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ABSTRACT 

 
Sociality is at the root of tremendous ecological success of several taxa, including 

humans, ants, bees, wasps and termites. The degree and type of sociality varies greatly 

across taxa. The evolution of complex social behaviour can be studied by performing 

comparative analyses of organisms across a phylogeny showing diverse social 

lifestyles. We chose bees as model systems for this study because a wide range of 

social behaviour patterns, ranging from highly eusocial to solitary can be found in extant 

bees. Our aim is to identify adaptive changes in the protein coding regions of brain 

expressed genes. To this end, we used 454 GS FLX sequencing technology to 

generate the brain Expressed Sequence Tags (ESTs) of twelve socially diverse bees. 

The ESTs were assembled into species-specific non-redundant contigs and singletons, 

which were loaded into a MySQL database using custom scripts. The Honey Bee 

Homolog Blast website was designed to help users access the database. Users can 

now download these datasets or BLAST against multiple bee and wasp databases to 

find the homologues. The results are then sorted by e-value and displayed. The ESTs 

accessed through the website (http://bee12.cropsci.uiuc.edu ) can be used as a primary 

tool for gene discovery, genome annotation, and comparative genomic analysis. Since 

the Honeybee Apis mellifera had its genome recently sequenced, we designed an 

ortholog identification pipeline that generates multiple sequence alignments of putative 

orthologous genes across the twelve bees, using the gene models of Apis mellifera as 

the reference. The evolutionary changes associated with these alignments were then 

statistically inferred using maximum likelihood methods that make use of sophisticated 

codon-substitution models to detect non-neutral evolution in the protein coding genes. 

The rapidly evolving genes were then annotated using gene ontology to find over 

representation of associated GO terms. We also recently ventured into whole genome 

sequencing where we generated both single end and paired end whole genome 

sequence data for two of the bees, Bombus impatiens and Megachile rotundata using 

Illumina sequencing technology. The reads generated were assembled using a de 
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Bruijn graph based assembly algorithm into scaffolds having a N50 of 1.12 Mb and 31 

Kb respectively. 
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CHAPTER 1 

INTRODUCTION 
 
Sociogenomics: An Integrative Discipline 
 

Life has evolved starting from single cells, to multicellular organisms, to multicellular 

organisms forming societies to live in. A lot of research has gone into elucidating the 

molecular basis of cellular function and development, and the same needs to be done 

today for social life (sociogenomics) (Robinson et al. 2005). Sociogenomics needs to be 

understood in terms of how societies evolved, what are the genes influencing them, how 

are they regulated, how do organisms differ in their social behaviour patterns and so on. 

We need to understand how behavior influences different aspects of genome structure, 

genome activity and organismal function (Robinson et al. 1997; Robinson et al. 2009). 

The conceptual foundation of sociobiology is in Darwanian theory in which emphasis 

has been laid to group life that is based on mutualism, kin selection and altruism. 

 

The nascent field of sociogenomics is predicated on two of the most significant ideas in 

biology to emerge from the latter half of the twentieth century (Robinson 2002). First, 

many aspects of social life, including social behaviour have a biological basis and are 

thus influenced by genes and the forces of evolution to a large extent (E. O. Wilson 

1975). Second, the molecular functions of many genes are highly conserved across 

species for complex traits (Caroll et al. 2001). One of the challenges in behavioural 

sciences is to understand at the molecular level, how genes influence social behaviour 

patterns. There are lots of reasons why we need to use diverse non-model systems for 

this study. First, traditionally, other forms of behaviour at the molecular level have been 

studied in model organisms amenable to genetic analysis like Drosophila melanogaster 

in which learning (Dubnau J. and Tully, T. 2001) and circadian rhythms (Panda, S & 

Kay, S .A, 2002) have been explored. While traditional model systems like the fruit fly 

have been used to study mating behaviour (which involves structured interactions with 

conspecifics), mating does not distinguish social animals from most others (Greenspan, 

R .J. & Ferveur, J. F, 2000). Second, while powerful studies of social behaviour can be 

performed in the lab (Pfaff, 1999), there is a keen interest in elucidating the molecular 
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machinery of social behaviour in natural contexts (Jarvis E.D. et al. 1997). We are in 

need of a broad integrative framework that uses mechanistic and evolutionary 

perspectives to understand how social behaviour evolved. The mechanistic analysis of 

social behaviour encompasses the traditional fields of behavioural genetics, 

neuroscience, cell biology and molecular biology. On the other hand, evolutionary 

analysis of social behaviour includes fields like phylogeny, population biology, 

behavioural ecology and sociobiology. While molecular biology helps to target candidate 

genes of interest, behavioural ecologists study the adaptations occurring on selected 

genes on interest in a phylogenetic context. Genomics helps to integrate the two 

perspectives (Robinson et al.2005). Third, social behaviour itself has different levels to 

consider. Species can be solitary, in which they only interact with conspecifics during 

mating, or they can live in highly structured colonies in which they interact with 

conspecifics all the time, in which case they are eusocial. Such a diverse system having 

multiple levels of sociality gives experimental access to a process involved in all forms 

of social behaviour and gene regulation. Studying diverse animal societies also allows 

us to understand if different evolutionary events can have the same end (convergence), 

and the roles of conservation of genes across species (Robinson G.E. & Ben Shahar, 

2002). Also, it is important to use model systems that can be studied under naturalistic 

conditions, as studies done in natural environments/ecologically relevant conditions will 

make it easier to interpret the data. This line of study is called evolutionary and 

ecological functional genomics (Feder ME & Mitchell-Olds, 2003) where there are no 

other forces that obscure the results as commonly found in laboratory manipulations 

where lot of extrinsic factors can affect the results (Vignal C Mathevon & Mottin, 2004). 

 

The goal of sociogenomics is to gain a comprehensive understanding of behaviour at 

the molecular level. This can help us understand how complex behaviour evolved from 

a simpler ancestral behaviour. Starting with a broad array of models showing diversity in 

social behaviour, given that many genes and pathways are conserved across species, 

enables us to compare across diverse taxa. This in turn can help us probe deeper into 

the evolutionary mechanisms.  
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Some of the basic activities that need to be performed for survival of a given species 

include finding food (foraging), mating (which involves identification of mates receptive 

to reproduction), construction of a nest or shelter to rear young (parental care) and 

defend the nest from intruders. Such activities need to be performed by both solitary 

and social animals (Alcock, J, 1998). Social animals perform these activities 

cooperatively where there is lot of coordination accomplished by structured interactions 

with other members of the same species. This involves intense communication among 

individuals, dominance hierarchies and division of labour (Robinson et al. 2005). Genes 

involved in solitary behaviour are also involved in social behaviour indicating that genes 

involved in simpler behaviours can be used to identify candidate genes involved in a 

more complex behaviour. Analysis of certain behaviours shown by solitary animals (e.g 

model genetic organisms) can be built upon to enhance our understanding of social life. 

 

Behavioural Plasticity:  From Highly Eusocial to Solitary 
 

Ants, bees, wasps and termites are the best-known eusocial species (Wilson, E.O.1971; 

Duffy, J.E., 1996; Sherman, P. et al. 1991; Choe J. C & Crespi B, 1997). In some 

tropical habitats, ants and termites are dominant terrestrial life forms (Holldobler & 

Wilson, 1990). One of the significant ideas sociogenomics is built upon is that of 

conservation of genes across taxa. The insect order Hymenoptera is distinguished by 

species showing a range of sociality, from solitary to highly eusocial allowing us to 

exploit three fundamentals of sociogenomics; 1) diversity in social behaviour to 

understand conservation of genes; 2) the role of selective pressures on these genes 

that play adaptive roles that can eventually be tied to behavioural differences, and 3) if 

multiple independent evolutionary events converge. Insights from the integration of 

evolutionary biology with developmental biology (hybrid evo-devo studies, Toth A.L. & 

Robinson, G. E. 2007) elucidate the concept of a shared genetic toolkit that is 

conserved at the molecular level across diverse taxa. For example, the homeobox 

genes (Hox genes), body form (Gellon, G. et al. 1998), and eye development (Pichaud, 

F. et al. 2002). The conserved genetic toolkit for development is thought to consist of a 

set of genes having specialized functions, like transcription factors (Caroll, 2001). 
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Similarly there are several cases of genes involved in conserved pathways and 

networks across diverse taxa in Hymenoptera. This makes Hymenopterans excellent 

model systems to study the evolution of social behaviour.  

 

Eusocial species are those that show extreme form of social organization in which 

individuals specialize in certain tasks. This behavioural specialization is often linked to 

differences in age, anatomy and morphology (Robinson, G.E. et al. 2005). Eusociality is 

rare, but highly successful. In highly eusocial colonies of Honeybees, queens 

monopolize the reproductive tasks in the colony, while workers are involved in foraging 

and brood care, or in other words, tasks related to colony growth. Thus, there are three 

defining characteristics of highly eusocial colonies. There is 1) reproductive division of 

labour, 2) cooperative brood care and 3) an overlap of generations in which queens and 

young workers stay in the same colony. In advanced eusocial species, the fate of an 

individual, queen or worker is determined long before adulthood, and depends on the 

nutrition fed to the larvae. This sets the stage for colony level selection creating systems 

of division of labour. In primitively eusocial bees (halictid bees), there are loosely 

morphologically defined queen and worker classes, so the caste differentiation is more 

of a behavioural phenomenon. In the solitary bees, every female is fertile and manages 

all the tasks. 

 

Given all these factors that go into choosing good model systems, in this work, we have 

focused on using bees (Hymenopterans) to probe into social behaviour evolution. We 

perform our studies in a naturalistic context, and use good phylogenetic background 

(species tree) for our downstream evolutionary analyses. We use Genomics to integrate 

the mechanistic and evolutionary perspectives. The broad goal of our project is to 

identify the candidate genes that may be involved in the evolution of social behaviour 

using Genomics, Phylogeny and Behavioural Plasticity in extant bees (see Methods). 
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Transcriptomics and Social Behaviour 
 
Two approaches can be taken to answer our question, that is, identify genes and 

pathways involved in social behaviour in Hymenoptera. First, given that the honeybee 

has recently had its genome sequenced (Robinson, G.E. et al. 2006), genomic 

resources need to be developed for other species that show advanced forms of 

eusociality, such as the ones that exist for fire ants (Krieger, M.J. & Ross, K.G. 2002) 

and leaf cutting ants (Holldobler, B & Wilson, E.O.1990). Second, genomic resources 

can be developed for selected species of bees that differ in levels of sociality. For 

example, in Hymenoptera, within the Apini tribe alone, there are species that are 

solitary, primitively eusocial, and highly eusocial; that is, the euglossines, bumble bees, 

and honey bees and stingless bees respectively (Lockhart, P.J. & Cameron, S.A. 2001.) 

While it is realistic to obtain whole genome sequences for many of these species, 

genomics can provide a wealth of sequence data at an economical cost too, 

accomplished through Expressed Sequence Tags (ESTs), microarrays and BAC 

libraries. A lot of progress has been made in using these techniques effectively to 

discover genes and genomic regions of interest to social behaviour (White et al. 2002; 

Band et al. 2000; Summers et al. 2001). Sequence information from EST collections 

and other sources eliminate the need to tediously clone genes on a gene-by-gene basis 

before experiments with candidate genes can even begin. Microarrays, too, allow for 

open-ended gene discovery (Fitzpatrick, M. et al. 2005). Cloning each gene is obviously 

highly inefficient, especially for our purposes, since social behaviour is known to be 

regulated by a vast repertoire of genes. The two traditional forward genetic models used 

to discover candidate genes, that is, Seymour Benzer’s single gene mutations 

approach, and Jerry Hirsch’s approach of identifying behavioral variants (Tully, T.,1996) 

are difficult to adapt for this problem because bees are hard to manipulate genetically, 

though limited success has been obtained in making transgenic bees (Robinson, G.E. 

et al. 2000). Instead, using transcriptomics one can measure the abundance of genes 

expressed in brains of social/solitary insects and sequence them. ESTs are single DNA 

sequencing reads obtained from complementary DNA (cDNA) clone libraries 

constructed from a known tissue source. Sequencing a large number of these clones 
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from such a library allows one to get a decent sample of the set of expressed genes, or 

transcripts, in that particular tissue and experimental state. This provides a snapshot of 

the tissue’s active genes under those defined conditions. ESTs provide a short cut to 

the transcribed portions of the genome, and this information can be used as key 

evidence for genome annotations, gene discovery and comparative genomic analysis 

by bioinformaticists.  

 

EST Sequencing 
 

There are different approaches that can be taken to sequence the ESTs. Next 

generation sequencing (NGS) technologies are producing tremendous amount of data 

in a relatively short time as opposed to the traditional sequencing methods like Maxam 

Gilbert’s chemical modification of DNA and cleavage, or the Sanger’s di-deoxy chain 

termination method. The high demand for low-cost sequencing techniques has driven 

the development of new NGS technologies. Today, the main commercially available 

technologies are from Roche/454, Illumina/Solexa, Life/APG and Helicos Biosciences. 

There are a core set of steps that are common to all these technologies, namely 

template preparation, sequencing and imaging and data analysis. Roche’s 454 

pyrosequencing method amplifies DNA inside water droplets in an oil emulsion, hence 

also called emulsion PCR (http://www.454.com). Solexa/Illumina uses a cyclic 

reversible terminator (CRT) system, which is based on reversible dye-terminators. DNA 

molecules are attached to primers and amplified using bridge amplification to produce 

clonal copies of a single DNA molecule. The single DNA template is then clonally 

amplified and sequenced using luciferase that generates light when a nucleotide is 

added to the nascent growing DNA molecule. The key lies in adding one nucleotide, 

growing the DNA chain, terminating it and imaging which nucleotide is added using a 

four dye color system, one for each base, and then adding another nucleotide. A 

camera takes images of fluorescently labeled nucleotides (http://illumina.com ). SOLID 

is similar to Solexa, but uses sequencing by ligation, and makes use of oligonucleotides 

(www.appliedbiosystems.com ). The output of each technology is different, though all of 
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them provide quality scores for each base sequenced, giving an estimate on what is the 

probability that the base that is read off by the machine is erroneous.  

 

In this work, we have used ESTs to collect information on the genes that are expressed 

in our Hymenoptera phylogeny, and sequenced them using Roche’s GS-FLX 

technology. This gave us about 240 bp read length on an average, for all the twelve 

species. Ability to generate longer read lengths is the main advantage of 454 

sequencing. 

 

Transcriptome Assembly  
 

In any transcriptomics or genomics project, the sequenced reads have to first be 

assembled together so as to get a putative reconstruction of the target. This process is 

called assembly of the reads. There are lots of software applications available that aid in 

the assembly process. A transcriptome assembly is very different from a whole genome 

assembly; In whole genome assembly, a more or less uniform distribution of reads 

across the genome, or fluctuation arising due to repeat contents is obtained; whereas in 

a transcriptome assembly, biases in sampling due to the presence of highly expressed 

genes are largely expected. In a genome assembly, the extension of reads into contigs 

is ambiguated by the presence of repeats, whereas in transcriptome assembly, the 

presence of variants/isoforms and gene families confounds the assembly process (Birol 

et al. 2001). Analysis of the isoforms can help elucidate alternate splicing events. The 

newer assembly algorithm Abyss, a commonly used transcriptome assembly tool, uses 

a distributed de Bruijn graph data structure that splits a sequence into K mers and 

assembles the unique K mers. The distribution of the graph over several nodes of the 

cluster relaxes the memory/computational requirements for the assembly. This is 

important because in a de Bruijn graph, the memory requirement scales linearly with the 

sequence. Abyss falls in the category of Eulerian graph assemblers. Recently, the de 

Bruijn graph based assembler, Velvet (Zerbino et al. 2007), has been extended into 

Oases tool for transcriptome assembly, where the uneven sampling bias and alternate 

transcript information is used to refine the output of Velvet (Zerbino et al., Unpublished). 
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On the other hand, there are greedy assemblers that just rely on pair-wise alignments, 

and any two reads having the maximum pair wise overlap similarities will be joined 

together. The Phrap assembly program is one such example. It was written by Phil 

Green in 1996 at the University of Washington to provide rapid comparison, alignment, 

and assembly of large sets of DNA sequences. The PHRAP assembler uses a banded 

version of the Smith-Waterman-Gotoh algorithm (Smith, T. F. & Waterman, M.S. 1981; 

Gotoh, O. 1982) to compute pair wise comparisons of the input sequences (de la 

Bastide, M. 2007). PHRAP is similar to BLAST, in that, it first searches for a “seed” 

match, and once it finds a perfect word match, it tries to extend the alignment. Since we 

used 454 for the sequencing, we used Phrap for the assembly of the ESTs into non 

redundant contigs and singletons. Overlap based greedy assemblers perform well with 

longer reads. 

 

Database Design 
 

In order to better organize the species specific assembled ESTs, we designed a central 

MySQL database holding the transcriptome assembly information. We then developed a 

front end BLAST website which users can use to query the database, and blast against 

honeybee genes (See Methods, bee12 BLAST server). 

 

Ortholog Detection 
 

Diverse bioinformatics tools have been developed to analyze sequence data from 

evolutionary and functional perspectives (Ouzounis, C. A. et al. 2003). Evolutionary 

projects that generate sequence data from closely related species require the concept 

of phylogenies and orthology, which are crucial to inferring gene content, conserved 

gene order, gene expression, regulatory networks, metabolic pathways and functional 

genome annotations, to name a few (Kuzinar et al. 2008; Eisen, J. 1998; Jeffroy et al. 

2006; Delsuc, F. 2005; Tatusov et al. 1997; Tatusov et al. 2003; Goodstadt & Ponting, 

2006; Bandopadhyaya et al. 2006; Mazurie et al. 2005; Grigoryev et al. 2004; Mao et al. 

2006; Hulsen et al. 2006 ).Walter Fitch in 1970s, divided homology into orthology and 

paralogy based on speciation and duplication events respectively. Orthology is strictly 
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an evolutionary concept and can be defined as homologous genes that relate through 

speciation from a single ancestral gene present in their last common ancestor, whereas 

paralogs are homologs that arose through gene duplication (Fitch, W.M. 1970; Fitch, 

W.M. 2000). There are many computational tools developed so far that detect orthologs 

from sequence data belonging to closely related species. They all have their own set of 

advantages and disadvantages. The major algorithms developed can be classified into 

tree based approaches, graph based approaches and those that utilize both / hybrid 

methods (Kuzinar et al. 2008). A brief review of some of the key algorithms from each of 

the categories along with their pros and cons is presented here. 

 

The Tree-based methods are used to infer orthologs in entire genes in 2 or more 

species (Kuzinar et al. 2008). Some popular algorithms include Correlation Coefficient-

based Clustering (COCO-CL) and OrthoStrapper. The COCO-CL (Jothi et al. 2006) 

uses a Pearson’s correlation matrix and infers duplication/speciation events. But this 

method does not implement a tree reconciliation algorithm, and does not require a 

species tree as input. The Orthostrapper (Storm, C.E.V. & Sonnhammer, E.L.L., 2002) 

uses a hierarchical grouping of orthologous and paralogous sequences, and requires a 

set of gene trees from which it calculates bootstrapped values/confidence. However, 

having a gene tree for every gene can be cumbersome, and moreover, the program is 

not freely available for download.  

 

The Graph based methods on the other hand use precomputed homologs to infer 

orthologs and paralogs (Kuzinar et al. 2008). Examples include algorithms based on 

Nearest Neighbour and Clusters of Orthologous Groups (COGs) of proteins. The 

Nearest Neighbour methods employ best pair wise sequence alignments of two or more 

genes as an operational definition of orthology, and can be used as first pass 

approximations to finding putative orthologs, These methods include best hit (BeT), 

reciprocal best hit (RBH), bi-directional best hit (BBH), symmetrical best hit (SymBeT) 

and reciprocal smallest distance (RSD) (Kuzinar et al. 2008; Hirsh & Fraser, 2001; 

Overbeek et al. 1999; Wall et al. 2003; Lee, Y. et al. 2002; Remm et al. 2001).These 

methods also identify many-many, one-many orthologous relationships, based on how it 
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is implemented. Each of them may result in overlapping sets of orthologs. The 

reciprocal smallest distance does local and global sequence alignments, and uses 

maximum likelihood estimates of evolutionary distances to predict orthologous proteins 

(Wall, D.P. et al. 2003). However this method does not permit more than two genomes 

to be compared at once, and does not allow an outgroup species. 

 

The Hybrid methods are a fusion of both tree based and graph based methods. One 

can guide the algorithm to refine the results based on species tree input (Hubbard, 

T.J.P. et al. 2007; Wheeler, D.L, 2007; Cannon, S.B. & Young, N.D., 2003; Dehal, P.S. 

& Boore, J.L.,2006; Merkeev, I.V.et al. 2006; Li, H. et al. 2006) and do not use 

information like conserved gene neighbourhood (CGN).A popular hybrid algorithm is 

OrthoParaMap package (Cannon, S.B. & Young, N.D.,2003) in which a BLAST of two 

genes along with the gene phylogenies are used to infer events in gene families in two 

species. But this is limited to two species comparisons. There are other databases like 

HomoloGene (Wheeler, D.L.2007) and TreeFam (Li, H. et al. 2006) that use clustering 

methods and store information on precomputed homologs. Here the results may be 

harder to interpret because the details of the clustering procedure are not clearly 

described in the literature. 

 

Taking into account the pros and cons of the aforementioned ortholog detection tools, 

the purpose of our project, availability of ESTs, the phylogenetic background and the 

computational complexity/scalability issues, we developed our own method, an 

extension of the reciprocal BLAST method to assign putative orthology (See Methods). 

 

Inferring Selection from Orthologs 
 
Phylogenetic methods that make use of robust statistical models have been widely used 

of late, to detect natural selection (Yang, Z. 2005). Rapidly evolving regions in 

genes/genomes occur as a result of positive/Darwanian selection, or evolutionary 

conservation of the genes occurring as a result of purifying selection. Both these 

scenarios can be inferred from sequence data (Thomas et al. 2003; Nielsen et al. 2005; 



 11 

Sawyer et al. 2005). For the purposes of our project, we are mainly interested in 

statistically inferring signatures of selection/rapidly evolving genes across our orthologs. 

Analysis of orthologs can help distinguish between synonymous(nucleotide substitutions 

that do not change the encoded amino acid) and non synonymous substitutions (those 

that change the underlying amino acid encoded).Since natural selection acts on the 

protein level, synonymous and no synonymous mutations are under different selective 

pressures and are fixed at different rates (Yang, Z.2007). Hence we compare the rates 

of these substitutions to reveal the direction and strength of natural selection acting on 

the protein (Kimura, M. 1977; Miyata, T. & Yasunaga, T. 1980). 

In this work, we use a program called PAML (Yang,Z. 2007) (Phylogenetic Analysis by 

Maximum Likelihood) that fixes different selective pressures across our phylogeny, and 

estimates parameters using the maximum likelihood function under a phylogenetic 

framework. The strength of PAML lies in its collection of sophisticated codon 

substitution models that use a Markov Model of codon evolution, and make reasonable 

assumptions about biological processes. The equilibrium frequency of each codon and 

the transition / transversion rate ratio are taken into account in the Markov Model while 

computing the log likelihood of the data. This minimizes bias in the dataset resulting 

from unequal codon usage frequencies, a common problem in most phylogenetic 

analyses. We automated the whole process computationally, to run PAML across our 

entire dataset, and use branch models (See Methods) to detect adaptive molecular 

evolution from the same. 

 

Whole Genome Assembly 
 
We recently embarked on a project to generate whole genome data for the twelve bee 

species. The availability of the genomes will no doubt advance our knowledge on the 

genome architecture, provide deeper insights on molecular evolution and enhance our 

knowledge on social behaviour to test different hypotheses using comparative genomics 

analyses. The pros and cons of different sequencing techniques have been discussed 

in the EST Sequencing section of the Introduction chapter. We used Illumina 

sequencing to sequence the whole genomes (See Methods). A major challenge 
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following any genome sequencing is the assembly of the reads. We briefly reviewed this 

in the “Transcriptome Assembly” section. There are two major approaches to genome 

assembly; 1) de novo assembly, which reassembles the reads purely based on 

overlaps; 2) mapping, which assembles based on a template reference genome of a 

closely related species. Since most of the non-model organisms do not have an already 

available genome sequence of a closely related reference species, it becomes 

mandatory to choose de novo assembly for putative reconstruction of the target 

genome. The Classical hierarchical assembly method using Bacterial Artificial 

Chromosomes / BAC method, which was employed in the human genome project 

(Lander et al. 2001) consists of building BAC libraries and tracing the contigs using a 

minimal tiling path approach. This makes assembly within each BAC easier as there are 

no polymorphisms, but the high cost associated with the BAC library construction 

necessitated the need for rapid, cost effective methods. The traditional Sanger 

sequencing method, the low throughput sequencing method, is today being replaced by 

Ultra High Throughput methods (UHT); Next Generation Sequencing technologies that 

make use of different chemistries for sequencing and imaging. These UHT methods 

make use of whole genome shotgun sequencing, where the genome is randomly 

sheared into a number of fragments, and the ends of each fragment are sequenced. 

When the distance between two reads and their orientations are known, such “linked 

reads” help to disambiguate repeats (Edwards, A. & Caskey,T.1991 ). Our data makes 

use of such linked reads or paired-end/mate pair reads (See Methods). 

 

The current genome assemblers can be grouped into major categories based on the 

approach taken. The greedy assemblers (Phrap (37), Cap3 (Huang, X. & Madan, 

A.1999), TIGR Assembler (Sutton et al. 1995) greedily join together the input reads 

based on local sequence similarity into contigs. But since only the local information is 

used at each step, this can lead to mis-assemblies caused by repeats, since repeats 

overlap perfectly. The overlap-layout-consensus based assemblers (Celera (Myers, E. 

W. et al. 2000), Phusion (Mulikin et al. 2003), MIRA3 (Chevreux et al. 1999), Edena 

(Hernandez et al. 2008), Arachne (Batzoglou, S. et al. 2002) make use of graph theory. 

Here any two reads are stored as nodes in the graph, and an edge connects the two 
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nodes if there is overlap between the corresponding reads. The overlap stage is 

computationally expensive, since the overlaps across all the reads are calculated, and 

the graph structure is computed. Following that, in the layout stage, the graph is 

simplified by removing redundant nodes, and then contigs are created by traversing the 

Hamiltonian path in the graph. The Eulerian path approaches (Euler-SR (Chaisson, M.J. 

& Pevzner, P.A., 2008), Velvet (Zerbino et al. 2008), VCAKE (Jeck,W.R. et al. 2007) 

make use of graph theoretical models that break up reads into Kmers, and store the 

Kmers in the edges. Each k-mer is represented in the graph as an edge connecting two 

nodes, corresponding to its k-1 bp prefix and suffix respectively. The solution to the 

assembly problem is now traversing all the edges of the graph, an Eulerian path. The 

repeats are identified very easily using this approach. De Bruijn Graph based 

assemblers, such as SOAPdenovo (Li, R et al. 2010) and Velvet (Zerbino et al. 2008), 

were first conceived by Pevzner (Pevzner, P. et al. 2001). They make use of both 

Hamiltonian and Eulerian paths in the graphs. The Align-layout-consensus based 

assemblers (Projector2 (Sacha et al. 2005), Mosaik (Smith, D.R. et al. 2008), ELAND 

(Cox, unpublished software), Mummer (Salzberg et al. 2002)) are similar to the overlap 

layout consensus assemblers, but the overlap step is replaced by the align step, which 

means these required a template reference genome to align the reads to. This makes 

the graph lot simpler. There is lot of demand for these graph based short read 

assemblers over the conventional assemblers like Atlas (Havlak et al. 2004), which 

assemble reads from a BAC-by-BAC strategy. 

 

In this work, we have explored algorithms that use de Bruijn graph approaches to 

putatively reconstruct the draft of the whole genome assemblies for two of our bees. 
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CHAPTER 2 

METHODOLOGY 
 

Bee Collection and RNA Extractions from Brains 
 

Fifty adult females of twelve bees belonging to the insect order Hymenoptera, (Apis 

florea, Bombus impatiens, Bombus terrestris, Euglossa cordata, Eulaema nigrita, 

Exoneura robusta, Megalopta genalis, Melipona quadrifasciata, Bombus insularis, 

Centris flavifrons, Megachile rotundata , Frieseomellita varia) were sampled from Utah 

and Illinois bee research lab (Robinson lab, Cameron lab, UIUC ).The brains were flash 

frozen in liquid nitrogen to preserve the mRNA. The brains were then dissected, and 

RNA was extracted and amplified by (Robinson lab, UIUC). 

 

EST Sequencing 
 

454 Genome Sequencer (GS) FLX sequencing technology was used to sequence the 

cDNAs in a straightforward manner to obtain the Expressed Sequence Tags (EST 

sequences). The long reads of approximately 300-400 bp produced by the technology 

enabled coverage of more exons and splice junctions, allowing more positive linkage of 

variants and longer extension into UTR regions  

(http://www.454.com/applications/transcriptome-sequencing.asp) 

 

EST Assembly 
 

The ESTs obtained from the sequencing step above were assembled de novo using 

Phrap algorithm (Green, P.1996) into non- redundant contigs and singletons. 

 

Standardized Species Names and Database Structure 
 

The assembled EST sequences (non redundant contigs and singletons) were assigned 

appropriate species-specific FASTA format headers, with standardized species 

abbreviations that were agreed upon in our group (Table 2).Custom PHP scripts were 
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written to load the assembled ESTs into a MySQL database (Server version: 5.0.77) 

named BlastData. In addition to storing sequence information for each species, 

BlastData records information on markers corresponding to each linkage group of the 

Apis mellifera genome. A total of 643 markers for the 16 linkage groups (Solignac, M. 

2007) were loaded in the Markers and Linkage groups tables respectively. The 

honeybee homologs were computed by blasting the Apis mellifera gene models against 

each of the species specific databases of bees. This information was used to draw the 

location of the Apis mellifera gene for its corresponding bee homolog on the respective 

chromosome of Apis mellifera. The scaffolds table stores about 9870 scaffolds 

(A.mellifera, genome assembly 4.0).A Btree index on selected attributes was created to 

speed up the BLAST searches. In addition, the database contents are password 

protected.  

 

Data Statistics 
	  
The statistics of the non-redundant contigs and singletons compiled in BlastData 

Projects are as shown in Figure 2.1. The total number of assembled sequences in the 

Sequence table is 1,176,683.The BeeHomologs table has precomputed honey bee 

homologs for 1112178 bee genes. 

 

Honey Bee Homolog Blast Website Design 
 

Website Homepage 
 

In order for users to access the contents of BlastData, we designed the Honey Bee 

Homolog BLAST website that helps users BLAST against the database/download the 

datasets. The frontend is designed using HTML, CSS, Javascript and AJAX. PHP 

connects the front end and the backend MySQL database. Each Project holding the 

species-specific non-redundant contigs and singletons information is formatted into a 

BLAST database. Users can run blastn, or tblastn jobs against multiple BLAST 

databases after logging in to the database. 
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Website Features 
	  
Set optional BLAST parameters  

 

Users can set optional parameters for the BLAST job such as setting an e-value cut off, 

filtering low complexity regions, customizing how many alignments to display after the 

BLAST run, selecting from a range of matrices like BLOSUM 45/62/80 and PAM 

1/120/250 for the BLAST job. 

 

Graphical Display 

 

Once the blasts job is completed, a graphical display of the alignment is presented to 

the user, similar to the NCBI BLAST website graphical display. 

 

Sequence Retrieval  

One of the unique features of the website allows users to select multiple high scoring 

contigs/singletons from the graphical display of the alignments (by holding the z key 

from the keyboard), and use sliders to define a region of the alignment. The desired 

Sequence Retrieval Method can then be used, and ClustalW multiple sequence 

alignment tool can be run.If only the region of the multiple sequence alignment as 

defined by the sliders is required, the Use Sliders (Compact) option can be used. The 

“full” option will allow the user to view the complete alignment across the entire length of 

all the sequences selected. However, this can be slow depending on the length of the 

sequences, and whether they are well alignable. On the other hand, if some 

bases/amino acids extension on either sides of the defined region are desired, the 

extensions (100-5000) can be chosen, and if the sequence extension is within the total 

length of the contig, the extension can be displayed. In order to take a look at the 

ClustalW multiple sequence alignment and retrieve the sequences, users must 'allow 

pop-ups for bee12.cropsci.uiuc.edu' in their browser preferences, and the sequences 

and the alignment result will open in two different tabs/windows based on how the 

browser preferences are adjusted by the users. Note that this features works well only 
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on Mozilla Firefox/Internet Explorer and Google Chrome web browsers across 

platforms. 

 

Miscellaneous  

 

Users can also zoom in/out on honey bee chromosomes. This can be done by holding 

down shift to zoom in and out  and requires JavaScript to be enabled. We also make 

use of our pre-computed homologs to draw the picture or show the location of the Apis 

mellifera gene on its chromosome.  

 

Ortholog Assignment Pipeline 

 

In order to pick out candidate genes that may be involved in social behaviour, a 

sequence alignment pipeline based on the method of reciprocal BLAST was designed 

and implemented in PHP (hyper text pre-processor, server side scripting language). 

Apis mellifera gene models from beebase were used as the reference 

(http://genomes.arc.georgetown.edu/drupal/beebase). The newest release of the 

honeybee gene models in beebase that is the pre-release2 version has approximately 

11,062 gene models. The pipeline starts by picking out a honeybee gene model at a 

time, and blasts the gene model against each of the 12 species specific nonredundant 

BLAST databases using blastn, E < 1e-6. All the hits that are within 10% identity of the 

top hit are then blasted back to the honey bee gene models database using the same E 

value cut offs to make sure we get the same gene model A as the top hit. If yes, then it 

is considered as a putative ortholog according to our operational definition of orthology. 

We keep track of the coordinate of the gene hits wrt Apis mellifera. Each of the gene 

hits is reciprocally tested to check if it satisfies the condition of orthology. The best 

reciprocal gene hits are then concatenated together in the order in which the gene 

fragments occur on the honey bee gene model, a step that involves trimming of 

overlapping genes, (overlap > 25 bases) and removing the redundant hits. The 

aforementioned steps are repeated for every database the gene model is blasted 

against. Care is taken to make sure every gene that goes into the alignment is a 
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reciprocal best hit. The concatenated orthologous hits are called Gapped Ortholog-

reference-based Transcript Assembly (GOTA). A schematic of the pipeline is as shown 

in Figure 2.2. 

 

Multiple Sequence Alignment of the Putative Orthologous Genes 
 

The Multiple Sequence Alignment by Fast Fourier Transform (MAFFT) (Katoh et al. 

2002) algorithm was used to align the orthologs obtained from the computational 

pipeline to the reference Apis mellifera gene. We used the E-INS-i alignment strategy of 

MAFFT, which combines both weighted sum of pairs and consistency scores to 

generate a multiple sequence alignment. About 1000 maximum iterations for the 

MAFFT EINS-i run were used to iteratively refine the alignment with each run. This was 

followed by rigorous manual editing of alignments that contained putative orthologs from 

all the bee species using Geneious software that enables easy editing of alignments. 

Here the ambiguous codons were deleted (Robinson lab). An example multiple 

sequence alignment as viewed in Geneious is shown in Figure 2.3. 

 

Alignment Ranking System 
 

The set of alignments that had putative orthologs from all the species (n~ 3647) were 

used to generate gapless alignments for inferring the species phylogeny. Among the 

3647 genes, alternate transcript alignments were also present. Since alternate 

transcripts do not help to add any new information to the alignment, a scoring system 

was developed to rank all the alignments based on depth and coverage. The ranking 

system works by weighting every site in the alignment based on the coverage, and 

penalizing the gaps. The total score of the alignment is the sum of the weights across all 

the sites. The scores range from 1 to N, where N is the maximum number of species 

covered. Hence an alignment that scores N is very well covered very with no gaps, 

whereas an alignment that scores 1 is has no hits but the reference Apis mellifera 

sequence, or is widely composed of gaps. The scoring system was very useful in terms 

of identifying good alignments and the best scoring alignments for the alternative 
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transcripts. We also used the ranking to test if there is any bias between the alignment 

score and the rapidly evolving gene lists.  

 

Species Phylogeny 
 

Using the alignment ranking system, alignment scores were obtained for each of the 

3647 alignments, including only the best scoring alternative transcript alignments. Two 

sets of gapless alignments were then generated, the first set only included those sites 

that are present in all the species in the alignment, while the second set operated on a 

relaxed criteria, where the sites that had information from all but one species were 

included. The individual gapless alignments based on both the relaxed and non-relaxed  

criteria were then concatenated separately, preserving the reading frames, giving two 

gigantic concatenated alignments, which were subsequently used for codon level 

analysis. The alignments were analyzed using MrBayes (Huelsenbeck et al. 2001) to 

infer the species phylogeny (Dr. Sydney Cameron, unpublished). The species tree 

obtained as a result of these analyses had a high consensus support on each node 

(Figure 2.4), and was used as the background for tests of selection. Three species out 

of the twelve species gave ambiguous results in the species phylogeny and hence were 

removed from further analyses. This finally led to a comparative analyses across nine 

bee species. 

 

Inferring Selection from the Alignments 
 
The codeml program in the PAML package was used to infer selection signatures from 

the alignments. PAML implements a maximum likelihood method to estimate parameter 

values in a phylogenetic framework using an appropriate species phylogeny. Under the 

codon substitution model of Goldman and Yang, the ω ratio is a measure of natural 

selection acting on the protein. It is defined as the ratio of the rate of non-synonymous 

substitutions to the synonymous substitution rate. Simplistically, values of omega, ω < 

1, ω = 1, and ω > 1 indicate negative purifying selection, neutral evolution, and positive 

selection. However, ω averaged over all sites and all lineages is almost never > 1, since 

positive selection is unlikely to affect all sites over prolonged time. Thus interest has 
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been focused on detecting positive selection that affects only some lineages or some 

sites. (Yang, Z, 2007). For this purpose, Branch Models were used in this study to 

estimate lineage specific differences from the alignments. The branch models allow the 

ω ratio to vary among branches in the phylogeny and are useful for detecting positive 

selection acting on particular lineages (Yang 1998; Yang and Nielsen 1998). They are 

specified using the variable model in the PAML control file model = 2, which allows 

several ω ratios across the phylogeny, was preferred over the free-ratios model, which 

is very parameter rich. Tree files and control files were prepared for each hypothesis 

and branch node labels were used to specify different rates of evolution in the tree file. 

The whole process of running branch models on the alignments that have orthologs in 

all the bees was automated to run over a cluster using a batch submission script. To put 

it very briefly, the PAML script worked by creating several hypothesis-specific 

directories inside a main gene model directory. Inside each of the hypothesis-specific 

directories, the control file, tree file, and the multiple sequence alignment file in the 

Phylip format were placed and the program codeml was run. The number of jobs 

submitted to the cluster were tracked, and checked if it is lesser than a threshold count 

of jobs estimated based on the number of nodes of the cluster. If yes, then the next 

branch model job was submitted to the cluster. Otherwise, jobs were only submitted as 

and when they finished.  

 

Hypotheses and Statistical Design 
 

Each Branch model is a specific hypothesis, which is tested through PAML. Three 

different branch model hypothesis were tested, one null model, and two alternative 

models that look for lineage specific rapidly evolving genes, and a shared set of genes; 

the first hypothesis tested if the genes in the eusocial lineages are evolving more rapidly 

than the non-eusocial lineages (shared set of genes across the entire eusocial clade). 

The second one tested if the genes in the primitively eusocial lineages evolved more 

rapidly than the other lineages (lineage specific), while the third one tested if the genes 

in the highly eusocial lineages are evolving more rapidly than the other lineages 

(lineage specific). For each hypothesis (model) a log likelihood value was obtained, and 
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the likelihood ratio test (LRT) was used to compare how well the alternative model fits 

the data compared to the null model. Subsequently, a decision was made to reject or 

fail to reject null hypothesis. The test statistic in the LRT is twice the difference in the log 

likelihoods of the null and the alternative models. The probability distribution of the test 

statistic was approximated using a chi-square distribution with (df1-df2) degrees of 

freedom, where df1 and df2 are the degrees of freedom for model1 and model2 

respectively, which are the null and the alternative models respectively. The alternative 

model in this case being more parameter rich has higher degrees of freedom compared 

to the null model. It may seem that having more parameters in a model will make the 

model explain the data better, but this may not be true at all times. We ran our tests of 

selection at 5% level of significance. The overlap of the results across several 

hypotheses was also computed to get the rapidly evolving lineage specific gene lists.  

 

Whole Genome Assemblies 
 

We generated whole genome data for two of our bees, one primitively eusocial, Bombus 

impatiens, and another solitary, Megachile rotundata using illumina, single end and 

paired end sequencing technology. About 49 GB of whole genome data was generated 

for each of the bees. Each run was paried-end (2*124) cycles. The error rate of the Phix 

control was very low, about (1-1.5%) for each read, each run. The Quake program 

(Kelley et al, Manuscript in preparation) was used to correct the reads. Quake is used to 

correct errors in experiments with deep coverage (>20X), like those generated using 

Illumina. It uses a mixture model of genuine and erroneous k-mer distributions, and 

uses read quality values to learn the nucleotide-to-nucleotide error rates to determine 

the most likely errors. Following error correction, custom scripts were written to order 

the mate pairs, and trim the adaptors. The whole genome assembly was then done 

using the SOAPdenovo software. SOAPdenovo is a de Bruijn graph based algorithm 

that runs in four distinct steps, pregraph, contig, mapping and scaffolding. The graph 

construction is computationally most expensive, where each node is a k-mer, and two 

nodes that overlap by k-1 bp are connected by an edge. Once the graph structure is 

computed, the errors caused by sequencing that appear as bubbles (error in the middle 
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of the read) or tips (errors at the end of the read), need to be removed. The tips are 

corrected by trimming the ends of the reads, and the bubble correction is similar to 

Velvet’s Tour bus method based on Dijkstra’s algorithm. The repeat sequences that are 

shorter than the read lengths are resolved using equal N incoming and outgoing edges. 

The next step is to traverse the edges of the graph to construct the contigs (contiging). 

The reads are then mapped back to the contig sequences (mapping), and paired-end 

relationship between the reads is mapped to linkage between contigs, which is then 

used to construct scaffolds (scaffolding).Once the scaffolds are constructed, a gap 

closure algorithm was run to close the gaps in the assembly. The memory use for the 

gap closure is mainly related to the read number and the number of unique k-mers in 

the reads. The time taken for gap closure depends on the read number, gap number 

and gap size. Gap closure works by iteratively mapping the reads back to the contigs, 

and checking for pairs where one read maps to the end of the contig, while the other is 

in a gap, and then realigning the reads back to the contigs, to extend the contigs locally. 

SOAPdenovo requires a configuration file describing the insert sizes of the libraries, and 

allows users to set several parameters. For our purposes, we used several insert sizes 

for the two bee genomes. For Bombus impatiens, we used 500 bp shotgun, 3 kb and 8 

kb inserts, while for Megachile rotundata, in addition to the inserts as that of Bombus 

impatiens, we used an additional 5kb insert. SOAPdenovo can be run either step-by-

step or all at once. The step-by-step requires a user to wait until each step finishes, and 

tune some parameters before running the second step, and so on. This has to be done 

for four steps of the algorithm, in total: 1) the pregraph, 2) contig, 3) map and 4) scaffold 

stages. These steps can be run all at once, in which internally each step is run in turn, 

and it terminates at the final (scaffolding stage), following which the gap closure can be 

run separately. After testing several k-mers, k mer of 31 was found to be the most 

appropriate. It is also the maximum k-mer length that SOAPdenovo can handle. 
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CHAPTER 3 

RESULTS 
 

EST Assembly  
 

About 1G bases were sequenced, and assembled into about 250 M of non-redundant 

contigs and singlets per bee species using Phrap, version 1.080721 (Table 3.1). The 

assembled ESTs were analyzed per species for GC bias. We found comparable GC 

content across the bees, which simplified codon level comparisons (Figure 3.1) 

 

Database Schema 
 
The BlastData database designed to store the species specific contigs and singletons 

information is implemented in MySQL, server version 5.0.77.There are seven tables in 

BlastData. The Project table keeps track of any new project referring to any new 

species that has had its EST sequenced. Every project is given an ID, implemented 

using the autoincrement field in MySQL, using which every new project inserted into the 

table gets a unique ID (integer data type). Each project is associated with its ID and its 

name (varchar data type). A custom PHP script was written to connect to BlastData, 

and load the assembled EST sequences for each project .The Sequence table has four 

attributes; 1) Sequence ID, 2) Sequence name, 3) FASTA Sequence, and the 4) Project 

to which this sequence belongs is referenced by the corresponding Project ID ,which is 

the foreign key linking the Sequence and Project tables (Project ID being the primary 

key for the Project table).The Scaffold table has the Group number, sequence length 

and linkage group attributes, which keep track of the honey bee assembly 4.0 scaffolds. 

The LinkageGroup table has the linkage group number and the length of the 

chromosome attributes, while the Markers table stores the marker IDs for the 

corresponding linkage groups (Solignac et al. 2007, Genome Biology). The 

BeeHomologs table has five attributes; 1) Sequence name (var char data type), stores 

the name of the honey bee homolog; 2) the E-value attribute, records the E value after 

the BLAST; 3) mapping information on the scaffold; 4) the length of the sequence. 

There is also a Users table (not shown here) that is used to validate the user names 
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and passwords to connect to the database. Figure 3.2 shows the final database 

schema. 

 

Website Layout and Design 
 
The Honey Bee Homolog BLAST website was designed to provide an intuitive interface 

that users can use to BLAST against multiple bee and wasp databases. The website 

can be freely accessed at http://bee12.cropsci.uiuc.edu. The front end was designed 

using HTML, CSS, JavaScript and AJAX.A first glimpse of the website home page is as 

shown in Figure 3.3.Since the data is password protected, users can log in using the left 

panel, and if the login is successful, corresponding databases can be chosen for the 

BLASTs. These databases are blast formatted assembled EST datasets, as described 

in the Methodology. Users can select the appropriate program to use, blastn or tblastn. 

If the wrong combination of program and sequence is chosen, an error will be thrown on 

the screen. For example, choosing blastn, and entering a protein sequence will throw an 

error. Additionally, advanced parameters for the BLAST can be adjusted (choice of 

matrix, E-value, Number of alignments to display etc). 

 

A PHP-MySQL script connects to the databases selected, and blasts the query against 

the databases. Figure 3.4 shows the results of the blast job run with the Frames option 

selected. The left panel shows the name of the program run ( blastn or tblastn), and the 

databases that were used for the blast corresponds to what the user has chosen before 

submitting the job. This is followed by the number of hits found for each database. The 

right panel shows the alignment of the hits to the query gene. 

 

The sequence retrieval feature of the website allows the users to select multiple gene 

hits, and run a multiple sequence alignment (CLUSTALW) on the selected hits. Multiple 

hits can be selected and the appropriate sequence retrieval method can be chosen. 

Figure 3.5 shows the selection of genes, with the Use Sliders (compact) option. This 

allows the user to define the area of the alignment to be retrieved using sliders, which 

can be moved on top of the graphical interface of the alignment display. Figures 3.6 and 
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3.7 show the result of choosing the Use Compact method to retrieve the sequences to 

obtain the corresponding CLUSTALW alignment. This is displayed in two tabs/windows 

depending on the browser preferences. Figure 3.6 shows the sequences retrieved using 

this method, while Figure 3.7 shows the CLUSTALW output. Figure 3.8 shows the 

location of an Apis mellifera gene on the corresponding linkage group for a given 

homolog query.  

 

Putative Ortholog Detection and Alignment 
 
The concept of reciprocal BLAST was used to define putative orthologs. Each Apis 

mellifera gene model was blasted against each of the bee databases, and all the hits, 

including the top hit that are within 10% identity from the top hit were blasted back to the 

gene model database to make sure we got the same gene model that we started with 

as the top hit. Using this operational definition of orthology, we got approximately 3647 

gene models for which we found orthologs from all nine bee species of interest. This 

gave us a decent gene search space to run the selection analysis. This also reinforces 

a fundamental concept on which sociogenomics is built; that is, Genes that are 

conserved evolutionarily across diverse taxa can be used to probe deeper into the 

evolution of genes. About 1200 gene models did not have any BLAST hits from any of 

the bee species. This sheds some light into the per species gene gain/gene loss events 

wrt the reference genes. Each of the 3647 alignments containing orthologs to the 

reference were aligned to the reference gene using the E-INS-i strategy of the MAFFT 

algorithm. Manual editing of the alignments (Robinson lab) helped correct for the 

alignment errors that were hard to solve informatically (Figure 3.9) 

 

PAML Results 
 

Branch models were used to pick our lineage specific differences in the ω ratios. We 

tested our hypotheses (See Methodology) using a Perl script that automates the PAML 

Branch Model jobs over a cluster. The codeml program was run, using a batch 

submission approach on a cluster with 96 nodes. A maximum of 49 codeml jobs were 

submitted at a time (Figure 3.10) The log likelihoods obtained for each model were 
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tested using the likelihood ratio test that compares how well the alternative model fits 

the data compared to the null model. The null model here is the neutral model of 

evolution, which assumes that a given gene is evolving at the same rate across all the 

branches of the phylogeny, while the alternative model considers the genes in certain 

species to be evolving at a given rate, while the gene in the rest of the species across 

the phylogeny is evolving at a different rate. The p-value of the test statistic, is twice the 

difference in the log likelihoods of the null and the alternative models, and is estimated 

using a chi-square distribution. Using a p-value cut off of 0.05, gene lists were made for 

each hypothesis, indicating rapidly evolving genes. Figure 3.11 shows the results of the 

three different hypothesis tested, and the number of rapidly evolving genes obtained for 

each of the hypothesis. Note that we detected significant overlap across the tests 

(Figure 3.12). The rapidly evolving genes were annotated by gene ontology to obtain 

the over represented GO terms specific to each lineage. The results of each hypothesis 

tested, along with the GO annotation results are shown in Tables 3.2, 3.3 and 3.4 

respectively. We found genes for gland development, signal transduction, and glycolysis 

evolving more rapidly in the eusocial lineages, which includes the primitively eusocial 

and highly eusocial lineages (Table 3.2), while the contrast between highly eusocial 

versus other lineages gave a lot of metabolic genes, especially glycolysis genes, and 

some genes involved in biosynthesis. (Table 3.3) The rapidly evolving genes in the 

primitively eusocial lineages mainly involve developmental processes related genes, like 

neuron differentiation and embryonic development (Table 3.4). 

 

Whole Genome Assemblies 
 

The de Bruijn graph based assembly algorithm, SOAPdenovo was used to generate a 

draft genome assembly of two of the bees, Bombus impatiens and Megachile rotundata. 

The assembly was run on a large memory cluster in which the compute node had 16 

CPUs of 2.34 GHz each, and a total memory of 254.04 GB RAM. The raw reads were 

error corrected using Quake (Kelley et al. Unpublished). Custom Perl scripts were 

written to order the mates in the corrected reads into paired reads and singletons. 

SOAPdenovo was run using the following parameters for both the bee assemblies: 
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/path to SOAPdenovo/ all –s /path to configuration file/ -K 31 –R –o <output file name> 

 

The ‘all’ parameter runs pregraph (construction of Kmer  graph), contig (elimination of 

errors and output contigs), map (map reads to contigs) and scaff (scaffolding), each one 

in turn, while the –R parameter helps to resolve tiny repeats in reads. The configuration 

file specifies the path to the error corrected reads for three libraries in this case, 500 bp 

shotgun, 3kb and 8kb paired end reads. Figure 3.13 shows the statistics on the number 

of raw reads and the number of corrected reads organized into pairs and singlets used 

for the B. impatiens assembly. The scaffolds obtained from were input into the Gap 

Closer and run using the following parameters: 

 

/path to GapCloser/  -b  /path to SOAPdenovo configuration file/  -a  /path to scaffold 

file/ -o <output file name> -p 31 

 

The –p parameter specifies the number of threads to run Gapcloser on (default 8). 

The Bombus impatiens reads could be assembled fairly easily, giving a contig N50 and 

scaffold N50 of 7.8 Kb (Table 3.5 ) and 1.2 Mb (Table 3.6 ) respectively. The sum of the 

scaffolds and the singletons from the assembly alone is about 260 Mb, which could be 

estimated to be the genome size of Bombus impatiens. Gap Closer was then run on the 

scaffolds giving a final assembly with 2450 scaffolds and 16% of the total gaps were 

closed. We also validated the putative Gapped Ortholog Reference Transcript Assembly 

(GOTA) that we obtained from the computational pipeline run on the EST data to our 

scaffold assembly. About 95% of the putative orthologs had a >95% match to the 

genome assembly. 

 

For Megachile rotundata, error correction was done only for the 500 bp shotgun library 

(library was constructed from a haploid male), while the 3kb and 8kb paired end libraries 

(library was constructed from a pool of individuals) were trimmed for the central 42 bp 

linker from the reads. Since these reads represent properly circularized DNA molecules, 

one can be assured about their paired end insert sizes. These trimmed reads were then 
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checked for their lengths > 31, ( k mer size ). However trimming the linkers and filtering 

them by the lengths reduced the total read number that was used for the assembly 

considerably (~7.5% of the total reads from 3kb library, and 1.2% of the total reads from 

the 8kb library). Assembly of these reads gave a contig N50 of 102 bp, while the 

scaffold N50 was 1.2 Kb. To make a better assembly, we then sequenced outward 

facing reads from another 5 kb library, which did not have any linkers to trim. The 500 

bp reads were then used for the initial contiging step since these were not polymorphic, 

while the 5kb reads along with the trimmed and filtered 3kb and 8kb mate pairs were 

used for the later scaffolding step. The assembly slightly improved, with a contig N50 

and scaffold N50 of 3.6 Kb (Table 3.7) and 31 Kb (Table 3.8) respectively. Figure 3.14 

shows the statistics on the raw and the trimmed/filtered reads used for the M. rotundata 

assembly. 
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CHAPTER 4 

DISCUSSION 
 

Ortholog Identification 
 

In this study, we have attempted to gain an understanding of the evolution of social life 

in molecular terms. We explored sociogenomics as an integrative discipline by 

combining our knowledge of phylogeny and wide diversity in social behaviour patterns 

with genomics. In order to address the question of what are the genomic changes 

associated with the evolution of social behaviour, we ran tests of selection on the 

putative orthologous genes identified computationally through the method of reciprocal 

best hit. This method is a greedy approach, in which it greedily stitches together the 

contigs to construct the Gapped Ortholog-reference-guided Transcript Assembly 

(GOTA). While this method solely relies on overlaps to concatenate the contigs, efforts 

were taken to make sure the overlap length was sufficiently long enough, so that the 

probability that any two contigs would have the same overlap at random and hence put 

together is minimized. Care was taken to make sure every contig which goes into the 

assembly is a reciprocal best hit, and stringent E-value cut offs were used. However, 

this still does not completely rule out the possibility of paralogs ending up in the 

assembly for a single contig. Since it is difficult to computationally distinguish the 

orthologs from paralogs using EST sequence data alone, it is quite possible for our 

assemblies to contain paralog contamination. A good way to validate the orthologs 

would be to use whole genome data, where we can look at Conserved Gene 

Neighbourhood (CGN) and synteny information, which can give more confidence on the 

orthologous genes, since the gene order across related species should be somewhat 

conserved. We could have used graph based approaches that have been used for 

genome assemblies by considering different K mers for each node, and extending 

unique K mers based on depth information, but this method based on de Bruijn graphs 

works well for short read sequence data, and for ESTs, this might not be an optimal 

approach because it will take a lot of memory to store long reads and hash them, which 

in turn might be heavy on the memory needed to perform these computations. Also, it 
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works poorly on 454 data as homopolymer errors have a much larger impact on this 

type of assembly. Overlap based methods are known to work fairly well for EST data, 

and the reciprocal best hit method is a good first pass approximation to identifying 

putative orthologs. Using this approach, we were able to identify putative orthologous 

genes from all species for about 33% of the Apis mellifera gene models, while about 

10% of the gene models did not have any hits. This could mean that the genes are 

either missing in the specific lineages, or missing genes yet to be annotated and 

included the Apis mellifera official gene set. The use of the official gene set provides a 

tunnel vision for the analyses of rapidly evolving genes. 

 

Tests of Selection  
 

Although several methods have been developed that utilize the concept of the rate of 

synonymous (dS) and non synonymous substitutions (dN) to infer selection, most of 

these approaches may lack power due to the model assumptions, choice of outgroup 

species and the number of taxa considered for the analyses (Messier and Stewart 1997; 

Zhang and Kumar 1997; Yang 1998). We used the branch model tests (codeml program 

of PAML package ) which average ω (dN / dS) over the entire branch and check if its 

greater than 1, in which case it is inferred as positive selection affecting that branch. 

However, since positive selection is unlikely to act on all the sites on a branch over 

evolutionary time, the average ω is very rarely greater than 1. Hence we applied the 

branch models to pick out genes that are “rapidly evolving” where the ω for a given 

lineage may not be greater than 1, but will be still greater than that of the background 

branches put together. The background branches here refer to those where we 

hypothesize the selective pressure to be absent. The rapidly evolving branches may 

then be tested by the sites model, which performs a naïve empirical Bayes estimation to 

identify specific sites under selection on the branch (Yang 2007). The branch-site 

models on the other hand are designed to detect episodic bouts of positive selection 

affecting only a few amino acid residues on a few lineages. However, since this test has 

too many free parameters, and is known to generate many false positives when the 

model assumptions are violated, we refrained from using these models. Yang et al. 
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recently developed a modified version of this test found to have a reasonable power 

under a variety of selection schemes, and this has been used extensively (Crespi et al. 

2007; Vamathevan et al. 2008). While the codon substitution model of Goldman and 

Yang incorporates a lot of parameters that describe biological sequence evolution well, 

for instance the transition/transversion rate ratio and equilibrium frequency of codons, it 

assumes a Markov model of codon evolution and does not incorporate codon 

insertion/deletion effects into the model. Morever, since one cannot set directional 

hypothesis in codeml, the rejection of the null hypothesis in these tests just implies that 

the gene of the foreground branch is evolving at a different rate from the background 

branches, and gives no information on the direction of the change since the test is two 

tailed. Some alternate packages like HyPhy (Pond et al. 2004) that allow one to test 

directional hypothesis in a maximum likeihood framework could be explored in such 

cases. Also developing a better codon substitution model incorporating indels may be 

designed. Adding more dimensions to the data can help get closer to true values.  

 

Alignment Accuracy and Selection Estimates 
 

While the maximum likelihood estimation of codeml followed by the likelihood ratio test 

to detect the rapidly evolving genes is a fairly conservative approach, a more careful 

consideration of the alignment accuracy on the final outcome is required. Previous 

studies have noted that different alignment methods lead to different conclusions 

regarding the detection of positively selected sites (Schneider et al. 2009; Mallick et al. 

2010). The effect of insertions, deletions and alignment errors on the branch-site test of 

positive selection has been systematically studied by Fletcher and Yang (Fletcher and 

Yang 2010). Here simulations were performed using the program INDELible which 

generates different data sets under codon models incorporating indels (Fletcher and 

Yang 2009), followed by the generation of multiple sequence alignments using different 

algorithms like PRANK (Loytynoja and Goldman 2005), MAFFT (Katoh et al. 2002), 

MUSCLE (Edgar 2004) and ClustalW (Thompson et al. 2004). The results showed that 

PRANK (codon alignments) consistently performed best having the lowest false positive 

rates followed by MAFFT, MUSCLE and ClustalW performing the worst. It seems like 
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the latter algorithms have a tendency to place the non-homologous codons into one 

column, giving the false impression of selection affecting those sites (Fletcher and 

Yang, 2010). In this study, all the alignments were manually inspected, and edited for 

errors by deleting ambiguous codons completely. While this painstaking correction 

would have reduced the false positive rate to a considerable extent, it still does not rule 

out the possibility of alignment errors leading to false positives in the selection tests 

completely. It may have been worthwhile to realign the codons using PRANK and 

compare the proportion of rapidly evolving genes to the ones obtained after manually 

editing the alignments. Also, since it is harder to simulate the effects of alignment 

uncertainties on the branch model test, as compared to the branch-site models, it may 

be difficult to estimate the error range for our analysis (Fletcher and Yang, 2010). 

 

Lineage Specific Rapidly Evolving Genes 
 

Using our approaches, we identified several rapidly evolving lineage specific genes, and 

the over representation of their corresponding GO terms. Some of the results have clear 

implications to social phenotypes, while some are new insights. In the contrast between 

eusocial lineages versus the rest, the GO enrichment test picked out the genes involved 

in gland development and signal transduction as rapidly evolving. Gland development 

genes may well fit into the eusocial evolution scenario for several reasons. Three gland 

systems, that is, hypopharyngeal, mandibular, and salivary glands are present in the 

heads of social and solitary bees (Cruz Landim, 1967). The glandular food discharged 

from the mouth of the workers is eaten by the larvae and the queen of the colony. With 

some exceptions in solitary bees, the highly eusocial (Apis melifera) bees and the 

stingless bees (Meliponini) appear to be the only ones in which glandular feeding habit 

is prominent (Michener, 1974). According to a study by Webster and Ping, the 

association of glandular feeding habit with sociality is due to four adaptive features of 

exocrine glands: 1) Glandular food is easily digestible, hence the bulk of faeces 

accumulation in the hive is minimized, which in turn reduces the load on hive cleaning. 

2) Queen’s fecundity is increased. 3) Nutrient recovery via cannabilism is faciliatied. 4) 

Rearing of replacement queens is expedited (Webster and Ping, 1988). Since it has 
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been extensively shown that glandular food is a large part of diet in principally eusocial 

bees, it can be well hypothesized that the genes for exocrine gland development are 

constantly evolving in the eusocial species as opposed to solitary bees where the 

principal diet consists of pollen and nectar, and even though they do have the genes for 

gland development, there is no selective pressure on these genes to evolve based on 

colony costs. In addition to this, it is a well-known fact that in eusocial bees, the ovaries 

of the queens are very well developed. The queen is born with a larger complement of 

ovarioles than the worker. Several million sperms are deposited in the queen’s oviduct, 

and few of those are stored in the spermatheca, which are then used to fertilize the 

eggs. These fertilized eggs can then develop into workers and new queens, while the 

unfertilized eggs develop into drones. We also found over representation of GO terms 

for genes involved in signal transduction pathways, notably insulin. Toth et al. analyzed 

the wasp gene expression dataset using next generation sequencing approaches and 

found insulin related genes among the differentially regulated genes, suggesting that 

evolution of eusociality involved major nutritional and reproductive pathways (Toth et al. 

2007). The insulin pathway has been implicated in honey bee queen worker caste 

determination (Wheeler et al. 2006; Corona et al. 2007; Patel et al. 2007) and worker 

foraging behaviour (Ament et al. 2006; Hunt et al. 2007). The honey bee genome 

project also shed light on some notable differences between honeybees, C. elegans 

and D. mel for components of insulin/insulin like growth factor signaling pathways, 

suggesting that honeybees have evolved a different regulation of this complex pathway 

(Robinson et al. 2006). Besides these, we also found genes from highly conserved cell 

signaling pathways that are responsible for most developmental cell-cell interactions in 

metazoans like thick veins (hedgehog signaling) and costa (epidermal growth factor 

signaling). 

 

In the contrast between highly eusocial versus the rest of the phylogeny, we identified 

enrichment for genes involved in odor perception (Tachykinin, no receptor potential A), 

and metabolism, mainly glycolysis (13 genes, P < 5.18E-11). It has been shown that in 

the highly eusocial Apis mellifera, there is a remarkable expansion of insect odorant 

receptor family (about 170 odorant genes, out of which 7 are pseudogenes) relative to 
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D.mel and A.gambiae. One can hypothesize that these genes are evolving rapidly 

because the odorant receptor expansion presumably mediates the range of odorant 

abilities in highly eusocial species, which includes perception of pheromones, kin 

recognition, and perception of floral colors (Robinson et al. 2006). Also since the 

eusocial have to perform several energetically demanding tasks like nest 

thermoregulation and increased foraging activity, the glycolysis genes might be under 

different selective pressures compared to the non-eusocial.  

 

In the contrast between primitively eusocial bees versus rest of the phylogeny, we found 

genes implicated in cAMP signaling and learning and memory (dunce), development, 

histone modification and chromatin remodeling factors. It has been shown that dunce 

mutants fail to learn as larvae and to retain memory in adulthood. Such learning tasks 

are believed to be involved in circuits in mushroom bodies, and may have some 

restructuring of the brain region related to these tasks (Heisenberg 1989; Laurent and 

Davidowitz 1994). The effect of visual experience is known to increase the volume of 

the calyx brain region and is cAMP dependent. This effect is found to be absent in 

dunce mutants. 

 

Whole Genome Assemblies 
 
We used SOAPdenovo assembly algorithm based on de Bruijn graphs to generate draft 

whole genome assemblies for our bees. SOAPdenovo is designed to assemble large, 

repetitive genomes from short read sequence data like those generated from Illumina. 

Unlike other greedy assemblers, SOAPdenovo splits the whole assembly process into 

distinct phases, with separate processing of repetitive sequences. Unambiguous 

stretches of sequence form non-branching paths in the de Bruijn graph which makes it 

easy to read off the contigs (Salzberg et al. 2010). Sequencing error creates tips and 

bubbles in the de Bruijn graph, which are solved by correcting for dead-end nodes and 

the Tour bus algorithm as used in Velvet. Though SOAPdenovo’s methods are largely 

derived from Velvet, the graph is more space efficient. However, the de Bruijn graph 

approach also has some drawbacks. Decomposition of reads into K mers can lead to 
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loss of information. The graph may not be read coherent (Myers et al. 2005). However 

these are the only assemblers have shown promising results for human size dataset. 

SOAPdenovo produced a decent draft assembly for Bombus impatiens data, but for 

Megachile rotundata, the assembler seems to be performing poorly largely due to the 

presence of AT rich repeats, which we analyzed by mapping the EST data onto the 

scaffold assembly for M. rotundata (data not shown). In such cases, it might help to 

generate a hybrid assembly using both 454 and Illumina sequencing data (Nagarajan et 

al. 2010) where the complementary nature of assembly algorithms can be used to 

significantly improve the quality of de novo scaffolds. Also, it might help to have larger 

insert sizes, which can be used to merge scaffolds by aligning the mate pairs to the 

contigs. Having a good gap closer algorithm can also significantly improve the quality of 

the scaffolds. Newer algorithms have been developed that iteratively align sequences 

against contig ends and perform local assemblies to produce gap-spanning contigs. 

Such improved iterative mapping methods can be explored to improve the continuity of 

a draft genome without the need to generate new data (Tsai et al. 2010). The 

importance of having good error correction algorithms cannot be underestimated. 

Current algorithms fail to distinguish between true errors and polymorphisms, and 

hence can be applied only to reads from haploid genomes. A probabilistic and machine 

learning framework is required to distinguish between the SNPs and the overall error 

rates for any sequencing technology to improve the current algorithms. Last, but not the 

least, new methods need to be developed that can help assess the correctness of an 

assembly. 
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CHAPTER 5 

CONCLUSIONS 
 

We have integrated species phylogeny, differences in social behaviour patterns across 

a broad array of extant Hymenopterans and Genomics to explore putative molecular 

signatures of selection that may be involved in complex eusocial behaviour. Eusociality 

has evolved multiple independent times, and it is unknown if these independent events 

eventually converged for complex traits. Using our approaches, we identified a shared 

set of genes, common to species showing different levels of sociality, as well as lineage 

specific genes. Further research needs to be done to understand how these adaptive 

changes are actually advantageous to the lineages. About 1GB transcriptome sequence 

analyzed for this study was assembled into non-redundant contigs and singletons. 

Users can now access this rich source of assembled EST data, and BLAST against 

multiple bee databases through our webserver, accessible at 

http://bee12.cropsci.uiuc.edu. A draft genome of a primitively eusocial and a solitary bee 

was generated using SOAPdenovo algorithm. The whole genome projects will advance 

our knowledge on the bee genome architecture and provide deeper insights on 

molecular evolution for sociogenomics studies and other comparative genomic 

analyses. 
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APPENDIX 

FIGURES AND TABLES 
 

FIGURES 
 

Figure 2.1 Shows the number of nonredundant contigs and singletons loaded in 

BlastData. 
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Figure 2.2 Putative Ortholog Assignment Pipeline. Orthology was assigned through the 

method of reciprocal BLAST. Each A.mellifera gene model is blasted against each of 

the species-specific non-redundant databases, and the top hits are blasted back to 

ascertain reciprocity. The best reciprocal hits are concatenated, after trimming of the 

overlaps to generate a Gapped Ortholog-reference-based Transcript Assembly (GOTA). 
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Figure 2.3 An Example Multiple Sequence Alignment as viewed in Geneious. The 

GOTAs obtained from the reciprocal BLAST pipeline were aligned to the A. mellifera 

reference gene models using the E-INS-i alignment strategy of MAFFT, which uses 

iterative refinement based on the method of weighted sum of pairs and consistency 

scores. A max iterations of 1000 was used for the MAFFT runs. The alignments were 

then manually edited to remove ambiguities using Geneious alignment editing software. 

 

 

 
 



 48 

 
Figure 2.4 Species Phylogeny. Alignments were degapped and concatenated based on 

different criteria (See Methods) and analyzed by Bayesian Analysis to get the species 

tree represented below. Each node of the above tree had a posterior probability close to 

1 (Dr. Sydney Cameron, UIUC, Unpublished). 
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Figure 3.1 %GC of non-redundant contigs and singletons across nine bees. 
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Figure 3.2 Database Schema.The six tables comprising BlastData are shown in 

Squares, (names in bold) around the central MySQL database. The attributes for each 

table are shown in brackets below the Table names. In addition, a Users table (not 

shown here), validates the usernames and passwords to log into BlastData. 
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Figure 3.3 Honey Bee Homolog Blast website home page. 
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Figure 3.4 A blastn run of hsp90 Apis mellifera gene against all the databases. The 

number of contigs/singletons hit per database is displayed on the left panel, the 

alignment against the query gene is displayed on the right. The blastn program was run 

using the frames option.  
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Figure 3.5 Use the sliders to define a region of the multiple sequence alignment. Hold z 

to select multiple genes, and align them using ClustalW after selecting the appropriate 

Sequence Retrieval Method. 
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Figure 3.6 Sequence Retrieval Feature allows user to retrieve the selected multiple 

alignment sequences. 
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Figure 3.7 Result of the ClustalW alignment. 
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Figure 3.8 The location of a honey bee gene is shown in red on linkage group 7. Zoom 

levels can be adjusted to one that is convenient. 
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Figure 3.9 Shows the Distribution of the number of orthologs found for each Apis 

mellifera gene model. The computational pipeline based on the method of reciprocal 

BLAST gave about 33% of the A. mellifera gene models had orthologous genes in all 

nine bee species, while about 10% of the gene models had no hits in any of the 

species. 
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Figure 3.10 PAML Pipeline coded in Perl (dir=directory; chdir=change directory). 
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Figure 3.11 Branch model results showing number of rapidly evolving genes for each of 

the three different hypothesis tested. Each hypothesis contrasts the lineage versus 

other lineages across the phylogeny. The null model assumes one rate of evolution for 

all the branches of the phylogeny, while the alternative model assumes different rates of 

evolution for specific branches across the phylogeny. The Likelihood ratio test followed 

by a chi-square analysis is used to pick out rapidly evolving genes. 
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Figure 3.12 The gene lists obtained from each hypothesis were compared to remove 

the overlaps, and pick out the lineage specific genes that are rapidly evolving for that 

given hypothesis (Robinson lab). 
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Figure 3.13 Shows the comparison between the raw and corrected read counts used for 

Bombus impatiens assembly. Reads from three  libraries (500 bp shotgun, 3kb and 8kb 

mate pairs)  were error corrected using Quake. Custom Perl script was written to order 

the mates into pairs and singletons.The *pairedCorrected and *singletons were then 

used for the assembly. Y-axis shows the number of reads. 
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Figure 3.14 Shows the raw and corrected read counts for the Megachile rotundata 

dataset. Reads from four libraries were sequenced: 500 bp shotgun,3kb, 8kb and 5kb 

mate pairs.The 500 bp library prepared from a haploid male (s_500_raw) was corrected 

using Quake (s_500_corrected). The 3kb and 8kb libraries were prepared from a pool of 

bees, hence were not error corrected. However these were trimmed for linkers and 

filtered to retain reads >= Kmer length using custom Perl scrips. The 5kb library was 

also prepared from a pool of individuals and the raw reads were used for the final 

assembly. Y-axis shows the number of reads. 
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TABLES 
 

Table 2.1 Standardized species names. All sequences in the BlastData database are 

represented by their corresponding standardized abbreviations. 

 
 

Species Standardized species name 

Apis florea Api_florea 

Bombus impatiens Bom_impati 

Bombus terrestris Bom_terres 

Eulaema nigrita Eul_nigrit 

Exoneura robusta Exo_robust 

Megachile rotundata Mega_rotun 

Euglossa cordata Eug_cordat 

Frieseomellita varia Frie_varia 

Melipona quadrifasciata Mel_quadri 
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Table 3.1 Bee EST Assembly using Phrap. Deduplication of clonal reads was done to 

reduce time taken for the assembly. Many genes are likely represented by multiple 

contigs/singlets. Average read length was around 240 bp (Varala, K, Hudson Lab). 

 

 

 

Total 

Bases 

(~Mb) 

No. Of 

Reads 

(~ Kb) 

No. of 

contigs 

Avg. 

contig 

length 

#Singlets 

#Non 

redundant 

bases 

(~Kb) 

Total 

bp in 

NR 

(~Mb) 

Bombus 

impatiens 
98 406 30722 556.5 23820 54 22 

Megachile 

rotundata 
48 559 13725 592.2 30945 45 15 

Euglossa 

cordata 
77 317 26376 560 23454 50 19 

Frieseomellita 

varia 
74 307 21052 476.4 29757 51 16 

Melipona 

quadrifasciata 
77 317 24797 530 29728 54 19 

    Apis 

   florea 
72 331 28418 464 30592 59 19 

Bombus 

terrestris 
76 319 19938 528.6 22878 42 15 

Eulaema 

nigrita 
89 376 29509 539.4 27180 57 21 

Exoneura 

robusta 
117 421 37791 531.8 22856 61 26 
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Table 3.2 Shows the GO annotations (over represented terms) specific to the eusocial 

lineages. Hypothesis tested: Genes in the eusocial lineages are evolving more rapidly 

than the non-eusocial lineages. 

 

 

BIOLOGICAL PROCESS FOLD ENRICHMENT 

Cell surface receptor linked signal 

transduction 
1.89 

Gland Development 3.00 

Protein phosphorylation 2.07 

Glycolysis 6.66 

RNA Processing 1.73 

Transcription 1.70 
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Table 3.3 Shows the GO annotations (over represented terms) specific to the highly 

eusocial lineages. Hypothesis tested: Genes in the highly eusocial lineages are evolving 

more rapidly than the other lineages. 

 

 

 

 

BIOLOGICAL PROCESS FOLD ENRICHMENT 

Glycolysis 14.81 

Oxidation Reduction 2.1 

Protein phosphorylation 2.6 

Carboxylic acid biosynthesis 4.27 
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Table 3.4 Shows the GO annotations (over represented terms) specific to the primitively 

eusocial lineages. Hypothesis tested: Genes in the primitively eusocial lineages are 

evolving more rapidly than the other lineages. 

 

 

 

 
 

 

 
 
 

 
 
 
 

 
 
 
 

 
 
 

BIOLOGICAL PROCESS FOLD ENRICHMENT 

Histone modification 3.48 

Motor activity 4.00 

Neuron differentiation 2.50 

Post embryonic development 1.86 

Response to hormone stimulus 5.00 

Transcription 2.27 
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Table 3.5 Bombus impatiens whole genome assembly, Contig Statistics. 

 
 

 

 

 

Table 3.6 Bombus impatiens whole genome assembly, Scaffold Statistics. 

 

 

 
 
 

 
 
 
 

 
 

NUMBER OF 
CONTIGS 

(length > 100) 
SUM 

MIN 
LENGTH 

MAX 
LENGTH 

AVERAGE 
LENGTH 

N50 N90 

97971 
232 

Mb 
100 bp 106 kb 2376 bp 

7.8 

Kb 

1.5 

Mb 

NUMBER OF 
SCAFFOLDS 

 

NUMBER OF 
SCAFFOLDS 

AND 
SINGLETONS 

SUM OF 
SCAFFOLDS 

AND 
SINGLETONS 

MAX 
LENGTH 

AVERAGE 
LENGTH 

N50 N90 

2450 9359 260 Mb 4.9 Mb 27998 bp 
1.2 

Mb 

148 

Kb 
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Table 3.7 Megachile rotundata whole genome assembly, Contig Statistics. 
 
 

 
 

Table 3.8 Megachile rotundata whole genome assembly, Scaffold Statistics. 

 
 
 

 
 
 
 
 
 
 

 

 

NUMBER OF 
CONTIGS 

(length > 100) 
SUM 

MIN 
LENGTH 

MAX 
LENGTH 

AVERAGE 
LENGTH 

N50 N90 

207045 
239 

Mb 
100 bp 101 kb 1158 bp 

3.6 

Kb 

810 

bp 

NUMBER OF 
SCAFFOLDS 

 

NUMBER OF 
SCAFFOLDS 

AND 

SINGLETONS 

SUM OF 
SCAFFOLDS 

AND 

SINGLETONS 

MAX 
LENGTH 

AVERAGE 
LENGTH 

N50 N90 

21843 60414 274 Mb 1.1 Mb 4641 bp 
31 

Kb 

5 

Kb 


