
c© 2010 Thadpong Pongthawornkamol

RELIABILITY AND TIMELINESS ANALYSIS OF CONTENT-BASED
PUBLISH/SUBSCRIBE SYSTEMS

BY

THADPONG PONGTHAWORNKAMOL

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2010

Urbana, Illinois

Doctoral Committee:

Professor Klara Nahrstedt, Chair
Associate Professor Indranil Gupta
Assistant Professor Matthew Caesar
Doctor Ludmila Cherkasova, Hewlett-Packard Laboratories

ABSTRACT

Content-based Publish/subscribe systems (CBPS) is a simple yet powerful communication paradigm.

Its content-centric nature is suitable for a wide spectrum of today’s content-centric applications

such as stock market quote exchange, remote monitoring and surveillance, RSS news feed, and

online gaming. As the trend shows that the amount of information along with its producers be-

come astonishingly increasing everyday, a publish/subscribe system seems to be one of only a

few viable choices that could govern the next-generation world of communication. However, the

content-centric nature of a publish/subscribe system also poses difficulty in analyzing or assessing

its performance. Moreover, the complexity increases when deploying a publish/subscribe system

on top of best-effort, unreliable wide-area networks. Such uncertainty and complexity become a

hindrance to apply content-based publish/subscribe systems to delay-sensitive applications that

require reliable/timely event delivery and tight resource control such as soft real-time systems or

cyber-physical systems. The need to solve such problem calls for a good analytical model that

could capture both expressiveness and uncertainty nature of distributed CBPS systems yet predict

the system behavior accurately.

This dissertation is, to the best our knowledge, the first attempt to analyze the reliability/timeliness

performance of distributed content-based publish/subscribe systems under best-effort networks. It

proposes a probabilistic, analytical framework of content-based publish/subscribe systems under

different dynamism for the purpose of performance analysis. Specifically, given a publish/subscribe

system configuration and dynamism parameters, it estimates event delivery probability and time-

liness received by each subscriber in the publish/subscribe system. The dissertation also presents

evaluation results of the proposed predictive model via simulations with both synthetic traces and

real-world traces. The results yield prediction accuracy and effectiveness of the proposed frame-

work. The proposed analytical framework can be used as a tool for performance assessment or as

a building block for publish/subscribe system optimizations such as subscriber admission control,

ii

subscriber allocation, broker capacity planning, and broker network planning.

There are several factors, which are termed dynamism in this dissertation, that affect the perfor-

mance of distributed content-based publish/subscribe systems. The proposed analytical framework

first addresses each type of dynamism separately in order to avoid the modeling complexity and

to study the effect of each type of dynamism individually. The proposed analytical model then

relaxes each assumption and combine several types of dynamism altogether under one integrated

framework.

There are three major types of dynamism considered in the analytical framework : content

dynamism, overlay dynamism, and mobility dynamism. Content dynamism means the uncertainty

in determining the amount of data from an arbitrary publisher to an arbitrary subscriber due to the

publisher-subscriber decoupling nature of the content-based publish/subscribe systems. Overlay

dynamism means the uncertainty from publish/subscribe internal broker network, including broker

failures and link failures. Finally, mobility dynamism refers to the uncertainty from users’ changes

of location and content interest. We first propose a probabilistic analytical model for each type of

dynamism separately before discussing the framework that integrates all separate analytical models

together. We also present validation results for each dynamism-specific analytical model, which

prove the accuracy and effectiveness of its corresponding analytical model.

This thesis makes contributions in the following areas. First, it proposes a detailed analytical

model of content-based publish/subscribe systems from all possible aspects, providing a complete

analysis in systematic manner. Second, it incorporates delay and reliability into one single analyt-

ical framework, which makes it suitable for delay-sensitive publish/subscribe applications. Third,

it discusses and proposes some examples of possible publish/subscribe optimizations on top of

such analytical model. Finally, it proves the applicability of the proposed analytical model via

simulations with both synthetic and real-world traces.

iii

To my family, teachers, and friends.

iv

ACKNOWLEDGMENTS

First of all, I would like to thank my Ph.D. advisor, Professor Klara Nahrstedt for her dedication,

advice, and support during all of my Ph.D. years. This dissertation and all my Ph.D. research

would not have been done without her guidance and suggestions. Her limitless enthusiasm to

pursue novel academic research and her kind understanding in her students have made her my role

model of how a great researcher/professor can be. I will always be grateful to her.

At the same time, I would like to thank all of my Ph.D. committee members as follows. I would

like to thank Professor Indranil Gupta for being both my M.S. thesis advisor and Ph.D. committee

member. His insightful suggestions have helped improve my research in both M.S. and Ph.D.

levels. I would like to thank Professor Matthew Caesar for his kind help and comments on my

Ph.D. thesis. I also would like to express my gratitude to Doctor Ludmila Cherkasova for Hewlett-

Packard Laboratories for all technical discussions and suggestions. Besides my Ph.D. committee

members, I would not have reached to this point without all the coursework taught by various

professors in the department of Computer Science, University of Illinois. I would like to thank all

of them for their teachings and trainings. Apart from academic support, I would like to thank

Doctor Guijun Wang along with his affiliation, Boeing Research & Technology, for all financial

support during my Ph.D. years and useful research suggestions that have ultimately motivated this

Ph.D. dissertation.

Having been a member in Multimedia Operating Systems and Networking (MONET) group

for several years, I have come to know and received many supports from my past and present

colleagues, which include Jingwen Jin, Won J. Jeon, Bin Yu, Jin Liang, Zhenyu Yang, Wenbo He,

William Conner, Hoang Nguyen, Ying Huang, Long Vu, Muyuan Wang, Jigar Doshi, Wanmin Wu,

Ravishankar Sathyam, Roger Cheng, Qiyan Wang, Raoul Rivas, Claudio Campeggi, Rahul Malik,

Shameem Ahmed, Ahsan Arefin, Debessay Fesehaye, Zixia Huang, Rini Kaushik, Pooja Agarwal,

Kurchi Hazra, Naveen Cherukuri, and Angali Sridhar. I would like to thank all of them for their

v

kind feedback and energetic support that make my life in MONET group a very pleasant one.

I also would like to thank all of the administrative staffs in the department of Computer Science,

University of Illinois at Urbana-Champaign for their kind assistance in various aspects. The staffs

include, but are not limited to, Barb Cicone, Mary Beth Kelly, Shirley Finke, Anda Ohlsson, and

Lynette Lubben.

Many thanks also go to my friends outside the department of Computer Science. I would like to

thank everyone from Thai Student Association for making my Ph.D. life warm, enjoyable, and less

stressful than it could be. Spending time with them has made me feel like home. I also wish them

all best of luck in pursuing their current studies and future careers.

Last, but not least, I would like to thank my family for their unconditional love and support.

I have been blessed to be born and raised up in a warm, happy family that gives me freedom to

pursue my life in every aspect with full support and understanding. I would like to thank my

parents for everything they have given in order to raise me up to the way I currently am. I would

like to thank my brother and all the enjoyable moments we share together. I would like to thank my

grandparents for their inspiration and dedication all along. My gratitude also goes to all relatives

and their kind support. Finally, I would like to thank my special person for understanding me,

being with me for better or for worse, and accepting me the way I am.

vi

TABLE OF CONTENTS

LIST OF TABLES . x

LIST OF FIGURES . xi

LIST OF ABBREVIATIONS . xiii

CHAPTER 1 INTRODUCTION . 1
1.1 Motivation . 1
1.2 State of the Art . 3

1.2.1 Distributed Publish/Subscribe Systems . 3
1.2.2 Quality of Service in Publish/Subscribe Systems 5
1.2.3 Formal Modeling and Analysis of Distributed Publish/Subscribe Systems . . 6

1.3 Thesis Scope and Contribution . 7
1.3.1 Thesis Contributions . 7
1.3.2 Thesis Scope . 8

1.4 Thesis Outline . 10

CHAPTER 2 PUBLISH/SUBSCRIBE SYSTEM MODEL AND ASSUMPTIONS 11
2.1 Content-based Publish/Subscribe Architecture . 11
2.2 Content-based Publish/Subscribe Entities . 12

2.2.1 Real-time Events . 12
2.2.2 Subscribers . 13
2.2.3 Publishers . 14
2.2.4 Brokers . 15
2.2.5 Links . 16

2.3 Content-based Publish/Subscribe Operations . 16
2.3.1 Subscription . 17
2.3.2 Event Matching and Forwarding . 17
2.3.3 Unsubscription . 17

2.4 Quality of Service Metrics . 18
2.5 Subscriber Reliability Estimation Problem . 19

CHAPTER 3 RELIABILITY AND TIMELINESS ANALYSIS WITH CONTENT DY-
NAMISM . 20
3.1 Introduction . 20
3.2 Static Subscriber Real-time Reliability . 24

3.2.1 Formulation . 24

vii

3.2.2 M/M/1 Estimation Algorithm . 25
3.2.3 G/G/1 Estimation Algorithm . 31

3.3 QoS-aware Subscriber Admission Control . 35
3.3.1 Formulation . 35
3.3.2 Heuristic Algorithms . 36

3.4 Evaluation . 38
3.4.1 Simulations with Synthetic Trace . 38
3.4.2 Simulation with Real-world Trace . 41
3.4.3 Subscriber Admission Control . 43

3.5 Related Work . 43
3.5.1 Content Uncertainty in Publish/Subscribe Systems 43
3.5.2 Timing Analysis in Publish/Subscribe Systems 44
3.5.3 Overload Management in Publish/Subscribe Systems 45

3.6 Discussion . 45

CHAPTER 4 RELIABILITY AND TIMELINESS ANALYSIS WITH MOBILITY DY-
NAMISM . 51
4.1 Introduction . 51
4.2 Publish/Subscribe Mobility Management . 53

4.2.1 Reactive Handoff . 53
4.2.2 Proactive Prefetching . 54

4.3 Mobile Subscriber Real-time Reliability . 55
4.3.1 Formulation . 55
4.3.2 Analytical Framework . 57
4.3.3 Mobile Reliability Estimation Algorithm . 59

4.4 Estimating Contact/Outage Duration Distributions 62
4.4.1 Broker Map Model . 62
4.4.2 Basic Mobility Model . 64
4.4.3 Semi-Markov Mobility Model . 68

4.5 Evaluation . 75
4.5.1 Parameter Settings . 76
4.5.2 Contact/Outage Duration Estimation . 77
4.5.3 Protocol Performance . 78

4.6 Related Work . 81
4.7 Discussion . 81

CHAPTER 5 RELIABILITY AND TIMELINESS ANALYSIS WITH OVERLAY DY-
NAMISM . 87
5.1 Introduction . 87
5.2 Overlay Dynamism . 88

5.2.1 Broker Failure . 88
5.2.2 Link Failure . 89

5.3 Fault Tolerance/Recovery Mechanisms . 89
5.3.1 Periodic Subscription . 90
5.3.2 Event Buffering/Retransmission . 90
5.3.3 Redundant Path Bypassing . 91

5.4 Subscriber Real-time Reliability with Unreliable Broker Networks 93

viii

5.4.1 Formulation . 93
5.4.2 Analytical Framework . 95
5.4.3 Generic Estimation Algorithm . 96

5.5 Publisher-Subscriber Pairwise Reliability Estimation 96
5.5.1 Static Tree . 96
5.5.2 Static Tree + Periodic Subscription . 96
5.5.3 Static Tree + Event Buffering/Retransmission 98
5.5.4 Path Bypassing + Periodic Subscription . 103
5.5.5 Path Bypassing + Event Buffering . 105

5.6 Home Broker Selection Optimization . 106
5.7 Evaluation . 107

5.7.1 Parameter Settings . 107
5.7.2 Evaluation Results . 108

5.8 Related Work . 114
5.8.1 Reliable Overlay Networks . 114
5.8.2 Reliable Multicast Systems . 114
5.8.3 Reliable Publish/Subscribe Systems . 114

5.9 Discussion . 115

CHAPTER 6 PUTTING IT ALL TOGETHER . 116
6.1 Introduction . 116
6.2 Integration Framework . 117
6.3 Discussion . 119

CHAPTER 7 CONCLUDING REMARKS . 120
7.1 Conclusion . 120
7.2 Lessons Learned and Future Work . 122

7.2.1 Lessons Learned . 122
7.2.2 Future Work . 123

REFERENCES . 125

ix

LIST OF TABLES

3.1 Content dynamism analysis variables’ notation . 26
3.2 Simulation parameters . 39
3.3 NASDAQ stock event structure . 41
3.4 NASDAQ stock subscription type distribution . 42

4.1 Mobility dynamism analysis variables’ notation . 57

5.1 Overlay dynamism analysis variables’ notation . 95

x

LIST OF FIGURES

1.1 Diagram showing the scope of this thesis in the communication protocol stack.
The right figure shows the break-down of each component addressed in this thesis. . 7

2.1 Example of subscription propagation and event routing in a publish/subscribe system 12
2.2 Example of subscription propagation and event routing in publish/subscribe bro-

ker tree . 18

3.1 Examples of load calculation in each communication paradigms 21
3.2 Example of real-world event streams and their temporal locality 22
3.3 Example of the effect of subscription filter to rate calculation 23
3.4 Steps for subscriber reliability estimation . 27
3.5 M/M/1 model predicted subscriber reliability compared to actual reliability un-

der different event traffic patterns . 47
3.6 G/G/1 model predicted subscriber reliability compared to actual reliability under

different event traffic patterns . 48
3.7 Predicted reliability compared to actual reliability with inaccurate content dis-

tribution information . 49
3.8 Temporal locality between first-day event trace and second-day event trace 49
3.9 Predicted reliability compared to actual reliability with real-world stock traces . . . 50
3.10 Fraction of satisfied subscribers with different admission control algorithms 50

4.1 An illustrative scenario of a publish/subscribe system with mobile subscribers 52
4.2 Example of reactive handoff mobility management 54
4.3 Example of proactive prefetching mobility management 55
4.4 Timing diagram showing a subscriber’s mobility and contact/outage phases 58
4.5 Timing diagram showing a subscriber’s mobility and live period without buffering . 60
4.6 Timing diagram showing a subscriber’s mobility and live period with buffering . . . 61
4.7 Example of a subscriber’s trajectory in a map with three APs 63
4.8 Semi-Markov mobility graph and its mapping from other models 69
4.9 Simulation Map . 76
4.10 Effect of different subscriber speed when pause time = 0 s 83
4.11 Effect of different subscriber pause time with 10 m/s speed 84
4.12 Average subscriber real-time reliability with 0s pause time, 60s event lifetime, 1s

handoff latency . 85
4.13 Average subscriber real-time reliability with 10m/s speed, 60s event lifetime, 1s

handoff latency . 85

xi

4.14 Average subscriber real-time reliability with 10m/s speed, 0s pause time, 1s hand-
off latency . 85

4.15 Average subscriber real-time reliability with 5 brokers, 0s pause time, 60s event
lifetime . 86

5.1 Example of event buffering/retransmission scheme 91
5.2 Example of path bypassing scheme . 92
5.3 Example of a publisher-subscriber path with length 3 97
5.4 8-state continuous, absorbing Markov process diagram for per-hop buffering delay

analysis . 101
5.5 Example of reduced subgraph to estimate the lower bound of pairwise reliability r′ps 104
5.6 End-to-end buffering delay distribution of a single publisher-subscriber path 109
5.7 Conditional end-to-end buffering delay distribution of a single publisher-subscriber

path . 110
5.8 Average reliability a single publisher-subscriber path 111
5.9 Subscriber reliability in static random tree with 10 brokers and 60K s period 112
5.10 Subscriber reliability in 10-broker overlay graph with average degree 4 and 60K

s period . 113
5.11 Average subscriber reliability with home broker selection scheme in 10-broker

overlay graph . 113

6.1 End-to-end reliability/timeliness breakdown . 117
6.2 Content dynamism component . 118
6.3 Mobility dynamism component . 118
6.4 Overlay dynamism component . 119

xii

LIST OF ABBREVIATIONS

e ∈ E An event in the set of all system events

E ⊆ E An arbitrary set of events

de Event e’s lifetime

D Set of all events’ lifetime values

ae Event e’s content

vie Event e’s i’th attribute

τe Event e’s topic (v1e)

Vi Value space of ith attribute

T Topic space of all events and subscriptions (Vi)

V Content value space of all events

s ∈ S A subscriber in the set of all subscribers

S ⊆ S An arbitrary set of subscribers

fs ∈ V Subscriber s’s content of interest filter

Fs(E) Events in set E that matches s’s interest

dse End-to-end delivery delay of event e to subscriber s

p ∈ P An arbitrary publisher in the set of all publishers

P ⊆ P An arbitrary set of publishers

tp The topic published by publisher p

b ∈ B An arbitrary broker in the set of all brokers

B ⊆ B An arbitrary set of brokers

Mb Broker b’s event processing time (distribution)

n An arbitrary node in the system (subscriber/publisher/broker)

xiii

N The set of all nodes in the system (S ∪ P ∪ B)

l ∈ L An arbitrary link in the set of all links

lxy The link connecting node x and node y

rl Link l’s transmission probability

Dl Link l’s transmission delay (distribution)

G = (N,L) Publish/subscribe overlay graph

rs Subscriber s’s real-time reliability

r′s Subscriber s’s estimated real-time reliability

xiv

CHAPTER 1

INTRODUCTION

1.1 Motivation

Over the past few years, publish/subscribe systems have recently become an emerging paradigm

for large-scale information dissemination. The nature of publish/subscribe where the producers

of the information (i.e., publishers) and the consumers of the information (i.e., subscribers) are

interacting via intermediaries (i.e., brokers) allows both sides to be decoupled in space, time, and

synchronization[1]. Such flexibility and scalability make publish/subscribe paradigm one of few

viable choices for designing and building large-scale data dissemination systems.

So far, there have been significant efforts to design standards and build implementations of

scalable and efficient distributed publish/subscribe systems[2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. Based on

commonly accepted taxonomy, publish/subscribe systems can be categorized into topic-based [5, 6,

7] and content-based publish/subscribe systems[2, 3, 4, 8, 9, 10]. In Topic-Based Publish/Subscribe

(TBPS) systems, the events from publishers are delivered to subscribers that share the same single

interest value, called topic. In Content-Based Publish/Subscribe (CBPS) systems, each event can

contain multiple attributes. Any subscriber that is interested in a topic can further specify, at the

attribute level, which portion of the topic events that it wants to receive. Hence, CBPS systems give

more flexibility to the subscribers at the cost of increasing processing complexity at the brokers.

Beside the increasing complexity of CBPS systems compared to TBPS systems, another draw-

back of CBPS systems is the lack of predictability. In CBPS systems, since each subscriber has

flexibility to choose the information it wants at fine-grained attribute level, it is non-trivial to

determine event flow from each publisher to each subscriber. Hence, it is also non-trivial to an-

alyze quality-of-service performance and correctness of a content-based publish/subscribe system

when compared to its topic-based counterpart. For example, it is non-trivial to check how much

resource is needed to service each subscriber properly, or to verify if the system’s current state is

1

stable. Moreover, deploying distributed publish/subscribe systems over unreliable networks fur-

ther decreases system determinism and predictability. Such uncertainty and complexity become

a hindrance to apply content-based publish/subscribe systems to delay-sensitive applications that

require quality of service and tight resource control such as soft real-time systems or cyber-physical

systems. The need to solve such problems calls for a strong analytical model that could capture

both expressiveness and uncertainty nature of distributed CBPS systems yet predict the system

behavior accurately.

However, while it is infeasible to calculate the exact resource consumption and quality of service

each subscriber receives in content-based publish/subscribe systems, it is still possible to do so in

a probabilistic manner when the partial information of each component in the system is given.

The term partial information refers to the trend or behavior patterns of each component, such as

underlying networks (e.g., how likely that the event transmission delay over a link will be within

5 seconds), hardware capabilities (e.g., the average broker event processing time), user mobility

pattern (e.g., how likely a subscriber will move from one point to another point), and publishing

pattern (e.g., how likely a publisher will publish a value or how likely that a publisher will publish

the next message within a specific time). Such pattern information can be either explicitly given by

or implicitly observed statistically from each component[12], thus making it possible to model and

predict behavior of the publish/subscribe system. The performance prediction can then be used as

a building block for autonomic QoS control such as subscriber admission control, broker capacity

planning, overload management, and resource adaptation. To the best of our knowledge, there

is no work to date that discusses the usage of such fuzzy and partial information to predict the

reliability/timeliness behavior of distributed content-based publish/subscribe systems over best-

effort networks. In other words, we make the following thesis statement.

We propose an analytical model that allows subscriber-oriented, reliabil-

ity/timeliness prediction and optimization in distributed content-based pub-

lish/subscribe systems with high probability.

In this thesis, we categorize the information of publish/subscribe components into three groups.

We use the term dynamism to describe such information, as they are dynamic factors that affect the

performance of publish/subscribe systems. Each type of dynamism is addressed by each Chapter

of this thesis. The first form of dynamism is called content dynamism, which is the uncertainty

2

in determining the amount of traffic that flows through a path between each publisher-subscriber

pair. Such information is essential in determining the load of each component in publish/subscribe

systems. The second form of dynamism is called overlay dynamism, which is the change in broker

overlay networks caused by broker failures and link failures. The overlay dynamism can cause

service outage or disruption from each subscriber’s point of view. The third form of dynamism

is called mobility dynamism, which is the change of subscribers’ locations caused by subscribers’

movements. Given the information of such dynamism, the proposed analytical model can predict

the performance of the publish/subscribe systems under the dynamic factors.

1.2 State of the Art

This sections presents the state of the art of quality of service in publish/subscribe systems. We

first present the literature survey of generic distributed publish/subscribe systems in Section 1.2.1.

Then, the related works in the qualify of service aspect is presented in Section 1.2.2. Finally,

Section 1.2.3 discusses existing works in formal model, analysis and verification of publish/subscribe

systems. Note that each category of the works presented in this section is not mutually exclusive,

as some works may fall into multiple categories. In each subsequent chapter, we also give related

works that are specific to that chapter.

1.2.1 Distributed Publish/Subscribe Systems

Over the past decade, publish/subscribe systems have emerged as a multi-source, multi-sink com-

munication paradigm. The main concept of publish/subscribe paradigm is that senders and re-

ceivers of information are connected loosely based on the content of the information. Specifically, in

a publish/subscribe system, a publisher can produce its information (i.e. messages or events) with-

out specifying the set of subscribers. Instead, each subscriber specifies the content of information

it is interested to receive. All messages produced from publishers containing content that matches

a subscriber’s interest are then delivered to that subscriber via a network of publish/subscribe

intermediaries called brokers. Since the information flows based on the content of the information,

publishers and subscribers are decoupled in space, time, and synchronization[1]. Such transparency

allows the system to scale and adapt well under dynamic environments.

Generally, publish/subscribe systems can be categorized into two types based on the granularity

3

of the content matching and routing. The first type is called topic-based publish/subscribe, while

the second type is called content-based publish/subscribe. The other types of categorization and

complete taxonomy of publish/subscribe systems can be found in several survey papers[11, 13, 1,

14].

1.2.1.1 Topic-based Publish/Subscribe

Topic-based publish/subscribe systems are the first set of incarnation and the simplest form of

publish/subscribe systems where publishers and subscribers are linked via a single keyword called

topic. That is, each subscriber specifies a single topic keyword of its interest. Likewise, each

publisher associates a single topic keyword to each of its published message. Hence, a subscriber will

receive all messages associated with a topic keyword that matches the subscriber’s topic keyword.

Hence, topic keyword in topic-based publish/subscribe systems is analogous to session identifier

in multicast systems. Some examples of topic-based publish/subscribe systems are SCRIBE[5],

Herald[6], and Bayeux[7].

The advantages of topic-based publish/subscribe systems are simplicity and efficiency in mes-

sage matching and routing at each broker in the network. The matching process in topic-based

publish/subscribe systems only involves exact keyword matching, incurring small overhead at each

broker. However, the main disadvantage of the topic-based publish/subscribe systems is the lack

of expressiveness, since each subscriber will always receive all messages with the topic of its in-

terest even when that subscriber is interested only in a subset of messages from that topic. The

limitation of expressiveness than motivates the second-generation publish/subscribe systems called

content-based publish/subscribe systems.

1.2.1.2 Content-based Publish/Subscribe

To achieve higher expressiveness in publish/subscribe systems, content-based publish/subscribe

systems are introduced. The main difference between topic-based publish/subscribe systems and

content-based publish/subscribe systems are the level of granularity in message structure and topic

matching. In contrast to topic-based publish/subscribe systems where subscribers specify their

interests in the form of topic keywords, subscribers in content-based publish/subscribe systems

can specify, in addition to the topic keyword, conditions of attributes of messages that match

the subscribers’ interests. Hence, not all messages with the matching topic will be delivered to

4

the subscriber. Instead, only messages with both matching topic and matching attributes will be

delivered to the subscriber. Content-based publish/subscribe systems thus assume the attribute

structure of messages of each topic to be known by both publishers and subscribers. Some exam-

ples of content-based publish/subscribe systems include Siena[2], Gryphon[3], JEDI[4], Hermes[8],

CORBA standard[9], and DDS standard[10].

There are several advantages of content-based publish/subscribe systems over topic-based pub-

lish/subscribe systems such as higher level of expressiveness for subscribers in selecting messages

of their interests. Another advantage is less bandwidth consumption as the unwanted portion of

messages will be filtered out before reaching subscribers. However, such advantages come at the

cost of additional processing and storage overhead at the brokers, as now the message matching in-

volves more complex attribute matching. Another disadvantage of content-based publish/subscribe

systems is less predictability in resource consumption, as it is harder to determine the amount of

traffic between a pair of publisher and subscriber, making it harder to predict the behavior of the

system especially in quality of service aspect.

1.2.2 Quality of Service in Publish/Subscribe Systems

Quality of service in publish/subscribe systems has been discussed in several survey works[15,

16, 17]. We categorize works in this area in two categories based on application requirements

and QoS support from underlying hardware and networks. The first category represents hard real-

time publish/subscribe systems and the second category represents soft real-time publish/subscribe

systems.

1.2.2.1 Hard Real-time Publish/Subscribe

The first category of QoS in publish/subscribe systems is hard real-time publish/subscribe systems[18,

19, 20]. Works in this area discuss the problem of designing publish/subscribe systems that sup-

port hard real-time applications with critical deadlines. However, these works require QoS support

from underlying hardware and networks (i.e., hard real-time processor scheduling and real-time

networks). This thesis, however, focuses on another scenario where an application deadline is not

critical.

5

1.2.2.2 Soft Real-time Publish/Subscribe

In contrast to hard real-time publish/subscribe systems, soft real-time publish/subscribe systems

aim to support non-critical applications that allow QoS violation to some extent[21, 22, 23, 24, 25].

Soft real-time publish/subscribe systems usually do not require real-time support from underlying

components, but instead implement quality of service mechanisms at broker level. Some works in

this category focus on event routing decision[22, 23] while some works achieve quality of service by

event scheduling[21]. Recently, there are several works that address quality of service when clients

are mobile[24, 25].

While this thesis proposes an analytical model for best-effort content-based publish/subscribe

system, it can be categorized soft real-time publish/subscribe category as the proposed model tar-

gets delay-sensitive applications. However, unlike existing works in soft real-time publish/subscribe

systems, this thesis proposes the generic analytical model in order to quantitatively predict QoS

behaviors of standard, existing publish/subscribe systems.

1.2.3 Formal Modeling and Analysis of Distributed Publish/Subscribe Systems

There have been significant efforts to model and analyze publish/subscribe systems along with

their correctness properties and performance aspects. In his dissertation, Muhl[26] proposed a

generic content-based publish/subscribe frameworks and a class of subscription/publication match-

ing/routing algorithms (such as flooding, subscription covering, subscription merging) along with

proof of correctness and performance analysis. Jaeger[27] also proposed the analytical model for

self-stabilizing publish/subscribe under transient failures. Baldoni et al[28] also proposed correct-

ness proof of publish/subscribe systems when subscription propagation delay is not negligible.

However, all works assume do not address timeliness aspect in event delivery. He et al[29] pro-

posed a publish/subscribe model checker based on probabilistic timed automata. However, the

computational overhead associated with the automata due to state explosion may limit the us-

age of such approach to only small-sized problems. Baresi et al[30] addressed the state explosion

problem in by adding publish/subscribe APIs into model checkers. Recently, Schröter et al have

proposed the stochastic analytical model for content-based publish/subscribe that addresses event

queuing/processing and link transmission delay[31, 32], which bears some similarity with a part of

our thesis[33, 34]. However, our work differ from their work in analysis granularity and queuing

model.

6

1.3 Thesis Scope and Contribution

Figure 1.1: Diagram showing the scope of this thesis in the communication protocol stack. The
right figure shows the break-down of each component addressed in this thesis.

1.3.1 Thesis Contributions

To the best of our knowledge, this thesis has the following contributions towards research areas in

content-based publish/subscribe systems.

Reliability/timeliness analytical model for content-based publish/subscribe systems :

We propose an analytical model framework to estimate reliability and timeliness quality of ser-

vice for each subscriber in content-based publish/subscribe systems. The framework abstracts

any generic content-based publish/subscribe protocols and their underlying best-effort networks.

To the best of our knowledge, this dissertation is the first work to analyze reliability and time-

liness aspects of publish/subscribe systems under various types of uncertainty, which represent

many Internet-scale, time-sensitive, content-based applications[35, 36, 37, 38, 39]. The frame-

work accounts for different types of uncertainty, termed dynamism, that affects the performance of

the publish/subscribe systems. For each type of dynamism, we propose an analytical model that

specifically abstracts such type of dynamism and estimate the performance of the publish/subscribe

systems. We also present the integrated model framework that combines all types of dynamism

altogether.

7

Validation of the proposed model via synthetic/trace-based simulations : For each type

of dynamism-specific analytical model, we present the validation of such model via simulations

using realistic configuration parameters. All the results have less then 10% error, with average

error less than 5%, yielding the accuracy of the proposed predictive models.

Study of the impact of different types of dynamism to publish/subscribe systems :

Using the proposed analytical model, we study the effect from each type of dynamism to the re-

liability/timeliness quality of service each subscriber receives. The study gives several insights for

the purpose of publish/subscribe system design and deployment.

Performance comparison between different Publish/subscribe protocols and config-

urations : Using the proposed analytical model, we do the performance comparison between

different publish/subscribe protocols and configurations The results show that the performance of

each protocol also depends on the external settings such as subscriber mobility and broker reliability.

Publish/subscribe optimization techniques based on the proposed analytical model

: Based on the proposed analytical model, we suggest several possible performance optimization

techniques that can be used to improve reliability/timeliness quality of service in content-based

publish/subscribe systems.

1.3.2 Thesis Scope

Publish/subscribe is a powerful and broad communication paradigm that covers a huge variety

of protocols and implementations. While this dissertation proposes the analytical model for pub-

lish/subscribe systems that is as generic as possible, it does not claim a universal analytical model

that covers all publish/subscribe systems and scenarios. This section presents the scope of content-

based publish/subscribe systems along with the types of applications that are addressed by this

thesis. More details about the exact publish/subscribe model and assumptions assumed by this

thesis can be found in Chapter 2.

Delay-sensitive, event-based applications : From the application perspective, this thesis fo-

cuses on delay-sensitive event-based applications such as real-time traffic report or remote sensing.

8

Such applications are delay-intensive but not bandwidth-intensive. Each event or message is self-

contained and has its validity period within which it needs to be delivered to the target subscribers.

Also, the target applications allow some event losses without catastrophic consequences. This the-

sis does not consider hard real-time critical applications, which have been proved impossible to

achieve perfect reliability in asynchronous networks[40].

Best-effort, wide-area overlay networks : This thesis focuses on distributed, content-based

publish/subscribe systems that are deployed over best-effort, wide-area networks such as Internet.

Over the past decade, the quality of public, wide-area networks has been significantly improved. It

has become common for soft real-time applications to be deployed in such asynchronous networks

while getting acceptable performance.

Analysis of existing publish/subscribe systems : This thesis does not propose any brand-

new publish/subscribe protocol. This thesis presents a complete analytical model for existing pub-

lish/subscribe systems and protocols. Given the system settings, the proposed analytical model

estimates the performance of the corresponding publish/subscribe systems in terms of reliability

and timeliness in event delivery. Figure 1.1 depicts the scope of this thesis in the communication

protocol stack.

Client-server model : This thesis assumes clear distinction between clients (publishers and sub-

scribers) and servers (brokers). Each client is connected only to any single broker at one time

and there is no ad hoc communication directly among clients. This thesis does not propose the

analytical model for large-scale peer-to-peer publish subscribe systems[5, 41], although some parts

of the framework may be applicable to the peer-to-peer approaches.

Single broker administrative domain : This thesis assumes that all brokers are managed under

the same policy and level of security, which is the case for most real-time distributed event-based

applications. This thesis does not address any issues in security among brokers nor between brokers

and clients.

9

1.4 Thesis Outline

This dissertation is organized as follows. Chapter 2 discusses the detailed and complete model of soft

real-time, distributed content-based publish/subscribe systems along with all assumptions used in

the proposed analytical model. Chapter 3 then proposes the reliability/timeliness analytical model

to address content dynamism under the assumption of static, reliable broker networks. Chapter

4 then presents the reliability/timeliness analytical model for mobility dynamism caused by users

under the same assumption. Chapter 5 then relaxes the static, reliable broker assumption and

presents the reliability/timeliness analytical model for non-reliable broker networks. Chapter 6

then discusses the integration of the proposed three separate models. Finally, Chapter 7 concludes

the thesis and suggests possible future research directions.

10

CHAPTER 2

PUBLISH/SUBSCRIBE SYSTEM MODEL AND

ASSUMPTIONS

This chapter presents the complete details of the distributed content-based publish/subscribe

model, the formal definition of reliability and timeliness metrics, along with all the assumptions

used in the proposed analytical model.

2.1 Content-based Publish/Subscribe Architecture

In this work, we assume acyclic publish/subscribe broker tree networks connecting publishers and

subscribers. This acyclic broker tree model is commonly adopted by existing publish/subscribe

systems[2, 3, 4, 8, 42]. Each broker is connected to at least one neighbor to form a tree network

(i.e. there is only one path between each pair of broker). Each subscriber/publisher is connected

to only one of the brokers in the system. The broker that is connected to a subscriber/publisher is

called the home broker with respect to that subscriber/publisher. Each publisher publishes events

or messages to its home broker, which then forwards the events to other brokers until the events

are propagated to the designated subscribers.

Note that in general, it is possible for a broker to be connected to several neighboring brokers,

resulting in a generic, non-tree broker overlay. In such case, we assume the use of a per-topic tree,

in which brokers form a spanning tree to disseminate events per each topic. Figure 2.1 depicts an

example of how a broker constructs three per-topic trees corresponding to three different topics.

There are one publisher (p1), two subscribers (s1 and s2), and four brokers (b1, b2, b3, b4) in the

overlay topology (Figure 2.1(a)). However, the brokers use only a subset of links to form a spanning

tree among themselves to disseminate events of each topic. The spanning tree construction is

based on the overlay topology and the corresponding topic. We assume each broker has the global

knowledge of the overlay broker network topology. Hence, given the same topic identifier, each

broker can construct the same tree by using the topic identifier as a random seed to construct a

spanning tree. For example, the corresponding tree for topic τ1 consists of links lb1b2, lb2b3, and

11

lb2b4 as depicted in Figure 2.1(b). Note that each broker can be associated with many topics and

thus will form many broker spanning trees over the same non-tree broker overlay. The use of a

per-topic tree helps spread the load across the broker network as no single broker will become the

bottleneck. From now on, we omit the per-topic keyword and use the term tree to represent a

per-topic tree with the focus on only one topic.

(a) Overlay topology (b) Pub/sub tree with topic τ1

(c) Pub/sub tree with topic τ2 (d) Pub/sub tree with topic τ3

Figure 2.1: Example of subscription propagation and event routing in a publish/subscribe system

2.2 Content-based Publish/Subscribe Entities

Here, we present the basic model of each component in distributed publish/subscribe systems.

We also present each component’s formal notation, which will be used in the analytical model

throughout this thesis. The summary of basic notations can be found in the list of abbreviations

section.

2.2.1 Real-time Events

Each published event has one or more attributes with the associated value. Each event also has its

lifetime value, which is the duration between the time the event was published and the time the

event is expired. An event is said to be delivered to a subscriber on time if the end-to-end delivery

12

delay is less than its lifetime1.

We use the notation e to denote an event in the system. We use the notation E to represent an

arbitrary set of events and the notation E to represent the set of all existing events in the system.

An event e ∈ E is defined as (ide, ae, de), which represent event’s identifier, content, and lifetime

duration, respectively. The content of an event e, denoted by ae, is defined as a tuple

ae = (v1e, v2e, .., vke)

, where vie is the value of the i
th attribute of the event e. For simplicity of the analysis, we assume

that the event topic (τe) is always the first attribute (v1e) and the rest k − 1 attributes are the

union of all per-topic attributes in the system in an arbitrary, but globally consistent order. Hence,

an event of any topic in the system can be expressed with such k attributes by setting irrelevant

attributes from other topics to null value.

Let Vi be the value space of the ith attribute of any event (∀e ∈ E : vie ∈ Vi). Let T be the set

of all topics in the system (i.e., T = V1). Let D be the set of all possible lifetime duration values

of events in the system. Note that Vi and D can be either discrete or continuous. Without loss

of generality in the analysis, we assume Vi to be discrete in this work. However, the proof also

applies to the continuous case.

We define

V = T× V2 × ..× Vk

as the event content space of the system (i.e., ∀e ∈ E : ae ∈ V).

2.2.2 Subscribers

A subscriber is an information consumer that would like to receive the events of certain attributes

published from the systems. In topic-based publish/subscribe systems, a subscriber specifies its

topic of interest, which is a single identifier such as a number or a string keyword. Any event

with the specified topic is then forwarded to that subscriber. In content-based publish/subscribe

systems, however, a subscriber can specify a content filter to the system to inform the system of

1We assume that there exists a mechanism such as clock synchronization among brokers/publishers/subscribers
that allows a node to verify whether the event from a publisher is expired or not.

13

certain event attribute patterns it would like to receive. Hence, content-based publish/subscribe

systems provide more flexibility for subscribers in terms of event selectivity.

We use the notation s to describe an arbitrary subscriber in the system and the notation S to

represent an arbitrary set of subscribers. We also use the notation S to denote the set of all possible

subscribers in the system. A subscriber s ∈ S is defined as a tuple

s = (ids, fs)

where ids is the subscriber’s identifier, fs ⊆ V is the content filter defining the content of interest

for s. That is, fs is the set of all event content that matches s’s interest. We define a filter set

Fs(E) of an event set E ⊆ E with respect to subscriber s as

Fs(E) = {e ∈ E : ae ∈ fs}

We assume that a subscription’s content filter is static in the sense that it does not change over

time once it is submitted. If a subscriber wish to change its subscription, it needs to unsubscribe its

previous content filter and subscribe with its new content filter. Modeling dynamic subscriptions

such as context-aware subscriptions[43] and parametric subscriptions[44] are left as future work.

2.2.3 Publishers

A publisher is an information producer that publishes events (i.e., generates information) to the

publish/subscribe systems. In many scenarios, a publisher can be a computer or a smart device

with sensing capability. We assume each publisher is independent from each other in terms of the

content of its published events and its publishing frequency.

We use the notation p to denote an arbitrary publisher in the system and the notation P to

denote an arbitrary set of publishers. A notation P is used to represent the set of all publishers in

the system. In its most basic form, a publisher p ∈ P is defined as a tuple

p = (idp, tp)

where ids is the publisher’s identifier and tp ∈ T is the topic the publisher p publishes. Note that

this publisher model represents a basic publisher. Note that in later chapters such as Chapter

14

3, we will incorporate additional variables into the publisher model in order to reflect additional

information and assumptions used for the purpose of performance analysis in each chapter.

2.2.4 Brokers

A broker is a service component in publish/subscribe systems which helps forward events from

publishers to designated subscribers. Each broker is connected to at least one neighboring broker

to form the distributed publish/subscribe network. A broker can be called a content-based router,

which routes the event based on the event content.

In our content-based publish/subscribe model, a broker is represented by a single server and an

event queue. Upon receiving a new event, the broker stores the incoming event in its event queue on

a first-come-first-served basis. When the broker is ready, it fetches the event from the head of the

queue and performs the matching and forwarding process, during which the broker is considered

busy. Once the event is forwarded, the broker then repeats the process until the queue is empty.

The details of the broker event matching process will be presented in Section 2.3.

We use the notation b to denote an arbitrary broker in the system, the notation B to denote an

arbitrary set of brokers, and the notation B to denote the set of all brokers in the system. A broker

b ∈ B in the system is defined as a tuple

b = (idb,Mb(d))

where idb is the broker’s identifier, and Mb is the probability mass/density function of broker b’s

event processing (matching and routing) delay2. For example, Mb(100ms) = 0.2 means with 20%

probability, the delay the broker b will take to retrieve an event from its queue and route the event

through the appropriate links is 100 milliseconds. We assume that the average event matching time

E[Mb] is a function of the number of subscriptions stored in broker b’s routing table. Mb(d) can

be obtained from periodic performance profiling at the broker node b. As of now, we assume each

broker does not fail. This assumption will be relaxed in Chapter 5, in which the broker failure and

availability parameters are incorporated into the broker model.

We use the term node, denoted by n, to refer to either a subscriber, a publisher, or a broker in

the system. Hence, we use notation N to represent all nodes in the system (i.e., N = P ∪ S ∪ B).

2Mb(d) is either a probability mass function in case of discrete distribution or a probability density function in
case of continuous distribution.

15

2.2.5 Links

Each broker is linked via asynchronous, non real-time, wired communication link. Inter-broker

links can fail with some probability. The broker/publisher and broker/subscriber links can be

either wired or wireless links. As mentioned in Section 2.1, we assume a per-topic broker tree,

which means for each topic, there is only one communication path between each pair of broker.

We use the notation l to represent an arbitrary link, L to represent an arbitrary set of links, and

L to represent the set of all links in the system (i.e., L ⊆ L). The notation lxy ∈ L is also used

to represent the link connecting node x and node y. We assume each link to be directional (i.e.,

lxy = lyx)). A link l ∈ L can connect either a publisher to a broker (i.e., publisher-broker link), a

broker to another broker (i.e., broker-broker link), or a broker to a subscriber (i.e., broker-subscriber

link).

Each link l ∈ L is defined as a tuple (rl,Dl(d)), where rl is the link l’s transmission success

probability and Dl(d) is link l’s transmission delay distribution. Both parameters which can be

estimated periodically via active or passive probing. We believe that the two parameters rl and

Dl(d) are sufficient to capture the characteristic of most point-to-point overlay links and transmis-

sion protocols. For example, a UDP link will have lower transmission success probability rl and

lower delay distribution Dl(d) while a TCP link will have higher transmission success probability

rl, but also higher delay distribution Dl(d) due to multiple retransmission. Note that (1 − rl)

represents transient failure loss rate of the link. Long-term link failure will be discussed in Chapter

5.

Finally, we define a publish/subscribe graph G = (N,L) to represent the complete view of the sys-

tem that includes all nodes and links. Unless specified otherwise, we assume the publish/subscribe

graph G to be static. Such assumption will be relaxed when user mobility and node/link failure

are considered in Chapter 4 and Chapter 5 respectively.

2.3 Content-based Publish/Subscribe Operations

The subscriber/publisher joining process and event/subscription matching process in the pub-

lish/subscribe systems are shown in Figure 2.2 as follows.

16

2.3.1 Subscription

When a new subscriber joins the system, it sends its subscription to one of the brokers (Figure

2.2(b)). A subscription contains predicate filter specifying the event attribute content that the

subscriber wants to receive. In Figure 2.2(b), each predicate filter is in conjunctive form consisting

of per-attribute min-max clauses. However, our analytical model supports all possible forms of

filter as long as the filter can be expressed a a subset of the attribute content space.

Upon receiving the subscription from the subscriber, the broker stores the subscription into its

routing table and propagates the new subscription to its adjacent brokers, which in turn repeat

the process until all brokers receive the subscription (Figure 2.2(b) and 2.2(c)). When storing a

new subscription into its routing table, each broker also stores the link information to the broker

which it receives the subscription from.

2.3.2 Event Matching and Forwarding

When a broker receives a newly-published event (Figure 2.2(d)), it checks the event with each

subscription stored in its routing table. For each matching subscription, the broker forwards the

event to the link which it receives that subscription from. Note that an event is forwarded once

per link even though there are multiple matching subscriptions from that link. The process then

continues, and the event is propagated hop-by-hop in the reverse direction of the subscription

until it reaches the designated subscribers. The mentioned publish/subscribe model is simple yet

generic enough to represent a variety of existing publish/subscribe system works[2, 3, 4, 8]. Further

optimization techniques on top of this basic model such as subscription covering or subscription

merging[45] are beyond the scope of this paper and considered as future directions.

2.3.3 Unsubscription

We assume the use of soft state maintenance[27, 46] in our publish/subscribe model. Specifically,

any connecting and non-faulty subscriber must periodically sends its subscription message to the

broker network to maintain its subscription. Any subscription stored in a broker’s subscription

table that is not renewed within a specified period of time will be considered expired and removed

from the table. We do not discuss the appropriate renewal period and expiration period. Such

research direction can be found in existing works[27, 46].

17

(a) Tree topology (b) Subscriber S1 subscribes

(c) Subscriber S2 subscribes (d) Publisher P1 publishes an event

Figure 2.2: Example of subscription propagation and event routing in publish/subscribe broker
tree

2.4 Quality of Service Metrics

To quantify quality of service, we define a subscriber-level metric called subscriber real-time relia-

bility as follows.

Subscriber Real-time Reliability : A subscriber s is said to receive the service with real-time reli-

ability rs ∈ [0, 1], where rs is defined as the fraction of all events of s’s interest that arrives at s

before its deadline (i.e., delivery delay less than the message lifetime).

In the other word, rs is the fraction of all messages matching s’s interest that are delivered to s

on time.

Subscriber real-time reliability can be analytically defined as follows. Let Es be the set of all

events that are published during a subscriber s’s lifetime in the system. Hence, Fs(Es) is the set

of all events that match s’s interest during its lifetime in the system. For each event e ∈ Fs(Es),

18

let dse be the delivery delay of event e to subscriber s (the time period between e’s publishing time

and e’s delivery time to s). Thus, the real-time reliability at a subscriber s, denoted by rs, can be

expressed as

rs =
|{e ∈ Fs(Es) : d

s
e ≤ de}|

|Fs(Es)|

Since the proposed real-time subscriber reliability combines the concept of standard reliability

with the concept of timeliness property, it can be used as a good indicator how much quality of

service each subscriber receives. It is the user-oriented QoS metric that affects directly to clients’

satisfaction with the publish/subscribe service. Throughout this thesis, we use the term subscriber

reliability and subscriber real-time reliability interchangeably.

2.5 Subscriber Reliability Estimation Problem

As mentioned, subscriber reliability is an important user-oriented metric from each subscriber’s

perspective. Hence, we would like to estimate rs for each subscriber s, which leads to the sub-

scriber real-time reliability estimation problem.

Subscriber Real-time Reliability Estimation Problem: Given a publish/subscribe overlay network

G = (N,L), where N = B∪P∪ S, find the estimated value of rs, denoted by r′s, for each subscriber

s ∈ S.

The subscriber real-time reliability estimation algorithm is the core part of this thesis. Through

Chapter 3, 4, and 5, this thesis presents subscriber reliability estimation algorithms in different

settings and assumptions. Finally, Chapter 6 discusses the possibility to integrate all models from

each chapter together.

Once each subscriber’s real-time reliability is estimated, the system can employ autonomic ad-

justment to the system in order to increase the subscribers’ reliability. For example, in Figure

2.2(d), the system may increase the capacity of brokers B4 when the subscriber S2’s reliability

level is too low. Some other types of performance optimizations based on the proposed analytical

model are also discussed throughout various chapters.

19

CHAPTER 3

RELIABILITY AND TIMELINESS ANALYSIS WITH

CONTENT DYNAMISM

3.1 Introduction

The most fundamental distinction between content-based publish/subscribe systems and topic-

based publish/subscribe systems, or even conventional point-to-point routing protocols, is traffic

predictability. In topic-based publish/subscribe systems and point-to-point routing protocols, once

the traffic rate from each information producer is known, it is trivial to calculate the amount of

traffic that flows to each path to each consumer. This is because there is a clear, deterministic

mapping whether a publisher’s (sender’s) generated content should be sent to a subscriber (receiver)

or not. In point-to-point routing protocols, the mapping is done by the receiver field in the protocol

header. In topic-based publish/subscribe systems, the mapping is achieved by a single identifier

called topic. In contrast, the mapping between each publisher to each receiver in content-based

publish/subscribe systems is not clear as a subscriber may specify, in addition to its topic of

interest, its content filter which allows the subscriber to specify its interest to receive only certain

events containing certain attributes in a more fine-grained manner. Such technique provides more

flexibility to subscribers but imposes more complexity and uncertainty at the brokers. Specifically,

it increases the event processing time at each broker to math each whole event to complex content

filters. Also, it is hard to determine exact amount of traffic that flows through the path from

each publisher to each subscriber (see Figure 3.1 for examples), making it hard to calculate each

broker load and queuing delay. Conversely, if the amount of traffic through the path from each

publisher to each subscriber is known, or even predicted with some accuracy, we could then analyze

the performance of content-based publish/subscribe systems by existing approaches in traditional

point-to-point routing analysis such as stochastic and queuing theory.

As mentioned, while it is not possible to deterministically specify the amount of traffic between

each publisher-subscriber pair, it is sufficient ,for the purpose of publish/subscribe performance

20

Figure 3.1: Examples of load calculation in each communication paradigms

analysis, to estimate the amount of such pair-wise traffic. In order to estimate each publisher-

subscriber pairwise traffic, it is necessary to know or estimate the publisher’s content distribution,

which is the distribution of event attributes the publisher publishes. Note that estimating publisher

content distribution is feasible, as many real-world event publishers exhibit temporal locality such

that its content distribution can be predicted based on its publishing history (see Figure 3.2 for

examples). Given the estimated content distribution of a publisher and the content filter of a

subscriber, the average amount of traffic that flows between such publisher-subscriber pair can be

calculated.

Yet, once the average traffic rate for each publisher/subscriber pair is determined, special care

must be taken to calculate the load of each link and broker. This is because the calculation of

broker/link traffic cannot use simple average arithmetics such as summation, but also needs to

consider subscription filter from subscribers as well. As an example how subscription filters affect

broker/link load calculation, consider a simple publish/subscribe system topology in Figure 3.3.

Let publisher p1 publish events in topic τ1. Let subscriber s1 and s2 subscribe events of topic τ1 (the

same topic as p1 topic) with subscription content filter fs1 and fs2 respectively. Assuming we know

the content distribution of publisher p1, we can calculate λp1s1 and λp1s2 , which are the estimated

amounts of traffic from p1 to s1 and s2, respectively. However, it is not trivial to calculate the

21

 16

 18

 20

 22

 24

 26

 28

 30

 32

 0 50 100 150 200 250 300 350

Pr
ic

e
(U

SD
/U

ni
t)

Minutes since 9:32AM EST

NASDAQ stock prices on Nov 18, 2009

eBay Inc. (EBAY)
Microsoft Corp. (MSFT)

Yahoo! Inc. (YHOO)

(a) NASDAQ stock prices (Source: Google Finance[35])

(b) Chicago highway daily traveling time (Source: GCM
Travel[36])

 30

 40

 50

 60

 70

 80

 90

 0 200 400 600 800 1000 1200 1400

T
em

pe
ra

tu
re

 (
Fa

re
nh

ei
t)

Minutes since 0:00AM EST

Airport temperature values on Oct 31, 2009

MCO
JFK

ORD

(c) Airport temperature report (Source: NCDC[37])

Figure 3.2: Example of real-world event streams and their temporal locality

22

amount of traffic that pass through link lb1b2 , denoted by λl. For example, if both subscribers have

exactly the same subscription filter (i.e., fs1 = fs2), then λl = λp1s1 = λp1s2 as s1 and s2 will receive

the same set of events, which will be transmitted only once at broker b1. At the other spectrum, if

subscribers have completely disjoint subscription filter (i.e., fs1 ∩ fs2 = ∅), then λl = λp1s1 + λp1s2 ,

as both subscribers receive totally different sets of events. Thus, the effect of publish/subscribe

content-centric nature becomes a challenge to its load and performance calculation.

Figure 3.3: Example of the effect of subscription filter to rate calculation

To overcome such challenge, we extend use the concept of publisher content distribution to links

and brokers as well, resulting in the concept of entity content distribution. The proposed analysis

makes use of the entity content distribution to calculate the load at each part of the system, and

then applies stochastic techniques and queuing theory to calculate the end-to-end delivery delay,

which is then used to calculate subscriber real-time reliability.

In this chapter, we propose the analytical model to estimate subscriber reliability with the focus

on predict event queuing and processing delay. We first define the problem of static subscriber

real-time reliability, which has the assumption of reliable broker overlay and static broker tree

(these assumptions will be relaxed in Chapter 5). We then present the algorithm to estimate

subscriber reliability with the emphasis on broker/link queuing/processing delay distribution. The

algorithm is based on the use of entity content distribution. Then, we present the subscriber

admission control algorithm an example of performance optimizations that leverage the use of the

predictive model. Finally, we present the extensive simulation results of the proposed system under

realistic parameters and real-world event traces. The evaluation results yield strong accuracy for

the prediction algorithm even when the statistical information of each component is inaccurate.

23

3.2 Static Subscriber Real-time Reliability

3.2.1 Formulation

As mentioned, this chapter of thesis focuses on the estimation of subscriber reliability with respect

to broker/link queuing/processing delay. Hence, in this chapter, we make the following additional

assumptions to filter out the effects from other types of dynamism and reduce the complexity of

the analysis.

Single, static broker tree : As mentioned in Chapter 2.1, a broker overlay can be a generic

connected graph, and each broker generally maintains multiple spanning trees with each tree cor-

responding to each topic. However, to facilitate the analysis in this chapter, we consider the case

where all publishers, subscribers, and brokers use the same, single broker tree. This can be found in

the scenarios where the entire broker overlay graph itself is a tree, or all publishers and subscribers

are interested in a single topic. However, the analysis in this chapter can be easily generalized to

multiple-tree scenarios.

No publisher/subscriber mobility : In this chapter, each subscriber is assumed to stay with

one local broker during its lifetime. There is no change in subscriber set S and publisher set P in

this analysis. In practice, the change of subscriber set S and publisher set P can be handled by

running the analysis algorithm whenever such changes occur.

No long-term broker/link failure : We assume each broker and its links do not crash. Hence,

the only cause of event loss in this chapter are probabilistic link loss and event expiration. Long-

term broker/link failures will be considered in Chapter 5.

Known publisher content distribution : We assume each publisher’s publishing content dis-

tribution is given or estimated. This assumption is necessary as it is not possible at all to determine

the load without it. With this assumption, we revise the publisher model previously defined in

Chapter 2.2.3 to incorporate the content distribution as follows.

24

Publisher Model : A publisher p ∈ P is defined as a tuple

p = (idp, Cp(a, d), Ip(d))

where Cp : V × D → [0, 1] is the content-lifetime joint distribution function of events that p pub-

lishes (i.e., Cp(a, d) is the probability that p will publish an event with content a ∈ V and lifetime

d ∈ D), Ip : R → [0, 1] is the inter-event publishing time distribution (i.e., Ip(d) is the probability

that the time between p’s successive event publications is d), and idp is the publisher’s identifier.

Thus,

∑

(a,d)∈V×D
Cp(a, d) = 1 and

∑∞
d>0 Ip(d) = 1

Both Content-lifetime distribution function Cp(a, d) and inter-event publishing time distribution

function Ip(d) can be obtained via statistical estimation from publisher p’s publishing history[12].

Static Subscriber Real-time Reliability Estimation Problem: Given a static, reliable publish/subscribe

tree G = (N,L) where N = B ∪ P ∪ S, find the estimated value of rs, denoted by r′s, for each sub-

scriber s ∈ S.

3.2.2 M/M/1 Estimation Algorithm

In this section, we present the subscriber reliability estimation algorithm. The estimation algorithm

takes the publish/subscribe tree G = (B ∪ P ∪ S,L) along with the statistical information of each

component as the input and estimates the real-time reliability value r′s for each subscriber s ∈ S.

To do so, it is necessary to estimate the end-to-end delivery delay distributions and path reliability

distributions of all s’s matching events when they arrive at s. Hence, we introduce another set of

variables in Table 3.1 for the purpose of the analysis. These variables are not parts of the problem

definition, but are defined as intermediate variables in order to solve the estimation problem. The

overall estimation process, depicted in Figure 3.4, consists of four steps : propagating subscrip-

tion filters, calculating per-link event flow rate, calculating broker queuing/processing delay, and

calculating per-link content-remain time distribution.

25

Symbol Definition
Cp(a, d) content-lifetime distribution of events published by p

Ip(d) publisher p’s event publishing interval distribution
fl union of all subscription filters propagated via link l

in(l) link l’s sink node
out(l) link l’s source node
λl estimated event flow rate through link l

λp estimated event flow rate from publisher p

Cl(a) estimated content distribution of events through link l

up(l) upstream link set of link l (Equation (3.3))
λb estimated event flow rate to broker b

µb estimated event processing rate at broker b

qb estimated queuing delay at broker b

Db(d) estimated total delay distribution at broker b

Cl(a, d) estimated content-remain time distribution of events through link l

z2p publisher p’s event traffic flow burstiness
z2
l

estimated event flow burstiness through link l

z2
b

broker b’s service burstiness
z2
bi

broker b’s incoming flow burstiness
z2
bo

broker b’s outgoing flow burstiness
r∗s subscriber s’s requested real-time reliability

U(G) publish/subscribe network G’s utility
φ(s) subscriber s’s utility score
α publisher information skewness

Table 3.1: Content dynamism analysis variables’ notation

Note that in this chapter, A bi-directional link between two brokers will be modeled as two

directional links for the purpose of event flow calculation in each direction of the link. We define

out(l) ∈ (P∪B) and in(l) ∈ (B∪S) as the source node and the sink node of link l, respectively. For

example, Figure 3.4 shows the analytical view of the publish/subscribe system from Figure 2.2.

3.2.2.1 Subscription Filter Propagation

In this step, the subscription filters are propagated from subscribers to each broker in the system

in the same manner as subscription propagation process discussed in Section 2.3.1. As shown in

Figure 3.4(a), each subscription is propagated in the reverse direction of the event flow direction

(i.e., reversed to the direction of the arrows). When a subscription filter f is propagated to a broker

b via one of b’s outgoing links l, the subscription will be propagated to all other incoming links of

b. At the same time, the subscription filter f will be merged into l’s link filter, denoted by fl. The

link filter fl ⊆ V can be viewed as the union of filters from each subscription that is propagated

through link l and hence represents the content space of the events that should be forwarded to

link l.

That is, at the beginning of this step, each link l has its link filter empty (i.e. fl = ∅). For each

new subscription filter fs that is propagated to link l, fl = fl ∪ fs. The process continues until all

26

(a) Propagating subscription
(reversed direction of arrows)

(b) Calculating link event
rate

(c) Calculating broker total
delay distribution

(d) Calculating per-link
content-remain time distribu-
tion

Figure 3.4: Steps for subscriber reliability estimation

subscriptions are propagated to all brokers in the system. At the end of this step, if any link l’s

filter set still remains empty, then it means that there will be no event sent over that link l.

3.2.2.2 Per-link Event Flow Rate Calculation

After each link’s filter set is identified, the next step is to calculate each link l’s average event flow

rate λl, as depicted in Figure 3.4(b). This step starts by calculating the average event generation

rate at each publisher p, denoted by λp, as the inverse of average inter-event generation time Ip(d)

as follows.

λp =
1

E[Ip(d)]
=

1
∑

d:Ip(d)>0(d.Ip(d))

The average event flow rate of a publisher-broker link l is then equal to the event flow rate of l’s

source publisher, multiplied by the link’s reliability rl as follows.

λl = rl.λp (3.1)

, where p = out(l)

27

The process continues until the event flow rates of all publisher-broker links are determined.

Then, the event flow rates of the other links (i.e. broker-broker links and broker-subscriber links)

are calculated. To do so, the content distribution of each publisher-broker link is needed. The

content distribution of a link l, denoted by Cl : V → [0, 1], is the probability distribution of the

event content that passes through link l (i.e., Cl(a) is the probability that an event passing through

link l contains attributes a ∈ V). For each publisher-broker link l that connects a publisher p, the

content distribution is equal to the content projection of the p’s content-lifetime distribution as

follows.

Cl(a) =
∑

d∈D

Cp(a, d),∀a ∈ V (3.2)

where p = out(l)

A link l is called resolved if its average flow rate λl and content distribution Cl(a) are calculated.

Hence, each publisher-broker link can be resolved using Equation (3.2). After all publisher-broker

links are resolved, links of other types (i.e., broker-broker links and broker-subscriber links) will be

resolved as follows. We define the upstream link set of a link l, denoted by up(l), as the set of all

incoming links to l’s source broker out(l), excluding l’s reversed link. In other words,

up(l) = {l′ ∈ L : in(l′) = out(l) ∧ out(l′) 6= in(l)} (3.3)

That is, up(l) contains all l’s adjacent links from which events potentially flow to l. For example,

in Figure 3.4, link B2B1 ’s upstream link set consists of link P2B2, B3B2, and B4B2.

Any broker-broker or broker-subscriber link l is defined as resolvable if and only if all links in l’s

upstream link set up(l) are resolved. For each resolvable link l, its average flow rate λl and content

distribution Cl(a) can be calculated from its upstream link set by the following equation.

λl = rl.λup(l).
∑

a∈fl

C(a) (3.4)

and

Cl(a) =
rl.λ.Cup(l)(a)

λl
,∀a ∈ fl

where λup(l) and Cup(l)(a) are the rate and content distribution of all l’s total upstream event

flows. Specifically,

28

λup(l) =
∑

l′∈up(l)

λl′ (3.5)

and

Cup(l)(a) =

∑

l′∈up(l) λl′ .Cl′(a)

λup(l)

That is, link l’s flow rate λl is calculated from the total rate of all l’s incoming event flows that

match the filter set fl. The content distribution Cl(a) is then calculated in the same manner. Note

that for each link l,
∑

a∈V Cl(a) = 1 and
∑

a∈VCup(l)(a) = 1.

Once a resolvable link’s flow rate λl and content distribution Cl(a) are identified, that link then

becomes a resolved link. The process then continues to resolve the remaining links until all links

are resolved. Since we assume the broker network to be acyclic, it is guaranteed that the process

always finds a new resolvable link until all links are resolved.

3.2.2.3 Broker Total Delay Calculation

After all the links are resolved, we then determine the average queuing delay at each broker. Since

we model each broker as an event matching server with a single queue, we can apply queuing

theory techniques to determine broker queuing delay as follows. A broker b’s average queuing

delay, denoted by qb, can be calculated based on M/M/1 queuing model as follows.

qb =
λb

µb(µb − λb)
(3.6)

where

λb =
∑

l∈L:in(l)=b

λl (3.7)

and

µb =
1

E[Mb(d)]
=

1
∑

d:Mb(d)>0(d.Mb(d))
(3.8)

In other words, λb is the total event flow rate from all of b’s incoming links, and µb is b’s average

matching rate.

Note that if the event flow rate λb is more than the average matching rate µb, then the broker b

29

is overloaded. In such a case, the queuing delay at broker b will be equal to infinity, as the broker

will never reach the stable state.

Once b’s average queuing delay is determined, we then estimate b’s total broker delay distribution

Db(d) as

∀d : Mb(d) > 0,Db(d+ qb) = Mb(d)

That is, the total broker delay distribution is estimated as the event processing delay distribution

plus the average queuing delay. Although the proposed approach is a simple delay distribution

estimation based on the assumption of M/M/1 queue model, the evaluation result presented in

Section 3.4.1.1 yields accurate results for non-exponential traffic rate and service rate as well.

However, we further improve the delay estimation accuracy using more sophisticated techniques in

queuing theory in Section 3.2.3.

3.2.2.4 Per-link Content-remain time Distribution Calculation

After the queuing and matching delay distributions at all brokers are identified, the last step is

to calculate the content and lifetime distribution at each link. To do so, we define content-remain

time joint distribution at each link l, denoted by Cl(a, d), as the joint probability of the content

and remaining lifetime of each event that passes through link l. Note that it is possible that

Cl(a, d) > 0 when d is negative, which means that such fraction of events is already expired after

they pass through link l.

As shown in Figure 3.4(d), the process at this step is similar to the per-link event flow rate

calculation described in Section 3.2.2.2, except that both content and lifetime are now considered

in the calculation. Specifically, for each publisher-broker link l, the content-remain time distribution

Cl(a, d) is calculated as

Cl(a, d) =
∑

d′:Dl(d′)>0

(Dl(d
′).Cp(a, d+ d′)),∀a ∈ V (3.9)

, where p = out(l) and Dl(d) is l’s link delay distribution. The reason behind Equation (3.9) is that

once an event is transmitted via link l, its remaining lifetime is shortened by link l’s transmission

delay.

Here we once again use the concept of resolved link and resolvable link from Section 3.2.2.2,

30

except that in this section, a link l is resolved when its content-delay distribution is identified.

Hence, we apply Equation (3.9) to all publisher-broker links, making all of them resolved. We then

repetitively find a resolvable link l and calculate its content-remain time distribution as follows.

Cl(a, d) =
rl.λup(l)

λl
.

∑

d′:Dl(d′)>0

(Dl(d
′).Cup(l)(a, d + d′)),∀a ∈ fl (3.10)

, where

Cup(l)(a, d) =
∑

d′:Db(d′)>0

Db(d
′).

∑

l′∈up(l) λl.Cl(a, d+ d′)

λup(l)
(3.11)

, and λup(l) is calculated from Equation (3.5).

Hence, the estimated reliability r′s can then be calculated as

r′s =
rate of unexpired matching events delivered to s

total rate of all events that match s’s interest

=
λl.

∑

(a∈fs,d>0) Cl(a, d)
∑

p∈P λps
(3.12)

where l is the link to s (i.e., s = in(l)) and λps is the pairwise average event flow rate between

publisher p and subscriber s and can be calculated as

λps =
∑

a∈fs

Cp(a).λp (3.13)

With Equation (3.12) and Equation (3.13), we can calculate the estimated real-time reliability

R′
s at each subscriber s from static publish/subscribe tree G = (N,L).

3.2.3 G/G/1 Estimation Algorithm

So far, the load estimation at each broker presented in this section uses M/M/1 queue model,

which assumes event inter-arrival time distribution and broker processing time distribution to be

exponential random variables. Such assumption may not result in accurate subscriber reliability

estimation as each event inter-arrival time and broker processing time may be drawn from other

distributions than exponential distribution. For example, the event inter-arrival time may be deter-

31

ministic (i.e. publishers with periodic sensors) or the broker event processing time may be uniform

(i.e. brokers matching a random event with an array of subscriptions). To address complex time

distribution for more accurate reliability estimation, this section presents the improved estimation

algorithm based on G/G/1 queue model.

3.2.3.1 Publisher Flow Burstiness Calculation

To model the system using G/G/1 model, we follow the approach by Whitt[47] and introduce

additional analytical variables as follows. Apart from event flow rate λp at each publisher p, another

variable called event flow burstiness, denoted by z2p , is calculated from p’s event inter-arrival time

distribution Ip(d) as

z2p =
Var[Ip(d)]

E[Ip(d)]2
=

∑

d:Ip(d)>0 Ip(d).(d − 1
λp
)2

(1
λp
)2

(3.14)

the burstiness variable z2p hence represents the uniformity level of event generation interval at p.

For example, z2p = 0 when Ip(d) is a uniform distribution and z2p = 1 when Ip(d) is an exponential

distribution.

Also, at each pub/sub broker b, the burstiness variable z2b is calculated from its event matching

time distribution Mb(d) in the same way z2p is calculated at each publisher p. That is,

z2b =
Var[Mb(d)]

E[Mb(d)]2
=

∑

d:Mb(d)>0 Mb(d).(d − 1
µb
)2

(1
µb
)2

(3.15)

With the event generation burstiness variable z2p at each publisher p and the event matching

burstiness variable z2b at each broker b, a more accurate subscriber reliability estimation algorithm

can be done by the approaches presented in Section 3.2.2.1 through Section 3.2.2.4 but with one

additional step between the step in Section 3.2.2.2 and the step in Section 3.2.2.3 in order to

calculate link and broker flow burstiness.

3.2.3.2 Broker/link Flow Burstiness Calculation

The process of per-link event flow burstiness calculation starts after the process of per-link event

flow rate calculation (Section 3.2.2.2) is done. After the flow rate calculation process, the per-link

event flow rate λl and content distribution C ′
l(a) is known for each link l. Also, the per-publisher

32

event flow burstiness z2p for each publisher p and per-broker event matching burstiness z2b for each

publisher b are known via equation (3.14) and (3.15) respectively. The per-link event flow burstiness

calculation process aims to calculate per-link event flow burstiness z2l for each link l. The techniques

used in the calculation are adopted from traditional queuing network theory[47].

The process starts by calculating z2l for each publisher-broker link l using the asymptotic method[47]

as follows.

∀l ∈ L : out(l) ∈ P, z2l = rl.z
2
p + 1− rl (3.16)

, where p = out(l)

To calculate per-link event flow burstiness for broker-broker and broker-subscriber links, a set of

linear equations must be solved according to the following set of rules.

Incoming Flow Superposition: we define per-broker incoming flow burstiness, denoted by z2bi for

each broker b, as the burstiness of the total event flow coming from all b’s incoming links. Using

the superposition rule and the asymptotic method, the per-broker incoming flow burstiness is the

convex combination of each per-link flow burstiness as follows.

∀b ∈ B, z2bi =
∑

l∈L:in(l)=b

(

λl

λb

.z2l

)

(3.17)

, where λb is the total incoming event flow rate at broker b calculated from Equation (3.7).

Equation (3.17) takes place at each broker b ∈ B in the system. Hence, there are |B| incoming

flow equations.

Broker Incoming-Outgoing Flow Transformation: we define per-broker outgoing flow burstiness,

denoted by z2bo for each broker b, as the burstiness of the total event flow going out from broker b to

all b’s outgoing links. Using Marshall’s formula[47], the per-broker outgoing flow burstiness z2bo is

a function of total incoming flow burstiness z2bi, total incoming flow rate λb (Equation (3.7), broker

average event matching rate µb (Equation (3.8)), broker event matching burstiness z2b (Equation

(3.15)) as follows.

∀b ∈ B, z2bo = (ρ2b .z
2
b + (1− ρ2b).z

2
bi (3.18)

33

, where ρb =
λb

µb

Since Equation 3.18 takes place at each broker b ∈ B, there are |B| incoming-outgoing flow equa-

tions.

Broker Outgoing Flow Splitting: after a broker fetches the incoming event from the head of the

queue, it routes the event to each outgoing link with the subscription that matches the event.

Hence, the per-link event flow burstiness of each outgoing link z2l is a function of its source broker’s

incoming traffic rate λb (From Equation (3.7)) and its own traffic rate λl (From Equation (3.4)) as

follows.

∀l ∈ L : out(l) ∈ B, z2l =
λl

λb
.z2bo + 1−

λl

λb
(3.19)

, where b = out(l)

From the three equations (Equation (3.17), (3.18), and (3.19)), there are three forms of unknown

variables (z2bi,z
2
bo, and z2l). All other variables are known from previous calculations. Since each

unknown variable z2l can be written in a linear form of some variable z2bo using Equation (3.19) and

each unknown variable z2bo can be written in a linear form of some variable z2bi using Equation (3.18),

there are |B| unknown variables left, which are in the form of z2bi. Also, there are |B| equations

left (Equation (3.17)). Since there are |B| unknown variables left with |B| linear equations, each

variable z2bi for each broker b ∈ B can be solved by using standard matrix operations. Once variables

in the form of z2bi are solved, other unknown variables in the forms of z2bo and z2l are also solved

using Equation (3.18) and (3.19). However, only variables in the form of z2bi are needed in the next

step to calculate the queuing delay at each broker.

3.2.3.3 Improved G/G/1 Broker Delay Estimation

Once the per-broker total incoming flow burstiness z2bi is calculated, a more accurate estimation of

the average queuing delay qb for each broker b ∈ B is then calculated as a function of total incoming

flow burstiness z2bi, total incoming flow rate λb (Equation (3.7)), broker average event matching

rate µb (Equation (3.8)), broker event matching burstiness z2b (Equation (3.15)) as follows.

qb =
ρb.(z

2
bi + z2b).g(ρb, z

2
bi, z

2
b)

2.µb.(1− ρb)
(3.20)

34

where ρb =
λb

µb
and

g(ρb, z
2
bi, z

2
b) =







exp(−
2(1−ρb).(1−z2

bi
)2

3ρb.(z
2
bi
+z2

b
)

) if z2bi < 1

1 if z2bi ≥ 1

Thus, we replace Equation (3.6) with Equation (3.20) to calculate the average broker queuing

delay, which is then used to calculate content-remain time distribution and finally the subscriber

reliability estimation as stated in Section 3.2.2.4. Note that when the incoming event flow rate and

the event matching rate of a broker are exponentially distributed (i.e. z2bi = 1 and z2b = 1), then

Equation (3.20) is reduced to Equation (3.6). The proposed G/G/1 model reliability estimation

yields better estimation accuracy when compared to the M/M/1 model presented in Section 3.2.2.3.

3.3 QoS-aware Subscriber Admission Control

From the analytical framework presented in Section 3.2.2, we can conclude that the delivery de-

lay can increase along with the load in the system. Hence, it is not efficient to admit to many

subscribers into the system as the competing load will degrade subscriber reliability. Rather, the

publish/subscribe system should admit only a subset of subscribers so that it has sufficient resource

to satisfy the admitted subscribers’ requirements.

In this section, we first introduce subscriber requested reliability model and system utility model.

We then formally define the maximum-utility subscriber admission control problem, which is NP-

hard in terms of complexity. Finally, we propose a set of heuristic algorithms to solve such problem.

3.3.1 Formulation

3.3.1.1 Publish/Subscribe Utility Model

Let each subscriber s ∈ S have its own real-time reliability requirement (i.e., requested reliability)

r∗s = [0, 1], a subscriber s is said to have its requirement satisfied if rs ≥ r∗s . We define the set of

satisfied subscribers, denoted by S′ ∈ S, as the set of subscribers in S that have their reliability

requirements satisfied (i.e. S′ = {s ∈ S : rs ≥ r∗s}). Let S“ be the set of admitted subscribers in the

system. Obviously, S′ ⊆ S“. Let G“ = (P∪B∪S“,L−(B×(S−S“))) be the publish/subscribe tree

with only admitted subscribers. We define the utility of the publish/subscribe tree G′′, denoted by

35

U(G′′) as the number of satisfied subscribers. That is U(G“) = |S′|.

Using the proposed utility function U(G′′), it is more beneficial not to admit the whole subscriber

set S into the system if we know in advance that some subscribers will not meet their requirements,

since those unsatisfied subscribers will only waste system resources without adding any benefit to

the system. Instead, a subscriber s should be admitted to the system only when it is likely to have

its requirement satisfied.

3.3.1.2 Maximum-utility Subscriber Admission Control Problem

As mentioned in Section 3.3.1.1, admitting all subscribers in the systems may result in bad system

utility. Thus, the system should pick only a subset of subscribers that will maximize the system

utility. Hence, we define maximum-utility subscriber admission control problem as follows.

Definition Maximum-utility Subscriber Admission Control Problem: Given a static, reliable pub-

lish/subscribe tree G = (N,L), find the largest subscriber subset S∗ ⊆ S that maximize the utility

of the system (i.e. S∗ = argmaxS“⊆S U(G′′)).

It is known that the subscriber admission control problem is an NP-Hard problem, since the

problem can be mapped to other NP-hard optimization problems such as multicast admission

control or multi-commodity flow problems, which were shown to be NP-complete[48, 49]. However,

this work discusses a set of greedy, heuristic-based algorithms to solve the subscriber admission

control problem in Section 3.3.2.

3.3.2 Heuristic Algorithms

In this Section, we propose the heuristic-based algorithm to solve the subscriber admission problem.

That is, given a publish/subscribe network G = (N,L), find the subset of subscriber set S ∈ S,

denoted by S∗, that will maximize system utility. In other words, S∗ = argmaxS“⊆S U(G“).

This algorithm runs in a centralized fashion at a control center node1, which periodically collects

monitoring status from each publisher/broker entities in the network and uses such collected status

to run the subscriber reliability estimation and admission control every time a new subscriber joins

the system.

1A control center node can be an arbitrary broker that is elected by leader election algorithms among brokers.

36

As mentioned, the subscriber admission problem is an NP-hard problem with respect to the

total number of subscribers (|S|). However, since we can estimate the system utility U(G′′) for any

publish/subscribe tree G′′ based on the approach presented in Section 3.2.2, we now then propose

the heuristic-based, greedy algorithm framework, denoted by A∗(G) to for the subscriber admission

control problem (i.e., A∗(G) approximates S∗ for G = (N,L)).

Algorithm 1 Function A∗(G = (N,L))

S ⇐ S

S“ ⇐ ∅
U∗ ⇐ 0
while S 6= ∅ do

s ⇐ argmaxs′∈S φ(s′)
G′′ = (B ∪ P ∪ S′′ ∪ {s},L − (B× (S− (S“ ∪ {s}))))
if U(G“) > U∗ then

S“ ⇐ S′′ ∪ {s}
U∗ ⇐ U(G“)

end if
S ⇐ S − {s}

end while
return S“

The Algorithm 1 presents the details of the greedy, heuristic-based subscriber admission control

algorithm A∗ to approximate the maximum-utility subscriber set S∗. The basic concept of the

algorithm A∗ is to initially set the admitted subscriber set S′′ to empty set, and then grows the

set S′′ progressively by including each subscriber s ∈ S only when the addition of s can increase

the system utility. The system utility can be approximated based on the analytical framework

described in Section 3.2.2. The order of subscribers in the addition process is obtained on the

priority function φ(s), which gives a priority value to each subscriber s. Since each subscriber is

considered only once in the addition process, the priority function φ(s) must be chosen carefully

to achieve near-optimum maximum-utility subscriber set.

In this work, we pick a set of heuristic subscriber priority functions φ(s) to be used with the

maximum-utility subscriber admission algorithm framework A∗ as follows.

Random Priority (random): The priority value of each subscriber is determined randomly based

on its identification number (i.e. φ(s) = ids).

Requirement Priority (hi-req-first): The priority value of each subscriber is equal to the reliability

requirement of itself (i.e., φ(s) = r∗s). Hence, the subscriber with higher reliability requirement will

37

be considered before the one with lower reliability requirement in this priority function.

Inversed Requirement Priority (low-req-first): The priority value of each subscriber is equal to the

inverse of the reliability requirement of itself (i.e. φ(s) = 1 − r∗s). This scheme is the opposite of

the requirement priority scheme, as the subscriber with lower reliability will be considered first in

this scheme.

Additional Content Priority (overlap-first): In this scheme, the first log2|S| subscribers will have

random priority (i.e. φ(s) = ids). However, after log2|S| subscribers, the subscriber priority s will

be calculated as the inverse of the size of additional filter space incurred by adding such subscriber

(i.e. φ(s) = 1
|fs−fs∗ |

where fs∗ =
⋃

s∈s∗ fs).

In Section 3.4.3, we will evaluate and compare the effectiveness of each subscriber priority func-

tion to approximate the maximum-utility subscriber set in the publish/subscribe system.

3.4 Evaluation

In this section, we present the evaluation results of our proposed analytical framework. The evalu-

ation is done via simulation using ns-2 network simulator[50]. The simulation uses both synthetic

event trace (Section 3.4.1) and real-world event trace (Section 3.4.2). Both experiments take place

in a broker tree consisting of 20 broker nodes. The link delay between broker nodes are derived

from Planetlab delay and bandwidth traces that were collected by Ripeanu et al[51, 52]. The event

processing delay distribution at each broker is interpolated from broker performance report in pub-

lish/subscribe event matching algorithm works[53, 54]. Specifically, the average event matching

time at each broker is linearly proportional to the number of subscriptions stored in that bro-

ker’s routing table, with the increase rate roughly equal to 1 millisecond per 1 additional stored

subscription.

3.4.1 Simulations with Synthetic Trace

This section presents simulation results of the prediction algorithm with the synthetic trace. The

purpose of the evaluation with the synthetic trace is to observe the accuracy of the prediction algo-

rithm under different event traffic patterns and broker service time distributions. Unless explicitly

specified, each synthetic trace simulation is run with the parameters presented in the second column

38

Parameters Synthetic Real-world
#brokers 20 20
#topics 4 100

#publishers 8 100
#subscribers 100 2000

#event attributes (k) 21 see Table 3.3
event lifetime 1 second 1 second

event attribute distribution Zipf-like see Figure 3.8(b)
subscription filter distribution Zipf-like see Table 3.4

avg publishing rate 1 event/sec see Figure 3.8(a)
Message size 64 bytes 64 bytes

Simulation Time 10000 seconds 23400 seconds
#Runs 5 5

Table 3.2: Simulation parameters

of Table 3.2. We vary publishers’ publishing interval distribution between exponential, determin-

istic (i.e. periodic), and uniform publishing distributions. Also, we vary brokers’ event matching

distribution between exponential and uniform distributions.

3.4.1.1 Prediction with M/M/1 Broker Model

Figure 3.5 presents the accuracy of the subscriber reliability estimation algorithm using M/M/1

broker model presented in Section 3.2.2 under different distributions of each publisher’s publishing

interval and each broker’s event processing interval. The y-axis of each graph represents the values

of actual subscriber real-time reliability while the x-axis of the graph represents the values of

predicted real-time reliability. Each single point in each graph represents one subscriber in one

run of simulation. As shown in the result, our algorithm can predict subscriber reliability values

accurately in all scenarios. The prediction is most accurate when publishing interval and event

processing delay are both exponentially distributed (Figure 3.5(a)). While the results in non-

exponential settings are less accurate, almost all predicted values are less than or equal to the

actual reliability values. Hence, the prediction can still be used as tight upper bound of actual

reliability.

3.4.1.2 Prediction with G/G/1 Broker Model

This section presents the accuracy of the subscriber reliability estimation using G/G/1 broker

model. The experimental setting is the same as the setting in Section 3.4.1.1 except the estimation

algorithm, which includes the flow burstiness calculation described in Section 3.2.3. Figure 3.6

shows the result of G/G/1 prediction. As seen from the result, the prediction algorithm with

39

G/G/1 model is more accurate than the one with M/M/1 model when the publication interval and

matching interval are not exponentially distributed. When both publication interval and matching

interval are exponentially distributed, both M/M/1 model and G/G/1 model produce the same

result as explained in Section 3.2.3.

3.4.1.3 Effect of Imprecise Publisher Information

The reliability prediction results shown in Section 3.4.1.1 and Section 3.4.1.2 are based on the

experiments with perfectly accurate publisher content-lifetime distributions. However, such as-

sumption is not true in practice as the approximation of publisher’s characteristic may not be

accurate. This section presents the accuracy of the subscriber reliability prediction algorithm with

imprecise publisher information. Specifically, we define distribution skewness, denoted by α, as

the level of inaccuracy in the observed publisher content-lifetime distribution. Let C̃p(a, d) be the

actual, hidden content-lifetime distribution of a publisher p, then the observed content-lifetime

Cp(a, d) of publisher p with skewness α is

Cp(a, d) =
C̃p(a, d)

α

∑

a∈V,d≥0 C̃p(a, d)α

That is, the observed probability that a publisher p will publish an event with content a and

lifetime d will be equal to the actual probability of such event to the power of α, normalized by

the total transformed weight. Hence, α = 1 represents the scenario of perfectly precise publisher

information.

Figure 3.7 presents the result of subscriber reliability prediction algorithm with the same param-

eter configuration as Section 3.4.1.1 and Section 3.4.1.2, but with different values of skewness (α).

The results, shown in Figure 3.7, are based on exponentially distributed publishers’ publication

interval and brokers’ event processing delay, so both M/M/1 model and G/G/1 model produce the

same results. It can be seen that the accuracy of the prediction algorithm slightly decreases when

α > 1, but significantly decreases when α < 1. The conclusion is that α < 1 reduces the difference

of content popularity in Zipf-like distribution, and thus affects flow estimation accuracy more than

when α > 1. However, the overall prediction accuracy is acceptable.

40

Field Type Min Max Example
Symbol STRING AAA ZZZZZ GOOG
Price FLOAT 0.01 3000.00 593.56
Vol INTEGER 0 4000000 18,378

Table 3.3: NASDAQ stock event structure

3.4.2 Simulation with Real-world Trace

This section presents the evaluation of the subscriber reliability prediction algorithm with the real-

world publisher event trace. The simulation depicts the real-time stock market quote service, where

each publisher publishes real-time quotes of a stock to subscribers that are interested in that stock.

Each simulation is done with the parameters shown in the third column of Table 3.2. We obtain

two consecutive days’ worth of NASDAQ stock quote event trace from Google Finance[35] between

Thursday December 4, 2009 and Friday December 5, 2009. The trace from each day starts from

9:30 AM ET to 4:00 PM ET, which are NASDAQ stock market hours of operation. The trace

consists of 258,853 events from 2,792 stocks on the first day, and 272,974 events from 2,832 stocks

on the second day. There are 2,733 overlapping stocks from both days. In each simulation run, we

randomly pick up 100 stock traces from the overlapping stocks and assign each of them to each of

100 publishers. We use the first day’s trace as the publishers’ statistical information to predict the

real-time reliability that each of 2,000 subscribers will receive on the second day. We then run the

simulation using the trace of the second day (23,400 seconds duration), and compare the predicted

reliability and the actual reliability each subscriber receives.

3.4.2.1 Event/Subscription Trace Characteristic

Each event in the NASDAQ stock trace consists of three attributes as shown in Table 3.3. We use

the stock symbol as the topic of the event. However, since there is no actual subscription trace,

we follow the approach by Gupta et al[41] to construct the subscriptions for each subscriber as

follows. There are 5 types of subscriptions as shown in Table 3.4. Each subscription is drawn from

each subscription type with its corresponding probability. For any single-topic subscription (i.e.,

subscription type 1-4), its topic is picked up from the 100 stocks with weights equal to each stock’s

market capitalization value in order to reflect differences in each stock’s popularity.

Figure 3.8 shows the temporal correlation between the first day traces and the second day traces.

Specifically, Figure 3.8(a) shows the temporal correlation between the first day event average rate

and the second day event average rate. Each point in the figure represents the average publishing

41

Type Filter Meaning Probability
1 Symbol = P1 stock P1 20%
2 (Symbol = P1) ∧ (Price ≤ P2) a stock P1’s value is less than or equal to P2 35%
3 (Symbol = P1) ∧ (Price ≥ P2) a stock P1’s value is more than or equal to P2 35%
4 (Symbol = P1) ∧ (Vol ≥ P2) a stock P1’s volume is more than or equal to P2 5%
5 Vol ≥ P1 any stock’s trade volume is more than P1 5%

Table 3.4: NASDAQ stock subscription type distribution

rate of one distinct publisher that publishes a stock. As seen from the figure, each stock’s rate

changes only slightly across days, which supports the temporal locality assumption suggested in

Section 1. The temporal locality assumption is then further confirmed by Figure 3.8(b), which

shows the CDF distributions of the percentage differences of each average event attribute across

days. The figure shows that while the average volume of each stock fluctuates more then the

average price, the average volume changes at most 100% across days for 80% of all stocks. Hence,

from both Figure 3.8(a) and Figure 3.8(b), we can conclude that temporal locality exists in the

stock event trace. This fact allows us to use the past event trace history to predict the current

event distribution accurately.

3.4.2.2 Prediction Accuracy

This section presents the accuracy of the subscriber reliability prediction algorithm with the stock

event traces described in Section 3.4.2.1. In this experiment, we use exponential matching time

distribution at each broker and G/G/1 prediction model presented in Section 3.2.3. To observe

the effect of imperfect publisher information, we run the simulation in two modes. The first mode

is called perfect information mode, where the publisher event profile is known in advance (i.e., use

the second day event trace to predict the second day subscriber reliability). The second mode is

called historical information mode, where the publisher event profile is calculated from the past

history (i.e., use the first day event trace to predict the second day subscriber reliability). While

the perfect information mode is unrealistic, it can be considered as the ideal case to be compared

with the realistic historical information mode.

Figure 3.9(a) shows the prediction accuracy of the algorithm in perfect information mode. As

seen from the figure, the algorithm can estimate most subscribers’ reliability values accurately.

The result, however, is slightly worse than the one with synthetic trace due to heterogeneity in

publishers’ rates in real-world event traces.

Figure 3.9(b) shows the prediction accuracy of the algorithm in historical information mode. The

42

graph shows that the algorithm can still predict most subscribers’ reliability values accurately. The

CDF distribution of prediction error in Figure 3.9(c) also shows that there is only slight difference

between the perfect information mode and the historical information mode. This confirms the

fact that the proposed subscriber reliability prediction algorithm can achieve good accuracy with

imperfect publisher profile information.

3.4.3 Subscriber Admission Control

We evaluate the heuristic-based admission control algorithms discussed in Section 3.3 in a smaller-

scale setting due to time constraint in exhaustively exploring all possible subscriber sets to find the

optimal solution. The publish/subscribe system in the setting consists of 4 brokers, 8 publishers,

and 10 requested subscribers. The event publishing interval and event processing time are expo-

nentially distributed, resulting in no difference between results from M/M/1 model and G/G/1

model.

Figure 3.10 shows the fraction of subscribers that have their requirements satisfied. As shown

from the figure, the publish/subscribe system without admission control performs the worst, since

all subscribers are admitted to the system and contend for resources. On the other hand, the

proposed heuristic–based algorithms give satisfaction rates that are closed to the optimal subscriber

selection, yielding the effectiveness of the algorithm. Each algorithm performs close to each other

without clear extinction, although the low-req-first heuristic policy performs slightly better than

others as the load increases.

3.5 Related Work

3.5.1 Content Uncertainty in Publish/Subscribe Systems

Liu and Jacobsen[53] addressed the uncertainty in terms of imprecise knowledge in subscriptions and

events in CBPS systems. By expressing subscriptions and events in the form of fuzzy sets, the work

proposes the publish/subscribe systems that allow approximate matching between subscriptions

and events with vague attributes. The concept of publication uncertainty in their work can be

considered equivalent to the concept of publisher content-lifetime probability distribution in our

work. However, their work focuses on the aspect of subscription uncertainty and correctness in

43

event matching while our work focuses on uncertainty coming from underlying networks, event

delivery probability and timeliness.

3.5.2 Timing Analysis in Publish/Subscribe Systems

To the best of our knowledge, the first work to propose timing analysis in publish/subscribe systems

is by Baldoni et al[55], which formulates the event delivery probability during the subscription phase

(i.e., the probability that a newly joining subscriber receives an event while its subscription is not

finalized throughout the system.) and during the un-subscription phase (i.e., the probability that

a leaving subscriber receives an event published shortly before its un-subscription time). Their

concept of persistent event is similar to event lifetime in our model. However, their model focuses

on transient-state behavior (i.e., joining phase and leaving phase) while our model focuses on the

steady-state behavior of the publish/subscribe systems where event delivery probability is affected

by the event’s lifetime, link delay, and broker queuing/matching delay. Our model thus is suitable

for delay-sensitve content-based publish/subscribe systems as we emphasize the concept of per-

event lifetime.

Another work that resembles our work in modeling publish/subscribe system integration and

timeliness is the work done by Kounev et al[56]. The work analyzes mean delivery delay of dis-

tributed event-based systems with the use of rate calculation and queuing theory. While our work

also uses the queuing theory to calculate delivery delay, our work presents the model that abstracts

content-based events and subscriptions, and allows fine-grained prediction of reliability and delay.

We also propose a heuristic-based admission control algorithm on top of such a model.

Schröter et al also proposes the use of stochastic model to compute the performance of the

CBPS systems for the purpose of performance prediction and capacity planning[31, 32]. Their

work addresses content uncertainty by assuming each subscriber to belong to one of the traffic

classes, and assuming the local incoming traffic rate for each traffic class at each broker is known.

Their work discuss several advanced subscription routing algorithms such as identity-based and

merging-based routings[26]. Based on the notion of traffic class, the average subscription and

notification traffic at each broker is calculated, which is then used to estimate per-broker service

delay and end-to-end notification/subscription delays using M/G/1 queuing model. While our

work is similar to their works in terms of stochastic analysis, we propose the use of G/G/1 queuing

model, which supports more generalized traffic distribution. Another difference is that their work

44

aims to provide coarse-grain, system-level performance prediction while our work aims to provide

fine-grain, subscriber-level performance prediction.

3.5.3 Overload Management in Publish/Subscribe Systems

There have been several works which propose techniques to handle overload in publish/subscribe

systems[12, 57]. Guo et al propose a subscriber admission control scheme where each publisher

advertises its publishing rate and content pattern. Each publisher’s advertisement is propagated

along the broker tree and stored at each broker. When a subscriber joins the system by sending its

subscription, its subscription is forwarded along the broker tree. Upon receiving the new subscrip-

tion, each broker calculates the additional resources needed to support the new subscription and

then either accepts the subscription or rejects the subscription. Their admission control protocol

is similar in concept to our admission control protocol. However, their works does not address

delay calculation and timeliness constraints. Our work, on the other hand, addresses fine-grained

end-to-end delay calculation, which is essential for delay-sensitive content-based applications.

Jerzak et al propose the load shedding scheme for overloaded content-based publish/subscribe

systems[57]. In their scheme, each broker continuously monitors its local event processing delay and

the each of its links’ available bandwidth. When a broker detects a broker/link overload, it starts

to drop events. They introduce a pricing model for each event/subscription, and propose an event

dropping policy which will maximize the total revenue generated by the system. Their approach

detects system overload on-the-fly while our approach detects system overload by off-line model

analysis. The two approaches can be combined altogether for higher accuracy and responsiveness.

The on-line overload detection technique is also adopted in Arianfar’s master thesis[58] to detect

congested brokers and re-construct the publish/subscribe tree to avoid congested brokers.

3.6 Discussion

In this chapter, we investigate the possibility of subscriber real-time reliability estimation in content-

based publish/subscribe systems, with the emphasis on content dynamism. The finding is that,

given the publisher content distribution, it is thus possible to calculate the amount of traffic load

between each publisher-subscriber pair and load along the path between them. The use of novel

entity content distribution and content-lifetime distribution allow us to estimate the fraction of

45

events delivered at each subscriber on time, which is the definition of subscriber reliability. We

then propose the subscriber admission control algorithm to allow only a subset of subscribers that

maximally utilize the system while still receive good performance. While the proposed algorithm is

limited on a single static publish/subscribe tree, a simple extension can be done to adopt the solu-

tion for scenarios with multiple topic trees. The evaluation results have shown that our predictive

model can estimate subscriber reliability accurately.

46

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
ct

ua
l r

el
ia

bi
lit

y

Predicted reliability

Exponential publication time, exponential matching time

(a) Exponential publication time, expo-
nential matching time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
ct

ua
l r

el
ia

bi
lit

y

Predicted reliability

Periodic publication time, exponential matching time

(b) Periodic publication time, exponen-
tial matching time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
ct

ua
l r

el
ia

bi
lit

y

Predicted reliability

Uniform publication time, exponential matching time

(c) Uniform publication time, exponen-
tial matching time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
ct

ua
l r

el
ia

bi
lit

y

Predicted reliability

Exponential publication time, uniform matching time

(d) Exponential publication time, uni-
form matching time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
ct

ua
l r

el
ia

bi
lit

y

Predicted reliability

Periodic publication time, uniform matching time

(e) Periodic publication time, uniform
matching time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
ct

ua
l r

el
ia

bi
lit

y

Predicted reliability

Uniform publication time, uniform matching time

(f) Uniform publication time, uniform
matching time

Figure 3.5: M/M/1 model predicted subscriber reliability compared to actual reliability under
different event traffic patterns

47

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
ct

ua
l r

el
ia

bi
lit

y

Predicted reliability

Exponential publication time, exponential matching time

(a) Exponential publication time, expo-
nential matching time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
ct

ua
l r

el
ia

bi
lit

y

Predicted reliability

Periodic publication time, exponential matching time

(b) Periodic publication time, exponen-
tial matching time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
ct

ua
l r

el
ia

bi
lit

y

Predicted reliability

Uniform publication time, exponential matching time

(c) Uniform publication time, exponen-
tial matching time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
ct

ua
l r

el
ia

bi
lit

y

Predicted reliability

Exponential publication time, uniform matching time

(d) Exponential publication time, uni-
form matching time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
ct

ua
l r

el
ia

bi
lit

y

Predicted reliability

Periodic publication time, uniform matching time

(e) Periodic publication time, uniform
matching time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
ct

ua
l r

el
ia

bi
lit

y

Predicted reliability

Uniform publication time, uniform matching time

(f) Uniform publication time, uniform
matching time

Figure 3.6: G/G/1 model predicted subscriber reliability compared to actual reliability under
different event traffic patterns

48

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
ct

ua
l r

el
ia

bi
lit

y

Predicted reliability

Exponential publication, exponential matching (alpha=0.5)

(a) α=0.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
ct

ua
l r

el
ia

bi
lit

y

Predicted reliability

Exponential publication, exponential matching (alpha=3)

(b) α=3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
ct

ua
l r

el
ia

bi
lit

y

Predicted reliability

Exponential publication, exponential matching (alpha=4)

(c) α=4

Figure 3.7: Predicted reliability compared to actual reliability with inaccurate content
distribution information

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.1 0.2 0.3 0.4 0.5

Se
co

nd
-d

ay
 a

ve
ra

ge
 r

at
e

(e
ve

nt
s/

m
in

)

First-day average rate (events/min)

Temporal correlation between average rate

(a) Event average rate

 0

 0.2

 0.4

 0.6

 0.8

 1

-100 -50 0 50 100

C
D

F

(val_{next} - val_{prev})/val_{prev} %

Temporal correlation between event attributes

Price
Vol

(b) Event attributes

Figure 3.8: Temporal locality between first-day event trace and second-day event trace

49

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
ct

ua
l r

el
ia

bi
lit

y

Predicted reliability

Real trace, perfect information

(a) Perfect Publisher Information

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
ct

ua
l r

el
ia

bi
lit

y

Predicted reliability

Real trace, historical information

(b) Historical Publisher Information

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5 0 0.5 1

C
D

F

predicted rel - actual rel

Difference in actual and estimated reliability

perfect
historical

(c) Prediction Error

Figure 3.9: Predicted reliability compared to actual reliability with real-world stock traces

 0

 0.2

 0.4

 0.6

 0.8

 1

 6 6.5 7 7.5 8 8.5 9 9.5 10

Fr
ac

tio
n

of
 s

at
is

fi
ed

 s
ub

sc
ri

be
rs

Average publishing rate (events/sec)

Fraction of satisfied subscribers

no admission
optimal
random

low-req-first
hi-req-first

overlap-first

Figure 3.10: Fraction of satisfied subscribers with different admission control algorithms

50

CHAPTER 4

RELIABILITY AND TIMELINESS ANALYSIS WITH

MOBILITY DYNAMISM

4.1 Introduction

Over the past decade, 802.11 wireless networks (i.e., Wi-Fi networks) have reached popularity and

become the common standard for data-plane mobile device communication. With rapid develop-

ment in terms of connection quality and power consumption, Wi-Fi technology has bridged the

gap between computer networks and cellular networks, allowing its users to enjoy Internet access

even while they are on the move. Moreover, with the advancements and economy of scale in core

network infrastructure, the cost for Internet connectivity has become cheaper as well. Likewise, in

the context of publish/subscribe systems, it has now been common for users to receive real-time

events such as news or traffic report from their mobile devices. Hence, to reflect the real-world

scenarios of mobile subscribers, it is necessary for the analytical model to incorporate user mobility

into the analysis as well.

To incorporate mobile subscriber into the publish/subscribe model, the relationship between a

subscriber and its home broker must be re-defined. So far, we assumed each subscriber to be

static and connected to only one home broker during its lifetime in the system. Now that mo-

bile subscriber is considered, each subscriber’s home broker can change over time, depending on

the physical locations of subscribers and brokers. Thus, we envision the two-tiered hierarchical

content-based publish/subscribe architecture, where each subscriber can be either static or mobile.

Each broker also has the capability to communicate with mobile subscribers via wireless chan-

nels. Mobile subscribers can move around and interact with any broker within its communication

range. However, we do not consider ad hoc communication among subscribers. Figure 4.1 gives an

illustration of such two-tiered hierarchical content-based publish/subscribe architecture.

While mobile publish/subscribe systems provide flexibility and convenience to subscribers, it is

even harder to predict subscriber reliability due to uncertainty in subscriber mobility over time (i.e.,

51

Figure 4.1: An illustrative scenario of a publish/subscribe system with mobile subscribers

mobility dynamism). This is because a subscriber can move out of any broker’s communication

range and fail to receive any events during that outage period. To cope with such problem, many

mobility management schemes have been proposed to allow brokers to buffer the events on behalf

of a subscriber during the subscriber’s disconnection period, and transmit those buffered events to

the subscriber once it reconnects to the publish/subscribe network. However, buffered real-time

events can also be expired during the buffering period. The effect of such mobility dynamism

to the subscriber reliability must be quantified for the purpose of performance assessment and

optimization to maintain service satisfaction to the users.

This chapter proposes an analytical model to predict mobile subscriber reliability with respect

to its mobility pattern and broker network deployment. Specifically, each mobile subscriber’s

reliability is quantified as a function of four parameters : event lifetime (the period an event is

valid after its publishing time), protocol handoff latency (the time it takes for the system to detect

the change of subscriber’s location), contact duration (the period of time the subscriber is within

brokers’ communication ranges), and outage duration (the period of time the subscriber is not

within any broker’s communication range). Based on such four parameters, subscriber reliability

can be estimated with acceptable accuracy. Contact/outage duration parameters, however, must

be further calculated from broker physical topology and user mobility. Hence, another part of

this chapter focuses on estimating contact/outage duration distribution based on various types of

mobility models. Finally, simulation results with various broker topologies and subscriber mobility

models yield the effectiveness of the proposed analytical model.

52

This chapter is organized as follows. Section 4.2 first presents the existing subscriber mobil-

ity management protocols along with how to model such protocols in the analysis. Section 4.3

then formally defines the problem of mobile subscriber reliability estimation problem and pro-

poses the analytical framework to solve such problem. Section 4.4 focuses on the calculation of

contact/outage duration distributions, which are important parameters in determining subscriber

reliability in Section 4.3. Section 4.5 shows the validation results of the proposed analytical model

via simulations. Section 4.6 presents related works in mobility handoff analysis. Finally, Section

4.7 discusses the future research direction of mobile dynamism and publish/subscribe systems.

4.2 Publish/Subscribe Mobility Management

In this section, we investigate two families of publish/subscribe mobility management protocols

that exist in the literature[59, 60, 61, 24]. The two families share one similar approach to handle

disconnected subscribers, which is to have at least one proxy broker to store incoming events on

behalf of each disconnected subscriber and transfer the buffered events to the subscriber once the

subscriber reconnects. The two schemes differ in the way the proxy broker set is chosen for each

disconnected subscriber. The first mobility management scheme is called reactive handoff and the

second scheme is called proactive prefetching.

4.2.1 Reactive Handoff

Reactive handoff scheme is a classical approach to buffer events for a subscriber during its dis-

connection period[59, 60, 61]. In the reactive handoff scheme, the last broker serving a subscriber

detects the subscriber’s disconnection either via explicit MoveOut message from the subscriber or

via connection timeout. Once subscriber disconnection is detected, the last serving broker contin-

ues to receive events on behalf of the disconnected subscriber. When the subscriber reconnects at

a new broker, the new broker knows of the subscriber’s previous broker either by explicit MoveIn

message or by querying the broker network. The new broker then resubscribes on behalf of the

subscriber and, at the same time, notify the subscriber’s previous broker about the subscriber’s

reconnection. Once notified, the old broker un-subscribes on behalf of the subscriber and, at the

same time, transfers all buffered events to the new broker. The new broker then forwards all the

events received from the old broker to the subscriber. Figure 4.2 shows an example of the reactive

53

handoff protocol.

(a) Normal Operation (b) Disconnection (c) Reconnection

Figure 4.2: Example of reactive handoff mobility management

The advantage of the reactive handoff approach is simplicity in implementation. Most traditional

publish/subscribe systems use this approach to enhance their supports of mobile clients[59, 62, 63].

However, the drawback of this approach is high delay when the new broker contacts and receives

the buffered events from the old broker. The effect of such high delay to the users depend on the

application delay requirement.

4.2.2 Proactive Prefetching

Recently, a new publish/subscribemobility scheme called proactive prefetching has been proposed[24].

The proactive prefetching scheme exploits the spatial locality nature of user mobility. That is, a

subscriber that is disconnected from one broker usually reconnects at another broker near the old

broker. Hence, in the proactive prefetching scheme, each broker maintains a data structure called

neighbor set, which contains a set of brokers to which a subscriber potentially reconnects next after

its disconnection from the current broker. When a subscriber subscribes to a broker, the current

broker also forwards the passive subscription to its neighbor set. A passive subscription at each

neighboring brokers is not activated until the subscriber is disconnected from the current broker.

Once the current broker detects the subscriber’s disconnection, it sends the signal to all neighboring

brokers to activate the previously passive subscription and start to buffer incoming events on behalf

of the subscriber. If a subscriber reconnects at one of the neighboring brokers, that broker becomes

the subscriber’s new home broker. The new home broker then transfers the locally buffered events

to the subscriber and, at the same time, notifies the old home broker and other neighboring brokers

about the subscriber’s reconnection. The old home broker and other neighboring brokers then dis-

card the buffered events and deactivate the subscriber’s subscription. If, in any circumstance, the

54

disconnected subscriber reconnects at another broker which is not the old home broker’s neighbor,

the new home broker will use the reactive handoff scheme to retrieve the buffered events from the

old home broker. Figure 4.3 shows an example of the proactive prefetching protocol.

(a) Normal Operation (b) Disconnection (c) Reconnection

Figure 4.3: Example of proactive prefetching mobility management

The performance of the proactive prefetching scheme heavily depends on the accuracy in deter-

mining the neighbor set of each broker[24]. If the subscriber mobility is deterministic (e.g. street

mobility) and each broker’s neighbor set is small, then the proactive scheme incurs less handoff

delay and comparable handoff overhead when compared to the reactive handoff. However, if the

subscriber mobility is not deterministic (e.g. random waypoint mobility) and each broker’s neighbor

set is large, the proactive scheme could incur higher delay and overhead.

In our proposed analytical model, we model the two different mobility management protocols in

the form of handoff latency, which is the delay it takes for the new broker to detects the subscriber’s

reconnection and delivers the buffered events to the subscriber. The detail of the handoff latency

will be presented in Section 4.3.2.2.

In the next section, we will formulate the mobile subscriber real-time reliability estimation prob-

lem. We then propose the analytical model to solve such problem.

4.3 Mobile Subscriber Real-time Reliability

4.3.1 Formulation

As mentioned, this chapter studies the effect of subscriber mobility to subscriber real-time relia-

bility. Hence, we use the following assumptions in this chapter to mask the effects from other factors.

Reliable broker network : We assume that the broker overlay network does not have failure.

55

Any event from publisher will be delivered to the designated home broker within a very short

period (several milliseconds). Compared to user mobility, which is in the scale of several seconds

or minutes, we can consider transmission and processing delay within the broker network to be

negligible.

No publisher mobility : While it is possible for a publisher to be mobile and publishing its

events to its local broker via wireless communication, we do not consider scenarios where publish-

ers move across different brokers over time. It is usually typical in the real-world scenario for a

publisher to have no or very slow mobility, since its change of location may affect the semantic

of its published events. The problem of publisher mobility in publish/subscribe systems has been

investigated but without quantitative analysis[64]. Hence, it can be considered the future research

direction of this thesis.

No broker overload : In Chapter 3, we explored the effect of traffic load to the subscriber reli-

ability. As any broker is overloaded, the broker’s average queuing delay will become unbounded.

We assume such situation does not occur. Such assumption can be achieved by leveraging the

subscriber admission control algorithm proposed in Section 3.3.

Physical model : As mentioned, the performance of publish/subscribe systems for mobile sub-

scribers now also depend on the physical location of both brokers and subscribers. Hence, it is

necessary to incorporate physical location into the broker model and the publisher model. There-

fore, we redefine a broker b ∈ B as a tuple

b = (idb,Mb(t), cb)

, where idb and Mb(t) are the broker b’s identifier and event processing delay defined in Section

2.2.3, respectively, and cb = (xb, yb) is broker b’s 2-dimensional, geographical location. At the same

time, a subscriber s ∈ S is re-defined as a tuple

s = (ids, fs,Ws,W s)

, where ids and fs are subscriber s’s identifier and content filter defined in Section 2.2.4 respec-

56

tively. The additional variables Ws and W s are subscriber s’s contact and outage duration random

variables, which will be explained in Section 4.3.2.1.

With such assumptions and revised models, we define the mobile subscriber real-time reliability

estimation problem as follows.

Mobile Subscriber Real-time Reliability Estimation Problem: Given a reliable publish/subscribe

overlay network G = (N,L) where N = B∪P∪ S, find the estimated value of rs, denoted by r′s, for

each mobile subscriber s ∈ S.

4.3.2 Analytical Framework

As mentioned in Section 4.1, a mobile subscriber’s reliability can be modeled as a function of four

parameters, which are contact duration distribution, outage duration distribution, protocol handoff

latency, and event lifetime. This section describes each parameters in detail.

Symbol Definition
c = (x, y) An arbitrary 2-dimensional geographical location

C The set of all possible locations of the system
W Contact duration (distribution)

W Outage duration (distribution)
H Handoff latency (distribution)

Hmax Maximum handoff latency (constant)
D Lifetime of all events (constant)
β A basic trajectory
k A generic trajectory

Ω : C → {0, 1} Broker connectivity function
φ An arbitrary phase
|φ| phase φ’s duration
ω(φ) phase φ’s type (0=outage, 1=contact)
Φ An interleaving sequence of contact phases and outage phases

ΦW The subset of Φ that contains only contact phases
Φ

W
The subset of Φ that contains only outage phases

Ġ = (V̇ , Ė) A semi-Markov mobility graph

Table 4.1: Mobility dynamism analysis variables’ notation

4.3.2.1 Contact/Outage Duration

In a nutshell, many mobile connectivity metrics can be estimated from two basic temporal metrics

: contact phase duration and outage phase duration. A contact phase is a consecutive period of

time a mobile device is connected to at least one wireless access point (i.e., cell residence time

or association time). On the other hand, an outage phase is a period of time a mobile device

57

is disconnected from wireless infrastructure. Both metrics are complementary to each other as a

mobile device will experience an interleaving sequence of contact phase and outage phase throughout

its traveling time. A more protocol-dependent performance metric can then be calculated on top

of such two basic metrics. For example, given its Wi-Fi contact/outage duration distributions, a

mobile device can calculate the period of time (and hence the air time cost) it needs to resort to

the cellular network due to its disconnection from Wi-Fi networks.

Figure 4.4: Timing diagram showing a subscriber’s mobility and contact/outage phases

In the context of mobile publish/subscribe systems, a subscriber s’s contact duration distribu-

tion, denoted by Ws, is a random variable defining the time period when subscriber s is within at

least one broker’s communication range. A subscriber s’s outage duration distribution, denoted

by W s, is a random variable defining the time period when subscriber s is not within any broker’s

communication range. For example, Figure 4.4 shows the timing diagram of a moving subscriber

across two brokers’ ranges. The white timing regions are contact phases and the gray timing regions

are outage phases. The distributions of both Ws and W s can be obtained from association history

between subscriber s and each broker. However, if such history is not available, the two distribu-

tions can still be estimated from subscriber s’s mobility function and broker set B geographical

deployment. The estimation of contact/outage duration distributions will be described in Section

4.4.

58

4.3.2.2 Handoff Latency

We abstract the effect of mobility management protocols, which are described in Section 4.2, in the

form of handoff latency, denoted by H. The handoff latency represents the duration of time it takes

for any broker to detects a subscriber within its range, plus the time it takes for the broker network

to transfer all buffered events to the reconnecting subscriber. The handoff latency distribution can

be calculated from the mobility management protocol and broker’s beacon period (e.g., wireless

access point advertisement period). In usual cases, handoff latency H is uniformly distributed

between 0 and Hmax, where Hmax is the beacon period of each broker.

4.3.2.3 Event Lifetime

In Section 2, we modelled event lifetime as a per-publisher distribution function. In this Chapter,

we assume all events have a single lifetime value, denoted by D, for simplicity of analysis. However,

our analytical model can be simply modified for the cases where event lifetime is a distribution as

well.

4.3.3 Mobile Reliability Estimation Algorithm

This section presents the algorithm to estimate subscriber reliability for any mobile subscriber

s ∈ S. We first present the estimation algorithm for mobile publish/subscribe systems without any

mobility management protocol presented in Section 4.2. We then present the estimation algorithm

for mobile publish/subscribe systems with mobility management protocol.

4.3.3.1 Subscriber Reliability without Buffering

This section presents the mobile subscriber reliability estimation algorithm for publish/subscribe

systems without mobility management for the purpose of performance comparison. Since there

is no buffering and we assume that an event can be published at any arbitrary time, a mobile

subscriber s’s reliability, denoted by rs, can be estimated as the fraction of time the subscriber

s can communicate with at least one broker, which defined as live period. Such live period is

indeed equal to the contact period excluding the handoff delay, which is the time the broker takes

to register the subscriber to the system. For example, Figure 4.5 shows the timing diagram of a

59

Figure 4.5: Timing diagram showing a subscriber’s mobility and live period without buffering

subscriber moving across two brokers’ ranges. The white period represents the live period during

which a published event will be delivered to the subscriber.

Hence, given subscriber s contact/outage duration distributions fWs(t) and fW s
(t), the generic

event lifetime D, and protocol handoff latency distribution fH(t), we can estimate the mobile

subscriber reliability rs as follows.

r′s =
mean contact duration after associating with broker

mean time between two successive brokers

=
E[max(Ws −H, 0)]

E[Ws] +E[W s]

=

∫∞
t=0

∫∞
t′=0 fWs(t).fH(t′)max(t− t′, 0)dtdt′

∫∞
t=0 t.fWs(t)dt+

∫∞
t=0 t.fW s

(t)dt
(4.1)

If we assume handoff delay H is uniformly distributed between 0 and Hmax(Hmax << E[W s]),

then Equation (4.1) becomes as follows.

60

r′s =

∫∞
t=0

∫ Hmax

t′=0
fWs (t)
Hmax

.max(t− t′, 0)dtdt′
∫∞
t=0 t.fWs(t)dt+

∫∞
t=0 t.fW s

(t)dt

=

∫ Hmax

t=0 fWs(t).
∫ t

t′=0
t−t′

Hmax
dt′dt+

∫∞
t=Hmax

fWs(t).
∫ Hmax

t′=0
t−t′

Hmax
dt′dt

∫∞
t=0 t.fWs(t)dt+

∫∞
t=0 t.fW s

(t)dt

=

∫ Hmax

t=0 fWs(t).
t2

2Hmax
dt+

∫∞
t=Hmax

fWs(t).(t−
Hmax

2)dt
∫∞
t=0 t.fWs(t)dt+

∫∞
t=0 t.fW s

(t)dt
(4.2)

4.3.3.2 Subscriber Reliability with Buffering

If a publish/subscribe system has support for mobile subscribers by buffering events on behalf

of each disconnected subscriber (i.e., mobility-aware publish/subscribe), then an event published

during a subscriber’s disconnection period will be buffered in the broker network and transferred to

the subscriber once it reconnects to a broker. Thus, given that every event has the same lifetime D,

an event published during a subscriber’s disconnection period can be successfully delivered to the

subscriber if and only if it is published within the periodD before the subscriber’s next reconnection

point. The subscriber s’s live period for a mobility-aware publish/subscribe system is then equal

to its live period without buffering (i.e., Section 4.3.3.1) prefixed by the event lifetime duration

D. Figure 4.6 shows a timing diagram of mobile subscriber in a mobility-aware publish/subscribe

system. The white period shows the live period of the subscriber.

Figure 4.6: Timing diagram showing a subscriber’s mobility and live period with buffering

61

Hence, we can calculate subscriber s’s real-time reliability rs in a mobility-aware publish/subscribe

system as follows.

r′s =
mean live period

mean time between two successive APs

=
E[min(W s +Hs,D) + max(Ws −Hs, 0)]

E[Ws] + E[W s]

=

∫∞
t=0

∫∞
t′=0 fW (t).fH(t′)min(t′ + t,D)dt′dt

∫∞
t=0 t.fWs(t)dt+

∫∞
t=0 t.fW s

(t)dt
+

∫∞
t=0

∫∞
t′=0 fW (t).fH(t′)max(t− t′, 0)dt′dt

∫∞
t=0 t.fWs(t)dt+

∫∞
t=0 t.fW s

(t)dt
(4.3)

4.4 Estimating Contact/Outage Duration Distributions

So far, we can calculate mobile subscriber reliability, given the contact/outage duration distribu-

tions, protocol handoff delay, and event lifetime. While protocol handoff delay and event lifetime

can be estimated from the mobility management protocol and event specification, it is sometimes

not trivial to obtain contact/outage duration distributions as the contact/outage duration history

of the subscriber may not be available. This section shows that, if the subscriber mobility pattern

and broker locations are known, it is possible to estimate contact/outage duration distributions.

However, mobility pattern is a very vague term as there are many mobility models existing in the

literature. In this section, we first present a mobility abstraction model that covers several classes

of existing mobility models. The mobility abstraction starts from a very simple, deterministic

mobility pattern to more complex, probabilistic mobility patterns. We also present how to calculate

contact/outage duration distributions from each type of mobility pattern.

4.4.1 Broker Map Model

First, we must define each broker’s physical location and communication range. Let a geographical

region C be the set of all possible geographical coordinates c = (x, y) that a mobile subscriber can

reach. Without loss of generality, we assume C to be a convex geographical region such as a circle

or a rectangle. We then define a connectivity function Ω over a geographical region C as follows.

62

(a) Map connectivity function Ω(). The
gray regions denote the areas with Wi-Fi
coverage

(b) Trajectory k

(c) Φc,k,Ω as an interleaving sequence of
contact phases (solid lines) and outage
phases (dash lines)

Figure 4.7: Example of a subscriber’s trajectory in a map with three APs

Definition A connectivity function Ω : C → {0, 1} is defined by

Ω(c) =







1 if c = (x, y) is within at least one broker’s communication range

0 otherwise

That is, a connectivity function Ω(c) returns 1 if the point c is within the transmission range of

at least one broker, and returns zero otherwise. Without loss of generality, we assume a simple,

circular broker coverage where a point c is within a broker b’s communication range if the Euclidean

distance between point c and the broker b’s position cb is less than some constant radius. However,

a more complex Wi-Fi coverage that considers more accurate signal and noise propagation models

can be applied to function Ω(c) as well. Figure 4.7(b) shows an example of a connectivity function

defined over a rectangular region with brokers.

63

4.4.2 Basic Mobility Model

4.4.2.1 Trajectory

Here, we define a subscriber’s trajectory as the mobility primitive which represents the subscriber’s

geographical movement over a period of time. We will show later in Section 4.4.2 and 4.4.3.1 that

more complex mobility models can be constructed on top of the trajectory model.

The simplest form of a trajectory called basic trajectory is defined as follows.

Definition A basic trajectory β = (∆c,∆t), represents a straight, constant-speed movement that

results in a subscriber’s position change equal to ∆c = (∆x,∆y) within the time ∆t > 0. That is, a

subscriber with its original position c = (x, y) ∈ C at time t taking a basic trajectory β = (∆c,∆t)

will be arriving at the new position c′ = c + ∆c = (x + ∆x, y + ∆y) at time t′ = t + ∆t. We

use the notations c
β

−→ c′ and t
β

=⇒ t′ to denote the spatial and temporal transitions caused by β

respectively.

Once the basic trajectory is defined, we can define a generic trajectory as a sequence of basic

trajectories as follows.

Definition A generic trajectory k is defined as a sequence containing at least one basic trajectories

[β0, β1, .., β|k|−1] where βi = (∆ci,∆ti) for all 0 ≤ i < |k|. A subscriber with an original position

c = (x, y) ∈ C at time t taking a generic trajectory k = (β0, β1, .., β|k|−1) will be arriving at the

position c′ = c+
∑|k|−1

i=0 ∆ci at time t′ = t+
∑|k|−1

i=0 ∆ti. Again, we use the notations c
k

−→ c′ and

t
k

=⇒ t′ to denote the spatial and temporal transitions caused by k respectively.

With such definition, we can define trajectory of any shape (including curve) or speed distribution

by breaking the trajectory into several basic trajectories, each with straight movement and constant

speed. Figure 4.7(b) depicts one example of a generic trajectory defined by a sequence of four basic

trajectories.

4.4.2.2 Contact/Outage Phases

We define a contact phase as a period of time a mobile client remains connected to at least one

Wi-Fi access point. Conversely, we define an outage phase as a period of time a mobile client

remains disconnected from any Wi-Fi access point.

64

Definition A phase φ is either a contact phase or an outage phase. We define phase type ω(φ) to

be equal to 0 if φ is an outage phase, and equal to 1 if φ is a contact phase. We also define phase

length |φ| to be the time duration of the phase φ.

It can be easily seen that starting from an initial position c, a subscriber’s trajectory k over

a connectivity map Ω will produce an interleaving sequence of contact phases and outage phases

(e.g., Figure 4.7(c)).

Definition A phase sequence Φc,k,Ω is an interleaving sequence of phases [φ0, φ1, .., φ|Φc,k,Ω|−1]

where ω(φi) 6= ω(φi+1) for all 0 ≤ i < |Φc,k,Ω| that results from a subscriber starting from the

initial location c and moving with the trajectory k over the connectivity map Ω. We also define

the contact set Φc,k,Ω
W ⊆ Φc,k,Ω and the outage set Φc,k,Ω

W
⊆ Φc,k,Ω to be the set containing contact

phases and outage phases from Φc,k,Ω respectively.

For example, with a map connectivity function Ω from Figure 4.7(a), a subscriber’s initial position

c and generic trajectory k from Figure 4.7(b), the phase sequence Φc,k,Ω = [φ0,φ1,φ2,φ3,φ4,φ5,φ6],

the contact set Φc,k,Ω
W = {φ1, φ3, φ5}, and the outage set Φc,k,Ω

W
= {φ0, φ2, φ4, φ6} as shown in Figure

4.7(c).

4.4.2.3 Deterministic Mobility

In the simplest form, a subscriber s’s mobility can be described as its initial position cs and a single

generic trajectory ks. Such mobility model represents the scenario where a subscriber’s movement

is deterministic. In such case, the contact/outage duration estimation problem can be defined as

follows.

Problem 1 Given subscriber s’s mobility as (cs, ks) and a connectivity map Ω, estimate the cor-

responding contact duration distribution, denoted by f
cs,ks,Ω
W (t), and outage duration distribution,

denoted by f
cs,ks,Ω

W
(t).

Problem 1 can be solved trivially by counting the occurrences of contact/outage phases with

specific duration t in the contact/outage set defined in Section 4.4.2.2 as follows.

65

f
cs,ks,Ω
W (t) = P[s’s contact duration = t]

=
size of s’s contact subset with duration t

size of s’s contact set

=
|{φ ∈ Φcs,ks,Ω

W : |φ| = t}|

|Φcs,ks,Ω
W |

(4.4)

Likewise, the corresponding outage duration distribution, denoted by f
cs,ks,Ω

W
(t) can be calculated

as

f
cs,ks,Ω

W
(t) =

|{φ ∈ Φcs,ks,Ω

W
: |φ| = t}|

|Φcs,ks,Ω

W
|

(4.5)

4.4.2.4 Probabilistic Mobility

In many scenarios, a subscriber’s movement is not known deterministically. Rather, there can

be several possible trajectories and initial positions for a subscriber. Such uncertainty cannot be

described by the model in Section 4.4.2.3. Instead, we can model a subscriber s’s mobility as a

probabilistic distribution function qs as follows.

Definition A mobile client s’s mobility model is represented by a coordinate-trajectory joint

distribution function qs : C × K → [0, 1]. Where C and K are all possible valid points and

trajectories respectively. That is,
∑

(c,k)∈C×K

qs(c, k) = 1

We also define subscriber s’s mobility space Qs ⊆ C × K as the set containing all possible (c, k)

pairs a subscriber s can take (e.g., Qs = {(c, k) ∈ C×K : qs(c, k) > 0}).

In other words, the coordinate-trajectory joint distribution qs describes how likely subscriber k

will move from a starting point with a trajectory. Hence, the contact/outage duration estimation

problem can be redefined as follows.

Problem 2 Given subscriber s’s mobility as a joint distribution function qs(c, k) and a connectiv-

ity map Ω, estimate the corresponding contact duration distribution f
qs,Ω
W (t), and outage duration

distribution f
qs,Ω

W
(t).

66

Again, Problem 2 can be solved by considering the mobility distribution function qs as a mixture

of different trajectories with different weights. The probability of s’s contact phase with duration

t, denoted by f
qs,Ω
W (t), can then be estimated by calculating the expected number of contact phases

with duration t from all subscriber s’s possible initial positions c and trajectories k. Specifically,

f
qs,Ω
W (t) = P[s’s contact duration = t]

=
E[size of s’s contact subset with duration t]

E[size of s’s contact set]

=

∑

(c,k)∈Qs
qs(c, k).|{φ ∈ Φc,k,Ω

W : |φ| = t}|
∑

(c,k)∈Qs
qs(c, k).|Φ

c,k,Ω
W |

(4.6)

where Qs = {(c, k) ∈ C×K : qs(c, k) > 0}

For simplicity, we define |W qs,Ω(t)| and |W qs,Ω| as the expected size of subscriber s’s contact

subset with duration t and the expected size of s’s contact set (i.e., the upper part and the lower

part of Equation (4.6)) respectively.

Similarly, subscriber s’s outage duration distribution f
qs,Ω

W
(t) can be estimated as

f
qs,Ω

W
(t) =

|W
qs,Ω

(t)|

|W
qs,Ω|

(4.7)

where

|W
qs,Ω

(t)| =
∑

(c,k)∈Qs

qs(c, k).|{φ ∈ Φc,k,Ω

W
: |φ| = t}|

and

|W
qs,Ω| =

∑

(c,k)∈Qs

qs(c, k).|Φ
c,k,Ω

W
|

.

It can be seen that Equation (4.6) and (4.7) are the generalized Equation (4.4) and (4.5) re-

spectively. Hence, Equation (4.6) and (4.7) can be used to estimate the contact/outage duration

distributions of a subscriber s for any mobility model as long as all of its potential starting points

and trajectories can be enumerated (e.g., as long as s’s mobility space Qs is finite).

67

However, there are scenarios where a subscriber s has infinitely possible numbers of potential

starting points or trajectories (e.g., Qs is infinite). Such scenarios include long-term mobility

(subscribers moving for infinitely long or very long time) and recurrent mobility (subscribers moving

back to previous states with some probability). In such cases, a subscriber s’s corresponding

contact/outage duration distributions cannot be simply estimated by previous models. In the next

Section, we will address the case of infinite mobility space by abstracting subscriber mobility with

a stochastic technique called Semi-Markov model.

4.4.3 Semi-Markov Mobility Model

As previously discussed, there are scenarios where a mobile subscriber has infinitely many possible

movement trajectories throughout its lifetime in the system. The contact/outage duration distri-

butions of a subscriber in such scenarios cannot be estimated by the methods proposed in Section

4.4.2.

However, despite having indefinitely many possible trajectory paths, many mobility models ex-

hibit the behavior where the infinitely many trajectories can be decomposed into finite trajectories.

Some examples of mobility models with such recurrent behavior include random waypoint mobility,

random walk mobility, Manhattan mobility. In order to estimate the contact/outage duration dis-

tributions of a mobile subscriber with such recurring mobility, we propose the use of Semi-Markov

model to decompose the infinitely many possible trajectories into independent but finite “patterns”.

The contact/outage duration distributions for each pattern are then computed independently.

In Section 4.4.3.1, we first define the Semi-Markov mobility model and show examples of how it

can be used to describe many widely-used mobility models. We then propose the contact/outage

duration estimation algorithms for the Semi-Markov mobility model in Section 4.4.3.4.

4.4.3.1 Semi-Markov Graph

Here, we define Semi-Markov mobility model as follows.

Definition A Semi-Markov mobility graph is defined as a directed graph Ġ = (V̇ , Ė) where V̇ rep-

resents the set of the mobility renewal states and Ė denotes the set of transitions between any two

renewal states. A renewal state v̇i ∈ V̇ represents an independent state on which the mobile sub-

scriber’s subsequent actions only depend. That is, the subsequent actions of a subscriber currently

68

at state v̇i will only depend on the state v̇i without depending on the subscriber’s previous states

so far. Each renewal state v̇i has its corresponding coordinate ci, representing the geographical

location of that state. A renewal state v̇i with location ci can be, for example, a point of interest

or a point of operation for a mobile subscriber. A state transition ėij ∈ Ė ⊆ (V̇ × V̇), denoting a

transition between state v̇i to state v̇j, is defined as (ṗij , qij) where ṗij is the transition probability

from state v̇i to v̇j and qij is the corresponding coordinate-trajectory joint probability (defined in

Section 4.4.2.4) that describes all possible trajectories for the transition from v̇i to v̇j . Likewise,

transition ėij ’s mobility space Qij = {(c, k) ∈ C×K : qij(c, k) > 0}

(a) A 3-state Semi-Markov
graph

(b) A 4-state Semi-Markov
graph with absorbing state

(c) Mapping a Random way-
point model to a Semi-Markov
graph with |V̇ | = 4

(d) Mapping Manhattan
model to Semi-Markov graph

Figure 4.8: Semi-Markov mobility graph and its mapping from other models

Note that the total transition probability from each state must be equal to one (i.e.,
∑

0≤j<|V̇ | ṗij =

1), and all possible trajectories in a transition ėij must start from state v̇i’s location and end at

state v̇j’s location (i.e., ∀(c, k) ∈ Qij : (c = ci) ∧ (c
k

−→ cj)). It can be seen that the Semi-Markov

mobility graph exhibits the behavior of a Semi-Markov process (i.e., a Markov chain where each

inter-state transition time is a random variable of any distribution), from which the Semi-Markov

name is motivated. Figure 4.8(a) shows an example of a Semi-Markov graph with 3 states. When

69

a mobile subscriber reaches state v̇0, it chooses to go to state v̇1 with probability ṗ01 = 0.4 and

to state v̇2 with probability ṗ02 = 0.6 If the mobile subscriber from state v̇0 decides to move to

state v̇1, it will picks trajectory k01 with probability 1.0. However, if it decides to move to state

v̇2, it can either picks trajectory k002 with probability 0.5 or trajectory k102 with probability 0.5.

Hence, the trajectory transition probability of trajectories k002 and k102 are 0.6 × 0.4 = 0.24 and

0.6 × 0.6 = 0.36 respectively. Also, it is possible for a Semi-Markov graph to contain absorbing

states (i.e., terminal state without transition to other states but themselves). Absorbing states can

represent, for example, the user’s terminal locations in the map. Figure 4.8(b) shows an example

of a Semi-Markov graph with one absorbing state v̇3.

As seen from the example, a mobile subscriber with Semi-Markov mobility can move with in-

finitely many possible trajectories. However, each movement is repetitive and consists of only a

limited set of trajectories. A Semi-Markov graph can be used to describe many steady-state mobil-

ity models. To apply Semi-Markov model to a mobility model, it is essential to identify the renewal

states of such model. Here, we present examples how to use Semi-Markov mobility to describe

Random Waypoint model and Manhattan model.

4.4.3.2 Semi-Markov Mobility Mapping : Random Waypoint Model

Random waypoint model is one of the classic mobility models investigated in the literature. A

subscriber in random waypoint mobility model picks a location randomly and uniformly from the

map, and picks a speed value u uniformly from [umin, umax] range. It then travels straight to the

chosen location with the constant, chosen speed u. Upon its arrival to the destination, it stops

at the destination for a constant period called pause time before choosing a new destination and

speed value. The process then repeats indefinitely.

According to random waypoint mobility, it can be seen that once a mobile subscriber stops at

the current destination, the subsequent actions depend only on the current stopping point and do

not depend on how far or which trajectories the subscriber has been traveled. This memoryless

property allows us to map random waypoint mobility model to Semi-Markov model by constructing

a Semi-Markov graph as follows. First, we divide the map into small rectangular cells of equal size.

For each cell, we adds a renewal state v̇i with the corresponding location ci equal to the center

of the cell. Hence, each state represents the state where a mobile subscriber stops at the cell

before selecting the next destination. The smaller size the cell is, the more accurately the graph

70

represents the random waypoint model. Let |V̇ | be the total number of cells, and hence total

number of renewal states. For each state v̇i, we adds a transition ėij to every other state v̇j with

equal transition probability ṗij = 1
|V̇ |−1

to reflects the uniform destination selection. Also, the

transition distribution qij consists of one straight trajectory from state v̇i’s location ci to state v̇j ’s

location cj with traveling time equal to the Euclidean distance between ci and cj divided by the

subscriber’s speed1. Hence, the mapping will result in a complete directed graph. Figure 4.8(c)

shows the example of the mapping from random waypoint mobility model to a Semi-Markov graph

when |V̇ | = 4 for the purpose of visualization. Note that the number of states are usually much

larger than 4 in order to get higher estimation accuracy.

4.4.3.3 Semi-Markov Mobility Mapping : Manhattan Model

Manhattan model is one of the first mobility models to describe the movement of vehicles in

metropolitan road networks. In Manhattan model, the map consists of several vertical and horizon-

tal roads. Each road has two lanes, one in each direction. Each subscriber in the map continuously

moves along the roads with pre-defined, constant speed u. A junction is defined as a crosspoint

between a horizontal road and another vertical road. A road segment is defined a fraction of road

between any two adjacent junctions. As the subscriber reaches any junction, it decides to cross

straight the junction with probability νs, or turn left at the junction with probability νl, or turn

right at the junction with probability νr, or make a back turn with probability νb. The turning

probability values νs, νl, νr, νu are pre-defined constants that sum up to 1. A vehicle that reaches

the map border will bounce back to the reverse direction of the same road with probability 1.

To map Manhattan model into Semi-Markov model, renewal states must be defined. It is not

hard to see that a pair of (ṙ, ḋ), where ṙ ∈ Ṙ is a road segment and ḋ is the subscriber direction,

forms an independent renewal state. Since there are only two possible two directions for each road

segment (East/West for horizontal road segments and North/South for vertical road segments),

There will be 2|Ṙ| renewal states in the corresponding Semi-Markov graph, where |Ṙ| is the total

number of road segments. Each state v̇i has its corresponding location ci equal to the middle point

of the corresponding road segment. Each state has four transitions, representing the scenarios

where the subscriber in that state travels to the next junction and go straight/left/right/ back

with transition probability νs, νl, νr, and νb respectively. Each transition ėij ’s mobility space also

1Here we assume the pause time to be zero and there is only one possible subscriber speed (i.e., umin = umax).
However, it is easy to modify qij to reflects the case of non-zero pause time and multiple possible speed values.

71

contains one trajectory from state v̇i’s location ci to the next junction and then to state v̇j’s location

cj (and thus having the duration equal to the average length between v̇i’s road segment length and

v̇j ’s road segment length, divided by the speed u). Figure 4.8(d) shows an example of such mapping

in a simple Manhattan model with two junctions.

4.4.3.4 Contact/Outage Duration in Semi-Markov Model

Once a Semi-Markov mobility graph is defined, we can then formulate the contact/outage duration

estimation problem by modeling a subscriber s’s mobility as a Semi-Markov graph as follows.

Problem 3 Given subscriber s’s mobility as a Semi-Markov graph Ġs(V̇ , Ė) and a connectivity

map Ω, estimate the corresponding contact duration distribution f
Ġs,Ω
W (t), and outage duration

distribution f
Ġs,Ω

W
(t).

While Problem 3 involves a more complex and generic mobility abstraction than the problems

previously defined in Section 4.4.2, it can be solved by the same principle with other problems.

Specifically, there are two steps in the estimation algorithms. First, we need to find the average

fraction of time each possible trajectory is visited. Second, the contact/outage duration distribu-

tions are then computed by estimating the average number of occurrences of contact/outage phases

with certain duration.

In the first step (i.e., finding the fraction of time each trajectory is visited), we need to calculate

the fraction of time each renewal state v̇i ∈ V̇ is visited, denoted by πi. There are two separate

cases depending on whether the Semi-Markov graph contains any absorbing state. If there is any

absorbing state in its Semi-Markov graph, a mobile client will end up staying in the absorbing

state eventually. In such case, the transition probability matrix Ṗ = [ṗij] is an absorbing Markov

chain[65], which can be rearranged into its canonical form as,

Ṗ =





Ṫ Ṙ

0 I





where Ṫ is the transition probability matrix between any two transient (non-absorbing) states, Ṙ

is the transition probability matrix from each transient state to each absorbing state, and I is the

identity matrix (since each absorbing state only has a transition to itself). From transient matrix

72

Ṫ, we can calculate the corresponding fundamental matrix Λ as

Λ = (I − Ṫ)−1

The fundamental matrix Λ has the same dimension as the transient matrix Ṫ. Each entry λ̇ij ∈ Λ

denotes the expected number of times state v̇j is visited before absorption, given that state v̇i is

the starting state. Hence, given the starting state v̇s, we can calculate the expected fraction of

occurrences πi for each transient state v̇i as

πi =
E[#visit at state v̇i before absorption]

E[#visit at all states before the absorption]

=
λ̇si

∑

0≤j<|V | λ̇sj

(4.8)

Note that πi = 0 if state v̇i is an absorbing state because we assume that the subscriber’s

movement terminates at the absorbing state.

For example, consider the Semi-Markov graph in Figure 4.8(b). Its corresponding transition

matrix P is

Ṗ =

















ṗ00 ṗ01 ṗ02 ṗ03

ṗ10 ṗ11 ṗ12 ṗ13

ṗ20 ṗ21 ṗ22 ṗ23

ṗ20 ṗ21 ṗ22 ṗ23

















=

















0 0.3 0.7 0

0.6 0 0.4 0

0.0 0.9 0 0.1

0 0 0 1

















Hence, its corresponding transient matrix Ṫ is the upper-left 3 × 3 sub-matrix of Ṗ and the

fundamental matrix is

Λ =











7.805 11.341 10

7.317 12.195 10

6.585 10.976 10











Assuming that v̇0 is the starting state, then we can calculate the state occurrence vector π as

π =
(

0.36 0.34 0.3 0
)

73

If the Semi-Markov mobility graph has no absorbing state (e.g., Figure 4.8(a)), which is the case

for Random waypoint model and Manhattan model, then the graph’s corresponding Markov chain

is ergodic[65]. In such case, the average fraction of time a state v̇i is visited πi can be calculated

from the steady-state equation

π = πṖ (4.9)

with the constraint
∑

0≤i<|π|

πi = 1

, where Ṗ is the state transition matrix [ṗij] and π is the state vector [πi].

For example, the state transition matrix P for the Semi-Markov graph in Figure 4.8(a) is

Ṗ =











ṗ00 ṗ01 ṗ02

ṗ10 ṗ11 ṗ12

ṗ20 ṗ21 ṗ22











=











0 0.4 0.6

0 0 1

0.9 0.1 0











Solving Equation (4.9) with the matrix Ṗ yields the steady-state vector

π =
(

π0 π1 π2

)

=
(

0.38 0.2 0.42
)

Once the expected fraction of occurrence πi for each state v̇i ∈ V̇ is calculated either by Equation

(4.8) or Equation (4.9), we can calculate the expected fraction of occurrence for each transition ėij,

denoted by πij, as

πij = E[fraction of time transition ėij is visited]

= E[fraction of time v̇i is visited].P[subscriber in v̇i jumps to v̇j]

= πi.ṗij (4.10)

where ṗij is the corresponding state transition probability for transition ėij ∈ E.

Once the expected fraction of occurrence πij for each transition ėij ∈ E is calculated at the end

of the first step, we can then calculate the contact duration distribution f
Ġs,Ω
W for subscriber s’s

Semi-Markov mobility graph Ġs = (V̇ , Ė) and connectivity map Ω as follows.

74

f
Ġs,Ω
W (t) = P[s’s contact duration = t]

=
E[size of s’s contact subset with duration t]

E[size of s’s contact set]

=

∑

ėij∈Ė
πij.|W

qij ,Ω(t)|
∑

ėij∈Ė
πij .|W qij ,Ω|

(4.11)

where |W qij ,Ω(t)| and |W qij ,Ω| are defined in Section 4.4.2.4. Similarly, the outage duration

distribution f
Gs,Ω

W
for subscriber s’s Semi-Markov mobility graph Ġs = (V̇ , Ė) and connectivity

map Ω can be calculated as

f
Ġs,Ω

W
=

∑

ėij∈Ė
πij .|W

qij ,Ω(t)|
∑

ėij∈E
πij.|W

qij ,Ω|
(4.12)

where |W
qij ,Ω(t)| and |W

qij ,Ω| are defined in Section 4.4.2.4.

Note that Equation (4.11) and Equation (4.12) estimates the contact/outage duration distribu-

tion of a Semi-Markov mobility graph with the assumption that each location-trajectory pair (c, k)

in each state transition ėij contains more than one phases (i.e., |Φc,k,Ω| ≥ 2 for all (c, k) ∈ Qij, for

all ėij ∈ Ė). If there exists a trajectory with only one phase between two states, it means that

the corresponding phase length cannot be computed from that trajectory alone (since the duration

is not bounded). In such case, the graph must be traversed and the phase duration is aggregated

until a trajectory with more than one phase is met. For graph traversal, we use exhaustive search

on the graph until the aggregate probability is less than a constant bound.

4.5 Evaluation

This section presents the validation of the proposed analytical model via simulations. We first

describe simulation parameter settings in Section 4.5.1. We then present the evaluation results for

the proposed contact/outage duration estimation algorithms (i.e., Section 4.4.3) in Section 4.5.2.

Finally, we present the evaluation results of the protocol analysis (i.e., Section 4.2) in Section 4.5.3.

75

4.5.1 Parameter Settings

(a) 1 AP scenario (b) 5 APs scenario

(c) Manhattan scenario

Figure 4.9: Simulation Map

We validate our proposed analytical model via simulations with NS-2 network simulator[50].

Each simulation runs in a 1000-meter x 1000-meter square region with 150 meter radio transmis-

sion range. We test the model with two mobility models, Random waypoint model and Manhattan

model mentioned in Section 4.4.3.2 and Section 4.4.3.3 respectively. The number of mobile sub-

scribers in each experiment is 40. In each experiment, there are 10 publishers publishing 4 topics in

total. In the experiment, the subscribers move in the map according the specified mobility model.

Each broker in the map periodically sends out the beacon message and the mobile subscribers

detect the access point when it receives the beacon message. Each mobile subscriber records the

duration of the contact phases and outage phases it experiences throughout the simulation. Each

simulation runs for 1 hour. The contact/outage duration distributions and subscribers’ reliability

76

values are then constructed and averaged from 5 simulation runs for each parameter setting.

There are two broker deployment scenarios used in the experiments. The first scenario consists

of only one broker in the middle of the map (Figure 4.9(a)) and the second scenario consists of

5 brokers distributed evenly (Figure 4.9(b)). For Random waypoint mobility model, the mobile

subscribers move freely in the simulation area. For Manhattan mobility model, the subscribers

move only along the junction specified in Figure 4.9(c). We vary subscriber speed from 1 m/s to

25 m/s in Random waypoint model and from 1 m/s to 60 m/s in Manhattan model. We vary

subscriber pause time from 1s to 60s in both mobility models.

4.5.2 Contact/Outage Duration Estimation

Figure 4.10 and Figure 4.11 show the CDF of contact/outage duration distributions for various

simulation parameters. The plots show both analytical result and simulation result (denoted by

anl and sim in each figure respectively). As seen from the figures, each analytical CDF graph

exhibits similarity to its simulation counterpart, yielding accuracy in our proposed contact/outage

duration estimation algorithm.

4.5.2.1 Effect of Mobility Pattern

By comparing the contact/outage duration distributions between Random waypoint model and

Manhattan model in the same setting (e.g., Figure 4.10(a) and Figure 4.10(e)), we can conclude that

the contact/outage duration distributions of Manhattan model are more deterministic than their

Random waypoint model counterparts (i.e., contact/outage distributions from Random waypoint

model are more long-tailed than their Manhattan counterparts). That is, the contact/outage

duration distributions share the same level of determinism from its corresponding mobility model.

This finding can be useful when designing or deploying the publish/subscribe system for different

mobility models. For example, it is relatively easier to find good locations to deploy brokers when

node mobility follows Manhattan model than when node mobility follows Random waypoint model,

because there will be relatively fewer “good” locations for Manhattan scenario.

77

4.5.2.2 Effect of Broker Deployment

One could simply conclude by looking the graphs that it is trivially better to have more brokers de-

ployed on the map. For example, comparing Figure 4.10(a) to Figure 4.10(c) and comparing Figure

4.10(b) to Figure 4.10(d), having more deployed brokers generally increases contact duration while

decreasing outage duration, which are good from subscriber reliability’s perspective. However, it

is possible that a system with fewer brokers deployed in good locations may yield longer contact

duration (or shorter outage duration) than another system that deploys more brokers in bad loca-

tions. The effect of location to the contact/outage duration distributions has not been explored in

this work and can be considered as future research direction.

4.5.2.3 Effect of Subscriber Speed

Each sub-figure in Figure 4.10 shows contact or outage duration distributions for each setting with

zero pause time and different subscriber speed values. As seen from the figures, increasing node

speed while fixing pause time generally decreases both contact/outage duration lengths. Hence, it

is not clear how speed affects the performance of the protocol by analyzing contact/outage duration

distributions. The effect of subscriber speed to protocol performance will be discussed in Section

4.5.3.

4.5.2.4 Effect of Subscriber Pause Time

Each sub-figure in Figure 4.11 shows contact or outage duration distributions for each setting with

10 m/s subscriber speed and different pause time values. In contrast to subscriber speed, increasing

subscriber pause time generally increases both contact/outage duration lengths. However, we

cannot make any conclusion from the subscriber reliability perspective as subscriber pause time

has the same effect on the contact duration length and outage duration length. Section 4.5.3 will

discuss such effect in detail.

4.5.3 Protocol Performance

This section presents the evaluation in terms of average subscriber real-time reliability. Unless

specified otherwise, each simulation is run with 10m/s subscriber speed with zero pause time. The

default event lifetime is 60 seconds and the maximum protocol handoff delay equal to 1 second.

78

Again, we use either Random waypoint or Manhattan model on either 1-broker map or 5-broker

map for each simulation.

There are two modes of publish/subscribe used in the simulations. The first mode is basic

publish/subscribe without mobility management. Thus, each broker does not buffer any incoming

event on behalf of disconnected subscribers. The second mode is mobility-aware publish/subscribe

(denoted by term “+broker” in each graph), where each broker buffers incoming events on behalf

of disconnected subscribers and transfer the buffered events to a disconnected subscriber when it

reconnects the broker network.

Figure 4.12, Figure 4.13, and Figure 4.14 show the average subscriber real-time reliability for var-

ious system parameter settings. Each of the plots consists of both analytical results and simulation

results. In general, our analytical model accurately predict subscriber real-time reliability.

4.5.3.1 Effect of Mobility Management

Figure 4.12 and Figure 4.13 compare the subscriber reliability between basic mode and mobility-

aware mode (i.e., buffer mode) for each simulation setting. Note that the mobility-aware mode

significantly outperforms the basic mode in all cases. This performance gain comes at the cost of

buffering at each broker during the subscriber’s disconnection period.

4.5.3.2 Effect of Broker Coverage

Figure 4.12 and Figure 4.13 also compare the subscrber reliability between different broker maps

for each parameter setting. As expected, adding more brokers into the map generally increases the

broker coverage and hence subscriber reliability.

4.5.3.3 Effect of Subscriber Speed

Figure 4.12 shows the effect of subscriber speed to the subscriber real-time reliability. From the

figure, we can conclude that speed generally has no effect in the basic publish/subscribe settings.

This is because node speed does not change the fraction of disconnection time of the subscriber.

This explanation is consistent with the results from Section 4.5.2, as the increasing speed decreases

both contact duration and outage duration.

For the mobility-aware publish/subscribe settings, however, increasing subscriber speed results

79

in significant increase in average subscriber real-time reliability. This can be explained as follows.

Although increasing subscriber speed does not change the fraction of time a subscriber is discon-

nected, it shortens duration of each outage phase (the subscriber get disconnected faster, but also

get reconnected faster as well). According to Equation (4.3), decreasing outage duration will cause

each buffered event to spend less time in the buffer before getting transferred, resulting in higher

real-time reliability.

4.5.3.4 Effect of Subscriber Pause Time

The explanation of the effect of speed to subscriber reliability also applies to the effect of subscriber

pause time as well. Specifically, increasing subscriber pause time does not change subscriber re-

liability in basic publish/subscribe protocols because it does not change the fraction of time each

subscriber is disconnected. However, increasing subscriber pause time will increase subscriber

outage duration, resulting in longer time each buffered event needs to stay in the buffer. Thus in-

creasing subscriber pause time generally decreases subscriber real-time reliability in mobility-aware

publish/subscribe systems.

4.5.3.5 Effect of Event Life time

Figure 4.14 shows the effect of event lifetime to the subscriber real-time reliability in mobility-

aware publish/subscribe systems. We do not show the results for basic publish/subscribe systems

as the events are not buffered at all in such mode. We can conclude that increasing event lifetime

generally increases subscriber reliability in mobility-aware publish/subscribe systems. However,

the event lifetime is application-dependent and could not be changed flexibly. However, the result

shows that the same publish/subscribe system may have different effect to different applications

with different requirements.

4.5.3.6 Effect of Handoff Delay

Figure 4.15 shows the effect of maximum handoff delay value (Hmax) to the prediction accuracy

of the model. As seen from Figure 4.15, as compared to Figure 4.12, the more the Hmax is, the

less accurate the predictive model becomes. This is because the assumption (Hmax << E[W s])

made in the analysis (Equation (4.2)) is no longer valid. Note that the accuracy decreases when

80

the subscriber speed increases due to the same reason.

4.6 Related Work

Mobility handoff and its effect on publish/subscribe systems is not a new research area and has

been investigated by numerous works[59, 60, 61, 24]. However, to the best of our knowledge, none

of such works explores the effect of subscriber mobility model to the publish/subscribe systems

from the analytical point of view. This chapter of thesis first proposes a generic mobility model

that can abstract various existing mobility models and yet fit into the analytical framework for

publish/subscribe performance estimation.

From a broader perspective of mobile networking, there have been numerous works to analyze

and optimize the performance of mobile networks where users can roam around and change their

association with the network infrastructure. In fact, the analytical results of user mobility and its

effect to network performance in cellular networks have been long well established with the con-

clusion that most user mobility metrics such as cell residence time or cell hand-off rate follow some

certain distributions (e.g., gamma distribution or negative exponential distribution)[66]. However,

such findings are based on the assumption of cellular network topology (i.e., multi-kilometer cell

size, dense/grid cell deployment), which is different from our sparse broker deployment scenarios.

Recently, there has been an emergence of a new phenomenon called opportunistic Wi-Fi network

(i.e., in situ network) where a mobile device opportunistically discovers and connects to a free

802.11 access point for free network connectivity[67, 68]. Our analytical model can also be used

to calculate contact/outage duration in such scenarios. In fact, a few works have proposed the

estimation of contact/outage duration in the context of opportunistic Wi-Fi networks[69, 70, 71].

However, such works focus on finding the maximum contact/outage duration. Our model estimates

contact/outage duration at the distribution granularity, which is more accurate and useful for

quality of service analysis.

4.7 Discussion

This chapter of thesis explored the effect of subscriber mobility (i.e., mobility dynamism) to the per-

formance of distributed, content-based publish/subscribe systems. We first formulated the problem

of mobile subscribe real-time reliability estimation problem. We then modeled the subscriber real-

81

time reliability as a function of four parameters : subscriber contact duration, subscriber outage

duration, protocol handoff delay, and event lifetime. We then proposed the algorithm to estimate

subscriber real-time reliability from such four parameters. Furthermore, we proposed the analytical

model to estimate subscriber contact/outage duration distributions as a function of broker deploy-

ment and subscriber mobility model. Our analytical model abstracts a wide range of mobility

models, from simple deterministic mobility to complex Semi-Markov mobility. Finally, we proved

the accuracy of our predictive model via simulations.

There are few issues in this work that worth exploring in the future. First, a more accurate

model that accounts for more fine-grained parameters and corner cases can be built on top of the

proposed model. For example, the current model does not consider the region covered by several

overlapping brokers. In such scenario, the current model will treat such region as if it is covered by

one long-range broker. In reality, a subscriber may switch among such overlapping brokers, leading

to unnecessary traffic and synchronization overhead. A more accurate model for such scenario is

left as future work.

Another research direction is how to leverage the proposed prediction model for performance

improvement in mobile publish/subscribe systems. For example, one can use the proposed model

to adjust broker location, broker transmission range, or broker capability in order to maximize

subscriber reliability. In fact, a few works have started to explore such direction in the context of

generic wireless networks [70, 71]. However, a more accurate optimization based on our proposed

model can be done in the future.

82

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

duration (seconds)

Random waypoint model, 1 AP, contact

5 m/s (anl)
5 m/s (sim)

10 m/s (anl)
10 m/s (sim)
20 m/s (anl)
20 m/s (sim)

(a) 1 AP, Random waypoint (contact)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

duration (seconds)

Random waypoint model, 1 AP, outage

5 m/s (anl)
5 m/s (sim)

10 m/s (anl)
10 m/s (sim)
20 m/s (anl)
20 m/s (sim)

(b) 1 AP, Random waypoint (outage)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

duration (seconds)

Random waypoint model, 5 AP, contact

5 m/s (anl)
5 m/s (sim)

10 m/s (anl)
10 m/s (sim)
20 m/s (anl)
20 m/s (sim)

(c) 5 AP, Random waypoint (contact)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

duration (seconds)

Random waypoint model, 5 AP, outage

5 m/s (anl)
5 m/s (sim)

10 m/s (anl)
10 m/s (sim)
20 m/s (anl)
20 m/s (sim)

(d) 5 AP, Random waypoint (outage)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70

duration (seconds)

Manhattan model, 1 AP, contact

5 m/s (anl)
5 m/s (sim)

20 m/s (anl)
20 m/s (sim)
60 m/s (anl)
60 m/s (sim)

(e) 1 AP, Manhattan (contact)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400

duration (seconds)

Manhattan model, 1 AP, outage

5 m/s (anl)
5 m/s (sim)

20 m/s (anl)
20 m/s (sim)
60 m/s (anl)
60 m/s (sim)

(f) 1 AP, Manhattan (outage)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70

duration (seconds)

Manhattan model, 5 AP, contact

5 m/s (anl)
5 m/s (sim)

20 m/s (anl)
20 m/s (sim)
60 m/s (anl)
60 m/s (sim)

(g) 5 AP, Manhattan (contact)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160

duration (seconds)

Manhattan model, 5 AP, outage

5 m/s (anl)
5 m/s (sim)

20 m/s (anl)
20 m/s (sim)
60 m/s (anl)
60 m/s (sim)

(h) 5 AP, Manhattan (outage)

Figure 4.10: Effect of different subscriber speed when pause time = 0 s

83

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

duration (seconds)

Random waypoint model, 1 AP, contact

5 s (anl)
5 s (sim)

20 s (anl)
20 s (sim)
60 s (anl)
60 s (sim)

(a) 1 AP, Random waypoint (contact)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

duration (seconds)

Random waypoint model, 1 AP, outage

5 s (anl)
5 s (sim)

20 s (anl)
20 s (sim)
60 s (anl)
60 s (sim)

(b) 1 AP, Random waypoint (outage)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

duration (seconds)

Random waypoint model, 5 AP, contact

5 s (anl)
5 s (sim)

20 s (anl)
20 s (sim)
60 s (anl)
60 s (sim)

(c) 5 AP, Random waypoint (contact)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

duration (seconds)

Random waypoint model, 5 AP, outage

5 s (anl)
5 s (sim)

20 s (anl)
20 s (sim)
60 s (anl)
60 s (sim)

(d) 5 AP, Random waypoint (outage)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

duration (seconds)

Manhattan model, 1 AP, contact

5 s (anl)
5 s (sim)

20 s (anl)
20 s (sim)
60 s (anl)
60 s (sim)

(e) 1 AP, Manhattan (contact)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

duration (seconds)

Manhattan model, 1 AP, outage

5 s (anl)
5 s (sim)

20 s (anl)
20 s (sim)
60 s (anl)
60 s (sim)

(f) 1 AP, Manhattan (outage)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

duration (seconds)

Manhattan model, 5 AP, contact

5 s (anl)
5 s (sim)

20 s (anl)
20 s (sim)
60 s (anl)
60 s (sim)

(g) 5 AP, Manhattan (contact)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

duration (seconds)

Manhattan model, 5 AP, outage

5 s (anl)
5 s (sim)

20 s (anl)
20 s (sim)
60 s (anl)
60 s (sim)

(h) 5 AP, Manhattan (outage)

Figure 4.11: Effect of different subscriber pause time with 10 m/s speed

84

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

re
l

node speed (m/s)

Random Waypoint, 0s pause time, 60s Lifetime, 1s Hmax

1 broker (anl)
1 broker (sim)

1 broker+buffer (anl)
1 broker+buffer (sim)

5 broker (anl)
5 broker (sim)

5 broker+buffer (anl)
5 broker+buffer (sim)

(a) Random waypoint model

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

re
l

node speed (m/s)

Manhattan, 0s pause time, 60s Lifetime, 1s Hmax

1 broker (anl)
1 broker (sim)

1 broker+buffer (anl)
1 broker+buffer (sim)

5 broker (anl)
5 broker (sim)

5 broker+buffer (anl)
5 broker+buffer (sim)

(b) Manhattan model

Figure 4.12: Average subscriber real-time reliability with 0s pause time, 60s event lifetime, 1s
handoff latency

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

re
l

pause time (s)

Random Waypoint, 10m/s speed, 60s Lifetime, 1s Hmax

1 broker (anl)
1 broker (sim)

1 broker+buffer (anl)
1 broker+buffer (sim)

5 broker (anl)
5 broker (sim)

5 broker+buffer (anl)
5 broker+buffer (sim)

(a) Random waypoint model

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

re
l

pause time (s)

Manhattan, 10m/s speed, 60s Lifetime, 1s Hmax

1 broker (anl)
1 broker (sim)

1 broker+buffer (anl)
1 broker+buffer (sim)

5 broker (anl)
5 broker (sim)

5 broker+buffer (anl)
5 broker+buffer (sim)

(b) Manhattan model

Figure 4.13: Average subscriber real-time reliability with 10m/s speed, 60s event lifetime, 1s
handoff latency

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100

re
l

event lifetime (s)

Random Waypoint, 10m/s speed, 0s pause time, 1s Hmax

rwp, 1 broker+buffer (anl)
rwp, 1 broker+buffer (sim)
rwp, 5 broker+buffer (anl)
rwp, 5 broker+buffer (sim)
man, 1 broker+buffer (anl)
man, 1 broker+buffer (sim)
man, 5 broker+buffer (anl)
man, 5 broker+buffer (sim)

Figure 4.14: Average subscriber real-time reliability with 10m/s speed, 0s pause time, 1s handoff
latency

85

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

re
l

node speed (m/s)

5 brokers, Random Waypoint, 0s pause time, 60s Lifetime

0.1s Hmax (anl)
10s Hmax (anl)

0.1s Hmax + buffer (anl)
10s Hmax + buffer (anl)

(a) Random waypoint model

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

re
l

node speed (m/s)

5 brokers, Manhattan, 0s pause time, 60s Lifetime

0.1s Hmax (anl)
10s Hmax (anl)

0.1s Hmax + buffer (anl)
10s Hmax + buffer (anl)

(b) Manhattan model

Figure 4.15: Average subscriber real-time reliability with 5 brokers, 0s pause time, 60s event
lifetime

86

CHAPTER 5

RELIABILITY AND TIMELINESS ANALYSIS WITH

OVERLAY DYNAMISM

5.1 Introduction

So far in previous chapter, we have proposed the analytical model to analyze subscribe reliability

in content-based publish/subscribe systems with the assumption of no failures inside the over-

lay broker. Such assumption, however, does not reflect the real-world system where server and

network failures are possible, though probably not frequent. While high-end commercial servers

with high maintenance generally achieve at least 99.9% availability (i.e., available 99.9% of the

time)[72], most standard, off-the-shelf commodity servers with low to moderate maintenance may

have less than 90% availability[73]. A distributed system that consist of multiple servers con-

nected via best-effort communication links could have lower service availability than its single

server component[74]. To cope with such issue in the context of publish/subscribe systems, sev-

eral fault-tolerance/fault-recovery techniques have been proposed to increase service availability in

distributed publish/subscribe systems[75, 76]. However, to the best of our knowledge, the effect of

such availability-enhancement techniques to a publish/subscribe system’s availability, specifically

in real-time aspect, has not been analyzed yet.

This thesis chapter quantitatively analyzes the effect of failures and recovery techniques to real-

time content-based publish/subscribe systems. Specifically, it proposes an analytical model that

captures component failures and various recovery techniques. The primary goal of such analytical

model is to estimate each subscriber’s real-time reliability, which was generally defined in Section

2.4. The analytical model covers common component failures and recovery mechanisms, resulting

in the model’s high applicability. The analysis’s key concept is to estimate pairwise reliability

for each publisher-subscriber pair and then use such pairwise reliability to calculate each sub-

scriber’s real-time reliability. The calculation of publisher-subscriber pairwise reliability, however,

depends on fault-tolerance/fault-recovery mechanisms that are used by the system. This chap-

87

ter also presents the calculation of such pairwise reliability for each fault-tolerance/fault-recovery

mechanism. Evaluation results via simulations yield accuracy and effectiveness of the proposed

analytical model.

The organization of this chapter is as follows. We first give the overview of potential failures in

the broker overlay in Section 5.2 and the overview of various fault tolerance/recovery mechanisms

in Section 5.3. In Section 5.4, we then formulate the problem of subscriber real-time reliability

estimation with unreliable broker networks and propose a generic, protocol-independent analyt-

ical framework to solve such problem. In Section 5.5, we propose a set of protocol-dependent,

publisher-subscriber pairwise reliability estimation models for each fault tolerance/recovery mech-

anism. Section 5.6 presents a simpole optimization called home broker selection on top of the

proposed analytical model. Section 5.7 then presents the evaluation results to validate the pro-

posed analytical model via simulations. Section 5.8 presents related work in fault tolerance/recovery

mechanisms in publish/subscribe systems and their analysis. Finally, Section 5.9 discusses future

directions of overlay analysis in publish/subscribe systems.

5.2 Overlay Dynamism

This section describes different types of failure that potentially occur in a broker overlay network.

There are two types of failure that are considered in the proposed analytical model, which are

broker failure, link failure.

5.2.1 Broker Failure

A broker’s failure can be either hardware failure (e.g., motherboard, power supply, network card) or

software failure (e.g., operating system, device driver). However, we assume crash-recovery failure

model, where each broker is assumed to be either on or off. We assume that a broker could crash

at any time. When a broker crashes, it stops its activity and loses all of its soft-state routing

information, including subscription routing table and event in the queue. However, we assume

that the information about its neighboring broker is still maintained in non-volatile storage. Such

assumption is valid for our target scenarios, where broker set and its neighboring relationship are

static. We do not assume byzantine failure such as misconfiguration or security breach.

88

5.2.2 Link Failure

We also assume an overlay link that follows crash-recovery failure model. Thus, a link’s status can

be either on or off. A link in off state drops any event that is sent to it. When a link is on, however,

it delivers each packet successfully. If an event is successfully transmitted, the transmission delay

is bounded by some constant (i.e., within several seconds). Several results have shown that almost

of the time, the overlay link exhibits such bimodal behavior (i.e., a packet is either dropped, or

transmitted within seconds)[77, 78]. The studies also have shown that overlay link failures tend to

have small period (e.g., a few minutes).

Both broker failure and link failure can cause three possible application-level failures : event

loss, subscription loss, and unsubscription loss. Event loss is the loss of a single event while

being transmitted from a publisher to a subscriber via the broker overlay network. Subscription

loss is either the loss of a subscription message from a subscriber, or the loss of subscription

routing information at any broker due to that broker’s failure. Unsubscription loss is the lost of

unsubscription message from a subscriber, resulting in stale routing information in broker networks

that amount to unnecessary traffic load. In general, subscription loss has more impact on the

subscriber reliability, as the loss of a subscriber’s subscription may prevent any subsequent events

from reaching that subscriber.

In the next section, we will describe several existing reliability-enhancement mechanisms to

prevent event/subscription/unsubscription loss under broker failure and link failure.

5.3 Fault Tolerance/Recovery Mechanisms

This section presents several fault tolerance/recovery schemes existing in the literature for pub-

lish/subscribe systems[75, 27, 58, 79, 80]. Instead of discussing each individual works, we summarize

all the works, and discuss techniques and concepts commonly used by such works. Many of these

techniques are not limited to publish/subscribe systems, but are also applicable to generic dis-

tributed systems. However, this thesis focus on the impact of such techniques in the context of

publish/subscribe systems.

89

5.3.1 Periodic Subscription

Periodic subscription is one form of soft-state maintenance, which one basic mechanism to ensure

safety and liveness of generic distributed systems[81]. In periodic subscription scheme, each sub-

scriber periodically re-issues its subscription message to its home broker, which then propagates

the subscription to other brokers in the network. Each broker also maintains a timestamp for each

subscription entry in its routing table. The timestamp is refreshed every time the broker receives

the corresponding subscription. The broker discards any subscription from its routing table if the

subscription is not refreshed within a period of time (i.e., timeout). More details about periodic

subscription can be found by several previous works[27, 46].

The periodic subscription scheme addresses the problem of unsubscription loss by eliminating

the need of unsubscription message, since a subscriber can unsubscribe by just stop sending the

periodic subscription. It also limits the effect of subscription loss by periodically refreshing the

subscription message, which guarantees eventual subscription delivery when the system recovers.

However, it does not address the problem of event loss, as any events generated during tree partition

will be lost.

5.3.2 Event Buffering/Retransmission

Reliable retransmission and acknowledgement are also basic link-level and application techniques in

conventional point-to-point communication[82]. These techniques, when modified, can be done to

improve system reliability in publish/subscribe systems as well[75, 79]. The reliable communication

makes use of the event acknowledgment message (ACK) as follows. When a broker receives an event

from one of its immediate neighbors, it performs the event matching and calculates the event’s

forwarding set (i.e., the set of immediate neighbors to forward the event to). The broker then stores

the event and its forwarding set into the broker’s non-volatile storage and sends the acknowledgment

message (ACK) containing the event sequence number back to its upstream neighbor. The broker

then forwards the event to the event’s forwarding set. The broker then waits for the ACK message

from each next-hop neighbor in the event’s forwarding set. The broker discards the event from

its non-volatile storage once it collects all the ACK messages from all brokers in the forward set,

as now it is certain that the event has been received by all of the next-hop brokers. If, due to

failures, the broker does not receive ACK messages from some next-hop neighbors, it retransmits

the event to each of such neighbors until all ACK messages are collected or the buffered event

90

becomes expired. Figure 5.1 illustrates an example of event buffering/retransmission scheme.

(a) Pub/sub tree topology (b) Publisher publishes an event

(c) Local broker stores and forwards
event

(d) Broker receives ACK and discards
event

Figure 5.1: Example of event buffering/retransmission scheme

The event buffering/retransmission guarantees eventual event delivery to all designated receivers,

given that the per-topic broker tree does not change over time. However, the event may expire dur-

ing the buffering period. Note that this mechanism does not prevent event duplication due to the

loss of ACK messages. To prevent event duplication, each downstream broker has to permanently

maintain the sequence numbers of all events received so far in its persistent storage. However, this

needs to be done only at the last-hop broker. The buffering/retransmission scheme can also guar-

antee eventual subscription/unsubscription delivery by treating each subscription/unsubscription

message as a normal event to be delivered to all brokers.

5.3.3 Redundant Path Bypassing

According to our broker network model presented in Section 2.1, it is possible that there is more than

one path between any two brokers in the overlay graph. In such case, if a per-topic publish/subscribe

tree is disconnected due to broker/link failures, it is then possible for the remaining brokers to re-

construct a new per-topic publish/subscribe tree that excludes the failed brokers/links to maintain

the service operation[27, 79, 80].

The detail of the automatic tree construction/repair is as follows. The system employs link-state

91

protocol among routers[77]. Each broker in the overlay network runs a failure detector protocol

for each of its neighbors (e.g., via periodic heartbeat messages). Whenever a broker detects a

change of its neighbor’s state (e.g., neighbor fails, neighbor recovers), it broadcasts the update

message containing its local view to all other reachable brokers. With this mechanism, each broker

can maintain a global, up-to-date view of the entire broker network1. With the up-to-date global

view of the network, each broker can identify the set of immediately reachable children of a failed

broker along the tree. The immediately reachable children of a broker b is the set of b’s next-hop

brokers that are available and reachable. For example in Figure 5.2(c), the immediately reachable

children set of failed broker b2 are b3 and b4. Hence, using the link-state routing protocol, the

broker forwards events to all of the brokers in the failed broker’s immediately reachable children

set by using point-to-point routing protocol (i.e., bypass routing). The same approach applies to

subscription forwarding as well. That is, any subscription that is supposed to be sent to a failed

broker will be routed to all brokers in the failed broker’s immediately reachable children set instead.

Figure 5.2 shows an example of the path bypassing scheme.

(a) Pub/sub tree topology (b) Broker b2 fails

(c) Broker b1 forwards event to b2’s im-
mediately reable children (b3 and b4)

(d) b3 and b4 forward event as if it was
sent from b2

Figure 5.2: Example of path bypassing scheme

With path bypassing mechanism, any pair of brokers is guaranteed to be connected as long as the

overlay graph is not partitioned. This mechanism can augment the periodic subscription mechanism

1In case of network partition, each broker in a partition will maintain the global view of its partition.

92

to ensure eventual subscription delivery. The performance analysis of the path bypassing scheme

will be given in Section 5.5.4.

Depending on the reliability protocols used, the subscriber reliability will be calculated differ-

ently. However, the reliability calculation will be based on the same algorithmic framework. The

next section will be a formal definition of subscriber real-time reliability estimation problem with

unreliable broker networks.

5.4 Subscriber Real-time Reliability with Unreliable Broker Networks

5.4.1 Formulation

Crash-recovery failure model : As mentioned, we assume each component (broker or link) to

be either on or off over time. A component that is off fails silently and drops any incoming packet.

A failed broker will lose all of its routing state information except the data stored in its non-volatile

(persistent) storage.

Independent broker/link failure : We assume each broker and link failure to be independent

from each other. Several results have shown that such assumption holds in wide-area distributed

systems where each broker is not physically co-located[78]. However, different overlay-level links

may share some underlying physical-level links, which invalidates the independent assumption[83].

We solve such issue by assuming that the broker overlay graph has been carefully designed to avoid

dependency among links by picking only independent links to be in the part of the overlay[75].

Exponentially distributed failure/recovery time : Currently, we assume that each compo-

nent’s time between failures and time to recovery (i.e, times spending in each on and off state) are

exponentially distributed. Previous studies have shown that the assumption of exponential time

between failures is true in many distributed systems[84, 73]. While the same set of studies have

shown that the exponential distribution assumption does not generally hold for time to repair,

we assume it holds in our scenarios for the sake of analysis feasibility. Performance analysis of

publish/subscribe systems with non-exponential repair time will be left as future direction of this

thesis.

Negligible event queuing/processing/transmission delay : Based on several traces[84, 77,

78], the uptime and downtime durations tend to have the scale of minutes, if not hours or days.

Hence, the event transmission, queuing, or processing delay of a normal broker, which have the

93

scale of milliseconds or a few seconds, can be negligible in our analysis. However, as stated in

Chapter 3, an overloaded broker can have unbounded queuing delay. We avoid such case in this

chapter by assuming some admission control such as the one presented in Section 3.3 to prevent

broker overload.

With the assumptions mentioned above, we revise the broker model and link model previously

described in Section 2.2 as follows.

5.4.1.1 Broker Model

We assume each broker b ∈ B is defined as a tuple

(idb, γb, σb)

where γb and σb are exponentially distributed failure rate and repair rate respectively. That is, the

broker b has exponentially distributed time between failures and time to repair with mean 1
γb

and

1
σb

respectively. Hence, we define broker b’s availability, denoted by ab, as the average fraction of

time the broker b is on. Hence, b’s availability ab can be calculated as

ab =

1
γb

1
γb

+ 1
σb

5.4.1.2 Link Model

Similar to the revised broker model, a link l ∈ L will have exponentially distributed time between

failure and time to repair with rate γl and σl respectively. Link l’s availability value al is also

calculated as

al =

1
γl

1
γl
+ 1

σl

Without loss of generality, we assume that the local link connected between publish/subscriber to

its local broker does not fail in order to reflect the fact that intra-domain links have high availability.

Our scheme can be simply modified for non-reliable local link scenarios as well.

With the revised broker and link model, we formulate the subscriber real-time reliability estima-

tion as follows.

Subscriber Real-time Reliability Estimation Problem with Unreliable Broker Network: Given an

94

unreliable publish/subscribe overlay network G = (N,L) where N = B ∪ P ∪ S, find the estimated

value of rs, denoted by r′s, for each mobile subscriber s ∈ S.

5.4.2 Analytical Framework

The subscriber real-time reliability estimation problem in unreliable broker network can be generally

broken down into two sub-problems, which are estimating publisher-subscriber pairwise reliability

and estimating publisher-subscriber pairwise flow rate.

Symbol Definition
γx Component (broker or link) x’s failure rate
σx Component (broker or link) x’s repair rate
ax Component (broker or link) x’s availability
λps Average pairwise traffic flow rate between publisher p and subscriber s

δps The path connecting publisher p and subscriber s

|δps| The length of path δps
dps Total end-to-end delay (including failure) between publisher p and subscriber s

D The lifetime of all events (constant)
db Event delay at broker b (distribution)

d+
b

Conditional event delay at broker b (distribution)

Q̇ Transition rate matrix between two successive brokers

δ
(i)
ps The ith disjoint paths between p’s local broker and s’s local broker

PRx Component x’s period (mean failure-repair cycle)
MTBFx Component x’s mean time between failures
MTTRx Component x’s mean time to repair

Table 5.1: Overlay dynamism analysis variables’ notation

5.4.2.1 Publisher-Subscriber Pairwise Reliability

The publisher-subscriber pairwise reliability is the probability that a publisher’s event of a sub-

scriber’s interest will be delivered to that subscriber before its expiration time. We use the notation

r′ps ∈ [0, 1] to denote the pairwise reliability between publisher p ∈ P and subscriber s ∈ S. As

mentioned, the pairwise reliability depends on the reliability protocol used in the publish/subscribe

system. Section 5.5 will present the calculation or pairwise reliability for each reliability protocol

discussed in Section 5.3.

5.4.2.2 Publisher-Subscriber Pairwise Flow Rate

The publisher-subscriber pairwise flow rate is the average event traffic flow rate from a publisher

to a subscriber when no failure occurs. The publisher-subscriber pairwise flow rate between a

95

publisher p ∈ P and a subscriber s ∈ S can be calculated using Equation (3.13) described in

Section 3.2.2.4.

5.4.3 Generic Estimation Algorithm

Subscriber s’s real-time reliability rs is the probability that s will receive an event of its interest

successfully before the event’s deadline. Hence, the estimated value of rs, denoted by rs can be cal-

culated as the weighted average of publisher-subscriber pairwise reliability between each publisher

to that subscriber, with the weight equal to the pairwise event flow rate from the corresponding

publisher to that subscriber. That is,

r′s =
E[rate of events delivered on time to s]

E[total rate of events of s’s interest]

=

∑

p∈P r
′
ps.λps

∑

p∈P λps
(5.1)

5.5 Publisher-Subscriber Pairwise Reliability Estimation

This section proposes an analytical model to calculate publisher-subscriber pairwise reliability for

each different fault tolerance/recovery protocols presented in Section 5.3.

5.5.1 Static Tree

Without any reliable mechanism, the subscription information stored at each broker about the

subscriber will be eventually lost when that broker fails. If a subscriber does not have reliable

subscription or periodic subscription mechanisms, its subscription along the routing path will be

eventually lost, preventing any subsequently published event to be delivered to the subscriber.

Hence, the steady-state pairwise reliability for bare-bone publish/subscribe will be zero (i.e., r′ps =

0).

5.5.2 Static Tree + Periodic Subscription

With the use of periodic subscription (i.e., Section 5.3.1), the system is guaranteed to eventually

recover its routing information to the correct state once the system recovers from its failure. How-

96

ever, without the path bypassing scheme, the per-topic broker tree is fixed. Hence, If brokers fail,

the tree is partitioned until all the failed brokers are successfully repaired. During the time the

tree is partitioned, a subscriber s will only receives the messages from the publishers in the same

partition. All events published at other partitions will be considered lost to that subscriber s.

To analyze the pairwise reliability of each publisher-subscriber pair in static broker tree, We use

the concept of path. Let δps denote the path connecting a publisher p to a subscriber s. We define

path length, denoted by |δps|, as the number of brokers in the path. Hence, a path δps can be

expressed as the sequence (p, l0, b0, l1, b1, ..., l|δps |−1, b|δps|−1, l|δps|, s). Figure 5.3 shows an example

of a path of length 3.

Figure 5.3: Example of a publisher-subscriber path with length 3

Since we consider the static, per-topic broker tree, there is only one unique path δps used be-

tween each publisher-subscriber pair (p, s). Such path δps can be identified from the overlay graph

G = (N,L) and subscriber’s topic τs. If the path δps is disconnected2, any subsequent packets

transmitted over that path will be lost until the path is connected again. As we consider static

broker tree, there is no recovery mechanism to choose a new path. Assuming an event’s arrival time

is independent from the system state, we can calculate r′ps for static tree with periodic subscription

mechanism as the fraction of time that the path is connected as follows.

r′ps = P[path δps is connected]

= ab0Π
|δps|−1
i=1 ali .abi (5.2)

where ax is the availability of component (broker or link) x.

The overhead of the static tree and periodic subscription scheme depends on the frequency of

the subscription renewal at each subscriber. Increasing subscription renewal frequency results in

quicker system convergence but also incurs higher overhead. In our scenarios, component failure

2Without loss of generality, we assume that the first link (i.e., publisher-broker local link l0) and the last link (i.e.,
broker-subscriber local link l|δps |) do not fail.

97

periods are in the scale of several minutes to a few hours. Hence, we set the subscription renewal

period to be in the scale of several seconds to one minute, which renders its effect to the protocol

performance negligible. The problem of finding the optimal subscription renewal frequency has

been investigated by several existing works[27, 46] and is beyond the scope of this thesis.

5.5.3 Static Tree + Event Buffering/Retransmission

With the reliable acknowledgment protocol (i.e., Section 5.3.2) in static per-topic tree, an event

of a subscriber s’s interest that is published by a publisher p will be eventually delivered to s,

given that p’s local broker is available when p publishes the event (since we assume that p does

not have retransmission capability). This is because the event will always be buffered at some

broker along the path between p and s, even when the path is disconnected3. The event will then

be forwarded when the next-hop broker and link are available, and eventually delivered to the

subscriber. However, the delay the event spends in the buffer may be longer than its lifetime,

which results in late delivery.

To analyze the pairwise reliability r′ps between a publisher p and a subscriber s under static tree

with event buffering scheme, consider the single, unique path δps connecting p and s. Assuming

the event arrival time to be independent from the path δps’s state, we estimate the path real-time

reliability as follows.

r′ps = P[an event from p arrives at s before the deadline]

= P[p’s local broker is on].P[end-to-end delay less than event lifetime]

= ab0 .P[dps < de] (5.3)

where dps is the end-to-end delivery delay and de is the event lifetime. Without loss of generality,

we assume that de is a globally defined constant D for all events. Thus, it is necessary to calculate

the end-to-end delivery delay dps first in order to estimate path reliability r′ps.

Under the static per-topic broker tree with event buffering scheme, the path end-to-end delivery

delay dps of a path δps can be broken down into link delay (i.e., the time to transmit an event

over each link), broker queuing/processing delay (i.e., the time the event is queued and processed

3In the analysis, we assume each broker to have unbounded buffer such that it can always store any incoming
event.

98

at each broker), and buffering delay (i.e., the time the event is stored at the broker due to next

hop’s failure). Link delay and broker queuing/processing delay usually range from milliseconds to

a few seconds while buffering delay usually has the scale in minutes (since the broker downtime

is in the scale of minutes). Hence, we assume link delay and broker queuing/processing delay are

negligible and focus on the buffering delay. To calculate the distribution of dps for path δps, we

need to calculate the buffering delay at each broker bi(0 ≤ i < |δps|) in the path. Consider when

the event is received successfully at broker bi and hence broker bi will try to retransmit the event to

broker bi+1. If both link li+1 and broker bi+1 are up at the moment, the event will be transmitted

successfully to broker bi+1 immediately, thus incurring zero buffering delay at broker bi. However,

if either link li+1 or broker bi+1 is down at the moment, the event will be buffered at the broker bi,

which will keep retransmitting the event until the event gets through to broker bi+1. The broker bi

discards the event if the event expires. Note that the event will get through only when all bi, li+1,

and bi+1 are up at the same time.

Let dbi be the buffering delay at each broker bi(0 ≤ i < |δps|). We first calculate the probability

that dbi = 0 (i.e., the probability that the event is successfully delivered to bi+1 immediately),

which can be calculated as

P[dbi = 0] = P[bi, li+1, bi+1 are available|bi is available]

= P[li+1, bi+1 are available]

= ali+1
.abi+1

(5.4)

Given that delay is always non-negative, we have

P[dbi > 0] = 1− P[dbi = 0]

= 1− ali+1
.abi+1

(5.5)

Now, in the case that the buffering delay at each broker bi is not zero (with probability 1 −

ali+1
.abi+1

), we need to find the delay distribution in such case. Let d+bi be the conditional buffering

delay at broker bi under the condition that dbi > 0. Assuming the event arrives at arbitrary time

at broker bi, the conditional buffering delay d+bi is equal to the time it takes for the next-hop path

99

to be repaired (i.e., time until li+1 and bi+1 are both in on state). Assuming each component’s

time between failure and time to repair to be exponentially distributed, we can calculate such delay

distribution by using continuous-time Markov process diagram that represents the state of broker

bi, link li+1, and bi+1. The diagram is shown in Figure 5.4. Each of 8 states depicts each possible

state of sub-path (bi,li+1,bi+1), with each bit representing each individual component’s state (0 =

off, 1 = on). The first bit (least significant bit) represents bi’s state. The second bit represents

li+1’s state. The third bit (most significant bit) represent bi+1’s state. For example, state “011”

represents the state where broker bi is on, link li+1 is on, and broker bi+1 is off. Note that in the

scenario where an event arrives at broker bi and needs to be buffered at bi, an event will find the

system state in either state “001”, “011“, or “101” with probability
(1−ali+1

)(1−abi+1
)

1−ali+1
.abi+1

,
ali+1

(1−abi+1
)

1−ali+1
.abi+1

,

and
(1−ali+1

)abi+1

1−ali+1
.abi+1

respectively. The event will continue to be buffered at broker bi (note that bi

can also fail but the event is kept in its non-volatile storage) until the state becomes “111”, which

the event will be transmitted to broker bi+1 successfully. Hence, the diagram depicts the absorbing

Markov process with three start states = “001”, “011“, “101” and one absorbing state “111”with

the corresponding transition rate matrix Q̇ as

Q̇ =











































−q̇0 σbi σli+1
0 σbi+1

0 0 0

γbi −q̇1 0 σli+1
0 σbi+1

0 0

γli+1
0 −q̇2 σbi 0 0 σbi+1

0

0 γli+1
γbi −q̇3 0 0 0 σbi+1

γbi+1
0 0 0 −q̇4 σbi σli+1

0

0 γbi+1
0 0 γbi −q̇5 0 σli+1

0 0 γbi+1
0 γli+1

0 −q̇6 σbi

0 0 0 0 0 0 0 0











































(5.6)

where γx and σx are component x’s exponential failure rate and exponential repair rate described

in Section 5.4.1, and q̇i is state i’s total outgoing rate. For example, q̇0 = (σbi + σli + σbi+1
). Thus,

the conditional buffering delay at broker bi is equal to the time to absorption of the absorbing matrix

Q̇, which is a phase-type distribution[85] and can be calculated by breaking down the matrix Q̇ in

to the form of

100

Figure 5.4: 8-state continuous, absorbing Markov process diagram for per-hop buffering delay
analysis

101

Q̇ =





Ṡ Ṡ
0

0 0



 (5.7)

Where Ṡ and Ṡ
0
are the 7x7 top-left sub-matrix and the 7x1 top-right sub-vector of Q̇ defined

in Equation (5.6) respectively. Hence, the cumulative distribution of d+bi can be calculated as

P[d+bi < t] = 1− α.exp(Ṡt)1 (5.8)

where exp(Ṡ) is the matrix exponential[86] of Ṡ, α is the 1x7 starting state vector

α =

(

0
(1−ali+1

)(1−abi+1
)

1−ali+1
.abi+1

0
ali+1

(1−abi+1
)

1−ali+1
.abi+1

0
(1−ali+1

)abi+1

1−ali+1
.abi+1

0

)

and 1 is an 7x1 vector with every element being 1.

Thus, with Equation (5.8), we can calculate the distribution of conditional buffering delay d+bi at

broker bi. Hence, we can estimate the buffering delay dbi at broker bi as

dbi =







d+bi with probability 1− ali+1
.abi+1

0 with probability ali+1
.abi+1

(5.9)

Once we calculate per-hop buffering delay dbi with Equation (5.9), we then can calculate the

end-to-end buffering delay dps for path δps = (p, l0, b0, l1, b1, ..., l|δps |−1, b|δps|−1, l|δps|, s) as

dps =

|δps|−1
∑

i=0

dbi (5.10)

Hence, Equation (5.10) completes the calculation of pairwise reliability for static per-topic tree

with event buffering scheme in Equation (5.3).

The overhead of the static tree with event buffering/retransmission comes in the forms of buffer

overhead at each broker, and retransmission traffic. To calculate the maximum buffer size at a

broker b, denoted by BSb, we need to first calculate the maximum buffer size that broker b requires

102

to store the events to be forwarded to its neighbor b′. Let BSbb′ denote such per-neighbor buffer.

BSbb′ can be calculated as

BSbb′ = λbb′ .min(d+bb′ , de)

where λbb′ is the traffic rate from broker b to b′ and can be calculated by techniques in Chapter

3 (i.e., Section 3.2.2.2), d+bb′ is the conditional buffering delay calculated from Equation (5.8), and

de is the event lifetime. Once the per-neighbor buffer overhead is calculated, we can calculate the

total maximum buffer overhead at broker b as

BSb =
∑

b′:(b,b′)∈L

BSbb′

The retransmission overhead can be calculated per event. For each event transmitted along

the path δps, the number of retransmission is equal to
min(dps,de)

∆T
where ∆T is the retransmission

period4.

5.5.4 Path Bypassing + Periodic Subscription

With the path bypassing scheme discussed in Section 5.3.3, a new path will be generated between

p and s if the old path fails. Hence, an event of a subscriber s’s interest that is published by a

publisher p will be delivered to s as long as the entire overlay graph G is not disconnected between

p and s. Thus, pairwise reliability r′ps is then the graph G’s connection probability between p and s.

However, the calculation of such connection probability for any generic overlay graph is considered

to be a #P-complete problem[87], which has higher complexity that a NP-complete problem.

Due to such computational complexity, we propose an algorithm to approximate the lower bound

of graph G’s connection probability between any publisher-subscriber pair (p, s) by constructing a

subgraph G
′ ⊆ G that consists only parallel, broker-disjoint paths between p’s local broker and s’s

local broker (for example, see Figure 5.5).

That is, the multi-path subgraph G
′ contains multiple, broker-disjoint path between p’s lo-

4In our simulation, we assume the use of failure detector, which will notify each broker when its failed neighbors
recover. The broker then retransmits pending events once a failed neighbor recovers.

103

(a) Exact broker overlay graph G (b) Subgraph G
′ for r′ps approximation with 4 disjoint

paths

Figure 5.5: Example of reduced subgraph to estimate the lower bound of pairwise reliability r′ps

cal broker and s’s local broker, assuming there are m of such paths in subgraph G
′, namely

δ
(0)
ps , δ

(1)
ps , ..., δ

(m−1)
ps where

δ(i)ps = (p, l
(i)
0 , b

(i)
0 , l

(i)
1 , b

(i)
1 , ..., l

(i)

|δ
(i)
ps |−1

, b
(i)

|δ
(i)
ps |−1

, l
(i)

|δ
(i)
ps |

, s)

Note that b
(i)
0 refers to the same broker for all 0 ≤ i < m, which is publisher p’s local broker.

Likewise, b
(i)

|δ
(i)
ps |−1

refers to the same broker, which is the subscriber s’s local broker as well. Let b0

and b|δps|−1 denote publisher p’s local broker and subscriber s’s local broker respectively. Hence, the

pairwise reliability r′ps between publisher p and subscriber s in dynamic tree scheme is approximated

as

r′ps = P[G is connected between p and s]

≥ P[G′ is connected between p and s]

≥ P[p’s local broker is on].P[s’s local broker is on].P[at least one path is connected]

≥ ab0 .ab|δps|−1
.(1−Πm−1

i=0 (1−
r
(i)
ps

ab0 .ab|δps|−1

)) (5.11)

where r
(i)
ps is the pairwise reliability of each path δ

(i)
ps in subgraph G

′, which can be calculated by

Equation (5.2).

The overhead of the path bypassing scheme depends on the overhead of the failure detector and

link-state protocol that updates system topology view at each broker. The overhead of the failure

104

detector comes in the form of periodic heartbeat message among neighbors. Hence, the failure

detector control message rate is equal to 2.|L|
∆f

, where ∆f is the failure detector heartbeat message

retransmission interval. The overhead of the link-state protocol occurs in the form of view update

packets that are generated from each broker to all other brokers whenever a network topology

change is detected. For every change in the network topology view, the link-state protocol incurrs

|B|2 view update packets to the system. Hence, the total view update packet generation rate is

equal to

|B|2.(
∑

b∈B

(γb + σb) +
∑

l∈L

(γl + σl))

5.5.5 Path Bypassing + Event Buffering

The path bypassing scheme guarantees that an event from a publisher will be delivered to a sub-

scriber as long as there is at least one path between them. However, it cannot handle network

partitions. In such case, we can combine the path bypassing scheme with the event buffering

scheme to ensure that an event will be bufferred during network partition and delivered eventually

after the partition is repaired. The detail of the scheme is as follows. Each broker uses the event

acknowledgement/buffering scheme as mentioned in Section 5.5.3. When a broker b1 detects its

neighbor b2’s failure, it uses the bypass routing without acknowledgement to forward the event to

the failed broker b2’s immediately reachable children. The broker b1 also keeps the event in its buffer

and keeps retransmitting the event to the failed broker b2 until b2 recovers, receives the event, and

sends the acknowledgement back to b1. b1 then discards the event. This scheme combines eventual

delivery guarantee of the retransmission scheme with timeliness delivery of the path bypassing

scheme. That is, an event is guaranteed to progress along the per-topic dissemination tree while

all the currently reachable subscribers will receive the event immediately without buffering delay.

The drawback of this approach is the additional overhead and potential event duplication at the

subscribers. Event duplication, however, can be filtered out at the last-hop broker.

We can calculate the publisher-subscriber pairwise reliability for the path bypassing with event

buffering scheme as follows. Let r′Aps be the estimated publisher-subscriber pairwise reliability for

the path bypassing scheme (i.e., Equation (5.11) and dps be the end-to-end buffering delay for the

event buffering scheme (i.e., Equation (5.10)). We can calculate the estimated pairwise reliability

for the combined scheme as

105

r′ps = P[event delivered immediately] + P[partition].P[event delivered on time]

= r′Aps + (1− r′Aps).
P[dps ≤ de]

P[dps > 0]
(5.12)

where de is event lifetime. That is the total reliability is the probability that either the event

can be delivered immediately via automatic tree scheme, or the event suffers network partition but

the buffering delay is still less than the event lifetime.

Note that estimated pairwise reliability r′ps can be either calculated by Equation (5.2), Equation

(5.3), Equation (5.11), or Equation (5.12), depending on the reliable protocol used. Once the

estimated reliability r′ps values of all publisher-subscriber pairs are calculated, they can be used to

calculate the estimated subscriber reliability r′s using Equation (5.1).

5.6 Home Broker Selection Optimization

Based on the overlay dynamism analytical model proposed in Section 5.4, several performance op-

timization/improvement can be achieved, such as broker quality planning, broker overlay planning,

or reliability protocol selection. In this section, we present one simple performance optimiza-

tion/improvement called home broker selection optimization. The subscriber allocation problem is

motivated from the fact that a joining subscriber usually has the freedom to choose its home broker

from a subset of brokers. The subset of brokers which a subscriber can join can be calculated from

various QoS or locality constraints. Hence, a subscriber should choose its home broker such that

the subscriber gets the best reliability.

Based on the proposed model, home broker selection algorithm is straightforward as follows.

Consider a new subscriber s that wants to join a publish/subscribe overlay graph G = (N,L) where

N = P ∪ B ∪ S. Let B(s) ⊆ B be the home broker candidate set that a new subscriber s can

choose. For each broker b ∈ B(s), we construct a new graph G
′ = (N ∪ {s},L ∪ {(b, s)}). That

is, the graph G
′ represents the new overlay when s chooses b as its home broker. Hence, for each

broker b ∈ B(s), we generate the corresponding graph G
′ and calculate the estimated reliability r′s

of subscriber s out of G′. The new subscriber s then chooses to associate with broker b such that

its corresponding graph gives the highest value of r′s.

106

5.7 Evaluation

We evaluate the proposed analytical model via simulations with NS-2 network simulator[50]. All

the event-related and subscription-related simulation parameters are the same with the simulation

from Chapter 3. However, we assume the broker to have unlimited processing capability in this

simulation to hide the effect of event queuing/processing delay and focus on event delay/loss caused

by unreliable broker networks.

5.7.1 Parameter Settings

We investigated several host availability traces and reports, ranging from commercial server log

to distributed testbed log[73, 84, 78, 72]. In most cases, server’s time between failures tends to

range from several days to weeks, while time to repair usually range within hours. Also, high-end

and well-maintained commercial servers usually have availability more than 0.99 while standard,

off-the-shelf server under low-to-moderate maintenance barely have availability a little more than

0.9. Meanwhile, link availability tends to have shorter time between failures and time to repair

when compared to host availability[73].

Motivated by such finding, we describe a component5 from availability perspective by two met-

rics, period and availability. We define the term period of a component as the summation of the

component’s mean time between failure and the components mean time to repair (i.e., mean failure-

repair cycle length) and the term availability as the fraction of time the component is on. Thus,

given a component x’s period PRx and availability ax, we can calculate x’s mean time between

failures MTBFx and mean time to repair MTTRx as

MTBFx = ax.PRx

MTTRx = (1− ax).PRx

In the simulation, a component will switch its state between on and off state. A component

5A component means a link or a broker

107

x will be on for the time period which is drawn from the exponential distribution with mean

MTBFx before going to off state. Likewise, the component x will then be off for the time period

drawn from the exponential distribution with mean MTTRx before going to on state again. Thus,

such component x will have exponential failure rate γx = 1
MTBFx

and exponential repair rate

σx = 1
MTTRx

.

We run the simulation with different broker network topologies. We vary the number of brokers

in the system from 3 to 10. Unless specified otherwise, each broker’s default period is 60,000 seconds

(16.67 hours). We vary each component’s availability from 0.9 to 0.999. Based on the previous

work[88], we set each overlay link’s availability set to 0.99 and period to 60,000 seconds. Each

publisher has default publishing interval equal to 1 minute. Each event has default lifetime equal

to 3,600 seconds (1 hours). Each simulation is run for 14 days of simulation time. The evaluation

result of each simulation parameter set is averaged from 10 runs.

5.7.2 Evaluation Results

We implement three different reliability mechanisms described in Section 5.3 and analyzed in Sec-

tion 5.5. The three different mechanisms are static tree with periodic subscription, static tree with

event buffering, and dynamic tree with periodic subscription. We run the simulation with differ-

ent broker overlay graph topologies in order to validate various aspect of our proposed analytical

model.

5.7.2.1 Straight Line Topology

We start to evaluate our model with straight line topology where the overlay graph contains one

publisher and one subscriber connected to each other via a single path of brokers (e.g., Figure 5.3).

In this setting, in order to study the effect of path length, all brokers and links have the same

period and availability value.

We first evaluate the result of event-buffering scheme. Figure 5.6 shows the cumulative distribu-

tion of end-to-end buffering delay for event-buffering scheme (i.e., dps analyzed in Equation (5.10)

of Section 5.5.3) while Figure 5.7 shows the cumulative distribution of end-to-end conditional delay

(i.e, the distribution of dps, given that dps > 0). Notice that our proposed analytical model could

predict the end-to-end buffering delay and conditional buffering delay accurately for any publisher-

subscriber path when event buffering scheme is used. Figure 5.8 shows the average subscriber

108

real-time reliability in straight line topology with different settings. Again, our proposed analytical

model could predict the results accurately.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000

C
D

F

duration (seconds)

End-to-end delay with 60K s period in 5-broker path

av=0.9 (anl)
av=0.9 (sim)

av=0.99 (anl)
av=0.99 (sim)

av=0.999 (anl)
av=0.999 (sim)

(a) 60K s period, 5-broker

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 500 1000 1500 2000 2500 3000 3500

C
D

F

duration (seconds)

End-to-end delay with 0.99 availability in 5-broker path

pr=30K s (anl)
pr=30K s (sim)
pr=60K s (anl)
pr=60K s (sim)

pr=120K s (anl)
pr=120K s (sim)

(b) 0.99 availability, 5-broker

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5000 10000 15000 20000 25000 30000

C
D

F

duration (seconds)

End-to-end delay with 0.9 availability and 60K s period

2-broker (anl)
2-broker (sim)
5-broker (anl)
5-broker (sim)
8-broker (anl)
8-broker (sim)

(c) 0.9 availability, 60K s period

Figure 5.6: End-to-end buffering delay distribution of a single publisher-subscriber path

Periodic subscription VS Event buffering : Figure 5.8(a) and Figure 5.8(c) shows performance

comparison between periodic subscription scheme and event buffering scheme. Note that under the

same setting, event buffering scheme usually achieves higher path reliability when compared to the

periodic subscription scheme. This is not surprising, as the event buffering scheme keeps the event

within the buffer when the path is disconnected while the periodic subscription scheme just drops

the event. Note that the performance gain from the event buffering scheme also depends on the

event lifetime. If each event has very short lifetime, the event buffering scheme would achieve the

same performance to the periodic subscription scheme. On the other hand if each event has very

long lifetime, the event buffering scheme would achieve much higher performance than the periodic

subscription scheme.

109

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

C
D

F

duration (seconds)

End-to-end conditional delay with 60K s period in 5-broker path

av=0.9 (anl)
av=0.9 (sim)

av=0.99 (anl)
av=0.99 (sim)

av=0.999 (anl)
av=0.999 (sim)

(a) 60K s period, 5-broker

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
D

F

duration (seconds)

End-to-end conditional delay with 0.99 availability in 5-broker path

pr=30K s (anl)
pr=30K s (sim)
pr=60K s (anl)
pr=60K s (sim)

pr=120K s (anl)
pr=120K s (sim)

(b) 0.99 availability, 5-broker

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000 25000 30000

C
D

F

duration (seconds)

End-to-end conditional delay with 0.9 availability and 60K s period

2-broker (anl)
2-broker (sim)
5-broker (anl)
5-broker (sim)
8-broker (anl)
8-broker (sim)

(c) 0.9 availability, 60K s period

Figure 5.7: Conditional end-to-end buffering delay distribution of a single publisher-subscriber
path

Effect of path length : As shown in Figure 5.6(c), and Figure 5.8(c), increasing path length

generally results in lower subscriber reliability. This is obvious as adding a broker into the path

will increase the chance that the path will fail. It can be thought as a tradeoff between reliability

and scalability (e.g., to increase the system size to support more clients).

Effect of availability : According to the result shown in Figure 5.8(a), Increasing each compo-

nent’s availability will improve the performance of both periodic subscription scheme and event

buffering scheme. It also decreases the end-to-end buffering time as shown in Figure 5.6(a).

Effect of period length : While the period length does not have the effect of periodic subscription

scheme, it affect the performance of event buffering scheme in static tree scenario. As shown in

Figure 5.6(b) and Figure 5.7(b), decreasing period length will also decrease the event buffering time

in general. This implies that if the two brokers have the same availability level, it is preferable to

select a broker that has shorter period, if the event buffering scheme is used.

110

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

pa
th

 r
el

broker av

Average path reliability with 60k s period in 5-broker path

periodic sub (anl)
periodic sub (sim)
event buffer (anl)
event buffer (sim)

(a) 60K s period, 5-broker

 0

 0.2

 0.4

 0.6

 0.8

 1

 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

pa
th

 r
el

broker period

Average path reliability with 0.9 availability in 5-broker path

event buffer (anl)
event buffer (sim)

(b) 0.9 availability, 5-broker

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1 2 3 4 5 6 7 8 9 10

pa
th

 r
el

path length (#brokers)

Average path reliability with 60k s period and 0.99 availability

periodic sub (anl)
periodic sub (sim)
event buffer (anl)
event buffer (sim)

(c) 0.99 availability, 60K s period

Figure 5.8: Average reliability a single publisher-subscriber path

5.7.2.2 Static Random Tree Topology

To study the performance of static-tree reliability schemes (i.e., static tree with periodic subscrip-

tions, and static tree with event buffering), we generate a random broker tree consisting of 10

brokers, 10 publishers, and 500 subscribers. We randomly assign publishers and subscribers to

each broker. We assume all publishers and subscribers share the same topic, but each subscriber

may subscribe to different content space. Each broker and link has availability value uniformly

distributed within [0.9,0.999] range. We perform 10 runs per each simulation setting. We assume

perfect pairwise flow estimation between each publisher-subscriber pair. We divide all generated

trees into four sets. The first set of trees has each broker availability falling into [0.9,0.95] range and

use periodic subscription scheme. The second set of trees has each broker availability falling into

[0.9,0.95] range and use event buffering scheme. The third set of trees has each broker availability

falling into [0.99,0.999] range and use periodic subscription scheme. The fourth set of trees has each

111

broker availability falling into [0.99,0.999] range and use event buffering scheme. The [0.9,0.95] avail-

ability range represents standard, off-the-shelf servers with low-to-moderate maintenance[73]. The

[0.99,0.999] availability range represents high-end, commercial servers with high maintenance[72].

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.5 0.6 0.7 0.8 0.9 1

A
ct

ua
l r

el

Estimated rel

Average subscriber reliability with 60k s period in 10-broker trees

low-end, periodic sub
low-end, event buffer

high-end, periodic sub
high-end, event buffer

Figure 5.9: Subscriber reliability in static random tree with 10 brokers and 60K s period

As shown in Figure 5.9, there is a clear distinction of reliability value between different groups of

tree configuration. The group with lowest reliability is the low-end servers with periodic subscrip-

tion scheme, followed by the low-end servers with event buffering scheme. Notice that , again, event

buffering scheme could achieve high reliability than the periodic subscription scheme, although the

performance gain effect may be less, compared to the performance gained from the server’s quality.

5.7.2.3 Random Graph Topology

We generate a random graph consisting of 10 brokers, 10 publishers, and 500 subscribers. Pub-

lishers and subscribers are randomly assigned to each broker. Again, we run the simulations with

two broker availability specifications named low-end (0.9 - 0.95 availability) and high-end (0.99

- 0.999 availability). We compare the performance in terms of subscriber reliability among four

publish/subscribe modes discussed in Section 5.4.

Figure 5.10 shows the performance comparison between the four protocols in 10-broker overlay

graph. In the low-end broker configuration, the path bypassing scheme with event buffering has

the best performance, followed by the path bypassing scheme with periodic subscription, the static

tree scheme with event buffering, and the static tree scheme with periodic subscription respectively.

However, in the high-end broker configuration, the static tree scheme with event buffering performs

best and as well as the path bypassing scheme with event buffering. This finding suggests that one

112

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.5 0.6 0.7 0.8 0.9 1

A
ct

ua
l r

el

Estimated rel

Low-end subscriber reliability with 60k s period in 10-broker graph with avg degree 4

periodic sub
event buffer

periodic sub + tunneling
event buffer + tunneling

(a) Low-end brokers

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

A
ct

ua
l r

el

Estimated rel

High-end subscriber reliability with 60k s period in 10-broker graph with avg degree 4

periodic sub
periodic sub + tunneling
event buffer + tunneling

event buffer

(b) High-end brokers

Figure 5.10: Subscriber reliability in 10-broker overlay graph with average degree 4 and 60K s
period

should prefer to use the static tree scheme with event buffering in high-end broker configuration,

as it has lower overhead than the path bypassing scheme with event buffering.

5.7.2.4 Home Broker Selection

Figure 5.11 presents the evaluation result of the home broker selection optimization proposed in

Section 5.6 with 10-broker overlay graph where each broker has availability between 0.9 and 0.95.

Each of the group in the graphs represents each reliability technique used. The broker candidate

set for each subscriber is randomly chosen from the total broker set. We vary the number of broker

candidates for each subscriber from 1 to 8. Each configuration is simulated for five runs before the

average subscriber reliability for that configuration is calculated.

 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

Buffer+TunnelingPeriodic+TunnelingBufferPeriodic

A
ve

ra
ge

 r
el

ia
bi

lit
y

1 choice
2 choices
4 choices
8 choices

(a) Average broker degree = 4

 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

Buffer+TunnelingPeriodic+TunnelingBufferPeriodic

A
ve

ra
ge

 r
el

ia
bi

lit
y

1 choice
2 choices
4 choices
8 choices

(b) Average broker degree = 9

Figure 5.11: Average subscriber reliability with home broker selection scheme in 10-broker overlay
graph

113

From Figure 5.11, we can conclude that the more home broker candidates a subscriber has,

the more average real-time reliability it will get. The performance gain is significant when the

periodic subscription mode or the event buffering mode is used. In contrast, the performance gain

is marginal when the overlay graph has higher degree or when the redundant path scheme is used,

as each broker has high number of connecting paths already.

5.8 Related Work

5.8.1 Reliable Overlay Networks

Improving reliability, timeliness, and other quality of service metrics in wide-area overlay networks

have been a significant topic of researchs for many years[77, 89, 90, 91]. Most approaches in

this category deploys a set of application-level routers, which exchange link information with each

other and construct end-to-end path quality metrics in order to select the best path between any

pair of such routers. However, the approaches in this category are designed for point-to-point

routing and do not specifically address decoupling nature between publishers and subscribers in

publish/subscribe systems.

5.8.2 Reliable Multicast Systems

Reliable multicast has been used as a tool to disseminate information from one source to several

receivers. Over the past few years, several works have proposed reliable multicast schemes on

top of overlay networks[92, 93]. The one-to-many communication nature of multicast makes it

suitable for topic-based publish/subscribe systems where the set of subscribers for each topic can

be identified. In content-based publish/subscribe systems, however, do not have clear notion of

static subscriber group. Hence, content-based publish/subscribe systems cannot directly adopt the

standard multicast techniques to disseminate events.

5.8.3 Reliable Publish/Subscribe Systems

There also have been several reliable mechanisms designed to make the publish/subscribe systems

fault-tolerant under failures[75, 94, 79]. While several works have discussed the proof of correctness

and reliability analysis of the reliable mechanisms[27, 75], they did not provide quantitative analysis

114

in timeliness aspect. This thesis has described several of such techniques in Section 5.3 and also

proposed the quantitative analytical model to quantify the performance gained by such schemes.

There have been a few works that discuss timeliness of event delivery in publish/subscribe systems

under component failures[76, 46]. However, they did not provide analytical model of their proposed

systems. Our work is, to the best of our knowledge, combine the conventional reliability analysis

with timeliness analysis, which is useful for delay-sensitive publish/subscribe applications over

wide-area networks.

5.9 Discussion

In this chapter, we proposed the analytical model to estimate the subscriber real-time reliability

with the focus on overlay determinism. We first described broker failure and link failure model

before discussing several existing reliability-enhancement for content-based publish/subscribe sys-

tems. We then proposed the generic analytical model to estimate subscriber reliability when such

reliability techniques are used. The evaluation via simulation has proved the accuracy of our pre-

dictive model. Our proposed model can then be used as a building block for optimization problems

such as subscriber assignment problem or broker network planning problem.

There are a few possible directions for subscriber reliability analysis over best-effort overlay.

First, we assume the component’s failure time and repair time are exponentially distributed for

analysis feasibility. However, in many cases, the repair time may not be exponentially distributed.

For example, a server’s repair time may follow a bimodal distribution (i.e., a mixture between

short-term reboot and long-term hardware replacement). Such non-Markovian analysis is left as

future work.

Another dimension is to validate the proposed model in a larger testbed. Due to resource

constraint, we could not evaluate the proposed model in a large-scale system or simulation. Such

large-scale validation would be beneficial for further improvement of the proposed analytical model.

115

CHAPTER 6

PUTTING IT ALL TOGETHER

6.1 Introduction

So far in previous chapters, we have proposed several analytical models to estimate a user-oriented

QoS metric called subscriber real-time reliability. In each chapter, we focus on various factors

that affect subscriber real-time reliability, ranging from content dynamism, mobility dynamism, to

overlay dynamism. In order to focus on each type of dynamism, we made several assumptions in

each chapter in order to ignore the effect of other types of dynamism for simplicity of analysis. In

fact, many real-world publish/subscribe applications may be sensitive to only one type of dynamism

while resilient to other types of dynamism. For example, stock market broker networks with high

traffic and complex content filtering may be sensitive to content dynamism but resilient to broker

dynamism (because of server maintenance). Mobility dynamism may greatly affect the performance

of military or first-responder publish/subscribe operations while having slight effect on civilian

publish/subscribe application. Choosing the right analytical model to address the high-impact

dynamism while discarding the complexity of low-impact dynamism will result in accurate and

efficient performance analysis and prediction.

However, there may be also some scenarios where publish/subscribe systems/applications are

moderately affected by several types of dynamism. In such scenarios, it is not sufficient to analyze

the publish/subscribe systems in question by focusing on only one type of dynamism, since that will

lead to prediction inaccuracy. In such case, it is better to use the integrated model that considers

multiple types of dynamism at the same time for the sake of prediction accuracy, but at the cost

of complexity in analysis.

In this chapter, we present an integration framework that combines all analytical models pre-

sented so far into one unified model for subscriber reliability analysis. This chapter also discusses

the scenarios where conflict may arise between each individual model.

116

6.2 Integration Framework

Figure 6.1: End-to-end reliability/timeliness breakdown

As mentioned, in each of previous chapters, we proposed the model to estimate subscriber real-

time reliability with the focus on each type of dynamism while assuming no other types of dy-

namism. On the other hand, the integrated analytical model considers all types of determinism

to determine subscriber’s real-time reliability. To calculate the subscriber real-time reliability for

integrated model, one must consider the definition of subscriber real-time reliability in Section

2.4. That is, there are two necessary conditions for an event to be delivered successfully from a

publisher to a subscriber. The first condition is the event is not lost during its transit (end-to-end

conventional reliability requirement1). The second condition is the event must not be expired when

it arrives at the subscriber (end-to-end delay requirement). Thus, to calculate subscriber real-

time reliability, it is necessary to calculate publisher-subscriber pairwise end-to-end conventional

reliability and delay as shown in Figure 6.1.

From Figure 6.1, we can estimate the integrated subscriber real-time reliability as follows. Let

r̀E2E
ps denote the end-to-end conventional reliability and dE2E

ps denote the end-to-end delay from a

publisher p to a subscriber s. We also assume the pairwise traffic flow rate λps can be estimated from

the publisher’s content profile and the subscriber’s subscription filter. Thus, assuming each event

has constant lifetime D without loss of generality, we can estimate integrated pair-wise real-time

1By conventional reliability, we mean the probability that the event is delivered successfully without any real-time
constraint

117

reliability r
′E2E
ps as

r
′E2E
ps = P[event is not lost].P[event arrives on time]

= r̀E2E
ps .P[dE2E

ps < D] (6.1)

Then we can estimate the integrated subscriber real-time reliability using Equation (5.1).

Note that in order to calculate end-to-end conventional reliability and delivery delay, we use each

analytical model proposed in Chapter 3,4, and 5 to calculate each type of conventional reliability

and delay. Figure 6.2, 6.3, 6.4 present the component diagram of each analytical model, its input,

and its output to be combined into end-to-end metrics for the integrated analytical model.

Figure 6.2: Content dynamism component

Figure 6.3: Mobility dynamism component

118

Figure 6.4: Overlay dynamism component

6.3 Discussion

We intentionally do not describe the exact calculation of the integrated model as the exact calcu-

lation of the integrated model may vary, depending on the exact implementation of the entire pub-

lish/subscribe protocol. However, our proposed integrated framework could be use as a guideline

to construct the exact integrated analytical model. Also, hidden dependency among components

is possible and may complicate the performance analysis of the protocol. Such dependency must

be handled case by case, as it is infeasible to account for every component’s parameter space when

the system grows larger.

119

CHAPTER 7

CONCLUDING REMARKS

7.1 Conclusion

We are living in the world of information, where the amount of information and its producers grow

exponentially day by day. Such phenomenon affects the communication paradigm, changing it from

sender/receiver-based communication to content-based communication. However, content-based

communication lacks of predictability, which prevents its full adoption within large-scale distributed

systems with best-effort networks. Despite the problems with the content-based communication,

time-sensitive content-based publish/subscribe applications have become deployed and started to

pose stringent reliability/timeliness requirements to the content-based middleware layer. Such

conflict is an important challenge to be solved for content-based paradigm to move forward as the

next-generation communication.

This thesis explored the possibility to merge the gap between unreliable, best-effort publish/subscribe

middleware and delay/reliability-sensitive content-based applications. To do so, the thesis pro-

posed an analytical model framework to analyze the performance of distributed, content-based

publish/subscribe systems under several types of uncertainty (i.e., dynamism). Specifically, the

thesis has the following contributions.

• We proposed the use of subscriber real-time reliability as a single, client-oriented metric to

describe the reliability/timeliness quality of service each subscriber receives from the content-

based publish/subscribe systems.

• We proposed an analytical model to estimate subscriber real-time reliability in content-based

publish/subscribe systems under content dynamism, which represents uncertainty in deter-

mining event traffic flow to subscribers. With the use of publisher content profile, the ana-

lytical model transforms the publish/subscribe traffic load into pairwise, point-to-point load,

which can be used to calculate subscriber real-time reliability with existing queuing theory

120

techniques.

• We proposed an analytical model to estimate subscriber real-time reliability in content-based

publish/subscribe systems under mobility dynamism, which represents uncertainty in mobile

users’ mobility patterns. The proposed analytical model estimates a mobile subscriber’s real-

time reliability from contact/outage duration distributions, protocol hand-off delay, and event

lifetime. The proposed model also provides the analysis to derive contact/outage duration

distributions from a wide-range of existing mobility model.

• We proposed an analytical model to estimate subscriber real-time reliability in content-

based publish/subscribe systems under overlay dynamism, which represents failures of com-

ponents in publish/subscribe routing overlay. The proposed model discussed several existing

reliability-enhancement techniques and provided quantitative analysis of such techniques to

study their effect to publisher-subscriber pairwise real-time reliability. The proposed model

also presented a generic, protocol-independent framework to calculate subscriber real-time

reliability, given the protocol-dependent publisher-subscribe pairwise real-time reliability.

• We validated each of the proposed analytical models via simulations with realistic parameters.

All results yielded good prediction accuracy (i.e., less than 10% error) of our proposed models.

Using the proposed models, we also studied various effects of each dynamism parameter to

the performance of the protocol.

• We proposed the integrated analytical framework that combines all individual analytical

models altogether in order to account all types of dynamism and predict the subscriber real-

time reliability accurately.

We believe that the analytical framework proposed by this thesis work abstracts most existing

content-based publish/subscribe systems and their applications. To the best of our knowledge,

it is the first work to address reliability/timeliness in content-based publish/subscribe systems

under best-effort networks, which represent a huge class of today’s Internet applications. The

proposed analytical framework can then be used as a building block for many quality of service

optimization/adaptation techniques in such scenarios.

121

7.2 Lessons Learned and Future Work

7.2.1 Lessons Learned

During the process of developing the analytical framework, we have gained several insights in pub-

lish/subscribe performance prediction as follows.

Trade-off between flexibility and predictability : Since the advancement from point-to-point

routing to content-based routing, the important factor that determines traffic and overhead has

been shifted from communication endpoints to information content. The more level of flexibility

a system becomes, the less predictability one can expect from it. This does not only apply to

publish/subscribe systems, but also to other disruptive paradigms such as peer-to-peer systems as

well[95, 74]. Up to now, a set of assumptions must be made to simplify the system and achieve

predictability. It is still a question whether such trade-off between flexibility and predictability can

be quantified or circumvented.

Trade-off between reliability, timeliness, and overhead : In this dissertation, we have re-

visited many existing reliability techniques that are commonly used in publish/subscribe systems

such as retransmission, replication, and multi-path dissemination. In most techniques, there exists

a trade-off between reliability, timeliness, and overhead. One must consider this trade-off when

designing a publish/subscribe systems for any specific application such that the levels of reliability

and timeliness satisfy such application. Moreover, since our application domain focuses on reliabil-

ity and timeliness, the trade-off becomes more stringent but at the same time clearer to determine.

Trade-off between prediction accuracy and prediction efficiency : Our proposed analyt-

ical framework aims to determine fine-grained, user-oriented subscriber reliability for each indi-

vidual subscriber in the system, which requires higher prediction overhead than other proposed

models[31, 56] but also achieves more fine-grained prediction result. One must consider both pre-

diction granularity requirement from the application as well as the system size and computational

resource in order to pick the appropriate analytical model for each application and scenario.

No single best solution for all configurations/scenarios : We have analyzed several different

122

publish/subscribe schemes under different settings and scenarios. While some publish/subscribe

schemes outperform others in many scenarios, there is no single publish/subscribe scheme that

performs best in all scenarios. With the proposed prediction model, one can determine which pub-

lish/subscribe configuration to be used for a specific scenario and gives the best performance.

We hope that these findings will be useful for any future research in distributed system analysis,

specifically in content-based publish/subscribe systems.

7.2.2 Future Work

Several future research directions of this thesis are possible. Here, we list some of such potential

future work

Better publisher content predictor : In Chapter 3, we currently assume simple statistical

method such as periodic sampling to estimate the publisher content profile. However, we can

employ more sophisticated publisher content prediction to get better traffic rate estimation.

More accurate analysis with less assumptions : The analysis used several assumptions for the

purpose of analytical feasibility. Such assumptions include temporal locality in publisher’s content,

known publisher mobility, and exponential failure/repair times. Although such assumptions are

generally held in many system research areas, we seek to improve the accuracy of the model while

relaxing such assumptions for better applicability.

Other quality of service metrics : The analytical model proposed in this thesis considers

reliability and timeliness as the quality of service metrics. So far, we did not address other metrics

such as bandwidth to avoid the complexity in the analysis[95]. However, incorporating several

other metrics such as bandwidth, ordered delivery, and jitter into the analytical framework is also

one important future research direction.

Optimization techniques based on the predictive model : The proposed predictive model

can be a useful tool for many performance optimizations of content-based publish/subscribe sys-

tems such as subscriber admission, subscriber-broker allocation, broker capacity planning. Such

optimization techniques can be investigated in the future.

Distributed admission control algorithm : We currently assume a centralize algorithm to esti-

mate each subscriber’s reliability and admission control. A decentralized estimation and admission

control algorithm can be done by coordination among brokers.

123

Realistic subscription popularity distribution : Most simulation results in this thesis are

based on uniform subscription popularity. However, this does not reflect real-world scenarios

where subscription popularity follows Zipf distribution[96]. The impact of subscription popularity

distribution to subscriber reliability/timeliness is leaft as one possible future research direction.

Large-scale validation : Performance modeling of large-scale distributed systems can be proved

useful only if it accurately describes the real behavior of the actual systems. While the validation

of the proposed model via simulations with realistic parameters yields accuracy and applicability

of the proposed model, further validation of the model via large-scale deployment would be the

best way to show the effectiveness of our approach. Hence, such a large-scale validation is one of

important future research directions.

124

REFERENCES

[1] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The many faces of pub-
lish/subscribe,” ACM Comput. Surv., vol. 35, no. 2, pp. 114–131, 2003.

[2] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, “Design and evaluation of a wide-area event
notification service,” ACM Trans. Comput. Syst., vol. 19, no. 3, pp. 332–383, 2001.

[3] Y. Zhao, D. Sturman, and S. Bhola, “Subscription propagation in highly-available pub-
lish/subscribe middleware,” in Proc. ACM Middleware ’04. New York, NY, USA: Springer-
Verlag New York, Inc., 2004, pp. 274–293.

[4] G. Cugola and H.-A. Jacobsen, “Using publish/subscribe middleware for mobile systems,”
SIGMOBILE Mob. Comput. Commun. Rev., vol. 6, no. 4, pp. 25–33, 2002.

[5] A. Rowstron, A.-M. Kermarrec, M. Castro, and P. Druschel, “Scribe: The design of a large-
scale event notification infrastructure,” in In Networked Group Communication, 2001, pp.
30–43.

[6] L. F. Cabrera, M. B. Jones, and M. Theimer, “Herald: Achieving a global event notification
service,” in Proc. HOTOS ’01, Washington, DC, USA, 2001, p. 87.

[7] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J. D. Kubiatowicz, “Bayeux: an
architecture for scalable and fault-tolerant wide-area data dissemination,” in Proc. NOSSDAV
’01. ACM, 2001, pp. 11–20.

[8] P. R. Pietzuch and J. Bacon, “Hermes: A distributed event-based middleware architecture,”
in Proc. ICDCSW ’02, 2002, pp. 611–618.

[9] O. M. Group, “Corba Event Service,” http://www.omg.org/.

[10] M. Ryll and S. Ratchev, “Towards a publish / subscribe control architecture for precision
assembly with the data distribution service,” 2008, pp. 359–369.

[11] R. Baldoni, L. Querzoni, and A. Virgillito, “Distributed event routing in publish/subscribe
communication systems: a survey,” Tech. Rep., 2005.

[12] X. Guo, H. Zhong, J. Wei, and D. Han, “A new approach for overload management in content-
based publish/subscribe,” ICSEA’07, vol. 0, p. 32, 2007.

[13] R. S. S. Filho and D. F. Redmiles, “A survey of versatility for publish/subscribe infrastruc-
tures,” University of California, Irvine, Tech. Rep. UCI-ISR-05-8, 2005.

125

[14] Y. Liu and B. Plale, “Survey of publish subscribe event systems,” Indiana University, Tech.
Rep. TR574, May 2003.

[15] F. Araújo and L. Rodrigues, “On qos-aware publish-subscribe,” in ICDCSW ’02: Proceedings
of the 22nd International Conference on Distributed Computing Systems. Washington, DC,
USA: IEEE Computer Society, 2002, pp. 511–515.

[16] S. Behnel, L. Fiege, and G. Muhl, “On quality-of-service and publish-subscribe,” in ICD-
CSW ’06: Proceedings of the 26th IEEE International ConferenceWorkshops on Distributed
Computing Systems. Washington, DC, USA: IEEE Computer Society, 2006, p. 20.

[17] S. P. Mahambre, M. K. SD, and U. Bellur, “A taxonomy of qos-aware, adaptive event-
dissemination middleware,” IEEE Internet Computing, vol. 11, no. 4, pp. 35–44, 2007.

[18] X. Lu, T. Yang, Z. Liao, X. Li, Y. Wang, W. Liu, and H. Wang, “A novel qos-enable real-time
publish-subscribe service,” in ISPA. IEEE, 2008, pp. 19–26.

[19] G. Deng, M. Xiong, A. Gokhale, and G. Edwards, “Evaluating real-time publish/subscribe
service integration approaches in qos-enabled component middleware,” in ISORC ’07: Pro-
ceedings of the 10th IEEE International Symposium on Object and Component-Oriented Real-
Time Distributed Computing. Washington, DC, USA: IEEE Computer Society, 2007, pp.
222–227.

[20] R. Rajkumar, M. Gagliardi, and L. Sha, “The real-time publisher/subscriber inter-process
communication model for distributed real-time systems: Design and implementation,” in De-
sign and Implementation, in First IEEE Real-time Technology and Applications Symposium,
1997, pp. 66–75.

[21] J. Wang, J. Cao, J. Li, and J. Wu, “Achieving bounded delay on message delivery in pub-
lish/subscribe systems,” in ICPP ’06: Proceedings of the 2006 International Conference on
Parallel Processing. Washington, DC, USA: IEEE Computer Society, 2006, pp. 407–416.

[22] B. Zieba, “Overview of the reliability aspects in the publish/subscribe middleware,” in OTM
Workshops (2), ser. Lecture Notes in Computer Science, R. Meersman, Z. Tari, and P. Herrero,
Eds., vol. 4806. Springer, 2007, pp. 1091–1100.

[23] P. C. Matteo, P. Costa, M. Migliavacca, G. P. Picco, and G. Cugola, “Introducing reliability in
content-based publish-subscribe through epidemic algorithms,” in In: Proceedings of the 2nd
International Workshop on Distributed Event-Based Systems. ACM Press, 2003, pp. 1–8.

[24] A. Gaddah, “A pro-active mobility management scheme for publish/subscribe middleware
systems,” Ph.D. dissertation, Carleton University, 2009.

[25] S. Hu, V. Muthusamy, G. Li, and H.-A. Jacobsen, “Transactional mobility in distributed
content-based publish/subscribe systems,” in ICDCS ’09: Proceedings of the 2009 29th IEEE
International Conference on Distributed Computing Systems. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 101–110.

[26] G. Muhl, “Large-scale content-based publish/subscribe systems,” Ph.D. dissertation, Univer-
sity of Technology Darmstadt, 2002.

126

[27] M. A. Jaeger, “Self-managing publish/subscribe systems,” Ph.D. dissertation, Technische Uni-
versität Berlin, 2007.

[28] R. Baldoni, R. Beraldi, S. Tucci Piergiovanni, and A. Virgillito, “On the modeling of pub-
lish/subscribe communication systems: Research articles,” Concurr. Comput. : Pract. Exper.,
vol. 17, no. 12, pp. 1471–1495, 2005.

[29] F. He, L. Baresi, C. Ghezzi, and P. Spoletini, “Formal analysis of publish-subscribe systems
by probabilistic timed automata,” in 27th IFIP WG 6.1 International Conference on Formal
Techniques forNetworked and Distributed Systems (FORTE 2007), Tallinn, Estonia, June 27-
29, ser. Lecture Notes in Computer Science, vol. 4574. Springer, 2007, pp. 247–262.

[30] L. Baresi, C. Ghezzi, and L. Mottola, “On accurate automatic verification of publish-subscribe
architectures,” in ICSE ’07: Proceedings of the 29th international conference on Software
Engineering. Washington, DC, USA: IEEE Computer Society, 2007, pp. 199–208.

[31] A. Schröter, “Modeling and optimizing content-based publish/subscribe systems,” in Proc
MDS ’09. New York, NY, USA: ACM, 2009, pp. 1–6.

[32] A. Schröter, G. Mühl, S. Kounev, H. Parzyjegla, and J. Richling, “Stochastic performance
analysis and capacity planning of publish/subscribe systems,” in DEBS ’10: Proceedings of
the Fourth ACM International Conference on Distributed Event-Based Systems. New York,
NY, USA: ACM, 2010, pp. 258–269.

[33] T. Pongthawornkamol, K. Nahrstedt, and G. Wang, “Probabilistic qos modeling for relia-
bility/timeliness prediction in distributed content-based publish/subscribe systems over best-
effort networks,” in ICAC ’10: Proceeding of the 7th international conference on Autonomic
computing. New York, NY, USA: ACM, 2010, pp. 185–194.

[34] T. Pongthawornkamol and K. Nahrstedt, “Towards timeliness and reliability analysis of dis-
tributed content-based publish/subscribe systems over best-effort networks,” University of
Illinois at Urbana-Champaign, Tech. Rep. http://hdl.handle.net/2142/14415, November 2009.

[35] “Google finance,” http://www.google.com/finance.

[36] “Gary-chicago-milwaukee corridor transportation information,” http://www.gcmtravel.com/.

[37] “National climate data center: Online climate data directory,”
http://lwf.ncdc.noaa.gov/oa/climate/climatedata.html.

[38] “Rdf site summary (rss) 1.0,” http://web.resource.org/rss/1.0/spec.

[39] “Real time sportscast - rts,” http://www.rtsportscast.com/.

[40] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of distributed consensus with
one faulty process,” in PODS ’83: Proceedings of the 2nd ACM SIGACT-SIGMOD symposium
on Principles of database systems. New York, NY, USA: ACM, 1983, pp. 1–7.

[41] A. Gupta, O. D. Sahin, D. Agrawal, and A. E. Abbadi, “Meghdoot: content-based pub-
lish/subscribe over p2p networks,” in Proc Middleware ’04, 2004, pp. 254–273.

127

[42] G. Cugola, D. Frey, A. L. Murphy, and G. P. Picco, “Minimizing the reconfiguration overhead
in content-based publish-subscribe,” in SAC, H. Haddad, A. Omicini, R. L. Wainwright, and
L. M. Liebrock, Eds. ACM, 2004, pp. 1134–1140.

[43] G. Cugola, A. Margara, and M. Migliavacca, “Context-aware publish-subscribe: Model, im-
plementation, and evaluation,” in ISCC. IEEE, 2009, pp. 875–881.

[44] K. Jayaram, C. Jayalath, and P. Eugster, “Parametric subscriptions for content-based pub-
lish/subscribe networks,” in Proc Middleware ’10, 2010.

[45] G. Li, S. Hou, and H.-A. Jacobsen, “A unified approach to routing, covering and merging in
publish/subscribe systems based on modified binary decision diagrams,” in Proc. ICDCS ’05,
Washington, DC, USA, 2005, pp. 447–457.

[46] Z. Jerzak and C. Fetzer, “Soft state in publish/subscribe,” in DEBS ’09: Proceedings of the
Third ACM International Conference on Distributed Event-Based Systems. New York, NY,
USA: ACM, 2009, pp. 1–12.

[47] W. Whitt, “The Queueing Network Analyzer,” Bell System Technical Journal, vol. 62, no. 9,
pp. 2779–2815, November 1983.

[48] M. A. Marsan, C. Casetti, G. Mardente, and M. Mellia, “A framework for admission control
and path allocation in diffserv networks,” Comput. Netw., vol. 51, no. 10, pp. 2738–2752, 2007.

[49] S. Even, A. Itai, and A. Shamir, “On the complexity of time table and multi-commodity
flow problems,” in SFCS ’75: Proceedings of the 16th Annual Symposium on Foundations of
Computer Science. Washington, DC, USA: IEEE Computer Society, 1975, pp. 184–193.

[50] “The network simulator - ns-2,” http://www.isi.edu/nsnam/ns/.

[51] M. Ripeanu, I. T. Foster, A. Iamnitchi, and A. Rogers, “A dynamically adaptive, unstructured
multicast overlay,” in Service Management and Self-Organization in IP-based Networks, 2005.

[52] D. Surendran, “Visualizing connection bandwidths and delays in planetlab,”
http://people.cs.uchicago.edu/ dinoj/vis/planetlab/.

[53] H. Liu and H.-A. Jacobsen, “Modeling Uncertainties in Publish/Subscribe Systems,” in Proc
ICDE’04, March-2 April 2004, pp. 510–521.

[54] X. Guo, J. Wei, and D. Han, “Efficient Event Matching in Publish/Subscribe: Based on
Routing Destination and Matching History,” Proc NAS’08, vol. 0, pp. 129–136, 2008.

[55] R. Baldoni, R. Beraldi, S. T. Piergiovanni, and A. Virgillito, “On the modelling of pub-
lish/subscribe communication systems,” Concurrency - Practice and Experience, vol. 17,
no. 12, pp. 1471–1495, 2005.

[56] S. Kounev, K. Sachs, J. Bacon, and A. Buchmann, “A methodology for performance modeling
of distributed event-based systems,” in Proc ISORC ’08. Washington, DC, USA: IEEE
Computer Society, 2008, pp. 13–22.

[57] Z. Jerzak and C. Fetzer, “Handling overload in publish/subscribe systems,” in ICDCSW ’06:
Proceedings of the 26th IEEE International ConferenceWorkshops on Distributed Computing
Systems. Washington, DC, USA: IEEE Computer Society, 2006, p. 32.

128

[58] S. Arianfar, “Optimizing publish/subscribe systems with congestion handling,” M.S. thesis,
Helsinki University of Technology, 2008.

[59] M. Caporuscio, A. Carzaniga, and A. L. Wolf, “Design and evaluation of a support service for
mobile, wireless publish/subscribe applications,” IEEE Trans. Software Eng., vol. 29, no. 12,
pp. 1059–1071, 2003.

[60] S. Tarkoma and J. Kangasharju, “On the cost and safety of handoffs in content-based routing
systems,” Computer Networks, vol. 51, no. 6, pp. 1459–1482, 2007.

[61] J. Wang, J. Cao, J. Li, and J. Wu, “Mhh: A novel protocol for mobility management in
publish/subscribe systems,” in ICPP. IEEE Computer Society, 2007, p. 54.

[62] A. Zeidler and L. Fiege, “Mobility support with rebeca,” in ICDCS Workshops. IEEE Com-
puter Society, 2003, pp. 354–.

[63] G. Cugola and H.-A. Jacobsen, “Using publish/subscribe middleware for mobile systems,”
Mobile Computing and Communications Review, vol. 6, no. 4, pp. 25–33, 2002.

[64] V. Muthusamy, M. Petrovic, D. Gao, and H.-A. Jacobsen, “Publisher mobility in distributed
publish/subscribe systems,” in ICDCSW ’05: Proceedings of the Fourth International Work-
shop on Distributed Event-Based Systems (DEBS) (ICDCSW’05). Washington, DC, USA:
IEEE Computer Society, 2005, pp. 421–427.

[65] C. M. Grinstead and J. L. Snell, Introduction to Probability, 2nd ed. American Mathematical
Society, July 1997.

[66] M. M. Zonoozi and P. Dassanayake, “User mobility modeling and characterization of mobility
patterns,” IEEE Journal on Selected Areas in Communications, vol. 15, no. 7, pp. 1239–1252,
1997.

[67] V. Bychkovsky, B. Hull, A. Miu, H. Balakrishnan, and S. Madden, “A measurement study of
vehicular internet access using in situ wi-fi networks,” in MOBICOM, M. Gerla, C. Petrioli,
and R. Ramjee, Eds. ACM, 2006, pp. 50–61.

[68] M. J. Pitkänen, T. Kärkkäinen, and J. Ott, “Opportunistic web access via wlan hotspots,” in
PerCom. IEEE Computer Society, 2010, pp. 20–30.

[69] E. Zola and F. Barcelo-Arroyo, “Impact of mobility models on the cell residence time in wlan
networks,” in SARNOFF’09: Proceedings of the 32nd international conference on Sarnoff
symposium. Piscataway, NJ, USA: IEEE Press, 2009, pp. 14–18.

[70] Z. Zheng, Z. Lu, P. Sinha, and S. Kumar, “Maximizing the contact opportunity for vehicular
internet access,” in In Proc. of IEEE INFOCOM, 2010.

[71] Z. Zheng, P. Sinha, and S. Kumar, “Alpha coverage: Bounding the interconnection gap for
vehicular internet access,” in INFOCOM. IEEE, 2009, pp. 2831–2835.

[72] “Site5 uptime reports for all servers,” http://www.site5.com/support/uptime/.

[73] “Planetlab - all pairs pings,” http://pdos.csail.mit.edu/ strib/pl app/.

129

[74] Z. Yao and D. Loguinov, “Link lifetimes and randomized neighbor selection in dhts,” in IN-
FOCOM. IEEE, 2008, pp. 146–150.

[75] C. Esposito, D. Cotroneo, and A. S. Gokhale, “Reliable publish/subscribe middleware for
time-sensitive internet-scale applications,” in DEBS, A. S. Gokhale and D. C. Schmidt, Eds.
ACM, 2009.

[76] C. Esposito, D. Cotroneo, and S. Russo, “Reliable event dissemination over wide-area net-
works without severe performance fluctuations,” in ISORC ’10: Proceedings of the 2010
13th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Dis-
tributed Computing. Washington, DC, USA: IEEE Computer Society, 2010, pp. 97–101.

[77] D. G. Andersen, “Improving end-to-end availability using overlay networks,” Ph.D., Mas-
sachusetts Institute of Technology, Feb. 2005.

[78] P. B. Godfrey, “Repository of availability traces,” http://www.cs.uiuc.edu/homes/pbg/availability/.

[79] R. Chand and P. Felber, “Xnet: A reliable content-based publish/subscribe system,” in SRDS
’04: Proceedings of the 23rd IEEE International Symposium on Reliable Distributed Systems.
Washington, DC, USA: IEEE Computer Society, 2004, pp. 264–273.

[80] R. S. Kazemzadeh and H.-A. Jacobsen, “Reliable and highly available distributed pub-
lish/subscribe service,” in SRDS ’09: Proceedings of the 2009 28th IEEE International Sym-
posium on Reliable Distributed Systems. Washington, DC, USA: IEEE Computer Society,
2009, pp. 41–50.

[81] A. U. Shankar and S. S. Lam, “Time-dependent distributed systems: Proving safety, liveness
and real-timeproperties,” Austin, TX, USA, Tech. Rep., 1985.

[82] “Computing tcp’s retransmission timer,” http://tools.ietf.org/html/rfc2988.

[83] M. K. SD and U. Bellur, “Availability models for underlay aware overlay networks,” in DEBS,
ser. ACM International Conference Proceeding Series, R. Baldoni, Ed., vol. 332. ACM, 2008,
pp. 169–180.

[84] P. Yalagandula, S. Nath, H. Yu, P. B. Gibbons, and S. Seshan, “Beyond availability: Towards
a deeper understanding of machine failure characteristics in large distributed systems,” in In
Proc. of USENIX Workshop on Real, Large Distributed Systems (WORLDS, 2004.

[85] G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic Mod-
elling, 1st ed. ASA SIAM, 1999, ch. 2: PH Distributions.

[86] C. Moler and C. V. Loan, “Nineteen dubious ways to compute the exponential of a matrix,”
SIAM Review, pp. 801–836, 1978.

[87] L. G. Valiant, “The complexity of enumeration and reliability problems,”
SIAM Journal on Computing, vol. 8, no. 3, pp. 410–421, 1979. [On-
line]. Available: http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal\&id=
SMJCAT000008000003000410000001\&idtype=cvips\&gifs=yes

[88] M. Dahlin, B. B. V. Chandra, L. Gao, and A. Nayate, “End-to-end wan service availability,”
IEEE/ACM Trans. Netw., vol. 11, no. 2, pp. 300–313, 2003.

130

[89] Z. Duan, Z.-L. Zhang, and Y. T. Hou, “Service overlay networks: Slas, qos, and bandwidth
provisioning,” IEEE/ACM Trans. Netw., vol. 11, no. 6, pp. 870–883, 2003.

[90] Y. Amir and C. Danilov, “Reliable communication in overlay networks,” in DSN. IEEE
Computer Society, 2003, pp. 511–520.

[91] L. Subramanian, I. Stoica, H. Balakrishnan, and R. H. Katz, “Overqos: an overlay based
architecture for enhancing internet qos,” in NSDI’04: Proceedings of the 1st conference on
Symposium on Networked Systems Design and Implementation. Berkeley, CA, USA: USENIX
Association, 2004, pp. 6–6.

[92] M. Charikar, J. S. Naor, and B. Schieber, “Resource optimization in qos multicast routing of
real-time multimedia,” IEEE/ACM Trans. Netw., vol. 12, no. 2, pp. 340–348, 2004.

[93] G. Tan and S. A. Jarvis, “Improving the fault resilience of overlay multicast for media stream-
ing,” IEEE Trans. Parallel Distrib. Syst., vol. 18, no. 6, pp. 721–734, 2007.

[94] G. Cugola, G. P. Picco, and A. L. Murphy, “Towards dynamic reconfiguration of distributed
publish-subscribe middleware,” in SEM, ser. Lecture Notes in Computer Science, A. Coen-
Porisini and A. van der Hoek, Eds., vol. 2596. Springer, 2002, pp. 187–202.

[95] G. Tan and S. A. Jarvis, “Stochastic analysis and improvement of the reliability of dht-based
multicast,” in INFOCOM. IEEE, 2007, pp. 2198–2206.

[96] Y.-M. Wang, L. Qiu, D. Achlioptas, G. Das, P. Larson, and H. J. Wang, “Subscription parti-
tioning and routing in content-based publish/subscribe systems,” in 16th International Sym-
posium on DIStributed Computing (DISC’02).

131

