 (with
travelling wave speeds of s1 = 1.59, s2 = −1.35 before collision, s1 = s2 = 1.13

after collision).

The bounds on the travelling wave speeds for small ψ (Table 4.1) do not

apply to larger values of ψ (Figure 4.16). For example, in Figure 4.16(a), following

collision of biomasses, the speed of the advancing wave fronts satisfied s1 > c1

and s2 < −c2 while in Figure 4.16(c), their speeds satisfied s1 < c1 and s2 > −c2,

despite both these combinations of c1 and c2 belonging to region C of Figure 4.11.
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Figure 4.16: Numerical solutions of equations (4.10) with initial data (4.2),
(4.17) over the interval (−200, 200) with x̄ = 35 and A = B = 1, E = F = 0 and
ψ = 10. Distributions are shown at times t = 0, 30 and 200 for values of c1 and
c2 in the region C of Figure 4.11, ensuring coexistence (or intermingling) of

biomasses. (a) c1 = 0.6, c2 = 0.6 (with travelling wave speeds of
s1 = 2.07, s2 = −2.07 before collision, s1 = 0.77, s2 = −0.77 after collision). (b)
c1 = 0.65, c2 = 0.6 (with travelling wave speeds of s1 = 2.27, s2 = −2.07 before
collision, s1 = 0.98, s2 = −0.49 after collision). (c) c1 = 0.8, c2 = 0.85 (with

travelling wave speeds of s1 = 2.92, s2 = −3.07 before collision,
s1 = 0.18, s2 = −0.61 after collision).

4.3.3 Mutual tip suppression and hyphal degradation

4.3.3.1 Equilibria and stability

When the processes of both tip suppression and hyphal degradation are considered

to be acting simultaneously, the same qualitative features arose as obtained above.

The system of equations in (4.10) has four stationary points, three of which can

be easily found and classified. A fourth stationary point can be found in certain

special and interesting cases. The spatially-uniform stationary points take more

complicated forms than before and correspond to the absence of both biomasses,

the presence of only one biomass, and the coexistence of biomasses. The spatially-
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uniform equilibria of the non-dimensionalised equations (4.10) satisfy

0 = c1n1 − ρ1 − Ec2ρ1ρ2,

0 = ψ(c1ρ1 − ρ1n1 − Ac2ρ2n1),

0 = c2n2 − ρ2 − Fc1ρ1ρ2,

0 = ψ(c2ρ2 − ρ2n2 −Bc1ρ1n2).

Similar to the previous cases, three equilibria are given by

(ρ∗1, n
∗
1, ρ
∗
2, n

∗
2) =(0, 0, 0, 0), (SP0)(

c2
1, c1, 0, 0

)
, (SP1)(

0, 0, c2
2, c2

)
, (SP2)

and are identical to the previous case with E = F = 0. The remaining stationary

point, corresponding to coexistence, cannot be expressed in a convenient closed

form. However, there are a number of exceptions. One insightful exception arises

when A = B = 0 (i.e. in the absence of tip suppression) in which case the

stationary point (SP3b) is (ρ̄1, n̄1, ρ̄2, n̄2) where

ρ̄1 =
Fc3

1 − Ec3
2 − 1 +

√
(Fc3

1 − Ec3
2 − 1)

2
+ 4Fc3

1

2Fc1

, n̄1 = c1,

ρ̄2 =
Ec3

2 − Fc3
1 − 1 +

√
(Ec3

2 − Fc3
1 − 1)

2
+ 4Ec3

2

2Ec2

, n̄2 = c2.

Notice that ρ̄1 increases with c1 but decreases with c2 (and vice-versa for ρ̄2).

Therefore the density of one model biomass increases with the availability of

nutrients but is inhibited by the presence of a rival.

The stability of the stationary points found above are determined from the

following characteristic equation∣∣∣∣∣∣∣∣∣∣
−1− Ec2ρ2 − λ c1 −Ec2ρ1 0

ψ(c1 − n1) −ψρ1 − Aψc2ρ2 − λ −Aψc2n1 0

−Fc1ρ2 0 −1− Fc1ρ1 − λ c2

−Bψc1n2 0 ψ(c2 − n2) −ψρ2 −Bψc1ρ1 − λ

∣∣∣∣∣∣∣∣∣∣
= 0.
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SP0

The characteristic equation obtained from the above matrix evaluated at the sta-

tionary point (0, 0, 0, 0) can be easily factorised into two quadratics

(
λ2 + λ− ψc2

2

)(
λ2 + λ− ψc2

1

)
= 0.

By the Routh-Hurwitz criteria for polynomials of degree 2 this stationary point

is clearly a saddle point.

SP1

Substituting the equilibria (c2
1, c1, 0, 0) into the above characteristic equation yields

an equation that can be easily factorised:

(λ+ 1)(λ+ ψc2
1)
(
λ2 + (1 + Fc3

1 + ψBc3
1)λ+ ψBc3

1(1 + Fc3
1)− ψc2

2

)
= 0.

Two of the eigenvalues are clearly negative. Again, using the Routh-Hurwitz

criteria for polynomials of degree 2, the stationary point (SP1) is stable provided

the constant term in the quadratic is positive, i.e. Bc3
1(1 + Fc3

1) > c2
2 and hence

is otherwise a saddle point.

SP2

Similar to above, the characteristic equation evaluated at the stationary point

(SP2) can be factorised:

(λ+ 1)(λ+ ψc2
2)
(
λ2 + (1 + Ec3

2 + ψAc3
2)λ+ ψAc3

2(1 + Ec3
2)− ψc2

1

)
= 0.

Hence an application of the Routh-Hurwitz criteria implies that stationary point

(SP2) is stable provided Ac3
2(1 + Ec3

2) > c2
1 and is otherwise a saddle point.

SP3b

The characteristic equation evaluated at the stationary point (SP3b) for the spe-

cial case A = B = 0 can be factorised to give

0 = (λ+ ψρ∗1)(λ+ ψρ∗2)(λ+ 1) (λ+ 1 + Ec2ρ
∗
2 + Fc1ρ

∗
1)
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where ρ∗1 and ρ∗2 are the values of ρ1 and ρ2 at the stationary point (SP3b) re-

spectively. Clearly, since ρ∗1 and ρ∗2 are positive, the stationary point (SP3b) is

asymptotically stable. Notice also that in this special case of A = B = 0, coexis-

tence is always a stable stationary point and therefore the suppression of hyphal

tips (which corresponds to A,B > 0) clearly occupies a central role in the diversity

of outcomes of competition.

Similar to Section 4.3.2.1, and providedA andB are not both zero, the c1-c2

parameter space is divided by the curves Bc3
1(1+Fc3

1) = c2
2 and Ac3

2(1+Ec3
2) = c2

1

into the four regions identical to that found previously (Figure 4.11). Hence if c1 is

significantly larger than c2 the only stable equilibria corresponds to the presence

of the model biomass ρ1 and its model tips n1, with the reverse case if c2 is

significantly larger than c1. If c1 and c2 are both large then there are multiple

stable equilibria and provided c1 and c2 are sufficiently and similarly small then

coexistence (i.e. intermingling) is observed.

4.3.3.2 Phase-plane analysis

As in the previous case, the existence of travelling wave solutions connecting the

equilibria identified above can be determined by setting z = x − st in equa-

tions (4.10) where A,B,E and F are non-zero:

ρ′1 = −1

s
(c1n1 − ρ1 − Ec2ρ1ρ2) ,

n′1 = − ψ

s− c1

(c1ρ1 − ρ1n1 − Ac2ρ2n1) ,

ρ′2 = −1

s
(c2n2 − ρ2 − Fc1ρ1ρ2) ,

n′2 = − ψ

s+ c2

(c2ρ2 − ρ2n2 −Bc1ρ1n2) ,

(4.18)

where prime denotes differentiation with respect to the wave variable z. Similar

to the approach in Section 4.3.2.1 and for the same reasons, if ψ is large it is

reasonable to make the approximations n1 = c1ρ1/(ρ1 + Ac2ρ2), n2 = c2ρ2/(ρ2 +

Bc1ρ1) and hence the system of equations (4.18) reduces to

ρ′1 = −ρ1

s

(
c2

1

ρ1 + Ac2ρ2

− 1− Ec2ρ2

)
,

ρ′2 = −ρ2

s

(
c2

2

ρ2 +Bc1ρ1

− 1− Fc1ρ1

)
,

(4.19)
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and standard phase space analysis in the ρ1-ρ2 plane can be used to investigate

this system. From equations (4.19), the ρ2-nullclines are the line ρ2 = 0 and

the curve ρ2 =
c2

2

1 + Fc1ρ1

−Bc1ρ1, which is defined for all ρ1 6= −1/(Fc1). The

second of these satisfies

dρ2

dρ1

= − Fc1c
2
2

(1 + Fc1ρ1)2
−Bc1,

d2ρ2

dρ2
1

=
2F 2c2

1c
2
2

(1 + Fc1ρ1)3
.

Notice that the first derivative of the non-zero nullcline is negative for all values

of ρ1 6= −1/(Fc1) while the second derivative is positive provided ρ1 > −1/(Fc1).

In particular, this demonstrates that the non-zero ρ2-nullcline decreases from the

vertical asymptote ρ1 = −1/(Fc1), crosses the ρ2-axis at (0, c2
2) and tends to the

oblique asymptote ρ2 = −Bc1ρ1.

Through the symmetry in equations (4.19), the ρ1-nullclines have equiva-

lent properties where the model variables and parameters are suitably transposed;

namely the non-zero ρ1-nullcline has negative first derivative and positive second

derivative provided ρ2 > −1/(Ec2). In particular, in the ρ1-ρ2 phase space, the

non-zero ρ1-nullcline declines from the oblique asymptote ρ2 = −ρ1/(Ac2), crosses

the ρ1-axis at (c2
1, 0) before tending to the horizontal asymptote ρ2 = −1/(Ec2).

Thus in the region ρ1 > −1/(Fc1) and ρ2 > −1/(Ec2) the non-zero ρ1- and

ρ2-nullclines intersect precisely once. Depending on parameter values, this inter-

section may arise inside or outside the biologically relevant portion of the phase

space (i.e. ρ1, ρ2 ≥ 0). Consequently there are four ways the nullclines can inter-

sect in the biologically-relevant portion of the phase space depending on parameter

values but where the direction of flow depends on the sign of s generating a total of

8 distinct phase portraits (Figure 4.17). This analysis demonstrates the existence

of travelling wave solutions but, as in the case of the reduced system for large ψ in

equations (4.16), no bounds on the wave speed can be obtained. Unfortunately,

the case for small ψ does not yield any tractable analytical results.
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Figure 4.17: Phase portraits of equations (4.19) for the different regions of
Figure 4.11 where s > 0 and s < 0 as indicated. The ρ1- and ρ2-nullclines are

represented by the dashed (blue) and dotted (red) lines respectively where
ρ̌1 = (

√
B2 + 4BFc2

2 −B)/(2BFc1) and ρ̌2 = (
√
A2 + 4AEc2

1 − A)/(2AEc2).
Sample trajectories are indicated along with specific trajectories (in bold)

connecting equilibria illustrating biologically relevant travelling wave solutions of
equations (4.10) for large ψ.

4.3.3.3 Numerical results

The model equations (4.10) with initial data (4.2), (4.17) were solved numerically

for a range of parameter values c1 and c2 (Figure 4.18), with positive values used

for all parameters and the speed of the travelling waves were calculated numeri-

cally before and after biomass collision. In all cases, the qualitative behaviour of

the solutions were similar to that described in Section 4.3.2.1. In particular, for

pairings of the parameters c1 and c2 in the region denoted by C in Figure 4.11

where neither of the model biomasses in isolation were stable, the only observed

outcome of competition was coexistence (or intermingling) of biomasses (Fig-

ure 4.18(b)). Furthermore, different pairings of the parameters c1 and c2 that

lay within the multiple equilibria region M in Figure 4.11 generated three dis-

tinct outcomes; the biomass initially starting on the right displaced that on the

left (Figure 4.18(d)), the biomasses reached a state of deadlock (Figure 4.18(e)),

and the biomass initially starting on the left displaced that on the right (Fig-

ure 4.18(f)).
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Figure 4.18: Numerical solutions of equations (4.10) with initial data (4.2),
(4.17) over the interval (−100, 100) with x̄ = 35 and ψ = A = B = E = F = 1.
Distributions are shown at times t = 0, 30 and 100 where c1 and c2 belong to

regions (a) R, (b) C, (c) L, (d-f) M in Figure 4.11. (a) c1 = 0.4, c2 = 0.6 (with
travelling wave speeds of s1 = 0.54, s2 = −0.86 before collision, s1 = s2 = −0.84

after collision). (b) c1 = 0.55, c2 = 0.6 (with travelling wave speeds of
s1 = 0.81, s2 = −0.88 before collision, s1 = 0.52, s2 = −0.71 after collision). (c)
c1 = 0.8, c2 = 0.6 (with travelling wave speeds of s1 = 1.21, s2 = −0.87 before

collision, s1 = s2 = 1.03 after collision). (d) c1 = 1.1, c2 = 1.2 (with travelling
wave speeds of s1 = 1.75, s2 = −1.94 before collision, s1 = s2 = −0.27 after

collision). (e) c1 = 1.2, c2 = 1.2 (with travelling wave speeds of
s1 = 1.94, s2 = −1.94 before collision, s1 = s2 = 0 after collision). (f) c1 = 1.3,
c2 = 1.2 (with travelling wave speeds of s1 = 2.24, s2 = −1.94 before collision,

s1 = s2 = 0.22 after collision).



4.4 Conclusion

In biotechnological applications that involve the introduction of a species of fun-

gus to an environment, such as biological control and biological remediation, the

interaction between it and other fungal species already present in the environment

impacts on the success of the treatment. The investigation in this chapter has

primarily focused on how nutrient availability can influence the outcome of fungal

interactions by altering the rate at which they degrade rival’s hyphae and hyphal

tips and the concomitant spatial reorganisation. In particular, the mathematical

model predicted the circumstances under which pairwise competition would result

in the displacement of one species by another, the intermingling (or coexistence)

of multiple species and the emergence of deadlock where a stalemate is reached.

In the instances of displacement or intermingling, the numerical solutions

of the model equations suggested that the corresponding model biomasses ad-

vanced as a travelling wave. Indeed, through phase-space analysis, the existence

of travelling wave solutions in the model equations were demonstrated for certain

values of the parameter ψ, which essentially can be regarded as comparing the

production of new biomass material through hyphal tip branching and extension

to that lost through natural degradation. Furthermore, bounds on the travelling

wave speed were also obtained in certain cases. Previous studies (Boswell et al.,

2002; Boswell and Davidson, 2012) have calibrated these parameter values for the

fungus Rhizoctonia solani growing on a standard agar mixture from which ψ can

be deduced to take values between 1012 and 1014. Thus, since ψ is significantly

larger than values taken by other parameters in the nondimensionalised model

equations (4.10), there is strong experimental evidence to support the large ψ

analysis used in the current investigation and the corresponding model equations

essentially reduce to a pair of differential equations that exhibit Lotka-Volterra

competition (e.g. Allen, 2007). However, the complete proof of the existence of

travelling wave solutions for all values of ψ in equations (4.10), which involves

proving the existence of heteroclinic trajectories in four-dimensional state space,

remains an interesting open problem.

A key feature of the modelling was the distinction between the two major

processes involved in fungal competition, namely the degradation of existing hy-

phae and the degradation of hyphal tips by rival fungi. The suppression of hyphal

tips alone was shown to be a sufficient mechanism to generate the main observed

behaviours in fungal interactions, i.e. displacement, intermingling and deadlock.
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Indeed, by not degrading hyphal tips, a mycelium was shown to be unable to

completely displace its rival (Section 4.3.3 with A = B = 0) and therefore the

only outcomes of competition with this singular regime are intermingling or its

own displacement. Intuitively this is appealing: hyphal tip extension is the sole

means by which mycelia expand and therefore the possibility of continued growth

cannot be eliminated unless the hyphal tips are inhibited or degraded. How-

ever, the degradation of hyphal structures impacts on the ability of a mycelium

to redistribute internally-held supplies, which is essential for continued growth,

and therefore such degradation can reduce its ability to function effectively (e.g.

Lee et al., 2017). This possibility cannot be captured in the current model be-

cause of its continuous nature, but hybrid approaches that explicitly simulate

the discrete network of a mycelium have been used with some success (Boswell,

2012). Nonetheless, our modelling has shown that hyphal degradation plays an

important role in pairwise fungal competition; it significantly reduces the region

of parameter space where intermingling (or coexistence) can arise and extends

the regions corresponding to displacement (Figure 4.11) and therefore provides a

further competitive advantage to a fungus.

The modelling demonstrated that the availability of nutrients plays a cen-

tral role on the outcomes of pairwise competition between fungal species. Coex-

istence, or intermingling, was shown to be possible only when the concentrations

of nutrients provided to both model fungi were similarly small and deadlock was

only possible when the nutrient concentrations were similarly large (Figure 4.11).

This result supports many of the findings in Boswell (2012) where numerical simu-

lations showed that deadlock could arise when the suppression of hyphal tips and

the degradation of biomass occurred at sufficiently large rates and coexistence

arose when both rates were sufficiently small. However, in that study, the explicit

dependence of nutrients on those two processes was neglected and instead the nu-

trients only influenced the branching and tip movement processes. Further, it was

shown in Boswell (2012) that deadlock could be achieved when there was a signifi-

cant disparity between nutrient availability in two fungal biomasses provided their

tip suppression and hyphal degradation rates were also different. The results here

(also reported in Choudhury et al., 2018) extend these findings; the modelling

predicts that further increasing the nutrient disparity will change the outcome of

competition resulting in the displacement of one biomass by another since it cor-

responds to the movement from region M in Figure 4.11 to either region L or R,

113



depending on the nutrient concentration changed. Indeed, additional numerical

simulations using the model of Boswell (2012) have shown precisely this outcome

(Choudhury et al., 2018), thus demonstrating the additional insight gained from

the current approach.

It has been shown in a number of experimental studies (e.g. Boddy, 1993,

2000) that under certain triggers, such as the presence of a rival biomass, fungi

will construct structures, often termed barrages, to protect themselves. Such

structures were not observed in our modelling and thus certain potential causes of

these structures can be eliminated. In particular, the degradation of hyphal tips

(or biomass) by a rival fungus is not sufficient on its own to generate defensive

structures; other mechanisms must be employed. These alternative mechanisms

could potentially include a change in the redistribution of internally-located nu-

trients or a change in the movement habit of hyphal tips themselves in response to

an anticipated attack. Such a change in the movement habit of tips may require

additional spatial dimensions in the model, and consequently the basic structure

of the model equations, especially tip flux and creation of biomass, would need

careful revision, potentially by including their movement in response to different

biomass distributions, see e.g. Boswell et al. (2003a). Nonetheless, the modelling

has demonstrated that fungi are better able to defend themselves when supplied

with sufficient resources and hence the reallocation of internally-held resources to

the colony periphery provides increased defensive capabilities for mycelia.

In experiments involving mycelial networks, the majority of the variables

cannot be controlled but can be measured experimentally (e.g. the speed of tip

growth, branching and the death rate of a fungal network hyphae see Rotheray

et al. (2010)). One variable that can be controlled, however, is the nutrient con-

centration. Nutrients play a key role in many fungal interactions, such as in the ef-

fect of grazing (Hogervorst et al., 2003; Heaton et al., 2012), toxin removal (Gadd,

1993; Fomina et al., 2003; Goyal et al., 2013) and pathogenic fungi neutralisation

(Sempere and Santamarina, 2010; Ibarra-Medina et al., 2010). In this chapter we

have provided a simple yet powerful description of how nutrient concentrations

can influence interactions between different fungi species. However, additional

factors, including temperature (Hiscox et al., 2016) and water activity (Sempere

and Santamarina, 2010) can also influence the outcome of pairwise competition

and so could be incorporated into future models of fungal interactions.

A key limitation of the modelling approach in this chapter relates to the
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reduction of the biomass expansion to a single spatial dimension. In experimental

configurations, and indeed often in the terrestrial environments, growth is essen-

tially planar and hence there may be inherent differences in the biomass structures

produced in such settings. Thus in the following chapter the model equations (4.9)

will be re-expressed in a two-dimensional setting. A two-dimensional representa-

tion of interactions will capture the dynamics of the entire fungus colonies of fungi

seen in experimental studies rather than focussing on the periphery alone. How-

ever, key aspects of the model equations themselves need to be revised as a result

of the dimensional change since opportunities for growth are different.
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Chapter 5

Fungal Interactions and Spatial

Patterns in Planar Environments

The previous chapter investigated how nutrient resources can influence the out-

come of competition between two rival biomasses, which is clearly an important

consideration for their biotechnological applications (see also Choudhury et al.,

2018). The mathematical models formed were one-dimensional in nature, primar-

ily to focus attention on the interaction zone at their periphery where the fungi

interact with each other. The simple models provided insightful results including

predicting common behaviour seen in experimental fungal studies such as dis-

placement, coexistence and deadlock via manipulating the nutrient concentration

provided to the fungi.

In laboratory experiments, as well as in their natural settings, fungal

colonies in isolation grow radially from a food source (Figure 5.1(a)). This growth

is often two dimensional; for example in a Petri dish or on the surface of organic

matter. However Figure 5.1(b) demonstrates how fungal colonies cease exhibit-

ing radial symmetry when they start interacting with each other. The preceding

models thus lacked the ability to capture the intricate growth structure observed

in practice.
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(a) (b)

Figure 5.1: (a) The radial growth of colletotrichum gloeosporioides species
grown on a Petri dish (Duarte, 2004), (b) Competition between fungal species M.
roridum and P. eupyrena causes the cessation of radial symmetry on a Petri dish

(Morón-Rı́os et al., 2017).

In heterogeneous environments, nutrients are unevenly distributed forcing

fungi to seek out distal additional sources of nutrients. This process is carried

out by the leading hyphal tips of the colony and is supported by the mycelium by

providing the necessary energy required to the tips. Thus there is some redistri-

bution of energy within the fungal colony termed translocation. It is through this

process that many fungi are able to grow in low nutrient or even polluted habi-

tats by exploiting the resources available to other parts of the mycelium (Schütte,

1956; Ritz, 1995; Persson et al., 2000).

For the one-dimensional models considered previously, it was reasonable

to represent tip growth via simple convective flux and nutrient influence as a con-

stant where the primary focus was on capturing the essence of the model without

over complicating the model in addition to observing steady state behaviours.

There are several complexities involved in formulating a two-dimensional model

of filamentous fungal growth that must be considered. For example, the geometry

of the network is of importance as the possibility of fusions (anastomosis) occur-

ring depends on the density of the colony as well as the direction the branches

are growing. However the biggest failing of the one-dimensional model considered

thus far is the lack of translocation.

Boswell et al. (2002, 2003a), engineered an exquisite model that captured

the growth of a strain of Rhizoctonia solani fungi and found it to be in excellent

agreement with calibrated experimental data. The devised model consisted of
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mixed hyperbolic-parabolic type equations. We will use this model as the basis

of our investigation and extend it further to capture fungal interactions in two-

dimensional domains.

5.1 Boswell’s modelling approach

We will continue to regard a mycelium and its constituents as continuous entities.

Thus, rather than accounting for individual hypha growth, the average properties,

such as the distribution of hyphal densities, are described. Since hyphal length

increment occurs only in the presence of a moving tip, the locations, density and

flux of tips is of immense importance in determining where growth takes place.

Hence the mycelium will be considered as a continuous distribution consisting of

three key features: active hyphal density, inactive hyphal density and hyphal tip

density. Active hyphae refers to those hyphae involved in the translocation of

internal metabolites while hyphal tips denote the ends of these hyphae. Inactive

hyphae denote hyphae no longer directly involved in translocation, branching or

anastomosis but still form part of the observable mycelium. Therefore to sum-

marise:

• Tip movements creates new hyphal filaments.

• Tips and hyphae can branch and create more tips or vanish through anas-

tomosis.

• Hyphae can become inactive and inactive hyphae can also degrade.

• Internal nutrients influence tip extension and hyphal growth.

• Internal nutrients held within the hyphae are different to external nutrients.

5.1.1 Model formulation

Consistent with the notation used in previous chapters, let ρ(x, t) denotes active

hyphal density where x and t are spatial and temporal coordinates respectively,

ρ
′
(x, t) denotes inactive hyphal density, n(x, t) denotes the tip density, si(x, t)

denotes internal substrate concentration and se(x, t) denotes external substrate

concentration. Notice here we differentiate between nutrients free in the growth

domain and those acquired by the biomass. Hyphae are fixed in space and can be
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regarded as the trail left behind a hyphal tip as it moves. Thus the rate at which

hyphae are created is proportional to the number of tips present and the rate at

which they move.

In the one-dimensional models constructed previously the model tips sim-

ply moved along the growth domain. However, this approach is not sufficient

to model growth in higher spatial dimensions since in practice hyphal tips will

reorient themselves. Hence there are assumed to be two processes involved in tip

movement that capture the motile behaviour seen in nature: a convective element

and a diffusive element. There is a linear relationship between tip growth, tip ve-

locity and internal substrate as growth is only possible when energy is supplied to

the tips. The tips must be modelled as convecting away from its biomass density

so that tips avoid their own biomass trail. In a sparse mycelial network a convec-

tive element alone is not sufficient for growth as anastomosis would be neglected

therefore to overcome this a diffusive term must also be included in the tip flux.

The diffusive term will ensure anastomosis as well as capture the small random

growth behaviour of tip growth observed in experiments (Giovannetti et al., 2001).

Thus the tip flux is modelled as

− vsin∇ρ−Dnsi∇n, (5.1)

where v and Dn are non-negative constants. Notice if the internal substrate term

si is zero, then there is no flux. The inactivation of hyphae is assumed to occur

at a constant rate dρ. Inactive hyphae, while still forming part of the biomass

structure, play no role in growth, uptake or translocation and are assumed to

degrade at a rate of di (note, the recycling of inactive hyphae has been modelled

in a series of papers by Falconer et al., 2011).

The reaction terms that corresponds to the creation and loss of hyphal tips

is modelled using the FHD phenotype seen in Chapter 2. Indeed, it was found in

Boswell et al. (2002) that the fungi R. solani adheres to the morphological pat-

tern FHD. Therefore the branching and anastomosis processes were represented

by the terms αsiρ and βnρ respectively, where α denotes the branching rate and

β denotes the anastomosis rate. (Notice that the nutrient concentration here is

denoted by the variable si while in the one-dimensional models previously con-

structed it was denoted by a constant c.)

The flux terms for the movement of internal substrate consists of two pro-
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cesses, simple diffusion and an active transport.

Passive flux = −Diρ∇si, (5.2)

Active flux = Daρsi∇n, (5.3)

where Di and Da are non-negative constants. Passive flux corresponds to the

diffusion of internal substrate within the mycelium. The flux is dependent on the

density of the mycelium, since the substrate movement increases with network

density. Since hyphal tips are the primary source of fungal growth, numerous ex-

perimental studies have shown that internally located material is usually directed

towards them or more specifically, internal substrate moves locally to the greatest

concentrations of hyphal tips (Steinberg, 2007; Balmant et al., 2015). The uptake

process of substrate is modelled in a linear manner, c1siρse, where c1 is a positive

constant representing the cost or energy involved in substrate uptake. It is also

reasonable to include the energy cost of tip movement and active flux terms. As

the elongation of tips require energy and active translocation of substrate also

requires energy it is assumed the costs are proportional to the flux terms, i.e.

c2|vsin∇ρ + Dnsi∇n| and c4|Daρsi∇n|, where c2 and c4 are non-negative con-

stants.

The external substrate movement is modelled using the standard law of

Fickian diffusion and the reaction term corresponds to the depletion from the en-

vironment. This term is similar to the uptake form for the internal substrate due

to conservation laws and is denoted by c3siρse, where c3 is a non-negative con-

stant. Some features of microbial life, such as growth rate and yield (where yield

is the portion of consumed substrate that is converted into biomass), will not be

explicitly modelled. There are certainly some trade-offs that occurs between the

growth rate and yield depending on the requirement of the specific microorgan-

ism (Lipson, 2015). In the context of modelling the phenotypic relation between

substrate uptake, metabolism and biomass growth, there is great interest in de-

veloping quantitative descriptions of the relationship between the growth rate and

yield (Cheng et al., 2019). The yield is typically depicted as the ratio between

the specific growth rate and the rate of substrate consumption, however we de-

note this feature simply via the constant terms c2 and c4 respectively, to avoid

unnecessary complication to our model. To capture the imperfection of substrate
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uptake it is mandatory that c1 < c3. Thus the model equations are of the form

∂ρ

∂t
= |vsin∇ρ+Dnsi∇n|︸ ︷︷ ︸

trail of tips

− dρρ,︸︷︷︸
inactive hyphae

∂ρ′

∂t
= dρρ︸︷︷︸

inactive hyphae

− diρ
′ ,︸ ︷︷ ︸

hyphae degradation

∂n

∂t
= ∇ · (vsin∇ρ+Dnsi∇n)︸ ︷︷ ︸

tip flux

+ αsiρ︸︷︷︸
branching

− βnρ,︸︷︷︸
anastomosis

∂si
∂t

= ∇ · (Diρ∇si −Daρsi∇n)︸ ︷︷ ︸
movement of internal substrate

+ c1siρse︸ ︷︷ ︸
substrate uptake

− c2|vsin∇ρ+Dnsi∇n|︸ ︷︷ ︸
cost of growth

− c4|Daρsi∇n|,︸ ︷︷ ︸
translocation cost

∂se
∂t

= De∇2se︸ ︷︷ ︸
diffusion of external substrate

− c3siρse.︸ ︷︷ ︸
substrate depletion

(5.4)

Despite the growth dynamics of fungal colonies being influenced greatly

by physical boundaries (e.g. soil-particles or the edge of a Petri dish) we will

not consider such influences in our investigations but rather focus on nutritional

influences to be consistent with the one-dimensional model in Chapter 4. Typical

experiments involving fungi are carried out on Petri dishes of diameter 9 cm but

we will consider a diameter of 4 cm to focus on the growth of the mycelium at the

centre of the domain to reduce computation time. We thus solve the equations

in a circular domain representing radius 2 cm in COMSOL and we define another

circle of radius R = 0.2 cm within to represent the initial inoculation site. Note

in experimental conditions fungi are grown on a separate Petri dish where once

grown a portion is cut and placed onto another Petri dish with fresh substrate.

Hence there will be some quantity of biomass and internal substrate within the

initial plug. Thus, and consistent with experimental protocol, the model equations

are to be solved in a circular domain of radius L (not to be confused with the

standard symbol used for dimensions representing length L (see Table 5.1)) with

zero flux boundary conditions. The initial data thus can be represented using the
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following

ρ(x, y, 0)

ρ0

=
n(x, y, 0)

n0

=
si(x, y, 0)

si0
=

1− tanh(φ(r −R))

2
,

ρ′(x, y, 0) = ρ′0 (5.5)

se(x, y, 0) = se0 ,

where φ are scalar constants, r =
√
x2 + y2 denotes the distance from the centre

of the domain, R corresponds to the radius of the fungal inoculum where we have

assumed it is circular in shape. The initial conditions for hyphae, tips and internal

substrate thus correspond to the initial plug of mycelium placed on the Petri dish

at (0, 0) of radius R respectively. The initial properties for the fungal species is

proportional to the function 1
2
(1− tanh(φ(r−R))) and is consistent to that used

for the one-dimensional models.

5.1.2 Numerical simulation in COMSOL

COMSOL Multiphysics will be used to solve the model equations. COMSOL,

formally known as Femlab, uses finite element methods to solve systems of partial

differential equations.

We will solve the system of equations in (5.4) with initial conditions (5.5)

using the calibrated data given in Boswell et al. (2003a). Although the results

have been published and are well known, we will demonstrate that COMSOL does

indeed produce solutions consistent with Boswell et al. (2003a). In COMSOL the

user must first specify the dimension of the problem (i.e. 1D, 2D or 3D) and

select the relative physics, which are predefined PDE interfaces for different types

of model equations. The most appropriate for equation (5.4) are ‘Coefficient form

PDE’ template. The template for entering equations (5.4) is

ea
∂2u

∂t2
+ da

∂u

∂t
+∇ · (−c∇u− α̂u+ γ̂) + β̂ · ∇u+ au = f, (5.6)

where u = [ρ, ρ′, n, si, se]
T and ∇ = [ ∂

∂x
, ∂
∂y

]. Hence model equation (5.4) can be
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entered by defining ea = a = β̂ = γ̂ = 0, da = I5 (the 5× 5 identity matrix) and

c =


0 0 0 0 0

0 0 0 0 0

0 0 Dnsi 0 0

0 0 0 Diρ 0

0 0 0 0 De

 , (5.7)

α̂ =


0 0 0 0 0

0 0 0 0 0

0 0 vsi∇ρ 0 0

0 0 0 −Daρ∇n 0

0 0 0 0 0

 , (5.8)

f =



√
|vsin∇ρ+Dnsi∇n|2 + ε− dρρ

dρρ− diρ′
αsiρ− βnρ

c1siρse − c2

√
|vsin∇ρ+Dnsi∇n|2 + ε− c4

√
|Daρsi∇n|2 + ε

−c3siρse

 , (5.9)

where the matrix α̂ is of course distinct from the previously defined branching

rate α. Similarly β̂ 6= β and γ̂ 6= γ. Notice that (5.9) has introduced a constant ε

which is a small value to counteract possible singularities which can occur due to

the calculation of the Jacobian of the vector f when evaluated at certain points.

This is a standard approach designed to bypass numerical problems related to the

precision of the computer used. We will take ε = 10−16 in all that follows. The

calibrated values obtained from a specific experiment for the fungal species R.

Solani in Boswell et al. (2002) were used in Boswell et al. (2003a) and are shown

in Table 5.1.
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Initial data/Parameters Rescaled Value Dimensions Description
v 0.5 L5 T−1N−1 Directed tip velocity
dρ 0.5 T−1 Hyphal inactivation rate
di 0 T−1 Inactive hyphae loss rate
α 103 LT−1N−1 Branching rate
β 104 LT−1 Anastomosis rate
c1 900 L3T−1N−1 Uptake rate of external substrate
c2 1 NL−1 Growth cost
c3 103 L3T−1N−1 Uptake of external substrate
c4 10−8 L−1 Active translocation cost
Dn 0.1 L4T−1N−1 Tip avoidance cost
Di 10 L3T−1 Internal substrate diffusion coefficient
Da 10 L5T−1 Active translocation rate
De 0.3456 L2T−1 External substrate diffusion coefficient
R 0.2 L Radius of active hyphal plug
φ 20 - Scalar constant of initial data
L 30 L Radius of domain
ρ0 0.1 L−1 Initial active hyphal density
ρ′0 0 L−1 Initial inactive hyphal density
n0 0.1 L−2 Initial tip density
si0 0.4 NL−2 Initial internal substrate
se0 0.3 NL−2 External substrate

Table 5.1: The initial data and default parameter values used to solve model
equations (5.4). The parameter values used for fungal growth are from the

calibration experiments carried out by Boswell et al. (2003a).

For direct comparisons with experimental results, an experiment was car-

ried out to determine values for the model parameters and initial data in Boswell

et al. (2002). The approximate length of hyphae and number of hyphal tips per

unit area were determined to be ρ = 100 cm−1 and n = 100 hyphal tip cm−2

respectively. By counting the number of branches and anastomosis events over

a known time period (a few hours), the corresponding branching and anasto-

mosis rates were estimated, α = 107 branches cm−1 hyphae day−1 and β = 10

fusions in cm of hyphae day−1. Hyphal tip velocity was similarly estimated to

be v = 5 × 10−1 cm mol−1 day−1 and hyphal death d = 0.5 day −1. The in-

ternal substrate and external substrate both are similar in order of magnitudes.

Thus through knowledge of the composition of the agar growth media, the initial

concentration of si was estimated to be 4 × 10−5 mol glucose cm−2 (dimensions

are represented in Table 5.1 as moles per unit area NL−2) and se was estimated

to be 3 × 10−5 mol glucose cm−2 respectively (for full detail see Boswell et al.,

2002). The system variables have vastly different magnitudes which complicates

the procedure required to accurately and efficiently solve the system numerically,
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especially when implementing variable time step methods to efficiently integrate

the equations. Thus the model variables and consequently model parameters were

rescaled such that the variables in the rescaled system are all similar in magni-

tude and so simplified the numerical integration of the model equations. Notice

that quantitative comparisons between model and experimental systems are still

possible by simply multiplying the rescaled densities by their scaling factors. All

figures in this and forthcoming chapters are the rescaled variables consistent with

Boswell et al. (2003a) and thus represents predictions and hypotheses concern-

ing the observed qualitative and quantitative properties of mycelial growth and

function.

The model equation (5.4) were solved using COMSOL with initial data

(5.5) and zero-flux boundary conditions. The results are illustrated in Figure 5.2.
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Figure 5.2: Solutions to equations (5.4) at times indicated with initial data in
equation (5.5) and parameter values from Table 5.1. Biomass corresponds to

(ρ+ ρ′), the sum of active and inactive hyphal densities.

Figure 5.2 shows the radially symmetric growth commonly seen in uniform
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growth conditions (see Figure 5.1). As the biomass extends overtime the red cir-

cular region in the centre corresponds to predominantly inactive hyphae whereas

active hyphae can be seen in the outer green region. Notice the extent of hyphal

tips is slightly greater than that of the hyphal biomass since the tips lead the

colony and hyphae are the trail left behind as they move. The internal substrate

closely resemble hyphal tip density, due to the active translocation of internal

substrate towards the tip. As the model biomass expands over the domain, the

depletion of external substrate is observed to be relative to the hyphal biomass

density.

The model equations in (5.4) successfully captured the common radial

growth observed in fungal studies and results are similar to Boswell et al. (2003a)

who required a bespoke numerical routine (Boswell et al., 2003b). Although cal-

ibrated for a specific fungi (R. Solani), the filamentous blossoming manner of

fungal growth is observed in various other species of fungi. We now extend this

model to consider fungal interactions.

5.2 Fungal interactions model formulation

As previously explored in Chapter 4 during fungal competition, combinations of

VOCs and toxic metabolites are produced along the lengths of hyphae that com-

prise the mycelium. Due to the energy costs involved, the production of these

compounds is reasonably assumed to be proportional to the energy available to

the biomass. Further, since these compounds restrict the ability of a rival biomass

to create new hyphal material as well as degrading existing hyphae, they essen-

tially cause hyphal tips in a rival to cease functioning and reduce the density of

existing biomass. For convenience these substances are not represented explic-

itly, but instead their influence on rival biomasses is modelled. The system of

equations in (5.10) represents the interaction of two species of fungi where the

subscript on the model variables and parameters is used to distinguish between

the two colonies. The process of tip inhibition/degradation and hyphal degrada-

tion in biomass 2 by biomass 1 is modelled using terms proportional to si2n2ρ1

and si1n1ρ2, respectively. Using notation developed previously, the mathematical
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model is described by the following ten coupled partial differential equations:

∂ρ1

∂t
= |v1si1n1∇ρ1 +Dn1si1∇n1| − dρ1ρ1 − Esi2ρ2ρ1

∂ρ′1
∂t

= dρ1ρ1 − di1ρ′1
∂n1

∂t
= ∇ · (v1si1n1∇ρ1 +Dn1si1∇n1) + α1si1ρ1 − β1n1ρ1 − Asi2ρ2n1

∂si1
∂t

= ∇ · (Di1ρ1∇si1 −Da1ρ1si1∇n1) + c1si1ρ1se1

− c2|v1si1n1∇ρ1 +Dn1si1∇n1| − c4|Da1ρ1si1∇n1|
∂se1
∂t

= De1∇2se1 − c3si1ρ1se1 +G(x, t) (5.10)

∂ρ2

∂t
= |v2si2n2∇ρ2 +Dn2si2∇n2| − dρ2ρ2 − Fsi1ρ1ρ2

∂ρ′2
∂t

= dρ2ρ2 − di2ρ′2
∂n2

∂t
= ∇ · (v2si2n2∇ρ2 +Dn2si2∇n2) + α2si2ρ2 − β2n2ρ2 −Bsi1ρ1n2

∂si2
∂t

= ∇ · (Di2ρ2∇si2 −Da2ρ2si2∇n2) + c1si2ρ2se2

− c2|v2si2n2∇ρ2 +Dn2si2∇n2| − c4|Da2ρ2si2∇n2|
∂se2
∂t

= De2∇2se2 − c3si2ρ2se2 +H(x, t)

where constants A, B, E and F are the proportionality constants of the rate of

degradation of biomass and associated tips due to competition and which may be

different between the two biomass “phenotypes”. For all numerical simulations

in this chapter we set A = E and B = F to represent equal rate of degradation

of tips and hyphae respective to the individual species so that attention can be

focussed on the rate of nutrient (i.e. substrate) availability. The terms G and

H represent additional supply of substrate provided to the domain which may

depend on both space and time. The terms c1, c2, c3 and c4 are similar to c1, c2,

c3 and c4 respectively, except they correspond to the parameters for the second

biomass.

We solve the system of PDEs (5.10) numerically using COMSOL in a

circular domain, representing a Petri dish, with initial data representing experi-

mental protocol. Zero flux boundary conditions are assumed since in laboratory

experiments there are no external addition or loss of biomass or nutrient at the
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boundaries.

Fungal interactions: Initial conditions and parameter values

We numerically integrate equations (5.10) in COMSOL using a ‘2d time dependent

model’ for a ‘coefficient form’ type PDE as described earlier in Section 5.1.2. Since

the sought after behaviour occurs primarily at the centre of the domain, having a

large domain adds unnecessary costs and therefore our simulated Petri dish will

be depicted having the same size as previously described. The domain comprises

of two semi-circular regions joined together to form a complete circle, one half

of which is inoculated by fungal species 1 (left hand side) and the other half by

fungal species 2 (right hand side). Following earlier work, the initial conditions

are taken to be

ρ1(x, y, 0)

ρ10

=
n1(x, y, 0)

n10

=
si1(x, y, 0)

si10

=
1− tanh(φ(r −R))

2

ρ′1(x, y, 0) = 0,
se1(x, y, 0)

se10

=
1− tanh(φx)

2

ρ2(x, y, 0)

ρ20

=
n2(x, y, 0)

n20

=
si2(x, y, 0)

si20

=
1− tanh(θ(r̄ −R))

2
(5.11)

ρ′2(x, y, 0) = 0,
se2(x, y, 0)

se20

=
1− tanh(θx)

2

where φ and θ are scalar constants controlling the profiles of the “inoculum” of the

biomass and r and r̄ are defined as below. The parameter R = 0.2 corresponds

to the radius of the fungal inoculum where we have assumed they are circular in

shape. The variables r and r̄ are defined as

r =
√

(x+M)2 + y2,

r̄ =
√

(x−M)2 + y2, (5.12)

and correspond to the distance from the centre of the two inoculation sites. We set

M = 0.3 corresponding to the centre of each plug of mycelium (not to be confused

with the standard symbol used for dimensions representing mass M in Table 6.1).

These initial conditions for hyphae, tips and internal substrate corresponds to the

initial plug of mycelium placed on the Petri dish at (−M, 0) and (M, 0) of radius

R respectively. The initial properties for fungal species 1 are proportional to the

function 1
2
(1 − tanh(φ(r − R))), which is placed mainly on the left hand side of
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the Petri dish and the initial properties for fungal species 2 are proportional to

the function 1
2
(1− tanh(θ(r̄−R))) denoting the right hand side of the Petri dish.

The precise form is used so that the derivatives can be easily computed.

The parameter values used are given in Table 5.2 and are consistent with

those used previously. In all cases the simulations are stopped before the biomasses

collide with the boundaries.

Initial Parameters Rescaled Value Dimensions Description
v1 v2 0.5 L5 T−1N−1 Directed tip velocity
dρ1 dρ2 0.2 T−1 Hyphal inactivation rate
di1 di2 0 T−1 Inactive hyphae loss rate
α1 α2 104 LT−1N−1 Branching rate
β1 β2 104 LT−1 Anastomosis rate
c1 c1 900 L3T−1N−1 Uptake rate of external substrate
c2 c2 1 NL−1 Growth cost
c3 c3 103 L3T−1N−1 Uptake of external substrate
c4 c4 10−8 L−1 Active translocation cost
Dn1 Dn2 0.1 L4T−1N−1 Tip avoidance of biomass
Di1 Di2 10 L3T−1 Internal substrate diffusion coefficient
Da1 Da2 10 L5T−1 Active translocation rate
De1 De2 10−4 L2T−1 External substrate diffusion coefficient
φ θ 20 - Scalar constant of initial data
L L 2 L Radius of domain
F E 103 L3T−1N−1 Degradation rate of biomass by competition
B A 103 L3T−1N−1 Degradation rate of tips by competition
G H 0 NL−2T−1 Additional substrate
ρ10 ρ20 0.1 L−1 Initial active hyphal density
n10 n20 0.1 L−2 Initial tip density
si10 si20 0.4 NL−2 Initial internal substrate density
se10 se20 0.5 NL−2 Initial external substrate density

Table 5.2: The initial data and default parameter values used to solve model
equations (5.10) as used in Boswell et al. (2003a) augmented with assumed

values where necessary based on known similar calibrated processes.

5.2.1 Nutrient and competition variability

In this section we explore the interaction of two fungal biomasses modelled by

equations (5.10). Following work in Chapter 4, the primary focus of attention in

this section will be how variations in substrate concentrations and combat ability

influence the outcome of pairwise biomass competition.
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5.2.1.1 Default calibration

The model equations (5.10) were solved in COMSOL with the initial data in

equation (5.11) and zero flux boundary conditions using the default parameters

in Table 5.2. Using similar techniques to those in Section 5.1, typical results

are shown in Figure 5.3. In all forthcoming figures ‘Biomass’ corresponds to

(ρ1 + ρ2 + ρ
′
1 + ρ

′
2), ‘Tips’ corresponds to (n1 + n2), ‘Internal’ corresponds to

(si1 + si2) and ‘External’ corresponds to (se1 + se2) respectively.

t = 0 t = 0.25 t = 0.5 t = 1

B
io
m
a
ss

T
ip
s

I
n
te
rn
a
l

E
x
te
rn
a
l

Figure 5.3: 2d representation of the solutions to equations (5.10) with initial
data (5.11) and parameter values from Table 5.2. Notice the parameters
se10 = se20 = 0.5, G = H = 0 and A = B = 1000. A state of stalemate is

observed. [For a movie of these plots please see external folder labelled: Comsol -
Movie files - Fig 5.3]

The simulation in Figure 5.3 shows the growth and interaction of two fungal

species with equal capabilities and depicts the well-known ‘stalemate’ behaviour

defined in Chapter 4. The hyphal biomasses expand in a radial manner from

their initial inoculum sites and initially interact at the centre of the domain. An
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accumulation of tips and internal substrate can be seen at this interaction zone.

The external substrate levels deplete according to the growth of the biomasses,

i.e. the larger the radius of biomass, the larger the area of external substrate

depletion.

To get an alternative view of what is happening at the biomass periphery

and to relate this simulation to the work in Chapter 4, we take a cross section of

the domain (along the line y = 0 passing through the centre of the “inoculation”

sites (see Figure 5.4)). The one-dimensional plots of the biomass and tip distri-

butions shown in Figure 5.4 clearly show that the two fungal species enter a state

of deadlock since they cease expanding at their interaction zone (see movie file

Fig 5.3 and Fig 5.4).
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Figure 5.4: Cross section of the solutions to equations (5.10) with initial data
(5.11) and parameter values from Table 5.2. The parameters se10 = se20 = 0.5,
G = H = 0 and A = B = 1000. A state of stalemate is observed. [For a movie
of these plots please see external folder labelled:- Comsol - Movie files Fig 5.4]

5.2.1.2 Nutrient variability

In Chapter 4 it was shown that the outcome of fungal competition was influenced

by substrate availability. However, the precise impact on the morphology could

not be obtained due to the one-dimensional nature of the modelling. Thus we now

consider the influence of nutritional variability in the planar setting. The model

equations (5.10) with initial data (5.11) are solved as above except with se20 = 1

to create nutrient heterogeneity (Figure 5.5).
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Figure 5.5: 2d representation of the solutions to equations (5.10) with initial
data (5.11) and parameter values from Table 5.2. The parameters se10 = 0.5,

se20 = 1, G = H = 0 and A = B = 1000. Clearly the right biomass is dominating
the left. [For a movie of these plots please see external folder labelled:- Comsol -

Movie files- Fig 5.5]

The biomass starting on the right hand side expands more rapidly than

that starting on the left due to additional substrate. Having access to greater

resources, the biomass starting on the right hand side is able to dominate and

displace the biomass starting on the left hand side. The cross-sectional view

in Figure 5.6 more clearly illustrates biomass displacement (see also movie files

Fig 5.5 and Fig 5.6). This result is in agreement with the findings of Chapter 4

and Choudhury et al. (2018).

The typical behaviour seen in Figure 5.5 can occur in heterogeneous en-

vironments where a fungal species germinate and release spores to occupy an

inhabited space. Two spores may land in neighbouring locations but have access

to different resources and the species with greater access to resource can be ex-
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pected to dominate or displace the competitor. Alternatively, in the context of

biotechnology, the manipulation of the nutrient concentration can influence the

outcome of fungal competition.
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Figure 5.6: Cross section of the solutions to equations (5.10) with initial data
(5.11) and parameter values from Table 5.2. The parameters se10 = 0.5, se20 = 1,
G = H = 0 and A = B = 1000. Clearly displacement is observed (right biomass

is displacing the left). [For a movie of these plots please see external folder
labelled:- Comsol - Movie files - Fig 5.6]

5.2.1.3 Competitive variability

In the terrestrial environment fungi often vary in their abilities to compete against

rival species (Boddy, 2000). In the previous simulations the fungi had identical

combat ability for both species so we will now explore how the model behaves

where there is such variation between the species, i.e. A 6= B. Numerically

integrating equations (5.10) using initial conditions in equation (5.11) with the

parameter values given in Table 5.2 except se10 = se20 = 1, A = 1000 and B = 300,

illustrates the impact of variations in combat ability (see Figures 5.7 and 5.8).
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Figure 5.7: 2d representation of the solutions to equations (5.10) with initial
data (5.11) and parameter values from Table 5.2 with se10 = se20 = 1,

G = H = 0, A = 1000 and B = 300. Clearly displacement can be observed
(right biomass is displacing the left). [For a movie of these plots please see

external folder labelled:- Comsol -Movie files - Fig 5.7]

Clearly the biomass starting on the right is faster at degrading its rival

biomass than vice-versa and so there is a steady displacement of one biomass

by another (see movie files Fig 5.7 and Fig 5.8). Notice there is an increased

concentration of hyphal tips at the interaction zone in the displaced biomass,

compared to the default case (see Figure 5.3).
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Figure 5.8: Cross section representation of the solutions to equations (5.10)
with initial data (5.11) and parameter values from Table 5.2 with se10 = se20 = 1,

G = H = 0, A = 1000 and B = 300. Clearly displacement can be observed
(right biomass is displacing the left). [For a movie of these plots please see

external folder labelled:- Comsol - Movie files - Fig 5.8]

5.2.1.4 Nutrient and competition variability

It was seen above that a better natural competitor will displace an inferior one

if the resource available to both biomasses are equal. However, in Chapter 4 we

showed that an inferior competitor can displace a superior one provided sufficient

resources are made available. We investigate that scenario here to more fully

understand the morphological changes. Model equations (5.10) with initial data

(5.11) are solved as described above using the same parameters in Table 5.2 except

se10 = 1, se20 = 0.5, A = 1000 and B = 300 (see Figures 5.9 and 5.10).
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Figure 5.9: 2d representation of the solutions to equations (5.10) with initial
data (5.11) and parameter values from Table 5.2 with se10 = 1, se20 = 0.5,
G = H = 0, A = 1000 and B = 300. Displacement can be observed (left

biomass is displacing the right). [For a movie of these plots please see external
folder labelled:- Comsol - Movie files - Fig 5.9]

The biomass starting on the left expands more rapidly than that on the

right due to the extra resources available. Thus following biomass collision at

time t = 0.25, the increased biomass density of the biomass on the left means it

is able to prevent its displacement by the apparent superior competitor starting

on the right (see movie files Fig 5.9 and Fig 5.10).
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Figure 5.10: Cross section of the solutions to equations (5.10) with initial data
(5.11) and parameter values from Table 5.2 with se10 = 1, se20 = 0.5,

G = H = 0, A = 1000 and B = 300. Clearly displacement can be observed (left
biomass is displacing the right). [For a movie of these plots please see external

folder labelled:- Comsol - Movie files - Fig 5.10]

5.2.2 Continual nutrient replenishment

The previous section examined how variations in the initial substrate concentra-

tion could impact on competition between two fungal biomasses. In particular, it

was shown that an otherwise inferior competitor could displace a superior com-

petitor if provided with sufficient resources. However, once the resource has been

exhausted, the inferior competitor looses any advantage. To overcome this, ad-

ditional substrate can be supplied. This feature of manipulating resources is es-

pecially important in biotechnological applications. This may represent a steady

release of nutrient from naturally degrading vegetation or a deliberate release of

nutrients designed to promote fungal growth. Either way, this process can be

modelled by including a suitable reaction term in the equations for the external

substrate se. In particular we consider the case:

G(x, y, t) =

{
G0, if x < 0,

0, otherwise.

H(x, y, t) = 0

(5.13)

representing the continual release of nutrients to the biomass starting on the left

hand side.
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5.2.2.1 Nutrient replenishment

Model equations (5.10) with initial data (5.11) are solved as previously described

with parameter values in Table 5.2 with equation (5.13), where G0 = 0.3.
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Figure 5.11: 2d representation of the solutions to equations (5.10) with initial
data (5.11), (5.13) and parameter values from Table 5.2. The parameters

se10 = se20 = 0.5, A = B = 1000, G0 = 0.3 and H = 0. Biomass on the left is
displacing the biomass on the right. [For a movie of these plots please see

external folder labelled:- Comsol - Movie files - Fig 5.11]

Figure 5.11 illustrates how the biomass, tip, internal and external substrate

densities on the left increase with time (depicted via the colour change within the

plots). Figure 5.11 shows the same outcome as the previous case; having access to

greater resources provides dominance over a competitor. For example the biomass

on the left hand side is able to dominate and displace the biomass on the right

hand side. This is the result of continual replenishment being supplied to the

biomass on the left (also see movie files Fig 5.11 and Fig 5.12). Although the

behaviour is clear from the 2D plots in Figure 5.11, we can take the cross section
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of the domain to observe the dynamics of the biomass and tips at the interaction

zone (Figure 5.12).
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Figure 5.12: Cross section of the solutions to equations (5.10) with initial data
(5.11), (5.13) and parameter values from Table 5.2. The parameters

se10 = se20 = 0.5, A = B = 1000, G0 = 0.3 and H = 0. Clearly displacement can
be observed (left biomass is displacing the right). [For a movie of these plots

please see external folder labelled:- Comsol - Movie files - Fig 5.12]

5.2.2.2 Nutrient replenishment in an uneven domain

The effect of the continual replenishment of external substrate to one biomass

may be influenced by the substrate available to its rival, in much the same way

as seen in Section 5.2.1. To this end we repeat the simulation in Section 5.2.2.1

except the initial substrate available to the non-replenished biomass is greater.

Essentially this corresponds to the model equations (5.10) with initial data (5.11)

being solved as previously described with parameter values in Table 5.2 except

se20 = 1 to create initial nutrient heterogeneity (Figures 5.13 and 5.14).
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Figure 5.13: 2d representation of the solutions to equations (5.10) with initial
data (5.11), (5.13) and parameter values from Table 5.2 with se10 = 0.5,

se20 = 1, A = B = 1000, G0 = 0.3 and H = 0 (species on the right has limited
resources and species on the left has continuous resources). Displacement of left
biomss by the right biomass is observed. [For a movie of these plots please see

external folder labelled:- Comsol - Movie files - Fig 5.13]

Initially the biomass starting on the right seems to displace that on the

left due to it having access to a greater resource. However, as the resources on the

right deplete, the biomass on the left displaces that on the right as it has access

to continually replenishing resources (see movie files Fig 5.13 and Fig 5.14).
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Figure 5.14: Cross section of the solutions to equations (5.10) with initial data
(5.11), (5.13) and parameter values from Table 5.2 with se10 = 0.5, se20 = 1,
A = B = 1000, G0 = 0.3 and H = 0 (species on the right has limited resources
and species on the left has continuous resources). Initially the right biomass is

seen to displace the left but then the left biomass displaces the right. [For a movie
of these plots please see external folder labelled:- Comsol - Movie files - Fig 5.14]

Thus, even if two fungi have access to very different types and amounts of

nutrients, the longer term fate of each can be controlled through the supply of ad-

ditional nutrients. Clearly, this has great potential in the field of bio-remediation

and biological control.

5.2.2.3 Nutrient replenishment with competitive variability

It was shown above that the continual replenishment of nutrients to a biomass

could overcome any initial disparity in nutrient conditions. However, those sim-

ulations neglected to account for any disparity in how the biomass was able to

use resources when in competition. To this end, we here consider the instance

where one biomass is naturally a superior competitor and continually supply the

inferior competitor with additional nutrients. Hence using the same approach as

before we solve equation (5.10) with the same initial data (5.11) as in the previous

section but with se10 = se20 = 0.5, G0 = 0.2, A = 1000 and B = 300 (see Figures

5.15 and 5.16).
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Figure 5.15: 2d representation of the solutions to equations (5.10) with initial
data (5.11), (5.13) and parameter values from Table 5.2 with se10 = se20 = 0.5,
G0 = 0.2, H = 0, A = 1000 and B = 300. The right species can be seen to

displace the left species for a very short period and then the left species displaces
the right). [For a movie of these plots please see external folder labelled:- Comsol

- Movie files - Fig 5.15]

Under equally distributed resources, the biomass starting on the right is

initially able to displace the biomass starting on the left. However, as the ad-

ditional supply of substrate is absorbed by the biomass on the left it is better

able to defend its territory and propel outwards, eventually dominating and dis-

placing the right biomass (see movie files Fig 5.15 and Fig 5.16). Figure 5.16

more closely shows the development of the biomass and tip densities along the

line y = 0.
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Figure 5.16: Cross section of the solutions to equations (5.10) with initial data
(5.11), (5.13) and parameter values from Table 5.2 with se10 = se20 = 0.5,

G0 = 0.2, H0 = 0, A = 1000 and B = 300. Right biomass is displacing the left
initially but then left biomass displaces the right. [For a movie of these plots

please see external folder labelled:- Comsol - Movie files - Fig 5.16]

5.2.3 Pulsed nutrient replenishment

In the terrestrial environment when additional resources are made available they

are inherently heterogeneous in both space and time. For example, a leaf falling

onto the ground provides nutrients to a small spatial region and is not replaced

once used up until the next leaf falls. Similarly rainfall may be short lived and

localised. Such situations could be mimicked in laboratory settings. For example,

resources could be supplied to the respective fungal colonies using a ‘pipette’ at

regular intervals. We can easily simulate the impact of using such technique with

our model equations by adapting our external resource terms G and H, e.g.

G(x, y, t) =

{
G0 (1 + sin(Kt)) , if r < R,

0, otherwise

H(x, y, t) =

{
H0 (1 + sin(Kt)) , if r̄ < R,

0, otherwise

(5.14)

where r and r̄ have been previously defined in equation (5.12). Recall G(x, y, t)

is a function representing the addition of substrate to the biomass on the left and

H(x, y, t) is a function representing the addition of substrate to the biomass on

the right. The constant K (hereafter taken to be 10) denotes the frequency of
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nutrient addition, so that the expression 1 + sin(Kt) represents the concentration

of nutrients supplemented to each biomass over time.

5.2.3.1 Competition under equality

Consider two biomasses with equal capabilities growing on a Petri dish. In Section

5.2 and in the absence of any additional substrate the biomasses were seen to reach

a state of deadlock at the interaction zone. In this section, both biomasses are

continually supplied with oscillating resources at frequency K. Hence equation

(5.10) is solved with initial conditions (5.11) and parameter values from Table 5.2

with G0 = H0 = 1 where G and H were defined in equation (5.14) (Figures 5.17

and 5.18).
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Figure 5.17: 2d representation of the solutions to equations (5.10) with initial
data (5.11), (5.14) and parameter values from Table 5.2 with se10 = se20 = 0.5,
G = H = 1 + sin(10t) and A = B = 1000. A state of deadlock can be seen to
form. [For a movie of these plots please see external folder labelled:- Comsol -

Movie files - Fig 5.17]
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Figure 5.18: Cross section of the solutions to equations (5.10) with initial data
(5.11), (5.14) and parameter values from Table 5.2 with se10 = se20 = 0.5,

A = B = 1000 and G = H = 1 + sin(10t). The graphs are focussed around the
interaction zone to illustrate the behaviour of deadlock between both species
biomasses. [For a movie of these plots please see external folder labelled:-

Comsol - Movie files - Fig 5.18]

Under equally distributed resources and combative abilities, the biomasses

collide at the interaction zone producing stalemate behaviour seen in earlier sec-

tions. However, due to the continuous nutrient replenishment supplied to the site

of the inoculum, the densities at the interaction zone fluctuates but the stalemate

state does not alter. Figures 5.17 and 5.18 demonstrates this phenomena. Notice

that the region where the resources are being supplied are shown via the colour

change (this is clearer to see in the movie files Fig 5.17 and Fig 5.18).

5.2.3.2 Additional resource impact on competition

It was demonstrated above that the pulsative addition of equal concentrations

of substrate did not alter the outcome of competition between two equally com-

parable biomasses. Previously in Section 5.2.1.4, it was shown that nutritional

variability can alter the outcome of competition and hence it is of interest to

consider the case where one biomass is provided with additional substrate during

each supplementation. In the terrestrial environment this could correspond to

additional leaf litter being made available to one fungus at its location. We there-

fore solve the model equations with parameter values and initial data as stated in

Section 5.2.3 except G0 = 2H0 corresponding to the biomass on the left receiving

twice the substrate as that on the right. The simulated output is shown in Figure
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5.19.
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Figure 5.19: 2d representation of the solutions to equations (5.10) with initial
data (5.11), (5.14) and parameter values from Table 5.2 with se10 = se20 = 0.5,
G = 2(1 + sin(10t)), H = 1 + sin(10t), A = B = 1000. The left biomass can be

seen to displace the right biomass. [For a movie of these plots please see external
folder labelled:- Comsol - Movie files - Fig 5.19]

When greater resources are supplied to one biomass it is able to displace its

competitor. The biomass starting on the left is displacing the species starting on

the right but in a pulsed manner. Although the pulsed behaviour is not absolutely

clear from Figure 5.19, a cross sectional plot of the domain focussing on the

interaction site displays this feature more clearly (see Figure 5.20) while the movie

files Fig 5.19 and Fig 5.20 provide the best illustration of this behaviour.
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Figure 5.20: Cross section of the solutions to equations (5.10) with initial data
(5.11), (5.14) and parameter values from Table 5.2 with se10 = se20 = 0.5,

G = 2(1 + sin(10t)), H = 1 + sin(10t), A = B = 1000. The interaction zone has
been zoomed in to illustrate more clearly the behaviour of the left biomass
displacing the right. [For a movie of these plots please see external folder

labelled:- Comsol - Movie files - Fig 5.20]

5.2.3.3 Combative variability and resources

In the terrestrial environment fungi evolve with various capabilities. Some fungi

develop better competing abilities compared to their competitors. If a less dom-

inant species were to access resources greater than its competitor, then it could

have the energy to overcome, or at least withstand, the attacks of its rival. To

investigate such intricacies we solve the model equations (5.10) with parameter

values and initial data as stated in Section 5.2.3 except G0 = 2H0 corresponding

to the biomass on the left receiving twice the substrate as that on the right and

A = 500 and B = 1000 to denote the biomass on the left hand side’s ability

to attack being half of the biomass on the right. The corresponding results are

shown in Figure 5.21.
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Figure 5.21: 2d representation of the solutions to equations (5.10) with initial
data (5.11), (5.14) and parameter values from Table 5.2 with se10 = se20 = 0.5,
G = 2(1 + sin(10t)), H = 1 + sin(10t), A = 500 and B = 1000. There is a subtle
oscillatory behaviour between the species. [For a movie of these plots please see

external folder labelled:- Comsol - Movie files - Fig 5.21]

While not particularly clear from Figure 5.21, the biomass peripheries ac-

tually show subtle oscillatory behaviour. The biomass on the left seems to displace

the biomass on the right for a short period then halt.The right biomass cannot

seem to displace the biomass on the left but does seem to invade its space (at

low densities). This consequence of additional resources being pumped to the

left biomass results in the less dominant species holding its ground and thus not

being displaced by a dominant antagonist (see movie files Fig 5.21 and Fig 5.22

for a clearer illustration of this phenomena). A cross sectional plot of the domain

captured this phenomenon better than the 2D views above (see Figure 5.22).
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Figure 5.22: Cross section of the solutions to equations (5.10) with initial data
(5.11), (5.14) and parameter values from Table 5.2 with se10 = se20 = 0.5,

G = 2(1 + sin(10t)), H = 1 + sin(10t), A = 1000 and B = 500. There is subtle
oscillatory behaviour between the species. [For a movie of these plots please see

external folder labelled:- Comsol - Movie files - Fig 5.22]

The subtle oscillatory behaviour seen in Figures 5.21 and 5.22 might not

easily be observable in experiments where the fungi is monitored in a period of

days due to the time and spatial scales involved in the oscillations. However,

calibrating experiments using the techniques specified in this section could lead

to determine critical nutrient concentrations required to control various fungal

pathogens.

There are a vast number of scenarios that can be tested with the models

presented in this section. For example varying the phase parameter ‘K’ would

result in asynchronous delivery of resources depicted by different phases of the

functions G and H potentially representing an instance where droplets of water

are continuously supplied to a hydrophilic fungal mycelium competing for space

with another species that obtains water from the rain. In such an instance it

is reasonable to hypothesize the possible existence of cyclic displacements of one

biomass by another at rates dictated by the periodicity of additionally supplied

substrate. However, this would require further extensive numerical investigation

to confirm. To avoid repetition many observations have been omitted from this

thesis and only the scenarios that add qualitative value to the investigation are

included.
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5.2.4 Initial homogeneous resources

We have explored the behaviour of fungal competition where two species have ac-

cess to independent and spatially separated resources. Typically in the terrestrial

environment, fungal species have to search for resources beyond their immediate

vicinity. In laboratory settings this is achieved by filling a Petri dish with a single

type of resource throughout, mixed with agar solution at different concentrations

on which the fungal mycelium is placed and monitored for growth and reaction.

Essentially, with respect to our model equations, the different types of external

substrate will be present across the entire domain and not just confined to one

half. In this section we will use our model equation (5.10) to simulate the outcome

of such implications and thus a slight adjustment to the initial conditions (5.11)

is made, specifically

ρ1(x, y, 0)

ρ10

=
n1(x, y, 0)

n10

=
si1(x, y, 0)

si10

=
1− tanh(φ(r −R))

2

ρ′1(x, y, 0) = 0, se1(x, y, 0) = se10

ρ2(x, y, 0)

ρ20

=
n2(x, y, 0)

n20

=
si2(x, y, 0)

si20

=
1− tanh(θ(r̄ −R))

2
(5.15)

ρ′2(x, y, 0) = 0, se2(x, y, 0) = se20

where all the variables are the same as previously described.

5.2.4.1 Combative variability in an exhaustive nutrient domain

The simulations for fungi with equal competing ability (i.e. A = B) but no

nutrient replenishment provided results identical to Figures in 5.3 and 5.4, i.e.

deadlock. The case when one fungal species is more dominant than the other

(i.e. A 6= B) will be considered here. Thus equations (5.10) will be numerically

integrated with initial conditions (5.15) and using parameters values in Table 5.2

but with the following changes: A = 200, B = 1000 and se10 = se20 = 1. Typical

results are shown in Figure 5.23.
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Figure 5.23: 2d representation of the solutions to equations (5.10) with initial
data (5.15) and parameter values from Table 5.2 with se10 = se20 = 1,

G = H = 0, A = 200 and B = 1000. The left biomass can be seen to displace the
right biomass very quickly. [For a movie of these plots please see external folder

labelled:- Comsol - Movie files - Fig 5.23]

Figure 5.23 demonstrates that when the finite resource is initially dis-

tributed across the entire domain, the biomass on the left is able to displace the

biomass on the right. It is worth noticing the similarities between Figure 5.23

and Figure 5.7 but the biomass on the left displaces the biomass on the right at

a faster rate due to the difference in magnitude of the proportionality constant

(A = 200 and B = 1000). Figure 5.24 shows a cross sectional plot of the hyphae

and tip densities (see also movie files Fig 5.23 and Fig 5.24).
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Figure 5.24: Cross section of the solutions to equations (5.10) with initial data
(5.15) and parameter values from Table 5.2 with se10 = se20 = 1, A = 200,

B = 1000 and G = H = 0. Left biomass is displacing the right. [For a movie of
these plots please see external folder labelled:- Comsol - Movie files - Fig 5.24]

5.2.4.2 Combative variability in a biased nutrient domain

In the previous section the dominant biomass was seen to displace the less domi-

nant species due to ample resources available within the domain. Here we consider

the case where the naturally inferior competitor has access to greater resources

than its rival. This scenario is simulated using the same protocol except se10 = 0.5

and se20 = 1 with the results shown in Figure 5.25.
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Figure 5.25: 2d representation of the solutions to equations (5.10) with initial
data (5.15) and parameter values from Table 5.2 with se10 = 0.5, se20 = 1,

G = H = 0, A = 200 and B = 1000. The right biomass can be seen to displace
the left biomass and grow around it. [For a movie of these plots please see

external folder labelled:- Comsol - Movie files - Fig 5.25]

Figure 5.25 depicts a surprising result. Although the biomass on the right

is less dominant, it is not only able to initially displace the biomass on the left at a

fast rate but also grow around it and eventually engulf it (see movie files Fig 5.25

and Fig 5.26). The tip density seem to show a possible case of displacement

followed by coexistence; Figure 5.26 shows this clearly.
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Figure 5.26: Cross section of the solutions to equations (5.10) with initial data
(5.15) and parameter values from Table 5.2 with se10 = 0.5, se20 = 1, A = 200,
B = 1000 and G = H = 0. Right biomass is displacing the left. [For a movie of
these plots please see external folder labelled:- Comsol - Movie files - Fig 5.26]

Figures 5.25 and 5.26 demonstrates that if a fungus has access to enough

resources (i.e. energy), a less dominant species can overpower a dominant species.

Another interpretation of the results is that by reducing the resource available to

a dominant species, an inferior competitor can coexist. This result can potentially

be of use in bio-remediation (myco-remediation) and agriculture where fungi are

used to reduce the adverse effect of other pathogenic fungi. It may not always be

the best option to completely rid an adverse competitor especially if it has mutual

benefits. For example, an antagonist fungi could be favourable to an animal which

keep other more dangerous species away from causing greater damage to the yield.

Thus, determining and controlling the levels of the resource which the rival species

of fungi seek can provide more benefit than to completely eradicating the species.

5.3 Single common resource

In the previous sections, an independent nutrient source for each respective fungi

was assumed. In the terrestrial environments, fungal species often have to compete

for a common resource. Indeed, in typical laboratory experimental settings, a Petri

dish is laced with a resource mixed with other chemical compounds in the form of

an agar solution accessible to both competing fungi. To represent this scenario we

need to modify our original model equations. The corresponding updated coupled
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partial differential equations are

∂ρ1

∂t
= |v1si1n1∇ρ1 +Dn1si1∇n1| − dρ1ρ1 − Esi2ρ2ρ1

∂ρ′1
∂t

= dρ1ρ1 − di1ρ′1
∂n1

∂t
= ∇ · (v1si1n1∇ρ1 +Dn1si1∇n1) + α1si1ρ1 − β1n1ρ1 − Asi2ρ2n1

∂si1
∂t

= ∇ · (Di1ρ1∇si1 −Da1ρ1si1∇n1) + c1si1ρ1se

− c2|v1si1n1∇ρ1 +Dn1si1∇n1| − c4|Da1ρ1si1∇n1|
∂ρ2

∂t
= |v2si2n2∇ρ2 +Dn2si2∇n2| − dρ2ρ2 − Fsi1ρ1ρ2 (5.16)

∂ρ′2
∂t

= dρ2ρ2 − di2ρ′2
∂n2

∂t
= ∇ · (v2si2n2∇ρ2 +Dn2si2∇n2) + α2si2ρ2 − β2n2ρ2 −Bsi1ρ1n2

∂si2
∂t

= ∇ · (Di2ρ2∇si2 −Da2ρ2si2∇n2) + c1si2ρ2se

− c2|v2si2n2∇ρ2 +Dn2si2∇n2| − c4|Da2ρ2si2∇n2|
∂se
∂t

= De2∇2se − c3si1ρ1se − c3si2ρ2se

where there is now only one equation representing the external substrate concen-

tration denoted by se with two uptake terms for both biomasses. Following earlier

work, the initial conditions are

ρ1(x, y, 0)

ρ10

=
n1(x, y, 0)

n10

=
si1(x, y, 0)

si10

=
1− tanh(φ(r −R))

2

ρ′1(x, y, 0) = 0

ρ2(x, y, 0)

ρ20

=
n2(x, y, 0)

n20

=
si2(x, y, 0)

si20

=
1− tanh(θ(r̄ −R))

2
(5.17)

ρ′2(x, y, 0) = 0

se(x, y, 0) = se0

where r, r̄, R and M have been previously defined which corresponds to the

inoculation at a uniform growth medium with two rival fungi. The parameter

values used are from Table 5.2 unless stated otherwise.

Equations (5.16) will be solved for competing fungi with different combat
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abilities below. Fungal competition for equal abilities form deadlock similar to

that seen in Figures 5.3 and 5.4 hence will not be explored here.

5.3.1 Competitive variability in a nutrient scarce domain

The impact of two fungal species with varying combat ability competing for a

scarce resource in a shared environment will be explored in this section. Limited

nutrient sources phenomena is a common occurrence in terrestrial landscapes and

thus a worthy target of investigation. Solving equation (5.16) with initial condi-

tions (5.17) and parameter values in Table 5.2 except A = 1000, B = 300 and

se0 = 0.5 we obtain the plots shown in Figure 5.27.
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Figure 5.27: 2d representation of the solutions to equations (5.16) with initial
data (5.17) and parameter values from Table 5.2 with se0 = 0.5, A = 1000 and
B = 300. The right biomass can be seen to displace the left. [For a movie of

these plots please see external folder labelled:- Comsol - Movie files - Fig 5.27]

Figure 5.27 demonstrates the dominant biomass on the right is displacing
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the biomass on the left. Due to the limited resource present in the domain and

the aggressive nature of its competitor the less dominant biomass is not able to

defend its territory and succumbs to being overpowered. Figure 5.28 shows this

clearly by illustrating the model densities along the line y = 0.
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Figure 5.28: Cross sectional representation of the solutions to equations (5.16)
with initial data (5.17) and parameter values from Table 5.2 with se0 = 0.5,

A = 1000 and B = 300. The right biomass can be seen to gradually displace the
left. [For a movie of these plots please see external folder labelled:- Comsol -

Movie files - Fig 5.28]

Figure 5.28 shows that in a low nutrient environment the dominant species

is able to dominate its competitor. Interestingly there seems to be coexistence at

lower levels seen in the biomass plot (see movie files Fig 5.27 and Fig 5.28). This

result corresponds to that determined in Chapter 4.

5.3.2 Competitive variability in a nutrient rich domain

In the previous section we explored the behaviour of two biomasses with varying

combative capabilities competing for space in a nutrient scarce domain. In this

section will observe how the biomasses behave in a nutrient rich environment.

Using the same protocol as in the previous section except with se0 = 1, typical

results are shown in Figure 5.29.
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Figure 5.29: 2d representation of the solutions to equations (5.16) with initial
data (5.17) and parameter values from Table 5.2 with se0 = 1, A = 1000 and
B = 300. The right biomass can be seen to displace the left biomass at a fast
pace. [For a movie of these plots please see external folder labelled:- Comsol -

Movie files - Fig 5.29]

Figure 5.29 demonstrates that the biomass on the right displaces the

biomass on the left much faster than in Figure 5.27. Figure 5.30 shows a cross

sectional plot of this where the displacement is more easily observed.
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Figure 5.30: Cross section of the solutions to equations (5.16) with initial data
(5.17) and parameter values from Table 5.2 with se0 = 1, A = 1000 and B = 300.
The right biomass can be seen to displace the left biomass at a faster rate. [For a

movie of these plots please see external folder labelled:- Comsol - Movie files -
Fig 5.30]

Figure 5.30 shows that in a nutrient rich environment the dominant species

is able to dominate its competitor at a faster speed than in a nutrient scarce en-

vironment. Interestingly, displacement can be seen to occur initially then coexis-

tence seems to form on the hyphae plot (see movie files Fig 5.29 and Fig 5.30).

This type of behaviour (i.e. changes in state) was represented in the parameter

space diagram (Figure 4.11 in Chapter 4) where it was predicted that varying sub-

strate concentrations alters the outcome of competition. Thus, here we observe

that as the substrate concentration depletes the states also change i.e. coexistence

to displacement.

5.3.3 Competitive and block nutrient

In the previous sections it was assumed that resources were well mixed in the

domain. In fungal habitats the resources are often not homogeneously distributed.

While in experimental studies care is taken to mix the substrate, there could arise a

situation where the nutrients are not well mixed or over time form amalgamations

in certain regions of the Petri dish or even be deliberately introduced. In this

section we will investigate a scenario where the less dominant fungal species grows

on a highly concentrated region of the Petri dish. To represent this we will use
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the following

se(x, y, 0) =

{
ŝe0

(1−tanh(φ(r−R)))
2

, if r < R,

se0, otherwise,
(5.18)

where r, R and M have been previously defined. Here the parameter ŝe0 represents

the concentration of external substrate in the domain at the biomass on the left

hand side where se0 is the concentration elsewhere. The parameter values used

are from Table 5.2 unless stated otherwise. Thus, we will solve equations (5.16)

with initial conditions in (5.17) using parameter values from Table 5.2 and initial

data (5.18) by setting ŝe0 = 1 and se0 = 0.5, A = 1000 and B = 300 (Figure 5.31).
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Figure 5.31: 2d representation of the solutions to equations (5.16) with initial
data (5.17) and (5.18) and parameter values from Table 5.2 with ŝe0 = 1,

se0 = 0.5, A = 1000 and B = 300. The fungi seem to be in a state of deadlock.
[For a movie of these plots please see external folder labelled:- Comsol -

Movie files - Fig 5.31]

Figure 5.31 shows that despite the biomass on the left being less dominant,
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having access to a nutrient-rich patch provides it with the ability to defend its

territory and resist displacement by the superior competitor starting on the right

(see movie files Fig 5.31 and Fig 5.32). However, as the resources deplete biomass

on the right starts to displace the biomass on the left. Figure 5.32 shows a cross

sectional plot of this more clearly illustrating the delayed displacement.
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Figure 5.32: Cross sectional representation of the solutions to equations (5.16)
with initial data (5.17) and (5.18) and parameter values from Table 5.2 with
ŝe0 = 1, se0 = 0.5, A = 1000 and B = 300. The fungi seem to be in a state of

deadlock. [For a movie of these plots please see external folder labelled:- Comsol
- Movie files - Fig 5.32]

The observations in this section are consistent with the observations seen

earlier; having access to nutrients can determine the outcome of competition.

In the context of agriculture, manipulating the resource location may provide an

alternative way to deal with an antagonist. Allocating different patches of suitable

resources around the perimeter of an antagonist’s colony may lead to hindering

its growth and render it less effective or at least suppress its adverse effects. Even

if the biomass does not have a competitive advantage over its rival, the techniques

shown in this section may still optimise its utilisation.

5.4 Conclusion

The mathematical models explored in this chapter resulted in interesting simu-

lations capturing complex intermingling behaviours often observed in the exper-

imental study of fungal interactions. The analysis has suggested many potential

applications discussed above.
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The results of the simulations here are consistent with the one dimensional

analysis carried out in Chapter 4. However, the two dimensional models developed

have shown to be very effective in depicting the spatial component of fungal growth

observed in laboratory experiments, which was lacking in the one-dimensional

models; for example the complete surrounding of one biomass by a rival (Figure

5.25). The primary observation obtained from the analysis in this chapter was that

the variation of resources accessible to fungal species have a significant influence

on the outcome of competition. The model equations formulated were used to

investigate various scenarios involving resource distributions; namely, the outcome

of competition with distinct resources, perpetual availability of distinct resources,

resource availability at intervals, distinct resources spread across the domain and

a single resource on a unified domain. The prevailing findings of the analysis was

that access to greater concentration of resources is sufficient to gain advantage in

fungal interactions.

Fungi are abundantly used in the field of agriculture, bio-remediation and

bio-technology. Thus the techniques and the analysis seen here can provide ben-

efits to the respective fields. Primarily, by determining the critical nutrient con-

centrations required to obtain a sought after outcome will provide greater control

over the desired outcome.

The set of equations formulated in this work are highly versatile in mod-

elling various fungal behaviours and have not been fully exploited. For example

the model can easily incorporate the effects that collembola (an insect species that

graze on hyphae) have on fungal competition. The simulations will be of the form

observed in experiments similar to Rotheray et al. (2010). This feature can be

incorporated in our model via changing the proportionality constant term E and

F to a function related to the damage collembola is causing to the host fungal

species. This would be a starting point which can then be extended further by

incorporating another simple equation modelling the population dynamics of the

insects.

Also, only competition between two fungal species of the same kind was

explored. The model can be used to simulate other fungal morphologies stated

in Chapter 2 that will require using different diffusion rates, uptake costs and tip

velocities. The model equations can be converted easily to higher dimensional

analysis for a three-dimensional model if desired. Another interesting feature

would be to model multiple species in a single domain as seen in experimental
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studies referenced in Chapter 4. This would open the door for new research

exploring interactions between multiple species and could extend the interesting

work by Halley et al. (1994), Davidson et al. (1996) and Falconer et al. (2011).

In the following chapter we will apply the above modelling techniques to

consider the interaction between a fungus and a toxin.
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Chapter 6

Fungal Growth in Toxic

Environments

The industrial past has left a legacy of landscapes polluted by various heavy

metals and toxins that have resulted in vast swathes of barren land unsuitable

for agricultural or habitable conditions. Certain fungi have the ability to extract

various toxic materials such as mercury, arsenic, copper and cadmium from the

environment and thus remediate such landscapes. For example studies such as

Gadd (1993); Fomina et al. (2000, 2003); Srivastava et al. (2011); Ho-Man et al.

(2013); Kurniati et al. (2014) and Stamets (2014) have shown great potential of

using fungi for bioremediation purposes. Furthermore mycoremediation studies

have also demonstrated the applicability of mushrooms to remove oil spillage from

lakes and sea water (Stamets, 2014). In this chapter we will investigate, through

mathematical modelling, how a fungus behaves in response to toxic metals, which

is crucial in such applications.

6.1 Motivation

The behaviour of fungi reacting to adverse conditions in a heterogeneous envi-

ronment has been investigated both through experiments (Gadd, 1993; Fomina

et al., 2000, 2003; Gadd, 2010) and mathematical modelling (Boswell et al., 2007;

Olishevskya and Zhdanova, 2009). In the area of bio-remediation, fungi have been

introduced to assist in the removal of toxic materials as an alternative and in ad-

dition to traditional methods (Gupta and Shrivastava, 2014). There have been

various studies and observations of fungal colonies interacting with toxic sub-
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stances but we will primarily focus our attention on work published by Fomina

et al. (2000, 2003).

Fomina et al. (2000) investigated the strong tropic behaviour of fungal

hyphae. In particular, hyphae show negative chemotropic responses to some toxic

metals (by moving away from regions augmented with Copper (Cu) and Cadmium

(Cd)). These experiments were carried out in a simple agar tile system. Two

square tiles (10× 10× 3 mm) of agar were placed in a sterile 9 cm diameter Petri

dish with a 2 cm gap between the tiles. The control tile (metal free) contained 30

g l−1 of sucrose along with other chemicals. The control tile was inoculated by the

fungal species. The metal containing tile had varying levels of sucrose between

(1− 30 g l−1) and either Cu or Cd chloride at concentrations of 0 or 5 mM.

The initial experiments consisted of both the agar tiles containing equal

amounts of sucrose concentrations (30 g l−1) and varying levels of toxic metal chlo-

ride between (2 and 5 mM). The key observation of the study was the behaviour

of leading hyphae of the colony turning away from the toxic source and the greater

the toxicity levels, the more pronounced was the chemotropic response.

The latter experiments consisted of varying the levels of sucrose between

(1 and 15 g l−1) and the metal chloride (0 to 2 mM) in the toxic domain. The

key observation was that the differing levels of sucrose affected the degree of the

negative chemotropic behaviour of the fungal hyphae. When the nutrient con-

centration was low and the toxic concentration high, there was a greater negative

chemotropic behaviour and as the nutrient was increased the magnitude of the

chemotropic behaviour reduced.

The key finding of Fomina et al. (2003) was the ability of fungi to pene-

trate through a toxic domain of various concentrations with varying amounts of

nutrients. The experiments were carried out on a Petri dish but this time with

three agar tiles. The first (control) and the third (target) tile contained 30 g l−1 of

sucrose at the start of each realisation and the second (toxic metal) tile contained

varying levels of metal concentration between (0 and 2 mM) and sucrose between

(1 and 30 g l−1).

The main findings of the study related to fungal morphology, chemotropic

behaviour and penetration in adverse conditions. Our focus will solely be on the

penetration of the toxic domain aspect of the study.

In Figure 6.1 it can be seen that the penetration of hyphae into the metal

domain was followed by the formation of very dense mycelial bush on the border
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between the gap and the toxic metal tile. This was common for nutrient concen-

trations up to 30 g l−1. The density of the hyphae at the edge of the tiles increased

with both the nutrient concentration and the amount of toxin. This may be due

to the larger quantity of toxic chloride diffusing faster to the edge of the tile and

thus as more chloride is added the further the hyphae is pushed back. It was also

found that the fungi were able to penetrate the metal tile at low toxic levels and

reach the target tile.

Figure 6.1: (A - D) show Clonostachys rosea growing from the left tile to the
metal tile which contain 5 g l−1 of sucrose and the following quantity of toxic

metal; A) Control no toxic, B) 0.5 mM, C) 1 mM and D) 2 mM. (E - G) show
Trichoderma virens growing from the left tile to the metal tile which contain 1 g
l−1 of sucrose and the following quantity of toxic metal; E) Control no toxic, F)

1 mM and G) 2 mM (Fomina et al., 2003).

In Figure 6.2 the fungal species T. virens can be seen to be growing on a

toxic domain at low sucrose concentration between (1 and 5 g l−1). The authors’

comments on this aspect was, ‘Fungal mycelia can vary the balance between pro-

cesses of exploration and assimilation, conservation and redistribution of resources

and so respond efficiently to changes in local circumstances’. However, it is still

unclear why local circumstances happen in some regions of the toxic domains and

not others and why they do not arise when the toxic concentration is high. One

possible explanation we conjecture in this thesis is that the local circumstance

could refer to the non-uniform mixing of the nutrient with the toxic chloride or

diffusion altering the concentrations of the ratio of nutrient and toxic, specifically

the plethora of branching could correspond to a region where, through chance

alone, there is little or no toxin. As fungi respond to their environment, some tips
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diffuse through the high toxic area of the tile might approach a patch where the

toxicity is low and nutrient content high, thus branching and exploring may take

place in this new area. This could be a possible explanation of the behaviour seen

in Figure 6.2.

Figure 6.2: (A and B) show T.virens growing from the left tile and inoculating
on the metal tile. The behaviour was also observed with varying levels of sucrose

(1 - 5 g l−1) and copper (1 - 5 mM) on the metal tile (Fomina et al., 2003).

Thus we aim to investigate and provide some insights into the behaviours

observed by Fomina et al. (2000, 2003) using numerical simulations.

We begin by extending our system of equations (3.48) from Chapter 3 (Sec-

tion 3.1.5) to depict the effects of toxicity on the hyphal density at the periphery

of a fungal colony across a one dimensional geometry and carry out some basic

analysis. A one dimensional representation is a reasonable approach to modelling

the dynamics of biomass and toxic interaction, due to its ability to capture the

sought behaviour that occur at the periphery without the need for an over compli-

cated model. We then further extend the model into two dimensions to capture

typical behaviour obtained from experimental observations and thus carry out

some analysis similar to that of Fomina et al. (2000, 2003).
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6.2 One dimensional model of fungal toxic in-

teraction

In this section a simple model is formulated to represent a species of fungi inter-

acting with toxic material. Our default choice of the specific phenotype is that of

the FHD phenotype in equations (3.48), which is repeated here for convenience

where ρ denotes the hyphal density and n represents the hyphal tip density:

∂ρ

∂t
= nv− γρ,

∂n

∂t
= −∂(nv)

∂x
+ ρ(α− βn).

Suppose there is a toxic material whose density at position x is denoted

by T = T (x) and does not change over time (for example, the toxic compound

considered in Fomina et al. (2000, 2003) only existed on the metal tile, thus

on a one dimensional plane it is sufficient to assume it is stationary). Since

hyphal tips divert away from toxic materials (Fomina et al., 2003) we introduce

a corresponding flux −nκ∂T
∂x

into the model equations where κ represents the

strength of the repulsion. Thus our system of equations becomes

∂ρ

∂t
=

∣∣∣∣nv− nκ∂T
∂x

∣∣∣∣− γρ,
∂n

∂t
= − ∂

∂x

(
nv− nκ∂T

∂x

)
+ ρ(α− βn), (6.1)

where the total hyphal length created per unit time is the absolute value of the

tip flux (consistent with that seen for the model in Chapter 5). Notice that these

equations do not explicitly model the long term remediation of the toxic materials

but instead the short-term response of the biomass to the toxins.

6.2.1 Numerical simulation

Before constructing algebraic solutions to equations (6.1), we numerically inte-

grate the system in COMSOL using a ‘1d time dependent model’ for a ‘coefficient

form’ type PDE over a spatial domain [0, 25]. Zero flux boundary conditions have

been assumed. We have used similar initial conditions mentioned in previous

168



analysis from equation (3.34) for ρ and n, respectively i.e.

ρ(x, 0) =
1

2
(1− tanh(θx)), n(x, 0) =

1

2
(1− tanh(φx)),

to ensure their derivatives are defined everywhere and can be easily computed.

For convenience we set α = β = γ = θ = φ = v = 1 and for illustration take

T (x) = x2

100
for a variable spatial gradient and κ = 2.

(a) (b)

Figure 6.3: (a) Depicts the hyphal density obtained from (6.1) and (b) depicts
the tip density increasing around x=25 (critical value) due to the presence of

toxic substances shown at times t=0, 10, 20, 30, 40, 50, 60 and 80 represented
via different colours and propagating from left to right.

From Figures 6.3(a) and 6.3(b) there is a propagating wave of biomass and

tips that reduces its speed as it approaches a critical value of x = 50v
κ

since the

corresponding flux is zero. The hyphal density declines to zero at this critical

value and the hyphal tips cease to propagate.

6.2.2 Analysis of immobile toxicity

If we assume the toxic substrate is immobile (or at least changes more slowly than

the growth of the model biomass), the system of equations (6.1) has a closed form

solution for certain forms of T . Thus the stationary distribution satisfies

0 = |nv− nκTx| − γρ (6.2)

0 = − ∂

∂x
(nv− nκTx) + ρ(α− βn). (6.3)
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From the first equation (6.2) we obtain two solutions

n = ± γρ

v− κTx
. (6.4)

We take the positive solution from equation (6.4) when referred henceforth. Sub-

stituting the solution into equation (6.3) and rearranging we obtain

γ
∂ρ

∂x
− αρ = − βγρ2

v − κTx
. (6.5)

Equation (6.5) is a first order Bernoulli equation. Thus upon setting w = ρ−1 we

obtain
dw

dx
+
α

γ
w =

β

v − κTx
=⇒ d

dx

(
e
α
γ
xw
)

=
βe

α
γ
x

v − κTx
. (6.6)

Integrating both sides, we obtain

w = βe−
α
γ
x

∫
e
α
γ
x

v − κTx
dx+ ce−

α
γ
x, (6.7)

where c is a constant of integration. Some particularly nice solutions can be

obtained for certain functional forms of T (x). Some examples are shown below

T1(x) = x then u1 = v − κ =⇒ ρ−1 = ce−
α
γ
x +

βγ

α(v − κ)
, (6.8)

T2(x) =
x2

2
then u2 = v − κx =⇒

ρ−1 = ce−
α
γ
x +

β

κ
e(
αu2
κγ

) Ei

(
α

γκ
u2

)
, (6.9)

T3(x) = e
αx
γ then u3 = v − ακ

γ
e
αx
γ =⇒

ρ−1 = ce−
α
γ
x − βγ2

α2κ
e(−α

γ
x) ln(u3), (6.10)

where Ei is the exponential integral function (Ei(x) =
∫ x
−∞

eu

u
du for x > 0).

Illustrative solutions of equations (6.4) and (6.9) using parameter values

α = β = γ = v = 1 and κ = 1
25

are shown in Figures 6.4(a) and 6.4(b).
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(a) (b)

Figure 6.4: (a) Depicts steady state hyphal density from (6.9) and (b) depicts
the steady state of tip density from (6.4) which blows up at Tx = v

k
for

parameters α = β = γ = v = 1, κ = 1
25

and T = x2

2
.

The steady state distributions predicted by the above analysis is in ac-

cordance with experimental observations and numerical integration of equations

(6.1) (Figure 6.3(a)). From Figure 6.4(a) we see that the solutions approach a

critical value of Tx = v
κ

beyond which the solution is not defined (further growth

is impossible). The hyphal density declines to zero at this critical value whereas

the hyphal tip density increases due to the singularity in equation (6.3). The

solutions capture the general behaviour observed in experiments as described in

the previous section i.e. a cessation of colony expansion. However the tip density

in reality will eventually die in a nutrient limited environment and will not con-

tinue to grow to infinity. The build up of tips and decline in hyphal densities are

types of behaviour observed when a species of fungi interacts with an antagonistic

competitor or if it encounters an adverse material in the environment (i.e. toxic

substance); there is a build up of hyphal tips (sclerotium) on the periphery of the

colony to form a barrage to protect the colony (see Figure 4.1).

6.2.3 Conclusion from basic modelling

Our model captures the intrinsic behaviour of a fungal colony exploring new space

until it reaches a critical toxic concentration gradient that it cannot penetrate.

This leads to the accumulation of tips forming near the critical toxic gradient of
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fungi (i.e. v
k
) and the steady depletion of hyphal density. This model may be an

oversimplification of the actual biological characteristics of fungi, but it captures

the behaviour seen in experiments (Fomina et al. (2003) and references therein):

with a low nutrient concentration and high metal toxicity concentrations, the

fungi Trichoderma virens produced negative chemotaxis behaviour and high tip

accumulation in the vicinity of the toxic metals and the density of its mycelium

became less dense. A similar behaviour was observed for the fungi Clonostachys

rosea.

In experiments, nutrients play a key role in the functionality of fungi (Fom-

ina et al., 2003; Goyal et al., 2013). It was found in the study carried out by

Fomina et al. (2003) that by adjusting the nutrient levels with varying levels of

toxicity of metals fungi were able to move away from the hostile zone and con-

tinue to propagate. The model we have proposed above captures some aspects

of that experiment. One is the mobility of hyphal tips of a fungal species mov-

ing towards an immobile toxic metal source and the other is the decrease in the

hyphal density of the fungi as its tips approach the hostile material (see Fomina

et al. (2003) and Figure 6.4(a)). We can also see the accumulation of hyphal tips

(representing sclerotia) at the interaction zone which can be compared to Figure

6.4(b) but whether they continue to accumulate and form a barrier to protect the

colony from contamination, we cannot infer from the given experimental data.

These barriers were also observed by Boddy (2000) where fungi formed ‘barrages’

to protect the colony from invasive species.

The investigations seen in this chapter thus far have been restricted to

a one dimensional setting. A one dimensional model cannot fully capture the

spatial dynamics or the impact toxic materials have on the fungal mycelium, seen

in laboratory studies. The influence of resources has also not been explicitly

modelled to avoid formulating a complex model. It was seen in previous chapters

that resources have a crucial role on fungal competition and their influence on

fungi’s ability to deal with adverse conditions was stressed by Fomina et al. (2003).

Thus we now formulate a two dimensional model to incorporate the afore-

mentioned fungal interaction with toxic substance via using the system of equa-

tions (5.4) introduced in Chapter 5. The model will be used to simulate complex

interactions between fungi and toxic contaminated sources in planar environments,

thus providing comparisons between laboratory experiments.
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6.3 Two dimensional model of fungal growth in

toxic environments

The study by Fomina et al. (2000) explored negative chemotropic behaviour of

individual hyphae. In our study we will not be observing the behaviour of indi-

vidual hyphae but rather the density of the biomass as a whole. In particular,

we simulate the different densities of hyphae and tips in response to toxic metals.

Nonetheless, the negative chemotropic behaviour of hyphal tips is incorporated in

the model equations by a suitable revision to the corresponding flux term.

In order to simulate the studies we will use the mixed hyperbolic-parabolic

type equations (5.4) tailored with the toxicity component to take into account the

interaction of fungi and toxic metals, i.e.

∂ρ

∂t
= |vsin∇ρ+Dnsi∇n+ κsin∇T | − dρρ,

∂ρ′

∂t
= dρρ− diρ′,

∂n

∂t
= ∇ · (vsin∇ρ+Dnsi∇n+ κsin∇T ) + αsiρ− βnρ, (6.11)

∂si
∂t

= ∇ · (Diρ∇si −Daρsi∇n) + c1siρse − c2|vsin∇ρ+Dnsi∇n+ κsin∇T |
− c4|Daρsi∇n|,

∂se
∂t

= De∇2se − c3siρse,

∂T

∂t
= DT∇2T,

where T represents the toxic compound concentration (not to be confused with

the standard symbol used for dimensions representing time T (see Table 6.1) and

DT the coefficient of diffusion of the substance. The κ parameter is a simple

representation of the sensitivity to the toxicity or the repellor term for the fungi.

Thus the term −κsin∇T represents the movement of the tips in respect to (the

gradient of) the toxic substance.

The system of equations (6.11) is solved numerically on a domain satisfying

zero flux boundary conditions using various initial conditions that will be shown

accordingly prior to each simulation.
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6.3.1 Fomina et al. (2000) revisited

In this section we will simulate the experiments seen in Fomina et al. (2000) via

numerically integrating model equations (6.11) in COMSOL. The initial data is

chosen to resemble the experimental setup of Fomina et al. (2000). For the purpose

of focusing on the key interactions occurring between fungal biomass and toxic

materials, we will rescale the dimensions of the boundaries for the simulation to

that used in Chapter 5. The square tiles will be depicted as 0.2×0.2 cm dimensions

instead of 1× 1 cm. Hence the domain comprises of one circular region of radius

2 cm representing a Petri dish containing two ‘square’ tiles; one “tile” labelled

‘Source’ (uS) laced with nutrients, on which an initial inoculum is placed and

the other “tile” labelled ‘Pollutant’ (uP ) with initially only nutrient and toxic

compounds (schematic representation is shown in Figure 6.5).

Figure 6.5: Initial configuration used for the simulations.

The parameter values used are given in Table 6.1. All parameters will be

kept constant throughout the simulations and only the initial data for the external

resources and toxic concentration will be adjusted according to the experiments.
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Initial data/Parameters Rescaled Value Dimensions Description
v 0.5 L5 T−1N−1 Directed tip velocity
dρ 0.5 T−1 Hyphal inactivation rate
di 0 T−1 Inactive hyphae loss rate
α 103 L−1T−1N−1 Branching rate
β 104 LT−1 Anastomosis rate
c1 900 L3T−1N−1 Uptake rate of external substrate
c2 1 NL−1 Growth cost
c3 103 L3T−1N−1 Uptake of external substrate
c4 10−8 L−1 Active translocation cost
Dn 0.1 L4T−1N−1 Tip avoidance cost
Di 10 L3T−1 Internal substrate diffusion coefficient
Da 10 L5T−1 Active translocation rate
De 10−4 L2T−1 External substrate diffusion coefficient
DT 10−4 L2T−1 Toxic substance diffusion coefficient
R 0.1 L Radius of active hyphal plug
κ 1 L6T−1N−1M−1 Repellor strength
φ 20 - Scalar constant of initial data
ρ0 0.1 L−1 Initial active hyphal density
ρ′0 0 L−1 Initial inactive hyphal density
n0 0.1 L−2 Initial tip density
si0 0.4 NL−2 Initial internal substrate
se0 0.5 NL−2 External substrate
T0 0 ML−2 Toxic concentration

Table 6.1: The initial data and default parameter values used to solve model
equations (6.11). The parameter values used for fungal growth are from the

calibration experiments carried out by Boswell et al. (2003b) where known, while
reasonable assumed values have been adopted elsewhere based on known similar

processes.

6.3.1.1 Biomass expansion in a toxic free environment

We begin with simulating a default case where it is assumed that there is no toxic

material on the Pollutant “tile”. This case can be thought of as a control run.

Prior to investigation the initial conditions must be defined. For the Source “tile”,

the following initial data are taken

ρ(x, y, 0)

ρ0

=
n(x, y, 0)

n0

=
si(x, y, 0)

si0
=
se(x, y, 0)

se0
=

1− tanh(φ(r −R))

2
,

ρ′(x, y, 0) = ρ′0,

T (x, y, 0) = 0, (6.12)
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where φ is a scalar constant, R = 0.1 corresponds to the radius of the fungal

inoculum where we have assumed they are circular in shape and

r =
√

(x+M)2 + y2. (6.13)

We set M = 0.2, where (−M, 0) is the centre of the initial mycelium. For the

Pollutant “tile”,

ρ(x, y, 0) = ρ′(x, y, 0) = n(x, y, 0) = si(x, y, 0) = 0,

se(x, y, 0) = se0, (6.14)

T (x, y, 0) = T0.

Thus the initial profiles are identical to that seen in previous chapters. These

initial conditions for hyphae, tips and internal substrate therefore correspond to

the initial plug of mycelium placed on the Petri dish at (−M, 0) of radius R

respectively which includes the Source “tile” (uS). Henceforth, for convenience,

initial data in each simulation (Table 6.1) for each “tile” will be denoted using

the notation, utile = (se0 , T0)

The model equations (6.11) were solved in COMSOL with initial data

in equations (6.12), (6.14) and zero flux boundary conditions using the default

parameters in Table 6.1 (uS = (0.5, 0) and uP = (0.5, 0)). Using similar techniques

to those in Chapter 5, typical results are shown in Figure 6.6.
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Figure 6.6: 2d representation of the solutions to equations (6.11) with initial
data (6.12) and (6.14) using parameter values from Table 6.1 with us = (0.5, 0)

and up = (0.5, 0). A uniform proliferation can be observed. [For a movie of these
plots please see external Folder labelled: Comsol - Movie files - Toxic - 2Tile -

Fig 6.6]

In the absence of any toxic material the biomass proliferates in a radially

symmetric manner until it finds a new source of nutrients where it begins to

colonise and thus expand further. The biomass expands until all of the substrate

is depleted and eventually dies out (data not shown). For improved exposition,

Figure 6.7 displays a cross sectional plot of the total hyphal biomass, tip density

and external resource as introduced in previous chapters.
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Figure 6.7: Cross section of the solutions to equations (6.11) with initial data
(6.12) and (6.14) using parameter values from Table 6.1 with uS = (0.5, 0) and
uP = (0.5, 0). Clearly a steady proliferation is observed. [For a movie of these
plots please see external Folder labelled:- Comsol - Movie files - Toxic - 2Tile -

Fig 6.7]

From Figure 6.7 we can indeed see the growth of the biomass. The active

hyphae is seen to expand radially from its initial location and subsequently en-

countering the new substrate location (see also movie file Fig 6.6 and Fig 6.7).

The total hyphal biomass that exists for a longer period of time eventually also

deteriorates once the substrate is depleted.

For the forthcoming analyses, the two dimensional plots will depict the

region magnified around the “tiles” to display the behaviour more clearly. The

plots for the toxic component are not included due to the low diffusion coefficient.

6.3.1.2 Biomass expansion in low toxic domain with scarce resources

In this section we introduce a small amount of toxicity to the right “tile” and

observe the affect it has on the expansion of biomass. Hence solving model equa-

tions (6.11) with initial data equation (6.12) and (6.14) using default parameters

in Table 6.1 with uS = (0.5, 0) and uP = (0.5, 0.1) results in the outcome depicted

in Figure 6.8.
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Figure 6.8: 2d representation of the solutions to equations (6.11) with initial
data (6.12) and (6.14) using parameter values from Table 6.1 with uS = (0.5, 0)
and uP = (0.5, 0.1). A small accumulation is observed on the periphery of the
right hand side “tile”. [For a movie of these plots please see external Folder

labelled: Comsol - Movie files - Toxic - 2Tile- Fig 6.8]

It is evident from Figure 6.8 that in the presence of any toxic material the

biomass proliferation ceases to be radially symmetric. The colony grows until it

reaches the right domain where a small quantity of biomass accumulates on the

periphery (see movie file Fig 6.8 and Fig 6.9). Also notice the distribution of tip

density and internal substrate as time progresses is of an oval shape as a result

of modelled toxicity. The intricate details can be observed on the following cross

sectional plot (see Figure 6.9).
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Figure 6.9: Cross section of the solutions to equations (6.11) with initial data
(6.12) and (6.14) using parameter values from Table 6.1 with uS = (0.5, 0) and
uP = (0.5, 0.1). An accumulation is prominent on the periphery of the right hand

side “tile”. [For a movie of these plots please see external Folder labelled:-
Comsol - Movie files - Toxic - 2Tile - Fig 6.9]

Notice, the accumulation of biomass near x = 0.1 in Figure 6.9 whereas

this is absent in Figure 6.7. Also notice the reduction in external substrate con-

sumption in Figure 6.9 compared to that in Figure 6.7; an outcome obtained due

to less biomass penetrating the right “tile”.

6.3.1.3 Biomass expansion in high toxic domain with scarce resources

A greater concentration of toxic substance is now added on the same “tile” con-

taining reduced nutrients, to mimic the experiments in Fomina et al. (2000). The

model equations (6.11) were solved with initial data (6.12) and (6.14) using de-

fault parameters in Table 6.1 with uS = (0.5, 0) and uP = (0.1, 1) (Figure 6.10

and 6.11).
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Figure 6.10: 2d representation of the solutions to equations (6.11) with initial
data (6.12) and (6.14) using parameter values from Table 6.1 i.e. uS = (0.5, 0)
and uP = (0.5, 1). A high accumulation of biomass is observed on the periphery

of the right domain. [For a movie of these plots please see external Folder
labelled: Comsol - Movie files - Toxic - 2Tile - Fig 6.10]
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Figure 6.11: Cross section of the solutions to equations (6.11) with initial data
(6.12) and (6.14) using parameter values from Table 6.1 with uS = (0.5, 0) and
uP = (0.5, 1). A high accumulation of biomass is prominent on the periphery of
the right hand side “tile”. [For a movie of these plots please see external Folder

labelled:- Comsol - Movie files - Toxic - 2Tile - Fig 6.11]

Figure 6.10 and 6.11 demonstrate that increasing the toxic concentration

on the pollutant “tile” and lowering the nutrient concentration results in the

biomass from the left “tile” being unable to penetrate the right hand “tile” and

thus accumulate outside the boundary of the toxic “tile” (see also movie files

Fig 6.10 and Fig 6.11). Notice also that the majority of biomass expands around

the toxic “tile” without penetrating the “tile”. Similar behaviour was observed

by Fomina et al. (2000).

Interestingly, some biomass can be seen to accumulate on the right hand

side of the right “tile” (i.e. close to x = 0.4). This phenomenon has occurred due

to the modelling of the flux of tips, namely the diffusion term. The diffusion of

tips is modelled using a random process unaffected by the pollutant which results

in a small quantity of tips penetrating the right “tile” and once across they begin

to consume the resources from the other side, thus the accumulation of biomass.
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6.3.1.4 Biomass expansion from a nutrient scarce domain to a highly

toxic domain with abundant resources

As mentioned earlier, Fomina et al. (2000) demonstrated that fungi were able to

penetrate and react positively to the toxic material via the increase of nutrients on

the shared “tile”. Thus here we increase the nutrients on the right “tile” only and

solve the model equations (6.11) with initial data (6.12) and (6.14) using default

parameters in Table 6.1 with uS = (0.5, 0) and uP = (1, 1). The results are shown

in Figure 6.12.
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Figure 6.12: 2d representation of the solutions to equations (6.11) with initial
data (6.12) and (6.14) using parameter values from Table 6.1 with uS = (0.5, 0)
and uP = (1, 1). Biomass can be seen to grow on the toxic domain. [For a movie
of these plots please see external Folder labelled: Comsol - Movie files - Toxic -

2Tile - Fig 6.12]

Figure 6.12 shows the presence of a greater nutrient concentration on the

toxic “tile” enabled the model biomass to penetrate the toxic “tile” and consume
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the resources present, consistent with the experimental analysis of Fomina et al.

(2000).
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Figure 6.13: Cross section of the solutions to equations (6.11) with initial data
(6.12) and (6.14) using parameter values from Table 6.1 with uS = (0.5, 0) and

uP = (1, 1). Lower initial biomass resulted in lower depletion of external
resources. [For a movie of these plots please see external Folder labelled:-

Comsol - Movie files - Toxic - 2Tile - Fig 6.13]

Figure 6.13 demonstrate that the impact of increasing the resources on the

polluted “tile” resulted in the biomass penetrating and consuming the resources

(see movie file Fig 6.12 and Fig 6.13). Comparing Figure 6.13 to Figure 6.11, it

can be seen that a greater density of biomass is accumulated on the periphery (i.e

close to x = 0.1). Notice that this resulted in the increased consumption of the

resources of the right domain however this was significantly less compared to the

case where the biomass has access to higher resources initially (see Figure 6.15).

6.3.1.5 Biomass expansion from a nutrient rich domain to a highly

toxic domain with scarce resources

Somewhat surprisingly, the impact of increasing the initial nutrients available to

the fungi (i.e. that on the left “tile”) was not addressed in Fomina et al. (2000) and

thus the study did not consider how the initially supplied nutrients affected the
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ability of fungi to penetrate a hostile zone. Chapters 4 and 5 demonstrated that

the outcome of fungal interactions could be controlled by manipulating nutrient

levels and so this is clearly an interesting scenario to investigate. Thus we consider

the instance where the right “tile” was not previously penetrated by biomass (see

Section 6.3.1.3) but increase the external substrate concentration on the left “tile”.

The model equations (6.11) were solved with initial data in equations (6.12)

and (6.14) using the default parameters in Table 6.1 with uS = (2, 0) and uP =

(0.5, 1) and the results are shown in Figure 6.14.
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Figure 6.14: 2d representation of the solutions to equations (6.11) with initial
data (6.12) and (6.14) using parameter values from Table 6.1 with uS = (2, 0)
and uP = (0.5, 1). A high accumulation of biomass is prominent around the

periphery of the pollutant “tile” resulting in depletion of external resources. [For
a movie of these plots please see external Folder labelled: Comsol - Movie files -

Toxic - 2Tile - Fig 6.14]

Figure 6.14 clearly demonstrates that provided the biomass has access to

sufficient external substrate in its immediate vicinity, it is better able to deal with
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adverse conditions, even expanding through toxic regions since it has sufficient

energy supplied to the tips to overcome the negative chemotaxis (see movie file

Fig 6.14 and Fig 6.15).
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Figure 6.15: Cross section of the solutions to equations (6.11) with initial data
(6.12) and (6.14) using parameter values from Table 6.1 with uS = (2, 0) and
uP = (0.5, 1). An increased density is observed in biomass and tips, resulting in

the absorption of external substrate. [For a movie of these plots please see
external Folder labelled:- Comsol - Movie files - Toxic - 2Tile - Fig 6.15]

Figure 6.15 demonstrates the impact of increasing the resources available

to the biomass in its immediate vicinity on a one dimensional plot. Comparing

the results to Figure 6.11, it can be seen that a greater density of biomass is

accumulated on the periphery (x = 0.1). Notice that this resulted in the increased

consumption of resources from the right domain. Therefore we can infer from these

results that having access to an initial nutrient rich source, biomass is better able

to deal with adverse conditions.

The results produced in this section are in accordance with the findings of

Fomina et al. (2000), i.e. when provided with sufficient resources, fungi are able

to invade toxic landscapes and the simulations described above represent a first

attempt to quantify the amount of resources required. Clearly these results have

significant relevance to applications in bioremediation.
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6.3.2 Fomina et al. (2003) revisited

In this section key experiments from Fomina et al. (2003) are considered and

extended using model equations (6.11) with default parameter values in Table 6.1.

The extended results aim to generate a better understanding of the key processes

involved in fungal growth in toxic environments. As before, certain initial data

will be adjusted according to the experiments. The initial data is chosen to

resemble the experimental setup of Fomina et al. (2003) (see Figure 6.16 for a

schematic illustration) namely an initial inoculum is placed onto an agar based

‘square’ “tile” (denoted by ‘Source’) alongside a second “tile” (‘Pollutant’) that

is laced with both nutrient and toxic compounds and followed by a third “tile”

only containing nutrients (‘Target’).

Figure 6.16: Initial experimental configuration used in the simulations.

Thus the primary objective of this layout is to explore the behaviour of

hyphal biomass with a toxic substance and whether it can reach the target “tile”

when provided with a range of nutrients.

6.3.2.1 Biomass expansion in a toxic free environment

The initial data for the Source and Pollutant “tile” are taken to be the same as

before. The Target “tile” has the following conditions

ρ(x, y, 0) = ρ′(x, y, 0) = n(x, y, 0) = si(x, y, 0) = T (x, y, 0) = 0,

se(x, y, 0) = se0, (6.15)

where all parameters and variables are the same as before (see section 6.3.1.1).

The initial model biomass is placed on the Source “tile”. For convenience, initial

parameter values that change in each simulation for each “tile” will be denoted

using the same notation used in previous sections.

The model equations (6.11) with initial data in equations (6.12), (6.14) and

(6.15) using the default parameters in Table 6.1 with uS = (0.5, 0), uP = (1, 0) and
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uT = (1, 0) are solved using similar techniques to those in the previous sections

(Figure 6.17).
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Figure 6.17: 2d representation of the solutions to equations (6.11) with initial
data (6.12), (6.14) and (6.15) using parameter values from Table 6.1 with
uS = (0.5, 0), uP = (1, 0) and uT = (1, 0). Corresponding to biomass

proliferation in the absence of pollutant. [For a movie of these plots please see
external Folder labelled: Comsol - Movie files - Toxic - 3Tile - Fig 6.17]

It can be seen from Figure 6.17 that the expansion of the biomass is radially

symmetric until it encounters the pollutant and target “tile” where upon encoun-

tering new resources the shape of the initial profile changes. This behaviour can

be compared to the observations made by Jacobs et al. (2002) and Boswell et al.

(2003a) where biomass was found to expand and bridge the narrow gaps between

the source and new substrate rich location. Upon reaching the new resource, the

sudden increase in internal substrate caused a burst of branching and a marked

increase of biomass density that lead to the colonisation of the newer location by

the biomass.
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For clarity, Figure 6.18 shows a cross sectional plot of the total model

biomass, tip density and external resource.
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Figure 6.18: Cross section of the solutions to equations (6.11) with initial data
(6.12), (6.14) and (6.15) using parameter values from Table 6.1 with

uS = (0.5, 0), uP = (1, 0) and uT = (1, 0). Tip density can be seen to growing on
the pollutant region. [For a movie of these plots please see external Folder

labelled:- Comsol - Movie files - Toxic - 3Tile - Fig 6.18]

From Figure 6.18 we can indeed see the expansion of biomass, tips and

the depletion of resources. The biomass is seen to expand radially from its initial

location and subsequently encountering the new substrate location (see movie files

Fig 6.17 and Fig 6.18). The total model biomass eventually deteriorates once the

substrates are depleted (results not shown).

6.3.2.2 Biomass expansion in a low toxicity environment

In this section we explore the effects of adding a small quantity of toxicity to

the middle “tile” on the expansion of the biomass. The model equations (6.11)

with initial data in equations (6.12), (6.14) and (6.15) are solved using the default

parameters in Table 6.1 with uS = (0.5, 0), uP = (1, 0.1) and uT = (1, 0) are

solved and results are shown in Figure 6.19.

189



t = 0 t = 1 t = 2 t = 3
B
io
m
a
ss

T
ip
s

I
n
te
rn
a
l

E
x
te
rn
a
l

Figure 6.19: 2d representation of the solutions to equations (6.11) with initial
data (6.12), (6.14) and (6.15) using parameter values from Table 6.1 with

uS = (0.5, 0), uP = (1, 0.1) and uT = (1, 0). The presence of a pollutant on the
central “tile” limits the expansion of the biomass. [For a movie of these plots

please see external Folder labelled: Comsol - Movie files - Toxic - 3Tile -
Fig 6.19]

It is clear from Figure 6.19 that the presence of toxicity in the central

“tile” hindered the expansion of the model biomass when compared to the control

simulation in Figure 6.17. This difference is not obvious through the accumulation

of biomass along the periphery of the toxic “tile”. We also see that as time

progresses, the biomass is expanding around the hostile zone. Also due to the low

toxicity level in this realisation, the biomass was able to penetrate and even take

up the nutrient from the middle “tile” shown clearly on the cross sectional plot

in Figure 6.20. This phenomenon was observed by Fomina et al. (2003) for the

fungal species T. virens.
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Figure 6.20: Cross sectional representation of the solutions to equations (6.11)
with initial data (6.12), (6.14) and (6.15) using parameter values from Table 6.1
with uS = (0.5, 0), uP = (1, 0.1) and uT = (1, 0). Biomass accumulation on each

side of the pollutant “tile” is depicted. [For a movie of these plots please see
external Folder labelled:- Comsol - Movie files - Toxic - 3Tile - Fig 6.20]

From Figure 6.20 we can indeed see the adverse effects of pollutants on the

biomass. The biomass density is seen to increase on the border of the pollutant

“tile” (i.e. close to x = 0.1), which is seen clearly at time t = 3 (see also movie files

Fig 6.19 and Fig 6.20). Notice the higher density of biomass, tips and uptake of

substrate around the pollutant “tile” when compared with that of Figure 6.18.

6.3.2.3 Biomass expansion in a highly toxic domain.

Here we investigate the impact on the model biomass of increasing the toxicity

of the pollutant “tile”. Figure 6.21 displays the solutions of the model equations

(6.11) with initial data (6.12), (6.14) and (6.15) using the default parameters in

Table 6.1 with uS = (0.5, 0), uP = (1, 1) and uT = (1, 0).
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Figure 6.21: 2d representation of the solutions to equations (6.11) with initial
data (6.12), (6.14) and (6.15) using parameter values from Table 6.1 with

uS = (0.5, 0), uP = (1, 1) and uT = (1, 0). The presence of increased pollutant
significantly hinders biomass growth across the central “tile”. [For a movie of
these plots please see external Folder labelled: Comsol - Movie files - Toxic -

3Tile - Fig 6.21]

When the toxicity level in the central “tile” was further increased (Fig-

ure 6.21) the biomass density also increased in the gap between the “tiles”. The

greater substrate concentration within the toxic “tile” resulted in biomass accu-

mulating around the periphery of this hostile zone. This is shown clearly on the

cross sectional plot in Figure 6.22. The tip density and internal substrate are sig-

nificantly less at time t = 3 compared to that observed in previous sections (e.g.

Figures 6.17 and 6.19). Also notice the sparse shape of the area depicted by the

tips and internal substrate in Figure 6.21 whereas in prior sections the area was

more compact (see Figure 6.17). This is due to the disfigurement of the biomass

(and associated tip density and internal substrate) that occurred close to time

t = 1 corresponding to the biomass first encountering the high concentration of
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pollutant on the central “tile” forcing its expansion around this hostile zone and

reforming on the other side.
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Figure 6.22: Cross sectional representation of biomass, tip density and external
substrate along y = 0 obtained from the solutions to equations (6.11) with initial

data (6.12), (6.14) and (6.15) with parameter values from Table 6.1 with
uS = (0.5, 0), uP = (1, 1) and uT = (1, 0). An increase of biomass is observed

around the periphery of the central “tile”. [For a movie of these plots please see
external Folder labelled:- Comsol - Movie files - Toxic - 3Tile - Fig 6.22]

Figure 6.22 clearly illustrates the adverse effects of pollutants on the model

biomass. The biomass density is seen to increase on each side of the borders of

the pollutant “tile” (i.e. close to x = 0.1 and x = 0.3 ). As mentioned earlier, the

expansion of the biomass around the pollutant “tile” and consuming substrate

along its border where the toxic concentration is low can be seen (see movie files

Fig 6.21 and Fig 6.22 for an animation of the solutions). The outcome obtained

in this section is very similar to that seen for the corresponding two “tile” case

(see Figures 6.12 and 6.13).
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6.3.2.4 Biomass expansion in a highly toxic domain with scarce re-

sources.

In this section we explore if similar behaviour to that seen previously occurs if

the substrate concentration on the pollutant domain is lowered. Thus model

equations (6.11) with initial data in equations (6.12), (6.14) and (6.15) using the

default parameters in Table 6.1 with uS = (0.5, 0), uP = (0.1, 1) and uT = (1, 0)

are solved (Figure 6.23).
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Figure 6.23: 2d representation of the solutions to equations (6.11) with initial
data (6.12), (6.14) and (6.15) using parameter values from Table 6.1 with
uS = (0.5, 0), uP = (0.1, 1) and uT = (1, 0). The reduced substrate on the

pollutant “tile” significantly reduced biomass growth compared to Figure 6.21.
[For a movie of these plots please see external Folder labelled: Comsol -

Movie files - Toxic - 3Tile - Fig 6.23]

Figure 6.23 demonstrates the effect of reducing the substrate in the central

“tile” while retaining the same amount of toxic compound compared to Section

6.3.2.3. The lack of substrate hinders the expansion of biomass in reaching the
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target “tile” as expected. Furthermore, the tip density and internal substrate can

be seen to diminish at a faster rate than before. Figure 6.24 depicts the cross

sectional plot of the biomass, tips density and external substrate.
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Figure 6.24: Cross sectional representation of biomass, tip density and external
substrate obtained from solutions to equations (6.11) with initial data (6.12),
(6.14) and (6.15) using parameter values from Table 6.1 with uS = (0.5, 0),
uP = (0.1, 1) and uT = (1, 0). Biomass is seen to accumulate at the pollutant

periphery. [For a movie of these plots please see external Folder labelled:-
Comsol - Movie files - Toxic - 3Tile - Fig 6.24]

We can clearly see the adverse effects of pollutants on the biomass (Figure

6.24) (see also movie files Fig 6.23 and Fig 6.24 for an animation of the solutions).

All of the model results seen in this section thus far, compare accordingly with

the experimental observations of Fomina et al. (2003).

6.3.2.5 Biomass expansion from a nutrient rich region to a highly toxic

region with scarce resources

In Section 6.3.1.5 a scenario not explored by Fomina et al. (2000) was considered

where the impact of increasing the initial substrate immediately available to the

biomass was investigated. Similarly in this section we investigate how the system

would behave if the initial inoculum (i.e. the source “tile”) had a greater local
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substrate concentration.

Solving model equations (6.11) with initial data in equations (6.12), (6.14)

and (6.15) using default parameters specified in Table 6.1 with uS = (2, 0), uP =

(0.1, 1) and uT = (1, 0) produces the resulting Figure 6.25.
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Figure 6.25: 2d representation of the solutions to equations (6.11) with initial
data (6.12), (6.14) and (6.15) using parameter values from Table 6.1 with
uS = (2, 0), uP = (0.1, 1) and uT = (1, 0). The model biomass accumulates

around the pollutant “tile” and reaches the target “tile”. [For a movie of these
plots please see external Folder labelled: Comsol - Movie files - Toxic - 3Tile -

Fig 6.25]

The first three columns in Figure 6.25 depict results similar to those shown

in Figures 6.21 and 6.23. Notice the greater quantity of model biomass around the

pollutant “tile” resulting from the increased quantity of substrate in the source

domain compared to Figures 6.21 and 6.23. Thus increasing the substrate in the

source “tile” has provided the biomass with the ability to penetrate the pollutant

“tile” and reach the newer target “tile” (shown at time t = 5). In the previous in-
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stances where the initial external substrates were low, the biomass failed to reach

the target domain, even when the simulation was run for longer times (results not

shown). Also the pollutant presence forced growth around the periphery of the

domain causing deformation of the range of tip density and the internal substrate

(Figures 6.21 and 6.23). However due to the increased resources around its im-

mediate vicinity, the model biomass and tips in the current scenario can be seen

to penetrate through the hostile “tile” with minimal changes to its distribution

(see Figure 6.25). A cross sectional representation is shown in Figure 6.26.
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Figure 6.26: Cross sectional representation of biomass, tip density and external
substrate obtained from solutions to equations (6.11) with initial data (6.12),

(6.14) and (6.15) using parameter values from Table 6.1 with uS = (2, 0),
uP = (0.1, 1) and uT = (1, 0). External resources are shown to deplete on the
target “tile”. [For a movie of these plots please see external Folder labelled:-

Comsol - Movie files - Toxic - 3Tile - Fig 6.26]

Figure 6.26 shows that the density of biomass is greater around the pol-

lutant “tile” than that observed from Figures 6.22 and 6.24 (see also movie files

Fig 6.25 and Fig 6.26). Notice that the biomass has reached the target “tile” as

evidenced by the depletion of external substrate at time t = 5. The representation

in Figure 6.25 also depicts the increased density of tips and internal substrate on

the target “tile” compared to previous case (e.g. Figure 6.23).
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It was mentioned earlier that Fomina et al. (2003) showed the presence of

toxic metals caused an accumulation of hyphae in the border of the toxic “tile” but

a small amount of hyphae were able to penetrate the toxic region. The increase

of toxicity in the pollutant region made the accumulation of hyphae more dense

around its border but small increments of hyphae were still able to reach the

target domain. This has been replicated in the above modelling. In the current

investigation a scenario not explored by Fomina et al. (2003) was considered,

namely the effects of altering the nutrient on the source “tile”. In our simulations

it was seen that the model biomass is better placed to deal with the hostility

of the toxic region provided sufficient nutrients were readily available elsewhere.

Furthermore, by increasing the amount of substrate in the toxic region, a greater

quantity of biomass was able to penetrate and reach the target “tile”. Crucially,

in all these experimental configurations the biomass was able to expand around

the toxic material in the central “tile”, which was not discussed in Fomina et al.

(2003) although observed in their published images. Therefore in the next section

we aim to investigate this issue by altering the domain to avoid such behaviour.

6.3.3 Biomass expansion across a pollutant strip

In order to avoid situations where the biomass expands around a hostile region,

we now make the shape of the middle “tile” rectangular and extending across the

middle of the simulated Petri dish (see schematic representation in Figure 6.27).

This will prevent the biomass expanding around the “tile” to access additional

resources.
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Figure 6.27: Initial experimental configuration depicting a toxic strip domain.

The initial conditions are identical to that used in the previous section i.e.

(6.12), (6.14) and (6.15) respectively.

6.3.3.1 Biomass expansion from a rich nutrient source across a highly

toxic domain abundant in resources

We will solve model equations (6.11) with initial data (6.12), (6.14) and (6.15)

using the same set of parameters in Table 6.1 with uS = (1, 0), uP = (1, 1) and

uT = (1, 0) using zero flux boundary conditions. The domain is similar to that of

the previous section apart from the middle “tile” (i.e. pollutant strip) that now

extends across a diameter of the “Petri dish”. Results are shown in Figure 6.28.
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Figure 6.28: 2d representation of the solutions to equations (6.11) with initial
data (6.12), (6.14) and (6.15) using parameter values from Table 6.1 with

uS = (1, 0), uP = (1, 1) and uT = (1, 0). Biomass accumulates on the boundary
and penetrates the pollutant strip and some reaches the target “tile”. [For a

movie of these plots please see external Folder labelled: Comsol - Movie files -
Toxic - 3Tile - Fig 6.28]

In Figure 6.28 a build up of model biomass is observed at the edge of the

toxic strip but some biomass was able to cross the strip, take up substrate en

route and reach the target “tile”. Interestingly a build up of biomass on the right

hand side of the toxic strip is observed. This is due to the low levels of toxicity

present on the borders of the pollutant “tile” causing the tip velocity to slow

down when leaving the toxic strip resulting in a build up of biomass and which

is supplemented by the extra substrate present due to the increased size of the

pollutant “tile”. A cross sectional representation is shown in Figure 6.29.
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Figure 6.29: Cross sectional representation along y = 0 of biomass, tip density
and external substrate obtained from solutions to equations (6.11) with initial

data (6.12), (6.14) and (6.15) using parameter values from Table 6.1 with
uS = (1, 0), uP = (1, 1) and uT = (1, 0). Biomass penetrates the pollutant strip

and tips grow rapidly on the target “tile”. The external substrate depletes on all
“tiles”. [For a movie of these plots please see external Folder labelled:- Comsol -

Movie files - Toxic - 3Tile - Fig 6.29]

The behaviour of the model biomass in Figure 6.29 resembles that observed

in Figure 6.22. The adverse effects of pollutants on the biomass are seen via its

accumulation on the borders of the pollutant strip (i.e. around x = 0.1 and

x = 0.3) at time t = 3. As mentioned earlier, the result of biomass penetrating

the pollutant strip and accumulating on the right hand side provides the biomass

with sufficient energy to propel and acquire new resources from the target “tile”,

which is indicated by the depletion of external substrate (Figure 6.29) (see also

movie files Fig 6.28 and Fig 6.29).

6.3.3.2 Biomass expansion from a limited nutrient domain across a

highly toxic region abundant in resources

We further explore the effects of reducing the substrate level in the initial growth

zone of the fungi (source “tile”) and keep all the other conditions the same as

above to observe the impact of initial resources. We solve the model equations
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(6.11) with initial data (6.12), (6.14) and (6.15) using the parameters specified in

Table 6.1 with uS = (0.5, 0), uP = (1, 1) and uT = (1, 0) using zero flux boundary

conditions and generate results shown in Figure 6.30.
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Figure 6.30: 2d representation of the solutions to equations (6.11) with initial
data (6.12), (6.14) and (6.15) using parameter values from Table 6.1 with

uS = (0.5, 0), uP = (1, 1) and uT = (1, 0). Biomass can be seen to accumulate on
the left and right hand side of the pollutant strip. [For a movie of these plots

please see external Folder labelled: Comsol - Movie files - Toxic - 3Tile -
Fig 6.30]

In Figure 6.30 it is shown that the amount of biomass penetrating the

pollutant strip decreased when the substrate in the source “tile” was reduced.

There was a build up of biomass on the left hand side of the pollutant strip but

at a lower density than before (see Figure 6.28). This result is due to the biomass

having less energy to penetrate the hostile zone. The biomass can be seen to grow

rapidly once some tips cross the pollutant strip (see movie files Fig 6.30). This

phenomenon has been explained previously. A cross sectional representation is
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shown in Figure 6.31.
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Figure 6.31: Cross sectional representation of biomass, tip density and external
substrate obtained from solutions to equations (6.11) with initial data (6.12),
(6.14) and (6.15) using parameter values from Table 6.1 with uS = (0.5, 0),

uP = (1, 1) and uT = (1, 0). Biomass has lower density, consumed substrate from
the pollutant strip but has not from the target domain. [For a movie of these

plots please see external Folder labelled:- Comsol - Movie files - Toxic - 3Tile -
Fig 6.31]

The key observations from Figure 6.31 is that the biomass has a lower

density than the previous case in Figure 6.29 and the external substrate on the

target “tile” has not been altered, thus signifying the lack of biomass present in

the location (see movie file Fig 6.31). This reduction in biomass expansion is

solely due to the reduction in initial resources.

6.3.3.3 Biomass expansion from a scarce nutrient source across a

highly toxic region with limited resources

We will now explore the effects of lowering the nutrient levels in the toxic strip.

Model equations (6.11) are solved with initial data (6.12), (6.14) and (6.15) using

the same set of parameters in Table 6.1 with uS = (0.5, 0), uP = (0.1, 1) and

uT = (1, 0) generating results in Figure 6.32.
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Figure 6.32: 2d representation of the solutions to equations (6.11) with initial
data (6.12), (6.14) and (6.15) using parameter values from Table 6.1 with

uS = (0.5, 0), uP = (0.1, 1) and uT = (1, 0). Biomass can be seen to accumulate
on the boundary and fail to penetrate the pollutant strip. [For a movie of these
plots please see external Folder labelled: Comsol - Movie files - Toxic - 3Tile -

Fig 6.32]

We see from Figure 6.32 that the biomass does not penetrate the pollutant

strip in the same way as before when the amount of substrate in this region is re-

duced. We do see that while some tips are able to penetrate due to diffusion, their

density is not sufficient for them to form a significant concentration of biomass.

The one dimensional plot in Figure 6.33 shows a clearer picture of the behaviour

of biomass, tip density and external substrate.
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Figure 6.33: Cross sectional representation of biomass, tip density and external
substrate obtained from solutions to equations (6.11) with initial data (6.12),
(6.14) and (6.15) using parameter values from Table 6.1 with uS = (0.5, 0),
uP = (0.1, 1) and uT = (1, 0). Biomass can be seen failing to penetrate the

pollutant strip and reach the target domain. [For a movie of these plots please
see external Folder labelled:- Comsol - Movie files - Toxic - 3Tile - Fig 6.33]

It is seen in Figure 6.33 that the majority of the biomass has halted at

the periphery of the pollutant strip resulting in an accumulation within the gap

between the “tiles”. The external substrate on the source “tile” depletes which

results in the demise of the biomass (see movie file Fig 6.33).

6.3.4 Biomass expansion on toxic domain

As mentioned previously, an interesting observation made by Fomina et al. (2003)

was that a species of fungi was seen to accumulate hyphae on the border of

the toxic domain (see Figure 6.2) and then penetrate and form a small colony

on toxic “tiles” at low toxic concentrations and at varying nutrient levels. No

possible explanation was given for this phenomenon. However, we conjecture that

non-uniform mixing of the metal chloride with the nutrient in the formation of

the agar or due to natural diffusion is sufficient to create such structures. We will

here use our model to test this hypothesis.
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The region of interest is the middle strip and hence we will consider a

circular region within the pollutant strip to represent a location (or patch) where

a high concentration of substrate is clustered. Figure 6.34 shows a schematic

diagram of the domain.

Figure 6.34: Schematic representation depicting the formation of cluster of
nutrients on a toxic strip domain.

The initial data for the Source, Pollutant, and Target “tiles” are taken to

be the same as before. The Patch on the pollutant “tile” has identical conditions

to the Target “tile” i.e.

ρ(x, y, 0) = ρ′(x, y, 0) = n(x, y, 0) = si(x, y, 0) = 0,

T (x, y, 0) = T0,

se(x, y, 0) =

{
shighe0 , if

√
(x− 0.23)2 + y2 ≤ 0.03,

se0, otherwise,

(6.16)

where all parameters are the same as before (see Section 6.3.1.1) except the pollu-

tant strip now contains a patch with high substrate denoted by shighe0 . For conve-

nience, initial data for the patch will be denoted using the notation, uH = (se0 , T0)

representing external substrate and toxicity levels respectively.

The model equations (6.11) with initial data (6.12), (6.15) and (6.16) using

default parameters in Table 6.1 with uS = (0.5, 0), uP = (0.1, 1), uT = (2, 0)

and uH = (1, 0) were solved using similar techniques to those in the previous

sections. The following simulation depicts the growth of biomass in the presence of
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a pollutant strip containing a region where a cluster of substrate has accumulated

(Figure 6.35).
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Figure 6.35: 2d representation of the solutions to equations (6.11) with initial
data (6.12), (6.14), (6.15) and (6.16) using parameter values from Table 6.1 with
uS = (0.5, 0), uP = (0.1, 1), uT = (2, 0) and uH = (1, 0). Biomass accumulates

on the pollutant strip around the circular patch. [For a movie of these plots
please see external Folder labelled: Comsol - Movie files - Toxic - 3Tile -

Fig 6.35]

We see from Figure 6.35 that our hypothesis has successfully captured

the phenomena observed by Fomina et al. (2003) regarding concentrated biomass

growth in toxic regions (see movie file Fig 6.35).

When the same model equations are solved over a larger period of time

the biomass developing within the central region can extend across the pollutant

“tile” and ultimately reach the target “tile” (see Figure 6.36).
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Figure 6.36: 2d representation of the solutions to equations (6.11) with initial
data (6.12), (6.14), (6.15) and (6.16) using parameter values from Table 6.1 with
uS = (0.5, 0), uP = (0.1, 1), uT = (2, 0) and uH = (1, 0) run for longer times.

Biomass can be seen to accumulate on the pollutant strip on the circular patch
and reach the target domain. [For a movie of these plots please see external

Folder labelled: Comsol - Movie files - Toxic - 3Tile - Fig 6.36]

Figure 6.36 shows that the biomass can penetrate the toxic strip and

colonise the patch of nutrients within the toxic region. After absorbing the sub-

strate, the biomass can move out of the toxic region and start to colonize the

outer parts of the toxic region. We also observe that the biomass has reached the

newer resource “tile” and increased its density accordingly.

6.4 Conclusion

In this chapter we have primarily used the work of Fomina et al. (2000, 2003) as

a template to construct and apply the model equations to predicting the response
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of fungi to polluted landscapes. We have tested various cases from these papers

and successfully replicated some observations with the aid of numerical simula-

tions. Typically fungal experiments take a significant amount of time (between

days and weeks) to obtain results and numerous replicates are needed. With our

model we can simulate several observations within the space of a few minutes and

provide useful insights about the biology otherwise not obvious from experimental

observations alone.

One such case is the formation of biomass on the toxic domain, a phe-

nomenon which until now has been unexplained. Our hypothesis, namely that

non-uniform mixing of the metal chloride with the nutrient in the formation of

the agar or due to natural diffusion, is sufficient to create structures seen in Fomina

et al. (2003) is certainly plausible considering the unlikeliness of performing per-

fectly uniform mixing of substrate onto a fine medium (tiles are of size 10×10×3

mm). Thus some patches may contain higher nutrient concentrations allowing the

hyphae to colonise and provide additional energy to the leading tips so they can

move out of the toxic region and scour for newer resources.

Another aspect explored using the model was the impact of inoculating

biomass on a substrate rich domain to observe how it reacts with adverse condi-

tions. It was shown that provided the biomass had access to significant amounts

of resources in its immediate vicinity, it is better able to react and even penetrate

polluted regions (i.e. more “energy” is available to overcome the effects of the tox-

icity). This aspect was not explored in Fomina et al. (2000, 2003). While further

different scenarios could have been explored by applying different combinations

of the parameter variables and initial data, we have only focused on a handful of

cases that were similar to the experiments of Fomina et al. (2000, 2003).

It was stated by Olishevskya and Zhdanova (2009) that in a toxic metal-

containing domain, aggregated mycelia could produce high local concentrations

of many extracellular products, such as chelating and sequestering agents (e.g.

siderophores) with metal-binding abilities (Gadd, 1993; Morley et al., 1996;

Baldrian, 2003; Olishevskya and Zhdanova, 2009). Surprisingly, no previous mod-

elling study, at least to the author’s knowledge, has investigated the production of

such agents. Hence, in the following chapter we will investigate such phenomena

by developing a suitable mathematical framework.
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Chapter 7

Iron in Fungi: Modelling the

Role of Siderophores in Iron

Acquisition

Iron is an essential element for nearly all life forms on earth. Iron deficiency can

lead to several chronic medical conditions in humans such as anemia (Zimmer-

mann and Hurrell, 2007; Beard, 2008). In plants, iron deficiency can severely

hinder growth. One third of the world’s soils are considered to be iron deficient

due to the insolubility of ferric iron present in the environment (Marschner, 1995).

Eukaryotic cells contain a large number of iron-dependent proteins, responsible

for major cellular activity. Nutritional iron is not readily available in terrestrial

environment thus various microorganisms have evolved mechanisms to cope with

iron scarcity. These mechanisms have been studied at the molecular level for

various microscopic eukarytotes such as bacteria and pathogenic fungi (Philpott

et al., 2012). In fungi, four different mechanisms for the acquisition of iron have

been identified (Helm and Winkelmann, 1994; Renshaw et al., 2002, and refer-

ences therein) (i) Shuttle mechanism: ferric iron uptake mediated by ferric iron

specific chelators (siderophores), (ii) Direct-transfer mechanism: reductive iron

assimilation, (iii) Esterase-reductase mechanism: low-affinity ferrous iron uptake

and (iv) Reductive mechanism: heme uptake and degradation (Haas, 2014). We

will focus our attention on the first of these mechanisms. Under iron-limited

conditions, microorganisms produce and secrete small organic molecules called

siderophores to enhance the uptake of iron (Schwyn and Neilands, 1987; Saha

et al., 2016). Siderophores are typically produced by bacteria, fungi and mono-
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cotyledonous plants (Ratledge and Dover, 2000). Siderophore functions comprise

uptake, intracellular transport and storage of iron.

Siderophores have drawn much attention in recent times due to their po-

tential roles and applications in various bio-technologies including agriculture,

ecology, bio-remediation, bio-control, bio-sensor and medicine (Saha et al., 2016).

Siderophores (Greek sideros meaning iron and phores meaning bearers) are low

molecular weight iron chelating compounds that have a high affinity for ferric

iron. Generally once the siderophores are attached to the ferric iron, the iron-

siderophore complexes are transported (Srivastava et al., 2013) and can be ac-

quired by the organism, where the iron is internalised and used to support further

biomass growth and function. Their significance in applications are mainly due

to siderophores having the ability to bind to a variety of metals in addition to

iron (Bellenger et al., 2008; Braud et al., 2009; Sasirekha and Srividya, 2016).

For example, siderophores play a crucial role in mobilising metals from metal-

contaminated soils (Ahmed and Holmström, 2014, and references therein). Ad-

ditionally in bio-control, microorganisms that produce certain siderophores can

take up iron from around their immediate vicinity and invade a competitor’s

space in search for iron, which leads to the suppression of growth of several fungal

pathogens (McLoughlin et al., 1992; Verma et al., 2011).

In Chapter 6 the work of Fomina et al. (2000, 2003) was explored which

involved investigating the interactions between some strains of fungi (T.Viride

and C. Rosea) with toxic metals (principally cadmium and copper). A key ob-

servation made from the experiments was the ability of hyphae to penetrate the

polluted domain in response to varying levels of nutrient and metal concentra-

tion; for example under low levels of toxic metals, hyphae were able to penetrate

and even cultivate the pollutant tile but this ability declined with greater metal

concentration. Siderophores released by the respective fungi could be a possible

explanation for this phenomena since too much metal can be lethal to the organ-

ism, also less siderophores are released and taken up in the presence of high metal

concentration.
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7.1 Siderophore detection in laboratory experi-

ments

Siderophores exist throughout all hyphae in fungal mycelia. An internal mech-

anism within the organism is responsible for monitoring iron levels and when it

detects a critical level of iron depletion, siderophores are released to the exter-

nal environment in search of an iron source (Miethke and Marahiel, 2007). The

amount of siderophores released depend on the species of microorganism under

investigation and the internal concentration of iron. Species of fungi vary in their

requirement of iron; some have an extreme affinity for iron and thus require greater

quantities while others require less for colony functionality. Also siderophores are

not always continuously released and iron is not always constantly taken up since

too much iron can be harmful to the organism. Thus, once a threshold has been

reached (for bacteria this is of the order 10−5 mol/l, Neilands, 1995; Cabaj and

Kosakowska, 2009), the release of siderophores is reduced or stopped altogether

(Oberegger et al., 2001; Eisendle et al., 2006).

Siderophores are classified by the ligands (an ion, molecule, or molecular

group that binds to another chemical entity to form a larger complex) used to

chelate the ferric iron that can be categorised as catecholates, hydroxamates, and

carboxylates (types of siderophore) (Winkelmann, 1991, 2002; Ahmed and Holm-

ström, 2014). Fungi mostly produce siderophores that fall in the “hydroxamates”

category and most species of fungi make more than one type of siderophore, pos-

sibly to adapt to different environmental conditions (Renshaw et al., 2002; Perez-

Miranda et al., 2007; Johnson, 2008). Thus various assays have been developed

to detect the different phenotypes of siderophores. While these assays are useful

for identifying various siderophores, numerous assays would have to be formed

independently to detect all possible forms of siderophores of which there are more

than 500 known distinct types (Boukhalfa et al., 2003; Kraemer et al., 2005).

Schwyn and Neilands (1987) developed a universal siderophore detection

assay using chrome azurol S(CAS) and hexadecyltrimethylammonium bromide

(HDTMA) as indicators. The CAS/HDTMA complexes tightly bond with ferric

iron to produce a blue colour. When a strong iron chelator, such as a siderophore,

removes iron from the dye complex, the colour typically changes from blue to ei-

ther orange, magenta or purple (see Figures 7.1 and 7.2). Siderophore production

by microorganisms in solid medium can thus be measured by azurol S (CAS)-agar
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plate assay. Typically the CAS complex is prepared and distributed uniformly on

to a Petri dish. A fungal strain from a species of interest is grown on a Petri dish

and a small segment is carefully sliced and placed on the centre of the uniform

domain containing the CAS complex see Figure 7.1 (in some experiments a sterile

toothpick is used to transfer the fungi, Andrews et al., 2016a,b). However, the high

toxicity of CAS-blue agar medium caused by the detergent (HDTMA) impedes its

utilisation with many varieties of fungi and bacteria. A modification of the CAS-

agar plate assay was made by Milagres et al. (1999) incorporating the CAS-blue

dye in a medium with no contact with the microorganisms, e.g. on a partitioned

Petri dish. Half of each plate used in the experiments were filled with the most

appropriate culture medium for each type of microorganism and the other half

with CAS-blue agar (see Figures 7.2 and 7.3). This modification paved the way to

study several strains of fungi (basidiomycetes, deuteromycetes, ascomycetes and

zygomycetes) and bacteria (Gram positive and negative). All the microorgan-

isms grew without interference from the CAS-blue agar and reacted in different

manners to the CAS assay upon contact. Some strains of wood-decaying basid-

iomycetes (mainly white-rot fungi) and Aspergillus species produced the fastest

colour-change reactions in the CAS-blue agar (Milagres et al., 1999). This mod-

ified method facilitated optimisation of culture conditions, since both CAS-blue

agar and growth medium were prepared and added in the Petri dish separately.

Figure 7.1: Experimental observation by Bertrand et al. (2010) on the
production of siderophores. The pink halo around the fungal colony signifies the

presence of siderophores.

In summary, according to Milagres et al. (1999) a fungal strain is typi-

cally cultivated on an independent Petri dish laced with some form of substrate
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Figure 7.2: Experimental observation
by Srivastava et al. (2013) on the

production of siderophores observed via
colour change occurring at the centre of

the Petri dish. Figure 7.3: Experimental observation
by Indiragandhi et al. (2008) on the

production of siderophores determined
via colour change from blue to clear.

(typically malt agar) and the CAS/HDTMA-iron (iron-complex) is prepared on a

separate Petri dish. Once the iron-complex solidifies, it is cut in half and placed

onto a new Petri dish, leaving one half empty. The other half is then laced with

some nutrient such as potato agar extract (PAE), malt agar extract (MAE) or

yeast morphology agar (YMA) upon which a small block of the cultivated fungal

mycelium is firmly placed, making sure no interaction is made with the iron-

complex. The Petri dish is then observed over a period of a few days. The fungal

mycelium grows from its initial inoculum site and upon reaching the iron-complex

an immediate colour change can be observed indicating the release of siderophores

from the fungi that start to chelate the iron from the CAS-iron complex resulting

in the colour change.

These types of experiments are primarily focused on the detection of

siderophores, rather than the uptake process of the siderophore-iron complex by

the fungal mycelium as it occurs in actual external habitats. As siderophores are

considered to be organic compounds which are not currently detectible in stan-

dard experiments (i.e. without CAS agar), they can easily be mistaken to be part

of the volatile organic compounds produced and used by some fungi in compe-

tition. The actual process of siderophore-iron complex uptake by fungi involves

much more complexities including various cell activity such as transport, storing

and release (see Haas, 2014, for a more complete description). We will not focus

our attention to such intricacies but rather focus on the laboratory experiments

214



involving the detection of siderophores.

There is currently extremely limited literature on the mathematical mod-

elling of siderophore study in fungi. The mathematical models that are available

have limited use such as to quantify the siderophore via using simple ad-hoc ap-

proaches such as measuring the physical distance of the colour change on a Petri

dish or placing square paper underneath the Petri dish and recording the change

over a time period (in experiments involving solid medium) (Machuca and Mi-

lagres, 2003; Bogumi l et al., 2013; Ghosh et al., 2015; Andrews et al., 2016a,b).

These models tend to be linear. Siderophore study involving bacteria contain

some publications on continuous approaches to modelling siderophore behaviour

(Eberi and Collinson, 2009; Leventhal et al., 2016; Niehus et al., 2017). The

models are typically a set of ODEs that are solved numerically. Leventhal et al.

(2016, 2019) proposed a simple model representing siderophores produced by an

isolated bacteria cell and subsequently interacting with iron to form siderophore-

iron complexes. The focus of the study was primarily on the biology of the process

but the supplementary materials shed some light on to the mathematical analy-

sis. In particular, to this author’s knowledge, there is no mathematical model of

siderophore function applied to any organism more complicated than a single cell

bacteria hence a novel approach is developed here in this chapter.

We will develop our previous mathematical models and extend them to

capture known siderophore behaviours seen in experimental studies (Schwyn and

Neilands, 1987; Milagres et al., 1999). Since the only visual clues relate to the

colour change of the agar medium once the iron has been extracted from it, the

initial model will focus exclusively up to the point when the iron is extracted

from the external environment but not how the siderophore-iron complexes behave

after that. Later analysis in Chapter 8 will consider simplified systems where the

complexes are included and analytical treatments are possible.

7.2 Mathematical model and numerical simula-

tion

The model equations (6.11) used to model the experimental work of Fomina et al.

(2000, 2003) were adapted to represent the growth of a mycelium and the release

of siderophores in a two-dimensional domain corresponding to a Petri dish.

The revised mathematical model to investigate the activity of siderophores
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is therefore represented as

∂ρ

∂t
= |vsin∇ρ+Dnsi∇n+ κsin∇T | − dρρ,

∂ρ′

∂t
= dρρ− diρ′,

∂n

∂t
= ∇ · (vsin∇ρ+Dnsi∇n+ κsin∇T ) + αsiρ− βnρ,

∂si
∂t

= ∇ · (Diρ∇si −Daρsi∇n) + c1siρse

− c2|vsin∇ρ+Dnsi∇n+ κsin∇T | − c4|Daρsi∇n| − c5g(si), (7.1)

∂se
∂t

= De∇2se − c3siρse,

∂C

∂t
= DC∇2C + g(si)− r1CI,

∂I

∂t
= DI∇2I − r2CI,

∂T

∂t
= DT∇2T,

using similar notation as before and where C denotes the concentration of

siderophores, I denotes the iron concentration in the CAS agar and T denotes

the toxic compound concentration in the CAS agar, e.g. HDTMA. DC and DI

are the diffusion coefficients of siderophores and iron respectively, r1 and r2 are

reaction constants associated with the loss of free iron and siderophores that have

bonded to form siderophore-iron complexes. (The complexes themselves will not

be modelled here but will be considered in Chapter 8). The parameter c5 is a

constant associated with the energy used for the siderophores to be produced and

released. Finally, g(si) is a function representing the production of siderophores

which depends upon the internal substrate concentration si. For simplicity we

will take

g(si) = g0si. (7.2)

The function g(si) is an oversimplification of the production of siderophores but

it does capture the key quality of siderophore production; in particular that the

creation of siderophores is associated with the internal substrate concentrations

within a hyphae; if the internal substrate level is zero there will be no siderophores

produced. In our investigations we will assume that the type of fungi under

observation is in an iron-depleted state and siderophores are continually being

216



released into the environment at a rate dependent upon internal resources. Thus

we have neglected to include a process that reduces siderophore production when

the internal concentration of iron is plentiful and hence note that this model may

not be suitable for large time simulations in iron-rich settings.

We solve the system of PDEs (7.1) numerically in a circular domain, repre-

senting a Petri dish, with initial data representing experimental protocol. A zero

flux boundary condition is assumed since in laboratory experiments there are no

external addition or loss of biomass, nutrient or iron at the boundaries.

7.2.1 Siderophore detection on a partitioned domain

In this section we will investigate siderophore detection on a split domain similar

to that observed in experiments proposed by Milagres et al. (1999).

We numerically integrate equations (7.1) in COMSOL. The domain com-

prises of two semi-circular regions with radius representing 2 cm joined together,

one of which (left hand side) is inoculated by a model fungus and the other (right

hand side) represents iron and HDTMA and where the origin corresponds to the

centre of the circular domain. The parameter values used are given in Table 7.1.

The initial conditions for hyphae, tips, internal substrate and siderophores

corresponds to the initial plug of mycelium placed on the Petri dish at (−M, 0) of

radius R. Following earlier work, the initial conditions are therefore taken to be

ρ(x, 0)

ρ0

=
n(x, 0)

n0

=
si(x, 0)

si0
=
C(x, 0)

C0

=
1− tanh(φ(r −R))

2

ρ′(x, 0) = 0,
se(x, 0)

se0
=

1− tanh(φx)

2
(7.3)

I(x, 0)

I0

=
T (x, 0)

T0

=
1 + tanh(φx)

2

where φ is a scalar constant and r =
√

(x+M)2 + y2 denotes the distance from

the “inoculation” site. We set M = 0.2 corresponding to the centre of each plug

of mycelium and R = 0.2 corresponding to the radius of the fungal inoculum

throughout. The initial iron and toxic compound concentrations are proportional

to 1
2
(1 + tanh(φx)), which is mostly on the right hand side of the Petri dish and

the external substrate concentration is proportional to 1
2
(1− tanh(φx)) mostly on

the left hand side of the Petri dish (schematic representation is shown in Figure

7.4). Note that the domain has the same dimensions as used in the Fomina et al.
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(2000) experiments in Chapter 6.

Figure 7.4: Initial configuration used for the simulations.

The model equations (7.1) were solved in COMSOL with the initial data

in equation (7.3), parameter values from Table 7.1 and zero flux boundary con-

ditions. A common problem with numerical software is a computational error

resulting from a division by zero in the Jacobian matrix. To avoid such errors we

incorporated an ε term in certain absolute value expressions to avoid divisions by

zero and set it the value ε = 10−16 (smaller and larger values were considered in

a small number of test cases but did not influence the results obtained). This is a

standard approach designed to bypass numerical problems related to the precision

of the computer used. Typical results are shown in Figure 7.5.
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Initial Parameters Rescaled Value Dimensions Description
v 0.5 L5T−1N−1 Directed tip velocity
g0 1 MN−1T−1 Siderophore production rate
dρ 0.2 T−1 Hyphal inactivation rate
di 0 T−1 Inactive hyphae loss rate
α 104 LT−1N−1 Branching rate
β 104 LT−1 Anastomosis rate
c1 900 L3T−1N−1 Uptake rate of external substrate
c2 1 NL−1 Growth cost
c3 103 L3T−1N−1 Uptake of external substrate
c4 10−8 L−1 Active translocation cost
c5 10−7 NM−1 Siderophore secretion cost
Dn 0.1 L4T−1N−1 Tip diffusion coefficient
Di 10 L3T−1 Internal substrate diffusion coefficient
Da 10 L5T−1 Active translocation constant
De 10−4 L2T−1 External substrate diffusion coefficient
DC 0.3 L2T−1 Diffusion coefficient of siderophores
DI 10−5 L2T−1 Diffusion coefficient of iron
DT 10−7 L2T−1 Toxic substance diffusion coefficient
κ 2 L6T−1N−1M−1 Repellor strength coefficient
φ 20 - Scalar constant of initial data
r1 102 L Reaction (loss) rate of Siderophores
r2 102 L Reaction (loss) rate of iron
ρ0 0.1 L−1 Initial active hyphal density
n0 0.1 L−2 Initial tip density
si0 0.4 NL−2 Initial internal substrate density
se0 0.6 NL−2 Initial external substrate density
C0 0.4 ML−2 Initial siderophore density
I0 0.4 ML−2 Initial iron density
T0 2 ML−2 Initial toxic compound density

Table 7.1: The initial data and parameter values used to solve model equations
(7.1). The parameter values used for fungal growth are from the calibrated

experiments reported in Boswell et al. (2003a). The values for iron, siderophore
and toxic compound have been assumed based on known similar calibrated

processes.

The hyphal biomass and tip density accumulate on the periphery of the

toxicity zone (Figure 7.5). This is expected since the modelled toxicity restricts

growth of hyphal biomass in the right hand region. As nutrients are present across

the border, the hyphal biomass can be seen to grow parallel to the y-axis in this

region. This is the typical behaviour seen in experiments, (see Figures 7.2 and

7.3). However, some hyphal tips penetrate the toxic region (Figure 7.5). This

feature arises as the tip flux comprises a number of components and the “desire”

of tips to avoid increased toxicity regions is cancelled out by their straight line

growth habit coupled with diffusion. The presence of internal substrate is observed
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Figure 7.5: 2d representation of the solutions to equations (7.1) with initial
data (7.3) and parameter values from Table 7.1 on a “fine” mesh grid size in
COMSOL are presented. The total hyphal biomass (ρ+ ρ′), tip density (n),

internal substrate (si), external substrate densities (se), the iron (I on the right
half domain) and siderophore concentrations (C) are shown at times stated

above. [For a movie of these plots please see external folder labelled: Comsol -
Movie files - Fig 7.5]



throughout the domain and the resultant uptake of the external substrate.

An important observation from Figure 7.5 is the depletion of unbound iron

due to the interaction with siderophores. A pseudo semi-circular region centred

around the inoculation site can be seen to form, indicating the loss of iron and

the presence of siderophores, consistent with experimental observations (Figures

7.2 and 7.3). Indeed, a “bulge” can also be seen to form on the periphery of

the interaction zone that depicts the loss of iron. Also shown are regions where

siderophores have not bound with iron. Siderophores seem to be present where

there is a high presence of hyphal biomass. The proliferation of siderophore and

the uptake of iron is shown in Figure 7.6 where the contours of siderophores

are plotted. The depiction of siderophores in Figure 7.5, is in accordance to

experimental observations (see, for example, Figures 7.2 and 7.3).

(a) (b)

(c) (d)

Figure 7.6: The distribution of iron I (blue) and siderophores C (orange
contours) of equations (7.1) solved with initial data (7.3) and parameter values
from Table 7.1 is shown at times (a) t = 0, (b) t = 0.25, (c) t = 0.50 and (d)
t = 1 respectively. [For a movie of these plots please see external folder labelled:

Comsol - Movie files - Fig 7.6]

The numerical simulations in this current section corresponds to a species

of fungi that have high repulsion against the toxicity present in the agar com-
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plex. The advantages of our mathematical model (7.1) is that it has the ability to

fully explore alternative scenarios. Some of these possible cases include observing

the siderophore behaviour with changes in the external nutrient, iron concentra-

tion, internal substrate and initial siderophore concentration. A subset of these

scenarios will be explored via simulation in following sections.

7.2.2 Variations in the external substrate

We will simulate the behaviour of our model equations (7.1) with initial data

specified in equation (7.3), using parameter values specified in Table 7.1 but vary-

ing only the maximum initial external substrate concentration (se0). Specifically

investigated are cases corresponding to, first, a reduced nutrient concentration

(Figure 7.7 with se0 = 0.1, compared to the default value of se0 = 0.6) and, sec-

ond, an increased nutrient concentration (se0 = 1). When se0 = 0.1, it can be

seen in Figure 7.7 that the area covered by the model biomass has reduced due

to the low quantity of substrate present in the domain compared to the default

parameter case (Figure 7.5).
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Figure 7.7: 2d representation of the solutions to equations (7.1) with initial
data (7.3) and parameter values from Table 7.1 on a “normal” mesh grid size in

COMSOL are presented. The total hyphal biomass (ρ+ ρ′), tip density (n),
internal substrate (si) and external substrate densities (se0 = 0.1) are shown at

times stated above. [For a movie of these plots please see external folder labelled:
Comsol - Movie files - Fig 7.7]
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(a) (b)

(c) (d)

Figure 7.8: The distribution of iron I (blue) and siderophores C (orange
contours) under the influence of nutrient depleted substrate (se0 = 0.1) when
equations (7.1) solved with initial data (7.3) and parameter values from Table

7.1 is shown at times (a) t = 0, (b) t = 0.1, (c) t = 0.50 and (d) t = 1
respectively. [For a movie of these plots please see external folder labelled:

Comsol - Movie files - Fig 7.8]

Figure 7.8 shows the distribution of siderophore populations and a small

region where the iron have bonded with the siderophores. This distribution is sig-

nificantly less than that observed when the default value for se0 was used (Figure

7.6). Also, notice the contour levels on the left hand side are depleting with time.

This is due to less external substrate in the domain, resulting in lower internal

substrates and thus lower siderophore release.

Conversely when the external substrate concentration was increased (Fig-

ure 7.9) the model biomass extends over a greater area and is more dense than

the default parameter case (Figure 7.5). Furthermore, Figure 7.10 shows a greater

amount of siderophores present in the iron domain and thus a greater uptake of

iron has arisen.
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Figure 7.9: 2d representation of the solutions to equations (7.1) with initial
data (7.3) and parameter values from Table 7.1 on a “normal” mesh grid size in

COMSOL are presented. The total hyphal biomass (ρ+ ρ′), tip density (n),
internal substrate (si) and external substrate densities (se0 = 1) are shown at

times stated above. [For a movie of these plots please see external folder labelled:
Comsol - Movie files - Fig 7.9]
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(a) (b)

(c) (d)

Figure 7.10: The distribution of iron I (blue) and siderophores C (orange
contours) under the influence of nutrient-rich substrate (se0 = 1) when equations

(7.1) is solved with initial data (7.3) and parameter values from Table 7.1 is
shown at times (a) t = 0, (b) t = 0.25, (c) t = 0.50 and (d) t = 1 respectively.

[For a movie of these plots please see external folder labelled: Comsol -
Movie files - Fig 7.10]

7.2.3 Non-uniform nutrient distribution

The focus of this section will be simulating the behaviour of fungi placed onto a

nutrient rich region of the Petri dish. The nutrient preparation is an important

aspect of controlled experiments (Schwyn and Neilands, 1987). We will explore

how our system behaves in such situations by considering a simple case where

the initial inoculum is placed on a single nutrient rich region of the Petri dish

representing the instance when external nutrients from the culture used to form

the inoculum is also transplanted. This will be depicted via changing the initial

amount of external resource present on the Petri dish where the fungal inoculum

is placed. We use the following initial data to denote the external substrate where

226



the inoculum is placed

se(x, y, 0) =


se0

(1− tanh(φx))

2
, if r > R,

ŝe0
(1− tanh(φ(r −R)))

2
, if r < R,

(7.4)

where r =
√

(x+M)2 + y2, where M = R = 0.2 and ŝe0 represents the maximum

initial external substrate inside the inoculum region. se0 still denotes the maxi-

mum initial substrate concentration outside of inoculum. Thus, setting ŝe0 = 1

and se0 = 0.1 and keeping all other parameters the same (Table 7.1), we obtain

the results shown in Figure 7.11.

t = 0 t = 0.25 t = 0.5 t = 1
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Figure 7.11: 2d representation of the solutions to equations (7.1) with initial
data (7.3), (7.4) and parameter values from Table 7.1 except ŝe0 = 1 and

se0 = 0.1 on a “normal” mesh grid size in COMSOL are presented. The total
hyphal biomass (ρ+ ρ′), tip density (n), internal substrate (si) and external

substrate densities (se0) are shown at times stated above. [For a movie of these
plots please see external folder labelled: Comsol - Movie files - Fig 7.11]
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(a) (b)

(c) (d)

Figure 7.12: The distribution of iron I (blue) and siderophores C (orange
contours) under the influence of varying substrate (ŝe0 = 1 and se0 = 0.1) of

equations (7.1) when solved with initial data (7.3), (7.4) and parameter values
from Table 7.1 is shown at times (a) t = 0, (b) t = 0.25, (c) t = 0.50 and (d)
t = 1 respectively. [For a movie of these plots please see external folder labelled:

Comsol - Movie files - Fig 7.12]

Figure 7.11 show that the biomass has covered only a small area of the

Petri dish due to the low quantity of substrate present in the domain (se0 = 0.1)

resulting in a lower uptake of iron and a reduction of siderophores produced,

similar to the behaviour observed in Figure 7.7. In Figure 7.12, the presence of

siderophores in the iron domain is much less than in Figure 7.8 but significantly

more than in Figure 7.6 due to discrepancy in the initial nutrient concentration

available to the fungi.

7.2.4 Dependence on initial internal substrate

An interesting feature of our model is the initial internal substrate. In formulating

the model we assumed the production of siderophores are determined by the

amount of internal substrate within the mycelium. If a species of fungi is cultivated

on a nutrient rich Petri dish from which an inoculum is taken and placed on the
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Petri dish containing the iron, where the nutrient concentration is low minimal

then the inoculum will have a greater quantity of internal substrate, hence it

should be able to produce siderophores more rapidly. The corresponding model

equations were solved as described above but with si0 = 1. The results are very

similar to that of Figure 7.7, therefore only the iron and siderophore contour plot

is shown in Figure 7.13.

(a) (b)

(c) (d)

Figure 7.13: The distribution of iron I (blue) and siderophores C (orange) with
high initial internal substrate (si0 = 1) in a low nutrient environment (se0 = 0.1)
of equations (7.1) when solved with initial data (7.3), (7.4) and parameter values

from Table 7.1 is shown at times (a) t = 0, (b) t = 0.25, (c) t = 0.50 and (d)
t = 1 respectively. [For a movie of these plots please see external folder labelled:

Comsol - Movie files - Fig 7.13]

It is interesting to observe from Figure 7.13 that siderophores are able to

bind with a large quantity of iron. Comparing Figure 7.13 to Figure 7.8, it can

be seen that more iron is taken up due to the greater initial internal substrate

present. This is a significant observation because fungal species of interest are

usually prepared on a separate Petri dish. A small region of the grown fungal

mycelium is then sampled and placed on to the partitioned Petri dish on a new

nutrient source. If the nutrient agar is not well mixed or a reduced concentration
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of nutrient is used, the initial internal substrate can provide the initial burst of

energy required for the fungi to look for an energy source or acquire essential

minerals (i.e. iron).

The analysis in this section also demonstrates the role of the inoculum,

namely the outcome can be influenced by which region of the mycelium a sample

has been acquired since internal nutrients vary throughout the fungal colony.

7.2.5 Varying iron concentration

In this section we will explore the effects of increasing the iron concentration (from

I0 = 0.4 to I0 = 1) on the right hand side of the domain.

(a) (b)

(c) (d)

Figure 7.14: Equations (7.1) is solved with with initial data (7.3), (7.4) and
parameter values from Table 7.1. The distribution of iron I (blue) and

siderophores C (orange contours) under the influence of a high iron
concentration (I0 = 1) on the right hand side of the domain is shown at times
(a) t = 0, (b) t = 0.25, (c) t = 0.50 and (d) t = 1 respectively. [For a movie of
these plots please see external folder labelled: Comsol - Movie files - Fig 7.14]

Figure 7.14 shows the penetration of siderophore into the iron domain

exhibiting large concentrations of iron resulting in the uptake of iron having solved
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the model equations as before.

Some experimental observations (Machuca and Milagres, 2003; Srivastava

et al., 2013) have explored the impact of mixing different iron concentrations when

preparing the agar (nutrient substrate) to see how it effects siderophore detection.

We can explore various scenarios such as increasing the iron content on the left

hand side of the Petri dish or have a continual addition of iron onto the inoculum

to observe the impact on iron uptake. For simplicity we will explore the effects of

a uniform distribution of iron across the Petri dish. Thus the corresponding initial

data becomes I(x, y, 0) = I0 where I0 is a constant and all other parameters and

initial data are unchanged (e.g. equation (7.3) and Table 7.1).

(a) (b)

(c) (d)

Figure 7.15: Equations (7.1) are solved with initial data (7.3), (7.4) and
parameter values from Table 7.1. The distribution of iron I (blue) and

siderophores C (orange contours) under the influence of high iron concentration
across the domain (I(x, y, 0) = 1) is shown at times (a) t = 0, (b) t = 0.25, (c)

t = 0.50 and (d) t = 1 respectively. [For a movie of these plots please see
external folder labelled: Comsol - Movie files - Fig 7.15]

Although the iron is distributed across the entire domain, Figure 7.15

depicts the iron concentration only on the right hand side of the domain. Thus

comparing Figure 7.15 to Figure 7.14 it can be seen that less iron is taken up from

231



the right hand side of the domain. This is in correspondence with the experimental

findings of Srivastava et al. (2013) and others where it was found that the higher

the quantity of iron present in the domain containing the fungal inoculum, the less

siderophores binded with the iron on the right hand side of the Petri dish. This

behaviour is more prominent in the one dimensional cross sectional plot shown in

Figure 7.16.

(a) (b)

Figure 7.16: A cross section representation of iron I (right hand side of each
plot) and siderophores C (left hand side of each plot). (a) Depicts the behaviour
of siderophores when the initial iron concentration is large (I(x, y, 0) = 1) is on

the right hand side of the Petri dish only, (b) depicts the behaviour of
siderophores when the initial iron concentration is large everywhere. Shown at
times indicated. [For a movie of these plots please see external folder labelled:

Comsol - Movie files - Fig 7.16]

7.3 Conclusion

The research on siderophore production and function in fungi is still in its ado-

lescence. There are many new species of siderophores being detected and new

information on their behaviour is being observed. Due to some fungi having the

ability to uptake toxic substances from polluted landscapes in a safe and cost

effective manner, the use of fungi in the area of bio-remediation has gained pop-

ularity over the past few decades. The intricate functionality of fungi in these

fields has been well studied but only recently have the discovery and importance

of siderophores come to light. However, mathematical research has been limited

in the study of siderophores analysis.

The mathematical modelling in this chapter could shed some light onto

studies involving siderophore and iron interactions. Often laboratory experiments
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involving fungal interactions with iron require many replicates to be carried out to

verify experimental results and observe the behaviours of different strains under

varying conditions. This is often rewarded with insufficient outcomes forcing the

experiments to be reproduced.

The model we have proposed in equation (7.1) is a continuous model that

captures the entire process; the growth of fungi, uptake of nutrients, release of

siderophores and interaction with iron. We solved the model equations numeri-

cally and simulated results resembling experimental observations (see Figures 7.5

- 7.16). Furthermore the model was explored under various conditions and the

results obtained conformed to that observed in experiments (i.e. Milagres et al.,

1999; Srivastava et al., 2013).

In Section 7.2.1 our model equations simulated experimental studies of Mi-

lagres et al. (1999), using partitioned Petri dishes. We explored the impact on

growth of fungi and the detection of siderophores. It was found that external sub-

strate impacted on the growth of the biomass and thus ultimately iron uptake. It

maybe tempting to falsely conclude that in low nutrient environments fungi pro-

duce less siderophores. Aliasgharzad et al. (2009) found that in an extremely low

micro-nutrient (such as Fe, Zn, Cu and Mn) environment, Arbuscular mycorrhizal

fungi (AMF) secreted more siderophores, whereas regularly dosing the AMF with

a commercial ‘nutrient solution’ reduced siderophore production. This does not

nullify our result but rather it is in correspondence with our findings of increasing

the iron concentration in the left hand domain (Figure 7.16). A possible explana-

tion for less siderophore being detected in a low substrate domain is due to the

biomass having less energy to produce siderophore, thus less siderophore are able

to reach the iron domain.

The model explored a case of non-uniform external substrate distribution.

It is our hypothesis that if the nutrient in the inoculum domain is not uniformly

mixed, then it could have a negative impact on the detection of siderophores. Our

model also investigated an interesting case related to varying internal substrate.

In laboratory experiments fungi are grown on a separate Petri dish with its own

source of growth medium. Once grown, a section is cut and put onto a fresh

nutrient source region of the iron containing Petri dish. If the inoculum was taken

from a region of the fungal colony where there is likely to be a high concentration

of internal substrate present and placed onto the Petri dish with low external

substrate, then a greater detection of siderophores is predicted (Figure 7.13). This
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result may assist a researcher to determine which region the sample inoculum is

taken from (i.e. the outer edges of the fungal colony may contain lower internal

substrate).

The numerical simulations provided elements of a travelling wave solution

that are most easily illustrated by viewing model siderophore and iron densities

along the y = 0 cross section of the domain (see Figure 7.17).

(a) (b)

(c) (d)

Figure 7.17: Equations (7.1) are solved with initial data (7.3) and parameter
values from Table 7.1. The distribution of iron I (blue) and siderophores C

(green) from Figure 7.5 along y = 0 is shown at times (a) t = 0, (b) t = 0.25,
(c) t = 0.50 and (d) t = 1 respectively. [For a movie of these plots please see

external folder labelled: Comsol - Movie files - Fig 7.17]

From Figure 7.17, the siderophores clearly diffuse and interact with the iron

causing the iron density to decrease and the resultant distributions to propagate

to the right. Hence there is a resemblance of a travelling wave coinciding with

the movement of siderophores and iron. The main reaction region occurs at the

interaction zone which is of great importance as this can tell us how quickly the

siderophores are bonding with the iron. We will investigate this phenomenon

in Chapter 8 by considering a simpler set of model equations and attempt to

understand the existence and key properties of this travelling wave solution.
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Chapter 8

Modelling Siderophore-Iron

Interactions: An Analytical

Approach

The previous chapter investigated the production and spread of siderophores from

a fungal biomass into a domain containing iron. It was seen (Figure 7.17) that the

interface between the siderophore population and the unbound iron distribution

appeared to exhibit characteristics of a travelling wave solution. Indeed this has

been seen in experiments (e.g. Milagres et al., 1999). In this chapter a number

of simplified mathematical models will be developed and analysed to more fully

understand this dynamic. The initial focus will be on the siderophore population

and iron density while the siderophore-iron complexes will be introduced later. In

all instances, only movement in a single spatial variable will be considered.

8.1 Analysis of siderophore-iron interaction

To understand the travelling wave-like phenomena relating to the distributions of

siderophores and iron seen in the previous chapter, e.g. Figure 7.17, we construct

a simplified mathematical model. The equations for siderophores and iron from

(7.1) are

∂C

∂t
= DC∇2C + g(si)− r1CI, (8.1)

∂I

∂t
= DI∇2I − r2CI,
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where r1 and r2 denote reaction constants associated with the loss of siderophores

and free iron that have bonded to form siderophore-iron complexes and g(si)

represents the production of siderophores. As the siderophores are only produced

by the fungal mycelium and a single siderophore-iron complex forms from a single

siderophore and a single iron molecule r1 = r2 and so equation (8.1) can be

simplified to give

∂C

∂t
= DC∇2C − rCI, (8.2)

∂I

∂t
= DI∇2I − rCI,

where the production of new siderophores is captured by using suitable boundary

conditions at x = 0 when solved over the semi-infinite domain (0,∞). The semi-

infinite boundary conditions are

C = C0 at x = 0 & C → 0 as x→∞
I → I0 as x→∞ & I = 0 at x = 0. (8.3)

Thus for simplicity the fungal biomass is effectively assumed constant and

restricted to the region where x < 0 and we only focus on the siderophore and

iron populations where x > 0. Recall earlier chapters, and indeed multiple other

investigations, (e.g. Edelstein, 1982; Davidson, 1998; Boswell et al., 2003a) demon-

strated that the fungal biomass can advance as a travelling wave with constant

velocity. Hence the x−axis can be regarded as a slowly moving frame of reference

where the x coordinate denotes the distance from the leading edge of the model

biomass. Alternatively, the biomass can be regarded as being stationary, repre-

senting the instance at the boundary of a “polluted” region. Equation (8.2) is a

well known system of equations which has been studied extensively (e.g. Gálfi and

Rácz, 1988; Koza, 1996) on infinite domains. Here we consider investigating the

simplified model equations on a semi-infinite domain by first seeking self-similar

solutions, then progressing onto small time asymptotic behaviour and large time

asymptotic approximations.
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8.1.1 Self similar solutions

We consider model equations (8.2) representing the diffusion of siderophores from

a static fungal biomass into a semi-infinite region containing unbound iron with

initial data depicted schematically in Figure 8.1 over (0,∞) and is broadly similar

to that presented in Figure 7.17 obtained from the more complete set of equations

(7.1). Here, C0 and I0 represent initial values of the siderophore and iron densities

respectively.

Figure 8.1: A schematic drawing of the profiles of C (blue, initially taking the
value of zero everywhere except at x = 0) and I (red, initially taking the value

I0 > 0 everywhere except at x = 0) at time t = 0.

In the previous simulations of the extended model equations we saw that

the siderophores and iron profiles shifted to the right over time (Figure 7.17) once

the reaction has occurred. In the absence of a chemical reaction equation (8.2)

reduces to

∂c̄

∂t
= Dc̄

∂2c̄

∂x2
, (8.4)

∂ī

∂t
= Dī

∂2ī

∂x2
.

Thus the strategy now adopted is to consider the solution of (8.4) but with

appropriate boundary conditions. To solve the system of equations in (8.4), we

seek a self similar solution to reduce the system with two variables (t and x) to

a system involving a single variable. Therefore to non-dimensionalise the first
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equation in (8.4) we introduce x = ϑX, t = ςT and C = Γc̄ so that

Γ

ς

∂C

∂T
=

Γ

ϑ2
Dc̄

∂2C

∂X2
. (8.5)

From equation (8.5) we obtain ς = ϑ2 and so we have the similarity coordinate

η =
x

2
√
t
. (8.6)

Hence using η, equation (8.4) becomes,

− 2η
dc̄

dη
= Dc̄

d2c̄

dη2
. (8.7)

Equation (8.7) can easily be solved using the substitution ω = dc̄
dη

. Thus, integrat-

ing twice yields

c̄ =

∫ η

0

Ke−
z2

Dc̄ dz + K̄, (8.8)

where K and K̄ are constants. Using the substitution u = z√
Dc̄

we get

c̄ = K
√
Dc̄

∫ η√
Dc̄

0

e−u
2

du+ K̄. (8.9)

Therefore using the error function erf(φ) = 2√
π

∫ φ
0

e−u
2
du we obtain the following

solutions (a similar approach can be taken for ī),

c̄ = Pc̄ erf

(
η√
Dc̄

)
+Qc̄,

ī = Pī erf

(
η√
Dī

)
+Qī, (8.10)

where Pc̄, Pī, Qc̄ and Qī are constants. We now evaluate the constants for two

distinct cases corresponding to small and large times. For small time approxi-

mations, it has been assumed no reaction between the siderophores and iron has

taken place. For large time it is assumed the reaction only takes place inside a

narrow reaction zone.
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8.1.2 Small time asymptotic limit

For small times, the leading order equations in (8.2) are in fact given by (8.4)

whose solutions are given by (8.10). Using the boundary conditions from equation

(8.3), we obtain

c̄ = C0

(
1− erf

(
η√
Dc̄

))
,

ī = I0 erf

(
η√
Dī

)
. (8.11)

Suppose xm denotes the position of the reaction front. This is defined to be the

location where the reaction rate rc̄̄i is maximum, i.e. where (rc̄̄i)η = 0. Using the

above relationship, there is a particular value of η say, where xm = 2ᾱ
√
t. Hence

by substituting η = ᾱ into (rc̄̄i)η = 0 we find the position where the maximum

reaction rate between siderophores and iron takes place corresponding to the root

of

0 =
2C0

(
1− erf

(
ᾱ√
Dc̄

))
I0 e

− ᾱ
2

Dī

√
πDī

−
2C0 e−

ᾱ2

Dc̄ I0erf

(
ᾱ√
Dī

)
√
πDc̄

. (8.12)

After some algebraic manipulation, equation (8.12) yields the following which is

satisfied at the reaction front

e
ᾱ2

Dc̄ erfc

(
ᾱ√
Dc̄

)
=

√
Dī

Dc̄

e
ᾱ2

Dī erf

(
ᾱ√
Dī

)
(8.13)

where erfc(·) is the complementary error function. The value of ᾱ satisfying

equation (8.13) allows us to calculate the position of the reaction front. While

(8.13) can be solved numerically, depending on the values of Dc̄ and Dī, certain

analytical approximations can be obtained. Three cases have been identified and

are described. For notational convenience we use β̄ = ᾱ√
Dc̄

and γ̄ =
√

Dc̄
Dī

and

therefore equation (8.13) becomes

eβ̄
2γ̄2

erf(β̄γ̄) = γ̄eβ̄
2

erfc(β̄). (8.14)

Therefore β̄ is a function of γ̄ (i.e. β̄ = β̄(γ̄)).
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Case 1

Consider γ̄ →∞ and we suppose that β̄ → 0, but β̄γ̄ →∞. We can see that

as β̄ → 0, eβ̄
2 → 1, erfc(β̄)→ 1,

as β̄γ̄ →∞, erf(β̄γ̄)→ 1.

Therefore equation (8.14) becomes

eβ̄
2γ̄2

= γ̄. (8.15)

Hence from equation (8.15) we get

β̄ = ±1

γ̄

√
ln(γ̄). (8.16)

We take the positive root because in a semi-infinite domain only β̄ > 0 is appro-

priate since ᾱ > 0. Therefore from equation (8.16) we can see that as γ̄ → ∞
=⇒ β̄ᾱ→∞ and β̄ → 0.

Case 2

Consider γ̄ → 0 and we suppose that β̄ → a constant, then β̄γ̄ → 0. We know

that erf(x) = 2√
π

∫ x
0

e−t
2
dt and lim

x→0
erf(x) = 2x√

π
. Hence, we see that

as β̄γ̄ → 0, eβ̄
2γ̄2 → 1, erf(β̄γ̄)→ 2β̄γ̄√

π
.

Then equation (8.14) becomes

2β̄√
π

= eβ̄
2

erfc(β̄). (8.17)

Hence numerically solving equation (8.17) we find that β̄ = 0.531597.

Case 3

We now consider the case when the diffusion coefficient for the siderophores and

iron are equal γ̄ = 1 (i.e. Dc̄ = Dī = D). Hence, equation (8.14) becomes

erf(β̄) = erfc(β̄).

240



Using erfc(x) = 1−erf(x) yields

2 erf(β̄) = 1, =⇒ β̄ = erf−1

(
1

2

)
.

Hence

β̄ = 0.476936. (8.18)

A schematic representation of all the valid cases from the analysis above

is depicted in Figure 8.2.

Figure 8.2: A schematic summary of the 3 cases for small time asymptotic
solutions with β̄ obtained from equation (8.14).

Numerical solutions of ᾱ obtained from equation (8.13) compare favourably

to the above approximations (see Table 8.1).
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Parameters
Numerical β̄ Numerical γ̄ Numerical ᾱ

Dc̄ Dī (8.14) (8.14) (8.13) Approximation (ᾱ) Cases
10−1 10−7 0.002628 1000 0.000831 0.000831 1
10−2 10−6 0.002141 100 0.002141 0.002141 1
10−6 10−2 0.531590 0.01 0.000532 0.000532 2
10−7 10−1 0.531597 0.001 0.000168 0.000168 2

1 1 0.476936 1 0.476936 0.476936 3

Table 8.1: Equations for small time asymptotic solution (8.13) are solved for ᾱ
numerically for various parameter values.

Our model in equation (7.1) is based on experimental settings involving

Petri dishes where the siderophore detection is in solid medium (recall the iron

complex is solidified and then cut in half). This protocol suggests iron has a higher

viscosity than the siderophores i.e. Dc̄ � Dī. Hence case 1 is most applicable

to our requirements. However, some studies involving siderophore detection are

carried out in liquid medium in tubes (Machuca and Milagres, 2003; Bholay et al.,

2012; Gamit and Tank, 2014). This involves the microorganisms under inspection

being mixed into the solution containing the CAS agar (iron complex) where

the colour change is observed (from blue to yellow typically) due to siderophores

binding with iron. For this setting, the iron will have a lower viscosity than

the Petri dish protocol and thus case 2 approximation for ᾱ will be appropriate.

Clearly this case is not relevant for our application. Case 3 could possibly arise

where the diffusivity for both the iron and siderophore are known to be similar.

Therefore the result obtained above indicates where the maximum rate of

reaction between the siderophores and iron takes place at small times. We can

obtain some information regarding the velocity of the reaction front from equation

(8.13). As xm = 2ᾱ
√
t corresponds to position, we can easily obtain the velocity

of the position of maximal reaction rate for small times to be given by x′m = ᾱ√
t
.

The acceleration can also be found from x′′m = − ᾱ

2
√
t3

, which tells us the position

of the maximum reaction rate is slowing down with time. Unfortunately, it is not

easy to continue the small time asymptotic expansion, although such an approach

was applied by Trevelyan (2009) in an infinite domain.

242



8.1.3 Large time asymptotic limit

In Chapter 7 (Figure 7.17) a one-dimensional plot of siderophores and iron were

depicted and a travelling wave at the reaction front was observed. In the previous

section we investigated the small-time asymptotic behaviour of the siderophore

and iron reaction front. In this section we search for a solution to equation (8.2) at

large times. We can find a solution by separating the system around the reaction

zone into regions as shown in Figure 8.3. Since diffusion is the only mechanism

for the movement, we suppose xf = 2ᾱ
√
t where well-known results on the spread

of material via diffusion in a single spatial dimension have been exploited and ᾱ

is a constant to be determined.

Figure 8.3: Schematic drawing of the siderophore C (blue) and iron I (red)
profiles around η = ᾱ.

In classical studies the model equations (8.2) have been studied in an infi-

nite domain and a solution can be found in the literature (e.g. Danckwerts, 1950;

Gálfi and Rácz, 1988; Koza, 1996). However, our focus is on a semi-infinite domain

where no results are known to exist. To perform the analysis attention is focused

on the reaction zone close to η = ᾱ and applying suitable boundary conditions on

the total flux coming into the reaction zone from both sides so we can determine a

solution for the reaction front position. Also notice that the iron and siderophore

complex concentrations tends to zero (i.e. CI → 0) outside the reaction zone.

Thus there are three regions: that to the left of the reaction front where the iron

is depleted, the reaction front itself around η = ᾱ, and the region to the right of

the reaction front where there are no siderophores. Away from the reaction front

either C or I is zero and hence in those two regions equation (8.2) simplifies to

those in (8.10). The long time behaviour seen in the numerical results in Figure

7.17 (also see movie file Fig7.17-1d sid iron long time.avi) suggest the following
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boundary conditions for the left and right most regions

LHS: C = C0 at η = 0 & Reaction front: C = 0 at η = ᾱ,

RHS: I → I0 as η →∞ & Reaction front: I = 0 at η = ᾱ. (8.19)

Using the general solution given in equation (8.10) and by applying the above

boundary conditions we obtain the particular solution

c̄ = C0

1−
erf
(

η√
Dc̄

)
erf
(

ᾱ√
Dc̄

)
 and ī = 0 for η < ᾱ,

ī = I0

1−
erfc

(
η√
Dī

)
erfc

(
ᾱ√
Dī

)
 and c̄ = 0 for η > ᾱ. (8.20)

To find ᾱ we balance the flux at the reaction zone denoted by xf = 2ᾱ
√
t. By

assuming continual low concentrations of I and C, we are assuming the overall

flux of the material at xf is zero, i.e. the flux coming into the region (η = ᾱ) is

given by

Dc̄c̄η +Dīīη = 0. (8.21)

Therefore using (8.20), it follows that at η = ᾱ

e
ᾱ2

Dī erfc

(
ᾱ√
Dī

)
=

√
Dī

Dc̄

I0

C0

e
ᾱ2

Dc̄ erf

(
ᾱ√
Dc̄

)
. (8.22)

In equation (8.22), there are four parameters, Dc̄, Dī, C0 and I0, and it

is possible to solve this equation numerically to calculate ᾱ. However, analytical

approximations can be constructed under certain situations. Five important cases

are described below

Case 1

Suppose,

ᾱ�
√
Dc̄,

√
Dī. (8.23)
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Using (8.23) we can see that

as
ᾱ√
Dī

→ 0, e
ᾱ2

Dī → 1, erfc

(
ᾱ√
Dī

)
→ 1− 2ᾱ√

πDī

,

as
ᾱ√
Dc̄

→ 0, e
ᾱ2

Dc̄ → 1, erf

(
ᾱ√
Dc̄

)
→ 2ᾱ√

πDc̄

.

Therefore equation (8.22) becomes

1− 2ᾱ√
πDī

≈
√
Dī

Dc̄

I0

C0

2ᾱ√
πDc̄

. (8.24)

We can rearrange equation (8.24) to get the approximation

ᾱ→
√
πDīC0Dc̄

2(C0Dc̄ + I0Dī)
. (8.25)

For the above approximation to be valid we need ᾱ√
Dī
→ 0. Hence from equation

(8.25) we obtain

ᾱ√
Dī

=

√
πC0Dc̄

2(C0Dc̄ + I0Dī)
→ 0, i.e.

C0Dc̄

C0Dc̄ + I0Dī

→ 0.

Alternatively this means
C0Dc̄ + I0Dī

C0Dc̄

→∞

and therefore
I0Dī

C0Dc̄

→∞ =⇒ Dī

Dc̄

� C0

I0

. (8.26)

We also need ᾱ√
Dc̄
→ 0. In a similar way for (8.25) we obtain

ᾱ√
Dc̄

=

√
πDc̄DīC0

2(C0Dc̄ + I0Dī)
→ 0,

i.e.
C0Dc̄ + I0Dī√

Dc̄DīC0

→∞

and so
1 + I0Dī

C0Dc̄√
Dī
Dc̄

→∞.
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Thus
Dī

Dc̄

→ 0 or
I0Dī

C0Dc̄

�
√
Dī

Dc̄

,

i.e.

Dc̄ � Dī or
Dī

Dc̄

�
(
C0

I0

)2

. (8.27)

Therefore in order for the approximation of ᾱ in equation (8.25) to be

valid, we can see from equations (8.26) and (8.27) that the following conditions

must be satisfied;

1� Dī

Dc̄

� C0

I0

(8.28)

or
Dī

Dc̄

� max

((
C0

I0

)2

,
C0

I0

)
. (8.29)

Case 2

Suppose,

ᾱ�
√
Dc̄,

√
Dī. (8.30)

Using (8.30) we can see that

as
ᾱ√
Dc̄

→∞, erf

(
ᾱ√
Dc̄

)
→ 1,

as
ᾱ√
Dī

→∞, erfc

(
ᾱ√
Dī

)
→ e

− ᾱ
2

Dī√
π

√
Dī

ᾱ
.

Then equation (8.22) becomes

e
ᾱ2

Dī

e
− ᾱ

2

Dī√
π

√
Dī

ᾱ

 =

√
Dī

Dc̄

I0

C0

e
ᾱ2

Dc̄ . (8.31)

We can simplify equation (8.31) to get

2C2
0

πI2
0

=
2ᾱ2e

2ᾱ2

Dc̄

Dc̄

. (8.32)
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Let y = 2ᾱ2

Dc̄
, then from equation (8.32)

2C2
0

πI2
0

= yey

and so

y = W

(
2C2

0

πI2
0

)
(8.33)

where W is the Lambert W function. Hence, from equation (8.33) we obtain

ᾱ→
√
Dc̄

2
W

(
2C2

0

πI2
0

)
. (8.34)

In order for (8.34) to be a valid approximation we need ᾱ√
Dc̄
→ ∞. Hence from

equation (8.34) we obtain

ᾱ√
Dc̄

=

√
1

2
W

(
2C2

0

πI2
0

)
→∞,

i.e.
2C2

0

πI2
0

→∞. (8.35)

We also need ᾱ√
Dī
→∞. Hence from equation (8.34) we obtain

ᾱ√
Dī

=

√
Dc̄

2Dī

W

(
2C2

0

πI2
0

)
→ ∞. (8.36)

Therefore in order for the approximation of ᾱ in equation (8.34) to be valid, we

can see from equations (8.35) and (8.36) that the following conditions must be

satisfied:

C0 � I0 and
Dc̄

Dī

= Ω(1), (8.37)

where Dc̄
Dī

is asymptotically greater than or equal to order 1.
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Case 3

Here we consider equal diffusion coefficients, (i.e. Dī = Dc̄ = D). Hence equation

(8.22) becomes

e
ᾱ2

D erfc

(
ᾱ√
D

)
=

I0

C0

e
ᾱ2

D erf

(
ᾱ√
D

)
. (8.38)

Using the identity erfc(x) = 1− erf(x), equation (8.38) becomes

1− erf

(
ᾱ√
D

)
=

I0

C0

erf

(
ᾱ√
D

)
=⇒ erf

(
ᾱ√
D

)
=

C0

I0 + C0

.

Hence,

ᾱ =
√
D erf−1

(
C0

I0 + C0

)
. (8.39)

Case 4

Here we suppose
ᾱ√
Dc̄

→ 0 and
ᾱ√
Dī

→∞. (8.40)

Using (8.40) we can see that

as
ᾱ√
Dī

→∞, erfc

(
ᾱ√
Dī

)
→ e

− ᾱ
2

Dī√
π

√
Dī

ᾱ
,

as
ᾱ√
Dc̄

→ 0, e
ᾱ2

Dc̄ → 1, erf

(
ᾱ√
Dc̄

)
→ 2ᾱ√

πDc̄

.

Therefore equation (8.22) becomes

e
ᾱ2

Dī

e
− ᾱ

2

Dī√
π

√
Dī

ᾱ

 =

√
Dī

Dc̄

I0

C0

2ᾱ√
πDc̄

. (8.41)

We can simplify equation (8.41) to get

ᾱ→
√
Dc̄C0

2I0

. (8.42)
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In order for (8.42) to be a valid approximation, the conditions in (8.40) need to

hold. Thus we need ᾱ√
Dc̄
→ 0. Hence from equation (8.42) we obtain

ᾱ√
Dc̄

=

√
C0

2I0

→ 0,

C0

I0

→ 0. (8.43)

We also need from (8.40) ᾱ√
Dī
→∞. Hence from equation (8.42) we obtain

ᾱ√
Dī

=

√
C0Dc̄

2I0Dī

→∞,

i.e.
C0Dc̄

I0Dī

→∞. (8.44)

Therefore in order for the approximation of ᾱ in equation (8.42) to be valid, the

following conditions must be satisfied;

Dc̄

Dī

� I0

C0

� 1. (8.45)

Case 5

Finally we consider the case where

ᾱ√
Dc̄

→∞ and
ᾱ√
Dī

→ 0. (8.46)

Using (8.46) we can see that

as
ᾱ√
Dc̄

→∞, erf

(
ᾱ√
Dc̄

)
→ 1,

as
ᾱ√
Dī

→ 0, e
ᾱ2

Dī → 1, erfc

(
ᾱ√
Dī

)
→ 1.

Then equation (8.22) becomes

1 =

√
Dī

Dc̄

I0

C0

e
ᾱ2

Dc̄ . (8.47)
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We can simplify equation (8.47) to get

ᾱ→
√
Dc̄

2
ln

(
Dc̄C2

0

DīI
2
0

)
. (8.48)

In order for (8.48) to be a valid approximation, conditions (8.46) must hold.

Therefore we need ᾱ√
Dc̄
→∞. Hence from equation (8.48) we obtain

ᾱ√
Dc̄

=

√
1

2
ln

(
Dc̄C2

0

DīI
2
0

)
→∞,

i.e.
Dc̄C

2
0

DīI
2
0

→∞. (8.49)

Also from (8.46) we need ᾱ√
Dī
→ 0. Hence from equation (8.48) we obtain

ᾱ√
Dī

=

√
Dc̄

2Dī

ln

(
Dc̄C2

0

DīI
2
0

)
→ 0,

i.e.
Dc̄

Dī

→ 0, (8.50)

since in (8.49) we require
Dc̄C2

0

DīI
2
0
→ ∞. Therefore in order for the approximation

of ᾱ in equation (8.48) to be valid, the following conditions are to be satisfied

1� Dc̄

Dī

� I2
0

C2
0

. (8.51)

A schematic representation of the approximations of ᾱ in terms of Dc̄
Dī

against I0
C0

for the five cases identified above is shown in Figure 8.4.
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Figure 8.4: A schematic summary of all cases when large time asymptotic
solutions for ᾱ obtained from equation (8.22) are valid.

There is excellent agreement between numerical solutions of equation (8.22)

and the approximations for ᾱ, the position where the maximum reaction between

the siderophores and iron occurs, constructed above (Table 8.2).

Parameters
Dc̄ Dī C0 I0 Numerical ᾱ (8.22) Approximation ᾱ Cases

10−2 10−8 10−7 20 4.409175× 10−7 4.409089× 10−7 1
10−2 10−8 20 10−7 4.137789× 10−1 4.137789× 10−1 2

1 1 10−2 10−4 1.823818 1.823818 3
10−2 10−8 10−7 10−4 2.223458× 10−3 2.223607× 10−3 4
10−8 10−2 10−2 10−7 2.145964× 10−4 2.145966× 10−4 5

Table 8.2: Equations for large time asymptotic solution (8.22) were solved for
ᾱ numerically for varying parameter values and compared to analytical

approximations.

The simulations obtained from the numerical solution showed there was

a shift to the left and a drop in densities between the siderophores and iron,

which can be seen in Figure in 7.17. Furthermore, the initial distribution had a

“large reaction zone” (i.e. a large region in which both the iron and siderophore

concentration were non-zero). Hence the above analysis may not be suitable for
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the initial movement. Additionally the small time analysis failed to provide insight

into individual wave properties such as the initial velocity and acceleration. Thus

an alternative approach is required for such analysis. We will utilise the Laplace

decomposition method used in earlier chapters.

8.2 Laplace decomposition method on wave

speed approximation

In the analysis carried out so far we have not been able to identify the immediate

impact on the individual motion of the siderophore and iron profiles for the sim-

ulations in the previous chapter. The self similar analysis in the previous section

provided some insight into the approximate position where the reaction occurs

under some specified boundary conditions. Our small time asymptotic solution

allowed us to describe the position of the reaction front xf , but was not used to

determine the individual motion for the siderophore and iron populations. Thus

an alternative method is sought.

In Chapter 3 the Laplace decomposition method (LDM) was successfully

used to construct formulae to determine the initial kinetic characteristics for any

system of PDEs for small times. Using this technique we can obtain an analytical

formula for the velocity and acceleration of siderophores and iron for small times

in the current setting. This transient phase is often imperceptible in experiments

as it is not easy to determine due to the magnitudes of the elements involved but

is possible to obtain using our mathematical techniques. The LDM also provides

a semi analytical form of the spatial and temporal evolution of the siderophore

and iron populations.

We apply the LDM to equation (8.2) with initial conditions,

C(x, 0) = Č0

(
1− tanh(θx)

2

)
,

I(x, 0) = Ǐ0

(
1 + tanh(φx)

2

)
, (8.52)

where Č0 and Ǐ0 are constants. θ and φ are constants used to control the gradients

of the profiles for the siderophore and iron respectively, which are similar to the

initial data in Chapter 7 although the domain is now infinite. As previously, we

252



seek a series solution of the form

C(x, t) = C̄0 + C̄1 t + C̄2 t
2 + · · ·

I(x, t) = Ī0 + Ī1 t + Ī2 t
2 + · · ·

The system of equations (8.1) with g(si) = 0 and initial conditions (8.52)

is solved using the Laplace decomposition method of which the first few terms are

C(x, t) = Č0

(
1− tanh(θx)

2

)
+
Č0

4

[
−4DC tanh(θx)3θ2

+
(
4θ2DC + rǏ0(1 + tanh(φx))

)
tanh(θx)

−rǏ0(1 + tanh(φx))
]
t + . . .

I(x, t) = Ǐ0

(
1 + tanh(φx)

2

)
+
Ǐ0

4

[
4DI tanh(φx)3φ2

+
(
−4φ2DI + rČ0(−1 + tanh(θx))

)
tanh(φx)

+rČ0(−1 + tanh(θx))
]
t + . . .

and an illustrative example is shown in Figure 8.5.

Figure 8.5: Plot of siderophore and iron concentration with 3 terms generated
with LDM using parameters DC = DI = Č0 = Ǐ0 = r = φ = θ = 1 shown at

times t = 0, 0.05 and 0.1.

Using the same techniques as described previously the initial velocities of
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the siderophores and iron populations at x = 0 are given by

Velocity of Siderophore = −C̄1

C̄ ′0
=
−rǏ0

2θ
, (8.53)

Velocity of Iron = − Ī1

Ī ′0
=
rČ0

2φ
, (8.54)

while the initial accelerations are given by

Acceleration of Siderophore =
2C̄ ′0C̄

′
1C̄1 − 2C̄2(C̄ ′0)2 − (C̄1)2C̄ ′′0

(C̄ ′0)3
,

=
rǏ0(2rǏ0φ+ Č0rθ + 4DCφθ

2 − 8DCθ
3 − rǏ0θ)

4θ2
, (8.55)

Acceleration of Iron =
2Ī ′0Ī

′
1Ī1 − 2Ī2(Ī ′0)2 − (Ī1)2Ī ′′0

(Ī ′0)3
,

=
−rČ0(2rČ0θ + Ǐ0rφ+ 4DIθφ

2 − 8DIφ
3 − rČ0φ)

4φ2
. (8.56)

Tables 8.3 and 8.4 compare the velocity and acceleration formulae in equa-

tions (8.53), (8.55), (8.54) and (8.56), for various parameter values to numerical

approximations obtained by numerically solving equations (8.2) using Matlab.

Parameters Wave front velocity Wave front acceleration
DC DI r C0 I0 θ φ Equation (8.53) t = 0.0001 t = 0.001 t = 0.01 t = 0.1 Equation (8.55) t = 0.0001
1 1 1 1 1 1 1 −0.500 −0.500 −0.500 −0.500 −0.530 −0.50 −0.50
2 1 1 1 1 1 2 −0.500 −0.500 −0.500 −0.500 −0.490 1.00 0.99

0.3 0.1 1 0.4 0.4 1 1 −0.200 −0.200 −0.200 −0.200 −0.203 −0.04 −0.04
0.3 0.01 1 0.4 0.4 1 2 −0.200 −0.200 −0.200 −0.199 −0.188 0.16 0.16

Table 8.3: Equations in (8.2) were solved numerically and the velocities and
accelerations of the leading edge of the wave fronts starting at x = 0 were

calculated at the times indicated. The initial velocity and acceleration of the
leading edge for the siderophore concentration profile obtained analytically from

equations (8.53) and (8.55) are shown for comparison.

The approximations using the velocity and acceleration formulae compare

favourably to the numerical approximations. From Tables 8.3 and 8.4 it can be

seen that the approximations become less accurate as time increases.

The primary observation is that the respective velocities of the siderophore

and iron populations have opposite signs at the first moment of interaction. This

signifies the loss of siderophores and iron as they are binding to form a siderophore-

iron complex. Thus, the results in this section are consistent with the COMSOL
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Parameters Wave front velocity Wave front acceleration
DC DI r C0 I0 θ φ Equation (8.54) t = 0.0001 t = 0.001 t = 0.01 t = 0.1 Equation (8.56) t = 0.0001
1 1 1 1 1 1 1 0.500 0.500 0.500 0.500 0.530 0.500 0.502
2 1 1 1 1 1 2 0.250 0.250 0.250 0.270 0.270 2.875 2.875

0.3 0.1 1 0.4 0.4 1 1 0.200 0.200 0.200 0.200 0.196 −0.040 −0.040
0.3 0.01 1 0.4 0.4 1 2 0.100 0.100 0.100 0.100 0.099 −0.008 −0.008

Table 8.4: Equations in (8.2) were solved numerically and the velocities and
accelerations of the leading edge of the wave fronts starting at x = 0 were

calculated at the times indicated. The initial velocity and acceleration of the
leading edge for the iron concentration obtained analytically from

equations (8.54) and (8.56) are shown for comparison.

simulations and provides a semi-analytical approach to capturing the behaviour

of initial impact upon contact between the iron and siderophore densities. The

results provided using the LDM approach is only valid for the particular initial

data chosen and will vary for different initial conditions.

8.3 Siderophore-iron complex

In the previous sections, attention was focused only on the populations of un-

bounded siderophores and iron molecules while the population of the siderophore-

iron complex itself was neglected. Since such entities have eluded physical obser-

vations in experiments, in this final section on siderophore dynamics we construct

and solve model equations representing the dynamics of both siderophores and

siderophore-iron complexes. In particular, we will consider the case where a fun-

gal biomass is separated from an infinite and static supply of iron by a constant

distance L and siderophores released by the biomass diffuse to the iron whereupon

they form complexes and diffuse back to the biomass. This is broadly similar to

the situation encountered by an expanding biomass where the biomass and iron

distributions are advancing and retreating respectively in a linear fashion sepa-

rated by a constant distance. A similar approach was undertaken in Leventhal

et al. (2016), except the siderophore-iron complexes were only considered as aris-

ing from a single bacterial cell.

8.3.1 Siderophore distribution

We have seen in previous sections that once the siderophores are released by the

fungus, their motion is governed by diffusion. Therefore siderophore concentra-
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tion, denoted by C, can be represented using the diffusion equation

∂C

∂t
= Dc

∂2C

∂x2
(8.57)

on (0, L). As before, the production (and loss) of siderophores will be accounted

for through suitable boundary conditions.

To solve equation (8.57) we need to define the initial and boundary con-

ditions. We assume there are initially no siderophores and therefore C(x, 0) = 0.

We also assume that siderophores are released by the biomass at a constant rate

k. Thus if the biomass is confined to the region x < 0, and the unbound iron to

x > L, the release of siderophores from the biomass corresponds to the boundary

condition DcCx(0, t) = −k. When the siderophores reach the iron at x = L, they

are assumed to immediately form siderophore-iron complexes and hence there

is a secondary boundary condition C(L, t) = 0. Thus, we have inhomogeneous

boundary conditions and the problem is specified as

Ct = DcCxx for 0 < x < L, t > 0

IC : C(x, 0) = 0, for 0 ≤ x ≤ L

BCs : DcCx(0, t) = −k, for t > 0 (8.58)

C(L, t) = 0, for t > 0.

We can solve (8.58) by constructing the solution C(x, t) in terms of the

steady state solution and a time dependent solution, i.e. C(x, t) = Cs(x)+Ĉ(x, t),

where Cs denotes the steady state solution.

The equilibrium solution Cs(x), must satisfy

0 = DcC
′′
s for 0 < x < L

BCs : DcC
′
s(0) = −k and Cs(L) = 0, (8.59)

where primes denote differentiation with respect to x. Integrating twice and

applying the boundary conditions gives

Cs(x) = −kx
Dc

+
kL

Dc

. (8.60)

To find Ĉ(x, t) it is necessary to solve (8.58) which with C(x, t) = Cs(x) + Ĉ(x, t)
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gives

∂Cs
∂t

+
∂Ĉ

∂t
= Dc

(
∂2Cs
∂x2

+
∂2Ĉ

∂x2

)
for 0 < x < L, t > 0

IC : Cs(x) + Ĉ(x, 0) = 0, for 0 ≤ x ≤ L

BCs : Cs(L) + Ĉ(L, t) = 0, for t > 0 (8.61)

DcC
′
s(0) +DcĈ ′(0, t) = −k, for t > 0.

Given the solution Cs(x) constructed above, (8.61) simplifies to the following

Ĉt = DcĈxx for 0 < x < L, t > 0

IC : Ĉ(x, 0) = −Cs(x), for 0 ≤ x ≤ L

BCs : Ĉ(L, t) = 0, for t > 0 (8.62)

DcĈ
′(0, t) = 0, for t > 0.

Notice that the BCs are now homogeneous. Equation (8.62) is solved using the

method of separation of variables. Assume Ĉ(x, t) can be separated to a product

of two functions,

Ĉ(x, t) = X(x)T (t).

Thus using separation of variables, a basic solution to equation (8.62) is

Ĉn(x, t) =
(
An cos(

√
λnx) +Bn sin(

√
λnx)

)
e−Dcλnt (8.63)

where An, Bn are constants and

λn =

(
(2n+ 1)π

2L

)2

. (8.64)

Using the boundary conditions in (8.62), it followsBn = 0 and hence the particular

solution

Ĉ(x, t) =
∞∑
n=0

Ane−Dcλnt cos(
√
λnx). (8.65)

To find An we need to utilise the Fourier series. We know that the steady state

solution is Cs(x) = − kx
Dc

+ kL
Dc

and initially there are no siderophores present, i.e.
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C(x, 0) = 0. Therefore at t = 0 equation (8.65) becomes

kx

Dc

− kL

Dc

=
∞∑
n=0

An cos(
√
λnx). (8.66)

Using the Fourier series, An is given by

An =
2k

LDc

∫ L

0

(x− L) cos(
√
λnx) dx. (8.67)

Applying integration by parts to equation (8.67) we obtain

An = − 2k

DcLλn
. (8.68)

Substituting equation (8.68) into (8.65) yields

Ĉ(x, t) = −
∞∑
n=0

2k

DcLλn
e−Dcλnt cos(

√
λnx),

or more usefully

Ĉ(x, t) = −
∞∑
n=0

8kL

Dc(2n+ 1)2π2
e−Dc(

(2n+1)π
2L )

2
t cos

(
(2n+ 1)π

2L
x

)
. (8.69)

Hence, the solution to the PDE in equation (8.58) is

C(x, t) = −kx
Dc

+
Lk

Dc

−
∞∑
n=0

8kL

Dc(2n+ 1)2π2
e−Dc(

(2n+1)π
2L )

2
t cos

(
(2n+ 1)π

2L
x

)
.

(8.70)

8.3.2 Siderophore-iron complex distribution

We now focus on the siderophore-iron complex. The siderophore-iron complex

only exists when iron binds with siderophores and then the complex’s motion

is determined by diffusion alone. Therefore we can model the siderophore-iron

complex also using the diffusion equation

∂V

∂t
= Dv

∂2V

∂x2
, (8.71)
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on (0, L) where V denotes the siderophore-iron complex concentration. To solve

equation (8.71) we need to define appropriate initial and boundary conditions.

We assume there are initially no siderophore-iron complexes, i.e. V (x, 0) = 0.

For positive times at x = 0 it is assumed the complex is immediately absorbed

by the fungal biomass and hence V (0, t) = 0. The complex is formed at the

boundary x = L when the iron and siderophore combine and therefore the flux

of the complex leaving must balance with the flux of the siderophore arriving,

i.e DvVx(L, t) = −DcCx(L, t). Thus, we seek V to satisfy the inhomogeneous

boundary problem

Vt = DvVxx for 0 < x < L, t > 0

IC : V (x, 0) = 0, for 0 ≤ x ≤ L

BCs : DvVx(L, t) = −DcCx(L, t), for t > 0 (8.72)

V (0, t) = 0, for t > 0.

As seen previously, due to the inhomogeneous boundary conditions the

solution for the PDE in equation (8.72) will be of the form V (x, t) = Vs(x) +

V̄ (x, t)+ V̂ (x, t) where V̄ and V̂ are carefully chosen with regards to the boundary

conditions and further V̂ satisfies initial data, while Vs represents the final steady

state solution.

The solution V (x, t) = Vs(x) + V̄ (x, t) + V̂ (x, t) must satisfy the equation

and initial/boundary conditions in (8.72) i.e.

∂
∂t

(Vs(x) + V̄ (x, t) + V̂ (x, t)) = Dv
∂2

∂x2 (Vs(x) + V̄ (x, t) + V̂ (x, t)), for 0 < x < L

IC : Vs(x) + V̄ (x, 0) + V̂ (x, 0) = 0, for 0 ≤ x ≤ L (8.73)

BCs : Dv(V
′
s (L) + V̄ ′(L, t) + V̂ ′(L, t)) = −DcC

′
s(L)−DcĈ

′(L, t) for t > 0

Vs(0) + V̄ (0, t) + V̂ (0, t) = 0 for t > 0

where primes denotes differentiation with respect to x. To find the equilibrium

solution of the complex from (8.73), Vs must satisfy

0 = DvV
′′

s for 0 < x < L

BCs : DvV
′
s (L) = −DcC

′
s(L) (8.74)

Vs(0) = 0.
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Since C ′s = − k
Dc

from the solution of (8.60), integrating (8.74) twice and applying

the boundary conditions gives

Vs(x) =
kx

Dv

. (8.75)

Now suppose V̄ (x, t) satisfies

V̄t = DvV̄xx for 0 < x < L

BCs : V̄x(L, t) = −Dc
Dv
Ĉx(L, t) = −

∞∑
n=0

2k(−1)n

DvL
√
λn

e−Dcλnt for t > 0 (8.76)

V̄ (0, t) = 0, for t > 0.

Notice from (8.69), since −Dc
Dv
Ĉx(L, t) = −∑∞n=0

2k(−1)n

DvL
√
λn

e−Dcλnt we seek a solution

of the form V̄ = fn(x)e−Dcλnt. From equation (8.76) we obtain

fn(x) = Ān sin

(√
Dcλn
Dv

x

)
+ B̄n cos

(√
Dcλn
Dv

x

)
(8.77)

where Ān and B̄n are constants. Thus using the boundary conditions for V̄ (x, t)

from (8.76) it follows B̄n = 0 and

Ān =
−2k(−1)n

√
DcDvλnL cos

(√
Dcλn
Dv

L
) (8.78)

resulting in

V̄ (x, t) =
∞∑
n=0

Ān sin

(√
Dcλn
Dv

x

)
e−Dcλnt. (8.79)

To determine V̂ (x, t) it remains to solve

V̂t = DvV̂xx, for 0 < x < L

IC : V̂ (x, 0) = −Vs(x)− V̄ (x, 0), for 0 ≤ x ≤ L (8.80)

BCs : V̂x(L, t) = 0 for t > 0

V̂ (0, t) = 0 for t > 0.

Notice that the boundary conditions are homogeneous hence we solve this using

the method of separation of variables. Assume V̂ (x, t) can be separated to a
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product of two functions of the form seen previously. Hence using separation of

variables with the boundary conditions in (8.80) we obtain

V̂ (x, t) =
∞∑
m=0

B̂me−Dvλmt sin
(√

λmx
)

(8.81)

where λm takes the same form as stated in (8.64). To find B̂m we need to utilise the

Fourier series. Recall, V (x, t) = Vs(x)+ V̄ (x, t)+ V̂ (x, t) and using the initial con-

ditions from equation (8.80) we get V̂ (x, 0) = −Vs(x)−V̄ (x, 0). We know that the

steady state solution is Vs(x) = kx
Dv

and V̄n(x, t) =
∑∞

n=0 Ān sin
(√

Dcλn
Dv

x
)

e−Dcλnt

therefore at t = 0 equation (8.80) becomes

∞∑
m=0

B̂m sin(
√
λmx) = − kx

Dv

−
∞∑
n=0

Ān sin

(√
Dcλn
Dv

x

)
. (8.82)

Using the Fourier series, the constants B̂m are given by

B̂m =
2

L

∫ L

0

[
− kx
Dv

−
∞∑
n=0

Ān sin

(√
Dcλn
Dv

x

)]
sin(
√
λmx) dx (8.83)

which can be more conveniently written as

B̂m = − 2k

DvL

∫ L

0

x sin(
√
λmx) dx︸ ︷︷ ︸

I1

(8.84)

− 2

L

∫ L

0

∞∑
n=0

Ān sin

(√
Dcλn
Dv

x

)
sin(
√
λmx) dx︸ ︷︷ ︸

I2

where I1 and I2 are used to denote the two integrals. Applying integration by

parts to I1, noting that cos(
√
λmL) = 0 and sin(

√
λmL) = sin( (2m+1)π

2
) = (−1)m,

yields

I1 = −2k(−1)m

DvLλm
. (8.85)

To determine I2 we utilise the compound angle formulae cos(A−B)−cos(A+B) =

2 sin(A) sin(B) and sin(A + B) = sin(A) cos(B) + cos(B) sin(A) and the above
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identities to get

I2 =
2(−1)m

√
DcDv

L

∞∑
n=0

Ān

√
λn

Dcλn −Dvλm
cos

(√
Dcλn
Dv

L

)
, (8.86)

provided Dcλn 6= Dvλm. From equations (8.85) and (8.86) we therefore deduce

B̂m = −2k(−1)m

DvLλm
+

2(−1)m
√
DcDv

L

∞∑
n=0

Ān

√
λn

Dcλn −Dvλm
cos

(√
Dcλn
Dv

L

)
.

(8.87)

Thus from equation (8.81), V̂ is given by

V̂ (x, t) =
∞∑
m=0

B̂m sin(
√
λmx)e−Dvλmt provided Dcλn −Dvλm 6= 0. (8.88)

It was stated earlier that the solution to equation (8.72) is of the form V (x, t) =

Vs(x) + V̄ (x, t) + V̂ (x, t). Thus the siderophore-iron complex population is given

by

V (x, t) =
kx

Dv

+
∞∑
n=0

Ān sin

(√
Dcλn
Dv

x

)
e−Dcλnt +

∞∑
m=0

B̂m sin(
√
λmx)e−Dvλmt,

(8.89)

where Ān and B̂m are given in (8.78) and (8.87) respectively. Notice the solution

is valid so long as Dc
Dv
6= λm

λn
or equivalently Dc

Dv
6=
(

2m+1
2n+1

)2 ∀n,m. Typical solutions

from equations (8.70) and (8.89) are shown in Figure 8.6 for different times where

Dc and Dv have been selected so that Dc
Dv

is not a square of a quotient of odd

numbers (for an animation please see file Fig 8.6.gif).

We notice a small lag before the complex approaches its steady state from

Figure 8.6. This is due to the fact that no complex can exist without some

interaction with the siderophores. Hence the siderophore-iron complexes start

being produced when the flux of siderophores is sufficiently high at the boundary

x = L. We can estimate this time lag by supposing that complexes can only be

detected when their production first exceeds a critical value Φ. Hence if t = tc

when

−DcCx(L, t) = Φ, (8.90)
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then using equation (8.70) we get

Φ = k −
∞∑
n=0

2k(−1)n

L
√
λn

e−Dcλntc . (8.91)

As equation (8.91) represents the first instance where the siderophores are de-

tectible, to get a good approximation we keep the first term of the series i.e.

n = 0 only. Thus, since λ0 =
(
π

2L

)2
equation (8.91) becomes

Φ ≈ k − 4k

π
e
−Dcπ2tc

4L2 (8.92)

and with some further algebraic manipulation

tc ≈
4L2

Dcπ2
ln

(
4k

(k − Φ)π

)
. (8.93)

Therefore the time when the siderophore-iron complexes are first detected is given

by equation (8.93). Its dependence on domain size L, siderophore production rate

k and diffusion coefficient Dc match intuitive expectations. Equation (8.93) can

be simplified further provided k � Φ (i.e. the amount of complex on the right

cannot exceed the flux of siderophores arriving from the left) resulting in

tc ≈
4L2

Dcπ2
ln

(
4

π

)
. (8.94)

which is essentially a transit time for a diffusive process (Edelstein-Keshet, 2005).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8.6: Solutions of equations (8.58) and (8.72) from equations (8.70) and (8.89) using parameter values k = 0.1,
Dc = 0.13, Dv = 0.1, L = 1 and truncating the series at 100 terms. Siderophores are represented by the curve on the left

hand side and the siderophore-iron complex is on the right hand side shown at times (a) t=0, (b) t=0.1, (c) t=0.3,
(d) t=0.5, (e) t=0.7, (f) t=0.9, (g) t=1.1 and (h) t=50. [For a movie of these plots please see external folder labelled:

Comsol - Movie files - Fig 8.6.gif ]
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8.3.3 Equal diffusion of siderophore and siderophore-iron

complex

The solution constructed above required that Dc was not a quotient of odd square

multiples of Dv. In particular, this meant that the solution was not valid if Dc and

Dv were equal. While there are good biological reasons as to why Dc 6= Dv (e.g.

due to different molecular weights between the siderophores and their complexes),

it is nonetheless possible to construct the mathematical solution. A valid solution

for V (x, t) that satisfies the case where Dc = Dv = D can be constructed by

seeking V̄ = (f(x) + h(x) t) e−Dλnt. All previous BCs are the same, thus

V̄t = DV̄xx for 0 < x < L

BCs : V̄x(L, t) = −Ĉx(L, t) = −
∞∑
n=0

2k(−1)n

DL
√
λn

e−Dλnt for t > 0 (8.95)

V̄ (0, t) = 0, for t > 0,

where once again −Ĉx(L, t) = −
∞∑
n=0

2k(−1)n

DL
√
λn

e−Dλnt. From equation (8.95) we

obtain the following two equations

hxx(x) + λnh(x) = 0

fxx(x) + λnf(x) =
h(x)

D
. (8.96)

Solving the homogeneous ODE from equation (8.96) we obtain

h(x) = K1 sin
(√

λnx
)

+K2 cos
(√

λnx
)
, (8.97)

where K1 and K2 are constants. Using the left hand side boundary conditions

(i.e. V̄ (0, t) = 0) for V̄ (x, t) from (8.95), it follows K2 = 0 and hence

h(x) = K1 sin
(√

λnx
)
. (8.98)

From the non-homogenous ODE in equation (8.96), the particular integral for

f(x) can be determined to be of the form

f(x) = K̄1x sin
(√

λnx
)

+ K̄2x cos
(√

λnx
)
, (8.99)
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where K̄1 and K̄2 are constants. Using equation (8.97) and (8.99) after applying

some simplification we obtain

√
λn

(
2K̄1 cos

(√
λnx

)
− 2K̄2 sin

(√
λnx

))
=
h(x)

D
. (8.100)

Comparing coefficients in equation (8.100) with (8.98) gives

K1 = −2K̄2

(
D
√
λn

)
and K̄1 = 0. (8.101)

Evaluating V̄x(L, t) at the right hand side boundary V̄x(L, t) = −Ĉx(L, t) we

obtain

fx(L) + hx(L) t =
−2k(−1)n

DL
√
λn

. (8.102)

Using equations (8.98), (8.99) and (8.101) we get

K̄2 =
2k

DλnL2
=⇒ K1 =

−4k√
λnL2

. (8.103)

Therefore using equations (8.103)

f(x) =
2k

DλnL2
x cos

(√
λn x

)
,

h(x) =
−4k√
λnL2

sin
(√

λn x
)
, (8.104)

and finally from equation (8.104) we obtain

V̄ (x, t) =
∞∑
n=0

2k

L2

(
x

Dλn
cos(

√
λn x)− 2t√

λn
sin(
√
λn x)

)
e−Dλnt. (8.105)

Thus,

V̂ (x, t) =
∞∑
m=0

B̃m sin(
√
λmx)e−Dλmt. (8.106)

Recall V (x, t) = Vs(x) + V̄ (x, t) + V̂ (x, t). Using the same initial conditions used

in equation (8.80), we get V̂ (x, 0) = −Vs(x)− V̄ (x, 0). We know that the steady

state solution is still the same, i.e. Vs(x) = kx
D

, and we determined V̄ (x, t) in
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equation (8.105). Therefore at t = 0 equation (8.81) now becomes

∞∑
m=0

B̃m sin(
√
λmx) = −kx

D
−
∞∑
n=0

2k

L2

(
x

Dλn
cos(

√
λn x)

)
. (8.107)

Using the Fourier series, B̃m is given by

B̃m =
2

L

∫ L

0

[
−kx
D
−
∞∑
n=0

2k

DL2λn
x cos(

√
λn x)

]
sin(
√
λmx) dx, (8.108)

= − 2k

DL

∫ L

0

x sin(
√
λmx) dx︸ ︷︷ ︸

Ĭ1

(8.109)

−
∞∑
n=0

4k

DλnL3

∫ L

0

x cos(
√
λn x) sin(

√
λmx) dx︸ ︷︷ ︸

Ĭ2

where Ĭ1 and Ĭ2 are used to denote the two integrals. Applying integration by

parts to Ĭ1 we obtain

Ĭ1 = −2k(−1)m

DλmL
. (8.110)

To determine Ĭ2 we need to utilise the same identities as before and after significant

algebraic manipulation we obtain

Ĭ2 = −
∞∑

n=0,n6=m

2k(−1)m

DλnL3

(
2L(−1)n

√
λn

λn − λm

)
− k

D
√
λ3
mL

2
, (8.111)

where the last term comes from the case when n = m. Adding the term from equa-

tion (8.110) and (8.111) together and substituting into equation (8.108), results

in

B̃m = −2k(−1)m

DλmL
−

∞∑
n=0,n 6=m

4k(−1)m+n

D
√
λnL2

(
1

λn − λm

)
− k

D
√
λ3
mL

2
. (8.112)
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The complete solution for V (x, t) in the case where Dc = Dv = D is therefore

given by

V (x, t) =
kx

D
+

2k

L2

∞∑
n=0

[(
x

Dλn
cos(

√
λn x)− 2t√

λn
sin(
√
λn x)

)
e−Dλnt

]

− k

DL2

∞∑
m=0

[
2L(−1)m

λm
+

∞∑
n=0,n 6=m

4(−1)m+n

√
λn

(
1

λn − λm

)

+
1√
λ3
m

]
sin(
√
λmx)e−Dλmt.

(8.113)

Typical solutions from equations (8.70) and (8.113) with Dc = Dv are shown in

Figure 8.7 for different times (for an animation please see file Fig 8.7.gif). Notice

the solution characteristics are similar to the previous case.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8.7: Solutions of equations (8.58) and (8.72) from equations (8.70) and (8.113) using parameter values k = 0.1,
D = 1, L = 1 and truncating the series at 20 terms (n = m = 20). Siderophores are represented by the curve on the left

hand side and the siderophore-iron complex is on the right hand side shown at times (a) t=0, (b) t=0.1, (c) t=0.3,
(d) t=0.5, (e) t=0.7, (f) t=0.9, (g) t=1.1 and (h) t=10. [For a movie of these plots please see external folder labelled:

Comsol - Movie files - Fig 8.7.gif ]
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8.4 Conclusion

The models seen in this chapter were simplified to consider small and large time

asymptotic approximations on the interactions between siderophores and iron.

This investigation culminated in well-formed analytical results. However, the

small time asymptotic solution didn’t easily reveal the behaviour upon immediate

contact between the siderophore and iron, due to the initial conditions used.

This required us to use another technique, the Laplace decomposition method,

introduced in earlier chapters.

Our analysis suggests that, in the first instance, when the siderophores

and iron interact, they both initially retreat and then proliferate forward as time

progresses once a “stable” distribution has been formed. This process happens in

the transient phase of the experiment and it is unlikely to be visually detectible due

to the size of siderophores and time scales involved. However, our mathematical

model not only captured this behaviour, but using our analysis we were also able

to quantify it and furthermore it supports numerical results.

New analytical results were also obtained when the siderophore-iron com-

plex was modelled. In experiments it has been shown that siderophores diffuse

and can only be detected once they bind with and remove iron mixed within a

chemical substance (CAS agar), thus it is the absence of iron that is usually ap-

parent. In laboratory experiments conforming to the methods used by Milagres

et al. (1999), the siderophores are not immediately detectable due to the parti-

tioning of the Petri dish, but once some siderophores have chelated the iron, the

production of the complexes can be detected via a colour change (i.e. turning

from a blue colour to orange/yellow). Using our proposed model (i.e. equation

(8.93)), it has been possible to approximate the length of time before the complex

is initially formed. Equations (8.70) and (8.89) will be of benefit to researchers

provided they can determine the diffusion coefficient for the siderophore Dc and

the siderophore-iron complex Dv.

Mathematical models involving siderophores are still scarce, especially in

the field of fungal studies, but there are a handful of papers involving bacte-

ria (i.e. Eberi and Collinson, 2009; Leventhal et al., 2016, 2019, and references

within) that resemble models similar to our simplified model (e.g. equations

(8.2)). Siderophores are typically depicted as a single entity in these studies and

lack the transition from a microscopic study to a macroscopic one. The investi-

gations described here not only provide a comprehensive model for the growth of
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the microorganism density (i.e. fungi) but also capture its intricate behaviours in

response to changes in its vicinity. Thus, the models developed here may allow

for quantitative and qualitative predictions to be made on actual experimental

studies.
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Chapter 9

Conclusion

9.1 Concluding remarks

Fungi are tremendously important to human society and their importance is likely

to increase. In recent times there are great concerns in seeking alternative suste-

nance due to overpopulation and steady decline in livestock cultivation which has

been the primary food source among the greater population. Indeed, currently in

human populations there has been a rise in the rates of vegetarianism and vegan-

ism since most of (if not all) the nutritional requirements for a healthy well-being

and lifestyle can be obtained from fungi. Furthermore, climate change causing

a rise in sea levels will reduce the amount of agricultural farmland. Moreover, a

significant proportion of land is barren and not suitable for agricultural purposes

due to toxins in the polluted landscapes. To add further negativity to an already

overwhelming problem, pathogenic fungi are continually having a negative impact

on yield resulting in huge losses in agriculture. The work carried out in this thesis

have provided potential methods and analysis to better understand the intrica-

cies of fungal interactions in a scientifically sound manner that is crucial to the

applications addressing these issues.

Edelstein-Keshet’s work on single species laid the foundation to represent-

ing fungal densities using a continuous modelling approach. Although Edelstein-

Keshet’s work has been well studied, results were constructed which, to the au-

thor’s knowledge, have not been obtained in previous investigations.

Exploring the four primary phenotypes devised by Edelstein (1982), a gen-

eral analytical solution was determined for the YWD phenotype and using a

specific form of initial conditions, particular analytical solutions were obtained
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for the FHD and FXD phenotypes. Due to their coupled nature, the primary

approach in solving these system of PDEs are via numerical methods, however

an analytical solution is more advantageous than numerical results, e.g. is less

computationally intensive and more accurate. Using the Laplace decomposition

method, we also successfully constructed a semi-analytical approach to solving

systems of partial differential equations that resulted in some novel results. Our

investigation demonstrated that the Laplace decomposition method provides good

approximations on the position of an invading wave front. However, the technique

undeniably has some limitations; in particular the approximate series solution ap-

pears to only be valid for a small region in the space - time plane regardless of

the number of terms generated in the series. Despite the potential lack of over-

all convergence of the generated series, we observed an interesting phenomena

occurring in our system of equations for the fungal YWD phenotype. Using a

number of terms from the semi-analytical solution, the position of the leading

wave did not appear to be affected by the spurious oscillations behind it (due to

non convergence of the series) and seemed to be in perfect alignment with the

closed form solution for large times. Due to the nature of the system of equations

used to model fungal phenotypes, there are strong similarities in the structure

of all such model equations. Hence, despite the lack of any known general an-

alytical solutions for the other phenotypes, we expect the methodology used for

the YWD phenotype to gain crucial information regarding the wave properties of

other phenotypes.

Utilising the decomposition method further, we provided formulae that

are in excellent agreement with numerical results in approximating the initial

kinematic properties of the leading edge of any system of PDEs provided the

gradient is not zero (i.e. ux 6= 0). The methods developed to determine the initial

velocity and acceleration can also be extended further to include initial jerk, snap,

crackle and pop. One main drawback of relying on numerical solutions is that

parameter values have to be calibrated in advance and it is therefore often difficult

to isolate the influence of one parameter on the system. Numerical solutions are

also useful in determining asymptotic behaviour for large times but often fail

to provide any information around its initial state. Hence using the velocity

and acceleration equations proposed, we can predict the initial development of a

system. This information is of relevance to researchers concerned with determining

the initial speed of a complex system of equations and is not limited to the models
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of fungi explored in this thesis.

Fungal application in biotechnology, and in particular bioremediation and

biological control, both share a common feature; that is fungal interactions of some

kind, e.g. with other fungi or with pollutants in the terrestrial landscape. Inter-

species fungal competition is inevitable in heterogeneous environments where fungi

combat other fungi via two primary means: releasing volatile organic compounds

or through consuming a rival’s nutrient source. The investigation carried out in

this body of work has primarily focused on how nutrient availability can influence

the outcome of fungal interactions by altering the rate at which they degrade a

rival’s hyphae and hyphal tips. In particular, the mathematical model predicted

the circumstances under which pairwise competition would result in the displace-

ment of one species by another, the intermingling (or coexistence) of multiple

species and the emergence of deadlock where a stalemate is reached.

In experiments involving mycelial networks, the majority of the variables

cannot be controlled but can be measured experimentally, e.g. the speed of tip

growth, branching and the death rate of a fungal network hyphae. One variable

that can be controlled, however, is the nutrient concentration. We have provided

a simple yet powerful description of how nutrient concentrations can influence

interactions between different fungal species. Through phase-space analysis, the

existence of travelling wave solutions in the model equations were demonstrated

which essentially can be regarded as comparing the production of new biomass

material through hyphal tip branching and extension to that lost through degra-

dation via either natural means or competition. Furthermore, bounds on the trav-

elling wave speed were also obtained in certain cases. Our modelling has shown

that hyphal degradation plays an important role in pairwise fungal competition;

it significantly reduces the region of the parameter space where intermingling (or

coexistence) can arise and extends the regions corresponding to displacement and

therefore provides a further competitive advantage to a fungus. Due to the struc-

ture of the model equations the analysis is not limited to fungal species but can

also be applied to a whole suite of predator-prey type systems, reaction-diffusion-

advection type systems and others.

A key limitation of the modelling approach in Chapter 4 relates to the

reduction of the biomass expansion to a single spatial dimension. In experimen-

tal configurations, and indeed often in the terrestrial environments, growth is

essentially planar and hence there may be inherent differences in the biomass
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structures produced in such settings. Thus an appropriate model capable of cap-

turing these behaviours was obtained via expanding the one-dimensional models

to a two-dimensional setting in Chapter 5. The key difference between one and

two dimensional models is that a one dimensional model describes qualitative

and quantitative outcome of a system along a single axis e.g. growth/no growth,

whereas a two dimensional model more fully illustrates the qualitative outcome

that may alter the quantitative predictions of a one dimensional model e.g. the

growth of one fungus around another mycelium or pollutant which quantifiably

changes the rate of the interactions.

Boswell et al. (2002) engineered an elegant two-dimensional model that

captured the growth of Rhizoctonia solani and found it to be in excellent agree-

ment with calibrated experimental data. The devised model consisted of mixed

hyperbolic-parabolic type equations. We used this model as the basis of our

investigation and extended it further to capture complex fungal interactions in

two-dimensional domains.

The primary observation obtained from the analysis was that the variation

of resources accessible to fungal species has a significant influence on the out-

come of competition. The model equations formulated were used to investigate

various scenarios involving resource distributions namely, the outcome of compe-

tition with distinct resources, perpetual availability of distinct resources, resource

availability at time intervals, distinct resources spread across the domain and a

single resource on a unified domain. The prevailing findings of the analysis was

that access to greater concentration of resources is sufficient to gain advantage

in fungal interactions. Fungi are abundantly used in the field of agriculture, bio-

remediation and bio-technology. Thus the techniques and the analysis seen in

Chapter 5 can provide benefits to the respective fields. Primarily, by determining

the critical nutrient concentrations required to obtain a sought after outcome will

provide greater control over the desired outcome.

Fungi are known to be extremely versatile. Certain species of fungi are

known to grow extremely well in harsh conditions and even in polluted landscapes.

To capture some basic functionality we extended Boswell’s model to simulate the

experimental work of Fomina et al. (2000, 2003) involving fungal behaviour in

toxic domains in Chapter 6. We tested various cases from these papers and suc-

cessfully replicated some observations with the aid of numerical simulations. With

our model we simulated several observations within the space of a few minutes
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and provided useful insights about the biology otherwise not obvious from experi-

mental observations alone. One such case is the formation of biomass on the toxic

domain, a phenomenon which until now has been unexplained. We hypothesised

that a patch may contain localised higher nutrient concentrations due to non-

uniform mixing of the nutrients allowing the hyphae to colonise. Another aspect

explored using the model was the impact of inoculating biomass on a substrate

rich domain to observe how it reacts with adverse conditions. It was shown that

provided the biomass had access to significant amounts of resources in its imme-

diate vicinity, it is better able react to and even penetrate polluted regions (i.e.

more “energy” is available to overcome the effects of the toxicity). This aspect

was not explored in Fomina et al. (2000, 2003).

In Chapter 7 we explored an area still in its infancy in terms of mathe-

matical research as a whole but especially in the field of fungal studies; that is

the study of siderophores. The model we have proposed is a continuous model

that captures the entire process; the growth of fungi, uptake of nutrients, release

of siderophores and interaction with iron. Furthermore the model was explored

under various conditions and the results obtained conformed to that seen in ex-

periments.

Typically, laboratory experiments involving fungal interactions with iron

require many replicates to verify experimental results and observe the behaviours

of different strains under varying conditions. This is often rewarded with insuffi-

cient outcomes forcing the experiments to be reproduced. Additionally it is our

hypotheses that if the nutrient in the inoculum domain is not uniformly mixed,

then it could have a negative impact on the distribution of siderophores. The re-

lease of siderophores cannot yet be measured in a quantitative real-time manner,

however, our model has made predictions of this. What can currently be mea-

sured is the uptake of iron from a growth medium, a feature that has successfully

been included in the mathematical model presented. The investigations described

here not only provide a comprehensive model for the growth of the microorganism

density (i.e. fungi) but also capture its intricate behaviours in response to changes

in its vicinity.

The analysis carried out in Chapter 8 focussed on siderophores and iron

interactions. As the siderophores are only produced by the fungal mycelium and

assuming siderophore-iron complexes are part of each component, we can simplify

the model equations from Chapter 7. In accordance to the experimental observa-
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tion it was reasonable to explore the equations on a semi-infinite domain. Thus

investigating the simplified set of equations by first seeking self-similar solutions,

then progressing onto small time asymptotic and large time asymptotic approxi-

mations resulted in closed form expressions involving the diffusion coefficients and

initial parameters giving approximations that were in excellent agreement with

numerical results.

However, despite the elegance of the solutions obtained from the small

time and large time asymptotic approximations, the first moment of interaction

between the siderophores and iron would be difficult to capture. Thus applying

the techniques developed in Chapter 3, it was seen that the respective velocities

of siderophores and iron have interchanging signs. This implies that initially

the siderophore and iron profiles move in opposite directions to each other, which

signifies the loss of siderophores and iron as they are binding to form a siderophore-

iron complex, at rates that depend on the binding rates and diffusion coefficients

of the iron and siderophore populations. These results were consistent with the

COMSOL simulations in Chapter 7 and provided a semi-analytical approach to

capturing the behaviour of initial impact upon contact between the iron and

siderophore densities.

Furthermore, in the latter section of Chapter 8, focus was on the

siderophore-iron complex from which we successfully produced elegant analyti-

cal solutions that captured the biological phenomena of siderophores diffusion

before and after their interaction with iron. There was a lag observed between

the release of siderophores and the time when complexes were formed. We deter-

mined a formula that can estimate this time lag by supposing that complexes can

only be detected when their production first exceeds a critical value. Using our

proposed models researchers may determine the length of time before the com-

plex is initially formed. Also our models will be of immense benefit to researchers

provided they can determine the diffusion coefficients for the siderophore and the

siderophore-iron complex. Thus, the model developed may allow for quantitative

and qualitative predictions to be made on experimental studies.

9.2 Future work

In this section some possible avenues for future exploration are considered.

It would be interesting to investigate the convergence of the Laplace de-
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composition method as a function of space and time in regards to the single species

model explored in this thesis and other phenotypes explored by Edelstein (1982).

A starting point would be to visit the work of Cherruault (1990) for inspiration

and then use the approach suggested by Ray (2014) which has shown promising

results proving the existence and uniqueness of a series solution produced via

decomposition methods.

The work developed in Chapters 4 and Chapter 5 laid the foundation that

can extend the principles and concepts to more complex systems involving the

effects of temperature and water on the outcome of pairwise competition. Fur-

thermore, including more than a single type of branching and anastomosis or

a combination of branching patterns would be an interesting avenue to explore.

Also, inter-specific competition between fungi displaying different morphologies,

could result in interesting outcomes having significant biotechnological applica-

tions.

The analysis in Chapter 5 can be extended further to investigate interac-

tions between multiple species on the same domain with different morphologies.

The analysis carried out in this thesis assumed the tip and hyphal degradation by

a rival species was the same: varying these parameters may lead to a greater un-

derstanding of the outcome of fungal competition. The parameter values utilised

can be refined and determined for different species using techniques used in arti-

ficial intelligence and machine learning, e.g. neural network, classifications, such

that for a specific fungal species, a suitable set of parameters are suggested that

are inline with experimental studies. There are large databases that contain data

on various fungal species hence an interesting study could be carried out.

The work in Chapter 6 can potentially be extended to include quorum

sensing in to the model, which can easily be achievable with the current model.

Quorum sensing in fungi is an area which has still not really been explored thor-

oughly (but see Turrá et al., 2016) and thus exploring this field using the models

in Chapter 6 could provide some novel and intriguing results.

The models formulated in Chapter 7 needs to be compared to real life mod-

els, thus natural future work would entail calibrating the models to experimental

observations. Due to the ample literature available, this task can in principle be

achieved. Another interesting avenue to explore is to adapt the model suggested

here to simulate siderophore detection on a non partitioned domain mimicking

experimental work of Bertrand et al. (2010). Furthermore, the model can be
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revisited to incorporate an “on/off” feature to release siderophores only when

critical levels of iron are experienced within the mycelium to incorporate further

realism to the model. There are fungal species that evolve without the ability to

produce siderophores; however they can absorb siderophore-iron complexes from

the heterogeneous environment. This feature would be fascinating to explore in-

vestigating fungal competition. The uptake of siderophore-iron complex was not

included in this body of work, thus future work could also incorporate this fea-

ture into the models. Additionally, the work in Chapter 8 can be extended via

considering a moving boundary to represent a continuous influx of siderophores.

A suggested starting point for an interested researcher would be to explore the

work of Danckwerts (1950).

All in all, despite the novel models, techniques and results contributed to

the field of fungal analysis provided in this thesis, the research has not been fully

exhausted. Many fascinating and intellectually stimulating questions have been

proposed that pave the way for future researchers to find inspiration from and

thus extend the current work further.

The work presented in this thesis contributes to a growing body of knowl-

edge in modelling interactions involving fungi, especially under different environ-

mental settings. Some of the proposed predictions remain as open problems for

experimental verification and validation.
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G. A. Gledson, M. D. Martins, P. L. Cláudio, and G. J. Salvador. A solution of

nonlinear equation for the gravity wave spectra from Adomian decomposition

method: a first approach. Revista Brasileira de Meteorologia, 28:357–363, 2013.

ISSN 0102-7786.

G. W. Gooday. The dynamics of hyphal growth. Mycological Research, 99:385–

394, 1995.

A. Goyal, R. Sanghi, A. K. Misra, and J. B. Shukla. A modeling study on the role

of fungi in removing inorganic pollutants. Mathematical Biosciences, 244(2):

116–124, 2013.

C. M. Gruhn, A. V. Gruhn, and O. K. Miller. Boletinellus merulioides alters root

morphology of Pinus densiflora without mycorrhizal formation. Mycologia, 84:

528–533, 1992.

289



M. Gupta and S. Shrivastava. Mycoremediation: A management tool for removal

of pollutants from environment. Indian Journal of Applied Research, 4(8):289–

291, 2014.

H. Haas. Fungal siderophore metabolism with a focus on Aspergillus fumigatus.

Natural Product Reports, 31:1266–1276, 2014.

J. B. Hagen. Five kingdoms, more or less: Robert Whittaker and the broad

classification of organisms. BioScience Oxford Journals, 62(1):67–74, 2012.

J. M. Halley, H. N. Comins, J. H. Lawton, and M. P. Hassell. Competition,

succession and pattern in fungal communities: towards a cellular automata

model. Oikos, 70:435–442, 1994.

S. D. Harris. Branching of fungal hyphae: regulation, mechanisms and comparison

with other branching systems. Mycologia, 100(6):823–832, 2008.

L. Heaton, B. Obara, V. Grau, N. Jones, T. Nakagaki, L. Boddy, and M. Fricker.

Analysis of fungal networks. Fungal Biology Reviews, 26:12–29, 2012.

M. A. Helal and M. S. Mehanna. The tanh method and Adomian decomposi-

tion method for solving the foam drainage equation. Applied Mathematics and

Computation, 190:599–609, 2007.

D. V-D. Helm and G. Winkelmann. Hydroxamates and polycarboxylates as iron

transport agents (siderophores) in fungi. In Metal Ions in Fungi (G. Winkel-

mann & D. Winge, eds). Marcel Dekker, 1994.

T. Hillen and H. G. Othmer. The diffusion limit of transport equations derived

from velocity jump processes. SIAM Journal on Applied Mathematics, 61:751–

775, 2000.

J. Hiscox, G. Clarkson, M. Savoury, G. Powell, I. Savva, M. Lloyd, J. Shipcott,

A. Choimes, X. A. Cumbriu, and L. Boddy. Effects of pre-colonisation and

temperature on interspecific fungal interactions in wood. Fungal Ecology, 21:

32–42, 2016.

L. Ho-Man, W. Zhen-Wen, Y. Zhi-Hong, Y. Kin-Lam, P. Xiao-Ling, and C. Kwai-

Chung. Interactions between Arbuscular Mycorrhizae and plants in phytore-

mediation of metal-contaminated soils. Pedosphere, 23 (5):549–563, 2013.

290



P. H. F. Hobbelen, N. D. Paveley, and F. van den Bosch. The emergence of

resistance to fungicides. PLoS ONE, 9(3):1–14, 2014.

R. F. Hogervorst, M. A. J. Dijkhuis, M. A. van der Schaar, M. P. Berg, and H. A.

Verhoef. Indications for the tracking of elevated nitrogen levels through the

fungal route in a soil food web. Environmental Pollution, 126:257–266, 2003.

S. Hopkins. A Hybrid Mathematical Model of Fungal Mycelia: Tropisms, Po-

larised Growth and Application to Colony Competition. PhD thesis, University

of Glamorgan, 2011.

S. Hopkins and G. P. Boswell. Mycelial response to spatiotemporal nutrient het-

erogeneity: a velocity-jump mathematical model. Fungal Ecology, 5:124–136,

2012.

T. Horio and B. R. Oakley. The role of microtubules in rapid hyphal tip growth

of Aspergillus nidulans. Molecular Biology of the Cell, 16(2):918–926, 2005.

M. Hussain and M. Khan. Modified Laplace decomposition method. Applied

Mathematical Sciences, 4(36):1769–1783, 2010.

J. Hynes, T. C. Müller, T. H. Jones, and L. Boddy. Changes in volatile production

during the course of fungal mycelial interactions between Hypholoma fasciculare

and Resinicium bicolor. Journal of Chemical Ecology, 33(1):43–57, 2007.

A. V. Ibarra-Medina, R. Ferrera-Cerrato, A. Alarcon, M. E. Lara-Hernandez,

and J. M. Valdez-Carrasco. Isolation and screening of Trichoderma strains

antagonistic to Sclerotinia sclerotiorum and Sclerotinia minor. Mexican Journal

of Mycology, 31:53–63, 2010.

F. B. Iluyemi and M. M. Hanafi. Mycelial growth interactions and mannan-

degrading enzyme activities from fungal mixed cultures grown on palm kernel

cake. African Journal of Biotechnology, 8(10):2283–2288, 2009.

P. Indiragandhi, R. Anandham, M. Madhaiyan, G-H. Kim, and T. Sa. Cross-

utilization and expression of outer membrane receptor proteins for siderophore

uptake by Diamondback moth Plutella xylostella (Lepidoptera : Plutellidae)

gut bacteria. FEMS Microbiology Letters, 289:27–33, 2008.

291



S. L. Jackson and I. B. Heath. Roles of calcium ions in hyphal tip growth. Mi-

crobiological Reviews, 57:367–382, 1993.

H. Jacobs, G. P. Boswell, K. Ritz, F. A. Davidson, and G. M. Gadd. Solubilization

of calcium phosphate as a consequence of carbon translocation by Rhizoctonia

solani. FEMS Microbiology Ecology, 40:65–71, 2002.

L. Johnson. Iron and siderophores in fungal-host interactions. Mycological Re-

search, 112:170–183, 2008.

M. J. Keeling and P. Rohani. Modelling infectious diseases in human and animals.

Princeton University Press, 2008.

P. Kennedy. Ectomycorrhizal fungi and interspecific competition: species in-

teractions, community structure, coexistence mechanism, and future research

directions. New Phytologist, 187:895–910, 2010.

Y. Keskin and G. Oturan. Reduced differential transform method for partial dif-

ferential equations. International Journal of Nonlinear Sciences and Numerical

Simulation, 10(6):741–749, 2009.

Y. Keskin and G. Oturan. Reduced differential transform method for solving

linear and nonlinear wave equations. Iranian Journal of Science & Technology,

Transaction A, 34(A2):113 – 122, 2010.

M. Khan, M. Hussain, H. Jafari, and Y. Khan. Application of Laplace decompo-

sition method to solve nonlinear coupled partial differential equations. World

Applied Sciences Journal, 9(Special Issue of Applied Math):13–19, 2010.

S. A. Khuri. A Laplace decomposition algorithm applied to class of nonlinear

differential equations. Journal of Applied Mathematics, 1(4):141–155, 2001.

S. A. Khuri. A new approach to Bratus problem. Applied Mathematics and

Computation, 147(1):131–136, 2004.

M. Koutb and E. H. Ali. Potential of Epicoccum purpurascens strain 5615 aumc

as a biocontrol agent of Pythium irregulare root rot in three leguminous plants.

Mycobiology, 38(4):286–294, 2010.

292



Z. Koza. The long-time behavior of initially separated A + B → 0 reaction-

diffusion systems with arbitrary diffusion constants. Journal of Statistical

Physics, 85(1-2):179–191, 1996.

S. M. Kraemer, A. Butler, P. Borer, and J. Cervini-Silva. Siderophores and the

dissolution of iron-bearing minerals in marine systems. Reviews in Mineralogy

and Geochemistry, 59(1):53–84, 2005.

E. Kurniati, N. Arfarita, T. Imati, T. Higuchi, A. Kanno, K. Yamamoto, and

M. Sekine. Potential bioremediation of mercury-contaminated substrate using

filamentous fungi isolated from forest soil. Journal of Environmental Sciences,

26:1223–1231, 2014.

S. H. Lee, M. D. Fricker, and M. A. Porter. Mesoscale analyses of fungal networks

as an approach for quantifying phenotypic traits. Journal of Complex Networks,

5:145–159, 2017.

G. E. Leventhal, M. Ackermann, and K. Schiessl. Benefits of siderophore re-

lease lie in mediating diffusion limitation at low iron solubility. bioRxiv,

doi:org/10.1101/093948, 2016. URL https://www.biorxiv.org/content/10.

1101/093948v1.

G. E. Leventhal, M. Ackermann, and K. Schiessl. Why microbes secrete molecules

to modify their environment: The case of iron-chelating siderophores. Journal

of the Royal Society Interface, 16(150):1–25, 2019.

D. A. Lipson. The complex relationship between microbial growth rate and yield

and its implications for ecosystem processes. Frontiers in Microbiology, 6:615,

2015.

J. Lockwood, M. P. Marchetti, and M. F. Hoopes. Invasive Ecology (2ed). John

Wiley & Sons, 2013.

A. J. De Lucca. Harmful fungi in both agriculture and medecine. Revista

Iberoamericana de Micologia, 24(1):3–13, 2007.

S. U. Luk, T.K. Lee, J. Liu, D. T. Lee, Y. T. Chiu, S. Ma, I. O. Ng, Y. C. Wong,

F. L. Chan, and M. T. Ling. Chemopreventive effect of psp through targeting

of prostate cancer stem cell-like population. PLoS One, 6(5):1–9, 2011.

293

https://www.biorxiv.org/content/10.1101/093948v1
https://www.biorxiv.org/content/10.1101/093948v1


A. Machuca and A. M. F. Milagres. Use of CAS-agar plate modified to study

the effect of different variables on the siderophore production by Aspergillus.

Letters in Applied Microbiology, 36:177–181, 2003.

J. Manjunathan, N. Subbulakshmi, R. Shanmugapriya, and V. Kaviyarasan. Prox-

imate and mineral composition of four edible mushroom species from South

India. International Journal of Biodiversity and Conservation, 3(8):386–388,

2011.

A. Manteca, D. Claessen, C. Lopez-Iglesias, and J. Sanchez. Aerial hyphae in

surface cultures of Streptomyces lividans and Streptomyces coelicolor originate

from viable segments surviving an early programmed cell death event. FEMS

Microbiology Letters, 274(1):118–125, 2007.
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