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Abbreviations 

AMPA                     α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid 

ATP                          Adenosine triphosphate 

APC                         Adenomatous polyposis coli  

APCs                        Antigen representing cells 

AQP4                       Aquaporin 4 

AVP                         Arginine vasopressin 

BBB                         Blood brain barrier 

BDNF                      Brain derived neurotrophic factor 

BMP 2/4                 Bone morphogentic proteins2/4 

CD4                         Cluster of differentiation 4 

CD8                         Cluster of differentiation 8 

CNPase                   2’, 3’-cyclic-nucleotide 3’-phosphodiesterase 

CNS                         Central nervous system 

CNTF                       Ciliary neurotrophic factor 

COX I                       Cytochrome c oxidase I 

Cup                          Cuprizone 

DCs                          Dendritic cells  

EAE                          Experimental allergic encephalomyelitis 

eGFP                       Enhanced green fluorescent protein  

ER                            Endoplasmic reticulum 

GABA                      gamma-Aminobutyric acid 

Gal-3                       Galectin-3           

GM-CSF                  Granulocyte-macrophage colony-stimulating factor 

GFAP                       Glial fibrillary acidic protein 

HLA-DR/LN3          Human leukocyte antigen – DR isotype/ Clone LN3 

IFN-γ                       Interferon gamma  

IGF-1                       Insulin-like growth factor 1 

IL-1β                        Interleukin-1β   

IL-6                          Interleukin-6  

IL-12                        Interleukin-12   
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iNOS                        Inducible nitrogen oxide synthase 

LFB/PAS                  Luxol fast blue/Periodic acid-Schiff 

MAG                       Myelin-associated glycoprotein 

MAO                       Monoamine oxidase 

MBP                        Myelin basic protein 

MHC                       Major histocompatibility complex 

MOG                       Myelin oligodendrocyte glycoprotein 

MRI                         Magnetic resonance imaging 

MS                           Multiple sclerosis 

NG2                        Neuron-glial antigen 2 

NMDA                    N-methyl-D-aspartate 

NO                          Nitric oxide 

NRG1                      Neuregulin-1  

NSCs                       Neural stem cells 

OLIG2                     Oligodendrocyte transcription factor 2 

OPCs                       Oligodendrocyte progenitor cells 

PDGFRA                  Platelet derived growth factor receptor A 

PLP                          Proteolipid protein 

PPMS                      Primary-progressive multiple sclerosis  

PRMS                      Progressive-relapsing multiple sclerosis 

RG                           Radial glial 

RNS                         Reactive nitrogen species 

ROS                         Reactive oxygen species 

RRMS                      Relapsing-remitting MS 

S1Pr                        Sphingosine 1-phosphate receptor 

SPMS                      Secondary-progressive MS 

TGF-ß                      Tumor growth factor-ß 

TNF-α                      Tumor necrosis factor-α 

TREM2                    Triggering receptor expressed on myeloid cells 2 

YS                             Yolk sac  
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2. Introduction 

2.1. Multiple sclerosis (MS) 

MS is a complex chronic immune-mediated disease of the central nervous system (CNS) 

characterized by brain atrophy and inflammatory demyelinated plaques located within the white and 

gray matter.   

On the clinical level, MS can be divided into four major groups: 

Relapsing-remitting MS (RRMS): This type is the most frequent, occurring in about 85% of all MS 

patients. During the initial RR stage of MS, symptoms appear (relapse), followed by periods of partial 

or complete recovery (remission). 

Secondary-progressive MS (SPMS): In SPMS, symptoms continuously aggravated over time, with or 

without the development of relapses and remissions. Most patients (~90%) diagnosed with RRMS will 

develop a secondary progressive course. SPMS can be characterized by decreasing the frequency of 

relapse, but accelerating of neurodegeneration. 

Primary-progressive MS (PPMS): This type of MS is sporadic, occurring in about 10–15% of MS 

patients. PPMS patients experience slowly exacerbating symptoms from the onset without distinct 

relapses or remissions. 

Progressive-relapsing MS (PRMS): An uncommon form of MS (5%), PRMS is specified by a continuous 

aggravating disease state from the onset with acute relapses but no remissions, with or without 

recovery [1-4].  

2.2. Histopathology of MS 

MS is a complex, chronic, inflammatory disease of the CNS. Its pathology was originally explained by 

the existence of focal white matter plaques, also called lesions. There are several MS pathological basic 

processes, including the breakdown of the blood–brain barrier (BBB), inflammation, myelin 

breakdown, astrogliosis, oligodendrocyte injury, and neurodegeneration [5]. 

The early phase of the disease is associated with the formation of focal lesion types in the white matter 

associated with activated microglia and infiltrated macrophages, major histocompatibility complex 

(MHC) class I restricted CD8+ cells, CD4+ cells, and B-cells. Inflammation in the early phase of the disease 

triggers oxidative damage, resulting in oxidative bursts in microglia and macrophages, oligodendrocyte 

damage, axonal injury, and the accumulation of astrocytes which are a possible driving force for active 

MS lesion development [6]. 
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During the relapsing-remitting and progressive stages of the disease, oxidative damage induces 

widespread demyelination throughout the entire white and gray matter resulting in brain atrophy. 

Oligodendrocytes—to a great degree—and microglia/macrophages—to a lower degree—contain iron 

stored in ferritin. During the course of demyelination, oligodendrocytes are destroyed and iron is 

released from ferritin (iron storage protein) into the extracellular space [7]. Then, iron is taken up by 

microglia and macrophages and stored repeatedly in ferritin. In MS lesions, where free radicals are 

produced by oxidative bursts, iron can be released from ferritin and transformed into reactive Fe2+. 

The produced Fe2+ reacts with hydrogen peroxide to generate highly reactive hydroxyl radicals and Fe3+ 

that promote oxidative damage, cellular injury, demyelination, and axonal destruction (Fig 1) [8, 9].  

                                                      Fe2++ H2O2               Fe3++ HO°+ OH 

 

 Fig 1. The pathology of MS during the disease course. The early phase of the disease is characterized by oxidative 
damage which is mainly driven by inflammation. In the relapsing phase, patients experience acute clinical attacks 
which are followed by complete or incomplete recovery (green: demyelinated and blue: remyelinated). New 
lesions on magnetic resonance imaging (MRI) appear (green arrows). In the progressive stage of the disease, 
patients experience a gradual progression of disability and massive cortical demyelination (red). Brain atrophy 
(blue dotted line) and reduction of brain volume (red dashed line) are augmented during this stage. During the 
burn out stage, brain atrophy is stable and the total brain volume is remarkably decreased. To summarize, the 
relapsing-remitting phase is characterized by demyelinated and remyelinated plaques. In the progressive stage, 
massive cortical demyelination (red) is diffused throughout the brain and continues extensively during the 

burnout phase [5]. 
 

In the disease course of MS, different plaque types are evident. As given below, they can be grouped 

into four types:  

Acute active plaques: Most frequent in acute and RRMS types, acute active plaques are hypercellular 

demyelinated plaques massively infiltrated by macrophages/microglia that contain myelin debris. 

Furthermore, demyelinated plaques contain inflammatory infiltrates which are composed of 

lymphocytes (mostly CD8+ T cells and fewer CD4+ T cells), B cells, and plasma cells. Astrocytes 
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extensively proliferate and exhibit a hypertrophic morphology. Oligodendrocytes are destroyed in 

early lesions. However, oligodendroglial injury is heterogenous in acute active plaques with numerous 

oligodendrocytes present in some lesions, often referred to as signs of concurrent early remyelination. 

In these lesions, the first changes in mitochondria are mirrored by a dominant loss of immunoreactivity 

of the cytochrome c oxidase I (COX I) and loss of the respective complex IV activity of the mitochondrial 

respiratory chain. Mitochondrial injury can trigger pro-apoptotic events and lead to oligodendrocyte 

destruction and demyelination, additionally blocking the differentiation of oligodendrocytes 

progenitor cells into myelinating cells which results in remyelination failure (Fig 2) [5].  

Chronic active plaques: The most common plaques in patients with progressive MS, they are 

characterized by demyelination and hypocellularity in the center and hypercellularity at the rim of the 

plaque. Perivascular inflammatory infiltrates are often appeared in chronic lesions but the BBB remains 

intact or its damages are restricted. In chronic active lesions, mitochondrial numbers and activity are 

increased due to the higher energy demand of demyelinated axons compared to the myelinated ones 

(Fig 2).  

As plaques progress from acute active to chronic inactive, the edema resolves, inflammation 

decreases, and macrophages and microglia decrease in numbers. Axonal damages and loss are also 

apparent in chronic MS plaques [10]. 

                   

      
Fig 2. MS plaque types. The active acute plaque is characterized by active demyelination (anti-proteolipid protein 
(PLP)) and massively infiltrated monocytes and macrophages (anti-human leukocyte antigen–DR isotype /Clone 
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LN3 (HLA-DR /LN3)). The chronic active plaque is characterized by demyelination and hypocellularity in the center 
and hypercellularity at the rim.    

Chronic inactive plaques: These are characterized by demyelination and hypocellularity at the center 

and the rim of the plaque. As plaques progress from the chronic active to chronic inactive stage, 

macrophages and microglia gradually disappear and inflammation decreases [5]. 

Remyelinated plaques: These are characterized by the presence of thinly myelinated axons with short 

internodal distances. Completely remyelinated lesions, the so-called shadow plaques, are clearly 

distinguishable areas with reduced myelin density and disproportionately thin myelin sheath [11].  

2.3. The role of glial cells and neurons in MS 

Neural stem cells (NSCs) are primary progenitor cells at different developmental stages that hold the 

potential to differentiate into neurons and glial cells. During early development, neuroepithelial cells 

proliferate and give rise to early neurons. During the embryonic period, the brain epithelium thickens 

and neuroepithelial cells convert into radial glial (RG) cells. RG cells divide asymmetrically and give rise 

to RG cells and neurons. Later in their development, the RG cells transform into astrocytes in the cortex 

and hippocampus. Radial glial cells also generate intermediate progenitor cells that give rise to 

oligodendrocytes [12, 13]. Generally, the glial cell population can be subdivided into the following five 

major groups in the CNS: 1) astrocytes, 2) oligodendrocytes, 3) microglia, 4) progenitor neuron-glial 

antigen 2 (NG2)-glial cells, and 5) ependymal cells [14]. In this section, the focus is on the role of 

oligodendrocytes, astrocytes, microglia, and neurons in the pathogenesis of MS.  

2.3.1. Astrocytes 

Astrocytes are the most abundant cells in the CNS which account for one third of the brain mass. Their 

function and morphology principally depend on their location, physiological situation, subtypes, and 

the developmental stage [15, 16]. In the gray matter, astrocytes are protoplasmic with short and large 

branched tertiary processes which are in close proximity to neuronal synapses. In the white matter, 

astrocytes are fibrous with long unbranched processes [15].  

In the normal CNS, astrocytes  are shown to control the formation, maintenance, function, and removal 

of neuronal synapses through the regulated release of synaptically active molecules such as 

thrombospondin, glutamate, gamma-Aminobutyric acid (GABA), and purines (Adenosine triphosphate 

(ATP) and adenosine) [17-19]. Astrocytes form perivascular endfeet at the BBB and exert essential 

functions in maintaining the fluid, ion, and pH homeostasis. Additionally, they support the transmitter 

homeostasis of the synaptic interstitial fluid via various channels including, aquaporin 4 (AQP4) and 

Kir4.1 K+, arginine vasopressin (AVP), α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) 

and N-methyl-D-aspartate (NMDA) receptors [20, 21].  
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Astrocytes play a dual role during MS pathogenesis. They induce deleterious effects by activating the 

immune response and recruiting T cells [22, 23] and macrophages and microglial cells [24], inhibiting 

axonal regeneration [25], secreting cytotoxic factors such as nitric oxide (NO), reactive oxygen species 

(ROS) [26, 27], and mediating mitochondrial dysfunction [28]. On the other hand, they incite a 

protective role by promoting BBB integrity [29], terminating immune responses [30], protecting 

neurons by secreting brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF) 

[31],  facilitating remyelination [32], regulating myelin breakdown clearance [33], as well as  supporting 

the differentiation and proliferation of oligodendrocytes progenitors into mature, myelinating cells 

[34].  

2.3.2. Oligodendrocytes 

Oligodendrocyte progenitor cells (OPCs) are those derived from the ventral epithelium of the neural 

tube recognizable by marker proteins such as oligodendrocyte transcription factor 2 (OLIG2), the 

chondroitin sulfate proteoglycan NG2, or platelet-derived growth factor receptor A (PDGFRA). These 

cells have the potential to differentiate into post-mitotic, pre-myelinating oligodendrocytes 

(expressing the markers 2’,3’-cyclic-nucleotide 3’-phosphodiesterase (CNPase), and O4), further giving 

rise to myelinating cells of the CNS (expressing the markers myelin basic protein (MBP), myelin-

associated glycoprotein (MAG), myelin oligodendrocyte glycoprotein (MOG), and proteolipid protein 

(PLP)) [35]. Oligodendrocytes take up glucose, convert it to lactate and pyruvate, and then deliver these 

metabolites to axons to provide nutritional support to neurons [36, 37]. Moreover, oligodendrocytes 

maintain long-term axonal integrity and provide an insulating substance for fast and energy-efficient 

salutatory conduction by forming multilayered myelin sheaths [38, 39]. 

Oligodendrocytes are responsible for the formation of myelin in a multi-step process. In the first step, 

oligodendrocytes target axons with a diameter of more than 0.2µm and exclude dendrites [40]. They 

wrap their plasma membrane spirally around the axon, followed by the lateral growth of all layers over 

each other [40, 41]. In the next step, the movement of each myelin layer toward each other results in 

the fusion of two neighboring myelin layers, thereby forming a node of Ranvier. Sodium channels are 

positioned adjacent to the edge of lateral loops and the node of Ranvier which is flanked by the 

paranodal loops formed [42]. Finally, the compaction of myelin starts in the inner most layers where 

the site of the MBP local translation occurs. The MBP binds opposing inner membranes, zippers the 

cytoplasmic surfaces together, and precisely regulates the passing through of molecules [43].  

The apoptosis of oligodendrocytes is eventually an initial event in the MS lesion formation. However, 

the exact mechanisms of demyelination and oligodendrocyte loss are still unknown. There are two 

proposed mechanisms of demyelination in MS pathogenesis. In outside-in model, the peripheral T cells 

migrate into the CNS and destroy, together with macrophages and B cells, the myelin and other CNS 
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elements together with macrophages and B cells. In inside-out model, the primary oligodendrocyte or 

myelin degeneration releases antigenic constitutes which, secondarily, activate autoimmune and 

inflammatory responses [44]. Demyelination causes an aberrant distribution of ion channels across the 

axonal surface and an imbalance of ion influx is associated with axonal degeneration [45]. 

Furthermore, the loss of oligodendrocytes and demyelination results in the disruption of axonal 

transport, causes neuronal homeostasis imbalance, and finally triggers axonal degeneration [46].  

2.3.3. Microglia  

Microglia, the brain-resident macrophages, are derived from yolk sac (YS)—primitive macrophages  

that migrate into the CNS during early embryogenesis and persist until adulthood [47, 48]. Macrophage 

and microglia activation has been classified into two different states: classic (M1) and alternative (M2). 

The M1 phenotype refers to a pro-inflammatory state, in which microglial cells produce pro-

inflammatory mediators including interleukin-6  (IL-6), tumor necrosis factor-α (TNF-α), interleukin-1β  

(IL-1β), interleukin-12 (IL-12), ROS, and inducible nitrogen oxide synthase (iNOS) [49]. The M2 

phenotype refers to an anti-inflammatory state, involved in the phagocytosis function, production, and 

the release of trophic factors such as tumor growth factor-ß (TGF-ß) and BDNF [50-52]. However, 

nowadays the strict classification of M1 and M2 microglia is highly debated and it is suggested that 

variation in the microenvironment can affect the behavior of microglia and regulate their phenotype 

in a transient pattern [53, 54].  

The role of microglia in MS is complex and controversial. The microglia play a crucial role in both active 

inflammation and remyelination. During the development of MS lesions, microglia are responsible for 

the phagocytosis of myelin  debris  [55], and it has been shown that the activation of the triggering 

receptor expressed on myeloid cells 2 (TREM2) expressed on microglia stimulates microglial survival 

and phagocytic activity [56]. Microglia also play a role in antigen presentation to T cells and the release 

of pro-inflammatory cytokines such as TNF-α and IL-1β in active MS lesions [57]. Furthermore, 

microglia that expresses insulin like growth factor-1 (IGF-1) alleviates apoptosis, and promotes the 

proliferation and differentiation of NSCs during neurogenesis [58].  

2.3.4. Neurons  

Neurons, specialized cells for information processing and transmission of electrochemical signaling, 

consist of a cell body, called soma and cellular processes called neurites. Neurites are characterized by 

multiple ramified dendrites that provide an extended receptive surface for the cells and increase the 

number of synaptic inputs. The singular axon carries messages in the form of action potentials along 

the length of the axon [16]. Neurons can be classified into three main groups: 1) sensory neurons 

transport sensory information, such as visual or auditory input, to the brain; 2) motor neurons 
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responsible for voluntary muscle activities and transporting information from nerve cells in the brain 

to the muscle; and 3) interneurons.   

Axonal transport is an essential physiological function mediated via anterograde transport (from the 

soma towards the distal axonal site) and retrograde transport (from the distal axonal site towards the 

soma) [59, 60]. The disturbance of fast axonal transport along the length of the axon results in the 

accumulation of substances referred to as axonal spheroids [61].  

One of the major causes of irreversible disability in MS patients is axonal loss, considered  to be an 

early and persistent event in MS pathology progression [62]. Axonal damage in MS can be triggered by 

various mechanisms: 1) immunological attacks of cytotoxic CD8+ T lymphocytes on the axon [63], 2) 

high intraaxonal levels of NO radicals which injure axonal mitochondria and disrupt axonal 

cytoarchitecture [64], and 3) demyelination.  

2.3.5. Oligodendrocytes, astrocytes, and microglial crosstalk  

In the healthy CNS, quiescent astrocytes support oligodendrocytes’ differentiation and myelination by 

producing factors such as neuregulin-1 (NRG1) [65] and IGF-1 [66]. Additionally, astrocytes stimulate 

the oligodendrocytes’ survival through a mechanism involving  the interaction of α6β1 integrin on 

oligodendrocytes with laminin on astrocytes [67]. Microglia also drive OPCs’ differentiation and 

enhance/support remyelination by expressing galectin-3 (Gal-3) [68].  

During diverse brain insults or neurodegenerative processes, astrocytes secrete different factors such 

as  bone morphogenetic proteins 2/4 (BMP2/4) and hyaluronan which block OPCs’ maturation and 

impair remyelination [69, 70]. Moreover, the end-feet loss of astrocytes around the BBB is linked to its 

disruption and immune invasion into the CNS [71]. Microglia are also involved in the myelin damage 

by producing neurotoxic or neurotrophic molecules and presenting self-antigens to effector immune 

cells [72].  

2.4. MS animal models 

MS is a complex autoimmune disease with an unknown pathogenesis. There are several experimental 

animal models that mimic distinct aspects of MS pathology. Here, I introduce two MS animal models, 

namely the experimental allergic encephalomyelitis (EAE) and the cuprizone (Cup) animal model.  

2.4.1. EAE  

EAE is a frequently applied animal model of MS that simulates an acquired inflammatory demyelinating 

autoimmune disease. It can be induced by the active immunization of encephalitogenic antigens 

derived from CNS proteins such as PLP, MBP, and MOG or by the passive transfer of encephalitogenic 
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T cells [73]. The resulting EAE symptoms are scored on a scale from 0 to 5 which starts with tail 

limpness, followed by hind-limb paralysis and forelimb paralysis.  

EAE pathogenesis is mediated by the activation of antigen representing cells (APCs) and the 

presentation of antigens to naive T cells. Dendritic cells (DCs) or other APCs activate CD4+ T cell 

responses by presenting antigens via major histocompatibility complex II (MHC II) and perpetuates 

CNS-targeted autoimmunity [74]. The activated myelin-specific T cells enter the bloodstream in the 

periphery, translocate into the CNS via post-capillary venules, and cross the BBB. The BBB is composed 

of the endothelial cell monolayer, astrocytic glial end-feet, and two basement membranes (Fig. 3a). 

The BBB breakdown results in the accumulation of immune cells between the two basement 

membranes, the formation of perivascular cuffs, and finally the infiltration of immune cells into the 

CNS (Fig. 3b) [75, 76].  

                                                                                                                        

Fig 3. Schematic of the blood brain barrier and perivascular cuff formation. (a) shows astrocyte endfeet 
surrounding postcapillary venules and preventing immune cell egress from the venules. (b) shows the loss of 
astrocyte endfeet resulting in the invasion of immune cells and perivascular cuff formation.   

In the CNS, T cells might be reactivated by macrophages, DCs, and B cells and release diverse cytokines 

(i.e., IL-7, interferon gamma (IFN-γ), TNF-α and granulocyte-macrophage colony-stimulating factor 

(GM-CSF)) [77-80], proteases, glutamate, and free radicals. Then, other immune cells are recruited to 

the site of inflammation which finally results in sometimes extensive myelin destruction, and axonal 

damage [81].  

EAE is a useful animal model to understand the basic autoimmune mechanism of MS. Nevertheless, 

there are some differences between MS and EAE. For example, the autoantigen is known in the EAE, 

while the antigen that stimulates autoimmune reactions in MS patients has not been identified yet. 

The auto-immune pathogenesis is mediated by CD4+ T cells in EAE, while CD8+ T cells play a more 

vigorous role in MS pathogenesis than CD4+ T cells [82, 83]. Due to these differences, some treatments 

which are successful in the EAE animal model cannot be translated to clinical use.  
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2.4.2. Cuprizone  

Recent studies have shown that the loss of oligodendrocytes and neurons is the earliest hallmark of 

MS pathogenesis. This process is not always associated with immune cell infiltration into the CNS. To 

this end, the cuprizone model is appropriate to study the mechanism of oligodendrocyte apoptosis 

and demyelination in a non-immune situation. This animal model represents a reversible 

demyelination and remyelination system and partially mimics type III and IV MS lesions [84]. To induce 

demyelination via cuprizone, mice are intoxicated with a diet containing 0.25% cuprizone mixed into 

ground standard rodent chow.   

It has been shown that oligodendrocyte apoptosis paralleled by the early activation of astrocytes and 

microglia is the first hallmark of stress and appears days after the initiation of cuprizone intoxication 

[85, 86]. The continuation of cuprizone intoxication for up to three weeks induces the accumulation of 

microglia and astrocytes as well as axonal damage specifically in the medial corpus callosum (Fig 4). 

Although during this early stage, myelin pathology cannot be clearly visualized by 

immunohistochemistry staining against myelin proteins, histochemistry staining methods against  

lipoproteins such as Luxol fast blue/Periodic acid-Schiff (LFB/PAS) can  effectively reveal the 

demyelination after three weeks of cuprizone intoxication [87]. Cuprizone intoxication for five weeks 

induces acute demyelination, accompanied by massive accumulation of microglia, astrocytes, and 

axonal damage in the medial and lateral corpus callosum. The withdrawal of cuprizone intoxication 

induces robust remyelination [88]. 

The exact mode of action of cuprizone intoxication has not yet been fully explored. Cuprizone is a 

copper chelator that disturbs the function of mitochondrial enzymes containing copper as a co-factor 

including monoamine oxidase (MAO) and cytochrome c oxidase. Due to myelin synthesis, mature 

oligodendrocytes require a large amount of oxygen and ATP. To this end, high numbers of 

mitochondria are necessary for the regular function of oligodendrocytes. Oligodendrocytes contain 

little anti-oxidant enzymes; thus, free radicals such as ROS/reactive nitrogen species (RNS) cannot be 

efficiently detoxified and their intracellular accumulation results in the disruption of endoplasmic 

reticulum (ER) homeostasis. Therefore, oxidative and ER stress in concert stimulate oligodendrocyte 

apoptosis and myelin sheath disintegration [89, 90].   
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Fig 4. Schematic of glia cells activity in (a) a normal and (b) a cuprizone intoxicated brain. (a) shows resting 
astrocytes and microglia supporting myelinating oligodendrocytes. (b) shows that cuprizone intoxication triggers 
the accumulation and activation of astrocytes and microglia which results in demyelination.   

There are similarities between the cuprizone animal model and MS. Different aspects of progressive 

MS pathology are mimicked in the cuprizone animal model. For example, axonal damage and apoptosis 

of oligodendrocytes are the hallmarks of MS active lesions and cuprizone-induced white matter 

lesions. Additionally, the cuprizone animal model is an appropriate model to investigate the 

mechanism of demyelination and remyelination and examine the effect of myelin protective agents 

[91].   
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2.5. Hypothesis 

 Oligodendroglial and astrocytes’ markers are co-expressed during a cellular stress state.  

 

 The Cup-EAE animal model is an appropriate tool for studying the mechanisms involved during inside-

out MS lesion development.   

 

2.6. Aims of the Studies  

 To investigate whether the enhanced green fluorescent protein-glial fibrillary acidic protein (eGFP-

GFAP) transgenic mice are an appropriate tool to study astrocyte pathophysiology in the cuprizone 

model 

     Oligodendrocytes, the myelinating cells of the CNS, orchestrate several key cellular functions in the 

brain and spinal cord. They can be visualized by different markers including anti-CC1, anti-OLIG2, and 

anti-NG2. In this study, we sought to investigate whether eGFP-GFAP+ cells, which label astrocytes, 

co-express oligodendroglial markers’ proteins during an experimental stress state (i.e., cuprizone-

induced demyelination).  

 

 Introduction of a new MS animal model (Cup-EAE) 

      In a classical MS pathogenesis model, oligodendrocyte and myelin degeneration are viewed as a 

direct consequence of an auto-immune mediated, inflammatory attack. In contrast, the loss of 

oligodendrocytes eventually is the earliest hallmark during MS lesion development and, sometimes, 

is associated with immune cell infiltration into the CNS. It is assumed that at least in some lesions, 

the primary pathological event is oligodendrocyte damage which is, secondarily, followed by 

peripheral immune recruitment into the CNS parenchyma. An appropriate animal model to study this 

series of cellular events is necessary. To this end, we aimed to introduce a combinatory Cup-EAE MS 

model that allows to study the direct interplay of immune-mediated and metabolic oligodendrocyte 

injury.       
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3. Cumulative papers  
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3.2. Continuous cuprizone intoxication allows active experimental autoimmune 

encephalomyelitis induction in C57BL/6 mice 

Histochemistry and Cell Biology. 2019 Aug; 152(2):119-131. https://doi.org/10.1007/s00418-019-

01786-4.  

Vladislav Yakimov, Felix Schweiger, Jiangshan Zhan, Newshan Behrangi, Anja Horn, Christoph Schmitz, 

Tanja Hochstrasser, and Markus Kipp.  
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4. Summary  

MS is a complex chronic immune-mediated disease of the central nervous system that is associated 

with the development of large demyelinated plaques, oligodendrocyte destruction, and axonal 

degeneration. Underlying mechanisms of demyelination and neurodegeneration in MS are still poorly 

understood. 

 In many studies, anti-CC1 antibodies, presumably recognizing the protein adenomatous polyposis coli 

(APC) antigen, are used to label mature, myelinating oligodendrocytes. However, anti-CC1 antibodies 

could as well recognize other cell populations, particularly astrocytes, under pathological conditions. 

To examine this hypothesis, we used the cuprizone animal model, which is an appropriate model to 

study the mechanism of the apoptosis of oligodendrocytes and demyelination. We applied transgenic 

mice in which astrocytes are labeled by an eGFP under the control of the human GFAP promoter. 

Furthermore, we investigated the co-localization of oligodendrocyte markers, including anti-OLIG2, 

anti-CC1, anti-NG2, and the astrocyte marker anti-GFAP in the control and five weeks curprizone 

intoxicated eGFP-GFAP mice. Results of this study suggest that not all CC1+ cells are mature 

oligodendrocytes, and a continuum might exist between activated astrocytes and oligodendrocytes in 

cuprizone intoxicated mice.  

In the context of elucidating underlying mechanism of MS lesion development, some results suggest 

that inflammatory lesion development starts with a degenerative process within the brain, most likely 

oligodendrocyte stress, or even degeneration. Therefore, appropriate animal models to study the 

interplay of inflammation and metabolic injury are necessary. To this end, we introduced a 

combinatory Cup-EAE animal model, in which lymphocyte recruitment into the forebrain occurs as a 

consequence of simultaneous cuprizone intoxication and active EAE induction. This model 

recapitulates important histopathological characteristics of type III MS lesions. In summary, we provide 

a protocol that allows to study the direct interplay of immune-mediated and metabolic 

oligodendrocyte injury, and its consequences for the cerebral white and gray matter. 
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5. Zusammenfassung 

Bei der Multiplen Sklerose handelt es sich um eine immunvermittelte chronische Erkrankung des 

Zentralnervensystems, die mit der Zerstörung von Oligodendrozyten, großen demyelinisierten Plaques 

und axonaler Schädigung einhergeht. Der genaue Mechanismus der Demyelinisierung und 

Neurodegeneration bei MS ist noch unklar.  

In vielen Studien werden anti-CC1 Antikörper, die das adenomatous polyposis coli (APC) Protein 

binden, verwendet um reife und myelinisierende Oligodendrozyten darzustellen. Studien weißen 

allerdings darauf hin, dass Antikörper gegen CC1 unter pathologischen Bedingungen auch andere Zell-

Populationen, insbesondere Astrozyten binden können. Um diese Hypothese zu testen, habe ich das 

Cuprizone-Tiermodell verwendet, welches ein geeignetes Modell zur Untersuchung der Apoptose von 

Oligodendrozyten und der Demyelinisierung darstellt. Im Rahmen meiner Experimente habe ich 

transgene Mäuse verwendet, in deren  Astrozyten eGFP unter Kontrolle des Promotors für das humane 

GFAP exprimiert wird. Zusätzlich führte ich Immunofloureszenz-Dopplemarkierung mit anti-CC1, anti-

OLIG2 und anti-NG2 in den transgenen Tieren durch. Die Ergebnisse meiner Untersuchungen zeigen 

eine deutlichen Co-Lokalisation von eGFP und verschiedenen Oligodendrozyten Markerproteinen. In 

dieser Arbeit konnte ich somit zeigen, dass nicht alle CC1+-Zellen reife Oligodendrozyten sind, sondern 

dass vermutlich auch aktivierten Astrozyten CC1 exprimieren können.  

Zur Entwicklung von MS Läsionen gibt es einige Hinweise, dass die Bildung inflammatorischer Läsionen 

mit degenerativen Prozessen im Gehirn beginnen, insbesondere Stress oder Degeneration von 

Oligodendrozyten. Zu genaueren Untersuchung dieses Wechselspiels zwischen Entzündung und 

Stoffwechselschädigung sind geeignete Tiermodelle notwendig. Hierfür haben wir ein kombiniertes 

Cup-EAE-Tiermodell etabliert, bei dem durch die gleichzeitige Behandlung mit Cuprizone und der 

Induktion einer aktiven EAE eine Rekrutierung von Lymphozyten ins Vorderhirn induziert wird. Dieses 

Modell spiegelt wichtige histopathologische Eigenschaften von Typ-III MS Läsionen wider. 

Zusammenfassend lässt sich feststellen, dass wir ein geeignetes Protokoll erarbeiten konnten, mit dem 

es möglich ist, das Wechselspiel der immunvermittelten und der metabolischen 

Oligodendrozytenschädigung und deren Auswirkung auf die die weiße und graue Substanz des Gehirns 

zu untersuchen.  
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6. Perspective 

Siponimod (Mayzent® and Novartis) is a sphingosine 1-phosphate receptor (S1Pr) modulator that can 

selectively bind to S1Pr1 and S1Pr5.  Siponimod has shown therapeutic effects and has been approved 

for the treatment of progressive MS.  Future work remains to fully understand the protective effect of 

siponimod in the cuprizone and Cup-EAE animal model. In this project, we investigate the mechanism 

of action of siponimod and its molecular signaling pathways.  
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