
Self-Adaptive Fitness
in Evolutionary Processes

Thomas Gabor

Dissertation
an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig-Maximilians-Universität München

vorgelegt von
Thomas Gabor

eingereicht am
27. Januar 2021

Self-Adaptive Fitness
in Evolutionary Processes

Thomas Gabor

Dissertation
an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig-Maximilians-Universität München

vorgelegt von
Thomas Gabor

1. Berichterstatter: Prof. Dr. Claudia Linnhoff-Popien
2. Berichterstatter: Prof. Dr. Wolfgang Banzhaf
3. Berichterstatter: Prof. Dr. Jeremy Pitt

Tag der Einreichung: 27. Januar 2021
Tag der Disputation: 6. Juli 2021

Eidesstattliche Versicherung
(siehe Promotionsordnung vom 12. 07. 11, § 8, Abs. 2 Pkt. 5)

Hiermit erkläre ich an Eides statt, dass die Dissertation von
mir selbstständig, ohne unerlaubte Beihilfe angefertigt ist.

Thomas Gabor
München, 20. Oktober 2021

Zusammenfassung

Selbst-Adaptive Fitness in evolutionären Prozessen. Die meisten Optimierungsal-
gorithmen und die meisten Verfahren in Bereich künstlicher Intelligenz können als evo-
lutionäre Prozesse aufgefasst werden. Diese beginnen mit (prinzipiell) zufällig geratenen
Lösungskandidaten und erzeugen dann immer weiter verbesserte Ergebnisse für gegebene
Zielfunktion, die der Designer des gesamten Prozesses definiert hat. Der Wert der erre-
ichten Ergebnisse wird dem evolutionären Prozess durch eine Fitnessfunktion mitgeteilt,
die normalerweise in gewissem Rahmen mit der Zielfunktion korreliert ist, aber auch
nicht notwendigerweise mit dieser identisch sein muss. Wenn die Werte der Fitness-
funktion sich allein aus für den evolutionären Prozess intrinsischen Gründen ändern,
d.h. auch dann, wenn die extern motivierten Ziele (repräsentiert durch die Zielfunktion)
konstant bleiben, nennen wir dieses Phänomen selbst-adaptive Fitness. Wir verfolgen
das Phänomen der selbst-adaptiven Fitness zurück bis zu künstlichen Chemiesystemen
(artificial chemistry systems), für die wir eine neue Variante auf Basis neuronaler Netze
entwickeln. Wir führen eine tiefgreifende Analyse diversitätsbewusster evolutionärer Al-
gorithmen durch, welche wir als Paradebeispiel für die effektive Integration von selbst-
adaptiver Fitness in evolutionäre Prozesse betrachten. Wir skizzieren das Konzept der
produktiven Fitness als ein neues Werkzeug zur Untersuchung von intrinsischen Zie-
len der Evolution. Wir führen das Muster der Szenarien-Ko-Evolution (scenario co-
evolution) ein und wenden es auf einen Agenten an, der mittels verstärkendem Lernen
(reinforcement learning) mit einem evolutionären Algorithmus darum wetteifert, seine
Leistung zu erhöhen bzw. härtere Testszenarien zu finden. Wir erkennen dieses Muster
auch in einem generelleren Kontext als formale Methode in der Softwareentwicklung.
Wir entdecken mehrere Verbindungen der besprochenen Phänomene zu Forschungsgebi-
eten wie natural computing, quantum computing oder künstlicher Intelligenz, welche die
zukünftige Forschung in den kombinierten Forschungsgebieten prägen könnten.

7

8

Abstract

Self-Adaptive Fitness in Evolutionary Processes. Most optimization algorithms or
methods in artificial intelligence can be regarded as evolutionary processes. They start
from (basically) random guesses and produce increasingly better results with respect
to a given target function, which is defined by the process’s designer. The value of
the achieved results is communicated to the evolutionary process via a fitness function
that is usually somewhat correlated with the target function but does not need to be
exactly the same. When the values of the fitness function change purely for reasons
intrinsic to the evolutionary process, i.e., even though the externally motivated goals
(as represented by the target function) remain constant, we call that phenomenon self-
adaptive fitness. We trace the phenomenon of self-adaptive fitness back to emergent
goals in artificial chemistry systems, for which we develop a new variant based on neural
networks. We perform an in-depth analysis of diversity-aware evolutionary algorithms
as a prime example of how to effectively integrate self-adaptive fitness into evolutionary
processes. We sketch the concept of productive fitness as a new tool to reason about the
intrinsic goals of evolution. We introduce the pattern of scenario co-evolution, which we
apply to a reinforcement learning agent competing against an evolutionary algorithm to
improve performance and generate hard test cases and which we also consider as a more
general pattern for software engineering based on a solid formal framework. Multiple
connections to related topics in natural computing, quantum computing and artificial
intelligence are discovered and may shape future research in the combined fields.

9

10

Acknowledgments

This thesis is a product of spending almost twelve years at the Institute for Informatics
at LMU Munich, from “Analysis for Computer Scientists” to my PhD defense. First of
all, I thank Martin Wirsing for new levels of discussion, connecting me with the right
people, and providing me with the opportunity to start doing proper science very early
on. I also thank Martin Hofmann, who passed on much too soon, and François Bry for
inspiring courses, which spoke to me at the right time and nudged me towards research
(and taught me about the Curry-Howard isomorphism [78], which to everyone’s surprise
happened to come in handy during my thesis defense). Starting out with my Bachelor’s
thesis, Matthias Hölzl introduced me to the daily work of a researcher and taught me a
lot of skills and wisdom I always aim to pass on to my students as well. He did all that
while being a brilliant colleague to work with and thus showing me how much can be
done with the right team of right people. I thank him for all of this support.
I later found many of the mentioned right people at the chair for Mobile and Distributed
Systems, where I went for my PhD. I want to thank all my past and present colleagues
and coworkers there for all the extraordinary times we had doing all kinds of interesting
things! I want to express additional gratitude to my colleagues and close personal friends
Sebastian Feld, with whom every far-fetched project seemed possible, Steffen Illium, who
brought his creativity and all of his heart to the exotic ideas, Thomy Phan, who always
knew how to conceive and then execute most ambitious ideas, and Lenz Belzner, who
substantially shaped and inspired my scientific journey.
At this point, I would like to again thank Martin Wirsing, who not only got me going
as a researcher but also many years later acted as the chair for this thesis’s defense. I
would also like to extend my special thanks to my second and third referees for this
thesis, Wolfgang Banzhaf and Jeremy Pitt. Both agreed to become a part of this under
the most unusual circumstances and it was my great honor to have them and my great
pleasure to be talking with them (even during my defense), which I can only hope will
continue into the future.
Finally and most importantly, I thank Claudia Linnhoff-Popien for providing every op-
portunity for this long and interesting journey and still continuing to support my ideas
and my path as a researcher. At her chair, I was able to have a truly remarkable time
and accomplish all the things described in this thesis. I thank her for making possible
what no one else could have even foreseen!

11

12

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Research Approach . 3
1.3. Structure of This Thesis . 5

2. Foundations of Evolutionary Processes 7
2.1. Formal Framework . 7
2.2. Evolutionary Algorithms . 9
2.3. Describing Self-Adaptation . 11

3. Emergence of Fitness 15
3.1. Neural Artificial Chemistry Systems . 15
3.2. Self-Replication as an Emergent Goal . 18

4. The Ideal Fitness 23
4.1. Diversity-Aware Fitness . 23
4.2. Productive Fitness . 27

5. Co-Evolutionary Adaptation of Fitness 33
5.1. Scenario Co-Evolution for Reinforcement Learning 33
5.2. Organizational Patterns for Software Development 37

6. Applications in Natural Computing 41
6.1. Variants on Evolutionary Algorithms . 41
6.2. Quantum Computing . 43
6.3. Monte-Carlo Tree Search . 44

7. Conclusion 47
7.1. Summary . 47
7.2. Discussion . 50
7.3. Outlook . 51

Bibliography 53

13

A. Papers 61
A.1. Overview . 62
A.2. Credit . 64
A.3. Full Texts . 71

14

1. Introduction

[Λέγει ...] τὸν δὲ ἄνθρωπον ἑτέρῳ ζῴῳ γεγονέναι, τουτέστι
ἰχθύι, παραπλήσιον κατ΄ ἀρχάς.
Humans came into being thoroughly similar to another
creature, i.e., a fish, in the beginning.

Anaximander1

1.1. Motivation

“Evolution” is used to describe a rather wide rage of phenomena and is thus prone to
be one of those terms too general to be useful. We immediately think of biological
evolution, which has to a large part shaped the flora and fauna surrounding us using
DNA to encode genes, leveraging new gene combinations from random mutations and
somewhat guided recombination, and applying natural selection to sort through all that
gene information [11, 12]. But we might also talk about the evolution of rock music
or fashion or language, when all of these have little to do with the biological processes.
Beyond the mere metaphor, a lot of cultural phenomena have been analyzed as an
instance of evolution: The term meme was coined to resemble the genes of biological
evolution in a cultural setting and the process of imitation has been suspected to fulfill
the role of biological reproduction [12, 6, 14]. And while the implemented mechanisms are
vastly different, similar phenomena can be observed at the macro-level: New specimen
arise, find their niche, invade other niches, live together as symbionts or parasites or
anything in between, survive, and die out. “Specimen” in this context might range
from singular words to whole political systems [14]. In all biological as well as cultural
instances of evolution, several (sometimes conflicting) ways “how to do something” arise
and fight it out amongst themselves in an open arena. This tends to get rather chaotic
so the ultimate outcome can be rather unpredictable.
As put by Dennett [14], evolution can often be regarded as a concept opposite to inten-
tional design. Both approaches try to bring about solutions for a given problem. For
intentional design, a final goal is chosen a priori and the design process (mostly in a

1The Greek original of the quote is indirect speech as Hippolytus in his Philosophumena (Book I,
Chapter 6) reports in great detail on the philosophy of Anaximander and many others. For ease of
reading, this aspect was dropped in the English translation.

1

1. Introduction

top-down approach) implements means to achieve exactly that chosen solution. For evo-
lution, singular small improvements are tested and (in a bottom-up manner) amassed to
an overall solution that is then “as good as it got”. Usually, the success of both processes
can be evaluated by measuring up the solutions they managed to yield. In design pro-
cesses, this measurement is often called quality or reward; evolutionary processes mostly
use the term fitness. In biological settings, where it is hard to formulate the ultimate
problem natural evolution is trying to solve, fitness can hardly be assessed if not a pos-
teriori : We assume that a successful gene is one that managed to replicate often; thus
a gene that has been replicated often must have had a good fitness [13].
The general field of computer science offers (at least) two interesting takes on that notion
of evolution:

• First, the term “software evolution” is widely used to describe the ongoing change
in a software ecosystem, even when that change is supposed to be intentionally
designed top-down in its entirety. We could see the usage of the term “evolution”
here as a wise capitulation in front of the sheer number of players and possi-
ble developments in a larger software ecosystem.2 Somewhat recent research in
software engineering might be a sign of an upcoming paradigm shift on multiple
fronts [62, 63]. We also point out a few arguments following that direction, in-
cluding a unification of both the biological and the software engineering notion of
evolution, which is why we return to that discussion in Chapter 5.

• Second, computer scientists have been building artificial, virtual instances of evo-
lution and used them for their own purposes. Most of them fall into the category
of “evolutionary algorithms” and for most of them their purpose is optimization.
Please note that there also are some purely un-guided instances of artificial evolu-
tion and they will make a cornerstone of this thesis (cf. Chapter 3). Evolutionary
algorithms, however, are usually given a certain, pre-defined, fully specified, inten-
tional goal. This goal is commonly passed to the evolutionary algorithm via an
a priori defined fitness function and from there on the evolution works its magic.
What is happening exactly when we just pass in a goal as fitness is the main topic
of Chapter 4.

In both of these instances of evolution in software, a process of evolution is deliberately
put in place to fulfill a purpose envisioned by some system designer. In the instance
of evolutionary algorithms, we see it most clearly: They are used as optimizers for a
given fitness function. By contrast, for natural (or even cultural) evolution, it is largely
assumed that the information units themselves are the main beneficiaries of the process of
evolution (compare Dawkin’s notion of “selfish genes” [12]). But evolutionary algorithms
are programmed for the good of some other external entity. And they still work!

2That only applies in a context where the term is strongly connected with its biological meaning,
however. Curiously, the word evolution originates from Latin ēvolvere, which literally means “to roll
out”—oddly fitting for a series of software releases.

2

1.2. Research Approach

In this thesis we build on the observation made by many researchers and practitioners
that evolutionary processes that are simply told a goal via a fitness function do not
necessarily make the best decisions with respect to that fitness function along the way [18,
49, 3, 17, 56, 76, 73]. We can also turn that observation the other way around: There
are experiments where evolutionary algorithms return better results with respect to a
fitness function f if they are told to optimize for a different fitness function f ′ ∕= f .
Metaphorically, we might imagine that any evolutionary process still retains some of
its natural selfishness, some of its own inherent goals. Of course, we will describe this
phenomenon much more precisely throughout the main parts of this thesis.
Changing goals (and as a consequence changing fitness) has already been an extensive
topic of research on evolutionary algorithms and among other names has been called
adaptive fitness [40, 45, 82, 21]. For the titular self-adaptive fitness we assume that
the fitness used within an evolutionary algorithm is supposed to change even when its
externally given purpose remains the same. We derive the why from examining artificial
chemistry systems without any given fitness that still show emergent fitness properties
(cf. Chapter 3) and the transformation of a given fitness function into the productive
fitness (cf. Chapter 4). We also show the how by discussing diversity and co-evolution
in evolutionary processes (cf. Chapters 4 and 5).

1.2. Research Approach

We do provide some contributions on formal methods, providing a sound, encompassing
formal framework for any description of evolutionary processes and related phenom-
ena [32, 33]. Most of the provided results, however, are empirical and based on in silico
experiments, from which we draw our conclusions. We use this method throughout the
entire analysis of self-adaptive fitness in evolutionary processes. The main direction of
research is guided by the following research questions (RQs).

(RQ1) Which phenomena can be described by evolutionary processes? As hinted
in the introduction, evolution or evolutionary processes are broadly defined terms, apply-
ing both to artificially constructed processes as well as natural phenomena. We provide
a formally sound framework and give precise definitions for all the mathematical tools
we need.

(RQ2) Which phenomena can be described as self-adaptive fitness? There is
the clear case of self-adaptive fitness where the fitness function used by the individuals
(the subjective fitness) features some free parameters and these parameters are left to
change due to the evolutionary process. We analyzed this case in great detail for the
example of diversity-aware fitness functions [28, 29].3 We noticed a potential benefit

3Diversity-aware fitness functions are self-adaptive because their diversity part depends on the whole
population, which changes throughout evolution per definition.

3

1. Introduction

in both instances where the fitness function given as part of the problem definition
(the objective fitness) changed during evolution as well as instances where the objective
fitness was not changed at all. The fact that one can benefit from a changing fitness in
an unchanging environment especially sparked our interest and led into the next research
question.

(RQ3) Are there goal-independent parts to fitness? Research led directly into
the field of artificial chemistry systems: These are interaction systems based on particles
which evolve via the application of predefined interaction rules without any specific goal.
However, under the right circumstances, these systems exhibit a natural drive towards
some form of stability. While usually defined on simpler particle data types, we showed
how neural networks can be used as particles while still showing similar convergence
behavior. We have thus confirmed that fitness goals may exist even when not explicitly
given to the algorithm through its environment. Inspired by these experiments, we can
ask the next research question.

(RQ4) Is there some inherent goal fitness in evolutionary algorithms as well?
Evolutionary algorithms are usually given an objective goal fitness or otherwise tend
to end in total chaos.4 But if they work better when given variations of the objective
goal as subjective fitness, they do seem to follow a slightly different goal of their own.
We have defined the notion of productive fitness to describe that phenomenon and have
shown that subjective fitness functions that approximate productive fitness better also
yield better overall results in evolutionary algorithms. Sadly, productive fitness comes
with the major disadvantage that we can only compute or even accurately approximate
it a posteriori.

(RQ5) How can we discover goal functions for evolutionary processes to follow?
We could put this differently: When I am given an objective goal to solve, which sub-
jective goal should I give to my evolutionary algorithm to match? Or simply: How do
I find the right goal function? Of course, the evolutionary scientist’s answer to such
search problems is to use an evolutionary algorithm. Co-evolution is a well-researched
method where multiple populations (of different types or with different goals) evolve side
by side and thereby influence each other, usually being coupled by their fitness evalua-
tion. It is closely related to adversarial learning, which is widely used in many variants
of reinforcement learning. We showed that a reinforcement-learning-based agent can
be coupled with an evolutionary algorithm to generate the currently right goals for the
learning process of the agent.

4We can suspect that typical crossover-based recombination functions breaking up schemes is the main
reason for that [75]. If you replace recombination with an allele-wise average operator in evolutionary
algorithms, you tend to notice convergence much more easily.

4

1.3. Structure of This Thesis

(RQ6) Are there similar phenomena in other kinds of evolutionary processes?
Having become acquainted with relaying information from the objective goal in various
ways to changing subjective goals, we researched various methods in natural computing
and have come up with some further variations on evolutionary algorithms, new analyses
regarding quantum annealing, and a new approach for Monte-Carlo tree search. Of
course, this research question is not to be answered completely any time soon.

This thesis sums up all the described research relevant to these questions. The process
of the conducted research skips over more well researched topics (artificial chemistry sys-
tems, adversarial learning, e.g.) to get to more specific new discoveries (neural artificial
chemistry, evolutionary-RL hybrid learning, respectively). We feel that such a course of
action is fitting for research on a fundamental phenomenon as fitness, cross-cutting with
many fields in natural computing, artificial intelligence, and optimization.

1.3. Structure of This Thesis

The body of this thesis in large parts follows the course of questions (and corresponding
actions) sketched in the previous section. We repeat larger parts of the formal model
defined in [33, 35] as a common formal foundation, defining basic notions such as evo-
lutionary process, fitness, or objective fitness for all work in this thesis. For the other
main chapters, we provide a very brief introduction to the relevant fields but refer to
literature for a complete understanding. In the body of this thesis, we only give the
main results and refer to the attached papers for the way to get there. The main body
of this thesis is structured as follows:

thesis chapter research questions main papers
2. Foundations of Evolutionary Processes RQ1, RQ2 [33]
3. Emergence of Fitness RQ3 [31]
4. The Ideal Fitness RQ2, RQ4 [26, 28, 29, 35]
5. Co-Evolutionary Adaptation of Fitness RQ5 [27, 32, 36, 37]
6. Applications in Natural Computing RQ6 [25, 68, 38, 30, 34]

Table 1.1.: Overview of the contents of this thesis.

Section 7 provides an overall conclusion and sketches some directions of ongoing and
future research. For the sake of brevity, we only cite necessary references in the thesis
and refer to the attached papers for a more in-depth review of related work. After the
bibliography, we provide a rich appendix that contains additional description of all main
papers listed in Table 1.1 as well as reprints of the full texts according to LMU Munich
requirements.

5

1. Introduction

6

2. Foundations of Evolutionary
Processes

[Οὗτος ἔφη ...] καὶ τὰ πάντα φύεσθαί τε καὶ ῥεῖν τῇ τοῦ
πρώτου ἀρχηγοῦ τῆς γενέσεως αὐτῶν φύσει συμφερόμενα.
All things evolve and flow corresponding in nature with the
first initiator of their development.

Thales1

2.1. Formal Framework

We understand evolution as a process that takes one of several possible paths; that
choice, however, is built iteratively by choosing but one step at a time. These steps
usually imply some sort of locality, be it in time or state, in contrast to planning, e.g.,
where a number of steps are taken usually with a superior goal being the ultimate reason
for every single choice.

Definition 1 (Evolution2). Let X be an arbitrary set called state space. Let g ∈ N
be called the generation count. Let Xi ⊆ X for any i ∈ N, 0 ≤ i ≤ g, be a subset
of X called population. Let E : P(X) → P(P(X)) be a function called evolutionary
function. A tuple (〈Xi〉0≤i≤g, E) is called an evolution over X iff Xi ∈ E(Xi−1) for all
i ∈ N, 1 ≤ i ≤ g.

At this level of generality, the notion of evolution can be applied to phenomena in various
domains: If X is the space of all possible genetic codes and E describes the biological
processes in the physical world, biological evolution fits Definition 1. If X is the space of
all possible software artifacts and E describes a common development process, software
evolution fits Definition 1 as well. Note that in Definition 1 we do imply a temporal
ordering of simple steps following each other, leading to some sort of locality in time

1The Greek original of the quote is (again) indirect speech as Hippolytus (Philosophumena, Book I,
Chapter 1) reports on Thales of Miletus.

2The definition given here (as most definitions in this chapter) closely resembles the definitions given
in [33, 35], which originate from the formalization in [36]. Please note that these definitions are
designed to work mathematically for what we need in the following study while encapsulating as
many phenomena as possible semantically.

7

2. Foundations of Evolutionary Processes

(i.e., the evolutionary function will not have an effect randomly popping out a hundred
generations later; everything it does needs to be represented in its direct output, which
is the next generation). However, we refrain from enforcing any sort of locality in the
state space by our definitions, as these locality properties then need to be defined for
every single state space, costing us generality in the end.
Stemming from various assumptions of gradual, local change, evolution in nature is com-
monly described as “blind” [13], i.e., there is no discernible goal that biological evolution,
e.g., is actively heading towards as a whole.3 Still, even natural evolution certainly fol-
lows certain trends, especially when we let it play out in rather stable settings. Even
more so, processes like software evolution are filled with specified goals, which might or
might not influence where the development process is actually headed.
Formally, we can define a target to an evolution as a predicate on the population and
can then check if an actual evolution matches our specified target. Since we not only
want a binary “target hit” vs. “target not hit” distinction, we use the following definition
w.l.o.g.:

Definition 2 (Target [33]). Let X be a state space. A function t : X → [0; 1] that
assigns to all elements in the search space a scalar value is called a target function.

Note that we define a target to be a function on the state space only. It allows us to
formally capture where an evolution currently is (i.e., which points and areas of the search
space it occupies) and where we would want it be (for any kind of reason), regardless
of how it got there or where it could have gone.4 For artificial evolutions (like software
evolution), a certain target to be achieved is usually the reason the whole evolution
was designed in the first place. Even for natural evolution, biologists have spent a long
time researching what underlying targets there might exist: “Survival of the fittest” is
most commonly used to describe the target where evolution is headed [52]. Dawkins [13]
gives a more nuanced explanation that describes the replication of information patterns
(dubbed “genes” there) as the ultimate target of evolution. In any case, an understanding
of evolution is based on understanding the target it is headed, even when that goal is
never explicitly represented.
We use the notion of an evolutionary process to mean an evolution together with a given
target function that it can be evaluated against.

Definition 3 (Evolutionary Process [33]). Let X be a state space. Let E : P(X) →
P(P(X)) be an evolutionary function. Let t : X → [0; 1] be a target function. Let Xi be
a population for any i ∈ N, 0 ≤ i ≤ g. A tuple E = (X , E, t, 〈Xi〉i≤g) is an evolutionary
process iff (〈Xi〉i≤g, E) is an evolution.

3Note the “active” part here, implying that even when populations evolve towards certain targets, they
usually have no means to be aware of that targets.

4Obviously, various means to measure the difference between these targets might be defined. Given
a target function t, we might for now just image a simple formula like

!
x∈X t(x) to describe how

well a population X matches the target function t.

8

2.2. Evolutionary Algorithms

The target function is what we evaluate the success of the whole evolutionary process
against. Usually, we want an evolutionary process to maximize max0≤i≤g maxx∈Xi

t(xi)
or some similar measurement. To do so, we usually evaluate single individuals during
the course of evolution as well in order to steer the whole process. The value of the
evaluation of a single individual at a specific step in evolution is called fitness. The
fitness function can be a target function or even be equal to the evolutionary process’s
overall target function t; however, it does not need to be equal or even close to the target
function t given to the whole process. To discern the two, we call the target function
used to evaluate the evolutionary process as a whole the objective target or objective
fitness and, when there is any need for clarification, any target function used to evaluate
the individuals is by contrast called subjective target or subjective fitness. In contrast
to the target function, a fitness function can be parametrized on more than just the
state space: It can reflect the current state of the evolution as well as the evolutionary
process’s complete history, which means that for a single point of the state space it can
change over time. We write E for the space of all evolutionary processes according to
Definition 3. Furthermore, we allow fitness to change for no reason at all. Formally, we
model this by passing on a random parameter from a space of random parameters R.5

Definition 4 (Fitness [33]). Let X be a state space. A function f : X × E×R → [0; 1]
is called a fitness function. This function takes an individual, its evolutionary process
up until now, and random input and returns a scalar value.

Note again that the definition of a fitness function does not necessarily imply that any
evolutionary process is actually pursuing it. Usually, a fitness function is used in some
way to determine the possible outcomes given by the evolutionary function E of an
evolutionary process E .
The definition of evolutionary processes given here is general enough that it can subsume
artificial chemistry systems (discussed in Chapter 3) as well as evolutionary algorithms
(our main object of research for Chapters 4 and 5 as well es Section 6.1).

2.2. Evolutionary Algorithms

As evolutionary algorithms are the topic of large parts of this thesis, we shall introduce
them formally to a bit greater detail, still following the construction in [33]. Naturally, we
define an evolutionary algorithm as a special case of an evolutionary process, where the
evolutionary function E is of a certain form. To construct said form, we first introduce
the notion of evolutionary operators. Most commonly, evolutionary algorithms use three
distinct types of operators [33]:

Mutation. This operator mut : X × R → X generates a randomly slightly altered
individual from a parent.

5This resembles how pseudo-random number generators work in most computers. However, we will
not regard true randomness as an issue here [88].

9

2. Foundations of Evolutionary Processes

Recombination. This operator rec : X ×X ×R → X takes two individuals to combine
them into a new individual.

Migration. This operator mig : R → X generates a random new individual.

As we did previously, we use X for the state space and R for the space of random num-
bers, allowing these operators to operate non-deterministically (when we do not know
the random number they are given). We further usually write the random parameter
as a subscript to the function call, i.e., mutr(x) mutates individual x using a random
(projection of) a random number r. Note that we treat selection differently as it is
usually put as a preprocessing step before the application of some operators. We adopt
the following definition:

Definition 5 (Selection). A function sk : P(X) × E × R → P(X k), k ∈ N is called a
selection function iff sk(X, E , r) ⊆ Xk for all X, E , r. This function takes a population,
its evolutionary process, and random input and returns a subset of vectors of length k
consisting of individuals from the given population.

As a bit of notational sugar, we introduce a short-hand notation for the standard map
function from functional programming: We write opr〈X〉 =def

!
x∈X opr(x) for the set

of all results of applying the operator op to all elements of X. We also introduce the
short-hand opr〈i〉 =

!
i∈N,0≤i<m opr() to simply construct a set of multiple outputs of

opr().6

Definition 6 (Evolutionary Algorithm). Let smut
1 , spar

2 , and ssur
1 be suitable selection

functions. Let m ∈ N be the number of migrants. An evolutionary process E =
(X , E, t, 〈Xi〉i≤g) is called an evolutionary algorithm iff the evolutionary function E is
of the form

E(X) =
"

r∈R

ssur
1

#
X ∪ mutr〈smut

1 (X, E , r)〉 ∪ recr〈srec
2 (X, E , r)〉 ∪ migr〈m〉

$
.

For an evolutionary algorithm E , we also further assume (unless stated otherwise)

• that ssur
1 is called survivor selection, its result is mostly based on the individuals’

fitness, and |ssur
1 (X)| = |X0| for all X ⊆ X , i.e., the population size remains

constant,
6A quick note on the details: First, in this chapter we commonly operate on multisets, meaning that two

individuals can be identical and still exists within the same population, for example. Furthermore,
the encoding of randomness requires us to either allow for the random number r that is passed to
all operators to be set to a different value in between calls or for each operator to not be a pure
function and instead be able to choose a different projection of parts of r (which we imagine to be
a really long number). We decided to remain agnostic to a specific model of randomness, so we just
carry the random parameter throughout the signature but do not further explain how to use it.

10

2.3. Describing Self-Adaptation

• that smut
1 is a random selection of a subset of the given population, with the size

of the subset being determined by applying a mutation rate to every individual,

• that spar
2 is called parent selection and that the size of its selection is determined by

applying a recombination rate with a bias towards individuals with higher fitness.

Further note that the model of evolutionary algorithms is not general enough to en-
compass all variants found in literature. Most prominently, we do not have in-place
recombination and not even in-place mutation, which means that any newly generated
individuals will be added to the population without directly kicking someone else out.
This means that we only need to make survivor selection ssur

1 elitist for the whole evolu-
tionary algorithm E to be elitist.7 Furthermore, we fixed two-parent recombination, the
independence of mutant offspring and recombination offspring and more minor proper-
ties of evolutionary algorithms that may be treated differently in literature. However,
Definition 6 is general enough that we can use it for all occurrences of evolutionary
algorithms in this thesis. For more details, again, see [33].
Furthermore, we provide a software package that implements evolutionary algorithms in
the shape of our formal framework in Python and is available to download.8 It was used
for the research presented in [26, 28, 29, 33, 35].

2.3. Describing Self-Adaptation

Adaptation in its own right has been a target of many fields of research and many
attempts at a formalization of the notion exist [48, 67, 66], both from an intensional and
an extensional perspective. Difficulty usually arises when we try do discern adaptive
behavior of a system from non-adaptive behavior as every single behavior might always
be simply hard-coded into the system and should then probably not be called adaptive
at all. Note that when we talk of “systems” and “behavior” in this context, we again
mean it in the most general way possible. Hölzl and Wirsing [48] give the following
definition, which already we repeat in [32, 37]:

Definition 7 (System [48]). Let I be a (finite or infinite) set, and let V = (Vi)i∈I be a
family of sets. A system of type V is a relation S of type V.

Definition 8 (Composition [32, 37]). Let S1 and S2 be systems of types V1 = (V1,i)i∈I1
and V2 = (V2,i)i∈I2, respectively. Let R(V) be the domain of all relations over V. A
combination operator ⊗ is a function such that S1 ⊗ S2 ∈ R(V) for some family of sets
V with V1,1, ..., V1,m, V2,1, ..., V2,n ∈ V. The application of a combination operator is called
composition. The arguments to a combination operator are called components.

7Elitism means that the best value of a population only gets better over time and makes some parts
of analyzing an evolutionary algorithm much easier. For a more in-depth discussion on elitism,
especially in the context of potentially varying fitness, please see [33].

8Please see github.com/thomasgabor/isola-evolib.

11

2. Foundations of Evolutionary Processes

Note that we are talking about arbitrary sets and relations over them as systems and we
just define that we can put them together to form new systems. Hölzl and Wirsing [48]
further assume that there is a space of predicates and that we can use these predicates
to make Boolean propositions about a system S. We write S |= γ if the predicate γ
resolves to true when applied to the system S.
We augment that model to include not only binary predicates, but also (potentially
real-valued) evaluation functions [32, 37].9 These evaluation functions are in fact target
functions if we assume that the system space V is the search space X of the target
function.
We can then add some more definitions to the framework, which then allow us to repeat
the definition for adaptation originally given by [48] for systems with target functions.
Please note that formally, environments are just systems.10 The distinction is purely
aesthetic.

Definition 9 (Adaptation Domain [32, 37]). Let S be a system. Let H be a set of
environments that can be combined with S using a combination operator ⊗. Let Γ be a
set of Boolean goals. Let F be a set of evaluation values and ≼ be a preorder on F . Let
Φ be a a set of evaluation functions with codomain F . An adaptation domain A is a set
A ⊆ H× Γ× Φ. S can adapt to A, written S ⊩ A iff for all (H, γ,φ) ∈ A it holds that
S ⊗H |= γ.

Definition 10 (Adaptation Space). Let H be a set of environments that can be combined
with S using a combination operator ⊗. Let Γ be set of goals. Let Φ be a a set of
evaluation functions. An adaptation space A is a set A ⊆ P(H,Γ,Φ).

Definition 11 (Optimality [32, 37]). Given two systems S and S ′ as well as an adap-
tation space A, S ′ is at least as optimal as S, written S ≼A S ′, iff for all (H, γ,φ) ∈ A
it holds that φ(S ⊗H) ≼ φ(S ′ ⊗H).

Definition 12 (Adaptation [32, 37]). Given two systems S and S ′, S ′ is at least as
adaptive as S with respect to optimization, written S ⊑∗ S ′ iff for all adaptation domains
A ∈ A it holds that S ⊩ A =⇒ S ′ ⊩ A and S ≼A S ′.

We can see that this notion of adaptation is relative, i.e., we can only compare two sys-
tems regarding their adaptivity but never retrieve an objective measurement. Further
note that the Definition 12 is purely extensional: More adaptation means more envi-
ronments where we can uphold the predicates and achieve at least the same evaluation
result. This might be achieved by means that, intuitively, we would in no way call
adaptive.
Nonetheless, we can use Definition 12 to define the more intuitive notion of adaptivity
as change over time.

9We already call these functions fitness function in [32, 37], but substitute the term here for better
notational consistency.

10Further note that we change the notation for environments for consistency with our above definitions
and slightly adjust the vocabulary used in Definitions 9–13 for the same reason.

12

2.3. Describing Self-Adaptation

Definition 13 (Adaptation Sequence [32, 37]). A series of |I| systems S = (Si)i∈I with
index set I with a preorder ≤ on the elements of I is called an adaptation sequence iff
for all i, j ∈ I it holds that i ≤ j =⇒ Si ⊑∗ Sj

We can now see where our two strains of definitions come together: An evolutionary
process that is elitist w.r.t. the target function t is an adaptation sequence for (at least)
adaptation domains with Γ = ∅ and Φ = {t}. We return to that connection in Chapter 5,
when we construct a design pattern from co-evolving adaptation sequences.
In [32, 37] we end up with a rather technical definition for self-adaptation as a special
case of an adaptation sequence:

Definition 14 (Self-Adaptation [32, 37]). A system S0 is called self-adaptive iff the
sequence (Si)i∈N,i<n for some n ∈ N with Si = S0 ⊗ Si−1 for 0 < i < n and some
combination operator ⊗ is an adaptation sequence.

Intuitively we can read that as a system that is able to adapt to its own current state;
or simply as a system that forms an evolutionary process (even when the circumstances
remain identical). This is a rather broad definition meant to encapsulate a variety of
different phenomena.
So what do we mean when we apply the notion “self-adaptive” to the concept of fitness
as we ask in the title of this thesis? We mean an evolutionary process with a fitness
that changes on its own accord, triggered perhaps by outside events but also by events
originating from within the evolutionary process only.

13

2. Foundations of Evolutionary Processes

14

3. Emergence of Fitness

[Νομίζει τὰς οὐσίας ...] στασιάζειν δὲ καὶ φέρεσθαι ἐν τῷ
κενῷ διά τε τὴν ἀνομοιότητα καὶ τὰς ἄλλας τὰς εἰρημένας
διαφοράς [...].
[Particles] quarrel and drift through empty space because of
their inhomogeneous form and their further mentioned
differences [of shape, magnitude, ...].

Democritus1

3.1. Neural Artificial Chemistry Systems

Let us back up a bit: In the previous chapter, we have given some formal definitions for
phenomena such as fitness, evolutionary algorithms, and adaptation. In this chapter we
return to a more rudimentary notion of an evolutionary process. Our main question is:
Would fitness still exist if we did not explicitly give a fitness function for an evolutionary
process? For biological evolution, the answer is clear: No one ever explicitly gave a
fitness function for this evolutionary process and still biology observes the fitness of
certain information patterns (individuals, behaviors, etc.) within evolution [13].
So what can we do with an evolutionary process without any given goals? What remains
is actually pretty close to a formal construct called artificial chemistry system. Although
most common definitions of that notion read a bit differently [16], we shall define it in
the context of the definitions made in Chapter 2. To this end, we first define two
evolutionary operators:

Live. This operator live : X ×R → X ∪{∅} generates an altered individual from a given
individual.

Meet. This operator meet : X ×X ×R → (X ∪ {∅})× (X ∪ {∅}) takes two individuals
and returns two (possibly) altered individuals.

1Here, Simplicius of Cilicia describes Democritus’s philosophy in his commentary of Aristotle’s work
“Περὶ οὐρανοῦ” (“On the Heavens”). Again the indirect speech is removed in translation and some
liberty is taken to add information from the context of a rather lengthy description of atomic objects,
which can be naturally equated with particles when talking about artificial chemistry.

15

3. Emergence of Fitness

For the sake of simplicity, we make a few choices here that are peculiar for artificial
chemistry systems:

• At most two individuals can be involved in the application of an evolutionary
operator.2

• Since these operators cannot produce more individuals than they consume, the
amount of individuals in a system is limited to the amount we started with. How-
ever, individuals may die out when either operator returns an empty value ∅ in
place of an individual. The operator might instead also be defined to simply gen-
erate a new random particle and never return ∅.

We further provide a predicate doneX : X → B so that for any individual x in the
population X, when x is involved as an argument in the application of an evolutionary
operator, it holds that done(x) is true and if x has not been used in an evolutionary
operator, done(x) is false. We use this predicate to model change in individuals via
adding new individuals and having them replace the old.3 Obviously, we need to “reset”
the predicate when a new population is generated (i.e., after one computation of the
evolutionary function Xt+1 = E(Xt) at time t). Furthermore, we provide a fixed selection
function sdone

1 (X,_,_) = {x ∈ X | ¬doneX(x)}.

Definition 15 (Artificial Chemistry System, Soup). Let slive
1 , smeet

2 be suitable selection
functions. An evolutionary process E = (X , E, t, 〈Xi〉i≤g) is called an artificial chemistry
system or (synonymously) a soup iff the evolutionary function E is of the form

E(X) =
"

r∈R

sdone
1

#
X ∪ liver〈slive

1 (X, E , r)〉 ∪ meetr〈smeet
2 (X, E , r)〉

$
.

Even though far more intricate artificial chemistry system can be defined, we further
assume for any artificial chemistry system E we consider in this thesis (unless stated
otherwise)

• that slive
1 selects all individuals for automatic change over time (i.e., “growing” or

“aging”), i.e., slive
1 (X, E ,_) = X.

• that smeet
2 selects random pairs of individuals, i.e., that any individual has the same

chance of meeting any other individual, and that chance is called meeting rate.
2In the common wording for artificial chemistry systems, this means we allow at most binary interaction

rules that also return at most two particles.
3This is usually implemented by adding a unique ID to individuals and removing all identical IDs

from the population multi-set when adding an new individual. We could also reserve a certain sub-
space of X for “deprecated” individuals and simply move the arguments of operators there during
application. Practically, this results in the same behavior. We chose the following notation for its
similarities to Definition 6.

16

3.1. Neural Artificial Chemistry Systems

In literature, lots of different types of individuals and their respective interactions (i.e.,
evolutionary operators) have been considered, ranging from simple bitstrings (X = Bn)
to complex representations of algorithms (where X might be the space of all state au-
tomata or Turing machines [16, 2]). We consider the findings of Fontana and Buss [24]
to be most interesting for the emergence of goals in evolution: They use individuals
that are arbitrary λ-expressions in the λ-calculus [43]; one step of β-reduction and the
application operation “__” for two λ-expressions then lend themselves naturally for live
and meet, respectively. We will get into their results in a bit more detail in the following
section.
For this thesis, we additionally examine the use of neural networks as individuals in
an artificial chemistry system. Neural networks are widely used as universal function
approximators and can thus also possibly encode rather complex behavior for particles
in an artificial chemistry system. We suggest that in future work neural network soups
might be integrated with machine learning approaches for which neural networks are vital
nowadays. For a full introduction to neural networks, we refer to the ample literature
on that topic [20, 55] or to the formally rather complete definition we give in [31].
For now, we assume that a neural network encodes a function N : Rp → Rq for input
length p and output length q via a vector of r weights N ∈ Rr. By the construction
of neural networks, it holds that r > p (and usually r ≫ p if the networks perform a
complex task). Thus, neural networks cannot easily process other neural networks of the
same structure and size. From an analogous argument it follows that neural networks
also cannot produce other neural networks of the same structure and size. We present
workarounds for that in [31] so that we can write O = N ⊳M to mean that O is the
neural network that is generated as the output of the neural network N when given the
neural network M as input even where |M| = |N | = |O|, i.e., the neural networks M,
N , and O share the same structure and only differ in the value of their weights. In [31]
we further provide means that allow us to write O = N ⇝M to mean that O is the
neural network that is generated by training the neural network M to exactly reproduce
the weights of a neural network N when given said weights as input (with one step of
training each).
This framework now allows us to define two evolutionary operators as instances of live
and meet designed specifically for neural networks as individuals, i.e., N ∈ X ⊆ X .4

Self-Train. This operator is an instance of live : X × R → X ∪ {∅} and introduces a
hyperparameter A ∈ N to configure the intensity of its application. It is defined
as

self-trainr(N) = N ⇝N ... ⇝N% &' (
A times

.

4In the following definitions and more, we will neglect converting a network’s functional representation
N to its weight representation N and vice versa as it is always trivial in the cases we discuss, where
network structure is never altered. We still keep both notations for consistency with [31].

17

3. Emergence of Fitness

Attack. This operator is an instance of meet : X ×X ×R → (X ∪ {∅})× (X ∪ {∅}). It
is defined as

attackr(M,N) = N ⊳M.

As we show in [31], these operators allow us to instantiate artificial chemistry systems
that exert interesting properties. We focus on our main observation in the following
section.

3.2. Self-Replication as an Emergent Goal

As we have shown with Definition 15, artificial chemistry systems can be regarded as
an evolutionary process in accordance with Definition 3; yet one slot remains empty,
i.e., we have never explicitly specified any target function. Furthermore, none of our
evolutionary operators and nothing in the evolutionary function E incorporates any kind
of fitness measurement. Still it is clear that (only going by the evolutionary operators)
some individuals are more likely to survive than others. Let us look at a few cases.

Real Number Soup. We start with a clear cut example. We consider an artificial
chemistry system (or shorter: soup) R with a population made up of real numbers
between −1 and 1, i.e., X = [−1; 1] ⊆ R, initially sampled at random (uniformly). We
define a clipped multiplication operator ⊡ : R× R → R as

x⊡ y =

)
*+

*,

−1 if x · y < −1

1 if x · y > 1

x · y otherwise.
(3.1)

We then use liver(x) = x ⊡ (1 + y) where y is random uniform sampled from X and
meetr(x, y) = x⊡y. We quickly see that the population of this evolutionary process R is
approaching 0 over time: There might be some movements away from 0 during live and
even jumps over 0 when a positive and a negative number meet, but in general (given
the rest of the evolutionary function is defined somewhat reasonably) the population
will converge rather quickly to this trivial goal. Furthermore, once arrived at near 0, the
effects of the evolutionary operators diminish completely; so there really is no escape.
This example is, of course, rather trivial but shows that a goal for the process has
emerged solely from the employed operators, even though the operators are applied
fully randomly. In this case, it is a property of multiplication that comes through and
defines the overall target that the evolutionary process will (most likely) end up at.

λ-Expression Soup. Fontana and Buss [22, 23] provide an example where the evo-
lutionary process’s implicit target has a much more real computational meaning. As
briefly mentioned earlier, they describe a soup L where the search space X is the space

18

3.2. Self-Replication as an Emergent Goal

of all valid λ-expressions in normal form. Thus, our population might be made up of
individuals such as (λx. x) or (λx. (λy. y x)). In this case we make no use of live
and define meet(x, y) = (x, x y), i.e., when two particles meet one of them becomes
the λ-application of the two.5 Since the search space is restricted to normal form λ-
expressions, we need to apply β-reduction to the result of each operation.6 Without
further constraints and conditions, Fontana and Buss observe the emergence and dom-
inance of “single self-copying functions or ensembles of hypercyclically coupled copying
functions’ [22].7 The most basic example of such functions is (λx. x) but they also find
more complex structures [23]. Again, these structures arise naturally without us steering
the evolution using fitness or biased selection.
Of course, the structures that arise are not very random at all. Self-copying functions
like (λx. x) form a fixpoint of the meet operator:8

Definition 16 (Fixpoint). Let x ∈ X be an individual of an artificial chemistry system
E . The individual x is called a fixpoint of E iff meet(x, x) = (x, x).

We can easily verify that

meet((λx. x), (λx. x)) = ((λx. x), (λx. x) (λx. x)) = ((λx. x), (λx. x)) (3.2)

indeed. We can thus again see that the evolutionary operators implicitly define a goal
of the evolutionary process without any additional fitness. In this case, the goal points
towards self-copying. Talking about information patterns Dawkins [12] also refers to
that kind of behavior as self-replication.

Neural Network Soup. We construct a neural network soup E for neural networks of
a given architecture with r weights. We randomly generate individuals from the search
space X = Rr. We use the operators self-train (an instance of live) and the attack
(an instance of meet) as defined in Section 3.1. In [31] we observe that the self-train
operator has a stabilizing effect on the particles.9 Initially, the attack operator can cause

5Fontana and Buss [22, 23] do not directly eliminate one of the particles involved in meet but simply
add the result of the meet operator to the population and then perform random selection to reduce
the population to its original size in between generations. Since the operands of meet are chosen
fully at random as well, we expect no difference between these behaviors.

6Again, Fontana and Buss [22, 23] simply choose a finite horizon for the amount of steps of β-reduction
and discard every particle beyond that for ease of computation.

7They cite [19] for the meaning of “hypercycle” here.
8This notion of fixpoint for the meet operator, i.e., effectively a fixpoint for λ-application, must not be

confused with the whole theory of fixpoints of arbitrary functions in λ-calculus, which are fixpoints
for β-reduction. The most famous such fixpoint for β-reduction is probably (λx. x x) (λx. x x),
which reduces to itself.

9Intuitively, that training performed here would clearly steer the networks towards learning the identity
function if they would be trained with inputs across the input space. In our instance they are only
trained with the one configuration of weights they just happen to have themselves. We find it curious
that the operator self-train still has that effect.

19

3. Emergence of Fitness

great disturbances as it can completely rewrite the “attacked” network. To observe the
emergence of stability, we need to relax Definition 16 a little to accommodate real-valued
function representations such as neural networks:

Definition 17 (ε-Fixpoint [31]). Given a neural network N with weights N = 〈vi〉0≤i<|N |.
Let ε ∈ R be the error margin of the fixpoint property. Let N ′ = N ⊳ N be the self-
application of N resulting in weights N ′ = 〈wi〉0≤i<|N ′|. We call N an ε-fixpoint iff for
all i it holds that |wi − vi| < ε.

Effectively, we will never be able to reproduce the exact same weights for a network
since we are working in continuous space, but we can expect to get as close as we want.
Our experiments in [31] further show that a soup as described above does indeed tend
to produce ε-fixpoints. Perhaps due to the continuous nature of the weights, a vast
amount of such ε-fixpoints can be found throughout the search space. We cannot (yet)
rank them in any meaningful way as they all have the same complexity (because the
network architecture is fixed). Due to an important observation made by Schoenholz
et al. [70], the null network N = 〈0〉0≤i<|N | is much easier to find than other fixpoints
starting from randomly initialized networks. However, the addition of self-train allows
particles to snap into non-trivial fixpoints that may be closer to their initial position in
the search space.
Figure 3.1 represents an attempt to visualize the behavior of an entire soup. From the
initial population we see some particles follow a short smooth curve and then remain
pretty constant for longer periods of times. These are typically ε-fixpoints reached after
some generations of self-train. When particles perform larger jumps within the state
space, they have been involved in an attack operation. We can see in Figure 3.1, which
shows a typical run of our neural soup setup, that particles tend to cluster together
after an attack; we clearly see some kind of goal area, towards where the particle soup
is heading. However, note that where the soup will thicken is different between runs
(and in some runs, there will not be any tendency to form clusters at all). We can thus
conclude that the placement of the perceived goal area is not only implicitly given by the
operators but also by dynamic properties of the soup, including its random initialization
and the random choice of operator executions.
In the course of this chapter, we have thus not only seen that implicit goals may exist in
evolutionary processes even when no explicit goals are specified, but we have also seen
that these implicit goals may be self-adaptive in in every meaning of the word (including
Definition 14).

20

3.2. Self-Replication as an Emergent Goal

Figure 3.1.: Run of one soup consisting of 20 neural networks. The 20 neural networks
N : R4 → R with two hidden layers with two cells each were initialized
randomly and then evolved for 100 epochs. Per epoch, every network had
a chance of 0.1 to attack another network and was subjected to 30 itera-
tions of self-train. This setup allowed for emergent behavior of the network
forming a cluster at a region of all non-zero fixpoints. The figure shows
two perspectives on the same three-dimensional graph. The 20 weights in
total per network were visualized in a two-dimensional space based on the
transformed bases X and Y derived via principle component analysis (PCA).
Image taken from [31].

21

3. Emergence of Fitness

22

4. The Ideal Fitness

Φύσις κρύπτεσθαι φιλεῖ.
Nature likes to remain hidden.

Heraclitus1

4.1. Diversity-Aware Fitness

In Chapter 3 we have seen that even without any explicitly given fitness function, in-
dividuals can show properties that resemble fitness. In this chapter we show that such
implicit goals persist even when we give an explicit fitness function as well. As evolution-
ary processes with a given fitness we will examine evolutionary algorithms as described
in Definition 6.
In simpler instances of evolutionary algorithms the overall target of the evolutionary
process is directly passed on to the evolutionary process itself by the means of the
fitness function, i.e., we use a fitness function f(x,_,_) = t(x) given a target function
t. And generally speaking, these instances work towards optimizing for that given target
function t. So where is any room for additional implicit goals?
A vast body of literature discusses tweaks and variants of evolutionary algorithms.2 In
some way or the other, these always customize the evolutionary algorithm for a specific
class of target functions, even when that class cannot be accurately described (and is
rather implicitly given by the very nature of the modifications). This follows from the
No Free Lunch Theorem [87]. We can conjecture that adjustments to an evolutionary
algorithm’s operators, search space, or other components improve the optimization’s
results iff the implicit goals they introduce match the explicit goal better. For example,
if we transform the search space so that we can rule out a large amount of undesirable
solutions for a given target function t, we may be able to improve the evolutionary
algorithm’s performance for target function t at the expense of deteriorating performance
when we actually do want to find said solutions.
However, by using evolutionary algorithms in the first place, we are already committing
to a certain kind of specialization over arbitrary search algorithms (for which No Free

1This quote by Heraclitus is found in Themistius’s Orationes (Section 5, 69b) as part of a larger
analysis.

2Since large parts of this thesis’s bibliography already fall into that category, we refrain from citing
any specific works here.

23

4. The Ideal Fitness

Lunch holds) and thus there are likely to be implicit goals that all evolutionary algo-
rithms share. When using evolutionary algorithms, we assume that the fitness landscape
(i.e., the projection f〈X 〉 of the fitness or target function over the whole search space)
has some sense of locality, i.e. there does exist a similarity relation ∼ so that for all
x, x′ ∈ X it often holds that x ∼ x′ =⇒ f(x) ∼ f(x′).3 If we cannot find such a
relation ∼, evolutionary algorithms are probably the wrong tool for this fitness or target
function.4

Exploration vs. Exploitation. The existence of locality allows for two major strategies
when looking for new solutions: Exploration is the strategy of covering as much area of
the search space as possible and looking for new solutions in areas where no individuals
yet exist. Exploitation is the strategy of looking for the best possible solution that can
be easily reached from known individuals, i.e., trying to not overlook optima in areas
that already have been covered to some extent. Like all metaheuristic search algorithms,
evolutionary algorithms would like to do both strategies to their full extent but due to
resource constraints need to decide on which strategy to focus on, giving rise to the
exploration/exploitation dilemma. Generally speaking, it is assumed that a “healthy”
search process starts with a focus on explorative operations (random initialization, high
mutation) and then gradually shifts towards more exploitative operations (high selection
pressure, greedy local search) [10].
A lot of adjustments to evolutionary algorithms focus on finding the right balance be-
tween exploration and exploitation. We can implement some adjustments on a purely
structural level, but we argue that we see their effect more clearly when we implement
them as part of the fitness function. For example: If we want a more random set of sur-
vivors selected for the next generation (thus reducing the selection pressure), we might
alter the selection function ssur to draw a more random set or we might adjust the fitness
function f ′(x, E , r) =def f(x, E , r) ⊞ v(r) where ⊞ is the clipped addition5 on [0; 1] and
v(r) might return a random value from [−0.1; 0.1].

The Case for Diversity. There exist a variety of ways do define diversity within the
context of an evolutionary algorithm; most of these ways are summed up by Squillero
and Tonda [76]. Intuitively, diversity describes how spread out the population is within

3The usage of “often” in this formulation is meant to circumvent any probabilistic formulation like the
more formal P(f(x) ∼ f(x′) | x ∼ x′) > P(f(x) ∕∼ f(x′) | x ∼ x′). It is one of the strong points of
stochastic optimization in general that assumptions on the problem need not hold strictly but only
approximately.

4Prominent examples of problems that preclude themselves from evolutionary optimization might be
hash functions, which are deliberately designed to violate said property of locality. We should expect
an evolutionary algorithm trying to solve a hash function to actually perform worse than random
search as it will waste time trying to build up schemas [79] that do not exist in that target function.
Luckily, many practical optimization problems do have some sense of locality.

5We can define clipped addition analogously to clipped multiplication, for which we gave a full defini-
tion in Equation 3.1 (Section 3.2).

24

4.1. Diversity-Aware Fitness

the search space. When we define a diversity metric on the population as a whole, we
can then use it to steer the evolutionary process towards exploration or exploitation via,
for example, adjusting mutation rates [83]. However, there also are measurements for
the diversity of a single individual (against the backdrop of the rest of the population,
of course). These again can be averaged and used on the whole population, but they
can also used to affect the evolution of specific individuals, which is most easily done
by building diversity into their fitness. Note that a diversity metric between two single
individuals can act as similarity relation ∼ on individuals, which we discussed earlier in
this section.

Definition 18 (Diversity-Aware Fitness). Let X be a state space. Let t : X → [0; 1] be
the target function of an evolutionary process. Let d : X × E × R → [0; 1] be a mea-
surement for the diversity of an individual within a given evolutionary process (possibly
based on some random effect). Let ζ ∈ [0; 1] be the diversity weight. A fitness function
f+ : X × E×R → [0; 1] is called a diversity-aware fitness function iff it is of the form

f+(x, E , r) = (1− ζ) · t(x) + ζ · d(x, E , r).

Of course, we could augment any arbitrary fitness function with diversity this way, but
for simplicity we focus on only combining the objective target function with diversity
measurements. It is most important to point out that any diversity-aware fitness f+ is
self-adaptive (cf. Definition 14) as the population changes during evolution and so does
(potentially) every single individual’s fitness.6 Also note that vast amount of possibilities
to define a diversity measurement d exists and the diversity weight ζ adds another
hyperparameter to the algorithm; we discuss both of these issues in [28], where we
compare various means of achieving diversity for a few benchmark problems.
When we use diversity-aware algorithms as we did in the studies in [26, 29, 28], we can
observe the rather curious phenomenon we brought up in Chapter 1: Using an augmented
(diversity-aware, e.g.) fitness f+ instead of using the target function t directly as fitness
we can actually end up with better results with respect to t [26, 29, 28, 35]. Effectively,
adjusting our fitness function away from t ends up making us optimize for t better. In
Section 4.2 we argue that this happens because the evolutionary algorithm approximates
an implicitly defined inherent goal. For now, we rejoice that such relatively easy methods
exist to improve our optimization process.

Manhattan Diversity. We would like to point out a seminal result by Wineberg and
Oppacher [85]: “In this paper we have shown that all [diversity measures] are restate-
ments or slight variants of the basic sum of the distances between all possible pairs of the
elements in a system.” Thus, we can with some confidence use a rather simple pairwise
distance for d and still not miss out on much. Our experimental studies (mainly in [28],

6This also implies that we transform any target function t into a dynamic optimization problem at
the level of the fitness function f+. We will discuss some implications of that shortly.

25

4. The Ideal Fitness

Figure 4.1.: Evaluation results for diversity-aware evolutionary algorithms using various
diversity measurements. They solve the Pathfinding problem, which we in-
troduced to specifically test for evolutionary algorithms that favor diversity.
For each generation, we plot the current population’s best objective value.
Averaged over 20 independent runs. Semi-transparent lines show plus/minus
one standard deviation. Image taken from [28].

cf. Figure 4.1) point into the same direction for using the pairwise Manhattan distance
between individuals, i.e., d(x, E , r) =

-
x′∈X Manhattan(x, x′) where X is the latest

population of E .7 We have further shown that we can approximate this measurement
efficiently by choosing a random subset of the latest population for X in the previous
formula [26, 29, 28].

Genealogical Diversity. Nonetheless, we still introduce a new method for measuring
diversity in [26]: The main advantage of genealogical diversity is not in its results (as
we discussed in the previous paragraph) but in fact that it does not require any metric
to be defined on the search space X . Instead, we augment individuals with a sequence
of bits that is initialized at random and thereon subject to mutation and recombination
but not the fitness calculation. A simple Hamming distance on that bit string is then
a sufficient approximation for the distance between two individuals in the search space

7Please note that Wineberg and Oppacher [85] explicitly mention only the Euclidean distance for real-
valued vectors. Due to the close similarity between Manhattan and Euclidean distance (compared
to other diversity measures tested) and our applications in non-Euclidean space, we opt for the
Manhattan distance here.

26

4.2. Productive Fitness

X .8 Of course, completely unrelated individuals might end up with the same bit string
by chance, but that is enormously improbable for sufficiently large bitstrings. Instead,
individuals with similar bit strings have probably had a common ancestor and thus
probably tend to be more similar in all their properties. Figure 4.1 illustrates that despite
all approximations involved genealogical distance can work as a diversity measurement
quite like Manhattan distance.

Diversity and Dynamic Optimization. As we already mentioned briefly, incorporat-
ing a population-dependent diversity measurement into the fitness function turns the
evolutionary process into a dynamic optimization process as the fitness f(x, E , r) will
change over time even for a fixed x ∈ X . What sounds like an additional complication at
first may actually be a more natural way to describe evolutionary goals, as we shall ex-
plore in the following section. For the remainder of this section, we would like to briefly
point to the reverse phenomenon: What does diversity do when we do face an inherently
dynamic optimization problem, i.e., when the target function t does also depend on the
current state of the evolutionary process E .9 In [29] we consider optimization prob-
lems where the target function changes halfway through optimization and we observe a
phenomenon shown in Figure 4.2: For a simple optimization problem, diversity-aware
evolutionary algorithms optimize for the best result a bit slower, but when the change
in the target function occurs, they lose a lot less fitness as their populations are much
less specialized and still maintain more alternative solutions. Especially for applications
that depend on a certain robustness of the optimization process in the face of changing
goals, maintaining diversity brings an additional benefit.

4.2. Productive Fitness

As we have seen in the previous section that using a different fitness f ∕= t might actually
help to optimize the target function t, there is but one pressing follow-up question:
If all we want to do is optimize for t, which fitness function should we then choose?
Incidentally, we can trace the genealogical relations to give an inductive answer: At
the very last generation, we should just use the target function t as fitness. The last
population Xg contains all results we are going to get, so we might as well choose the
best individual x∗ = argmaxx∈Xg

t(x). For the second-to-last population, we should
then assign a fitness that corresponds to the best result we are going to get in the last

8The idea is to approximate the genealogical relations between individuals just like biology traces the
genealogy of species from matches in (mostly unused) genes in their DNA. This works even better
when the considered genes have not been put under much selection pressure as they then retain the
history of the accumulated mutations.

9Our definitions (mainly Definitions 2 and 3) do not allow for that, strictly speaking. We chose that
form because we only discuss dynamic target functions in this short paragraph and want to spare
the boilerplate for the rest of this thesis. We feel the necessary adjustment is rather trivial.

27

4. The Ideal Fitness

Figure 4.2.: Best (i.e., lowest-valued) fitness per current generation for a non-diversity-
aware evolutionary algorithm (black) and diversity-aware evolutionary algo-
rithms using Hamming (blue) und genealogical (red) diversity. They solve
the Factory problem we introduced to test for phenomena of dynamic op-
timization. Results are averaged over 1000 runs. While the standard evo-
lutionary algorithm (black) shows a steep spike at the time of the target
function change (after 50 generations), the others (blue and red) manage
to mitigate the negative amplitude to considerable extent. Image taken
from [29].

generation. In a way, all we need to make sure in the second-to-last generation is that
the ancestor(s) of the future best individual x∗ survive. If we are just so optimistic,
we might thus assign as fitness to each individual the best fitness its children will be
able to contribute to the evolutionary process. Thus, for the second-to-last generation’s
population Xg−1 we might use a fitness fg−1(x, Eg−1, r) = maxx∈X′

g
t(x) where X ′

g is
the population that evolves from Xg−1 (i.e., the population of Eg−1) when the given
individual x actually participates in that population.10 We can then continue this chain
of thinking until we reach the beginning of the evolution. Simply put, we want to value
10Of course, evolutionary processes are usually stochastic in nature so there usually will not be a single

definite follow-up population “if x survives”. Instead we will be facing a multitude of populations
that may include x and may or may not have used various evolutionary operators on x. If we are
optimistic, we might want to “max” over these possibilities to gain a fitness estimate; we might also
choose another path and “avg” over all possible successor population, if we can approximate their
probability distribution in any way.

28

4.2. Productive Fitness

the fitness of individuals throughout an evolutionary algorithm by the target value that
the evolution will achieve because of them.
We call that fitness estimate with respect to future effects productive fitness (as it con-
siders the individuals that will be produced in the future) and it can be formally defined
as follows:

Definition 19 (Descendants [33, 35]). Given an individual x in the population of gener-
ation i, x ∈ Xi, of an evolutionary process E . All individuals x′ ∈ Xi+1 so that x′ resulted
from x via a mutation operator, i.e., x′ = mutr(x) for some r ∈ R, or a recombination
operator with any other parent, i.e., there exists y ∈ Xi so that x′ = recr(x, y) for some
r ∈ R, are called direct descendants of x. Further given a series of populations (Xi)0<i<g

we define the set of all descendants Dx as the transitive hull on all direct descendants of
x.

Definition 20 (Productive Fitness [33, 35]). Given an individual x in the population
of generation i, x ∈ Xi, of an evolutionary process E . Let Dx ⊆ X be the set of all de-
scendants from x. The productive fitness after n generations or optimistic n-productive
fitness φ+

n is the average achieved target value of x’s descendants n generations later,
written with ω = 0 for maximizing and ω = 1 for minimizing processes

φ+
n (x) =

.
avgx′∈Dx∩Xi+n

t(x′) if Dx ∩Xi+n ∕= ∅
ω otherwise.

(4.1)

Definition 21 (Final Productive Fitness [33]). Given an individual x in the population
of generation i, x ∈ Xi, of an evolutionary process E with g generations in total. The
final productive fitness of x is the fitness of its descendants in the final generation, i.e.,

φ†(x) = φ+
g−i(x). (4.2)

In [33] we sketch a formal framework that allows us to argue that the final productive
fitness for a given target function t is indeed the ideal fitness to use for the evolutionary
algorithm. Intuitively. productive fitness can be understood as a different spin on
the exploration/exploitation dilemma: Early in evolution, when exploration is favored,
we allow for great deviations between the fitness of x and the target value of x, i.e.,
|φ†(x, E , r)− t(x)| ≫ 0. Later in evolution, the fitness more and more approximates the
target function until in the final generation φ†(x, E , r) = t(x).
So if we know what fitness to go for, why do we still call it an exploration/exploitation
dilemma? Actually computing the productive fitness involves an aggregation over all
possible follow-up generations for each generation we need to look ahead. Obviously,
the necessary amount of computation grows exponentially and is much too large for
us to actually estimate productive fitness during a run of evolution. So far productive
fitness is but an ideal target and a theoretical tool of analysis.
However, in [35] we also show a computable a posteriori approximation for productive
fitness: After a complete run of an evolutionary algorithm (obviously using a different

29

4. The Ideal Fitness

fitness function) has finished, we can go back and approximate the productive fitness we
would have assigned to all individuals. This is still an approximation as in generation i
we do not consider all possible future evolution paths but only the one future evolution
path that did in fact happen, i.e., Xi+1, ..., Xg. However, since the realized evolution path
is basically drawn at random from the set of all possible evolution paths, we argue that
it is viable to approximate the expectation value of all possible paths via the average of
the realized ones, at least when performing lots of runs of evolution. Nonetheless, using
an approximation of the future via an a posteriori look at what was to come is the only
(computationally) viable option anyway.
Fortunately, the results of said a posterior approximation for various evolutionary algo-
rithms are quite intriguing: When we compare evolutionary algorithms with different
fitness functions, we find that those algorithms have a better overall performance whose
fitness throughout the evolution approximates the final productive fitness better. This
provides some empirical evidence that adjustments to the fitness functions might be
helpful exactly when they bring the fitness values closer to the final productive fitness
φ†. Figure 4.3 shows some of these results: When we instantiate evolutionary processes
to optimize the standard Schwefel benchmark function [15], we can see that Manhattan-
distance-based diversity-aware evolution has a slight edge with respect to to the target
function t (Fig. 4.3a). We can also confirm that the fitness f used during evolution
deviates from t quite a bit for the diversity-aware evolution (Fig. 4.3b). When we
compute our a posteriori approximation of final productive fitness φ†, we can see the
eventual advantage shine through even in the beginning of evolution (Fig. 4.3c). Now
we compute the difference between the approximated final productive fitness φ† and the
fitness function f that was actually used in evolution and see a rather constant difference
value throughout evolution for the diversity-aware case (Fig. 4.3d), implying that the
diversity-aware evolution matches the final productive fitness much more closely than
the others, including the naïve approach with f(x,_,_) = t(x).
We should note that final productive fitness is again inherently a dynamic metric, thus
transforming any target function t into a dynamic optimization problem. We can see that
final productive fitness includes the meta-optimization problem of when to use which
parameters of the search (when to focus on exploration or exploitation, e.g.) into the
fitness function. This shows us that evolutionary algorithms behave in a self-adaptive
way even when they are solving a static optimization problem.

30

4.2. Productive Fitness

0 50 100 150 200 250 300 350 400
time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

be
st

 fi
tn

es
s

(a) Best objective fitness t.

0 50 100 150 200 250 300 350 400
time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

au
gm

en
te

d
fit

ne
ss

(b) Adjusted fitness of the objectively best
(according to t) individual per genera-
tion.

0 50 100 150 200 250 300 350 400
time

0.4

0.5

0.6

0.7

0.8

0.9

fp
f

(c) Best final productive fitness φ†.

0 50 100 150 200 250 300 350 400
time

0.3

0.4

0.5

0.6

0.7

0.8

|a
f -

 fp
f|

(d) Average per-individual difference be-
tween adjusted fitness f ′ and final pro-
ductive fitness φ†.

Figure 4.3.: Evolution for the classic Schwefel problem. Standard evolutionary process
using f(x, E , r) = t(x) shown in black, diversity-aware evolutionary process
using a diversity-aware fitness f(x, E , r) = 0.5 · t(x) + 0.5 · d(x,X) with
pairwise Manhattan distance d shown in blue. Inherited fitness (purple)
and fitness sharing (orange) shown for comparison. Results averaged over 20
independent runs, standard deviation is shown in transparent lines. Images
taken from [35].

31

4. The Ideal Fitness

32

5. Co-Evolutionary Adaptation of
Fitness

Εἰδέναι δὲ χρὴ τὸν πόλεμον ἐόντα ξυνόν, καὶ δίκην ἔριν, καὶ
γινόμενα πάντα κατ΄ ἔριν καὶ χρεών.
One must know that war is a common thing and that the
law is conflict and that everything evolves through conflict
necessarily.

Heraclitus1

5.1. Scenario Co-Evolution for Reinforcement
Learning

In the previous chapter we have discussed that fitness functions for evolutionary algo-
rithms should ideally approximate the final productive fitness. We gave a first example
where diversity-aware fitness functions provide such an approximation to a relatively
good extent. However, we have no claim that diversity-aware fitness is the best feasible
approximation of productive fitness or that it is even good for all settings of evolutionary
processes. So we end up in a situation where we are looking for an efficient and close
approximation of an ideal goal. Sounds like an optimization problem!

Meta-Optimization and Memetic Algorithms. There exist a lot of approaches that
consist of adapting parts of the evolutionary algorithm while the algorithm itself is run-
ning and solving for t. Simple approaches might automatically determine the mutation
rate αmut by simply adding it to the genome, subjecting it to mutation and recombi-
nation but exempting it from the fitness evaluation [59]. This helps us treat the ex-
ploration/exploitation dilemma automatically (to some extent) and reduce the number
of hyperparameters we need to account for manually. Because we are optimizing the
hyperparameter while we are optimizing the target function, we call the former meta-
optimization. More complex approaches exist like memetic algorithms [61]: Although

1This quote by Heraclitus survived via a mention in Celsus’s “Λόγος Ἀληθής” (“The True Word”),
which in turn only survived via the citations made by Origen of Alexandria in his answer “Κατὰ
Κέλσου” (“Against Celsus”).

33

5. Co-Evolutionary Adaptation of Fitness

somewhat confusingly named2, they just perform meta-optimization on more than mere
reals but are able to automatically adjust the whole behavior of the operators or larger
parts of the evolutionary algorithm. To perform these adjustments, they often construct
a second evolutionary process. This co-evolutionary process is rather loosely coupled
with the main evolutionary process optimizing individuals for t but of course can steer
its way throughout optimization.

Definition 22 (Co-Evolutionary Process). Let X ,Y be a state spaces. Let G : P(X ×
Y) → P(P(X ×Y)) be the joint evolutionary function. Let E : P(X) → P(P(X)) be an
and F : P(Y) → P(P(Y)) be evolutionary functions so that G((X, Y)) = (E(X), F (Y)).
Let v : X × Y → [0; 1] be the joint target function. Let sE1 and sF1 be suitable selection
functions. Let t : X → [0; 1] be a target function of the form t(x) = v(x, s(Y,F , r))
for given Y ⊆ Y ,F ∈ E, r ∈ R and u : Y → [0; 1] be a target function of the form
u(y) = h(v(s(X, E , r), y)) with h : [0; 1] → [0; 1] for given X ⊆ X , E ∈ E, r ∈ R. An
evolutionary process G = (X × Y , G, v, 〈Zi〉i≤g) is called a co-evolutionary process iff
E = (X,E, t, 〈Xi〉i≤g) and F = (Y, F, u, 〈Yi〉i≤g) are evolutionary processes.

With this rather lengthy definition we describe a setup where two evolutionary processes
E and F can (for each evaluation of their respective target functions t and u) select an
individual from the other evolutionary process to call a joint target function v. Together
they form a co-evolutionary process G. Note that u calls a transformative function h: For
h(w) = w we call G cooperative co-evolutionary, for h(w) = 1−w we call G competitive
co-evolutionary. All co-evolutionary processes have self-adaptive fitness as the value
of the target functions t and u can change depending solely on the other evolutionary
process.3

As discussed, various instances of co-evolutionary processes for two (or more) evolution-
ary algorithms exist. However, the framework seems more general and in [32, 36, 37] we
have shown that it can also be applied to more hybrid cases: We used a reinforcement
learning agent that (competitively) co-evolved with an evolutionary algorithm.

Reinforcement Learning. Issues like the exploration/exploitation dilemma supersede
the field of evolutionary algorithms; in this thesis we consider reinforcement learning as

2As we mentioned briefly in the Introduction (Chapter 1), the term “meme” was originally conceived
by Dawkins [12] as an example for an existing replicator that is not RNA/DNA-based. He thus
considered a meme as the unit of cultural evolution and gave rise to a small field of research on
that idea [6, 14] as well as the commonly used name for funny pictures and sayings on the internet,
“internet memes” [4]. Memetic algorithms are named as they are to show that they employ a second
replicator, i.e., a second intertwined evolutionary process, just like humans are subject to both
biological and cultural evolution. However, they have no connection to any cultural aspects or
imitation learning that are substantial parts of the definition of memes.

3This implies that both E and F have adaptive fitness with respect to their environment consisting of
the other process respectively. Put together, the co-evolutionary process G has the same adaptiveness
with respect to what is now its own components and thus features self-adaptive fitness.

34

5.1. Scenario Co-Evolution for Reinforcement Learning

a central representative of the current research in artificial intelligence. For a more in-
depth introduction to reinforcement learning we refer to the respective section in [36] or
directly to standard literature [77]. In [37] we also provide a formal integration of stochas-
tic gradient and other methods commonly used in state-of-the-art reinforcement learning
into our notion of adaptive processes. Within the formal framework we described until
now, we can easily write a process of reinforcement learning as an evolutionary process4

with a population size of |X| = 1 over a search space X = Π where each π ∈ Π is called
a policy and is some representation of a function π : O → A from a space of observations
O to actions A. Usually, this representation is given as weights of a neural network (that
is used within a fixed surrounding function). The problem for a reinforcement learning
agent is given as an accumulated reward function R : Π×S → [0; 1] that (at some level
of abstraction5) assigns a total reward R ∈ [0; 1] to each policy π ∈ Π and each initial
configuration s ∈ S of the agent’s environment. As we assume that all of these initial
configurations are equally likely for the agent to find itself in, the target function of a
reinforcement learning process commonly looks like this:

t(π) =
1

|T | ·
/

s∈T

R(π, s) (5.1)

Here, T ⊆ S is the test set also called a set of scenarios, i.e., a selection of initial
configurations on which each π ∈ Π = X is evaluated, since we usually cannot hope to
test all of S exhaustively. The evolutionary function E would then usually compute a
weight update for the policy-encoding neural network based on an aggregation of rewards
(that might or might not match t).6

Scenario Co-Evolution as Auto-Curriculum Learning. The choice of the hyperpa-
rameter T for the set of test scenarios within the target function t has naturally been
studied in literature. Common solutions are to just sample a feasibly large data set
T ⊆ S on demand or to set aside such a (non-continuous) part of the search space
before training begins. However, different scenarios might have a different difficulty to
solve. In our studies [36, 37] we noticed a phenomenon we called the “exam effect”: An

4Curiously, in what is basically the first description of the idea of artificial intelligence, Turing [81]
already likens the process of machine learning via rewards and punishments to natural evolution.

5For the macro-level perspective we assume here, we omit how actions are mapped to total rewards
and simply assume all of this is hidden within a function R. Within the field of reinforcement
learning, we usually assign reward based on single state-action pairs and and often even omit any
computation of the accumulated reward R per policy and run.

6Note that there again might be a distinction between the reward function used within t that objec-
tively measures what we want a reinforcement learning agent to do and the reward function that
we tell the agent to use for its updates; this works analogously to target function t and fitness
function f in evolutionary algorithms. The task of finding the right reward function for the agent
from our goals is known as reward engineering and extensively studied in the field of reinforcement
learning [86, 41]. We will make that connection once more in Section 7.3.

35

5. Co-Evolutionary Adaptation of Fitness

agent that solves all the hard scenarios usually also solves all the easy ones. We can
compare this effect to how an exam at school or university does not need to include the
easy questions. In another parallel to human learning, increasing the difficulty through-
out the learning process (i.e., starting with easy scenarios and only then moving on to
hard ones) is known to improve overall performance. This technique, called curriculum
learning, is well-established in reinforcement learning [5, 57].
These observations give us a rough idea on what constraints there might exist on choos-
ing an ideal scenario set T for our target function t. As it has been commonplace
throughout this thesis, when faced with optimization problems, we opt for an evolution-
ary algorithm: We construct a competitive co-evolutionary process (cf. Definition 22)
where a reinforcement learning agent tries to learn a policy π to achieve the best score
t(π) while an evolutionary algorithm is used to optimize for the test set T against which
the reinforcement learning agent achieves the worst score t(π).7 We call that process
scenario co-evolution (SCoE); Figure 5.1 illustrates how it works. Our results in [36]
show that scenario co-evolution gives rise to both better and more robust policies and
additionally generates a set of hard test scenarios that can even be used independently
of the originally trained agent. Most impressive, perhaps, is that even though we put in
all this effort of executing the co-evolutionary process and running a whole additional
optimization process, the score per wall clock time ratio is slightly better for scenario
co-evolution compared to standard reinforcement learning (in our experimental setup).
Frankly speaking, the effort pays off. Figure 5.2 shows the results from our experimental
runs.
From a reinforcement learning perspective, scenario co-evolution falls into the category
of auto-curriculum learning: The set of scenarios that always increases in difficulty
provides a curriculum for the reinforcement learning agent, but it can only ever become
more difficult in relation to the agent’s performance. For an agent that cannot solve any
scenarios, all scenarios look equally difficult. Thus, the agent itself defines the path of
scenarios it is likely to experience during its training, forging its own curriculum. From
an evolutionary algorithms perspective, scenario co-evolution is yet another instance of
a self-adaptive fitness function: The same scenario that has once been evaluated to be
tremendously difficult may cease to be so as the agent learns to solve it. Indeed the very
fact that the scenario was difficult and thus included in many generations of scenario
sets T may have prompted the agent to learn how to solve it. Thus, at least until the
objectively worst scenarios for the objectively best agent are found, any fitness evaluation
immediately results in a process of self-adaption (up to some probability), thus making
self-adaptive fitness the central piece that holds this co-evolutionary process together.

7The naïve solution to find an optimal test set T might be to construct an evolutionary algorithm on
a search space of all possible test sets, i.e., X = P(S). However, this search space is exceedingly
large and the dependences between the singular test scenarios within T are very weak, especially in
the beginning of the learning process. Thus, we choose a “short-circuited” variant where the search
space is the space of single test scenarios, i.e., X = S, and we use the whole population to construct
the test set, i.e., T = Xi for every new generation i.

36

5.2. Organizational Patterns for Software Development

Test

Agent

Random
Generator

Agent

reinforce

update

reinforce

update
Agent

evolve

Test

Agent
update

reinforce
reinforce

Figure 5.1.: Schematic representation of a SCoE process. A population of test scenarios
is first generated at random and then improved via evolution. Between
evolutions, the test scenario population is fully utilized as training data
for the reinforcement learning agent, which causes the agent to improve in
parallel to the test scenario population. Image taken from [36].

5.2. Organizational Patterns for Software
Development

We introduced scenario co-evolution in the previous section as an interaction pattern
between a reinforcement learning agent and an evolutionary algorithm where both con-
tribute to a joint target function: The former provides a certain kind of behavior (i.e.,
a policy π) and the latter provides a set of test instances for that behavior (i.e., the set
of test scenarios T). That kind of interface, however, is applicable way beyond just re-
inforcement learning agents and evolutionary algorithms. And as our formal definitions
for (co-)evolutionary processes (cf. Definitions 3 and 22) are rather general, it is easy to
see how we can “plug in” various kinds of evolution here.
One of those is software evolution, which we mentioned in the Introduction (Chapter 1)
as rather curiously named the same way as natural evolution. As of now, the behaviors of
software are still largely determined by human programmers and so are the test suites for
them. In [32] and later in [37] we explain scenario co-evolution for the concrete example
used in the previous section, but we expand its scope to encompass software engineering
processes in general, even when the evolved artifacts are not machine-generated. From
that perspective, the notion of “scenarios” works as a catch-all for artifacts that impose

37

5. Co-Evolutionary Adaptation of Fitness

Figure 5.2.: Scores achieved by a SCoE and standard reinforcement learning (against
test scenarios chosen randomly) during training for ≈ 50000 seconds of
runtime. Scores are averages of running the current agent against 1000
randomly generated test scenarios. The plot shows single runs with an
added trend line. Over the same amount of training time, SCoE generally
achieves slightly higher average scores. Image taken from [36].

38

5.2. Organizational Patterns for Software Development

some kind of constraints, requirements or optimization targets on the software product.
A living specification is maintained by keeping a large pool of such scenarios, which we
treat as a competitively co-evolving adversary of the software product. What makes
this perspective especially interesting is that it allows a seamless integration between
contributions made by human developers and contributions discovered by autonomous
evolutionary processes.8 For such software systems, we identify three patterns to effec-
tively steer the development process (of course there are many more to be discovered):

Criticality Focus. Facing a large (and possibly ever-growing) pool of scenarios, running
a full test evaluation can become increasingly costly. We can alleviate the problem
by constantly rating test scenarios for difficulty and prioritizing on the currently
most difficult ones (similarly to curriculum learning for the reinforcement learning
agent).

Adaptation Cool-Down. While traditional software engineering usually starts with a
basic use case and adds features onto it, for software systems involving evolutionary
processes, we often observe a reverse pattern: The system starts with a lot of
freedom in its behavior (because of randomly initialized behavioral representations,
e.g.) and as it co-evolves with the scenarios, its degrees of freedom get reduced
further and further. For various stages of the product life-cycle (“in development”
vs. “deployed on-site”), various degrees of behavioral freedom may be deemed
appropriate.

Eternal Deployment. For constantly evolving systems, the border between develop-
ment phases and deployment phases vanishes. Nierstrasz [63, 62] described large
and complex software systems (the internet, e.g.) as eternal systems in that they
are not only ever-changing but also ever-working: There is no discrete point in time
to take them offline and fix them or update them. For systems employing evolu-
tionary processes this means that we need to maintain not only a representation
of the currently best configuration but also of how we got there.

Patterns like these help developers to understand how an effective evolution process
should be designed, just like traditional software development patterns [39, 9] provide
a richer language to understand software design. We should expect that the increas-
ing amounts of automated processes, optimization and artificial intelligence that go
into software development will eventually change the discipline of software engineering.9
However, we feel like patterns that involve both deliberate and natural design at the

8We argue that achieving equal interfaces for human and machine contributions to software is an
important target for AI-aided software design. We sketched first approaches based on a teacher-
student interface in [46, 47], which of course builds upon Turing’s description of a teacher-student-
based evolutionary process [81].

9We argue that indeed software engineering may cease to be the metaphor used for making software
and have occasionally suggested software gardening as a replacement term.

39

5. Co-Evolutionary Adaptation of Fitness

Tier Description
0 physical necessity: laws of nature
1 machine-environment interface: circuit-level control,

sensor/actuator hardware, computational capabilities
2 immediate reaction: watchdogs, fixed behavioral rule-

sets, expert systems
3 planned reaction: reward functions for online planners

and self-awareness
4 inherent coordination: co-evolution, adversarial learn-

ing, multi-agent coordination

Table 5.1.: Overview of different levels of control to be used in the information flow of a
cyber-physical system. Tiers 0–3 taken from [27].

same time still seem a bit weird as practical guidelines. We think that future work will
improve upon the recommendations for practical use.
We suggested some more concrete patterns for software design for self-adaptive systems
already in [27]. Here we use the example of software-intensive systems that also interact
heavily with the physical world; these are often called cyber-physical systems [7, 8].
We immediately recognize that interaction with the physical world more easily allows
for failures of self-adaptation mechanisms to become really dangerous and thus that any
state-of-the-art evolutionary process (ranging from evolutionary algorithms and planners
to full-fledged reinforcement learning agents, e.g.) needs to be heavily checked and
controlled for practical use. We organize possible means to check and control the results
of evolutionary processes into various tiers as shown in Table 5.1. Most notably, the
original depiction in [27] lacks tier 4 of Table 5.1 as originally it seemed a bit paradoxical
to control an evolutionary process running wild using another evolutionary process that
might just as well run wild. However, in the course of this thesis we have shown that
there can be trust in higher-level principles and that even seemingly free self-adaption is
governed by laws, even when they are not explicitly stated in software. Our results show
us among lots of other things that co-evolution (when set up the right way) usually works
towards the robustness of both processes by evolving more effective fitness evaluations
instead of settling on laxer ones.

40

6. Applications in Natural
Computing

Ἁρμονίη ἀφανής φανερής κρείττων.
Concealed harmony is stronger than evident harmony.

Heraclitus1

6.1. Variants on Evolutionary Algorithms

We now discuss a few results that have not been at the core of this thesis but nonetheless
do concern evolutionary processes with self-adaptive fitnesses. We start off with two
further studies on different evolutionary algorithms.

Surrogates. In many instances of evolutionary algorithms, evaluating the fitness func-
tion is the computationally most expensive operation of the process. For such instances,
we can train a surrogate model of the fitness function; surrogate models are usually
much simpler than the original fitness function and thus much cheaper to evaluate. But
they can be used instead of evaluating the real fitness function and thus save time. Of
course, we must still eventually resort to the true fitness function to be sure about the
results of our evolutionary algorithm, but every evaluation of a costly fitness function
that we can spare frees computation time for other operations. When we then consider
the surrogate-based fitness function (that is used for as many fitness evaluations as pos-
sible), it is clear to see how it is self-adaptive: As the evolutionary process continues
and we end up using the true fitness from time to time, we make double use of that
true evaluation to further train our surrogate model. Thus, even without any change
in the true fitness, the fitness suggested by the surrogate model will change on its own
during evolution, hopefully getting closer and closer to the true fitness. Note that this
also means that we again changed a static into a dynamic optimization problem.
In [25] we used a surrogate-assisted evolutionary algorithm not for the original purpose of
simply saving computation time but in an attempt to construct entirely new applications
from the surrogate model. We propose to use surrogate models for recommendation

1This quote of Heraclitean philosophy is once again recorded by Hippolytus (Philosophumena, Book IX,
Chapter 5).

41

6. Applications in Natural Computing

systems. In a recommendation system, we assume we have a search space X consisting
of various items (music, movies, products in an online store, e.g.) and we want to pick
the one which the user is going to like best. We assume we can measure how much a
user likes a certain item only after we have chosen it.2 However, once we have presented
an item, it is removed from the search space X as we will never recommend the same
item twice; this is a major difference to most evolutionary algorithms, of course, where
a fitness evaluation does not alter the population or the search space. Now, we can still
build a surrogate model based on the true-evaluated and thus removed items and use
that surrogate model to evaluate other not-yet-chosen items, from which we can then
choose the most promising one, true-evaluate it and thus continue the cycle. In [25] we
show some early results where user interaction is replaced by standard benchmarking
objective functions in order to test the algorithmic properties of the approach, showing
that at least in principle such an approach can work.

Phases and Penguins. In [68] we consider an evolutionary algorithm to optimize a test
suite for a specific self-organizing system (controlling an adaptive production cell as it
might exist in a smart factory). Such a test suite is a set of test sequences, each of which
is a series of test cases, which are performed in a specific order. As the system is self-
organizing, the order in which the test cases are executed may effect the result greatly.
Thus, assuming that C is the space of single test cases, our search space X = P(C∗) is
the space of all sets of sequences in C, which can be quite cumbersome and expensive to
navigate. A test suite x ∈ X is evaluated using a given metric t(x), which counts the
amount of errors (from a pre-defined set of possible misbehaved actions by the system)
that become apparent when running all of x.3 In order to handle the complex structure
of the search space X , we propose two extensions to standard evolutionary algorithms:
The phases extension again works by turning an originally static optimization problem
into a dynamic one. But this time we do so by dynamically adjusting the search space
X : We start the evolution on a simplified search space X1 = C∗, which only contains test
suites with a single test sequence. After a few generations we then expand the search
space to X2 = C∗ × C∗ containing all test suites with two test sequences. When doing
so, we augment all individuals present in the current population by adding a randomly
generated second test sequence to them. We continue this process until we arrive at the
pre-set maximum size for our test suites (and then continue evolution normally for a few
generations).4

Still, we encountered some difficulty implementing the mutation and recombination op-

2For example, when we recommend music, we might measure if the user actually finishes listening to
the song. We might also assume that we can use affective computing methods to measure how well
the user liked a specific item.

3This method is called mutant testing ; however, the usage of mutant here is different from our evolu-
tionary operator. See [68] for the thorough explanation of our approach.

4In this case, a larger test suite is always at least as good as a smaller subset, i.e., x′ ⊆ x =⇒ t(x′) ≤
t(x) for all x, x′ ∈ X .

42

6.2. Quantum Computing

erators for this evolutionary algorithm: Not all test cases in C can follow a previous test
case c ∈ C to form a valid test sequence, i.e., our search space is really X = P(Q) for
some test sequence space Q ⊆ C∗. This means that the mutation operator may need to
actually alter an individual to a large extent (when it wants to change a test case early
within a test sequence and needs to re-generate the whole follow-up sequence) and that
recombination can hardly combine two different test sequences from two parents (as the
test sequence may start out differently and then not be compatible for crossover, e.g.).
However, the domain does give us a similarity metric on test sequences S : Q×Q → R
and we can use it to define the penguin extension to mutation and recombination.5 For
penguin mutation, we choose a random test case within a test sequence and alter it.
Then, we fill the follow-up test cases of that sequence with the valid follow-up sequence
that is closest to the original (and now probably no longer valid) follow-up sequence with
respect to S. For penguin recombination, we choose a random crossover point within two
test sequences (one from each parent), cut off the original sequence after the crossover
point and re-fill it with the valid follow-up sequence that is closest (with respect to S)
to the cut-off follow-up sequence of the other parent’s chosen test sequence. Using these
operators, we can apply intuitive mutation and recombination to data types with high
internal dependencies (like paths in graphs) as long as we can construct a similarity
function.

6.2. Quantum Computing

Natural computing is the field of research on computational representation of processes
observed in nature. Basically all of the methods we describe in this thesis fit that
description: Artificial chemistry systems mimic processes from chemistry, obviously.
Neural networks are built after very simplified models of the workings of biological
neurons. Reinforcement learning was first described in behavioral psychology. The
workings of natural evolution are put into computer code in the form of evolutionary
algorithms in various forms, even allowing for more intricate phenomena like co-evolution
to be worked into the model. Of course, the field of natural computing expands beyond
the examples we can show in this thesis. Still, we use this section to take a look at
another computing technique that originates from a different science: Quantum-inspired
algorithms draw inspiration from the behavior of particles at the quantum level and
use the rules that govern them to solve typical computational tasks, like optimization
problems for example [60, 42, 44].
However, quantum computing is the sub-field of natural computing that promises the
most use of doing things “the quantum way”: Here we use nature itself to execute the

5The extension are named for the following metaphor: Imagine we try to recombine a typical bird like
a dove and a typical fish like a tuna. They are fundamentally incompatible, but we might take the
bird and change what we can to make it as much like a fish as possible. The result is a penguin, a
species that definitely is a bird but shares features from the recombination partner, i.e., the fish.

43

6. Applications in Natural Computing

quantum mechanics part, more specifically we build a machine called a quantum com-
puter to do that. On it, we can run specifically designed quantum algorithms that make
use of the additional6 computational capabilities of a quantum computer. Note that sim-
ilar approaches exist within natural computing in the form of DNA computing, using
real-world processes in the field of biology to solve computationally hard problems [64].

Quantum Annealing. In our work, we focus on the quantum annealing algorithm,
an optimization algorithm which can be and practically is implemented in specialized
hardware. Like most optimization processes it uses a target function t to optimize for
elements of a search space X . However, thanks to the quantum effects it can use, it
does not need to maintain a population of possible solutions (in contrast to evolutionary
algorithms) while still being able to search in multiple directions at the same time (in
contrast to simulated annealing [54]). We provide a slightly more detailed introduction
in [38] and would like to refer to [51, 50, 58] for a more in-depth analysis. What we would
like to point out in the context of this thesis is the observations on inherent properties of
the used goal functions in the context of quantum annealing: In the study in [38] we used
quantum annealing to solve the canonical NP-complete problem 3SAT, translating the
decision problem into an optimization problem along the way. We could observe that
certain solutions are inherently preferred as outputs, even when they yield the same
target value in theory. Effectively, inherent goals are present in quantum annealing as
well, influenced by the solution encoding and/or the quantum annealing hardware.7 To
overcome current hardware limitations we also explored an approach to solve problems
in the typical encoding used for quantum annealing without actually using quantum
annealing. For this purpose, we implemented neural networks to emulate the behavior
of quantum annealing with inconclusive but initially promising results [30]. This shows
that underlying principles of optimization may span beyond the realm of evolution,
sketching a more fundamental concept of computation based on the laws of nature.

6.3. Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) is an algorithm that mainly searches for policies of
actions for Markov Decision Processes (MDPs). In that regard it is very similar to
reinforcement learning (RL), which we briefly introduced in Section 5.1.8 While RL

6The question if there is a quantum algorithm that (i) can be practically implemented in real hardware
and (ii) runs better on a quantum computer than on any classical computer is called quantum
advantage or quantum supremacy. We skip a discussion on nuances of meaning between these terms.
Recent research points into the direction of the first such algorithms [1], but their practicality is still
being discussed in the community [65].

7We go on to analyze certain aspects of the robustness of the returned solutions as impacted by classical
solvers vs. quantum annealing in [69] and probably future research.

8Some may argue that MCTS could in fact be regarded as an instance of reinforcement learning. For
this thesis, we discern the two, mainly for historical reasons [84].

44

6.3. Monte-Carlo Tree Search

usually encodes behavior via a value function (in the form of a table or neural network)
or a policy network, MCTS builds up a decision tree following the action choices given
by the MDP. Especially for discrete games, the combination of RL and MCTS has been
shown to be extremely successful in recent years [71, 72]. We performed experiments on
a simple grid-world domain with multiple rooms and on the game Tetris [34].
Both domains have repetitive structure that is evident for the human observer: Navi-
gating within a single room always works in a similar way and so does controlling one
tetromino9 until it comes to rest. However, the actions of the domain are more ele-
mentary and thus do not reflect that repetition. In the grid-world domain, the target
function only rewards successfully playing the whole game, while the target function for
Tetris gives a reward after each single tetromino. We then construct a variant of MCTS
based on subgoals: Given a subgoal predicate g : S → B on the observable configura-
tions, we divide the planning process into (i) planning which subgoal we want to reach
and (ii) planning how we get from one subgoal configuration to the other. This approach
has rather little effect on the grid-world domain but shows tremendous improvement on
the Tetris domain, where the chosen subgoal predicate matches the states where the
target function yields a reward. For an in-depth analysis, please see [34].
Our work here sketches a method to make use of a more complex structure in goal
functions. Of course, we still depend on the right choice of the subgoal predicate g. We
suggest that future work should explore methods to generate suitable subgoal predicates
g dynamically while we train on the problem domain; thus, we would render the goal
function self-adaptive and more strongly connect the results here to the body of work of
this thesis.

9A tetromino is a shape made up of four squares connected at one of their sides (at least). These
shapes are the blocks used to play the game of Tetris.

45

6. Applications in Natural Computing

46

7. Conclusion

Ἀνθρώποισι πᾶσι μέτεστι γιγνώσκειν ἑαυτοῦς καὶ σωφρονεῖν.
All humans have in common that they learn about
themselves and think with reason.

Heraclitus1

7.1. Summary

In the course of this thesis we examined the phenomenon of self-adaptive fitness in evo-
lutionary processes. We started from an initial observation that evolutionary processes
can actually perform better with respect to their target function t when they use a fitness
function f ∕= t. We examined a major example of how to construct such adjusted fitness
functions: diversity. Various diversity measures exist for different purposes but with the
same effect to make the fitness of the individual depend on its relation (similarity, e.g.)
to other individuals in the population. This makes the fitness function self-adaptive.
It may look like this self-adaptiveness makes the optimization process more complex
but, following our initial observation, the optimization result may actually improve. We
argue that this happens because a self-adaptive fitness can better approximate the ideal
trade-off between exploration and exploitation during evolution, which naturally shifts
from leaning towards exploration to leaning towards exploitation. We defined the notion
of productive fitness to describe the ideal fitness value we would have wanted to assign
to an individual, but can only approximate in hindsight—if at all.
We analyze co-evolution as a powerful tool that can generate self-adaptive fitness evalu-
ations. We see that we can even pit various kinds of evolutionary processes against each
other and that the joint target function provides a simple interface for their intuitive in-
teraction. A natural arms race then builds suitable curricula for both involved processes.
We can generalize these principles to patterns for the design of complex self-adaptive
systems and thereby use the phenomenon of self-adaptive fitness not as a side effect but
as a design tool that we implement into our processes deliberately.
We also took a look at the other end of the complexity scale from a software engineering
perspective: Artificial chemistry systems are built upon very simple rules and may then
generate complex behavior on their own. We introduce a new type of artificial chemistry

1This quote is found in Stobaeus’s Selections (3.5.6).

47

7. Conclusion

system that uses neural networks that can directly influence each other’s weights. We
show in accordance with other types of artificial chemistry systems that we can achieve
a drive towards a certain robustness that shows in networks that can self-replicate. That
drive exists without any externally given fitness function and we can thus consider it an
instance of inherent self-adaptive fitness.
Throughout all the research presented here we made a conscious effort to integrate all
kinds of phenomena and definitions into a complete and sound formal framework. Where
the papers attached naturally show some deviations from a common language, mainly
because they were written over the course of a few years, we used this text part of the
thesis to unify the vocabulary and build a comprehensive formal framework.
Additionally, we attempted to point out the major contributions throughout this text
but needed to leave out many explanations from the papers that can be found in the ap-
pendix. We also refer to their respective sections on related work for a broader overview
of the literature for all relevant topics. We now return to research questions originally
formulated in the introduction of this text (Chapter 1) and do our best to give short
and concise answers.

(RQ1) Which phenomena can be described by evolutionary processes? In Chap-
ter 2 we provide a comprehensive formal framework for evolutionary processes in gen-
eral and evolutionary algorithms specifically. We build a formal framework for artificial
chemistry systems as an instance of evolution onto the same foundation in Chapter 3.
We augment this framework to encompass reinforcement learning and co-evolutionary
processes in Chapter 5. We even show how the initial example of software evolution
might fit the given definition of evolutionary processes in a meaningful and useful way
(also Chapter 5).

(RQ2) Which phenomena can be described as self-adaptive fitness? We can give
a formal definition based on our formal framework (Chapter 2). We explore artificial
chemistry systems, which naturally have no predetermined fitness at all but tend to
show properties of striving towards a very specific goal, depending on the particles that
are currently present in the system. We recognize this as an early, emergent form of
self-adaptive fitness. Diversity-aware evolutionary algorithms use a very direct form of
self-adaptive fitness as they use a fitness function that directly relies on population-based
measurements that naturally change with each generation depending on the results of
the algorithm itself (Chpater 4). In Chapter 4 we further see that the freshly introduced
productive fitness (or at least its approximation) is self-adaptive by definition. We
discover even more powerful means of constructing self-adaptive fitness functions when
we analyze co-evolution, where a different evolutionary process is responsible for changes
in the self-adaptive joint fitness function (Chapter 5).

48

7.1. Summary

(RQ3) Are there goal-independent parts to fitness? In Chapter 3 we see clearly
that even systems without a given goal exhibit behavior as if they had an inherent fit-
ness. These tendencies are goal-independent by definition. Diversity-aware evolutionary
algorithms in our definition add parts to the fitness function that measure and favor
diversity; these parts do not directly depend on the target function and can be formu-
lated in a rather general way that works for many different target functions at least
(Chapter 4). The construction of productive fitness (Chapter 4) is also parametric on
the target function, but here the respective contributions of the target function and the
productive fitness construction are much harder to separate (also Chapter 4).

(RQ4) Is there some inherent goal fitness in evolutionary algorithms as well?
We recognize that there are some patterns that most evolutionary algorithms will want
to follow, most prominently a suitable balance between exploration and exploitation in
the search process. This means that methods like diversity-awareness work for many if
not most typical applications of evolutionary algorithms (Chapter 4). However, they are
still subject to the No Free Lunch theorem and are thus outperformed in other instances
(like target functions that can easily be optimized greedily). In contrast to that, we
define productive fitness to be exactly the inherently best choice for a fitness function
given a specific target function. However, we gain this purely mathematical advantage by
following a purely theoretical construction that is computationally infeasible in practical
applications. We can thus say that there indeed is some ideal goal, but there is no direct
way to reach it (yet).

(RQ5) How can we discover goal functions for evolutionary processes to follow?
In Chapter 4 and the corresponding papers, we discuss many variants of goal function
adjustments (such as diversity-awareness) for evolutionary processes. Still, most of these
require some kind of assumptions or knowledge on the designer’s side, requiring software
development on a case-by-case basis. In literature, co-evolution has been discovered as a
powerful tool to automatically adjust parts of an evolutionary process as it is evolving.
In contrast to many of these methods, such as memetic algorithms, we construct an
instance of co-evolutionary processes in Chapter 5 that is based on a very restricted
interface: The involved processes only interact via a joint target and fitness function.
This allows us to find suitable parameters for fitness functions pretty effectively, as we
have shown for our scenario co-evolution approach.

(RQ6) Are there similar phenomena in other kinds of evolutionary processes?
Chapter 6 contains a quick overview of research that was inspired by the ongoing search
for good self-adaptive fitness functions. We ended up covering further topics of evolu-
tionary computing, quantum computing and planning. Throughout the thesis we make
various connections to artificial intelligence, where current methods are based around
optimization as well, facing similar problems like the exploration/exploitation dilemma.

49

7. Conclusion

7.2. Discussion

Naturally, we point out weaknesses and threats to validity of the studies that form
this thesis in their respective papers. Still, we can use this section to discuss the most
important shortcoming of the overarching research agenda that we sketched in the text
part of this thesis.
The main validation for our formal framework (mostly presented in Chapter 2) is its
internal soundness, which is a very formal criterion, and the amount of real-world phe-
nomena we can embed within the framework in a complete and natural manner, which
is a very subjective criterion. The text part of this thesis might have made a stronger
point here than the individual papers [37, 35] as we subsume a much more diverse set of
phenomena under the umbrella of evolutionary processes here, which is why the formal
framework is kind of emphasized in the text, compared to the empirical results which
we largely delegate to the papers in the appendix. A better indicator for a useful formal
framework, however, would be productive power, i.e., if we could produce any theorems
from its assumptions. We did apply (parts of) the framework in [33] to sketch a few tools
for abstract proofs on evolutionary algorithms, but their potential and validity are not
fully explored yet. They just work for the instances where we needed them to. It should
also be noted that we sketch a definition of reinforcement learning as an instance of an
evolutionary process in Section 5.1 but lose much of the specific features of evolutionary
processes when doing so, building but a formal congruence. For a larger approach, the
formal framework may be expanded to become more sensitive to the specific difference
between evolution and (reinforcement) learning.
In Chapter 3 we also introduce artificial chemistry systems as a specific instance of
evolutionary processes, which is arguably a much better fit. We discuss in the text that
fitness or fitness-like properties can emerge in artificial chemistry systems and thereby
imply that they can form a kind of proto-evolutionary algorithm. The main incentive to
make this connection, however, is by analogy to how biological processes (like evolution)
emerged from chemical processes (like the primordial soup). It would have been nice to
also make that deduction formally and show how an evolutionary algorithm can arise as
an abstraction from complex particle interactions. This would have completed the trace
of self-adaptive fitness that we follow, but was regarded of little practical concern for
the phenomena we wanted to show.
It should be noted that beyond Chapter 3 we never again doubt the validity of the
target function. This makes sense as we are concerned about the internal workings of
evolutionary algorithms and must assume the target function as given at least at some
level. Nonetheless, the field of artificial intelligence shows how much research can go into
finding the right way to formulate the programmer’s desires and especially for practical
optimization algorithms, finding the right target is often surprisingly hard. Of course,
there exist methods to break the rule of the one all-knowing target function and even
using such a considerably trivial approach as opting for multi-objective evolutionary
processes may interact more smoothly with a human-driven design process. For this

50

7.3. Outlook

thesis, we left out all aspects of finding external goals or handling user interaction (even
when discussing a recommendation system!), all of which we can only leave to future
work.
Our version of co-evolutionary processes (Definition 22, Chapter 5) is rather restricted
in that only two processes may be involved with each other and they may only interact
via their joint target and/or fitness function. A whole range of more general interaction
patterns exist and are discussed in literature. We do not perform any studies on the
obvious case of two evolutionary algorithms forming a co-evolutionary process. This
is mainly because co-evolution within the realm of evolutionary algorithms has been
studied extensively in literature, including very simple forms of co-evolution like island
models [80] up to very complex forms like memetic algorithms [61]. Still, our argumenta-
tive chain stumbles over the lack of a clean-cut example of only evolutionary algorithms
participating in co-evolution. Nonetheless, we would like to argue that the combination
of reinforcement learning and evolutionary algorithms is a both a particularly current
and a particularly promising field of research.
Finally we feel that possible connections to other fields within natural computing, such
as quantum computing (mainly quantum annealing and other optimization algorithms),
planning and artificial intelligence in general are somewhat under-utilized in Chapter 6.
However, as these topics are not the main focus of this thesis anyway, the holes we leave
here may just provide good opportunities for future research.

7.3. Outlook

As we just pointed out in the previous section that the connection of reinforcement
learning with the methods of evolutionary algorithms seems rather promising, it is un-
surprising that we suggest future work to be done in that direction of research. Most
prominently, we see the need to generalize the concept of productive fitness. The re-
search on reward engineering for reinforcement learning shows that finding the right
reward function for a given target is just as hard as finding the right fitness function.
Formulating the ideal reward function, even if it is infeasible to compute, may aid the
search process for a suitable reward.
Even for standard evolutionary algorithms, we see great potential in the automatic con-
struction of fitness functions. We attempted first experiments to automatically adjust
the diversity weighting parameter of the fitness function but without finding a stable
state of balance. Of course, self-adaptive fitness functions without checks and balances
are notorious for finding borderline settings that circumvent solving the computation-
ally hard optimization problem at the heart of the algorithm. Nonetheless, lightweight
methods of co-evolution may be able to provide the suitable counterweight.
Artificial chemistry systems also show some properties of self-regulation that might yet
be copied in a direct manner to evolutionary algorithms. In most cases, they fall flat due
to the abstraction from particle mechanics and usage of population mechanics. Finding

51

7. Conclusion

some more connections between these two models may not only benefit evolutionary
algorithms but also our neural soup: In preliminary research we could show that the
neural networks can be used to perform additional tasks aside from just self-replication.
However, we have yet to find a way to utilize a soup of networks to execute a reasonably
complex task in a coordinated manner.
Finally, we would like to suggest the hybridization of techniques not only from a software
but also from a hardware perspective. Recent research has shown a promising method
to intertwine an evolutionary algorithm with quantum annealing [53]. As it is known
that evolutionary algorithms benefit from having multiple variants of their operators
available [74], mixing in operators that are grounded in entirely different search processes
seems like an interesting way to augment evolutionary algorithms and bring other search
processes (like quantum annealing) to broad fruition. This way, evolutionary processes
provide an open framework for various methods to built upon and can manage the
integration of various components via self-adaptation.

52

Bibliography

[1] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami
Barends, Rupak Biswas, Sergio Boixo, Fernando GSL Brandao, David A Buell, et al.
Quantum supremacy using a programmable superconducting processor. Nature,
574(7779):505–510, 2019.

[2] Wolfgang Banzhaf and Lidia Yamamoto. Artificial chemistries. MIT Press, 2015.

[3] André Baresel, Harmen Sthamer, and Michael Schmidt. Fitness function design to
improve evolutionary structural testing. In Proceedings of the 4th Annual Confer-
ence on Genetic and Evolutionary Computation, pages 1329–1336, 2002.

[4] Christian Bauckhage. Insights into internet memes. In ICWSM, pages 42–49, 2011.

[5] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curricu-
lum learning. In Proceedings of the 26th annual international conference on machine
learning, pages 41–48, 2009.

[6] Susan Blackmore and Susan J Blackmore. The meme machine, volume 25. Oxford
Paperbacks, 2000.

[7] Tomas Bures, Danny Weyns, Christian Berger, Stefan Biffl, Marian Daun, Thomas
Gabor, David Garlan, Ilias Gerostathopoulos, Christine Julien, Filip Krikava, et al.
Software engineering for smart cyber-physical systems–towards a research agenda:
Report on the first international workshop on software engineering for smart cps.
ACM SIGSOFT Software Engineering Notes, 2015.

[8] Tomas Bures, Danny Weyns, Bradley Schmer, Eduardo Tovar, Eric Boden, Thomas
Gabor, Ilias Gerostathopoulos, Pragya Gupta, Eunsuk Kang, Alessia Knauss, et al.
Software engineering for smart cyber-physical systems: challenges and promising
solutions. ACM SIGSOFT Software Engineering Notes, 2017.

[9] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael
Stal. Software Patterns. John Wiley & Sons, 1996.

[10] Matej Črepinšek, Shih-Hsi Liu, and Marjan Mernik. Exploration and exploitation
in evolutionary algorithms: A survey. ACM computing surveys (CSUR), 45(3):1–33,
2013.

53

Bibliography

[11] Charles Darwin. The origin of species. PF Collier & son New York, 1909.

[12] Richard Dawkins. The selfish gene. Oxford university press, 2016.

[13] Richard Dawkins et al. The blind watchmaker: Why the evidence of evolution reveals
a universe without design. WW Norton & Company, 1996.

[14] Daniel C Dennett. From bacteria to Bach and back: The evolution of minds. WW
Norton & Company, 2017.

[15] Jason G Digalakis and Konstantinos G Margaritis. On benchmarking functions for
genetic algorithms. International journal of computer mathematics, 77(4):481–506,
2001.

[16] Peter Dittrich, Jens Ziegler, and Wolfgang Banzhaf. Artificial chemistries—a review.
Artificial life, 7(3):225–275, 2001.

[17] Agoston E Eiben, Zbigniew Michalewicz, Marc Schoenauer, and James E Smith.
Parameter control in evolutionary algorithms. In Parameter setting in evolutionary
algorithms, pages 19–46. Springer, 2007.

[18] Agoston E Eiben and Cornelis A Schippers. On evolutionary exploration and ex-
ploitation. Fundamenta Informaticae, 35(1-4):35–50, 1998.

[19] Manfred Eigen and Peter Schuster. The hypercycle. Naturwissenschaften, 65(1):7–
41, 1978.

[20] Andries P Engelbrecht. Computational intelligence: an introduction. John Wiley
& Sons, 2007.

[21] Raziyeh Farmani and Jonathan A Wright. Self-adaptive fitness formulation for con-
strained optimization. IEEE transactions on evolutionary computation, 7(5):445–
455, 2003.

[22] Walter Fontana and Leo W Buss. What would be conserved if “the tape were played
twice”? Proceedings of the National Academy of Sciences, 91(2):757–761, 1994.

[23] Walter Fontana and Leo W Buss. “the arrival of the fittest”: Toward a theory of
biological organization. Bulletin of Mathematical Biology, 56(1):1–64, 1994.

[24] Walter Fontana and Leo W Buss. The barrier of objects: from dynamical systems
to bounded organizations. 1996.

[25] Thomas Gabor and Philipp Altmann. Benchmarking surrogate-assisted genetic
recommender systems. In Proceedings of the Genetic and Evolutionary Computation
Conference Companion, pages 1568–1575, 2019.

54

Bibliography

[26] Thomas Gabor and Lenz Belzner. Genealogical distance as a diversity estimate in
evolutionary algorithms. In Measuring and Promoting Diversity in Evolutionary
Algorithms (MPDEA@GECCO). ACM, 2017.

[27] Thomas Gabor, Lenz Belzner, Marie Kiermeier, Michael Till Beck, and Alexander
Neitz. A simulation-based architecture for smart cyber-physical systems. In The
International Workshop on Models@run.time for Self-Aware Computing Systems,
2016.

[28] Thomas Gabor, Lenz Belzner, and Claudia Linnhoff-Popien. Inheritance-based
diversity measures for explicit convergence control in evolutionary algorithms. In
The Genetic and Evolutionary Computation Conference (GECCO), 2018.

[29] Thomas Gabor, Lenz Belzner, Thomy Phan, and Kyrill Schmid. Preparing for the
unexpected: Diversity improves planning resilience in evolutionary algorithms. In
15th IEEE International Conference on Autonomic Computing (ICAC), 2018.

[30] Thomas Gabor, Sebastian Feld, Hila Safi, Thomy Phan, and Claudia Linnhoff-
Popien. Insights on training neural networks for QUBO tasks. In First International
Workshop on Quantum Software Engineering (Q-SE 2020), 2020.

[31] Thomas Gabor, Steffen Illium, Andy Mattausch, Lenz Belzner, and Claudia
Linnhoff-Popien. Self-replication in neural networks. In Artificial Life Conference
Proceedings, pages 424–431. MIT Press, 2019.

[32] Thomas Gabor, Marie Kiermeier, Andreas Sedlmeier, Bernhard Kempter, Cornel
Klein, Horst Sauer, Reiner Schmid, and Jan Wieghardt. Adapting quality assur-
ance to adaptive systems: The scenario coevolution paradigm. In International
Symposium on Leveraging Applications of Formal Methods (ISoLA), 2018.

[33] Thomas Gabor and Claudia Linnhoff-Popien. A formal model for reasoning about
the ideal fitness in evolutionary processes. In International Symposium on Lever-
aging Applications of Formal Methods (ISoLA), 2020.

[34] Thomas Gabor, Jan Peter, Thomy Phan, Christian Meyer, and Claudia Linnhoff-
Popien. Subgoal-based temporal abstraction in Monte-Carlo tree search. In Pro-
ceedings of the 28th International Joint Conference on Artificial Intelligence, pages
5562–5568. AAAI Press, 2019.

[35] Thomas Gabor, Thomy Phan, and Claudia Linnhoff-Popien. Productive fitness in
diversity-aware evolutionary algorithms. Natural Computing, pages 1–14, 2021.

[36] Thomas Gabor, Andreas Sedlmeier, Marie Kiermeier, Thomy Phan, Marcel Hen-
rich, Monika Pichlmair, Bernhard Kempter, Cornel Klein, Horst Sauer, Reiner
Schmid, and Jan Wieghardt. Scenario co-evolution for reinforcement learning on a

55

Bibliography

grid world smart factory domain. In Proceedings of the Genetic and Evolutionary
Computation Conference, pages 898–906, 2019.

[37] Thomas Gabor, Andreas Sedlmeier, Thomy Phan, Fabian Ritz, Marie Kiermeier,
Lenz Belzner, Bernhard Kempter, Cornel Klein, Horst Sauer, Reiner Schmid, Marc
Zeller, and Claudia Linnhoff-Popien. The scenario coevolution paradigm: adaptive
quality assurance for adaptive systems. International Journal on Software Tools for
Technology Transfer, pages 1–20, 2020.

[38] Thomas Gabor, Sebastian Zielinski, Sebastian Feld, Christoph Roch, Christian Sei-
del, Florian Neukart, Isabella Galter, Wolfgang Mauerer, and Claudia Linnhoff-
Popien. Assessing solution quality of 3SAT on a quantum annealing platform.
In International Workshop on Quantum Technology and Optimization Problems.
Springer, 2019.

[39] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, and Design Patterns.
Elements of reusable object-oriented software. Reading: Addison-Wesley, 1995.

[40] John Grefenstette. Genetic algorithms for changing environments. Parallel Problem
Solving from Nature, 2:137–144, 1992.

[41] Dylan Hadfield-Menell, Smitha Milli, Pieter Abbeel, Stuart J Russell, and Anca
Dragan. Inverse reward design. In Advances in neural information processing sys-
tems, pages 6765–6774, 2017.

[42] Kuk-Hyun Han and Jong-Hwan Kim. Quantum-inspired evolutionary algorithm for
a class of combinatorial optimization. IEEE transactions on evolutionary computa-
tion, 6(6):580–593, 2002.

[43] Chris Hankin. An introduction to lambda calculi for computer scientists. King’s
College, 2004.

[44] Bettina Heim, Troels F Rønnow, Sergei V Isakov, and Matthias Troyer. Quantum
versus classical annealing of ising spin glasses. Science, 348(6231):215–217, 2015.

[45] Robert Hinterding, Zbigniew Michalewicz, and Agoston E Eiben. Adaptation in
evolutionary computation: A survey. In Proceedings of 1997 Ieee International
Conference on Evolutionary Computation (Icec’97), pages 65–69. IEEE, 1997.

[46] Matthias Hölzl and Thomas Gabor. Continuous collaboration: A case study on the
development of an adaptive cyber-physical system. In 1st International Workshop
on Software Engineering for Smart Cyber-Physical Systems (SEsCPS@ICSE), 2015.

[47] Matthias Hölzl and Thomas Gabor. Reasoning and learning for awareness and adap-
tation. In Software Engineering for Collective Autonomic Systems - The ASCENS
Approach. Springer, 2015.

56

Bibliography

[48] Matthias Hölzl and Martin Wirsing. Towards a system model for ensembles. In For-
mal Modeling: Actors, Open Systems, Biological Systems, pages 241–261. Springer,
2011.

[49] Thomas Jansen and Ingo Wegener. Evolutionary algorithms—how to cope with
plateaus of constant fitness and when to reject strings of the same fitness. IEEE
Transactions on Evolutionary Computation, 5(6):589–599, 2001.

[50] Mark W Johnson, Mohammad HS Amin, Suzanne Gildert, Trevor Lanting, Fi-
ras Hamze, Neil Dickson, Richard Harris, Andrew J Berkley, Jan Johansson, Paul
Bunyk, et al. Quantum annealing with manufactured spins. Nature, 473(7346):194–
198, 2011.

[51] Tadashi Kadowaki and Hidetoshi Nishimori. Quantum annealing in the transverse
ising model. Physical Review E, 58(5):5355, 1998.

[52] Stuart A Kauffman et al. The origins of order: Self-organization and selection in
evolution. Oxford University Press, USA, 1993.

[53] James King, Masoud Mohseni, William Bernoudy, Alexandre Fréchette, Hossein
Sadeghi, Sergei V Isakov, Hartmut Neven, and Mohammad H Amin. Quantum-
assisted genetic algorithm. arXiv preprint arXiv:1907.00707, 2019.

[54] Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi. Optimization by simulated
annealing. science, 220(4598):671–680, 1983.

[55] Rudolf Kruse, Christian Borgelt, Frank Klawonn, Christian Moewes, Georg Ruß,
Matthias Steinbrecher, and Pascal Held. Computational intelligence. Springer, 2011.

[56] Joel Lehman and Kenneth O Stanley. Exploiting open-endedness to solve problems
through the search for novelty. In ALIFE, pages 329–336, 2008.

[57] Tambet Matiisen, Avital Oliver, Taco Cohen, and John Schulman. Teacher-student
curriculum learning. IEEE transactions on neural networks and learning systems,
2019.

[58] Catherine C McGeoch. Adiabatic quantum computation and quantum annealing:
Theory and practice. Synthesis Lectures on Quantum Computing, 5(2):1–93, 2014.

[59] Silja Meyer-Nieberg and Hans-Georg Beyer. Self-adaptation in evolutionary algo-
rithms. In Parameter setting in evolutionary algorithms, pages 47–75. Springer,
2007.

[60] Mark Moore and Ajit Narayanan. Quantum-inspired computing. Dept. Comput.
Sci., Univ. Exeter, Exeter, UK, 1995.

57

Bibliography

[61] Pablo Moscato, Carlos Cotta, and Alexandre Mendes. Memetic algorithms. In New
optimization techniques in engineering, pages 53–85. Springer, 2004.

[62] Oscar Nierstrasz, Marcus Denker, Tudor Gîrba, Adrian Kuhn, Adrian Lienhard,
and David Roethlisberger. Self-aware, evolving eternal systems. 2008.

[63] Oscar Nierstrasz, Marcus Denker, Tudor Gîrba, Adrian Lienhard, and David Röth-
lisberger. Change-enabled software systems. In Software-Intensive Systems and
New Computing Paradigms, pages 64–79. Springer, 2008.

[64] Gheorghe Păun, Grzegorz Rozenberg, and Arto Salomaa. DNA computing: new
computing paradigms. Springer, 1998.

[65] Edwin Pednault, John A Gunnels, Giacomo Nannicini, Lior Horesh, and Robert
Wisnieff. Leveraging secondary storage to simulate deep 54-qubit sycamore circuits.
arXiv preprint arXiv:1910.09534, 2019.

[66] Carlo Pinciroli, Michael Bonani, Francesco Mondada, and Marco Dorigo. Adap-
tation and awareness in robot ensembles: Scenarios and algorithms. In Software
Engineering for Collective Autonomic Systems, pages 471–494. Springer, 2015.

[67] Mariachiara Puviani, Giacomo Cabri, and Franco Zambonelli. A taxonomy of ar-
chitectural patterns for self-adaptive systems. In Proceedings of the International
C* Conference on Computer Science and Software Engineering, pages 77–85, 2013.

[68] André Reichstaller, Thomas Gabor, and Alexander Knapp. Mutation-based test
suite evolution for self-organizing systems. In International Symposium on Lever-
aging Applications of Formal Methods (ISoLA), 2018.

[69] Irmi Sax, Sebastian Feld, Sebastian Zielinski, Thomas Gabor, Claudia Linnhoff-
Popien, and Wolfgang Mauerer. Approximate approximation on a quantum an-
nealer. In Proceedings of the 17th ACM International Conference on Computing
Frontiers, pages 108–117, 2020.

[70] Samuel S Schoenholz, Jeffrey Pennington, and Jascha Sohl-Dickstein. A correspon-
dence between random neural networks and statistical field theory. arXiv preprint
arXiv:1710.06570, 2017.

[71] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. Mastering the game of go with deep neural networks and
tree search. nature, 529(7587):484–489, 2016.

[72] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew
Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel,

58

Bibliography

et al. A general reinforcement learning algorithm that masters chess, shogi, and go
through self-play. Science, 362(6419):1140–1144, 2018.

[73] Moshe Sipper, Ryan J Urbanowicz, and Jason H Moore. To know the objective is
not (necessarily) to know the objective function, 2018.

[74] William M Spears. Adapting crossover in evolutionary algorithms. In Evolutionary
programming, pages 367–384, 1995.

[75] William M Spears and Kenneth A Jong. The role of mutation and recombination
in evolutionary algorithms. George Mason University Fairfax, VA, 1998.

[76] Giovanni Squillero and Alberto Tonda. Divergence of character and premature
convergence: A survey of methodologies for promoting diversity in evolutionary
optimization. Information Sciences, 329:782–799, 2016.

[77] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018.

[78] Simon Thompson. Type theory and functional programming. Addison Wesley, 1991.

[79] Marco Tomassini. Evolutionary algorithms. In Towards Evolvable Hardware, pages
19–47. Springer, 1996.

[80] Marco Tomassini. Spatially structured evolutionary algorithms: Artificial evolution
in space and time. Springer, 2006.

[81] Alan M. Turing. Computing machinery and intelligence. Mind, 59(236):433, 1950.

[82] Eiji Uchibe, Masakazu Yanase, and Minoru Asada. Behavior generation for a mobile
robot based on the adaptive fitness function. Robotics and Autonomous Systems,
40(2-3):69–77, 2002.

[83] Rasmus K Ursem. Diversity-guided evolutionary algorithms. In International Con-
ference on Parallel Problem Solving from Nature, pages 462–471. Springer, 2002.

[84] Tom Vodopivec, Spyridon Samothrakis, and Branko Ster. On monte carlo tree
search and reinforcement learning. Journal of Artificial Intelligence Research,
60:881–936, 2017.

[85] Mark Wineberg and Franz Oppacher. The underlying similarity of diversity mea-
sures used in evolutionary computation. In Genetic and Evolutionary Computation
Conference, pages 1493–1504. Springer, 2003.

[86] Christian Wirth, Riad Akrour, Gerhard Neumann, and Johannes Fürnkranz. A
survey of preference-based reinforcement learning methods. The Journal of Machine
Learning Research, 18(1):4945–4990, 2017.

59

Bibliography

[87] David H Wolpert and William G Macready. No free lunch theorems for optimization.
IEEE transactions on evolutionary computation, 1(1):67–82, 1997.

[88] Ivan Zelinka, Roman Senkerik, and Michal Pluhacek. Do evolutionary algorithms
indeed require randomness? In 2013 IEEE Congress on Evolutionary Computation,
pages 2283–2289. IEEE, 2013.

60

A. Papers

In the appendix we attach all 15 papers that contain the core findings of this thesis.
In Section A.1 on the following double page 62–63 we provide a concise overview of the
used papers in the order they are originally mentioned in Section 1.3. We also reprint
the Table 1.1 below for easier reference. We go into more detail regarding the core
contributions of these papers and the credit for them in Section A.2 as it is required by
the regulations of faculty 16 at LMU Munich. Finally, we append all papers in full text
(Section A.3, pages 71–239).

thesis chapter research questions main papers
2. Foundations of Evolutionary Processes RQ1, RQ2 [33]
3. Emergence of Fitness RQ3 [31]
4. The Ideal Fitness RQ2, RQ4 [26, 28, 29, 35]
5. Co-Evolutionary Adaptation of Fitness RQ5 [27, 32, 36, 37]
6. Applications in Natural Computing RQ6 [25, 68, 38, 30, 34]

61

A. Papers

A.1. Overview

Attached papers with their number within the fifteen papers, their reference number in
the bibliography, and their main chapter. Full texts can be found at the given page.
No. Ref. Ch. Title Page

1 [33] 2 Thomas Gabor and Claudia Linnhoff-Popien. A formal
model for reasoning about the ideal fitness in evolution-
ary processes. In International Symposium on Leverag-
ing Applications of Formal Methods (ISoLA), 2020

71

2 [31] 3 Thomas Gabor, Steffen Illium, Andy Mattausch, Lenz
Belzner, and Claudia Linnhoff-Popien. Self-replication
in neural networks. In Artificial Life Conference Pro-
ceedings, pages 424–431. MIT Press, 2019

90

3 [26] 4 Thomas Gabor and Lenz Belzner. Genealogical distance
as a diversity estimate in evolutionary algorithms. In
Measuring and Promoting Diversity in Evolutionary Al-
gorithms (MPDEA@GECCO). ACM, 2017

98

4 [28] 4 Thomas Gabor, Lenz Belzner, and Claudia Linnhoff-
Popien. Inheritance-based diversity measures for ex-
plicit convergence control in evolutionary algorithms. In
The Genetic and Evolutionary Computation Conference
(GECCO), 2018

104

5 [29] 4 Thomas Gabor, Lenz Belzner, Thomy Phan, and Kyrill
Schmid. Preparing for the unexpected: Diversity im-
proves planning resilience in evolutionary algorithms.
In 15th IEEE International Conference on Autonomic
Computing (ICAC), 2018

112

6 [35] 4 Thomas Gabor, Thomy Phan, and Claudia Linnhoff-
Popien. Productive fitness in diversity-aware evolution-
ary algorithms. Natural Computing, pages 1–14, 2021

122

7 [27] 5 Thomas Gabor, Lenz Belzner, Marie Kiermeier,
Michael Till Beck, and Alexander Neitz. A simulation-
based architecture for smart cyber-physical systems. In
The International Workshop on Models@run.time for
Self-Aware Computing Systems, 2016

136

8 [32] 5 Thomas Gabor, Marie Kiermeier, Andreas Sedlmeier,
Bernhard Kempter, Cornel Klein, Horst Sauer, Reiner
Schmid, and Jan Wieghardt. Adapting quality assurance
to adaptive systems: The scenario coevolution paradigm.
In International Symposium on Leveraging Applications
of Formal Methods (ISoLA), 2018

142

62

A.1. Overview

No. Ref. Ch. Title Page
9 [36] 5 Thomas Gabor, Andreas Sedlmeier, Marie Kiermeier,

Thomy Phan, Marcel Henrich, Monika Pichlmair, Bern-
hard Kempter, Cornel Klein, Horst Sauer, Reiner
Schmid, and Jan Wieghardt. Scenario co-evolution for
reinforcement learning on a grid world smart factory do-
main. In Proceedings of the Genetic and Evolutionary
Computation Conference, pages 898–906, 2019

159

10 [37] 5 Thomas Gabor, Andreas Sedlmeier, Thomy Phan,
Fabian Ritz, Marie Kiermeier, Lenz Belzner, Bernhard
Kempter, Cornel Klein, Horst Sauer, Reiner Schmid,
Marc Zeller, and Claudia Linnhoff-Popien. The sce-
nario coevolution paradigm: adaptive quality assurance
for adaptive systems. International Journal on Software
Tools for Technology Transfer, pages 1–20, 2020

168

11 [25] 6 Thomas Gabor and Philipp Altmann. Benchmarking
surrogate-assisted genetic recommender systems. In
Proceedings of the Genetic and Evolutionary Computa-
tion Conference Companion, pages 1568–1575, 2019

188

12 [68] 6 André Reichstaller, Thomas Gabor, and Alexander
Knapp. Mutation-based test suite evolution for self-
organizing systems. In International Symposium on
Leveraging Applications of Formal Methods (ISoLA),
2018

197

13 [38] 6 Thomas Gabor, Sebastian Zielinski, Sebastian Feld,
Christoph Roch, Christian Seidel, Florian Neukart, Is-
abella Galter, Wolfgang Mauerer, and Claudia Linnhoff-
Popien. Assessing solution quality of 3SAT on a quan-
tum annealing platform. In International Workshop
on Quantum Technology and Optimization Problems.
Springer, 2019

214

14 [30] 6 Thomas Gabor, Sebastian Feld, Hila Safi, Thomy Phan,
and Claudia Linnhoff-Popien. Insights on training neu-
ral networks for QUBO tasks. In First International
Workshop on Quantum Software Engineering (Q-SE
2020), 2020

227

15 [34] 6 Thomas Gabor, Jan Peter, Thomy Phan, Christian
Meyer, and Claudia Linnhoff-Popien. Subgoal-based
temporal abstraction in Monte-Carlo tree search. In
Proceedings of the 28th International Joint Conference
on Artificial Intelligence, pages 5562–5568. AAAI Press,
2019

233

63

A. Papers

A.2. Credit

Numbers according to the overview in Section A.1. We give a short summary of the
contributions of the paper and by the authors, respectively, in accordance with LMU
Munich regulations. We also mention where in the text the paper is mainly treated.

No. 1
Paper [33] Thomas Gabor and Claudia Linnhoff-Popien. A formal model

for reasoning about the ideal fitness in evolutionary processes. In In-
ternational Symposium on Leveraging Applications of Formal Meth-
ods (ISoLA), 2020

Main
Contributions

(i) formal framework for evolutionary algorithms; (ii) preliminary
landscape analysis of productive fitness; (iii) preliminary tools for
proofs about fitness

Credit Gabor conceived the main contributions, performed the experi-
ments and produced the formal arguments. Linnhoff-Popien con-
sulted the process and reviewed the results.

Treatment main focus of Chapter 2 (RQ1, RQ2)

No. 2
Paper [31] Thomas Gabor, Steffen Illium, Andy Mattausch, Lenz Belzner,

and Claudia Linnhoff-Popien. Self-replication in neural networks. In
Artificial Life Conference Proceedings, pages 424–431. MIT Press,
2019

Main
Contributions

(i) methods for self-applicable neural networks; (ii) self-stabilizing
neural network particle soup (concept and empirical analysis); (iii)
non-trivial fixpoints wrt. self-application for neural networks

Credit Gabor conceived the original concept, formal notation, and the
methods of analysis; he also conducted the core experiments. Il-
lium co-conceived the advanced concepts, supported practical ex-
periments and performed further analysis on the results. Mat-
tausch performed preliminary experiments (including conceiving
the means to implement them) to this paper as a practical course.
Mattausch and Belzner provided discussion and ideas for the orig-
inal concept. Linnhoff-Popien consulted the process and reviewed
the results.

Treatment main focus of Chapter 3 (RQ3)

64

A.2. Credit

No. 3
Paper [26] Thomas Gabor and Lenz Belzner. Genealogical distance as a di-

versity estimate in evolutionary algorithms. In Measuring and Pro-
moting Diversity in Evolutionary Algorithms (MPDEA@GECCO).
ACM, 2017

Main
Contributions

(i) novel domain-independent measurement method for diversity in
evolutionary algorithms (concept and empirical analysis); (ii) anal-
ysis of random approximation for all-pairs diversity measurements

Credit Gabor conceived the original concepts and conducted the empiri-
cal analysis. Belzner discussed and reviewed the process and the
results.

Treatment main focus of Chapter 4 (RQ2)

No. 4
Paper [28] Thomas Gabor, Lenz Belzner, and Claudia Linnhoff-Popien.

Inheritance-based diversity measures for explicit convergence con-
trol in evolutionary algorithms. In The Genetic and Evolutionary
Computation Conference (GECCO), 2018

Main
Contributions

(i) concise formal framework for inheritance-based diversity; (ii) ex-
tended analysis of various methods of diversity (incl. genealogical)

Credit Gabor conceived the original concepts and conducted the empiri-
cal analysis. Belzner discussed and reviewed the process and the
results. Linnhoff-Popien reviewed the process and the results.

Treatment main focus of Chapter 4 (RQ2)

No. 5
Paper [29] Thomas Gabor, Lenz Belzner, Thomy Phan, and Kyrill Schmid.

Preparing for the unexpected: Diversity improves planning re-
silience in evolutionary algorithms. In 15th IEEE International
Conference on Autonomic Computing (ICAC), 2018

Main
Contributions

connection between dynamic optimization and diversity (advanced
concept, practical application, and empirical analysis)

Credit Gabor conceived the original concepts and conducted the empirical
analysis. Belzner, Phan, and Schmid discussed and reviewed the
process and the results.

Treatment main focus of Chapter 4 (RQ2)

65

A. Papers

No. 6
Paper [35] Thomas Gabor, Thomy Phan, and Claudia Linnhoff-Popien.

Productive fitness in diversity-aware evolutionary algorithms. Nat-
ural Computing, pages 1–14, 2021

Main
Contributions

(i) novel concept of productive fitness (incl. formalization and em-
pirical analysis); (ii) connection between adjusted fitness functions
(focus on diversity) and productive fitness

Credit Gabor conceived the original concepts and conducted the empiri-
cal analysis. Phan supported the development of the concepts, dis-
cussed the novel notions and reviewed the process. Linnhoff-Popien
reviewed the process and the results.

Treatment main focus of Chapter 4 (RQ4)

No. 7
Paper [27] Thomas Gabor, Lenz Belzner, Marie Kiermeier, Michael Till

Beck, and Alexander Neitz. A simulation-based architecture for
smart cyber-physical systems. In The International Workshop on
Models@run.time for Self-Aware Computing Systems, 2016

Main
Contributions

(i) formalization of communication patterns and architectures for
the treatment of simulation in adaptive systems (with focus on
cyber-physical systems); (ii) concept for the categorization of con-
trol systems within an adaptive system

Credit Gabor conceived the concepts and produced their final form.
Belzner co-developed the concepts from their initial version. Kier-
meier, Beck, and Neitz discussed and reviewed the results as well
as helped with the presentation in the paper.

Treatment main focus of Chapter 5 (RQ5)

66

A.2. Credit

No. 8
Paper [32] Thomas Gabor, Marie Kiermeier, Andreas Sedlmeier, Bern-

hard Kempter, Cornel Klein, Horst Sauer, Reiner Schmid, and Jan
Wieghardt. Adapting quality assurance to adaptive systems: The
scenario coevolution paradigm. In International Symposium on
Leveraging Applications of Formal Methods (ISoLA), 2018

Main
Contributions

These contributions are repeated in their enirety in the substantially
extended version No. 10 [37].
(i) extension of the GEM framework [48] for optimization; (ii) for-
malization of the software development process as co-evolution; (iii)
discovery of patterns in the design of said co-evolution

Credit Gabor conceived the concepts and produced their final form. Kier-
meier, Sedlmeier, Kempter, Klein, Sauer, Schmid, and Wieghardt
reviewed and discussed the concepts intensively and provided vari-
ous ideas.

Treatment main focus of Chapter 5 (RQ5)

No. 9
Paper [36] Thomas Gabor, Andreas Sedlmeier, Marie Kiermeier, Thomy

Phan, Marcel Henrich, Monika Pichlmair, Bernhard Kempter, Cor-
nel Klein, Horst Sauer, Reiner Schmid, and Jan Wieghardt. Sce-
nario co-evolution for reinforcement learning on a grid world smart
factory domain. In Proceedings of the Genetic and Evolutionary
Computation Conference, pages 898–906, 2019

Main
Contributions

(i) co-evolutionary genetic algorithm for auto-curriculum genera-
tion in reinforcement learning (concept and empirical analysis); (ii)
generation of objectively hard test cases as a by-product (concept
and empirical analysis)

Credit Gabor conceived the concepts, defined the algorithm, the goals, and
the methods of analysis, co-supervised the development of the im-
plementation and co-performed the analysis if the data. Sedlmeier,
Kiermeier, and Phan co-supervised the implementation and pro-
vided various bits of input and discussion. Sedlmeier also co-
performed the analysis. Henrich and Pichlmair implemented the
algorithm and provided the setup for experiments as a practical
course. Kempter, Klein, Sauer, Schmid, and Wieghardt reviewed
and discussed the concepts intensively and provided various ideas.

Treatment main focus of Chapter 5 (RQ5)

67

A. Papers

No. 10
Paper [37] Thomas Gabor, Andreas Sedlmeier, Thomy Phan, Fabian Ritz,

Marie Kiermeier, Lenz Belzner, Bernhard Kempter, Cornel Klein,
Horst Sauer, Reiner Schmid, Marc Zeller, and Claudia Linnhoff-
Popien. The scenario coevolution paradigm: adaptive quality as-
surance for adaptive systems. International Journal on Software
Tools for Technology Transfer, pages 1–20, 2020

Main
Contributions

This is a substantially extended version of No. 8 [32].
(iv) conceptualization and software-engineering treatment of a ma-
chine learning pipeline; (v) formalization and contextualization of
the practical experiments of [36]

Credit For the additional contributions from the extension: Gabor ap-
plied and integrated the machine learning pipeline with the formal
framework; he conceived, formalized, contextualized, and executed
the practical experiments. Belzner conceived the machine learn-
ing pipeline. Sedlmeier, Phan, Ritz, Kiermeier, Belzner, Kempter,
Klein, Sauer, Schmid, Wieghardt, Zeller, and Linnhoff-Popien re-
viewed and discussed the concepts intensively and provided various
ideas.

Treatment main focus of Chapter 5 (RQ5)

No. 11
Paper [25] Thomas Gabor and Philipp Altmann. Benchmarking surrogate-

assisted genetic recommender systems. In Proceedings of the Ge-
netic and Evolutionary Computation Conference Companion, pages
1568–1575, 2019

Main
Contributions

(i) surrogate-based optimization “without replacement” (concept
and empirical analysis); (ii) preliminary proof-of-concept for the
application of said method for recommendation systems

Credit Gabor co-conceived the concepts; he steered the research pro-
cess, supervised the work, and reviewed the results. Altmann co-
conceived the concepts; he developed them to implementation and
performed the experiments. This paper resulted from Altmann’s
thesis to achieve the degree Bachelor of Science.

Treatment main focus of Chapter 6 (RQ6)

68

A.2. Credit

No. 12
Paper [68] André Reichstaller, Thomas Gabor, and Alexander Knapp.

Mutation-based test suite evolution for self-organizing systems.
In International Symposium on Leveraging Applications of Formal
Methods (ISoLA), 2018

Main
Contributions

(i) formalization and test design for testing self-organizing systems
with a mutation-based test goal (concept and empirical analysis);
(ii) novel extensions to evolutionary algorithms for graph-based and
set-based search spaces (concepts and empirical analysis)

Credit Reichstaller and Knapp conceived the overall study, the concepts
and formalization for the mutation-based testing of the considered
instance of a self-organizing system-under-test. Reichstaller imple-
mented the system-under-test and the generation of test mutants
and provided empirical data. Gabor conceived and implemented
the evolutionary algorithm and its extensions and performed the
respective experiments. Knapp also reviewed and discussed the
results.

Treatment main focus of Chapter 6 (RQ6)

No. 13
Paper [38] Thomas Gabor, Sebastian Zielinski, Sebastian Feld, Christoph

Roch, Christian Seidel, Florian Neukart, Isabella Galter, Wolfgang
Mauerer, and Claudia Linnhoff-Popien. Assessing solution quality
of 3SAT on a quantum annealing platform. In International Work-
shop on Quantum Technology and Optimization Problems. Springer,
2019

Main
Contributions

empirical analysis of quantum annealing behavior for 3SAT (incl.
initial connection between problem difficulty and solution result for
quantum annealing for 3SAT problems)

Credit Gabor co-conceived the concepts; he steered the research pro-
cess, supervised the work, and reviewed the results. Zielinski co-
conceived the concepts, implemented the software and performed
the experiments. Feld, Seidel and Mauerer provided ideas for anal-
ysis. Feld, Roch, Seidel, Neukart, Galter, Mauerer, and Linnhoff-
Popien reviewed and discussed the concepts intensively and pro-
vided various ideas as well as practical support.

Treatment main focus of Chapter 6 (RQ6)

69

A. Papers

No. 14
Paper [30] Thomas Gabor, Sebastian Feld, Hila Safi, Thomy Phan, and

Claudia Linnhoff-Popien. Insights on training neural networks for
QUBO tasks. In First International Workshop on Quantum Soft-
ware Engineering (Q-SE 2020), 2020

Main
Contributions

neural-network-based approximation of optimization, especially
quantum annealing (concept of implementation and preliminary
empirical results)

Credit Gabor conceived the original concept and co-constructed the ex-
periments. Gabor and Feld steered the research process, super-
vised the work, and reviewed the results. Safi co-constructed the
experiments, implemented the concepts in software, performed the
experiments and provided the empirical data for analysis. Linnhoff-
Popien reviewed and discussed the process and the results. This
paper resulted from Safi’s thesis to achieve the degree Master of
Science.

Treatment main focus of Chapter 6 (RQ6)

No. 15
Paper [34] Thomas Gabor, Jan Peter, Thomy Phan, Christian Meyer, and

Claudia Linnhoff-Popien. Subgoal-based temporal abstraction in
Monte-Carlo tree search. In Proceedings of the 28th International
Joint Conference on Artificial Intelligence, pages 5562–5568. AAAI
Press, 2019

Main
Contributions

subgoal-based extension to MCTS (concept and empirical analysis)

Credit Gabor discussed the initial concept and steered its development; he
supervised the work, reviewed the results and discussed their anal-
sysis. Peter provided the initial concept, developed it to implemen-
tation, performed the experiments, and provided the initial analy-
sis. Phan discussed and reviewed the results and conceived and exe-
cuted the analysis and presentation in the paper. Meyer contributed
to the initial concept and discussed the approach. Linnhoff-Popien
reviewed and discussed the process and the results. This paper re-
sulted from Peter’s thesis to achieve the degree Master of Science.

Treatment main focus of Chapter 6 (RQ6)

70

A.3. Full Texts

A.3. Full Texts

We now append the full texts of the discussed papers as they appear in their publication
or on arXiv. We reprint them to adhere to LMU Munich requirements. Please cite
them in their original publication format. To fit the layout of this thesis, we slightly
scale down the original pages, which allows us to show page numbers for easy reference.
Beyond the attached papers, this thesis features no further content.

71

A Formal Model for Reasoning About the
Ideal Fitness in Evolutionary Processes

Thomas Gabor(B) and Claudia Linnhoff-Popien

LMU Munich, Munich, Germany
thomas.gabor@ifi.lmu.de

Abstract. We introduce and discuss a formal model of evolutionary
processes that summarizes various kinds of evolutionary algorithms and
other optimization techniques. Based on that framework, we present
assumptions called “random agnosticism” and “based optimism” that
allow for new kinds of proofs about evolution. We apply them by pro-
viding all a proof design that the recently introduced notion of final
productive fitness is the ideal target fitness function for any evolutionary
process, opening up a new perspective on the fitness in evolution.

Keywords: Evolution · Evolutionary algorithms · Fitness

1 Introduction

Evolution in its broadest sense describes a process that finds solutions to complex
problems via the application of comparatively simple local operators. Mostly,
this process can be described as a search that starts quite uninformed and uses
the knowledge gained through trial and error to guide the further search pro-
cess. Note that usually this happens without central control and mostly without
even any central viewpoint that would allow to overlook all parts of the evolu-
tion. However, evolution is often implemented deliberately (using evolutionary
algorithms in software, e.g.) in order to search or optimize for a specific result
according to an externally given target.

While this target is often provided directly to the evolutionary process so
that intermediate results may be evaluated, many studies empirically show bet-
ter results when using slightly different goal than going directly for the exter-
nal target metric. Our recent study [8] has brought up empirical evidence that
one such “indirect” metric (called final productive fitness) might be theoreti-
cally optimal (even when or perhaps because it is extremely costly to compute).
However, little formal framework exists to reason about evolutionary processes
(specifically goals in evolutionary processes) at such a broad level in order to
formally prove a claim of optimality.

The aim of this paper is to show what kind of formal framework would be
sufficient to produce a formal proof of final productive’s fitness optimality. To
this end, we first introduce two bold but crucial assumptions hat allow us to strip
c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12477, pp. 473–490, 2020.
https://doi.org/10.1007/978-3-030-61470-6_28

Taken from original publication: Thomas Gabor and Claudia Linnhoff-Popien. A
formal model for reasoning about the ideal fitness in evolutionary processes. In
International Symposium on Leveraging Applications of Formal Methods (ISoLA),
2020

72

474 T. Gabor and C. Linnhoff-Popien

away much of the complexity of reasoning about evolution. Then we construct
the desired proof from them to show how they work. We hope that the novel
tools (i.e., mainly Assumptions 1 and 2) designed here can be used for other
high-level arguments about evolution.

All necessary definitions involving evolutionary processes are given in a con-
sistent way in Sect. 2. Section 3 then discusses the issue of the ideal fitness func-
tion and introduces the tools to reason about it. We give a short glance at related
work in Sect. 4 and conclude with Sect. 5.

2 Definitions

We follow the formal framework sketched in [8] to a vast extent but substantially
expand it in generality. We provide an example in Sect. 2.3.

2.1 Evolutionary Processes

For all definitions, we aim to give them in such a basic form that they can span
over various disciplines, from biology to formal methods. We use P to denote
the power set.

Definition 1 (Evolution). Let X be an arbitrary set called search space. Let
g ∈ N be called the generation count. Let Xi ⊆ X for any i ∈ N, 0 ≤ i ≤ g be
a subset of X called population. Let E : P(X) → P(P(X)) be a function called
evolutionary function.

A tuple (〈Xi〉0≤i≤g, E) is called an evolution over X iff Xi ∈ E(Xi−1) for
all i ∈ N, 1 ≤ i ≤ g.

Any element of the search space x ∈ X is called solution candidate (or
sometimes just solution for short). Members of a given population x ∈ X are
obviously always solution candidates, but are often also called individuals. Every
i within the generation count 1 ≤ i ≤ g is called a generation number with Xi

being the respective generation’s population. If no confusion is possible, both i
and Xi will also be called a generation. X0 is called the initial population.

Note that an evolution can be generated given a configuration consisting of a
search space X , an initial population X0 and an evolution function E. However,
many possible evolutions can follow from the same configuration. Often, the
initial population X0 is not given as a set but instead generated (semi-)randomly.
We write that as an initialization function I : R → P(X) where R stands for
random inputs.1 Notation-wise, we omit random inputs and write X0 ∼ I() (or
simply X0 = I() if no confusion is possible) for the initial population generated
by such a function.

Definition 2 (Target). Let X be a search space. A function t : X → [0; 1] that
assigns all elements in the search space a scalar value is called a target function.

1 In computers, these are often provided by a seed value and a hash function.

Taken from original publication: Thomas Gabor and Claudia Linnhoff-Popien. A
formal model for reasoning about the ideal fitness in evolutionary processes. In
International Symposium on Leveraging Applications of Formal Methods (ISoLA),
2020

73

Reasoning About the Ideal Fitness 475

A target function assigns a value to each point in the search space, i.e., to any
given solution candidate.2 We assume that target values are bounded, so w.l.o.g.
we can assume the target value space to be restricted to [0; 1] in Definition 2.
Again this can be generalized but is rarely useful in praxis. Also note that target
functions themselves are unconstrained: They can always be applied to the whole
search space. Hard constraints must be implemented by altering the search space
or “softening” them by representing them with different target values.

Furthermore, w.l.o.g. we assign every goal function a minimization semantic:
For two solution candidates x1, x2 ∈ X we say that x1 fulfills a goal t better iff
t(x1) < t(x2). Any solution candidate x ∈ X so that t(x) ≤ t(x′) ∀x′ ∈ X is
called a global optimum. An algorithm searching for increasingly better solutions
candidates is called an optimization algorithm. A configuration, a target function
and an evolution form an evolutionary process:

Definition 3 (Evolutionary Process). Let X be a search space. Let E : P(X) →
P(P(X)) be an evolutionary function. Let t : X → [0; 1] be a target function.
Let Xi be a population for any i ∈ N, 0 ≤ i ≤ g.

A tuple E = (X , E, t, 〈Xi〉i≤g) is an evolutionary process iff (〈Xi〉i≤g, E) is
an evolution.

Effectively, an evolutionary process consists of a history of past populations
(Xi) and the means to generate new population (E). We often implement the
evolutionary function by giving an evolutionary step function e : P(X) × R →
P(X) and write Xi+1 ∼ e(Xi) (or simply Xi+1 = e(Xi) if no confusion is possi-
ble) for any population Xi+1 that evolved from Xi by applying the evolutionary
step function alongside with some (omitted) random input.

An evolutionary process also carries a target function t. An evolutionary pro-
cess E is optimizing iff minx∈X0 t(x) ≥ minx′∈Xg t(x′). For many mechanisms in
stochastic search as well as for more natural phenomena like biological evolution
or human software development processes, optimization is a rather strong prop-
erty. However, if we have sufficient space within a population and access to the
target function, we can turn all evolutionary processes into optimizing ones by
just saving the currently best individual alongside the evolution, i.e., ensuring
that arg minx∈Xi

t(x) ∈ Xi+1.

Definition 4 (Elitism). An evolutionary process E = (X , E, t, 〈Xi〉i≤g) is called
elitist iff for all i ∈ N, 1 ≤ i ≤ g, it holds that minx∈Xi−1 t(x) ≥ minx′∈Xi t(x′).

All elitist processes are optimizing. If not noted differently, we from now on
assume every evolutionary process to be elitist by default.

2 Note that by giving a function only parametrized on the individual itself, we assume
that the target function is static. Dynamic optimization is an entire field of research
that we heavily use in this paper. However, we leave dynamic target functions in our
formalism to future work.

Taken from original publication: Thomas Gabor and Claudia Linnhoff-Popien. A
formal model for reasoning about the ideal fitness in evolutionary processes. In
International Symposium on Leveraging Applications of Formal Methods (ISoLA),
2020

74

476 T. Gabor and C. Linnhoff-Popien

2.2 Evolutionary Algorithms

An evolutionary algorithm is special case of evolutionary process that uses an
evolutionary function made up of a number of standard components called evo-
lutionary operators. We now introduce standard definitions for these components
that most instances of evolutionary algorithms can be mapped to. However, the
field of evolutionary algorithms is vast and there are variants that alter many
smaller details of how they work. It is interesting to note how robust the general
concept of evolution is to such variations.

Nearly all evolutionary algorithms that use set-based populations introduce
a fixed population size n ∈ N for all generations. This allows to keep memory
resources easily manageable as the overall memory consumption will not increase
over time. We also use this opportunity to introduce the concept of fitness func-
tions. Note that E is the space of all evolutionary processes.

Definition 5 (Fitness). Let X be a search space. A function f : X × E × R →
[0; 1] is called a fitness function. This function takes an individual, its evolution-
ary process up until now, and random input and returns a scalar value.

The fitness function can be regarded as generalization of the concept of a
target function (cf. Definition 2). It represents the goal definition that the evo-
lutionary process can call upon and actively follows, which may or may not
coincide with the target function. In addition to the solution candidate itself, it
is able to process additional information about the context. Various approaches
may allow nearly arbitrary information here. For a rather general approach, we
just pass on a snapshot of the evolutionary process that generated the individual
until now. This includes:

– The current population that the evaluated individual is a part of allows to
define the fitness of an individual relative to its peers.

– The history of all populations until now allows to observe relative changes
over time as well as trace the ancestry of individuals throughout evolution.

– The number of the current generation allows the fitness function to change
over time and implement, e.g., a cool-down schedule.

Note that the random input that is also passed along allows fitness functions
to also vary fitness values stochastically. However, most fitness functions will not
make use of all this information. In these cases we allow to trim down the fitness
function’s signature and simply write f(x) for an individual x ∈ X if all other
parameters are ignored.

In many practical instances, developers will choose the target function as a
fitness function, i.e., f(x) = t(x) for all x ∈ X , and for most target functions,
evolution will end up achieving passable target values this way. It is the main
point of this paper, however, to prove that the optimal choice in general is a
different function derived from the target function.

Alongside the fitness function f an evolutionary algorithm also uses vari-
ous selection functions. In general, a selection function returns a subset of the
population for a specific purpose.

Taken from original publication: Thomas Gabor and Claudia Linnhoff-Popien. A
formal model for reasoning about the ideal fitness in evolutionary processes. In
International Symposium on Leveraging Applications of Formal Methods (ISoLA),
2020

75

Reasoning About the Ideal Fitness 477

Definition 6 (Selection). A function s : P(X) × E × R → P(X) is called a
selection function iff s(X, E , r) ⊆ X for all X, E , r. This function takes a pop-
ulation, its evolutionary process, and random input and returns a subset of the
given population.

Again note that we allow for a multitude of information that will rarely be
used directly in any selection function and that will be omitted if not necessary.
Most importantly, however, any selection function is able to call any fitness
function since all its inputs can be provided.

As seemingly limitless variations of selection functions exist we use this
opportunity to provide a few examples and at the same time define all fami-
lies of selection functions that we use for the remainder of this paper. (Note that
the current population X is always provided with an evolutionary process E .)

Random Selection. This function !m(X, E , r) = {x ∼ X} ∪ !m−1(X, E , r)
selects m individuals of the population at random. Note that x ∼ X is one
element x ∈ X sampled uniformly at random. We define !0(X, E , r) = ∅.

Cutoff Selection. This function σm(X, E , r) = {arg minx∈X f(x, E , r)} ∪
σm−1(X, E , r) selects the m best individuals according to the fitness func-
tion f . We define σ0(X, E , r) = ∅.

We can now move on to define the evolution function E. For all variants
of evolutionary algorithms there exist certain building blocks, called evolution-
ary operators, that most evolutionary functions have in common. They take as
arguments some individuals and return some (possibly new) individuals. During
the execution of an evolutionary operator its input individuals are referred to as
parents and its output individuals are referred to as children.

Mutation. This operator mut : X × R → X generates a randomly slightly
altered individual from a parent.

Recombination. This operator rec : X × X × R → X takes two individuals to
combine them into a new individual.

Migration. This operator mig : R → X generates a random new individual.

Again, countless variants and implementations exist, most importantly
among them there is non-random mutation and recombination with various
amounts of parents and children. For brevity, we omit everything we do not
use in this paper’s study. Please note that all of these operators return entirely
new individuals and leave their parents unchanged. In practical applications, it
is equally common to apply (some of) these operators in-place, which means
that the generated children replace their parents immediately. We, however, opt
to just add the children to the population (and possibly eliminate the parents
later) so that parents and their children can exist side by side within the same
generation. Our main aim in doing this is that it makes elitism much easier to
achieve.

As these operators work on single individuals, we define a shortcut to apply
them to sets of individuals:

Taken from original publication: Thomas Gabor and Claudia Linnhoff-Popien. A
formal model for reasoning about the ideal fitness in evolutionary processes. In
International Symposium on Leveraging Applications of Formal Methods (ISoLA),
2020

76

478 T. Gabor and C. Linnhoff-Popien

Definition 7 (Application of Operators). Let X ⊆ X be a set of individuals in
search space X . Let s be a selection function. We write X !mut s = {mut(x) | x ∈
s(X)} and X !rec s = {rec(x1, x2) | x1 ∈ s(X), x2 ∼ X} for the sets of children
when applying the respective operators. For consistency, we also write X !mig

s = {mig() | x ∈ s(X)} to create |s(X)| many new random individuals, even
though their values do not depend on the individuals in X.

We are now ready to define a scheme for the evolution function E in evo-
lutionary algorithms. We do so by providing an evolutionary step function e as
discussed above with parameters A1, A2, A3 ∈ N:

e(X) = σ|X|(X ∪ (X !rec σA1) ∪ (X !mut !A2) ∪ (X !mig !A3)) (1)

Note again that in this evolutionary step we place all generated children
alongside their parents into one population and then cutoff-select the best from
this population.3 As it is common, we use random selection to select mutation
parents. The selection function for the recombination parents is also called parent
selection. We use cutoff selection on one parent with a randomly selected partner
here. This gives some selective pressure (i.e., better individuals have a better
chance of becoming recombination parents) without overcentralizing too much.
Although many approaches to parent selection exist, we choose this one as it
is both effective in practical implementations and mathematically very clean to
define. The final selection function that is called upon the combined population
of potential parents and new children is called survivor selection. We simply use
cutoff selection here for ease of reasoning. Many evolutionary algorithms use
more advanced survivor selection functions like roulette wheel selection where
better individuals merely have a higher chance of being picked. We choose a
hard cutoff for this kind of selection, mainly because it is simpler to define and
understand, and its transparent to elitism. Since the cutoff point varies with the
population’s fitness structure that is subjected to random effects, the practical
difference between both approaches for our examples is negligible. Note that
we can emulate a lot of different selection schemes by choosing an appropriate
fitness function: As the fitness function can vary at random, we can for example
make the cutoff more fuzzy by simply adding noise to each fitness evaluation
instead of changing the selection function. Also note that adding all the children
non-destructively and using cutoff-selection makes the algorithm elitist if f = t.

We parametrize the evolutionary step function with the amount of recombi-
nation children A1, amount of mutation children A2 and amount of migration
children A3. These are also often given as rates relative to the population size.

Definition 8 (Evolutionary Algorithm). An evolutionary algorithm is an evo-
lutionary process E = (X , E, t, 〈Xi〉i≤g) where the evolutionary function is given
via an evolutionary step function of the form described in Eq. 1, where a fitness
function f is used for all selection functions and evolutionary operators and the
target function t is only accessible insofar it is part of f .

3 In the field of evolutionary computing, this is called a µ + λ selection scheme.

Taken from original publication: Thomas Gabor and Claudia Linnhoff-Popien. A
formal model for reasoning about the ideal fitness in evolutionary processes. In
International Symposium on Leveraging Applications of Formal Methods (ISoLA),
2020

77

Reasoning About the Ideal Fitness 479

Note that for the ease of use in later notation, we will often denote two
evolutionary processes that differ solely in their fitness function (φ vs. ψ, e.g.)
by denoting that fitness function as a subscript (Eφ vs. Eψ). Independently of
that we denote the best individual of the final generation of Eφ according to
some fitness or target function ψ with

|Eφ|ψ = arg min
x∈Xg

ψ(x) (2)

and the best of all generations with

||Eφ||ψ = arg min
x∈Xi
i∈N

0≤i≤g

ψ(x). (3)

It is clear that if Eφ is elitist with respect to ψ, then |Eφ|ψ = ||Eφ||ψ. Note that
when we use a fitness function f -= t then we usually obtain the overall result
of the evolutionary algorithm by computing ||Ef ||t or |Ef |t if we are confident
about the elitism at least to the extent that we do not worry about substantial
results getting lost along the way. In most cases we will assume that if f is close
enough to t at least in the final generations, elitism with respect to f grants us
quasi-elitism with respect t, i.e., if f ≈ t and Ef is elitist with respect to f , we
assume that ||Ef ||t ≈ ||Ef ||f .

2.3 Example

We provide a running example accompanying these definitions.4 For a target
function, we choose two common benchmark functions from literature as they
are implemented in the DEAP framework [2,12]. The first problem is based on
the two-dimensional Schwefel function although we adjusted the target value
space to fit comfortably within [0; 1] (cf. Fig. 1a). We chose only two dimensions
for ease of visualization. Higher-dimensional Schwefel is also covered in [8]. The
Schwefel function is characterized by many valleys and hills of varying depth.
The global optimum is at X = Y ≈ 420. By contrast, our second example is
the H1 function [14] that features one very distinct global optimum at X =
8.6998, Y = 6.7665. However, it feature very many little (hard to see) local
optima throughout the whole surface. We took the classical H1 function, which
is defined as a maximization problem and turned it upside down to produce a
minimization problem (cf. Fig. 1b). For both target functions t ∈ {tSchwefel, tH1}
we construct the same evolutionary algorithm.

The search space is given as XSchwefel = [−500; 500] ⊆ R2 and XH1 =
[−100; 100] ⊆ R2 respectively. We initialize the search by generating X0 from 25
random samples within the search space in both cases. The size of this popula-
tion remains constant with application of the evolutionary step function e, which
is constructed according to Eq. 1 with A1 = 0.3·|X|, A2 = 0.1·|X|, A3 = 0.1·|X|.

4 The code for all examples can be found at github.com/thomasgabor/isola-evolib.

Taken from original publication: Thomas Gabor and Claudia Linnhoff-Popien. A
formal model for reasoning about the ideal fitness in evolutionary processes. In
International Symposium on Leveraging Applications of Formal Methods (ISoLA),
2020

78

480 T. Gabor and C. Linnhoff-Popien

(a) Normalized two-dimensional Schwefel (b) Inverse normalized H1

Fig. 1. Benchmark target functions used for the running example.

Let w be the range of a single dimensional value in the search space (i.e.,
wSchwefel = 1000, wH1 = 200), then the mutation operator returns

mut((X,Y)) ∈ {(X ⊕ δ, Y), (X,Y ⊕ δ) | δ ∈ [−0.1w; 0.1w]} (4)

chosen random uniform where ⊕ only adds or subtracts as much of its second
argument so that the resulting value remains within the search space. We further
define the recombination operator so that its result is at random uniform picked
from

rec((X,Y), (X ′, Y ′)) ∈ {(X,Y), (X,Y ′), (X ′, Y), (X ′, Y ′)}. (5)

Note that both operators include random cases where the operator does not
do anything at, which does not harm the overall search and can be further
counter-acted by increasing the respective amount of selected individuals for
that operator. The migration operator just samples random uniform from the
search space, returning mig() ∈ X .

To illustrate the behavior of evolution, we ran independently initialized evo-
lutionary processes for each problem 500 times each for 50 generations. Figure 2
shows all solution candidates found within a specific generation among all evo-
lutionary processes. We can clearly trace how the search start random uniform
and then focuses towards the global optima, sometimes getting stuck in local
optima in the target value landscape (compare Fig. 1).

3 Approach

We apply the framework to give the definition of productive fitness. To present
the full proof design we introduce and discuss Assumptions 1 and 2. We continue
our example in Sect. 3.3.

3.1 The Ideal Fitness

So far, we discussed some example definitions using the target function as fitness,
f = t, and noted that it works (but not optimally). Obviously, having f correlate

Taken from original publication: Thomas Gabor and Claudia Linnhoff-Popien. A
formal model for reasoning about the ideal fitness in evolutionary processes. In
International Symposium on Leveraging Applications of Formal Methods (ISoLA),
2020

79

Reasoning About the Ideal Fitness 481

(a) Schwefel, generation 1 (b) H1, generation 1

(c) Schwefel, generation 10 (d) H1, generation 10

(e) Schwefel, generation 50 (f) H1, generation 50

Fig. 2. Individuals from 500 independent runs of the evolutionary processes.

to some extend with t is a good thing if in the end we value our results with
respect to t. However, it has long been known that augmenting the fitness with
additional (meta-)information can greatly aid the optimization process in some
cases. This fact is extensively discussed in literature [1,15] including previous
works by the authors [7,8]. We sum the results up in the following observation:

Taken from original publication: Thomas Gabor and Claudia Linnhoff-Popien. A
formal model for reasoning about the ideal fitness in evolutionary processes. In
International Symposium on Leveraging Applications of Formal Methods (ISoLA),
2020

80

482 T. Gabor and C. Linnhoff-Popien

Observation 1. There exist evolutionary processes Eφ = (X , Eφ, t, 〈Xi〉i≤g)
and Et = (X , Et, t, 〈X ′

i〉i≤g) whose configurations only differ in the fitness func-
tion and there exist fitness functions φ -= t so that ||Eφ||t < ||Et||t.

Observation 1 states that an evolutionary process can yield better results
with respect to t by not using t directly but a somewhat approximate version
of t given via φ, which includes additional information but likewise “waters
down” the pure information of our original target. It is somewhat surprising
that a deviation from the original target can yield an improvement. Commonly
this phenomenon is explained by the exploration/exploitation trade-off : In an
unknown solution landscape made up by t, we gain knowledge through evaluating
solution candidates. When we have evaluated all solution candidates x ∈ X ,
we simply need to compute arg minx∈X t(x), which of course is infeasible for
most practical search spaces. Giving limited time resources, we need to decide
if we put additional effort into exploring more and new parts of the search
space in hope of finding valuable solution candidates there or if we exploit the
knowledge we have already gathered to further improve the solution candidates
we already evaluated. This can be seen of a trade-off between large-scale search
for exploration and small-scale search for exploitation.

Dealing with the exploration/exploitation trade-off certainly is one of the
central tasks when implementing metaheuristic search and has been covered
extensively in literature. Many of these approaches have been discovered bottom-
up, often by analogy to biological or physical processes. Even though many
similarities between approaches have been discovered, there does not exist a
general framework for how to construct the right fitness function for a specific
target function and evolutionary process.

Problem 1. Given a target function t, what is the theoretically best fitness func-
tion φ∗ for an evolutionary process Eφ∗ to optimize for t, i.e., optimize ||Eφ∗ ||t?

We gave an answer to that question for the special case of standard evo-
lutionary algorithms in [8]: We defined a measurement called final productive
fitness and have sketched a proof that it represents the ideal fitness function
for evolutionary algorithms. However, it is important to note that computing it
a priori is infeasible. We approximated final productive fitness for an evolution
a posteriori and provided empirical evidence that evolutionary algorithms are
working better the better their fitness approximates final productive fitness.

In this paper, we formally introduce the necessary tools to provide the full
proof of the ideal fitness for evolutionary algorithms. First, we need to re-iterate
a few definitions of [8] in order to formally define final productive fitness.

Definition 9 (Descendants [8]). Given an individual x in the population of gen-
eration i, x ∈ Xi, of an evolutionary process E. All individuals x′ ∈ Xi+1 so that
x′ resulted from x via a mutation operator, i.e., x′ = mut(x, r) for some r ∈ R,
or a recombination operator with any other parent, i.e., there exists y ∈ Xi so
that x′ = rec(x, y, r) for some r ∈ R, are called direct descendants of x. Further
given a series of populations (Xi)0<i<g we define the set of all descendants Dx

as the transitive hull on all direct descendants of x.

Taken from original publication: Thomas Gabor and Claudia Linnhoff-Popien. A
formal model for reasoning about the ideal fitness in evolutionary processes. In
International Symposium on Leveraging Applications of Formal Methods (ISoLA),
2020

81

Reasoning About the Ideal Fitness 483

The main idea behind productive fitness is to measure an individual’s effect
on the optimization process. If the optimization process is stopping right now,
i.e., if we are in the final generation g, then we can equate any individual’s
effect with its target function value. However, for any previous generations an
individual’s effect on the optimization corresponds to the best target function
values that its descendants have achieved within the evolution.

Definition 10 (Productive Fitness [8]). Given an individual x in the population
of generation i, x ∈ Xi, of an evolutionary process E. Let Dx ⊆ X be the set of
all descendants from x. The productive fitness after n generations or optimistic
n-productive fitness φ+

n is the average achieved target value of x’s descendants
n generations later, written

φ+
n (x) =

{
avgx′∈Dx∩Xi+n

t(x′) if Dx ∩ Xi+n -= ∅
1 otherwise.

(6)

Note that in case the individual x has no descendants in n generations, we
set its productive fitness φ+

n (x) to a worst case value of 1.
From [8] we repeat two major arguments against this definition:

– The use of avg as an aggregator over target values might be a bit pessimistic.
By doing so, we penalize an individual’s fitness if that individual bloats up
the optimization with many low-value individuals. However, if it thereby also
delivers at least one superior descendant, we should actually be fine with
that when we only care about the end result. If such effects actually occur
in practical scenarios is up to future work to discover. Empirical evidence
discovered in [8] strongly argues in favor of using the average, which is why
we repeat it in this definition. In the proof we will later derive a min-version
from one of our assumptions.

– Assigning the value 1 in case the given individual has no further descendants
in generation i + n is a design choice. We might leave the productive fitness
in this case undefined or at least assign a value outside the common range of
target function values. We suggest that even without living descendants there
might still be inherent value to having explored certain solution candidates
(and having them clearly discarded for the ongoing process). Still, determining
this incentive is up to future research.

Of course, productive fitness φ+
n only measures the effect locally after a fixed

amount of generations. For the effect for the whole evolution we can now easily
define the notion of final productive fitness.

Definition 11 (Final Productive Fitness). Given an individual x in the popu-
lation of generation i, x ∈ Xi, of an evolutionary process E with g generations
in total. The final productive fitness of x is the fitness of its descendants in the
final generation, i.e.,

φ†(x) = φ+
g−i(x). (7)

Taken from original publication: Thomas Gabor and Claudia Linnhoff-Popien. A
formal model for reasoning about the ideal fitness in evolutionary processes. In
International Symposium on Leveraging Applications of Formal Methods (ISoLA),
2020

82

484 T. Gabor and C. Linnhoff-Popien

Described shortly, the final productive fitness of an individual x can be seen
as an answer to the question: “How much did x contribute to the fitness of the
individuals of the final population?” We claim that optimizing for that measure-
ment results in the optimal evolutionary process (as considered in Problem 1).

Practically, of course, optimizing for that measurement is rather difficult
(which in fact may be the entire reason it is the optimal fitness function): To
make the completely right decision in generation i = 1, we would have to eval-
uate all possible future generations for each single individual being involved in
any selection or altered in any way by evolutionary operators. Within a sin-
gle generation, these are exponentially many possibilities, which of course grow
exponentially with each generation. Still, in [8] we designed some approxima-
tion of final productive fitness that can at least be computed a posteriori for an
already run evolution, giving some insight into the algorithm’s workings. In this
paper, we now provide the full design for a proof of final productive fitness’s
optimality, although there are still many risky new tools involved.

3.2 Proof Design

We hope that the notion of final productive fitness is intuitive enough so that it
seems plausible how φ† might be the ideal fitness function φ∗ for any evolutionary
algorithm. However, evolutionary processes are highly stochastic entities and
little framework exists to reason about their performance. We now first provide
such a framework, although we resort to making some strong assumptions along
the way.

Assumption 1 (Random Agnosticism). Random effects residing in selection
functions and evolutionary operators exert the same general effects on the evo-
lutionary function E regardless of the used fitness function.

The main intention behind Assumption 1 is, of course, to exclude any concept
of randomness from the proof design. We effectively assume that the distribu-
tion of outcomes (i.e., selected individuals or generated children) depending on
random inputs does not depend on the fitness function. At first, this is a cer-
tainly outlandish and strong assumption, especially as it allows us to deduce
quite strong properties. We just give a few reasons why it might be viable:

– Wherever random effects are used, they are usually designed to break clear
fitness borders (for example when using a fuzzy cutoff vs. a discrete cutoff).
In these cases, random effects overpower the effect of the fitness function so
that (in the extreme case, consider random selection) the used fitness function
has little impact on the outcome. If we flip the perspective around, different
fitness functions then also have little difference for the outcome.

– Within the evolutionary function E, typically lots of random effects come
together. Even if some of their distributions are altered by using a different
fitness function, as long as they are not altered towards a specific result,
the effect may still cancel out on the larger scale. Basically, we expect the
outcome distribution of the whole evolutionary function E to approach the
normal distribution irregardless of (un-systematic) mix-ups.

Taken from original publication: Thomas Gabor and Claudia Linnhoff-Popien. A
formal model for reasoning about the ideal fitness in evolutionary processes. In
International Symposium on Leveraging Applications of Formal Methods (ISoLA),
2020

83

Reasoning About the Ideal Fitness 485

– From practical perspective, the shape of outcome distributions is rarely con-
sidered directly when constructing an evolutionary algorithm. That should
usually indicate that not much effect can be observed there in most cases.

Eventually, all these reasons are flawed, of course. Otherwise, we would not
have kept Assumption 1. Still, we feel that proofs built on Assumption 1 might
have practical relevance for the time being.

It would be natural to follow up the effective elimination of randomness
(coming from Assumption 1) by replacing all possibly random outcomes with
the expected value of the distribution and treating all function as non-stochastic.
However, the expected value is still computed from the distribution, so this would
not make things much easier. Instead, we opt of the ideal outcome, which can be
derived much easier, but might shift effects drastically: A recombination operator
that performs so bad on average that it brings down the whole evolutionary
process might now look like it gives rise to a very effective evolutionary process
just because it has a very small chance of getting a really good result.

Assumption 2 (Based Optimism). For an evolutionary function E with a lim-
ited amount of possible outcomes, the best possible outcome is representative for
its expected average result.

We recognize that “limited” is not fully defined here. We suggest that future
work looks into enumerability or local boundedness. For practical purposes, how-
ever, it is clear which of the classic operators are affected: Random initialization
and migration can generate individuals across the whole search space. If we
minimize over their possible outcomes, the whole algorithm reaches the global
optimum in a single step. Mutation and recombination (with any kind of selec-
tion) on the other side are limited operators: Given certain individuals as input
parameters, they will only navigate a limited range of options related to those
individuals. Again the main argument for the plausibility of Assumption 2 is
that the results usually approach normal distribution anyway and there is no
real reason why they should act any differently given exactly the two fitness
functions we are about to compare. However, given that we completely alter the
rules of evolutionary algorithms with this one, it is definitely a bold assumption.
Further note how we interpret the qualification “best” in Assumption 2: For
a given evolutionary function E, its notion of “best” corresponds to its fitness
function. So if we choose the best of two evolutionary processes with different
fitness functions, we might actually choose two different points in the outcome
distribution (depending on the fitness), which again is an immensely powerful
tool based on a big assumption.

What Assumption 2 then provides is means to simplify Definition 10: Pro-
ductive fitness is defined as the average fitness of all descendants. We can now
use the best fitness of the descendants to compute the fitness measurement which

Taken from original publication: Thomas Gabor and Claudia Linnhoff-Popien. A
formal model for reasoning about the ideal fitness in evolutionary processes. In
International Symposium on Leveraging Applications of Formal Methods (ISoLA),
2020

84

486 T. Gabor and C. Linnhoff-Popien

we will call optimistic productive fitness.5 Note that implementing these assump-
tions has a great effect on the behavior of the evolutionary process. However, we
do not claim that they leave the evolutionary process intact, we just claim that
a clearly better fitness function remains the better fitness function even in the
altered setting.

The tools provided by Assumptions 1 and 2 are rather novel and very pow-
erful, so we are aware that any results based on them should be taken with a
great amount of caution. However, in order to present these tools at work, we
can use them to provide a proof that final productive fitness φ† is one answer
for Problem 1.

Proof 1 (Problem 1). Let E† = 〈X , E†, t, (X†
i)i<g〉 be an evolutionary process

using optimistic final productive fitness φ†. Let E∗ = 〈X , E∗, t, (X∗
i)i<g〉 be an

evolutionary process using a different (possibly more ideal) fitness φ∗. According
to the transformation discussed in Sect. 2.1, let both E† and E∗ be elitist. Let
X†

0 = X∗
0 . We assume that t(||E†||t) > t(||E∗||t), i.e., because of elitism

min
x∈X†

g

t(x) > min
x∈X∗

g

t(x). (8)

From Eq. 8 it follows that there exists an individual x ∈ X∗
g so that x /∈ X†

g

and t(x) < miny∈X†
g
t(y). The better individual x could not have been introduced

into the population of E∗ by migration (or random initialization for that matter)
as we could use Assumption 1 to just introduce x into E† then.

Then x needs to stem from an individual x′ that is an ancestor of x, i.e.,
x ∈ Dx′ , so that x′ was selected for survival in E∗ and not in E†, which implies
that φ†(x′) > φ∗(x′). However, since x is a possible descendant for x′, the com-
putation of φ†(x′) should have taken t(x) into account,6 meaning that x′ should
have survived in E† because of elitism after all, which contradicts the previous
assumption (Eq. 8). 23

3.3 Example

We now illustrate the notion of productive fitness for our running example.
For each of the individuals generated in Sect. 2.3 we computed an a posteriori
approximation for final productive fitness: Basically, we took the descendants
that have in fact been generated during evolution as a representative subset of

5 Note that the best possible choice for the average fitness of descendants is the mini-
mum of the possible descendants’ fitness values. When we are allowed to adjust the
random choice for the best possible outcomes, worse-than-optimal children will not
be born. This changes the game: Our ideal choice from the vast space of random
possibilities now yields at most one (i.e. the best possible) descendant per individual
per generation.

6 Note that t(x) cannot be compensated by other descendants of x′ with possibly
bad objective fitness since we assumed optimistic final productive fitness following
Assumption 2.

Taken from original publication: Thomas Gabor and Claudia Linnhoff-Popien. A
formal model for reasoning about the ideal fitness in evolutionary processes. In
International Symposium on Leveraging Applications of Formal Methods (ISoLA),
2020

85

Reasoning About the Ideal Fitness 487

the descendants that could have been generated. This allows us to compute a
value for φ† for an already finished evolution.7

Note that the notion of final productive fitness is most powerful in the begin-
ning of the evolutionary process, when it carries information about the whole
evolution to come. Figures 3a and 3b provide a clear situation how final produc-
tive fitness is a better fitness function than the target function:

– The final productive fitness landscape has fewer valleys as its local optima
correspond to individuals that remained in the final generation of some evo-
lutionary process. This makes the landscape less deceptive and individuals
are more clearly guided towards at least somewhat good results.

– The basins around the optima are wider, again making the local optimization
towards the final result more clear.

– The differences between the global optimum and other local optima are more
pronounced, giving an edge to the global optimum.

As discussed, if we could use final productive fitness during evolution, it
would allow for better results. However, approximations of various quality may
exist for specific problems or problem instances [8].

In Figs. 3c and 3d we can see how the final productive fitness landscapes
deteriorates with the progressing evolution. As we can see from the red dots,
evolution has focused on certain areas of the solution landscape, leaving wide
areas without a meaningful final productive fitness to be computed. This effect is
even more prominent in Figs. 3e and 3f, where individuals that are still randomly
generated in certain areas die out rather quickly, leaving them with a productive
fitness of 1. Note that productive fitness cannot meaningfully be computed for
the last generation so we deliberately choose to show generation 49 last here.

Note how Fig. 3 also illustrates the usage of different evolutionary operators:
For the Schwefel function, many individuals have a good final productive fitness
when the evolution starts. That means they have direct descendants who manage
to achieve nearly optimal target values. By contrast, H1 shows no individuals
with good productive fitness in the beginning, meaning that the final results
were mostly discovered via the migration operator mig as that is not traced by
productive fitness.8

4 Related Work

We first introduced the gist of the formal framework for evolutionary processes
as well as the notion of productive fitness in [8]. In this paper, we provide and
discuss the full, substantially extended framework and introduce the assumptions
and tools a proof design for productive fitness’s validity can be built with.

Theoretical work on evolutionary algorithms has been traditionally focused
on the complexity of the search process (on rather simple search problems) or
7 For details on how this is done, please refer to [8].
8 Migrants are generated randomly and are thus not ascribed to be any individual’s

descendant. How to include migrants in productive fitness is left for future work.

Taken from original publication: Thomas Gabor and Claudia Linnhoff-Popien. A
formal model for reasoning about the ideal fitness in evolutionary processes. In
International Symposium on Leveraging Applications of Formal Methods (ISoLA),
2020

86

488 T. Gabor and C. Linnhoff-Popien

(a) Schwefel, generation 1 (b) H1, generation 1

(c) Schwefel, generation 10 (d) H1, generation 10

(e) Schwefel, generation 49 (f) H1, generation 49

Fig. 3. Individuals from 500 independent runs of the evolutionary processes plotted
with their a posteriori approximated final productive fitness. The surface represents
the same data set as the scatter points, where each tile has the Z value equal to the
average Z value of all the points within it.

Taken from original publication: Thomas Gabor and Claudia Linnhoff-Popien. A
formal model for reasoning about the ideal fitness in evolutionary processes. In
International Symposium on Leveraging Applications of Formal Methods (ISoLA),
2020

87

Reasoning About the Ideal Fitness 489

the performance of various types and variants of algorithms in general. We point
to [4–6] for a few selective examples without any attempt at giving a full overview
over this old and comprehensive field of research. By contrast, we fully work out
the difference between a target function that is given from the outside world and
a fitness function that (potentially) emerges implicitly throughout the process
of evolution. As this concept in itself is rather novel, the constructs supporting
it have been freshly developed as well (and are still in their infancy).

It should be pointed out that there probably exists a connection from the
assumptions and approximations we make to a complexity-based analysis of
evolution, as these tools allow us to rule out exponentially many options and
thus bring the respective computation to a feasible level.9

Various meta-measurements of fitness in evolutionary algorithms have been
designed. We would like to point out effective fitness [13], which describes the
fitness threshold under which individuals can manage to increase their dominance
in the population. This usually is a harsher border than reproductive fitness [11],
which is the probability of an individual to successfully produce offspring. Both
follow a similar line of thought of measuring what fitness an individual needs to
have for certain effects to occur, but none suggest using the meta-measurement
as a fitness value itself.

5 Conclusion

We have introduced and discussed a formal description of evolutionary processes
that summarizes various kinds of evolutionary algorithms and other optimization
techniques. Based on that framework, we defined the notion of productive fitness
as it is defined in [8], where an argument was sketched why it might be the ideal
fitness function. In this paper, we introduced the tools necessary to implement
the proof, discussed their validity and thus gave the full proof design. We argue
that while the approach is somewhat bold, the assumptions made could be useful
for similar arguments about evolutionary processes and hope the perspective
on fitness functions given here will open up new ways to reason about highly
dynamic and uncertain processes, especially evolution.

We pointed out future work where we encountered open questions. We con-
sider the connection suggested to traditional runtime analysis of evolutionary
algorithms and subsequently to the No Free Lunch theorem [10] and how it
related to the cases of having and using as well as finding and approximating
the ideal fitness function to be especially promising. In addition, we suggest that
it might be of particular relevance to also expand the scope of the framework
beyond evolutionary algorithms; even the proof design might be adapted to not
only work for fitness used by evolutionary operators but for example to deliver
the ideal reward function for reinforcement learning [3,9].
9 As no computational limit on biological evolution, e.g., has been recognized it could

be an interesting endeavor to use the framework presented in this paper to translate
arguments from runtime analysis of evolutionary algorithms back to a more general
concept of evolution.

Taken from original publication: Thomas Gabor and Claudia Linnhoff-Popien. A
formal model for reasoning about the ideal fitness in evolutionary processes. In
International Symposium on Leveraging Applications of Formal Methods (ISoLA),
2020

88

490 T. Gabor and C. Linnhoff-Popien

References

1. Brown, G., Wyatt, J., Harris, R., Yao, X.: Diversity creation methods: a survey
and categorisation. Inf. Fusion 6(1), 5–20 (2005)

2. DEAP Project: Benchmarks (2020). https://deap.readthedocs.io/en/master/api/
benchmarks.html. Accessed June 1 2020

3. Dewey, D.: Reinforcement learning and the reward engineering principle. In: 2014
AAAI Spring Symposium Series (2014)

4. Doerr, B., Happ, E., Klein, C.: Crossover can provably be useful in evolutionary
computation. Theoret. Comput. Sci. 425, 17–33 (2012)

5. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary
algorithm. Theoret. Comput. Sci. 276(1–2), 51–81 (2002)

6. Friedrich, T., Oliveto, P.S., Sudholt, D., Witt, C.: Analysis of diversity-preserving
mechanisms for global exploration. Evol. Comp. 17(4), 455–476 (2009)

7. Gabor, T., Belzner, L., Linnhoff-Popien, C.: Inheritance-based diversity measures
for explicit convergence control in evolutionary algorithms. In: Genetic and Evo-
lutionary Computation Conference, pp. 841–848 (2018)

8. Gabor, T., Phan, T., Linnhoff-Popien, C.: Productive fitness in diversity-aware
evolutionary algorithms (2021). (submitted)

9. Hadfield-Menell, D., Milli, S., Abbeel, P., Russell, S.J., Dragan, A.: Inverse reward
design. In: Advances in Neural Information Processing Systems, pp. 6765–6774
(2017)

10. Ho, Y.C., Pepyne, D.L.: Simple explanation of the no free lunch theorem of
optimization. In: 40th IEEE Conference on Decision and Control (Cat. No.
01CH37228), vol. 5, pp. 4409–4414. IEEE (2001)

11. Hu, T., Banzhaf, W.: Evolvability and speed of evolutionary algorithms in light of
recent developments in biology. J. Artif. Evol. Appl. 2010, 1 (2010)

12. Rainville, D., Fortin, F.A., Gardner, M.A., Parizeau, M., Gagné, C., et al.: Deap:
a python framework for evolutionary algorithms. In: Conference Companion on
Genetic and Evolutionary Computation, pp. 85–92. ACM (2012)

13. Stephens, C.R.: “Effective” fitness landscapes for evolutionary systems. In: 1999
Congress on Evolutionary Computation (CEC 1999), vol. 1, pp. 703–714. IEEE
(1999)

14. Van Soest, A.K., Casius, L.R.: The merits of a parallel genetic algorithm in solving
hard optimization problems. J. Biomech. Eng. 125(1), 141–146 (2003)

15. Wineberg, M., Oppacher, F.: The underlying similarity of diversity measures used
in evolutionary computation. In: Cantú-Paz, E., et al. (eds.) GECCO 2003. LNCS,
vol. 2724, pp. 1493–1504. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-45110-2 21

Taken from original publication: Thomas Gabor and Claudia Linnhoff-Popien. A
formal model for reasoning about the ideal fitness in evolutionary processes. In
International Symposium on Leveraging Applications of Formal Methods (ISoLA),
2020

89

Self-Replication in Neural Networks

Thomas Gabor1, Steffen Illium1, Andy Mattausch1, Lenz Belzner2, Claudia Linnhoff-Popien1

1LMU Munich
2MaibornWolff

thomas.gabor@ifi.lmu.de

Abstract

The foundation of biological structures is self-replication.
Neural networks are the prime structure used for the emer-
gent construction of complex behavior in computers. We
analyze how various network types lend themselves to self-
replication. We argue that backpropagation is the natural way
to navigate the space of network weights and show how it
allows non-trivial self-replicators to arise naturally. We then
extend the setting to construct an artificial chemistry environ-
ment of several neural networks.

Introduction
Dawkins (1976) stressed the importance of self-replication
to the origin of life. He argued that proto-RNA was able to
copy its molecule structure within a soup of randomly inter-
acting elements. This allowed it to reach a stability in con-
centration that could not be maintained by any other kind of
structure. Eventually, life evolved more or less as an elabo-
rate means to maintain the copying of structural information.

Since the early days of computing, the recreation of bio-
logical structures has been a target of research, starting from
the early formulation of an evolutionary process by Tur-
ing (1950) and including famous examples like Box (1957),
Conway (1970) or Dorigo and Di Caro (1999). Also see the
overviews given by Koza (1994) or Bäck et al. (1997). Al-
though conceived very early as well (Rosenblatt (1958) and
Minsky and Papert (1972)), neural networks have only re-
cently found broad practical application for advanced tasks
like image recognition (Krizhevsky et al. (2012)), speech
recognition (Hinton et al. (2012)) or strategic game playing
(Silver et al. (2017)). The variety of uses shows that neural
networks are a powerful tool of abstraction for various do-
mains. However, in all these cases neural networks are used
with a certain intend, i.e., equipped with a goal function.
Through backpropagation, the distance of the network’s out-
put to the goal function can be systematically minimized.

The wide variety of application domains shows the power
of neural networks as a functional abstraction. For other
functional abstractions, such as expressions in the λ-calculus
(Church (1932)) or a variety of assembler-like instruction

sets and automata (Dittrich et al. (2001)), it is known that,
when a population of random instances of said functional ab-
stractions are set up and allowed to interact, self-replicators
arise naturally (see Fontana and Buss (1996) or Dittrich and
Banzhaf (1998), respectively). For neural networks, Chang
and Lipson (2018) have shown that self-application may
lead to the formation of a self-replicating structure, albeit
a rather trivial instance of one. In this paper, we (a) repeat
these results for a broader range of neural network architec-
tures and (b) extend the interaction model by the notion of
self-training, which yields lots of non-trivial fixpoints. This
allows us to (c) construct an artificial chemistry setup using
neural networks as individuals that (under certain circum-
stances, of course) reliably produces a variety of non-trivial
self-replicators.

Foundations
We provide a brief introduction to how neural networks
function, then we proceed to discuss how to apply neural
networks to other neural networks and how to train neural
networks using other neural networks.

Basics
Neural networks are most commonly made from layers of
neurons that are connected to the next layers of neurons and
so on. As there are many kinds of neurons (fully connected,
recurrent, convolutional) there are also many kinds of layers.
Variations of this scheme go up to well established structures
within such layers, consisting not only of single functional
cells (LSTM, attention mechanism). What they have in com-
mon is the base functionality of accepting values (in form of
a matrix or vector), application of weights or bias (a matrix
of a similar shape, also known as the network’s parameters),
followed by a specific activation function (linear, sigmoid,
relu, tanh, e.g.) that transforms the outputs. Note that while
neural networks originated as a model of biological neurons,
they cannot accurately fulfill that role anymore and instead
serve as general function approximators.

The most basic form of a feed-forward network is a
single-layer perceptron, consisting of many fully connected

424

Taken from original publication: Thomas Gabor, Steffen Illium, Andy Mattausch,
Lenz Belzner, and Claudia Linnhoff-Popien. Self-replication in neural networks. In
Artificial Life Conference Proceedings, pages 424–431. MIT Press, 2019

90

cells that provide a transformation of the input on basis of
its learned parameters. Mathematically, each cell in such a
network is described by a function

y = f(
!

i

wixi + b)

where xi is the value produced by the i-th input cell, wi is
the weight assigned to that connection, b is a cell-specific
bias and f is the activation function.

The recurrent neural network (RNN) structure allows to
pass an additional vector h to the current calculation. This
improves the performance when processing sequential in-
puts. The result of the evaluation step t is passed to the
evaluation at step t + 1 as vector ht+1. A recurrent cell’s
activation at every time step t is ht = f(Wxt + Wht−1)
where w are the network weights (Chung et al. (2014)).

A neural network thus defines a function N : Rp → Rq

for input length p and output length q. A neural network N

is usually given by (a) its architecture, i.e., the types of neu-
rons used, their activation function, and their topology and
connections as well as (b) its parameters, i.e., the weights
assigned to the connections. Whenever the architecture of
a neural net is fixed, we can define a neural network by its
parameters N ∈ Rr. Note that |N | =def r depends on the
amount of internal connection and hidden layers, but as all
inputs and all outputs must be connected somehow to other
cells in the network it always holds that r > p and r > q.

Application
In the course of this work, we are interested in having neu-
ral networks that can be applied to other neural networks
(and can output other neural networks). It is evident that if
we want neural networks to self-replicate, we need to en-
able them to output an encoding of a neural net containing
at least as many weights as themselves. We discuss multi-
ple approaches to do so but first introduce a general notation
covering all the approaches: We write O = N ⊳M to mean
that O is the neural network that is generated as the output
of the neural network N when given the neural network M

as input. When M and O are sufficiently smaller than N ,
i.e., if |M| ≪ |N | and |O| ≪ |N |, then we can simply
define the output network O via its weights O = N (M).
However, these conditions obviously do not allow for self-
replication. Thus, we introduce several reductions that allow
to define the operator ⊳ differently and open it up for self-
replication. Note that for these definitions, we assume that
M and O have the same architecture and that the application
of N keeps the size of the input network, i.e., M : Rp → Rp

for some p and |M| = |O| = p.

Reduction 1 (Weightwise). We define N : R4 → R fixed.
Let M = 〈vi〉0≤i<|M|

. We then set

O = 〈wi〉0≤i<|O|

where wi = N (vi, l(i), c(i), p(i))

and l(i) is the layer of the weight i, c(i) is the cell the
weight i leads into and p(i) is the positional number of
weight i among the weights of its cell. We use O to define
O = N ⊳ww M.

Note that l, c, p depend purely on the networks’ architec-
tures and the index of the weight i, not on the value of the
weight vi. Theoretically, we could pass on i to the network
directly but it seemed more reasonable to provide the net-
work with the most semantically rich information we have.
Also note that we normalize l, c, p : N → [0; 1] ⊂ R, i.e.,
the positional values are encoded by reals between 0 and 1
as is common for inputs to neural networks.

Intuitively, the weightwise reduction calls N on every sin-
gle weight of M and provides the weight’s value and some
information on where in the network the weight lives. N

then outputs a new value for that respective weight. After
calling N for |M| = |O| times, we have a new output net
O. This approach is most similar to the one used by Chang
and Lipson (2018).

Reduction 2 (Aggregating). Let agg
a

: Ra → R be an
aggregator function taking in an arbitrary amount of pa-
rameters a. Let deagg

a
: R → Ra be a de-aggregating

function returning an arbitrary amount of outputs a. Let
M = 〈vi〉0≤i<|M|

. Let

M ↓agg
b

= 〈agg
ai
(vi, ..., vi+ai−1)〉0≤i<b

where ai = ⌊ |M|

b
⌋ for i < b − 1 and ai = ⌊ |M|

b
⌋ + (|M|

mod b) for i = b− 1. Let

〈wi〉0≤i<b ↑deaggb
= deagg

a0
(w0)++ ...++deagg

ab−1
(wb−1)

where ai is defined as above and ++ is concatenation. We
define N : Rb → Rb for a fixed b. We then set:

O = N (M ↓agg
b

) ↑deagg
b

We use O to define O = N ⊳agg M given fixed functions
agg, deagg.

For our experiments, we use the average for aggregation

agg
a
(v0, ..., va−1) =

a−1!

i=0

vi

a

and use a trivial de-aggregation function as defined by:

deagg
a
(w) = (w, ..., w)" #$ %

a times

Intuitively, the aggregating reduction simply reduces the
amount of weight parameters to a fixed amount b by aggre-
gating sub-lists of the weight list into single values. Those
single values are then passed to the network and its ouput
values are copied to all previously aggregated weights. A lot
of different aggregation and de-aggregation functions could
be thought of, however, early tests with variants introducing
more randomness or different topologies showed no differ-
ences in results. Thus, we focus on the simple instantiation
of the aggregation reduction as given above.

425

Taken from original publication: Thomas Gabor, Steffen Illium, Andy Mattausch,
Lenz Belzner, and Claudia Linnhoff-Popien. Self-replication in neural networks. In
Artificial Life Conference Proceedings, pages 424–431. MIT Press, 2019

91

Reduction 3 (RNN). We define N : R×RH → R×RH as
a recurrent neural network with a hidden state h ∈ RH for
some H ∈ N. Let M = 〈vi〉0≤i<|M|

. We then set

O = 〈wi〉0≤i<|O|

where wi is given via

N (vi, hi) = (wi, hi+1)

where h0 = 0. We use O to define O = N ⊳rnn M.

Since recurrent neural networks are able to process in-
put sequences of arbitrary length, the RNN reduction tech-
nically just needs to define N as a recurrent neural net-
work and simply apply it to the weights of another network.
Even though this reduction appears most simple and natu-
ral, the explosion of gradients within larger recurrent neural
networks means that they are very prone to diverge to very
large output values if not sufficiently controlled. We reckon
that an extension to recurrent neural networks (making them
accessible to self-replication) should be possible, however,
since vanilla recurrent neural networks are not so fit for self-
replication, we refer this extension to future work.

We can use these several types of reduction to build a
mathematical model of self-replication in neural networks.

Definition 1 (Self-Application). Given a neural network N .
Let ⊳ be a suitable reduction. We call the neural network
N

′ = N ⊳N the self-application of N .

Definition 2 (Fixpoint, Self-Replication). Given a neural
network N . Let ⊳ be a suitable reduction. We call N a
fixpoint with respect to ⊳ iff N = N ⊳ N , i.e., iff N is
its own self-application. We also say that N is able to self-
replicate.

Since network weights are real-valued and are the result
of many computations, checking for the equality N = N ⊳
N is not entirely trivial. We thus relax the fixpoint property
a bit.

Definition 3 (ε-Fixpoint). Given a neural network N with
weights N = 〈vi〉0≤i<|N |

. Let ⊳ be a suitable reduction.
Let ε ∈ R be the error margin of the fixpoint property. Let
N

′ = N ⊳ N be the self-application of N with weights
N ′ = 〈wi〉0≤i<|N ′|. We call N an ε-fixpoint or a fixpoint
up to ε iff for all i it holds that |wi − vi| < ε.

Training
As stated above, neural networks are commonly used in con-
junction with backpropagation to adjust their weights to a
desired configuration. We assume that we have a set of input
vectors x0, ...,xn and a corresponding set of desired output
vectors y0, ..,yn. We want our neural network N to repre-
sent the relation between these sets. The loss for a single
sample (xi,yi) is defined as |N (xi) − yi|. Minimizing the
loss of a neural network is called training. We use the SGD
optimizer to apply gradient updates or rather weight changes
to minimize the loss for given a given sample (xi,yi), which

results in an updated network N
′ = N ⇝(xi,yi). We

call ⇝the training operator. For sets of sample points
x = x0, ...,xn and y = y0, ...,yn, we also write N ⇝x,y
as shorthand for N ⇝(x0,y0) ⇝... ⇝(xn,yn).

We argue that training neural networks is another natural
way of evolving them (as is application). Thus, we also want
to train a neural network with other neural networks as input
and output data. Of course, we again need to use reduction
on said other neural networks. In short we write:
Reduction 4 (Weightwise Training). Given neural networks
M,N with M = 〈vi〉0≤i≤n for some n. We write N

′ =
N ⇝ww M iff

N = N ⇝〈(vi, l(i), c(i), p(i))〉0≤i≤n, 〈(vi)〉0≤i≤n

where l, c, p are defined as in Reduction 1.
Reduction 5 (Aggregating Training). Given neural net-
works M,N . Given a suitable aggregator function agg and
aggregated size b. We write N

′ = N ⇝agg M iff

N
′ = N ⇝(M ↓agg

b
,M ↓agg

b
)

where the ↓ operation is defined as in Reduction 2.
Reduction 6 (Recurrent Training). Given neural networks
M,N . We write N

′ = N ⇝rnn M iff

N
′ = N ⇝(M,M)

where N is trained on a sequence M by being applied one
by one recurrently.

Intuitively, these training reductions transform the input
net M to a smaller representation (as do the application re-
ductions, cf. Reductions 1–3) and then train the network N

to accurately reproduce that representation.
Note that usually, when training a neural network, we de-

rive training samples from a large data set or generate them
automatically. However, we can use these training reduc-
tions to define the notion of self-training:
Definition 4 (Self-Training). Given a neural network N .
Let ⇝be a suitable training reduction. We call the network
N

′ = N ⇝N the result of self-training N .
We can apply self-training for many consecutive steps,

however, in contrast to usual training in neural networks, the
samples made available for training only depend on the net-
work’s own weights and introduce no randomness or addi-
tional coverage of the search space beyond their own (mostly
pre-determined) evolution via self-training.

Experiments
We define three types of experiments, which test the two dis-
tinct approaches to self-replication based on application of
neural networks to other neural networks and training using
backpropagation on self-generated limited training points,
respectively. Lastly, we show a strong connection between
both approaches.

Note that for the sake of simplicity, we fixed all network
architectures in the following experiments to only include

426

Taken from original publication: Thomas Gabor, Steffen Illium, Andy Mattausch,
Lenz Belzner, and Claudia Linnhoff-Popien. Self-replication in neural networks. In
Artificial Life Conference Proceedings, pages 424–431. MIT Press, 2019

92

Figure 1: 10 independent runs of self-application with respect to the aggregating reduction ⊳agg. 10 neural networks N :
R4 → R4 with two hidden layers with two cells each were initialized randomly and then subjected to 4 self-applications each.
The figure shows two perspectives on the same three-dimensional graph. The 20 weights in total per network were visualized
in a two-dimensional space based on the transformed bases X and Y derived via PCA. All networks converge on (X=0, Y=0),
which corresponds to the weight vector 0.

Figure 2: 50 independent runs of self-application each with
respect to all three different types of reduction. We show an
analysis of the networks (which were initialized randomly)
after 100 steps of self-application.

two hidden layers with two cells each. Although evaluations
were run with various activation functions, all plots show
linear activation since we observed no qualitative difference
between various activations. Similarly, bias was set to 0 in
all plotted instances.

Self-Application
When subjecting a randomly initialized neural network N

to repeated self-application with respect to the weightwise
reduction ⊳ww, the weight vector N tends to converge to
the all-zero vector 0 = 〈0〉

|M|
. This was already indicated

by Chang and Lipson (2018) for a very similar reduction

approach. This effect probably stems from a phenomenon
observed by Schoenholz et al. (2017): Randomly initialized
neural networks tend to map their inputs to output values
closer to 0. Figure 1 shows that the same effect also oc-
curs for the aggregating reduction ⊳agg. It shows the jour-
ney of several neural networks through the space of weight
vectors.1 Very few steps of self-application suffice to draw
all neural networks to the coordinates (X=0, Y=0), which in
fact correspond to the weight vector 0.

The same plot for the weightwise reduction ⊳ww looks
rather similar. Figure 2 shows the resulting networks after
several steps of self-application. Here, we discern five ob-
servations: A neural network N is (a) divergent iff at any
point in time any of its weights assumed the value ∞ or −∞.
Once this has happened, there is no returning from it. If the
network assumes (b) the ε-fixpoint given by the weight vec-
tor 0, i.e., all its weights are sufficiently close to 0, we call
the network a zero fixpoint. Note that for all experiments we
set ε = 10−5. If the network’s weights resemble (c) any
other ε-fixpoint we call it a non-zero, non-trivial or simply
other fixpoint. At this stage, we also checked for (d) second-
order fixpoints, i.e., networks N fulfilling the weaker prop-
erty N = N ⊳N ⊳N . However, we never found any such
networks. Anything else falls into the category (e) other.

1To be able to plot highly-dimensional weight vectors on paper,
we derive the two principle components of the observed weight
vectors using standard principle component analysis (PCA) and
plot the weight vector as a point in that two-dimensional space.
We use this technique for all such figures.

427

Taken from original publication: Thomas Gabor, Steffen Illium, Andy Mattausch,
Lenz Belzner, and Claudia Linnhoff-Popien. Self-replication in neural networks. In
Artificial Life Conference Proceedings, pages 424–431. MIT Press, 2019

93

Figure 3: The robustness of a known 10−5-fixpoint with re-
spect to the weightwise reduction ⊳ww. The x-axis shows
the range of noise that the known fixpoint’s weights were
subjected to. The y-axis shows for how many steps of self-
application the network was still regarded as a 10−5-fixpoint
(purple) and after how many steps of self-application the
network was regarded as diverged (orange).

Note that Figure 2 shows that no non-zero fixpoints are
found for any reduction and that recurrent neural nets are
most prone to diverge during repeated self-application.

We also checked for the chance to just randomly generate
a neural network which happens to be a fixpoint. However,
among 100, 000 randomly generated nets for each type of
reduction, we did not find a single fixpoint. Thus, we can
clearly attribute the attraction towards 0 to self-application.

For the weightwise reduction ⊳ww, it is rather easy to con-
struct a non-zero fixpoint by hand: For a network I, we set
all leftmost weights per layer to 1 and all other weights to 0,
thus implementing the identity function on the inputs of I,
which clearly fulfills the fixpoint property. This allows us to
test if the non-zero fixpoints form an attractor in the weight
space like the zero fixpoint does: We added small amounts
of noise to all weights of I and then subjected the resulting
network J to several steps of self-application, checking if
J would remain stable around I or “verge”, i.e., either con-
verge towards 0 or diverge towards infinite weights. How-
ever, even adding just at most 10−9 noise to each weight
eventually caused all networks to “verge”. Figure 3 shows
the experiment for various amounts of noise. Adding less
noise unsurprisingly causes the network to longer fulfill
the ε-fixpoint property and to “verge” later, which possibly
means that the network fulfills the fixpoint property again
when converging to 0 (but we did not count that).

Thus, while self-application on its own shows a stable in-
tent to approach the fixpoint 0, it does not seem capable of
creating any other fixpoints.

Self-Training
Subjecting randomly generated neural networks to self-
training with respect to the aggregating training reduction
⇝agg yields results as shown in Figure 4. All networks

evolve for a few steps of self-training, then their weights
remain constant. Note that each network approaches a dif-
ferent point in the weight space. Most interestingly, these
points are fixpoints, even though we only apply self-training
and fixpoints are defined using self-application. Moreover,
all of these fixpoints are non-zero.

Figure 5 shows a detailed analysis for all types of reduc-
tion: While recurrent neural networks still tend to diverge a
lot, aggregating networks converge towards weights that do
not represent a fixpoint. However, the weightwise networks
converge to non-trivial fixpoints with utmost reliability.

In order to elaborate on the opportunities of interaction
between self-application and self-training, we construct an
experiment where the two appear in alternation. The results
are shown in Figure 6: While aggregating networks reach
the zero fixpoint so fast via self-application that self-training
is not able to add anything to that, weightwise networks
need about 200–300 steps of self-training between each self-
application to converge to fixpoints as reliably.

Soups
As we have discussed several means of neural networks in-
teracting with themselves, it seems a reasonable next step to
open up these interactions and build a population of mutu-
ally interacting networks. A suitable combination of a pop-
ulation of individuals and various interactions is called soup
and works like an artificial chemistry system (cf. Dittrich
et al. (2001)). This means that a soup evolves over a fixed
amount of epochs. At every epoch, several different interac-
tion operators can be applied to networks in the population
with a certain chance, resulting in new networks and thus a
changed population.

Interaction 1 (Self-Train). Applied to every single network
N for an amount of steps A, self-training substitutes its
weights with N

′ = N ⇝N ... ⇝N" #$ %
A times

.

Interaction 2 (Attack). Applied to two random networks
M,N at a chance α, attacking substitutes the weights of
the attacked network M with the weights given via M

′ =
N ⊳M.

Intuitively, attacking applies the function represented by
the network N to another network M. Self-training remains
basically unchanged from the non-soup scenario and pro-
vides a background evolution to every network in the popu-
lation, even when it is not involved in any attack.

Figure 7 shows the evolution of a soup employing self-
training and attacking. The networks start out randomly
placed in the weight space and self-train towards fixpoints in
the beginning. The big jumps in the networks’ trajectories

428

Taken from original publication: Thomas Gabor, Steffen Illium, Andy Mattausch,
Lenz Belzner, and Claudia Linnhoff-Popien. Self-replication in neural networks. In
Artificial Life Conference Proceedings, pages 424–431. MIT Press, 2019

94

Figure 4: 10 independent runs of self-training with respect to the aggregating training reduction ⇝ww. 10 neural networks
N : R4 → R with two hidden layers with two cells each were initialized randomly and then subjected to 200 steps of self-
training each. The figure shows two perspectives on the same three-dimensional graph. The 20 weights in total per network
were visualized in a two-dimensional space based on the transformed bases X and Y derived via PCA. All networks converge
to different fixpoints with non-zero weights.

Figure 5: 50 independent runs of self-training each with
respect to all three different types of reduction. We show an
analysis of the networks (which were initialized randomly)
after 1000 steps of self-training.

stem from being attacked by other networks; self-training
then leads them to new fixpoints. Note that as self-training
causes the networks to converge towards fixpoints, the im-
pact of near-fixpoint networks’ attacks becomes less and
less. Most interestingly though, almost all attacks seem to
drive the attacked networks towards the main cluster of the
soup, where most networks gather in the end. This not only
shows emergent behavior as the networks form a group as
a cluster of fixpoints somehwere in the weight space (nei-
ther at the the center of mass from the initial population nor
anywhere near 0), but it can be also interpreted as a clear in-
stance of (self-)replication within the networks of this soup.

Figure 6: Evaluation of a mixed setting of self-application
and self-training. For each type of reduction, 20 neu-
ral networks were generated at random and then subjected
to 4 steps of self-application. In between those steps,
0, 50, ..., 500 steps of self-training were executed (see x-
axis). The y-axis shows the average ratio of fixpoints (both
zero and non-zero) found out of all runs, where a value of 1
means that all runs resulted in a fixpoint.

In Figure 8, we further evaluate the impact of parameter A
in Interaction 1 for both weightwise and aggregating neural
networks. (As recurrent networks already did not show suf-
ficient compatibility with application, we omit these results.)
More self-training manages to stabilize the weightwise net-
works’ ability to find non-zero fixpoints. Still, even in a soup
setting, aggregating networks converge to 0 to a distinctive
degree.

429

Taken from original publication: Thomas Gabor, Steffen Illium, Andy Mattausch,
Lenz Belzner, and Claudia Linnhoff-Popien. Self-replication in neural networks. In
Artificial Life Conference Proceedings, pages 424–431. MIT Press, 2019

95

Figure 7: Run of one soup consisting of 20 neural networks using the weightwise reductions ⊳ww and ⇝ww. The 20 neural
networks N : R4 → R with two hidden layers with two cells each were initialized randomly and then evolved for 100 epoch.
Per epoch, every network had a chance of 0.1 to attack another network and was subjected to 30 steps of self-training. This
setup allowed for emergent behavior of the network forming a cluster at a region fo all non-zero fixpoints. The figure shows two
perspectives on the same three-dimensional graph. The 20 weights in total per network were visualized in a two-dimensional
space based on the transformed bases X and Y derived via PCA.

Related Work
There is some research in generating neural networks us-
ing other neural networks (cf. Schmidhuber (1992); Stan-
ley et al. (2009); Deutsch (2018), e.g.). However, without
any suitable reduction operations, these approaches cannot
be used to produce self-replicating structures.

Our results on self-application agree with Chang and Lip-
son (2018) on the weightwise reduction. We extended the
experiments with several means of reduction and managed
to find non-trivial, non-zero fixpoints up to a very low error
ε by introducing our weightwise reduction in combination
with our notion of self-training. We augmented the approach
by studying the combination of self-application and self-
training. However, the inclusion of auxiliary fitness func-
tions has not been considered in our work.

The idea to generate fixpoints via repeated self-
application is based on Fontana and Buss (1996), who
showed the emergence of fixpoints from having random ex-
pressions in the λ-calculus interact. They, too, construct an
artificial chemistry system based on their functional abstrac-
tion and see complex structures of fixpoints arise. Sadly,
we did not observe higher-order fixpoints as they did for λ-
expressions. Possible connections between λ-fixpoints or
larger organizational structures in general and fixpoints in
neural networks may still be explored (Larkin and Stocks
(2004)).

In general, a vast amount of research is dedicated to ar-
tificial chemistry systems, utilizing very different represen-
tations for the particles in the soup: Dittrich et al. (2001)
and Matsumaru et al. (2005) provide excellent overviews, to
which we refer for the sake of brevity.

Conclusion
We have presented various reduction operations without any
claim of completeness. Interesting reduction possibilities
like extracting the main frequencies of the weight vector
using a Fourier transformation are still to be tested to full
extent. Most importantly, all settings, architectures and pa-
rameters of the neural networks we constructed still allow
for more thorough exploration and evaluation in future work.

We have also performed some exploration of the distribu-
tion of fixpoints within the weight space by generating lots
of non-trivial fixpoints using our setup of self-training. Es-
pecially discovering some kind of measurement of how rare
fixpoints actually are and if they can occur in all regions of
the weight space would be helpful.

We think that perhaps the most interesting contributions
are the distinct behaviors observed in the soup made of neu-
ral networks (Figure 7). While we evaluated some parame-
ters, there exist many different ways to evolve such a soup
and many different interactions whose effects are yet to be
explored. Early results on an interaction called learn, which

430

Taken from original publication: Thomas Gabor, Steffen Illium, Andy Mattausch,
Lenz Belzner, and Claudia Linnhoff-Popien. Self-replication in neural networks. In
Artificial Life Conference Proceedings, pages 424–431. MIT Press, 2019

96

Figure 8: Evaluation of the impact of the number of trains
per epoch on a soup consisting of 10 neural networks using
the weightwise reduction ⊳ww or the aggregating reduction
⊳agg. Averaged over 10 runs. Per epoch, every network had
a chance of 0.1 to attack another network and was subjected
to a fixed amount of steps of self-training (see the x-axis).
The y-axis shows the amount of (zero or non-zero) fixpoints
present in the final population of the soup.

substitutes the weights of the learning network M with the
weights given via M

′ = M ⇝N look most promising but
were left out for brevity.

Eventually, we think that the dynamics of a soup might
open up neural networks to a new kind of learning by not
applying a goal function (and its respective loss) directly
but by simply guiding a soup a certain way, perhaps achiev-
ing more diversity and robustness in the solutions reached
(cf. Prokopenko (2013); Gabor et al. (2018), e.g.).

References
Bäck, T., Hammel, U., and Schwefel, H.-P. (1997). Evolution-

ary computation: Comments on the history and current state.
IEEE transactions on Evolutionary Computation, 1(1):3–17.

Box, G. E. (1957). Evolutionary operation: A method for increas-
ing industrial productivity. Journal of the Royal Statistical
Society: Series C (Applied Statistics), 6(2):81–101.

Chang, O. and Lipson, H. (2018). Neural network quine. In Artifi-
cial Life Conference Proceedings. MIT Press.

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014). Empiri-
cal evaluation of gated recurrent neural networks on sequence
modeling. arXiv preprint arXiv:1412.3555.

Church, A. (1932). A set of postulates for the foundation of logic.
Annals of mathematics, pages 346–366.

Conway, J. (1970). The game of life. Scientific American, 223(4):4.

Dawkins, R. (1976). The Selfish Gene. Oxford University Press,
USA.

Deutsch, L. (2018). Generating neural networks with neural net-
works. arXiv preprint arXiv:1801.01952.

Dittrich, P. and Banzhaf, W. (1998). Self-evolution in a construc-
tive binary string system. Artificial Life, 4(2):203–220.

Dittrich, P., Ziegler, J., and Banzhaf, W. (2001). Artificial
chemistriesa review. Artificial life, 7(3):225–275.

Dorigo, M. and Di Caro, G. (1999). Ant colony optimization: a
new meta-heuristic. In Proceedings of the 1999 congress on
evolutionary computation (CEC99), volume 2. IEEE.

Fontana, W. and Buss, L. (1996). The barrier of objects: from
dynamical systems to bounded organizations.

Gabor, T., Belzner, L., Phan, T., and Schmid, K. (2018). Preparing
for the unexpected: Diversity improves planning resilience in
evolutionary algorithms. In 2018 IEEE International Confer-
ence on Autonomic Computing (ICAC). IEEE.

Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A.-r., Jaitly,
N., Senior, A., Vanhoucke, V., Nguyen, P., Kingsbury, B.,
et al. (2012). Deep neural networks for acoustic modeling in
speech recognition. IEEE Signal processing magazine, 29.

Koza, J. R. (1994). Spontaneous emergence of self-replicating and
evolutionarily self-improving computer programs. Artificial
life III, 17:225–262.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet
classification with deep convolutional neural networks. In
Advances in neural information processing systems.

Larkin, J. and Stocks, P. (2004). Self-replicating expressions in
the lambda calculus. In Proceedings of the 27th Australasian
conference on Computer science-Volume 26, pages 167–173.
Australian Computer Society, Inc.

Matsumaru, N., Centler, F., di Fenizio, P. S., and Dittrich, P. (2005).
Chemical organization theory as a theoretical base for chemi-
cal computing. In Proceedings of the 2005 Workshop on Un-
conventional Computing: From Cellular Automata to Wet-
ware, pages 75–88. Luniver Press.

Minsky, M. and Papert, S. (1972). Perceptrons: An Introduction to
Computational Geometry. Mit Press.

Prokopenko, M. (2013). Guided self-organization: Inception, vol-
ume 9. Springer Science & Business Media.

Rosenblatt, F. (1958). The perceptron: a probabilistic model for
information storage and organization in the brain. Psycho-
logical review, 65(6):386.

Schmidhuber, J. (1992). Learning to control fast-weight memo-
ries: An alternative to dynamic recurrent networks. Neural
Computation, 4(1):131–139.

Schoenholz, S. S., Pennington, J., and Sohl-Dickstein, J. (2017). A
correspondence between random neural networks and statis-
tical field theory. arXiv preprint arXiv:1710.06570.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang,
A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A., et al.
(2017). Mastering the game of go without human knowledge.
Nature, 550(7676):354.

Stanley, K. O., D’Ambrosio, D. B., and Gauci, J. (2009). A
hypercube-based encoding for evolving large-scale neural
networks. Artificial life, 15(2):185–212.

Turing, A. (1950). Computing machinery and intelligence. Mind,
59(236):433–460.

431

Taken from original publication: Thomas Gabor, Steffen Illium, Andy Mattausch,
Lenz Belzner, and Claudia Linnhoff-Popien. Self-replication in neural networks. In
Artificial Life Conference Proceedings, pages 424–431. MIT Press, 2019

97

Genealogical Distance as a Diversity Estimate
in Evolutionary Algorithms

�omas Gabor
LMU Munich

thomas.gabor@i�.lmu.de

Lenz Belzner
LMU Munich

belzner@i�.lmu.de

ABSTRACT
�e evolutionary edit distance between two individuals in a pop-
ulation, i.e., the amount of applications of any genetic operator
it would take the evolutionary process to generate one individual
starting from the other, seems like a promising estimate for the
diversity between said individuals. We introduce genealogical di-
versity, i.e., estimating two individuals’ degree of relatedness by
analyzing large, unused parts of their genome, as a computationally
e�cient method to approximate that measure for diversity.

CCS CONCEPTS
•Computing methodologies ! Heuristic function construc-
tion; Genetic algorithms;
ACM Reference format:
�omas Gabor and Lenz Belzner. 2017. Genealogical Distance as a Diversity
Estimate
in Evolutionary Algorithms. In Proceedings of GECCO ’17 Companion, Berlin,
Germany, July 15-19, 2017, 6 pages.
DOI: h�p://dx.doi.org/10.1145/3067695.3082529

1 INTRODUCTION
Diversity has been a central point of research in the area of evo-
lutionary algorithms. It is a well-known fact that maintaining a
certain level of diversity aids the evolutionary process in preventing
premature convergence, i.e., the phenomenon that the population
focuses too quickly on a local optimum at hand and never reaches
more fruitful areas of the �tness landscape [4, 14, 16]. Diversity thus
plays a key role in adjusting the exploration-exploitation trade-o�
found in any kind of metaheuristic search algorithm.

We encountered this problem from an industry point of view
when designing learning components for a system that needs to
guarantee certain levels of quality despite being subjected to the
probabilistic nature of its physical environment and probabilistic
behavior of its machine learning parts [1]. Of course, any general
solution for this kind of challenge is yet to be found. However,
we believe that the engineering of (hopefully) reliable learning
components can be supported by exposing all handles that search
algorithms o�er to the engineer at site. For scenarios like this
one, we consider it most helpful to employ approaches that allow

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’17 Companion, Berlin, Germany
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-4939-0/17/07. . .$15.00
DOI: h�p://dx.doi.org/10.1145/3067695.3082529

the engineer to actively control properties like diversity of the
evolutionary search process instead of just observing diversity and
adjust it indirectly via other parameters (like, e.g., the mutation
rate).

Among the copious amount of di�erent techniques to introduce
diversity-awareness to evolutionary algorithms, many do not im-
mediately make the job of adjusting a given evolutionary algorithm
easier but instead require additional engineering e�ort: For ex-
ample, one may need to de�ne a distance metric speci�cally for
the search domain at hand or adjust lots of hyperparameters in
island or niching models. We thus a�empt to de�ne a more domain-
independent and almost parameter-free measurement for diversity
by utilizing the genetic operators already de�ned within any given
evolutionary process.

We discuss related work in the following Section 2. We then
explain the target metric called “evolutionary edit distance” in
Section 3. Section 4 continues by introducing the notion of “ge-
nealogical diversity” as means to approximate that concept. We
improve this approach in Section 5 by using a much simpler and
computationally more e�cient data structure. To support our ideas,
we describe a basic evaluation scenario in which we have applied
both approaches in Section 6. We end with a short conclusion in
Section 7.

2 RELATEDWORK
�e importance of diversity for evolutionary algorithms is discussed
throughout the body of literature on evolutionary computing rang-
ing from entry level [4, 9] to specialized papers [13, 16]. In many
cases, authors refer to diversity as a measure of the evolutionary
algorithm’s performance and try to con�gure the hyperparameters
of the evolutionary algorithm as to achieve an optimal trade-o�
between exploration and exploration for the scenario at hand [15].
�is measure can then be used to interact with the evolutionary
process by adjusting its parameters [16] and/or actively altering the
current population, for example via episodes of “hypermutation”
[6] or migration of individuals from other (sub-)populations [11, 15].
On top of that, there exist a few approaches that include diversity
into the evolutionary algorithm’s objective function allowing us to
use evolution’s optimization abilities to explicitly achieve higher
diversity of solutions [2].

An extensive overview of current approaches to increase di-
versity in evolutionary algorithms is provided in [14], which also
de�nes a helpful taxonomy of said approaches. Whenever a diver-
sity objective can be quanti�ed, it can be used to build a classic
multi-objective optimization problem and to apply the vast amount
of techniques developed to solve these kinds of problems using
evolutionary algorithms [7, 8, 10, 13].

ar
X

iv
:1

70
4.

08
77

4v
1

 [
cs

.N
E

]
 2

7
A

pr
 2

01
7

Taken from original publication: Thomas Gabor and Lenz Belzner. Genealogi-
cal distance as a diversity estimate in evolutionary algorithms. In Measuring and
Promoting Diversity in Evolutionary Algorithms (MPDEA@GECCO). ACM, 2017

98

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany Gabor and Belzner

�e authors of [17] address the very important issue of how
to e�ciently compute diversity estimates requiring to compare
every individual of a population to every other. �ey develop an ap-
proach to reduce the complexity of said computation to linear time.
However, it might still be interesting to analyze how well certain
metrics scale even beyond that, as for example in the present paper
we chose to sample the test set for diversity from the population to
further save computation time.

3 EVOLUTIONARY EDIT DISTANCE
As described in the previous Section, there exists a vast amount of
approaches to compute a population’s diversity (and an individual’s
diversity with respect to that population). We found, among other
things, that from an engineering point of view, many (if not most) of
these approaches require the designer of the evolutionary algorithm
to adjust certain functions or parameters based on the problem
domain [5]. �is gave rise to the idea of using the genetic operators
already programmed for the problem domain to de�ne a domain-
independent notion of diversity.

�e concept this line of thought is based on could be called
evolutionary edit distance: Given two individuals x1 and x2 we
want to estimate how many applications of a genetic operator it
would take to turn one of these individuals into the other.1 First,
we start o� by de�ning a lower bound on the number of operator
applications, i.e., the minimal evolutionary edit distance.

We can assume that a given evolutionary process provides the
genetic operator o : D⇤

! D where D is the problem domain
in which our individuals live and D

⇤ is a list of arbitrary many
elements of D. Most evolutionary algorithms de�ne exactly two
instances of genetic operators called mutationm : D ! D and
recombination c : D ⇥ D ! D, but we describe the more gen-
eral case for now. However, in the general case genetic operators
perform in a probabilistic manner, meaning that their exact results
depend on chance. We describe this behavior mathematically by
adding an index s 2 S to o which represents the seed of a pseudo-
random number generator (using seeds of type S). �en, we can
de�ne the minimal evolutionary edit distance mdist : D ⇥D ! N
as follows:

mdist(x1,x2) =
8><
>:
0 if x1 = x2
min
s 2S

1 +mdist(os (x1),x2) otherwise

Note that as long as we assume the genetic operator o to be
symmetric (which they usually are), mdist is symmetric as well.

�e minimal edit distance is not an accurate estimate of the ac-
tual e�ort it would take the evolutionary process to turn x1 into
x2 since the required indexed instances os of the genetic operator
o may be arbitrarily unlikely to occur in the process. Instead, we
want to estimate the expected amount of applications of o given
a realistic occurrence of instances of the genetic operator. Sadly,
the complexity of this problem is equal to running an evolution-
ary algorithm optimizing its individuals to look like x2 and thus

1Because of the probabilistic nature of evolutionary algorithms, the evolutionary edit
distance would actually be a distribution over integers. If a scalar value is needed, we
could then compute the expected evolutionary edit distance.

potentially equally expensive regarding computational e�ort as the
evolutionary process we are trying to augment with diversity.

However, if we want to usemdist to compute the diversity of indi-
viduals for a given evolutionary process, we never want to compare
arbitrary solution candidates x1,x2 2 D but will only ever compare
individuals within the current population P ✓ D or at most individ-
uals from the set X with P ✓ X ✓ D, which is the set of all individ-
uals ever generated by the evolutionary process. Each of those indi-
viduals has been generated through the repetitive application of the
genetic operators already and so we have a set of concrete instances
of o instead of having to reason about all os that could be used by
the evolutionary process. We write the set of all actually gener-
ated instances of o asO = {(x0,os0 ,x

0
0), (x1,os1 ,x

0
1)..., (xk ,osk ,x

0

k)}
wherek+1 is the total amount of evolutionary operations performed
and for all (xi ,osi ,x 0i) 2 O the evolutionary process actually con-
structed x 0i 2 X by computing osi (xi).

We can thus de�ne the factual evolutionary edit distance edist :
X ⇥ X ! N as the total amount of operations it actually took to
turn x into x 0:

edist(x1,x2) =

8>>>>><
>>>>>:

0 if x1 = x2
1 if 9s 2 S : (x1,os ,x2) 2 O

1 if 9s 2 S : (x2,os ,x1) 2 O

edist 0(x1,x2) otherwise

edist0(x1,x2) =min
x 2X

1 +

min
s 2S,(x,os ,x1)2O

edist(os (x),x1) +

min
s 2S,(x,os ,x2)2O

edist(os (x),x2))

Note that edist can only be de�ned this way when we assume
that its parameters x1 and x2 have actually been generated through
the application of genetic operators from a single base individual
only. �is is an unrealistic assumption: Completely unrelated indi-
viduals can be generated during evolution. Furthermore, de�ning
the evolutionary edit distance this way requires multiple iterations
through the whole set of X since we neglect many restrictions
present in most genetic operators o.

4 PATHS IN THE GENEALOGICAL TREE
In the context of evolutionary processes it seems natural to think
of individuals as forming genealogical relationships between each
other. �ese relations correspond to the genetic operators applied
to an individual x to create the individual x 0. Connecting all individ-
uals (of all generations of the evolutionary process) to their respec-
tive children yields a directed, acyclic and usually non-connected
graph. Starting from a single individual x , recursively traversing all
incoming edges in reverse direction yields a connected subgraph
containing all of x ’s ancestors. We call this graph the genealogical
tree of x .

Formally, we write G(x) = (Vx ,Ex) for the genealogical tree
of x consisting of vertices Vx and edges Ex . For an evolutionary
process producing (over all generations) the set of individuals X ,
it holds for all x1,x2 2 X that (x1,x2) 2 Ex2 i� x2 is the result
of a variation of x1. If we consider an evolutionary process with

Taken from original publication: Thomas Gabor and Lenz Belzner. Genealogi-
cal distance as a diversity estimate in evolutionary algorithms. In Measuring and
Promoting Diversity in Evolutionary Algorithms (MPDEA@GECCO). ACM, 2017

99

Genealogical Distance as a Diversity Estimate
in Evolutionary Algorithms GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany

two-parent recombination as its only variation operator, our notion
of a genealogical tree is exactly the same as in human (or animal)
genealogy.

However, most evolutionary algorithms also feature a mutation
operator that works independently from recombination. For the
genealogical tree, we treat it like a one-parent recombination in
that we consider a mutated individual an ancestor of the original
one. �is approach does not re�ect the fact that a single mutation
usually has a much smaller impact on the genome of an individual
than recombination has. We tackle this issue in Section 5.

Given these graphs, we can then trivially de�ne the ancestral
distance from an individual x1 2 X to another individual x2 2 X as
follows:

adist(x1,x2) =

8>>>><
>>>>:

1 if x1 < Vx2
0 if x1 = x2

min
x 2X ,(x,x2)2Ex2

1 + adist(x1,x) otherwise

Note that adist as de�ned here is still not symmetric, i.e., it
returns the amount of variation steps it took to get from x1 to x2,
which is a �nite number i� x1 is an ancestor of x2. �is also usually
means that if adist(x1,x2) is �nite, adist(x2,x1) = 1.

Given two individuals x1 and x2, we can use these de�nitions to
compute their latest common ancestor L(x1,x2), i.e., the individual
with the closest relationship to either x1 or x2 that appears in the
respective other individual’s genealogical tree. Formally, if a (latest)
common ancestor exists it is given via:

L(x1,x2) = argmin
x 2Vx1\Vx2

min(adist(x ,x1), adist(x ,x2))

Note that L is symmetric, so L(x1,x2) = L(x2,x1). For our de�-
nition of genealogical distance we consider the ancestral distance
from the latest common ancestor to the given individuals. However,
we also want to normalize the distance values with respect to the
maximally achievable distance for a certain individual’s age. �e
main bene�t here is that when normalizing genealogical distance
on a scale of [0; 1], e.g., we can assign a �nite distance to two com-
pletely unrelated individuals. For this reason we de�ne a function
E which computes the earliest ancestor of a given individual:

E(x) = argmax
x 0 2Vx

adist(x 0,x)

Note that for all x 0 2 Vx it holds that adist(x 0,x) is �nite. We can
now use the ancestral distance to an individual’s earliest ancestor to
normalize the distance to the latest common ancestor with respect
to the age of the evolutionary process. Note that if x1 and x2 share
no common ancestor, we set gdist(x1,x2) = 1 and otherwise:

gdist(x1,x2)=
min(adist(L(x1,x2),x1), adist(L(x1,x2),x2))
max(adist(E(x1,x2),x1), adist(E(x1,x2),x2))

�is genealogical distance function gdist then describes for two
individuals x1,x2 how close their latest common ancestor is in
comparison to their combined “evolutionary age”, i.e., the total
amount of variation operations they went through.

Following up from the previous Section, we claim that this ge-
nealogical distance correlates to the factual evolutionary edit dis-
tance between two individuals. It is not an exact depiction, though,
because for cousins, e.g., we choose the minimum distance to their
common ancestor instead of adding both paths through which they
originated from their ancestor. Our reason for doing so is that we
want to treat the comparison of cousins to cousins and of parents
to children the same way, but the ancestral distance from child to
parent is1. In the end, we are not interested in the exact values but
only in the comparison of various degrees of relatedness, which is
why lowering the overall numbers using min instead of summation
seems reasonable.

In e�ect, the metric of gdist still appears to be needlessly exact
for the application purpose inside the highly stochastic nature of
an evolutionary algorithm. And while a lot of algorithmic opti-
mizations and caching of ancestry values can help to cut down the
computation time of the employed metric, comparing two individ-
uals still takes linear time with respect to the node count of their
ancestral trees, which in turn is likely to grow over time of the
evolutionary process. We tackle these issues by introducing a faster
and more heuristic approach in the following Section.

5 ESTIMATING GENEALOGICAL DISTANCE
ON THE GENOME

At �rst, it seems impossible or at east overly di�cult to estimate
the genealogical distance (or for that ma�er, the evolutionary edit
distance) of two individuals without knowing about their ancestry
inside the evolutionary process. However, life sciences are facing
that problem per usual and have found a way to estimate the rela-
tionship between two di�erent genomes rather accurately. �ey
do so by computing the similarity in genetic material between two
given genomes.

To most arti�cial evolutionary processes, this approach is not
directly applicable for a few reasons:
(i) Most evolutionary algorithms use genomes that are much

smaller than that of living beings. �us, it is much harder to
derive statistical similarity estimates and the analysis is much
more prone to be in�uenced by sampling error.

(ii) In many cases, the genomes used are not homogeneous but
include various �elds of di�erent data types. Comparing simi-
larity between di�erent types of data requires a rather complex
combined similarity metric.

(iii) �e way genomes are usually structured in evolutionary algo-
rithms means that most to all parts of the genome are subject
to selection pressure reducing the variety found between dif-
ferent genomes.

�e last point may seem odd because, obviously, genomes found
in nature are subject to selection pressure as well. However, biology
has found that, in fact, most parts of the human genome are not
expressed at all when building the phenotype (i.e., a human body)
[12] and are thus not directly subjected to selection pressure.

We can, however, mitigate these problems making a rather sim-
ple addition to an arbitrary evolutionary algorithm: Add more genes.
As these additional genes do not carry any meaning for the solution
candidate encoded by the genome, they are not subjected to selec-
tion pressure (iii). We can choose any data type we want for them,

Taken from original publication: Thomas Gabor and Lenz Belzner. Genealogi-
cal distance as a diversity estimate in evolutionary algorithms. In Measuring and
Promoting Diversity in Evolutionary Algorithms (MPDEA@GECCO). ACM, 2017

100

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany Gabor and Belzner

so we can adhere to a type that allows for an easy comparison be-
tween individuals (ii). And �nally, we can choose a comparatively
large size for these genes so that they allow for a subtle comparison
(i). For the lack of a be�er name, we call these additional genes
by the name trash genes to emphasize that they do not directly
contribute to the individual’s �tness.

For our experiments thus far, we have chosen a simple bit vector
of a �xed length � to encode the added trash genes. Choosing �
too small (2� < n where n is the population size) can obviously
be detrimental to the distance estimate, but choosing very large �
(2� � n) has not shown any negative e�ects in our preliminary
experiments. Using bit vectors comes with the advantage that
genetic operators like mutation and recombination are trivially
de�ned on this kind of data structure.

Formally, to any individual x 2 X we assign a bit vector T (x) =
ht0, ..., t��1i with ti 2 {0, 1} for all i , which is initialized at random
when the individual x is created. Every time a mutation operation
is performed on x , we perform a random single bit �ip on T (x).2
For each recombination of x1 and x2, we generate the child’s trash
bit vector via uniform crossover of T (x1) and T (x2).

We can then compute a trash bit distance tdist between two
individuals x1 and x2 simply by returning the Hamming distance
between their respective trash genes:

tdist(x1,x2) =
1
�

⇤ H (T (x1),T (x2))

=
1
�

⇤

��1’
i=0

|T (x1)i �T (x2)i |

�is metric clearly is symmetric. Again, we normalize the out-
put by dividing it by � . Furthermore, trash bit vectors allow for a
more detailed distinction between the impact of various genetic
operators: �e expected distance between two randomly gener-
ated individuals x1 and x2 is E(tdist(x1,x2)) = 0.5. However, the
distance between parents and children is reasonably lower: If x is
the result of mutating x 0, we expect their trash bit distance to be
E(tdist(x ,x 0)) = 1/� . �e trash bit distance between a parent x 0 of
a recombination operator and its child x is E(tdist(x ,x 0)) = 0.25
since the child shares about half of its trash bits with this one parent
x 0 by the nature of crossover, resulting in a Hamming distance of
0 on this subset, and the other half with the other parent, say x 00,
with which the �rst parent x 0 naturally shares about half of its trash
bits when no other assumptions about the parents’ ancestry apply.
�is means that for the subset of trash bits inherited from x 00, x
and x 0 have a trash bit distance of 0.5, resulting in a 0.25 average
for the whole bit vector of x .3 If the parents are related (or share
improbable amounts of trash bits by chance), lower numbers for
tdist can be achieved.

�ese examples should illustrate that the computed trash bit di-
versity is able to express genealogical relations between individuals.
It stresses recombination over mutation but in doing so re�ects
the impact the respective operators have on the individual’s actual

2Note that this works for typical mutation operators on the non-trash genes, which
tend to change very li�le about the genome aswell. If more invasivemutation operators
are employed, a likewise operation on the bit vector could be provided.
3�ese numbers correspond closely to the degrees of genetic relationship mentioned
in [3].

Figure 1: Illustration of the setup of the scenario. Marked
in red is the starting position of the agent. �e green area
de�nes the goal which the agent is supposed to drive to.
�e gray area is the main obstacle the robot needs to drive
around.

genome. We thus propose trash bit vectors as a much simpler and
more e�cient implementation of genealogical diversity.

As is clear from the usage of the “expected value” E in these
computations, the actual distance between parents and o�spring
is now always subject to random e�ects. However, so is their
similarity on the non-trash genes as well.4 �is kind of probabilistic
behavior is an intrinsic part of evolutionary algorithms. However,
it may make sense to base the recombination on the trash bit vector
on the recombination of the non-trash genes so that probabilistic
tendencies are kept in sync. �is is up to future research.

Finally, the computational e�ort to compute the trash bit distance
is at most times negligible. Computing the distance between two
individuals is an operation that can be performed inO(�) and while
we expect there to be a lose connection between population size and
the optimal � , for a given evolution process with a �xed population
size, this means that trash bit diversity can be computed in constant
time. Trivially, this also means the concept scales with population
size and age.

6 EXPERIMENT
To verify the practical applicability of the concept of genealogical
diversity and its realizations presented in the previous Sections 4
and 5, respectively, we constructed a simple experimental setup:
We de�ne a simple routing task in which a robot has to choose a
sequence of 10 continuous actions a 2 R ⇥ R to reach a marked
area. Each action takes exactly one time step and can move the
robot across a Manha�an square of 0.5 at most. For each time step
the robot remains inside the designated target area, it is rewarded
a bonus of +1. In order to reach that area, the robot has to �nd a
path around an obstacle blocking the direct way. Figure 1 shows a
simple visualization of the setup described here.

4For example, a child generated via uniform crossover has very slim chance of not
inheriting any gene material from one parent at all. �e same e�ect can now happen
not only on the �tness-relevant genes but also on the genes used for diversity marking.

Taken from original publication: Thomas Gabor and Lenz Belzner. Genealogi-
cal distance as a diversity estimate in evolutionary algorithms. In Measuring and
Promoting Diversity in Evolutionary Algorithms (MPDEA@GECCO). ACM, 2017

101

Genealogical Distance as a Diversity Estimate
in Evolutionary Algorithms GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany

Figure 2: Average �tness achieved over time by the the non-
diverse genetic algorithm (black), the domain-speci�c di-
verse genetic algorithm (blue), the genealogically diverse al-
gorithm based on the genealogical tree distance (green) and
the genealogically diverse genetic algorithm using the trash
bit distance (red). To mitigate random e�ects a bit, the �t-
ness values have been averaged over 10 complete evolution
runs.

We solved this scenario with four di�erent evolutionary algo-
rithms. All of these use a population size of 20 individuals and
have been executed for 1000 generations. For this kind of con-
tinuous optimization problem, that is not enough time for them
to fully converge. We constructed a standard setup of an evolu-
tionary algorithm with a continuous mutation operator working
on a single action at a time and activated with a probability of
0.2. We employ uniform crossover with a probability of 0.3 per
individual. A recombination partner is selected from a two-player
tournament and o�spring is added to the population before the
selection step. Furthermore, 2 new individuals per generation are
generated randomly.

Within this setup, we de�ne a standard genetic algorithm using
a �tness function that simply returns the aforementioned bonus
for each individual. It performs well but seems to su�er from
premature convergence in this setup (see Figure 2 for all plots).
�is is the baseline approach all diversity-enabled versions of the
genetic algorithm can be tested against.

To introduce the diversity of the solutions to the genetic algo-
rithm, we choose the approach to explicitly include the distance
of the individual x to other individuals of P in x ’s �tness. But
we do not construct a multi-objective optimization problem (as in
[10, 13], e.g.) but simply de�ne a weighting function to �a�en these
objectives. Formally, given the original �tness function f and an
average diversity measure d of a single individual with respect to
the population P ✓ X , we de�ne an adapted �tness function f 0 as
follows:

f 0(x , P) = f (x) + � ⇤ d(x , P)

It is important to note that while we use f 0 for the purpose of
selection inside the evolutionary algorithm, all external analysis

(plo�ing, e.g.) is performed on the value of f only in order to keep
the results comparable. Also note that we reduce the computational
e�ort to calculate any distance metric d used in this paper by not
evaluating a given individual’s diversity against the whole popula-
tion P but only against a randomly chosen subset of 5 individuals.
In our experiments, this approach has been su�ciently stable.

Furthermore, we determined the optimal � for each algorithm
using grid search on this hyperparameter. In a scenario like this,
where higher diversity yields be�er results overall, it appears rea-
sonable to think that � could be determined adaptively during the
evolutionary process. �is is still up to further research.

For evaluation purposes, we provided a domain-speci�c distance
function. In this simple scenario, this can be de�ned quickly as well
and we chose to use the sum of all di�erences between actions at the
same position in the sequence. Figure 2 shows that this approach
takes a bit longer to learn but can then evade local optima be�er,
showing a curve that we would expect from a more diverse genetic
algorithm.

Finally, we implemented both genealogical distance metrics pre-
sented in this paper. We can see in Figure 2 that both approaches in
fact perform comparably, even though trash bit vectors require
much less computational e�ort. For this experiment, we used
� = 32.

7 CONCLUSION
In this paper, we have introduced the expected evolutionary edit dis-
tance as a promising target for diversity-aware optimization within
evolutionary algorithms. Having found that it cannot be reason-
ably computed within another evolutionary process, we developed
approaches to estimate that distance more e�ciently. To do so, we
introduced the notion of genealogical diversity and presented a
method to estimate it accurately using very li�le computational
resources.

�e experimental results show the initial viability of the ap-
proach used here and allow for many future applications. Some
of these have been realized in [5]. Other promising directions for
future work have been mentioned throughout and include plans to
omit the hyperparameter � by using genealogical diversity within
a true multi-objective evolutionary algorithm or by opening � for
self-adaptation by the evolutionary process. Furthermore, from
a biological point of view, a genealogical selection process is less
common in survivor selection than it is in parent selection. Testing
if the metaphor to biology holds in that case would be an immediate
next step of research.

REFERENCES
[1] Lenz Belzner, Michael Till Beck, �omas Gabor, Harald Roelle, and Horst Sauer.

2016. So�ware engineering for distributed autonomous real-time systems. In
Proceedings of the 2nd International Workshop on So�ware Engineering for Smart
Cyber-Physical Systems. ACM, 54–57.

[2] Markus Brameier and Wolfgang Banzhaf. 2002. Explicit control of diversity
and e�ective variation distance in linear genetic programming. In European
Conference on Genetic Programming. Springer, 37–49.

[3] Richard Dawkins and others. 2016. �e sel�sh gene. Oxford university press.
[4] Agoston E Eiben and James E Smith. 2003. Introduction to evolutionary computing.

Vol. 53. Springer.
[5] �omas Gabor. 2017. Preparing for the Unexpected: Diversity Improves Re-

silience in Online Genetic Algorithms. In Proceedings of�e 14th IEEE Interna-
tional Conference on Autonomic Computing (ICAC2017). Submi�ed.

Taken from original publication: Thomas Gabor and Lenz Belzner. Genealogi-
cal distance as a diversity estimate in evolutionary algorithms. In Measuring and
Promoting Diversity in Evolutionary Algorithms (MPDEA@GECCO). ACM, 2017

102

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany Gabor and Belzner

[6] John J Grefenste�e and others. 1992. Genetic algorithms for changing environ-
ments. In PPSN, Vol. 2. 137–144.

[7] Je�rey Horn, Nicholas Nafpliotis, and David E Goldberg. 1994. A niched Pareto
genetic algorithm for multiobjective optimization. In Evolutionary Computation,
1994. IEEE World Congress on Computational Intelligence., Proceedings of the First
IEEE Conference on. Ieee, 82–87.

[8] Abdullah Konak, David W Coit, and Alice E Smith. 2006. Multi-objective opti-
mization using genetic algorithms: A tutorial. Reliability Engineering & System
Safety 91, 9 (2006), 992–1007.

[9] Rudolf Kruse, Christian Borgelt, Christian Braune, Sanaz Mostaghim, and
Ma�hias Steinbrecher. 2016. Computational intelligence: a methodological intro-
duction. Springer.

[10] Marco Laumanns, Lothar�iele, Kalyanmoy Deb, and Eckart Zitzler. 2002. Com-
bining convergence and diversity in evolutionary multiobjective optimization.
Evolutionary computation 10, 3 (2002), 263–282.

[11] Chengjun Li and Jia Wu. 2017. Subpopulation Diversity Based Selecting
Migration Moment in Distributed Evolutionary Algorithms. arXiv preprint
arXiv:1701.01271 (2017).

[12] Ryan E Mills, E Andrew Benne�, Rebecca C Iskow, and Sco� E Devine. 2007.
Which transposable elements are active in the human genome? Trends in genetics
23, 4 (2007), 183–191.

[13] Carlos Segura, Carlos A Coello Coello, Gara Miranda, and Coromoto León. 2016.
Using multi-objective evolutionary algorithms for single-objective constrained
and unconstrained optimization. Annals of Operations Research 240, 1 (2016),
217–250.

[14] Giovanni Squillero and Alberto Tonda. 2016. Divergence of character and pre-
mature convergence: A survey of methodologies for promoting diversity in
evolutionary optimization. Information Sciences 329 (2016), 782–799.

[15] M Tomasini. 2005. Spatially structured evolutionary algorithms. (2005).
[16] Rasmus K Ursem. 2002. Diversity-guided evolutionary algorithms. In Interna-

tional Conference on Parallel Problem Solving from Nature. Springer, 462–471.
[17] Mark Wineberg and Franz Oppacher. 2003. �e underlying similarity of diver-

sity measures used in evolutionary computation. In Genetic and Evolutionary
Computation Conference. Springer, 1493–1504.

Taken from original publication: Thomas Gabor and Lenz Belzner. Genealogi-
cal distance as a diversity estimate in evolutionary algorithms. In Measuring and
Promoting Diversity in Evolutionary Algorithms (MPDEA@GECCO). ACM, 2017

103

Inheritance-Based Diversity Measures
for Explicit Convergence Control in Evolutionary Algorithms

Thomas Gabor, Lenz Belzner, Claudia Linnho�-Popien
LMU Munich

ABSTRACT
Diversity is an important factor in evolutionary algorithms to pre-
vent premature convergence towards a single local optimum. In
order to maintain diversity throughout the process of evolution, var-
ious means exist in literature. We analyze approaches to diversity
that (a) have an explicit and quanti�able in�uence on �tness at the
individual level and (b) require no (or very little) additional domain
knowledge such as domain-speci�c distance functions. We also
introduce the concept of genealogical diversity in a broader study.
We show that employing these approaches can help evolutionary
algorithms for global optimization in many cases.

CCS CONCEPTS
• Computing methodologies→Heuristic function construc-
tion; Randomized search; • Theory of computation → Ran-
dom search heuristics; Sample complexity and generalization bounds;

KEYWORDS
diversity, evolutionary algorithms, premature convergence, opti-
mization, genetic drift

ACM Reference Format:
Thomas Gabor, Lenz Belzner, Claudia Linnho�-Popien. 2018. Inheritance-
Based Diversity Measures for Explicit Convergence Control in Evolutionary
Algorithms. InGECCO ’18: Genetic and Evolutionary Computation Conference,
July 15–19, 2018, Kyoto, Japan. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3205455.3205630

1 INTRODUCTION
Diversity has traditionally been known as key asset for an evolution-
ary process. Higher levels of diversity within the population under-
going evolution steer the focus of the evolutionary search towards
the exploration of the search space and away from convergence on
the already found solutions. This often helps discover better global
solutions. The precise handling of the exploration/exploitation
dilemma is of central importance for the the success of all im-
portance sampling techniques [4, 20].

Thus, many methods have been suggested to observe and sub-
sequently control the level of diversity within a population. These

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’18, July 15–19, 2018, Kyoto, Japan
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5618-3/18/07. . . $15.00
https://doi.org/10.1145/3205455.3205630

have also been compared in previous studies [21]. All them in-
troduce a notion of diversity given either (a) as a function of the
population or (b) as a relation between an individual and (parts of)
the population. This means that we can use diversity measures of
type (a) to motivate and evaluate global approaches to increase or
decrease the levels of diversity (like an increase of hyper-mutation
or migration). Measures of type (b) can estimate the diversity in-
troduced by each single individual and are commonly used as an
additional objective to the evolutionary process. Instead of using
a classical multi-objective evolutionary algorithm each time we
employ individual-based diversity, we can also adjust the selec-
tion process to respect diversity in a di�erent manner or use other
common techniques to transform multi-objective evolutionary al-
gorithms into a single-objective case.

In this paper, we focus on a speci�c kind of individual-based
diversity: In order to avoid de�ning (and assessing) domain-speci�c
measures of diversity that need to be adjusted to the speci�c data
types used for the individuals’ genomes, we attempt to create a
more general approach to diversity that does not directly depend
on the structure or contents of the genomes. Instead, we want to
leverage information already generated by the evolutionary process
in order to give an estimate of the diversity of speci�c individuals.
To this end, we perform a thorough evaluation of the novel notion
of genealogical diversity [10]: We track the genealogical relations
between individuals (in an e�cient manner) and then assume that
closely related individuals are more similar than unrelated individ-
uals regarding the diversity they add towards the population. We
show that evolutionary algorithms using genealogical diversity can
reach similar levels of performance as those using domain-speci�c
diversity measures and usually achieve better results than other
generic approaches to diversity (such as population ensembles).

Our research is originally motivated from a software engineering
point of view: Self-adaptation and self-organization are playing an
increasingly important role in the design and implementation of
large-scale software and cyber-physical systems, the reason being
that state-of-the-art methods of optimization are not only able
to save e�ort for human developers but are starting to show the
ability to forge solutions that allow for entirely new applications [5,
25]. However, many of the new techniques for autonomous search
come with a large amount of parameters that are expensive to fully
evaluate. We thus see an inherent bene�t from providing means to
control the convergence of an evolutionary search process without
depending on a speci�c choice of data structure or search domain.

A short overview of related work is given in the following Sec-
tion 2. We introduce some diversity techniques in greater detail
in Section 3. We thereby motivate and introduce the approach of
genealogical diversity. Section 4 discusses empirical experiments
that justify our approach. Finally, Section 5 provides a recap on this
paper and a glimpse onto future work.

ar
X

iv
:1

81
0.

12
47

0v
1

 [
cs

.N
E

]
 3

0
O

ct
 2

01
8

Taken from original publication: Thomas Gabor, Lenz Belzner, and Claudia
Linnhoff-Popien. Inheritance-based diversity measures for explicit convergence
control in evolutionary algorithms. In The Genetic and Evolutionary Computation
Conference (GECCO), 2018

104

GECCO ’18, July 15–19, 2018, Kyoto, Japan Gabor et al.

2 RELATEDWORK
Diversity is a topic often researched and discussed in literature
about evolutionary algorithms. In short, a diverse population fea-
turesmany and by tendencymore di�erent genotypes of individuals,
which has been known to be a key factor in preventing the prob-
lem of premature convergence [8]. However, oftentimes diversity is
only regarded as a tool for an a posteriori analysis of the behavior
of an evolutionary process [20]. Thus, a lot of research has been
focused on constructing the evolutionary algorithm in such a way
that low diversity is prevented implicitly by design. Approaches
like island-based models or other spatial structures imposed on the
set of individuals can be regarded as designs aiding higher diver-
sity [22]. Ensemble methods open up a variety of con�gurations
that can be used by the designer of the evolutionary algorithm to
provably increase performance [13]. We deliberately choose a quite
simple instance for a comparison in this paper. The full scope of
combining the possibilities of diversity-awareness with ensemble
learning are up to further research.

The maintenance of population diversity can also be tackled
more explicitly: Observing diversity while the evolutionary process
is still running allows a watchdog process to intervene whenever it
does not ful�ll the desired level of diversity [7, 23]. In such a setup,
diversity is only improved by drastic methods altering the whole
course of the evolutionary process in the form of a “last resort.”

A newer line of research has focused on utilizing the evolu-
tionary process itself to optimize diversity throughout the whole
process, i.e., add diversity as a direct objective for the evolutionary
algorithm [18]. This exposes the meta-goal of preventing premature
convergence to the evolutionary algorithm and allows engineers to
explicitly slow down the convergence process. Naturally, applying
a second objective function yields a multi-objective evolutionary
algorithm (MOEA), which requires more complex (and thus more
computationally expensive) methods of selection [15].

A most extensive overview of techniques of adjusting the ex-
ploration/exploitation trade-o� in evolutionary algorithms can be
found in [4]. The authors of [18] also provide a great overview over
various methods to estimate the diversity of a single individual,
remarking that distance-based methods have been shown to work
best. The described distance functions like the distance of the clos-
est neighbor, however, require consideration of most if not all of
the individuals in the population, which comes with substantial
computation load for large-scale examples. The authors of [21] per-
form an extensive survey of various means to de�ne, measure and
augment diversity in evolutionary algorithms. All of these papers
also introduce comprehensive taxonomies.

For Particle Swarm Optimization and Di�erential Evolution ap-
proaches the authors of [19] have traced and visualized historic or
genealogical relationships of individuals. However, they do not use
that knowledge to further steer the evolutionary process.

3 DIVERSITY IN EVOLUTIONARY
ALGORITHMS

As genetic algorithms maintain a pool of solution candidates at
any given point in time, they are a natural �t for an optimization
algorithm that searches for multiple local optima at once. However,
even whole populations of solution candidates tend to converge

to one single local optimum in some scenarios. A remedy discov-
ered in the context of genetic algorithms is the notion of diversity:
As we shortly discussed in the Introduction, diversity-enhancing
techniques exist at the population level or at the individual level.

In this Section, we introduce our measure of genealogical diver-
sity by deriving it from other measures of diversity we sketch in the
course of this Section. First of all, however, we give a short de�nition
of the formal framework we use for evolutionary algorithms.

3.1 Evolutionary Algorithms
Let D be the search domain of a given problem we want to optimize.
The optimality of a solution candidate x 2 D is given via the
objective goal function � : D ! R. The solution to a maximization
problem can thus be written as argmaxx 2D �(x) and likewise for
minimization. The objective goal function will usually be the main
in�uence on the �tness of an individual. In general, we de�ne a
�tness function f : D ⇥ P(D) ! R so that f (x , P) denotes the
�tness of the individual x within the population P with x 2 P . Note
that we pass on the whole population to the �tness function so that
we can, e.g., respect the diversity of the individual with regard to
said population. This also has the immediate e�ect that the �tness
of an individual may vary without any actual change to the genome.

A population is a set of individuals. An individual usually directly
represents a solution candidate x 2 D so we will use these notions
interchangeably. We can thus give the type of a population P as P 2
P(D). In detail, however, an individual is always part of a population
and may thus have additional properties like genealogical relations
such as, e.g., parents and children. A population is a�ected by
evolutionary operators o : P(D) ! P(D). In the evolutionary
algorithms described in this paper we use common implementations
of recombination, mutation, hypermutation and selection in that
order. A series of populations resulting from the iterated application
of these evolutionary operators is called an evolutionary process.

The examples in this paper show di�erent instances of an evolu-
tionary algorithm: The most simple one is called non-diverse and is
directly derived from the setup described so far. Its �tness function
f can simply be de�ned as

f (x , P) = �(x).

Note that when not stated otherwise, for the remainder of this
Section we assume to optimize a maximization problem, i.e., maxi-
mize the �tness function. All de�nitions can be trivially adapted to
the minimization case.

3.2 Population-based Diversity
Population-based methods attempt to increase the diversity within
the evolutionary search process without computing a speci�c diver-
sity value for every single individual. We further discern them into
structural and reactive methods. The latter usually observe some
diversity measurement throughout the evolutionary process and
employ some methods to increase diversity once a state of little
diversity has been observed. Commonly, these measures could be
to increase the rate of mutation or hypermutation. Thus, reactive
methods inevitably give rise to a dynamic optimization problem,
i.e., they model changes to the setup of the evolutionary algorithm

Taken from original publication: Thomas Gabor, Lenz Belzner, and Claudia
Linnhoff-Popien. Inheritance-based diversity measures for explicit convergence
control in evolutionary algorithms. In The Genetic and Evolutionary Computation
Conference (GECCO), 2018

105

Inheritance-Based Diversity Measures for Explicit Convergence Control GECCO ’18, July 15–19, 2018, Kyoto, Japan

that are not a direct result of the optimization process. For exam-
ple, if we de�ne a concrete threshold of diversity beyond which we
change the rules of mutation or selection [12, 23], the individual will
experience “external factors” changing its relative �tness. Problems
like these are an interesting �eld of research but considered outside
the scope of this paper which focuses on purely static optimization
problems.

Structural methods for population-based diversity attempt to
construct a setup of the evolutionary algorithm that inherently
favors higher-diversity results, usually without ever measuring the
obtained level of diversity directly. We considered two variants of
such approaches for the experiments of this paper.

Hypermutation. Hypermutation (sometimes also called migra-
tion [12]) is an evolutionary operator that simply generates new in-
dividuals at random (like when constructing the initial population)
and adds them to population. In early research, this was considered
a dedicated method to increase the diversity of evolutionary algo-
rithms. However, we consider the application of hypermutation
to be a state-of-the-art technique for evolutionary algorithms and
implemented hypermutation for all instances of evolutionary algo-
rithms shown in this paper. This paper focuses on improvements
of diversity beyond that of hypermutation, i.e., improved diversity
through targeted measures instead of “just” increased randomness.

Ensembles. Ensemble methods instantiate a number of popu-
lations at the same time. This action alone should make it more
unlikely that all the so-called subpopulations converge towards the
same local optimum. Additionally, these subpopulation may still
interact in a limited manner. The notion of migration in this context
describes the evolutionary operator that exchanges select individu-
als between these subpopulations. Such population structures are
often called island models and may introduce arbitrary complex
rules for migration and mutual in�uence [22]. For this paper, we
considered a basic ensemble model with random migration.

3.3 Individual-based Diversity
Individual-based methods alter the �tness function to account for
diversity. They are thus related to multi-objective evolutionary
algorithms in that they construct an evolutionary process that
pursues both the optimization of its objective goal function and
the maximization of diversity. However, handling multi-objective
evolutionary algorithms is a huge �eld of research, which we feel
brings unneeded complexity towards a comparison of diversity
measurement techniques. Thus, we only consider methods that
integrate the objective goal function and the diversity measurement
into a �tness function returning a scalar value.

Fitness Sharing. Fitness sharing is one of the original niching
techniques [16, 17], �rst introduced in [14]. It adjusts the value
of the objective goal function with respect to the density of sim-
ilar individuals in the population, i.e., when multiple individuals
have very similar genomes, they also need to share the objective
goal value achieved by these genomes. Formally, the �tness of an
individual x in a population P is de�ned as

f (x) = �(x)Õ
x 0 2P sh(x ,x 0)

(1)

where the sharing factor sh is given as

sh(x ,x 0) =
(
1 � (d (x,x

0)
�)� , if d(x ,x 0) < �

0, otherwise

where � and � are parameters to the �tness sharing method. For
a more in-depth explanation, please refer to [17]. It is important
to note, however, that we also require a distance function d that
returns some metric of the distance d(x ,x 0) between individuals
x and x 0. We will employ such a distance function directly in the
paragraph on distance-based �tness and discuss the shortcomings
of such a requirement there.

Distance-based Diversity. Given a distance function d : D ⇥D !
R we can also directly reward individuals that stay “far away” from
the rest of the population, thus augmenting diversity in the popula-
tion. We can then simply de�ne the �tness function as

f (x , P) = �(x) + � ⇤
’
x 0 2P

d(x ,x 0)
|P | (2)

where � is the weighting factor of objective goal function versus
distance. Without loss of generality, we can assume thatd is normal-
ized so that 0 d(x ,x 0) 1 for all x ,x 0 2 D. This causes the whole
term to the right of � to be contained in [0; 1] as well, thus giving
a more intuitive interpretation to the value of �. Our experiments
show that a good choice for � is roughly around the average objec-
tive goal value achieved by a non-diverse evolutionary algorithm.
Still, we performed grid search anew every time.

The employed distance function d is, of course, another parame-
ter for this algorithm. In this paper, we mainly consider problem
domains D = Rn for some n 2 N where the Manhattan distance
is a readily available choice of distance function. For spatial prob-
lems, the geometric distance may also be applicable in some cases.
Furthermore, we also consider an instance of integer combinatory
problems where Manhattan distance is meaningless but can easily
substituted by Hamming distance. For a fair comparison, in this
paper, we deliberately only selected problem domains where suit-
able distance functions can easily be given. But of course, there also
exist a multitude of problem domains where the genome is given
as a tree structure, or a segment of program code, or a combination
of various data structures. De�ning a good distance function for
these domains can be a complex engineering tasks in itself, which
is why we researched diversity measures that do not depend on the
problem domain to such an extent.

Randomized Distance-based Diversity. The distance-diverse �t-
ness function as given above has a severe issue when applied in
practical applications: The complexity of the �tness evaluation of a
population is increased to O(|P |2), assuming the �tness evaluation
of a single individual can be done in constant time with respect
to the population size. This makes pure distance-based diversity
a computationally expensive approach over the course of the evo-
lutionary process. However, in accordance with [2] we found that
evolutionary algorithms perform very robust with respect to ran-
dom in�uences on their �tness. We can thus choose to only estimate
the average distance of a single individual from the population by
computing its distance to a random subset of that population. Let
S(P) ⇢ P be a random subset of the population. We can then write

Taken from original publication: Thomas Gabor, Lenz Belzner, and Claudia
Linnhoff-Popien. Inheritance-based diversity measures for explicit convergence
control in evolutionary algorithms. In The Genetic and Evolutionary Computation
Conference (GECCO), 2018

106

GECCO ’18, July 15–19, 2018, Kyoto, Japan Gabor et al.

the distance-based �tness function as

f (x , P) = �(x) + � ⇤
’

x 0 2S (P)

d(x ,x 0)
|S(P)| . (3)

We found that selections with |S(P)| = 5 already performed well
enough so that little di�erence from evaluation against the whole
population could be found. Due to this fact, we employ this method
of randomization whenever possible for the experiments described
in this paper.

Inherited Fitness. Inherited �tness allows the �tness of an indi-
vidual to be in�uenced by the �tness of its ancestors [3]. Alongside
large parts of its genome, any individual generated via mutation
or recombination thus inherits (an approximation of) its parents
�tness value. Formally, we can write

f (x , P) = (1 � �) ⇤ �(x) + � ⇤ h(x) (4)

where

h(x) =
8>>><
>>>:

f (x 0) if x is a mutation of x 0,
f (x1)+f (x2)

2 if x is a recombination of x1 and x2,
0 otherwise,

with � 2 R, 0 < � < 1 being a relative weighting factor of the
inherited �tness versus the currently computed objective value.

This approach attempts to aid diversity by slowing down the
process of convergence: Even when individuals with very high ob-
jective goal values are discovered, it takes them a few generations
to reach their full potential �tness value. This gives individuals in
other niches more time to perhaps discover competitive solution
candidates. In contrast to the individual-based approaches we in-
troduced previously, inherited �tness does not introduce additional
dependencies on the problem domain but operates solely on the
�tness values generated with the help of the objective goal function
that is given anyway. However, we recognize that the concept of di-
versity induced by this model is relatively weak since the combined
�tness function does not depend on other peers in the population
but only on the respective individual’s parents.

Exact Genealogical Diversity. In an attempt to combine the bene-
�ts of distance-based diversity and inherited �tness, we introduce
the notion of genealogical diversity [10]. In the end, we want to
achieve a functional metric of the diversity of a single individual
with respect to its current population without depending on any
additional domain-speci�c knowledge such as distance functions.
Instead, we want to use the knowledge already generated by the
evolutionary process to give an estimate of the diversity of single
individuals. This knowledge mainly stems from the application of
evolutionary operators, i.e., it contains the genealogical relations
of each individual. The ulterior idea behind this approach is that
we can estimate that individuals that are closely related are less
likely to be diverse with respect to each other. In short, you likely
are more di�erent from your cousin twice-removed than from your
child.

We annotate every individual with a map G : D ⇥ D ! R
containing its genealogical distance to each other individual in the
population. Whenever we generate an individual, it inherits the list
of its parents and updates it accordingly, i.e., assuming x results

from the recombination of x1 and x2 we can assign to x

G(x ,x 0) :=
(
0 if x 0 = x

r +min{G(x1,x 0),G(x2,x 0)} otherwise,

where r is a parameter describing the distance we value a parent-
child relationship with (usually r = 1). A similar de�nition can
be made for children produced by mutation. Note that when indi-
viduals x and x 0 are completely unrelated, for example when one
of them was newly generated by hypermutation, we assign some
maximum value t which we also divide the results of G by in order
to achieve normalization again. The resulting �tness function then
looks pretty standard as

f (x , P) = �(x) + � ⇤
Õ
x 0 2S (P)G(x ,x 0)
|S(P)| ⇤ t . (5)

Genealogical Fitness. When directly applying exact genealogical
�tness as described above, we again run into a complexity issue:
We need to save the information of the whole tree of genealogical
relations produced by the evolutionary process. Even if we limit
ourselves to the distances between individuals still present in the
population, we end up with a spatial complexity O(|P |2). For the
populations used for the experiments, this was manageable and we
thus performed these experiments for exact genealogical �tness as
well. However, we still want an approach that scales well even with
much larger populations. To this end, we were inspired by the way
researches in biology determine the relatedness between singular
individuals: They match their genomes. Compared to biological
systems arti�cial evolution usually features much smaller genomes.
Furthermore, large part of biological genomes are actually not
subjected to selection pressure and can thus record patterns (and
by extent genealogical relationships) without bias. We try to mimic
these properties for our �nal approach towards diversity-aware
evolutionary algorithms.

In order to e�ciently approximate the genetic relation between
two given individuals (without keeping a complete history of the
whole evolutionary process), we assign every individual a bitstring
b = b0, ...,b��1 of length � . Note that � is the only hyperparameter
introduced by genealogical diversity (and we noticed to be very
robust with respect to di�erent choices of �). Every time an operator
like mutation or crossover is applied to some individuals, we apply
the respective operator to their assigned bitstrings. Since bitstrings
are a classic among the representations used in genetic algorithms,
most operators (even when designed for other data structures)
have an immediate counterpart de�ned on {0, 1}⇤, which is the
alphabet of bitstrings. Whenever an individual is newly created, it
is assigned a random bitstring. When we choose � large enough,
these random bitstrings will feature a relatively high Hamming
distance to each other. Throughout the process of evolution, we
will interpret a high Hamming distance between two individuals
as a sign of non-relatedness. Note that the use of the Hamming
distance here does not depend on the problem domain but only
on our choice to use bitstrings to augment the problem-speci�c
genomes. More speci�cally, genealogical diversity is de�ned via a
genealogical distance function d : P ⇥P ! N, which can be written

Taken from original publication: Thomas Gabor, Lenz Belzner, and Claudia
Linnhoff-Popien. Inheritance-based diversity measures for explicit convergence
control in evolutionary algorithms. In The Genetic and Evolutionary Computation
Conference (GECCO), 2018

107

Inheritance-Based Diversity Measures for Explicit Convergence Control GECCO ’18, July 15–19, 2018, Kyoto, Japan

as

d(x ,x 0) = 1
�
⇤
��1’
i=0

(
0 if bi = b 0i
1 otherwise

where b0, ...,b��1 is the bitstring assigned to x and b 00, ...,b
0
��1 is

the bitstring assigned to x 0. We then again can simply write

f (x , P) = �(x) + � ⇤
’
x 0 2P

d(x ,x 0)
|S(P)| (6)

for the genealogically diverse �tness function. During the course
of evolution, the bitstrings are not subject to selection but are sub-
jected to the variational evolutionary operators. Thus, the bitstring
can record the degree of relatedness between individuals, albeit in
a highly probabilistic manner. Still, evolutionary algorithms show
robustness with respect to the added noise in selection and compar-
ing a few bitstrings to estimate diversity is highly e�cient in both
time and space complexity (with � ⇡ lo�(|P |) being a good setting
from an experimenter’s experience).

4 EXPERIMENTAL RESULTS
To analyze the e�ectiveness of the various forms of diversity-
respecting evolutionary algorithms described in this paper, we
have considered various settings. In Subsection 4.1 we �rst describe
a common benchmark problem often used to evaluate evolutionary
algorithms [1]. Subsection 4.2 describes the setup and evaluation
of a navigational problem written as a real vector optimization.
Finally, Subsection 4.3 considers an integer combinatory problem.

4.1 The Schwefel Problem
The Schwefel problem has often been used as a benchmark problem
for evolutionary algorithms [6, 11]. For this experiment, we used
the implementation given by the DEAP library [1, 9]. The Schwefel
problem is parametrized on the dimension of the search space (we
simply write |D |) and given as the function

�(x) = 418.9828872724339 ⇤ |D | �
|D |’
i=1

xi ⇤ sin(
p
|xi |) (7)

with the optimal solution to the minimization problem being (0) |D | .
Figure 1 provides a visualization of the solution landscape.

Setup. We show an evaluation of the Schwefel problem with
|D | = 8. For all evolutionary algorithms, we used a total population
size of 30 and ran evolution for 300 generations. For all experiments,
we used a single-spot mutation operator and uniform recombina-
tion. We consistently chose relatively high values for variational
parameters by opting for a mutation rate of 0.1, a recombination
rate of 0.3, and a hypermutation rate of 0.1. We did so to have all
algorithms bene�t from diversity through increased randomness in
the evolutionary process and thus evaluate their ability to produce
diversity beyond adding random noise. For �tness sharing, we set
� = 2 and � to the maximum value, so that it spans the whole
problem domain. Inherited �tness used � = 0.2. Genealogical di-
verse algorithms used a bitstring size of � = 16. The ensemble
approach split the population into 3 subpopulations with a ran-
dom migration rate of 0.1. For all weighted diversity mechanisms
(those featuring a weighting factor � in their �tness function) we
chose � = 200 for the Schwefel experiment. All parameters were

Figure 1: Illustration of the Schwefel problem in two dimen-
sions. Taken from [1].

Figure 2: Evaluation results for the Schwefel problem. For
each generation, we plot the current population’s best ob-
jective value on a log scale. Averaged over 100 independent
runs. Semi-transparent lines show plus/minus one standard
deviation.

approximated for best performance via manual grid search. For all
experiments performed for this paper, we tested two variants of the
weighted diversity mechanisms. In one case, we used the diversity
term as described throughout this paper, which means it adds a
bonus value in the direction of the optimization process. We also
evaluated variants that (instead of rewarding high diversity values)
penalize low diversity values by moving the respective individuals
away from the optimization goal. Unsurprisingly, no real di�erence
was observed in this regard.

Results. Due to the high amount of local optima it proved di�cult
for all tested algorithms to �nd the global optimum. The results in
Figure 2 show that none of the algorithms reached the minimum

Taken from original publication: Thomas Gabor, Lenz Belzner, and Claudia
Linnhoff-Popien. Inheritance-based diversity measures for explicit convergence
control in evolutionary algorithms. In The Genetic and Evolutionary Computation
Conference (GECCO), 2018

108

GECCO ’18, July 15–19, 2018, Kyoto, Japan Gabor et al.

Figure 3: Illustration of the Path�nding problem. A robot
(red) gets rewarded for each of the 10 time steps of its life
that it spends in the target area (green). It thus needs to reach
the goal quickly using steps of size 0.3 in each dimension.

in the given time. While all algorithms perform extremely similar,
the genealogical variant can be seen at the lowest point, although
without too signi�cant of a di�erence.

We ran this experiment for other benchmark problems contained
in DEAP, notably H1, Scha�er and Rosenbrock [1, 6]. But the dif-
ference between various algorithms was even smaller for these
experiments, which is why we left out the respective plots. All
software and results are available online.1

4.2 The Path�nding Problem
Given a room of dimensions 1 ⇥ 1, we imagine a robot standing
at position (0.5, 0.1). It needs to reach a goal area at the opposite
side of the room, given by the square of side length 0.2 centered
around the point (0.5, 0.9). However, the room features a huge
obstacle between those points and thus the robot needs to decide
on a way around it. The agent can move by performing an action
a 2 {(�x ,��)| � 0.3 < �x < 0.3,�0.3 < �� < 0.3}. The robot needs
to develop a plan consisting of 10 such actions that will get it to the
goal area. Once it has reached that area, it gets rewarded for staying
there as long as possible. This setup is illustrated in Figure 3.

Setup. The Path�nding problem has a dimension of |D | = 20with
D = (�x1,��1,�x2,��2, ...,�x10,��10). The robot earns a reward
of 1 for each time step spent within the goal area and receives a
penalty of �0.1 for each attempt to perform an illegal step, i.e., a
step ending up outside the room or inside the obstacle. Illegal steps
are disregarded entirely (so the robot does not move up to the wall
when attempting to step beyond it).

For the experiment, we used a population size of 100 individuals
for all evolutionary algorithms. We allowed them to run for 1000
generations. Again, we used � = 2 and � = max for �tness sharing,
split the population into 3 subpopulations for the ensemble method
(yielding 34, 33, 33 for the subpopulation sizes), and set � = 16 for
the genealogical algorithm. For all weighted diversity mechanisms
we used � = 12 this time, putting a high stress on diversity.

Results. For the Path�nding problem, favoring diversity pays
o� in the optimization result. The results are shown in Figure 4.
1gitlab.lrz.de/thomasgabor/gecco-evolib

Distance-based diversity in the form of Manhattan diversity per-
formed best. Genealogical diversity is a close second, however,
achieving similar levels of results without a domain-speci�c dis-
tance function. On third place, �tness sharing too reaches similar re-
sults but is computationally more expensive. Using exact genealog-
ical diversity, which was the original motivation for genealogical
diversity, seems to have little e�ect on the result. We argue that
parameters like the relative weight of recombination and mutation
relations require further tweaking towards the problem-speci�c
requirements. We �nd, however, that this defeats the original pur-
pose of employing inheritance-based diversity measures in the �rst
place. We thus focus on the results of the bitstring-augmented ge-
nealogical diversity instead. On a surprising note, both inherited
�tness and the ensemble model perform worse than the standard
evolutionary algorithm. Both may show a slowing e�ect on the
evolutionary process. This means that for this problem, di�erent
random initialization of subpopulation most likely plays no role
in enhancing diversity as even remotely competitive solution can-
didates are only found later on. It thus seems that these methods
may in fact tackle di�erent classes of problems.

4.3 The Routing Problem
For the last experiment, we wanted to opt for a discrete combi-
natorial problem in contrast to the continuous optimization of
real-valued vectors performed so far. We again imagined a robot
as it may work in a smart factory in the near future. This time,
the robot already knows how to best travel to any given target,
maybe involving various means of transport like forming convoys
of robots or using conveyor belts installed in the factory. The robot
is given the task to travel to various workstations that exist inside
the factory in order to process a speci�c item it is carrying around.
This item needs a certain amount of tasks to be performed in order
to be produced. For each of these tasks, there are 5 dedicated work-
stations scattered throughout the factory. Figure 5 shows a smaller
instance of that setup.

Setup. For this experiment, we choose a setting with 12 di�erent
tasks, resulting in a factory with 60workstations. Accordingly, solu-
tion candidates are of the type {1, 2, ..., 5}12. The genome (2, 4, ...),
e.g., ist interpreted as “go to the workstation of type A with the
number 2; go to the workstation of type B with the number 4; ...” so
that no type mismatch can ever happen. To mimic various means
of transport, we randomized the distance between each of these
workstations individually within a range of [0, 100] ⇢ R. Note that
this (most likely) gives rise to a non-euclidean space the robot is
navigating, making the problem as di�cult as �nding the shortest
weighted path in an arbitrary tree.

For the parameters of evolution, we used a population of 50
and ran each algorithm for 100 generations. Fitness sharing kept
� = 2 and � = max but employed the Hamming distance instead
of Manhattan distance to compute the niching radii. Inherited and
genealogical �tness kept � = 0.2 and � = 16, respectively. Ensemble
model again used 3 subpopulations. For distance-based diversity,
the Manhattan distance is no longer applicable since there is no
associated meaning with the numbering of the workstations of a
speci�c type. In this case, we can simply use Hamming distance

Taken from original publication: Thomas Gabor, Lenz Belzner, and Claudia
Linnhoff-Popien. Inheritance-based diversity measures for explicit convergence
control in evolutionary algorithms. In The Genetic and Evolutionary Computation
Conference (GECCO), 2018

109

Inheritance-Based Diversity Measures for Explicit Convergence Control GECCO ’18, July 15–19, 2018, Kyoto, Japan

Figure 4: Evaluation results for the Path�nding problem. For each generation, we plot the current population’s best objective
value. Averaged over 20 independent runs. Semi-transparent lines show plus/minus one standard deviation.

Figure 5: Illustration of the Routing problem. A robot S (red)
needs to drive to workstations of types A, B, C in order. For
each workstation type, it can choose from several worksta-
tions inside the factory. We need to �nd the routing path
that minimizes the travelled distance.

instead. But it shows that for more complicated genome types, ad-
ditional engineering e�ort may be necessary here. For all weighted
diversity mechanisms we set � = 250.

Results. The results of the factory routing experiment are de-
picted in Figure 6. We observe that �tness sharing seems to not

perform as well using the Hamming distance function. The ex-
act genealogical diversity approach again seems to make not that
much of a di�erence. In this setting, so does the ensemble approach.
However, the other three means to establish diversity do manage
to achieve slightly better results. They all perform on a compara-
ble level in the best cases, with Manhattan-based diversity being
subject to more �uctuation than inherited or genealogical �tness.

5 CONCLUSION
While diversity has been known to be an important factor for the
analysis of evolutionary algorithms, we focused on the explicit in-
tegration of diversity into a single-objective �tness function, which
is a method not yet fully explored. Connections of this approach to
standard multi-objective evolutionary algorithms and respective
approaches that add diversity as an additional full-�edged objective
are still to be researched. Furthermore, we focused on the issue
of global optimization, i.e., we evaluated the tested algorithms for
their ability to better approximate the global optimum only instead
of, e.g., achieving a better coverage of various local optima [24].
We tested the approach of explicit weighted integration against
common diversity techniques like �tness sharing, ensemble evolu-
tionary algorithms or inherited �tness.

While domain-speci�c distance functions have been evaluated
to be the most successful in several examples, we also aimed to
provide means of measuring diversity that can more simply be
plugged into existing algorithms (and libraries) without requiring as
much domain-speci�c adjustments. For this purpose, we motivated
and introduced the novel approach of genealogical diversity for
a full evaluation. Inspired by nature, this approach augments the
genomes by data structures not subjected to selection bias. We

Taken from original publication: Thomas Gabor, Lenz Belzner, and Claudia
Linnhoff-Popien. Inheritance-based diversity measures for explicit convergence
control in evolutionary algorithms. In The Genetic and Evolutionary Computation
Conference (GECCO), 2018

110

GECCO ’18, July 15–19, 2018, Kyoto, Japan Gabor et al.

Figure 6: Evaluation results for the Factory Routing prob-
lem. For each generation, we plot the current population’s
best objective value on a log scale. Averaged over 100 inde-
pendent runs. Semi-transparent lines show plus/minus one
standard deviation.

can then trace relatedness between individuals by analyzing the
matches in these additional genes. The exact requirements on the
size of these augmentations are still up to future research.

After all, it seems that several classes of optimization problems
may be discerned here. Several benchmark problems have shown
to be hardly a�ected by the additional stress on diversity while
example problems motivated by industrial scenarios with the need
to apply optimization techniques in practical applications bene�t
to a relatively large extent from the explicit treatment of diversity.
How and when this is the case needs further research. Further
reduction of hyperparameters seems to be an important step for a
fair and broad evaluation of a multitude of approaches. We already
suggested a rule of thumb for the setting fo diversity weight � but
an extensive study on this matter is still missing. It may be possible
to automatically set � to appropriate values just as the mutation
rate can usually be left to be determined by the algorithm itself [8].

At least in theory, inheritance-based diversity estimation meth-
ods need not be limited to the past. In the end, the ulterior motive to
employ diversity is to favor individuals that will eventually give rise

to the best solution candidates. Obviously, this cannot be accurately
predicted without actually executing the whole evolutionary pro-
cess. This usually is physically impossible for all but small problem
instances. But perhaps, this property can be approximated. Diver-
sity should then favor individuals that cover a lot of good options
after the application of the evolutionary operators over individuals
that are a good option. We suggest this as an important direction
for future research.

REFERENCES
[1] [n. d.]. Benchmarks – DEAP 1.2.2 documentation. http://deap.readthedocs.io/en/

master/api/benchmarks.html. ([n. d.]). Accessed: 2018-04-15.
[2] Hans-Georg Beyer. 2000. Evolutionary algorithms in noisy environments: Theo-

retical issues and guidelines for practice. Computer methods in applied mechanics
and engineering 186, 2 (2000), 239–267.

[3] Jian-Hung Chen, David E Goldberg, Shinn-Ying Ho, and Kumara Sastry. 2002.
Fitness inheritance in multi-objective optimization. In Proceedings of the 4th
Annual Conference on Genetic and Evolutionary Computation. Morgan Kaufmann
Publishers Inc., 319–326.

[4] Matej Črepinšek, Shih-Hsi Liu, and Marjan Mernik. 2013. Exploration and ex-
ploitation in evolutionary algorithms: A survey. Comput. Surveys (2013).

[5] Rogério De Lemos, Holger Giese, Hausi A Müller, Mary Shaw, Jesper Andersson,
Marin Litoiu, Bradley Schmerl, Gabriel Tamura, Norha M Villegas, Thomas Vogel,
et al. 2013. Software engineering for self-adaptive systems: A second research
roadmap. In Software Engineering for Self-Adaptive Systems II. Springer.

[6] Kalyanmoy Deb. 1999. Multi-objective genetic algorithms: Problem di�culties
and construction of test problems. Evolutionary computation 7, 3 (1999), 205–230.

[7] Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and Tanaka Meyarivan. 2000.
A fast elitist non-dominated sorting genetic algorithm for multi-objective opti-
mization: NSGA-II. In International Conference on Parallel Problem Solving From
Nature. Springer, 849–858.

[8] Agoston E Eiben and James E Smith. 2003. Introduction to evolutionary computing.
Vol. 53. Springer.

[9] Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner, Marc
Parizeau, and Christian Gagné. 2012. DEAP: Evolutionary algorithms made easy.
Journal of Machine Learning Research 13, Jul (2012), 2171–2175.

[10] Thomas Gabor and Lenz Belzner. 2017. Genealogical distance as a diversity
estimate in evolutionary algorithms. In Proceedings of the Genetic and Evolutionary
Computation Conference Companion. ACM, 1572–1577.

[11] V Scott Gordon and Darrell Whitley. 1993. Serial and parallel genetic algorithms
as function optimizers. In ICGA. 177–183.

[12] John J Grefenstette et al. 1992. Genetic algorithms for changing environments.
In PPSN, Vol. 2. 137–144.

[13] Emma Hart and Kevin Sim. 2017. On constructing ensembles for combinato-
rial optimisation. In Proceedings of the Genetic and Evolutionary Computation
Conference Companion. ACM, 5–6.

[14] JH Holland. 1975. 1975, Adaptation in Natural and Arti�cial Systems, Ann Arbor:
The University of Michigan Press. (1975).

[15] Marco Laumanns, Lothar Thiele, Kalyanmoy Deb, and Eckart Zitzler. 2002. Com-
bining convergence and diversity in evolutionary multiobjective optimization.
Evolutionary computation 10, 3 (2002), 263–282.

[16] Samir W Mahfoud. 1995. Niching methods for genetic algorithms. Urbana 51,
95001 (1995), 62–94.

[17] Bruno Sareni and Laurent Krahenbuhl. 1998. Fitness sharing and niching methods
revisited. IEEE transactions on Evolutionary Computation 2, 3 (1998), 97–106.

[18] Carlos Segura, Carlos A Coello Coello, Gara Miranda, and Coromoto León. 2013.
Using multi-objective evolutionary algorithms for single-objective optimization.
4OR 11, 3 (2013), 201–228.

[19] Roman Šenkerık, Michal Pluhácek, Adam Viktorin, and Jakub Janoštık. 2016. On
the application of complex network analysis for metaheuristics. In 7th BIOMA
Conference. 201–213.

[20] William M Spears. 2013. Evolutionary algorithms: the role of mutation and recom-
bination. Springer Science & Business Media.

[21] Giovanni Squillero and Alberto Tonda. 2016. Divergence of character and pre-
mature convergence: A survey of methodologies for promoting diversity in
evolutionary optimization. Information Sciences 329 (2016), 782–799.

[22] Marco Tomassini. 2005. Spatially structured evolutionary algorithms. (2005).
[23] Rasmus KUrsem. 2002. Diversity-guided evolutionary algorithms. In International

Conference on Parallel Problem Solving from Nature. Springer, 462–471.
[24] Vassilis Vassiliades, Konstantinos Chatzilygeroudis, and Jean-Baptiste Mouret.

2017. Comparing multimodal optimization and illumination. In Proceedings of
the Genetic and Evolutionary Computation Conference Companion. ACM, 97–98.

[25] Martin Wirsing, Matthias Hölzl, Nora Koch, and Philip Mayer. 2015. Software
Engineering for Collective Autonomic Systems: The ASCENS Approach. Springer.

Taken from original publication: Thomas Gabor, Lenz Belzner, and Claudia
Linnhoff-Popien. Inheritance-based diversity measures for explicit convergence
control in evolutionary algorithms. In The Genetic and Evolutionary Computation
Conference (GECCO), 2018

111

Preparing for the Unexpected:
Diversity Improves Planning Resilience

in Evolutionary Algorithms
Thomas Gabor
LMU Munich

thomas.gabor@ifi.lmu.de

Lenz Belzner
MaibornWolff

lenz.belzner@maibornwolff.de

Thomy Phan
LMU Munich

thomy.phan@ifi.lmu.de

Kyrill Schmid
LMU Munich

kyrill.schmid@ifi.lmu.de

978-1-5386-5541-2/18/$31.00 ©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. DOI: 10.1109/ICAC.2018.00023

Abstract—As automatic optimization techniques find their
way into industrial applications, the behavior of many complex
systems is determined by some form of planner picking the
right actions to optimize a given objective function. In many
cases, the mapping of plans to objective reward may change
due to unforeseen events or circumstances in the real world.
In those cases, the planner usually needs some additional effort
to adjust to the changed situation and reach its previous level
of performance. Whenever we still need to continue polling the
planner even during re-planning, it oftentimes exhibits severely
lacking performance. In order to improve the planner’s resilience
to unforeseen change, we argue that maintaining a certain level
of diversity amongst the considered plans at all times should be
added to the planner’s objective. Effectively, we encourage the
planner to keep alternative plans to its currently best solution.
As an example case, we implement a diversity-aware genetic
algorithm using two different metrics for diversity (differing in
their generality) and show that the blow in performance due
to unexpected change can be severely lessened in the average
case. We also analyze the parameter settings necessary for
these techniques in order to gain an intuition how they can
be incorporated into larger frameworks or process models for
software and systems engineering.

Index Terms—planning, unexpected events, dynamic fitness,
resilience, robustness, self-protection, self-healing, diversity, op-
timization, evolutionary algorithms

I. INTRODUCTION

As automatic optimization in various forms makes its way
into industrial systems, there is a wide range of expectations
about the upcoming capabilities of future “smart systems” [1]–
[5]. For most of the current applications, the optimization part
of the system takes place offline, i.e., not while the application
is actually performing its main purpose: The product shipped
to the customer is fixed after initial training and does not
self-adapt (anymore). Instead, it may only gather data that
is then used at the vendor’s side to either improve the
product’s performance via software updates later on or assist
in building the product’s successor. This, of course, misses
out on interesting applications that may highly benefit from
further optimization even while they are running. In this paper,
we focus on the exemplary case of a layout configuration
for the positioning of work stations inside a (smart) factory:
Depending on the products that need to be build and depending
on the current status of the machines involved, we may desire

different workflows for the same product at different times
during the factory’s life. For most current factories, however,
the arrangement of workstations is planned far in advance and
then fixed until human intervention.

One of the reasons for opting for offline adaptation is that
the vendor usually has access to more computational power
and that the employed adaptation process can benefit from
connecting data input from a variety of customers. However,
increasing computational resources and online connectivity
mitigate these issues. A possibly more important aspect is
the issue of consistent performance: An online planner, while
theoretically able to react to sudden changes in its environment
and/or objective, may take some time to reach good plans and
during that time the solutions provided by the planner may be
unsuitable.

a) Expected Change: The usefulness and importance
of self-optimization at the customer’s side has already been
claimed in the original vision of autonomic computing [6]
and has been shown on many occasions since [3], [7], [8].
In these cases, self-optimization usually refers to a process of
specialization, i.e., the system is built with a large variety of
possible use cases in mind and learns to work best for the few
of these it actually faces on site. Intuitively, we may want to
build a planner that works on factory layouts in general and
that can then specialize on the specific needs of a single factory
or a single situation (machine failure, e.g.) if necessary. We
expect this approach to work iff every possible situation and
every pair of follow-up situation is considered when evaluating
a factory layout. As long as we know that machines might fail
with a certain probability, we can take this into account and
plan redundantly with respect to machine usage. This is what
we call expected change of the evaluation function.

b) Unexpected Change: Still, we may not want our self-
optimizing planner to completely break on any deviation from
the specified scenarios. We imagine that intelligent planners
should invest a certain amount of effort to think about and
prepare for “what ifs”, even when the respective scenarios have
not been expected to happen during system design or training.
This is further motivated by the fact that many industry
applications require the adaptive component to produce a

ar
X

iv
:1

81
0.

12
48

3v
1

 [
cs

.N
E

]
 3

0
O

ct
 2

01
8

Taken from original publication: Thomas Gabor, Lenz Belzner, Thomy Phan, and
Kyrill Schmid. Preparing for the unexpected: Diversity improves planning re-
silience in evolutionary algorithms. In 15th IEEE International Conference on
Autonomic Computing (ICAC), 2018

112

solution better than a certain quality threshold but do not
benefit as much from the system finding configurations that
are just slightly better beyond that threshold. Instead, that
computational effort might be better put into finding alternative
solutions that might not be just as good as the primary solution
that was just found, but then again might be feasible even when
the primary solution fails for some unexpected reason.

This argument falls in line with the claim of self-protection
for autonomic systems [6]: Our system should not only be able
to react and recover from negative external influences but also
spend a reasonable effort on actively preparing for negative
events. Via this self-protection property we aim to increase
the overall resilience of the planning process and by extent
the robustness of the system using our planner.

c) Scope of This Work: As the original contribution of
this paper we identify that diversity in evolutionary algorithms,
which we consider a primary example for a heuristic optimiza-
tion algorithms in this paper, is of central importance for the
algorithm’s reaction to change and that explicitly optimizing
for diversity helps to prepare for changes, even when they
cannot be foreseen by the optimization process in any way.
We introduce means to formally define the phenomenon of
unexpected change in relation to an online planner.

To this end, we first formally define the notions of change
and unexpectedness that we used intuitively until now (Sec-
tion II). We then immediately turn to an example of a smart
factory domain in which unexpected change might occur and
specify our experimental setup (Section III). We introduce our
approach at maintaining diversity using two different diversity
metrics (Section IV) and sum up the results of applying this
approach in the previously defined experiment (Section V)
before we discuss related work (Section VI) and conclude this
paper (Section VII).

II. FOUNDATIONS

We assume that to realize modern challenges in industry,
software products need to feature a certain degree of auton-
omy, i.e., they feature at least one component called planner
capable of making decisions by providing a plan of actions
which the system is supposed to perform to best fulfill its
intended goal [8], [9]. This goal is encoded by providing the
system with a fitness function that can be used to evaluate
plans. A planner respecting a fitness function performs self-
optimization.

We claim that for many real-world applications it is often
not only important to eventually adapt to new circumstances
but also to avoid causing any major damage to overall success
while adapting. It follows that the planner needs to offer
a suitable solution at all times, even directly after change
in the environment. This property can be compared to the
robustness of classical systems, i.e., the ability to withstand
external changes without being steered away too far from
good behavior [10]. Robustness can often be tested against a
variety of well-defined external influences. However, not every

influence a system will be exposed to can be foreseen.1 The
notion of resilience captures the system’s ability to withstand
unanticipated changes [11].2 One approach to prepare a sys-
tem for unexpected circumstances is to make it adapt faster, so
that its adaptive component finds a new plan of actions faster
once the old one is invalidated. However, this approach is
still purely reactive and we thus cannot prevent the immediate
impact of change.

To increase system resilience, we thus might want the
planner to become proactive towards possible changes that
may occur to the environment and by extension the planner’s
objective. In order to lessen the blow of unexpected changes,
the planner thus needs to prepare for it before it actually
occurs. Note that for the changes we are talking about in this
section, we still assume that they are unexpected at design
time. The planner therefore has no means of predicting when
or what is going to happen. Still, we desire for a planner to be
caught off-guard as seldom as possible. A planner that needs
to re-plan less often would then be considered more resilient
with respect to unexpected change. We claim that explicitly
increasing planning resilience aids a system’s ability to self-
protect and is thus a useful handle to explicitly expose to the
developers of such a system.

a) Planning: Planners perform (usually stochastic) op-
timization on the system’s behavior by finding plans that
(when executed) yield increasingly better results with respect
to a specified objective. That objective is given via a fitness
function f : P⇥E ! R, where P is the domain of all possible
plans and E is the domain of environments said plans are
to be executed in. For the purpose of this paper, we assume
that we want to minimize the real-valued output of the fitness
function. We can then describe a planner formally as a function
plan : E ! P from an environment e 2 E to a plan p 2 P
with the following semantic:

plan(e) ⇡ argmin
p2P

E(f(p, e)).

Note that due to the possibly stochastic nature of the environ-
ment and in extent the evaluation of the fitness function f , we
compute the expected value E of the application of f . Further
note that due to the stochastic nature of the planning methods
considered in this paper, we may not actually return the single
best result over the domain of all plans but when the stochastic
optimization process works, we expect to yield a result some-
what close (described by ⇡). To compute a reasonable value
for f(p, e), a given plan will usually be executed in a simulated
version of e. We call the process of repeatedly calling plan
to execute the currently best solution online planning, which
implies that we may call it for changing e.

1When possible, endowing systems with means to perceive all possible
influences and events might be highly beneficial to resilience. We work with
the assumption that this is not always possible or feasible.

2It follows that we consider resilience a special instance of robustness:
Robustness may include both anticipated and unanticipated change. Resilience
focuses on the latter.

Taken from original publication: Thomas Gabor, Lenz Belzner, Thomy Phan, and
Kyrill Schmid. Preparing for the unexpected: Diversity improves planning re-
silience in evolutionary algorithms. In 15th IEEE International Conference on
Autonomic Computing (ICAC), 2018

113

b) Changing Environments: We can write any occurrence
of change in the environment as a function c : E ! E.
Obviously, if we allow any arbitrary change to happen to the
environment, we can construct arbitrarily “evil” environments
and cause the planner to perform arbitrarily bad. But frankly,
we do not care for a planner managing a smart grid’s power
production to perform well when a meteor destroys Earth.
What is much more realistic and thus much more desirable
to prepare for, however, is changes that apply only to parts of
the environment. Without looking into the data structure of the
environment, we assume that these kinds of changes then only
affect the fitness of some possible plans, but do not change
the fitness landscape of the domain completely. We thus call
a given change function c within a given environment e 2 E
reasonable iff it fulfills the formula:

|{p 2 P : |f(p, e)� f(p, c(e))| > "}| ⌧ |P |.

Here, " described a small value used as a minimally
discernible distance between fitness values. Likewise, the exact
meaning of ⌧ is to be defined by the case. From this
definition, it follows that a planner can prepare for a reasonable
change by finding a good plan among the plans that are not
affected by the reasonable change. When the change occurs,
it can then provide a “quite good” plan immediately before it
even begins to search for good plans among the changed parts
of the domain. Thus, to increase planning resilience, we want
our planner to not converge on and around the best optimum
it has found so far, but to always keep an eye out for other
local optima, even when they do not look as promising at the
moment.

Note that this behavior can be likened to strategies de-
veloped to prevent premature convergence, a problem with
metaheuristic search methods that occurs even in static do-
mains [12], [13].

c) Unexpectedness: Even if a planner can prepare for
a reasonable change by diversifying, there are often more
efficient ways to prepare for expected change: Usually, we
would include instances of expected change into the fitness
function by simply evaluating the system in the changed
environments as well. In that case, the planner can still fully
converge on the predicted path of the environment and not
spend computational resources on diversification. However,
we claim that in most practical applications the future is
not completely predictable and changes may happen that the
planner cannot anticipate.

We define a change function c to be called unexpected iff
the planner is not prepared for the change induced, i.e., if the
actions it would take in the unchanged environment e differ
from the actions it now has to take in the changed environment
c(e). Formally, this can be expressed as follows:

|{e 2 E : plan(c(e)) 6⇡ plan(e)}| � 0

Again, an exact definition of � would need to be derived
from specific system requirements. Note that this is a purely

extrinsic view on unexpectedness. We want to provide a black-
box definition of unexpectedness that does not depend on the
internal workings of the planner and is thus as general as
possible. The intuition behind it is that if there was a way
for the planner to know that and how the change c is going to
happen when looking at the environment e, the plan generated
via plan(e) would already consider the consequences of said
change and thus (to some extent) match the plan for c(e).3

III. EXPERIMENT

To test the validity of our claims about the importance of
diversity for planning resilience, we build a model example in
which we try to observe the effects of environmental changes
as clearly as possible.

a) Scenario: We imagine a smart factory scenario where
a work piece carried by a mobile (robotic) agent needs to be
processed by a setup of work stations. More specifically, we
need to perform the 5 tasks A,B,C,D,E in order on a given
work piece as quickly as possible. In order to do so, our factory
contains 25 work stations placed randomly on a 500⇥500 grid
structure. Each work station can only perform one of the tasks,
so that our factory has 5 identical work stations to use for any
specific task. Given a work piece starting at the top left corner
of the grid, we need to determine the shortest route the work
piece can travel for it to reach exactly one station of each task
in the right order. See Figure 1 for a simplified illustration of
this setup.

For each run of our experiment, we randomly generate an
n⇥m matrix F of work station coordinates where each row in
F corresponds to a task and each column to an identification
number for each of the available work stations for each task.
Thus, in our experimental setup we fix n = 5 and m = 5.

b) Genetic Algorithm: In order to find a short path that
fulfills our requirements, we employ a genetic algorithm [12].
Closely modeling our problem domain, we define the genome
as a 5-dimensional vector v 2 {0, ...,m � 1}n so that vi
denotes which of the 5 identical work stations should be visited
next in order to fulfill the i-th task where i = 0 denotes the
task A, i = 1 denotes task B, and so on. The environment
provides a mapping from these vi to their respective positions
on the grid, which is used by a distance function LE for the
environment E to compute the traveling distance between two
work stations. We then define a function waycost to compute
the overall length of a given path, summing the Manhattan4

distance LE
1 between all its vertices:

waycost(v,E) = LE
1 (S, v0) +

n�2X

i=0

LE
1 (vi, vi+1)

3Note that this argument is based on the fact that we defined plan in such
a way that it tries to optimize for f(p, e) when possible. The result is that
we can regard the definitions of “reasonable” and “unexpected” as upper and
lower bounds on the amount of change introduced in the fitness landscape.

4Obviously, real-world mobile transport robots are more likely to navigate
in Euclidean space. However, we argue that this is not crucial for the results
presented in this paper and choose the computationally simpler approach.

Taken from original publication: Thomas Gabor, Lenz Belzner, Thomy Phan, and
Kyrill Schmid. Preparing for the unexpected: Diversity improves planning re-
silience in evolutionary algorithms. In 15th IEEE International Conference on
Autonomic Computing (ICAC), 2018

114

Fig. 1. Illustration of the factory setup, simplified for only 3 tasks A,B,C
and 4 stations for each task. Coming from the starting point S, the genetic
algorithm needs to determine an as short as possible path that traverses a
station for each task in order (see arrows).

For the standard genetic algorithm, this waycost func-
tion is already sufficient as a fitness function f(v,E) =
waycost(v,E) to evolve a shorter navigation path. It is im-
portant to note that while we closely restrict the search space
to paths that cross each type of station exactly once (and in the
right order), we do not aid the genetic algorithm by providing
any notion of position in space or the closeness of different
stations beyond what is encoded in the waycost function above.

For the genome defined above, we use the following evo-
lutionary operators: Mutation chooses a value i, 0 i < n
uniformly at random, then generates a new random value
x 2 {0, ...,m�1}, assigning vi := x. Recombination happens
through uniform crossover on the vectors of two individuals.
Furthermore, for all experiments performed in this paper, we
use a mutation rate of 0.1 per individual to provide strong
random input and a crossover rate of 0.3. That means that with
a chance of 30% per individual that individual is selected as
a first mate for recombination. Two potential mates are then
randomly selected from the population: the fitter one is used
for as a partner for crossover. We further augment the search
by randomly generating some new individuals from scratch
each generation. This process (also called hyper-mutation [14])
happens with a chance of 0.1 per individual in the population.

c) Random Change: The crucial point of this experimen-
tal setup is the occurrence of a random change of environmen-
tal circumstances. The present experimental setup is fixed to
an evaluation time of 100 generations as earlier experiments
have shown our setup of an evolutionary algorithm can easily
converge in under 50 generations. We then define a function
for unexpected change cA, which chooses A factory stations

at random and effectively disables them. This is implemented
by repositioning them to an area far off the usual factory area
by adding (2500, 2500) to their respective coordinates. This
means that while the plans containing the removed stations
are still theoretically feasible and can be assigned a valid
waycost, the increase in waycost is so high that no plan
containing any of the removed stations should be able to
compete with plans contained within the actual factory area
when it comes to evolutionary selection. From a random initial
factory layout F we generate two changed factory layouts
F1 = cA(F), F2 = cA(F) by applying the randomized change
function cA. Because we want to be able to compare the
scale of fitness values before and after the unexpected change
more easily, we start the evolutionary algorithm on the factory
configuration F1 that is already “missing” a few stations. After
50 generations, we switch to factory configuration F2, which
has A stations disabled as well, but probably different ones.5

Note that this change is reasonable for small A (according
to the definition above) because it only affects the fitness
of a maximum of 2 ⇤ A possible plans, i.e., those plans
which include at least one of the “wrong” machines in
F1 or F2. Furthermore, the change is unexpected as the
shakeup of the stations’ positioning is communicated to the
evolutionary algorithm only via the change of the waycost
function’s values in its fitness evaluation step and thus leaves
the adaptation process without any chance of anticipating that
event. Nonetheless, the individuals of the evolutionary process
are constantly evaluated according to their fitness in the current
state of affairs, thus forcing them to adapt to the new situation
in order to keep up once reached levels of fitness values.

IV. APPROACH

We attempt to solve the problem described above using
evolutionary algorithms. Evolutionary algorithms have already
been applied successfully to many instances of online adapta-
tion, i.e., problems with a changing fitness function [15]–[17].
They are an instance of metaheuristic search algorithms and
work by emulating natural evolution.

a) Diversity in Genetic Algorithms: In the standard
scenario, once the fitness function changes, previously good
solutions can possibly be evaluated to have very bad fitness
and are thus removed from the evolutionary process. However,
if the genetic search has already converged to a local optimum,
it can be very hard for the search process to break out of it,
because when all known solutions lie very closely together
in the solution space, there is no clear path along which the
population must travel in order to improve. The problem of

5It is important to note that this setup means that in many cases none of
the stations that go bad during the switch are even included in the best path
found by the genetic algorithm. In these cases, the evolutionary process does
not have to adapt in any way. In order to analyze the cases when the removal
of stations actually does make a huge difference, we need to execute the
experiment multiple times. We chose this approach because it allows us use
an unbiased change function as opposed to a change function that specifically
targets the workstations actually used throughout the experiment. The realm
of biased, even directly adversarial change functions is an interesting topic of
future research.

Taken from original publication: Thomas Gabor, Lenz Belzner, Thomy Phan, and
Kyrill Schmid. Preparing for the unexpected: Diversity improves planning re-
silience in evolutionary algorithms. In 15th IEEE International Conference on
Autonomic Computing (ICAC), 2018

115

a genetic search getting stuck in a local optimum with little
chance to reach the global optimum (or at least much better
local ones) is called premature convergence [12]. It is known
that the diversity among the members in the population has
a strong impact on the evolutionary process’s likelihood to
converge too early. The Diversity-Guided Evolutionary Algo-
rithm (DGEA) observes a population’s diversity throughout
the evolutionary process and takes action when it falls below
a given threshold [18].

For online genetic algorithms, we show that maintaining a
certain level of diversity throughout the population helps to
react better to the change occurring in the environment. To
this end, we apply two possible measurements for diversity,
which we will both test for the above scenario. In either
case, we transform the genetic algorithm’s fitness function to
a multi-objective optimization problem [13], [19], [20] with a
weighting parameter �, yielding a fitness function f depending
on the individual to be evaluated v, the environment E, and
the population P as a whole:

f(v,E, P) = waycost(v,E) + � ⇤ similaritycost(v, P)

It is important to note that in order to meaningfully define
the diversity of one individual, we need to compare it to the
rest of the population, causing us to introduce the popula-
tion P as an additional parameter to the fitness function.6
The fitness function thus becomes a relative measure with
respect to other individuals in the population. This makes it
necessary to re-evaluate fitness in each generation even for
unchanged individuals. However, since we assume changes
in the environment and thus the fitness function may occur
during the online execution of the genetic algorithm anyway,
this model seems to fit our situation. We can now define two
different diversity measures by providing a definition for the
similaritycost function, which penalizes low diversity.

b) Domain-Distance Diversity: This can be thought of
as the more standard approach to diversity in search and
optimization problems. In fact, the authors of [22] show that
many common diversity measurements are quite similar to this
basic method: We define a simple distance measure between
the individuals in the solution space. For a discrete, categorial
problem like the one presented here, there is little alternative
to just counting the specific differences in some way.

similaritycostdom(v, P) = �n+
n�1X

i=0

|P |X

j=0

C(vi, P (j)i)

where C(x, y) =

(
1 if x = y

0 otherwise

6In general, we might want approximate this comparison by using a
sample drawn from the population or another estimate instead. Likewise, we
could consider computing diversity not only against the current generation of
individuals but also against a selection of individuals from the past, using for
example a “hall of fame” approach [21]. The evaluation of such techniques
is left for future research.

Note that we write P (j) to access the j-th individual of the
population and |P | to represent the amount of individuals in
a population. We subtract n from the sum because the given
individual v 2 P is still part of the population and thus adds
a cost of n by matching itself perfectly. We thus maintain the
(cosmetic) property that in a population of completely different
individuals, the average similarity is 0.

While the implementation of this diversity measure looks
pretty straightforward, it requires complete prior knowledge
of the search space provided and and thus introduces further
dependencies. For example, the above definition is unfit for
continuous search spaces and while a continuous similaritycost
function may easily be thought up, optimization problems
consisting of a mix of discrete and continuous variables then
require more weighting parameters to adequately combine
the scales over which the respective similaritycost functions
operate.

c) Genealogical Diversity: As a more different compar-
ison we implemented a inheritance-based diversity estimate
introduced in [13]. The aim of genealogical diversity is to
utilize those parts of the domain knowledge that are already
encoded in the setup of the genetic algorithm, i.e., the mutation
and recombination function the human developer is required
to code for the specific genome anyway. We can thus try to
quantify the difference between two individuals by estimating
the amount of evolution steps it took to develop these different
instances of solution candidates. This yields a measure of
“relatedness” between individuals not unlike genealogical trees
in biology or human ancestry. If all individuals in a population
are closely related (sibling or cousins, e.g.), we know that there
can only be limited genetic difference between them and thus
estimate a low diversity for the respective individuals with
respect to that population.

However, instead of building and traversing a genealogical
tree, the implementation of genealogical diversity used in [13]
employs a technique inspired by the way genetic genealogical
trees are constructed from the analysis from genomes in
biological applications: For this approach, we first need to
augment the individuals’ genome by a series of t trash bits
bk 2 {0, 1}, k 2 N, 0 k < t. For our experiment, t = 16
has proven to be reasonable. However, we do not change the
waycost fitness function, so that it does not recognize the
additional data added to the genome. This leads to the trash
bits not being subjected to selection pressure from the primary
objective of the genetic algorithm.

As the trash bits are randomly initialized like the other
variables in the genome, every individual of the first generation
should most probably start out with a very different trash
bitstring from anyone else’s, given that we choose the length of
the trash bitstring sufficiently large. Without direct selection
pressure, there is no incentive for individuals to adapt their
trash bitstring in any specific way. However, the trash bits are
still subjected to mutation and recombination, i.e., whenever a
specific individual is chosen for mutation, a random mutation
is performed on the trash bitstring as well and whenever a

Taken from original publication: Thomas Gabor, Lenz Belzner, Thomy Phan, and
Kyrill Schmid. Preparing for the unexpected: Diversity improves planning re-
silience in evolutionary algorithms. In 15th IEEE International Conference on
Autonomic Computing (ICAC), 2018

116

recombination operation is executed for two individuals, their
trash bitstrings are likewise recombined. In our implementa-
tion at hand, we use one-bit flip for mutation and uniform
crossover for recombination.

Using the definition of a comparison function C as provided
above, we can thus define the similaritycost function for
genealogical diversity as follows:

similaritycostgen(v, P) = �t+
t�1X

i=0

|P |X

j=0

C(vn+i, P (j)n+i)

Again, we subtract t to ignore self-similarity when iterating
over the population. It should be noted that when accessing
the (n+ i)-th component of an individual inside the sum, we
are protruding into the dimensions solely populated by trash
bits, retrieving the i-th trash bit of said individual.

In order to compute the similarity between two individuals,
we now only consider the trash bits, for which we always
have the same distance metric regardless of the actual problem
domain of the original genetic algorithm. Domain logic is only
used indirectly, as the measure we estimate can be regarded
as the edit distance between two individuals using the genetic
operators the evolutionary process is equipped with. However,
since the trash bits are inherited by individuals from their
parents and without direct selection pressure, they are not
biased toward values resulting in higher fitness; yet, they
are still a sufficient representation of the genealogy of an
individual, as we show in the following section.

V. RESULTS

In order to evaluate the benefit of the presented approaches,
we simulate the different behavior of genetic algorithms when
using the presented diversity measures or no diversity measure
at all. In order to achieve a meaningful result considering the
highly probabilistic nature of the applied method to generate
scenarios, we perform the evaluation on 1000 different sce-
narios. Figure 2 shows the top fitness achieved at a specific
point in time by a single run averaged over all 1000 runs. By
taking a look at the optimization process as a whole, it can be
seen that a great deal of improvement compared to the random
initialization is done during the first steps of evolution, giving
an estimate of how good the achieved solutions are in relation
to “just guessing”. In Figure 3 we show the respective diversity
measurements from these runs.

We can observe that the diversity-aware algorithms show
a slower learning rate in the beginning, since they do not
only optimize the plotted primary fitness function, but also
the diversity function and thus cannot focus as well on better
primary results. However, once the environmental change
occurs, they are likewise better prepared for a change in fitness
and react with a much smaller increase in waycost than the
standard genetic algorithm. In a scenario like ours, where a
smart factory needs to be able to efficiently dispatch new work-
pieces at all times, this can be a huge advantage. We observe
that following the unexpected change, average diversity first

Fig. 2. Best (i.e., lowest-valued) fitness for current generation averaged
over 1000 runs. While the evolutionary algorithm without any recognition
of diversity (black) shows a steep spike at the time of the environmental
change (after 50 generations), genealogically (red) and the domain-dependent
(blue) diverse genetic algorithms manage to mitigate the negative amplitude
to varying extent.

Fig. 3. Diversity measures of the top individual (solid line) as well as
the population average diversity (dotted line) per generation averaged over
1000 runs. We draw both genealogical (red) and domain-dependent (blue)
diversity into the same figure as they are both normalized on [0; 1], even
though no direct translation is possible between their values. In both cases,
the population’s average diversity shows a specific behavior following the
unexpected change.

increases as well-established “families” of similar individuals
die out. Due to a new convergence process, diversity then
drops until good solutions are found. Finally, diversity seems
to reach a similar level as before the unexpected change.
The “right” amount of diversity is naturally controlled by
the parameter � of the combined fitness function. For these

Taken from original publication: Thomas Gabor, Lenz Belzner, Thomy Phan, and
Kyrill Schmid. Preparing for the unexpected: Diversity improves planning re-
silience in evolutionary algorithms. In 15th IEEE International Conference on
Autonomic Computing (ICAC), 2018

117

experiments we found parameters � = 1500 for domain-
dependent diversity and � = 2500 for genealogical diversity
via systematic search.

The definition of “right”, however, depends on the prob-
lem domain. In most practical cases, we expect some (non-
functional) requirements to be present, which specify the
robustness properties we want to uphold. For now, these
properties must then be verified via statistic testing. Deriving
(statistical or hard) guarantees from a stochastic search process
like an evolutionary algorithm is still an interesting topics
of future work. Goven no further requirements for consistent
quality of service, a reasonable setting for � might achieve
that the online planner does not perform worse than a random
planner at any point in time, even at the moment of unexpected
change.

Figures 4 and 5 show that systematic search, including the
random population’s value before the evolutionary process
starts: the fitness achieved by the domain-dependent and the
genealogical genetic algorithm, respectively, strongly depends
on the choice of parameter �, i.e., how to distribute focus
between the primary objective (small waycost) and the sec-
ondary objective (high diversity). Experiments have shown,
that diversity-aware genetic algorithms can show a variety
of behaviors for different �. To provide an intuition about
the effects various settings for � have on the algorithm’s
performance, we can see that higher values of � generally
cause the evolutionary search to produce less optimal results
but to perform more stable when facing unexpected change.
For the domain-dependent diversity, this phenomenon shows
stronger with higher �-values showing almost no impact of
the unexpected change but relatively bad results in general.
The approach of genealogical diversity seems to be a bit more
robust to the setting of � in that it still clearly shows a tendency
to optimize over time.

We chose to showcase genealogical diversity specifically
because it works on a rather domain-independent level and
introduces only few parameters. Furthermore, it is rather robust
with respect to the choice of said parameters. For the length of
the used bitstring t, Figure 6 shows that on all but the smallest
values for t the genetic algorithm performs most similarly.
Especially rather large values for t (that still take up very
little memory) do not show any deterioration in the planner’s
behavior, which means that the choice for that parameter can
be made rather comfortably.

We also analyze how much change a diversity-aware planner
can handle. Figure 7 shows the behavior of the three exemplary
planners just around the moment of unexpected change for
various amounts of change they are subjected to. Naturally,
bigger (and thus un-reasonable) change can impact even
diverse system. The increase in costs for the large alterations
in the generation-49-line (dashed) shows that on the upper
end of the scale we started generating problem instances that
generally have fewer good solutions. For more reasonable
change (A 8, which still means that up to 16 out of
25 machine positions may be changed), both diversity-aware
algorithms perform comparably and clearly better than the

Fig. 4. Top fitness for current generation averaged over only 100 runs each,
plotted for � = 500 ⇤ z, z 2 N, 0 z < 20 using domain-dependent
diversity. The darker the color of the line, the higher is the depicted � value.

Fig. 5. Top fitness for current generation averaged over only 100 runs each,
plotted for � = 500 ⇤ z, z 2 N, 0 z < 20 using genealogical diversity.
The darker the color of the line, the higher is the depicted � value.

Fig. 6. Top fitness for current generation averaged over 100 runs each, plotted
for t = 2z , z 2 N, 0 z < 10 using genealogical diversity. The darker the
color of the line, the higher is the depicted t value.

Taken from original publication: Thomas Gabor, Lenz Belzner, Thomy Phan, and
Kyrill Schmid. Preparing for the unexpected: Diversity improves planning re-
silience in evolutionary algorithms. In 15th IEEE International Conference on
Autonomic Computing (ICAC), 2018

118

Fig. 7. Analysis of the fitness amplitude around unexpected change of varying
intensity for the non-diverse (black), the genealogically diverse (red) and the
domain-dependent diverse (blue) evolutionary algorithm respectively, plotted
against the parameter A for the alternation amount of the change function cA,
all results averaged over 100 runs. The dashed line shows the population’s
top fitness value just before the change (generation 49). The solid line shows
the top fitness just at the moment of unexpected change (generation 50). The
dotted line shows the fitness one generation later (generation 51), when it has
started to improve again.

non-diverse planner. Most remarkably, the domain-dependent
variant manages to cope with changes A 4 with almost no
consequence for its performance.

VI. RELATED WORK

The notion of diversity is researched in many different fields
of science. In this Section, we discuss a few of these and their
relation to the issue presented in this paper. To the author’s
knowledge, the issue of planning resilience is a rather novel
one and applying genetic diversity to promote it is a unique
contribution of this paper.

a) Planning and Reinforcement Learning: Rolling hori-
zon genetic algorithms for online planning are widely used
in real-time general video game playing [16], [17]. How-
ever, these approaches typically optimize with respect to the
expectation of reward, thus they suffer from the drawbacks
of non-diverse planning as discussed in this work. Statistical
online planning has recently attracted a fair amount of research
interest [23]–[25], also due to the successful combination with
deep learning technology [26]–[28]. In general, diversity as
a consideration for resilient planning is orthogonal to these
approaches and could straightforwardly be combined with
recent developments from the online planning literature.

We also see a relation to another recent line of research
in reinforcement learning that explores ways of modeling
aleatoric or epistemic uncertainty about future rewards or
action selection mechanisms as distributions rather than by
expectation [29]–[34]. This enables learning and decision
making agents to explicitly deal with multimodal distributions

of utility. It allows to incorporate risk and uncertainty into
the decision making process, and to effectively deal with the
exploration-exploitation tradeoff. In particular, distributional
approaches foster the learning of diverse behavior, yielding
robust transfer of learned skills to new, unseen situations [31].

b) Diversity in Software: In software engineering, diver-
sity often takes the form of generating, offering, or using
functionally equivalent variants of software artifacts during
software development or deployment [35]. An extensive sur-
vey of current techniques is given in [19]. However, all of these
differ from the approach in this paper in that we explicitly
search for functional alternatives in the context of this paper,
i.e., we want our diverse solutions to represent solutions
to different problems (in order to possibly anticipate future
problems) and not different solutions of equal quality to the
same problem.

Still, the techniques presented in literature to exploit the
prevalence of multiple instances of the same software artifact
during runtime might be applied to variants generated by a
diverse genetic algorithm as well. The work in this paper
can be regarded as a first step to expose the population-based
view of diversity within an automated search process with the
process of software development. Similar trends in software
engineering are discussed in [3], [36].

c) Diversity in Genetic Algorithms: Genetic algorithms
make up a vast field of research. Regarding the basic def-
initions, this work follows the comprehensive description in
[12]. Diversity has been recognized as an important indicator
for good performance, although mainly applied to the static
scenarios of offline adaptation: The authors of [37] provide
an extensive survey of various methods to enforce diver-
sity in genetic algorithms. These fall into the categories of
external methods controlling the evolutionary process “from
the outside” [18], [38] and methods integrating diversity as
an additional objective into the genetic algorithm, using the
concepts of multi-objective genetic optimization [39], [40].
Following the biological inspiration, the aptitude of genetic
algorithms to an online setting with a changing environment
has been thoroughly analyzed [41], [42].

The author of [14] describes a problem setting not unlike the
one presented in this paper, i.e., the combination of maintain-
ing diversity and searching in a changing environment. The
issue of premature convergence is tackled by integrating a
certain amount of random search into the genetic algorithm
by performing hyper-mutation. This has since become standard
procedure and is included in all genetic algorithms presented
in this paper, which aims to further improve the resilience of
the search process.

Most recently, the authors of [43] tackled the issue of
using an evolutionary algorithm as an online planner for a
complex software system. While they discuss high diversity
as a key factor in achieving better re-planning results, they
use diversity purely as an observation not as a direct goal of
the evolutionary process. Instead, they too resort to an operator

Taken from original publication: Thomas Gabor, Lenz Belzner, Thomy Phan, and
Kyrill Schmid. Preparing for the unexpected: Diversity improves planning re-
silience in evolutionary algorithms. In 15th IEEE International Conference on
Autonomic Computing (ICAC), 2018

119

akin to high amounts of hyper-mutation to increase diversity
by creating a new population that only inherits certain parts
of the old population. To this end, the system must be able to
directly recognize the event of an unexpected change after it
has happened.

It is important to note that a lot of literature about diversity
in genetic algorithms (or metaheuristic search in general)
is concerned about covering the frontier of Pareto-optimal
solutions in the search space [44]. The notion of diversity
used in this paper, however, is a more genetic one and has as
one of its main features that is not automatically derived from
the nature of the fitness function. Interesting connections to
game theory may still be made but are outside the scope of
this work.

d) Resilience and Robustness: The preparation for unex-
pected or previously wrongly modeled change is an important
issue for the practical application of machine learning in indus-
try [4]. From an engineer’s point of view, the diversity of the
population of plans can be regarded as a typical non-functional
requirement (NFR) with the cost of the plan representing the
functional requirement. Applying NFR engineering processes
to self-adaptive systems is still a new idea and a clear canon
of relevant NFRs for these new challenges has not yet been
found [2], [9].

VII. CONCLUSION

Since we expect future software systems to be increasingly
self-adaptive and self-managing, we can also expect them
to feature one or multiple components tasked with online
planning. Online planning allows systems to learn to optimize
their behavior in the face of a moving target fitness. However,
it comes with a few pitfalls, one of which is the fact even small
changes in the target fitness can have detrimental effects on the
current plans’ performance. It is thus imperative to keep an eye
on a healthy level of diversity in our pool of alternative plans.
As we have shown, this can severely soften the blow to overall
performance, should only a few plans become impractical due
to external circumstances.7

The diversity of a planner functions as a non-functional
requirement for classic applications. Certain levels of desired
diversity may be specified in order to augment system ar-
chitectures that revolve around the optimization process of
the system in order to provide flexibility on the component
level [46]. This should be expected to strongly influence other
properties commonly applied to complex self-adaptive systems
like robustness or flexibility.

On an application level, the introduced concept of diversity-
aware optimization may prove especially useful when the

7It still holds that if we allow arbitrary changes in the environment, it is
always possible to design a completely new fitness function so that any given
instance of an evolutionary process becomes arbitrarily bad with respect to the
new altered fitness function. This is due to the No-Free-Lunch theorem [45].
For realistic scenarios, however, there usually is a limit to how quickly and
how drastically the fitness function is expected to change. A thorough analysis
of those limits for some practical domains may present an interesting point
for further research.

reduction in amplitude of fitness causes the system behavior
to fall below a predefined quality threshold (or to do so more
often at least). A diversity-aware planner might then be able
to continue working as usual as its back-up plans fulfill the
required quality agreement just as well while a non-diverse
planner might more often feel the need to stop the execution
of its plans (and thus halt the system in general) until it
reaches a new plan of acceptable quality. In this case, we
may formulate a non-functional requirement such as planning
resilience, measuring how frequent and how big unexpected
changes need to be in order to push the planner out of its
quality requirements. Using the parameter �, engineers can
adjust the focus point of the planning component between
performance and resilience optimization. How well statistical
judgements can be made about said resilience property still
needs to be evaluated, though.

It is up to future research to determine how the concept
of diversity (especially genealogical diversity) generalizes for
other optimization techniques like the cross-entropy method
or simulated annealing. One way to integrate these techniques
into the framework defined in this paper may be to set up a
pool of solution candidates via ensemble learning [47].

Embracing diversity seems especially promising in search-
based software testing (SBST) as test suites need to adapt
faster to new possible exploits. In DevOps, developers push
relatively small updates that need testing more frequently.
Nonetheless, the changes applied to the code by the developer
usually fall into the category of unexpected change as we
defined it in this paper. That means, that diverse test generators
could possible adapt quicker to the new software system
under test. The mutual influence between diversity-aware
evolutionary algorithms and co-evolutionary approaches8 may
be an interesting point of further research [21]. A likewise
connection in biological systems has been found [48].

Many of the theoretical foundations explaining the ideal
structure of a population for various optimization purposes
are still unexplored. For instance, we assumed an unpredictable
but neither explicitly hostile nor cooperative environment. Any
scenario where the change occurs not only unexpected but
intentional is likely to have fundamentally different properties.

We focused our study on the implications of using diversity
within a planner and how the resilience to environmental
change may be indicated in a quantifiable way. We have shown
that diversity during planning can aid planning resilience in
the face of change. Furthermore, we can employ such method
in a domain-independent way using genealogical diversity and
still achieve valuable results. Software engineering frameworks
and processes are now needed to expose desired NFRs like
planning resilience to the software and system design and test
them adequately.

8For example, when SBST is used to analyze a system under test that is
by itself capable of adapting and evolving, the complete testing cycle features
two adversary evolutionary algorithms and is thus considered co-evolutionary
[1].

Taken from original publication: Thomas Gabor, Lenz Belzner, Thomy Phan, and
Kyrill Schmid. Preparing for the unexpected: Diversity improves planning re-
silience in evolutionary algorithms. In 15th IEEE International Conference on
Autonomic Computing (ICAC), 2018

120

REFERENCES

[1] M. Harman, S. A. Mansouri, and Y. Zhang, “Search-based software
engineering: Trends, techniques and applications,” ACM Computing
Surveys (CSUR), vol. 45, no. 1, p. 11, 2012.

[2] R. De Lemos, H. Giese, H. A. Müller, M. Shaw, J. Andersson, M. Litoiu,
B. Schmerl, G. Tamura, N. M. Villegas, T. Vogel et al., “Software
engineering for self-adaptive systems: A second research roadmap,” in
Software Engineering for Self-Adaptive Systems II. Springer, 2013.

[3] M. Wirsing, M. Hölzl, N. Koch, and P. Mayer, Software Engineering
for Collective Autonomic Systems: The ASCENS Approach. Springer,
2015.

[4] D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman, and
D. Mané, “Concrete problems in AI safety,” CoRR, vol. abs/1606.06565,
2016. [Online]. Available: http://arxiv.org/abs/1606.06565

[5] K.-D. Thoben, S. Wiesner, and T. Wuest, “industrie 4.0 and smart
manufacturing–a review of research issues and application examples,”
Int. J. of Automation Technology Vol, vol. 11, no. 1, 2017.

[6] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, 2003.

[7] B. Chen, X. Peng, Y. Yu, and W. Zhao, “Requirements-driven self-
optimization of composite services using feedback control,” IEEE Trans-
actions on Services Computing, vol. 8, no. 1, pp. 107–120, 2015.

[8] P. Arcaini, E. Riccobene, and P. Scandurra, “Modeling and analyzing
mape-k feedback loops for self-adaptation,” in Proceedings of the 10th
International Symposium on Software Engineering for Adaptive and Self-
Managing Systems. IEEE Press, 2015, pp. 13–23.

[9] L. Belzner, M. T. Beck, T. Gabor, H. Roelle, and H. Sauer, “Software
engineering for distributed autonomous real-time systems,” in Proceed-
ings of the 2nd International Workshop on Software Engineering for
Smart Cyber-Physical Systems. ACM, 2016, pp. 54–57.

[10] S. C. Bankes, “Robustness, adaptivity, and resiliency analysis.” in AAAI
fall symposium: complex adaptive systems, vol. 10, 2010.

[11] V. D. Florio, “On the constituent attributes of software and organizational
resilience,” Interdisciplinary Science Reviews, vol. 38, no. 2, 2013.

[12] A. E. Eiben and J. E. Smith, Introduction to evolutionary computing.
Springer, 2003, vol. 53.

[13] T. Gabor and L. Belzner, “Genealogical distance as a diversity estimate
in evolutionary algorithms,” in Genetic and Evolutionary Computation
Conference, Berlin, Germany, July 15-19, 2017, Companion Material
Proceedings, P. A. N. Bosman, Ed. ACM, 2017.

[14] J. J. Grefenstette et al., “Genetic algorithms for changing environments,”
in PPSN, vol. 2, 1992, pp. 137–144.

[15] I. K. Nikolos, K. P. Valavanis, N. C. Tsourveloudis, and A. N. Kostaras,
“Evolutionary algorithm based offline/online path planner for uav nav-
igation,” IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), vol. 33, no. 6, pp. 898–912, 2003.

[16] D. Perez, S. Samothrakis, S. Lucas, and P. Rohlfshagen, “Rolling horizon
evolution versus tree search for navigation in single-player real-time
games,” in Proceedings of the 15th annual conference on Genetic and
evolutionary computation. ACM, 2013, pp. 351–358.

[17] R. D. Gaina, S. M. Lucas, and D. Perez-Liebana, “Rolling horizon evo-
lution enhancements in general video game playing,” in Computational
Intelligence and Games (CIG), 2017 IEEE Conference on. IEEE, 2017.

[18] R. K. Ursem, “Diversity-guided evolutionary algorithms,” in Internat.
Conference on Parallel Problem Solving from Nature. Springer, 2002.

[19] A. Konak, D. W. Coit, and A. E. Smith, “Multi-objective optimization
using genetic algorithms: A tutorial,” Reliability Engineering & System
Safety, vol. 91, no. 9, pp. 992–1007, 2006.

[20] T. Gabor, L. Belzner, and C. Linnhoff-Popien, “Inheritance-based di-
versity measures for explicit convergence control in evolutionary al-
gorithms,” in The Genetic and Evolutionary Computation Conference
(GECCO). ACM, 2018.

[21] C. D. Rosin and R. K. Belew, “New methods for competitive coevolu-
tion,” Evolutionary Computation, vol. 5, no. 1, pp. 1–29, 1997.

[22] M. Wineberg and F. Oppacher, “The underlying similarity of diversity
measures used in evolutionary computation,” in Genetic and Evolution-
ary Computation (GECCO 2003). Springer, 2003, pp. 206–206.

[23] A. Weinstein and M. L. Littman, “Open-loop planning in large-scale
stochastic domains.” in AAAI, 2013.

[24] R. Eastwood, R. Alexander, and T. Kelly, “Safe multi-objective planning
with a posteriori preferences,” in High Assurance Systems Engineering
(HASE), 2016 IEEE 17th International Symposium on. IEEE, 2016.

[25] L. Belzner, “Time-adaptive cross entropy planning,” in Proceedings of
the 31st Annual ACM Symposium on Applied Computing. ACM, 2016.

[26] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, 2016.

[27] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering
the game of go without human knowledge,” Nature, vol. 550, no. 7676,
2017.

[28] T. Anthony, Z. Tian, and D. Barber, “Thinking fast and slow with deep
learning and tree search,” CoRR, vol. abs/1705.08439, 2017. [Online].
Available: http://arxiv.org/abs/1705.08439

[29] M. G. Bellemare, W. Dabney, and R. Munos, “A distributional perspec-
tive on reinforcement learning,” arXiv preprint arXiv:1707.06887, 2017.

[30] W. Dabney, M. Rowland, M. G. Bellemare, and R. Munos, “Distribu-
tional reinforcement learning with quantile regression,” arXiv preprint
arXiv:1710.10044, 2017.

[31] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine, “Reinforcement
learning with deep energy-based policies,” CoRR, vol. abs/1702.08165,
2017. [Online]. Available: http://arxiv.org/abs/1702.08165

[32] J. Schulman, P. Abbeel, and X. Chen, “Equivalence between policy
gradients and soft q-learning,” arXiv preprint arXiv:1704.06440, 2017.

[33] M. Ghavamzadeh, S. Mannor, J. Pineau, A. Tamar et al., “Bayesian
reinforcement learning: A survey,” Foundations and Trends® in Machine
Learning, vol. 8, no. 5-6, pp. 359–483, 2015.

[34] B. O’Donoghue, I. Osband, R. Munos, and V. Mnih, “The uncertainty
bellman equation and exploration,” arXiv:1709.05380 preprint, 2017.

[35] I. Schaefer, R. Rabiser, D. Clarke, L. Bettini, D. Benavides, G. Botter-
weck, A. Pathak, S. Trujillo, and K. Villela, “Software diversity: state
of the art and perspectives,” 2012.

[36] M. Hölzl and T. Gabor, “Continuous collaboration: a case study on the
development of an adaptive cyber-physical system,” in Proceedings of
the First International Workshop on Software Engineering for Smart
Cyber-Physical Systems. IEEE Press, 2015, pp. 19–25.

[37] G. Squillero and A. Tonda, “Divergence of character and premature
convergence: A survey of methodologies for promoting diversity in
evolutionary optimization,” Information Sciences, vol. 329, 2016.

[38] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast elitist non-
dominated sorting genetic algorithm for multi-objective optimization:
Nsga-ii,” in International Conference on Parallel Problem Solving From
Nature. Springer, 2000, pp. 849–858.

[39] M. Laumanns, L. Thiele, K. Deb, and E. Zitzler, “Combining con-
vergence and diversity in evolutionary multiobjective optimization,”
Evolutionary computation, vol. 10, no. 3, pp. 263–282, 2002.

[40] C. Segura, C. A. C. Coello, G. Miranda, and C. León, “Using multi-
objective evolutionary algorithms for single-objective constrained and
unconstrained optimization,” Annals of Operations Research, vol. 240,
no. 1, pp. 217–250, 2016.

[41] F. Vavak and T. C. Fogarty, “Comparison of steady state and generational
genetic algorithms for use in nonstationary environments,” in Proc. of
IEEE Internat. Conference on Evolutionary Computation. IEEE, 1996.

[42] N. Bredeche, E. Haasdijk, and A. Eiben, “On-line, on-board evolution
of robot controllers,” in International Conference on Artificial Evolution
(Evolution Artificielle). Springer, 2009, pp. 110–121.

[43] C. Kinneer, Z. Coker, J. Wang, D. Garlan, and C. Le Goues, “Managing
uncertainty in self-adaptive systems with plan reuse and stochastic
search,” in Proceedings of the 13th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS), 2018.

[44] J. Horn, N. Nafpliotis, and D. E. Goldberg, “A niched pareto genetic
algorithm for multiobjective optimization,” in Evolutionary Compu-
tation, 1994. IEEE World Congress on Computational Intelligence.,
Proceedings of the First IEEE Conference on. IEEE, 1994.

[45] D. H. Wolpert and W. G. Macready, “No free lunch theorems for
optimization,” IEEE Trans. on Evolutionary Comp., vol. 1, no. 1, 1997.

[46] M. Hölzl and T. Gabor, “Continuous collaboration for changing en-
vironments,” in Transactions on Foundations for Mastering Change I.
Springer, 2016, pp. 201–224.

[47] E. Hart, A. S. Steyven, and B. Paechter, “Evolution of a functionally
diverse swarm via a novel decentralised quality-diversity algorithm,”
arXiv preprint arXiv:1804.07655, 2018.

[48] C. Bérénos, K. M. Wegner, and P. Schmid-Hempel, “Antagonistic coevo-
lution with parasites maintains host genetic diversity: an experimental

test,” Proc. of the Royal Society of London B: Biological Sciences, 2010.

Taken from original publication: Thomas Gabor, Lenz Belzner, Thomy Phan, and
Kyrill Schmid. Preparing for the unexpected: Diversity improves planning re-
silience in evolutionary algorithms. In 15th IEEE International Conference on
Autonomic Computing (ICAC), 2018

121

Productive fitness in diversity-aware evolutionary algorithms

Thomas Gabor1 • Thomy Phan1 • Claudia Linnhoff-Popien1

Accepted: 15 March 2021 / Published online: 29 April 2021
! The Author(s) 2021

Abstract
In evolutionary algorithms, the notion of diversity has been adopted from biology and is used to describe the distribution of
a population of solution candidates. While it has been known that maintaining a reasonable amount of diversity often

benefits the overall result of the evolutionary optimization process by adjusting the exploration/exploitation trade-off, little

has been known about what diversity is optimal. We introduce the notion of productive fitness based on the effect that a
specific solution candidate has some generations down the evolutionary path. We derive the notion of final productive

fitness, which is the ideal target fitness for any evolutionary process. Although it is inefficient to compute, we show

empirically that it allows for an a posteriori analysis of how well a given evolutionary optimization process hit the ideal
exploration/exploitation trade-off, providing insight into why diversity-aware evolutionary optimization often performs

better.

Keywords Evolutionary algorithm ! Adaptive fitness ! Diversity

1 Introduction

Evolutionary algorithms are a widely used type of
stochastic optimization that mimics biological evolution in

nature. Like any other metaheuristic optimization algo-

rithm (Brown et al. 2005; Conti et al. 2018), they need to
maintain a balance on the exploration/exploitation trade-off

in their search process: High exploration bears the risk to
miss out on optimizing the intermediate solutions to the

fullest; high exploitation bears the risk to miss the global

optimum and get stuck in a sub-optimal part of the search
space. Analogous to biological evolution, diversity within

the population of solution candidates has been identified as

a central feature to adjust the exploration/exploitation
trade-off. Many means to maintain the diversity of the

population throughout the process of evolution have been

developed in literature; comprehensive overviews are

provided by Squillero and Tonda (2016) and Gabor et al.

(2018), for example.
For problems with complex fitness landscapes, it is well

known that increased exploration (via increased diversity)

yields better overall results in the optimization, even when
disregarding any diversity goal in the final evaluation

(Ursem 2002; Toffolo and Benini 2003). However, this
gives rise to a curious phenomenon: By augmenting the

fitness function and thus making it match the original

objective function less, we actually get results that opti-
mize the original objective function more. This implies that

any evolutionary algorithm does not immediately optimize

for the fitness function it uses (but instead optimizes for a
slightly different implicit goal). Furthermore, to really

optimize for a given objective function, one should ideally

use a (slightly) different fitness function for evolution. In
this paper, we introduce final productive fitness as a theo-

retical approach to derive the ideal fitness function from a

given objective function.
We see that final productive fitness cannot feasibly be

computed in advance. However, we show how to approx-

imate it a posteriori, i.e., when the optimization process is
already finished. We show that the notion of final pro-

ductive fitness is sound by applying it to the special case of

diversity-aware evolutionary algorithms, which (for our

& Thomas Gabor
thomas.gabor@ifi.lmu.de

Thomy Phan
thomy.phan@ifi.lmu.de

Claudia Linnhoff-Popien
linnhoff@ifi.lmu.de

1 LMU Munich, Oettingenstraße 67, 80538 München,
Germany

123

Natural Computing (2021) 20:363–376
https://doi.org/10.1007/s11047-021-09853-3(0123456789().,-volV)(0123456789().,- volV)

Taken from original publication: Thomas Gabor, Thomy Phan, and Claudia
Linnhoff-Popien. Productive fitness in diversity-aware evolutionary algorithms.
Natural Computing, pages 1–14, 2021

122

purposes) are algorithms that directly encode a strife for

increased diversity by altering the fitness of the individuals.
By running these on various benchmark problems, we

empirically show that diversity-aware evolutionary pro-

cesses might just approximate final productive fitness more
accurately than an evolutionary process using just the

original objective. We show that the fitness alteration

performed by these algorithms, when it improves overall
performance, does so while (perhaps because) it better

approximates final productive fitness. We thus argue that
the notion of final productive fitness for the first time

provides a model of how diversity is beneficial to evolu-

tionary optimization, which has been called for by various
works in literature:

• ‘‘One of the urgent steps for future research work is to

better understand the influence of diversity for achiev-
ing good balance between exploration and exploita-

tion.’’ (Črepinšek et al. 2013),
• ‘‘This tendency to discover both quality and diversity at

the same time differs from many of the conventional

algorithms of machine learning, and also thereby
suggests a different foundation for inferring the

approach of greatest potential for evolutionary algo-

rithms.’’ (Pugh et al. 2016),
• ‘‘However, the fragmentation of the field and the

difference in terminology led to a general dispersion of

this important corpus of knowledge in many small,
hard-to-track research lines’’ and, ‘‘[w]hile diversity

preservation is essential, the main challenge for schol-

ars is devising general methodologies that could be
applied seamlessly [...]’’ (Squillero and Tonda 2016).

It should be noted that the approach presented in this paper

merely provides a new perspective on exploration/ex-

ploitation in evolutionary algorithms and a new method of
analyzing the effects of diversity. It is up to future works to

derive new means to actively promote diversity from this

analysis.
In this paper, we provide a short mathematical

description of evolutionary processes in Sect. 2 and build

our notion of (final) productive fitness on top of that in
Sect. 3. Section 4 describes the empirical results and

Sect. 5 discusses related work before Sect. 6 concludes.

2 Foundations

For this paper, we assume an evolutionary process (EP) to

be defined as follows: Given a fitness function f : X !
½0; 1# $ R for an arbitrary set X called the search space, we
want to find an individual x 2 X with the best fitness f(x).
For a maximization problem, the best fitness is that of an

individual x so that f ðxÞ' f ðx0Þ 8x0 2 X . For a

minimization problem, the best fitness is that of an indi-

vidual x so that f ðxÞ(f ðx0Þ 8x0 2 X . Note that we nor-
malize our fitness space on ½0; 1# $ R for all problems for

ease of comparison. Whenever the maximum and mini-

mum fitness are bounded, this can be done without loss of
generality.

Usually, the search space X is too large or too com-

plicated to guarantee that we can find the exact best indi-
vidual(s) using standard computing models (and physically

realistic time). Thus, we take discrete subsets of the search
space X via sampling and iteratively improve their fitness.

An evolutionary process E over g generations, g 2 N, is

defined as E ¼ hX ; e; f ; ðXiÞi\gi. X is the search space.

e : 2X ! 2X is the evolutionary step function so that

Xiþ1 ¼ eðXiÞ 8i' 0. As defined above, f : X ! ½0; 1# $ R

is the fitness function. ðXiÞi\g is a series of populations so

that Xi + X 8i and X0 is the initial population. Note that as
the evolutionary step function e is usually non-determin-

istic, we define EðXÞ ¼ fX0jX0 ¼ eðXÞg to be the set of all

possible next populations.
We use the following evolutionary operators:

• The recombination operator rec : X , X ! X gener-
ates a new individual from two individuals.

• The mutation operator mut : X ! X alters a given

individual slightly to return a new one.
• The migration operator mig : X generates a random

individual migðÞ 2 X .

• The (survivors) selection operator sel : 2X ,N ! 2X

returns a new population X0 ¼ selðX; nÞ given a popu-
lation X + X , so that jX0j(n.

The operators rec;mut;mig can be applied to a population

X by choosing individuals from X to fill their parameters (if

any) according to some selection scheme r : 2X ! 2X and
adding their return to the population. For example, we

allow to write mutrðXÞ ¼ X [f mutðx0Þ j x0 2 rðXÞ g.
Note that all children are added to the population and do
not replace their parents in this formulation.

For any evolutionary process E ¼ hX ; e; f ; ðXiÞi\gi and
selection schemes r1; r2; r3 we assume that

Xiþ1 ¼ eðXiÞ ¼ sel ðmigr3ðmutr2ðrecr1ðXiÞÞÞ; jXijÞ: ð1Þ

Usually, we assume that an evolutionary process fulfills its

purpose if the best fitness of the population tends to

become better over time, i.e., given a sufficiently large
amount of generations k 2 N, it holds for maximization

problems that maxx2Xi f ðxÞ\maxx2Xiþk f ðxÞ. We define the

overall result of an evolutionary process E ¼
hX ; e; f ; ðXiÞi\gi with respect to a fitness function / (which

may or may not be different from the fitness f used during

evolution) to be best value found and kept in evolution, i.e.,

for a maximizing objective / we define

364 T. Gabor et al.

123

Taken from original publication: Thomas Gabor, Thomy Phan, and Claudia
Linnhoff-Popien. Productive fitness in diversity-aware evolutionary algorithms.
Natural Computing, pages 1–14, 2021

123

jEj/ ¼ max
x2Xg

/ðxÞ: ð2Þ

Note that there are evolutionary processes which include a

hall-of-fame mechanism, i.e., are able to return the result
fitness

jjEjj/ ¼ max
i¼1;:::;g

max
x2Xi

/ðxÞ: ð3Þ

However, we can derive the equality jEj/ ¼ jjEjj/ when we

assume elitism with respect to /, i.e., argmax x2Xi
/ðxÞ 2

Xiþ1 for all i ¼ 1; :::; g. Since it makes reasoning easier and
hardly comes with any drawback for sufficiently large

populations, we use elitist evolutionary processes (with
respect to f) from here on.

3 Approach

The central observation we build our analysis on is that in
many cases the results of optimizing for a given objective

function (called of) can be improved by not using of as a

the fitness function f of the evolutionary process directly.
Consequently, changing the fitness function f away from

the true objective of in some cases leads to better results

with respect to the original objective function of. Note that
this phenomenon extends beyond just heuristic optimiza-

tion and is known as reward shaping in reinforcement

learning, for example (Ng et al. 1999).
In evolutionary algorithms oftentimes a property called

diversity is considered in addition to the objective function

of to improve the progress of the evolutionary process
(Gabor et al. 2018; Squillero and Tonda 2016; Ursem

2002). In some way or the other, diversity-enhancing

evolutionary algorithms award individuals of the popula-
tion for being different from other individuals in the pop-

ulation. While there are many ways to implement this

behavior, like topology-based methods (Tomassini 2006),
fitness sharing (Sareni and Krahenbuhl 1998), ensembling

(Hart and Sim 2018), etc., we consider an instance of

diversity-enhancing evolutionary algorithms that is simpler
to analyze: By quantifying the distance of a single indi-

vidual to the population, we can define a secondary fitness

sf that rewards high diversity in the individual. This
approach was shown by Wineberg and Oppacher (2003) to

be an adequate general representation of most well-known

means of measuring diversity in a population.
In order to avoid the difficulties of multi-objective

evolution, we can then define the augmented fitness func-

tion af that incorporates both the objective fitness of and
the secondary fitness sf into one fitness function to be used

for the evolutionary process.

Definition 1 (Augmented Fitness) Given the objective

fitness of, a diversity-aware secondary fitness sf, and a

diversity weight k 2 ½0; 1# $ R, we define the augmented
fitness af as

afðxÞ ¼ ð1- kÞ ! ofðxÞ þ k ! sfðxÞ: ð4Þ

As is shown in Gabor et al. (2018) and Wineberg and

Oppacher (2003) such a definition of the augmented fitness

suffices to show benefits of employing diversity.
We can then define two evolutionary processes Eof ¼

hX ; e; of; ðXiÞi\gi and Eaf ¼ hX ; e; af; ðX0
iÞi\gi. We

observe the curious phenomenon that in many cases the
augmented fitness af better optimizes for of than using of

itself, formally

jEofjof\jEafjof; ð5Þ

which raises the following question: If of is not the ideal
fitness function to optimize for the objective of, what is?

Given a sequence of populations ðXiÞi\g spanning over

multiple generations i ¼ 1; :::; g we can write down what

we actually want our population to be like inductively
starting from the last generation g: The net benefit of Xg to

our (maximizing) optimization process is exactly

jEjof ¼ max
x2Xg

ofðxÞ ð6Þ

as this population will not evolve any further and thus the

best individual within Xg is what we are going to be stuck

with as the result of the optimization process.

Note that the individuals of Xg-1 already contribute

differently to the result of the optimization process: From

the perspective of generation g- 1 the overall optimization

result is

max
x2Xg-1

max
x02XgðxÞ

ofðx0Þ ð7Þ

where the follow-up generation XgðxÞ is any1 population

from fXg j Xg 2 EðXg-1Þ ^ x 2 Xgg, i.e., the possible next

populations where x survived.

Intuitively, the contribution of the the second-to-last
generation Xg-1 to the result of the optimization process

stems from the objective fitness of that this generation’s
individuals can still achieve in the final generation Xg.

Generally, this does not fully coincide with the application
of the objective function of in said generation:

max
x2Xg-1

max
x02XgðxÞ

ofðx0Þ 6¼ max
x2Xg-1

ofðxÞ ð8Þ

1 Arguments can be made to pick either the average or the maximum
over all these populations. We discuss both cases later in the text.

Productive fitness in diversity-aware evolutionary algorithms 365

123

Taken from original publication: Thomas Gabor, Thomy Phan, and Claudia
Linnhoff-Popien. Productive fitness in diversity-aware evolutionary algorithms.
Natural Computing, pages 1–14, 2021

124

That means: While rating individuals according to their

objective fitness of in the last generation of the evolu-
tionary process is adequate, the actual benefit of the indi-

vidual x to the optimization result and the value of ofðxÞ
may diverge more the earlier we are in the evolutionary
process. Accordingly, at the beginning of an evolutionary

process, the objective fitness of might not be a good esti-
mate of how much the individuals will contribute to the

process’s return with respect to of at the end of the opti-

mization process. Still, standard optimization techniques
often use the objective fitness of as a (sole) guideline for

the optimization process.

Instead, we ideally want to make every decision (mu-
tation, recombination, survival, ...) at every generation Xi

with the ideal result for the following generations

Xiþ1;Xiþ2; ::: and ultimately the final generation Xg in

mind. We call this the optimal evolutionary process.
Obviously, to make the optimal decision early on, we

would need to simulate all the way to the end of the evo-
lution, including all the follow-up decisions. This renders

optimal evolution infeasible as an algorithm. However, we
can use it for a posteriori analysis of what has happened

within a different evolutionary process. In order to do so,

we need to give a fitness function for the optimal process
(as it obviously should not be of).

Instead, we formalize the benefit to the optimization

process discussed above and thus introduce the notion of
productive fitness. But first, we need a simple definition on

the inter-generational relationships between individuals.

Definition 2 (Descendants) Given an individual x in the
population of generation i, x 2 Xi; of an evolutionary

process. All individuals x0 2 Xiþ1 so that x0 resulted from x
via a mutation operator, i.e., x0 ¼ mutðxÞ, or a recombi-
nation operator with any other parent, i.e., there exists y 2
Xi so that x0 ¼ recðx; yÞ, are called direct descendants of x.
Further given a series of populations ðXiÞ0\i\g we define

the set of all descendants Dx as the transitive hull on all
direct descendants of x.

We can now use this relationship to assign the benefit

that a single individual has had to the evolution a posteri-
ori. For this, we simply average the fitness of all its sur-

viving descendants.

Definition 3 (Productive Fitness) Given an individual x in
the population of generation i, x 2 Xi, of an evolutionary

process. Let Dx + X be the set of all descendants from x.
The productive fitness after n generations or n-productive
fitness is the average objective fitness of x’s descendants,

written

PFnðxÞ ¼
avgx02Dx\Xiþn

OFðx0Þ if Dx \ Xiþn 6¼ ;
w otherwise:

!
ð9Þ

Note that in case the individual x has no descendants in n
generations, we set its productive fitness pfnðxÞ to a worst
case value w, which in our case of bounded fitness values is

0 for maximizing optimization processes and 1 for mini-

mizing optimization processes.

We argue that the productive fitness pf is better able to

describe the actual benefit the individual brings to the
optimization process, as represented by what parts of the

individual still remain inside the population in a few gen-

erations. Note that our notion of productive fitness is rather
harsh in two points:

• We only take the average of all descendants’ fitness.
One could argue that we may want a more optimistic

approach where we might reward the individual for the

best offspring it has given rise to. However, we argue
that every bad individual binds additional resources for

eliminating it down the road and thus a low target

accuracy should actively be discouraged.
• When the line of an individual dies out completely, we

assign the worst possible fitness. Arguments could be

made that even dead lines contribute to the search
process by ruling out unpromising areas while, e.g.,

increasing the diversity scores of individuals in more

promising areas of the search space. Still, we do count
any however distant descendants, so even small contri-

butions to the final population avoid the penalty w.

We leave the analysis of the effects of the discussed

parameters to future work. Note that for now, our notion of
productive fitness only covers a fixed horizon into the

future. We can trivially extend this definition to respect the

final generation no matter what generation the current
individual is from:

Definition 4 (Final Productive Fitness) Given an individ-
ual x in the population of generation i, x 2 Xi, of an evo-

lutionary process of g generations in total. The final

productive fitness of x is the fitness of its descendants in the
final generation, i.e., fpfðxÞ ¼ pfg-iðxÞ.

We argue that final productive fitness is able to describe
what the fitness function of an optimal evolutionary pro-

cess looks like: Every evaluation is done in regard to the

contribution to the final generation, i.e., the ultimate
solution returned by the search process.

Thesis 1 When rolling the ideal choices in all randomized
evolutionary operators, final productive fitness fpf is the

optimal fitness function for evolutionary processes, i.e., an

evolutionary process yields the best results when it opti-
mizes for fpf at every generation.

We sketch a short argument in favor of Thesis 1. For a
more in-depth discussion, see Gabor and Linnhoff-Popien

366 T. Gabor et al.

123

Taken from original publication: Thomas Gabor, Thomy Phan, and Claudia
Linnhoff-Popien. Productive fitness in diversity-aware evolutionary algorithms.
Natural Computing, pages 1–14, 2021

125

(2020). Let Efpf ¼ hX ; e; fpf; ðXfpf
i Þi\gi be an evolutionary

process using final productive fitness fpf. Let E idf ¼
hX ; e; idf; ðXidf

i Þi\gi be an evolutionary process using a

different (possibly more ideal) fitness idf. Let Xfpf
0 ¼ Xidf

0 .

We assume that

max
x2Xfpf

g

ofðxÞ\max
x2Xidf

g

ofðxÞ: ð10Þ

Since Eq. 10 implies that at least Xfpf
g 6¼ Xidf

g , there is an

individual x 2 Xidf
g so that x 62 Xfpf

g and

ofðxÞ[maxy2Xfpf
g
ofðyÞ. Since both Efpf and E idf use the

same evolutionary step function e except for the used fit-
ness, their difference regarding x needs to stem from the

fact that there exists an individual x0 that is an ancestor of x,
i.e., x 2 Dx0 , so that x0 was selected for survival in E idf and
not in Efpf, which implies that fpfðx0Þ\idfðx0Þ. However,
since x is a possible descendant for x0, the computation of

fpfðx0Þ should have taken ofðxÞ into account,2 meaning that
x0 should have survived in Efpf after all, which contradicts

the previous assumption. h

Of course, Thesis 1 is a purely theoretical argument as

we cannot guarantee optimal choices in usually random-

ized evolutionary operators and productive fitness in gen-
eral thus comes with the reasonable disadvantage that it

cannot be fully computed in advance. But for a given,

completed run of an evolutionary process, we can compute
the factual fpf single individuals had a posteriori. There, we

still do not make optimal random choices but just assume

the ones made as given.
Still, we take Thesis 1 as hint that final productive fit-

ness might be the right target to strive for. We argue that

augmenting the objective fitness of (even with easily
computable secondary fitness functions) may result in a

fitness function which better approximates final productive

fitness fpf. In the following Sect. 4, we show empirically
that (in the instances where it helps3) diversity-based sec-

ondary fitness sf resembles the final productive fitness fpf

of individuals much better than the raw objective function
of does.

Thesis 2 When a diversity-aware augmented fitness

function af is aiding the evolutionary optimization process
with respect to an objective fitness of, it is doing so by

approximating the final productive fitness fpf of a con-
verged evolutionary process in a more stable way (i.e.,

more closely when disregarding the respective scaling of

the fitness functions) throughout the generations of the

evolutionary process.

This connection not only explains why diversity-aware

fitness functions fare better than the pure objective fitness

but also poses a first step towards a description how to
deliberately construct diversity-aware fitness functions,

knowing that their ideal purpose is to approximate the not

fully computable final productive fitness. Again, we refer
to Gabor and Linnhoff-Popien (2020) for more elaborate

theoretical arguments.

Since we cannot estimate all possible futures for an
evolutionary process, we provide empirical evidence in

favor of Thesis 2 using a a posteriori approximation: Given

an already finished evolutionary process, we compute the
fpf values given only those individuals that actually came

into being during that single evolutionary process (instead

of using all possible descendants). We argue that this
approximation is valid because if the evolutionary process

was somewhat successful, then all individuals’ descendants

should be somewhat close to their ideal descendants most
likely.4 Note that the reverse property is not true (i.e., even

in a bad run, individuals still aim to generate better

descendants, not worse), which is why our approximation
does not permit any statements about augmented fitness

that does not aid the evolutionary process.

4 Experiments

For all experiments, we run an evolutionary process as

defined in Sect. 2 with a mutation operator mut that adds a
(possibly negative) random value to one dimension of

individual, applied with rate 0.1 to all individuals at

random. For rec we apply random crossover with rate 0.3
for a single individual and a randomly chosen mate. We

apply mig with a rate of 0.1 (Gabor et al. 2018). Fol-

lowing Wineberg and Oppacher (2003) and the results in
Gabor et al. (2018), we focus on a Manhattan distance

function for the secondary fitness; we also plot evolu-

tionary processes using fitness sharing with parameter a ¼
2:0 and dissimilarity threshold r ¼ n, where n is the

dimensionality of the problem (Sareni and Krahenbuhl

1998), or inherited fitness with inheritance weight j ¼ 0:5
(Chen et al. 2002; Gabor et al. 2018) for comparison,

2 Note that ofðxÞ cannot be compensated by other descendants of x0

with possibly bad objective fitness even as we average the results
because all offspring is created by a random choice, which we assume
to be ideal. This also shows how strong that assumption is.
3 Note the gravity of that restriction: We do not consider failed runs
of evolutionary algorithms since we have no assumptions on how fpf
should behave. i.e., relate to af, in that case. Future work may fill that
void.

4 Note that we could construct a terrible evolutionary process that
just happens to find the global optimum in the last generation out of
the blue via random migration. That process would have a poor
stability between af and fpf but a very successful result. However,
since evolution at every step tries not to be terrible, we consider that
scenario to be quite unlikely so that it should not play a role when we
analyze the augmented fitness on multiple runs, parametrizations, and
domains.

Productive fitness in diversity-aware evolutionary algorithms 367

123

Taken from original publication: Thomas Gabor, Thomy Phan, and Claudia
Linnhoff-Popien. Productive fitness in diversity-aware evolutionary algorithms.
Natural Computing, pages 1–14, 2021

126

since both approaches also use an adapted fitness function

to promote diversity.5 The selection operator sel is a
simple rank-based cut-off in the shown evolutionary

processes. Cut-off with protection for new individuals as

well as roulette wheel selection was also tested without
yielding noticeably different results.

All code that produced the results of this paper is

available at github.com/thomasgabor/naco-evolib.

4.1 Pathfinding

We start with the pathfinding problem, which was shown to

greatly benefit from employing diversity in the optimiza-
tion process (Gabor et al. 2018): Given a room of dimen-

sions 1, 1, we imagine a robot standing at position

(0.5, 0.1). It needs to reach a target area at the opposite side
of the room. See Fig. 1 for an illustration. The room also

features a huge obstacle in the middle and thus the robot

needs to decide on a way around it. The agent can move by
performing an action a 2 fðdx; dyÞj- 0:33\dx\
0:33;-0:33\dy\0:33g. A single solution candidate

consists of n ¼ 5 actions hðdxi; dyiÞi1(i(n. It achieves a

reward of 1
n ¼ 0:2 every time it stays within the target area

between steps, i.e., its fitness is given via

ofðhðdxi; dyiÞi1(i(mÞ ¼ rðhðdxi; dyiÞi1(i(m; ð0:5; 0:1ÞÞ
where

rðhðdxi; dyiÞi1(i(m; ðx; yÞÞ ¼
rðhðdxi; dyiÞi2(i(m; ðxþ dx1; yþ dy1ÞÞ þ tðx; yÞ

ð11Þ

with rðhi; ðx; yÞÞ ¼ tðx; yÞ ð12Þ

and tðx; yÞ ¼
1

n
if0:4(x(0:6 ^ 0:8(y(1:0

0 otherwise:

8
<

:

ð13Þ

The pathfinding problem lends itself to the application of

diversity, as the optimization process in most cases first

strikes a local optimum where it reaches the target area
sometime by accident (and most probably towards the end

of its steps). It then needs to switch to the global optimum

where the first three steps are as goal-directed as possible
and the last two steps are very small in order to stay within

the target area.

We now compare a standard evolutionary algorithm
given only the objective function ofðxÞ ¼ f ðxÞ to a diver-

sity-aware evolutionary algorithm using the Manhattan

distance on the solution candidate structure as a secondary

fitness function, i.e., afðxÞ ¼ ð1- kÞ ! ofðxÞ þ k ! sfðxÞ as

given in Definition 1

where sfðxÞ ¼ 1

2n
! avg x02r4ðXÞmanhattanðx; x

0Þ ð14Þ

and manhattanðhðdxi; dyiÞi1(i(m;

hðdx0i; dy
0
iÞi1(i(mÞ ¼

Xm

i¼1

jdxi - dx0ijþ jdyi - dy0ij:
ð15Þ

Note that r4 is a selection function that randomly selects 10
individuals from the population X. We use it to reduce the

computational cost of computing the pairwise distance for

all individuals in the population. Its admissibility for
approximating the full pairwise distance was shown in

Gabor and Belzner (2017). Just as we normalized the fit-

ness function f to ½0; 1# $ R we also normalize the sec-
ondary fitness sf to the same range via division by the

maximum Manhattan distance between two individuals,

i.e., 2n, to make the combination easier to understand. For
now, we set k ¼ 0:4, which we discuss later.

Each evolution was run 30 times for 1500 generations

each, using a population size of 50. Figure 2a shows the
best fitness achieved per generation for all tested approa-

ches. We see that (especially distance-based) diversity-

aware evolution produces much better objective results.
Figure 2b shows the separate diversity score sf maintained

by the best individual, which can only be computed in a

meaningful way for Manhattan diversity. In Fig. 2c the
standard approach shows the same plot as before since its

fitness is not augmented. For all other approaches we plot

1.0

0.0

0.5

0.50.0 1.0

Fig. 1 The Pathfinding problem. A robot (red) needs to find a fixed
path to reach the target area (green)

5 Of course, many more diversity-aware evolutionary algorithms
could have been analyzed here. We would like to refer to our
experiments in Gabor et al. (2018) as well as the survey by Squillero
and Tonda (2016) for a comprehensive overview.

368 T. Gabor et al.

123

Taken from original publication: Thomas Gabor, Thomy Phan, and Claudia
Linnhoff-Popien. Productive fitness in diversity-aware evolutionary algorithms.
Natural Computing, pages 1–14, 2021

127

the augmented fitness af that is actually used for selection.

We see that due to the combination of distance and
objective fitness, Manhattan-diverse evolution starts higher

but climbs slower than the respective objective fitness.

Fitness sharing results in very small absolute values for
fitness but climbs up nonetheless.

From the already run evolutionary processes, we can

compute the final productive fitness as given in Defini-
tions 3 and 4 a posteriori. Figure 2d shows the maximum

fpf per generation. We see that Manhattan-diverse and
inherited fitness maintain a rather continuous lineage from

the initial population to the best solution in the final gen-

eration as the final fitness propagates to the final productive
fitness of very early generations. This behavior is rather

unsurprising but illustrates the notion of the final produc-

tive fitness that measures the individuals’ impact in the
final result.

For Fig. 2e we compute the perhaps most interesting

measurement: This plot shows for each population X in a
given generation the result of avg x2X jafðxÞ - fpfðxÞj, i.e.,
the average difference between the augmented fitness and
the final productive fitness per individual. Thus, we get to

assess how well the augmented fitness approximates the

final productive fitness. There are a few observations to be
made:

1. Towards the last few generations, we notice a rapid
spike in the fpf as the amount of descendants in the

final generation to be considered for the fpf decreases

fast.
2. The actual value of the distance (i.e., the height of the

line) is irrelevant to the analysis of Thesis 2 and largely

determined by the setting of k.
3. Throughout most of the plot, the Manhattan-diverse

evolution maintains a relatively stable level, i.e., the

augmented fitness af approximates the final productive
fitness fpf throughout the evolution. The less stable evo-

lutions also show a worse overall result.

To further elaborate on that last point, we consider Fig. 2:

It shows the average absolute value of change over 150-
generations-wide windows of the jafðxÞ - fpfðxÞj metric

used in Fig. 2e. The plot was smoothed using a convolution

kernel h1; . . .; 1i of size 25. Roughly speaking, we can see
the slope of the plots in Fig. 2e here. In this plot, good

evolutionary processes should maintain rather low values

according to Thesis 2. We can observe that Manhattan-
diverse evolution maintains the lowest values almost

throughout the entire evolution. While fitness sharing

shows increases and decreases in matching the fpf at a
higher level than Manhattan diversity, inherited fitness

shows a huge spike in the beginning (as does the standard

approach), thus making a much less stable match for the
fpf. As proposed by Thesis 2, the match between af and fpf

roughly corresponds to the quality of the overall result of

the evolutionary process.

As mentioned earlier, we also further analyzed the
importance of the setting for k for the evolution. Figure 3

shows the impact of k on the best results generated by the

evolution. k ¼ 0 equals the standard evolution in all pre-
vious plots. Unsurprisingly, we see that some amount of

diversity-awareness improves the results of evolution but

setting k too high favors diversity over the actual objective
fitness and thus yields very bad results. We want to add that

more intricate version of Manhattan-based augmented fit-

ness af might aim to adjust the k parameter during evo-
lution just as inherited fitness and fitness sharing might

want to adjust their parameters. For these experiments, we

chose a static parameter setting for simplicity.

4.2 The route planning problem

The route planning problem is a discrete optimization

problem with a similar motivation as the pathfinding

problem. Again, we adapt the problem and its description
from Gabor et al. (2018).

A robot needs to perform n ¼ 12 different tasks in a

fixed order by visiting relevant workstations. Each work-
station can perform exactly one of the tasks and for each

task, there are o ¼ 5 identical workstations to choose from.

Accordingly, a solution candidate is a vector hw1; . . .;wni
with wi 2 f1; :::; og for all 1(i(n. See Fig. 4 for an

illustration using a smaller setting. A single workstation W
can be identified by a tuple of its task type and its number,
i.e., W ¼ ði; kÞ for some 1(i(n and 1(k(o. To mimic

various means of transport, the distance DðW ;W 0Þ between
every two workstations W ¼ ði; kÞ and W 0 ¼ ðj; lÞ is ran-

domized individually within a range of ½0; 1n# $ R. Note that

this (most likely) gives rise to a non-euclidean space the

robot is navigating. The objective fitness for this mini-
mization problem is given via

ofðhw1; :::;wniÞ

¼
Xn-1

i¼1

Dðði;wiÞ; ðiþ 1;wiþ1ÞÞ:
ð16Þ

Again, we from here also construct an augmented fitness
afðxÞ ¼ ð1- kÞ ! ofðxÞ þ k ! sfðxÞ (cf. Definition 1) but

now use the Hamming distance as a secondary fitness so

that

sfðxÞ ¼ 1

2n
! avg x02r4ðXÞhammingðx; x

0Þ ð17Þ

Productive fitness in diversity-aware evolutionary algorithms 369

123

Taken from original publication: Thomas Gabor, Thomy Phan, and Claudia
Linnhoff-Popien. Productive fitness in diversity-aware evolutionary algorithms.
Natural Computing, pages 1–14, 2021

128

where hammingðhw1; . . .;wni; hw0
1; . . .;w

0
niÞ ¼

Xn

i¼1

hðwi;w
0
iÞ

ð18Þ

and hðw;w0Þ ¼
0 if w ¼ w0

1 otherwise.

!
ð19Þ

Besides, we apply the same evolutionary processes as in

Sect. 4.1 but the parameter search shown in Fig. 5 now

recommended k ¼ 0:25 for weighting now Hamming-
based diversity.6 We evolve 20 independent populations of

size 50 for 400 generations and plot the same data we have

seen before: Fig. 6a shows the best fitness achieved in
evolution. Inherited fitness takes a lot more time but

eventually almost reaches the level of Manhattan-diversity.
However, both methods yield similarly solid results as

fitness sharing or the naı̈ve algorithm. This is mirrored by

all methods showing quite stable behavior in Figs. 6e
and 6f with the standard approach showing the highest fall

within the first few generations as it matches fpf the least.

(a) (b)

(c) (d)

(e) (f)

Fig. 2 Evolution for the
pathfinding problem. Standard
evolutionary process using of
shown in black, diversity-aware
evolutionary process using af
with Manhattan distance shown
in blue. Inherited fitness
(purple) and fitness sharing
(orange) shown for comparison.
All results averaged over 25
independent runs, the standard
deviation is shown in
transparent lines

6 It should be noted that the difference for various settings of
diversity weights (including k ¼ 0) is much less pronounced for this
domain as can be ssen in Fig. 5.

370 T. Gabor et al.

123

Taken from original publication: Thomas Gabor, Thomy Phan, and Claudia
Linnhoff-Popien. Productive fitness in diversity-aware evolutionary algorithms.
Natural Computing, pages 1–14, 2021

129

However, the results for all evolutions are very close

together for the route planning problem.

4.3 Schwefel

Finally, we consider one7 of the canonical benchmark

problems for evolutionary algorithms. The implementation

of the Schwefel problem is taken from Rainville et al.
(2012) while our study on the impact of diversity again

follows experiments performed in Gabor et al. (2018).

The original fitness function is given as

schwefelðhx1; :::; xniÞ ¼ 418:9828872724339 ! n

-
Xn

i¼1

xi ! sinð
ffiffiffiffiffiffi
jxij

p
Þ

ð20Þ

with x1; :::; xn 2 ½-500; 500# $ R where n ¼ 8 is the

dimensionality we use in our experiments (Rainville et al.

2012).8 The resulting function is illustrated in Fig. 7. The
Schwefel problem is a minimization problem looking for

an x so that schwefelðxÞ ¼ 0. Again, we normalize the

result values defining ofðxÞ ¼ 1
4000 ! schwefelðxÞ. Manhattan

distance uses diversity weight k ¼ 0:3 as suggested by
Fig. 8.

We run the same kind of analysis as for the previous

problems and plot the same data in Fig. 9. These experi-
ments were performed on populations of size 50 evolving

for 400 generations. Figure 9a shows a mixed picture: The

Manhattan-diverse evolution again outperforms the stan-
dard approach, but inherited fitness hardly yields any

benefit while fitness sharing performs worse than the

standard approach. In Fig. 9d we see a different picture
than before: All final productive fitness values are not as

stable anymore but vary throughout the evolution, sug-

gesting that solutions to the Schwefel problem are more
influenced by migration (and thus show no continuous

lineage) than for the other problems considered. Fig. 9e

shows the jaf- fpfj metric, which measures the individual
difference between augmented fitness and final productive

fitness. We observe very clearly that, after a short starting

Fig. 3 Parameter analysis for the diversity weight k. We show best
fitness among all generations for 20 different settings of
k ¼ 0:0; 0:05; . . .; 1:0. All results averaged over 25 independent runs
each, the standard deviation shown in transparent lines

Type 3
No. 2

Type 1
No. 1

Type 1
No. 2

Type 1
No. 4

Type 1
No. 5

Type 2
No. 1

Type 2
No. 2

Type 2
No. 3

Type 2
No. 4

Type 2
No. 5

Type 3
No. 5

Type 3
No. 1

Type 3
No. 3

Type 3
No. 4

Type 1
No. 3. 3

Fig. 4 Illustration of the route planning problem for n ¼ 3 tasks and
o ¼ 5 workstations per task

Fig. 5 Parameter analysis for the diversity weight k for the route
planning problem. We show best fitness among all generations for 20
different settings of k ¼ 0:0; 0:05; . . .; 1:0. All results averaged over
20 independent runs each, the standard deviation shown in transparent
lines

7 We also tested other famous problems like Rainville et al. (2012)
with essentially similar results.

8 As can be seen in Eq. 20, the Schwefel function is identical in each
dimension. Choosing a higher-dimensional instance thus does not
substantially change the nature of the fitness landscape. For ease of
analysis, we settle for n ¼ 8.

Productive fitness in diversity-aware evolutionary algorithms 371

123

Taken from original publication: Thomas Gabor, Thomy Phan, and Claudia
Linnhoff-Popien. Productive fitness in diversity-aware evolutionary algorithms.
Natural Computing, pages 1–14, 2021

130

phase, this distance remains much more stable for the

Manhattan-diverse evolution than any other approach,
indicating that the augmented fitness is approximating the

final productive fitness. Note again that in the last few

generations, computing the final productive fitness has
limited meaning. In Fig. 9f this behavior shows clearly as

Manhattan-diverse evolution forms a line at the very bot-

tom of the plot with almost no change in how af matches
fpf. All other approaches, which perform noticeably worse,

also show a much more erratic pattern in how well their

augmented fitness matches the final productive fitness.

5 Related work

Diversity has been a central topic of research in evolu-

tionary algorithms (den Heijer and Eiben 2012; Morrison
and De Jong 2001; Toffolo and Benini 2003; Ursem 2002).

Its positive effect on the evolutionary process has often

been observed there, but rarely been interpreted beyond a
biological metaphor, i.e., ‘‘diversity is a key element of the

biological theory of natural selection and maintaining high

diversity is supposed to be generally beneficial’’ (Corno
et al. 2005).

(a) (b)

(c) (d)

(e) (f)

Fig. 6 Evolution for the route
planning problem. Standard
evolutionary process using of
shown in black, diversity-aware
evolutionary process using af
with Hamming distance shown
in blue. Inherited fitness
(purple) and fitness sharing
(orange) shown for comparison.
Results averaged over 20
independent runs, the standard
deviation is shown in
transparent lines

372 T. Gabor et al.

123

Taken from original publication: Thomas Gabor, Thomy Phan, and Claudia
Linnhoff-Popien. Productive fitness in diversity-aware evolutionary algorithms.
Natural Computing, pages 1–14, 2021

131

Without much concept of what to look for in a mecha-

nism for diversity-awareness, lots of variants have spawned

in research. Instead of repeating them, we would like to
point out a few resources for a comprehensive overview:

Burke et al. (2004), among others like Brameier and

Banzhaf (2002 or McPhee and Hopper (1999) discuss
various means to measure and promote diversity in genetic

programming, which for the most part should apply to all

evolutionary algorithms. They also provide an extensive
analysis of the connection between diversity and achieved

fitness, but do not define productive fitness or a similar

notion. A more recent comprehensive overview of means

to describe and enable diversity has been put together by

Squillero and Tonda (2016), also providing a taxonomy on
various classes of approaches to diversity. Gabor et al.

(2018) provide a quantitative analysis of various means of

maintaining inheritance-based diversity on standard
domains like the ones we used in this paper. Regarding the

multitude of diversity mechanisms present in research,

however, it is most important to also point out the results of
Wineberg and Oppacher (2003), who most drastically show

that ‘‘all [notions of diversity] are restatements or slight
variants of the basic sum of the distances between all

possible pairs of the elements in a system’’ and suggest that

‘‘experiments need not be done to distinguish between the
various measures’’, a point which we already built upon in

our evaluation.

Note that a variety of ‘‘meta-measurements’’ for the
analysis of evolutionary processes exist: Effective fitness
measures the minimum fitness required for an individual to

increase in dominance at a given generation (when in
competition with the other individuals) (Stephens 1999). It

is related to reproductive fitness, which is the probability of

an individual to successfully produce offspring (Hu and
Banzhaf 2010). Both occur at the foundation of productive

fitness, but do not include the (computationally overly

expensive) diachronical analysis of the overall effect for
the end result. Our approach is also comparable to entropy-
based diversity preservation (Squillero and Tonda 2008),

where the positive effect of certain individuals on the
population’s entropy is measured and preserved in order to

deliberately maintain higher entropy levels. By contrast,

our approach is based on the fitness values only (without
the need to look into the individuals beyond their

genealogical relationships) and thus also cannot be used

directly as a secondary goal in evolution but purely as a
tool of a posteriori analysis on the effectiveness of other

secondary goal definitions.

When we construct the ‘‘optimal evolutionary process’’,
we construct a dynamic optimization problem from a tra-

ditionally static one. It is interesting that specifically

dynamic or on-line (Bredeche et al. 2009) evolutionary
algorithms have been shown to benefit from increased

diversity especially when facing changes in their fitness

functions (Gabor et al. 2018; Grefenstette 1992). While
this is obviously intuitive as more options in the population

allow for higher coverage of possible changes, the reverse

connection (pointed to by this work) is not stated there, i.e.,
that diversity in static domains may work because even for

static domains the optimization process is inherently

dynamic to some degree.

Fig. 7 Illustration of the Schwefel function for n ¼ 2 dimensions.
Image taken from (Benchmarks 2020)

Fig. 8 Parameter analysis for the diversity weight k for the Schwefel
problem. We show best fitness among all generations for 10 different
settings of k ¼ 0:0; 0:1; . . .; 1:0. All results averaged over 20
independent runs each, the standard deviation shown in transparent
lines

Productive fitness in diversity-aware evolutionary algorithms 373

123

Taken from original publication: Thomas Gabor, Thomy Phan, and Claudia
Linnhoff-Popien. Productive fitness in diversity-aware evolutionary algorithms.
Natural Computing, pages 1–14, 2021

132

6 Conclusion

We have introduced the novel notion of final productive

fitness fpf (and all the definitions it is built upon). We make
a theoretical argument that fpf is the goal an optimal

evolutionary process should strive for to achieve the best

overall results. However, fpf cannot be computed effi-
ciently in advance, producing the need for an approxima-

tion. We argue that the well-known technique of

augmenting the objective fitness function with an addi-
tional diversity goal (when it helps) happens to effectively

approximate the theoretically derived fpf (at least better

than just the objective fitness on its own). We have shown

this connection empirically on benchmark domains. We
argue that this provides first insight into why and how
diversity terms are beneficial to evolutionary processes.

Immediate future work would consist of answering the
when and which: We have tested several domains for

evolutionary algorithms and many are too simple to further

benefit from explicit diversity-awareness. Maybe fpf can be
used to derive a criterion to estimate the usefulness of

diversity in advance. Similarly, many mechanism to cater

explicitly to diversity exist. While many can be subsumed
by the pairwise distance used here (Wineberg and

(a) (b)

(c) (d)

(e) (f)

Fig. 9 Evolution for the
Schwefel problem. Standard
evolutionary process using of
shown in black, diversity-aware
evolutionary process using af
with Manhattan distance shown
in blue. Inherited fitness
(purple) and fitness sharing
(yellow) shown for comparison.
Results averaged over 20
independent runs, the standard
deviation is shown in
transparent lines

374 T. Gabor et al.

123

Taken from original publication: Thomas Gabor, Thomy Phan, and Claudia
Linnhoff-Popien. Productive fitness in diversity-aware evolutionary algorithms.
Natural Computing, pages 1–14, 2021

133

Oppacher 2003), others may still show different behavior.

Their relation to fpf requires further work.
There are means of maintaining diversity without

altering the fitness function, most prominently structural

techniques like island models (Tomassini 2006; Whitley
et al. 1999) or hypermutation phases (Morrison and

De Jong 2000; Simões and Costa 2002). As no match for

jaf- fpfj can be computed for them, we omitted them in
this first analysis. Final productive fitness may be a useful

tool to translate these structural means into an effect of the
fitness function.

Eventually, there may be even more direct or outright

better (compared to using diversity or similarly augmented
fitness) approximations of fpf to be found now that we

know what we are looking for. The ultimate goal of the

research into fpf might be to utilize it directly or indirectly
in actually constructing new types of evolutionary algo-

rithms (instead of it ‘‘only’’ helping to explain how well-

known types work). We can imagine:

• We could compute fpf for a simplified version of the

problem (and the algorithm) for various parametriza-
tions (Eiben and Smith 2003; Mitchell 1998). The fpf’s

values could then help evaluate the respective

parametrization’s success. However, for most complex
problems it is not entirely clear how to derive simpler

instances that still preserve the interesting or challeng-

ing aspects of their larger counterparts. Furthermore, it
is unclear how fpf might provide more information than

just using the respective runs’ of.

• In this paper, we checked how well various established
models for fitness functions approximate fpf. Instead,

we might now construct new models with the goal to

approximate fpf better. Surrogate models have been
used in evolutionary algorithms to approximate com-

putationally expensive fitness functions (Gabor and

Altmann 2019; Jin 2005; Jin and Sendhoff 2004). In our
case, a surrogate model would have to approximate our

a-posteriori-approximation of fpf and could then maybe

save time for future evaluations. It should be noted that
our results make it seem plausible that no general model

for fpf on all domains should exist and we cannot train

the surrogate as the algorithm goes along since our
target metric is only computed a posteriori. However,

we might still be able to learn an n-pf surrogate for

small n or a similar target metric. In Gabor and
Linnhoff-Popien (2020) we already suspect (based on

the a posteriori approximation as we do in this paper)

that fpf constructs a simpler fitness landscape compared
to, quite like surrogates do, suggesting that surrogates

may be trained to achieve a similar fitness landscape.

That dynamic should be explored in future work.

• In Gabor and Belzner (2017) and Gabor et al. (2018)

we introduce genealogical distance as a diversity

metric for evolutionary algorithms. We show that it
provides similar although at times inferior results to

distance-based diversity metrics (i.e., the Manhattan

and Hamming diversity we use in this paper). However,
genealogical diversity may provide means to approxi-

mate genealogical relations between individuals making

our a-posteriori-approximation much easier to compute
(probably at the expense of accuracy). Future work

should evaluate if that approach brings any relevant

benefits.

Some of these may be applicable to other methods of
optimization as well: We suspect that the notion of final

productive fitness translates directly to all optimization

methods (ranging from simulated annealing or particle
swarm optimization to Monte-Carlo tree search and back-

propagation) that may or may not already implement

means to approximate final productive fitness rather than
just objective fitness.

Acknowledgements We thank the anonymous reviewers for their in-
depth comments and their contribution to this paper. We also thank
Lenz Belzner for intense discussions that helped make this paper
possible.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

Benchmarks – DEAP 1.3.1 documentation. http://deap.readthedocs.
io/en/master/api/benchmarks.html. Accessed: 2020-04-30

Brameier M, Banzhaf W (2002) Explicit control of diversity and
effective variation distance in linear genetic programming. In:
European Conference on Genetic Programming, pp 37–49.
Springer

Bredeche N, Haasdijk E, Eiben A (2009) On-line, on-board evolution
of robot controllers. In: International Conference on Artificial
Evolution (Evolution Artificielle), pp 110–121. Springer

Brown G, Wyatt J, Harris R, Yao X (2005) Diversity creation
methods: a survey and categorisation. Inf Fusion 6(1):5–20

Productive fitness in diversity-aware evolutionary algorithms 375

123

Taken from original publication: Thomas Gabor, Thomy Phan, and Claudia
Linnhoff-Popien. Productive fitness in diversity-aware evolutionary algorithms.
Natural Computing, pages 1–14, 2021

134

Burke EK, Gustafson S, Kendall G (2004) Diversity in genetic
programming: an analysis of measures and correlation with
fitness. IEEE Trans Evolut Comput 8(1):47–62

Chen JH, Goldberg DE, Ho SY, Sastry K (2002) Fitness inheritance in
multi-objective optimization. In: Proceedings of the 4th Annual
Conference on Genetic and Evolutionary Computation,
pp 319–326

Conti E, Madhavan V, Such FP, Lehman J, Stanley K, Clune J (2018)
Improving exploration in evolution strategies for deep reinforce-
ment learning via a population of novelty-seeking agents. In:
Advances in Neural Information Processing Systems,
pp 5027–5038

Corno F, Sánchez E, Squillero G (2005) Evolving assembly
programs: how games help microprocessor validation. IEEE
Trans Evolut Comput 9(6):695–706

Črepinšek M, Liu SH, Mernik M (2013) Exploration and exploitation
in evolutionary algorithms: a survey. ACM Comput Surv
45(3):35

Eiben AE, Smith JE et al (2003) Introduction to evolutionary
computing, vol 53. Springer, Berlin

Gabor T, Altmann P (2019) Benchmarking surrogate-assisted genetic
recommender systems. In: Proceedings of the Genetic and
Evolutionary Computation Conference Companion,
pp 1568–1575

Gabor T, Belzner L (2017) Genealogical distance as a diversity
estimate in evolutionary algorithms. In: Proceedings of the
Genetic and Evolutionary Computation Conference Companion,
pp 1572–1577

Gabor T, Belzner L, Linnhoff-Popien C (2018) Inheritance-based
diversity measures for explicit convergence control in evolu-
tionary algorithms. In: Proceedings of the Genetic and Evolu-
tionary Computation Conference, pp 841–848. ACM

Gabor T, Belzner L, Phan T, Schmid K (2018) Preparing for the
unexpected: Diversity improves planning resilience in evolu-
tionary algorithms. In: 2018 IEEE International Conference on
Autonomic Computing (ICAC), pp 131–140. IEEE

Gabor T, Linnhoff-Popien C (2020) A formal model for reasoning
about the ideal fitness in evolutionary processes. In: T Margaria,
B Steffen (eds) Leveraging Applications of Formal Methods,
Verification and Validation: Engineering Principles - 9th Inter-
national Symposium on Leveraging Applications of Formal
Methods, ISoLA 2020, Rhodes, Greece, October 20-30, 2020,
Proceedings, Part II, Lecture Notes in Computer Science, vol.
12477, pp 473–490. Springer. https://doi.org/10.1007/978-3-030-
61470-6_28

Grefenstette JJ et al (1992) Genetic algorithms for changing
environments. PPSN 2:137–144

Hart E, Sim K (2018) On constructing ensembles for combinatorial
optimisation. Evolut Comput 26(1):67–87

den Heijer E, Eiben A (2012) Maintaining population diversity in
evolutionary art. In: International Conference on Evolutionary
and Biologically Inspired Music and Art, pp 60–71. Springer

Hu T, Banzhaf W (2010) Evolvability and speed of evolutionary
algorithms in light of recent developments in biology. J Artif
Evolut Appl 2010:1

Jin Y (2005) A comprehensive survey of fitness approximation in
evolutionary computation. Soft Comput 9(1):3–12

Jin Y, Sendhoff B (2004) Reducing fitness evaluations using
clustering techniques and neural network ensembles. In: Genetic

and Evolutionary Computation Conference, pp 688–699.
Springer

McPhee NF, Hopper NJ (1999) Analysis of genetic diversity through
population history. In: Proceedings of the 1st Annual Conference
on Genetic and Evolutionary Computation-Volume 2,
pp 1112–1120. Morgan Kaufmann Publishers Inc

Mitchell M (1998) An introduction to genetic algorithms. MIT press,
Cambridge

Morrison RW, De Jong KA (2000) Triggered hypermutation revis-
ited. In: Proceedings of the 2000 Congress on Evolutionary
Computation. CEC00 (Cat. No. 00TH8512), vol 2,
pp 1025–1032. IEEE

Morrison RW, De Jong KA (2001) Measurement of population
diversity. In: International Conference on Artificial Evolution
(Evolution Artificielle), pp 31–41. Springer

Ng AY, Harada D, Russell S (1999) Policy invariance under reward
transformations: theory and application to reward shaping.
ICML 99:278–287

Pugh JK, Soros LB, Stanley KO (2016) Quality diversity: a new
frontier for evolutionary computation. Front Robot AI 3:40

Rainville D, Fortin FA, Gardner MA, Parizeau M, Gagné C et al.
(2012) Deap: A python framework for evolutionary algorithms.
In: Proceedings of the 14th annual conference companion on
Genetic and evolutionary computation, pp 85–92. ACM

Sareni B, Krahenbuhl L (1998) Fitness sharing and niching methods
revisited. IEEE Trans Evolut Comput 2(3):97–106

Simões A, Costa E (2002) Using genetic algorithms to deal with
dynamic environments: a comparative study of several
approaches based on promoting diversity. Proceed Genet Evolut
Comput Conf GECCO 2:698–707

Squillero G, Tonda A (2016) Divergence of character and premature
convergence: a survey of methodologies for promoting diversity
in evolutionary optimization. Inf Sci 329:782–799

Squillero G, Tonda AP (2008) A novel methodology for diversity
preservation in evolutionary algorithms. In: Proceedings of the
10th annual conference companion on Genetic and evolutionary
computation, pp 2223–2226. ACM

Stephens CR (1999) ‘‘Effective’’ fitness landscapes for evolutionary
systems. In: Proceedings of the 1999 congress on evolutionary
computation-CEC99 (Cat. No. 99TH8406), vol 1, pp 703–714.
IEEE

Toffolo A, Benini E (2003) Genetic diversity as an objective in multi-
objective evolutionary algorithms. Evolut Comput
11(2):151–167

Tomassini M (2006) Spatially structured evolutionary algorithms:
artificial evolution in space and time. Springer, Berlin

Ursem RK (2002) Diversity-guided evolutionary algorithms. In:
International Conference on Parallel Problem Solving from
Nature, pp 462–471. Springer

Whitley D, Rana S, Heckendorn RB (1999) The island model genetic
algorithm: on separability, population size and convergence.
J Comput Inf Technol 7(1):33–47

Wineberg M, Oppacher F (2003) The underlying similarity of
diversity measures used in evolutionary computation. In: Genetic
and Evolutionary Computation Conference, pp 1493–1504.
Springer

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

376 T. Gabor et al.

123

Taken from original publication: Thomas Gabor, Thomy Phan, and Claudia
Linnhoff-Popien. Productive fitness in diversity-aware evolutionary algorithms.
Natural Computing, pages 1–14, 2021

135

A Simulation-Based Architecture for Smart
Cyber-Physical Systems

Thomas Gabor
LMU Munich

Lenz Belzner
LMU Munich

Marie Kiermeier
LMU Munich

Michael Till Beck
LMU Munich

Alexander Neitz
LMU Munich

Abstract—In order to accurately predict future states of a
smart cyber-physical system, which can change its behavior
to a large degree in response to environmental influences, the
existence of precise models of the system and its surroundings
is demandable. In machine engineering, ultra-high fidelity sim-
ulations have been developed to better understand both con-
straints in system design and possible consequences of external
influences during the system’s operation. These digital twins
enable further applications in software design for complex cyber-
physical systems as online planning methods can utilize good
simulations to continuously optimize the system behavior, yielding
a software architecture framework based on the information flow
between the cyber-physical system, its physical environment and
the digital twin model.

I. INTRODUCTION

The advancing integration of software into complex ma-
chinery has been a major source for technical improvements
recently. Many complex applications like smart energy grids or
autonomous factories require a substantial amount of compu-
tational power to work as expected. The mutual dependency
of hardware and software design is represented in the area
of cyber-physical systems, whose capabilities to aid humans
at a variety of tasks are still rapidly increasing [1], [2]. One
driving force of such improvements is the advent of smart
cyber-physical systems that are able to reflect on and improve
their own behavior. Essentially, not only complex physical
labor is being performed better by advanced machines, but
also some mental labor can better be dealt with by computers
on site. Tackling problems previously reserved for human
minds has led programmers of smart cyber-physical systems
into a territory where software needs to deal with the many
restrictions of the physical world compared to the virtual one.
For example, software controlling a cyber-physical system
needs to have a basic understanding of the laws of physics
impeding its movements or hindering its communication.
But as software design has approached traditional design of
machines for the physical world, so is the design process for
physical machines closing up on the traditional process of
software system design: As computers have been powerful
enough to meaningfully understand the physical world, they
have also become powerful enough to mimic and predict it or
(more precisely) to simulate it.

II. SIMULATIONS IN ENGINEERING FOR SMART
CYBER-PHYSICAL SYSTEMS

Simulations naturally play a huge role in modern engi-
neering: They allow engineers to test designs and prototypes

without spending excessive temporal and monetary resources
on construction and manufacturing [3]. Instead, a computer
simulation is relatively quick and cheap to deploy. The cost of
failure is minimal, encouraging experimentation and creative
thinking. Until recently, however, simulations were feasible
only for certain parts of a complex system, for which analytic
models existed, like, e.g., the air flow or the structural integrity.
Newer increases in the computational power that is easily
and widely available have enabled more complex simulations
that integrate previously separate models of various aspects of
structural design in order to accurately simulate the behavior
of the system as whole. These ultra-high fidelity simulations
are commonly called a digital twin with respect to the system
they model [4], [5], [6]. Digital twins are characterized by
their ability to accurately simulate events on different scales
of space and time. In order to do so, they are not only based
on expert knowledge, like for example an advanced physics
simulation, but can also collect data from all deployed systems
of their type and thus aggregate the experience gained in the
field. One of the main challenges is, of course, to tweak the
simulation software performance so that events in the digital
twin can be simulated much faster than in the real world.
Then, digital twins can not only be used during system design
but also during run time in order to predict system behavior
online. This can be helpful for fault prediction, but it is also
a major asset to be exploited by simulation-based planning
algorithms [7]. Using a digital twin, these can optimize system
behavior based on its observed effects in the future. In this
case, the availability of a digital twin mitigates the need for
additional models of a “good outcome” of the system’s actions:
Instead, we can apply the system’s general reward function
to the configuration found in the simulation, which should
be accurate enough to provide all parameters necessary to
compute a reward estimation.

III. A SOFTWARE ARCHITECTURE FOR A DIGITAL TWIN
SYSTEM

It is straightforward to use a digital twin inside a soft-
ware project just like one would use any other model: For
example, a simulation is typically used in the early stages of
development to argue the viability of the system to build by
running it successfully in a virtual environment. Furthermore,
an accurate simulation can be used to generate test cases for
the system in order to determine when the deployed system
behaves differently from the previously designed model, thus

Taken from original publication: Thomas Gabor, Lenz Belzner, Marie Kiermeier,
Michael Till Beck, and Alexander Neitz. A simulation-based architecture for smart
cyber-physical systems. In The International Workshop on Models@run.time for
Self-Aware Computing Systems, 2016

136

Fig. 1. Classical view of a simulation architecture: The world model used
for the simulation is embedded inside the software system and controlled by
a planning agent, for example.

finding errors either in the simulation or the deployed system.
It is clear that disposing of a high-fidelity simulation like
a digital twin is quite beneficiary for these cases as well
[4]. However, the digital twin not only brings a quantitative
advantage in the form of improved test accuracy or fault
detection, but it also features a unique qualitative advantage
with regard to optimization and planning algorithms: Since
the digital twin closely mimicks the physical world down
to the smallest scales, it is also able to produce the same
class of sensory input as the real world would produce and
execute the same actions as the cyber-physical system’s real
actuators would execute in the physical world. This allows
for a paradigm shift when it comes to integrating the logical
model with the software architecture, as shown in Figures 1
and 2: Because the digital twin is able to implement the same
interface as the sensors and actuators (or motors) used to
interact with the physical world, it is possible to use the exact
same action abstractions both for planning in the virtual space
and for the execution of plans in the real space. Thus, from a
software point of view, the sensorimotor controller connecting
the cyber-physical system to its hardware components and the
respective interface of the digital twin can be exchanged at
will. Essentially, the difference between the physical world
and the virtual world becomes transparent to the programmer
of a smart cyber-physical system. The effort required in order
to employ a digital twin is relatively high from a software
engineer’s perspective: High-fidelity simulations require both
a huge amount of computational power to be evaluated during
run time but usually also a huge amount of human labor to
be developed. However, as previously discussed, such models
are currently being developed by engineers in other fields
in order to support design studies and machine maintenance.
And the cost of computational power is still decreasing with
technological advancements in hardware. On the other hand,
having a simulation that can be interfaced with like the
real world not only makes for a more elegant programming
architecture, but mainly allows to test said simulation against
real observations (and thus improve it) and allows for a general
definition on how to integrate multiple world models that is
then compatible with any version of a digital twin which may
be plugged into the system.

Fig. 2. The digital twin view of a simulation architecture: The cyber-physical
system communicates with both its real world hardware and its simulation
model using the same interface.

A. Integrating and Using a Digital Twin
Figure 3 shows an instance model of a cyber-physical sys-

tem. The Controller is the component that represents the inter-
face to the physical world and thus the system’s environment.
It understands a predefined set of actions that can be executed
on the physical actuators with the sendAction method. Event
objects are generated by the Controller whenever it observes
an update to its state, usually initiated by the system’s sensors
but also by the system’s clock or other internal parts. Other
components can subscribe to these events and are subse-
quently notified through the Controller’s publishTo method.
Commonly, the events observed directly through changes in
sensor input are too subtle to be immediately useful to adjust
the system’s behavior. Thus, an Aggregator can be used to
watch all the subtle events and abstract from the loads of data
observed. In turn, an Aggregator can also publish Event objects
to its subscribed observers but will usually be expected to do
so less frequently.

The Cognitive System consists of components that basically
react on Event objects by sending Action objects to the Con-
troller. This may happen almost immediately, in which case
we call the component an “intuitive” reactor meaning that the
component is quick to compute a reaction to incoming events.
However, the component may also first trigger a planning
phase in order to compute a suitable reaction. The latter case
is more interesting as it allows the system to behave more
intelligently and is ultimately the main reason for variance
and flexibility in system behavior in our smart cyber-physical
system. There are multiple ways to implement planning into
a cyber-physical system, but using the existing digital twin, it
is natural to resort to simulation-based planning, i.e. planning
methods relying on a model describing the whole environment
from which test runs can be sampled.

One of the defining aspects of using simulation-based
planning is that the simulation at work, in this case the digital
twin, supports the same kinds of observations, i.e. events,
and actions as the interface to the real world (represented by
the Controller). In Figure 3, this shows as the digital twin
component supports the publishTo and sendAction methods.

Taken from original publication: Thomas Gabor, Lenz Belzner, Marie Kiermeier,
Michael Till Beck, and Alexander Neitz. A simulation-based architecture for smart
cyber-physical systems. In The International Workshop on Models@run.time for
Self-Aware Computing Systems, 2016

137

However, there is one main difference between the interfaces
of the Controller and the digital twin: The flow of time can
be controlled in the digital twin. This includes the fact that
simulations in the digital twin can be started and halted by
another software component, mainly the Planner, which is
ultimately what makes the simulation useful for planning.1
Furthermore, it is possible and often also quite advisable for a
cyber-physical system to feature multiple digital twins. These
may focus on different aspects of the environment and thus
be used in different situations or may correspond to various
internal components of the cyber-physical system. One may
also instantiate multiple digital twins dynamically to account
for uncertainty of the system about its own state: For example,
when it is unclear which ones of several kind of motors are
actually used in a factory robot, it may be the easiest way
to simulate all possible kinds in order to avoid any risks.
As discussed previously, the cyber-physical system may learn
which motor it possesses by comparing the simulations from
several digital twins to the observations made in the physical
world over a certain period of time.

B. Defining an Architectural Framework for Digital Twins

Note that the instance diagram in Figure 3 is only an exam-
ple of one possible configuration. In different cyber-physical
systems, we would expect a different range and quantity
of components. Typically, many different levels of intuitive
reactors and planning components are combined to cover a
wide range of possible situations and events. However, it is
possible to generalize the architecture displayed in Figure 3;
the resulting class diagram is shown in Figure 4. Both the
Controller and the Digital Twin class inherit from the World
superclass. This is what defines their ability to receive actions
and produce events. On a more general level, every World can
be regarded as an Event Source, to which any Event Observer
can subscribe, thus forming a classic observer pattern [8].
It should be noted that Aggregators function as both Event
Sources and Event Observers. Thus, multiple Aggregators can
be constructed so that they form a hierarchy of information
abstraction. For example, the Controller interacting with the
physical world may publish events for every time its temper-
ature sensor returns a reading of the current temperature. Due
to random external circumstances (air flow, position relative
to the sun, etc.), these readings may vary by some degrees
even in a relatively short amount of time. In some scenarios,
it may only be critical for the cyber-physical system to notice
if the temperature consistently increases by several degrees
over a longer period of time. An aptly configured Aggregator
might thus observe every little event thrown by the temperature
sensor (as part of the Controller) but only generate an event of
its own when it notices the described pattern in temperature

1Note that while this may seem a trivial property to achieve when
considering simpler models, for sufficiently complex world models, there often
is an upper limit as to what speed-up of time with respect to the physical
world can be achieved while keeping the level of detail constant. Effectively,
we may not have arbitrary control over time in the digital twin because we
have limited computational resources.

Tier Description
0 physical necessity: laws of nature
1 machine-environment interface: circuit-level con-

trol, sensor/actuator hardware, computational capa-
bilties

2 immediate reaction: watchdogs, fixed behavioral
rulesets, expert systems

3 planned reaction: reward functions for online plan-
ners and self-awareness

Fig. 5. Overview over the different levels of control present in the information
flow of a cyber-physical system.

data. Other components of the system may then only subscribe
to the Aggregator instead of the temperature sensor to hide
superfluous information from their event interface. Lastly,
Cognitive System is the broad term for any component that
can observe events and produce actions, i.e. react to some kind
of impulse. As previously mentioned, these components may
come in different degrees of complexity. The simpler ones are
called Intuitive Reactor while a Planner is able to produce
more flexible behavior by optimizing its actions according to
certain goals defined by the programmer of the system. To do
so, the Planner is supposed to use the digital twin to predict the
success of its plans before choosing a single plan to execute.

IV. SAFETY ENGINEERING USING A
SIMULATION-BASED ARCHITECTURE

From an engineering point of view, the architectural frame-
work presented in Figure 4 is on the more general side. It
is supposed to be abstract enough so that it can be applied
to a wide range of challenges for which smart cyber-physical
systems are being developed. The central focus point of the
proposed architecture is information flow: All behavior exerted
by the cyber-physical system is triggered by some kind of
event. Essentially, behavior is nothing more than a translation
from observations to actions.

When dealing with complex smart cyber-physical systems,
it is often difficult to predict in advance how exactly the system
will behave. However, for basically all practical applications
there need to be certain guarantees on the behavior of the
system as it would be unsafe to deploy otherwise. Focusing
on information flow helps us identify different levels of
control present in the simulation-based architectural model.
We can thus group different methods of exerting control on
the behavior of a smart cyber-physical system into different
tiers. These can be seen as different classes of constraints we
can have our smart cyber-physical system comply to. For a
quick overview over the classes we are about to discuss, refer
to the table in Figure 5.

A. Physical Necessity (Tier 0)
Starting with tier 0, we are facing the odd candidate of

these levels of control: In the most basic sense, the laws of
the physical world the system operates in dictate a certain
level of control. Our smart cyber-physical system is never free

Taken from original publication: Thomas Gabor, Lenz Belzner, Marie Kiermeier,
Michael Till Beck, and Alexander Neitz. A simulation-based architecture for smart
cyber-physical systems. In The International Workshop on Models@run.time for
Self-Aware Computing Systems, 2016

138

to decide on actions that would not comply with the laws of
physics, for example. Obviously, this seems like a rather trivial
rule to model in our classification of control mechanisms, but
it is not be neglected in the simulation part of the system.
Since the digital twin is supposed to closely model reality,
we have to explicitly model tier 0 control mechanisms for our
simulation, even if they do not seem to directly temper with
our planning process; we would not have to do this when using
more abstract system models for planning. Thus, the need
to accurately describe tier 0 constraints on system behavior
is a unique consequence of using a high-fidelity simulation.
Furthermore, there is no way to alter these control mechanisms
when designing a system so the system developers need to
understand and cope with what is preset by nature. Luckily, the
phenomona of the physical world are usually well understood
on the scales contemporary machines are dealing with and
have been subject to simulation numerous times before.

B. Machine-Environment Interface (Tier 1)

Tier 1 summarizes control mechanisms placed at the sys-
tem’s interface with the environment. They are not enforced by
anything but the hardware itself, but they can be regarded as
part of the system’s physical “body” to some extent. In contrast
to tier 0 control, these mechanisms are usually created by the
system developers deliberately. A typical example for a tier 1
control mechanism would be a circuit preventing a motor part
from overheating by shutting down the engine. Many of these
feedback loops are usually directly built into hardware and
not exposed to software at all. This means that they cannot
be altered online at run time, but are usually fixed once the
respective parts are built. A rather delicate variant of this kind
of control may happen with sensors and actuators: When a
sensor can, for example, only provide a certain quality of data
or only measure certain inputs, that can result in a severe
constraint on the behavior of the cyber-physical system as
it can no longer discern all different states of the physical
world and is thus forced to treat situations similarily when
they yield the same sensor data. The same effect can occur
when regarding the precision with which actuators can comply
to an action specification sent to them. In either case, it
is clearly important to consider endowing the system with
the necessary hardware so that it can reach solutions to all
problems desired to be solved by the system. From a software
architect’s point of view, tier 1 control mechanisms mainly
play a role when programming the Controller operating all the
sensors and actuators.2 However, since software has no means
of altering tier 1 control dynamically, it must be informed
about the tier 1 mechanisms by having them included in the
digital twin’s simulations. Thus, tier 1 control needs to be

2While we have previously discussed issues on the hardware side, the
Controller needs to accurately expose the level of precision in sensor and
actor data that it can actually deliver and is thus usually dependend on the
hardware design process as well. Also consider a system in which sensors
produce loads of highly accurate data but the deployed software system is
unable to process it because the amounts of computational power required
would exceed the capacity the system’s CPU, or worse, any CPU on the
planet.

placed both at the interface with the real world, but also at the
interface with the virtual world.

C. Immediate Reaction (Tier 2)

Tier 2 corresponds closely to the Intuitive Reactor in our
system architecture. A classic example of tier 2 control would
be to equip a self-driving factory robot with a software com-
ponent that constantly checks the sensor events with respect to
whether there is a human worker walking in the close vicinity.
In that case, the Intuitive Reactor would cause the robot to
stop by issuing the respective action. We expect the robot
to do so immediately regardless of what it currently tries to
achieve as once the Intuitive Reactor recognizes one of the
situations it is looking out for, it is expected to know how to
react correctly without weighing different options too much
(hence “intuitive reactor”). Software components like these are
also called watchdogs and we expect any sufficiently complex
cyber-physical system to feature many of those. If situations
may occur in which multiple Intuitive Reactors may trigger,
it is up to the system designers to specify a reasonable order
of precedence amongst them. In contrast to the lower tiers
of control, tier 2 control mechanisms are part of the cyber-
physical system’s main information flow cycle. Thus, in order
for them to work they depend on an at least rudimentally
healthy system, which is also an argument why certain crucial
control mechanisms should be placed at tier 1 when possible.
However, tier 2 can also use the full set of features available to
the system, usually including a variety of sensors and abstrac-
tion layers on observed data, i.e. Aggregators, which should
aid them to make their decisions more precise. As Intuitive
Reactors are completely deployed as software components,
they are susceptible to online updates and may be adjusted
during run time. For the system developer, it also follows that
the system is not stuck with all the watchdogs it is deployed
with and watchdogs can be removed if they no longer fit a
new task the system is expected to fulfill or new ones can
be added if a new tendency for dangerous behavior has been
discovered, for example because lower or higher tier control
mechanisms failed to work as expected in practical situations.

D. Planned Reaction (Tier 3)

The highest tier of control in a smart cyber-physical system
results in a planned or deliberate reaction as opposed to an
intuitive one. Tier 3 control mechanisms are carried out by
the Planner or multiple Planners active in the cyber-physical
system. Typically, tier 3 control is implemented by defining a
reward function which the Planners try to optimize. When the
Planners work successfully, this results in the system showing
a tendency to behave in a way that maximizes the value
of the reward function. Both hard and soft constraints can
be implemented by defining the reward function accordingly.
However, planners for sufficiently complex problems usually
function non-deterministically and thus tier 3 control is always
“a bit fuzzy” in nature, implying that it is mostly uncertain to
which extent a set constraint will be fulfilled at a specific point
in time. Nonetheless, in a smart system, the reward function

Taken from original publication: Thomas Gabor, Lenz Belzner, Marie Kiermeier,
Michael Till Beck, and Alexander Neitz. A simulation-based architecture for smart
cyber-physical systems. In The International Workshop on Models@run.time for
Self-Aware Computing Systems, 2016

139

for the planner can be seen as the central definition of what the
system is trying to achieve and thus tier 3 control mechanisms
tend to have a big and broad impact on system behavior.
For example, we may specify that a factory robot ought to
maximize its throughput, causing the system to refrain from
any self-damaging behavior whenever other options exist as
this would be detrimental to its throughput. However, one can
see why this mechanism is not suitable for safety concerns like
never harming human collaborators, as it is not guaranteed that
the planner recognizes other options. Obviously, tier 3 control
will closely resemble the results of requirements engineering
when building the system, however, it is relatively easy to
change the reward function along the way and (in contrast to
tier 2 control) often with little change to the code base. Thus,
we can expect frequent, although oftentimes subtle, updates
of tier 3 control mechanisms over the life time of a smart
cyber-physical system.

V. CONCLUSION AND OUTLOOK

The concept of the digital twin has originally been devel-
oped to aid at the more precise design of machinery with
respect to higher requirements of functionality and flexibility.
Simulation supports rapid testing phases and the growing
availability of computational power has made computer sim-
ulation more accurate and less expensive. In this paper, we
motivated the use of the digital twin for online planning
and presented an architectural framework centered around the
information flow inside a cyber-physical system that incor-
porates the digital twin in a general and expandable way. We
applied this analysis on information flow between components
of a smart cyber-physical system to the engineering process
by defining a classification of different methods of control-
ling system behavior with respect to the placement of said
mechanisms inside the information flow.

Among the issues not yet covered by the presented archi-
tecture is the continuous improvement of the digital twin.
As run time data is gathered by the operating cyber-physical
systems as well as many similar cyber-physical systems, this
data should be used to further improve simulation quality and
adapt every single digital twin to possible changes occurring
in its environment or its own main system. One example
would be to account for material exhaustion by not only
including a predictive model for that phenomenon in the digital
twin, but also by checking how much decay has actually
happened on the hardware side and restricting the digital twin
to only simulate the probable consequences of the measured
decay instead of calculating a model for all possible states
of material degradation. In order to meaningfully incorporate
knowledge about the system and its environment gained during
the system’s run time, it seems imperative to employ a capable
model learning algorithm as an additional component into the
system architecture. However, the analysis of the interplay
between a learner for simulations and other parts of the system
architecture is yet to be performed.

In line with the issue of adapting digital twins comes the
problem of unifying multiple digital twins. As simulations

may be altered during run time, the cyber-physical system
may end up with multiple slightly different instances of
digital twins, which is no concern as long as they agree on
their prediction of future events. However, when they yield
different simulation results, there must exist a method of
reconciliation between multiple digital twins. For this purpose,
a level of trust may be assigned to each digital twin and
subsequently computed based on the factual prediction quality
of the simulation derived from a comparison with the observed
events in the environment. By doing so, inapt digital twins may
be sorted out, at least eventually. Treating simulations as just
another form of knowledge sources, this approach mimicks
the teacher/student pattern described in [9].

Finally, it is still to be researched how the digital twin
can best be integrated into the development process and the
overall system life cycle respectively. As the digital twin
needs to accurately simulate every part of system hardware
and system hardware may only be determined after testing
multiple prototypes we are left with a classic chicken-and-egg
problem. Intuitive processes that are able to develop a digital
twin alongside a system specification while still disposing of a
consistent system at least at most times during the development
processes are most definitely sought for.

REFERENCES

[1] E. A. Lee, “Cyber physical systems: Design challenges,” in Object
Oriented Real-Time Distributed Computing (ISORC), 2008 11th IEEE
International Symposium on. IEEE, 2008, pp. 363–369.

[2] R. R. Rajkumar, I. Lee, L. Sha, and J. Stankovic, “Cyber-physical
systems: the next computing revolution,” in Proceedings of the 47th
Design Automation Conference. ACM, 2010, pp. 731–736.

[3] J. Morris, S. Zemerick, M. Grubb, J. Lucas, M. Jaridi, J. N. Gross,
N. Ohi, J. A. Christian, D. Vassiliadis, A. Kadiyala et al., “Simulation-
to-flight (stf-1): A mission to enable cubesat software-based validation
and verification,” 2016.

[4] E. J. Tuegel, A. R. Ingraffea, T. G. Eason, and S. M. Spottswood,
“Reengineering aircraft structural life prediction using a digital twin,”
International Journal of Aerospace Engineering, vol. 2011, 2011.

[5] E. H. Glaessgen and D. Stargel, “The digital twin paradigm for future
nasa and us air force vehicles,” in 53rd Struct. Dyn. Mater. Conf. Special
Session: Digital Twin, Honolulu, HI, US, 2012, pp. 1–14.

[6] A. Cerrone, J. Hochhalter, G. Heber, and A. Ingraffea, “On the effects of
modeling as-manufactured geometry: Toward digital twin,” International
Journal of Aerospace Engineering, vol. 2014, 2014.

[7] L. Belzner, R. Hennicker, and M. Wirsing, “Onplan: A framework for
simulation-based online planning,” in Formal Aspects of Component
Software. Springer, 2015, pp. 1–30.

[8] J. Vlissides, R. Helm, R. Johnson, and E. Gamma, “Design patterns:
Elements of reusable object-oriented software,” Reading: Addison-Wesley,
vol. 49, no. 120, p. 11, 1995.

[9] M. Hölzl and T. Gabor, “Continuous collaboration: a case study on the
development of an adaptive cyber-physical system,” in Software Engi-
neering for Smart Cyber-Physical Systems (SEsCPS), 2015 IEEE/ACM
1st International Workshop on. IEEE, 2015, pp. 19–25.

Taken from original publication: Thomas Gabor, Lenz Belzner, Marie Kiermeier,
Michael Till Beck, and Alexander Neitz. A simulation-based architecture for smart
cyber-physical systems. In The International Workshop on Models@run.time for
Self-Aware Computing Systems, 2016

140

Fig. 3. Instance model of a software system using a digital twin. The dashed boxes mirror the setup shown in Figure 2.

Fig. 4. Class diagram of a simulation-based architecture using a digital twin.

Taken from original publication: Thomas Gabor, Lenz Belzner, Marie Kiermeier,
Michael Till Beck, and Alexander Neitz. A simulation-based architecture for smart
cyber-physical systems. In The International Workshop on Models@run.time for
Self-Aware Computing Systems, 2016

141

ar
X

iv
:1

90
2.

04
69

4v
1

 [
cs

.S
E

]
 1

3
Fe

b
20

19

Adapting Quality Assurance

to Adaptive Systems:

The Scenario Coevolution Paradigm

Thomas Gabor1, Marie Kiermeier1, Andreas Sedlmeier1, Bernhard Kempter2,
Cornel Klein2, Horst Sauer2, Reiner Schmid2, and Jan Wieghardt2

1LMU Munich, 2Siemens AG
{thomas.gabor,marie.kiermeier,andreas.sedlmeier}@ifi.lmu.de

{bernhard.kempter,cornel.klein,horst.sauer,reiner.schmid,jan.wieghardt}@

siemens.com

This is a pre-print of an article published in Margaria T., Steffen B. (eds), Leveraging
Applications of Formal Methods, Verification and Validation (ISoLA 2018), Lecture
Notes in Computer Science, vol 11246, Springer, Cham, 2018. The final authenticated
version is available online at DOI: http://doi.org/10.1007/978-3-030-03424-5 10

Abstract. From formal and practical analysis, we identify new chal-
lenges that self-adaptive systems pose to the process of quality assurance.
When tackling these, the effort spent on various tasks in the process of
software engineering is naturally re-distributed. We claim that all steps
related to testing need to become self-adaptive to match the capabilities
of the self-adaptive system-under-test. Otherwise, the adaptive system’s
behavior might elude traditional variants of quality assurance. We thus
propose the paradigm of scenario coevolution, which describes a pool
of test cases and other constraints on system behavior that evolves in
parallel to the (in part autonomous) development of behavior in the
system-under-test. Scenario coevolution offers a simple structure for the
organization of adaptive testing that allows for both human-controlled
and autonomous intervention, supporting software engineering for adap-
tive systems on a procedural as well as technical level.

Keywords: self-adaptive system, software engineering, quality assur-
ance, software evolution

1 Introduction

Until recently, the discipline of software engineering has mainly tackled the pro-
cess through which humans develop software systems. In the last few years, cur-
rent break-throughs in the fields of artificial intelligence and machine learning
have enabled new possibilities that have previously been considered infeasible or
just too complex to tap into with “manual” coding: Complex image recognition,
natural language processing, or decision making as it is used in complex games
are prime examples. The resulting applications are pushing towards a broad au-
dience of users. However, as of now, they are mostly focused on non-critical areas
of use, at least when implemented without further human supervision. Software
artifacts generated via machine learning are hard to analyze, causing a lack of
trustworthiness for many important application areas.

Taken from original publication: Thomas Gabor, Marie Kiermeier, Andreas
Sedlmeier, Bernhard Kempter, Cornel Klein, Horst Sauer, Reiner Schmid, and Jan
Wieghardt. Adapting quality assurance to adaptive systems: The scenario coevolu-
tion paradigm. In International Symposium on Leveraging Applications of Formal
Methods (ISoLA), 2018

142

2 Lecture Notes in Computer Science: Authors’ Instructions

We claim that in order to reinstate levels of trustworthiness comparable to
well-known classical approaches, we need not essentially reproduce the principles
of classical software test but need to develop a new approach towards software
testing. We suggest to develop a system and its test suite in a competitive setting
where each sub-system tries to outwit the other. We call this approach scenario
coevolution and attempt to show the necessity of such an approach. We hope
that trust in that dynamic (or similar ones) can help to build a new process for
quality assurance, even for hardly predictable systems.

Following a top-down approach to the issue, we start in Section 2 by intro-
ducing a formal framework for the description of systems. We augment it to
also include the process of software and system development. Section 3 provides
a short overview on related work. From literature review and practical experi-
ence, we introduce four core concepts for the engineering of adaptive systems
in Section 4. In order to integrate these with our formal framework, Section 5
contains an introduction of our notion of scenarios and their application to an
incremental software testing process. In Section 6 we discuss which effect sce-
nario coevolution has on a selection of practical software engineering tasks and
how it helps implement the core concepts. Finally, Section 7 provides a short
conclusion.

2 Formal Framework

In this section we introduce a formal framework as a basis for our analysis. We
first build upon the framework described in [1] to define adaptive systems and
then proceed to reason about the influence of their inherent structure on software
architecture.

2.1 Describing Adaptive Systems

We roughly adopt the formal definitions of our vocabulary related to the de-
scription of systems from [1]: We describe a system as an arbitrary relation over
a set of variables.

Definition 1 (System [1]). Let I be a (finite or infinite) set, and let V = (Vi)i∈I

be a family of sets. A system of type V is a relation S of type V .

Given a System S, an element s ∈ S is called the state of the system. For
practical purposes, we usually want to discern various parts of a system’s state
space. For this reason, parts of the system relation of type V given by an index
set J ⊆ I, i.e., (Vj)j∈J , may be considered inputs and other parts given by
a different index set may be considered outputs [1]. Formally, this makes no
difference to the system. Semantically, we usually compute the output parts of
the system using the input parts.

We introduce two more designated sub-spaces of the system relation: situa-
tion and behavior. These notions correspond roughly to the intended meaning

Taken from original publication: Thomas Gabor, Marie Kiermeier, Andreas
Sedlmeier, Bernhard Kempter, Cornel Klein, Horst Sauer, Reiner Schmid, and Jan
Wieghardt. Adapting quality assurance to adaptive systems: The scenario coevolu-
tion paradigm. In International Symposium on Leveraging Applications of Formal
Methods (ISoLA), 2018

143

Adapting Quality Assurance to Adaptive Systems 3

of inputs and outputs mentioned before. The situation is the part of the sys-
tem state space that fully encapsulates all information the system has about
its state. This may include parts that the system does have full control over
(which we would consider counter-intuitive when using the notion of “input”).
The behavior encapsulates the parts of the system that can only be computed
by applying the system relation. Likewise, this does not imply that the system
has full control over the values. Furthermore, a system may have an internal
state, which is parts of the state space that are neither included in the situation
nor in the behavior. When we are not interested in the internal space, we can

regard a system as a mapping from situations to behavior, written S = X
Z
! Y

for situations X and behaviors Y , where Z is the internal state of the system S.
Using these notions, we can more aptly define some properties on systems.

Further following the line of thought presented in [1], we want to build sys-
tems out of other systems. At the core of software engineering, there is the
principle of re-use of components, which we want to mirror in our formalism.

Definition 2 (Composition). Let S1 and S2 be systems of types V1 = (V1,i)i∈I1

and V2 = (V2,i)i∈I2 , respectively. Let R(V) be the domain of all relations over V .
A combination operator ⊗ is a function such that S1⊗S2 ∈ R(V) for some family
of sets V with V1,1, ..., V1,m, V2,1, ..., V2,n ∈ V .1 The application of a combination
operator is called composition. The arguments to a combination operator are
called components.

Composition is not only important to model software architecture within our
formalism, but it also defines the formal framework for interaction: Two systems
interact when they are combined using a combination operator ⊗ that ensures
that the behavior of (at least) one system is recognized within the situation of
(at least) another system.

Definition 3 (Interaction). Let S = S1 ⊗ S2 be a composition of type V of
systems S1 and S2 of type V1 and V2, respectively, using a combination operator
⊗. If there exist a V1 ∈ V1 and a V2 ∈ V2 and a relation R ∈ V1 × V2 so that for
all states s ∈ S, (proj(s, V1), proj(s, V2)) ∈ R, then the components S1 and S2

interact with respect to R.

We can model an open system S as a combination S = C ⊗ E of a core
system C and its environment E, both being modeled as systems again.

Hiding some of the complexity described in [1], we assume we have a logic L
in which we can express a system goal γ. We can always decide if γ holds for a
given system, in which case we write S |= γ for γ(S) = %. Based on [1], we can
use this concept to define an adaptation domain:

Definition 4 (Adaptation Domain [1]). Let S be a system. Let E be a set of
environments that can be combined with S using a combination operator ⊗. Let

1 In [1], there is a more strict definition on how the combination operator needs to
handle the designated inputs and outputs of its given systems. Here, we opt for a
more general definition.

Taken from original publication: Thomas Gabor, Marie Kiermeier, Andreas
Sedlmeier, Bernhard Kempter, Cornel Klein, Horst Sauer, Reiner Schmid, and Jan
Wieghardt. Adapting quality assurance to adaptive systems: The scenario coevolu-
tion paradigm. In International Symposium on Leveraging Applications of Formal
Methods (ISoLA), 2018

144

4 Lecture Notes in Computer Science: Authors’ Instructions

Γ be a set of goals. An adaptation domain A is a set A ⊆ E × Γ . S can adapt
to A, written S " A iff for all (E, γ) ∈ A it holds that S ⊗ E |= γ.

Definition 5 (Adaptation Space [1]). Let E be a set of environments that can
be combined with S using a combination operator ⊗. Let Γ be set of goals. An
adaptation space A is a set A ⊆ P(E ,Γ).

We can now use the notion of an adaptation space to define a preorder on
the adaptivity of any two systems.

Definition 6 (Adaptation [1]). Given two systems S and S′, S′ is at least as
adaptive as S, written S & S′ iff for all adaptation spaces A ∈ A it holds that
S " A =⇒ S′ " A.

Both Definitions 4 and 5 can be augmented to include soft constraints or
optimization goals. This means that in addition to checking against boolean goal
satisfaction, we can also assign each system S interacting with an environment
E a fitness φ(S⊗E) ∈ F , where F is the type of fitness values. We assume that
there exists a preorder (on F , which we can use to compare two fitness values.
We can then generalize Definition 4 and 5 to respect these optimization goals.

Definition 7 (Adaptation Domain for Optimization). Let S be a system. Let
E be a set of environments that can be combined with S using a combination
operator ⊗. Let Γ be a set of Boolean goals. Let F be a set of fitness values and
(be a preorder on F . Let Φ be a a set of fitness functions with codomain F . An
adaptation domain A is a set A ⊆ E × Γ × Φ. S can adapt to A, written S " A
iff for all (E, γ,φ) ∈ A it holds that S ⊗ E |= γ.

Note that in Definition 7 we only augmented the data structure for adaptation
domains but did not actually alter the condition to check for the fulfillment of
an adaptation domain. This means that for an adaptation domain A, a system
needs to fulfill all goals in A but is not actually tested on the fitness defined
by φ. We could define a fitness threshold f we require a system S to surpass in
order to adapt to A in the formalism. But such a check, written f (φ(S ⊗ E),
could already be included in the Boolean goals if we use a logic that is expressive
enough.

Instead, we want to use the fitness function as soft constraints: We expect
the system to perform as well as possible on this metric, but we do not (always)
require a minimum level of performance. However, we can use fitness to define
a fitness preorder on systems:

Definition 8 (Optimization). Given two systems S and S′ as well as an adap-
tation space A, S′ is at least as optimal as S, written S (A S′, iff for all
(E, γ,φ) ∈ A it holds that φ(S ⊗ E) (φ(S′ ⊗ E).

Definition 9 (Adaptation with Optimization). Given two systems S and S′, S′

is at least as adaptive as S with respect to optimization, written S &∗ S′ iff for
all adaptation domains A ∈ A it holds that S " A =⇒ S′ " A and S (A S′.

Taken from original publication: Thomas Gabor, Marie Kiermeier, Andreas
Sedlmeier, Bernhard Kempter, Cornel Klein, Horst Sauer, Reiner Schmid, and Jan
Wieghardt. Adapting quality assurance to adaptive systems: The scenario coevolu-
tion paradigm. In International Symposium on Leveraging Applications of Formal
Methods (ISoLA), 2018

145

Adapting Quality Assurance to Adaptive Systems 5

Note that so far our notions of adaptivity and optimization are purely exten-
sional, which originates from the black box perspective on adaptation assumed
in [1].

2.2 Constructing Adaptive Systems

We now shift the focus of our analysis a bit away from the question “When is
a system adaptive?” towards the question “How is a system adaptive?”. This
refers to both questions of software architecture (i.e., which components should
we use to make an adaptive system?) and questions of software engineering (i.e.,
which development processes should we use to develop an adaptive system?).
We will see that with the increasing usage of methods of artificial intelligence,
design-time engineering and run-time adaptation increasingly overlap [2].

Definition 10 (Adaptation Sequence). A series of |I| systems S = (Si)i∈I

with index set I with a preorder ≤ on the elements of I is called an adaptation
sequence iff for all i, j ∈ I it holds that i ≤ j =⇒ Si &∗ Sj

Note that we used adaptation with optimization in Definition 10 so that a
sequence of systems (Si)i∈I that each fulfill the same hard constraints (γ within a
singleton adaptation space A = {{(E, γ,φ)}}) can form an adaptation sequence
iff for all i, j ∈ I it holds that i ≤ j =⇒ φ(Si ⊗ E) (φ(Sj ⊗ E). This is the
purest formulation of an optimization process within our formal framework.2

Such an adaptation sequence can be generated by continuously improving a
starting system S0 and adding each improvement to the sequence. Such a task
can both be performed by a team of human developers or standard optimization
algorithms as they are used in artificial intelligence. Only in the latter case, we
want to consider that improvement happening within our system boundaries.
Unlike the previously performed black-box analysis of systems, the presence of
an optimization algorithm within the system itself does have implications for the
system’s internal structure. We will thus switch to a more “grey box” analysis
in the spirit of [3].

Definition 11 (Self-Adaptation). A system S0 is called self-adaptive iff the
sequence (Si)i∈N,i<n for some n ∈ N with Si = S0⊗Si−1 for 0 < i < n and some
combination operator ⊗ is an adaptation sequence.

Note that we could define the property of self-adaptation more generally by
again constructing an index set on the sequence (Si) instead of using N, but
chose not to do so to not further clutter the notation. For most practical pur-
poses, the adaptation is going to happen in discrete time steps anyway. It is also
important to be reminded that despite its notation, the combination operator ⊗
does not need to be symmetric and likely will not be in this case, because when

2 Strictly speaking, an optimization process would further assume there exists an op-
timization relation o from systems to systems so that for all i, j ∈ I it holds that
i ≤ j =⇒ o(Si, Sj). But for simplicity, we consider the sequence of outputs of the
optimization process a sufficient representation of the whole process.

Taken from original publication: Thomas Gabor, Marie Kiermeier, Andreas
Sedlmeier, Bernhard Kempter, Cornel Klein, Horst Sauer, Reiner Schmid, and Jan
Wieghardt. Adapting quality assurance to adaptive systems: The scenario coevolu-
tion paradigm. In International Symposium on Leveraging Applications of Formal
Methods (ISoLA), 2018

146

6 Lecture Notes in Computer Science: Authors’ Instructions

constructing S0 ⊗ Si−1 we usually want to pass the previous instance Si−1 to
the general optimization algorithm encoded in S0.3 Furthermore, it is important
to note that the constant sequence (S)i∈N is an adaptation sequence according
to our previous definition and thus every system is self-adaptive with respect to
a combination operator X ⊗ Y =def X . However, we can construct non-trivial
adaptation sequence using partial orders # and ≺ instead of & and (. As these
can easily be constructed, we do not further discuss their definitions in this
paper. In [1] a corresponding definition was already introduced for #.

The formulation of the adaptation sequence used to prove self-adaptivity nat-
urally implies some kind of temporal structure. So basing said structure around
N implies a very simple, linear and discrete model of time. More complex tem-
poral evolution of systems is also already touched upon in [1]. As noted, there
may be several ways to define such a temporal structure on systems. We refer
to related and future work for a more intricate discussion on this matter.

So, non-trivial self-adaptation does imply some structure for any self-adaptive
system S of type V = (Vi)i∈I : Mainly, there needs to be a subset of the type V ′ ⊆
V that is used to encode the whole relation behind S so that the already improved
instances can sufficiently be passed on to the general adaptation mechanism.

For a general adaptation mechanism (as we previously assumed to be part
of a system) to be able to improve a system’s adaptivity, it needs to be able to
access some representation of its goals and its fitness function. This provides a
grey-box view of the system. We remember that we assumed we could split a

system S into situationX , internal state Z and behavior Y , written S = X
Z
! Y .

If S is self-adaptive, it can form a non-trivial adaptation sequence by improving
on its goals or its fitness. In the former case, we can now assume that there
exists some relation G ⊆ X ∪ Z so that S |= γ ⇐⇒ G |= γ for a fixed γ in
a singleton-space adaptation sequence. In the latter case, we can assume that
there exists some relation F ⊆ X ∪ Z so that φ(S) = φ(F) for a fixed φ in a
singleton-space adaptation sequence.

Obviously, when we want to construct larger self-adaptive systems using self-
adaptive components, the combination operator needs to be able to combine said
sub-systems G and/or F as well. In the case where the components’ goals and
fitnesses match completely, the combination operator can just use the same sub-
system twice. However, including the global goals or fitnesses within each local
component of a system does not align with common principles in software ar-
chitecture (such as encapsulation) and does not seem to be practical for large
or open systems (where no process may ensure such a unification). Thus, con-
structing a component-based self-adaptive system requires a combination oper-
ator that can handle potentially conflicting goals and fitnesses. We again define
such a system for a singleton adaptation space A = {{(E, γ,φ)}} and leave the
generalization to all adaptation spaces out of the scope of this paper.

3 Constructing a sequence Si := Si−1 ⊗ Si−1 might be viable formulation as well, but
is not further explored in this work.

Taken from original publication: Thomas Gabor, Marie Kiermeier, Andreas
Sedlmeier, Bernhard Kempter, Cornel Klein, Horst Sauer, Reiner Schmid, and Jan
Wieghardt. Adapting quality assurance to adaptive systems: The scenario coevolu-
tion paradigm. In International Symposium on Leveraging Applications of Formal
Methods (ISoLA), 2018

147

Adapting Quality Assurance to Adaptive Systems 7

Definition 12 (Multi-Agent System). Given a system S = S1 ⊗ ... ⊗ Sn that
adapts to A = {(E, γ,φ)}. Iff for each 1 ≤ i ≤ n with i, n ∈ N, n > 1 there is
an adaptation domain Ai = {(Ei, γi,φi)} so that (1) Ei = E ⊗ S1 ⊗ ...⊗ Si−1 ⊗
Si+1 ⊗ ... ⊗ Sn and (2) γi -= γ or φi -= φ and (3) Si adapts to Ai, then S is a
multi-agent system with agents S1, ..., Sn.

For practical purposes, we usually want to use the notion of multi-agent
systems in a transistive way, i.e., we can call a system a multi-agent system
as soon as any part of it is a multi-agent system according to Definition12.
Formally, S is a multi-agent system if there are systems components S′, R so
that S = S′ ⊗R and S′ is a multi-agent system. We argue that this transitivity
is not only justified but a crucial point for systems development of adaptive
systems: Agents tend to utilize their environment to fulfill their own goals and
can thus “leak” their goals into other system components. Not that Condition
(2) of Definition 12 ensures that not every system constructed by composition
is regarded a multi-agent system; it is necessary to feature agents with (at least
slightly) differing adaptation properties.

For the remainder of this paper, we will apply Definition 12 “backwards”:
Whenever we look at a self-adaptive system S, whose goals or fitnesses can be
split into several sub-goals or sub-fitnesses we can regard S as a multi-agent
system. Using this knowledge, we can apply design patterns from multi-agent
systems to all self-adaptive systems without loss of generality. Furthermore, we
need to be aware that especially if we do not explicitly design multi-agent coor-
dination between different sub-goals, such a coordination will be done implicitly.
Essentially, there is no way around generalizing software engineering approaches
for self-adaptive systems to potentially adversarial components.

3 Related Work

Many researchers and practitioners in recent years have already been concerned
about the changes necessary to allow for solid and reliable software engineering
processes for (self-)adaptive systems. Central challenges were collected in [4],
where issues of quality assurance are already mentioned but the focus is more
on bringing about complex adaptive behavior in the first place. The later research
roadmap of [5] puts a strong focus on interaction patterns of already adaptive
systems (both between each other and with human developers) and already
dedicates a section to verification and validation issues, being close in mind to
the perspective of this work. We fall in line with the roadmap further specified
in [6,7,8].

While this work largely builds upon [1], there have been other approaches to
formalize the notion of adaptivity: [9] discusses high-level architectural patterns
that form multiple inter-connected adaptation loops. In [10] such feedback loops
are based on the MAPE-K model [11]. While these approaches largely focus on
the formal construction of adaptive systems, there have also been approaches
that assume a (more human-centric or at least tool-centric) software engineering
perspective [12,13,14,15]. We want to discuss two of those on greater detail:

Taken from original publication: Thomas Gabor, Marie Kiermeier, Andreas
Sedlmeier, Bernhard Kempter, Cornel Klein, Horst Sauer, Reiner Schmid, and Jan
Wieghardt. Adapting quality assurance to adaptive systems: The scenario coevolu-
tion paradigm. In International Symposium on Leveraging Applications of Formal
Methods (ISoLA), 2018

148

8 Lecture Notes in Computer Science: Authors’ Instructions

In the results of the ASCENS (Autonomous Service Component ENSembles)
project [2], the interplay between human developers and autonomous adaptation
has been formalized in a life-cycle model featuring separate states for each the
development progress of each respective feedback cycle. Classical software devel-
opment tasks and self-adaptation (as well as self-monitoring and self-awareness)
are regarded as equally powerful contributing mechanisms for the production of
software. Both can be employed in junction to steer the development process.
In addition, ASCENS built upon a (in parts) similar formal notion of adaptiv-
ity [3,16] and sketched a connection between adaptivity in complex distributed
systems and multi-goal multi-agent learning [17].

ADELFE (Atelier de Développement de Logiciels à Fonctionnalité Emer-
gente) is a toolkit designed to augment current development processes to account
for complex adaptive systems [18,19]. For this purpose, ADELFE is based on the
Rational Unified Process (RUP) [20] and comes with tools for various tasks of
software design. From a more scientific point of view, ADELFE is also based on
the theory of adaptive multi-agent systems. For ADELFE, multi-agent systems
are used to derive a set of stereotypes for components, which ease modeling
for according types of systems. It thus imposes stronger restrictions on system
design than our approach intends to.

Besides the field of software engineering, the field of artificial intelligence
research is currently (re-)discovering a lot of the same issues the discipline of
of engineering for complex adaptive systems faced: The highly complex and
opaque nature of machine learning algorithms and the resulting data structures
often forces black-box testing and makes possible guarantees weak. When online
learning is employed, the algorithm’s behavior is subject to great variance and
testing usually needs to work online as well. The seminal paper [21] provides
a good overview of the issues. When applying artificial intelligence to a large
variety of products, rigorous engineering for this kind of software seems to be
one of the major necessities lacking at the moment.

4 Core Concepts of Future Software Engineering

Literature makes it clear that one of the main issues of the development of
self-adapting systems lies with trustworthiness. Established models for check-
ing systems (i.e., verification and validation) do not really fit the notion of a
constantly changing system. However, these established models represent all the
reason we have at the moment to trust the systems we developed. Allowing the
system more degrees of freedom thus hinders the developers’ ability to estimate
the degree of maturity of the system they design, which poses a severe diffi-
culty for the engineering progress, when the desired premises or the expected
effects of classical engineering tasks on the system-under-development are hard
to formulate.

To aid us control the development/adaptation progress of the system, we
define a set of principles, which are basically patterns for process models. They

Taken from original publication: Thomas Gabor, Marie Kiermeier, Andreas
Sedlmeier, Bernhard Kempter, Cornel Klein, Horst Sauer, Reiner Schmid, and Jan
Wieghardt. Adapting quality assurance to adaptive systems: The scenario coevolu-
tion paradigm. In International Symposium on Leveraging Applications of Formal
Methods (ISoLA), 2018

149

Adapting Quality Assurance to Adaptive Systems 9

describe the changes to be made in the engineering process for complex, adaptive
systems in relation to more classical models for software and systems engineering.

Concept 1 (System and Test Parallelism). The system and its test suite should
develop in parallel from the start with controlled moments of interchange of in-
formation. Eventually, the test system is to be deployed alongside the main
system so that even during runtime, on-going online tests are possible [22]. This
argument has been made for more classical systems as well and thus classical
software test is, too, no longer restricted to a specific phase of software devel-
opment. However, in the case of self-learning systems, it is important to focus
on the evolution of test cases: The capabilities of the system might not grow as
experienced test designers expect them to compared to systems entirely realized
by human engineering effort. Thus, it is important to conceive and formalize
how tests in various phases relate to each other.

Concept 2 (System vs. Test Antagonism). Any adaptive systems must be sub-
ject to an equally adaptive test. Overfitting is a known issue for many machine
learning techniques. In software development for complex adaptive systems, it
can happen on a larger scale: Any limited test suite (we expect our applications
to be too complex to run a complete, exhaustive test) might induce certain un-
wanted biases. Ideally, once we know about the cases our system has a hard time
with, we can train it specifically for these situations. For the so-hardened system
the search mechanism that gave us the hard test cases needs to come up with
even harder ones to still beat the system-under-test. Employing autonomous
adaptation at this stage is expected to make that arms race more immediate
and faster than it is usually achieved with human developers and testers alone.

Concept 3 (Automated Realization). Since the realization of tasks concerning
adaptive components usually means the application of a standard machine learn-
ing process, a lot of the development effort regarding certain tasks tends to shift
to an earlier phase in the process model. The most developer time when applying
machine learning techniques, e.g., tends to be spent on gathering information
about the problem to solve and the right setup of parameters to use; the training
of the learning agent then usually follows one of a few standard procedures and
can run rather automatically. However, preparing and testing the component’s
adaptive abilities might take a lot of effort, which might occur in the design and
test phase instead of the deployment phase of the system life-cycle.

Concept 4 (Artifact Abstraction). To provide room for and exploit the sys-
tem’s ability to self-adapt, many artifacts produced by the engineering process
tend to become more general in nature, i.e., they tend to feature more open
parameters or degrees of freedom in their description. In effect, in the place of
single artifacts in a classical development process, we tend to find families of
artifacts or processes generating artifacts when developing a complex adaptive
system. As we assume that the previously only static artifact is still included
in the set of artifacts available in its place now, we call this shift “generaliza-
tion” of artifacts. Following this change, many of the activities performed during

Taken from original publication: Thomas Gabor, Marie Kiermeier, Andreas
Sedlmeier, Bernhard Kempter, Cornel Klein, Horst Sauer, Reiner Schmid, and Jan
Wieghardt. Adapting quality assurance to adaptive systems: The scenario coevolu-
tion paradigm. In International Symposium on Leveraging Applications of Formal
Methods (ISoLA), 2018

150

10 Lecture Notes in Computer Science: Authors’ Instructions

development shift their targets from concrete implementations to more general
artifact, i.e., when building a test suite no longer yields a series of runnable test
cases but instead produces a test case generator. When this principle is broadly
applied, the development activities shift towards “meta development”. The de-
velopers are concerned with setting up a process able to find good solutions
autonomously instead of finding the good solutions directly.

5 Scenarios

We now want to include the issue of testing adaptive systems in our formal
framework. We recognize that any development process for systems following
the principles described in Section 2 produces two central types of artifacts: The

first one is a system S = X
Z
! Y with a specific desired behavior Y so that it

manages to adapt to a given adaptation space. The second is a set of situations,
test cases, constraints, and checked properties that this system’s behavior has
been validated against. We call artifacts of the second type by the group name
of scenarios.

Definition 13 (Scenario). Let S = X
Z
! Y be a system and A = {(E, γ,φ)}

a singleton adaptation domain. A tuple c = (X,Y, g, f), g ∈ {%,⊥}, f ∈ cod(φ)
with g = % ⇐⇒ S ⊗ E |= γ and f = φ(S ⊗ E) is called scenario.4

Semantically, scenarios represent the experience gained about the system’s
behavior during development, including both successful (S $ γ) and unsuccessful
(S ! γ) test runs. As stated above, since we expect to operate in test spaces we
cannot cover exhaustively, the knowledge about the areas we did cover is an
important asset and likewise result of the systems engineering process.

Effectively, as we construct and evolve a system S we want to construct and
augment a set of scenarios C = {c1, ..., cn} alongside with it. C is also called a
scenario suite and can be seen as a toolbox to test S’s adaptation abilities with
respect to a fixed adaptation domain A.

While formally abiding to Definition 13, scenarios can be encoded in various
ways in practical software development, such as:

Sets of data points of expected or observed behavior. Given a system S′ = X ′ !

Y ′ whose behavior is desirable (for example a trained predecessor of our system
or a watchdog component), we can create scenarios (X ′, Y ′, g′, f ′) with g′ =
% ⇐⇒ S′ ⊗ Ei |= γi and f ′ = φi(S′ ⊗ Ei) for an arbitrary amount of elements
(Ei, γi,φi) of an adaptation domain A = {(E1, γ1,φ1), ..., (En, γn,φn)}.

Test cases the system mastered. In some cases, adaptive systems may produce
innovative behavior before we actively seek it out. In this cases, it is helpful
to formalize the produced results once they have been found so that we can

4 If we are only interested in the system’s performance and not how it was achieved,
we can redefine a scenario to leave out Y .

Taken from original publication: Thomas Gabor, Marie Kiermeier, Andreas
Sedlmeier, Bernhard Kempter, Cornel Klein, Horst Sauer, Reiner Schmid, and Jan
Wieghardt. Adapting quality assurance to adaptive systems: The scenario coevolu-
tion paradigm. In International Symposium on Leveraging Applications of Formal
Methods (ISoLA), 2018

151

Adapting Quality Assurance to Adaptive Systems 11

ensure that the system’s gained abilities are not lost during further development
or adaptation. Formally, this case matches the case for “observed behavior”
described above. However, here the test case (X,Y, g, f) already existed as a
scenario, so we just need to update g and f (with the new and better values)
and possibly Y (if we want to fix the observed behavior).

Logical formulae and constraints. Commonly, constraints can be directly ex-
pressed in the adaptation domain. Suppose we build a system against an adap-
tation domain A = {(E1, γ1,φ1), ..., (En, γn,φn)}. We can impose a hard con-
straint ζ on the system in this domain by constructing a constrained adapta-
tion domain A′ = {(E1, γ1 ∧ ζ,φ1), ..., (En, γn ∧ ζ,φn)} given that the logic of
γ1, ..., γn, ζ meaningfully supports an operation like the logical “and” ∧. Like-
wise a soft constraint ψ can be imposed via A′ = {(E1, γ1,max(φ1,ψ),), ...,
(En, γn,max(φn,ψ))} given the definition of the operator max that trivially fol-
lows from using the relation (on fitness values. Scenarios (X ′, Y ′, g′, f ′) can
then be generated against the new adaptation domain A by taking pre-existing
scenarios (X,Y, g, f) and setting X ′ = X,Y ′ = Y, g = %, f = ψ((X ! Y)⊗ E).

Requirements and use case descriptions (including the system’s degree of fulfilling
them). If properly formalized, a requirement or use case description contains all
the information necessary to construct an adaptation domain and can thus be
treated as the logical formulae in the paragraph above. However, use cases are
in practical development more prone to be incomplete views on the adaptation
domain. We thus may want to stress the point that we do not need to update
all elements of an adaptation domain when applying a constraint, i.e., when
including a use case. We can also just add the additional hard constraint ζ or
soft constraint ψ to some elements of A.

Predictive models of system properties. For the most general case, assume that
we have a prediction function p so that p(X) ≈ Y , i.e., the function can roughly
return the behavior S = X ! Y will or should show given X . We can thus
construct the predicted system S′ = X ! p(X) and construct a scenario
(X, p(X), g, f) with g = % ⇐⇒ S′ ⊗ E |= γ and f = φ(S′ ⊗ E).

All of these types of artifacts will be subsumed under the notion of scenarios. We
can use them to further train and improve the system and to estimate its likely
behavior as well as to perform tests (and ultimately verification and validation
activities).

Scenario coevolution describes the process of developing a set of scenarios
to test a system during the system-under-tests’s development. Consequently,
it needs to be designed and controlled as carefully as the evolution of system
behavior [23,24].

Definition 14 (Scenario Hardening). Let c1 = (X1, Y1, g1, f1) and c2 = (X2, Y2,
g1, f2) be scenarios for a system S and an adaptation domain A. Scenario c2 is
at least as hard as c1, written c1 ≤ c2, iff g1 = % =⇒ g2 = % and f1 ≤ f2.

Taken from original publication: Thomas Gabor, Marie Kiermeier, Andreas
Sedlmeier, Bernhard Kempter, Cornel Klein, Horst Sauer, Reiner Schmid, and Jan
Wieghardt. Adapting quality assurance to adaptive systems: The scenario coevolu-
tion paradigm. In International Symposium on Leveraging Applications of Formal
Methods (ISoLA), 2018

152

12 Lecture Notes in Computer Science: Authors’ Instructions

Definition 15 (Scenario Suite Order). Let C = {c1, ..., cm} and C′ = {c′1, ..., c
′
n}

be sets of scenarios, also called scenarios suites. Scenario suite C′ is at least as
hard as C, written C & C′, iff for all scenarios c ∈ C there exists a scenario
c′ ∈ C′ so that c ≤ c′.

Definition 16 (Scenario Sequence). Let S = (Si)i∈I , I = {1, ..., n} be an adap-
tation sequence for a singleton adaptation space A = {A}. A series of sets
C = (Ci)i∈I is called a scenario sequence iff for all i ∈ I, i < n it holds that Ci

is a scenario suite for Si and A and Ci & Ci+1.

We expect each phase of development to further alter the set of scenarios
just as it does alter the system behavior. The scenarios produced and used
at a certain phase in development must match the current state of progress.
Valid scenarios from previous phases should be kept and checked against the
further specialized system. When we do not delete any scenarios entirely, the
continued addition of scenarios will ideally narrow down allowed system behavior
to the desired possibilities. Eventually, we expect all activities of system test to
be expressible as the generation or evaluation of scenarios. New scenarios may
simply be thought up by system developers or be generated automatically.

Finding the right scenarios to generate is another optimization problem to
be solved during the development of any complex adaptive system. Scenario
evolution represents a cross-cutting concern for all phases of system development.
Treating scenarios as first-class citizen among the artifacts produced by system
development thus yields changes in tasks throughout the whole process model.

6 Applications of Scenario Coevolution

Having both introduced a formal framework for adaptation and the testing of
adaptive systems using scenarios, we show in this section how these frameworks
can be applied to aid the trustworthiness of complex adaptive systems for prac-
tical use.

6.1 Criticality Focus

It is very important to start the scenario evolution process alongside the system
evolution, so that at each stage there exists a set of scenarios available to test
the system’s functionality and degree of progress (see Concept 1). This approach
mimics the concept of agile development where between each sprint there exists
a fully functional (however incomplete) version of the system. The ceoncept of
scenario evolution integrates seamlessly with agile process models.

In the early phases of development, the common artifacts of requirements
engineering, i.e., formalized requirements, serve as the basis for the scenario evo-
lution process. As long as the adaptation space A remains constant (and with
it the system goals), system development should form an adaptation sequence.
Consequently, scenario evolution should then form a scenario sequence for that
adaptation sequence. This means (according to Definition 16), the scenario suite

Taken from original publication: Thomas Gabor, Marie Kiermeier, Andreas
Sedlmeier, Bernhard Kempter, Cornel Klein, Horst Sauer, Reiner Schmid, and Jan
Wieghardt. Adapting quality assurance to adaptive systems: The scenario coevolu-
tion paradigm. In International Symposium on Leveraging Applications of Formal
Methods (ISoLA), 2018

153

Adapting Quality Assurance to Adaptive Systems 13

is augmented with newly generated scenarios (for new system goals or just more
specialized subgoals) or with scenarios with increased requirements on fitness.5

Ideally, the scenario evolution process should lead the learning components on
the right path towards the desired solution. The ability to re-assign fitness pri-
orities allows for an arms race between adaptive system and scenario suite (see
Concept 2).

Augmenting Requirements. Beyond requirements engineering, it is necessary to
include knowledge that will be generated during training and learning by the
adaptive components. Mainly, recognized scenarios that work well with early
version of the adaptive system should be used as checks and tests when the sys-
tem becomes more complex. This approach imitates the optimization technique
of importance sampling on a systems engineering level. There are two central
issues that need to be answered in this early phase of the development process:

– Behavior Observation: How can system behavior be generated in a realistic
manner? Are the formal specifications powerful enough? Can we employ
human-labeled experience?

– Behavior Assessment: How can the quality of observed behavior be ade-
quately assessed? Can we define a model for the users’ intent? Can we employ
human-labeled review?

Breaking Down Requirements. A central task of successful requirements engi-
neering is to split up the use cases in atomic units that ideally describe singular
features. In the dynamic world, we want to leave more room for adaptive sys-
tem behavior. Thus, the requirements we formulate tend to be more general in
notion. It is thus even more important to split them up in meaningful ways in or-
der to derive new sets of scenarios. The following design axes (without any claim
to completeness) may be found useful to break down requirements of adaptive
systems:

– Scope and Locality: Can the goal be applied/checked locally or does it involve
multiple components? Which components fall into the scope of the goal? Is
emergent system behavior desirable or considered harmful?

– Decomposition and Smoothness: Can internal (possibly more specific) re-
quirements be developed? Can the overall goal be composed from a clear set
of subgoals? Can the goal function be smoothened, for example by provid-
ing intermediate goals? Can subgoal decomposition change dynamically via
adaptation or is it structurally static?

– Uncertainty and Interaction: Are all goals given with full certainty? Is it
possible to reason about the relative importance of goal fulfillment for specific
goals a priori? Which dynamic goals have an interface with human users or
other systems?

5 Note that every change in A starts new sequences.

Taken from original publication: Thomas Gabor, Marie Kiermeier, Andreas
Sedlmeier, Bernhard Kempter, Cornel Klein, Horst Sauer, Reiner Schmid, and Jan
Wieghardt. Adapting quality assurance to adaptive systems: The scenario coevolu-
tion paradigm. In International Symposium on Leveraging Applications of Formal
Methods (ISoLA), 2018

154

14 Lecture Notes in Computer Science: Authors’ Instructions

6.2 Adaptation Cooldown

We call the problem domain available to us during system design the off-site
domain. It contains all scenarios we think the system might end up in and may
thus even contain contradicting scenarios, for example. In all but the rarest cases,
the situations one single instance of our system will face in its operating time will
be just a fraction the size of the covered areas of the off-site domain. Nonetheless,
it is also common for the system’s real-world experience to include scenarios not
occurring in the off-site domain at all; this mainly happens when we were wrong
about some detail in the real world. Thus, the implementation of an adaptation
technique faces a problem not unlike the exploration/exploitation dilemma [25],
but on a larger scale: We need to decide, if we opt for a system fully adapted
to the exact off-site domain or if we opt for a less specialized system that leaves
more room for later adaptation at the customer’s site. The point at which we
stop adaptation happening on off-site scenarios is called the off-site adaptation
border and is a key artifact of the development process for adaptive systems.

In many cases, we may want the system we build to be able to evolve beyond
the exact use cases we knew about during design time. The system thus needs
to have components capable of run-time or online adaptation. In the wording
of this work, we also talk about on-site adaptation stressing that in this case
we focus on adaptation processes that take place at the customer’s location
in a comparatively specific domain instead of the broader setting in a system
development lab. Usually, we expect the training and optimization performed on-
site (if any) to be not as drastic as training done during development. (Otherwise,
we would probably have not specified our problem domain in an appropriate
way.) As the system becomes more efficient in its behavior, we want to gradually
reduce the amount of change we allow. In the long run, adaptation should usually
work at a level that prohibits sudden, unexpected changes but still manages to
handle any changes in the environment within a certain margin. The recognized
need for more drastic change should usually trigger human supervision first.

Definition 17 (Adaptation Space Sequence). Let S be a system. A series of
|I| adaptation spaces A = (Ai)i∈I with index set I with a preorder ≤ on the
elements of I is called an adaptation domain sequence iff for all i, j ∈ I, i ≤ j it
holds that: S adapts to Aj implies that S adapts to Ai.

System development constructs an adaptation space sequence (c.f. Concept 4),
i.e., a sequence of increasingly specific adaptation domains. Each of those can be
used to run an adaptation sequence (c.f. Definition 10) and a scenario sequence
(c.f. Definition 16, Concept 2) to test it.

For the gradual reduction of the allowed amount of adaptation for the system
we use the metaphor of a “cool-down” process: The adaptation performed on-
site should allow for less change than off-site adaptation. And the adaptation
allowed during run-time should be less than what we allowed during deployment.
This ensures that decisions that have once been deemed right by the developers
are hard to change later by accident or by the autonomous adaptation process.

Taken from original publication: Thomas Gabor, Marie Kiermeier, Andreas
Sedlmeier, Bernhard Kempter, Cornel Klein, Horst Sauer, Reiner Schmid, and Jan
Wieghardt. Adapting quality assurance to adaptive systems: The scenario coevolu-
tion paradigm. In International Symposium on Leveraging Applications of Formal
Methods (ISoLA), 2018

155

Adapting Quality Assurance to Adaptive Systems 15

6.3 Eternal Deployment

For high trustworthiness, development of the test cases used for the final system
test should be as decoupled from the on-going scenario evolution as possible,
i.e., the data used in both processes should overlap as little as possible. Of
course, following this guideline completely results in the duplication of a lot
of processes and artifacts. Still, it is important to accurately keep track of the
influences on the respective sets of scenarios. A clear definition of the off-site
adaptation border provides a starting point for when to branch off a scenario
evolution process that is independent of possible scenario-specific adaptations
on the system-under-test’s side. Running multiple independent system tests (cf.
ensemble methods [26,27]) is advisable as well. However, the space of available
independently generated data is usually very limited.

For the deployment phase, it is thus of key importance to carry over as much
information as possible about the genesis of the system we deploy into the run-
time, where it can be used to look up the traces of observed decisions. The
reason to do this now is that we usually expect the responsibility for the system
to change at this point: Whereas previously, any system behavior was overseen by
the developers who could potentially backtrack any phenomenon to all previous
steps in the system development process, now we expect on-site maintenance
to be able to handle any potential problem with the system in the real world,
requiring more intricate preparation for maintenance tasks (c.f. Concept 3). We
thus need to endow these new people with the ability to properly understand
what the system does and why.

Our approach follows the vision of eternal system design [28], which is a
fundamental change in the way to treat deployment: We no longer ship a single
artifact as the result of a complex development process, but we ship an image of
the process itself (cf. Concept 4). As a natural consequence, we can only ever add
to an eternal system but hardly remove changes and any trace of them entirely.
Using an adequate combination operator, this meta-design pattern is already
implemented in the way we construct adaptation sequences (c.f. Definition 10):

For example, given a system Si we could construct Si+1 = X
Z
! Y in a way so

that Si is included in Si+1’s internal state Z.
As of now, however, the design of eternal systems still raises many unan-

swered questions in system design. We thus resort to the notion of scenarios
only as a sufficient system description to provide explanatory power at run-time
and recommend to apply standard “destructive updates” to all other system
artifacts.

7 Conclusion

We have introduced a new formal model for adaptation and test processes using
our notion of scenarios. We connected this model to concrete challenges and
arising concepts in software engineering to show that our approach of scenario
coevolution is fit to tackle (a first few) of the problems when doing quality
assurance for complex adaptive systems.

Taken from original publication: Thomas Gabor, Marie Kiermeier, Andreas
Sedlmeier, Bernhard Kempter, Cornel Klein, Horst Sauer, Reiner Schmid, and Jan
Wieghardt. Adapting quality assurance to adaptive systems: The scenario coevolu-
tion paradigm. In International Symposium on Leveraging Applications of Formal
Methods (ISoLA), 2018

156

16 Lecture Notes in Computer Science: Authors’ Instructions

As already noted throughout the text, a few challenges still persist. Perhaps
most importantly, we require an adequate data structure both for the coding
of systems and for the encoding of test suites and need to prove the practical
feasibility of an optimization process governing the software development life-
cycle. For performance reasons, we expect that some restrictions on the general
formal framework will be necessary. In this work, we also deliberately left out
the issue of meta-processes: The software development life-cycle can itself be
regarded as system according to Definition 1. While this may complicate things
at first, we also see potential in not only developing a process of establishing
quality and trustworthiness but also a generator for such processes (akin to
Concept 4).

Systems with a high degree of adaptivity and, among those, systems em-
ploying techniques of artificial intelligence and machine learning will become
ubiquitous. If we want to trust them as we trust engineered systems today, the
methods of quality assurance need to rise to the challenge: Quality assurance
needs to adapt to adaptive systems!

References

1. Hölzl, M., Wirsing, M.: Towards a system model for ensembles. In: Formal Mod-
eling: Actors, Open Systems, Biological Systems. Springer (2011) 241–261

2. Wirsing, M., Hölzl, M., Koch, N., Mayer, P.: Software Engineering for Collective
Autonomic Systems: The ASCENS Approach. Volume 8998. Springer (2015)

3. Bruni, R., Corradini, A., Gadducci, F., Lafuente, A.L., Vandin, A.: A concep-
tual framework for adaptation. In: International Conference on Fundamental Ap-
proaches to Software Engineering, Springer (2012) 240–254

4. Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research chal-
lenges. ACM transactions on autonomous and adaptive systems (TAAS) (2009)

5. De Lemos, R., Giese, H., Müller, H.A., Shaw, M., Andersson, J., Litoiu, M.,
Schmerl, B., Tamura, G., Villegas, N.M., Vogel, T., et al.: Software engineering
for self-adaptive systems: A second research roadmap. In: Software Engineering
for Self-Adaptive Systems II. Springer (2013) 1–32

6. Bures, T., Weyns, D., Berger, C., Biffl, S., Daun, M., Gabor, T., Garlan, D.,
Gerostathopoulos, I., Julien, C., Krikava, F., et al.: Software engineering for smart
cyber-physical systems—Towards a research agenda: Report on the first interna-
tional workshop on software engineering for smart CPS. ACM SIGSOFT Software
Engineering Notes 40(6) (2015) 28–32

7. Belzner, L., Beck, M.T., Gabor, T., Roelle, H., Sauer, H.: Software engineering
for distributed autonomous real-time systems. In: Proceedings of the 2nd Inter-
national Workshop on Software Engineering for Smart Cyber-Physical Systems,
ACM (2016) 54–57

8. Bures, T., Weyns, D., Schmer, B., Tovar, E., Boden, E., Gabor, T., Gerostathopou-
los, I., Gupta, P., Kang, E., Knauss, A., et al.: Software engineering for smart cyber-
physical systems: Challenges and promising solutions. ACM SIGSOFT Software
Engineering Notes 42(2) (2017) 19–24

9. Oreizy, P., Gorlick, M.M., Taylor, R.N., Heimhigner, D., Johnson, G., Medvidovic,
N., Quilici, A., Rosenblum, D.S., Wolf, A.L.: An architecture-based approach to

Taken from original publication: Thomas Gabor, Marie Kiermeier, Andreas
Sedlmeier, Bernhard Kempter, Cornel Klein, Horst Sauer, Reiner Schmid, and Jan
Wieghardt. Adapting quality assurance to adaptive systems: The scenario coevolu-
tion paradigm. In International Symposium on Leveraging Applications of Formal
Methods (ISoLA), 2018

157

Adapting Quality Assurance to Adaptive Systems 17

self-adaptive software. IEEE Intelligent Systems and Their Applications 14(3)
(1999) 54–62

10. Arcaini, P., Riccobene, E., Scandurra, P.: Modeling and analyzing MAPE-K feed-
back loops for self-adaptation. In: Proceedings of the 10th International Sym-
posium on Software Engineering for Adaptive and Self-Managing Systems, IEEE
Press (2015)

11. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1)
(2003) 41–50

12. Elkhodary, A., Esfahani, N., Malek, S.: FUSION: a framework for engineering self-
tuning self-adaptive software systems. In: Proceedings of the 18th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ACM (2010)

13. Andersson, J., Baresi, L., Bencomo, N., de Lemos, R., Gorla, A., Inverardi, P.,
Vogel, T.: Software engineering processes for self-adaptive systems. In: Software
Engineering for Self-Adaptive Systems II. Springer (2013) 51–75

14. Gabor, T., Belzner, L., Kiermeier, M., Beck, M.T., Neitz, A.: A simulation-based
architecture for smart cyber-physical systems. In: Autonomic Computing (ICAC),
2016 IEEE International Conference on, IEEE (2016) 374–379

15. Weyns, D.: Software engineering of self-adaptive systems: an organised tour and
future challenges. (2017)

16. Nicola, R.D., Loreti, M., Pugliese, R., Tiezzi, F.: A formal approach to autonomic
systems programming: The SCEL language. ACM Transactions on Autonomous
and Adaptive Systems (TAAS) 9(2) (2014) 7

17. Hölzl, M., Gabor, T.: Reasoning and learning for awareness and adaptation. In:
Software Engineering for Collective Autonomic Systems. Springer (2015) 249–290

18. Bernon, C., Camps, V., Gleizes, M.P., Picard, G.: Tools for self-organizing appli-
cations engineering. In: International Workshop on Engineering Self-Organising
Applications, Springer (2003) 283–298

19. Bernon, C., Camps, V., Gleizes, M.P., Picard, G.: Engineering adaptive multi-
agent systems: The ADELFE methodology. In: Agent-Oriented Methodologies.
IGI Global (2005) 172–202

20. Kruchten, P.: The rational unified process: an introduction. Addison-Wesley Pro-
fessional (2004)

21. Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., Mané, D.: Con-
crete problems in AI safety. arXiv preprint arXiv:1606.06565 (2016)

22. Calinescu, R., Ghezzi, C., Kwiatkowska, M., Mirandola, R.: Self-adaptive software
needs quantitative verification at runtime. Communications of the ACM 55(9)
(2012) 69–77

23. Arcuri, A., Yao, X.: Coevolving programs and unit tests from their specification.
In: Proceedings of the 22nd IEEE/ACM International Conference on Automated
Software Engineering, ACM (2007) 397–400

24. Fraser, G., Arcuri, A.: Whole test suite generation. IEEE Transactions on Software
Engineering 39(2) (2013) 276–291

25. Črepinšek, M., Liu, S.H., Mernik, M.: Exploration and exploitation in evolutionary
algorithms: A survey. ACM Computing Surveys (CSUR) 45(3) (2013) 35

26. Dietterich, T.G., et al.: Ensemble methods in machine learning. Multiple classifier
systems 1857 (2000) 1–15

27. Hart, E., Sim, K.: On constructing ensembles for combinatorial optimisation.
Evolutionary Computation (2017) 1–21

28. Nierstrasz, O., Denker, M., Ĝırba, T., Lienhard, A., Röthlisberger, D.: Change-
enabled software systems. In: Software-Intensive Systems and New Computing
Paradigms. Springer (2008) 64–79

Taken from original publication: Thomas Gabor, Marie Kiermeier, Andreas
Sedlmeier, Bernhard Kempter, Cornel Klein, Horst Sauer, Reiner Schmid, and Jan
Wieghardt. Adapting quality assurance to adaptive systems: The scenario coevolu-
tion paradigm. In International Symposium on Leveraging Applications of Formal
Methods (ISoLA), 2018

158

Scenario Co-Evolution for Reinforcement Learning
on a Grid World Smart Factory Domain

Thomas Gabor,
Andreas Sedlmeier,
Marie Kiermeier,
Thomy Phan
LMU Munich

thomas.gabor@i�.lmu.de

Marcel Henrich,
Monika Pichlmair
University of Augsburg

Bernhard Kempter,
Cornel Klein,
Horst Sauer,

Reiner Schmid,
Jan Wieghardt

Siemens AG

ABSTRACT
Adversarial learning has been established as a successful paradigm
in reinforcement learning. We propose a hybrid adversarial learner
where a reinforcement learning agent tries to solve a problem while
an evolutionary algorithm tries to �nd problem instances that are
hard to solve for the current expertise of the agent, causing the intel-
ligent agent to co-evolve with a set of test instances or scenarios. We
apply this setup, called scenario co-evolution, to a simulated smart
factory problem that combines task scheduling with navigation of
a grid world. We show that the so trained agent outperforms con-
ventional reinforcement learning. We also show that the scenarios
evolved this way can provide useful test cases for the evaluation of
any (however trained) agent.

CCS CONCEPTS
•Computingmethodologies→Adversarial learning;Neural
networks; Genetic algorithms; Generative and developmen-
tal approaches; Robotic planning; Instance-based learning; Mobile
agents;

KEYWORDS
coevolution, reinforcement learning, evolutionary algorithms, au-
tomatic test generation, adversarial learning

ACM Reference Format:
Thomas Gabor, Andreas Sedlmeier, Marie Kiermeier, Thomy Phan, Marcel
Henrich, Monika Pichlmair, and Bernhard Kempter, Cornel Klein, Horst
Sauer, Reiner Schmid, Jan Wieghardt. 2019. Scenario Co-Evolution for
Reinforcement Learning on a Grid World Smart Factory Domain. In Ge-
netic and Evolutionary Computation Conference (GECCO ’19), July 13–17,
2019, Prague, Czech Republic. ACM, New York, NY, USA, 9 pages. https:
//doi.org/10.1145/3321707.3321831

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’19, July 13–17, 2019, Prague, Czech Republic
© 2019 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-6111-8/19/07. . . $15.00
https://doi.org/10.1145/3321707.3321831

1 INTRODUCTION
Reinforcement learning has been at the heart of most recent success
stories in arti�cial intelligence [3, 24, 31, 45]. Naturally, many exten-
sions of the basic concept have been proposed [23, 25, 28]. In this
paper, we take a look at adversarial learning: Instead of one single
agent, in adversarial learning, we train two agents with largely
opposing goals [39]. Thus, while one agent tries to maximize the
given reward function, the other agent is allowed to disturb the
environment to a certain extent and thus work against the plan
of the �rst agent. For instance, Pinto et al. [39] train an agent for
the purpose of walking the maximal distance without falling down,
given a virtual body set up in a particular way. At certain intervals
in between that training process, they train another agent that has
the goal to apply disturbances to the virtual environment (and in
extent to the body controlled by the �rst agent) in such a way as to
minimize the distance walked by the �rst agent. When set up right,
this increases the di�culty for the �rst agent (without making the
task impossible) but also the learning progress and eventually helps
in training a better agent. This example can be seen as the standard
instance of adversarial learning. Pinto et al. [39] have shown that an
agent trained in this way is not only able to walk longer distances
in the presence of disturbances (as they were present during its
training) but also is a better agent for walking even when there are
no disturbances at all. In a similar setting, Florensa et al. [16] have
shown that starting with simple challenges and then increasing the
di�culty can lead to better overall success during training.

A similar concept has been observed in biology and transferred
to evolutionary algorithms: The phenomenon of two evolutionary
processes in�uencing each other’s �tness evaluations is called co-
evolution. In biology, common observations include the �owers
of pollinating plants and the beaks and mandibles of birds and
insects that feed on their nectar. In this case, the involved species of
plant and bird both bene�t from a common and matching solution.
However, there are also examples of competitive co-evolution: Prey
and predator constantly adapt to each other’s changes in away quite
similar to the scenario of the walking agents described above [37]:
While the prey tries to maximize its chance of getting away or
self-defend, the predator tries to impede that exact objective. When
set up right, competitive co-evolution results in an arms race where
both antagonistic populations try to outperform the other, possibly
resulting in rapid progress and increased genetic robustness [8].

This concept has been used in the most recently released work
of Wang et al. [50], who co-evolve a set of walking agents and a
set of challenging environments. For both, they use evolutionary

Taken from original publication: Thomas Gabor, Andreas Sedlmeier, Marie Kier-
meier, Thomy Phan, Marcel Henrich, Monika Pichlmair, Bernhard Kempter, Cor-
nel Klein, Horst Sauer, Reiner Schmid, and Jan Wieghardt. Scenario co-evolution
for reinforcement learning on a grid world smart factory domain. In Proceedings of
the Genetic and Evolutionary Computation Conference, pages 898–906, 2019

159

GECCO ’19, July 13–17, 2019, Prague, Czech Republic Gabor et al.

strategies, which are related to some techniques of reinforcement
learning [54] but are now rather seen as a method of gradient-
based black-box optimization in contrast to classical reinforcement
learning [43, 53]. In their approach, called POET (which stands for
Paired Open-Ended Trailblazer), they pair up instances of agents
and environments to form single individuals in an overarching
evolutionary process. By contrast, we suggest (among other dif-
ferences, cf. Section 3) a simpler interaction model for agents and
environments and train a reinforcement learning agent using stan-
dard back-propagation. Still, we are able to produce similar results
for the discrete smart factory domain we introduce in this paper.

In all three examples introduced so far, the antagonistic agents
or species only interact via the mutually shared results of �tness
evaluations: A good result for one side is bad for the the other. (We
will formalize this setup in Section 4.) This allows us to combine
various techniques here, i.e., we propose to use a reinforcement
learning agent to train for certain behavior (that is well encoded
using neural networks) and an evolutionary algorithm to evolve
challenging environments to operate in (that are easily encoded us-
ing discrete vectors without an obvious gradient to them). Thus, we
can use adequate data structures on both sides of the co-evolution.
Motivated by the industry origin of the domain, we evaluate our
results not only against the �tness score, but also against a cri-
terium of solved/failed instances, showing greater robustness for
the co-evolutionary approach.

We consider this approach an instance of the general architec-
tural model we described in [22], hence we also call it scenario co-
evolution. There, the co-evolutionary principle is applied to software
engineering, where productive code and software tests co-evolve:
A test is good when it �nds bad behavior in the productive code,
while productive code is good when no test �nds bad behavior. As
suggested in both [50] and [22], we show in this paper that the
co-evolved environments (also called scenarios) can be used e�-
ciently for classical software testing, outperforming random testing
in their prowess to challenge an agent.

We now continue to formally introduce the basic concepts men-
tioned so far (cf. Section 2) and then give an overview of related
work (cf. Section 3). We formally describe our approach at scenario
co-evolution in Section 4 and provide an empirical evaluation in
Section 5. We conclude with Section 6.

2 BASICS
2.1 Markov Decision Processes
We base our problem formulation on the notion of a Markov de-
cision process (MDP) [41], which is given via the tuple: M =

hS,A,P,Ri. S is a (�nite) set of states; st 2 S is the state of
the MDP at time step t . A is the (�nite) set of actions; at 2 A
is the action the MDP takes at time step t . P(st+1 |st ,at) is the
transition probability function; a state transition occurs by exe-
cuting an action at in a state st . The resulting next state st+1 is
then determined according to P. Note that in this paper we focus
on a deterministic domain represented by a deterministic MDP,
so P(st+1 |st ,at) 2 {0, 1}. Finally, R(st ,at) is the reward awarded
when the MDP takes action at when in state st ; for this paper we
assume that R(st ,at) 2 R.

The goal is to �nd a policy � : S ! A in the space of all possible
policies �, which maximizes the (discounted) returnGt at state st
over a potentially in�nite horizon, given via

Gt =
1’
k=0

�k · R(st+k ,at+k) (1)

where � 2 [0, 1] is the discount factor.

2.2 Reinforcement Learning
In order to search the policy space �, we consider model-free re-
inforcement learning (RL), in which an agent interacts with an
environment given as an MDP M by executing a sequence of
actions at 2 A, t = 0, 1, ... [48]. In the fully observable case of
reinforcement learning, the agent knows its current state st and
the action space A, but not the e�ect of executing at in st , i.e.,
P(st+1 |st ,at) and R(st ,at). In order to �nd the optimal policy �⇤

a commonly used value-based approach is Q-Learning [51], named
for the action-value function Q� : S ⇥ A ! R,� 2 �, which
describes the expected accumulated rewardQ� (st ,at)when taking
action at when in state st and then following the policy � for all
states st+1, st+2, ... afterwards.

The optimal action-value function Q⇤ is any action-value func-
tion that yields higher accumulated rewards than all other action-
value functions, i.e., Q⇤(st ,at) � Q� (st ,at) 8� 2 �. Q-Learning
aims to approximate Q⇤ by starting from an initial guess for Q ,
which is then updated via

Q(st ,at) Q(st ,at) + �[rt + � max
a

Q(st+1,a) �Q(st ,at)] (2)

by making use of experience samples et = (st ,at , st+1, rt), where
rt is the reward earned at time step t , i.e., by executing action at
when in state st . The learning rate � is a usually setup-speci�c
parameter.

The learned action-value function Q converges to the optimal
action-value function Q⇤, which then implies an optimal policy
�⇤(st) = argmaxa Q(st ,a).

It is common to use a parameterized function approximator
(like a neural network), to approximate the action-value function:
Q(st ,at ;�) ⇡ Q⇤(st ,at) with � specifying the weights of the neural
network. When a deep neural network is used as the function
approximator, this approach is called deep reinforcement learning.
Mnih et al. [31] showed that combining this approach with deep
convolutional networks allows for successful learning from high-
dimensional input features like raw image data.

2.3 Evolutionary Algorithms
For this paper, we assume an evolutionary process (EP) to be de�ned
as follows: Given a �tness function f : X ! R for an arbitrary
set X called the search space, we want to �nd an individual x 2 X
with the best �tness, i.e., f (x) f (x 0) 8x 0 2 X. Note that for
consistency with the later application, we assume that the best
�tness has the lowest values, i.e., that we try to minimize the �tness
values. Usually, the search space X is too large or too complicated
to guarantee that we can �nd the exact best individual(s) using
standard computing models (and physically realistic time). Thus,
we take discrete subsets of the search space X via sampling and
iteratively improve their �tness. An evolutionary process E over

Taken from original publication: Thomas Gabor, Andreas Sedlmeier, Marie Kier-
meier, Thomy Phan, Marcel Henrich, Monika Pichlmair, Bernhard Kempter, Cor-
nel Klein, Horst Sauer, Reiner Schmid, and Jan Wieghardt. Scenario co-evolution
for reinforcement learning on a grid world smart factory domain. In Proceedings of
the Genetic and Evolutionary Computation Conference, pages 898–906, 2019

160

Scenario Co-Evolution for Reinforcement Learning
on a Grid World Smart Factory Domain GECCO ’19, July 13–17, 2019, Prague, Czech Republic

� generations, � 2 N, is de�ned as E = hX,o, f , (Xi)i<�i. X is the
search space. o : P(X)! P(X) is the evolutionary step function so
thatXi+1 = o(Xi) 8i � 0. As de�ned above, f : X ! R is the �tness
function. (Xi)i<� is a series of populations so that Xi ✓ X 8i .

For this work, we use the following evolutionary operators:
• The recombination operator rec : X ⇥ X ! X generates a
new individual from two given individuals.

• The mutation operator mut : X ! X alters a given individ-
ual slightly to return a new one.

• The migration operator mig : X, also called hyper-mutation,
generates a random individual mig() 2 X.

• The selection operator sel : P(X) ⇥ N ! P(X) returns a
new population X 0 = sel(X ,n) given a population X ✓ X,
so that |X 0 | n.

The operators rec,mut,mig can be applied to a population X
by choosing individuals from X to �ll their parameters (if any)
according to some selection scheme � and adding their return to
the population. For example, we allow to write mut� (X) = X [
{mut(� (X))}.

For any evolutionary process E = hX,o, f , (Xi)i<�i and selec-
tion schemes �1,�2,�3 we assume that

Xi+1 = o(Xi) = sel(mig�3 (mut�2 (rec�1 (Xi))), |Xi |). (3)

Roughly, we assume that an evolutionary process ful�lls its
purpose if the best �tness of the population tends to better over
time, i.e., minx 2Xi f (x) � minx 2Xi+k f (x) for su�ciently large k .

3 RELATEDWORK
3.1 Adversarial Learning
Adversarial Learning is a powerful paradigm towards robust rein-
forcement learning and has been widely used to train agents on
zero-sum games and continuous tasks [3, 5, 39, 44–46, 49].

Self-play reinforcement learning is a popular way to train agents
on complex zero-sum games like checkers, backgammon, or Go by
training a single agent on data generated by playing games against
itself [3, 39, 44–46, 49]. Since the agent always plays against itself,
the opponent always has an adequate di�culty level for the agent
to improve steadily. This can lead to complex behavioral strategies
emerging from simple game rules. Self-play reinforcement learning
can be regarded as the most simple way of adversarial learning,
where only the self-playing agent adapts, while the environment
remains static.

As mentioned in Section 1, agents can also be trained on single-
agent problems by evolving the environment adversarially like
via adding noise, disturbances, or extra forces to ensure robust
behavior [39]. The adversarial environment itself can be modeled
by a reinforcement learning agent, which tries to minimize the
outcome of the actual agent to be trained. This model results in a
zero-sum game between the original agent and the environment
itself [39]. Another way is to provide adversarial input samples
to fool the reinforcement learning agent into making suboptimal
decisions [38].

Beyond pure reinforcement learning, co-evolution has also been
used in many systems based on neuro-evolution, i.e., �nding the
right weights for neural networks using some kind of evolution-
ary process [32, 36]. Paired Open-Ended Trailblazer (POET) uses

a regularized variant of co-evolution, which maintains a pool of
environment-agent pairs, where only environments having an ad-
equate di�culty level for the current agent pool are kept in the
population [50]. The agents are trained with evolutionary strate-
gies [43] (allowing for a distribution of computational e�ort across
multiple machines) and attempted to be transferred from one envi-
ronment to another to escape local optima.

3.2 Test Evolution
The environments generated by an approach like POET (described
above) can also function as basis for software testing, as we argue
in this paper. However, the generation of test cases for software
products has been a widely-researched topic on its own [2, 15].
While classical approaches incorporate and often combine domain
knowledge and random sampling [10, 34], search-based software
testing aims a stochastic process towards more di�cult test cases
speci�cally [7, 30]. Many of those approaches, most prominently
EvoSuite [17–19], also employ evolutionary algorithms to search
through the space of possible test cases [12, 29, 42, 52].

In contrast to most state-of-the-art approaches, we consider as
a system-under-test not a classical, �xed piece of software but a
self-adaptive, learning system. Since these can change their own
behavior over time, they require a dynamic testing method as well
and are considered very hard to control for classical methods of
software testing [6, 11, 13]. Especially reinforcement learning poses
several challenges as the learning progress is usually hard to keep
track o� and the resulting behavior is hidden behind intransparent
policy encodings like neural networks [1]. While techniques like
adversarial learning usually use neural networks on both sides, we
argue that a collection of test cases as can be derived from the pop-
ulation of scenarios is more transparent to human inspection than
the test encodings generated by previous approaches. This argu-
ment has already beenmade for the process of software engineering
as whole but not veri�ed at a component level [22, 26].

Aside from generating software tests in a narrow sense, co-
evolution has also played a role in augmenting evolutionary search
towards more robust or more diverse results [4, 40]. It should be
noted that while the �eld of cooperative co-evolution (c.f. [33] for
a mathematical model and taxonomy) has interesting applications,
especially to learning agents [55], we focus entirely on a case of
competitive co-evolution.

4 APPROACH
We propose to combine an agent using reinforcement learning
with an evolutionary process evolving hard test cases. Assume
we have a family of MDPs Mx = (S,A,Px ,Rx) for an arbitrary
parameter x 2 X, with X being an arbitrary parameter space to
the MDP. A speci�c setting for x is also called a scenario. We limit
the di�erence between two di�erently parametrized MDPs to the
transition probability function and the reward function with the
state and action space remaining constant. Note that changing the
transition probability function may render some areas of the state
space unreachable.

Typically, when we want our agent to perform well against any
instance of the familyMx , we need to provide it with experience
samples et = (st ,at , st+1, rt) that were generated for all (or as many

Taken from original publication: Thomas Gabor, Andreas Sedlmeier, Marie Kier-
meier, Thomy Phan, Marcel Henrich, Monika Pichlmair, Bernhard Kempter, Cor-
nel Klein, Horst Sauer, Reiner Schmid, and Jan Wieghardt. Scenario co-evolution
for reinforcement learning on a grid world smart factory domain. In Proceedings of
the Genetic and Evolutionary Computation Conference, pages 898–906, 2019

161

GECCO ’19, July 13–17, 2019, Prague, Czech Republic Gabor et al.

as possible) di�erent scenarios x 2 X. Note that the setting of x
directly a�ects the values of st+1 via Px and rt via Rx . Usually,
some e�ect of a speci�c setting of x may also be visible in st and
thus exposed to the agent. This is the case for the smart factory
domain we introduce later.

The acknowledgement of certain non-user-controllable parame-
ters within the environment is crucial to realistic applications. In
most cases we have but a rough model of how the environment
may behave but no way to pinpoint the speci�cs unless we try out
all possibilities. So the agent needs to be trained against all of them,
ideally. Of course, for su�ciently large or complex X this becomes
infeasible. A standard approach is to take random samples from
X instead. This causes the agent to specialize on the average sce-
nario x 2 X after a while of training, which may be a good choice
per se. However, in most real-world scenarios, good average case
performance is largely outweighed by bad worst case performance,
i.e., a navigation software that (even rarely) provokes incidents is
bad for the job, even if on average it �nds the way quicker than its
competition.

So instead of taking random samples from the scenario space X,
we may want to focus on the hard settings for x , i.e., those values
x for which the agent’s performance deteriorates. In order to do
so, we have to �nd the respective values for x �rst, though. We
propose to do so using an evolutionary algorithm (as described in
Section 2.3) that optimizes for hard settings for x . This evolutionary
algorithm constructs an evolutionary process with search space X
(rendering our variable naming scheme consistent). The resulting
population after a few generations of optimizing for hard x is then
used to generate experience samples for the reinforcement learning
agent. The best reinforcement learning agent so far is in turn used
to evaluate the hardness of the settings for x for the next few
generations of evolution.

Figure 1 shows a schematic representation of the combined pro-
cess called scenario co-evolution (SCoE): The interaction points be-
tween the evolutionary process and the reinforcement learning
agent are:

• The experience samples necessary to train the agent are
drawn using settings for x 2 X that are included in the
current population X of the evolutionary process. When all
x 2 X have been used, the evolutionary process evolves
further for a few generations.

• The �tness f (x) assigned to each x 2 X is computed using
the accumulated reward of running the current agent policy
� on the MDPMx , i.e.,

f (x) =
h’
t=0

Rx (st ,� (st)) (4)

where h is the end of the current episode, i.e., Px (s |sh ,a) =
0 8s 2 S,a 2 A. Note that we de�ned the reinforcement
learning agent to maximize its reward while the evolutionary
process tries to minimize the �tness.

These interactions su�ce to give rise to competitive co-evolution
between a supposedly robust agent and a set of hard scenarios.
However, our evaluation shows that the so-trained reinforcement
learning agent not only performs better in the hard scenarios it
was trained for, but also in randomly selected average scenarios.

We call this the “exam e�ect”: When we confront the agent with
hard scenarios (and it can solve those), we can also assume it can
solve easy scenarios. Thus, there is no additional use to confront
it with easy scenarios during training. E�ectively, this is why we
can talk about “easy” and “hard” scenarios in the �rst place: The
agent does not simply specialize on a speci�c subset of scenarios
and gets worse on other scenarios in return, but it gets better in all
scenarios by training on some scenarios we thus call “hard”. This
implies a hierarchy or order among scenarios. The scenarios that
can be learned alongside training on hard scenarios can then be
called “easy”.

5 EVALUATION
5.1 Smart Factory Domain
For the evaluation of our approach, we implemented a smart fac-
tory domain, in which a number of items have to be processed
at workstations of di�erent types, while avoiding collisions with
dynamically placed obstacles. Thus, the main focus of the task lies
in navigation through the smart factory. However, at certain times
the agent also needs to decide which workstation to visit next.

The environment is implemented as a discrete grid of size 7⇥8 as
can be seen in Figure 2. Five workstations of three di�erent types are
placed at �xed positions. Five items are placed at these workstations
that need to be processed at various other workstations according
to an item-speci�c, �xed sequence of length 1 – 3. While the agent
always starts each episode at the �xed position (1, 1), 4 obstacles
are placed at varying positions on the grid. The positions of these
obstacles are the only free variables in the environment and are
either determined randomly, or according to the SCoE method’s
evolution, i.e., the SCoE approach optimizes for the most impeding
position of obstacles to the agent, X ⇢ ({0, ..., 6} ⇥ {0, ..., 7})4.
However, note that we check for unsolvable instances (when a
single workstation is completely blocked, e.g.) and exclude these
from both random sampling and evolution.

For the purpose of passing the factory state as an input to the
reinforcement learning agent (and in extent its neural network), the
factory state is encoded as a stack of 7⇥8 feature planes, where each
plane represents the spatial positions of workstations or the agent
w.r.t. to some attribute. See Figure 3 for an informal description of
these feature planes.

At each timestep t , the agent can execute a single action at from
the action space A: move north, south, west, east, pick-up, place.
Valid movements, i.e., movements onto free grid �elds cause a re-
ward of �1, while collisions with the grid boundary or an obstacle
keep the agent’s position unchanged and are punished with a re-
ward of �100. A valid pick-up action can only be executed if the
agent is not already carrying an item and is standing on a �eld
adjacent to a workstation where an item is available. If the agent
is carrying an item, it can execute a valid place action if it is posi-
tioned on a �eld adjacent to a workstation with a type matching
the item’s next step in the processing sequence. A place action at
any other state is considered invalid. The current implementation
contains no stochasticity, i.e., the state transitions and rewards are
deterministic. A valid pick-up or place action is rewarded with 100,
while the reward of an invalid one is �50. An episode is completed
if all items were processed correctly.

Taken from original publication: Thomas Gabor, Andreas Sedlmeier, Marie Kier-
meier, Thomy Phan, Marcel Henrich, Monika Pichlmair, Bernhard Kempter, Cor-
nel Klein, Horst Sauer, Reiner Schmid, and Jan Wieghardt. Scenario co-evolution
for reinforcement learning on a grid world smart factory domain. In Proceedings of
the Genetic and Evolutionary Computation Conference, pages 898–906, 2019

162

Scenario Co-Evolution for Reinforcement Learning
on a Grid World Smart Factory Domain GECCO ’19, July 13–17, 2019, Prague, Czech Republic

Test

Agent

Random
Generator

Agent

reinforce

update

reinforce

update
Agent

evolve

Test

Agent
update

reinforce
reinforce

Figure 1: Schematic representation of a SCoE process. A population of test scenarios is �rst generated at random and then
improved via evolution. Between evolutions, the test scenario population is fully utilized as training data for the reinforcement
learning agent, which causes the agent to improve in parallel to the test scenario population.

Figure 2: Visualization of the smart factory domain. A mo-
bile robot can travel north, east, south and west on the grid.
It needs to visit workstations in order to retrieve items and
then needs to visit other workstations in order to process
these items. Attempting to walk out of the grid, into a work-
station or into an obstacle is penalized. Obstacle positions
vary according to the setting of the scenario x .

5.2 Setup
A neural network is used as the function approximator for Q⇤; it is
composed of 3 convolutional layers with 64 neurons each, a kernel
size of 3 and a stride length of 1, followed by a dense layer with
128 neurons and a dense output layer with 6 neurons, matching the
size of the action space A. All neurons use ReLU nonlinearity [35]
as the activation function, while Adam [27] is used to minimize
the mean squared error loss. In order to discover new actions to

take, the agent uses �-greedy exploration, starting with � = 1 and
exponentially decaying to � = 0.1 after 40000 actions. We use the
learning rate � = 0.01 and the discount factor � = 0.95.

Scenarios encode the position of the 4 obstacles in the domain,
so X = ({0, ..., 6} ⇥ {0, ..., 7})4 \ Y where Y are unsolvable
or non-sensical setups (placing obstacles directly on workstations,
encapsulating workstations or the agent and so on). While the state-
of-the-art agent (called “random” in the plots) selects its scenarios
to use for training episodes using random sampling, the SCoE agent
draws them from an evolutionary process with population size 500.
As SCoE uses all individuals for training exactly once, the evolution
has to be continued every 500 episodes. When evolution resumes,
it runs for another 500 generations. The SCoE evolutionary process
simply selects the best 500 individuals from parents and children
combined as survivors and uses tournaments of size 250 for parent
selection. Parents are recombined via uniform crossover on a per-
obstacle basis. Amigration (i.e., hyper-mutation) rate of 3% balances
that strong convergence. Mutation rate is 1% for amutation operator
that moves a single obstacle by one grid cell (if possible).

5.3 Training
In order to compare the overall performance of the state-of-the-art
“random” agent and a SCoE-trained agent, we �rst need to de�ne
a fair evaluation function. The scores/�tnesses (see Equation 4)
returned during training cannot be compared directly, since SCoE
trains against deliberately harder scenarios and is thus expected
to return lower scores. So instead, we de�ned a test set of 1000
randomly generated scenarios that (most probably) neither agent
got to see during training. We evaluate the agents’ scores on these
scenarios and plot the results for a direct comparison.

Figure 4 shows the direct comparison based on the number of
episodes the respective agents where trained on. Note for this plot

Taken from original publication: Thomas Gabor, Andreas Sedlmeier, Marie Kier-
meier, Thomy Phan, Marcel Henrich, Monika Pichlmair, Bernhard Kempter, Cor-
nel Klein, Horst Sauer, Reiner Schmid, and Jan Wieghardt. Scenario co-evolution
for reinforcement learning on a grid world smart factory domain. In Proceedings of
the Genetic and Evolutionary Computation Conference, pages 898–906, 2019

163

GECCO ’19, July 13–17, 2019, Prague, Czech Republic Gabor et al.

Plane Feature Description
1 Agent position The agent’s position on the grid
2 Obstacle positions The positions of the obstacles on the grid
3 Workstation positions The positions of the workstations on the grid
4 Items for pick-up The amount of items that can be picked up at the respective positions
5 Item place positions If the agent carries an item, the positions where this item can be placed at

Figure 3: Description of all feature planes contained in the state input st for Q� .

Figure 4: Scores achieved by SCoE and standard “random”
reinforcement learning during training over 10000 episodes.
Scores are averages of running the current agent against 1000
randomly generated test scenarios.

Figure 5: Scores achieved by a SCoE and standard “random”
reinforcement learning during training for ⇡ 50000 seconds
of runtime. Scores are averages of running the current agent
against 1000 randomly generated test scenarios. The plot
shows single runs with an added trend line. Over the same
amount of training time, SCoE generally achieves slighty
higher average scores.

Figure 6: Percentage of successfully solved test scenarios by
SCoE and standard “random” reinforcement learning. The
values are calculated from a randomly generated set of 1000
scenarios.

we took a snapshot of the agent every 250 episodes, resulting in
the horizontal resolution of the plot. While we can see clearly that
SCoE outperforms the “random” agent even on randomly gener-
ated scenarios, it does have a bit of an unfair advantage: Sampling
scenarios randomly obviously takes less computational e�ort than
running several hundred generations of evolution to get the hardest
scenarios.

For this reason, we plotted the same data according to runtime
in Figure 5 as measured in physical seconds running on a standard
computer. The trend line still shows a net bene�t of using SCoEwith
respect to the time-quality trade-o�. This means that implementing
SCoE and running the elaborate evolutionary process in contrast
to just using random sampling for training scenarios actually pays
o� in performance.

5.4 Test
As stated in the introduction, improving scores is of course a nice
bene�t, but especially in real-world applications we are often more
interested in the agent avoiding complete failures rather than get-
ting the last bits of performance in already good scenarios. The
smart factory domain was constructed in such a way that it has a
clear overall goal: A sequence of actions is successful i� in the end
all items have been fully processed, i.e., have been transported to
all the workstations they needed to visit.

Taken from original publication: Thomas Gabor, Andreas Sedlmeier, Marie Kier-
meier, Thomy Phan, Marcel Henrich, Monika Pichlmair, Bernhard Kempter, Cor-
nel Klein, Horst Sauer, Reiner Schmid, and Jan Wieghardt. Scenario co-evolution
for reinforcement learning on a grid world smart factory domain. In Proceedings of
the Genetic and Evolutionary Computation Conference, pages 898–906, 2019

164

Scenario Co-Evolution for Reinforcement Learning
on a Grid World Smart Factory Domain GECCO ’19, July 13–17, 2019, Prague, Czech Republic

Figure 7: Test success achieved by SCoE for various popula-
tion sizes. Note that population size equals the batch size for
the reinforcement learning agent.

Figure 6 shows the percentage of successful tests among (again)
1000 randomly generated scenarios. These results �rst verify our
choice of a score/�tness function as it apparently aids in learning
successful behavior. Note that while reinforcement learning would
allow us to simply award the agent a score of +1 or �1 at the
end of each episode, depending on whether we consider it to be
solved successfully or not, this makes for a very hard reinforcement
learning problem. The discipline of constructing a score/�tness
function so that it helps to optimize for a di�erent overall objective
but still is easy to learn is often known as reward engineering and
beyond the scope of this work [14].

On this setup, we also performed an evaluation of the evolu-
tionary parameters population size and generation size, i.e., the
amount of generations evolved each time the evolutionary process
of SCoE is resumed. Figure 7 shows the test success achieved for
various population sizes. While very small population sizes result in
considerably lower performance, the di�erence diminishes beyond
100 and even sizes much higher than 500 do not seem to provide
substantial bene�t.

A similar picture can be seen in Figure 8 for the evaluation of
generation sizes. Note that smaller generation sizes, i.e., less gener-
ations of evolution happening between reinforcement learning, not
only hinder the optimization for hard scenarios, leading to results
quite comparable to the non-SCoE approach in Figure 6 for genera-
tions sizes of 5 and 10. Also, they cause the population of scenarios
to not change very much during evolution, which means that the
reinforcement learning agent continues to train on very similar
episodes most of the time, wasting training resources. Again, it
is interesting to note that even relatively small generation sizes
(like 25 or 50) already result in an advantage over the state-of-art
“random” approach (again cf. Figure 6).

Figure 8: Test success achieved by SCoE for various gener-
ation sizes, i.e., the amount of generations computed each
time scenarios are evolved.

Figure 9: Histogram of scores of a standard “random” re-
inforcement learning agent on 100 scenarios generated via
SCoE compared to 100 scenarios generated at random.

Lastly, wewant to verify our claim that the SCoE approach results
not only in a better-trained agent but also returns test scenarios
that can be used for the testing of any agents, i.e., scenarios that are
hard not only for the agent they were evolved against but for agents
solving the same domain in general. To this end, we took a set of the
100 hardest scenarios that came out of a SCoE-based training run
actually as a by-product and evaluated a state-of-the-art “random”
agent’s performance on these scenarios. Figure 9 shows the results
compared to the results of 100 scenarios generated randomly. As
we can see in the histogram, the “random” reinforcement learning
agent has a hard time solving the SCoE-generated scenarios, re-
sulting in comparatively many (and radically bad) negative scores.

Taken from original publication: Thomas Gabor, Andreas Sedlmeier, Marie Kier-
meier, Thomy Phan, Marcel Henrich, Monika Pichlmair, Bernhard Kempter, Cor-
nel Klein, Horst Sauer, Reiner Schmid, and Jan Wieghardt. Scenario co-evolution
for reinforcement learning on a grid world smart factory domain. In Proceedings of
the Genetic and Evolutionary Computation Conference, pages 898–906, 2019

165

GECCO ’19, July 13–17, 2019, Prague, Czech Republic Gabor et al.

Note that none of the runs yielding negative scores can be consid-
ered successful w.r.t. to the above de�nition. This shows that the
SCoE-generated scenarios are indeed more challenging in general
and not overly specialized on the shortcomings of the single agent
they were evolved against.

6 CONCLUSION
We augmented reinforcement learning by adding a process of sce-
nario co-evolution (SCoE), a technique that uses evolution to gen-
erate hard training scenarios for the reinforcement learning agent
instead of using random sampling as it is common practice. While
it has been known that biased sampling may aid reinforcement
learning and competitive co-evolution for evolutionary processes
has been well-known and studied, the speci�c combination of rein-
forcement learning with a genetic algorithmwith the exact opposite
objective function is novel to the authors’ knowledge. We found
that SCoE not only aids in �nding better solutions (i.e., policies)
but also aids in �nding better solutions per runtime, thus bringing
a general bene�t for our application. Furthermore, we tested how
our approach performs not only measured against the objective
function given to it but also against the intended goal of the sys-
tem designer before translation into an easily learnable objective
function. SCoE showed superior performance in both regards.

Finally, we tested the expressiveness of the test scenarios gen-
erated as a by-product when applying the SCoE approach. We
showed that the scenarios generated during a SCoE-based training
of a reinforcement learning agent are not necessarily specialized
on that same agent but are much harder than random scenarios
for an independently trained agent as well, thus suggesting that
SCoE’s scenarios can afterwards be used for software testing on
the domain in general.

For the evaluation of our approach we introduced and imple-
mented a small grid world domain inspired by the vision of the
smart factory. We focused on a single domain as our goal was to
show all intricacies and the variety of parameters that need to be
minded on the reinforcement learning and the evolutionary algo-
rithm side of the applications. Interestingly, the approach as well as
the results can be compared to the also very recent �ndings of [50]
for a co-evolutionary setting without common back-propagation-
based reinforcement learning. Naturally, we recognize that the
approach calls for a much broader evaluation on a variety of do-
mains. However, the generality of the concepts involved, i.e., both
reinforcement learning and evolutionary algorithms being known
for their broad applicability (at least each on their own), leads us to
suspect similar results can be achieved for other domains.

We would like to point out the following limitations of our cur-
rent implementation of the SCoE approach and suggest them to be
tackled in future work:

• Domain variety: As discussed, transferability of the results
needs to be shown. While most intuitive domains lend them-
selves to parametrized versions (having free parameters for
SCoE to optimize), it is still unclear how multiple sources
of free parameters should be handled. For example, if our
smart factory domain not only had obstacles but also faulty
items, should these be optimized by separate evolutionary

processes or should we build a single process for a more
complex, combined search space?

• Stochasticity: We only showed results for a deterministic
domain. While the framework easily allows for stochasticity
and preliminary experiments have suggested to us that the
approach is robust w.r.t. to domains with non-deterministic
transition probability functions, we still require a thorough
evaluation if and how SCoE needs to adapted to stochastic
domains (which are the common case in real-world applica-
tions). The known robustness of evolutionary processes to
random e�ects may be exploitable for SCoE [9].

• E�ciency: At present, the SCoE approach uses independent
evaluations when computing the score for training in rein-
forcement learning and when computing the �tness func-
tions for the individual scenarios. We showed that (at least
when scenario evaluations are not all too expensive) SCoE
still manages to slightly outperform standard reinforcement
learning regarding runtime. However, we suspect that the
evaluations could be shared to some extent, further improv-
ing the performance of SCoE.

• Diversity: Usually, within a parametrized domain there exist
several di�erent archetypes of hard scenarios. Even for our
relatively simple smart factory domain with obstacles, we
could place obstacles to block o� the agent, to block o� a
workstation or in the middle of an area where most pathways
cross. It may be bene�cial for the evolution to represent this
diversity within each single population as well. Diversity in
evolutionary algorithms has been shown to be bene�cial in
principle for many di�erent domains [20, 47]. The presence
of a dynamic �tness function may suggest that SCoE already
favors diversity to some extent [21]. However, the exact
impact diversity has and could have on the SCoE results still
needs to be understood more explicitly.

Of course, this selection of open questions and problems is far
from complete.We also suggest that further connections to software
engineering processes and software test design as sketched in [22,
50] could be made, for example.

Our results show that the hybridization of di�erent search meth-
ods and the deliberate construction of co-evolutionary systems can
be a promising endeavor. While these complex, intertwined systems
seem hard to control at �rst, we suggest that approaches like SCoE,
bringing part of the control (i.e., testing) into the system, can actu-
ally aid the transparency and manageability of traditionally “black
box” methods (like reinforcement learning). Eventually, one may
hope for a better theoretic and practical understanding of complex
systems in the future.

REFERENCES
[1] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and

Dan Mané. 2016. Concrete problems in AI safety. arXiv preprint arXiv:1606.06565
(2016).

[2] Saswat Anand, Edmund K Burke, Tsong Yueh Chen, John Clark, Myra B Cohen,
Wolfgang Grieskamp, Mark Harman, Mary Jean Harrold, Phil Mcminn, Antonia
Bertolino, et al. 2013. An orchestrated survey of methodologies for automated
software test case generation. Journal of Systems and Software 86, 8 (2013),
1978–2001.

[3] Thomas Anthony, Zheng Tian, and David Barber. 2017. Thinking fast and slow
with deep learning and tree search. In Advances in Neural Information Processing
Systems. 5360–5370.

Taken from original publication: Thomas Gabor, Andreas Sedlmeier, Marie Kier-
meier, Thomy Phan, Marcel Henrich, Monika Pichlmair, Bernhard Kempter, Cor-
nel Klein, Horst Sauer, Reiner Schmid, and Jan Wieghardt. Scenario co-evolution
for reinforcement learning on a grid world smart factory domain. In Proceedings of
the Genetic and Evolutionary Computation Conference, pages 898–906, 2019

166

Scenario Co-Evolution for Reinforcement Learning
on a Grid World Smart Factory Domain GECCO ’19, July 13–17, 2019, Prague, Czech Republic

[4] Andrea Arcuri and Xin Yao. 2008. A novel co-evolutionary approach to automatic
software bug �xing. In Evolutionary Computation, 2008. CEC 2008.(IEEE World
Congress on Computational Intelligence). IEEE Congress on. IEEE, 162–168.

[5] Trapit Bansal, Jakub Pachocki, Szymon Sidor, Ilya Sutskever, and Igor Mordatch.
2018. Emergent Complexity via Multi-Agent Competition. In ICLR.

[6] Lenz Belzner, Michael Till Beck, Thomas Gabor, Harald Roelle, and Horst Sauer.
2016. Software engineering for distributed autonomous real-time systems. In
Proceedings of the 2nd International Workshop on Software Engineering for Smart
Cyber-Physical Systems. ACM, 54–57.

[7] Lenz Belzner and Thomas Gabor. 2017. Bayesian veri�cation under model uncer-
tainty. In Software Engineering for Smart Cyber-Physical Systems (SEsCPS), 2017
IEEE/ACM 3rd International Workshop on. IEEE, 10–13.

[8] Camillo Bérénos, K Mathias Wegner, and Paul Schmid-Hempel. 2010. Antagonis-
tic coevolution with parasites maintains host genetic diversity: an experimental
test. Proceedings of the Royal Society of London B: Biological Sciences (2010).

[9] Hans-Georg Beyer. 2000. Evolutionary algorithms in noisy environments: Theo-
retical issues and guidelines for practice. Computer methods in applied mechanics
and engineering 186, 2-4 (2000), 239–267.

[10] Joshua Brown, Zhi Quan Zhou, and Yang-Wai Chow. 2018. Metamorphic Testing
of Navigation Software: A Pilot Study with Google Maps. In Proceedings of the
51st Hawaii International Conference on System Sciences.

[11] Tomas Bures, DannyWeyns, Christian Berger, Stefan Bi�, Marian Daun, Thomas
Gabor, David Garlan, Ilias Gerostathopoulos, Christine Julien, Filip Krikava,
et al. 2015. Software Engineering for Smart Cyber-Physical Systems–Towards
a Research Agenda: Report on the First International Workshop on Software
Engineering for Smart CPS. ACM SIGSOFT Software Engineering Notes 40, 6
(2015), 28–32.

[12] Fulvio Corno, Ernesto Sánchez, Matteo Sonza Reorda, and Giovanni Squillero.
2004. Automatic test program generation: a case study. IEEE Design & Test of
Computers 21, 2 (2004), 102–109.

[13] Rogério De Lemos, Holger Giese, Hausi A Müller, Mary Shaw, Jesper Andersson,
Marin Litoiu, Bradley Schmerl, Gabriel Tamura, Norha M Villegas, Thomas Vogel,
et al. 2013. Software engineering for self-adaptive systems: A second research
roadmap. In Software Engineering for Self-Adaptive Systems II. Springer, 1–32.

[14] Daniel Dewey. 2014. Reinforcement learning and the reward engineering princi-
ple. In 2014 AAAI Spring Symposium Series.

[15] Jon Edvardsson. 1999. A survey on automatic test data generation. In Proceedings
of the 2nd Conference on Computer Science and Engineering. 21–28.

[16] Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter
Abbeel. 2017. Reverse curriculum generation for reinforcement learning. arXiv
preprint arXiv:1707.05300 (2017).

[17] Gordon Fraser and Andrea Arcuri. 2011. Evolutionary generation of whole test
suites. In 2011 11th International Conference on Quality Software. IEEE, 31–40.

[18] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: automatic test suite generation
for object-oriented software. In Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of software engineering. ACM,
416–419.

[19] Gordon Fraser and Andrea Arcuri. 2014. A large-scale evaluation of automated
unit test generation using EvoSuite. ACM Transactions on Software Engineering
and Methodology (TOSEM) 24, 2 (2014), 8.

[20] Thomas Gabor, Lenz Belzner, and Claudia Linnho�-Popien. 2018. Inheritance-
based diversity measures for explicit convergence control in evolutionary algo-
rithms. In Proceedings of the Genetic and Evolutionary Computation Conference.
ACM, 841–848.

[21] Thomas Gabor, Lenz Belzner, Thomy Phan, and Kyrill Schmid. 2018. Preparing
for the Unexpected: Diversity Improves Planning Resilience in Evolutionary Al-
gorithms. In 2018 IEEE International Conference on Autonomic Computing (ICAC).
IEEE, 131–140.

[22] Thomas Gabor, Marie Kiermeier, Andreas Sedlmeier, Bernhard Kempter, Cornel
Klein, Horst Sauer, Reiner Schmid, and Jan Wieghardt. 2018. Adapting quality as-
surance to adaptive systems: the scenario coevolution paradigm. In International
Symposium on Leveraging Applications of Formal Methods. Springer, 137–154.

[23] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. In Advances in neural information processing systems. 2672–2680.

[24] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and
David Meger. 2018. Deep reinforcement learning that matters. In Thirty-Second
AAAI Conference on Arti�cial Intelligence.

[25] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski,
Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. 2018.
Rainbow: Combining improvements in deep reinforcement learning. In Thirty-
Second AAAI Conference on Arti�cial Intelligence.

[26] Matthias Hölzl, Nora Koch, Mariachiara Puviani, Martin Wirsing, and Franco
Zambonelli. 2015. The ensemble development life cycle and best practices for
collective autonomic systems. In Software Engineering for Collective Autonomic
Systems. Springer, 325–354.

[27] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[28] Diederik P Kingma and Max Welling. 2013. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114 (2013).

[29] Kiran Lakhotia, Mark Harman, and Phil McMinn. 2007. A multi-objective ap-
proach to search-based test data generation. In Proceedings of the 9th annual
conference on Genetic and evolutionary computation. ACM, 1098–1105.

[30] Phil McMinn. 2004. Search-based software test data generation: a survey. Software
testing, Veri�cation and reliability 14, 2 (2004), 105–156.

[31] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
Nature 518, 7540 (2015), 529.

[32] Nick Moran and Jordan Pollack. 2018. Coevolutionary Neural Population Models.
arXiv preprint arXiv:1804.04187 (2018).

[33] Jason Morrison and Franz Oppacher. 1999. A general model of co-evolution for
genetic algorithms. In Arti�cial Neural Nets and Genetic Algorithms. Springer,
262–268.

[34] Glenford J Myers, Corey Sandler, and Tom Badgett. 2011. The art of software
testing. John Wiley & Sons.

[35] Vinod Nair and Geo�rey E Hinton. 2010. Recti�ed linear units improve re-
stricted boltzmann machines. In Proceedings of the 27th international conference
on machine learning (ICML-10). 807–814.

[36] Geo� S Nitschke, AE Eiben, and Martijn C Schut. 2012. Evolving team behaviors
with specialization. Genetic Programming and Evolvable Machines 13, 4 (2012),
493–536.

[37] Randal S Olson, David B Knoester, and Christoph Adami. 2016. Evolution of
swarming behavior is shaped by how predators attack. Arti�cial life 22, 3 (2016),
299–318.

[38] Anay Pattanaik, Zhenyi Tang, Shuijing Liu, Gautham Bommannan, and Girish
Chowdhary. 2018. Robust deep reinforcement learning with adversarial attacks.
In Proceedings of the 17th International Conference on Autonomous Agents and
MultiAgent Systems. International Foundation for Autonomous Agents and Mul-
tiagent Systems, 2040–2042.

[39] Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. 2017. Ro-
bust adversarial reinforcement learning. arXiv preprint arXiv:1703.02702 (2017).

[40] Jordan B Pollack and Alan D Blair. 1998. Co-evolution in the successful learning
of backgammon strategy. Machine learning 32, 3 (1998), 225–240.

[41] Martin L Puterman. 2014. Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons.

[42] André Reichstaller, Thomas Gabor, and Alexander Knapp. 2018. Mutation-based
test suite evolution for self-organizing systems. In International Symposium on
Leveraging Applications of Formal Methods. Springer, 118–136.

[43] Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. 2017.
Evolution strategies as a scalable alternative to reinforcement learning. arXiv
preprint arXiv:1703.03864 (2017).

[44] Arthur L Samuel. 1959. Some studies in machine learning using the game of
checkers. IBM Journal of research and development 3, 3 (1959), 210–229.

[45] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. 2016. Mastering the game of Go with deep neural
networks and tree search. nature 529, 7587 (2016), 484.

[46] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,
et al. 2017. Mastering the game of Go without human knowledge. Nature 550,
7676 (2017), 354.

[47] Giovanni Squillero and Alberto Tonda. 2016. Divergence of character and pre-
mature convergence: A survey of methodologies for promoting diversity in
evolutionary optimization. Information Sciences 329 (2016), 782–799.

[48] Richard S Sutton and AndrewG Barto. 1998. Introduction to reinforcement learning.
Vol. 135. MIT press Cambridge.

[49] Gerald Tesauro. 1995. Temporal di�erence learning and TD-Gammon. Commun.
ACM 38, 3 (1995), 58–69.

[50] Rui Wang, Joel Lehman, Je� Clune, and Kenneth O Stanley. 2019. Paired Open-
Ended Trailblazer (POET): Endlessly Generating Increasingly Complex and Di-
verse Learning Environments and Their Solutions. arXiv preprint arXiv:1901.01753
(2019).

[51] Christopher John Cornish Hellaby Watkins. 1989. Learning from delayed rewards.
Ph.D. Dissertation. King’s College, Cambridge.

[52] JoachimWegener, Kerstin Buhr, and Hartmut Pohlheim. 2002. Automatic test data
generation for structural testing of embedded software systems by evolutionary
testing. In Proceedings of the 4th Annual Conference on Genetic and Evolutionary
Computation. Morgan Kaufmann Publishers Inc., 1233–1240.

[53] Daan Wierstra, Tom Schaul, Jan Peters, and Juergen Schmidhuber. 2008. Natural
evolution strategies. In IEEE World Congress on Computational Intelligence. IEEE,
3381–3387.

[54] Ronald J Williams. 1992. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine learning 8, 3-4 (1992), 229–256.

[55] Chern Han Yong and Risto Miikkulainen. 2001. Cooperative coevolution of
multi-agent systems. University of Texas at Austin, Austin, TX (2001).

View publication statsView publication stats

Taken from original publication: Thomas Gabor, Andreas Sedlmeier, Marie Kier-
meier, Thomy Phan, Marcel Henrich, Monika Pichlmair, Bernhard Kempter, Cor-
nel Klein, Horst Sauer, Reiner Schmid, and Jan Wieghardt. Scenario co-evolution
for reinforcement learning on a grid world smart factory domain. In Proceedings of
the Genetic and Evolutionary Computation Conference, pages 898–906, 2019

167

International Journal on Software Tools for Technology Transfer (2020) 22:457–476
https://doi.org/10.1007/s10009-020-00560-5

FOUNDATION FOR MASTER ING CHANGE

Special Section REoCAS

The scenario coevolution paradigm: adaptive quality assurance
for adaptive systems

Thomas Gabor1 · Andreas Sedlmeier1 · Thomy Phan1 · Fabian Ritz1 ·Marie Kiermeier1 · Lenz Belzner1 ·
Bernhard Kempter2 · Cornel Klein2 · Horst Sauer2 · Reiner Schmid2 · Jan Wieghardt2 ·Marc Zeller2 ·
Claudia Linnhoff-Popien1

Published online: 6 March 2020
© The Author(s) 2020

Abstract
Systems are becoming increasingly more adaptive, using techniques like machine learning to enhance their behavior on
their own rather than only through human developers programming them. We analyze the impact the advent of these new
techniques has on the discipline of rigorous software engineering, especially on the issue of quality assurance. To this end, we
provide a general description of the processes related to machine learning and embed them into a formal framework for the
analysis of adaptivity, recognizing that to test an adaptive system a new approach to adaptive testing is necessary. We introduce
scenario coevolution as a design pattern describing how system and test can work as antagonists in the process of software
evolution. While the general pattern applies to large-scale processes (including human developers further augmenting the
system), we show all techniques on a smaller-scale example of an agent navigating a simple smart factory. We point out new
aspects in software engineering for adaptive systems that may be tackled naturally using scenario coevolution. This work is a
substantially extended take on Gabor et al. (International symposium on leveraging applications of formal methods, Springer,
pp 137–154, 2018).

Keywords Adaptation · Self-adaptive systems · Software engineering · Quality assurance · Machine learning · Artificial
intelligence · Software evolution · Coevolution

1 Introduction

Until recently, the discipline of software engineering has
mainly tackled the process through which humans develop
software systems. In the last few years, current breakthroughs
in the fields of artificial intelligence and machine learn-
ing have opened up new possibilities that have previously
been considered infeasible or just too complex to tackle with
“manual” coding: Complex image recognition [40], natu-
ral language processing [15] or decision making as it is
used in complex games [38,39] are prime examples. The
resulting applications are pushing toward a broad audience
of users. However, as of now, they are mostly focused on
non-critical areas of use, at least when implemented with-

B Thomas Gabor
thomas.gabor@ifi.lmu.de

1 LMU Munich, Oettingenstr. 67, 80538 Munich, Germany

2 Siemens AG, Otto-Hahn-Ring, 81739 Munich, Germany

out human supervision [2]. Software artifacts generated via
machine learning are hard to analyze, causing a lack of trust-
worthiness for many important application areas [26,42].

We claim that in order to reinstate levels of trustworthiness
comparable to well-known classical approaches, we need not
reproduce the principles of classical software tests but need to
develop a new approach toward software testing. We suggest
to develop a system and its test suite in a competitive setting
where each sub-system tries to outwit the other. We call this
approach scenario coevolution, which we introduce formally
and build the bridge to a practical application where it has
already shown benefit [24]. We hope that trust in such dynam-
ics can help to build a new process for quality assurance,
even for hardly predictable systems. In this work, we want
to analyze thoroughly how such an antagonist approach fits
into existing formal model for adaptivity, how it instantiates
current frameworks for machine learning and what impact it
might have on software engineering practices. We argue that
antagonist patterns such as scenario coevolution can work as

123

Taken from original publication: Thomas Gabor, Andreas Sedlmeier, Thomy
Phan, Fabian Ritz, Marie Kiermeier, Lenz Belzner, Bernhard Kempter, Cornel
Klein, Horst Sauer, Reiner Schmid, Marc Zeller, and Claudia Linnhoff-Popien.
The scenario coevolution paradigm: adaptive quality assurance for adaptive sys-
tems. International Journal on Software Tools for Technology Transfer, pages 1–
20, 2020

168

458 T. Gabor

a unifying concept across all these domains and eventually
enable more powerful adaptive quality assurance.

In this paper, we substantially expand the work on this
topic presented in [23]. Section 2 provides a short overview
on related work on process models for the development of
adaptive software. Following a top-down approach, we start
with the description of our approach in Sect. 3 by extending
a formal framework for the description of systems first intro-
duced in [28] and augment it to also include the process of
software and system development. We use said framework
to first present a formal definition of an example domain
used in [24] in Sect. 4. Section 5 discusses state-of-the-art
algorithms to achieve adaptation and introduces the machine
learning pipeline, a process model specifically designed to
engineer machine learning components. From this, we derive
four core concepts for the engineering of adaptive systems in
Sect. 6. In order to integrate these with our formal framework,
Sect. 7 introduces our notion of scenarios and their applica-
tion to an incremental software testing process. In Sect. 8,
we apply this new notion to our example domain, formally
explaining the results of [24]. In Sect. 9, we discuss which
effects scenario coevolution has on a selection of practical
software engineering tasks and how it helps implement the
core concepts. Finally, Sect. 10 provides a brief conclusion.

2 Related work

Many researchers and practitioners in recent years have
already been concerned about the changes necessary to allow
for solid and reliable software engineering processes for
(self-)adaptive systems. Central challenges were collected in
[36], where issues of quality assurance are already mentioned
but the focus is more on bringing about complex adaptive
behavior in the first place. The later research roadmap of
[17] puts a strong focus on interaction patterns of already
adaptive systems (both between each other and with human
developers) and already dedicates a section to verification
and validation issues, being close in mind to the perspec-
tive of this work. We fall in line with the roadmap further
specified in [7,12,13].

While this work largely builds upon [28], there have been
other approaches to formalize the notion of adaptivity: [34]
discusses high-level architectural patterns that form multi-
ple interconnected adaptation loops. In [4], such feedback
loops are based on the MAPE-K model [29]. While these
approaches largely focus on the formal construction of adap-
tive systems, there have also been approaches that assume a
(more human-centric or at least tool-centric) software engi-
neering perspective [3,19,22,45]. We want to discuss two of
those on greater detail.

In the results of the ASCENS (Autonomous Service Com-
ponent ENSembles) project [46], the interplay between

human developers and autonomous adaptation has been for-
malized in a life cycle model featuring separate states for each
the development progress of each respective feedback cycle.
Classical software development tasks and self-adaptation (as
well as self-monitoring and self-awareness) are regarded as
equally powerful contributing mechanisms for the produc-
tion of software. Both can be employed in junction to steer
the development process. In addition, ASCENS built upon
a (in parts) similar formal notion of adaptivity [11,32] and
sketched a connection between adaptivity in complex dis-
tributed systems and multi-goal multi-agent learning [27].

ADELFE (Atelier de Développement de Logiciels à Fonc-
tionnalité Emergente) is a toolkit designed to augment current
development processes to account for complex adaptive sys-
tems [8,9]. For this purpose, the ADELFE process is based
on the Rational Unified Process (RUP) [31] and comes with
tools for various tasks of software design. From a more sci-
entific point of view, ADELFE is also based on the theory
of adaptive multi-agent systems. For ADELFE, multi-agent
systems are used to derive a set of stereotypes for compo-
nents, which ease modeling for according types of systems.
It thus imposes stronger restrictions on system design than
our approach intends to.

Besides the field of software engineering, the field of arti-
ficial intelligence research is currently (re-)discovering a lot
of the same issues the discipline of engineering for com-
plex adaptive systems faced: The highly complex and opaque
nature of machine learning algorithms and the resulting data
structures often forces black-box testing and makes possi-
ble guarantees weak. When online learning is employed, the
algorithm’s behavior is subject to great variance and test-
ing usually needs to work online as well. The seminal paper
[2] provides a good overview of the issues. When applying
artificial intelligence to a large variety of products, rigorous
engineering for this kind of software seems to be one of the
major necessities lacking at the moment.

3 Formal framework

In this section, we introduce a formal framework as a basis
for our analysis. We first build upon the framework described
in [28] to define adaptive systems and then proceed to reason
about the influence of their inherent structure on software
architecture. In the last subsection, we introduce an example
system and realize the formal definitions in its context.

3.1 Describing adaptive systems

We roughly adopt the formal definitions of our vocabulary
related to the description of systems from [28]: We describe a
system as an arbitrary relation over any given set of variables.

123

Taken from original publication: Thomas Gabor, Andreas Sedlmeier, Thomy
Phan, Fabian Ritz, Marie Kiermeier, Lenz Belzner, Bernhard Kempter, Cornel
Klein, Horst Sauer, Reiner Schmid, Marc Zeller, and Claudia Linnhoff-Popien.
The scenario coevolution paradigm: adaptive quality assurance for adaptive sys-
tems. International Journal on Software Tools for Technology Transfer, pages 1–
20, 2020

169

The scenario coevolution paradigm: adaptive quality assurance for adaptive systems 459

Definition 1 (System [28]) Let I be a (finite or infinite) set,
and let V = (Vi)i∈I be a family of sets. A system of type V
is a relation S of type V .

Note that from a formal point of view, this means that
basically any given relation or function can be regarded as a
system, so this is a rather weak definition logically and we
should think of it rather as a tag attached to those entities that
can be meaningfully regarded as systems rather than a for-
mal restriction derivation of the notion. Also note that while
maintaining logical consistency, we deviate a bit from the
wording used in [28]: There, the same definition is used also
for ensembles, a notion we forgo in favor of the word “sys-
tem” and components, which in our case a defined later to
be only systems which participate in composition (cf. Defi-
nition 2).

Given a system S, an element s ∈ S is called the state of
the system. For practical purposes, we usually want to discern
various parts of a system’s state space. For this reason, parts of
the system relation of type V given by an index set J ⊆ I , i.e.,
(Vj) j∈J , may be considered inputs and other parts given by a
different index set may be considered outputs [28]. Formally,
this makes no difference to the system. Semantically, we
usually compute the output parts of the system using the
input parts.

We introduce two more designated sub-spaces of the
system relation: situation and behavior. These notions corre-
spond roughly to the intended meaning of inputs and outputs
mentioned before. The situation is the part of the system state
space that fully encapsulates all information the system has
about its state. This may include parts that the system does
have full control over. The behavior encapsulates the parts of
the system that can only be computed by applying the system
relation. Likewise, this does not imply that the system has
full control over the values. Furthermore, a system may have
an internal state, which is parts of the state space that are
neither included in the situation nor in the behavior. When
we are not interested in the internal space, we can regard
a system as a mapping from situations to behavior, written

S = X
Z! Y for situations X and behaviors Y , where Z is

the internal state of the system S. Using these notions, we
can more aptly define some properties on systems.

Further following the line of thought presented in [28],
we want to build systems out of other systems. At the core
of software engineering, there is the principle of reuse of
components, which we want to mirror in our formalism.

Definition 2 (Composition) Let S1 and S2 be systems of types
V1 = (V1,i)i∈I1 and V2 = (V2,i)i∈I2 , respectively. Let R(V)

be the domain of all relations over V . A combination operator
⊗ is a function such that S1⊗ S2 ∈ R(V) for some family of
sets V with V1,1, . . . , V1,m, V2,1, . . . , V2,n ∈ V . The appli-
cation of a combination operator is called composition. The
arguments to a combination operator are called components.

In [28], there is a more strict definition on how the com-
bination operator needs to handle the designated inputs and
outputs of its given systems. Here, we opt for a more general
definition. Note that in accordance with [28], however, our
composition operator is “arbitrarily powerful” in the sense
that the resulting system just needs to contain the components
in some way but may add an arbitrary amount of new parts
and functionality that is present in neither of the components.
The reason it is still meaningful to talk about “composition”
in this case is that the combination operator guarantees that
we can at least project system states of the original types V2

and V2 out of it.
Composition is not only important to model software

architecture within our formalism, but it also defines the for-
mal framework for interaction: Two systems interact when
they are combined using a combination operator ⊗ that
ensures that the behavior of (at least) one system is recog-
nized within the situation of (at least) one other system.

Definition 3 (Interaction) Let S = S1⊗ S2 be a composition
of type V of systems S1 and S2 of type V1 and V2, respectively,
using a combination operator⊗. If there exist a V1 ∈ V1 and
a V2 ∈ V2 and a relation R ∈ V1 × V2 so that for all states
s ∈ S, (proj(s, V1), proj(s, V2)) ∈ R, then the components
S1 and S2 interact with respect to R.

Note that (given a state s of system S of type V and a dif-
ferent type V ′ with V ′ ⊆ V) we use the notation proj(s, V ′)
for the projection of s into the type V ′, i.e., we cast system
state s to a system state for a system of type V ′ by dropping
all dimensions that are not part of V ′.

We can model an open system S as a combination S =
C⊗ E of a core system C and its environment E , both being
modeled as systems again.

Hiding some of the complexity described in [28], we
assume we have a logic L in which we can express a sys-
tem goal γ . For example, if L is zeroth-order logic, γ could
be made up as a Boolean expression on binary system state
observation, or if L is first-order logic, γ could be a predicate
that is given the system s as a parameter. We assume that we
can always decide if γ holds for a given system, in which
case we write S |& γ . Based on [28], we can use this concept
to define an adaptation domain:

Definition 4 (Adaptation Domain [28]) Let S be a system.
Let E be a set of environments that can be combined with S
using a combination operator⊗. Let Γ be a set of goals. An
adaptation domain A is a set A ⊆ E × Γ . S can adapt to A,
written S " A iff for all (E, γ) ∈ A it holds that S⊗E |& γ .

Definition 5 (Adaptation Space [28]) Let E be a set of envi-
ronments that can be combined with S using a combination
operator ⊗. Let Γ be set of goals. An adaptation space A is
a set A ⊆ P(E,Γ).

123

Taken from original publication: Thomas Gabor, Andreas Sedlmeier, Thomy
Phan, Fabian Ritz, Marie Kiermeier, Lenz Belzner, Bernhard Kempter, Cornel
Klein, Horst Sauer, Reiner Schmid, Marc Zeller, and Claudia Linnhoff-Popien.
The scenario coevolution paradigm: adaptive quality assurance for adaptive sys-
tems. International Journal on Software Tools for Technology Transfer, pages 1–
20, 2020

170

460 T. Gabor

Note that we thus define an adaptation space to be any
set of adaptation domains. We can now use the notion of an
adaptation space to define a preorder on the adaptivity of any
two systems.

Definition 6 (Adaptation [28]) Given two systems S and S′,
S′ is at least as adaptive as S, written S ' S′ iff for all
adaptation spaces A ∈ A it holds that S " A &⇒ S′ " A.

Both Definitions 4 and 5 can be augmented to include soft
constraints or optimization goals. This means that in addition
to checking against Boolean goal satisfaction, we can also
assign each system S interacting with an environment E a
fitness φ(S ⊗ E) ∈ F , where F is the type of fitness values.
We assume that there exists a preorder) on F , which we can
use to compare two fitness values. We can then generalize
Definitions 4 and 5 to respect these optimization goals.

Definition 7 (Adaptation Domain for Optimization) Let S be
a system. Let E be a set of environments that can be combined
with S using a combination operator ⊗. Let Γ be a set of
Boolean goals. Let F be a set of fitness values and) be
a preorder on F . Let Φ be a set of fitness functions with
codomain F . An adaptation domain A is a set A ⊆ E×Γ ×
Φ. S can adapt to A, written S " A iff for all (E, γ ,φ) ∈ A
it holds that S ⊗ E |& γ .

Note that in Definition 7, we only augmented the data
structure for adaptation domains but did not actually alter
the condition to check for the fulfillment of an adaptation
domain. This means that for an adaptation domain A, a sys-
tem needs to fulfill all goals in A but is not actually tested on
the fitness defined by φ. We could define a fitness threshold
f we require a system S to surpass in order to adapt to A
in the formalism. But such a check, written f) φ(S ⊗ E),
could already be included in the Boolean goals if we use a
logic that is expressive enough.

Instead, we want to use the fitness function as soft con-
straints. We expect the system to perform as well as possible
on this metric, but we do not (always) require a minimum
level of performance. However, we can use fitness to define
a fitness preorder on systems.

Definition 8 (Optimization) Given two systems S and S′ as
well as an adaptation space A, S′ is at least as optimal as
S, written S)A S′, iff for all (E, γ ,φ) ∈ A it holds that
φ(S ⊗ E)) φ(S′ ⊗ E).

Definition 9 (Adaptation with Optimization) Given two sys-
tems S and S′, S′ is at least as adaptive as S with respect to
optimization, written S '∗ S′ iff for all adaptation domains
A ∈ A it holds that S " A &⇒ S′ " A and S)A S′.

In Fig. 1, we introduce a visual representation of systems
and the relation of adaptivity given in Definition 9. Note that

Fig. 1 Illustration of adaptivity according to Definition 9. When the
x-axis spans over all possible situations and the y-axis over all possible
behaviors, a system like S1 = X1 ! Y1 (orange) or S2 = X2 ! Y2
(red) can be drawn as an area of all the behaviors of S1 or S2 so that
S1 |& γ or S2 |& γ , respectively. For each situation, we show the ideal
behavior subject to the fitness φ via the dashed black line. S1 is at least
as adaptive as S2 because it covers at least as many situations as S1
and performs as least as close to the optimal fitness as S2 (colour figure
online)

so far our notions of adaptivity and optimization are purely
extensional, which originates from the black-box perspective
on adaptation assumed in [28].

3.2 Constructing adaptive systems

We now shift the focus of our analysis a bit away from the
question “When is a system adaptive?” toward the question
“How is a system adaptive?”. This refers to both questions
of software architecture (i.e., which components should we
use to build an adaptive system?) and questions of soft-
ware engineering (i.e., which development processes should
we use to develop an adaptive system?). We will see that
with the increasing usage of methods of machine learning,
design-time engineering and run-time adaptation increas-
ingly overlap [46].

Definition 10 (Adaptation Sequence) A series of |I | systems
S = (Si)i∈I with index set I with a preorder ≤ on the ele-
ments of I is called an adaptation sequence iff for all i, j ∈ I
it holds that i ≤ j &⇒ Si '∗ S j

Note that we used adaptation with optimization in Defini-
tion 10 so that a sequence of systems (Si)i∈I that each fulfill
the same hard constraints (γ within a singleton adaptation
space A = {{(E, γ ,φ)}}) can form an adaptation sequence
iff for all i, j ∈ I it holds that i ≤ j &⇒ φ(Si ⊗ E))
φ(S j ⊗ E). This is the purest formulation of an optimization
process within our formal framework. Strictly speaking, an
optimization process would further assume there exists an
optimization relation o from systems to systems so that for

123

Taken from original publication: Thomas Gabor, Andreas Sedlmeier, Thomy
Phan, Fabian Ritz, Marie Kiermeier, Lenz Belzner, Bernhard Kempter, Cornel
Klein, Horst Sauer, Reiner Schmid, Marc Zeller, and Claudia Linnhoff-Popien.
The scenario coevolution paradigm: adaptive quality assurance for adaptive sys-
tems. International Journal on Software Tools for Technology Transfer, pages 1–
20, 2020

171

The scenario coevolution paradigm: adaptive quality assurance for adaptive systems 461

all i, j ∈ I it holds that i ≤ j &⇒ o(Si , S j). But for simplic-
ity, we consider the sequence of outputs of the optimization
process a sufficient representation of the whole process.

Such an adaptation sequence can be generated by con-
tinuously improving a starting system S0 and adding each
improvement to the sequence. Such a task can both be
performed by a team of human developers or standard opti-
mization algorithms as they are used in artificial intelligence.
Only in the latter case, we want to consider that improvement
happening within our system boundaries. Unlike the previ-
ously performed black-box analysis of systems, the presence
of an optimization algorithm within the system itself does
have implications for the system’s internal structure. We will
thus switch to a more “gray box” analysis in the spirit of [11].

Definition 11 (Self-Adaptation) A system S0 is called self-
adaptive iff the sequence (Si)i∈N,i<n for some n ∈ N with
Si = S0⊗Si−1 for 0 < i < n and some combination operator
⊗ is an adaptation sequence.

Please note that we use the term “adaptation” here to mean
the improvement in adaptivity as defined in [28]. This is
different from some notions of adaptation which allow for
a reduction in adaptivity during adaptation as well [1,10].
In our case of adaptation, we can imagine that the system
is always able to go back to previous configuration, thus
every adaptation only adds to its overall capabilities. To some
extent, this already anticipates the perspective of eternal sys-
tems which is discussed later in Sect. 9.3 [33].

Note that we could define the property of self-adaptation
more generally by again constructing an index set on the
sequence (Si) instead of using N, but chose not to do so to
not further clutter the notation. For most practical purposes,
adaptation is going to happen in discrete time steps anyway. It
is also important to be reminded that despite its notation, the
combination operator ⊗ does not need to be symmetric and
likely will not be in this case, because when constructing
S0 ⊗ Si−1, we usually want to pass the previous instance
Si−1 to the general optimization algorithm encoded in S0.
Furthermore, it is important to note that the constant sequence
(S)i∈N is an adaptation sequence according to our previous
definition and thus every system is self-adaptive with respect
to a combination operator X ⊗ Y =def X . However, we
can construct non-trivial adaptation sequences using partial
orders # and ≺ instead of ' and). As these can easily
be constructed, we do not further discuss their definitions in
this paper. In [28], a corresponding definition was already
introduced for #.

The formulation of the adaptation sequence used to prove
self-adaptivity naturally implies some kind of temporal struc-
ture. So basing said structure around N implies a very simple,
linear and discrete model of time. More complex temporal
evolution of systems is also already touched upon in [28]. As
noted, there may be several ways to define such a temporal

structure on systems. We refer to related and future work for
a more intricate discussion on this matter.

So, non-trivial self-adaptation does imply some structure
for any self-adaptive system S of type V = (Vi)i∈I : Mainly,
there needs to be a subset of the type V ′ ⊆ V that is used
to encode the whole relation behind S so that the already
improved instances can sufficiently be passed on to the gen-
eral adaptation mechanism.

For a general adaptation mechanism (which we previously
assumed to be part of a system) to be able to improve a
system’s adaptivity, it needs to be able to access some repre-
sentation of its goals and its fitness function. This provides
a gray-box view of the system. Remember that we assumed
a system S could be split into situation X , internal state Z

and behavior Y , written S = X
Z! Y . If S is self-adaptive,

it can form a non-trivial adaptation sequence by improving
on its goals or its fitness. In the former case, we can now
assume (that there exists some relation G ⊆ X ∪ Z so that
S |& γ ⇐⇒ G |& γ for a fixed γ in a singleton-space
adaptation sequence. In the latter case, we can assume that
there exists some relation F ⊆ X ∪ Z so that φ(S) = φ(F)

for a fixed φ in a singleton-space adaptation sequence. Effec-
tively, if we employ a general mechanism for self-adaptation,
as it is commonly done in current applications of machine
learning, it is necessary that the result of the adaptation is
passed back into the system.

Obviously, when we want to construct larger self-adaptive
systems using self-adaptive components, the combination
operator needs to be able to combine said sub-systems G
and/or F as well. In the case where the components’ goals
and fitnesses match completely, the combination operator can
just use the same sub-system twice. However, including the
global goals or fitnesses within each local component of a
system does not align with common principles in software
architecture (such as encapsulation) and does not seem to be
practical for large or open systems (where no process may
ensure such a unification). Thus, constructing a component-
based self-adaptive system requires a combination operator
that can handle potentially conflicting goals and fitnesses.
We again define such a system for a singleton adaptation
space A = {{(E, γ ,φ)}} and leave the generalization to all
adaptation spaces out of the scope of this paper.

Definition 12 (Multi-Agent System) Given a system S =
S1 ⊗ · · · ⊗ Sn that adapts to A = {(E, γ ,φ)}. Iff for each
1 ≤ i ≤ n with i, n ∈ N, n > 1 there is an adaptation domain
Ai = {(Ei , γi ,φi)} so that (1) Ei = E ⊗ S1 ⊗ · · ·⊗ Si−1 ⊗
Si+1 ⊗ · · ·⊗ Sn and (2) γi 0= γ or φi 0= φ and (3) Si adapts
to Ai , then S is a multi-agent system with agents S1, . . . , Sn .

It is important to note here that the combination operator
⊗ may again be arbitrarily complex and does not need to
work the same way for the construction of S and the con-
struction of Ei above. The definition of a multi-agent system

123

Taken from original publication: Thomas Gabor, Andreas Sedlmeier, Thomy
Phan, Fabian Ritz, Marie Kiermeier, Lenz Belzner, Bernhard Kempter, Cornel
Klein, Horst Sauer, Reiner Schmid, Marc Zeller, and Claudia Linnhoff-Popien.
The scenario coevolution paradigm: adaptive quality assurance for adaptive sys-
tems. International Journal on Software Tools for Technology Transfer, pages 1–
20, 2020

172

462 T. Gabor

Fig. 2 Illustration of the emergence of an (implicit) multi-agent system
in a fictitious architecture of software components. Adaptive com-
ponents interact by manipulating their environment to achieve their
individual goals

only requires the decomposability of the respective systems
with respect to some ⊗. Obviously, the notion then varies
in expressiveness and explanatory power depending on the
choice of ⊗.

For practical purposes, we usually want to use the notion
of multi-agent systems in a transitive way, i.e., we can call
a system a multi-agent system as soon as any part of it is a
multi-agent system according to Definition 12. Formally, S is
a multi-agent system if there are systems components S′, R
so that S = S′ ⊗ R and S′ is a multi-agent system. We argue
that this transitivity is not only justified but a crucial point
for systems development of adaptive systems: Agents tend
to utilize their environment to fulfill their own goals and can
thus “leak” their goals into other system components (see
Fig. 2). Note that Condition (2) of Definition 12 ensures that
not every system constructed by composition is regarded a
multi-agent system; it is necessary to feature agents with (at
least slightly) differing adaptation properties.

For the remainder of this paper, we will apply Defini-
tion 12 “backwards.” Whenever we look at a self-adaptive
system S, whose goals or fitnesses can be split into several
sub-goals or sub-fitnesses, we can regard S as a multi-agent
system. Using this knowledge, we can apply design patterns
from multi-agent systems to all self-adaptive systems with-
out loss of generality. Furthermore, we need to be aware that
especially if we do not explicitly design multi-agent coordi-
nation between different sub-goals, such a coordination will
be done implicitly. Essentially, there is no way around gen-
eralizing software engineering approaches for self-adaptive
systems to potentially adversarial components.

4 Example domain

To illustrate the definitions of the previous section, we intro-
duce an example system called Grid World Smart Factory,
which has also been used and implemented in [24]. How-

ever, we first introduce a formal definition of a system for
this domain.

4.1 Setup

An instance of the smart factory domain contains a number
of items that have to be processed at workstations of differ-
ent types, while avoiding collisions with dynamically placed
obstacles. The system is tasked with navigating a robotic
agent through the smart factory in order to eventually pro-
cess all the items.

In our example, the smart factory uses a discrete grid of
size 7 × 8, as shown in Fig. 3. Thus, possible positions for
entities of any kind within the factory are all p ∈ P , where
P = {1, . . . , 7}× {1, . . . , 8}.

Five workstations W ⊂ P are placed at fixed positions
so that W = {w1, . . . , w5} = {(1, 5), (4, 7), (5, 1), (6, 3),

(6, 7)}. Each workstation w is assigned a fixed type t(w), t :
W → {red, green, blue}, so that t(w1) = blue, t(w2) = red,

t(w3) = red, t(w4) = green, t(w5) = green.
The domain is parametric on the position of four obstacles

O = {o1, o2, o3, o4} ⊂ P so that O ∩W = ∅.
A robotic agent r is given via its current position r ∈ P .

Note that the starting position of the robot always is r =
(1, 1). The robotic agent is able to execute four movement
actions v ∈ V = {v5, v!, v6, v"}, v : P → P , where for
all ◦ ∈ {5,$,6,%}, we define

v◦(y, x) =
{

v′◦(y, x) if v′◦(y, x) ∈ P \ (W ∪ O)

(y, x) otherwise
(1)

Fig. 3 Visualization of the smart factory domain. A mobile robot can
travel north, east, south and west on the grid. It needs to visit worksta-
tions in order to retrieve items and then needs to visit other workstations
in order to process these items. Attempting to walk out of the grid, into
a workstation or into an obstacle is penalized. Obstacle positions vary
according to the setting of the scenario x

123

Taken from original publication: Thomas Gabor, Andreas Sedlmeier, Thomy
Phan, Fabian Ritz, Marie Kiermeier, Lenz Belzner, Bernhard Kempter, Cornel
Klein, Horst Sauer, Reiner Schmid, Marc Zeller, and Claudia Linnhoff-Popien.
The scenario coevolution paradigm: adaptive quality assurance for adaptive sys-
tems. International Journal on Software Tools for Technology Transfer, pages 1–
20, 2020

173

The scenario coevolution paradigm: adaptive quality assurance for adaptive systems 463

where all v′◦ are naturally defined as v′5(y, x) = (y− 1, x),

v′!(y, x) = (y, x + 1), v′6(y, x) = (y + 1, x), v′"(y, x) =
(y, x − 1). Note that any action that returns using the
otherwise branch in Eq. 1 is called illegal. Any action that is
not illegal is called legal. It follows that when the agent posi-
tion r is only altered via the application of actions, it always
holds that {r}, O , and W are fully disjunct.

Given a position p ∈ P , we define the neighborhood of p
as N : P → P(P) with

N (y, x) = {v◦(y, x) : ◦ ∈ {5,$,6,%}}. (2)

Since all actions are reversible, N (y, x) both contains all
position that can be reached from (y, x) and all position that
(y, x) can be reached from.

We call an instance of the smart factory domain valid iff
the agent can reach new positions from its initial position and
all workstations can be reached, i.e.,

∀e ∈ {r} ∪W : N (e) 0= ∅. (3)

Note that this simple test suffices since we only have four
obstacles and no two workstations are next to each other, so
the only way to make any of them inaccessible is to place all
four obstacles around it.

We define an item as a tuple m containing a current posi-
tion and a series of workstation types, i.e., m = (p, 〈ti 〉i∈I)

where p ∈ P and I is an index set and for all i ∈ I it holds
that ti ∈ {red, green, blue}. Semantically, an item needs to
visit workstations of all the given types ti in the given order in
order to be fully processed. As long it is not fully processed,
it poses a task to the system. Our system is tasked to produce
five items M = {m1, . . . , m5}. When all of these are fully
produced, the domain instance is finished successfully. Note
that initially, items are placed at workstations. We thus define
the current position of an item m as c(m) with c : M → P .
Furthermore, up to one item can be carried by the mobile
agent so that c(m) = r . Note that it always holds for all
m ∈ M that c(m) ∈ {r} ∪ W , i.e., no items can be left on
the factory floor. We also define the function b : W → 〈M〉,
which is given a workstation and returns a sequence of items
so that for all workstations w ∈ W and all items m ∈ b(w)

it holds that c(m) = w. The first item of that sequence is the
one that can be picked up next at the respective workstation.

In our setup, we use the items

m1 = ((1, 5), 〈green, red〉),
m2 = ((1, 5), 〈green〉),
m3 = ((4, 7), 〈red, blue, green〉),
m4 = ((1, 5), 〈green, blue〉),
m5 = ((6, 3), 〈red〉).

Of course, we now need to augment our previously
defined set of movement actions V = {v5, v!, v6, v"}
to allow for interaction with items. We thus define the set
of actions A = {a5, a!, a6, a", a#, a$} so that for all
◦ ∈ {5,$,6,%,&,'} and a◦ : P × P(P × 〈T 〉) →
P ×P(P × 〈T 〉) it holds that

a◦(r , M) =

(v′◦(r), M) if ◦ ∈ {5,$,6,%, }
and a′◦(r) ∈ P \ (W ∪ O)

(r , {m′#} ∪ M \ m) if ◦ = &
and c(m) ∈ N (r)

and ∀m̂ ∈ M : c(m̂) 0= r

(r , {m′$} ∪ M \ m) if ◦ = '
and c(m) = r

and t(w) = t1
(r , M) otherwise

(4)

where m = (p, 〈t1, . . . , tn〉) is any element from M , w

is any element from W ∩ N (r) and subsequently m′# =
(r , 〈t1, . . . , tn〉) and m′$ = (w, 〈t2, . . . , tn〉). We implic-
itly quantify existentially over all m ∈ M . The function
a◦ still remains deterministic only because the conditions
are formulated so that at most one m ∈ M fits them in
our setup. In the more general setup, it would be valid to
pick any arbitrary option. For w ∈ W ∩ N (r), again, we
implicitly quantify, although it only matters in the third case.
Again, this quantification can yield at most one element as
no two workstations of the same type have shared neighbor-
ing positions in our setup. For the more general case, we can
simply pick a w at random should multiple assignments val-
idate this condition here. Finally, note that when an item is
fully processed, we assume m′$ = (w, 〈〉) for some position
w ∈ P , i.e., we keep all the processed items “lying around”
with an empty task list. We could also choose to remove
fully processed items entirely from the system by specify-
ing a◦(r , M) = (r , M \ m) in that case. Since we used the
power set P(T×〈T 〉) or the type of a◦, we are flexible in that
choice. For ease of definition, we will later fix the amount
of items present in the adaptive system, favoring the “lying
around” approach.

Again, every action that results from taking the otherwise
branch of a◦ is called illegal. The action a# is called pick-up
and the action a$ is called drop-off.

4.2 Adaptive system

Having defined the complete setup of our smart factory
domain, we can now proceed to define the adaptation domain.

123

Taken from original publication: Thomas Gabor, Andreas Sedlmeier, Thomy
Phan, Fabian Ritz, Marie Kiermeier, Lenz Belzner, Bernhard Kempter, Cornel
Klein, Horst Sauer, Reiner Schmid, Marc Zeller, and Claudia Linnhoff-Popien.
The scenario coevolution paradigm: adaptive quality assurance for adaptive sys-
tems. International Journal on Software Tools for Technology Transfer, pages 1–
20, 2020

174

464 T. Gabor

We define the system S = X
Z! Y where X is a list of

elements 〈xt 〉0<t<n with the maximum execution length n ∈
N (and likewise for Y). Note that without loss of generality,
we can assume that all execution traces are of the same length
n by simply setting n to the maximum length and filling up
shorter paths with “nil” elements. We set

x = 〈rt , Mt , Ot 〉 (5)

with robot position rt ∈ P , item list Mt ∈ (P × 〈T 〉)5 and
obstacles Ot ∈ P4. Note that we specify a fixed amount of 5
items that may thus be present in the system. We also specify

yt = 〈at 〉 (6)

with action at ∈ {a5, a!, a6, a", a#, a$}. The legal
elements for X and Y are defined by the type of the
system’s policy Π : (P × (P × 〈T 〉)5 × P4)n →
{a5, a!, a6, a", a#, a$}n where n ∈ N is the maximum
execution time of the system so that

Y = 〈Π(X)〉. (7)

We omit any further specification on the policy π at hand
(and accordingly for the internal state Z) as the policy is the
core of the system’s implementation, which we discuss in
more detail in Sects. 5 and 8 .

However, we can use the given definition of the system’s
interface to specify its adaptation domain. We define a static
environment E , which means that once a system S ⊗ E is
composed, the environment does not change or react to the
system’s actions. In our example, the environment consists
of the obstacles’ position, so

E = {o1, o2, o3, o4} (8)

with oi ∈ P for all i = 1, .., 4. Note that we could also write
E = ∅! 〈{o1, o2, o3, o4}〉0<t<n to adhere to the previously
introduced notation. We then define the composed system
S ⊗ E to use the obstacles given by E to set all respective
inputs X so that for all xt in X = 〈xt 〉0<t<n it holds that
xt = 〈rt , Mt , {o1, o2, o3, o4}〉 for some rt , Mt .

At this stage, we might just as well-define a dynamic
environment that could change the obstacles’ positions over
time by setting E = ∅ ! 〈{o1,t , o2,t , o3,t , o4,t }〉1<t<n

with oi,t depending on the current step of system exe-
cution t . A reactive environment E = 〈r〉1<t<n !
〈{o1,t , o2,t , o3,t , o4,t }〉1<t<n might even change any obsta-
cle’s position oi,t , for example with respect to the robot
position r according to some environment policy ρ : P ×
N → P so that oi,t = ρ(rt , i). However, we will omit fur-
ther considerations on dynamic environments for brevity and

will resort to a static environment for the running example in
this paper.

However, please note that we can still generate many dif-
ferent static environments to be part of the adaptation domain.
This will require the system to be able to handle various
configurations of non-moving obstacles but not require the
system to be able to handle moving obstacles.

We can now define a simple system goal such as

γ (S) ⇐⇒ ∃t : ∀m ∈ Mt : finished(m) (9)

where Mt is given via xt = 〈rt , Mt , Ot 〉 (coming from S =
X ! Y and X = 〈xt 〉0<t<n) as in Eq. 5 and finished :
P × 〈T 〉 → B is given via

finished(pos, tasks) ⇐⇒ tasks = 〈〉. (10)

Semantically, γ (S) holds iff at some point during the
execution, all items in the system have been processed.
Note that we use a very raw formulation for a property
that might be more fittingly expressed in some temporal
logic. But using simple predicate logic is sufficient for the
present running example. A different goal function might be
to never execute an illegal action, which might be written as
γ ′(S) ⇐⇒ ∀t : ¬illegal(at). For the running example,
we will focus on the single goal function γ , though.

The definitions made in this subsection now allow us
to finally define an adaptation domain such as A =
{(((2, 5), (4, 4), (5, 5), (6, 5)), γ)}, which defines the envi-
ronment setup shown in Fig. 3 and the goal function of Eq. 10.
For our running example, we want the system to work for any
arbitrary (legal) configuration of obstacle position so that we
define

A = {((o1, o2, o3, o4), γ) : i = 1, . . . , 4,

oi ∈ P \ W \ {(1, 1)}}. (11)

We can now further augment this declaration to include an
optimization target (as given in Definitions 7 and 8). Using N
as the space of the fitness values and≥ as a preorder (meaning
that me minimize the fitness value) we can define a fitness
function

φ(S ⊗ E) = min {t ∈ N | ∀m ∈ Mt : finished(m)} (12)

where Mt is given via xt = 〈rt , Mt , Ot 〉 (coming from S =
X ! Y and X = 〈xt 〉0<t<n) as in Eq. 5 and finished :
P × 〈T 〉 → B is given via Eq. 10. The fitness function φ as
defined in Eq. 12 then returns the amount of time steps the
system took to reach the finished predicate, i.e., the time it
took to fully process all items. This would be a typical target
for minimization. Note that in this case, there exists a clear
correspondence between the goal function γ and the fitness

123

Taken from original publication: Thomas Gabor, Andreas Sedlmeier, Thomy
Phan, Fabian Ritz, Marie Kiermeier, Lenz Belzner, Bernhard Kempter, Cornel
Klein, Horst Sauer, Reiner Schmid, Marc Zeller, and Claudia Linnhoff-Popien.
The scenario coevolution paradigm: adaptive quality assurance for adaptive sys-
tems. International Journal on Software Tools for Technology Transfer, pages 1–
20, 2020

175

The scenario coevolution paradigm: adaptive quality assurance for adaptive systems 465

function φ as only systems that fulfill γ have a finite value
for φ.

Different reasonable fitness functions exist: For exam-
ple, we may want to get rid of the goal function entirely
and instead formulate a fitness function that maximizes the
amount of that are fully processed (instead if enforcing that
all of them are eventually fully processed always). Or we may
want to optimize an entirely different goal like minimizing
the turns of direction the agent is taking.

In the end, setting the right γ and φ for the adaptation
domain is a decision to be made in system design and is
crucial to fulfilling the initial requirements. In particular, the
interaction between the goal and the fitness function is to be
considered.

Having given an adaptation domain, we can write S " A
iff the system S can adapt to A, i.e., S fulfills the goal function
for all respective environments in A. We can also trivially
define a singleton adaptation space

A = {A}, (13)

which shall suffice for the example given here.

5 Implementation of adaptation

So far we constructed a framework to compare the degree
of adaptivity of two given systems. In this section, we dis-
cuss how to give these adaptive systems. This boils down
to the problem: Given a system S, how can its adaptivity be
improved, i.e., how can we generate a system S′ so that S '
S′. The art of generating (software) systems is called (soft-
ware) engineering. Traditionally, we would specify higher
adaptivity as a requirement and task a group of software
developers to improve the system S. They would then write
code to cover additional adaptation domains (within the given
adaptation space) or improve the system’s performance on
a given fitness function (when considering optimization) as
follows from Definition 9.

5.1 Adaptation via machine learning

Newer methods in software engineering aim to automate
(parts of) that process [7,12,46]. The most trivial means of
automation is probably stochastic search. For this, we require
a variation operator vary : R(V) → R(V) where R(V) is
the domain of all relations over V and V is a type of sys-
tem and S ∈ R(V) (see Definition 1). Note that vary is not
a function but vary(S) returns a random variant of a given
system S any time it is executed. Usually, vary(S) will not
generate new systems from scratch but reuse almost all parts
of S and just implement small changes to it. We can then run
a stochastic search process as shown in Algorithm 1. Note

Algorithm 1 Stochastic Search
Require: system S
1: while ¬termination_criterion do
2: S′ ← vary(S)
3: if S ' S′ ∨ chance(ε) then
4: S ← S′

5: end if
6: end while
7: return S

Algorithm 2 Stochastic Search in Parameter Space
Require: system S, initial parameter θ0
1: θ ← θ0
2: while ¬termination_criterion do
3: θ ′ ← vary(θ)
4: if S ⊗ θ ′ ' S ⊗ θ ∨ chance(ε) then
5: θ ← θ ′

6: end if
7: end while
8: return S ⊗ θ

that aside from the vary operator, we also need to provide a
termination_criterion that allows us to stop the search once a
sufficient solution has been found or we have spent too much
time on searching. The operator chance : [0; 1] ⊂ R → B
can be defined generally to return true only with the given
chance and false otherwise. Further note that computing
S ' S′ can become very expensive or even infeasible for suf-
ficiently complex systems S, S′. We later show in Sects. 7 and
8 how to construct a set of more concrete test cases against
which such properties can be evaluated more efficiently, but
only while losing out on the exactness of the result. In general,
sampling is usually employed to approximate such properties
on large domains.

What makes stochastic search of this form generally infea-
sible is that more adaptive systems are typically very rare
among all system variants that can be generated via vary.
We thus need to restrict the possible variations to somewhat
meaningful systems at least. Most commonly, we do this
by fixing most components of the system S and introducing
a parameterization θ of some type Θ describing important
aspects of the system’s behavior. Stochastic search then only
needs to search the much more abstract parameter space Θ .
When given a variation operation vary : Θ → Θ and a
(usually random) initial value θ0 ∈ Θ , we can rewrite Algo-
rithm 1 to search for the correct parametrization as seen in
Algorithm 2. In a machine learning setting, the system S
could typically include a neural network whose weights are
encoded in θ . This way, the weights space is relatively small
compared to altering the whole system but as long as the neu-
ral network’s outputs are important to the system behavior,
it can be heavily influenced by just changing the weights.

Obviously, we can still spend a lot of time sampling ran-
domly varied settings for θ without ending up with any good
solutions. We can usually shorten the search process if we

123

Taken from original publication: Thomas Gabor, Andreas Sedlmeier, Thomy
Phan, Fabian Ritz, Marie Kiermeier, Lenz Belzner, Bernhard Kempter, Cornel
Klein, Horst Sauer, Reiner Schmid, Marc Zeller, and Claudia Linnhoff-Popien.
The scenario coevolution paradigm: adaptive quality assurance for adaptive sys-
tems. International Journal on Software Tools for Technology Transfer, pages 1–
20, 2020

176

466 T. Gabor

Algorithm 3 Gradient Descent in Parameter Space
Require: system S, initial parameter θ0, update rate α
1: θ ← θ0
2: while ¬termination_criterion do
3: θ ← α · ∇θ
4: end while
5: return S ⊗ θ

can compute a gradient for a specific point θ in the parameter
space. Note that this is generally not the case in our setting:
We want to improve the system’s adaptivity by following
the “at least as adaptive as” relation ', which is defined
on subset inclusion and thus naturally discrete. Intuitively,
we can recognize if system S′ is at least as adaptive as S,
but we have no notion of how much more adaptive it is.
However, we can resort to the case of adaptation with opti-
mization (see Definition 9): On some fitness value types F ,
we can define a gradient. In the case of neural networks,
e.g., F = Rn for some n ∈ N and for a given fitness value
f = φ(S ⊗ θ) with fitness function φ, we can compute the
gradient ∇θ = ∇φ(S ⊗ θ).

In order to find a good setting for the parameter θ , we
can then use a more direct approach to search like gradient
descent. As shown in Algorithm 3, when we can compute
the gradient, we can use it to update the parameter θ to the
most promising direction. The update rate α ∈ (0; 1) ⊂ R
controls how far along the gradient we go with each iteration.

Backpropagation is a variant of gradient descent specifi-
cally fitted to update the weights of neural networks. For more
details on the method, we refer to other work [20,35,37].

Of course, computing φ(S⊗ θ) tends to be non-trivial. If
we have a precise model of what makes the system perform
well according to φ, we can usually just build this behavior
into the system and do not require elaborate and expensive
search algorithms. It is important to note that, in the general
case, no search algorithm can effectively beat random search.
This is called the No Free Lunch Theorem [47]. However, we
can always build into the search as much knowledge about
the structure of the problem as we have, which then allows us
to get better results for problems matching that knowledge.
In the typical use case for machine learning, we do not have
complete knowledge about how a good system should look
like but we have single evaluation points far and between,
telling us about concrete instantiations for θ and the respec-
tive value ofφ(S⊗θ). Machine learning is the task of building
a model from these data points.

For example, let us consider a visual system that needs
to recognize if a given picture x contains a cat or not. This
system might use a neural network with weights θ and we are
looking for a θ ∈ Θ that makes the system recognize images
of cats. For that search, we need a set of training data D =
{〈x1, y1〉, . . . , 〈xn, yn〉} where for all i ∈ [1; n] ⊂ N it holds
that xi is a image from the set of all images X and yi = 1 iff

Algorithm 4 Gradient Descent with Sampling in Parameter
Space
Require: system S, initial parameter θ0, update rate α,

training data set D
1: θ ← θ0
2: while ¬termination_criterion do
3: x, y ← sample(D)
4: θ ← α · ∇θ(x, y)
5: end while
6: return S ⊗ θ

xi contains a cat, yi = 0 otherwise. We can then compute the
fitness

φ(S ⊗ θ) =
n∑

i=1

|Y (xi)− yi | (14)

where Y (xi) is given via S ⊗ θ = xi ! Y (xi). When the
set of training data is large and diverse enough, we assume
that the parameter θ that works best on the training data, also
works best (or at least well) on new, unseen data.

Note that typically, we do not evaluate each solution
candidate for θ on the whole training set but for perfor-
mance reasons opt for a more gradual process as shown
in Algorithm 4, where ∇θ(x, y) = φ(S ⊗ θ, x, y) and
φ : V × X × Y → F is given via

φ(S ⊗ θ, x, y) = |Y (x)− y| (15)

where Y (x) is defined as for Eq. 14. When doing so, we
usually need more iterations of the whole process (i.e., a
more lenient termination_criterion) but each evaluation of
φ is much less computationally expensive. This approach
represents the common ground for techniques like supervised
machine learning or reinforcement learning [20,41].

Methods as shown in Algorithms 1–4 have implications
for software engineering: When applying machine learning,
we are not certain of the exact system that we will end up with,
which, in fact, is the whole purpose of machine learning:
to not exactly figure out the full system. This buys some
immense possibilities to create complex behavior and adapt
to a wide range of situations. However, it also introduces new
tasks into the workflow of programming systems.

5.2 Software engineering for machine learning

Figure 4 shows an engineering process for machine learn-
ing. At the top blue level, we see typical phases used in
process models for classical software engineering. They
provide an orientation about what activities new machine
learning tasks can be compared to. Note that we assume
an agile development process anyway: The whole process
shown in Fig. 4 is not necessarily run in sync with the

123

Taken from original publication: Thomas Gabor, Andreas Sedlmeier, Thomy
Phan, Fabian Ritz, Marie Kiermeier, Lenz Belzner, Bernhard Kempter, Cornel
Klein, Horst Sauer, Reiner Schmid, Marc Zeller, and Claudia Linnhoff-Popien.
The scenario coevolution paradigm: adaptive quality assurance for adaptive sys-
tems. International Journal on Software Tools for Technology Transfer, pages 1–
20, 2020

177

The scenario coevolution paradigm: adaptive quality assurance for adaptive systems 467

Fig. 4 Machine learning pipeline. Split between classical phases of system development, we can see the central activities necessary for the successful
application of machine learning

development process of the rest of the system (which we
still assume to be programmed in a mostly classical way).
Instead, the process of engineering machine learning could
be run several times (as a sprint, e.g.,) within a single activity
in a surrounding development process. This is why we will
put observations made during the operation of the result-
ing system (called “operation data” here) into the case and
requirement phases of the next iteration of the machine learn-
ing pipeline (as symbolized by the large blue arrow).

At the bottom blue level, we discern show the domain
within which the individual tasks take place. The first parts
of the machine learning pipeline operate on a domain distri-
bution, i.e., they are not specialized on a single instance of a
use case but are designed to find models and solutions gen-
eral enough to work on a range of similar tasks. Even when
we only target a single domain eventually, having a decent
amount of diversity during training is crucial to the success of
machine learning [6,24,43]. During deployment, we switch
from the more general distribution of possible domains to
a more concrete instantiation fed with all the information
we have about the deployed system and the environment
it is deployed in. Again, whenever we observe our origi-
nal assumptions on the distribution of domains to be flawed,
we feed back gained knowledge into the next iteration of the
machine learning pipeline.

This handling of domains closely mirrors the definition
of the adaptation space A: Recall that in order to build a
more adaptive system S, it needs to be able to adapt to larger
subset of the adaptation space (or adapt to the same subset

better) as stated in Definition 9. Thus, when designing the
autonomous adaptation mechanisms in the first part of the
machine learning pipeline, we in fact operate on the whole
adaptation space A. However, when it comes to building a
concrete system, we will only face a single adaptation domain
A ∈ A at once, perhaps in succession.

We will now briefly discuss each task appearing in
the machine learning pipeline (again cf. Fig. 4). They are
depicted by the white boxes with a blue border. Some of
them are grouped into logical phases using orange boxes.
Data/domain In order to even begin a case description, we
need to assure that we have a sufficiently detailed description
of the domain we want to use the system in (as given by the
definition of environments E within the adaptation space A
as shown in Sect. 4.1). Also note that many machine learning
algorithms require large amount of high-quality data, which
then needs to be provided alongside or instead a full domain
description.
Loss/reward This artifact is also included in the adaptation
space. The definition and usage of the fitness function φ maps
exactly to the use of loss or reward functions in most machine
learning approaches. It needs to be defined accurately at the
beginning of the machine learning pipeline.
Objective This artifact maps to the goals γ within the adapta-
tion space A. As discussed, in many cases, the fitness function
will be derived from the goals or at least altered to support
their fulfillment. However, there also often are additional
goals which cannot be expressed in the fitness function alone,
for example, because they are hard constraints on system

123

Taken from original publication: Thomas Gabor, Andreas Sedlmeier, Thomy
Phan, Fabian Ritz, Marie Kiermeier, Lenz Belzner, Bernhard Kempter, Cornel
Klein, Horst Sauer, Reiner Schmid, Marc Zeller, and Claudia Linnhoff-Popien.
The scenario coevolution paradigm: adaptive quality assurance for adaptive sys-
tems. International Journal on Software Tools for Technology Transfer, pages 1–
20, 2020

178

468 T. Gabor

safety that cannot be opened up to optimization. In this case,
the goals γ need to be derived from the fitness function.
Select model/policy In this task, we need to define what parts
of the system should actually be adapted using machine learn-
ing techniques. In case of supervised learning, we are usually
speaking of a model representing the data; in the case of rein-
forcement learning, we use the word policy to refer to a way
to encode behavior. Either way, the definition of the model
(for example, using a policy network returning the next action
of the system) is the biggest influence on the choice of the
parameter space Θ (cf. Sect. 5.1).
Select algorithm Knowing which parameter space Θ is to
be optimized often aids in the choice of a (possibly highly
specialized) optimization algorithm. A choice of (concrete
instances of) Algorithms 1–4 might be made here.
Train During the training task, the algorithm selected is
applied to optimize the parameters θ ∈ Θ for the selected
model or policy. In (hopefully) all cases, this task will be
performed automatically by a computer. However, it is usu-
ally very resource-intensive and thus requires a lot of manual
tweaking: Setting up the right hardware/software platforms,
choosing the right meta-parameters (maximum run-time,
minimum success, parallelization, etc.) and so on.
Assess QoS Usually, reward yield or loss reduction are used
as metrics during training automatically. However, most
machine learning algorithms are highly stochastic in nature.
Thus, we suggest a separate task for the assessment of the
quality of service provided by the automatically trained sys-
tem. At this stage, we may filter out (and/or redo) bad runs or
and check if our problem formulation and selection of algo-
rithms and data structures were sufficient to get the desired
quality of a solution.
Accept model As shown in Fig. 4, the tasks involved in the
selection of models/policies, training and assessing the qual-
ity of the returned solutions form a typical feedback loop.
Part of the accept model task is to decide when to break
this loop and what model/policy (usually represented by the
parameters θ) to return. Usually, we will return the best pol-
icy according to the quality of service assessment, but there
may be cases where we want to return multiple policies (like
a Pareto front, e.g.,).
Use policy Once a suitable model/policy has been found,
we assume that deployment happens the same way as for
classical systems. At this task, we are thus ready to execute
the behavior of the system as given by the model/policy. Note
that formally, executing the system S with model/policy θ in
a concrete domain A corresponds to computing S ⊗ θ " A.
Specialize model/policy As previously discussed, the training
loop has not been executed on the deployed domain A but on
a distribution of domains drawn from the adaptation space
A. When we recognize that A is not going to be subject to
substantial changes any more, it makes sense to specialize
on the concrete domain instance. This can be done through

classical means (adding specialized behavior, removing now
inaccessible program parts) or through means of machine
learning (re-running a training feedback loop but based on
the experiences generated in A instead of A). In the latter
case, we could actually enter a complete other instantiation
of the machine learning pipeline.
Monitor QoS Even when training and assessment have shown
that our system S⊗ θ does fulfill our quality goals, it is most
important to continually monitor that property throughout
operations. Mistakes in the definition of (the parts of) A or
general changes in the domain, including subtle phenomena
like drift, may cause the trained system to be incapable of fur-
ther operation. In order to prevent this and re-train as early as
possible, we need not only to monitor the defined metrics of
quality of service directly, but also keep an eye out for indi-
cators of upcoming changes in quality, for example through
means of anomaly detection [30].

It is clear that the machine learning pipeline discussed in
this section has no claim of completeness. Many tasks could
be changes or added to it. We introduced the pipeline to show
that while some necessary changes to the software engineer-
ing process closely mirror tasks for classical systems, others
introduce entirely new challenges and shift the focus where
the main work of software developers should fall. We will
use this analysis as a foundation to sum up the major changes
into core concepts in the following section.

6 Core concepts of adaptive software
engineering

Literature makes it clear that one of the main issues of
the development of self-adapting systems lies with trust-
worthiness. Established models for checking systems (i.e.,
verification and validation) do not really fit the notion of
a constantly changing system. However, these established
models represent all the reason we have at the moment to
trust the systems we developed. Allowing the system more
degrees of freedom thus hinders the developers’ ability to
estimate the degree of maturity of the system they design,
which poses a severe difficulty for the engineering progress,
when the desired premises or the expected effects of classical
engineering tasks on the system-under-development are hard
to formulate.

To aid us control the development/adaptation progress
of the system, we define a set of core concepts, which are
basically patterns for process models. They describe the
paradigm shifts to be made in the engineering process for
complex, adaptive systems in relation to more classical mod-
els for software and systems engineering.

Concept 1 (System and Test Parallelism) The system and its
test suite should develop in parallel from the start with con-

123

Taken from original publication: Thomas Gabor, Andreas Sedlmeier, Thomy
Phan, Fabian Ritz, Marie Kiermeier, Lenz Belzner, Bernhard Kempter, Cornel
Klein, Horst Sauer, Reiner Schmid, Marc Zeller, and Claudia Linnhoff-Popien.
The scenario coevolution paradigm: adaptive quality assurance for adaptive sys-
tems. International Journal on Software Tools for Technology Transfer, pages 1–
20, 2020

179

The scenario coevolution paradigm: adaptive quality assurance for adaptive systems 469

trolled moments of interchange of information. Eventually,
the test system is to be deployed alongside the main system so
that even during run-time, on-going online tests are possible
[14]. This argument has been made for more classical sys-
tems as well and thus classical software test is, too, no longer
restricted to a specific phase of software development. How-
ever, in the case of self-learning systems, it is important to
focus on the evolution of test cases. The capabilities of the
system might not grow as experienced test designers expect
them to compare to systems entirely realized by human engi-
neering effort. Thus, it is important to conceive and formalize
how tests in various phases relate to each other.

Concept 2 (System vs. Test Antagonism) Any adaptive sys-
tems must be subject to an equally adaptive test. Overfitting
is a known issue for many machine learning techniques. In
software development for complex adaptive systems, it can
happen on a larger scale. Any limited test suite (we expect
our applications to be too complex to run a complete, exhaus-
tive test) might induce certain unwanted biases. Ideally, once
we know about the cases our system has a hard time with,
we can train it specifically for these situations. For the so-
hardened system, the search mechanism that gave us the hard
test cases needs to come up with even harder ones to still beat
the system-under-test. Employing autonomous adaptation at
this stage is expected to make that arms race more immediate
and faster than it is usually achieved with human developers
and testers alone.

Concept 3 (Automated Realization) Since the realization of
tasks concerning adaptive components usually means the
application of a standard machine learning process, a lot of
the development effort regarding certain tasks tends to shift
to an earlier phase in the process model. The most devel-
oper time when applying machine learning techniques, e.g.,
tends to be spent on gathering information about the problem
to solve and the right setup of parameters to use; the train-
ing of the learning agent then usually follows one of a few
standard procedures and can run rather automatically. How-
ever, preparing and testing the component’s adaptive abilities
might take a lot of effort, which might occur in the design
and test phase instead of the deployment phase of the system
life cycle.

Concept 4 (Artifact Abstraction) To provide room for and
exploit the system’s ability to self-adapt, many artifacts pro-
duced by the engineering process tend to become more
general in nature, i.e., they tend to feature more open parame-
ters or degrees of freedom in their description. In effect, in the
place of single artifacts in a classical development process,
we tend to find families of artifacts or processes generat-
ing artifacts when developing a complex adaptive system.
As we assume that the previously only static artifact is still
included in the set of artifacts available in its place now,

we call this shift “generalization” of artifacts. Following this
change, many of the activities performed during develop-
ment shift their targets from concrete implementations to
more general artifact, i.e., when building a test suite no longer
yields a series of runnable test cases but instead produces a
test case generator. When this principle is broadly applied,
the development activities shift toward “meta development.”
The developers are concerned with setting up a process able
to find good solutions autonomously instead of finding the
good solutions directly.

7 Scenarios

We now want to include the issue of testing adaptive systems
in our formal framework. To this end, we first introduce the
notion of scenarios as the basis upon which we define tests
for our system. We then include that notion in our descrip-
tion of software development. Finally, we extend our running
example with software testing.

7.1 Describing scenarios

We recognize that any development process for systems
following the principles described in Sect. 3 produces two

central types of artifacts. The first one is a system S = X
Z!

Y with a specific desired behavior Y so that it manages to
adapt to a given adaptation space. The second is a set of sit-
uations, test cases, constraints, and checked properties that
this system’s behavior has been validated against. We call
artifacts of the second type by the group name of scenarios.

Definition 13 (Scenario) Let S = X
Z! Y be a system and

A = {(E, γ ,φ)} a singleton adaptation domain. A tuple c =
(X , Y , g, f), g ∈ {@,⊥}, f ∈ cod(φ) with g = @ ⇐⇒
S ⊗ E |& γ and f = φ(S ⊗ E) is called scenario.

Note that if we are only interested in the system’s per-
formance and not how it was achieved, we can redefine a
scenario to leave out Y . Semantically, scenarios represent the
experience that has been gained about the system’s behav-
ior during development, including both successful (S (γ)
and unsuccessful (S ! γ) test runs. As stated above, since we
expect to operate in test spaces we cannot cover exhaustively,
the knowledge about the areas we did cover is an important
asset and likewise result of the systems engineering process.

Effectively, as we construct and evolve a system S, we
want to construct and augment a set of scenarios C =
{c1, . . . , cn} alongside with it. C is also called a scenario
suite and can be seen as a toolbox to test S’s adaptation abil-
ities with respect to a fixed adaptation domain A.

123

Taken from original publication: Thomas Gabor, Andreas Sedlmeier, Thomy
Phan, Fabian Ritz, Marie Kiermeier, Lenz Belzner, Bernhard Kempter, Cornel
Klein, Horst Sauer, Reiner Schmid, Marc Zeller, and Claudia Linnhoff-Popien.
The scenario coevolution paradigm: adaptive quality assurance for adaptive sys-
tems. International Journal on Software Tools for Technology Transfer, pages 1–
20, 2020

180

470 T. Gabor

While formally abiding to Definition 13, scenarios can be
encoded in various ways in practical software development,
such as:
Sets of data points of expected or observed behavior Given
a system S′ = X ′ ! Y ′ whose behavior is desirable (for
example a trained predecessor of our system or a watchdog
component), we can create scenarios (X ′, Y ′, g′, f ′) with
g′ = @ ⇐⇒ S′ ⊗ Ei |& γi and f ′ = φi (S′ ⊗ Ei) for
an arbitrary amount of elements (Ei , γi ,φi) of an adaptation
domain A = {(E1, γ1,φ1), . . . , (En, γn,φn)}.
Test cases the system mastered In some cases, adaptive sys-
tems may produce innovative behavior before we actively
seek it out. In this cases, it is helpful to formalize the pro-
duced results once they have been found so that we can ensure
that the system’s gained abilities are not lost during further
development or adaptation. Formally, this case matches the
case for “observed behavior” described above. However, here
the test case (X , Y , g, f) already existed as a scenario, so we
just need to update g and f (with the new and better values)
and possibly Y (if we want to fix the observed behavior).
Logical formulae and constraints Commonly, most con-
straints can be directly expressed in the adaptation domain.
Suppose we build a system against an adaptation domain
A = {(E1, γ1,φ1), . . . , (En, γn,φn)}. We can impose a
hard constraint ζ on the system in this domain by con-
structing a constrained adaptation domain A′ = {(E1, γ1 ∧
ζ,φ1), . . . , (En, γn ∧ ζ,φn)} given that the logic of γ1, . . . ,

γn, ζ meaningfully supports an operation like the logical
“and” ∧. Likewise a soft constraint ψ can be imposed via
A′ = {(E1, γ1, max(φ1,ψ),), . . . , (En, γn, max(φn,ψ))}
given the definition of the operator max that trivially fol-
lows from using the relation) on fitness values. Scenarios
(X ′, Y ′, g′, f ′) can then be generated against the new adap-
tation domain A by taking preexisting scenarios (X , Y , g, f)

and setting X ′ = X , Y ′ = Y , g = @, f = ψ((X !
Y)⊗ E).
Requirements and use case descriptions (including the sys-
tem’s degree of fulfilling them) If properly formalized, a
requirement or use case description contains all the infor-
mation necessary to construct an adaptation domain and can
thus be treated as the logical formulae in the paragraph above.
However, use cases are in practical development more prone
to be incomplete views on the adaptation domain. We thus
may want to stress the point that we do not need to update
all elements of an adaptation domain when applying a con-
straint, i.e., when including a use case. We can also just add
the additional hard constraint ζ or soft constraint ψ to some
elements of A.
Predictive models of system properties For the most general
case, assume that we have a prediction function p so that
p(X) ≈ Y , i.e., the function can roughly return the behavior
S = X ! Y will or should show given X . We can thus con-
struct the predicted system S′ = X ! p(X) and construct a

scenario (X , p(X), g, f) with g = @ ⇐⇒ S′ ⊗ E |& γ

and f = φ(S′ ⊗ E).
All of these types of artifacts will be subsumed under

the notion of scenarios. We can use them to further train and
improve the system and to estimate its likely behavior as well
as to perform tests (and ultimately verification and validation
activities).

7.2 Constructing scenarios

Scenario coevolution describes the process of developing a
set of scenarios to test a system during the system-under-
tests’s development. Consequently, it needs to be designed
and controlled as carefully as the evolution of system behav-
ior [5,21].

Definition 14 (Scenario Hardening) Let c1 = (X1, Y1, g1, f1)

and c2 = (X2, Y2, g1, f2) be scenarios for a system S and an
adaptation domain A. Scenario c2 is at least as hard as c1,
written c1 ≤ c2, iff g1 = @ &⇒ g2 = @ and f1 ≤ f2.

Definition 15 (Scenario Suite Order) Let C = {c1, . . . , cm}
and C ′ = {c′1, . . . , c′n}be sets of scenarios, also called scenar-
ios suites. Scenario suite C ′ is at least as hard as C , written
C ' C ′, iff for all scenarios c ∈ C there exists a scenario
c′ ∈ C ′ so that c ≤ c′.

Definition 16 (Scenario Sequence) Let S = (Si)i∈I , I =
{1, . . . , n} be an adaptation sequence for a singleton adapta-
tion space A = {A}. A series of sets C = (Ci)i∈I is called a
scenario sequence iff for all i ∈ I , i < n it holds that Ci is a
scenario suite for Si and A and Ci ' Ci+1.

Note that we define the hardness of scenarios in parallel to
the adaptivity of systems (cf. Definition 9). Figure 5 provides
a visual representation.

We expect each phase of development to further alter the
set of scenarios just as it does alter the system behavior. The
scenarios produced and used at a certain phase in develop-
ment must match the current state of progress. Valid scenarios
from previous phases should be kept and checked against
the further specialized system. When we do not delete any
scenarios entirely, the continued addition of scenarios will
ideally narrow down allowed system behavior to the desired
possibilities. Eventually, we expect all activities of system
test to be expressible as the generation or evaluation of sce-
narios. New scenarios may simply be thought up by system
developers or be generated automatically.

Finding the right scenarios to generate is another opti-
mization problem to be solved during the development of
any complex adaptive system. Scenario evolution represents
a cross-cutting concern for all phases of system development.
Treating scenarios as first-class citizen among the artifacts
produced by system development thus yields changes in tasks
throughout the whole process model.

123

Taken from original publication: Thomas Gabor, Andreas Sedlmeier, Thomy
Phan, Fabian Ritz, Marie Kiermeier, Lenz Belzner, Bernhard Kempter, Cornel
Klein, Horst Sauer, Reiner Schmid, Marc Zeller, and Claudia Linnhoff-Popien.
The scenario coevolution paradigm: adaptive quality assurance for adaptive sys-
tems. International Journal on Software Tools for Technology Transfer, pages 1–
20, 2020

181

The scenario coevolution paradigm: adaptive quality assurance for adaptive systems 471

Fig. 5 Illustration of the hardness of scenarios according to Defini-
tion 14. In the same plot as in Fig. 1, scenarios from two different
scenario suites C1 (green) and C2 (purple) can be depicted as points
within the space of behavior where certain inputs need to be matched to
certain outputs. Various scenario generators may cover different areas
of the space of situations (shapes at the bottom of the plot). Although
the depicted system S = X ! Y fulfills both scenario suites, C1 is at
least as hard as C2 because its scenarios cover the same situations and
require at least as close to optimal performance (colour figure online)

8 Example application

We now return to the Grid World Smart Factory domain intro-
duced in Sect. 4. For an instance of that domain, an instance
of scenario coevolution was applied in [24]. Without human
involvement, a reinforcement learning agent adapting the
system’s behavior and an evolutionary algorithm adapting
the scenario suite have been put together. [24] has shown that
the paradigm yields better results per computation time, argu-
ing in favor of using scenario coevolution even in this fully
automated form. In this section, we provide formal definition
of the involved artifacts and processes fitting into the formal
framework we introduced so far. We thus abstract from the
dichotomy between human developers and automated adap-
tation and open up the paradigm of scenario coevolution to
both and (most importantly) hybrid approaches.

Recall that actions in the Grid World Smart Factory as
defined in Eq. 4 can be entirely simulated (although full
brute force simulations of all possible actions sequences is
infeasible). However, that means we can use a simulation to
generate training data. And since the simulation is complete
(it can simulate any situation that we defined to be able to
occur within the domain), we do not need to worry about any
other source of training data. In practical real-world appli-
cations, coming up with a high-fidelity simulation is usually
pretty hard or expensive. Complete simulations can often be
substituted with learned simulations, with are the result of
machine learning themselves.

Fig. 6 Scores achieved by SCoE and standard “random” reinforcement
learning during training over 10,000 episodes. Scores are averages of
running the current agent against 1000 randomly generated test scenar-
ios.. Image taken from [24] (colour figure online)

We derived the fitness function to be used in this applica-
tion in Eq. 12. It allows us to steer the system toward fully
producing as many items as possible. Using this fitness func-
tion, we expect the system to learn to fulfill the overall system
goal of fully producing all the requested items, as defined in
Eqs. 9 and 10 .

The system’s behavior is defined by the actions it chooses
for each consecutive time step. In [24], we chose to program
the system to execute (when in state si at time step i) the
action

ai = max
a∈{a5,a!,a6,a",a#,a$}

Q(si , a) (16)

where Q(si , a) is the so-called Q-value of action a in state
si . The Q-value is derived from Q-learning [41,44] and rep-
resents the expected reward when executing an action in a
given state. To estimate that value, we call a neural network
with weights θ .

The network weights θ are then optimized via rein-
forcement learning, variant of gradient descent as given in
Algorithm 4. The training process runs for a fixed compu-
tational budget. For more details on the implementation in
this case or any other part of the pipeline, please see [24].
For the quality of service of the trained system, we discern
between the fitness function and the actual goal function.
The network is trained to improve the average fitness, i.e.,
the average amount of items produced per run, but the user
is only interested in the overall success rate, i.e., the amount
of runs that are fully produced. The “random” (blue) plots in
Figs. 6 and 7 show the difference: The score in Fig. 6, i.e., the
value of the fitness function φ(S ⊗ θ), increases slower and
on a different scale than the amount of correct runs where
S ⊗ θ |& γ shown in Fig. 7. While the network trains on the
former, we assess its quality (and accept the model) using the
latter.

123

Taken from original publication: Thomas Gabor, Andreas Sedlmeier, Thomy
Phan, Fabian Ritz, Marie Kiermeier, Lenz Belzner, Bernhard Kempter, Cornel
Klein, Horst Sauer, Reiner Schmid, Marc Zeller, and Claudia Linnhoff-Popien.
The scenario coevolution paradigm: adaptive quality assurance for adaptive sys-
tems. International Journal on Software Tools for Technology Transfer, pages 1–
20, 2020

182

472 T. Gabor

Fig. 7 Percentage of successfully solved test scenarios by SCoE and
standard “random” reinforcement learning. The values are calculated
from a randomly generated set of 1000 scenarios.. Image taken from
[24] (colour figure online)

The learned policy is deployed on multiple independent
runs. As defined in Eq. 8, these independent runs (only) dif-
fer in the position of the obstacles in the domain. For the
“random” (blue) plots in Figs. 6 and 7, we generated domain
instances with random obstacles. Figures 6 and 7 also show
“SCoE” (orange) plots where the environments were not gen-
erated at random but by applying scenario coevolution.

For this, we need to define scenarios in the Grid World
Smart Factory domain (also see Definition 13). We reduce
complexity by not expecting specific outputs. We set no fixed
requirement on goal fulfillment or fitness. The set of all pos-
sible scenarios C can then be given as

C = {(p,∅, g, f) : p ∈ P4, g ∈ {@,⊥}, f ∈ cod(φ)}.
(17)

To train the system, we try to choose the hardest scenarios
from C, i.e., we try to optimize for

min
c∈C

φ(S ⊗ θ, c,∅). (18)

It is important to note that as θ changes, i.e., as the system
learns, our notion for which scenarios are hard also changes.

To continually come up with hard scenarios, we thus need
to continually optimize for them. We do so by employing
an evolutionary algorithm, which is an instance of stochastic
search as given in Algorithm 1. We thus form a scenario
sequence where a learning system using reinforcement and
a set of scenarios generated by an evolutionary algorithm
coevolve. Ideally, as the scenarios get harder, the system gets
better, and as the system gets better, the scenarios get harder.
Figures 6 and 7 show that employing scenario coevolution
in this fully automated form already yields a benefit to the
results. As discussed in [24], this benefit even upholds when
considering total computational effort spent. Figure 8 depicts
an overview of how the various parts of the system interact.

Within the machine learning pipeline, the search for hard
scenarios represents an instantiation of the task for the spe-
cialization of the model/policy by selecting specific instances
in which the model/policy is to be evaluated. However, note
that while a single scenario represents a concrete domain,
the whole suite of generated scenarios forms a distribution
of domains and is thus an ideal artifact to use for the next
iteration of the machine learning pipeline, i.e., the next gen-
eration of coevolution. Scenario coevolution as a paradigm
thus instantiates the whole feedback loop constituting the
machine learning pipeline.

9 Patterns for scenario coevolution

Having both introduced a formal framework for adaptation
and the testing of adaptive systems using scenarios, we show

Fig. 8 Schematic representation
of the scenario coevolution
process for the Grid World
Smart Factory application. A
population of test scenarios is
first generated at random and
then improved via evolution.
Between evolutions, the test
scenario population is fully
utilized as training data for the
reinforcement learning agent,
which causes the agent to
improve in parallel to the test
scenario population.. Image
taken from [24]

Test

Agent

Random
Generator

Agent

reinforce

update

reinforce

update
Agent

evolve

Test

Agent
update

reinforce
reinforce

123

Taken from original publication: Thomas Gabor, Andreas Sedlmeier, Thomy
Phan, Fabian Ritz, Marie Kiermeier, Lenz Belzner, Bernhard Kempter, Cornel
Klein, Horst Sauer, Reiner Schmid, Marc Zeller, and Claudia Linnhoff-Popien.
The scenario coevolution paradigm: adaptive quality assurance for adaptive sys-
tems. International Journal on Software Tools for Technology Transfer, pages 1–
20, 2020

183

The scenario coevolution paradigm: adaptive quality assurance for adaptive systems 473

in this section how these frameworks can be applied to aid
the trustworthiness of complex adaptive systems for practical
use.

9.1 Criticality focus

It is very important to start the scenario evolution pro-
cess alongside the system evolution, so that at each stage
there exists a set of scenarios available to test the system’s
functionality and degree of progress (see Concept 1). This
approach mimics the concept of agile development where
between each sprint there exists a fully functional (however
incomplete) version of the system. The concept of scenario
evolution integrates seamlessly with agile process models.

In the early phases of development, the common artifacts
of requirements engineering, i.e., formalized requirements,
serve as the basis for the scenario evolution process. As long
as the adaptation space A remains constant (and with it the
system goals), system development should form an adapta-
tion sequence. Consequently, scenario evolution should then
form a scenario sequence for that adaptation sequence. This
means (according to Definition 16), the scenario suite is aug-
mented with newly generated scenarios (for new system goals
or just more specialized sub-goals) or with scenarios with
increased requirements on fitness. Note that every change in
A starts new sequences. Ideally, the scenario evolution pro-
cess should lead the learning components on the right path
toward the desired solution. The ability to re-assign fitness
priorities allows for an arms race between adaptive system
and scenario suite (see Concept 2).
Augmenting requirements Beyond requirements engineering,
it is necessary to include knowledge that will be generated
during training and learning by the adaptive components.
Mainly, recognized scenarios that work well with early ver-
sion of the adaptive system should be used as checks and tests
when the system becomes more complex. This approach imi-
tates the optimization technique of importance sampling on
a systems engineering level. There are two central issues that
need to be answered in this early phase of the development
process:

– Behavior Observation: How can system behavior be gen-
erated in a realistic manner? Are the formal specifications
powerful enough? Can we employ human-labeled expe-
rience?

– Behavior Assessment: How can the quality of observed
behavior be adequately assessed? Can we define a model
for the users’ intent? Can we employ human-labeled
review?

Breaking down requirements A central task of successful
requirements engineering is to split up the use cases in atomic
units that ideally describe singular features. In the dynamic

world, we want to leave more room for adaptive system
behavior. Thus, the requirements we formulate tend to be
more general in notion. It is thus even more important to
split them up in meaningful ways in order to derive new sets
of scenarios. The following design axes (without any claim
to completeness) may be found useful to break down require-
ments of adaptive systems:

– Scope and Locality: Can the goal be applied/checked
locally or does it involve multiple components? Which
components fall into the scope of the goal? Is emergent
system behavior desirable or considered harmful?

– Decomposition and Smoothness: Can internal (possibly
more specific) requirements be developed? Can the over-
all goal be composed from a clear set of sub-goals? Can
the goal function be smoothened, for example by pro-
viding intermediate goals? Can sub-goal decomposition
change dynamically via adaptation or is it structurally
static?

– Uncertainty and Interaction: Are all goals given with full
certainty? Is it possible to reason about the relative impor-
tance of goal fulfillment for specific goals a priori? Which
dynamic goals have an interface with human users or
other systems?

9.2 Adaptation cool-down

We call the problem domain available to us during system
design the off-site domain. It contains all scenarios we think
the system might end up in and may thus even contain contra-
dicting scenarios, for example. In all but the rarest cases, the
situations one single instance of our system will face in its
operating time will be just a fraction the size of the covered
areas of the off-site domain. Nonetheless, it is also common
for the system’s real-world experience to include scenarios
not occurring in the off-site domain at all; this mainly hap-
pens when we were wrong about some detail in the real world.
Thus, the implementation of an adaptation technique faces
a problem not unlike the exploration/exploitation dilemma
[16], but on a larger scale: We need to decide, if we opt for a
system fully adapted to the exact off-site domain or if we opt
for a less specialized system that leaves more room for later
adaptation at the customer’s site. The point at which we stop
adaptation happening on off-site scenarios is called the off-
site adaptation border and is a key artifact of the development
process for adaptive systems.

In many cases, we may want the system we build to be
able to evolve beyond the exact use cases we knew about dur-
ing design time. The system thus needs to have components
capable of run-time or online adaptation. In the wording of
this work, we also talk about on-site adaptation stressing that
in this case we focus on adaptation processes that take place
at the customer’s location in a comparatively specific domain

123

Taken from original publication: Thomas Gabor, Andreas Sedlmeier, Thomy
Phan, Fabian Ritz, Marie Kiermeier, Lenz Belzner, Bernhard Kempter, Cornel
Klein, Horst Sauer, Reiner Schmid, Marc Zeller, and Claudia Linnhoff-Popien.
The scenario coevolution paradigm: adaptive quality assurance for adaptive sys-
tems. International Journal on Software Tools for Technology Transfer, pages 1–
20, 2020

184

474 T. Gabor

instead of the broader setting in a system development lab.
Usually, we expect the training and optimization performed
on-site (if any) to be not as drastic as training done dur-
ing development. (Otherwise, we would probably have not
specified our problem domain in an appropriate way.) As the
system becomes more efficient in its behavior, we want to
gradually reduce the amount of change we allow. In the long
run, adaptation should usually work at a level that prohibits
sudden, unexpected changes but still manages to handle any
changes in the environment within a certain margin. The rec-
ognized need for more drastic change should usually trigger
human supervision first.

Definition 17 (Adaptation Space Sequence) Let S be a sys-
tem. A series of |I | adaptation spaces A = (Ai)i∈I with
index set I with a preorder ≤ on the elements of I is called
an adaptation domain sequence iff for all i, j ∈ I , i ≤ j it
holds that: S adapts to A j implies that S adapts to Ai .

System development constructs an adaptation space
sequence (cf. Concept 4), i.e., a sequence of increasingly
specific adaptation domains. Each of those can be used to
run an adaptation sequence (cf. Definition 10) and a scenario
sequence (cf. Definition 16, Concept 2) to test it.

For the gradual reduction of the allowed amount of adap-
tation for the system, we use the metaphor of a “cool-down”
process. The adaptation performed on-site should allow for
less change than off-site adaptation. And the adaptation
allowed during run-time should be less than what we allowed
during deployment. This ensures that decisions that have
once been deemed right by the developers are hard to change
later by accident or by the autonomous adaptation process.

9.3 Eternal deployment

For high trustworthiness, development of the test cases used
for the final system test should be as decoupled from the
on-going scenario evolution as possible, i.e., the data used in
both processes should overlap as little as possible. Of course,
following this guideline completely results in the duplica-
tion of a lot of processes and artifacts. Still, it is important
to accurately keep track of the influences on the respective
sets of scenarios. A clear definition of the off-site adapta-
tion border provides a starting point for when to branch off
a scenario evolution process that is independent of possi-
ble scenario-specific adaptations on the system-under-test’s
side. Running multiple independent system tests (cf. ensem-
ble methods [18,25]) is advisable as well. However, the space
of available independently generated data is usually very lim-
ited.

For the deployment phase, it is thus of key importance to
carry over as much information as possible about the genesis
of the system we deploy into the run-time, where it can be
used to look up the traces of observed decisions. The reason

to do this now is that we usually expect the responsibility
for the system to change at this point. Whereas previously,
any system behavior was overseen by the developers who
could potentially backtrack any phenomenon to all previous
steps in the system development process, now we expect on-
site maintenance to be able to handle any potential problem
with the system in the real world, requiring more intricate
preparation for maintenance tasks (cf. Concept 3). We thus
need to endow these new people with the ability to properly
understand what the system does and why.

Our approach follows the vision of eternal system design
[33], which is a fundamental change in the way to treat
deployment: We no longer ship a single artifact as the result
of a complex development process, but we ship an image of
the process itself (cf. Concept 4). As a natural consequence,
we can only ever add to an eternal system but hardly remove
changes and any trace of them entirely. Using an adequate
combination operator, this meta-design pattern is already
implemented in the way we construct adaptation sequences
(cf. Definition 10): For example, given a system Si we could

construct Si+1 = X
Z! Y in a way so that Si is included in

Si+1’s internal state Z .
As of now, however, the design of eternal systems still

raises many unanswered questions in system design. We thus
resort to the notion of scenarios only as a sufficient system
description to provide explanatory power at run-time and
recommend to apply standard “destructive updates” to all
other system artifacts.

10 Conclusion

We have introduced a new formal model for adaptation and
test processes using our notion of scenarios. We connected
this model to concrete challenges and arising concepts in
software engineering to show that our approach of scenario
coevolution is fit to tackle (a first few) of the problems when
doing quality assurance for complex adaptive systems. We
have put our approach into context by applying it to an exam-
ple application and deriving a pipeline for the development
of machine learning components from it.

As already noted throughout the text, a few challenges
still persist. Perhaps most importantly, we require an ade-
quate data structure both for the coding of systems and for
the encoding of test suites and need to prove the practical
feasibility of an optimization process governing the software
development life cycle. For performance reasons, we expect
that some restrictions on the general formal framework will
be necessary. In this work, we also deliberately left out the
issue of meta-processes: The software development life cycle
can itself be regarded as system according to Definition 1.
While this may complicate things at first, we also see poten-

123

Taken from original publication: Thomas Gabor, Andreas Sedlmeier, Thomy
Phan, Fabian Ritz, Marie Kiermeier, Lenz Belzner, Bernhard Kempter, Cornel
Klein, Horst Sauer, Reiner Schmid, Marc Zeller, and Claudia Linnhoff-Popien.
The scenario coevolution paradigm: adaptive quality assurance for adaptive sys-
tems. International Journal on Software Tools for Technology Transfer, pages 1–
20, 2020

185

The scenario coevolution paradigm: adaptive quality assurance for adaptive systems 475

tial in not only developing a process of establishing quality
and trustworthiness but also a generator for such processes
(akin to Concept 4).

Aside from the evolution of scenarios, we see further
potential in the application of coevolution to software engi-
neering processes. Cooperative coevolution could be used
as means to break down global goals into local ones and
thus coordinate various roles in a (possibly emergent) multi-
agent system. Competitive coevolution as used in the scenario
coevolution paradigm could also be further generalized and,
for example, performed between multiple parties (instead of
just two antagonists) to represent multiple different aspects
of software testing (like robustness, security, data quality) by
different types of scenario-like artifacts.

Systems with a high degree of adaptivity and, among
those, systems employing techniques of artificial intelligence
and machine learning will become ubiquitous. If we want to
trust them as we trust engineered systems today, the methods
of quality assurance need to rise to the challenge: Quality
assurance needs to adapt to adaptive systems!

Acknowledgements Open Access funding provided by Projekt DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Abeywickrama, D.B., Bicocchi, N., Zambonelli, F.: Sota: Towards
a general model for self-adaptive systems. In: 2012 IEEE 21st Inter-
national Workshop on Enabling Technologies: Infrastructure for
Collaborative Enterprises, pp. 48–53. IEEE (2012)

2. Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman,
J., Mané, D.: Concrete Problems in AI Safety. arXiv preprint
arXiv:1606.06565 (2016)

3. Andersson, J., Baresi, L., Bencomo, N., de Lemos, R., Gorla, A.,
Inverardi, P., Vogel, T.: Software engineering processes for self-
adaptive systems. In: De Lemos, R., Giese, H., Müller, HA., Shaw,
M. (eds.) Software Engineering for Self-Adaptive Systems II, pp.
51–75. Springer (2013)

4. Arcaini, P., Riccobene, E., Scandurra, P.: Modeling and analyzing
MAPE-K feedback loops for self-adaptation. In: Proceedings of
the 10th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems. IEEE Press (2015)

5. Arcuri, A., Yao, X.: Coevolving programs and unit tests from their
specification. In: Proceedings of the 22nd IEEE/ACM International
Conference on Automated Software Engineering, pp. 397–400.
ACM (2007)

6. Batista, G.E., Prati, R.C., Monard, M.C.: A study of the behavior
of several methods for balancing machine learning training data.
ACM SIGKDD Explor. Newsl. 6(1), 20–29 (2004)

7. Belzner, L., Beck, M.T., Gabor, T., Roelle, H., Sauer, H.: Soft-
ware engineering for distributed autonomous real-time systems.
In: Proceedings of the 2nd International Workshop on Software
Engineering for Smart Cyber-Physical Systems, pp. 54–57. ACM
(2016)

8. Bernon, C., Camps, V., Gleizes, M.P., Picard, G.: Tools for self-
organizing applications engineering. In: Di Marzo Serugendo, G.,
Karageorgos, A., Rana, O.F., Zambonelli, F. (eds.) International
Workshop on Engineering Self-Organising Applications, pp. 283–
298. Springer (2003)

9. Bernon, C., Camps, V., Gleizes, M.P., Picard, G.: Engineering adap-
tive multi-agent systems: the ADELFE methodology. In: Giorgini,
P., Henderson-Sellers, B. (eds.) Agent-Oriented Methodologies,
pp. 172–202. IGI Global (2005)

10. Brun, Y., Serugendo, G.D.M., Gacek, C., Giese, H., Kienle, H.,
Litoiu, M., Müller, H., Pezzè, M., Shaw, M.: Engineering self-
adaptive systems through feedback loops. In: Cheng, B.H.C., de
Lemos, R., Giese, H., Inverardi, P. , Magee J. (eds.) Software Engi-
neering for Self-adaptive Systems, pp. 48–70. Springer (2009)

11. Bruni, R., Corradini, A., Gadducci, F., Lafuente, A.L., Vandin, A.:
A conceptual framework for adaptation. In: International Confer-
ence on Fundamental Approaches to Software Engineering, pp.
240–254. Springer (2012)

12. Bures, T., Weyns, D., Berger, C., Biffl, S., Daun, M., Gabor, T., Gar-
lan, D., Gerostathopoulos, I., Julien, C., Krikava, F., et al.: Software
engineering for smart cyber-physical systems—towards a research
agenda: report on the first international workshop on software engi-
neering for smart CPS. ACM SIGSOFT Softw. Eng. Notes 40(6),
28–32 (2015)

13. Bures, T., Weyns, D., Schmer, B., Tovar, E., Boden, E., Gabor,
T., Gerostathopoulos, I., Gupta, P., Kang, E., Knauss, A., et al.:
Software engineering for smart cyber-physical systems: challenges
and promising solutions. ACM SIGSOFT Softw. Eng. Notes 42(2),
19–24 (2017)

14. Calinescu, R., Ghezzi, C., Kwiatkowska, M., Mirandola, R.:
Self-adaptive software needs quantitative verification at runtime.
Commun. ACM 55(9), 69–77 (2012)

15. Conneau, A., Schwenk, H., Barrault, L., Lecun, Y.: Very Deep
Convolutional Networks for Natural Language Processing. arXiv
preprint arXiv:1606.01781 2 (2016)

16. Črepinšek, M., Liu, S.H., Mernik, M.: Exploration and exploitation
in evolutionary algorithms: a survey. ACM Comput. Surv. (CSUR)
45(3), 35 (2013)

17. De Lemos, R., Giese, H., Müller, H.A., Shaw, M., Andersson, J.,
Litoiu, M., Schmerl, B., Tamura, G., Villegas, N.M., Vogel, T.,
et al.: Software engineering for self-adaptive systems: a second
research roadmap. In: De Lemos, R., Giese, H., Müller, HA., Shaw,
M. (eds.) Software Engineering for Self-Adaptive Systems II, pp.
1–32. Springer (2013)

18. Dietterich, T.G., et al.: Ensemble methods in machine learning.
Mult. Classif. Syst. 1857, 1–15 (2000)

19. Elkhodary, A., Esfahani, N., Malek, S.: FUSION: a framework for
engineering self-tuning self-adaptive software systems. In: Pro-
ceedings of the 18th ACM SIGSOFT International Symposium on
Foundations of Software Engineering. ACM (2010)

20. Engelbrecht, A.P.: Computational Intelligence: An Introduction.
Wiley, Hoboken (2007)

21. Fraser, G., Arcuri, A.: Whole test suite generation. IEEE Trans.
Softw. Eng. 39(2), 276–291 (2013)

22. Gabor, T., Belzner, L., Kiermeier, M., Beck, M.T., Neitz, A.: A
simulation-based architecture for smart cyber-physical systems. In:
2016 IEEE International Conference on Autonomic Computing
(ICAC), pp. 374–379. IEEE (2016)

123

Taken from original publication: Thomas Gabor, Andreas Sedlmeier, Thomy
Phan, Fabian Ritz, Marie Kiermeier, Lenz Belzner, Bernhard Kempter, Cornel
Klein, Horst Sauer, Reiner Schmid, Marc Zeller, and Claudia Linnhoff-Popien.
The scenario coevolution paradigm: adaptive quality assurance for adaptive sys-
tems. International Journal on Software Tools for Technology Transfer, pages 1–
20, 2020

186

476 T. Gabor

23. Gabor, T., Kiermeier, M., Sedlmeier, A., Kempter, B., Klein, C.,
Sauer, H., Schmid, R., Wieghardt, J.: Adapting quality assurance to
adaptive systems: the scenario coevolution paradigm. In: Interna-
tional Symposium on Leveraging Applications of Formal Methods,
pp. 137–154. Springer (2018)

24. Gabor, T., Sedlmeier, A., Kiermeier, M., Phan, T., Henrich, M.,
Pichlmair, M., Kempter, B., Klein, C., Sauer, H., Schmid, R.,
Wieghardt, J.: Scenario co-evolution for reinforcement learning on
a grid-world smart factory domain. In: Proceedings of the Genetic
and Evolutionary Computation Conference. ACM (2019)

25. Hart, E., Sim, K.: On constructing ensembles for combinatorial
optimisation. Evol. Comput. 26, 1–21 (2017)

26. Holzinger, A., Biemann, C., Pattichis, C.S., Kell, D.B.: What
Do We Need to Build Explainable AI Systems for the Medical
Domain? arXiv preprint arXiv:1712.09923 (2017)

27. Hölzl, M., Gabor, T.: Reasoning and learning for awareness and
adaptation. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.)
Software Engineering for Collective Autonomic Systems, pp. 249–
290. Springer (2015)

28. Hölzl, M., Wirsing, M.: Towards a system model for ensembles. In:
Agha, G., Danvy, O., Meseguer, J. (eds.) Formal Modeling: Actors,
Open Systems, Biological Systems, pp. 241–261. Springer (2011)

29. Kephart, J.O., Chess, D.M.: The vision of autonomic computing.
Computer 36(1), 41–50 (2003)

30. Kiermeier, M., Werner, M., Linnhoff-Popien, C., Sauer, H.,
Wieghardt, J.: Anomaly detection in self-organizing industrial sys-
tems using pathlets. In: 2017 IEEE International Conference on
Industrial Technology (ICIT), pp. 1226–1231. IEEE (2017)

31. Kruchten, P.: The Rational Unified Process: An Introduction.
Addison-Wesley Professional, Boston (2004)

32. Nicola, R.D., Loreti, M., Pugliese, R., Tiezzi, F.: A formal approach
to autonomic systems programming: the SCEL language. ACM
Trans. Auton. Adaptive Syst. (TAAS) 9(2), 7 (2014)

33. Nierstrasz, O., Denker, M., Gîrba, T., Lienhard, A., Röthlisberger,
D.: Change-enabled software systems. In: Wirsing, M ., Banatre,
J.P., Hölzl, M., Rauschmayer, A. (eds.) Software-Intensive Systems
and New Computing Paradigms, pp. 64–79. Springer (2008)

34. Oreizy, P., Gorlick, M.M., Taylor, R.N., Heimhigner, D., Johnson,
G., Medvidovic, N., Quilici, A., Rosenblum, D.S., Wolf, A.L.: An
architecture-based approach to self-adaptive software. IEEE Intell.
Syst. Their Appl. 14(3), 54–62 (1999)

35. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal
representations by error propagation. California Univ San Diego
La Jolla Inst for Cognitive Science, Tech. rep. (1985)

36. Salehie, M., Tahvildari, L.: Self-adaptive software: landscape and
research challenges. ACM Trans. Auton. Adaptive Syst. (TAAS)
4, 1–42 (2009)

37. Schmidhuber, J.: Deep learning in neural networks: an overview.
Neural Netw. 61, 85–117 (2015)

38. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van
Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershel-
vam, V., Lanctot, M., et al.: Mastering the game of Go with deep
neural networks and tree search. Nature 529(7587), 484 (2016)

39. Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang,
A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A., et al.:
Mastering the game of Go without human knowledge. Nature
550(7676), 354 (2017)

40. Simonyan, K., Zisserman, A.: Very Deep Convolutional Net-
works for Large-Scale Image Recognition. arXiv preprint
arXiv:1409.1556 (2014)

41. Sutton, R.S., Barto, A.G., et al.: Introduction to Reinforcement
Learning, vol. 135. MIT Press, Cambridge (1998)

42. Wachter, S., Mittelstadt, B., Floridi, L.: Transparent, explainable,
and accountable AI for robotics. Sci. Robot. 2(6), eaan6080 (2017)

43. Wang, R., Lehman, J., Clune, J., Stanley, K.O.: Paired Open-ended
Trailblazer (Poet): Endlessly Generating Increasingly Complex and
Diverse Learning Environments and Their Solutions. arXiv preprint
arXiv:1901.01753 (2019)

44. Watkins, C.J., Dayan, P.: Machine learning. Q-learning 8(3–4),
279–292 (1992)

45. Weyns, D.: Software engineering of self-adaptive systems: an
organised tour and future challenges In: Handbook of Software
Engineering (2017)

46. Wirsing, M., Hölzl, M., Koch, N., Mayer, P.: Software Engineering
for Collective Autonomic Systems: The ASCENS Approach, vol.
8998. Springer, Berlin (2015)

47. Wolpert, D.H., Macready, W.G., et al.: No free lunch theorems for
optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

Taken from original publication: Thomas Gabor, Andreas Sedlmeier, Thomy
Phan, Fabian Ritz, Marie Kiermeier, Lenz Belzner, Bernhard Kempter, Cornel
Klein, Horst Sauer, Reiner Schmid, Marc Zeller, and Claudia Linnhoff-Popien.
The scenario coevolution paradigm: adaptive quality assurance for adaptive sys-
tems. International Journal on Software Tools for Technology Transfer, pages 1–
20, 2020

187

Benchmarking
Surrogate-Assisted Genetic Recommender Systems

Thomas Gabor and Philipp Altmann
LMU Munich

ABSTRACT
We propose a new approach for building recommender systems
by adapting surrogate-assisted interactive genetic algorithms. A
pool of user-evaluated items is used to construct an approximative
model which serves as a surrogate �tness function in a genetic
algorithm for optimizing new suggestions. The surrogate is used
to recommend new items to the user, which are then evaluated
according to the user’s liking and subsequently removed from the
search space. By updating the surrogate model after new recom-
mendations have been evaluated by the user, we enable the model
itself to evolve towards the user’s preferences.

In order to precisely evaluate the performance of that approach,
the human’s subjective evaluation is replaced by common contin-
uous objective benchmark functions for evolutionary algorithms.
The system’s performance is compared to a conventional genetic
algorithm and random search. We show that given a very limited
amount of allowed evaluations on the true objective, our approach
outperforms these baseline methods.

CCS CONCEPTS
• Computing methodologies → Genetic algorithms; Kernel
methods;

KEYWORDS
surrogate models, recommendation, genetic algorithm

ACM Reference Format:
ThomasGabor and PhilippAltmann. 2019. Benchmarking Surrogate-Assisted
Genetic Recommender Systems. In Genetic and Evolutionary Computation
Conference Companion (GECCO ’19 Companion), July 13–17, 2019, Prague,
Czech Republic. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
3319619.3326878

1 INTRODUCTION
During the last century, consumer behavior shifted from buying
products to subscribing to services. Platforms like Spotify or Net�ix
almost entirely replaced the need to buy CDs, DVDs or even digital
copies. However, besides o�ering an ultimate freedom of choice, this
overwhelming variety also causes an information overload, leaving
users with the problem of �nding songs that match their taste.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic
© 2019 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-6748-6/19/07. . . $15.00
https://doi.org/10.1145/3319619.3326878

Luckily, a vast amount of research has been put into developing
and improving systems helping the user to deal with this overload
by recommending items that are likely to match his or her taste.

In contrast to the most popular recommender method of collabo-
rative �ltering, our approach is not taking other users’ opinions into
account in order to increase the prediction precision. Instead, we
are using genetic algorithms to optimize suggestions with respect
to a surrogate model, constructed from the currently evaluated
items and updated after every suggestion. As frequently updating
the surrogate model is indirectly optimizing the model itself, the
strategy we propose is able to adapt to changes in the user’s taste
and �nd the most viable suggestions, even though similar items
might not have been evaluated yet. Thus we rely on the ability of
the surrogate model to suggest supposedly good items and then
make drastic updates if the suggested items has not been as well-
received. We argue that this approach may be able to recommend
more diverse items without the need to compare to or even access
other users’ data. To show the viability of this concept from an algo-
rithmic point of view, we simulate the user’s taste through common
benchmarking functions for evolutionary algorithms. Motivated by
the user-interactive scenario though, our experiments di�er from
common surrogate-assisted algorithms in goal of recommendation,
i.e., we explicitly exclude any individuals that have already been
evaluated by the true objective function from our optimization
process, yielding a highly dynamic optimization process.

We �rst review some related work regarding recommender sys-
tems and surrogate-assisted genetic algorithms in Section 2. In
Section 3 we introduce the approach and provide more detailed ex-
planations on the parameters and surrogate models used. After that,
we evaluate the concept by testing di�erent settings and analyze
the suitability of the di�erent meta-models in Section 4. Finally, we
sum up the �ndings, discuss limitations and prospects and show
possibilities of future work in Section 5.

2 FOUNDATIONS AND RELATEDWORK
2.1 Recommender Systems
Research regarding recommender systems began in the mid-1990s
[7, 17] with the motivation of providing useful suggestions to users
in order to help themmake choices in a space too overcrowded to be
survey-able by a human. By overcrowded spaces, we refer to item
domains that consist of far more items than a user can compare
or evaluate. Also, the density of items in some areas of the given
domain decreases their comparability and exacerbates the human
selection.

In general, recommender systems rely on rating data provided by
the users. In an e�ort to predict highly rated items, they use �ltering
methods to reduce the number of items that could be suggested
and recommend new items to their users so that these are likely to
match their tastes.

ar
X

iv
:1

90
8.

02
88

0v
1

 [
cs

.N
E

]
 8

 A
ug

 2
01

9

Taken from original publication: Thomas Gabor and Philipp Altmann. Bench-
marking surrogate-assisted genetic recommender systems. In Proceedings of the
Genetic and Evolutionary Computation Conference Companion, pages 1568–1575,
2019

188

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic Gabor and Altmann

Items may be characterized by their set of features and their
value to the user and classi�ed by their complexity or scope they
require to be evaluated within. The term “active users” is often used
to describe the users recommendations are made to. Interactions of
the user with the system are often referred to as transactions. [18]

In a mathematical expression, recommender systems aim to
provide for a given user c 2 C the recommended item

s 0c = argmax
s 2S

u(c, s)

where u : C ⇥ S ! R is a utility function measuring the usefulness
of item s 2 S to user c 2 C , where R is a totally ordered set (like
real numbers R in a certain range, e.g.). A recommendation task
for an evaluation budget n is the problem of computing the best
recommendation s 0c for user c while using just n evaluations of
the utility function u. As usually n ⌧ |S |, the recommendation
task has to approximate the result s 0c . Di�erent methods have been
developed to extrapolate u or build a meta-model to make useful
suggestions s 0 [2].

Content-Based Approach. This approach recommends items based
on their similarity to items previously rated positively by the user.
For computing the similarity of items, generally, a comparison of
their features is used [18].

Genetic algorithms have been used to optimize suggestions ac-
cording to user pro�les [20]. Similar to the approach we propose,
the incorporation of genetic algorithms allows for dynamic adap-
tation to changing user interests by optimizing �ltering agents.
Another method is using the set of rated items to train a Bayesian
classi�er to predict the usefulness of yet unrated items [16].

The most common method used for keyword retrieval, called
term-frequency/inverse-document-frequency (TF/IDF), at its core
weighs occurring words by their frequency [2]. As an optimization,
an approach based on minimum description length (MDL) has been
suggested: MDL provides a framework to minimize the model’s
complexity by reducing the number of extracted keywords while
retaining the items’ discriminability [14].

Collaborative Approach. Considered to be themost popularmethod,
collaborative �ltering recommends items that have already been
rated positively by users with a related taste [18]. In contrast to the
content-based approach being item-centered, this strategy could be
described as user-centered, clustering users with a similar rating
history into peers or virtual communities [7]. According to [5],
collaborative �ltering algorithms can be classi�ed into two types:

• Memory-based algorithms generally predict the rating of a
yet unknown item by calculating a weighted sum of this
item’s rating by other users, where the weight re�ects the
similarity of those users to the active user. Therefore di�er-
ent distance measures have been applied, for example, the
Pearson correlation coe�cient as used in the Group Lens
project [17]. In an alternative approach, users are treated as
vectors; their similarity can then be measured by calculating
the cosine of the angles between them [5].

• Model-based algorithms generally employ probability expres-
sions, measuring the probability of a speci�c rating by the
user. Therefore Bayesian classi�ers can be used for creating
clusters, or Bayesian Networks can be employed [15].

Further Approaches. Besides these two approaches, knowledge-
based, community-based and demographic methods have been sug-
gested [18]. Also, hybrid recommender systems as presented in [3]
have been shown to overcome some of the approaches’ weaknesses
by combining them.

2.2 Surrogate-Assisted Genetic Algorithms
This kind of genetic algorithms is applied to problems where an
explicit �tness function does not exist, for example in interactive
scenarios, but also to areas where the computational costs of the
�tness function would be too expensive. When replacing the real
�tness function by the use of approximation, however, the accuracy
is generally correlated negatively with the computational cost. [6]

Evolution Control. In contrast to the early stage of research,
where solely the surrogate model was used for evaluation, sur-
rogates are commonly used in combination with the real �tness
function as far as possible, in order to prevent the convergence
towards wrong optima introduced by the surrogate. Methods for
this distribution are often referred to as model management or
evolution control. Those can be divided into three categories: [9]

• In individual-based control, each generation some individ-
uals are evaluated using the real �tness function while the
rest is evaluated using the surrogate. Re-evaluating the best-
approximated individuals using the real �tness function has
been shown to further reduce computational costs [9]. An-
other approach applied in [12] utilizes clustering to evaluate
only the most representative individuals. Re-evaluating the
most uncertain predictions has also been proven to be useful,
increasing the meta-model’s prediction precision by explor-
ing still less evaluated areas. As measures for the prediction
accuracy, simple distance-based techniques, as well applica-
tions of Gaussian processes have been proposed [9].

• Generation-based control evaluates some generations en-
tirely using the real �tness function, while the other genera-
tions are approximated.

• Population-based control employs coevolution with multi-
ple populations using di�erent meta-models, while the mi-
gration between populations is allowed to individuals. A
homogeneous incorporation using neural network ensem-
bles, bene�ting from diverse predictions by those has been
proposed in [12]. Also, heterogeneous methods, utilizing a
population-based model management to employ surrogates
of di�erent �delities have been investigated [19].

It has also been shown that prevention of convergence towards
false optima that could be introduced by the surrogate’s prediction
errors needs to be considered [11].

While mainly used for �tness approximation, surrogates have
also been applied to the population initialization, mutation, and
crossover guiding those otherwise probabilistic mechanisms [8].

Regarding data sampling both o�-line techniques, i.e., training
the meta-model before the optimization, and on-line techniques,
i.e., continually updating the surrogate during the optimization
process, have been applied [8].

Meta-models. Methods for constructing meta-models can gener-
ally be divided into three categories by their level of approximation.

Taken from original publication: Thomas Gabor and Philipp Altmann. Bench-
marking surrogate-assisted genetic recommender systems. In Proceedings of the
Genetic and Evolutionary Computation Conference Companion, pages 1568–1575,
2019

189

Benchmarking Surrogate-Assisted Genetic Recommender Systems GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic

Continuous Feature Set
Mental-Model Evaluated

Item

Individual
Continuous Feature Set
Meta-Model Predicted

1

2

3

Figure 1: The surrogate-assisted genetic recommender system. A pool of user-evaluated items is used to train ameta-model (1),
which in turn is used as a surrogate �tness function in a genetic algorithm optimizing recommendations (2). Once suggest-able
and potentially valuable individuals are optimized, they are suggested to the user, evaluated against his or her mental-model
and the meta-model is updated to optimize new suggestions (3). This cycle is carried on until the recommendations converge,
i.e., no more new or valuable items are found.

Problem approximation, i.e., trying to replace the original problem
with a similar problem which is easier to solve, functional approxi-
mation, i.e., trying to simplify or approximate the original �tness
function, and evolutionary approximation, speci�c to evolution-
ary algorithms containing methods like �tness inheritance or the
clustering strategy mentioned above [8]. As concrete approxima-
tion models, di�erent polynomial models, Kriging models, support
vector machines and neural networks have been suggested [8].

The approach presented in [13] follows our motivation and em-
ploys interactive evolutionary computation, combined with a meta-
model to embed the human expert domain knowledge, solving
computationally expensive modi�ed nodal analysis.

To compensate for the lack of training data available in the use
of interactive genetic algorithms in conjunction with surrogate-
assisted �tness approximation, the approach presented in [21] em-
ploys co-training of radial basis function networks in a homoge-
neous multi surrogate fashion. Furthermore, they attempt to handle
uncertainties of human interval-based �tness evaluations using a
best-strategy individual-based model management.

Besides the application areasmentioned above, surrogate-assisted
genetic algorithms have also been found to be helpful for dynamic
optimization, constrained optimization and applied to higher opti-
mization robustness [9, 10].

3 APPROACH
The approach we present can be classi�ed as a content-based rec-
ommender system, using two di�erent model-based techniques for
�ltering, where the results are optimized using a aurrogate-assisted
genetic algorithm (SAGA). The system is built cyclically in order
to improve itself among the suggestions and adapt to changes in
the user’s taste. See Figure 1 for visual reference depicting the sys-
tem architecture as motivated by the use case of human-centered
recommender systems.

For a given user c 2 C , we assume that user c can evaluate any
item s 2 S according to his liking. This evaluation is described by
the utility function uc : S ! R, assuming that the user’s liking can
be encoded in R. We also call u the mental-model of the user as it
describes the user’s true intent.

Note that for the purpose of this paper, we are more interested in
testing the capabilities of the algorithm than testing user interaction.
Thus, for the mental-model uc we employ well-known and well-
de�ned functions commonly used for benchmarking evolutionary
algorithms, i.e., the Bohachevsky, Ackley and Schwefel functions.
Accordingly, our item space is S = R2 to �t these functions [1].

Given a set of already evaluated items S 0 ⇢ S , the goal of our
recommender system is to provide us with an item recommendation

s⇤ ⇡ argmax
s 2 S\S 0

uc (s)

Taken from original publication: Thomas Gabor and Philipp Altmann. Bench-
marking surrogate-assisted genetic recommender systems. In Proceedings of the
Genetic and Evolutionary Computation Conference Companion, pages 1568–1575,
2019

190

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic Gabor and Altmann

that is the best item not yet discovered by the user. However, we
aim to approximate that item without actually calling u and thus
allow for some error regarding optimality. Instead we return

ŝ ⇡ argmax
s 2 S\S 0

ûc (s, S 0)

for a surrogate utility function ûc : S ⇥ 2S ! R, which we call the
meta-model. The meta-model allows us to describe the suspected
quality of items without actually evaluating them with respect
to u. Note that in order to minimize errors, the meta-model may
take into account all the already evaluated items S 0. The de�ning
feature of this recommendation-based instance of a SAGA is that
the best recommendations according to the meta-model are then
subsequently evaluated using the mental-model, i.e., S 0 S 0 [{ŝ},
and thus removed from the search space S \ S 0.

As meta-models, a polynomial regression model �tted to the
training data using the method of least squares, and an interpola-
tion model utilizing radial basis function networks are tested and
compared in this paper:

• For the surrogate model based on polynomial regression we
employ the second order polynomial �̂ = �0+

Õ
1in �ixi +Õ

1jn �n+jx2j as suggested in [8]. The model is �tted to
the training data, i.e., the 100 currently evaluated items using
the least squares method, which is why we shortly refer to
this surrogate as “LSM”. Thus, given the 2d + 1 ⇥ n input
matrixX and then⇥1 responsematrixY , derived from S 0, the
�tness uc (s) for any unknown item with the d-dimensional
value vector s can then be estimated by ûc (s, S 0) = s �̂ with

�̂ =
⇣
XTX

⌘�1
XTY .

• To build an interpolation-based model we use radial basis
function networks and refer to this model as “RBF”. As the ac-
tivation function we utilize the minimization adopted Gauss-

ian function �(x) = 1 � e�
⇣
x2
2� 2

⌘
.

Given a set of n input vectors and the target vector T =
(t1, ..., tn), any unknown item’s �tness can be approximated
by ûc (s, S 0) =

ÕN
n=1wn� (ks � sn k) withW = ��1T , where

� =

2666664

� (ks1 � s1k) · · · � (ks1 � sn k)
...

. . .
...

� (ksn � s1k) · · · � (ksn � sn k)

3777775
,

using the euclidean norm kp � qk2 as a distance function.
For �nding suitable values for � , we use a diversity-based
method as suggested in [4], setting the width of all activation
functions to the average distance between the currently eval-
uated items’ values. This method results in a wider prediction
landscape when the item pool is diverse and a narrower eval-
uation landscape once the evaluated items start converging
towards an optimum.

Individuals to be recommended are selected using the best-strategy,
i.e., individuals with the highest predicted �tness value according to
û are recommended, thus added to the item pool S 0, and evaluated
according to u. The amount of suggested individuals per cycle is a
free parameter of this approach (cf. Section 4).

4 EVALUATION
4.1 Benchmark Objectives
In order to run a multitude of tests on the performance of the em-
ployed approach and the employed models, we opt for standard
evolutionary benchmark functions instead of real human interac-
tion. We used the implementation for Bohachevsky, Ackley, and
Schwefel functions provided by [1]. See Figure 2 for a small illus-
tration. All of these are constrained to a speci�c subset of R2 and
are to be minimized with a best �tness value of 0.

4.2 Parameter Optimization
To test and compare di�erent settings, data regarding the best item’s
�tness and accepted suggestion (in every suggestion cycle) as well
as the �tness of the best real-evaluated item and the cycle of conver-
gence (after the �xed number of recommendation cycles) are saved
for each test run. The cycle of convergence is represented by the
last recommendation cycle in which at least one suggestion was ac-
cepted. The number of accepted suggestions is obtained by counting
the suggestions that are evaluated better than the worst evaluated
item at that time. For enhanced comparability, the number of ac-
cepted suggestions is then normed with the number of suggestions,
so that this variable displays the success in the range [0; 1]. The
following section will provide tests and evaluations regarding the
population-handling technique, the rate of evaluation, the amount
of suggestions, and the optimal number of recommendation cycles.
Every test setup is performed in 10 repetitions and the results are
averaged in order to get a more representative result, less in�uenced
by possible outliers, also illustrating the robustness. To keep the
computational e�orts reasonably low, all the tests are made based
on two-dimensional versions of the objectives introduced above.

4.2.1 Rate of Evaluation and Population-Handling Technique.
Test results on di�erent evaluation rates, i.e., number of optimiza-
tion cycles before suggesting, ranging from 1 to 64, as well as the
impact of resetting the pool of individuals or maintaining that pool
throughout the recommendations are visualized in Figure 3.

Overall, the test results imply that applying a no-reset population
handling strategy yields a better outcome if the model is not at
risk to converge towards a local optimum of the benchmark (see
results for the Bohachevsky benchmark). A counterexample for this
can be observed at the results for the LSM model on the Ackley
benchmark. Also, choosing lower rates, i.e., shorter optimization of
suggestions, further reduces the risk of introducing false optima to
the surrogate by decelerating the model’s convergence. Otherwise,
higher rates are able to bene�t the system’s performance, as seen at
the rest results for the LSM model on the Bohachevsky benchmark.

4.2.2 Amount of Suggested Individuals per Cycle. Regarding the
amount of recommendations per cycle, numbers from 1 through
8 have been tested; test results can be seen in Figure 4. Overall, a
higher number of suggestions bene�ts the systems performance,
especially in combination with shorter optimization of those, as
this leads to a higher diversity of recommendation, which could
counteract the risk of the model’s convergence towards a local or
false optimum. Also, the comparably local perspective of the RBF
model, causing an overall worse performance than the LSM model,
seems to be neutralized by this e�ect, as seen in the results for the

Taken from original publication: Thomas Gabor and Philipp Altmann. Bench-
marking surrogate-assisted genetic recommender systems. In Proceedings of the
Genetic and Evolutionary Computation Conference Companion, pages 1568–1575,
2019

191

Benchmarking Surrogate-Assisted Genetic Recommender Systems GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic

(a) Bohachevsky objective (b) Ackley objective (c) Schwefel objective

Figure 2: Function plots for the (a) Bohachevsky, (b) Ackley, and (c) Schwefel benchmark functions for two-dimensional input.
Images taken from [1].

Figure 3: Benchmarking di�erent Evaluation Rates (x-axis) on the Bohachevsky (red/orange), Ackley (blue) and Schwefel
(green) objective. The LSM- and RBF-Model are compared with a Reset (lighter color) and NoReset (darker color) population-
handling technique. Test results for ten iterations of each test setup are displayed by box-plots for the Best Fitness on a
logarithmic scale.

RBF model on the Bohachevsky benchmark. The results for the
LSMmodel on both the Bohachevsky and Ackley benchmarks show
less correlation, as the results are already quite good and further
improvement would be hard to achieve, especially with this more
globally oriented surrogate model.

4.2.3 System Convergence and Number of Recommendation Cy-
cles. As mentioned above, the tested system is intended to work in
an interactive scenario; thus we strive for an overall low amount of
real �tness evaluations. In order to further reduce those, additional
tests have been carried out to determine the minimal amount of
recommendation cycles required. The convergence of the system,
i.e., if it is still able to make valuable recommendations is measured

Taken from original publication: Thomas Gabor and Philipp Altmann. Bench-
marking surrogate-assisted genetic recommender systems. In Proceedings of the
Genetic and Evolutionary Computation Conference Companion, pages 1568–1575,
2019

192

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic Gabor and Altmann

Figure 4: Testing the impact of the number of suggestions (x-axis) per recommendation cycle on the Bohachevsky (red/orange),
Ackley (blue) and Schwefel (green) objective. Comparing the LSM and RBFmodels by their Best Fitness, displayed by box-plots
on a logarithmic scale. Concrete parameter settings for the Evaluation Rate and the population-handling technique are shown
in the legend below.

by the number of accepted suggestions while the performance of
the surrogate and its convergence can be derived from the �tness of
the currently best real-evaluated item. The test results visualized in
Figure 5 show that all of the systems mostly converge within about
100 cycles, which, depending on the speci�c settings requires about
1000 real �tness evaluations at maximum. Reaching further im-
provement with a higher number of recommendation cycles could
not be justi�ed by the amount of additional real evaluations that
would be needed.

4.3 Comparison of System Performance
In order to put the Surrogate-Assisted Genetic Recommender Sys-
tem’s (“SAGRS”) performance into a context, we compare it to the
conventional Genetic Algorithm (“GA”). For all evolutionary pro-
cesses (both within the SAGRS and for the GA itself), a selection
factor of 0.9, a mutation probability of 0.1, and a recombination
probability of 0.05 are used. Furthermore an equal amount of true
�tness evaluations neval is retained, de�ning the population size
npop and the number of generations ngen in even distribution, such
that npop = ngen =

⌅p
neval

⇧
. If compared to LSM and RBF models

with di�erent amounts of true evaluations, the higher one is used
to compute the settings.

To further validate the necessity and the performance of the
meta-models used and to get an impression of the impact the ge-
netic optimization has, comparisons against a random search strat-
egy (Random Recommender, “RR”), integrated into the system the
same way the genetic optimization is, are drawn. Random search
is implemented as a genetic optimization with an evaluation rate
of 0, causing the optimization to be skipped and the system to
recommend the initially best-estimated individuals. As parameters
for this random-search-adopted recommender, an evaluation rate
of 0 and a reset population-handling technique as well as the op-
timal settings for the number of suggestions and the amount of
recommendation cycles (as evaluated in the previous sub-section)
are used. From a broader perspective, this system could also be
seen as a conventional content-based recommender-system, mak-
ing suggestions solely based on the estimation of the unknown
item’s rating. Concrete settings for all of those variable parameters
of each system compared are annotated in the legends of the plots.

Bohachevsky. The comparison results seen in Figure 6 show that
the SAGRS outperforms the Genetic Algorithm as well as the Ran-
dom Recommender with both approximation models easily. The
reason for this is most likely that the Genetic Algorithm cannot
handle such a low amount of evaluations, i.e., it is not able to o�er
convergence towards better �tness areas with such small amounts
of individuals and optimization cycles.

Taken from original publication: Thomas Gabor and Philipp Altmann. Bench-
marking surrogate-assisted genetic recommender systems. In Proceedings of the
Genetic and Evolutionary Computation Conference Companion, pages 1568–1575,
2019

193

Benchmarking Surrogate-Assisted Genetic Recommender Systems GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic

Figure 5: Evaluating the optimal number of recommendation cycles (x-axis) needed for both LSM and RBF models on the
Bohachevsky (red/orange), Ackley (blue) and Schwefel (green) objective. The optimization progress represented by the Best
Fitness (left y-axis) is visualized by a line graph on a logarithmic scale, the share in accepted suggestions (right y-axis) rep-
resented by dotted line graphs. Concrete parameter settings for the Evaluation Rate, population-handling technique, and
number of suggested items per recommendation cycle are displayed in the legend below.

The Random Recommender, also performing better than the Ge-
netic Algorithm, shows that the incorporation of meta-models has
a distinctly positive impact on the system’s performance. Compar-
ing the Surrogate-Assisted Genetic Recommender to the Random
Recommender furthermore provides evidence that the optimization
of suggestions has an a�rmative e�ect.

The LSM model apparently has the best outcome, but also the
RBF model performs surprisingly well. With 100 recommendation
cycles of four suggestions, optimized comparably long from a pop-
ulation that is retained over the runtime, the LSM model clearly
yields pro�t from its similarity to the objective and its global es-
timation capabilities. The RBF model, on the other hand, takes
advantage from an increased diversity of suggestions, as a result
to their short optimization in conjunction with the high amount
of recommendations per cycle, allowing for a better exploration of
the objective, thus counteracting the model’s local perspective.

Ackley. The comparison results seen in Figure 7 show that, simi-
lar to the Bohachevksy objective, the SAGRS is able to outperform
the Genetic Algorithm as well as the Random Recommender with
both approximation models. Still, the Genetic Algorithm does not
accomplish convergence towards any good solutions with this low
amount of �tness evaluations, which seems obvious, given the fact,
that Ackley is even harder to be optimized than Bohachevsky, where
it already failed.

Figure 6: Performance comparison of the SAGRS using an
LSMmodel (blue) and an RBFmodel (green), a conventional
genetic algorithm (dark grey), and a random recommender
based on the LSM (blue-grey) and RBF (green-grey) model
on the Bohachevsky objective. Their outcome regarding the
best �tness is visualized by box-plots on a logarithmic scale.
Concrete parameter settings are shown in the legend.

Taken from original publication: Thomas Gabor and Philipp Altmann. Bench-
marking surrogate-assisted genetic recommender systems. In Proceedings of the
Genetic and Evolutionary Computation Conference Companion, pages 1568–1575,
2019

194

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic Gabor and Altmann

Figure 7: Performance comparison of the SAGRS using an
LSMmodel (blue) and an RBFmodel (green), a conventional
genetic algorithm (dark grey), and a random recommender
based on the LSM (blue-grey) and RBF (green-grey) model
on the Ackley objective. Their outcome regarding the best
�tness is visualized by box-plots on a logarithmic scale. Con-
crete parameter settings are shown in the legend.

Even though the results are allocated on a denser expanse, due
to the objective’s comparably small �tness range, it still can be
perceived that the Random Recommender results in a better out-
come than the Genetic Algorithm, while being outperformed by the
SAGRS. Therefore, the implications about the usefulness of both the
optimization of suggestions and the utilization of approximation
models can still be endorsed for this speci�c benchmark.

While mostly performing worse than the LSM model, the RBF
model is able to reach even better results at some times. With a
comparably short optimization and a high number of suggestions,
the RBF model can bene�t from a higher diversity of recommenda-
tions, as seen before. In contrast, the LSM model is able to prevent
being misdirected by the objective’s local optima, by not retaining
previous populations, therefore requiring longer optimizations, and
suggesting a high amount of individuals.

Schwefel. The comparison results seen in Figure 8 show that the
SAGRS is able to slightly outperform the Genetic Algorithm and of-
fers similarly good results compared to the Random Recommender.
After performing badly for the previous two benchmarks, which
could be classi�ed as easier than Schwefel, the Genetic Algorithm
shows good results despite the low number of evaluations.

Here, the Random Recommender shows a comparably better
performance than the SAGRS. Considering their low evaluation
rate of 1, hardly di�ering in e�ect to a rate of 0, and that they the
same population-handling technique, such outcome could have
been presumed with regard to the test results for the Schwefel
objective in the previous section. Still, the positive impact of the
use of approximation models as well as the better performance of
the LSM model due to its global estimation capabilities can be seen.

The short optimization, combined with the high amount of sug-
gestions and the reinitialization of the population, causes the con-
vergence of both meta-models to be decelerated to a high degree,
preventing them from converging towards the distinct local optima
of the objective.

Figure 8: Performance comparison of the SAGRS using an
LSMmodel (blue) and an RBFmodel (green), a conventional
genetic algorithm (dark grey), and a random recommender
based on the LSM (blue-grey) and RBF (green-grey) model
on the Schwefel objective. Their outcome regarding the best
�tness is visualized by box-plots on a logarithmic scale. Con-
crete parameter settings are shown in the legend.

5 CONCLUSION
We proposed a framework for building systems that are able to
make recommendations based on content that has been evaluated
by a user. We assumed that user preference can be modeled by a
real-valued function called the mental-model, i.e., the true utility
to be measured from the user evaluating a given item. In order to
estimate the true utility of items yet unknown to the user, we used
a polynomial regression model (�tted using the method of least
squares) and an interpolation model (using radial basis function
networks) as surrogate models. These were employed by a genetic
algorithm to optimize for the best item that has not yet been evalu-
ated according to the mental-model. By evaluating these suggested
items on the mental-model, we improve our surrogate model but
also force a dynamic change in the mental-model.

We evaluated and tested the approach by replacing the subjec-
tive human evaluation with three di�erent objective benchmark
functions. Evaluating and optimizing the impact of the evaluation
rate, population-handling technique, number of suggestions and
number of recommendation cycles, we realized that decelerating
the meta-model’s convergence helps to overcome local optima of
the objective, and aids the system to converge towards the global
optimum.

Limitations. As we replaced the human evaluation with bench-
mark functions, the in�uences of human evaluation, even though
considered, are not tested nor evaluated. Therefore an applicability
of this approach as an interactive system cannot be stated. Further-
more, the use of those benchmarks compensates for the need of
an appropriate classi�cation of items, which plays an important
role when applying the system to real items. Also, all tests were
only made with two-dimensional values, which would be too few
for accurately classifying actual items. It should also be noted that
while the benchmark functions are well-established for testing ge-
netic algorithms, it is still to be shown if the approach generalizes

Taken from original publication: Thomas Gabor and Philipp Altmann. Bench-
marking surrogate-assisted genetic recommender systems. In Proceedings of the
Genetic and Evolutionary Computation Conference Companion, pages 1568–1575,
2019

195

Benchmarking Surrogate-Assisted Genetic Recommender Systems GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic

to other functions beyond that. When used in a real-world applica-
tion, especially with a human interaction, the optimized amount
of 1000 evaluations would still be a considerably high amount of
evaluations to be demanded from a single user.

Future Work. As the scope of the performed tests is limited,
further tests, especially evaluating and optimizing the system’s
real-world applicability should be performed. To test the system’s
ability adapting to a changing taste of the user, evaluations could
be made using a changing �tness landscape for the mental-model,
for example, the Moving Peaks benchmark presented in [1]. Also, a
higher dimensionality of the items’ features should be tested to get
a more representative image of the performance. Another test to
be performed is the reaction to noisy �tness functions, as a human
evaluation might involve uncertainty.

Since the approximation models showed some weaknesses, a fur-
ther improvement of those should also be considered. Even though
considered to be a more powerful model, the radial basis function
network was mostly outperformed by the polynomial regression
model, due to a too local point of view, resulting from the interpola-
tion technique. To counteract these constraints, training the model
with fewer radial basis function nodes by clustering the sample
data might be helpful. An alternative approach for constructing a
meta-model could utilize a Gaussian process as suggested in [9],
which already o�ers the Gaussian mean and variation as a measure
of certainty. Based on the idea of hybrid recommender systems, a
combined incorporation of both surrogates might help to overcome
some of their weaknesses, especially due to their di�erent level
of approximation. Having shown that the diversity of suggestions
is able to in�uence the model’s convergence to prevent the con-
vergence towards local optima, active control over the exploration
and exploitation might be useful. Therefore, a most-uncertain or
novelty-based technique for selecting items to be recommended
could be used, which would need the approximation models to be
extended by a measure of certainty.

Lastly, the approach should be implemented in a real-world
scenario to really test the human interaction instead of making
assumptions about it. Most importantly, di�erent methods for in-
corporating the human evaluation need to be evaluated to provide
a helpful tool, assisting its users to deal with the vast variety of
possibilities most e�ciently.

REFERENCES
[1] [n. d.]. Benchmarks – DEAP 1.2.2 documentation. http://deap.readthedocs.io/en/

master/api/benchmarks.html. ([n. d.]). Accessed: 2019-04-02.
[2] G Adomavicius and A Tuzhilin. 2005. Toward the next generation of recom-

mender systems: a survey of the state-of-the-art and possible extensions. IEEE
Transactions on Knowledge and Data Engineering 17, 6 (2005), 734–749.

[3] Marko Balabanović and Yoav Shoham. 1997. Fab: content-based, collaborative
recommendation. Commun. ACM 40, 3 (March 1997), 66–72.

[4] Christopher M Bishop. 1995. Neural Networks for Pattern Recognition. Oxford
University Press.

[5] John S Breese, David Heckerman, and Carl Myers Kadie. 1998. Empirical Analysis
of Predictive Algorithms for Collaborative Filtering. UAI (1998).

[6] Agoston E Eiben, James E Smith, et al. 2003. Introduction to evolutionary computing.
Vol. 53. Springer.

[7] William C Hill, Larry Stead, Mark Rosenstein, and George W Furnas. 1995. Rec-
ommending and Evaluating Choices in a Virtual Community of Use. CHI (1995),
194–201.

[8] Yaochu Jin. 2005. A comprehensive survey of �tness approximation in evolution-
ary computation. Soft Computing 9, 1 (Jan. 2005), 3–12.

[9] Yaochu Jin. 2011. Surrogate-assisted evolutionary computation - Recent advances
and future challenges. Swarm and Evolutionary Computation 1, 2 (2011), 61–70.

[10] Yaochu Jin and Jürgen Branke. 2005. Evolutionary optimization in uncertain
environments-a survey. IEEE Trans. Evolutionary Computation 9, 3 (2005), 303–
317.

[11] Yaochu Jin, M Olhofer, and B Sendho�. 2002. A framework for evolutionary opti-
mization with approximate �tness functions. IEEE Transactions on Evolutionary
Computation 6, 5 (Oct. 2002), 481–494.

[12] Yaochu Jin and Bernhard Sendho�. 2004. Reducing Fitness Evaluations Using
Clustering Techniques and Neural Network Ensembles. In Genetic and Evolution-
ary Computation – GECCO 2004. Springer, Berlin, Heidelberg, Berlin, Heidelberg,
688–699.

[13] Ra� R Kamalian, Alice M Agogino, and Hideyuki Takagi. 2007. Use of interactive
evolutionary computation with simpli�ed modeling for computationally expen-
sive layout design optimization. IEEE Congress on Evolutionary Computation
(2007).

[14] Ken Lang. 1995. NewsWeeder: Learning to Filter Netnews. In Machine Learning
Proceedings 1995. Elsevier, 331–339.

[15] Han-Saem Park, Ji-Oh Yoo, and Sung-Bae Cho. 2006. A context-aware music
recommendation system using fuzzy bayesian networks with utility theory. In
International conference on fuzzy systems and knowledge discovery. Springer, 970–
979.

[16] Michael Pazzani and Daniel Billsus. 1997. Learning and Revising User Pro�les:
The Identi�cation of Interesting Web Sites. Machine Learning 27, 3 (1997), 313–
331.

[17] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John
Riedl. 1994. GroupLens. In the 1994 ACM conference. ACM Press, New York, New
York, USA, 175–186.

[18] Francesco Ricci, Lior Rokach, and Bracha Shapira. 2011. Introduction to Recom-
mender Systems Handbook. Recommender Systems Handbook Chapter 1 (2011),
1–35.

[19] Mourad Sefrioui and Jacques Périaux. 2000. A Hierarchical Genetic Algorithm
Using Multiple Models for Optimization. PPSN 1917, Chapter 86 (2000), 879–888.

[20] B Sheth and P Maes. 1993. Evolving agents for personalized information �ltering.
In 9th IEEE Conference on Arti�cial Intelligence for Applications. IEEE Comput.
Soc. Press, 345–352.

[21] Xiaoyan Sun, Dunwei Gong, Yaochu Jin, and Shanshan Chen. 2013. A New
Surrogate-Assisted Interactive Genetic AlgorithmWithWeighted Semisupervised
Learning. IEEE Transactions on Cybernetics 43, 2 (2013), 685–698.

Taken from original publication: Thomas Gabor and Philipp Altmann. Bench-
marking surrogate-assisted genetic recommender systems. In Proceedings of the
Genetic and Evolutionary Computation Conference Companion, pages 1568–1575,
2019

196

Mutation-based Test Suite Evolution for

Self-Organizing Systems
?

André Reichstaller1, Thomas Gabor2, and Alexander Knapp1

1 Institute for Software & Systems Engineering
University of Augsburg, Germany

{lastname}@isse.de
2 Institute for Informatics, LMU Munich, Germany

thomas.gabor@ifi.lmu.de

Abstract. We consider test design as an optimization problem. The challenge is
to find a set of test cases, the so-called test suite, that optimizes two quantifiable
requirements: First, the effort needed for test execution should be minimal; a
given test budget usually sets a maximum for the size of the test suite. Second,
the test suite should maximize the score of a given test goal estimating its error
detection capability, e.g., by the use of coverage or risk metrics. This paper studies
test design for testing self-organizing systems with a mutation-based test goal.
Equipped with a reconfiguration mechanism, this kind of a distributed system
adapts its internal structure and thus its behavior to changing environmental
conditions at run time. Test execution at a time step t consequently not only
triggers an observable output at t+1, but might also bring about a reconfiguration
of the system under test influencing the result of subsequently executed test cases.
Formalizing the evolving sequential decision problem of test case executions
by dependency graphs, in which we try to find optimal sets of paths for the
mutation-based goal, we investigate the suitability of various kinds of evolutionary
algorithms for optimization. All of the considered algorithms are evaluated using
a concrete case study of an adaptive, self-organizing production cell.

1 Testing Self-Organizing Systems

“Testing is the process of executing a program with the intent of finding errors” [21].
Since exhaustively executing a program with all imaginable inputs I is in practice not
feasible, it is up to the tester to choose a subset I 0 ⇢ I which is expected to find
most of the errors. This challenge, generally referenced as test design, can be seen
as a problem of optimization: Given a goal function � : 2

I ! R that quantifies the
expectation of detected errors for all possible subsets of inputs, we strive to find the
optimal I 0 ⇢ I with |I 0| = k, where k denotes the maximum number of permitted
executions, that fulfills the constraints in time and cost. Since general solutions for this
subset selection problem are computationally expensive – exhaustive search would need�|I|
k

�
goal evaluations – it is common to solve specific instances with heuristic approaches

that build on domain-specific knowledge.
? Accepted for ISoLA 2018.

Taken from original publication: André Reichstaller, Thomas Gabor, and Alexan-
der Knapp. Mutation-based test suite evolution for self-organizing systems. In
International Symposium on Leveraging Applications of Formal Methods (ISoLA),
2018

197

Fig. 1. Fundamental setup of self-organizing systems: Distributed software agents (often embedded
in physical machines) continually interact with their environment (denoted by arrow type ∂). The
joint system behavior is strongly influenced by inter-agent communication (∑) through message
passing. If an agent detects an environmental fault hindering the current system approach, it triggers
a reorganization mechanism (∏) which computes and distributes a new valid configuration.

Self-organizing (SO) systems [8] are distributed systems with the particular character-
istic that they are able to adapt their internal structure at run time to changing environmen-
tal conditions; see Fig. 1 for the fundamental setup. This kind of self-adaptation builds on
an internal system state which is spread over the physically distributed agent components
and, when necessary, is modified by a so-called reorganization mechanism computing
and distributing an adapted agent component configuration in a central or again dis-
tributed manner by message passing. Reorganizations are triggered by monitoring the
current configuration and the environment. In the Restore Invariant Approach (RIA) [17]
a “corridor of correct behavior” (CCB) is used which is described by invariants and
where imminent leaving of the corridor results in a reorganization.

Though affecting the actual run-time behavior, the internal states and configuration
of an SO system usually are not accessible from outside the system boundaries; changes
to the system configuration rather are the indirect result of reorganization triggerings than
the direct product of a reaction to an input. For testing an SO system and, in particular,
solving the resulting optimization problem, the limited influence of the tester on the
system configuration hence raises implications on the test goal and the test strategy:

1. Test goal: The expectation of detected errors for a set of test inputs is strongly
associated with the (expected) system reaction on them. The current system state
shall consequently have the same influence on � as on the reaction. Given the internal
state space Ssys we get the new signature �SO : 2

I⇥Ssys ! R.
2. Strategy: An input i 2 I at time step t influences future system states by possibly

triggering previously unforeseen reconfigurations. Test execution at t thus influences
the score, as we call the evaluation of � for particular inputs, of the following
inputs. Test design evolves from an ad hoc towards a sequential decision problem:
optimization needs to take into account dynamic interactions between the tester and
the system under test (SuT). In consequence, our test goal �SO needs to consider input
sequences ⇡ : T ! I over time steps T = [1..|T |] starting from an initial system
state �0 2 Ssys instead of sets of pairs of inputs and system states: �SO : 2

IT ! R.

Taken from original publication: André Reichstaller, Thomas Gabor, and Alexan-
der Knapp. Mutation-based test suite evolution for self-organizing systems. In
International Symposium on Leveraging Applications of Formal Methods (ISoLA),
2018

198

Algorithm 1 Mutation-based test suite evaluation
Require: p ⌘ reference version of the program under test

O ⌘ set of mutation operators
S ⌘ mutation score function

1 function killed(⇡) . ⇡: test case input sequence of length |⇡|
2 K⇡ ; . map of killed mutants, indexed by mutants
3 for all o 2 O do

4 m mutated version of p by application of o
5 reset system state
6 for t 1..|⇡| do . iterate through time steps
7 e↵ p.execute(⇡(t))
8 e↵m m.execute(⇡(t))
9 if e↵ 6= e↵m then

10 K⇡[m] = (e↵ , e↵m) . mutant killed
11 break . continue with next mutation operator
12 return K⇡ . return killed mutants
13 function �M(TS) . TS: test suite of test input sequences
14 K ; . map of killed mutants, indexed by test input sequences
15 for ⇡ 2 TS do . iterate through test input sequences
16 K[⇡] killed(⇡)

17 return S(K) . return mutation score

For the first implication we previously investigated a mutation-based test goal for
SO systems [23]. Following the classic mutation testing technique [9], it determines
how many of the mutants that simulate the effect of communication errors during
reorganization a test suite reveals. Here, we consider a slightly modified goal not only
taking into account the number, but also the effect of revealed mutants on the CCB,
which leads to a weighted mutation score (Sect. 2). For solving the resulting optimization
problem for the second implication, we study the eligibility of meta-heuristic search
approaches, or, more concretely, of custom variants of classical evolutionary algorithms.
We present a novel evolutionary mutation as well as a recombination operator that are
particularly suitable for solving sequential optimization problems (Sect. 3), but may also
be useful for various applications beyond test design. An evaluation of the proposed
approaches by means of a concrete case, testing a self-organizing, adaptive production
cell, shows promising results (Sect. 4). Encouraged by those results and considering
related approaches and challenges (Sect. 5), we are planning several combinations and
extensions of the presented approaches in the future (Sect. 6).

2 A Mutation-based Test Goal

The mutation testing approach [9] supplies a direct operationalization for the principal
goal of finding faults (as effects of errors) through detecting failures: A reference version
of the program under test p and a set of mutation operators O that mimic particular,
common errors are assumed given. Modified versions of p are generated by applying the
operators from O. These so-called mutants of p simulate the effect of introduced errors

Taken from original publication: André Reichstaller, Thomas Gabor, and Alexan-
der Knapp. Mutation-based test suite evolution for self-organizing systems. In
International Symposium on Leveraging Applications of Formal Methods (ISoLA),
2018

199

Fig. 2. Corridor of correct behavior

and thus potentially comprise faults. Each of the mutants is executed with each of the
test cases from a test suite recording those mutants that show an effect deviating from
the effect of p; such a mutant is said to be killed by the test case. Finally, for evaluating
the test suite, a mutation score function S is applied to the record of killed mutants.

Algorithm 1 outlines this mutation-based test suite evaluation �M(TS) for a test suite
TS of sequences of test cases from the inputs I each of length at most |T |. In particular,
it considers the case that the execution of one test case in a sequence influences the
outcome of the next. We denote the execution of program q with a test case tc 2 I on
the current system state of Ssys by q.execute(tc) returning the observable effect of the
resulting state. �M(TS) first records the mutation results for each ⇡ 2 TS and then
applies the score function S to the computed map of killed mutants. For a test case
sequence ⇡, killed(⇡) executes the program p and each mutant resulting from O from
a freshly reset system state with ⇡ comparing the effects until either the sequence is
completed or the mutant has been detected.

While a classical mutation score function would simply return the overall number
of killed mutants, we suggest a more fine-grained categorization of observed effect
deviations leading to a weighted mutation score. This categorization builds on a basic SO
architectural concept: the corridor of correct behavior (CCB), for which the remainder
of this section suggests appropriate assignments of O and S for testing SO systems.

2.1 The Corridor of Correct Behavior

Our mutation-based testing approach for SO systems assumes that the behavioral spec-
ification of the system under test is, or can be, formalized by the Restore Invariant
Approach (RIA) [17]. Initially introduced as a generic formalism for the specification
and the implementation of Organic Computing systems, the RIA and the underlying
CCB also proved useful in enabling systematic and automatic tests for SO systems [11].
The CCB guides reorganization in the RIA with logical predicates describing wanted
properties of internal and external states. The conjunction of those predicates yields an
invariant for the system’s specified run-time behavior. Instead of continuously trying to
optimize a quantifiable goal, reorganization is only performed if the invariant is broken,
i.e., the CCB is left. The reorganization mechanism is assumed to restore the invariant
through reorganization then, such that the system can continue to work as expected.

The invariant considers both, the environmental state space Senv as well as the
internal state space Ssys. As soon as changing environmental conditions violate the

Taken from original publication: André Reichstaller, Thomas Gabor, and Alexan-
der Knapp. Mutation-based test suite evolution for self-organizing systems. In
International Symposium on Leveraging Applications of Formal Methods (ISoLA),
2018

200

invariant, reorganization is triggered by a monitoring mechanism. There are two cases in
which the invariant remains broken after reorganization: There might be no possibility
for “healing”, i.e., re-establishing the invariant by reorganization at all. Since we can
say that this is caused by higher force (the system cannot directly control Senv), this
case is not as relevant for testing. The other case, however, is relevant as it indicates the
existence of errors: if there was a possibility for re-establishing the invariant, but the
reorganization mechanism did not do that. By testing we strive to reveal this latter case.

The CCB allows us to concentrate the test effort on the reorganization mechanism,
as this ensures that the system behavior complies with its specification at run time: A
test case tc now amounts to choosing an environmental state, i.e., Senv becomes the test
input space I . Testing the program p of the reorganization mechanism by executing tc in
the current system state, i.e., implementing p.execute(tc), then involves three steps:

1. Establish the particular environmental state tc which, in combination with the current
system state violates the invariant.

2. Observe the system’s reaction and its effect on the overall state.
3. Evaluate and, where appropriate, classify the effect against the corridor.

2.2 Mutation Operators

Successful reorganization requires correct state perception by the agents, correct com-
putation of internal state adaptations by the reorganization mechanism, and correct
realization of the delivered adaptation tasks by the agents. Since all of these critical
routines are interconnected through message passing between the agents and the reorga-
nization mechanism, a common cause for system failures are errors in communication.
In [23] we elaborated the following exemplary mutation operators which are able to
mimic those typical reorganization errors:

– Lost Reconfiguration Message (LRM): As soon as an agent finds that a predicate of the
invariant is violated it should normally send a reconfiguration message to trigger the
reconfiguration mechanism. This mutation operator suppresses such messages, such
that there might be no reconfiguration in spite of an incorrect system configuration.

– Needless Reconfiguration Message (NRM): The inverse of an LRM: A particular agent
signals the violation of a predicate, although there actually is none. Consequently,
unnecessary reconfiguration steps might be triggered.

– False Reconfiguration (FR): This operator mimics the loss of a message that was sent
by the reconfiguration mechanism to trigger adaption. In consequence, one agent will
(maybe erroneously) retain its previous internal state – this could result again in an
incorrect system configuration.

For SO systems, we thus choose the set O of mutation operators to consist of LRM,
NRM, FR instantiated to each agent.

2.3 A Weighted Mutation Score

Considering Alg. 1, the final score for TS is determined by a function S which assesses
deviations in the observed effects when testing p and when testing the generated mutants.

Taken from original publication: André Reichstaller, Thomas Gabor, and Alexan-
der Knapp. Mutation-based test suite evolution for self-organizing systems. In
International Symposium on Leveraging Applications of Formal Methods (ISoLA),
2018

201

In its classic form, the score simply counts the number of mutants killed by TS:

Sc(K) = |M(K)| with M(K) = {m | 9⇡ 2 TS .K[⇡][m] 6= ;} . (1)

Besides this classic mutation score we suggest an extension for testing with the CCB,
which additionally takes the severity of killed mutants into account. This might be seen
as rewarding the test suite for revealing preferably serious failures. The idea behind such
a risk markup is that the more serious failures revealed by systematic testing, the lower
the probability that such serious failures occur in real operation (cf. [22]).

Considering the CCB we build the severity levels on a classification of possible test
results (as we call the effect observed after executing a program with a test case): If
test execution results in reorganization, i.e., the reorganization mechanism transferred
a state outside the corridor to the inside again, we assign the result to the class reorg .
Otherwise, we assign it to ¬reorg . Function C : E↵ ! {reorg ,¬reorg} determines the
class of an effect in E↵ . Comparing the effects e↵ and e↵m as they are gained in ll. 7
and 8 of Alg. 1, we quantify the severity levels of the four possible permutations with a
severity function Sev : E↵ ⇥ E↵ ! R:

Sev(e↵ , e↵m) =

8
><

>:

1 if C(e↵) = C(e↵m)

2 if C(e↵) = reorg ^ C(e↵m) = ¬reorg
3 if C(e↵) = ¬reorg ^ C(e↵m) = reorg

(2)

The first case is obviously the most harmless one. If a test case triggers reorganization
in both program versions (or in neither), we can argue that no real failure was detected.
However, as the mutant has been killed (cf. l. 10 in Alg. 1), we still assign a slight severity
score. The remaining cases indicate that the killed mutant simulated a real failure. In the
second case, no valid state was established even though this would be possible. Such a
failure would require human intervention in real operation. The third case, where a valid
state was established even though this should be impossible, implies even higher costs
in real operation, as it mostly results in a contradiction between software and hardware.
The quantified severity levels are the basis for the weighted mutation score

Sw(K) =
P

m2M(K)
Agg(*Sev(K[⇡][m]) | ⇡ 2 TS+) , (3)

where Agg aggregates the multiset of severities observed when a single mutant was
killed by more than one test case occurring TS. The operator Agg can be instantiated,
e.g., with

P
or max. We suggest to use

P
if the errors simulated by the mutation

operator are assumed to be transient, which means that the error does not always trigger
a failure if covered. For the others, the persistent errors, we suggest to use max.

3 Evolutionary Test Strategies

Given a mutation-based test goal �M as it is implemented in Alg. 1 and instantiated with
mutation operators O and mutation score function S, just as described in the previous
section, the challenge is now to find a test suite TS that optimizes this goal in terms of
the obtained score. We further demand that |TS| conforms with a predefined maximum

Taken from original publication: André Reichstaller, Thomas Gabor, and Alexan-
der Knapp. Mutation-based test suite evolution for self-organizing systems. In
International Symposium on Leveraging Applications of Formal Methods (ISoLA),
2018

202

initial

e↵1{m0[2],m2[1]} e↵2{m4[2]}

e↵3{m2[3],m5[1]}

e↵4{m1[1]} e↵5{m3[1],m6[1],m8[1]} e↵6{m9[3],m7[1]}

e↵7{m2[1],m6[2],m7[3]}

tc1 tc2

tc3 tc7

tc4
tc5 tc6

Fig. 3. Exemplary dependency graph with seven test cases tc1, . . . , tc7 annotated by the set
of killed mutants respectively. The numbers in squared brackets denote the severity of killed
mutants. The best test suite of size |TS| = 2 for max-aggregation comprises of the two sequences
⇡4 = htc2, tc3, tc6i and ⇡5 = htc2, tc7i scoring 14. For

P
-aggregation, however, the best test

suite with |TS| = 2 is {⇡3,⇡5} with ⇡3 = htc2, tc3, tc5i with a score of 19.

number of investable time steps k such that if each test sequence of TS has a length of
(at most) |T |, k = |TS| · |T |. In case of a self-organizing SuT the search for such a test
suite has to face the following two challenges:

1. The effects of test cases in terms of killed mutants are dependent on the full history
of previously executed test cases in a test sequence due to reconfigurations as adapta-
tions to these previous environmental influences; in particular, executing a test case
influences the future scores. The search space for the optimal test suite is thus given
by a dependency graph with the initial system state as root, effects and their killed
mutants as nodes, and the test cases as edges; see Fig. 3 for a small example.

2. Each evaluation of a test suite TS is at the cost of k · |O| program executions at
worst. The only factor that we can influence for practicability is thus the number of
evaluations that has to be kept to a minimum.

These challenges give rise to a general optimization problem: find a number of paths
through a graph in the most efficient way, such that their collected nodes optimize a
given goal. For the aggregation by

P
, when disregarding that test suites are sets, a

single best path could just be repeated, and optimization would be reduced to the well-
established problem of finding a single path with maximum score [20]. The aggregation
operator max, however, directly considers sets of nodes for evaluation and is sensitive to
duplicates; greedy approaches iteratively choosing the single best rated path are doomed
to fail. We now report on some experiments with different evolutionary algorithms for
mastering this problem. Utilizing the new technique of phased evolution (cf. Sect. 3.2)
we manage to cut the number of needed goal evaluations; endowing the evolutionary
mutation and recombination operators with domain specific semantics derived from a
similarity function between test cases, we leverage the classical evolutionary algorithm
to cope with the data structure of test sequences in penguin evolution (cf. Sect. 3.3).

Taken from original publication: André Reichstaller, Thomas Gabor, and Alexan-
der Knapp. Mutation-based test suite evolution for self-organizing systems. In
International Symposium on Leveraging Applications of Formal Methods (ISoLA),
2018

203

3.1 Evolutionary Algorithms

Evolutionary algorithms are a wide-spread probabilistic optimization technique [12]. As
they do not require a gradient on the solution space to be computable, they are often
used in the automatic generation of test cases for software [20, 26]. In more recent years,
the research community considered the issue of whole test suite generation, in which
the aim of applying an evolutionary algorithm is not to find the most important test
cases but instead to find the ideal combination of test cases that make up a concise but
approximately complete test suite for a given software [13].

We first discuss the basis of an evolutionary process for whole test suite generation,
which we will augment in the following sections. Any evolutionary algorithm works on
a set of solution candidates, also called individuals. In our case, a single individual TS
represents a whole test suite. The set of currently considered individuals is also called
a population P and thus forms a subset of the domain of all possible test suites. As is
usual for evolutionary algorithms, we set a fixed limit |P | = m on the population size.
Furthermore, we employ a fixed limit of execution time (measured in evaluations or
generations as we discuss later) instead of a quality threshold as would be possible as well.
However, especially for our later experiments we are most interested in the comparison
of the quality of various approaches within a given time frame, as for software testing the
requirement is more likely formulated to produce the best test suite within the available
time rather than to produce a test suite as fast as possible. Algorithm 2 shows the typical
structure of such an evolutionary algorithm. It starts with a random initialization and
repeats its other operations for a fixed amount of times n. Each of these repetitions is
also called a generation. We will discuss the various operators in greater detail now.

Random Initialization. This step generates the initial population by generating random
test suites. Note that generate is not a mathematical function as it returns a newly
generated object each time it is called. We use the term genetic operator for common
evolutionary operations that use random effects.

Recombination. We chose a variant of recombination that grants the chance to recombine
to each individual (irregardless of its fitness), but chooses its respective mate with respect
to higher fitness. Effectively, we found this to be a good compromise between allowing
exploration (using all individuals for recombination) and exploitation (favoring the better
ones). The former is guaranteed by applying a fixed chance rrecomb for the choice of any
individual for recombination. The randomized function select mate performs the latter
by iterating over the population, returning the nth-fittest individual with probability 2

�n.
We then first create an empty test suite (i.e., containing no test sequences but already of
required size |TS|) in the variable child . We then iterate over the number of test suites
that is used for all our suites and complete the child by performing one random choice of
three operations with equal probability (as denoted by the or operator): (a) we reuse the
test sequence of the first (randomly chosen) parent, or (b) we use the test sequence of the
second (chosen according to fitness) parent, or (c) we call a special function combine
that builds a new test sequence out of the test sequences stemming from both parents.
We show in Sect. 3.3 how to effectively implement such a function. Leaving out option
(c) entirely would result in a more standard evolutionary algorithm that still manages

Taken from original publication: André Reichstaller, Thomas Gabor, and Alexan-
der Knapp. Mutation-based test suite evolution for self-organizing systems. In
International Symposium on Leveraging Applications of Formal Methods (ISoLA),
2018

204

Algorithm 2 Evolutionary Algorithm for Test Suite Generation
Require: n ⌘ maximum amount of generations

m ⌘ maximum amount of individuals in the population
rrecomb, rmut, rhyper ⌘ rates of evolutionary operators
evaluate ⌘ fitness/objective function
rnd ⌘ random number generator on codomain [0, 1]
generate ⌘ genetic operator that randomly generates a test suite
mutate ⌘ genetic operator that randomly applies small changes to a test suite
combine ⌘ function that combines two test sequences to produce a new one
select parent ⌘ randomized function returning a mating candidate in a population

1 P ;
2 for j = 0, . . . ,m� 1 do . Random Initialization
3 P P [{generate()}
4 for i = 0, . . . , n� 1 do

5 for all TS 2 P do . Recombination
6 if rnd() < rrecomb then

7 mate select parent(P)
8 child (null)|TS|

9 for k = 0, . . . , |TS|� 1 do

10 child [k] TS[k] or mate[k] or combine(TS[k],mate[k])

11 P P [{child}
12 for all TS 2 P do . Mutation
13 if rnd() < rmut then

14 P P [{mutate(TS)}
15 for all TS 2 P do . Hypermutation
16 if rnd() < rhyper then

17 P P [{generate()}
18 while |P | > m do . Selection
19 P P \ {argminTS2P evaluate(TS)}
20 return argmaxTS2P evaluate(TS) . Result

to produce effective (but not as good) test suites (see Sect. 4.2). The recombination can
then be considered as a standard uniform crossover at the whole suite level.

Even though recombination is a common step integral to almost all evolutionary
algorithms, we did not present it as a black-box genetic operator but put a bit of its
implementation into the description in Alg. 2 to accurately describe how our implemen-
tation of select mate fits in. The function combine thus does not accurately represent
the whole genetic operation “recombination” the way mutate and generate do.

Mutation. Each individual is subject to mutation with a chance of rmut. When chosen,
the mutate operator generates a new individual through small random changes to the
original. It is not obvious how a small change can be accurately quantified or guaranteed
in the domain of test suites. It is, however, important that mutation operates on a small
scale as it is our main exploratory operator and large mutations may (systematically)
jump over some solutions. We tackle this problem in Sect. 3.3. An alternative to caring
about the “smallness” of the changes is to just pick a random test sequence of the

Taken from original publication: André Reichstaller, Thomas Gabor, and Alexan-
der Knapp. Mutation-based test suite evolution for self-organizing systems. In
International Symposium on Leveraging Applications of Formal Methods (ISoLA),
2018

205

suite and re-generate it through random walk within the dependency graph starting at a
randomly chosen point in the test sequence, which results in a rather big change with
each mutation. We compare these approaches in Sect. 4.2. Note that in contrast to some
evolutionary algorithms (and biological evolution), we only add mutated individuals to
the population instead of having them replace their original counterparts.

Hypermutation. During the hypermutation step, we simply generate new individuals at
random disregarding the previous course of evolution, and add them to the population.
For this purpose, we use the same generate operator as in the random initialization step.
Adding these new individuals increases exploratory behavior and thus helps prevent
getting stuck in local optima. In parallel to the other operators (and their respective
application rates), we base the amount of generated individuals on the population size
|P | and the given parameter rhyper. In fact, the phases extension discussed in Sect. 3.2
turns the evolutionary algorithm into a dynamic optimization problem, for which the use
of hypermutation has been highly suggested [16].

Selection. In the selection step we simply choose the m best individuals to keep for the
next generation. For the description in Alg. 2 we choose a notation that does not need to
introduce list slicing, although the implementation uses a computationally more efficient
functional equivalent to the algorithm presented here.

Result. Finally, we return the best individual found in the last population of the last
generation. This is also the best individual found overall, as all of our operations in the
steps within each generation only add new individuals but never overwrite their parents.
The fitness function evaluate in our case applies �M to the TS. As long as we do not
change its semantics this means that we always keep the best individuals around. This
feature is called elitism within the field of evolutionary algorithms. While the search
process is (even without elitism) expected to strive for better individuals anyway, elitism
ensures that it is monotone, as we will see in Sect. 4.2.

3.2 Phases Extension

Having discussed the basic functionality of our evolutionary algorithm for test suite
generation, we now introduce the first of two extensions to it. This extension considers
improving the performance of the search. We show in Sect. 4.2 that it manages to produce
comparable results with roughly half the goal evaluations.

Generally speaking, we can observe that there is a noticeable relation between the
fitness of a test suite TS and the fitness of a single test sequence ⇡ 2 TS, i.e., the fitness
of the suite {⇡}. As discussed, the best test suite of x test sequences (with maximum
length |T |) will usually not consist of the x best rated test sequences, as these will
likely overlap in killed mutants and thus have poor overall coverage. However, it seems
intuitive to start with one of the best rated test sequences and then build a suite around
it. We could thus split the test suite generation problem into various sub-problems of
iteratively finding test sequences given certain constraints (from previously found test
sequences). But evolutionary algorithms provide us with a much more elegant approach,
which we call phase-based evolution: we adjust the objective of the evolutionary process
and the data structure of its individuals during the progression of evolutionary search.

Taken from original publication: André Reichstaller, Thomas Gabor, and Alexan-
der Knapp. Mutation-based test suite evolution for self-organizing systems. In
International Symposium on Leveraging Applications of Formal Methods (ISoLA),
2018

206

We start our evolutionary process with individuals that contain test suites TS 2 P of size
|TS| = 1, i.e., all test suites only contain a single test sequence. We run this evolutionary
search for the best single test sequence for a while: if we eventually want to search
for a test suite TS of size |TS| = x after n generations, we run this reduced search
problem for roughly n

x generations. Then we augment all individuals to represent a test
suite with two test sequences by adding a randomly generated test sequence to each
individual. We proceed to expand the problem domain of the search every n

x generations
until generation n, having actually employed the original fitness function for a size x

test suite only for the last 1

n generations. This approach works well in case the time of
each of these evolutionary phases does run long enough to find reasonable results but not
long enough to fully converge. The evolutionary search thus hits a point where it has a
rough idea about the best single test sequence but still has multiple open options. At this
point, it proceeds to search for a larger test suite, with limited option for the first spot of
a test suite. Using the phases extension, we can cut the total amount of goal evaluations
roughly in half, since the average test suite is only x+1

2
test sequences in size throughout

the course of evolution.

3.3 Penguin Extensions

The second extension targets two points: (1) “merging” two test sequences into one within
the combine function and (2) applying meaningfully small changes in the search domain
of test suites within the mutate operator. The main problem of both is the handling
of test case dependencies: Two test sequences ⇡1 and ⇡2 cannot simply be combined
by attaching the tail of ⇡2 to the head of ⇡1 (as in the traditional one-point crossover
operation [12]), since the configurations in the second half of ⇡2 might not conform to
those of the first half of ⇡1. We utilize a method we call penguin recombination instead.
Its name is inspired by an imaginary instance of our evolutionary algorithm being used
to compute the evolution of animals, where dependencies in combination and mutation
can be observed as well. If we consider two test sequences as different species such as a
parrot and a fish, we notice that they cannot meaningfully recombine through crossover;
but, inspired by nature, we can at least evolve the parrot to another bird that is most
similar to the fish, resulting in perhaps a penguin. For applying this metaphor to the test
sequences considered, we utilized a notion of similarity which we introduced in [23].

Similarity between Test Sequences. We showed that faults that result from errors which
are emulated by the mutation operators mentioned in Sect. 2.2 have no influence on one
another, as they are distributed over different entities that are only connected through
message passing. This basically means that a fault in the source code of one agent does
not affect the path passed through control flow of another. We showed that we are in this
case able to determine which of all the possibly generated faults F (as result of applying
mutation operators) a test case would generally cover [23]. We can thus represent a test
case by a label vector, a binary vector v of length |F |, with vi = 1 if the fault Fi is
covered and vi = 0 otherwise. Such a vector can be viewed as indicator for the path
taken through the distributed control flow in an SO system in response to the input of an
executed test case. Building on this insight we proposed a dissimilarity metric comparing

Taken from original publication: André Reichstaller, Thomas Gabor, and Alexan-
der Knapp. Mutation-based test suite evolution for self-organizing systems. In
International Symposium on Leveraging Applications of Formal Methods (ISoLA),
2018

207

two test cases based on their label vectors v1 and v2:

Dist(v1, v2) = |{l 2 {1, . . . , n} | v1[l] 6= v2[l]}| . (4)

The more dissimilar two test cases are w.r.t. (4) the more fruitful it might be to execute
them both instead of only one of them. Writing tc.v for the label vector of test case tc,
we extended this metric for assessing the representativeness or similarity of whole test
sequences ⇡1 and ⇡2, i.e., paths through the dependency graph by

Rep(⇡1,⇡2) =
P

tc22⇡2
mintc12⇡1 Dist(tc1.v, tc2.v) . (5)

Penguin Recombination. Using this path distance, two test sequences ⇡1 and ⇡2 can be
combined as follows: we cut a part of the beginning of ⇡1 at a random length, resulting
in the incomplete test sequence ⇡

A
1

so that ⇡A
1
;⇡

B
1

= ⇡1 for some ⇡
B
1

. There now exist
multiple paths that may follow, of which ⇡

B
1

is one possibility. Of all the possibilities
⇡
B
1
,⇡

B
1

0
, . . . within the current configuration at ⇡A

1
, we compute their similarity to ⇡

B
2

,
which is the second part of ⇡2 after cutting off ⇡2 at the same length as ⇡1. We choose
the most similar completion ⇡

B
1

⇤ ⇠ ⇡
B
2

to produce a new test sequence ⇡3 = ⇡
A
1
;⇡

B
1

⇤.
This test sequence has a similar setup as ⇡1 but after a certain point tries to mimic as
many features of ⇡2 as possible, i.e., become as much of a fish as a parrot can.

Penguin Mutation. The mutation operator is implemented analogously, almost as a
recombination of a test sequence ⇡ with itself. We cut off ⇡ at some random point,
resulting in ⇡

A
;⇡

B
= ⇡. Furthermore, we cut off the first test case of ⇡B , resulting in

⇡
B
orig

;⇡
C
= ⇡

B . We then add one test case at random to ⇡
A, which we name ⇡

B
rand

, and
make sure that ⇡B

rand
6= ⇡

B
orig

. From that point on, we complete ⇡
A
;⇡

B
rand

by generating
the test sequence ⇡

C⇤ ⇠ ⇡
C . We return the mutated test sequence ⇡

0
= ⇡

A
;⇡

B
rand

;⇡
C⇤

with only a single test case changed and afterwards trying to mimic the original ⇡ as
closely as still possible. We argue that this is the minimal (and still general) mutation
one can implement for the domain of test sequences.

4 Evaluation

We evaluated the presented approaches by means of a concrete case study of a self-
organizing, adaptive production cell. After describing the case considered in Sect. 4.1
we will provide the results in Sect. 4.2.

4.1 Case Study: An Adaptive Production Cell

We consider evolving a test suite for a self-organizing, adaptive production cell. As
depicted in Fig. 4, the considered setup comprises four robots (R1, R2, R3, R4) and three
mobile carts (C1, C2, C3). The robots are equipped with tools and corresponding capa-
bilities such as Drill, Insert, Tighten, and Polish. The carts are able to carry workpieces
along given routes. Each of the robots can be associated with a particular role which lets
it apply a sequence of capabilities on present workpieces. The self-organizing production
cell’s behavior at a point in time t is thus determined by the overall role allocation and

Taken from original publication: André Reichstaller, Thomas Gabor, and Alexan-
der Knapp. Mutation-based test suite evolution for self-organizing systems. In
International Symposium on Leveraging Applications of Formal Methods (ISoLA),
2018

208

R2

R1 R3

DI

ID

TPTD

C2C1

R4

PC3

(a) The resource flow starts to the left where R1

drills a hole into incoming workpieces. Work-
pieces are successively transported by C1, C2,
and C3. The robots apply their tools. Once R4 is
done, the workpieces leave the system.

R2

R1 R3

DI

ID

TPTD

C2C1

R4

C3
¬polish

(b) After R4 loses its polish tool, the resource
flow is reconfigured: R3 is taking over the previ-
ous role of R4.

Fig. 4. A schematic overview of the self-organizing robot cell case study. The task is to apply the
drill, insert, tighten, and polish capabilities to all incoming workpieces. Each robot’s available tools
are shown to its right with D, I, T, and P; the currently allocated ones are underlined. Figure 4a
shows an exemplary configuration of the robot cell. As depicted in Fig. 4b, faults result in tool
losses that self-organization can cope with by reconfiguring the resource flow.

cart routes in t. A corridor of correct behavior (cf. Sect. 2.1) monitors the satisfiability
of tasks in the presence of environmental faults, such as a broken driller for a specific
robot. Triggered by violations an SO mechanism calculates and distributes a new valid
configuration at run-time.

Testing the SO mechanism in the described setup means to simulate environmental
faults by use of test drivers in order to subsequently evaluate the established, new config-
uration of the cell. While the inputs of a single test case are defined by a fixed number of
environmental faults (55 in our case), a test sequence starting at a fixed role allocation
with no activated faults, sequentially activates the faults defined by the comprised test
cases. The result of a test case depends on the current role allocation, which can be
viewed as an internal system state, and this current role allocation is established by the
preceding test cases. The dependency graph of test cases hence is connected by role
allocations before and after the test case execution. For our experiments, we generated
the test suite to minimize by use of the S# framework [10] resulting in a graph with 7524

test cases as nodes and 8 884 634 edges in between them.

4.2 Results

For evaluation we applied our approach to the mentioned dependency graph. We tested a
standard evolutionary algorithm evolving a test suite as well as both of our extensions
individually and their combination. We also ran baseline experiments using random
search. We used a population of size m = 50 evolving for n = 1000 generations.
We produced test suites of (eventual) size x = 10 from our test data comprising test
sequences of length up to |T | = 10, i.e., k = 100. We chose rrecomb = 0.3 and
rmut = rhyper = 0.1 for the hyperparameters providing a lot of random exploration
to the algorithm favoring generality of our results over sample efficiency. The total
computation time of all evolutionary processes included in the test was 1.6 h on a
machine with an Intel Core i7 processor at 2.9GHz and 16GB of memory. The results
are shown in Figs. 5a and 5b. It can be clearly seen that the phases extension eventually

Taken from original publication: André Reichstaller, Thomas Gabor, and Alexan-
der Knapp. Mutation-based test suite evolution for self-organizing systems. In
International Symposium on Leveraging Applications of Formal Methods (ISoLA),
2018

209

(a) Performance evaluation of evolutionary test generations strategies compared to a random
baseline. The penguin recombination and mutation manages to produce better results than the
naı̈ve approach. Interestingly, for both cases, about the same quality of results can be reached
using the phased evolutionary algorithm with significantly less computational effort, see Fig. 5b.

(b) The same experiment as in Fig. 5a plotted against the number of test sequence evaluations
performed. It can be seen that the phase-based extension uses only about half the evaluations
compared to the standard approach, reaching about the same performance earlier in the case of the
penguin variant.

Fig. 5. Performance evaluation results

Taken from original publication: André Reichstaller, Thomas Gabor, and Alexan-
der Knapp. Mutation-based test suite evolution for self-organizing systems. In
International Symposium on Leveraging Applications of Formal Methods (ISoLA),
2018

210

achieves very similar results to both non-phase-based variants, but with considerable
savings in computational resources. Furthermore, it is also evident that both penguin
variants outperform their non-penguin counterparts. Again, this validates our approach
and shows that the additional knowledge given to the algorithm in form of the similarity
function pays off with better end results.

5 Related Work

Extensive use of adaptivity, such as self-organization, necessitates research on adequate
methods of engineering them reliably [8, 28]. Finding adequately powerful software
tests is an integral part of making adaptive systems controllable and trustworthy [1, 3, 6],
even though some new methods regarding, e.g., run-time testing [4, 7, 14], need to be
developed. The concept of simultaneously using machine learning methods to generate
the adaptivity of the SuT as well as the power of the test suite has been sketched for
neural networks as adversarial learning [2, 19].

We considered test suites for self-organizing systems, and the application of evo-
lutionary algorithms for their generation w.r.t. a mutation-based test goal. While it
seems quite common to use fault-based techniques for evaluating the quality of test
suites [5,24,29], the huge majority of approaches, including the cited ones, applies other
test goals for actual generation or the minimization process. This might be due to the
high costs for goal evaluation, which we were able to reduce by the phases extension.
The mutation operators and the case study were taken from our previous work, where we
considered the test suite reduction problem for SO systems [23]. Also the severity-based
mutant weighting was inspired by our previous work in which we approached the task
of risk-based interoperability testing using reinforcement learning [22].

Here, we made use of search-based testing techniques [20] for generating test suites
which are adequate w.r.t. a mutation-based test goal. Within the field of evolutionary
algorithms, test case generation has been researched for some time [20, 26] with whole
suite generation sparking interest more recently [13]. Using evolutionary algorithms
for dynamically changing problems has been envisioned from their very beginning [12,
27]. Some approaches have already introduced dynamics into originally non-dynamic
problems in order to improve the quality of the search result [15, 25]. These also use
measurements related to the similarity between individuals in their evaluation, which
may then change over time as the population changes. Similarity has been incorporated
into the recombination process e.g. in [18], though on a different level than in our
approach, viz. at the level of mate selection mirroring biological evolution.

6 Conclusion

We suggested two domain specific extensions of a classical evolutionary approach on
constructing test suites of given length w.r.t. a mutation-based test goal for testing
self-organizing systems. The first, the phased extension, reduced the number of goal
evaluations needed for optimization, the second, the penguin extension, was shown
to increase the overall fitness attained. Both aspects are highly relevant for test suite
construction. Though our evaluation just considered a single concrete case, testing a

Taken from original publication: André Reichstaller, Thomas Gabor, and Alexan-
der Knapp. Mutation-based test suite evolution for self-organizing systems. In
International Symposium on Leveraging Applications of Formal Methods (ISoLA),
2018

211

self-organizing production cell, we expect to be able to generalize our findings in future.
Applications to be considered include code-level test sequence and test suite generation.
With respect to the presented mutation-based test goal the future plan is to combine
the severity-based weighting scheme of mutants suggested here with the concept of
higher-order mutants for self-organizing systems that we investigated previously [23].
Also here we envision several cut points with practice-oriented applications, such as test
suite minimization and construction for distributed systems, waiting for being explored.

Acknowledgment. This research is partly funded by the research project Testing self-
organizing, adaptive Systems (TeSOS) of the German Research Foundation. We thank
the anonymous reviewers for their helpful comments.

References

1. Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., Mané, D.: Concrete problems
in AI safety (2016), https://arXiv.org/pdf/1606.06565

2. Arjovsky, M., Bottou, L.: Towards principled methods for training generative adversarial
networks (2017), https://arXiv.org/pdf/1701.04862

3. Belzner, L., Beck, M.T., Gabor, T., Roelle, H., Sauer, H.: Software engineering for distributed
autonomous real-time systems. In: Proc. 2nd Intl. Ws. Software Engineering for Smart Cyber-
Physical Systems. pp. 54–57. ACM (2016)

4. Belzner, L., Gabor, T.: Bayesian verification under model uncertainty. In: Proc. 3rd Intl. Ws.
Software Engineering for Smart Cyber-Physical Systems. pp. 10–13. IEEE (2017)

5. Black, J., Melachrinoudis, E., Kaeli, D.: Bi-criteria models for all-uses test suite reduction. In:
Proc. 26th Intl. Conf. Software Engineering. pp. 106–115. IEEE (2004)

6. Bures, T., Weyns, D., Klein, M., Haber, R.E.: 1st International Workshop on Software Engi-
neering for Smart Cyber-Physical Systems (SEsCPS 2015). In: Proc. 37th Intl. Conf. Software
Engineering (Vol. 2). pp. 1009–1010. IEEE (2015)

7. Calinescu, R., Ghezzi, C., Kwiatkowska, M., Mirandola, R.: Self-adaptive software needs
quantitative verification at runtime. Comm. ACM 55(9), 69–77 (2012)

8. De Lemos, R., Giese, H., Müller, H.A., Shaw, M., Andersson, J., Litoiu, M., Schmerl, B.,
Tamura, G., Villegas, N.M., Vogel, T., et al.: Software engineering for self-adaptive systems:
A second research roadmap. In: Software Engineering for Self-Adaptive Systems II, Lect.
Notes Comp. Sci., vol. 7475, pp. 1–32. Springer (2013)

9. DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Hints on test data selection: Help for the practicing
programmer. Computer 11(4), 34–41 (1978)

10. Eberhardinger, B., Seebach, H., Klumpp, D., Reif, W.: Test case selection strategy for self-
organization mechanisms. In: Spillner, A., Winter, M., Pietschker, A. (eds.) Test, Analyse und
Verifikation von Software – gestern, heute, morgen, pp. 139–157. dpunkt (2017)

11. Eberhardinger, B., Seebach, H., Knapp, A., Reif, W.: Towards testing self-organizing, adaptive
systems. In: Proc. IFIP Intl. Conf. Testing Software and Systems. Lect. Notes Comp. Sci., vol.
8763, pp. 180–185. Springer (2014)

12. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing, Natural Computing Series,
vol. 53. Springer (2003)

13. Fraser, G., Arcuri, A.: Evosuite: Automatic test suite generation for object-oriented soft-
ware. In: Proc. 19th ACM SIGSOFT Symp. & 13th Europ. Conf. Foundations of Software
Engineering. pp. 416–419. ACM (2011)

Taken from original publication: André Reichstaller, Thomas Gabor, and Alexan-
der Knapp. Mutation-based test suite evolution for self-organizing systems. In
International Symposium on Leveraging Applications of Formal Methods (ISoLA),
2018

212

14. Fredericks, E.M., Ramirez, A.J., Cheng, B.H.C.: Towards run-time testing of dynamic adaptive
systems. In: Proc. 8th Intl. Symp. Software Engineering for Adaptive and Self-Managing
Systems. pp. 169–174 (2013)

15. Gabor, T., Belzner, L., Linnhoff-Popien, C.: Inheritance-based diversity measures for ex-
plicit convergence control in evolutionary algorithms. In: Proc. Genetic and Evolutionary
Computation Conf. (2018)

16. Grefenstette, J.J.: Genetic algorithms for changing environments. In: Proc. Parallel Problem
Solving from Nature 2. pp. 139–146. Elsevier (1992)

17. Güdemann, M., Nafz, F., Ortmeier, F., Seebach, H., Reif, W.: A specification and construction
paradigm for organic computing systems. In: Proc. 2nd Intl. Conf. Self-Adaptive and Self-
Organizing Systems. pp. 233–242. IEEE (2008)

18. Ishibuchi, H., Shibata, Y.: A similarity-based mating scheme for evolutionary multiobjective
optimization. In: Proc. Genetic and Evolutionary Computation Conf. (Part I). Lect. Notes
Comp. Sci., vol. 2723, pp. 1065–1076. Springer (2003)

19. Lowd, D., Meek, C.: Adversarial learning. In: Proc. 11th ACM SIGKDD Intl. Conf. Knowledge
Discovery in Data Mining. pp. 641–647. ACM (2005)

20. McMinn, P.: Search-based software test data generation: a survey. Softw. Test., Verif. Reliab.
14(2), 105–156 (2004)

21. Myers, G.J., Sandler, C., Badgett, T.: The Art of Software Testing. John Wiley & Sons (2011)
22. Reichstaller, A., Eberhardinger, B., Knapp, A., Reif, W., Gehlen, M.: Risk-based interoper-

ability testing using reinforcement learning. In: IFIP Intl. Conf. Testing Software and Systems.
Lect. Notes Comp. Sci., vol. 9976, pp. 52–69. Springer (2016)

23. Reichstaller, A., Eberhardinger, B., Ponsar, H., Knapp, A., Reif, W.: Test suite reduction for
self-organizing systems: A mutation-based approach. In: Proc. 13th Intl. Ws. Automation of
Software Test (2018)

24. Rothermel, G., Harrold, M.J., Von Ronne, J., Hong, C.: Empirical studies of test-suite reduc-
tion. Softw. Test., Verif. Reliab. 12(4), 219–249 (2002)

25. Ursem, R.K.: Diversity-guided evolutionary algorithms. In: Proc. 1st Ws. Parallel Problem
Solving from Nature. Lect. Notes Comp. Sci., vol. 496, pp. 462–471. Springer (2002)

26. Wappler, S., Lammermann, F.: Using evolutionary algorithms for the unit testing of object-
oriented software. In: Proc. 7th Ann. Conf Genetic and Evolutionary Computation. pp. 1053–
1060. ACM (2005)

27. Weicker, K.: Evolutionary Algorithms and Dynamic Optimization Problems. Der Andere
Verlag (2003)

28. Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.): Software Engineering for Collective
Autonomic Systems: The ASCENS Approach, Lect. Notes Comp. Sci., vol. 8998. Springer
(2015)

29. Zhang, L., Marinov, D., Zhang, L., Khurshid, S.: An empirical study of JUnit test-suite
reduction. In: Proc. 22nd Intl. Symp. Software Reliability Engineering. pp. 170–179. IEEE
(2011)

View publication statsView publication stats

Taken from original publication: André Reichstaller, Thomas Gabor, and Alexan-
der Knapp. Mutation-based test suite evolution for self-organizing systems. In
International Symposium on Leveraging Applications of Formal Methods (ISoLA),
2018

213

Assessing Solution Quality of 3SAT
on a Quantum Annealing Platform

Thomas Gabor1, Sebastian Zielinski1, Sebastian Feld1, Christoph Roch1,
Christian Seidel2, Florian Neukart3, Isabella Galter2,
Wolfgang Mauerer4, and Claudia Linnho↵-Popien1

1 LMU Munich
2 Volkswagen Data:Lab

3 Volkswagen Group of America
4 OTH Regensburg/Siemens Corporate Research

This is a pre-print of an article to be published in Feld S., Linnho↵-Popien C. (eds),
Quantum Technology and Optimization Problems (QTOP 2019), Lecture Notes in
Computer Science, vol 11413, Springer, 2019. The final authenticated version is avail-
able online at DOI: http://doi.org/10.1007/978-3-030-14082-3

Abstract. When solving propositional logic satisfiability (specifically
3SAT) using quantum annealing, we analyze the e↵ect the di�culty of
di↵erent instances of the problem has on the quality of the answer re-
turned by the quantum annealer. A high-quality response from the an-
nealer in this case is defined by a high percentage of correct solutions
among the returned answers. We show that the phase transition regard-
ing the computational complexity of the problem, which is well-known
to occur for 3SAT on classical machines (where it causes a detrimen-
tal increase in runtime), persists in some form (but possibly to a lesser
extent) for quantum annealing.

Keywords: Quantum Computing · Quantum Annealing · D-Wave ·
3SAT · Boolean satisfiability · NP · phase transition.

1 Introduction

Quantum computers are an emerging technology and still subject to frequent
new developments. Eventually, the utilization of intricate physical phenomena
like superposition and entanglement is conjectured to provide an advantage in
computational power over purely classical computers. As of now, however, the
first practical breakthrough application for quantum computers is still sought
for. But new results on the behavior of quantum programs in comparison to
their classical counterparts are reported on a daily basis.

Research in that area has cast an eye on the complexity class NP: It con-
tains problems that are traditionally (and at the current state of knowledge
regarding the P vs. NP problem) conjectured to produce instances too hard for
classical computers to solve exactly and deterministically within practical time
constraints. Still, problem instances of NP are also easy enough that they can
be executed e�ciently on a (hypothetical) non-deterministic computer.

The notion of computational complexity is based on classical computation in
the sense of using classical mechanics to describe and perform automated compu-
tations. In particular, it is known that in this model of computation, simulating

ar
X

iv
:1

90
2.

04
70

3v
1

 [
cs

.E
T

]
 1

3
Fe

b
20

19

Taken from original publication: Thomas Gabor, Sebastian Zielinski, Sebastian
Feld, Christoph Roch, Christian Seidel, Florian Neukart, Isabella Galter, Wolfgang
Mauerer, and Claudia Linnhoff-Popien. Assessing solution quality of 3SAT on a
quantum annealing platform. In International Workshop on Quantum Technology
and Optimization Problems. Springer, 2019

214

2 Gabor et al.

quantum mechanical systems is hard. However, nature itself routinely “executes”
quantum mechanics, leading to speculations [19] that quantum mechanics may
be used to leverage greater computational power than systems adhering to the
rules of classical physics can provide.

Quantum computing describes technology exploiting the behavior of quan-
tum mechanics to build computers that are (hopefully) more powerful than
current classical machines. Instead of classical bits b 2 {0, 1} they use qubits
q = ↵ |0i + � |1i where ↵,�, |↵|2 + |�|2 = 1, are probability amplitudes for the
basis states |0i , |1i. Essentially, a qubit can be in both states 0 and 1 at once,
each with a specific probability. This phenomenon is called superposition, but it
collapses when the actual value of qubit is measured, returning either 0 or 1 with
said specific probability and fixing that randomly acquired result as the future
state of the qubit. Entanglement describes the e↵ect that multiple quits can be
in superpositions that are a↵ected by each other, meaning that the measurement
of one qubit can change the assigned probability amplitudes of another qubit in
superposition. The combination of these phenomena allows qubits to concisely
represent complex data and lend themselves to e�cient computation operations.

In this work, we focus on the concrete technological platform of quantum
annealing that is (unlike the generalized concept of quantum computing) not
capable of executing general quantum mechanical computations, but is within
current technological feasibility, and available to researchers outside the field of
quantum hardware. The mechanism specializes in solving optimization problems,
and can (as a trade-o↵) work larger amounts of qubits in a useful way than
quantum mechanically complete platforms.

In this paper, we evaluate the performance of quantum annealing (or more
specifically, a D-Wave 2000Q machine) on the canonical problem of the class
NP, propositional logic satisfiability for 3-literal clauses (3SAT) [13]. As we note
that there is still a remarkable gap between 3SAT instances that can be put on
a current D-Wave chip and 3SAT instances that even remotely pose a challenge
to classical solvers, there is little sense in comparing the quantum annealing
method to classical algorithms in this case (and at this early point in time for
the development of quantum hardware). Instead, we are interested in the scaling
behavior with respect to problem di�culty. Or more precisely: We analyze if and
to what extent quantum annealing’s performance su↵ers under hard problem
instances (like classical algorithms do).

We present a quick run-down of 3SAT and the phenomenon of phase transi-
tions in Section 2 and continue to discuss further related work in Section 3. In
Section 4 we describe our experimental setup and then present the corresponding
results in Section 5. We conclude with Section 6.

2 Preliminaries

Propositional logic satisfiability (SAT) is the problem of telling if a given for-
mula in propositional logic is satisfiable, i.e., if there is a assignment to all in-
volved Boolean variables that causes the whole formula to reduce to the logical

Taken from original publication: Thomas Gabor, Sebastian Zielinski, Sebastian
Feld, Christoph Roch, Christian Seidel, Florian Neukart, Isabella Galter, Wolfgang
Mauerer, and Claudia Linnhoff-Popien. Assessing solution quality of 3SAT on a
quantum annealing platform. In International Workshop on Quantum Technology
and Optimization Problems. Springer, 2019

215

Assessing Solution Quality of 3SAT on a Quantum Annealing Platform 3

value True. As such, the problem occurs at every application involved complex
constraints or reasoning, like (software) product lines, the tracing of software
dependencies or formal methods.

It can be trivially shown that (when introducing a linear amount of new
variables) all SAT problems can be reduced to a specific type of SAT problem
called 3SAT, where the input propositional logic formula has to be in conjunctive
normal form with all of the disjunctions containing exactly three literals.

For example, the formula = (x1_x2_x3)^ (¬x1_x2_x3) is in 3SAT form
and is satisfiable because the assignment (x1 7! True, x2 7! True, x2 7! True)
causes the formula to reduce to True. The formula � = (x1 _ x1 _ x1) ^ (¬x1 _
¬x1 _ ¬x1) is also in 3SAT form but is not satisfiable.

Definition (3SAT) A 3SAT instance with m clauses and n variables is given
as a list of clauses (ck)0km�1 of the form ck = (l3k_ l3k+1_ l3k+2) and a list of
variables (vj)0jn�1 so that li is a literal of the form li 2

S
0jn�1{vj ,¬vj}.

A given 3SAT instance is satisfiable i↵ there exists a variable assignment (vj 7!
bj)0jn�1 with bj 2 {True,False} so that

V
0km�1 ck reduces to True when

interpreting all logical operators as is common. The problem of deciding whether
a given 3SAT instance is satisfiable is called 3SAT.

3SAT is of special importance to complexity theory as it was the first problem
which was shown to be NP-complete [13]. This means that every problem in NP
can be reduced to 3SAT in polynomial time. It follows that any means to solve
3SAT e�ciently would thus give rise to e�cient solutions for any problem in NP
like graph coloring, travelling salesman or bin packing.

Despite the fact that for NP-complete problems in general no algorithm is
known that can solve all problem instances of a problem e�ciently (i.e., in poly-
nomial time), it is within the scope of knowledge that “average” problem in-
stances of many NP-complete problems, including 3SAT, are easy to solve [9]. In
Ref. [36] this characteristic is described with a phase transition. The boundary
of the phase transition divides the problem space into two regions. In one region,
a solution can be found relatively easily, because the solution density for these
problems is high, whereas in the other region, it is very unlikely that problems
can contain a correct solution at all. Problems that are very di�cult to solve are
located directly at this phase boundary [9].

It can be observed that, with randomly generated 3SAT instances, the prob-
ability of finding a correct solution decreases abruptly when the ratio of clauses
to variables ↵ = m/n exceeds a critical value of ↵c [35]. According to [34] this
critical point is ↵c ⇡ 4.267 for randomly generated 3SAT instances. In the sur-
rounding area of the critical point, finding a solution (i.e., deciding if the instance
is satisfiable) is algorithmically complex. Figure 1 illustrates this phenomenon.

To assess the solution quality of randomly generated 3SAT instances we gen-
erate instances in every complexity region. The results are discussed in Section 5.

Taken from original publication: Thomas Gabor, Sebastian Zielinski, Sebastian
Feld, Christoph Roch, Christian Seidel, Florian Neukart, Isabella Galter, Wolfgang
Mauerer, and Claudia Linnhoff-Popien. Assessing solution quality of 3SAT on a
quantum annealing platform. In International Workshop on Quantum Technology
and Optimization Problems. Springer, 2019

216

4 Gabor et al.

S
atisfi

ab
le

fraction
T
im

e
[a.u

.]

0.0 2.5 5.0 7.5 10.0

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

clauses-to-variables ratio ↵

Fig. 1. Phase transition of SAT. The bottom plot shows the computational time re-
quired to determine satisfiability of randomly chosen 3SAT instances with specific a
clauses-to-variables ratio ↵ on a standard solver. The area around the critical point
↵c ⇡ 4.267 is shaded in blue.
The upper portion shows the probability that instances with a particular ratio ↵ are
solvable. In the region around the critical point, it is hard to determine whether a
problem instance can be fulfilled with a concrete allocation or not.

3 Related Work

It is one of the cornerstones of complexity theory that solving NP-complete
or even NP-hard decision problems is strongly believed to be not e�ciently
possible [13,39]. Any NP-complete problem can also be cast as an optimiza-
tion problem, which allows for employing well-known optimization algorithms
to find approximate solutions—typical methods include tabu search [22,21] and
simulated annealing [26,10]. Countless other e�cient approximation methods,
together with an elaborate taxonomy on approximation quality (how much does
a given solution di↵er from a known global optimum?) and computational e↵ort
(how many time steps are required until an approximate solution that satisfies
given quality goals is available?), have been devised [6].

Some problem (knapsack, e.g.) exhibit favorable properties when cast as an
optimization problem. The latter is a member of the complexity class FPTAS
(fully polynomial-time approximation scheme), which means that a solution with
distance 1 + ✏ (of course, ✏ > 0) from an optimal solution can be determined in
polynomial time in both, input size n and inverse approximation quality 1/✏ [10].

An intriguing connection that has received substantial attraction exists be-
tween (computational) NP-complete problems and the (physical) concept of

Taken from original publication: Thomas Gabor, Sebastian Zielinski, Sebastian
Feld, Christoph Roch, Christian Seidel, Florian Neukart, Isabella Galter, Wolfgang
Mauerer, and Claudia Linnhoff-Popien. Assessing solution quality of 3SAT on a
quantum annealing platform. In International Workshop on Quantum Technology
and Optimization Problems. Springer, 2019

217

Assessing Solution Quality of 3SAT on a Quantum Annealing Platform 5

phase transitions, as detailed in Section 2. First investigations of the phenomenon
have been performed by Kirkpatrick et al. [27]; Monasson et al. first suggested
a connection between the type of phase transition and the associated compu-
tational costs of a problem [36]. From the abundant amount of more recent
investigations, we would like to highlight the proof by Ding et al. [15] that es-
tablishes a threshold value for the phase transition. Our work benefits from the
above insights by selecting the “most interesting”, i.e., computationally hardest,
scenarios as investigation target.

The idea of obtaining solutions for NPO (NP optimization) problems by
finding the energy ground state (or states) of a quantum mechanical system was
used, for instance, by Apolloni et al. [4,5] to solve combinatorial optimization
problems. The general idea of quantum annealing has been independently re-
discovered multiple times [2,20,3,25].

Quantum annealing techniques are usually applied to solving NP-complete
or NP-hard decision problems, or optimization problems from class NPO. Lu-
cas [29] reviews how to formulate a set of key NP problems in the language of
adiabatic quantum computing respectively quadratic unconstrained binary op-
timization (QUBO). In particular, problems of the types “travelling salesman”
or “binary satisfiability” that are expected to have a major impact on practical
computational applications if they can be solved advantageously on quantum
annealers have undergone a considerable amount of research [23,43,38,41,7,40].
Further e↵ort has been made on combining classical and quantum methods on
these problems [18].

Comparing the computational capabilities of classical and quantum comput-
ers is an intriguing and complex task, since the deployed resources are typically
very dissimilar. For instance, the amount of instructions required to execute a
particular algorithm is one of the main measures of e�ciency or practicability
on a classical machine, whereas the notion of a discrete computational “step” is
hard to define on a quantum annealing device. Interest in quantum computing
has also spawned definitions of new complexity classes (e.g., [28,37]), whose rela-
tions to traditional complexity classes have been and are still subject to ongoing
research [8,31].

These questions hold regardless of any specific physical or conceptual imple-
mentation of quantum computing since their overall computational capabilities
are known to be largely interchangeable; for instance, McGeoch [32] discusses
the equivalence of gate-based and adiabatic quantum computing. Consequently,
our work focuses not on comparing quantum and classical aspects of solving
particular problems, but concentrates on understanding peculiarities of solving
one particular problem (3SAT, in our case) in-depth.

Formulating 3SAT problems on a quantum annealing hardware has been pre-
viously considered [12,11,17], and we rely on the encoding techniques presented
there. Van [42] and Farhi [16] have worked on analyzing the complexity of solving
general 3SAT problems. Hsu et al. have considered the complexity-wise easier
variation 2SAT as a benchmarking problem to compare various parameter con-
figurations of their quantum annealer [24].

Taken from original publication: Thomas Gabor, Sebastian Zielinski, Sebastian
Feld, Christoph Roch, Christian Seidel, Florian Neukart, Isabella Galter, Wolfgang
Mauerer, and Claudia Linnhoff-Popien. Assessing solution quality of 3SAT on a
quantum annealing platform. In International Workshop on Quantum Technology
and Optimization Problems. Springer, 2019

218

6 Gabor et al.

4 Experimental Setup

Quantum annealing is an optimization process that can be implemented in hard-
ware. It is built upon the adiabatic theorem that provides conditions under which
an initial ground-state configuration of a system evolves to the ground state of
another configuration that minimizes a specific user-defined energy function [32].
As in the real world the required conditions for the theorem can only be approx-
imated, the results of quantum annealing are usually not deterministically op-
timal but show a probabilistic distribution, ideally covering the desired optimal
value as well.

D-Wave’s quantum annealer is the first commercial machine to implement
quantum annealing. Its interface is built on two equivalent mathematical models
for optimization problems called Ising and QUBO, the latter of which will be
used for the work of this paper. Quadratic Unconstrained Binary Optimization
(QUBO) problems can be formulated as a quadratic matrix Qij . Quantum an-
nealing then searches for a vector x 2 {0, 1}n so that

P
i

P
j<i Qijxixj+

P
i Qixi

is minimal. The promise of quantum annealing is that—using quantum e↵ects—
specialized hardware architectures are able to solve these optimization problems
much faster than classical computers in the future.

The main goal of this paper is to analyze the inherently probabilistic distribu-
tion of return values generated by quantum annealing when trying to solve hard
optimization problems. We choose to demonstrate such an analysis on 3SAT
because it is the canonical problem of the class NP, which is a prime target for
research on performance improvements via quantum technology with respect to
classical computers [33,29].

4.1 Defining 3SAT as a QUBO

3SAT is usually not formulated as an optimization problem (see Section 2), or
defined by an equivalent QUBO problem, as is required by the annealer. Thus,
we require a (polynomial-time) translation of any 3SAT instance into a QUBO
so that the solutions generated by the quantum annealer can be translated back
to solutions of the initial 3SAT instance.

Following [11,12], we translate 3SAT into the Weighted Maximum Indepen-
dent Set (WMIS) problem and then translate the WMIS instance into a QUBO
(we find it convenient to specify the polynomial coe�cients in matrix form).
We omit the details of this process and instead refer to op. cit. and Lucas [29].
However, we shall briefly discuss the implications of the translation process.

A 3SAT instance, that is, a formula with m clauses for n variables, requires a
QUBO matrix of size 3m⇥ 3m with the solution vector x 2 {0, 1}3m. The solu-
tion can be thought of as using a qubit for each literal in the initial formula and
thus consisting of a triplet of qubits for each 3SAT clause. This usually means
that we have much more qubits than variables in the formula. Nonetheless, a
QUBO solution is mapped to a value assignment for the variables in the 3SAT
formula. Thus, when running successfully, the quantum annealer will output a
satisfying assignment for a given 3SAT formula. We can check if the assignment

Taken from original publication: Thomas Gabor, Sebastian Zielinski, Sebastian
Feld, Christoph Roch, Christian Seidel, Florian Neukart, Isabella Galter, Wolfgang
Mauerer, and Claudia Linnhoff-Popien. Assessing solution quality of 3SAT on a
quantum annealing platform. In International Workshop on Quantum Technology
and Optimization Problems. Springer, 2019

219

Assessing Solution Quality of 3SAT on a Quantum Annealing Platform 7

really is correct (i.e., each variable has a value assigned and the whole formula
reduces to True) using few instructions of classical computation. Obviously, if
among several experimental runs the quantum annealer does return just one
correct assignment, the corresponding 3SAT formula is satisfiable. If the quan-
tum annealer only returns incorrect assignments, we will regard the formula as
unsatisfiable (although the prove of that is only probabilistic).

There are some aspects to note about how the QUBO solution vectors are
mapped to variable assignments. Given a QUBO solution vector (xi)0i3m�1

for a 3SAT formula with literals (li)0i3m�1, a variable v is assigned the value
True if it occurs in a literal li = v and xi = 1. Likewise, a variable v is assigned
the value False if it occurs in a literal li = ¬v and xi = 1. It is important to note
that xi = 0 has no implication on the value of the variable in li.

Intuitively, we can interpret xi = 1 to mean “use the value of li to prove the
satisfaction of clause c(i mod 3)”. From our QUBO optimization, we expect to
find one (and only one) suitable li for every clause in the 3SAT formula.5

This is important as it opens up a wide range of di↵erent QUBO solutions
which may just encode the exact same variable assignment at the 3SAT level.
However, it also means that seemingly suboptimal QUBO solutions may encode
correct 3SAT assignments. For example, consider the (a little redundant) 3SAT
formula (v0 _ v1 _ v2) ^ (v0 _ v1 _ v2): The QUBO solution x = 100001 would
imply the assignment of v0 = True and v2 = True, which indeed is theoretically
su�cient to prove the formula satisfiable. The exact same assignment would be
implied by x = 001100. However, note that none of these imply a full assignment
of every variable in the 3SAT instance since none say anything about the value of
v1. Still, we can trivially set v1 to any arbitrary value and end up with a correct
assignment. Also note that while the QUBO is built in such a way to opt for one
single value 1 per triplet in the bit string, even bitstrings violating this property
can encode correct solution. In our example, the suboptimal QUBO solution
x = 100000 still encodes all necessary information to prove satisfiability.

4.2 Evaluating Postprocessing

As can be seen from the last example, postprocessing is an integral part of
solving problems with quantum annealing. As discussed earlier in this section, we
consider a QUBO solution correct, if it not only matches the expected structure
for minimizing the QUBO energy function, but instead i↵ it directly implies
a correct assignment in the definition given above. Thus, while the expected
structure for QUBO optimizes x so that the amount bits xi assigned 1 equals
the amount of clauses m, we also consider less full answers correct.

On top of that, there are solutions that cannot be mapped to an assignment
immediately, but still with almost no e↵ort. We want to regard these as well and
implemented a postprocessing step we call logical postprocessing. It is applied

5 This intuition matches the concept of constructivism in logic and mathematics. We
are not only looking for the correct answer, but are looking for a correct and complete
proof of an answer, giving us a single witness for each part of the formula.

Taken from original publication: Thomas Gabor, Sebastian Zielinski, Sebastian
Feld, Christoph Roch, Christian Seidel, Florian Neukart, Isabella Galter, Wolfgang
Mauerer, and Claudia Linnhoff-Popien. Assessing solution quality of 3SAT on a
quantum annealing platform. In International Workshop on Quantum Technology
and Optimization Problems. Springer, 2019

220

8 Gabor et al.

whenever none of the qubits corresponding to a single clause ck are set to 1 by
the quantum annealer and the respective QUBO solution is not already correct.
In that case, we iterate through all literals li in that clause ck and check if we
could set xi = 1 without contradicting any other assignment made within x. If
we find such an li, we set xi = 1 and return the altered bitstring x.

The software platform provided by D-Wave to use the quantum annealer
already o↵ers integrated postprocessing methods as well, which we will also em-
pirically show to be more powerful than logical postprocessing in the following
Section 5. Again, for greater detail we refer to the D-Wave documentation on
that matter [14]. At a glance, the employed postprocessing method splits the
QUBO matrix into several subproblems, tries to optimize these locally, and then
integrates that local solution into the complete solution if it yields an improve-
ment. We call this method D-Wave postprocessing.

To evaluate the solution quality regarding 3SAT, we employ both methods.
The goal is to assess the expected quality on a 3SAT-to-3SAT level, that is,
we measure how well we can solve the given 3SAT instance and regard the
translation to and from QUBO as a mere technical problem that is not of interest
for this paper.

5 Evaluation

To assess the solution quality of 3SAT on a quantum annealing platform, using
the previously discussed method of encoding 3SAT problems, we ran several ex-
periments on a D-Wave 2000Q system. Using ToughSAT6 we generated 3SAT
instances of various di�culty (i.e., with various values for ↵). However, as dis-
cussed in Section 2, for |↵ � 4.2| � 0 problem instances become very easy to
solve. We observed that e↵ect on the quantum annealer as well, since all of these
instances were easily solved on the D-Wave machine. Thus, for the remainder
of this section, we focus on hard instances (approximated by ↵ = 4.2) to assess
solution quality in the interesting problem domain.

Experiments have shown that using the standard embedding tools delivered
with the D-Wave platform, we can only reliably find a working embedding on the
D-Wave 2000Q chip for 3SAT instances with at most 42 clauses [1]. To maintain
↵ ⇡ 4.2, the generated 3SAT instances contain 10 di↵erent variables. We only
assess solution quality for 3SAT instances that are satisfiable, but do not provide
this information to the solver.

Figure 2 shows the result distribution of these runs on the D-Wave machine.
On the x-axis, we sorted the returned results according to the bits that have been
assigned the value 1 or True. As discussed in Section 4 the optimal solution is
supposed to set one bit for each clause, i.e., is supposed to contain 42 bits set
to True. However, as there are only 10 di↵erent variables, there theoretically
exist answers that only set 10 bits but that still map to a complete and valid
solution for the given 3SAT instance. From Figure 2 we can see that some of

6 https://toughsat.appspot.com/

Taken from original publication: Thomas Gabor, Sebastian Zielinski, Sebastian
Feld, Christoph Roch, Christian Seidel, Florian Neukart, Isabella Galter, Wolfgang
Mauerer, and Claudia Linnhoff-Popien. Assessing solution quality of 3SAT on a
quantum annealing platform. In International Workshop on Quantum Technology
and Optimization Problems. Springer, 2019

221

Assessing Solution Quality of 3SAT on a Quantum Annealing Platform 9

Fig. 2. Distribution of correct (green) and incorrect (red) answers returned by the
quantum annealer without D-WAVE postprocessing. Answers that can trivially be trans-
formed into valid answers using logical postprocessing are marked in yellow. The plot
shows 100,000 answers in total for 100 di↵erent hard 3SAT instances (↵ ⇡ 4.2).

these solution are found for bitcounts starting from 37 through 41. Interestingly,
the complete range of answers gathered seems to follow a distribution centered
around 37 or 38 and no answers with more than 42 bits are returned. This means
that the constraint of never setting multiple bits per clause is fully respected in
the evaluation of our QUBO matrix. It is important to note that although there
are 5,283 correct solutions in total, these are only distributed across 24 of the
100 randomly generated problem instances. Thus, most of them have not been
solved at all.

Furthermore, we applied the logical postprocessing described in Section 4 to
the incorrect answers in Figure 2. However, it shows little improvement on the
total amount of correct answers collected. We expect the postprocessing method
delivered with the D-Wave software package to be more powerful as it runs local
search along more axes of the solution space than the logical postprocessing does.
So we ran the complete evaluation experiment again, only this time turning on
the integrated postprocessing. The results are shown in Figure 3.

We observed that the D-Wave postprocessing managed to optimize all correct
but “incomplete” answers, mapping them to a solution with 42 bits assigned
the value True. Out of the 100,000 queries, this yielded 25,142 correct answers.
Moreover, these correct answers span 99 of the 100 randomly generated 3SAT
instances so that we consider the problem solved. E↵ectively, this shows that
quantum annealing does su↵er from a breakdown in expected solution quality
at the point of the phase transition in the 3SAT problem. In comparison to the
immense decrease in performance seen in classical solvers (cf. Section 2), a drop
to around 25% precision appears rather desirable, though. A quick example: To

Taken from original publication: Thomas Gabor, Sebastian Zielinski, Sebastian
Feld, Christoph Roch, Christian Seidel, Florian Neukart, Isabella Galter, Wolfgang
Mauerer, and Claudia Linnhoff-Popien. Assessing solution quality of 3SAT on a
quantum annealing platform. In International Workshop on Quantum Technology
and Optimization Problems. Springer, 2019

222

10 Gabor et al.

Fig. 3. Distribution of correct (green) and incorrect (red) answers returned by the
quantum annealer using D-WAVE postprocessing. Answers that can trivially be trans-
formed into valid answers using logical postprocessing are marked in yellow. The plot
shows 100,000 answers in total for 100 di↵erent hard 3SAT instances (↵ ⇡ 4.2).

achieve a 1� 10�12 confidence of returning the correct answer our experimental
setup requires around 97 queries. At a glance, that scaling factor with respect to
problem di�culty is much better than what is observed for classical algorithms:
For example, in the data used for Figure 1 we observed performance decrease up
to one order of magnitude larger. It is important to note, however, that these
experiments were performed for problem instances so small that their evaluation
does not pose a challenge to classical processors at all, i.e., below the point
of reasonable performance metrics. Thus, these results only proof relevant to
practical applications if they scale with future versions of quantum annealing
hardware that can tackle much larger problem instances.

So far, we have not discerned between di↵erent correct solutions. We were
content as long as the algorithm returned but one. However, for the user it is
interesting to know if he or she will receive the same solution with every answer
or an even distribution across the complete solution space. Our experiments show
that when a lot of correct solutions are found for a certain problem instance,
there are cases where we can see a clear bias towards a specific solution variant.
Figure 4 shows the distributions of specific solutions. While some formulae seem
to yield rather narrow distributions over the di↵erent possible answers, others
definitely seem to have a bias towards certain solutions. However, the former also
tend to have relatively smaller sample sizes as there are less solutions in total
to consider. Further investigation could still reveal a distinctive distribution in
these cases as well. Thus, we consider this behavior of the quantum annealer
to be roughly in line with the findings of [30], who show an exponential bias in
ground-state sampling of a quantum annealer.

Taken from original publication: Thomas Gabor, Sebastian Zielinski, Sebastian
Feld, Christoph Roch, Christian Seidel, Florian Neukart, Isabella Galter, Wolfgang
Mauerer, and Claudia Linnhoff-Popien. Assessing solution quality of 3SAT on a
quantum annealing platform. In International Workshop on Quantum Technology
and Optimization Problems. Springer, 2019

223

Assessing Solution Quality of 3SAT on a Quantum Annealing Platform 11

Fig. 4. Frequency of occurrence of di↵erent solutions for 5 formulae with many returned
solutions. While most solutions are found once or just a few times, there are specific
solutions that are found much more often.

6 Conclusion

We have shown that problem di�culty of 3SAT instances also a↵ects the perfor-
mance of quantum annealing as it does for classical algorithms. However, bound
by the nature of both approaches, the e↵ects are quite di↵erent with complete
classical algorithms showing longer runtimes and quantum annealing showing
less precision. A first quantification of that loss of precision suggests that it may
not be too detrimental and comparatively easy to deal with. However, because
of to the maximum available chip size for quantum annealing hardware at the
moment, no large-scale test could be performed. No real assumptions on the
scaling of this phenomenon (and thus the eventual real-world benefit) can be
made yet.

Our results suggest there are cases where single solutions from a set of equally
optimal solutions are much more likely to be returned than others. This observa-
tion is in line with other literature on the results of quantum annealing. However,
it is interesting to note that it translates into the original problem space of 3SAT.

The observed results will gain more practical relevance with larger chip sizes
for quantum annealers. We thus suggest to perform these and/or similar tests
for future editions of quantum annealing hardware. If the e↵ects persist, they
can indicate a substantial advantage of quantum hardware over other known
approaches for solving NP-complete problems.

Acknowledgement

Research was funded by Volkswagen Group, department Group IT.

Taken from original publication: Thomas Gabor, Sebastian Zielinski, Sebastian
Feld, Christoph Roch, Christian Seidel, Florian Neukart, Isabella Galter, Wolfgang
Mauerer, and Claudia Linnhoff-Popien. Assessing solution quality of 3SAT on a
quantum annealing platform. In International Workshop on Quantum Technology
and Optimization Problems. Springer, 2019

224

12 Gabor et al.

References

1. Adams, D.: The Hitchhiker’s Guide to the Galaxy (1979)
2. Albash, T., Lidar, D.A.: Adiabatic quantum computing. arXiv:1611.04471 (2016)
3. Amara, P., Hsu, D., Straub, J.E.: Global energy minimum searches using an ap-

proximate solution of the imaginary time Schrödinger equation. The Journal of
Physical Chemistry 97(25) (1993)

4. Apolloni, B., Carvalho, C., De Falco, D.: Quantum stochastic optimization.
Stochastic Processes and their Applications 33(2) (1989)

5. Apolloni, B., De Falco, D., Cesa-Bianchi, N.: A numerical implementation of “quan-
tum annealing”. Tech. rep. (1988)

6. Ausiello, G., Protasi, M., Marchetti-Spaccamela, A., Gambosi, G., Crescenzi, P.,
Kann, V.: Complexity and Approximation: Combinatorial Optimization Problems
and Their Approximability Properties. Springer-Verlag, Berlin, Heidelberg, 1st
edn. (1999)

7. Benjamin, S.C., Zhao, L., Fitzsimons, J.F.: Measurement-driven quantum comput-
ing: Performance of a 3-SAT solver. arXiv:1711.02687 (2017)

8. Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM Journal on Com-
puting 26(5) (1997)

9. Cheeseman, P.C., Kanefsky, B., Taylor, W.M.: Where the really hard problems
are. In: IJCAI. vol. 91 (1991)

10. Chen, L., Aihara, K.: Chaotic simulated annealing by a neural network model with
transient chaos. Neural networks 8(6) (1995)

11. Choi, V.: Adiabatic quantum algorithms for the NP-complete Maximum-Weight
Independent set, Exact Cover and 3SAT problems. arXiv:1004.2226 (2010)

12. Choi, V.: Di↵erent adiabatic quantum optimization algorithms for the NP-complete
exact cover and 3SAT problems. Quant. Inform. & Comp. 11(7-8) (2011)

13. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the
third annual ACM symposium on theory of computing. ACM (1971)

14. D-Wave Systems: Postprocessing Methods on D-Wave Systems (2016)
15. Ding, J., Sly, A., Sun, N.: Proof of the satisfiability conjecture for large k. In: Proc.

of the 47th Annual ACM Symposium on Theory of Computing. STOC ’15, ACM,
New York, USA (2015)

16. Farhi, E., Goldstone, J., Gosset, D., Gutmann, S., Meyer, H.B., Shor, P.: Quantum
adiabatic algorithms, small gaps, and di↵erent paths. arXiv:0909.4766 (2009)

17. Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum computation by adi-
abatic evolution. arXiv preprint quant-ph/0001106 (2000)

18. Feld, S., Roch, C., Gabor, T., Seidel, C., Neukart, F., Galter, I., Mauerer, W.,
Linnho↵-Popien, C.: A hybrid solution method for the capacitated vehicle routing
problem using a quantum annealer. arXiv preprint arXiv:1811.07403 (2018)

19. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21 (1982)
20. Finnila, A., Gomez, M., Sebenik, C., Stenson, C., Doll, J.: Quantum annealing: a

new method for minimizing multidimensional functions. Chemical Physics Letters
219(5-6) (1994)

21. Gendreau, M., Hertz, A., Laporte, G.: A tabu search heuristic for the vehicle
routing problem. Management science 40(10) (1994)

22. Glover, F., Laguna, M.: Tabu search*. In: Handbook of comb. opt. Springer (2013)
23. Heim, B., Brown, E.W., Wecker, D., Troyer, M.: Designing adiabatic quantum

optimization: A case study for the TSP. arXiv:1702.06248 (2017)

Taken from original publication: Thomas Gabor, Sebastian Zielinski, Sebastian
Feld, Christoph Roch, Christian Seidel, Florian Neukart, Isabella Galter, Wolfgang
Mauerer, and Claudia Linnhoff-Popien. Assessing solution quality of 3SAT on a
quantum annealing platform. In International Workshop on Quantum Technology
and Optimization Problems. Springer, 2019

225

Assessing Solution Quality of 3SAT on a Quantum Annealing Platform 13

24. Hsu, T.J., Jin, F., Seidel, C., Neukart, F., De Raedt, H., Michielsen, K.: Quantum
annealing with anneal path control: application to 2-SAT problems with known
energy landscapes. arXiv:1810.00194 (2018)

25. Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model.
Physical Review E 58(5) (1998)

26. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220(4598) (1983)

27. Kirkpatrick, S., Selman, B.: Critical behavior in the satisfiability of random boolean
expressions. Science 264(5163) (1994)

28. Klauck, H.: The complexity of quantum disjointness. In: Leibniz Intl. Proc. in
Informatics. vol. 83. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)

29. Lucas, A.: Ising formulations of many NP problems. Frontiers in Physics 2 (2014)
30. Mandra, S., Zhu, Z., Katzgraber, H.G.: Exponentially biased ground-state sam-

pling of quantum annealing machines with transverse-field driving hamiltonians.
Physical review letters 118(7) (2017)

31. Marriott, C., Watrous, J.: Quantum Arthur–Merlin games. Computational Com-
plexity 14(2), 122–152 (2005)

32. McGeoch, C.C.: Adiabatic quantum computation and quantum annealing: Theory
and practice. Synthesis Lectures on Quantum Computing 5(2) (2014)

33. McGeoch, C.C., Wang, C.: Experimental evaluation of an adiabiatic quantum sys-
tem for combinatorial optimization. In: Proc. of the ACM Intl. Conf. on Computing
Frontiers. ACM (2013)

34. Mézard, M., Zecchina, R.: Random k-satisfiability problem: From an analytic so-
lution to an e�cient algorithm. Physical Review E 66(5) (2002)

35. Monasson, R., Zecchina, R.: Entropy of the k-satisfiability problem. Physical review
letters 76(21) (1996)

36. Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., Troyansky, L.: Deter-
mining computational complexity from characteristic phase transitions. Nature
400(6740) (1999)

37. Morimae, T., Nishimura, H.: Merlinization of complexity classes above BQP.
arXiv:1704.01514 (2017)

38. Moylett, D.J., Linden, N., Montanaro, A.: Quantum speedup of the traveling-
salesman problem for bounded-degree graphs. Physical Review A 95(3) (2017)

39. Murty, K.G., Kabadi, S.N.: Some NP-complete problems in quadratic and nonlin-
ear programming. Mathematical programming 39(2) (1987)

40. Neukart, F., Compostella, G., Seidel, C., von Dollen, D., Yarkoni, S., Parney, B.:
Tra�c flow optimization using a quantum annealer. Frontiers in ICT 4, 29 (2017)

41. Strand, J., Przybysz, A., Ferguson, D., Zick, K.: ZZZ coupler for native embedding
of MAX-3SAT problem instances in quantum annealing hardware. In: APS Meeting
Abstracts (2017)

42. Van Dam, W., Mosca, M., Vazirani, U.: How powerful is adiabatic quantum com-
putation? In: 42nd IEEE Symposium on Found. of Computer Science. IEEE (2001)

43. Warren, R.H.: Small traveling salesman problems. Journal of Advances in Applied
Mathematics 2(2) (2017)

Taken from original publication: Thomas Gabor, Sebastian Zielinski, Sebastian
Feld, Christoph Roch, Christian Seidel, Florian Neukart, Isabella Galter, Wolfgang
Mauerer, and Claudia Linnhoff-Popien. Assessing solution quality of 3SAT on a
quantum annealing platform. In International Workshop on Quantum Technology
and Optimization Problems. Springer, 2019

226

This is a preprint of a paper accepted at the 1st International Workshop on Quantum Software Engineering (Q-SE 2020) at ICSE 2020 and soon to be published in the corresponding proceedings.

Insights on Training Neural Networks for QUBO Tasks
Thomas Gabor, Sebastian Feld, Hila Sa�, Thomy Phan, Claudia Linnho�-Popien

thomas.gabor@i�.lmu.de
LMU Munich

ABSTRACT
Current hardware limitations restrict the potential when solving
quadratic unconstrained binary optimization (QUBO) problems via
the quantum approximate optimization algorithm (QAOA) or quan-
tum annealing (QA). Thus, we consider training neural networks in
this context. We �rst discuss QUBO problems that originate from
translated instances of the traveling salesman problem (TSP): An-
alyzing this representation via autoencoders shows that there is
way more information included than necessary to solve the origi-
nal TSP. Then we show that neural networks can be used to solve
TSP instances from both QUBO input and autoencoders’ hidden
state representation. We �nally generalize the approach and suc-
cessfully train neural networks to solve arbitrary QUBO problems,
sketching means to use neuromorphic hardware as a simulator or
an additional co-processor for quantum computing.

CCS CONCEPTS
•Hardware→Quantum computation; •Computingmethod-
ologies→ Arti�cial intelligence; Neural networks; • Theory of
computation → Problems, reductions and completeness.
KEYWORDS
QUBO, quantum annealing, neural network, autoencoder

ACM Reference Format:
Thomas Gabor, Sebastian Feld, Hila Sa�, Thomy Phan, Claudia Linnho�-
Popien. 2020. Insights on Training Neural Networks for QUBO Tasks. In
IEEE/ACM 42nd International Conference on Software Engineering Workshops
(ICSEW’20), May 23–29, 2020, Seoul, Republic of Korea. ACM, New York, NY,
USA, 6 pages. https://doi.org/10.1145/3387940.3391470

1 INTRODUCTION
Quadratic unconstrained binary optimization (QUBO) is a standard
model for optimization problems (not only) in the quantumworld as
it can be used as input for algorithms like the quantum approximate
optimization algorithm (QAOA) [4] or quantum annealing (QA) [9].
A QUBO instance of sizen is given as ann⇥nmatrixQ withQi j 2 R
for all i, j 2 {1, ...,n} ✓ N. A solution to a QUBO instance Q is a
vector x⇤ 2 {0, 1}n so that

x⇤ = argmin
x

’
ij

Qi jxix j .

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7963-2/20/05. . . $15.00
https://doi.org/10.1145/3387940.3391470

Note that QUBO instances can trivially be derived from instances
of Ising spin glasses [14]. Translations to QUBO and/or Ising models
exist for a multitude of common optimization problems [6, 12],
including many important NP-hard problems like 3-SAT [3] or
scheduling problems [16].

In this paper, we focus on the well-known Traveling Salesman
Problem (TSP): A TSP instance form cities is given as anm ⇥m
matrix D with Dkl 2 R [{+1} for all k, l 2 N, 1 k m, 1
l m. A solution to a TSP instance D is a vector p⇤ 2 Nm that is a
permutation of (1, ...,m) and ful�lls

p⇤ = argmin
p

Dpmp1 +
m�1’
k=1

Dpkpk+1 .

Despite apparent parallels in the formulation of a QUBO and TSP
instances, the best translation from a TSP instance D form cities
produces a QUBO instance Q of size n =m2, resulting roughly in a
m2 ⇥m2 QUBO matrix withm4 matrix cells in total [5]. This boost
in size makes the QUBO translation rather ine�cient for many
practical applications and sometimes prohibits the resulting QUBO
instances from being solved using quantum hardware at all, since
current machines running QAOA or QA are severely limited in the
amount of available qubits. However, since the computed QUBO
instances originate from the smaller TSP instances, they clearly
contain some redundant information.

In order to assess alternative approaches to using the limited
quantum hardware for solving QUBO problems, we apply neural
networks (NNs) in this paper. These can help to bridge the gap
until su�ciently large quantum hardware becomes available, but
also may provide hooks for additional analysis. From a black-box
perspective, a NN solving QUBOs can be treated like quantum
annealer by the calling modules. Having such a mockup helps to
identify which aspects of software engineering are really quantum-
speci�c solution and which originate from the problem de�nition.

We explain the considered variants of NNs and how to apply
them to work with problems formulated as QUBOs along the way.
Using these NNs, we provide �rst empirical evidence for the fol-
lowing four hypotheses:

(1) AutoencodingQUBO instances generated fromTSP instances
is possible resulting in a hidden space having the size of the
original TSP encoding (Fig. 1a, Sec. 2).

(2) NNs can be trained to solve QUBO instances generated from
TSP instances (Fig 1b, Sec. 3).

(3) NNs can be trained to solve the encoded hidden spaces of
these QUBO instances (Fig 1c, Sec. 4).

(4) NNs can be trained to solve arbitraryQUBO instances (Fig. 1d,
Sec. 5).

An overview over the tested network architectures and setups
is given in Figure 1. We discuss the lessons learned from these
experiments and motivate further research in Sec. 6.

ar
X

iv
:2

00
4.

14
03

6v
1

 [
qu

an
t-

ph
]

 2
9

A
pr

 2
02

0

Taken from original publication: Thomas Gabor, Sebastian Feld, Hila Safi, Thomy
Phan, and Claudia Linnhoff-Popien. Insights on training neural networks for
QUBO tasks. In First International Workshop on Quantum Software Engineer-
ing (Q-SE 2020), 2020

227

ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea Gabor et al.

(a) Autoencoder (b) TSP QUBO solver (c) TSP QUBO encoded solver (d) Any-QUBO solver

Figure 1: Setups for testing the hypotheses.

2 AUTOENCODING QUBO FORMULATIONS
OF TSP

Autoencoders (AEs) are NNs that typically possess an hourglass
form: In the center they feature a hidden layer that is substantially
smaller than the same-sized input and output layer. An AE is trained
to reproduce its input data, but as the hidden layer is smaller than
the input samples, they cannot simply “pass through” their inputs.
Instead, the AE’s �rst half (called encoder) needs to learn to abstract
the most relevant features so that it can populate the latent space.
This is the space of information that can be contained in the smallest
hidden layer as densely as possible. Then, the second half (called
decoder) will use this representation to reconstruct the original
input as closely as possible. [7]

Once trained, AEs can be used to compress and decompress infor-
mation by using the encoder and decoder part separately or to detect
anomalies (i.e., input data not �tting the previously constructed la-
tent space is assumed to substantially di�er from previous training
data). In our case, we use the process of training various AEs to
estimate the entropy contained within the input data: the smallest
latent space that still allows for almost no loss in autoencoding
gives an estimate of the contained entropy in the data set, given
that the encoder and decoder have been trained perfectly (if they
have not, the estimate becomes rougher).

2.1 Setup
We have trained, tested and validated the network using di�erent
data sets. The training data consists of 11,000 randomly generated
TSP instances that have been translated to QUBO; the test and
validation data sets each consist of 1,000 samples.

There are di�erent types of AEs, each with di�erent advantages
and disadvantages. The vanilla autoencoder represents the simplest
form and consists of a network with three layers. After the in-
put layer, a dense layer with a ReLU activation function reduces
the input’s dimensionality, followed by a second dense layer us-
ing sigmoid as an activation function that reconstructs the input.
The multilayer autoencoder extends the previously described ver-
sion by two more layers in both the encoder and decoder part.
All layers use the ReLU activation function except the last layer,
where the sigmoid activation function is used again. Finally, the
convolutional autoencoder uses three-dimensional vectors instead of
one-dimensional vectors, which is designed to be more suitable for
compressing images and tested here for compressing matrices. Our
setup consists of eleven layers: starting with an input layer, there
are four encoder layers, two of which are pooling layers and the

other two are convolutional layers with ReLU activation function.
The decoder part consists of six layers: three convolutional layers
with ReLU activation function, two upsampling layers and �nally
an output layer that uses the sigmoid activation function.

The initial layer set for each of the AEs is inspired by [7]. De-
pending on the type of layer (convolutional or dense), the input
data’s form must be adjusted. For the convolutional layer, a QUBO
matrix is represented by an array of arrays. For the dense layer, the
arrays have to be �attened, so QUBO problems are represented as
a one-dimensional array in order to enable the network to recog-
nize di�erent problems. The �nal settings for each network were
determined using various experiments and evaluations, which are
presented in the following subsection.

The mean squared error (MSE) was used as a loss function for
each AE since it shows a higher sensitivity to outliers than, for
example, the absolute error. MSE calculates the average of the
squared errors between predicted and actual output vectors.

The optimizers adam and stochastic gradient descent (SGD) were
used to optimize the AE networks. Compared to SGD, adam, which
was specially developed for training NNs, has the advantage that
its learning rates are adaptive and potentially speci�c for each
parameter. While adam uses little memory and converges faster,
SGD is usually better at generalizing [11].

We measured accuracy using two methods: The default accu-
racy compares each predicted output with the actual output and
returns the percentage of correctly predicted outputs. This process
is repeated after each episode, with one episode corresponding to a
training session on the entire input data set. However, this accu-
racy is of limited interest for our motivation, since we are rather
interested in whether the shortest path is returned after encoding
and decoding the QUBO matrix. Therefore, the after-evaluation
accuracy was also used for training, test and evaluation. This con-
sideration is necessary because there are at least two shortest tours
in an undirected graph as for each tour there exist an opposite
tour of the same length. Thus, the second accuracy uses the energy
values of the solved QUBO problems, both regarding the actual
qubit con�guration and with the predicted ones. Accuracy is then
calculated from the relationship between corresponding and all
energies.

Each AE was trained for 600 epochs. Various learning rates
were tries for the SGD optimizer, starting with a learning rate of
0.0001, 5, 000 decay steps and a decay rate of 0.96. There were
two further training setups with an initial training rate of 0.001
and 0.01, respectively [13]. For each network type, the best results
were achieved using a learning rate of 0.001. Adam optimizer was

Taken from original publication: Thomas Gabor, Sebastian Feld, Hila Safi, Thomy
Phan, and Claudia Linnhoff-Popien. Insights on training neural networks for
QUBO tasks. In First International Workshop on Quantum Software Engineer-
ing (Q-SE 2020), 2020

228

Insights on Training Neural Networks for QUBO Tasks ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea

con�gured with no initial learning rate and in the event of poor
optimization, the mentioned con�gurations for learning rate and
decay were set. Batch size was set to 128. It turned out the AE using
adam optimizer showed better results than the one using SGD.

2.2 Evaluation
Evaluating the AEs should identify whether (and to what extent)
the QUBO representation of TSP instances can be reduced while at
the same time being able to reconstruct the input. For this purpose,
the NNs were trained and evaluated di�erently, starting with no
reduction in dimensionality to a reduction of one fourth of the
original size. The experiments started with TSP instances with 4
cities (4-TSP), i.e., a 16 ⇥ 16-sized QUBO matrix. Even though this
problem size is not challenging for computers or humans, it served
as a baseline for determining the best solution.

The vanilla AE has reconstructed the QUBO well up to a size
of 50%. After that, the (after-evaluation) accuracy was below 40%.
The accuracy of the multilayered autoencoder (MLAE) and the
convolutional autoencoder (CAE) was at least 90%, even with a
reduction to a quarter of the original size. For this reason, the
vanilla AE was not evaluated further.

When encoding TSP instances with 8 cities (8-TSP), both AEs
performed well; the CAE was slightly better. The after-evaluation
accuracy of the MLAE is 0.95 for 4-TSP and 0.92 for 8-TSP. The CAE
achieves an accuracy of 0.98 (4-TSP) and 0.95 (8-TSP). The default
accuracy was 0.85 (MLAE) and 0.875 (CAE). The average energy
di�erence of predictions that did not correspond to the actual energy
was 5.2 for MLAE and 2.0 for CAE. Since CAE was best able to
reconstruct the input, MLAE will not be further evaluated.

As CAE in combination with adam as the optimization function
achieved the best results, this setup was chosen for the following
experiments involving an encoder part.

In summary, it can be said that it is indeed possible to reduce the
dimensionality of TSP instances represented as QUBO problems.
A reduction to a size of one fourth shows that the QUBO matrices
contain lots of redundant information. If a network for outputting
the correct qubit con�guration can be trained just using reduced
input, training time can be drastically reduced. Fig. 2a and Fig. 2b
show that the reduction task is quite simple for the AEs, since
training converges already in early epochs.

3 SOLVING QUBO FORMULATIONS OF TSP
The next step is to check whether a NN can be trained to solve a
given QUBO problem. More speci�cally: is it possible to learn a
qubit con�guration that optimally solves a given problem.

The networks were again trained with a QUBO representation of
TSP instances. However, since the required output di�ers from that
of the AE part, new output data had to be generated accordingly. The
required output for the NN is the qubit con�guration for the shortest
tour within the TSP instance. Corresponding qubit con�gurations
were determined using qbsolv, a tool for operating the quantum
annealing hardware by D-Wave Systems [8]. Qbsolv can also be
used as a classical solver for QUBO problems.The functionality of
qbsolv regarding the solution of TSP instances up to a size of 17
cities was checked and veri�ed by comparing the tours returned

(a) Multilayer

(b) Convolutional

Figure 2: Autoencoder model loss for 4-TSP.

with those calculated using Google’s OR-Tools [8] as well as with
the solutions of the data sets by [2].

In order to determine a suitable NN for solving TSP instances,
a recurrent neural network (RNN) and a convolutional neural net-
work (CNN) were implemented. The results of both networks were
compared, whereby again all networks were trained with a data
set of size 11,000, and 1,000 samples each were used for test and
validation.

3.1 Recurrent Neural Network
Our initial network model was inspired by [1]. They used one
network architecture that solves both TSP and the likewise NP-
complete knapsack problem. Their network uses the two-dimensional
coordinates of the cities as input and the sequence of the cities to be
visited as output. In our work, however, the input are TSP instances
represented as QUBO matrices and the output is the shortest tour
coded as a qubit con�guration.

We use a pointer network consisting of two recurrent NN mod-
ules (encoder and decoder). As in [1], we implement attention using
long short-term memory (LSTM) cells [10].

The loss is calculated using binary cross-entropy. This loss func-
tion is suitable for problems with a yes/no decision, which is the
case with our 0/1 output representing the qubit con�guration.

With regard to the optimizer function for training the RNN,
we have strictly adhered to the structure of [1]. They propose to
use optimization via policy gradients instead of a supervised loss

Taken from original publication: Thomas Gabor, Sebastian Feld, Hila Safi, Thomy
Phan, and Claudia Linnhoff-Popien. Insights on training neural networks for
QUBO tasks. In First International Workshop on Quantum Software Engineer-
ing (Q-SE 2020), 2020

229

ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea Gabor et al.

function (as for the AE mentioned above). The reason for this is
that the model’s performance may be linked to the label’s quality.

For this, a Monte Carlo approach was implemented in the rein-
forcement algorithm in order to implement the policy parameters
update using random sampling [15]. In addition to this model-
free approach, adam was used as an optimization approach. Again,
default accuracy was used during training and subsequently after-
evaluation accuracy was used for evaluating the QUBO data.

3.2 Convolutional Neural Network
Any QUBO data can be represented as a two-dimensional matrix,
which is why we also implemented a convolutional neural network
(CNN). Our CNN consists of six convolutional layers and two dense
layers. All but the �nal layer are paired with a ReLU activation.
The �nal layer includes a softmax activation function. The CNN’s
training was optimized with adam.

The �rst round of experiments was trained using binary cross-
entropy as loss function. The network loss decreased as desired, but
the accuracy did not increase. After analyzing the predicted outputs,
it was found that the qubit con�guration was incomplete. Most of
the time, only two or three cities were visited within a TSP instance
of 4 cities (4-TSP), or three to four cities with a TSP instance of 8
cities (8-TSP). This observation led to changing the loss function.
The binary cross-entropy function has been extended by a function
that checks how many qubits are set to 1. The function increases
the loss if the number of qubits set does not match the number of
cities. In addition, the loss is increased if not every city was visited,
but a certain city several times.

3.3 Setup
The RNN TSP solver was �rst trained with coordinates of the cities.
This was to check whether the network, which was inspired by
[1], gave similar results. It was trained on 10-TSP and 20-TSP and
actually delivered similar results.

Then problems in QUBO representation were used as input and
the resulting qubit con�guration as output. Batch size was set to
128 and the network was tested with 128 and 256 hidden units
per layer. The range of learning rates has been as with the AE. To
save training time, the RNN was �rst tested with 128 hidden units
and three learning rates. The loss was best at learning rate 0.001
with a decay of 0.96 at 5, 000 steps. However, training with 128
hidden units resulted in a network that was not able to recognize
the hidden logic within the qubits for problems with more than 4
cities. Accordingly, the hidden units were increased to 256. This
lengthened the training time, but the entire logic of QUBO, which
represents the TSP, could still not be learned.

We suspect that the problem lies in the layers used, because –
as can also be seen with the AEs – convolutional layers process
QUBOs better. Since a further increase in the hidden dimensions
would lead to a further increase in training time, we just focused
on CNN for further analysis.

The CNN was trained and compared with 128 and 256 units
per layer. Training the network containing 128 units with 4-TSP
instances worked well, but the model over�tted. This is because
the network is designed for complex problems, but a TSP with 4
cities is just too simple. To prevent over�tting, dropout layers that

randomly ignore units were added to the model when training with
4-TSP instances.

4-TSP instances were used to train the 128 units model, while
8-TSP instances were used for models having 128 and 256 units (but
no dropout layer).

3.4 Evaluation
Before the loss function was adjusted as already described, the
forecast did not set n qubits to 1, but only two or three. The network
afterwards learned that the goal is to minimize the energy and
therefore has to consider all constraints.

The 4-TSP setup was trained with 600 epochs. However, the
training itself only required 400 epochs for the ideal result. After
the dropout layer was added, the network no longer over�tted
and showed a loss of around 0.44 (see Fig. 3a). In 88% of the cases,
the predicted values matched the actual values. In cases where
they did not match, the average di�erence between the actual and
calculated distance of the shortest tour was 9.36. If one considers
that the distances were chosen randomly between 1 and 10,000, the
network did understand its task.

When training the 8-TSP, the dropout layer was not used. 128
units were not su�cient to achieve good results: a default accuracy
of 0.14 was achieved. After an update to 256 hidden units and still
no dropout layer, an after-evaluation accuracy of 0.65was achieved.
The average distance for non-matching actual and predicted data
was 20.15.

Fig. 3b shows the training of 8-TSP. One recognizes that the
loss starts lower than with the 4-TSP. A major disadvantage of
convolutional neural layers is the training time. In order to save
processing time, all 8-TSP instances were trained with pre-trained
networks. The pre-trained networks are networks that were trained
using 4-TSP. This procedure helps to reduce the processing time,
since the loss starts at a lower point because only the last layers have
to be trained. It also leads to fewer epochs for training convergence.
In this speci�c case, 200 epochs were su�cient. We also checked
that these results are similar to a CNN that was trained on 8-TSP
without pre-trained layers. The training took four times longer, the
results were worse after 200 epochs, but approximately the same
after 600 epochs.

4 SOLVING ENCODED STATES OF QUBO
FORMULATIONS OF TSP

We now present a network architecture for solving NP-complete
problems that uses the encoder part of the CAE combined with the
CNN TSP solver (see Fig. 1c). The idea is to reduce the dimension-
ality of the QUBO problems and use this representation to train
the network solving the problem. The networks mentioned were
chosen because the CAE showed best results on reconstructing
QUBOs and the CNN TSP solver accordingly performed best when
solving TSP instances. When combining the networks, the setup as
described in the previous sections was used.

Training the CNN with compressed QUBO data from 4-TSP
instances again led to over�tting. Thus, dropout layer were added
to address this problem. Instances of 4-TSP were only tested with
128 units because the results were good enough. The training of
the combinatorial NN had very similar results to the CNN. The

Taken from original publication: Thomas Gabor, Sebastian Feld, Hila Safi, Thomy
Phan, and Claudia Linnhoff-Popien. Insights on training neural networks for
QUBO tasks. In First International Workshop on Quantum Software Engineer-
ing (Q-SE 2020), 2020

230

Insights on Training Neural Networks for QUBO Tasks ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea

(a) 4-TSP, 128 units, dropout layer

(b) 8-TSP, 256 units, pre-trained

Figure 3: Convolutional neural network model loss.

loss converged at 0.46 and had a default accuracy of 0.75 and an
after-evaluation accuracy of 0.85. The average di�erence between
all non-matching and actual results was 9.56. The network was
trained over 600 epochs.

The compression of the input had almost no e�ect on the net-
work’s ability to learn qubit con�gurations. The network’s training
time was highly reduced when only compressed input was used.
The CNN used about 9 � 10 hours of training time, while the com-
binatorial NN only used about 4 � 5 hours.

In order to learn 8-TSP instances, the combinatorial NN has again
used pre-trained layers, i.e., those of the 4-TSP combinatorial NN.
Again, there are only minor di�erences from the CNN results. The
loss was 0.48 (see Fig. 4), which is identical to the CNN’s loss. The
network was trained for 200 epochs, had a default accuracy of 0.55,
an after-evaluation accuracy of 0.64, and a mean di�erence between
non-matching and actual results of 27.5. This value is 7.35 higher
than that of the CNN, but still acceptable as the cities’ distances
were randomly chosen between 1 and 10,000.

5 SOLVING ARBITRARY QUBO INSTANCES
Finally, we want to take another step towards generalization and
train NNs to solve arbitrary QUBOs. In this way, they can be func-
tionally used in place of a quantum annealing solver.

Figure 4: Combinatorial NNmodel loss, 8-TSP, 256 units, pre-
trained.

5.1 Setup
Random QUBOs have no inherent structure that could be exploited
by an AE, so we only trained CNNs for this task. The input data
was generated by �lling the upper triangular matrix with random
numbers between �10,000 and 10,000. The output was generated by
labeling given input with the qubit con�gurations that were created
using qbsolv. The training data set consisted of 11,000 samples, the
validation and test data set each consisted of 1,000 samples.

5.2 Evaluation
We want to show that a single NN can solve not only a speci�c NP-
complete problem, but a generic one. In order to obtain comparabil-
ity, random QUBOs were created that have the same dimensionality
as 4-TSP and 8-TSP QUBOs.

The CNN was able to learn from the random QUBOs: 16 ⇥ 16-
dimensional matrices (equivalent to 4-TSP) were trained using 256
units per layer over 400 epochs and had a loss of 1.06. The default
accuracy was 0.45, the after-evaluation accuracy 0.48. The mean
energy di�erence between non-matching actual and predicted re-
sults was 230.32, which is much higher than with TSP. However,
the qubit con�guration was correct for almost every second result.

Training using random data is far more complex than training
a speci�c problem (see Fig. 5a and Fig. 5b). The network did not
over�t, not even with twice as many units. The random 64 ⇥ 64-
sized QUBO problems (equivalent to 8-TSP) were trained with a
network having 256 units per layer over 1, 800 epochs and had a
loss of 9.05. Default accuracy and after-evaluation accuracy were
around 0.2 and the average energy di�erence of the non-matching
outputs was 345.45.

Training with random values took a lot of time for relevant
QUBO sizes, the accuracy fell faster with the increase in the QUBOs’
dimensionality than with TSP. The use of a network pre-trained on
16⇥16-sized randomQUBO problems inside a 64⇥64 randomQUBO
network had an accuracy of 0.12 and did not work comparable to
the CNN. In addition to the fact that an energy minimum is sought,
the larger network cannot reuse much information.

6 CONCLUSION
We provided empirical evidence for four hypotheses. (1) AEs are
able to �lter the overhead induced by a QUBO translation of TSP to

Taken from original publication: Thomas Gabor, Sebastian Feld, Hila Safi, Thomy
Phan, and Claudia Linnhoff-Popien. Insights on training neural networks for
QUBO tasks. In First International Workshop on Quantum Software Engineer-
ing (Q-SE 2020), 2020

231

ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea Gabor et al.

(a) 16 ⇥ 16

(b) 64 ⇥ 64

Figure 5: Random QUBO Solver model loss.

some extent. They can thus be used to guess the original complexity
of a problem from its QUBO formulation. (2) NNs can be trained to
return the qubit con�guration resulting in minimum energy for a
QUBO problem generated from a TSP instance. They are thus able
to solve TSP even in a larger QUBO translation. (3) Accordingly,
NNs can also solve QUBO problems originating from TSP given
their latent space representation (instead of the full QUBO matrix).
(4) NNs can be trained to solve QUBO problems in general. The fact
that CNNs appear most e�ective implies that QUBO problems can
be treated more like a somewhat local graph problem and less like
combinatorial optimization.

These �rst steps call for immediate follow-up research. Most
importantly, a thorough study of the various impact of overhead
from the QUBO translation is necessary: How do networks that
have been trained for (a) solving TSP in native encoding, (b) solving
QUBO translations of TSP, and (c) solving QUBO in general com-
pare on the same set of problems regarding various performance
metrics? Are there cases where a QUBO translation may actually be
easier to solve than other representations of TSP? Does specialized
training on just one type of QUBO bring any advantage over train-
ing on random QUBOs? How do the results on TSP (whose QUBO
translation introduces a quadratic overhead) compare to problems
with more (or less) e�cient QUBO translations?

From this experience report, a strong argument can be made for
mathematically solid interfaces in quantum computing: The NNswe
trained should be able to replace any other means of solving QUBOs
fully transparent to the provider of the problem instances. A diverse
pool of mechanisms for solving QUBOs should prove useful to
establish QUBO as a suitable formulation for optimization problems

and thus prepare for the eventual deployment of quantum-based
machines. Current breakthrough technology like neuromorphic
hardware may thus serve as a bridge to the quantum age.

We argue that for some time to come, quantum software will
usually only be shipped as a module within larger, mostly classi-
cal software applications. Furthermore, these modules will usually
come with fully classical counterparts as quantum resources will
remain comparatively limited and thus should not be used up un-
necessarily, for example when testing other parts of the software
where a good enough approximation of the quantum module suf-
�ces. We think that NNs may provide a very generic tool to produce
such counterparts as it has been done in this case study for quan-
tum annealing or QAOA, even though their rather black-box nature
opens up a new �eld of testing issues. E�ectively, we argue that
any approach to the integration of quantum modules should aim
to include similar classical approximation models at least for the
near future.

We would like to point out that even in the presence of large-
scale quantum hardware, handling QUBO problemswith NNsmight
still be useful for pre- and post-processing of problem instances,
dispatching instances to various hardware platforms, or providing
estimates of the inherent complexity of a speci�c problem or prob-
lem instance. As we have shown that NNs can handle the structure
of QUBO matrices well, they may also be able to learn transforma-
tions (ideally with automatic reduction of size) on them or help with
introspection of the optimization process and e�ectively the debug-
ging of optimization problem formulations or quantum hardware
platforms.

REFERENCES
[1] Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio.

2016. Neural combinatorial optimization with reinforcement learning. arXiv
preprint arXiv:1611.09940 (2016).

[2] John Burkardt. 2019. TSP – Data for the Traveling Salesperson Problem. people.sc.
fsu.edu/~jburkardt/datasets/tsp/tsp.html

[3] Vicky Choi. 2010. Adiabatic quantum algorithms for the NP-complete Maximum-
Weight Independent set, Exact Cover and 3SAT problems. arXiv preprint
arXiv:1004.2226 (2010).

[4] Edward Farhi, Je�rey Goldstone, and Sam Gutmann. 2014. A quantum approxi-
mate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014).

[5] Sebastian Feld, Christoph Roch, Thomas Gabor, Christian Seidel, Florian Neukart,
Isabella Galter, Wolfgang Mauerer, and Claudia Linnho�-Popien. 2018. A hybrid
solution method for the capacitated vehicle routing problem using a quantum
annealer. arXiv preprint arXiv:1811.07403 (2018).

[6] Fred Glover, Gary Kochenberger, and Yu Du. 2018. A tutorial on formulating and
using QUBO models. arXiv preprint arXiv:1811.11538 (2018).

[7] Nathan Hubens. 2018. Deep inside: Autoencoders. tinyurl.com/ucu9ump
[8] D-Wave Systems Inc. 2019. qbsolv – qbsolv documentation. docs.ocean.dwavesys.

com/projects/qbsolv/en/latest/
[9] Tadashi Kadowaki and Hidetoshi Nishimori. 1998. Quantum annealing in the

transverse Ising model. Physical Review E 58, 5 (1998), 5355.
[10] Anusha Lihala. 2019. Attention and its Di�erent Forms. towardsdatascience.com/

attention-and-its-di�erent-forms-7fc3674d14dc
[11] Shao-Anb Lu. 2017. SGD > Adam??Which One Is The Best Optimizer: Dogs-VS-Cats

Toy Experiment. tinyurl.com/sanjtd4
[12] Andrew Lucas. 2014. Ising formulations of many NP problems. Frontiers in

Physics 2 (2014), 5.
[13] David Mack. 2018. How to pick the best learning rate for your machine learning

project. tinyurl.com/rtnglcu
[14] Catherine C McGeoch. 2014. Adiabatic quantum computation and quantum

annealing: Theory and practice. Synthesis Lectures on QC 5, 2 (2014), 1–93.
[15] Madhu Sanjeevi. 2018. Model Free Reinforcement learning algorithms (Monte Carlo,

SARSA, Q-learning). tinyurl.com/rooumla
[16] Tobias Stollenwerk and Achim Basermann. 2016. Experiences with scheduling

problems on adiabatic quantum computers. In 1st Int’l Workshop on Post-Moore
Era Supercomputing (PMES). Future Technologies Group, 45–46.

Taken from original publication: Thomas Gabor, Sebastian Feld, Hila Safi, Thomy
Phan, and Claudia Linnhoff-Popien. Insights on training neural networks for
QUBO tasks. In First International Workshop on Quantum Software Engineer-
ing (Q-SE 2020), 2020

232

Subgoal-Based Temporal Abstraction in Monte-Carlo Tree Search

Thomas Gabor , Jan Peter , Thomy Phan , Christian Meyer and Claudia Linnhoff-Popien
LMU Munich

thomas.gabor@ifi.lmu.de

Abstract
We propose an approach to general subgoal-based
temporal abstraction in MCTS. Our approach ap-
proximates a set of available macro-actions locally
for each state only requiring a generative model and
a subgoal predicate. For that, we modify the ex-
pansion step of MCTS to automatically discover
and optimize macro-actions that lead to subgoals.
We empirically evaluate the effectiveness, compu-
tational efficiency and robustness of our approach
w.r.t. different parameter settings in two benchmark
domains and compare the results to standard MCTS
without temporal abstraction.

1 Introduction
Markov Decision Processes (MDPs) provide the formal foun-
dation for many current approaches to planning and deci-
sion making [Russell and Norvig, 2010; Sutton and Barto,
2018]. In that context, making decisions at multiple lev-
els of abstraction has been studied as a challenging problem
[Barto and Mahadevan, 2003; Bai et al., 2012; Vien and Tou-
ssaint, 2015]. One approach is to compress the search space
in the temporal dimension by introducing macro-actions at
a coarser resolution of time, which is motivated by human
decision making, where reasoning about the problem takes
place at different levels [Botvinick et al., 2009]. This ap-
proach, which is known as temporal abstraction or hierarchi-
cal planning [Mausam and Kolobov, 2012; Sutton and Barto,
2018], can accelerate direct reinforcement learning and plan-
ning algorithms as it decomposes the domain into a hierar-
chy of subtasks or subgoals that can be addressed individu-
ally [Dietterich, 2000; He et al., 2010; Vien and Toussaint,
2015]. Primitive action sequences to achieve such subgoals
can be combined into macro-actions to enable efficient deci-
sion making at higher levels.

Many approaches rely on extensive domain knowledge by
assuming all subgoals or macro-actions per state to be fully
known beforehand [Parr and Russell, 1998; Sutton et al.,
1999; Dietterich, 2000]. However, a complete specification
of subgoals or macro-actions is generally infeasible for do-
mains with large state spaces and many subgoals.

For many problems, it is easy to determine whether a given
state is desirable as a subgoal, but it is infeasible to specify all

possible follow-up subgoals or macro-actions for each state in
advance. Especially in online planning, subgoals and macro-
actions should be determined locally for each state, and only
when needed, to meet real-time requirements.

In this paper, we propose an approach to general subgoal-
based temporal abstraction in Monte Carlo Tree Search
(MCTS). We assume the availability of a subgoal predicate
(in addition to a generative model, i.e., an MDP), which we
integrate into the expansion step of MCTS to automatically
discover and optimize macro-actions that lead to subgoals (cf.
Section 4). Empirical evaluation shows that subgoal-based
MCTS is more efficient than standard MCTS with little loss
w.r.t effectiveness in the gridworld domain or even consider-
able gain in Tetris (cf. Section 5).

2 Background
2.1 Markov Decision Processes
An MDP is defined as a tuple F = 〈S,A,P,R, γ〉, where S
is a (finite) set of states, A is the (finite) set of primitive ac-
tions, P(st+1|st, at) is the transition probability, R(st, at) ∈
R is the reward, and γ ∈ [0, 1] is the discount factor [Puter-
man, 2014]. We always assume that st, st+1 ∈ S , at ∈ A,
and rt = R(st, at), where st+1 is reached after executing
the action at in state st at time step t. Most importantly, we
assume MDPs to be discrete and to have deterministic state
transitions, i.e., P(st+1|st, at) ∈ {0, 1} for all st+1, st, at.

The goal is to find a policy π : S → A which maximizes
the expectation of return Gt at state st for a horizon H:

Gt =
H−1∑

k=0

γkR(st+k, at+k) (1)

A policy π can be evaluated with a state value function
V π(st) = Eπ[Gt|st], i.e., the expected return at state st.
Qπ(st, at) = Eπ[Gt|st, at] is the action-value function, i.e.,
the expected return when executing action at in state st.
π is optimal iff V π(st) ≥ V π′

(st) for all st ∈ S and all
policies π′. We denote the optimal policy by π∗ and the value
functions by V π∗

= V ∗ and Qπ∗
= Q∗ respectively.

2.2 Monte Carlo Online Planning
Planning searches for a (near-)optimal policy, given a model
F̂ of the actual environment F . F̂ usually provides P and

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5562

Taken from original publication: Thomas Gabor, Jan Peter, Thomy Phan, Chris-
tian Meyer, and Claudia Linnhoff-Popien. Subgoal-based temporal abstraction in
Monte-Carlo tree search. In Proceedings of the 28th International Joint Conference
on Artificial Intelligence, pages 5562–5568. AAAI Press, 2019

233

R of the underlying MDP. Global planning searches the
whole state space S to find π∗ [Bellman, 1957; Weinstein
and Littman, 2013]. An example is value iteration, which
computes the optimal value function according to the Bell-
man equation [Bellman, 1957]:

V ∗(st) = max
at∈A

{rt+γ
∑

st+1∈S
P(st+1|st, at)V ∗(st+1)} (2)

Local planning only regards the current state st and possi-
ble future states to find a policy πt [Weinstein and Littman,
2013]. We focus on local Monte Carlo planning, where
F̂ is a generative or forward model, which can be used
for simulation-based planning [Kocsis and Szepesvári, 2006;
Weinstein and Littman, 2013] without reasoning about ex-
plicit probability distributions. Given st and at, F̂ provides a
sample 〈st+1, rt〉 ∼ F̂ (st, at). We also focus on online plan-
ning, where planning is performed at every time step t with a
horizon H and a computation budget nb. The recommended
action at is executed in st, which thereby transitions to st+1.
If st+1 is no terminal state, this procedure is repeated.

Monte Carlo Tree Search (MCTS) is a popular approach
to Monte Carlo Planning and has been applied to a wide
range of challenging environments [Rubin and Watson, 2011;
Silver et al., 2017]. MCTS incrementally builds up a search
tree, which stores the visit counts N(st), Nst,at , and the val-
ues V (st) and Q(st, at) for each simulated state and action
respectively. MCTS iteratively executes the following four
steps until a computation budget nb has run out:
Selection Starting from the root node as current state s0, the

search tree is traversed by selecting nodes with a tree
policy πtree until a leaf state node st is reached.

Expansion The leaf state node st is expanded by a new node
representing the next state st+1, which is reached after
simulating a random action at in F̂ .

Simulation A rollout using a rollout policy πrollout is per-
formed from st+1 until a maximum search depth H or a
terminal state is reached.

Backup The observed rollout rewards are accumulated to Gt

(Eq. 1) and used to update the value estimates and visit
counts of every node in the simulated path.

Upper Confidence bounds applied to Trees (UCT) uses
πtree(st) = argmaxat∈A UCB1(st, at) with UCB1 being de-
fined by [Auer et al., 2002; Kocsis and Szepesvári, 2006]:

UCB1(st, at) = Q(st, at) + c

√
2log(N(st))

N(st, at)
(3)

where c is an exploration constant. UCB1 balances between
exploration and exploitation of actions. Exploration is en-
couraged by the second term multiplied with c and tries out
actions to estimate action-values more accurately. The more
at is selected in st the smaller the exploration term becomes
and the more exploitation is encouraged, which greedily uses
the action with the currently highest action-value Q(st, at).
UCT has been shown to converge to the optimal best-first tree,
given infinite computation [Kocsis and Szepesvári, 2006].

3 Related Work
Temporal abstraction methods summarize temporal se-
quences of primitive actions into macro-actions by dividing
the original goal into subgoals, for which the planner can gen-
erate plans individually and independently [Kaelbling, 1993;
Barto and Mahadevan, 2003; Solway et al., 2014].

There exist different frameworks for decision making us-
ing temporal abstraction: [Sutton et al., 1999] proposed op-
tions, where each option o has an internal policy πo which
can be selected from specific states. If option o is selected,
then πo is executed until a termination condition is met. [Di-
etterich, 2000] proposed MAXQ Value Function Decomposi-
tion by defining subtasks, with each subtask mi ∈M having
a pseudo-reward function. A subtask policy has to be com-
puted for each subtask. In both cases, there is a high-level
policy π, which has to select a lower level policy according
to the corresponding option or subtask. These frameworks
assume detailed prior knowledge (e.g. internal policy, re-
ward function) about each subgoal, which is infeasible for
very large macro-action spaces and many subgoals.

[He et al., 2010] proposed Planning under Uncer-
tainty with Macro-Actions (PUMA), which generates macro-
actions from automatically discovered subgoals given a
global subgoal distribution. Each macro-action at =
〈at, at+1, ..., at+L−1〉 represents an open-loop sequence of
primitive actions. Macro-actions are determined by itera-
tively finding open-loop plans of length L, which can reach
a randomly sampled subgoal state from a given state st. The
action-value Q(st, at) is estimated via Monte Carlo simula-
tion to determine the action to be executed. Our approach is
closely related to PUMA: Each macro-action leads to a sub-
goal and is generated locally for each state during planning.
However, PUMA assumes a fixed length and a fixed num-
ber of macro-actions, which is highly domain-dependent. In-
stead, our approach only requires a subgoal predicate, which
can determine whether a given state is a subgoal or not. It
does not need a pre-defined global distribution of subgoals.

4 Subgoal-based Temporal Abstraction
4.1 Terminology
Given a deterministic and discrete MDP, we define a macro-
action mt = 〈at, ..., at+N−1〉 as an open-loop sequence of
primitive actions ai ∈ A. The macro-action space M = A+

is the set of all non-empty sequences over A. The macro-level
generative model F : S ×M→ S determines the successor
state F (st,mt) = st+|mt| after performing mt ∈ M with
length |mt| in state st. The reward function for macro-actions
mt ∈M is defined by:

R(st,mt) =

|mt|−1∑

k=0

γkR(st+k, at+k) (4)

We define a macro-level policy π : S → M to select
macro-actions, which can be evaluated with a value function
V π(st) = R(st,π(st)) + γ|π(st)|V π(F (st,π(st)))).

We define a set of subgoals G ⊆ S with G = {st ∈
S | g(st) = 1}, where g : S → {0, 1} is a subgoal pred-
icate returning 1, if st is a subgoal, and 0 otherwise. G(st)

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5563

Taken from original publication: Thomas Gabor, Jan Peter, Thomy Phan, Chris-
tian Meyer, and Claudia Linnhoff-Popien. Subgoal-based temporal abstraction in
Monte-Carlo tree search. In Proceedings of the 28th International Joint Conference
on Artificial Intelligence, pages 5562–5568. AAAI Press, 2019

234

defines the set of subgoals directly reachable from state st
with any macro-action. M(st, gt) contains all macro-actions
that terminate in subgoal gt ∈ G when performed in state st
and M(st) represents all macro-actions which can directly
reach any subgoal gt ∈ G(st) from state st:

M(st) =
⋃

gt∈G(st)

M(st, gt) (5)

M∗(st) ⊆M(st) is the set of macro-actions mt for state
st which locally maximize the reward R(st,mt):

M∗(st) = { argmax
mt∈M(st,gt)

R(st,mt) | gt ∈ G(st)} (6)

By assuming γ = 1, we can show that the hierarchi-
cally optimal value function V π∗

is preserved when replacing
M(st) with the locally optimized set M∗(st):

V π∗
(st)

(2)

= maxmt∈M(st){rt + V π∗
(F (st,mt))}

(5)

= maxgt∈G(st){maxmt∈M(st,gt){rt + V π∗
(gt)}}

= maxgt∈G(st){(maxmt∈M(st,gt){rt}) + V π∗
(gt)}

(6)

= maxmt∈M∗(st){rt + V π∗
(F (st,mt))}

(7)

where rt = R(st,mt).

4.2 Generating Macro-Actions
We now describe an approach to approximate M∗(st) for any
given state st. M̂(st) ≈ M∗(st) is generated incremen-
tally by randomly sampling a macro-action mt from M(st).
If mt reaches a previously undiscovered subgoal, it is added
to M̂(st). If a subgoal is rediscovered, the existing macro-
action m′

t is replaced with mt, when R(st,mt) > R(st,m′
t).

The sampling is regarded as a Bernoulli trial, where p is
the action coverage representing the fraction of already dis-
covered macro-actions of M∗(st). Let X = 〈X1, ..., Xn〉
be a Bernoulli process according to the Bernoulli distribution
B(p) with Xi ∼ B(p). Xi = 1, if the sampled macro-action
is already known, and Xi = 0 otherwise. The likelihood
L(p = p0|X) that the unknown action coverage p equals
p0 given the observations X is defined by L(p = p0|X) =(n
k

)
pk(1 − p)n−k; k =

∑n
i Xi. If all trials were successful

(k = n), then L(p = p0|X) = pn. To test if p ≥ p0, we
define a statistical test ψ : {0, 1}n → {0, 1} with null hy-
pothesis H0 : p < p0 and alternative hypothesis H1 : p ≥ p0:

ψ(X) = I(L(p = p0|X) ≤ α) = I(n > logp0
α) (8)

where α ∈ [0, 1] is the tolerated error.
If we consecutively sample n macro-actions, whose sub-

goals are already known, and n > logp0
α, we will assume

that a coverage of at least p0 is achieved. Increasing the de-
sired action coverage p0 leads to a higher percentage of dis-
covered macro-actions of M∗(st) and to higher quality of
each macro-action in M̂(st) at the cost of more trials.

Algorithm 1 Expansion with Macro-Action Generation

1: procedure ExpansionWithMA(F̂ , g, t, st, H, p0,α)
2: n← 0
3: repeat % discover macro actions until confident
4: st+1 ← st
5: mt ← 〈〉
6: repeat % sample until macro state or horizon
7: at ∼ A
8: mt ← mt ++ 〈at〉
9: st+1 ← F̂ (st+1, at)

10: until (g(st+1) = 1) ∨ (t+ |mt| ≥ H)
11: if ∃m′

t ∈ M̂(st) : F (st,m′
t) = st+1 then

12: n← n+ 1 % macro state rediscovered
13: if R(st,mt) > R(st,m′

t) then
14: M̂(st)← (M̂(st) \ {m′

t}) ∪ {mt}
15: else % new macro state discovered to expand
16: M̂(st)← M̂(st) ∪ {mt}
17: return mt

18: until n > logp0
α

19: fullyExpanded(st)← true
20: return nil

4.3 Integration with MCTS
The approach described above can be easily integrated into
MCTS, since actions are iteratively explored for each state.
Instead of pre-computing the whole set of macro-actions, we
only need to find one new macro-action in the expansion step.
This saves computation time, since macro-actions are only
generated on demand according to the selection policy.

The complete formulation of the modified expansion step
is given in Algorithm 1, where F̂ is the generative model of
the MDP, g is the subgoal predicate, t is the current time step,
st is the current state, H is the planning horizon, p0 is the
desired action coverage, and α is the tolerated error.

Our approach constructs a search tree for deterministic
MDPs, where the root node represents the current state,
all other nodes represent subgoal states, and links represent
macro-actions. Our expansion step updates the macro-action
set M̂(st) for the current leaf node representing st. If the de-
sired action coverage p0 has been achieved, the node of st is
considered as fully expanded and returns nil. The expansion
step will not be invoked for fully expanded nodes.1

The advantage of this approach is that only subgoals di-
rectly reachable from a given state are regarded. The set
of available subgoals per state is only computed on demand,
when the state is actually visited during tree search, and is
not required to be specified beforehand. Our approach en-
ables planning with macro-actions mt of arbitrary length
(1 ≤ |mt| ≤ H − t), thus being more flexible than PUMA
[He et al., 2010]. Note that the Backup step has to be ad-
justed to consider the discount of subgoal rewards R(st,mt)
according to the length of each macro-action mt (Eq. 4).

1For a complete description of that integration in pseudo-
code, please refer to github.com/hugo-voodo/temporal-
abstraction/blob/master/supplement.pdf.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5564

Taken from original publication: Thomas Gabor, Jan Peter, Thomy Phan, Chris-
tian Meyer, and Claudia Linnhoff-Popien. Subgoal-based temporal abstraction in
Monte-Carlo tree search. In Proceedings of the 28th International Joint Conference
on Artificial Intelligence, pages 5562–5568. AAAI Press, 2019

235

######################### # # # G# # # # # #

#X # #

(a) Gridworld (b) Tetris

Figure 1: (a) Gridworld of [Bai et al., 2016] with ‘X’ representing
the agent’s initial position, ‘G’ representing the goal and ‘#’ repre-
senting obstacles. (b) The game Tetris.

4.4 Possible Variants and Enhancements
Modes. Similarly to [Bai et al., 2016], our approach can
operate in different control modes. In hierarchical control
mode, the MCTS returns the macro-action as sequence of
primitive actions, which is successively applied to the real en-
vironment. In this case, planning is only performed at subgoal
states, thus reducing the overall computation. In polling con-
trol mode, the MCTS returns only the first primitive action of
the recommended macro-action. This mode can recover from
locally poor decisions, since planning is performed at every
time step t but requires more computation in total.
Tree Reuse. In MCTS, the computed subtree of the follow-
ing state can be reused to avoid complete replanning by keep-
ing the learned statistics from the previous planning step. If
polling control mode is used, tree reuse cannot be trivially ap-
plied to our approach because the state nodes represent sub-
goal states, while planning can be performed on non-subgoal
states in polling mode. Thus, we only regard tree reuse in
combination with hierarchical control mode.
Parallelization. There exist many approaches to paral-
lelization of MCTS ranging from tree parallelization with
mutually exclusive locks to root parallelization, where mul-
tiple separate trees are generated and searched in parallel
[Chaslot et al., 2008; Browne et al., 2012]. We only focus on
root parallelization due to the minimal synchronization over-
head. We also expect root parallelization to compensate for
approximation errors caused by low action coverages, since
multiple trees will generate different macro-action sets, thus
converging to different trees. Since we focus on deterministic
problems, it is most promising to make decisions based on
the single best action found by an individual tree.

5 Experiments
5.1 Evaluation Environments
Gridworld is one of the must studied example domains in ar-
tificial intelligence [Sutton et al., 1999; Russell and Norvig,
2010; Bai et al., 2016; Sutton and Barto, 2018]. An agent has
to navigate in a two-dimensional grid to reach a goal position.
The agent is able to move north, east, south and west to ad-
jacent grid cells, but it cannot pass obstacles in the grid. A
reward of -0.01 is given at every time step. Reaching the goal
gives a reward of 1 and terminates the episode. The setup
used in this paper is shown in Fig. 1a. The grid is divided
into eight rooms with connecting ‘doors’.

The Tetris game is another popular research domain in
artificial intelligence research [Thiery and Scherrer, 2009;
Zhongjie et al., 2011; Scherrer et al., 2015; Jaskowski et al.,
2015]. An object called tetrimono has to be controlled in a
Wb×Hb board (violet ‘L’ shape in Fig. 1b), while it is falling
to the ground. At every time step, the tetrimono moves down
to the next grid cell until it touches the ground (of stacked
previous tetrimonos). The agent can rotate the tetrimono left
or right, move it left or right, or do nothing. After the tetrim-
ino has fallen down, a reward of 1−(0.5 h2

c

H2
b
+0.5min{1, x

X })
is given and a new tetrimono appears in the upper center of
the board. hc is the current height of the stack, Hb is the
board height, Wb is the board width, x is the number of holes
in the tetrimono stack, and X = Wb

4 (Hb − 2) is an arbitrary
upper bound on stack holes. The game ends with a reward of
-1, when the tetrimono stack height exceeds the board height.
The goal is to minimize the height of the stacked tetrimonos
in the long run. We always set Wb = 10 and Hb = 10.

5.2 Methods
Online Planning
We implemented different instances of our approach, which
we call Subgoal-MCTS (S-MCTS).2 The polling control mode
is used as default mode. S-MCTS-H uses hierarchical con-
trol mode and S-MCTS-H-R additionally enables tree reuse.
We also implemented UCT of [Kocsis and Szepesvári, 2006],
which we refer to as MCTS or as MCTS-R, if tree reuse is en-
abled. All MCTS implementations use UCB1 as tree policy
and random rollouts. We also implemented random rollout
planning, referred to as MC.

For each planning algorithm, we experimented with differ-
ent settings of tunable parameters.3 For all experiments, we
set γ = 1, p0 = 0.95, and α = 0.001. We implemented root
parallelization for all MCTS-based approaches using multi-
threading to generate multiple trees.

Subgoal Heuristics
For Gridworld, we use a subgoal predicate g returning 1, if
the agent position is at a ‘door’ position with obstacles on
opposing sides next to it, and 0 otherwise.

For Tetris, we use a subgoal predicate g, which returns 1, if
the current tetrimono has fallen down, and 0 otherwise. Note
that while it is easy to determine whether a given state is a
subgoal or not (e.g., by checking the y-coordinate of the cur-
rent tetrimono’s position with our subgoal predicate g), it is
infeasible to specify all possible subgoals for each tetrimono
type beforehand, since there are too many possible combina-
tions of position and rotation per tetrimono type.

5.3 Results
We ran each experiment with different parameter settings.
Each setting was run 60 times for a maximum of 1000 time
steps in Gridworld or 20000 time steps in Tetris.

2The code can be found at github.com/jnptr/subgoal-mcts.
3For all parameter configurations, see github.com/hugo-

voodo/temporal-abstraction/blob/master/supplement.pdf.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5565

Taken from original publication: Thomas Gabor, Jan Peter, Thomy Phan, Chris-
tian Meyer, and Claudia Linnhoff-Popien. Subgoal-based temporal abstraction in
Monte-Carlo tree search. In Proceedings of the 28th International Joint Conference
on Artificial Intelligence, pages 5562–5568. AAAI Press, 2019

236

10−3 10−2 10−1

Time per Step (s)

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

R
et
u
rn

0.0045s0.0021s0.0011s 0.0724s0.0309s

S-MCTS

S-MCTS-H

S-MCTS-H-R

MCTS

MCTS-R

(a) Gridworld

10−2 10−1 100

Time per Step (s)

0

250

500

750

1000

1250

1500

1750

R
et
u
rn

0.0331s

0.0031s

0.0024s

0.2398s

0.4662s

S-MCTS

S-MCTS-H

S-MCTS-H-R

MCTS-R

MC

(b) Tetris

Figure 2: Average return per computation time per step of each plan-
ning algorithm using different parameter settings. The x-axis uses a
logarithmic scale.

Performance-Computation Tradeoff
First, we evaluated the performance and computation time
of each algorithm with different parameter settings (Sec-
tion 5.2). The results are shown in Fig. 2. Each data point rep-
resents the average return for an average amount of compu-
tation time per step t given a specific parameter setting. The
color indicates the algorithm as described in Section 5.2. The
dotted horizontal line indicates the maximum possible return
for the respective domain (which overestimates for Tetris).

In Gridworld (Fig. 2a), S-MCTS, S-MCTS-H, and S-
MCTS-H-R achieve competitive performance compared to
MCTS and slightly lower performance than MCTS-R with
much less computation time. In Tetris (Fig. 2b), we omit-
ted MCTS due to intractable run times and replaced it with
MC. S-MCTS-H and S-MCTS-H-R quickly achieve near-
maximum return with S-MCTS-H-R being less sensitive to
the concrete parameter setting. S-MCTS is slower than S-
MCTS-H and S-MCTS-H-R but achieves the best overall per-
formance. MCTS-R requires much more computation time
than Subgoal-MCTS approaches, while being unable to keep
up in performance. MC slightly improves with more compu-
tation time but is clearly inferior to all other approaches.

In both domains, S-MCTS-H and S-MCTS-H-R are gener-
ally faster than S-MCTS, since computation only takes place

at subgoal states. Still, both approaches are able to achieve
competitive performance compared to S-MCTS. S-MCTS-H
and S-MCTS-H-R also seem to be less sensitive to the param-
eter settings than the other approaches.

Action Coverage and Parallelization
We also evaluated different combinations of desired action
coverages p0 and tree counts in the Tetris domain. The re-
sults are shown in Fig. 3 for S-MCTS, S-MCTS-H, and S-
MCTS-H-R. Each plot shows the average return of each al-
gorithm with the best parameter setting (Section 5.2), when
using a particular number of trees, which are generated in
parallel. The dotted horizontal line indicates the maximum
possible return. Increasing p0 generally leads to increasing
return and reduces the variance for all settings. Using a large
number of trees can compensate for low desired action cover-
ages p0, generally leading to higher returns, while requiring
less time per step. In case of S-MCTS and S-MCTS-H (Fig.
3a and 3b), all settings achieve similar performance, when
the desired action coverage is sufficiently large (p0 = 0.95).
S-MCTS-H-R (Fig. 3c) has more variance in its returns, but
requires much less time, when using many trees.

Robustness w.r.t. Subgoal Heuristics
Finally, we evaluated the robustness of our approach w.r.t.
different subgoal heuristics for the Gridworld domain with
different parameter settings (Section 5.2). The ‘exact defini-
tion’ identifies subgoals by checking, if there are obstacles
on opposing sides next to the agent, indicating a ‘door’ in
the grid. A coarser heuristic (|A(st)| ≤ Na) checks, if the
number of legal actions |A(st)| at the current state is Na at
most. If Na = 3, e.g., then positions next to walls are re-
garded as subgoals as well. The results are shown in Fig. 4
for S-MCTS, S-MCTS-H, and S-MCTS-H-R. Each data point
represents the average return for an average amount of com-
putation time per step t given a specific parameter setting.
The color indicates the used subgoal heuristic. The dotted
horizontal line indicates the maximum return for the Grid-
world domain. When using the heuristic |A(st)| ≤ 2, then
all approaches perform slightly worse than the ‘exact defini-
tion’, while being similarly robust w.r.t. the parameter set-
ting. However, when using the heuristic |A(st)| ≤ 3, then
the performance is generally worse and all approaches are
much more sensitive to the parameter setting, while requir-
ing significantly more computation time. Hierarchical control
mode and tree reuse seem to slightly improve the robustness
of Subgoal-MCTS w.r.t. the parameter setting, while not hav-
ing a general impact on the overall performance.

6 Discussion
We proposed an approach to general subgoal-based tempo-
ral abstraction in MCTS. Our approach approximates a set of
macro-actions locally for each state only requiring a genera-
tive model and a subgoal predicate.

Our experiments show that S-MCTS and its variants are
competitive against standard MCTS in terms of performance-
computation tradeoff. While all variants of S-MCTS perform
slightly worse in the Gridworld domain, they are able to out-
perform MCTS-R in Tetris, while generally requiring much
less computation time than MCTS in all domains.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5566

Taken from original publication: Thomas Gabor, Jan Peter, Thomy Phan, Chris-
tian Meyer, and Claudia Linnhoff-Popien. Subgoal-based temporal abstraction in
Monte-Carlo tree search. In Proceedings of the 28th International Joint Conference
on Artificial Intelligence, pages 5562–5568. AAAI Press, 2019

237

0.004 0.005 0.006 0.007
Time per Step per Tree

0

250

500

750

1000

1250

1500

1750

2000

R
et
u
rn

p=0.3

p=0.5

p=0.8

p=0.95

p=0.3

p=0.5

p=0.8 p=0.95

p=0.3

p=0.5
p=0.8 p=0.95

8 trees

16 trees

32 trees

(a) Subgoal-MCTS in polling control mode (S-MCTS)

0.0004 0.0005 0.0006 0.0007
Time per Step per Tree

0

250

500

750

1000

1250

1500

1750

2000

R
et
u
rn

p=0.3

p=0.5

p=0.8

p=0.95

p=0.3

p=0.5

p=0.8 p=0.95p=0.3
p=0.5

p=0.8 p=0.95

8 trees

16 trees

32 trees

(b) Subgoal-MCTS in hierarchical control mode (S-MCTS-H)

0.00030 0.00045 0.00060 0.00075
Time per Step per Tree

0

250

500

750

1000

1250

1500

1750

2000

R
et
u
rn

p=0.3

p=0.5

p=0.8

p=0.95

p=0.3

p=0.5

p=0.8
p=0.95p=0.3

p=0.5 p=0.8 p=0.95

8 trees

16 trees

32 trees

(c) Subgoal-MCTS in hierarchical control mode with tree reuse (S-
MCTS-H-R)

Figure 3: Average return per computation time per step (normalized
by the number of trees) of S-MCTS, S-MCTS-H, and S-MCTS-H-R
for different desired action coverages p0 and tree counts in the Tetris
domain. The x-axis uses a logarithmic scale.

Exploration in S-MCTS depends on the number of sub-
goals. This was shown in the last experiment, where all vari-
ants of S-MCTS displayed worse performance, when using
a very coarse subgoal heuristic.When using S-MCTS in hi-
erarchical control mode, computational efficiency can be sig-
nificantly increased. If a suboptimal choice has been made,
S-MCTS-H is unable to recover from the performed actions
until the next subgoal is reached, while S-MCTS in polling
control mode can locally compensate for suboptimal choices
at each time step. Enabling tree reuse slightly improves per-
formance as shown in the first experiment (Fig. 2). Since tree
reuse avoids complete replanning, S-MCTS can explore the
search space more thoroughly to find better macro-actions.
In addition, S-MCTS is shown to benefit from root paral-

10−2 10−1

Time per Step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
et
u
rn

Exact Definition

Heuristic: A(s) ≤ 2

Heuristic: A(s) ≤ 3

(a) Subgoal-MCTS in polling control mode (S-MCTS)

10−3 10−2 10−1

Time per Step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
R
et
u
rn

Exact Definition

Heuristic: A(s) ≤ 2

Heuristic: A(s) ≤ 3

(b) Subgoal-MCTS in hierarchical control mode (S-MCTS-H)

10−3 10−2 10−1

Time per Step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
et
u
rn

Exact Definition

Heuristic: A(s) ≤ 2

Heuristic: A(s) ≤ 3

(c) Subgoal-MCTS in hierarchical control mode with tree reuse (S-
MCTS-H-R)

Figure 4: Average return per computation time per step of S-MCTS,
S-MCTS-H, and S-MCTS-H-R for different subgoal definitions and
parameter settings in the Gridworld domain. The x-axis uses a log-
arithmic scale.

lelization. When generating multiple search trees in paral-
lel to search for macro-actions, the performance of all S-
MCTS variants can be further improved, while requiring less
time. This encourages to exploit multiple cores in real-time
applications to make high-quality decisions at certain time
frames. When combining tree reuse with a high degree of
parallelization, the search time can be drastically reduced by
reusing the sets of discovered macro-actions from previous
planning steps, while compensating for the approximation er-
rors caused by each individual tree.

Overall, the question of how to adequately define subgoal
predicates remains. Future work may further extend flexibil-
ity on subgoal predicates, for instance allowing to respect a
history of states instead of just a single state.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5567

Taken from original publication: Thomas Gabor, Jan Peter, Thomy Phan, Chris-
tian Meyer, and Claudia Linnhoff-Popien. Subgoal-based temporal abstraction in
Monte-Carlo tree search. In Proceedings of the 28th International Joint Conference
on Artificial Intelligence, pages 5562–5568. AAAI Press, 2019

238

References
[Auer et al., 2002] Peter Auer, Nicolo Cesa-Bianchi, and

Paul Fischer. Finite-Time Analysis of the Multiarmed
Bandit Problem. Machine learning, 2002.

[Bai et al., 2012] Aijun Bai, Feng Wu, and Xiaoping Chen.
Online planning for large MDPs with MAXQ decomposi-
tion. In AAMAS. IFAAMAS, 2012.

[Bai et al., 2016] Aijun Bai, Siddharth Srivastava, and Stu-
art J. Russell. Markovian State and Action Abstractions
for MDPs via Hierarchical MCTS. In IJCAI. IJCAI/AAAI,
2016.

[Barto and Mahadevan, 2003] Andrew G. Barto and Sridhar
Mahadevan. Recent advances in hierarchical reinforce-
ment learning. Discrete Event Dynamic Systems, 13(1),
Jan 2003.

[Bellman, 1957] Richard Bellman. Dynamic Programming.
Princeton University Press, Princeton, NJ, USA, 1957.

[Botvinick et al., 2009] Matthew M. Botvinick, Yael Niv,
and Andrew C. Barto. Hierarchically organized behav-
ior and its neural foundations: A reinforcement learning
perspective. Cognition, 113(3), 2009.

[Browne et al., 2012] Cameron Browne, Edward Jack Pow-
ley, Daniel Whitehouse, Simon M. Lucas, Peter I. Cowl-
ing, Philipp Rohlfshagen, Stephen Tavener, Diego Perez
Liebana, Spyridon Samothrakis, and Simon Colton. A
Survey of Monte Carlo Tree Search Methods. IEEE Trans.
Comput. Intellig. and AI in Games, 4(1), 2012.

[Chaslot et al., 2008] Guillaume M. J. B. Chaslot, Mark
H. M. Winands, and H. Jaap van den Herik. Paral-
lel monte-carlo tree search. In Computers and Games.
Springer, 2008.

[Dietterich, 2000] Thomas G. Dietterich. Hierarchical Rein-
forcement Learning with the MAXQ Value Function De-
composition. Journal of Artificial Intelligence Research,
13, 2000.

[He et al., 2010] Ruijie He, Emma Brunskill, and Nicholas
Roy. PUMA: Planning Under Uncertainty with Macro-
Actions. In AAAI. AAAI Press, 2010.

[Jaskowski et al., 2015] Wojciech Jaskowski, Marcin Grze-
gorz Szubert, Pawel Liskowski, and Krzysztof Kraw-
iec. High-Dimensional Function Approximation for
Knowledge-Free Reinforcement Learning: a Case Study
in SZ-Tetris. In GECCO. ACM, 2015.

[Kaelbling, 1993] Leslie Pack Kaelbling. Hierarchical
Learning in Stochastic Domains: Preliminary Results. In
ICML. Morgan Kaufmann, 1993.

[Kocsis and Szepesvári, 2006] Levente Kocsis and Csaba
Szepesvári. Bandit based Monte-Carlo Planning. In Eur.
Conf. Machine Learning. Springer, 2006.

[Mausam and Kolobov, 2012] Mausam and Andrey
Kolobov. Planning with Markov Decision Processes:
An AI Perspective. Synthesis Lect. on AI and Machine
Learning. Morgan & Claypool Publishers, 2012.

[Parr and Russell, 1998] Ronald Parr and Stuart Russell. Re-
inforcement learning with hierarchies of machines. In
1997 Conf. on Advances in Neural Information Process-
ing Systems, NIPS ’97. MIT Press, 1998.

[Puterman, 2014] Martin L Puterman. Markov Decision Pro-
cesses: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

[Rubin and Watson, 2011] Jonathan Rubin and Ian Watson.
Computer poker: A review. Artificial Intelligence, 175(5),
2011.

[Russell and Norvig, 2010] S. Russell and P. Norvig. Arti-
ficial Intelligence: A Modern Approach. Prentice Hall,
2010.

[Scherrer et al., 2015] Bruno Scherrer, Mohammad
Ghavamzadeh, Victor Gabillon, Boris Lesner, and
Matthieu Geist. Approximate modified policy iteration
and its application to the game of Tetris. Journal of
Machine Learning Research, 16, 2015.

[Silver et al., 2017] David Silver, Julian Schrittwieser,
Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian
Bolton, Yutian Chen, Timothy Lillicrap, Fan Hui, Laurent
Sifre, George van den Driessche, Thore Graepel, and
Demis Hassabis. Mastering the game of Go without
human knowledge. Nature, 550, October 2017.

[Solway et al., 2014] Alec Solway, Carlos Diuk, Natalia
Córdova, Debbie Yee, Andrew G. Barto, Yael Niv, and
Matthew M. Botvinick. Optimal behavioral hierarchy.
PLOS Computational Biology, 10(8), August 2014.

[Sutton and Barto, 2018] Richard S. Sutton and Andrew G.
Barto. Reinforcement Learning: An Introduction. MIT
Press, second edition, 2018.

[Sutton et al., 1999] Richard S. Sutton, Doina Precup, and
Satinder P. Singh. Between MDPs and Semi-MDPs: A
Framework for Temporal Abstraction in Reinforcement
Learning. Artif. Intell., 112(1-2), 1999.

[Thiery and Scherrer, 2009] Christophe Thiery and Bruno
Scherrer. Building Controllers for Tetris. ICGA Journal,
32(1), 2009.

[Vien and Toussaint, 2015] Ngo Anh Vien and Marc Tous-
saint. Hierarchical Monte-carlo Planning. In Proc. of the
Twenty-Ninth AAAI Conference on Artificial Intelligence,
AAAI’15. AAAI Press, 2015.

[Weinstein and Littman, 2013] Ari Weinstein and Michael L
Littman. Open-Loop Planning in Large-Scale Stochastic
Domains. In 27th AAAI Conference on Artificial Intelli-
gence, 2013.

[Zhongjie et al., 2011] Cai Zhongjie, Dapeng Zhang, and
Bernhard Nebel. Playing Tetris Using Bandit-Based
Monte-Carlo Planning. In AISB 2011: AI and Games, Jan-
uary 2011.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

5568

Taken from original publication: Thomas Gabor, Jan Peter, Thomy Phan, Chris-
tian Meyer, and Claudia Linnhoff-Popien. Subgoal-based temporal abstraction in
Monte-Carlo tree search. In Proceedings of the 28th International Joint Conference
on Artificial Intelligence, pages 5562–5568. AAAI Press, 2019

239

