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tion ohne unerlaubte Hilfe gemäß Promotionsordnung vom 12.07.2011, § 8, Abs. 2 Pkt. 5,
angefertigt worden ist.

München, 22.04.2021

Mahendra Singh Tomar



vi



Contents

List of Figures ix

List of Tables xi

Zusammenfassung xiii

Abstract xv

Acknowledgments xvii

1 Introduction 1

1.1 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Invariance Feedback Entropy 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Invariance Feedback Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 The entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.2 Entropy across related systems . . . . . . . . . . . . . . . . . . . . 12

2.3.3 Conditions for finiteness . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.4 Deterministic systems . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.5 Invariant covers with closed elements . . . . . . . . . . . . . . . . . 17

2.4 Data-Rate-Limited Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1 The coder-controller . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.2 The data rate theorem . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Uncertain Linear Control Systems . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.1 Universal lower bound . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.2 Static coder-controllers . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5.3 Tightness of the lower bounds . . . . . . . . . . . . . . . . . . . . . 30



viii Contents

3 Compositional quantification of IFE 33
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Some more properties of the IFE . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 Partition of Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.2 Systems with higher uncertainty . . . . . . . . . . . . . . . . . . . . 35
3.2.3 Smaller set of control inputs . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Networks of uncertain control systems . . . . . . . . . . . . . . . . . . . . 36
3.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.1 Tightness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.2 Computation of an upper and a lower bound for a network of uncer-

tain control subsystems . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Numerical Overapproximation 43
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Upper bound for invariance entropy of deterministic systems . . . . . . . . 44
4.3 Implementation of the algorithm for IED . . . . . . . . . . . . . . . . . . . 46
4.4 Upper bounds of the invariance feedback entropy for uncertain systems . . 50
4.5 Relationship between the upper bounds for IED and IFE . . . . . . . . . . 56
4.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.6.1 A linear discrete-time system . . . . . . . . . . . . . . . . . . . . . 57
4.6.2 A scalar continuous-time nonlinear control system . . . . . . . . . . 57
4.6.3 A 2d uniformly hyperbolic set . . . . . . . . . . . . . . . . . . . . . 60
4.6.4 An uncertain linear control system . . . . . . . . . . . . . . . . . . 61

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Conclusions and Future Directions 65
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Appendix 69

A Mean-Payoff Games 69

B Lemmas and Proofs 71
B.0.1 Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
B.0.2 Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
B.0.3 Lemma 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
B.0.4 Lemma 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Bibliography 77



List of Figures

1.1 Coder-controller feedback loop. . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Sampled-data discrete-time system. . . . . . . . . . . . . . . . . . . . . . . 10

3.1 An interconnected control system . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Maximum and minimum temperature under a static memoryless coder-

controller for invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 The partitions A and B for Example 6. . . . . . . . . . . . . . . . . . . . . 48
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Zusammenfassung

In der klassischen Kontrolltheorie geht man üblicherweise davon aus, dass Sensoren und
Regler durch Punkt-zu-Punkt-Verkabelung miteinander verbunden sind. In vernetzten
Kontrollsystemen (VKS) sind Sensoren und Regler oft räumlich verteilt und Daten werden
mittels eines digitalen Kommunikationsnetzwerks übertragen. Im Vergleich zu klassis-
chen Kontrollsystemen bieten VKS viele Vorteile wie z.B. reduzierte Verkabelung, geringe
Installations- und Instandhaltungskosten, größere Systemflexibilität und einfache Modi-
fizierbarkeit. VKS haben Anwendungen in vielen Bereichen, z. B. in der Fahrzeugtech-
nik, intelligenten Gebäuden und Transportnetzwerken. Jedoch macht die Verwendung
von Kommunikationsnetzwerken in Regelschleifen die Analyse und den Entwurf von VKS
wesentlich komplexer. Die Verwendung digitaler Kanäle in VKS beschränkt aufgrund
der endlichen Bandbreite die Datenmenge, die pro Zeiteinheit von Sensoren zu Reglern
übertragen werden kann. Dies führt zu Quantisierungsfehlern, welche die Regelungsperfor-
mance ungünstig beeinflussen können. Das Problem der Regelung und Zustandsschätzung
über einen digitalen Kommunikationskanal mit beschränkter Bitrate hat in den letzten
zwei Jahrzehnten viel Aufmerksamkeit erhalten.

Eine scharfe untere Schranke der Datenrate eines digitalen Kanals zwischen dem Kodierer
(in Sensornähe) und dem Regler, die zum Erreichen eines Regelungsziels wie z.B. Stabil-
isierung oder Invarianz benötigt wird, kann durch einen passenden Entropiebegriff als in-
trinsische Größe des Systems charakterisiert werden, und hängt nicht von der Wahl des
Kodierers und Reglers ab.

Im ersten Teil der Arbeit beschreiben wir die Invarianz-Feedback-Entropie (IFE), die
den Begriff der Invarianz-Entropie für deterministische nichtlineare Kontrollsysteme auf
unsichere Systeme erweitert. Die IFE charakterisiert die Zustandsinformation, die von
einem Regler benötigt wird, um eine Teilmenge Q des Zustandsraums invariant zu machen.
Wir diskutieren eine Anzahl von elementaren Eigenschaften der IFE, z.B. Bedingungen
für ihre Endlichkeit und die im deterministischen Spezialfall vorliegende Äquivalenz zum
wohlbekannten Begriff der Invarianz-Entropie (IED). Wir analysieren unsichere lineare
Kontrollsysteme und leiten eine universelle Unterschranke der IFE her.

Im zweiten Teil der Arbeit betrachten wir vernetzte Kontrollsysteme und streben eine
obere Schranke der IFE eines Netzwerks in Termen der IFE der Teilsysteme an. Außerdem
präsentieren wir drei technische Resultate. Zuerst zeigen wir, dass die IFE einer nichtleeren
Teilmenge Q des Zustandsraums eines zeitdiskreten unsicheren Kontrollsystems nach oben
durch die größte IFE der Mengen in einer beliebigen endlichen Partition von Q beschränkt
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ist. Im zweiten Resultat betrachten wir unsichere Kontrollsysteme Σ1 und Σ2 mit identis-
chen Zustands- und Eingangsräumen. Die mengenwertigen Übergangsfunktionen F1 und
F2 der beiden Systeme sind nach Annahme so beschaffen, dass das Bild eines beliebigen
Zustands-Eingangs-Paars unter F1 in dem entsprechenden Bild unter F2 enthalten ist. Für
eine gegebene nichtleere Teilmenge des Zustandsraums zeigen wir, dass die IFE von Σ2

größer oder gleich derjenigen von Σ1 ist. Das dritte Resultat zeigt, dass die IFE niemals
kleiner wird, wenn man die Menge der Kontrolleingänge verkleinert. Um die Effektivität
der Resultate zu illustrieren, berechnen wir eine Ober- und eine Unterschranke der IFE
eines Netzwerks von unsicheren, linearen, zeitdiskreten Systemen, welche den zeitlichen
Verlauf der Temperaturen in 100 Räumen eines zirkulären Gebäudes beschreiben.

Im letzten Teil der Arbeit präsentieren wir Algorithmen für die numerische Abschätzung
der IFE. Dazu betrachten wir zunächst eine Partition einer gegebenen Teilmenge Q des
Zustandsraums. Dann wird ein Regler in Form einer Suchtabelle berechnet, die jedem El-
ement der Partition eine Menge von Kontrollwerten zuordnet, welche die Invarianz von Q
garantieren. Nach der Reduktion der Suchtabelle von einer mengenwertigen zu einer ein-
wertigen Abbildung, wird ein gewichteter Graph konstruiert. Für deterministische Systeme
liefert der Logarithmus des Spektralradius einer Übergangsmatrix, die aus dem Graphen
ermittelt wird, eine obere Schranke der Entropie. Für unsichere Systeme stellt das max-
imale durchschnittliche Zyklusgewicht des Graphen eine Oberschranke der IFE dar. Im
deterministischen Fall zeigen wir, dass der Wert der ersten Oberschranke nicht größer
als derjenige der zweiten Oberschranke ist. Als nächstes präsentieren wir die Ergebnisse
der Algorithmen angewandt auf drei deterministische Beispielsysteme, für welche der ex-
akte Wert der IED bekannt ist oder durch andere Methoden abgeschätzt werden kann.
Zusätzlich liefert unser Algorithmus ein statisches Kodierungs- und Regelungsprotokoll,
das der Schranke an die Datenrate entspricht. Schließlich präsentieren wir die berechneten
Oberschranken der IFE eines unsicheren linearen Kontrollsystems.



Abstract

In classical control theory, the sensors and controllers are usually connected through point-
to-point wiring. In networked control systems (NCS), sensors and controllers are often
spatially distributed and involve digital communication networks for data transfer. Com-
pared to classical control systems, NCS provide many advantages such as reduced wiring,
low installation and maintenance costs, greater system flexibility and ease of modifica-
tion. NCS find applications in many areas such as automobiles, intelligent buildings, and
transportation networks. However, the use of communication networks in feedback control
loops makes the analysis and design of NCS much more complex. In NCS, the use of digital
channels for data transfer from sensors to controllers limits the amount of data that can be
transferred per unit of time, due to the finite bandwidth of the channel. This introduces
quantization errors that can adversely affect the control performance. The problem of
control and state estimation over a digital communication channel with a limited bit rate
has attracted a lot of attention in the past two decades.

A tight lower bound on the data rate of a digital channel between the coder (near the
sensor) and the controller, to achieve some control task such as stabilization or invariance,
can be characterized in terms of some appropriate notion of entropy which is described as
an intrinsic property of the system and is independent of the choice of the coder-controller.

In the first part of this thesis, we describe invariance feedback entropy (IFE) that
extends the notion of invariance entropy of deterministic nonlinear control systems to
those with uncertainty. The IFE characterizes the necessary state information required by
any controller to render a subset Q of the state space invariant. We discuss a number of
elementary properties of the IFE, e.g. conditions for its finiteness and its equivalence to
the well-known notion of invariance entropy (IED) in the deterministic case. We analyze
uncertain linear control systems and derive a universal lower bound of the IFE.

In the second part of this thesis, we consider interconnected control systems and seek
to upper bound the IFE of the network using the IFE of the subsystems. In addition,
we present three technical results related to the IFE. First, we show that the IFE of a
nonempty subset Q of the state space of a discrete-time uncertain control system is upper
bounded by the largest possible IFE among the members of any finite partition of Q.
Second, we consider two uncertain control systems, Σ1 and Σ2, that have identical state
spaces and identical control input sets. The set valued transition functions, F1 and F2,
of the two systems are such that the image of any state-input pair under F1 is a subset
of that under F2. For a given nonempty subset of the state space, we show that the IFE
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of Σ2 is larger than or equal to the IFE of Σ1. Third, we show that the IFE will never
decrease by reducing the set of control inputs. To illustrate the effectiveness of the results,
we compute an upper bound and a lower bound of the IFE of a network of uncertain,
linear, discrete-time subsystems describing the evolution of temperatures of 100 rooms in
a circular building.

In the last part of this thesis, we present algorithms for the numerical estimation of
the IFE. In particular, given a subset Q of the state space, we first partition it. Then a
controller, in the form of a lookup table that assigns a set of control values to each cell of
the partition, is computed to enforce invariance of Q. After reduction of the lookup table
to a single-valued map from a set-valued one, a weighted directed graph is constructed. For
deterministic systems, the logarithm of the spectral radius of a transition matrix obtained
from the graph gives an upper bound of the entropy. For uncertain systems, the maximum
mean cycle weight of the graph upper bounds the IFE. For deterministic systems, the
value of the first upper bound is shown to be lower than or equal to the value of the
second upper bound. Next, we present the results of the algorithms applied to three
deterministic examples for which the exact value of the IED is known or can be estimated
by other techniques. Additionally, our algorithm provides a static coder-controller scheme
corresponding to the obtained data-rate bound. Finally, we present the computed upper
bounds of the IFE for an uncertain linear control system.
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Chapter 1

Introduction

In classical control theory, the sensors and controllers are usually connected through point-
to-point wiring. In networked control systems (NCS), sensors and controllers are often
spatially distributed and involve digital communication networks for data transfer. Com-
pared to classical control systems, NCS provide many advantages such as reduced wiring,
low installation and maintenance costs, greater system flexibility and ease of modification.
NCS find applications in many areas such as car automation, remote surgery, intelligent
buildings, and transportation networks. However, the use of communication networks in
feedback control loops makes the analysis and design of NCS more complex. In NCS, the
use of digital channels for data transfer from the sensors to controllers, limit the amount of
data that can be transferred per unit of time, due to the finite bandwidth of the channel.
This introduces quantization errors that can adversely affect the control performance.

Data rate constrained feedback is a maturate research topic and has been extensively
studied for linear control systems and asymptotic stabilizability, see e.g. [60] and references
therein. For linear control systems, the critical data rate has been characterized in terms
of the unstable eigenvalues of the system matrix under various assumptions on the system
model, channel model, communication protocol, and stabilization/estimation objectives
[35, 58, 73]. In [73], for discrete-time linear control systems a lower bound on the data rate
of the digital channel between the coder and controller was presented such that asymptotic
observation and stabilization cannot be realized below this value. Comprehensive reviews
of results on data-rate-limited control can be found, e.g., in the articles [60, 2, 27] and
books [84, 54, 26, 38].

The topological entropy of a discrete-time linear system is also given by the logarithm
of the absolute value of the unstable determinant. This relation between the minimal data
rate and the topological entropy apparently inspired researchers to study entropy notions
for nonlinear dynamics and different control objectives. Topological entropy characterizes
the maximal exponential rate at which information about the initial state is generated by
a dynamical system with increasing time. It can also be described as a measure of the
growth rate of the smallest number of trajectories necessary to approximate the state of a
dynamical system with arbitrarily fine but finite precision.

For nonlinear systems, the smallest bit rate of a digital channel between the coder
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System

Sensor/CoderController

digital noiseless channel R bits/time unit

Figure 1.1: Coder-controller feedback loop.

and the controller, to achieve some control task such as stabilization or invariance, can
be characterized in terms of certain notions of entropy which are described as intrinsic
quantities of the open-loop system and are independent of the choice of the coder-controller.
In spirit, they are similar to classical entropy notions used in the theory of dynamical
systems to quantify the rate at which a system generates information about the initial
state, see e.g. [37].

In this thesis we study the classical feedback control loop, in which a controller that is
feedback connected with a given system is used to enforce a prespecified control task in the
closed loop. Unlike in the classical setting, we do not assume that the sensor (or coder) is
able to transmit an infinite amount of information to the controller, but is restricted to use
a digital noiseless channel with a bounded data rate to communicate with the controller.
The closed loop of such a feedback is illustrated in Fig. 1.1. In this context, we are
interested in characterizing the minimal data rate of the digital channel between coder and
controller that enables the controller to achieve the given control task. Or equivalently, we
are interested in quantifying the information required by the controller to achieve a given
control goal.

We focus on the control task of rendering a given nonempty subset of the state space
invariant. Invariance specifications are one of the most fundamental system requirements
and are ubiquitous in the analysis and control of dynamical systems [4, 11]. In [59], Nair
et. al extended the well-known notion of topological entropy of dynamical systems [1, 12, 24]
to discrete-time deterministic control systems by making use of open-loop control functions
and open covers. They introduced the notion of topological feedback entropy that quantifies
the rate at which a deterministic, discrete-time control system generates information, with
states confined in a given compact set. They showed that this notion of entropy is equal
to the smallest average data rate at which a subset Q of the state space can be made
invariant. In other words, to enforce set-invariance over a noiseless digital channel in the
feedback loop, the bit rate of the channel must not be less than the entropy of the plant.
Thus for set-invariance, the channel must transfer information at a rate faster than the
rate of information generated by the system. The topological feedback entropy is defined
based on open covers of Q, where each cover element is associated with an open loop
control sequence of some finite length, that ensures that the system with initial state in
the cover element evolves inside Q. Then the entropy measures the minimal exponential
growth rate, of the smallest cardinality among the subcovers, over increasing time. Later
Colonius and Kawan [19] introduced a notion of invariance entropy for continuous-time
deterministic control systems. The notion of invariance entropy in [19] is based on the
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minimum cardinality of all sets of control functions that can make Q invariant. They
used the growth rate of the number of open-loop control functions necessary to enforce Q
invariant over a growing time horizon to characterize the minimum data rate required to
achieve invariance. While the definition in [59] clearly resembles the definition of entropy
for dynamical systems in [1] based on open covers, the invariance entropy introduced in [19]
is close to the notion of entropy in [12, 24] based on spanning sets. Both notions coincide
for discrete-time control systems provided that a strong invariance condition holds [21, 38].
The monograph [38] presents elaborate exposition on invariance entropy and its estimates
in terms of dynamical quantities such as Lyapunov exponents.

In this dissertation, we continue this line of research and study a notion of invariance
feedback entropy (IFE) [66, 67] for uncertain control systems to quantify the necessary state
information required by any controller to render a subset Q of the state space invariant in
the closed loop. IFE equivalently also quantifies the smallest asymptotic average bit rate,
from the coder to the controller in the feedback loop, above which Q can be made invariant
over a digital noiseless channel. Since uncertain systems are considered here, open-loop
control functions cannot be used, instead, the IFE is defined using invariant covers of Q.
For the case of deterministic control systems, the IFE is shown to be equivalent to the
invariance entropy; see Theorem 4.

1.1 Related Literature

Various offshoots of invariance entropy have been proposed to tackle different control prob-
lems or other classes of systems, see for instance [15] (exponential stabilization), [43] (in-
variance in networks of systems), [66] (invariance for uncertain control systems), [17, 78]
(measure-theoretic versions of invariance entropy) and [47] (stochastic stabilization).

In [23], for deterministic nonlinear systems, the invariance entropy is shown to vary
continuously with respect to system parameters, under some assumptions. This lead to
robustness of the critical data-rate with respect to small perturbations. In [20], a version
of invariance entropy for partially observed, continuous-time systems with outputs is in-
vestigated with the control objective to make a subset of the output space invariant. A
lower bound on the invariance entropy for a class of partially hyperbolic sets is discussed
in [42]. Two extensions of the topological feedback entropy are studied in [33], one for sys-
tems with outputs (partial observation) and one for systems with discontinuous transition
function, with the objective to steer the system into a target set. In [43], for networks
of discrete-time, deterministic control systems, a notion of subsystem invariance entropy
was introduced to characterize the smallest data rate, from a centralized controller to the
subsystem, which is required to make a subset Q of the state set invariant.

Stabilization

Minimal bit rates and entropy for exponential stabilization of continuous-time control
systems is discussed in [15]. A discussion on a notion of topological entropy and its relation
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to global exponential stability for switched linear systems is presented in [80]. For stochastic
nonlinear systems controlled over a possibly noisy communication channel, the paper [47]
analyzes the largest class of channels for which there exist feedback control schemes for
stabilization under a given stochastic stability criterion. The authors introduce a notion of
entropy to derive lower bounds on the required channel capacity for stabilization. In [22],
the authors consider linear deterministic control systems and provide a zero-delay coder-
decoder scheme for stabilization that operates at a data rate equal to the topological
entropy of the system.

Estimation

The problem of state estimation over digital channels has also been studied extensively
by several groups of researchers. As it turns out, the classical notions of entropy used in
dynamical systems, namely measure-theoretic and topological entropy (or small variations
of them), can be used to describe the smallest data rate or channel capacity above which
the state of an autonomous dynamical system can be estimated with arbitrary precision,
see [68, 50, 69, 82, 45]. For uncertain dynamical systems, [68] studied state estimation
under limited bit rate together with topological entropy (based on spanning sets). The
paper [50] introduced the notion of estimation entropy to characterize the critical data
rate for exponential state estimation with a given exponent for a continuous-time system
on a compact subset of its state-space. The estimation entropy equals the topological
entropy in case the value of the exponent is zero. This notion of entropy is defined in
terms of the number of system trajectories that approximate all other trajectories up to
an exponentially decaying error. Further, they provide an alternative equivalent definition
of estimation entropy, which uses approximating functions that can be different from the
trajectories of the system. They combined ideas from [68] and [15]. As in [68], the focus is
on state estimation rather than control. Similar to [15], they require that state estimates
converge at a prescribed exponential rate. The paper [39] provided a lower bound on
the estimation entropy in terms of Lyapunov exponents under certain assumptions. An
extension of the estimation entropy to a class of stochastic hybrid systems is provided
in [6]. In [70], the authors present a notion of topological entropy to lower bound the bit
rate needed to estimate the state of a nonlinear dynamical system, with unknown bounded
inputs, up to a constant error. For networked systems, relation between observation rate
and topological entropy is discussed in [53]. The paper analyzes the rate at which a discrete-
time, deterministic, and possibly large network of nonlinear systems generates information,
and analyzes the minimal data-rate for observation of the current state of the network.

The study of topological entropy to characterize the minimum data-rate for observa-
tion has the drawback that topological entropy can be discontinuous with respect to the
dynamical system. This can lead to estimation schemes to suffer from lack of robustness.
This lack of robustness and difficulty in implementation of estimation schemes based on
topological entropy led to the study of three different types of observability criteria in [51]
which later led to the introduction of the notion of restoration entropy for continuous-time
systems in [52]. Restoration entropy characterizes the minimal data rate above which the
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state of a system can be estimated so that the estimation quality is not just preserved but
can also be improved. In [40], the authors extended the notion of restoration entropy to
discrete-time systems and show that for most dynamical systems it strictly exceeds the
topological entropy. This implies that satisfaction of a state estimation objective that
is more robust with respect to perturbations requires a higher rate of data transmission
than non-robust ones. In [44], the authors describe a new characterization of the restora-
tion entropy that does not need computation of any temporal limit. They show that a
proper choice of Riemannian metric can enable the computation of the exact value of the
restoration entropy.

The result in [46] analyzes the problem of optimal zero-delay coding and estimation of
a stochastic dynamical system over a noisy communication channel under three estimation
criteria and derives lower bounds on the smallest channel capacity above which the objec-
tive can be achieved with an arbitrarily small error. In [45], the authors investigated the
same problem for the case of deterministic systems with discrete noiseless channels.

Algorithms for state estimation over digital channels have been proposed in several
works; see [50, 51, 32].

Switched systems

In [69], the notion of estimation entropy was extended to the case of switched nonlinear
dynamical systems with unknown switching signals but known dwell time. This entropy
lower bounds the data-rate needed to estimate the state with an error that decays expo-
nentially but only after a specified period of time after each switch. In [77], a closed form
expression for the estimation entropy [50] is provided for a class of switched linear systems
in terms of the system’s Lyapunov exponents under mild restrictions on switching signals.
Switched Linear Systems (SLSs) are those described by a finite set of linear modes, among
which the systems can switch. The paper in [82] introduced a notion of topological en-
tropy for switched systems, defined in terms of the minimal number of initial states needed
to approximate all initial states with a finite precision. The notion is studied for different
classes of SLSs in [79, 83]. The paper in [80] discussed relation between topological entropy
as defined in [82] and global exponential stability. They show that a SLS is globally expo-
nentially stable if its topological entropy remains zero under a destabilizing perturbation.
In [82], the topological entropy is analyzed for SLSs with a fixed switching signal. For
SLSs with arbitrary switching, [10] introduced the notion of worst-case topological entropy
defined as the largest topological entropy over the set of all possible switching signals. It
is shown that this quantity is equal to the minimal data rate required for state observation
with exponentially decreasing estimation error, and that practical coders–decoders can be
designed to operate arbitrarily close to this data rate. A data-rate larger than this entropy
will be sufficient to observe the state of the system for every switching signal.

Sufficient data rates for feedback stabilization of SLSs were established in [49, 81, 9, 8].
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1.2 Outline of the thesis

In Section 2.2, we motivate the need of the novel notion of invariance feedback entropy. We
define the IFE and establish various elementary properties in Section 2.3. In Section 2.4,
we establish the data rate theorem. In Section 2.5, we derive a lower bound on the IFE
of uncertain linear control systems. The lower bound is invariant under state space trans-
formations and recovers the well-known minimal data rate (sum of the logarithms of the
unstable eigenvalues of the system matrix) in the absence of uncertainties. Additionally,
we derive a lower bound of the data rate of any static, memoryless coder-controller. We
show that the lower bounds are tight for certain classes of systems.

In Section 3.2, we show three additional useful properties of the IFE. In Section 3.3,
we show how one can approximate the IFE of a network of uncertain control systems and
a set Q using the IFEs of subsystems. In Section 3.4.1, by an example, we demonstrate
that this upper bound can be tight. Finally, in Section 3.4.2, we compute an upper bound
and a lower bound of the IFE of an uncertain, linear, discrete-time system, that describes
the evolution of temperature of 100 rooms in a circular building.

Section 4.2 presents the fundamental definitions for invariance entropy of deterministic
systems (IED). In Section 4.3, we describe in detail the implementational steps of our al-
gorithm to compute an upper bound of the IED and illustrate them by a two-dimensional
linear example. Section 4.4 presents two upper bounds for the IFE. Section 4.5 describes
the relationship between the discussed upper bounds for IED and IFE in the case of de-
terministic systems. The results of our proposed algorithms for deterministic systems
are illustrated on a linear and two nonlinear examples in Section 4.6, in which we also
present upper bounds of the IFE computed for a two-dimensional uncertain linear sys-
tem. Moreover, for the uncertain linear example, we analytically compute a lower bound
for comparison. Finally, Section 4.7 contains some comments on the performance of our
algorithms.



Chapter 2

Invariance Feedback Entropy

2.1 Introduction

In this chapter we study the notion of invariance feedback entropy (IFE) and establish
some of its properties. IFE quantifies the smallest asymptotic average bit rate, from the
coder to the controller in the feedback loop, above which a subset Q of the state set can
be made invariant over a digital noiseless channel.

2.1.1 Contributions

The contents of this chapter have been published in the journal IEEE Transactions on
Automatic Control [75]. It is a joint work with Dr. Matthias Rungger and Prof. Majid
Zamani. I established the Theorems 1, 4 and 5, and the Lemma 9. I revised the Example 2,
the proof of the Lemmas 4 and 2 and the Remark 2. I also revised the Theorems 7 and 8
to improve the lower bounds through subspace projection and also added the Remark 1.
Rest of the work was done by Dr. Matthias Rungger. Prof. Majid Zamani supervised the
work.

We establish a number of elementary properties of the IFE, e.g., we provide conditions
that ensure that the IFE is finite and show that we recover the well-known notion of entropy
for deterministic control systems. When there is a feedback refinement relation [61] from
one system to another one, we show that the entropy of the former is not larger than the
latter. This result generalizes the fact that the invariance entropy of deterministic control
systems cannot increase under semiconjugation [19, Thm 3.5], [38, Prp. 2.13]. We prove
the data rate theorem, which shows that the invariance entropy is a tight lower bound of
the data rate of any coder-controller that achieves invariance in the closed loop. To this
end, we introduce a history-dependent notion of data rate. We discuss possible alternative
data rate definitions and motivate our particular choice by two examples. We analyze
uncertain linear control systems and derive a universal lower bound of the IFE. The lower
bound depends on the absolute value of the determinant of the system matrix and a ratio
involving the volume of the invariant set and the set of uncertainties. The lower bound
is invariant under state space transformations and recovers the well-known minimal data
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rate [60] in the absence of uncertainties. Furthermore, we derive a lower bound of the data
rate of any static, memoryless coder-controller. Both lower bounds are intimately related
and for certain cases it is possible to bound the performance loss due to the restriction to
static coder-controllers by 1 bit/time unit. We show that the lower bounds are tight for
certain classes of systems.

2.1.2 Notations

We denote by N, Z and R the set of natural, integer and real numbers, respectively. We
annotate those symbols with subscripts to restrict the sets in the obvious way, e.g. R>0

denotes the positive real numbers. We denote the closed, open and half-open intervals in
R with endpoints a and b by [a, b], ]a, b[, [a, b[, and ]a, b], respectively. The corresponding
intervals in Z are denoted by [a; b], ]a; b[, [a; b[, and ]a; b], i.e., [a; b] = [a, b]∩Z and [a; a[ = ∅.

For a set A, we use #A ∈ Z≥0 ∪ {∞} to denote the number of elements of A, i.e., if A
is finite we have #A ∈ Z≥0 and #A =∞ otherwise. Given two sets A and B, we say that
A is smaller (larger) than B if #A ≤ #B (#A ≥ #B) holds. A set J of subsets of A is said
to cover B, where B ⊆ A, if B is a subset of the union of the elements of J . A cover of a
set B, is a set of subsets of B that covers B.

We use ∃a∈Ax = a to refer to: there exists a in A such that x = a. In a similar way,
∀a∈Ax = a is used. Given two sets A,B ⊆ Rn, we define the set addition by A + B :=
{x ∈ Rn | ∃a∈A,∃b∈B x = a + b}. For A = {a}, we slightly abuse notation and use
a+ B = {a}+ B. The symbols clA, intA and ℘(A) denote the closure, the interior and
the power set of a set A, respectively. We call a set A ⊆ Rn measurable if it is Lebesgue
measurable and use µ(A) to denote its measure [72]. We use id to denote an identity map.
For a linear space E, we denote it’s dimension by dim(E).

We follow [63] and use f : A ⇒ B to denote a set-valued map from A into B, whereas
f : A→ B denotes an ordinary map. If f is set-valued, then f is strict if for every a ∈ A we
have f(a) 6= ∅. The restriction of f to a subset M ⊆ A is denoted by f |M . By convention
we set f |∅ := ∅. The composition of f : A ⇒ B and g : C ⇒ A, (f ◦ g)(x) = f(g(x)) is
denoted by f ◦ g. We use BA to denote the set of all functions f : A→ B. For a relation
R ⊆ A×B and D ⊆ A, we define R(D) := ∪d∈DR(d).

The concatenation of two functions x : [0; a[ → X and y : [0; b[ → X with a ∈ N
and b ∈ N ∪ {∞} is denoted by xy which we define by xy(t) := x(t) for t ∈ [0; a[ and
xy(t) := y(t− a) for t ∈ [a, a+ b[. We use inf ∅ =∞, log2∞ =∞ and 0 · ∞ = 0.

For scalars a, b and sets A, B, by a · b and A × B we denote the scalar product and
the Cartesian product, respectively. For a set A, a partition is a collection of disjoint
nonempty subsets of A that have A as their union. By [a0a1 . . . aN−1], ai ∈ N, we denote
a finite sequence of integers of length N , also called a word. An element of the set NZ is
referred to as a bi-infinite word. We use the notation | · | for the absolute value of a complex
number. For an n×n matrix B, by λ(B), ρ(B) and Bi,j we denote an eigenvalue of B, the
spectral radius of B and the entry in the j-th column of the i-th row of B, respectively.
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2.2 Motivation

We study data rate constrained feedback for discrete-time uncertain control systems de-
scribed as

ξ(t+ 1) ∈ F (ξ(t), ν(t)) (2.1)

where ξ(t) ∈ X is the state signal and ν(t) ∈ U is the input signal. The sets X and U are
referred to as state alphabet and input alphabet, respectively. The map F : X × U ⇒ X is
called the transition function.

We are interested in coder-controllers that force the system (2.1) to evolve inside a
nonempty set Q of the state alphabet X, i.e., every state signal ξ of the closed loop
illustrated in Fig. 1.1 with ξ(0) ∈ Q satisfies ξ(t) ∈ Q for all t ∈ Z≥0. Specifically, we are
interested in the average data rate of such coder-controllers.

Notably, our system description is rather general and, depending on the structure of
alphabets X and U , we can represent a variety of commonly used system models. If we
assume X and U to be discrete, we can use (2.1) to represent discrete event systems1 [14]
and digital/embedded systems [7]. Let us consider the following simple example.

Example 1. Consider a system with state alphabet and input alphabet given by X :=
{0, 1, 2} and U := {a, b}, respectively. The transition function is illustrated by:

0 1 2

a

b

b

b a

a
a b

The set of interest is defined to be Q := {0, 2}. The states that are outside Q, and the
transitions that lead to them, are indicated by dashed lines. When the system is in state
0 the only valid input is given by a. Similarly, if the system is in state 2 the only valid
input is given by b. If the input a is applied at 0 at time t, the system can either be in
0 or 2 at time t + 1. Note that the valid control inputs for the states 0 and 2 differ and
the controller is required to have exact state information at every point in time. Due to
the nondeterministic transition function, it is not possible to determine the current state
of the system based on the knowledge of the past states, the past control inputs and the
transition function. Therefore, the controller can obtain the state information only through
measurement, which implies that at least one bit needs to be transmitted at every time
step.

Current theories from [59, 19, 38, 16] are unable to explain the minimal data rate of
one bit per time step observed in Example 1.

If we allow X and U to be (subsets of) Euclidean spaces, we are able to recover one
of the most fundamental system models in control theory, i.e., the class of nonlinear con-
trol systems with bounded uncertainties [28, 11]. If the system description is given in
continuous-time, we can use (2.1) to represent the sampled-data system [48] with sampling
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ZOH ξ̇c = f(ξc, νc, ω)

∀s∈[tτ,(t+1)τ [ νc(s) = ν(t)

ν(t) τ ξ(t)

ξc(tτ) = ξ(t)

Figure 2.1: Sampled-data discrete-time system.

time τ ∈ R>0 as illustrated in Fig. 2.1. The disturbance signal ω is assumed to be bounded
ω(s) ∈ W ⊆ Rp for all times s ∈ R≥0. The transition function F (x, u) is defined as the
set of states that are reachable by the continuous-time system at time τ from initial state
x under a constant input signal νc(s) = u and a bounded disturbance signal ω. If the
continuous-time dynamic is linear, the sampled-data system is of the form

ξ(t+ 1) ∈ Aξ(t) +Bν(t) +W (2.2)

where A and B are matrices of appropriate dimension and W is a nonempty set representing
the uncertainties.

Example 2. Consider an instance of (2.2) with X := R, U := [−1, 1] and

F (x, u) := 1
2
x+ u+ [−3, 3]

with the set of constraints given by Q := [−4, 4].

For Example 2, we establish in Section 2.5, that the smallest possible data rate of a
coder-controller that enforces Q to be invariant is one bit per time step. This example
demonstrates that in contrast to linear systems without disturbances, where the data rate
depends only on the unstable eigenvalues, see e.g. [19, Thm. 5.1] or [73], for systems of the
form (2.2) the data rate depends among other things also on the stable eigenvalues.

2.3 Invariance Feedback Entropy

In this section, we recall the notion of invariance feedback entropy and establish some
elementary properties.

2.3.1 The entropy

Formally, we define a system as triple

Σ := (X,U, F ) (2.3)

where X and U are nonempty sets and F : X×U ⇒ X is assumed to be strict. A trajectory
of (2.3) on [0; τ [ with τ ∈ N∪{∞} is a pair of sequences (ξ, ν), consisting of a state signal

1If (2.1) represents a discrete event system, the data rate unit is given in bits/event.
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ξ : [0; τ + 1[→ X and an input signal ν : [0; τ [ → U , that satisfies (2.1) for all t ∈ [0; τ [.
We denote the set of all trajectories on [0;∞[ by B(Σ).

Throughout this chapter, we call a system (X,U, F ) finite if X and U are finite.
We follow [59] and [19, Sec. 6] and define the invariance feedback entropy with the help

of covers of Q. Consider the system Σ = (X,U, F ) and a nonempty set Q ⊆ X. A cover A
of Q and a function G : A → U is called an invariant cover (A, G) of (Σ, Q) if A is finite
and for all A ∈ A we have F (A,G(A)) ⊆ Q.

Consider an invariant cover (A, G) of (Σ, Q), fix τ ∈ N and let S ⊆ A[0;τ [ be a set of
sequences in A. For α ∈ S and t ∈ [0; τ − 1[ we define

PS(α|[0;t]) := {A ∈ A | α|[0;t]A = α̂|[0;t+1], for some α̂ ∈ S}

as the set of immediate successor elements of α|[0;t] in S. The set PS(α|[0;t]) contains the
cover elements A so that the sequence α|[0;t]A can be extended to a sequence in S. For
t = τ − 1, we have α|[0;τ−1] = α and we define for notational convenience the set

PS(α|[0;t]) = PS(α) := {A ∈ A | A = α̂(0), for some α̂ ∈ S} (2.4)

which is actually independent of α ∈ S and corresponds to the “initial” cover elements A
in S, i.e., there exists α ∈ S with A = α(0). A set S ⊆ A[0;τ [ is called (τ,Q)-spanning in
(A, G) if the set PS(α) with α ∈ S covers Q and we have

∀α∈S∀t∈[0;τ−1[ F (α(t), G(α(t))) ⊆
⋃

A′∈PS(α|[0;t])

A′. (2.5)

We associate with every (τ,Q)-spanning set S the expansion number N (S), which we
define by

N (S) := max
α∈S

τ−1∏
t=0

#PS(α|[0;t]). (2.6)

For a given invariant cover (A, G), we denote by rinv(τ,A, G,Σ) the smallest expansion
number possible for any (τ,Q)-spanning set in (A, G), i.e.,

rinv(τ,A, G,Σ) := min {N (S) | S is (τ,Q)-spanning in (A, G)} .

We define the entropy of an invariant cover (A, G) by

h(A, G) := lim
τ→∞

1

τ
log2 rinv(τ,A, G,Σ). (2.7)

As shown in Lemma 1 (stated below), the limit of the sequence in (2.7) exists so that the
entropy of an invariant cover (A, G) is well-defined.

The invariance feedback entropy of Σ and Q follows by

hinv(Q,Σ) := inf
(A,G)

h(A, G) (2.8)

where we take the infimum over all (A, G) invariant covers of (Σ, Q). Let us revisit the
examples from the previous section to illustrate the various definitions.
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Example 1 (Continued). First, we determine an invariant cover (A, G) of the system in
Example 1 and Q. Since the system is finite, we can set A := {{x} | x ∈ Q}. Recall that
Q = {0, 2} and a suitable function G is given by G({0}) := a and G({2}) := b. Suppose
that S ⊆ A[0;τ [ is (τ,Q)-spanning with τ ∈ N. Let us look at condition (2.5) for t ∈ [0; τ − 1[
and α ∈ S. If α(t) = {0}, we have PS(α|[0;t]) = {{0}, {2}} since F ({0}, G({0})) =
F (0, a) = {0, 2}. If α(t) = {2} the same reasoning leads to PS(α|[0;t]) = {{0}, {2}}. Also
for α ∈ S we have PS(α) = {{0}, {2}} since PS(α) is required to be a cover of Q. It
follows that S = A[0;τ [ and the expansion number N (S) = rinv(τ,A, G,Σ) = 2τ so that the
entropy of the (A, G) follows to h(A, G) = 1. Since (A, G) is the only invariant cover, we
obtain hinv(Q,Σ) = 1.

Example 2 (Continued). Let us recall the linear system in Example 2. An invariant
cover (A, G) is given by A := {a0, a1} with a0 := [−4, 0], a1 := [0, 4] and G(a0) := 1,
G(a1) := −1. Let S be any (τ,Q)-spanning set in (A, G). As PS(α) ⊆ A is required to
cover Q, so PS(α) = A. For ai ∈ A, i ∈ {0, 1}, we have F (ai, G(ai)) = [−4; 4] which makes
PS(ai) = A. Thus S = A[0;τ [. Since #A = 2, we obtain that h(A, G) = 1.

We continue with showing the subadditivity property of log2 rinv(·,A, G,Σ).

Lemma 1. Consider the system Σ = (X,U, F ) and a nonempty set Q ⊆ X. Let (A, G)
be an invariant cover of (Σ, Q), then the function τ 7→ log2 rinv(τ,A, G,Σ), N → R≥0, is
subadditive, i.e., for all τ1, τ2 ∈ N the inequality

log2 rinv(τ1 + τ2,A, G,Σ) ≤ log2 rinv(τ1,A, G,Σ) + log2 rinv(τ2,A, G,Σ)

holds and we have

lim
τ→∞

1

τ
log2 rinv(τ,A, G,Σ) = inf

τ∈N

1

τ
log2 rinv(τ,A, G,Σ). (2.9)

The following lemma might be of independent interest. It states that the expansion
number is not less than the cardinality for any (τ,Q)-spanning set. We use it in the proves
of Theorems 4 and 13.

Lemma 2. Consider an invariant cover (A, G) of (2.3) and some nonempty set Q ⊆ X.
Let S be a (τ,Q)-spanning set, then we have #S ≤ N (S).

The proofs of both lemmas are given in the appendix.

2.3.2 Entropy across related systems

One of the most important properties of entropy of classical dynamical systems is its
invariance under any change of coordinates [1, Thm. 1]. In [19] this property has been
shown for deterministic control systems in the context of semiconjugation [19, Thm. 3.5].
In the following, we present a result in the context of feedback refinement relations [61],
which contains the result on semiconjugation as a special case.
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Definition 1. Let Σ1 and Σ2 be two systems of the form

Σi = (Xi, Ui, Fi) with i ∈ {1, 2}. (2.10)

A strict relation R ⊆ X1 × X2 is a feedback refinement relation from Σ1 to Σ2 if there
exists a map r : U2 → U1 so that the following inclusion holds for all (x1, x2) ∈ R and
u ∈ U2

R(F1(x1, r(u))) ⊆ F2(x2, u). (2.11)

When there is a feedback refinement relation from one system to another one, the
following theorem shows that the IFE of the former is not larger than the latter.

Theorem 1. Consider two systems Σi, i ∈ {1, 2}, of the form (2.10). Let Q1 and Q2 be
two nonempty subsets of X1 and X2, respectively. Suppose that R is a feedback refinement
relation from Σ1 to Σ2, and Q1 = R−1(Q2). Then

h1,inv(Q1) ≤ h2,inv(Q2) (2.12)

holds, where hi,inv(Qi) is the invariance feedback entropy of Σi and Qi.

Proof. If h2,inv(Q2) = ∞, the inequality holds and subsequently we consider the case
h2,inv(Q2) < ∞. We will make use of Lemma 9 in the Appendix to show (2.12). Let us
pick an invariant cover (A2, G2) of (Σ2, Q2) so that h(A2, G2) <∞. Next we define the set
A1 := {A1 ⊆ Q1 | ∃A2∈A2 R

−1(A2) = A1}.
Now let M = R−1 and r : U2 → U1 in Lemma 9, where R and r are, respectively, the

relation and map associated with the feedback refinement relation in Def. 1. We observe
that all the conditions 1) - 4) in Lemma 9 hold.

Thus there exists a map G∗1 : A1 → U1 such that (A1, G
∗
1) is an invariant cover of

(Σ1, Q1), and
h(A1, G

∗
1) ≤ h(A2, G2).

Therefore, inequality (2.12) holds.

2.3.3 Conditions for finiteness

We analyze two particular instances of systems – finite systems and systems with a topo-
logical state alphabet – and provide conditions ensuring that the invariance entropy is
finite. The results are based on the following lemma.

Lemma 3. Consider a system Σ = (X,U, F ) and a nonempty set Q ⊆ X. There exists
an invariant cover (A, G) of (Σ, Q) iff hinv(Q,Σ) <∞.

Proof. It follows immediately from (2.8) that hinv(Q) < ∞ implies the existence of an
invariant cover of (Σ, Q). For the reverse direction, we assume that (A, G) is an invari-
ant cover of (Σ, Q). We fix τ ∈ N and define S := {α ∈ A[0;τ [ | ∀t∈[0;τ−1[ α(t + 1) ∩
F (α(t), G(α(t))) 6= ∅}. It is easy to verify that S is (τ,Q)-spanning and N (S) ≤ (#A)τ .
An upper bound on hinv(Q,Σ) follows by log2

#A.



14 2. Invariance Feedback Entropy

If Σ is finite, it is rather straightforward to show that the controlled invariance of Q
w.r.t. Σ is necessary and sufficient for hinv(Q,Σ) to be finite. Let us recall the notion of
controlled invariance [11].

We call Q ⊆ X controlled invariant with respect to a system Σ = (X,U, F ), if for all
x ∈ Q there exists u ∈ U so that F (x, u) ⊆ Q. We refer the interested readers to [64] for
a discussion on computation of controlled invariant set for controllable linear discrete-time
systems.

Theorem 2. Consider a finite system Σ = (X,U, F ) and a nonempty set Q ⊆ X. Then
hinv(Q,Σ) <∞ if and only if Q is controlled invariant.

Proof. Let hinv(Q,Σ) be finite. Then there exists an invariant cover (A, G) so that h(A, G) <
∞. Hence, for every x ∈ Q, we can pick an A ∈ A with x ∈ A, so that F (x,G(A)) ⊆
F (A,G(A)) ⊆ Q. Hence, Q is controlled invariant w.r.t. Σ.

Assume Q is controlled invariant w.r.t. Σ. For x ∈ Q, let ux ∈ U be such that
F (x, ux) ⊆ Q. It is easy to check that (A, G) with A := {{x} | x ∈ Q} and G({x}) := ux
is an invariant cover of (Σ, Q), so that the assertion follows from Lemma 3.

In general controlled invariance of Q is not sufficient to guarantee finiteness of the
invariance feedback entropy as shown in the next example.

Example 3. Consider Σ = (R, [−1, 1], F ) with the dynamics given by F (x, u) := x+ u+
[−1, 1]. Let Q := [−1, 1], then for every x ∈ Q we can pick u = −x so that F (x, u) =
[−1, 1] ⊆ Q, which shows that Q is controlled invariant. Now suppose that hinv(Q,Σ) is
finite. Then according to Lemma 3 there exists an invariant cover (A, G) of (Σ, Q). Since
A is required to be finite, there exists A ∈ A with an infinite number of elements and
therefore we can pick two different states in A, i.e., x, x′ ∈ A with x 6= x′. However, there
does not exist a single u ∈ U so that F (x, u) ⊆ Q and F (x′, u) ⊆ Q. Hence, (A, G) cannot
be an invariant cover, which implies hinv(Q,Σ) =∞.

In the subsequent theorem we present some conditions for systems with a topological
state alphabet, which imply the finiteness of the invariance entropy. The conditions may
be difficult to verify for a particular problem instance. Nevertheless, with these conditions,
we follow closely the assumptions based on continuity and strong invariance employed
in [60, 21] to ensure finiteness of the invariance entropy for deterministic systems. We use
the following notion of continuity of set-valued maps [5] to show the next result.

Let A and B be topological spaces and f : A⇒ B. We say that f is upper semicontin-
uous, if for every a ∈ A and every open set V ⊆ B containing f(a) there exists an open
set U ⊆ A with a ∈ U so that f(U) ⊆ V .

Theorem 3. Consider a system Σ = (X,U, F ) and a nonempty compact subset Q of X.
Let X be a topological space. If F (·, u) is upper semicontinuous for every u ∈ U and Q is
strongly controlled invariant, i.e., for all x ∈ Q there exists u ∈ U so that F (x, u) ⊆ intQ,
then hinv(Q,Σ) <∞.
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Proof. For each x ∈ Q, we pick an input ux ∈ U so that F (x, ux) ⊆ int Q. Since F (·, ux)
is upper semicontinuous and int Q is open, there exists an open subset Ax of X, so that
x ∈ Ax and F (Ax, ux) ⊆ int Q. Hence, the set {Ax | x ∈ Q} of open subsets of X covers
Q. Since Q is a compact subset of X, there exists a finite set {Ax1 , . . . , Axm} so that
Q ⊆ ∪i∈[1;m]Axi [31, Ch. 2.6]. Let A := {Ax1 ∩ Q, . . . , Axm ∩ Q} and define for every
i ∈ [1;m] the function G(Axi) := uxi . Then (A, G) is an invariant cover of (Σ, Q), and the
assertion follows from Lemma 3.

Example 3 (Continued). Let ε > 0, consider Σ from Example 3 with the modified input set
Uε := [−1− ε, 1 + ε]. Let Qε := [−1− ε, 1 + ε] then we see that Qε is strongly controlled
invariant. We construct an invariant cover for (Σ, Qε) as follows. We define n as the
smallest integer larger than 1

2ε
and introduce {x−n, . . . , x0, . . . xn} with xi := 2iε and

set Ai := (xi + [−ε, ε]) ∩ Qε. For each i ∈ [−n;n], we define G(Ai) := −xi so that
F (Ai, G(Ai))⊆Qε. By definition of n we have x−n ≤ −1 and 1 ≤ xn and we see that
(A, G) with A := {Ai | i ∈ [−n;n]} is an invariant cover of (Σ, Qε). Hence, it follows from
Lemma 3 that hinv(Qε,Σ) is finite.

2.3.4 Deterministic systems

For deterministic systems we recover the notion of invariance feedback entropy in [59, 21].
Let us consider the map f : X × U → X representing a deterministic system

ξ(t+ 1) = f(ξ(t), ν(t)). (2.13)

We can interpret (2.13) as special instance of (2.3), where F is given by F (x, u) := {f(x, u)}
for all x ∈ X and u ∈ U and the notions of a trajectory of (2.3) extend to (2.13) in the
obvious way. Given an input u ∈ U , we introduce fu : X → X by fu(x) := f(x, u) and
extend this notation to sequences ν ∈ U [0;t], t ∈ N, by

fν(x) := fν(t) ◦ · · · ◦ fν(0)(x).

We follow [21] to define the entropy of (2.13). Consider a nonempty set Q ⊆ X and fix
τ ∈ N. A set Sdet ⊆ U [0;τ [ is called (τ,Q)-spanning for f and Q, if for every x ∈ Q there
exists ν ∈ Sdet so that the associated trajectory (ξ, ν) on [0; τ [ of (2.13) with ξ(0) = x
satisfies ξ([0; τ ]) ⊆ Q. We use rdet

inv(τ,Q) to denote the number of elements of the smallest
(τ,Q)-spanning set

rdet
inv(τ,Q) := inf{#Sdet | Sdet is (τ,Q)-spanning}. (2.14)

The (deterministic) invariance entropy of (X,U, f) and Q is defined by

hdet
inv(Q) := lim

τ→∞

1

τ
log2 r

det
inv(τ,Q). (2.15)

Again the function τ 7→ log2 r
det
inv(τ,Q) is subadditive [21, Prop. 2.2] thus by Fekete’s

Lemma [21, Lem. 2.1] the limit in (2.15) exists.
Now, we have the following theorem.
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Theorem 4. Consider the system Σ = (X,U, F ) and a nonempty set Q ⊆ X. Suppose F
satisfy F (x, u) = {f(x, u)} for all x ∈ X, u ∈ U , and for some f : X × U → X. Then
the invariance feedback entropy of Σ and Q equals the deterministic invariance entropy of
(X,U, f) and Q, i.e.,

hinv(Q,Σ) = hdet
inv(Q). (2.16)

Proof. We begin with the inequality hdet
inv(Q) ≥ hinv(Q,Σ). If hdet

inv(Q) = ∞ the inequality
trivially holds and subsequently we assume that hdet

inv(Q) is finite. We fix ε > 0 and pick
τ ∈ N so that 1

τ
log2 r

det
inv(τ,Q) ≤ hdet

inv(Q) + ε. We chose a (τ,Q)-spanning set Sdet for f
and Q with #Sdet = rdet

inv(τ,Q). For every ν ∈ Sdet we define the sets

A0(ν) := Q ∩
τ−1⋂
t=0

f−1
ν|[0;t]

(Q)

and for t ∈ [0; τ − 1[ the sets At+1(ν) := f(At(ν), ν(t)). The minimality of Sdet implies that
A0(ν) 6= ∅ and A0(ν) 6= A0(ν ′) for all ν, ν ′ ∈ Sdet. Let A be the set of all sets At(ν) with
t ∈ [0; τ [ and ν ∈ Sdet. With each A ∈ A we associate a single pair (ν, t), where ν ∈ Sdet

and t ∈ [0; τ [, such that is satisfies A = At(ν) and the following condition: ν ′ ∈ Sdet

and t′ ∈ [0; τ [ with A = At′(ν
′) implies t ≤ t′. Then we define the map G : A → U by

G(A) = ν(t) where (ν, t) is associated with A. By the definition of At(ν), it is easy to see
that f(At(ν), G(At(ν))) ⊆ Q for all t ∈ [0; τ [ and ν ∈ Sdet. Moreover, since Sdet is (τ,Q)-
spanning, for every x ∈ Q there is ν ∈ Sdet so that for all t ∈ [0; τ [ we have fν|[0;t](x) ∈ Q
which implies x ∈ A0(ν) and we see that {A0(ν) | ν ∈ Sdet} covers Q. It follows that
(A, G) is an invariant cover of (Σ, Q). Let Sinv be the set of sequences α : [0; τ [ → A
defined iteratively as α(0) ∈ {A0(ν) | ν ∈ Sdet} and α(t + 1) = f(α(t), G(α(t))). Then
PSinv(α) covers Q since {A0(ν) | ν ∈ Sdet} covers Q as discussed above. For any distinct
α, α′ ∈ Sinv we have α(0) 6= α′(0) so for every t ∈ [0; τ − 1[ we have #PSinv(α|[0;t]) = 1,
f(α(t), G(α(t))) = PSinv(α|[0;t]) and thus Sinv satisfies (2.5). Therefore, Sinv is (τ,Q)-
spanning in (A, G). Moreover, as ν 6= ν ′ implies A0(ν) 6= A0(ν ′), we have #PSinv(α) =
#Sdet, so that rinv(τ,A, G,Σ) ≤ N (Sinv) = #Sdet = rdet

inv(τ,Q) follows. Due to Lemma 1,
we have log2 rinv(nτ,A, G,Σ) ≤ n log2 rinv(τ,A, G,Σ) and we see that 1

τ
log2 rinv(τ,A, G,Σ)

(and therefore 1
τ

log2 r
det
inv(τ,Q)) provides an upper bound for h(A, G) so that we obtain

hinv(Q,Σ) ≤ h(A, G) ≤ hdet
inv(Q) + ε. Since this holds for any ε > 0 we obtain the desired

inequality.
We continue with the inequality hdet

inv(Q) ≤ hinv(Q,Σ). If hinv(Q,Σ) = ∞ the inequality
trivially holds and subsequently we assume hinv(Q,Σ) < ∞. We fix ε > 0 and pick an
invariant cover (A, G) of (Σ, Q) so that h(A, G) ≤ hinv(Q,Σ) + ε. We fix τ ∈ N and pick
a (τ,Q)-spanning set Sinv in (A, G) so that N (Sinv) = rinv(τ,A, G,Σ). We define for every
α ∈ Sinv the input sequence να : [0; τ [ → U by να(t) := G(α(t)) and introduce the set
Sdet := {να | α ∈ Sinv}. For x ∈ Q we iteratively construct α ∈ A[0;τ [ and ν ∈ U [0;τ [ as
follows: for t = 0 we pick α0 ∈ Sinv so that x ∈ α0(0) and set ν(0) := G(α0(0)). For
t ∈ [0; τ − 1[ we pick αt+1 ∈ Sinv so that αt+1|[0;t] = αt and fν|[0;t](x) ∈ αt+1(t + 1) and set
ν(t+ 1) := G(αt+1(t+ 1)). Since (A, G) is an invariant cover of (Σ, Q), it is easy to show
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that fν|[0;t](x) ∈ Q holds for all t ∈ [0; τ [, which implies that Sdet is (τ,Q)-spanning for f

and Q. Thus, we obtain rdet
inv(τ,Q) ≤ #Sdet ≤ #Sinv ≤ N (Sinv) = rinv(τ,A, G,Σ), where

the inequality #Sinv ≤ N (Sinv) follows from Lemma 2. Since this holds for any τ ∈ N, we
obtain the inequality ε + hinv(Q,Σ) ≥ h(A, G) ≥ hdet

inv(Q) for arbitrary ε > 0 which shows
hinv(Q,Σ) ≥ hdet

inv(Q).

2.3.5 Invariant covers with closed elements

We conclude this section with a result on the topological structure of the cover elements
for systems with topological state alphabet and lower semicontinuous transition functions
and closed sets Q. The result is used in Theorem 7 but might be of interest on its own.

Let A and B be topological spaces and f : A⇒ B. We say that f is lower semicontin-
uous if f−1(V ) is open whenever V ⊆ B is open.

Theorem 5. Consider a system Σ = (X,U, F ) with topological state alphabet and a
nonempty closed set Q ⊆ X. Assume that F (·, u) is lower semicontinuous for every u ∈ U .
Let (A, G) be an invariant cover of (Σ, Q) and let C := {clA ⊆ clX | A ∈ A}. Then there
exists a map H∗ : C → U such that (C, H∗) is an invariant cover of (Σ, Q) and

h(C, H∗) ≤ h(A, G). (2.17)

In the proof of the theorem, we use the following lemma, the proof of which follows the
standard arguments in [5].

Lemma 4. Let X be a topological space and f : X ⇒ X. If f is lower semicontinuous
then f(cl Ω) ⊆ cl f(Ω) holds for every nonempty subset Ω ⊆ X.

Proof. For the sake of contradiction, suppose there exists x ∈ cl Ω, y ∈ f(x) and y 6∈
cl f(Ω). Then the open set V := X \ cl f(Ω) contains y. Let us define U := f−1(V ) =
{x′ ∈ X | f(x′)∩ V 6= ∅} and since f is lower semicontinuous and V is open so U is open.
As V ∩f(x) 3 y, thus nonempty, so x ∈ U . By definition, V ∩f(Ω) = ∅ so U ∩Ω = ∅ and
since U is open so U ∩ cl Ω = ∅ which is in contradiction with x ∈ U and x ∈ cl Ω.

Proof of Theorem 5. In Lemma 9 in the Appendix, let M = cl, Σ1 = Σ2 = Σ, Q2 = Q1 =
Q, A2 = A, G2 = G, A1 = C and r = id, then one can easily verify that conditions 1) -
3) hold, while Lemma 4 implies that 4) is satisfied. Thus there exists a map H∗ : C → U
such that (C, H∗) is an invariant cover of (Σ, Q), and h(C, H∗) ≤ h(A, G).

2.4 Data-Rate-Limited Feedback

We present the data rate theorem associated with the invariance feedback entropy of uncer-
tain control systems. It shows that the invariance feedback entropy is a tight lower bound
of the data rate of any coder-controller scheme that renders the set of interest invariant.
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We introduce a history-dependent definition of data rates of coder-controllers with
which we extend previously used time-invariant [60] and time-varying [59, 38] notions.
We interpret the history-dependent definition of data rate as a nonstochastic variant of
the notion of data rate used e.g. in [71, Def. 4.1] for noisy linear systems, defined as the
average of the expected length of the transmitted symbols in the closed loop. We motivate
the particular notion of data rate by two examples; one which illustrates that the time-
varying definition [59] results in too large data rates and one which shows that the notion
of data rate based on the framework of nonstochastic information theory, used in [56, 57]
for estimation [57] and control [56] of linear systems, leads to too small data rates.

2.4.1 The coder-controller

We assume that a coder for the system (2.3) is located at the sensor side (see Fig. 1.1),
which at every time step, encodes the current state of the system using the finite coding
alphabet S. It transmits a symbol st ∈ S via the discrete noiseless channel to the controller.
The transmitted symbol st ∈ S might depend on all past states and is determined by the
coder function

γ :
⋃
t∈Z≥0

X [0;t] → S.

At time t ∈ Z≥0, the controller received t+1 symbols s0 . . . st, which are used to determine
the control input given by the controller function

δ :
⋃
t∈Z≥0

S[0;t] → U.

A coder-controller for (2.3) is a triple H := (S, γ, δ), where S is a coding alphabet and γ
and δ are a compatible coder function and controller function, respectively.

Given a coder-controller (S, γ, δ) for (2.3) and ξ ∈ X [0;t] with t ∈ Z≥0, let us use the
mapping

Γt : X [0;t] → S[0;t]

to denote the sequence ζ = Γt(ξ) of coder symbols generated by ξ, i.e., ζ(t′) = γ(ξ|[0;t′])
holds for all t′ ∈ [0; t]. Subsequently, for ζ ∈ S[0;t[ with t ∈ N, we use

Z(ζ) := {s ∈ S | ∃(ξ,ν)∈B(Σ) ζs = Γ(ξ|[0;t]) ∧ ∀t′∈[0;t[ν(t′) = δ(ζ|[0;t′])} (2.18)

to denote the possible successor coder symbols s of the symbol sequence ζ in the closed loop
illustrated in Fig. 1.1. For notational convenience, let us use the convention Z(∅) := S,
so that Z(ζ|[0;0[) = S for any sequence ζ in S. For τ ∈ N ∪ {∞}, we introduce the set

Zτ := {ζ ∈ S[0;τ [ | ζ(0) ∈ γ(X) ∧ ∀t∈]0;τ [ ζ(t) ∈ Z(ζ|[0;t[)}

and define the transmission data rate of a coder-controller H by

R(H) := lim sup
τ→∞

max
ζ∈Zτ

1

τ

τ−1∑
t=0

log2
#Z(ζ|[0;t[) (2.19)
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as the asymptotic average numbers of symbols in Z(ζ) considering the worst-case of possible
symbol sequences ζ ∈ Zτ .

A coder-controller H = (S, γ, δ) for (2.3) is called Q-admissible where Q is a nonempty
subset of X, if for every trajectory (ξ, ν) on [0;∞[ of (2.3) that satisfies

ξ(0) ∈ Q and ∀t∈Z≥0
ν(t) = δ(Γt(ξ|[0;t])), (2.20)

we have ξ(Z≥0) ⊆ Q. Let us use BQ(H) to denote the set of all trajectories (ξ, ν) on [0;∞[
of (2.3) that satisfy (2.20).

Data rate definition with time-varying coding alphabet

We follow [59] and introduce a notion of data rate, based on time-varying coding alphabet,
for a coder-controller H = (S, γ, δ) for (2.3). Let (St)t≥0 be the sequence in the power set
of S that for each t ∈ Z≥0 contains the smallest number of symbols so that γ(ξ) ∈ St holds
for all ξ ∈ X [0;t]. Then the data rate of H follows by

Rtv(H) := lim inf
τ→∞

1

τ

τ−1∑
t=0

log2
#St.

In the following we use an example to show that there exists a Q-admissible coder-controller
H, which satisfies R(H) < Rtv(H̄) for any Q-admissible coder-controller H̄. Note that this
inequality is purely a nondeterministic phenomenon: if the control system is deterministic,
it follows from the deterministic and the nondeterministic data rate theorem ([59, Thm. 1]
and Theorem 6 below) and the equivalence hdet

inv(Q) = hinv(Q,Σ) (Theorem 4) that the
different notions of data rates coincide in the sense that infH R(H) = infH Rtv(H) (at least
if the strong invariance condition in [59, Thm. 1] holds).

Example 4. Consider an instance of (2.3) with U := {a, b}, X := {0, 1, 2, 3} and F is
illustrated by

0 1 2

3

a
a b

a

ba
b a

b

Let Q := {0, 1, 2}. The transitions that lead outside Q and the states that are outside Q
are marked by dashed lines. Consider the coder-controller H = (S, γ, δ) with S := X and
γ and δ are given for ξ ∈ X [0;t], t ∈ Z≥0, by γ(ξ) := ξ(t) and δ(ξ) := a if ξ(t) ∈ {0, 1, 3}
and δ(ξ) := b if ξ(t) = 2. We compute the number of possible successor symbols Z(ξ) for
ξ ∈ X [0;t], t ∈ Z≥0, by #Z(ξ) = 1 if ξ(t) ∈ {0, 2, 3} and #Z(ξ) = 2 if ξ(t) = 1. It is easy to
verify that H is Q-admissible. Since the state ξ(t) = 1 occurs only every other time step
for any element (ξ, ν) of the closed loop, we compute the data rate to R(H) = 1/2. Consider
a time-varying Q-admissible coder-controller H̄ = (S̄, γ̄, δ̄). Initially, the states {0, 1} and
{2} need to be distinguishable at the controller side in order to confine the system to Q
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so that #S̄0 ≥ 2 follows. At time t = 1, the system is possibly again in any of the states
{0, 1, 2} (depending on the initial condition) and we have #S̄1 ≥ 2. By continuing this
argument, we see that #S̄t ≥ 2 for all t ∈ Z≥0 and Rtv(H̄) ≥ 1 follows.

Zero-error capacity of uncertain channels

Alternatively to the definition of the data rate of a coder-controller in (2.19) we could
follow [56, 57] and define the data rate of a coder-controller as the zero-error capacity
C0 of an ideal stationary memoryless uncertain channel (SMUC) in the nonstochastic
information theory framework presented in [57, Def. 4.1]. Although zero-error capacity is
a characteristic of the channel and is independent of the chosen coder-controller and the
plant, we slightly abuse notation and use C0 to refer to the special case of the channel
input function space restricted to the set of all possible symbol sequences generated in
the closed loop. The input alphabet of the SMUC equals the output alphabet and is
given by S. The channel is ideal and does not introduce any error in the transmission.
Hence, the transition function is the identity, i.e., T (s) = s holds for all s ∈ S. The input
function space Z∞ ⊆ S[0;∞[ is the set of all possible symbol sequences that are generated
by the closed loop, which represents the total amount of information that needs to be
transmitted by the channel. For the ideal SMUC, the zero-error capacity [57, Eq. (25)],
for a coder-controller H results in

C0(H) := lim
τ→∞

1

τ
log2

#Zτ .

We use the following example to demonstrate that the zero-error capacity is too low, i.e.,
C0(H) = 0 while R(H) ≥ 1.

Example 5. Consider an instance of (2.3) with U := {a, b, c}, X := {0, 1, 2, 3} and F is
illustrated by

0 1 2 3

b, c a, c
a, b

ca a

b b
a, b, c

The transitions and states that lead, respectively, are outside the set of interest Q :=
{0, 1, 2} are dashed. Consider the Q-admissible coder-controller H = (S, γ, δ) with S := X
and γ and δ are given for ξ ∈ X [0;t], t ∈ Z≥0 by γ(ξ) := ξ(t) and

δ(ξ) :=


a if ξ(t) ∈ {0, 3}
b if ξ(t) = 1

c if ξ(t) = 2.

We pick the trajectory (ξ, ν) ∈ BQ(H) given for t ∈ Z≥0 by ξ(2t) = 0 and ξ(2t + 1) = 1.
We obtain Z(ξ|[0;t]) = {1, 2} if ξ(t) = 0 and Z(ξ|[0;t]) = {0, 2} if ξ(t) = 1. Since #F (x, u) ≤
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2 for all x ∈ X and u ∈ U , it is straightforward to see that
∑τ−1

t=0 log2
#Z(ξ|[0;t[) =

maxζ∈Zτ
∑τ−1

t=0 log2
#Z(ζ|[0;t[) holds for all τ ∈ N. Hence, we obtain R(H) = 1.

We are going to derive C0(H). Consider the set Zτ ⊆ X [0;τ [ and the hypothesis for τ ∈ N:
there exists at most one ξ ∈ Zτ with ξ(τ − 1) = 1 and there exists at most one ξ ∈ Zτ
with ξ(τ − 1) = 0. For τ = 1 we have Z1 = X and the hypothesis holds. Suppose the
hypothesis holds for τ ∈ N and let ξ ∈ Zτ . We have Z(ξ) = {0, 2} if ξ(t) = 1, Z(ξ) = {1, 2}
if ξ(t) = 0, Z(ξ) = {2} if ξ(t) = 2 and Z(ξ) = {3} if ξ(t) = 3, so that the hypothesis holds
for τ + 1, which shows that the hypothesis holds for every τ ∈ N. Therefore, we obtain a
bound of the number of elements in Zτ by 4 + 2(τ − 1) and the zero-error capacity of H
follows by C0(H) = 0.

Example 5 shows that even though, the asymptotic average of the total amount of
information that needs to be transmitted (= symbol sequences generated by the closed
loop) via the channel is zero, the necessary (and sufficient) data rate to confine the system
Σ within Q is one. The discrepancy results from the causality constraints that are imposed
on the coder-controller structure by the invariance condition, i.e., at each instant in time
the controller needs to be able to produce a control input so that all successor states are
inside Q, see e.g. [71]. Contrary to this observation, the zero-error capacity is an adequate
measure for data rate constraints for the invariance for deterministic linear systems or for
uniform boundedness for linear systems with disturbances [56, 57].

Periodic coder-controllers

Now, we introduce periodic coder-controllers that will be utilized to establish the data rate
theorem in the next subsection. Given τ ∈ N and a coder-controller H = (S, γ, δ), we say
that H is τ -periodic if for all t ∈ Z≥0, ζ ∈ S[0;t] and ξ ∈ X [0;t] we have

γ(ξ) = γ(ξ|[τbt/τc;t]),
δ(ζ) = δ(ζ|[τbt/τc;t]).

(2.21)

For such periodic coder-controllers, the transmission data rate is equal to the smallest
average number of bits, sufficient enough for every possible τ length symbol sequence in
the closed loop, needed to encode the sets of possible successor coder symbols where the
average is taken over the length of a symbol sequence. The following lemma formalizes
this statement.

Lemma 5. The transmission data rate of a τ -periodic coder-controller H = (S, γ, δ)
for (2.3) is given by

R(H) = max
ζ∈Zτ

1

τ

τ−1∑
t=0

log2
#Z(ζ|[0;t]). (2.22)

Proof. Let L denote the right-hand-side of (2.22). Consider T ∈ N, ζ ∈ ZT and set
a := bT/τc and τ̄ := T − τa. We define ζi := ζ|[iτ ;(i+1)τ [ for i ∈ [0; a[ and ζa := ζ|[aτ ;T [.
Since γ is τ -periodic, we see that each ζi with i ∈ [0; a[ is an element of Zτ , and we
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obtain for Ni :=
∑τ−1

t=0 log2
#Z(ζi|[0;t]) the bound Ni ≤ Lτ for all i ∈ [0; a[. We define

Na :=
∑τ̄−1

t=0 log2
#Z(ζa|[0;t]) which is bounded by Na ≤ τ log2

#S. Note that aτ + τ̄ = T ,
so that for C := τ log2

#S we have

1
T

∑T−1
t=0 log2

#Z(ζ|[0;t]) = 1
T

(
∑a−1

i=0 Ni +Na) ≤ 1
T

(aLτ + Lτ̄ + C) = L+ C
T
.

Since C is independent of T , the assertion follows.

The following lemma states that there always exists a τ -periodic coder-controller with
a data rate not larger than that of a given coder-controller.

Lemma 6. For every coder-controller H = (S, δ, γ) for (2.3) and ε > 0, there exists a
τ -periodic coder-controller Ĥ = (S, δ̂, γ̂) that satisfies

R(Ĥ) ≤ R(H) + ε.

Proof. For ε > 0, we pick τ ∈ N so that log2
#Z0/τ ≤ ε/2 and maxζ∈Zτ

1
τ

∑τ−2
t=0 log2

#Z(ζ|[0;t]) ≤
R(H) + ε/2. We define γ̂ and δ̂ for all ξ ∈ X [0;t], ζ ∈ S[0;t] with t ∈ Z≥0 by

γ̂(ξ) := γ(ξ|[τbt/τc;t]) and δ̂(ζ) := δ(ζ|[τbt/τc;t]).

Let Ẑ be defined in (2.18) w.r.t. γ̂. Then we have for all ζ ∈ S[0;t] with t ∈ [0; τ − 1[
the equality Z(ζ) = Ẑ(ζ) and for every ζ ∈ S[0;τ [ we have Ẑ(ζ) = Z0 which follows from
the fact that γ̂ is τ -periodic. The transmission data rate of Ĥ follows by (2.22) which is
bounded by

max
ζ∈Ẑτ

1

τ

( τ−2∑
t=0

log2
#Ẑ(ζ|[0;t]) + log2

#Z0

)
≤ R(H) + ε.

The theorem in the next subsection shows that the data rate of a coder-controller able
to make a subset of the state-space invariant cannot be less than the IFE of the subset.

2.4.2 The data rate theorem

The next result establishes the data rate theorem.

Theorem 6. Consider a system Σ = (X,U, F ) and a nonempty set Q ⊆ X. The invariance
feedback entropy of Σ and Q satisfies

hinv(Q,Σ) = inf
H∈H

R(H) (2.23)

where H is the set of all Q-admissible coder-controllers for Σ.

We use the following two technical lemmas to show Theorem 6.

Lemma 7. Let H = (S, γ, δ) be a Q-admissible τ -periodic coder-controller for Σ =
(X,U, F ). Then there exists an invariant cover (A, G) of (Σ, Q) and a (τ,Q)-spanning
set S in (A, G) so that

1

τ
log2N (S) ≤ R(H).
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Proof. For every t ∈ [0; τ [ and every ζ ∈ Zt+1 we define A(ζ) := {x ∈ Q | ∃(ξ,ν)∈BQ(H) ζ =
Γt(ξ|[0;t])∧ξ(t) = x}, G(A(ζ)) := δ(ζ) andA := {A(ζ) | ζ ∈ Zt+1∧t ∈ [0; τ [}. We show that
(A, G) is an invariant cover of (Σ, Q). Clearly, A is finite and every element of A is a subset
of Q. Since H is Q-admissible, for every x ∈ Q there exists (ξ, ν) ∈ BQ(H) so that ξ(0) = x.
Hence, {A(s) | s ∈ Z1} covers Q and we see that A covers Q. Let A ∈ A and suppose that
there exists x ∈ A so that F (x,G(A)) 6⊆ Q. Since A ∈ A, there exists t ∈ [0; τ [, ζ ∈ Zt+1

and (ξ, ν) ∈ BQ(H) so that A = A(ζ), ζ = Γt(ξ|[0;t]) and x = ξ(t). Note that ν satisfies
(2.20) so that ν(t) = G(A(ζ)) holds. We fix x′ ∈ F (x,G(A))\Q and pick a trajectory
(ξ′, ν ′) of Σ on [0;∞[ such that ξ′(0) = x′ and ν ′(t′) = δ(Γt((ξ|[0;t]ξ

′)|[t;t+t′+1])) holds for
all t′ ∈ Z≥0. We define (ξ̄, ν̄) by ξ̄ := ξ|[0;t]ξ

′ and ν̄ := ν|[0;t]ν
′, which by construction is

a trajectory of Σ on [0;∞[ which satisfies (2.20) but ξ̄([0;∞[) 6⊆ Q. This contradicts the
Q-admissibility of H and we can deduce that F (A,G(A)) ⊆ Q for all A ∈ A, which shows
that (A, G) is an invariant cover of (Σ, Q).
We are going to construct a (τ,Q)-spanning set S ⊆ A[0;τ [ with the help of Zτ . For each
ζ ∈ Zτ we define a sequence αζ : [0; τ [→ A by αζ(t) := A(ζ|[0;t]) for all t ∈ [0; τ [ and use S
to denote the set of all such sequences {αζ | ζ ∈ Zτ}. Note that PS(αζ) = {A(s) | s ∈ Z1}
holds for all αζ ∈ S, and we see that PS(αζ) covers Q. Let us show (2.5). Let αζ ∈ S,
t ∈ [0; τ − 1[ so that αζ(t) = A(ζ|[0;t]). We define ζt := ζ|[0;t] and fix x0 ∈ A(ζt) and
x1 ∈ F (x0, G(A(ζt))). Since x0 ∈ A(ζt) there exists (ξ, ν) ∈ BQ(H) so that ζt = Γt(ξ|[0;t])
with ξ(t) = x0 and we use (2.20) to see that G(A(ζt)) = δ(ζt) = ν(t). Therefore, (ξ, ν)|[0;t]

can be extended to a trajectory in (ξ̄, ν̄) ∈ BQ(H) with ξ̄(t + 1) = x1. Let s = γ(ξ̄|[0;t+1]),
then we have s ∈ Z(ζt) and ζt+1 := ζts ∈ Zt+2 holds. Moreover, ζt+1 = Γt+1(ξ̄|[0;t+1]) and we
conclude that x1 ∈ A(ζt+1). We repeat this process for xi ∈ F (A(ζt+i), G(A(ζt+i)), i ∈ [0; k]
until t + k = τ − 1 at which point we arrive at ζt+k ∈ Zτ and we see that the associated
sequence αζt+k is an element of S that satisfies x1 ∈ αζt+k(t + 1) and αζt+k |[0;t] = αζ |[0;t].
Since such a sequence can be constructed for every x1 ∈ F (x0, G(A(ζt))) and x0 ∈ A(ζt),
we see that (2.5) holds and it follows that S is (τ,Q)-spanning in (A, G).
We claim that #PS(αζ |[0;t]) ≤ #Z(ζ|[0;t]) for every αζ ∈ S and t ∈ [0; τ − 1[. Let A ∈
PS(αζ |[0;t]), then there exists αζ′ ∈ S such that A = αζ′(t + 1) and ζ ′|[0;t] = ζ|[0;t]. Hence
ζ ′(t+ 1) ∈ Z(ζ|[0;t]). Moreover, for A, Ā ∈ PS(αζ |[0;t]) with A 6= Ā there exists αζ′ , αζ̄′ ∈ S
such that A = A(ζ ′|[0;t+1]) and Ā = A(ζ̄ ′|[0;t+1]), which shows that ζ ′(t+ 1) 6= ζ̄ ′(t+ 1) and
ζ ′(t + 1), ζ̄ ′(t + 1) ∈ Z(ζ|[0;t]) and we obtain #PS(αζ |[0;t]) ≤ #Z(ζ|[0;t]) for all t ∈ [0; τ − 1[
and ζ ∈ Zτ . For t = τ − 1 we have PS(αζ) = {A(s) | s ∈ Z1}. For Z(ζ) we have
Z(ζ) = γ(X), since H is τ -periodic and we obtain #PS(αζ) ≤ #Z(ζ) for every ζ ∈ Zτ .
Hence, N (S) ≤ maxζ∈Zτ

∏τ−1
t=0

#Z(ζ|[0;t]) follows and we obtain 1
τ

log2N (S) ≤ R(H).

In the proof of the following lemma, we use an enumeration of a finite set A, which is
a function e : A→ [1; #A] such that e(A) = [1; #A].

Lemma 8. Consider an invariant cover (A, G) of Σ = (X,U, F ) and some nonempty
set Q ⊆ X. Let S be a (τ,Q)-spanning set in (A, G). Then there exists a Q-admissible
τ -periodic coder-controller H = (S, γ, δ) for Σ so that

1

τ
log2N (S) ≥ R(H).
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Proof. We define St := {α ∈ A[0;t] | ∃α̂∈S α̂|[0;t] = α} for t ∈ [0; τ [ and observe that
Sτ−1 = S and for every α ∈ S we have PS(α) = S0. For α ∈ St with t ∈ [0; τ − 1[ let
e(α) be an enumeration of PS(α). We slightly abuse the notation, and use e(∅) to denote
an enumeration of S0 so that e(α|[0;0[) = e(∅) for all α ∈ S. Let m ∈ N be the smallest
number so that every co-domain of e(α) is a subset of [1;m]. We use this interval to define
the set of symbols S := [1;m]. We are going to define γ(ξ) and δ(ζ) for all sequences
ξ ∈ X [0;t], respectively, ζ ∈ S[0;t] with t ∈ [0; τ [, which determines γ and δ for all elements
in their domain, since γ and δ are τ -periodic. We begin with γ, which we define iteratively.
For t = 0 and x ∈ X we set γ(x) := e(∅)(A) if there exists A ∈ S0 with x ∈ A. If there
are several A ∈ S0 that contain x we simply pick one. If there does not exist any A ∈ S0

with x ∈ A we set γ(x) := 1. For t ∈ ]0; τ [ and ξ ∈ X [0;t] we define γ(ξ) := e(α|[0;t[)(α(t))
for α ∈ St that satisfies i) ξ(t) ∈ α(t) and ii) γ(ξ|[0;t′]) = e(α|[0;t′[)(α(t′)) holds for all
t′ ∈ [0; t[. Again, if there are several such α ∈ St we simply pick one. If there does not
exist any α in St that satisfies i) and ii), we set γ(ξ) := 1. We define δ for t ∈ [0; τ [ and
ζ ∈ S[0;t] as follows: if there exists α ∈ St that satisfies e(α|[0;t′[)(α(t′)) = ζ(t′) for all
t′ ∈ [0; t], we set δ(ζ) := G(α(t)), otherwise we set δ(ζ) := u for some u ∈ U . Let us show
that the coder-controller is Q-admissible. We fix (ξ, ν) ∈ BQ(H) and proceed by induction
with the hypothesis parameterized by t ∈ [0; τ [ : there exists α ∈ St so that ξ(t) ∈ α(t),
γ(ξ|[0;t′]) = e(α|[0;t′[)(α(t′)) and ν(t′) = G(α(t′)) hold for all t′ ∈ [0; t]. For t = 0, we know
that S0 covers Q so that for ξ(0) ∈ Q there exists A ∈ S0 with x ∈ A and it follows
from the definition of γ and δ that γ(ξ(0)) = e(∅)(Ā) for some Ā ∈ S0 with ξ(0) ∈ Ā and
ν(0) = δ(γ(Ā)) = G(Ā). Now suppose that the induction hypothesis holds for t ∈ ]0; τ − 1[.
Since ξ(t) ∈ α(t) and ν(t) = G(α(t)) for some α ∈ St, we use (2.5) to see that there exists
ᾱ ∈ S so that ᾱ|[0;t] = α and ξ(t+1) ∈ ᾱ(t+1), so that ᾱ satisfies i) and ii) in the definition
of γ and we have γ(ξ|[0;t+1]) = e(α)(α̂(t+1)) for some α̂ ∈ St+1 with ξ(t+1) ∈ α̂(t+1) and
α̂|[0;t] = α. Since α̂ is uniquely determined by the symbol sequence ζ ∈ S[0;t+1] given by
ζ(t′) = e(α̂|[0;t′[)(α̂(t′)) for all t′ ∈ [0; t+ 1], we have ν(t + 1) = δ(ζ) = G(α̂(t + 1)), which
completes the induction. Note that the induction hypothesis implies that F (ξ(t), ν(t)) ⊆ Q
for all t ∈ [0; τ [, since ξ(t) ∈ α(t) and ν(t) = G(α(t)). We obtain ξ([0;∞[) ⊆ Q from the
τ -periodicity of H and the Q-admissibility follows.
We derive a bound for R(H). Since H is τ -periodic, we have for any ζ ∈ Zτ the equality
Z(ζ) = e(∅)(S0) and we see that #Z(ζ) = #e(∅)(S0) = #PS(α) for any α ∈ S. We fix
ζ ∈ Zτ and pick α ∈ S so that α(t) = e−1(α|[0;t[)(ζ(t)) holds for all t ∈ [0; τ [. By definition,
the set Z(ζ|[0;t]) is the co-domain of an enumeration of PS(α|[0;t]), which shows #Z(ζ|[0;t]) =
#PS(α|[0;t]). Therefore, we have maxζ∈Zτ

∏τ−1
t=0

#Z(ζ|[0;t]) ≤ maxα∈S
∏τ−1

t=0
#PS(α|[0;t]) and

the assertion follows by (2.22).

Now, we continue with the proof of Theorem 6.

Proof of Theorem 6. Let us first prove the inequality hinv(Q,Σ) ≤ infH∈HR(H). If the
right-hand-side of (2.23) equals infinity the inequality trivially holds and subsequently we
assume the right-hand-side of (2.23) is finite. We fix ε > 0 and pick a coder-controller
H̄ = (S, γ̄, δ̄) so that R(H̄) ≤ infH∈HR(H) + ε. According to Lemma 6 there exists a τ -
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periodic coder-controller H = (S, γ, δ) so that R(H) ≤ R(H̄) + ε. It is straightforward to
see that for every (ξ, ν) ∈ BQ(H) and ξi := ξ|[iτ ;(i+1)τ [, i ∈ Z≥0, there exists (ξ̄, ν̄) ∈ BQ(H̄),
so that ξi = ξ̄|[0;τ [, which shows that H is Q-admissible. From Lemma 7 it follows that
there exists an (A, G) of Σ and Q and a (τ,Q)-spanning set in (A, G) so that 1

τ
log2N (S) ≤

R(H). We use Lemma 1 to see that rinv(nτ,A, G,Σ) ≤ nrinv(τ,A, G,Σ) so that h(A, G) =
limn→∞

1
nτ

log2 rinv(nτ,A, G,Σ) ≤ 1
τ

log2 rinv(τ,A, G,Σ) ≤ 1
τ

log2N (S). By the choice of
H we obtain 2ε+ infH∈HR(H) ≥ R(H) ≥ hinv(Q,Σ). Since this holds for arbitrary ε > 0
we arrive at the desired inequality.

We continue with the inequality hinv(Q,Σ) ≥ infH∈HR(H). If hinv(Q,Σ) = ∞ the
inequality trivially holds and subsequently we consider hinv(Q,Σ) < ∞. We fix ε >
0 and pick an invariant cover (A, G) of (Σ, Q) so that h(A, G) < hinv(Q,Σ) + ε. We
pick τ ∈ N so that 1

τ
log2 rinv(τ,A, G,Σ) < h(A, G) + ε. Let S be (τ,Q)-spanning set

that satisfies rinv(τ,A, G,Σ) = N (S). It follows from Lemma 8 that there exists a Q-
admissible coder-controller H so that 1

τ
log2N (S) ≥ R(H) holds, and hence, we obtain 2ε+

hinv(Q,Σ) ≥ R(H). This inequality holds for any ε > 0, which implies that hinv(Q,Σ) ≥
infH∈HR(H).

2.5 Uncertain Linear Control Systems

We derive a lower bound of the invariance feedback entropy of uncertain linear control
systems (2.2) and compact sets Q. In this setting, we also derive a lower bound of the data
rate of any static or memoryless coder-controller. Similar to [60, Section II], we employ
the Brunn-Minkowsky inequality to obtain a lower bound on the growth of the size of the
uncertainty set of the state at the controller side in one time step. For the general case, we
use this inequality to derive a lower bound on the expansion number, which in turn leads to
the entropy. For static coder-controllers the derivation of the lower bound is substantially
simpler, see the proof of [60, Thm 1] and the proof of Theorem 8.

2.5.1 Universal lower bound

Theorem 7. Consider the matrices A ∈ Rn×n, B ∈ Rn×m and two nonempty measurable
sets W,Q ⊆ Rn with µ(W ) < µ(Q) and suppose that Q is compact. Let Σ be given by
X = Rn, U ⊆ Rm with U 6= ∅ and F according to

∀x∈X∀u∈U F (x, u) = Ax+Bu+W. (2.24)

Let Rn = E1 ⊕ E2, where E1 is an A invariant subspace of Rn with E1 6= {0}, and ⊕
stands for the direct sum. Let π1 : Rn → E1 be the projection onto E1 along E2, and2

µ1(π1W ) < µ1(π1Q), also let n1 = dim(E1) and µ1 denote the n1-dimensional Lebesgue
measure. Then, the invariance feedback entropy of Σ and Q satisfies

log2

(
| detA|E1|

µ1(π1Q)

(µ1(π1Q)1/n1 − µ1(π1W )1/n1)n1

)
≤ hinv(Q,Σ). (2.25)

2Since map π1 is linear, we use notation π1A instead of π1(A), ∀A ⊆ Rn, for the sake of simpler
presentation.
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Proof. Let us first point out that every compact set has finite Lebesgue measure.
If | detA|E1| = 0 the left-hand-side is −∞ and (2.25) holds. In the remainder we

consider the case | detA|E1| > 0. If hinv(Q,Σ) =∞ the inequality (2.25) holds independent
of the left-hand-side and subsequently we assume that hinv(Q,Σ) < ∞. We pick ε ∈ R>0

and an invariant cover (C, H) of (Σ, Q), so that h(C, H) ≤ hinv(Q,Σ)+ε. Given Theorem 5,
we can assume that the cover elements of C are closed, which yields by the compactness of
Q that the cover elements are compact and therefore Lebesgue measurable.

We fix τ ∈ N and pick a (τ,Q)-spanning set S so that rinv(τ, C, H,Σ) = N (S), which
exists, since for fixed τ , the number of (τ,Q)-spanning set is finite.

We are going to show that there exists α ∈ S that satisfies(
| detA|E1|

µ1(π1Q)

(µ1(π1Q)1/n1 − µ1(π1W )1/n1)n1

)τ
≤

τ−1∏
t=0

#PS(α|[0;t]). (2.26)

We construct α ∈ S iteratively over t ∈ [0; τ [. For t = 0 we introduce S0 := {α(0) | α ∈ S}
and define

m0 := max{µ1(π1α(0))
1/n1 | α ∈ S}.

We pick Ω0 ∈ S0 so that m0 = µ1(π1Ω0)1/n1 . For t ∈ [1; τ − 1[ we set αt′ := Ω0 · · ·Ωt′ for
t′ ∈ [0; t] and assume that Ωt′ ∈ PS(α|[0;t′[) and µ1(π1Ωt′)

1/n1 = mt′ holds for all t′ ∈ [1; t]
where

mt′ := max{µ1(π1Ω)
1/n1 | Ω ∈ PS(α|[0;t′[)}.

Then we set mt+1 := max{µ1(π1Ω)1/n1 | Ω ∈ PS(α|[0;t+1[)} and pick Ωt+1 ∈ PS(α|[0;t+1[) so
that mt+1 = µ1(π1Ωt+1)1/n1 . For t = τ − 1 we obtain a sequence α := Ω0 · · ·Ωτ−1 that is
an element of S. Hence, it follows from (2.5) that α satisfies for all t ∈ [0; τ [ the inclusion

π1

(
Aα(t) +BH(α(t)) +W

)
⊆ π1

(⋃
Ω∈PS(α|[0;t]) Ω

)
. (2.27)

For t ∈ [0; τ − 1[, we use the Brunn-Minkowsky inequality for compact, measurable sets [34]

µ1(π1Aα(t))
1/n1 + µ1(π1W )

1/n1 ≤ µ1(π1Aα(t) + π1BH(α(t)) + π1W )
1/n1

and the equality [72]

µ(Aα(t))
1/n = | detA|1/nµ(α(t))

1/n

together with µ1(π1α(t))1/n1 = mt and (2.27), to derive

| detA|E1|
1/n1mt + µ1(π1W )

1/n1 ≤ mt+1(#PS(α|[0;t+1[))
1/n1 (2.28)

for all t ∈ [0; τ − 1[. Note that we also used the fact that E1 is A invariant to show
inequality (2.28). Also, for every t ∈ [0; τ [ we have

| detA|E1|
1/n1mt + µ1(π1W )

1/n1 ≤ µ1(π1Q)
1/n1 (2.29)



2.5 Uncertain Linear Control Systems 27

since Aα(t) + BH(α(t)) + W ⊆ Q which follows from the fact that α(t) ∈ C and (C, H)
is an invariant cover. To ease the notation, let us introduce N0 := (#PS(α))1/n1 and
Nt := (#PS(α|[0;t[))

1/n1 for t ∈ [1; τ [. We use induction over τ ′ ∈ [0; τ [ to show(
| detA|E1|

1/n1
µ1(π1Q)1/n1

µ1(π1Q)1/n1 − µ1(π1W )1/n1

)τ ′+1

≤
τ ′∏
t=0

Nt. (2.30)

Let us show (2.30) for τ ′ = 0. Since PS(α) is a cover of Q and #PS(α)1/n1 = N0 we obtain

µ1(π1Q)
1/n1 ≤ m0N0. (2.31)

From (2.29) we obtain m0 ≤ (µ1(π1Q)1/n1 − µ1(π1W )1/n1)/| detA|E1 |
1/n1 and (2.30) follows

for τ ′ = 1.
If τ = 1 we have shown (2.30) and subsequently we consider τ > 1. We fix τ ′′ ∈ [1; τ [

and assume that (2.30) holds for all τ ′ ∈ [0; τ ′′[. We use (2.28) recursively to derive

m0 ≤
mτ ′′

| detA|E1|τ
′′/n1

( τ ′′∏
t=1

Nt

)
−

τ ′′∑
t=1

µ1(π1W )1/n1

| detA|E1|t/n1

t−1∏
t′=1

Nt′ (2.32)

with the convention that
∏b

t=a xt = 1 for b < a. Using (2.31) and rearranging the terms in
(2.32) we obtain

µ1(π1Q)
1/n1 +

τ ′′∑
t=1

µ1(π1W )1/n1

| detA|E1|t/n1

t−1∏
t′=0

Nt′ ≤
mτ ′′

| detA|E1|τ
′′/n1

τ ′′∏
t=0

Nt. (2.33)

We invoke the induction hypothesis and use the inequality∏t−1
t′=0 Nt′ ≥ ((| detA|E1|µ1(π1Q))1/n1/(µ1(π1Q)1/n1 − µ1(π1W )1/n1))t to derive

µ1(π1Q)
1/n1 +

τ ′′∑
t=1

µ1(π1W )1/n1µ1(π1Q)t/n1

(µ1(π1Q)1/n1 − µ1(π1W )1/n1)t
≤ mτ ′′

| detA|E1|τ
′′/n1

τ ′′∏
t=0

Nt. (2.34)

From Lemma 10 (given in the Appendix) it follows that the left-hand-side of (2.34) eval-
uates to

µ1(π1Q)
1/n1 +

τ ′′∑
t=1

µ1(π1W )1/n1µ1(π1Q)t/n1

(µ1(π1Q)1/n1 − µ1(π1W )1/n1)t
=

µ1(π1Q)(τ ′′+1)/n1

(µ1(π1Q)1/n1 − µ1(π1W )1/n1)τ ′′
. (2.35)

We combine mτ ′′ ≤ (µ1(π1Q)1/n1 − µ1(π1W )1/n1)/| detA|E1|
1/n1 (that follows from (2.29))

with (2.34) and (2.35) to get

µ1(π1Q)(τ ′′+1)/n1

(µ1(π1Q)1/n1 − µ1(π1W )1/n1)τ ′′
≤ µ1(π1Q)1/n1 − µ1(π1W )1/n1

| detA|E1 |(τ
′′+1)/n1

τ ′′∏
t=0

Nt (2.36)
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which shows that (2.30) holds for τ ′ = τ ′′. Hence, (2.30) holds for all τ ′ ∈ [0; τ [. In
particular, for τ ′ = τ − 1 and we conclude that (2.26) holds.

Inequality (2.26) together with the definition of N (S) yields(
| detA|E1|

µ1(π1Q)

(µ1(π1Q)1/n1 − µ1(π1W )1/n1)n1

)τ
≤ N (S) = rinv(τ, C, H,Σ)

where the equality follows by our choice of S. From (2.7) we get

log2

(
| detA|E1|

µ1(π1Q)

(µ1(π1Q)1/n1 − µ1(π1W )1/n1)n1

)
≤ h(C, H) ≤ hinv(Q,Σ) + ε (2.37)

which implies (2.25) since (2.37) holds for every ε > 0.

Remark 1. Let spec(A) denote the spectrum of A, Eλ denote the eigenspace of A asso-
ciated with λ ∈ spec(A) and B ⊆ spec(A). In Theorem 7 if E1 =

⊕
λ∈B Eλ, then a good

choice of E1 will be the one that gives the largest lower bound in (2.25).

Remark 2. Note that the lower bound, i.e., the left-hand-side of inequality (2.25), is
invariant under coordinate transformation. Let z = Tx for some invertible matrix T ∈
Rn×n so that the transition function F̄ of the system in the new coordinates is

F̄ (z, u) = TAT−1z + TBu+ TW (2.38)

and Q̄ = TQ. Let Ēi = TEi, i ∈ {1, 2}, π̄1 : Rn → Ē1 be the projection on Ē1 along Ē2.
Then we obtain

| det(TAT−1)|Ē1
| µ1(π̄1TQ)

(µ1(π̄1TQ)1/n1 − µ1(π̄1TW )1/n1)n1
=

| detA|E1|
µ1(Tπ1Q)

(µ1(Tπ1Q)1/n1 − µ1(Tπ1W )1/n1)n1
=

| detA|E1|
µ1(π1Q)

(µ1(π1Q)1/n1 − µ1(π1W )1/n1)n1
.

When W is a singleton set, by taking E1 as the unstable subspace, we get the largest
lower bound in (2.25) which recovers the well-known value of the invariance entropy
[38, Th. 3.1] for deterministic linear control systems, i.e., the invariance entropy equals
log2 | detA|E1|. This matches also other results known from stabilization with rate limited
feedback [73].

2.5.2 Static coder-controllers

We restrict our attention to static coder-controllers and derive a lower bound of the data
rate of such coder-controllers.

Let (C, H) be an invariant cover of (2.3) and a nonempty set Q ⊆ X. We define the
data rate of (C, H) by

R(C, H) := log2
#C. (2.39)
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The definition is motivated by the fact that any invariant cover (C, H) immediately provides
a static or memoryless coder-controller scheme: given x ∈ Q at the coder side, it is sufficient
that the coder transmits one of the cover elements C ∈ C that contains the current state
x ∈ C, to ensure that the controller is able to confine the successor states of x to Q, i.e.,

Ax+BH(C) +W ⊆ Q. (2.40)

The number of different cover elements that need to be transmitted via the digital, noiseless
channel at any time t > 0 is bounded by #C. Neither the coder nor the controller requires
any past information for a correct functioning. Hence, we speak of (C, H) as static or
memoryless coder-controller for (X,U, F ).

The next result provides a lower bound on the data rate of any static coder-controller.

Theorem 8. Consider the matrices A ∈ Rn×n, B ∈ Rn×m and two nonempty measurable
sets W,Q ⊆ Rn with µ(W ) < µ(Q) and suppose that Q is compact. Let Σ in (2.3) be given
by X = Rn, U ⊆ Rm with U 6= ∅, F according to (2.24), E1, E2, µ1, n1 and π1 as in
Theorem 7 and µ1(π1W ) < µ1(π1Q). Then, we have

log2

⌈
| detA|E1 |

µ1(π1Q)

(µ1(π1Q)1/n1 − µ1(π1W )1/n1)n1

⌉
≤ inf

(C,H)
R(C, H) (2.41)

where we take the infimum over all invariant covers (C, H) of (Σ, Q).

Proof. If | detA|E1| = 0 the left-hand-side of (2.41) evaluates to −∞ so that (2.41) holds.
Let us consider | detA|E1 | > 0. If the right-hand-side of (2.41) evaluates to ∞ nothing
needs to be shown and we consider inf(C,H) R(C, H) < ∞. Since inf(C,H) R(C, H) is finite,
there exists an invariant cover (D, G) of (Σ, Q). Let (C, H) be the invariant cover with
closed cover elements as constructed from (D, G) in Theorem 5. Then (C, H) is an
invariant cover of (Σ, Q) and we have R(C, H) ≤ R(D, G).

As (C, H) is an invariant cover of (Σ, Q), we have for every Ω ∈ C the inclusion

π1(AΩ +BH(Ω) +W ) ⊆ π1Q. (2.42)

We use the Brunn-Minkowsky inequality for compact, measurable sets (see proof of The-
orem 7) together with the identity [72] µ(AΩ)1/n = | detA|1/nµ(Ω)1/n to derive
| detA|E1|

1/n1µ1(π1Ω)1/n1 + µ1(π1W )1/n1 ≤ µ1(π1Q)1/n1 which yields the bound

µ1(π1Ω)
1/n1 ≤ µ1(π1Q)1/n1 − µ1(π1W )1/n1

| detA|E1|1/n1
. (2.43)

As #C is an upper bound on the number of cover elements needed to cover F (Ω, H(Ω)),
we have

µ1(π1Q)
1/n1 ≤ (#C)1/n1 max{µ1(π1Ω)

1/n1 | Ω ∈ C}. (2.44)

We use (2.43) (which holds for every Ω ∈ C) in (2.44) and rearrange the result to obtain

| detA|E1|
1/n1

µ1(π1Q)1/n1

µ1(π1Q)1/n1 − µ1(π1W )1/n1
≤ (#C)1/n1 .

Since this inequality holds for every invariant cover (C, H), we obtain (2.41).
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It is easy to bound the difference between the universal lower bound in (2.25) and the
lower bound of data rates for static coder-controllers in (2.41) so that we arrive at the
following corollary, which allows us to quantify the performance loss due to the restriction
to static coder-controllers.

Corollary 1. In the context and under the assumptions of Theorem 8, let a ∈ R≥0 be given
by

a := | detA|E1|
µ1(π1Q)

(µ1(π1Q)1/n1 − µ1(π1W )1/n1)n1
.

Suppose that a < ∞ and there exists an invariant cover (C, H) of (Σ, Q) with R(C, H) =
log2dae. Then, the data rate R of (C, H) satisfies

R ≤ hinv(Q,Σ) + 1. (2.45)

Proof. Let b ∈ [0, 1[ be so that a + b = dae. We use a ≤ 2hinv(Q,Σ) and 0 ≤ hinv(Q,Σ) to
derive

R = log2(a+ b) ≤ log2(2hinv(Q,Σ) + b)

≤hinv(Q,Σ) + log2(1 + 2−hinv(Q,Σ))

≤hinv(Q,Σ) + 1.

2.5.3 Tightness of the lower bounds

We show for a particular class of scalar linear difference inclusions of the form

ξ(t+ 1) ∈ aξ(t) + ν(t) + [w1, w2] (2.46)

with a ∈ R6=0, w1, w2 ∈ R and w1 ≤ w2 that the lower bounds established in the previous
subsections are tight.

Subsequently, we assume that Q is given as an interval containing [w1, w2]

Q := [q1, q2], q1, q2 ∈ R, q1 < w1, w2 < q2.

We are going to construct a static coder-controller (C, H) and show that its data rate
equals the lower bound in Theorem 8. To this end, we introduce

∆q := q2 − q1, ∆w := w2 − w1,

qc := (q2 + q1)/2 and wc := (w2 + w1)/2
(2.47a)

and consider

m :=

⌈
|a| ∆q

∆q −∆w

⌉
and d :=

∆q

m
. (2.47b)

Given qc and d, we introduce the intervals Λi ⊆ R, i ∈ Z

Λi :=

{
qc + [id, (i+ 1)d] if m is even

qc +
[
(i− 1

2
)d, (i+ 1

2
)d
]

if m is odd
(2.47c)
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which we use to define
C := {Λi ∩Q | Λi ∩ (intQ) 6= ∅}. (2.47d)

The control function follows for every Ci ∈ C by

H(Ci) := qc − aqc − wc −

{
ad(i+ 1

2
) if m is even

adi if m is odd.
(2.47e)

For this construction of (C, H), we have the following result.

Theorem 9. Consider the scalars a ∈ R6=0, w1, q1, w2, q2 ∈ R with q1 < w1 ≤ w2 < q2. Let
Σ in (2.3) be given by X = U = R and F by F (x, u) = ax + u + [w1, w2]. Then, (C, H)
defined in (2.47) is an invariant cover of (Σ, [q1, q2]) and we have

log2

⌈
|a| ∆q

∆q −∆w

⌉
= R(C, H). (2.48)

Proof. We show the theorem for odd m. The case for even m, follows along the same
arguments. It is rather straightforward to show that C is a cover of Q and subsequently
we show that #C = m. Note that i > m/2 − 1/2 implies that the left limit of Λi satisfies
qc + (i− 1

2
)d ≥ qc +m/2d = q2, which shows that i > m/2− 1/2 implies Λi ∩ (intQ) = ∅.

Similarly, i < −m/2+1/2 implies Λi∩(intQ) = ∅, and we see that Λi∩(intQ) 6= ∅ implies
−m/2 + 1/2 ≤ i ≤ m/2− 1/2 so that #C ≤ m holds.

We continue to show that F (Ci, H(Ci)) ⊆ [q1, q2] holds for every Ci ∈ C. Given (2.47e)
we obtain for F (Ci, H(Ci)) the interval

a((qc + d
[
i− 1

2
, i+ 1

2

]
) ∩Q) + qc − aqc − wc − adi+ [w1, w2]

which is a subset of I := qc + |a|d
2
[−1, 1] + ∆w

2
[−1, 1]. Let us show that I ⊆ Q. Since I is

centered at qc, it is sufficient to show |a|d/2 + ∆w/2 ≤ ∆q/2. Note that m ≥ |a|∆q/(∆q−∆w)
so that d ≤ (∆q−∆w)/|a| follows and we obtain the desired inequality |a|d/2 + ∆w/2 ≤ ∆q/2

which shows F (Ci, H(Ci)) ⊆ [q1, q2]. Hence (C, H) is an invariant cover with R(C, H) ≤
log2m, which together with the inequality in Theorem 8 shows the assertion.

Example 2 (Continued). Let us recall the linear system in Example 2 with a = 1/2,
W = [−3, 3] and Q = [−4, 4]. For this case, m = 2 and d = 4. The cover elements of C are
given according to (2.47c) by

C−1 = [−4, 0] and C0 = [0, 4].

The inputs follow according to (2.47e) by

H(C−1) = 1 and H(C0) = −1.

The data rate of (C, H) is given by log2 2 = 1 bits per time unit.

We can use Corollary 1 to conclude that the performance loss due to the restriction to
static coder-controllers in Example 2 is no larger than 1 bit/time unit. However, for this
example, and in general for scalar systems of the form (2.46) for which |a|∆q/(∆q −∆w)
is in N, we see that the data rate of the proposed static coder-controller matches the
best possible data rate hinv(Q,Σ) since in this case R(C, H) equals the lower bound in
Theorem 7.
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Chapter 3

Compositional quantification of IFE

3.1 Introduction

In systems theory, a large system is often represented as an interconnected network of
smaller subsystems. Such a representation is then utilized to establish properties on the
network through the study of the subsystems.

In this chapter, we once again consider discrete-time uncertain control systems de-
scribed by difference inclusions. The main theorem of the chapter establishes an upper
bound of the IFE of a network of interconnected control subsystems in terms of the IFEs
of smaller subsystems.

To the best of our knowledge, this is the first work on compositionally quantifying a
notion of entropy for interconnected control systems. Although, the results in [43] also talk
about networks of systems, in [43], subsystems are fully isolated and they are not intercon-
nected physically to each other. Further, the results in [43] only deal with deterministic
systems, whereas we deal with general nondeterministic systems.

In addition, there is no work so far on the design of coder-controllers with the data
rate close to the IFE, though only for scalar linear systems (see Subsection 2.5.3). One
can leverage results of this chapter to provide coder-controllers for multi-dimensional linear
control systems by looking at them as interconnections of scalar subsystems (if possible);
see the second case study in Subsection 3.4.2.

3.1.1 Contributions

The contents of this chapter have been published in the journal IEEE Control Systems
Letters [76]. It is a joint work with Prof. Majid Zamani. The results were established and
written by myself. Prof. Majid Zamani supervised the work.

In this chapter we deal with the IFE of networks composed of smaller subsystems and
seek to quantify the IFE of the network using those of smaller subsystems. For a network
Σ composed of subsystems Σ(i), 1 ≤ i ≤ n, and a nonempty set Q, which is a Cartesian
product of Q(i) for subsystems Σ(i), we provide an upper bound of the IFE in terms of the
IFEs of systems Σ̄(i) which have a much lower dimensional state space and, thus, easier to
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deal with. The system Σ̄(i) is derived from the subsystem Σ(i) by considering the states of
the other subsystems Σ(j), j 6= i, as disturbances. We also present three technical results
related to IFE. First, given a nonempty set Q and a finite partition of it, we show that
the IFE of Σ and Q is upper bounded by the largest IFE of Σ and any member in the
partition. The second result relates the IFE of two uncertain systems Σ1 and Σ2 which are
identical except for their transition functions. The set valued transition functions F1 and
F2 of the two systems are such that the image of any state-input pair under F1 is a subset
of that under F2. Clearly, the dynamics of Σ2 involves larger uncertainty. For a given Q,
we show that the IFE of Σ1 cannot be greater than that of Σ2. The third result states that
the IFE of any new system created by reducing the set of control inputs cannot be smaller
than that of the original system. Further, via an example, we show that the upper bound,
computed compositionally, is tight for some systems. Finally, to illustrate the effectiveness
of the results, we compute an upper bound and a lower bound of the IFE of a network of
uncertain, linear, discrete-time subsystems describing the evolution of temperatures of 100
rooms in a circular building.

3.2 Some more properties of the IFE

3.2.1 Partition of Q

The following proposition states that the IFE of a system Σ and a nonempty set Q cannot
be greater than the largest IFE of Σ and any member of a finite partition of Q.

Proposition 1. Consider the system in (2.3) and a nonempty set Q ⊆ X and assume that
{Q1, . . . , Qn} is a partition of Q for some n ∈ N (i.e., Q = ∪ni=1Qi). Then:

hinv(Q,Σ) ≤ max
i∈[1;n]

hinv(Qi,Σ). (3.1)

Proof. If for some i ∈ [1;n], hinv(Qi,Σ) = ∞ then (3.1) holds trivially, hence we assume
hinv(Qi,Σ) < ∞ for all i ∈ [1;n]. From Lemma 3, for i ∈ [1;n], when hinv(Qi,Σ) is finite
we have the existence of an invariant cover (Ai, Gi) of (Σ, Qi). Consider A := ∪i∈[1;n]Ai,
then for A ∈ A, #{Ai | Ai 3 A, i ∈ [1;n]} = 1 as {Q1, . . . , Qn} is a partition of Q.
We define G : A → U by G(A) = Gi(A) if A ∈ Ai. Since (Ai, Gi) is an invariant
cover, for any A ∈ Ai we have F (A,G(A)) = F (A,Gi(A)) ⊆ Qi ⊆ Q. Thus (A, G)

is an invariant cover of (Σ, Q). For τ ∈ N, let Si ⊆ A[0;τ [
i be a (τ,Qi)-spanning set in

(Ai, Gi) such that N (Si) = rinv(τ,Ai, Gi,Σ). The set S := ∪i∈[1;n]Si is (τ,Q)-spanning
in (A, G) as {Q1, . . . , Qn} covers Q and Si is (τ,Qi)-spanning in (Ai, Gi). Then, the
expansion number for the set S is N (S) = maxα∈S

∏τ−1
t=0

#PS(α|[0;t]) = maxi∈[1;n]N (Si)
= maxi∈[1;n] rinv(τ,Ai, Gi,Σ). Thus, rinv(τ,A, G,Σ) ≤ maxi∈[1;n] rinv(τ,Ai, Gi,Σ) which
concludes (3.1).
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3.2.2 Systems with higher uncertainty

Consider two systems that are identical except for the transition function. The second
system is such that, for every state action pair, the value of its transition function is
a superset of that of the first system. In other words, the two systems are identical
except that the second system has higher uncertainty. The next result shows that as the
uncertainty in the system increases, the IFE also increases.

Proposition 2. Consider two systems Σ1 and Σ2 of the form (2.3) with X1 = X2 = X,
U1 = U2 = U and F1(x, u) ⊆ F2(x, u) for all x ∈ X, u ∈ U . For a nonempty set Q ⊆ X,
the invariance feedback entropies of the two systems are related as

hinv(Q,Σ1) ≤ hinv(Q,Σ2). (3.2)

Proof. Without loss of generality, we assume that hinv(Q,Σ2) is finite. From Lemma 3, we
know that there exists an invariant cover (A, G) of (Σ2, Q). For τ ∈ N, let S ⊆ A[0;τ [ be
a (τ,Q)-spanning set in (A, G) for Σ2 such that N (S) = rinv(τ,A, G,Σ2). Since for every
x ∈ X, u ∈ U we have F1(x, u) ⊆ F2(x, u), S is also (τ,Q)-spanning in (A, G) for Σ1. Thus,
if rinv(τ,A, G,Σ1) is the smallest expansion number for any (τ,Q)-spanning set in (A, G)
for Σ1, then rinv(τ,A, G,Σ1) ≤ N (S) = rinv(τ,A, G,Σ2). Hence, we obtain (3.2).

3.2.3 Smaller set of control inputs

If the set of control inputs is reduced, then the entropy of the new system cannot be less
than that of the original. The next proposition formalizes this statement.

Proposition 3. Consider two systems Σ1 and Σ2 of the form (2.3) with X1 = X2 = X,
U1 ⊇ U2 and F1 = F2 = F . For a nonempty set Q ⊆ X, the following holds

hinv(Q,Σ1) ≤ hinv(Q,Σ2).

Proof. Let hinv(Q,Σ2) < ∞. From Lemma 3, we have the existence of an invariant cover
(A, G) of (Σ2, Q). For τ ∈ N, let S ⊆ A[0;τ [ be a (τ,Q)-spanning set in (A, G) for Σ2 such
that it has the smallest expansion number, i.e., N (S) = rinv(τ,A, G,Σ2). Clearly (A, G) is
also an invariant cover of (Σ1, Q) and S is also a (τ,Q)-spanning set for Σ1. This leads to
rinv(τ,A, G,Σ1) = N (S) and therefore the entropy of the invariant cover (A, G) is equal
for both the systems, i.e., hΣ2(A, G) = hΣ1(A, G). For i ∈ 1, 2, let Ci denote the set of all
invariant covers of (Σi, Q). Because U2 ⊆ U1, clearly we have C2 ⊆ C1. Thus from (2.8) we
obtain hinv(Q,Σ1) ≤ hinv(Q,Σ2).

In the following section, we consider a network of uncertain control subsystems and a
subset Q of its state set, and provide an upper bound of its IFE in terms of the IFEs of
smaller subsystems.
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Σ(1)

Σ(n)

M

Controller Coder

Σ Σ̄(1)

Controller Coder

Channel

Channel

hinv(Q(1), Σ̄(1))

hinv(Q(n), Σ̄(n))

hinv(Q,Σ) ≤
∑n

i=1 hinv(Q(i), Σ̄(i))

Σ̄(n)

Controller CoderChannel

Figure 3.1: An interconnected control system Σ is composed of n subsystems Σ(i) with M
as the interconnection map. The smaller systems Σ̄(i) are obtained from subsystems Σ(i)

as per (3.4). State of Σ is desired to be kept invariant within the set Q = Q(1)×· · ·×Q(n).
The channel between the coder and controller is assumed to be digital and noiseless with
finite bit-rate.

3.3 Networks of uncertain control systems

Consider a discrete-time control system Σ composed of n subsystems Σ(1), . . . ,Σ(n):

Σ : xk+1 ∈ F (xk, uk),

Σ(i) : x
(i)
k+1 ∈ F

(i)(xk, u
(i)
k ),

(3.3)

where xk = (x
(1)
k , . . . , x

(n)
k ) ∈ X, X = X(1) × · · · ×X(n), U = U (1) × · · · × U (n), F (i) : X ×

U (i) ⇒ X(i), F : X × U ⇒ X, and F (xk, uk) = F (1)(xk, u
(1)
k )× · · · × F (n)(xk, u

(n)
k ).

Let Q(i) be a nonempty subset of X(i) and Q = Q(1) × · · · ×Q(n).

Given subsystems Σ(i), we define new subsystems Σ̄(i) by considering states x(j), j 6= i,
as bounded disturbances lying in the sets Q(j):

Σ̄(i) : x
(i)
k+1 ∈ F̄

(i)
(
x

(i)
k , u

(i)
k

)
, (3.4)

where F̄ (i) : X(i) × U (i) ⇒ X(i),
F̄ (i)

(
x

(i)
k , u

(i)
k

)
:= F (i)

(
Q(1) × · · · ×Q(i−1) × {x(i)

k } ×Q(i+1) × · · · ×Q(n), u
(i)
k

)
.

For such a network Σ and a set Q = Q(1) × · · · ×Q(n), the following theorem presents
an upper bound of the IFE of Σ and Q in terms of the IFEs of the smaller systems Σ̄(i)

and Q(i).
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Theorem 10. For Σ as in (3.3), Σ̄(i) as in (3.4) and the set Q ⊆ X as Q = Q(1)×· · ·×Q(n),
Q(i) 6= ∅, the following holds:

hinv(Q,Σ) ≤
n∑
i=1

hinv(Q
(i), Σ̄(i)). (3.5)

Proof. If for any i ∈ [1;n], hinv(Q(i), Σ̄(i)) =∞, then the inequality (3.5) holds. Hence, we
assume that hinv(Q(i), Σ̄(i)) <∞, for each i ∈ [1;n]. Then from Lemma 3, we conclude the
existence of an invariant cover for (Σ̄(i), Q(i)). For ε > 0, let (A(i), G(i)) be an invariant
cover of (Σ̄(i), Q(i)) such that

h(A(i), G(i)) ≤ hinv(Q(i), Σ̄(i)) + ε/n.

In the following, we denote by πXi : X → X(i) and πUi : U → U (i) the projection to the
i-th component of the state set and the input set, respectively.

Let us define A := {A(1) × · · · × A(n) | A(i) ∈ A(i), i = 1, . . . , n} and for A ∈ A define
G(A) := (G(1)(πX1 A), . . . , G(n)(πXn A)). For i ∈ [1;n], from the definition of F̄ (i), we have
F (i)(A, πUi G(A)) ⊆ F̄ (i)(πXi A, π

U
i G(A)) = F̄ (i)(πXi A,G

(i)(πXi A)). Since (A(i), G(i)) is an
invariant cover of (Σ̄(i), Q(i)), we have F̄ (i)(πXi A,G

(i)(πXi A)) ⊆ Q(i) and therefore,

F (A,G(A)) = F (1)(A, πU1 G(A))× · · · × F (n)(A, πUnG(A)) ⊆ Q,

Thus, (A, G) is an invariant cover of (Σ, Q).
Let S(i) ⊆ A(i)[0;τ [ be a (τ,Q(i))-spanning set in (A(i), G(i)) with minimal expansion

number, i.e., N (S(i)) = rinv(τ,A(i), G(i), Σ̄(i)). Then, {α(i)(0) | α(i) ∈ S(i)} covers Q(i) and
for all α(i) ∈ S(i), t ∈ [0; τ − 1[, we have

F̄ (i)
(
α(i)(t), G(i)(α(i)(t))

)
⊆

⋃
A∈PS(i) (α(i)|[0;t])

A. (3.6)

Consider S :=
{(
α(1)(t)×· · ·×α(n)(t)

)τ−1

t=0
|
(
α(i)(t)

)τ−1

t=0
∈ S(i), i = 1, . . . , n

}
. Let α ∈ S

such that α(t) = α(1)(t) × · · · × α(n)(t) for 0 ≤ t ≤ τ − 1 where α(i) ∈ S(i). Then, the set
of successor elements of the sequence α|[0;t] with respect to the set S is

PS(α|[0;t]) =
{
A1 × · · · × An | Ai ∈ PS(i)(α(i)|[0;t]), i ∈ [1;n]

}
.

We observe that( ⋃
A1∈PS(1) (α(1)|[0;t])

A1

)
×
( ⋃
A2∈PS(2) (α(2)|[0;t])

A2

)
× · · · ×

( ⋃
An∈PS(n) (α(n)|[0;t])

An

)

=
⋃

A1∈PS(1) (α(1)|[0;t])

A1 ×
( ⋃
A2∈PS(2) (α(2)|[0;t])

A2

)
× · · · ×

( ⋃
An∈PS(n) (α(n)|[0;t])

An

)
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=
⋃

A1∈PS(1) (α(1)|[0;t])
A2∈PS(2) (α(2)|[0;t])

A1×A2×
( ⋃
A3∈PS(3) (α(3)|[0;t])

A3

)
× · · · ×

( ⋃
An∈PS(n) (α(n)|[0;t])

An

)
=

⋃
A1∈PS(1) (α(1)|[0;t])

...
An∈PS(n) (α(n)|[0;t])

(A1 × · · · × An)

=
⋃

A∈PS(α|[0;t])

A. (3.7)

From the definition of F̄ (i) and (3.6), we have

F (i)(α(t), πUi G(α(t))) ⊆ F̄ (i)(α(i)(t), G(i)(α(i)(t)))

⊆
⋃

A∈PS(i) (α(i)|[0;t])

A. (3.8)

From the definition of F , we have

F (α(t), G(α(t))) = F (1)(α(t), πU1 G(α(t)))× · · · × F (n)(α(t), πUnG(α(t))).

The equation above together with (3.8) and (3.7) give

F (α(t), G(α(t))) ⊆
⋃

A∈PS(α|[0;t])

A.

Thus, S is (τ,Q)-spanning for Σ in (A, G).
For t ∈ [0; τ − 1], we observe that

#PS(α|[0;t]) = #PS(1)(α
(1)|[0;t]) · . . . · #PS(n)(α

(n)|[0;t]),
τ−1∏
t=0

#PS(α|[0;t]) =
τ−1∏
t=0

#PS(1)(α
(1)|[0;t]) · . . . ·

τ−1∏
t=0

#PS(n)(α
(n)|[0;t]),

max
α∈S

τ−1∏
t=0

#PS(α|[0;t]) = max
α(1)∈S(1)

τ−1∏
t=0

#PS(1)(α
(1)|[0;t]) · . . . · max

α(n)∈S(n)

τ−1∏
t=0

#PS(n)(α
(n)|[0;t]).

Thus, the expansion number of the set S is

N (S) = N (S(1)) · . . . · N (S(n)).

If rinv(τ,A, G,Σ) is the smallest possible expansion number for any (τ,Q)-spanning
set in (A, G), then rinv(τ,A, G,Σ) ≤ N (S) and since N (S(i)) = rinv(τ,A(i), G(i), Σ̄(i)) by
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assumption, we obtain

rinv(τ,A, G,Σ) ≤
n∏
i=1

rinv(τ,A(i), G(i), Σ̄(i)),

1

τ
log rinv(τ,A, G,Σ) ≤ 1

τ

n∑
i=1

log rinv(τ,A(i), G(i), Σ̄(i)),

hinv(Q,Σ) ≤
n∑
i=1

hinv(Q(i), Σ̄(i)) + ε.

Since ε is arbitrary, we get

hinv(Q,Σ) ≤
n∑
i=1

hinv(Q(i), Σ̄(i)),

as desired.

In the next section, we demonstrate by an example that the bound in (3.5) is tight.

3.4 Examples

In this section, we present two case studies, the first of which demonstrates that the bound
in (3.5) is tight, and the other one describes the compositional computation of an upper
bound and a lower bound of the IFE for a linear, discrete-time, uncertain model describing
the evolution of room temperatures in a circular building with 100 rooms.

3.4.1 Tightness

The following example shows that the bound in (3.5) is tight.
Consider system Σ as

Σ : xk+1 ∈ Axk + uk +W, A =

0.5 0 0
0 0.75 0
0 0 2

 ,
with i ∈ [1; 3], Q(i) = [−4, 4], W (i) = [−3, 3], U (i) = [−7, 7], U = U (1) × U (2) × U (3),
Q = Q(1) ×Q(2) ×Q(3), and the disturbance set W = W (1) ×W (2) ×W (3). The dynamics
of each state can be considered as a scalar subsystem

Σ̄(1) : x
(1)
k+1 ∈ 0.5x

(1)
k + u

(1)
k +W (1),

Σ̄(2) : x
(2)
k+1 ∈ 0.75x

(2)
k + u

(2)
k +W (2),

Σ̄(3) : x
(3)
k+1 ∈ 2x

(3)
k + u

(3)
k +W (3),
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where x
(i)
k and u

(i)
k denote the i-th component of xk and uk, respectively. For Σ̄(1) and

Q(1), using Theorem 7, we get hinv(Q(1), Σ̄(1)) ≥ 1 and, using Theorems 6 and 9, we get
hinv(Q(1), Σ̄(1)) ≤ 1. Thus hinv(Q(1), Σ̄(1)) = 1. Similarly, we obtain hinv(Q(2), Σ̄(2)) = 1.585
and hinv(Q(3), Σ̄(3)) = 3.

On the other hand, for Σ and Q and using Theorem 7, we get hinv(Q,Σ) ≥ 5.585
and using (3.5), we get hinv(Q,Σ) ≤ 5.585. Thus, hinv(Q,Σ) = 5.585 which shows that
hinv(Q,Σ) attains the upper bound in (3.5).

3.4.2 Computation of an upper and a lower bound for a network
of uncertain control subsystems

Consider the problem of temperature regulation in a circular building with n = 100 rooms,
each equipped with a heater. The temperatures T of the rooms is described by the discrete-
time model adapted from [55] with some modifications:

Σ : T (k + 1) = AT (k) + βT e1 + γT hν(k) + w(k), (3.9)

where A ∈ Rn×n is a matrix with elements {A}i,i = (1 − 2α − β), {A}i,i+1 = {A}i+1,i =
{A}1,n = {A}n,1 = α, ∀i ∈ [1;n− 1], and all other elements are zero, ν(k) ∈ Vn, V =
[−1.35, 0.372], is the input, 1 is the n-dimensional vector with all elements being one,
T e = −1oC is the outside temperature, T h = 50oC is the heater temperature, w(k) ∈ W n,
W = [5.7, 7], is the disturbance, and α, β and γ are the conduction factors given by α = 0.1,
β = 0.045, γ = 0.09. The temperature is desired to be kept invariant in the set Qn where
Q = [19, 21].

Let us denote by Σi the dynamics of the temperature of the i-th room,

Σi : Ti(k + 1) = (1− 2α− β)Ti(k) + α(Ti−1(k) + Ti+1(k)) + βT e + γT hνi(k) + wi(k),

where the subscript i in Ti, νi and wi denotes the i-th-component. Now, we define systems
Σ̄i by considering the states Tj, j 6= i, as disturbances lying within the set Q,

Σ̄i : Ti(k + 1) ∈ (1− 2α− β)Ti(k) + α2Q+ βT e + ui(k) +W, (3.10)

where ui(k) ∈ U := γT hV . With W̄ := 2αQ+ βT e +W , we can rewrite (3.10) as

Σ̄i : Ti(k + 1) ∈ (1− 2α− β)Ti(k) + ui(k) + W̄ .

From Theorems 7, 6, and 9, we obtain 2.3315 ≤ hinv(Q, Σ̄i) ≤ 2.5850. From Theorems 10
and 7, we get 108.3 ≤ hinv(Qn,Σ) ≤ 258.5. Figure 3.2 shows the maximum and minimum
temperature for a closed loop trajectory of Σ under a static memoryless coder-controller
with data rate 258.49.
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Figure 3.2: Maximum and minimum temperature for a trajectory of Σ in (3.9), with an
initial temperature T (0) ∈ Qn, where Q = [19; 21], under a static memoryless coder-
controller, with a channel data rate 258.49, keeping temperature T invariant inside Qn.

3.5 Discussion

In Section 3.3, for a large network of interconnected uncertain control subsystems, to
compute an upper bound of the IFE of the network, we defined new subsystems Σ̄(i) such
that the sum of their IFEs gives us a desired upper bound. Now it is natural to ask, weather
a lower bound of the IFE of the network can also be computed based on the subsystem
IFEs. The example below shows that the IFE of any subsystem Σ̄(i) may not necessarily
lower bound the IFE of the network.

Consider a system Σ as

Σ : xk+1 = Axk + uk, A =

[
2 0.9

0.9 3

]
,

with i ∈ [1; 2], Q(i) = [1, 4], U (i) = [−15, 15], uk ∈ U = U (1) × U (2), and Q = Q(1) ×Q(2).
The dynamics of each state can be considered as a scalar subsystem

Σ̄(1) : x
(1)
k+1 ∈ 2x

(1)
k + u

(1)
k +W,

Σ̄(2) : x
(2)
k+1 ∈ 3x

(2)
k + u

(2)
k +W,

where x
(i)
k and u

(i)
k denote the i-th component of xk and uk, respectively, and W = [0.9, 3.6].

Using Theorems 7 and 9 we get hinv(Q(1), Σ̄(1)) = 4.3219, hinv(Q(2), Σ̄(2)) = 4.9069 and
hinv(Q,Σ) = 2.3757. Thus, the statement that the smallest IFE among the subsystems
lower bounds the IFE of the network may not always hold.
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Chapter 4

Numerical Overapproximation

4.1 Introduction

The invariance entropy for deterministic (IED) and uncertain systems (IFE) are equivalent
in the deterministic case, see Theorem 4. In this chapter, we present algorithms for the
numerical computation of these two quantities.

In the first two sections of this chapter we consider deterministic control systems and
focus on a notion of invariance entropy (IED) which was introduced in [19] as a measure for
the smallest average data rate above which a given compact and controlled invariant subset
Q of the state space can be made invariant. We present the first attempt to numerically
compute upper bounds of invariance entropy. Our approach combines different algorithms.
First, we compute a symbolic abstraction [65] of the given control system over the set Q
and the corresponding invariant controller. Particularly, we subdivide Q into small boxes
and assign control inputs (from a grid on the input set) to these boxes that guarantee
invariance in one time step. This results in a typically huge look-up table whose entries are
the pairs (x, u) of states and control inputs which are admissible for maintaining invariance
of Q. In the second step, the look-up table is significantly reduced by building a binary
decision tree via a decision tree learning algorithm. This tree, in turn, leads to a typically
much smaller partition of Q with one control input assigned to each partition element that
will guarantee invariance of Q in one time step. This data defines a map T : Q → Q to
which, in the third step, we apply an algorithm that approximates the exponential growth
rate of the total number of length-n T -orbits [30] which are distinguishable via the given
partition. The output of this algorithm then serves as an upper bound for the invariance
entropy.

For the implementation of the first step –the construction of an invariant controller–
we use SCOTS, a software tool written in C++ designed for exactly this purpose [65].
SCOTS relies on a rectangular grid, and assigns to each grid box in Q a set of permissible
control inputs. For the second step, we use the software tool dtControl [3], which builds
the decision tree and determinizes the invariant controller by choosing from the set of
permissible control inputs exactly one for each box. dtControl also groups together all



44 4. Numerical Overapproximation

the boxes which are assigned the same control input. For such a grouping, classification
techniques such as logistic regression and linear support vector machines are employed.
Finally, the third step is accomplished via an algorithm proposed in [30], originally designed
for the estimation of topological entropy. This algorithm is based on the theory of symbolic
dynamical systems and breaks up into standard graph-theoretic constructions.

In addition, we also focus on uncertain control systems and the IFE. For a discrete-time,
uncertain control system Σ, given a nonempty set Q, if the IFE of Q is finite, then an upper
bound can be computed by solving a mean-payoff-game which is constructed using a finite
abstraction of Σ [66, Sec. 6]. However, the number of vertices in the mean-payoff-game
is of the order of 22n , where n is the number of states in the finite abstraction; in other
words, the size of the mean-payoff-game increases doubly exponentially with n. In this
chapter, we present two upper bounds for the IFE that can be computed from a weighted
directed graph which is constructed from an invariant partition (Ā, G) of Q. Here, Ā is
a finite partition of the set Q and G : Ā → U is a map into the space of control inputs
such that image of A ∈ Ā, with G(A) as the control input, under the system dynamics
is contained in Q. Both upper bounds can be computed in linear time given the number
of nodes and edges in the graph. First result (cf. Theorem 11) characterizes the entropy
of the invariant partition (Ā, G) in terms of the weights of the graph and also presents a
simple upper bound for it. Second result (cf. Theorem 12) establishes that the entropy
of (Ā, G) is the same as the maximum mean weight over all cycles in the graph. Finally,
for deterministic systems, the relationship between those upper bounds will be explicitly
explained (cf. Theorem 13).

4.1.1 Contributions

The contents of this chapter are based on [74]. It is a joint work with Dr. Christoph
Kawan and Prof. Majid Zamani. Most of the work is done by myself. Dr. Christoph
Kawan contributed in the initial discussions and in the writing of the introduction section.
Prof. Majid Zamani supervised the work.

We present algorithms for the numerical computation of an upper bound of the IED and
two upper bounds of the IFE. The algorithms also provide static coder-controller schemes
corresponding to the obtained upper bounds. For the deterministic case, we establish the
relation between the upper bounds of the IED and the IFE. We also present the results of
the algorithms applied to four examples.

4.2 Upper bound for invariance entropy of determin-

istic systems

In this section, we focus on deterministic control systems. We recall the definition of the
IED from Section 2.3.4 and present our algorithm to compute an upper bound for it.
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Consider a discrete-time control system

Σ : ξ(t+ 1) = f(ξ(t), ν(t)), (4.1)

where f : X × U → X, X ⊆ Rn, U ⊆ Rm, is continuous. Same as in Section 2.3.4, for
ν ∈ U [0;t], t ∈ Z≥0, we define a map fν(x) : X → X by fν(x) := fν(t) ◦ · · · ◦ fν(0)(x) where
fν(t)(x) := f(x, ν(t)).

We call a triple (A, τ, G) an invariant partition of Q, where Q ⊆ X, if A is a partition
of Q, τ ∈ N, and G : A → U τ is a map such that, for every A ∈ A, t ∈ [0; τ − 1] and
ν = G(A), we have fν|[0;t](A) ⊆ Q. For a given C = (A, τ, G), we define a map TC : Q→ Q
as

TC(x) := fG(Ax)(x),

where Ax ∈ A is such that x ∈ Ax.
IED: Let Q be compact and controlled invariant and τ ∈ N. We define a set Sdet ⊆

U [0;τ [ to be (τ,Q)-spanning if for every x ∈ Q there exists ν ∈ Sdet so that the associated
trajectory (ξ, ν) on [0; τ [ of Σ with ξ(0) = x satisfies ξ([0; τ ]) ⊆ Q. The smallest possible
cardinality for any (τ,Q)-spanning set is denoted by rdet

inv(τ,Q). Then the IED of Q is

hdet
inv(Q) := lim

τ→∞

1

τ
log2 r

det
inv(τ,Q),

if rdet
inv(τ,Q) is finite for all τ > 0. Otherwise hdet

inv(Q) := ∞. Next we define the counting
entropy of the map TC for a given C = (A, τ, G). The ratio of the counting entropy to τ
upper bounds the IED.

Counting entropy: Consider a set Q, a map T : Q → Q and a finite partition
A = {A1, . . . , Aq} of Q. For N ∈ N, consider the set WN(T,A) := {[a0a1 . . . aN−1] : ∃x ∈
Q with T i(x) ∈ Aai , 0 ≤ i < N}.

The counting entropy of T with respect to the partition A is defined as

h∗(T,A) := lim
N→∞

1

N
log2

#WN(T,A),

where the existence of the limit follows from the subadditivity of the sequence
(log2

#WN(T,A))N∈N. Then the IED of Q satisfies [38, Thm. 2.3]

hdet
inv(Q) = inf

C=(A,τ,G)

1

τ
h∗(TC,A),

where the infimum is taken over all invariant partitions C = (A, τ, G) of Q.
To find an upper bound of h∗(TC,A), we select a refinement B = {B1, . . . , Bn̄} of A,

i.e., B is a partition of Q such that each element of A is the union of some elements of B.
Let us define an n̄× n̄ transition matrix Γ by

Γi,j :=

{
1 if TC(Bi) ∩Bj 6= ∅,
0 otherwise.

(4.2)
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A sequence [b0 . . . bN−1] is called a B-word if Γbi,bi+1
= 1 for every i ∈ [0;N − 2]. Next, we

define the set

WN(B,A) :=
{

[a0 . . . aN−1] | ∃ a B-word [b0 . . . bN−1] s.t. Bbi ⊆ Aai , i ∈ [0;N − 1]
}
.
(4.3)

From [30, Sec. 2.2], we have

h(B,A) := lim
N→∞

log2
#WN(B,A)

N
≥ h∗(TC,A). (4.4)

Moreover, under certain assumptions it can be shown that h(B,A) converges to h∗(TC,A)
as the maximal diameter of the elements of B tends to zero, see [30, Thm. 4].

To compute h(B,A), we first construct a directed graph G from the transition matrix
Γ. Let us define a map L : B → {1, . . . ,#A} by

L(Bi) := j, where j satisfies Bi ⊂ Aj, (4.5)

and call L(Bi) the label of Bi. The graph G has B as its set of nodes. If Γi,j = 1, i, j ∈ [1; n̄],
then there is a directed edge from the node Bi to Bj with the edge label L(Bi). Elements of
WN(B,A) are generated by concatenating labels along walks of length N on the graph G.
Next, we construct a second graph GR which is deterministic (i.e., no two outgoing edges
have the same label) and is such that the set of all bi-infinite words that are generated by
walks on GR is the same as the set generated by walks on G. For details on the construction
of GR from G, see [30, Sec. 2.4]. Each node in the deterministic graph GR denotes a subset
of B and has at most one outgoing edge for any given label. We use the graph GR to
define an adjacency matrix R by Ri,j := l, where i, j ∈ [1; ñ], and l is the number of edges
from the node i to the node j of GR and ñ is the number of nodes in GR. If G is strongly
connected, then from [30, Prop. 7], we have h(B,A) = log2 ρ(R). Thus, we have an upper
bound for the IED of Q:

hdet
inv(Q) ≤ 1

τ
log2 ρ(R).

If G is not strongly connected, we need to determine its strongly connected components and
apply the algorithm separately to each component (cf. [30, Rem. 9]). Then the maximum
of the spectral radii of the obtained adjacency matrices will serve as an upper bound for
hdet

inv(Q). In the rest of this chapter, wherever τ = 1, we write (A, G) instead of (A, 1, G).

4.3 Implementation of the algorithm for IED

In this section, we present our algorithm for the computation of upper bounds for the IED.
We illustrate the steps involved in the algorithm with the help of the following example.

Example 6. Consider the linear control system

xk+1 = Axk +

[
1
1

]
uk, A =

[
2 0
0 1

2

]
,
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with xk ∈ R2 and uk ∈ U = [−1, 1]. For the compact controlled invariant set Q̄ =
[−1, 1]× [−2, 2], see [18, Ex. 21], we intend to compute an upper bound of the IED.

Given a discrete-time system Σ as in (4.1) and a set Q̄ ⊆ X, we proceed according to
the following steps:

1. Compute a symbolic invariant controller for the set Q̄. Consider the hyperrectangle
Q̄X of smallest volume that encloses Q̄. We use SCOTS to compute an invariant
controller for Σ with Q̄X as the state set and ηs and ηi as the grid parameters for
the state and input sets, respectively. The use of small ηs results in a finer grid on
the state set, i.e., a grid with boxes of smaller volumes, which generally results in
a better upper bound. We denote the set of boxes in the domain of the computed
controller by B. Let B = {B1, . . . , Bn̄} and Q := ∪Bi∈BBi ⊆ Q̄.

Example 6 (Continued). We used SCOTS with Q̄X = Q̄ as the state set and the state
and input set grid parameters ηs = [0.57142 0.57142]T and ηi = 0.005, respectively.
This results in a state set grid with 21 boxes, B = {B1, . . . , B21}, and Q := ∪Bi∈BBi

(see Fig. 4.1).

2. The controllers obtained in the previous step are in general non-deterministic, thus
in this step, we determinize the obtained controller. We denote the closed-loop
system (Σ with the determinized controller C) by ΣC . To determinize the controller
efficiently, one can use the state-of-the-art toolbox dtControl [3], which utilizes the
decision tree learning algorithm to provide different determinized controllers with
various choices of the input arguments ‘Classifier’ and ‘Determinizer’. The tool not
only determinizes the controller but also provides the required coarse partition A
(of which B is a refinement). We refer the interested reader to [3] for a detailed
discussion about dtControl.

Example 6 (Continued). For the example, we used dtControl with parameters Clas-
sifier = ‘cart’ and Determinizer = ‘maxfreq’. This results in an invariant partition
(A, G) for the set Q := ∪B∈BB, where A is a partition of Q such that every A ∈ A
is a union of some elements in B and G(A) ∈ U is the control input assigned to the
set A given by dtControl. Figure 4.1 shows the obtained partitions A and B.

3. For the dynamical system ΣC , we obtain the transition matrix Γ (defined in (4.2))
for the boxes in Q.

Example 6 (Continued). Γ comes out to be a 21×21 matrix, where each entry takes
value 0 or 1 according to (4.2).

4. We obtain the map L as given in (4.5) that assigns a label to every member of the
partition B.
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Figure 4.1: The partitions A = {A1, A2, A3} and B = {B1, . . . , B21} for Example 6.

Example 6 (Continued). For Bi ∈ B

L(Bi) =


1 if i = 1 + 3t, 0 ≤ t ≤ 6,
2 if i = 2 + 3t, 0 ≤ t ≤ 6,
3 if i = 3 + 3t, 0 ≤ t ≤ 6.

5. We construct a directed graph G with B as the set of nodes. If Γi,j = 1, then there
is a directed edge from the node Bi to Bj with label L(Bi).

6. We obtain the set GSCC := {GSCC,1, . . . ,GSCC,p}, where GSCC,i, 1 ≤ i ≤ p, are the
strongly connected components of the graph G. A directed graph is called strongly
connected if for every pair of nodes u and v there exists a directed path from u to v
and vice versa.

Example 6 (Continued). G is strongly connected. Thus, GSCC = {G}.

7. For every Ḡ ∈ GSCC, we find an associated deterministic graph ḠR. The directed
graph ḠR is deterministic in the sense that for every node no two outgoing edges
have the same label.

Example 6 (Continued). Figure 4.2 shows the directed graph ḠR. Each node in
Fig. 4.2 refers to a subset of B: R1 = {Bi | 13 ≤ i ≤ 18}, R2 = {Bi | 7 ≤ i ≤ 12},
R3 = {Bi | 4 ≤ i ≤ 9}, R4 = {Bi | 16 ≤ i ≤ 21}, R5 = {Bi | 10 ≤ i ≤ 15}, and
R6 = {Bi | 1 ≤ i ≤ 6}.
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Figure 4.2: The deterministic directed graph ḠR for Example 6.

8. Using ḠR, we construct an adjacency matrix RḠ with

RḠi,j = l,

where l is the number of edges from node i to node j in ḠR. Then, we obtain

h(B,A) = max
Ḡ∈GSCC

log2 ρ(RḠ).

Example 6 (Continued). From ḠR, we get

RḠ =


0 1 0 1 1 0
1 1 1 0 0 0
0 0 1 0 1 1
0 1 0 1 1 0
1 1 1 0 0 0
0 0 1 0 1 1

 ,

ρ(RḠ) = 3 and hdet
inv(Q) ≤ h(B,A) ≈ 1.5850. For discrete-time, deterministic linear

systems, we know that the IED is independent of the set Q and is given by the
logarithm of the unstable determinant, hdet

inv(Q) = 1.
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4.4 Upper bounds of the invariance feedback entropy

for uncertain systems

In this section, we focus on uncertain control systems. We describe the construction of a
weighted directed graph which serves as the basis for computing two upper bounds for the
IFE presented later in Theorem 11. Theorem 12 presents the proposed upper bound in
Theorem 11 in a much simplified form as the maximum mean weight for any cycle in the
graph.

Consider a discrete-time uncertain control system Σ as defined in (2.3) and a nonempty
set Q ⊆ X. By an invariant partition, we refer to an invariant cover (Ā, G) of (Σ, Q) for
which Ā is a partition of Q (which is consistent with the terminology used for deterministic
systems in Section 4.2).

Given an invariant partition (Ā, G), we define a set-valued map T : Q ⇒ Q, T (x) :=
F (x,G(Ax)), where x ∈ Ax ∈ Ā.

We construct G, a directed weighted graph with Ā as the set of nodes. For A1, A2 ∈ Ā,
there is an edge in G from A1 to A2 if T (A1) ∩ A2 6= ∅. Let eA1A2 refer to the edge from
A1 to A2. We define maps D : Ā⇒ Ā and w : Ā → R≥0 as

D(A1) :=
{
A ∈ Ā | T (A1) ∩ A 6= ∅

}
, (4.6)

w(A1) := log2
#D(A1). (4.7)

The weight of edge eA1A2 is defined to be w(A1). We observe that

T (A) ⊆
⋃

Â∈D(A)

Â. (4.8)

Given the graph G and τ ∈ N, we define sets

Wτ (G) :=
{

(Ai)
τ−1
i=0 | Ai ∈ Ā, (Ai)τ−1

i=0 is a path in G
}
, (4.9)

W∞(G) :=
{

(Ai)
∞
i=0 | Ai ∈ Ā, (Ai)∞i=0 is a path in G

}
. (4.10)

For every (x, u) ∈ X × U , by assumption, we have F (x, u) 6= ∅, thus every node in G has
an outgoing edge. Therefore, for every τ ∈ N, we have

Wτ (G) =
{

(Ai)
τ−1
i=0 | (Ai)∞i=0 ∈ W∞(G)

}
.

Consider a cycle c = (eAiAi+1
)ki=1, Ak+1 = A1 in G. The mean cycle weight for c is defined

to be the ratio of the sum of the weights and the number of edges in the cycle, i.e.,

wm(c) :=
1

k

k∑
i=1

w(Ai).

The maximum mean cycle weight, w∗m(G), is then defined as w∗m(G) := maxcwm(c), where
the maximum is taken over all cycles in the graph G. The following theorem presents two
numerical upper bounds for the IFE.
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Theorem 11. For an uncertain control system Σ as in (2.3), a nonempty set Q ⊆ X, and
an invariant partition (Ā, G), the IFE satisfies

hinv(Q,Σ) ≤ h(Ā, G) = lim
τ→∞

1

τ
max

α∈W∞(G)

τ−2∑
t=0

w(α(t)). (4.11)

A rough upper bound for the IFE of (Σ, Q) is

hinv(Q,Σ) ≤ h(Ā, G) ≤ max
A∈Ā

w(A).

The entropy of (Ā, G) turns out to be equal to the maximum mean cycle weight for
the graph G, as described in the next theorem.

Theorem 12. In Theorem 11, let G be the directed weighted graph as defined above. Then

h(Ā, G) = w∗m(G).

There exist algorithms to compute the maximum mean cycle weight of a directed
weighted graph, see e.g. [36].

The rest of this section is devoted to the proofs of the above two theorems. First, we
present three propositions that establish some properties of the set Wτ (G). Then the proof
of Theorem 11 follows. Finally, we present the proof of Theorem 12.

Proposition 4. Wτ (G) is a (τ,Q)-spanning set in (Ā, G).

Proof. By assumption we have F (x, u) 6= ∅ for all (x, u) ∈ X×U which results in T (A) 6= ∅
for all A ∈ Ā. Since (Ā, G) is an invariant cover, for every A ∈ Ā, we have D(A) 6= ∅.
Thus, for every A ∈ Ā, there is Â ∈ Ā such that T (A) ∩ Â 6= ∅. This ensures that for
every node in G, there exists an outgoing edge. Hence, for all τ ∈ N, A ∈ Ā we have paths
of length τ starting from A. Thus,

{α(0) | α ∈ Wτ (G)} = Ā.

Consider any α ∈ Wτ (G) and t ∈ [0; τ − 1]. From the definition of G, we have an edge
from α(t) to every A ∈ D(α(t)). Thus, for every t ∈ [0; τ − 2] we have

PWτ (G)(α|[0;t]) = D(α(t)). (4.12)

Using (4.8) and (4.12), we conclude that Wτ (G) satisfies the condition in (2.5) to be a
(τ,Q)-spanning set in (Ā, G).

Proposition 5. For every (τ,Q)-spanning set S in (Ā, G), we have

Wτ (G) ⊆ S.
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Proof. Let S be a (τ,Q)-spanning set in (Ā, G). Then by definition, PS(α) = {α(0) | α ∈
S} ⊆ Ā covers Q. Since Ā is a partition of Q, PS(α) = Ā. If α ∈ S and t ∈ [0; τ − 1],
then again from the definition of a (τ,Q)-spanning set in (2.5) it follows that PS(α|[0;t])
covers F (α(t), G(α(t))) = T (α(t)). As Ā is a partition, D(α(t)), which is defined in (4.6),
must be contained in every subset of Ā that covers T (α(t)), thus PS(α|[0;t]) ⊇ D(α(t)).
Let β ∈ Wτ (G). Then β(0) ∈ Ā = {α(0) | α ∈ S} which gives the existence of α ∈ S with
α(0) = β(0). From (4.12), we have PWτ (G)(β(0)) = D(β(0)). Similarly to the arguments
above, as Ā is a partition of Q, D(β(0)) is contained in every subset of Ā which covers
T (β(0)). As S is (τ,Q)-spanning, from (2.5) we know that T (α(0)) is covered by PS(α(0))
which implies PS(α(0)) ⊇ D(β(0)). From the definition of the graph G, we obtain β(1) ∈
D(β(0)) leading to β(1) ∈ PS(α(0)). Thus, there exists an α ∈ S with α|[0;1] = β|[0;1].
Inductively, we obtain the existence of α ∈ S with α = β, which concludes the proof.

From (2.6) and Proposition 5, we conclude that for every (τ,Q)-spanning set S in
(Ā, G), we have

N (Wτ (G)) ≤ N (S).

Let rinv(τ, Ā, G,Σ) be the minimum of N (S), where S is a (τ,Q)-spanning set in (Ā, G).
We observe that

rinv(τ, Ā, G,Σ) = N (Wτ (G)) for all τ ∈ N. (4.13)

Proposition 6. The expansion number of the (τ,Q)-spanning set Wτ (G) satisfies

log2N (Wτ (G)) = max
α∈Wτ (G)

τ−2∑
t=0

w(α(t)) + log2
#Ā.

Proof. By taking logarithms on both sides of (2.6), we obtain

log2N (Wτ (G)) = max
α∈Wτ (G)

τ−1∑
t=0

log2
#PWτ (G)(α|[0;t]).

From (2.4), (4.12), and Ā being a partition of Q, we have

log2N (Wτ (G)) = max
α∈Wτ (G)

τ−2∑
t=0

log2
#D(α(t)) + log2

#Ā.

This together with (4.7) concludes the proof.

Now, we have all the ingredients to prove Theorems 11 and 12.

Proof of Theorem 11. From (4.13) and Proposition 6, we have

log2 rinv(τ, Ā, G,Σ) = log2N (Wτ (G))

= max
α∈Wτ (G)

τ−2∑
t=0

w(α(t)) + log2
#Ā.
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Therefore, the entropy of invariant partition (Ā, G) is

h(Ā, G) = lim
τ→∞

1

τ
log2 rinv(τ, Ā, G,Σ)

= lim
τ→∞

1

τ
max

α∈Wτ (G)

τ−2∑
t=0

w(α(t)).

Since the set Wτ (G) is recovered by restricting the elements of W∞(G) to [0; τ − 1], there-
fore

h(Ā, G) = lim
τ→∞

1

τ
max

α∈W∞(G)

τ−2∑
t=0

w(α(t)).

This proves the first claim in Theorem 11.
For any τ ∈ N, consider

1

τ
max

α∈W∞(G)

τ−2∑
t=0

w(α(t)) ≤ 1

τ
max

α∈W∞(G)
(τ − 1) max

A∈Ā
w(A)

= (1− 1

τ
) max
A∈Ā

w(A).

Taking limit on both sides, we obtain h(Ā, G) ≤ maxA∈Āw(A). This completes the proof.

Proof of Theorem 12. First we construct a mean-payoff-game (MPG) for which the max-
imum of the value function over a given set equals the entropy of the invariant partition
(Ā, G).

Consider the system in (2.3), a nonempty set Q ⊆ X, an invariant partition (Ā, G),
the maps T : Q⇒ Q and D : Ā⇒ Ā as defined in Section 4.4. We consider the definition
of the MPG (V,E, ω) as described in Appendix A.

We construct an MPG (V,E, ω), where V := V1 ∪ V2, V1 := Ā, V2 := {D(A) | A ∈ Ā}
and V1 ∩ V2 = ∅. The set of edges E := E1 ∪ E2 of the MPG is defined by

E1 :={(v1, v2) ∈ V1 × V2 | v2 = D(v1)},
E2 :={(v2, v1) ∈ V2 × V1 | v1 ∈ v2}.

The weights for (v1, v2) ∈ E1 and (v2, v̄1) ∈ E2 are given by ω(v1, v2) := log2
#v2 =

log2
#D(v1) and ω(v2, v̄1) := log2

#v2.
Consider a play e0e1e2 . . . which is an infinitely long sequence of edges. Player 1 wants

to minimize the payoff

νmin(e0e1e2 . . .) := lim sup
k→∞

1

k

k−1∑
j=0

ω(ej),
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while player 2 wants to maximize the payoff

νmax(e0e1e2 . . .) := lim inf
k→∞

1

k

k−1∑
j=0

ω(ej).

We use (σ∗i ) to denote the optimal positional strategy for the player i. By P(v, σi) ⊆ E[0;∞[,
we denote the set of all plays that start from the position v and wherein the player i follows
the positional strategy σi. From (A.2) and (A.3) we have the existence of constants c1 and
c2, so that for every τ ∈ N, v ∈ V , e ∈ P(v, σ∗1) and ê ∈ P(v, σ∗2) we have

1

τ

τ−1∑
j=0

ω(ej) ≤ ν(v) +
c1

τ
,

1

τ

τ−1∑
j=0

ω(êj) ≥ ν(v) +
c2

τ
,

or

max
e∈P(v,σ∗1),v∈V1

1

τ

τ−1∑
j=0

ω(ej) ≤max
v∈V1

ν(v) +
c1

τ
, (4.14)

max
ê∈P(v,σ∗2),v∈V1

1

τ

τ−1∑
j=0

ω(êj) ≥max
v∈V1

ν(v) +
c2

τ
. (4.15)

In the preceding inequalities, we consider the maximum over the set V1 = Ā only, because,
in the later parts of the proof, we will relate the graph of the MPG with the graph G that
involves only the elements of V1 as its nodes. Note that, in our construction of the MPG,
player 1 always plays with a fixed strategy, σ∗1, i.e., for every v ∈ V1, the next position
selected by player 1 is always σ∗1(v) = D(v). Thus, the course of any play is dictated by
only player 2, and if the player 2 uses a positional strategy then there will be only one play
for any given starting position v0 ∈ V . This gives |P(v, σ∗2)| = 1 and P(v, σ∗2) ⊂ P(v, σ∗1).

For v ∈ V1, e ∈ P(v, σ∗1) we denote the edge ei by the tuple of vertices (vi, vi+1).
Consider the set W∞(G) as defined in (4.10). Now we show the existence of an α ∈ W∞(G)
such that α(t) = v2t for all t ∈ [0;∞[. Since v0 ∈ V1 = Ā, there exists an α ∈ W∞(G) such
that α(0) = v0. By definition of E2, we have v2 ∈ v1 = D(v0) and from that of W∞(G)
we have α(1) ∈ D(α(0)). Thus, there exists an α ∈ W∞(G) such that α(t) = v2t for all
t ∈ [0; 1]. Iteratively, we have the existence of αv ∈ W∞(G) such that αv(t) = v2t for all
t ∈ [0;∞[. With similar reasoning, we also obtain the existence of a play e ∈ P(v, σ∗1) for
every αv ∈ W∞(G), αv(0) = v such that αv(t) = v2t for all t ∈ [0;∞[. Thus, every element
of W∞(G) corresponds to some element of ∪v∈V1P(v, σ∗1) and vice versa.

Now consider a play e = e0e1e2 . . . ∈ P(v, σ∗1), v ∈ V1. By definition of the map ω,
when e0 ∈ E1 we have ω(e2j) = ω(e2j+1) for all j ∈ [0;∞[, leading to

1

2k

2k−1∑
j=0

ω(ej) =
1

2k

k−1∑
j=0

2ω(e2j) =
1

k

k−1∑
j=0

ω(e2j).
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Let αv ∈ W∞(G) be such that αv(t) = v2t for all t ∈ [0;∞[. Then

1

k

k−1∑
j=0

ω(e2j) =
1

k

k−1∑
j=0

log2
#D(v2j)

=
1

k

k−1∑
j=0

log2
#D(αv(j))

=
1

k

k−1∑
j=0

w(αv(j)),

where the map w : Ā → R≥0 is defined in (4.7).

Next, consider the set Ŵ∞(G) which is constituted by all such paths in the graph G
that correspond to some play ê ∈ P(v, σ∗2), v ∈ V1, and is defined as

Ŵ∞(G) := {α̂ ∈ W∞(G) | ∃ê ∈ ∪v∈V1P(v, σ∗2) so that α̂(t) = v̂2t ∀t ∈ [0;∞[}.

The inequalities (4.14) and (4.15) can now be rewritten as

max
α∈W∞(G)

1

τ

τ−1∑
j=0

w(α(j)) ≤max
v∈V1

ν(v) +
c1

2τ
,

max
α̂∈Ŵ∞(G)

1

τ

τ−1∑
j=0

w(α̂(j)) ≥max
v∈V1

ν(v) +
c2

2τ
,

or

max
α∈W∞(G)

1

τ

τ−2∑
j=0

w(α(j)) ≤max
v∈V1

ν(v) +
c1

2τ
,

max
α̂∈Ŵ∞(G)

1

τ

τ−2∑
j=0

w(α̂(j)) ≥max
v∈V1

ν(v) +
c̄2

2τ
,

where c̄2 = c2 − 2 maxA∈Āw(A). Since Ŵ∞(G) ⊆ W∞(G), Ŵ∞(G) can be replaced by
W∞(G), therefore the above two equations lead to

lim sup
τ→∞

max
α∈W∞(G)

1

τ

τ−2∑
j=0

w(α(j)) = max
v∈V1

ν(v).

Thus,
h(Ā, G) = max

v∈V1
ν(v).

Let GM refer to the graph of the MPG. By definition of GM and G, for every cycle cM in
GM there exists a corresponding cycle c in G such that, although the length of cM is twice
that of c, the mean weight is the same for both cycles. In an MPG, if one of the player
follows a fixed positional strategy, then ν(v) is the maximum mean weight of a cycle in
GM reachable from v ∈ V , see [85, Sec. 4]. Thus, maxv∈V1 ν(v) = w∗m(G).
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In the next section, for deterministic systems, we establish the relationship between the
discussed upper bounds of IED and IFE.

4.5 Relationship between the upper bounds for IED

and IFE

Consider a control system as defined in (4.1), a set Q ⊆ X and an invariant partition
(A, G) of Q. Let B = {B1, . . . , Bnb} be a refinement of A = {A1, . . . , Ana}. We define a
map T : Q → Q, T (x) := f(x,G(A)) where x ∈ A ∈ A. Now we construct a directed
graph GB with B as the set of nodes. Let L : B → {1, . . . , na} be a map as defined in (4.5).
For Bi, Bj ∈ B, there is an edge in GB from Bi to Bj if and only if T (Bi) ∩ Bj 6= ∅, with
L(Bi) as the edge label. Using the graph GB, we construct a matrix RGB exactly the same
way that the matrix R is constructed from the graph G in Section 4.2.

Let WN(B,A) and h(B,A) be as defined in (4.3) and (4.4), respectively. Assuming
that GB is strongly connected, we have

h(B,A) = lim
N→∞

log2
#WN(B,A)

N
= log2 ρ(RGB).

The next theorem shows that the upper bound of the IED is no larger than that of the
IFE.

Theorem 13. For Σ as in (4.1), a nonempty set Q ⊆ X and a given invariant partition
(A, G) of Q, the entropy of (A, G) satisfies

h(A, G) ≥ h(B,A) = log2 ρ(RGB).

Proof. Similarly to a B-word as defined in Section 4.2, we define A-words. A sequence
[a0 . . . aN−1] is called an A-word if T (Aai) ∩ Aai+1

6= ∅ for every i ∈ [0;N − 2]. Then
similarly to (4.3), we define

WN(A) :=
{
{Aaj}N−1

j=0 | [a0 . . . aN−1] is an A-word
}
.

Similarly to the graph GB, we construct a graph GA. Since A is a partition, WN(A) is
the set of all N -length sequences in A generated by traversing the paths in the graph GA.
Thus,

WN(A) = WN(GA),

where WN(GA) is defined in (4.9). From Lemma 2 and (4.13), we obtain

#WN(A) = #WN(GA) ≤ N (WN(GA)) = rinv(N,A, G,Σ).

Similarly to (4.4), we define

h(A) := lim
N→∞

log2
#WN(A)

N
.
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This together with (2.7) yields

h(A) ≤ h(A, G).

From [30, Sec. 2.5], we have h(B,A) ≤ h(A). This gives a lower bound for the entropy of
the invariant partition (A, G):

log2 ρ(RGB) ≤ h(A, G).

4.6 Examples

In the first two examples, we use known formulas for the IED, which have been proved for
versions of invariance entropy that slightly differ from the one we introduced in Section 4.2.
However, from a numerical point of view, this should not make a considerable difference.
In any case, the claimed values for hdet

inv(Q̄) in both cases are theoretical lower bounds, while
our algorithm provides upper bounds.

The description of our implementation for the upper bounds of the IFE is presented in
Example 9.

4.6.1 A linear discrete-time system

Example 6 (Continued). Again consider the linear control system and the set Q̄ as in
Section 4.3. The IED of Q̄ is given by

hdet
inv(Q̄) =

∑
|λ(A)|≥1

log2 |λ(A)| = 1.

Table 4.1 lists the obtained upper bounds h(B,A) of hdet
inv(Q̄) with SCOTS parameters ηs =

[0.01 0.01]T and ηi = 0.5, for different choices of options in dtControl. For the same
values of ηs and ηi and with ‘cart’ and ‘maxfreq’, Table 4.2 presents the variation of the
upper bound h(B,A)/τ with increasing length τ of the control sequences. By ‘control se-
quence length’ we refer to the length of the sequence assigned to any element of the cover A
by the map G as described in Section 4.2. With the same values of ηs and ηi, the two other
bounds are w∗m(G) = maxA∈B w(A) = 2.5850 and their computation times are 0.593 sec
and 0.304 sec, respectively. For the implementational details of w∗m(G), see Example 9.

4.6.2 A scalar continuous-time nonlinear control system

Example 7. Consider the following scalar continuous-time control system discussed in
[38, Ex. 7.2]:

Σ : ẋ = (−2b sinx cosx− sin2 x+ cos2 x) + u cos2 x,
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Table 4.1: Upper bound h(B,A) for Example 6 with different choices of the determinization
options in dtControl. Here, we have hdet

inv(Q̄) = 1.
Classifier Determinizer #A h(B,A) Computation time (sec)

cart maxfreq 4 1.0149 26
logreg maxfreq 4 1.0149 28
cart minnorm 5 1.0517 28
logreg minnorm 5 1.0517 33

Table 4.2: Upper bound h(B,A)/τ for Example 6 with control sequences of length τ ,
Classifier = ‘cart’, and Determinizer = ‘maxfreq’ in dtControl. Here, we have hdet

inv(Q̄) = 1.
τ h(B,A)/τ Computation time

1 1.0149 26 sec
2 1.0092 55 sec
3 1.0053 4 min
4 1.0029 14 min

where u ∈ [−ρ, ρ], b > 0 and 0 < ρ < b2 + 1. The equation describes the projectivized
linearization of a controlled damped mathematical pendulum at the unstable position, where
the control acts as a reset force.

The following set is controlled invariant:

Q̄ =
[
arctan(−b−

√
b2 + 1 + ρ), arctan(−b−

√
b2 + 1− ρ)

]
.

In fact, Q̄ is the closure of a control set, i.e., a maximal set of complete approximate
controllability. With Ts ∈ R>0 as the sampling time, we first obtain a discrete-time system
as in (4.1). Theory suggests that the following formula holds for the IED of Σ, see1 [38,
Ex. 7.2]:

hdet
inv(Q̄) =

2

ln 2

√
b2 + 1− ρ.

Discretizing the continuous-time system with sampling time Ts results in a discrete-time
system ΣTs that satisfies

hdet
inv(Q̄; ΣTs) ≥ Ts · hdet

inv(Q̄) =
2Ts
ln 2

√
b2 + 1− ρ.

The inequality is due to the fact that continuous-time open-loop control functions are lost
due to the sampling (since only the piecewise constant control functions, constant on each
interval of the form [kTs, (k+1)Ts), k ∈ Z≥0, are preserved under sampling). Table 4.3 and

1The factor ln(2) appears due to the choice of the base-2 logarithm instead of the natural logarithm,
which is typically used for continuous-time systems.
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Table 4.3: Values of h(B,A) and the IED hdet
inv(Q̄) for Example 7 with ρ = 1, b = 1 and

different choices of the sampling time Ts. Here, we have hdet
inv(Q̄) = 2.8854.

Ts #A h(B,A)/Ts Computation time

0.8 11 4.0207 21.23 hr
0.5 6 4.0847 2.98 hr
0.1 2 4.744 3.33 min
0.01 2 5.1994 55 sec
0.001 2 24.7 60 sec

Table 4.4: Values of h(B,A) and the IED hdet
inv(Q̄) for Example 7 with ρ = 50, b = 10 and

different choices of the sampling time Ts. Here, we have hdet
inv(Q̄) = 20.6058.

Ts #A h(B,A)/Ts Computation time

0.11 15 28.5012 1.9 hr
0.1 11 29.1723 1.35 hr
0.01 2 34.4707 13 sec
0.001 2 55.5067 12 sec
0.0001 2 1.5635e+03 31 sec

4.4 list the values of h(B,A) for different choices of the sampling time with the parameters
(ρ = 1, b = 1, ηs = 10−6, ηi = 0.2ρ) and (ρ = 50, b = 10, ηs = 10−6, ηi = 0.2ρ),
respectively. For both of the tables, the dtControl parameters are Classifier = ‘cart’ and
Determinizer = ‘maxfreq’. Table 4.5 shows the values of h(B,A) for different selections of
the coarse partition A with the parameters Ts = 0.01, ηs = 10−6, ηi = 0.2ρ, ρ = 1, and
b = 1. For the same selection of parameters as in Table 4.3 with Ts = 0.01, Table 4.6
presents the variation of the upper bound h(B,A)/(τTs) with increasing length τ of the
control sequences.

Table 4.5: Values of h(B,A) for Example 7 with different choices of dtControl parameters.
Here, we have hdet

inv(Q̄) = 2.8854.
Classifier Determinizer #A h(B,A)/Ts Computation time (sec)

cart maxfreq 2 5.1994 55
logreg maxfreq 2 5.1994 65
linsvm maxfreq 2 5.1994 61
cart minnorm 11 6.4475 57
logreg minnorm 11 6.4475 74
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Table 4.6: Upper bound h(B,A)/(τTs) for Example 7 with control sequences of length τ ,
Classifier = ‘cart’, and Determinizer = ‘maxfreq’ in dtControl. Here, we have hdet

inv(Q̄) =
2.8854.

τ h(B,A)/(τTs) Computation time

1 5.1994 57 sec
2 5.0036 7.5 min
3 4.9547 1.91 hr
4 4.9266 27.27 hr

4.6.3 A 2d uniformly hyperbolic set

Example 8. Consider the map

f(x, y) := (5− 0.3y − x2, x), f : R2 → R2,

which is a member of the Hénon family, one of the most-studied classes of dynamical
systems that exhibit chaotic behavior. We extend f to a control system with additive control:

Σ :

[
xk+1

yk+1

]
=

[
5− 0.3yk − x2

k + uk
xk + vk

]
,

where max{|uk|, |vk|} ≤ ε. It is known that f has a non-attracting uniformly hyperbolic set
Λ, which is a topological horseshoe (called the Hénon horseshoe). This set is contained in
the square centered at the origin with side length [62, Thm. 4.2]

r := 1.3 +
√

(1.3)2 + 20 ≈ 5.9573.

If the size ε of the control range of Σ is chosen small enough, the set Λ is blown up to a
compact controlled invariant set Qε with nonempty interior which is not much larger than
Λ; see [41]. Moreover, the theory suggests that as ε→ 0, hdet

inv(Qε) converges to the negative
topological pressure of f|Λ with respect to the negative unstable log-determinant on Λ; see
[13] for definitions. A numerical estimate for this quantity, obtained in [29, Table 2] via
Ulam’s method, is 0.696.

Consider the set Q̃ = [−r/2, r/2]× [−r/2, r/2]. For ε = 0.08, using SCOTS with param-
eter values ηs = [0.009 0.009]T and ηi = [0.01 0.01]T , through iteration, we obtain an
all-time controlled invariant set Q ⊆ Q̃. For the iteration, we begin with the set Q̃ and as
the first step we compute an invariant controller for the system Σ. Let Q1 be the domain
of the obtained controller. Given Σ, consider its time-reversed system

Σ− :

[
xk+1

yk+1

]
=

[
yk − vk

1
0.3

(5− (yk − vk)2 + uk − xk)

]
.

In the second step we compute an invariant controller for the system Σ− in the set Q1, and
denote the controller domain by Q2. In the third step we compute an invariant controller
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Figure 4.3: The set Q for Example 8.

for Σ but in the set Q2 and denote the controller domain by Q3. The steps are repeated
until Qi = Qi+1 =: Q. The set Q likely approximates the (all-time controlled invariant) set
Qε. Figure 4.3 shows the set Q. For the parameter values ε = 0.08, ηs = [0.009 0.009]T ,
ηi = [0.01 0.01]T , Table 4.7 lists the values of h(B,A) for different selections of the
coarse partition A. For the same values of ε, ηs and ηi, the obtained values for the other
two bounds are w∗m(G) = 3.5646 and maxA∈B w(A) = 3.8074 with computation times 2.27
sec and 1.99 sec, respectively.

4.6.4 An uncertain linear control system

Example 9. We consider an uncertain linear control system

Σ : xk+1 ∈ F (xk, uk) = Axk +

[
1
1

]
uk +W,

A =

[
2 1
−0.4 0.5

]
,

where the state xk ∈ R2, the control input uk ∈ U = [−1, 1] and the disturbance set
W = [−0.1, 0.1]2. For a set Q ⊆ [−1, 1]× [−2, 2], we compute an upper and a lower bound
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Table 4.7: Values of h(B,A) for Example 8 with different selections of dtControl options.
Here, we have hdet

inv(Q) ≈ 0.696.
Classifier Determinizer #A h(B,A) Computation time

cart maxfreq 573 2.3884 0.95 min
linsvm maxfreq 567 2.3956 1.82 min
logreg maxfreq 454 2.3994 1.4 min
cart minnorm 1921 2.9342 1 min
logreg minnorm 1533 2.9215 2 min
linsvm minnorm 1923 2.9376 2.15 min

of the IFE of (Σ, Q). We used SCOTS to obtain an invariant controller for the state-space
subset Q̄ = [−1, 1]×[−2, 2] with [0.2 0.2]T and 0.05 as the state and input grid parameters,
respectively. The set Q is taken to be the domain of the obtained controller that consists of
109 state-grid cells each of size 0.2× 0.2. Figure 4.4 shows the subset Q.

Computation of the lower bound

We utilize Theorem 7 to compute a lower bound. From Remark 2, we know that the lower
bound in Theorem 7 is invariant under coordinate transformations. After a similarity

transformation x = V z with V =

[
0.9448 −0.6552
−0.3277 0.7555

]
, we have

zk+1 = Ãzk + V −1

[
1
1

]
uk + V −1W,

Ã =

[
1.6531 0

0 0.8469

]
.

For i ∈ {1, 2}, let πiQ denote the projection of the set Q to the i-th coordinate. Then
π1V

−1Q = [−2.1207, 2.1207], π2V
−1Q = [−3.4, 3.4], π1V

−1W = [−0.2827, 0.2827] and
π2V

−1W = [−0.2550, 0.2550]. Thus, we have 0.9316 ≤ hinv(Q,Σ).

Computation of the upper bound

We construct an invariant partition (Ā, G) of (Σ, Q) by selecting the set of grid cells in
the domain of the controller obtained from SCOTS as the cover Ā. Let C : Ā ⇒ U denote
the controller from SCOTS. For A ∈ Ā, C(A) is the list of control inputs in the controller
assigned to cell A such that each of the control inputs in the list ensures invariance of the
states in A with respect to the set Q. For each A ∈ Ā, we define G(A) := u ∈ C(A), where
u is such that F (A, u) has non-empty intersection with a minimum number of elements of
Ā. If there are multiple such control values, then one of them is selected randomly. Using
(Ā, G) and the transition function F , we construct a weighted directed graph G as described
in Section 4.4. We used the Boost Graph Library2 to compute the maximum mean cycle

2https://www.boost.org/doc/libs/1_74_0/libs/graph/doc/index.html

https://www.boost.org/doc/libs/1_74_0/libs/graph/doc/index.html
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Figure 4.4: The set Q in Example 9 which is defined to be the domain of the invariant
controller computed from SCOTS.

weight for the graph G and obtained w∗m(G) = maxA∈Āw(A) = 3.3219 with computation
times 0.0164 sec and 0.0133 sec, respectively. Thus, hinv(Q,Σ) ≤ 3.3219.

4.7 Discussion

Tables 4.2 and 4.6 clearly show that the upper bound of the invariance entropy gets better
and better with increasing length τ of the control sequences in the co-domain of the map
G : A → U τ . The dtControl parameter Determinizer = ‘maxfreq’ gives the best upper
bounds in all three deterministic examples. Let C : X ⇒ U denote the controller that is fed
to dtControl and Sn denote the subset of the state space corresponding to the node n of the
decision tree. When ‘maxfreq’ is selected, then, during the construction of the decision tree,
for every node n, the corresponding part of the controller (C|Sn) is determinized through
the selection of the control values that have the maximum frequency of appearance in the
set ∪x∈SnC(x). In contrast, with ‘minnorm’ the controller is determinized by the selection
of the control values with the smallest norm.

All the computations in this work were performed on an Intel Core i5-8250U processor
with 8 GB RAM. The code is publicly accessible at
https://github.com/mahendrasinghtomar/Invariance_Entropy_upper_bounds. The
computation time and memory requirement of SCOTS increase with the reduction of the grid
parameter values and the increase in volume of the state and input sets. For dtControl,

https://github.com/mahendrasinghtomar/Invariance_Entropy_upper_bounds
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the time increases with the size of the controller file obtained from SCOTS. The part of
the implementation which computes the deterministic graph ḠR from the directed one Ḡ
is written as a MATLAB mex function. The computation time of the MATLAB code increases
with the increase in the number of nodes and the number of edges in the graph Ḡ.

For the maximum mean cycle weight computation in the Boost Graph Library, the
emperical time complexity3 is O(#E), where E is the set of edges in the graph. Thus, both
upper bounds of the IFE can be computed in linear time. It is a major improvement over
the time complexity of the method proposed in [66], see [66, Rem. 1]. As Example 6 and 8
show, the upper bounds of the IFE are close to that of the IED. Thus, Theorem 11 gives
upper bounds for the IED that are easier to compute, takes less time and are close to the
values obtained by using the algorithm of Section 4.2.

3https://www.boost.org/doc/libs/1_64_0/libs/graph/doc/howard_cycle_ratio.html

https://www.boost.org/doc/libs/1_64_0/libs/graph/doc/howard_cycle_ratio.html


Chapter 5

Conclusions and Future Directions

5.1 Conclusion

In this work we studied invariance feedback entropy for uncertain control systems that
characterizes the critical data rate to achieve invariance. We established a number of
elementary properties including the relation between the invariance feedback entropies of
two systems which are related under a feedback refinement relation. We also studied
conditions for finiteness of the entropy. For the deterministic case, the invariance feedback
entropy and the invariance entropy are shown to be equivalent. We also described the
existence of an invariant cover with closed cover elements, such that its entropy is not
more than the entropy of the initial invariant cover. For uncertain linear control systems,
we derived lower bounds for the invariance feedback entropy and the data rate of any static,
memoryless coder-controller. We showed that for certain linear control systems the lower
bounds are tight.

For a large network of uncertain control subsystems, the time and memory require-
ments can be very high for the computation of an upper bound of IFE using the available
method which utilizes a mean payoff game. The resource requirement increases with the
state dimension. In Chapter 3, we advocated a different approach for the computation of
an upper bound of IFE. In particular, we provided an upper bound which can be com-
puted compositionally by working with much smaller subsystems. With an example, we
demonstrated that the bound is tight. Additionally, we presented a relation between the
IFEs of a system and a set Q, and the partition elements of Q. Further we showed that as
the uncertainty in the system increases the IFE also increases. In Section 4.4, we provided
an algorithmic technique to over-approximate the IFE by constructing finite abstractions
of original systems. Unfortunately, the complexity of the proposed approach grows expo-
nentially with respect to the state dimension of the overall interconnected system due to
the discretization of the state set for constructing the overall finite abstractions. By com-
bining the ideas of Sections 3.3 and 4.4, the complexity will grow linearly in the number of
subsystems because one can construct finite abstractions of subsystems independently and
then apply the proposed algorithmic technique in Section 4.4 to each subsystem separately.
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In the last main chapter, we presented algorithms for the numerical computation of the
IED and the IFE. In particular, given a subset Q of the state set, we first partition it. Then
a controller, in the form of a lookup table that assigns a set of control values to each cell of
the partition, is computed to enforce invariance of Q. After determinizing the controller,
a weighted directed graph is constructed. For deterministic systems, the logarithm of the
spectral radius of a transition matrix obtained from the graph gives an upper bound of
the entropy. For uncertain systems, the maximum mean cycle weight of the graph upper
bounds the entropy. With three deterministic examples, for which the exact value of the
invariance entropy is known or can be estimated by other means, we demonstrated that
the upper bound obtained by our algorithm is of the same order of magnitude as the actual
value. Additionally, our algorithm provides a static coder-controller scheme corresponding
to the obtained data-rate bound. Finally, we presented the computed upper bounds of
invariance entropy for an uncertain linear control system as well.

5.2 Future Directions

• As noted in Section 2.5.2, any invariant cover (A, G) immediately provides a static
or memoryless coder-controller scheme. Therefore, if Q ⊆ X is controlled invariant,
then it is sufficient to use a static coder-controller to achieve invariance in the closed
loop. The lower bound in Theorem 7 holds for general (possibly dynamic) coder-
controllers, while the lower bound in Theorem 8 holds for only static coder-controllers.
A static coder-controller scheme that achieves the lower bound in Theorem 8 for
scalar linear uncertain control systems is described in Section 2.5.3. The similarity
of the lower bounds in Theorems 7 and 8 allows us to easily make a comparison.
The data rate of the static coder-controller for the considered scalar linear uncertain
control systems in Theorem 8 is no worse than 1 bit/unit time than the best possibly
achievable data rate. The development of constructive coder-controller schemes, with
data rate close to the invariance feedback entropy for uncertain nonlinear control
systems and equal to the invariance feedback entropy for uncertain multidimensional
linear control systems, needs further investigation. Since the implementation effort of
dynamic coder-controller schemes is often too large to be useful in practice, it would
be interesting to also develop static schemes and then analyze the performance gap
between the two.

• In Theorem 7, a lower bound of the IFE, for uncertain linear control systems and
compact subset Q of the state space, is provided in terms of the determinant of the
system matrix and the Lebesgue measures of the set Q and the disturbance set. The
paper [19] presents an upper and a lower bound of the IED, for compact sets and
deterministic control systems with Euclidean state spaces, in terms of the derivative
of the system dynamics with respect to the system state. A much more detailed
study of upper and lower bounds in a more general setting is described in [38]. For
uncertain nonlinear control systems, the problem of lower and upper bounds of the



5.2 Future Directions 67

IFE in closed-form expression, is still open. For nonlinear control systems, in contrast
to the exact entropy, the upper and lower bounds are often computable. They will
help to evaluate how close the data rate of a given coder-controller scheme is to the
optimal one.

• For any invariant cover, we can always obtain an invariant partition. For example,
given a subset Q of the state space and an invariant cover (A, G), one possbile
way to obtain an invariant partition is through sequential set difference. If A =
{A1, . . . , An}, then define Â1 := A1, Â2 := A2\A1, Â3 := A3\ ∪1≤i≤2 Ai and so on.

The set Â := {Â1 . . . Ân} will be a partition of the set Q, and the pair (Â, G) will
be an invariant partition. Given an invariant partition of a set Q and a system Σ,
we have a quantization of the set Q such that for every state in Q we have a control
input available that will keep all possible successor states of Σ inside the set Q.
Intuitively, it seems that invariant partitions should be sufficient to define the IFE,
rather than the general invariant covers. If true, then it will simplify the definition of
the IFE by simplifying its interpretation. This can be inferred from the discussion in
Section 4.4. From an invariant partition, we can construct a weighted directed graph
for the closed loop system, where the map G will serve as an invariant controller.
The entropy of the invariant partition h(Â, G) will then be given by the maximum
mean cycle weight of the graph, that in fact measures the worst case average number
of bits needed to encode the number of outgoing edges for each node in a cycle in
the graph.

• Given any invariant cover (A, G) and a (τ,Q)-spanning set, one can construct a set
of control sequences of length τ by taking the image of each cover element under the
map G. An alternative definition of the IFE in terms of closed loop control sequences,
if possible, may help to extend some of the properties of the IED as studied in [38]
to the case of uncertain control systems. Such a definition may also help to describe
IFE using only invariant partitions. This will need an appropriate new definition of
the spanning sets.

• Given the notion of the IFE based on the set of finite length sequences in elements of
some cover, it seems possible to analyze the minimal data rates for other specifications
too, in particular, reachability. In contrast to invariance, reachability is concerned
with the finite behavior of the closed loop. For two subsets of the state set T and Q
with T ⊆ Q, a reachability specification may require search for a controller that all
closed loop trajectories that start from any state in Q shall reach the target set T
in some finite time, while never leaving the set Q. For this, the definition of (τ,Q)-
spanning set may have to be appropriately modified. Similar to an invariant cover,
we can consider a pair (A, G) where A is a finite cover of Q and G : A → U is a map
that associates with every cover element an input. For finite N , letR = {α1, . . . , αN}
be a set of sequences in the cover elements where αi ∈ A[0;ni[, ni ∈ N, 1 ≤ i ≤ N .
Each element αi in the set R has it’s own length ni. Now a spanning set can be
defined to be a set R that satisfies the following:
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1. the set of first elements of the sequences αi cover Q, i.e., Q ⊆ ∪i∈[1;N ]αi(0),

2. the last element of every sequence is a subset of T , i.e., αi(ni − 1) ⊆ T ,

3. for every sequence αi and t ∈ [0;ni − 2], the image of the cover element αi(t),
with G(αi(t)) as the input, under the map F is covered by the set {αj(t + 1) |
j ∈ J} where J is the set of indices of the sequences αj whose length nj is larger
than t + 1 and which share the same prefix with αi, i.e., αi|[0;t] = αj|[0;t] for all
j ∈ J .

With such a spanning set, we can construct a coder-controller scheme so that the
closed loop reaches the target set T from every initial state in Q in finite time, while
never leaving Q. For example, at t = 0, for the initial state x0 ∈ Q, the coder
can transmit the index i of a sequence αi whose initial element contains the initial
state, i.e., x0 ∈ αi(0). Then the controller applies the input u0 = G(αi(0)) to the
system. For t = 1, from the definition of the spanning set, we have that for all
successor states x1 ∈ F (x0, u0) there exists a sequence αj ∈ R with αi(0) = αj(0)
such that x1 ∈ αj(1). The coder, which has access to x1, transmits the index j to the
controller, which in turn applies u1 = G(αj(1)) to the system. The scheme repeats
until the end of a sequence is reached, at which point the system has reached the
target set T , i.e., xni−1 ∈ T . The bit rate of the channel needs to be sufficiently large
to support the error free transmission of the indices. For example, at time t = 0,
the channel needs to support log2

#{α(0) | α ∈ R} bits/unit time. At subsequent
times t > 0, the channel needs to support log2

#J bits/unit time, where the index
set J depends on the history, i.e., the sequence αi|[0;t] transmitted so far. Following
this reasoning, we can associate with every spanning set the minimal bit rate that
allows the successful transmission of the necessary indices. By taking the infimum
over all spanning sets and reachability covers we obtain a state information measure.
Now it remains to show that this information measure provides a tight lower bound
on the data rate of any coder-controller scheme that solves the reachability problem.
Once it is established that we have a reasonable information measure for reachability
properties, then further analysis need to be pursued to derive upper and lower bounds.



Appendix A

Mean-Payoff Games

A mean-payoff game (MPG) [25] is played by two players, player 1 and player 2, on a
finite, directed, edge-weighted graph G = (V,E,w), where V := V1 ∪ V2, V1 ∩ V2 = ∅ with
Vi, i ∈ {1, 2} being two nonempty sets, E ⊆ V × V , w : E → R>0 and for every v ∈ V
there exists v′ ∈ V so that (v, v′) ∈ E. The vertices V are also referred to as positions
of the game. Starting from an initial position v0 ∈ V , player 1 and player 2 take turns
in picking the next position depending on the current position of the game: given v0 ∈ Vi
for i ∈ {1, 2} player i picks the successor vertex v1 ∈ V so that (v0, v1) ∈ E and the play
continues with v1. The infinite sequence of edges e = (ek)k∈[0;∞[ with ek = (vk, vk+1) ∈ E
is called a play. Player 1 wants to minimize the payoff

νmin(e0e1e2 . . .) := lim sup
k→∞

1

k

k−1∑
j=0

w(ej)

while player 2 wants to maximize the payoff

νmax(e0e1e2 . . .) := lim inf
k→∞

1

k

k−1∑
j=0

w(ej).

A positional strategy for player i is a function σi : Vi → V so that (v, σi(v)) ∈ E holds for
all v ∈ Vi. By Pi(v, σi) ⊆ E[0;∞[ we denote the set of all plays that start from the position
v and wherein the player i follows the positional strategy σi.

As it turns out, there exist optimal positional strategies σ∗i for each player i and a
function ν : V → R so that player 1 is able to secure a payoff of ν(v) against any other
strategy of player 2 and vice versa, i.e., for all sequences ě ∈ P1(v, σ∗1) and ê ∈ P2(v, σ∗2)
we have

νmin(ě) ≤ ν(v) ≤ νmax(ê). (A.1)

We call ν the value function of the MPG (V,E,w), see e.g. [25] for details. Note that σ∗1
is optimal in the sense that any deviation of player 1 from σ∗1 can only lead to a larger
or equal payoff than ν(v) considering the worst case with respect to possible strategies of
player 2. Similarly, a deviation of player 2 from σ∗2 may only lead to suboptimal payoff.
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We exploit the following fact, which follows from the proof of [25, Lemma. 1]: there exist
constants c1 and c2, so that for every τ ∈ N, v ∈ V , ě ∈ P1(v, σ∗1) and ê ∈ P2(v, σ∗2) we
have

1

τ

τ−1∑
j=0

w(ěj) ≤ ν(v) +
c1

τ
, (A.2)

1

τ

τ−1∑
j=0

w(êj) ≥ ν(v) +
c2

τ
. (A.3)



Appendix B

Lemmas and Proofs

B.0.1

Proof of Lemma 1. We fix τ1, τ2 ∈ N and choose two minimal (τi, Q)-spanning sets Si,
i ∈ {1, 2} in (A, G) so that rinv(τi,A, G,Σ) = N (Si). Let S be the set of sequences
α : [0; τ1 + τ2[ → A given by α(t) := α1(t) for t ∈ [0; τ1[ and α(t) := α2(t − τ1) for
t ∈ [τ1; τ1 + τ2[, where αi ∈ Si for i ∈ {1, 2}. We claim that S is (τ1 + τ2, Q)-spanning
in (A, G). It is easy to see that {A ∈ A | ∃α∈SA = α(0)} covers Q, since {A ∈ A |
∃α∈S1A = α(0)} covers Q. Let t ∈ [0; τ1 + τ2[ and α ∈ S. If t ∈ [0; τ1 − 1[, we immediately
see that F (α(t), G(α(t))) ⊆ ∪A′∈PS(α|[0;t])A

′ since α1 := α|[0;τ1[ ∈ S1 and S1 satisfies (2.5).
Similarly, if t ∈ [τ1; τ1 + τ2 − 1[, we have F (α(t), G(α(t))) ⊆ ∪A′∈PS(α|[0;t])A

′ since α2 :=
α|[τ1;τ1+τ2[ ∈ S2 and S2 satisfies (2.5). For t = τ1 − 1, we know that PS(α|[0;τ1[) equals
{A | ∃α2∈S2 α2(0) = A} which covers Q and the inclusion F (α(t), G(α(t))) ⊆ ∪A′∈PS(α|[0;t])A

′

follows. Hence, S satisfies (2.5) and we see that S is (τ,Q)-spanning. Subsequently, for
i ∈ {1, 2} and α ∈ Si, t ∈ [0; τi − 1[, let us use PSi(α|[0;t]) := {A ∈ A | ∃α̂∈Si α̂|[0;t] =
α|[0;t] ∧ A = α̂(t + 1)}. Then we have PS(α|[0;t]) = PS1(α1|[0;t]) with α1 := α|[0;τ1[ if
t ∈ [0; τ1 − 1[ and PS(α|[0;t]) = PS2(α2|[0;t−τ1]) with α2 := α|[τ1;τ1+τ2[ if t ∈ [τ1; τ1 + τ2 − 1[,
while for t = τ1 − 1 we have PS(α|[0;t]) = PS2(α2) with α2 := α|[τ1;τ1+τ2[ and PS(α) :=
PS1(α1) with α1 := α|[0;τ1[. Therefore, N (S) is bounded by N (S1) · N (S2) and we have
rinv(τ1 + τ2,A, G,Σ) ≤ rinv(τ1,A, G,Σ) · rinv(τ2,A, G,Σ). Hence, τ 7→ log2 rinv(τ,A, G,Σ),
N→ R≥0 is a subadditive sequence of real numbers and (2.9) follows by Fekete’s Lemma [21,
Lem. 2.1].

B.0.2

Proof of Lemma 2. For every t ∈ [0; τ [, we define the set St := {α ∈ A[0;t] | ∃α′∈S α′|[0;t] =
α}. By definition of PS , we have for all α ∈ S the equality PS(α) = S0, which shows the
assertion for τ = 1 since in this case we have S0 = S. Subsequently, we assume τ > 1.
For t ∈ [0; τ [ and a0 . . . at ∈ St, we use Y (a0 . . . at) := {α ∈ S | a0 . . . at = α|[0;t]} to
denote the sequences in S whose initial part is restricted to a0 . . . at. For t ∈ [0; τ − 1[ and
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a0 . . . at ∈ St, we have

#Y (a0 . . . at)=
∑

at+1∈PS(a0...at)

#Y (a0 . . . at+1)

≤ #PS(a0 . . . at) max
at+1∈PS(a0...at)

#Y (a0 . . . at+1).

For every a0 . . . aτ−2 ∈ Sτ−2 we have #Y (a0 . . . aτ−2) = #PS(a0 . . . aτ−2) and we obtain a
bound for #Y (a0) by

#PS(a0) max
a1∈PS(a0)

#PS(a0a1)· · · max
aτ−2∈PS(a0...aτ−3)

#PS(a0 . . . aτ−2)

so that #Y (a0) ≤ maxα∈S
∏τ−2

t=0
#PS(α|[0;t]) holds for any a0 ∈ S0. As ∪a0∈S0Y (a0) = S

we observe #S =
∑

a0∈S0
#Y (a0) ≤ #S0 maxα∈S

∏τ−2
t=0

#PS(α|[0;t]). Since S0 = PS(α) =

PS(α|[0;τ−1]), we obtain the desired inequality #S ≤ maxα∈S
∏τ−1

t=0
#PS(α|[0;t]).

B.0.3

Lemma 9. Consider two systems Σi = (Xi, Ui, Fi), i ∈ {1, 2}, a map r : U2 → U1 and let
Qi be nonempty subsets of Xi. Suppose that M : ℘(X2) → ℘(X1) maps subsets of X2 to
subsets of X1 and satisfies for every u ∈ U2 and A2, A

′
2 ⊆ Q2 the following conditions

1. M(Q2) = Q1,

2. A2 ⊆ A′2 =⇒ M(A2) ⊆M(A′2),

3. M(A2 ∪ A′2) = M(A2) ∪M(A′2) and

4. F1(M(A2), r(u)) ⊆M(F2(A2, u)).

Let (A2, G2) be an invariant cover of Σ2 and Q2 and let

A1 := {M(A) | A ∈ A2} .

Then there exists a map G∗1 : A1 → U1 such that (A1, G
∗
1) is an invariant cover of Σ1 and

Q1, and
h(A1, G

∗
1) ≤ h(A2, G2). (B.1)

Proof. Let us first point out that A1 is a cover of Q1. We use 1) and 3) to derive

Q1 = M(Q2) = M(∪A2∈A2A2) = ∪A2∈A2M(A2)

and we see that A1 is a cover of Q1.
Consider the map G1 : A1 ⇒ U1 defined by

G1(A1) := {r(G2(A2)) | A2 ∈ A2,M(A2) = A1}
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and let

V(A1) :=
{

(V, u) | V ⊆ A1, u ∈ G1(A1), F1(A1, u) ⊆ ∪A∈VA
}
.

We show that V(A1) is nonempty for every A1 ∈ A1. Let A1 ∈ A1 and u ∈ G1(A1).
Then there exists A2 ∈ A2 so that A1 = M(A2) and u = r(G2(A2)). We use 4) to
see that F1(A1, u) ⊆ M(F2(A2, G2(A2))). Since (A2, G2) is an invariant cover we have
F2(A2, G2(A2)) ⊆ Q2 and it follows from 2) that F1(A1, u) ⊆ M(Q2). Since A1 covers
M(Q2) = Q1, we see that F1(A1, u) ⊆ ∪A∈A1A, which ensures that V(A1) 6= ∅.

Given Σ1 and (A1, G1) we construct an MPG (V,E,w). Let V1 := A1 and V2 :=
∪A∈V1V(A) then the positions of the MPG follow by V = V1 ∪ V2. We introduce the edges
E := E1 ∪ E2 of the MPG by

E1 := {(v1, v2) ∈ V1 × V2 | v2 ∈ V(v1)}
E2 := {(v2, v1) ∈ V2 × V1 | v1 ∈ V ′, v2 = (V ′, u)}.

For v ∈ V2 with v = (V ′, u) by #v we refer to #V ′. The weights for (v1, v2) ∈ E1 and
(v2, v1) ∈ E2 are given by w(v1, v2) := log2

#v2 and w(v2, v1) := log2
#v2. We refer to

(V,E,w) as the MPG associated with Σ1 and (A1, G1). Subsequently, we use σ∗i , i ∈ {1, 2}
to denote the optimal positional strategy for player i.

Fix τ ∈ N and let rinv(τ,A2, G2,Σ2) denote the smallest possible expansion number as-
sociated with the invariant cover (A2, G2) at time τ . Let S2 be a (τ,Q)-spanning set
in (A2, G2) such that N(S2) = rinv(τ,A2, G2,Σ2). We observe that Q1 = M(Q2) =
M(∪α∈S2α(0)) ⊆ ∪α∈S2M(α(0)). Thus V0 := {M(α(0)) | α ∈ S2} covers Q1. We pick
v̄ ∈ V0 so that ν(v̄) = maxv∈V0 ν(v). We show by induction over t ∈ [0; τ − 1[ the existence
of an α ∈ S2 and an (vk, vk+1)k∈[0;∞[ ∈ P2(v̄, σ∗2) such that

v2k = M(α(k)) and v2k+1 = ({M(A) | A ∈ PS2(α|[0;k])}, uk) (B.2)

with uk = r(G2(α(k))) holds for all k ∈ [0; t]. Let t = 0, then there exists α ∈ S2 with
M(α(0)) = v̄. As S2 is (τ,Q)-spanning we have F2(α(0), G2(α(0))) ⊆ ∪A∈PS2 (α(0))A. For
u = G2(α(0)) and V ′ = {M(A) | A ∈ PS2(α(0))} we use 4), 2) and 3) to derive

F1(v̄, r(u)) ⊆M(F2(α(0), u)) ⊆M(∪A∈PS2 (α(0))A) ⊆ ∪A∈V ′A. (B.3)

Hence, for v1 := (V ′, r(u)) we have v1 ∈ V(v̄) and (v̄, v1) ∈ E1 thus e0 = (v̄, v1) for some e ∈
P2(v̄, σ∗2). Now suppose that the induction hypothesis (B.2) holds for t ∈ [0; τ − 2[, α ∈ S2

and (vk, vk+1)k∈[0;∞[ ∈ P2(v̄, σ∗2). Let v2t+1 = (V ′, u). From the definition of E2 we have
v2t+2 = σ∗2(v2t+1) ∈ V ′. Hence, together with (B.2) we see that there exists A ∈ PS2(α|[0;t])
with M(A) = v2t+2. Then we can pick α̂ ∈ S2 such that α̂|[0;t] = α|[0;t] and α̂(t + 1) = A.
Further let v̂2t+3 = (V ′, r(u)) with u = G2(α̂(t+ 1)) and V ′ = {M(A) | A ∈ PS2(α̂|[0;t+1])}.
Then, by using the same arguments used to derive (B.3) with v2t+2 and PS2(α̂|[0;t+1]) in
place of v̄ and PS2(α(0)) we obtain F1(v2t+2, r(u)) ⊆ ∪A∈V ′A. Thus (v2t+2, v̂2t+3) ∈ E1

and there exists e ∈ P2(v̄, σ∗2) such that ek = (vk, vk+1) for all k ∈ [0; 2t+ 1] and e2t+2 =
(v2t+2, v̂2t+3) which completes the induction. Let α and e := (vk, vk+1)k∈[0;∞[ satisfy (B.2)
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for all k ∈ [0; τ − 1[, which implies #v2t+1 ≤ #PS2(α|[0;t]) for every t ∈ [0; τ − 1[. As
e ∈ P2(v̄, σ∗2) from (A.3) we have

ν(v̄) +
c2

2τ
≤ 1

2τ

2τ−1∑
j=0

w(ej)

≤ 1

τ

τ−1∑
t=0

log2
#PS2(α|[0;t]) +

1

τ
log2

#v2τ−1 −
1

τ
log2

#V0

≤ 1

τ
log2 rinv(τ,A2, G2,Σ2) +

c̄2

τ
(B.4)

where c̄2 = log2 maxv∈V2 #v.
We define G∗1 : A1 → U1 based on the value of σ∗1(A), i.e., G∗1(A) := u where

σ∗1(A) = (V ′, u). For any A1 ∈ A1 and u = G∗1(A1) there exists A2 ∈ A2 such that
A1 = M(A2) and u = r(G2(A2)). Hence, we use 4), 2) and 1) to derive F1(A1, G

∗
1(A1)) ⊆

M(F2(A2, G2(A2))) ⊆M(Q2) = Q1. Thus (A1, G
∗
1) is an invariant cover of Σ1 and Q1.

Now consider the set S1 ⊆ A[0;τ [
1 implicitly defined by α ∈ S1 if and only if there exists

(vk, vk+1)k∈[0;∞[ ∈ P1(v0, σ
∗
1) with v0 ∈ V0 so that α(t) = v2t holds for all t ∈ [0; τ [. The

set {α(0) | α ∈ S1} equals V0 therefore it covers Q1. Consider any α ∈ S1 and a play
(vk, vk+1)k∈[0;∞[ ∈ P1(v0, σ

∗
1) such that α(t) = v2t holds for all t ∈ [0; τ [. For k ∈ [0; τ − 1[

if v2k+1 = (V ′, u) then from the definition of S1 we have PS1(α|[0;k]) = V ′ and from the
definition of the MPG we have that V ′ covers F1(v2k, u). Thus

∀α∈S1∀t∈[0;τ−1[F (α(t), G∗1(α(t))) ⊆ ∪A′∈PS1 (α|[0;t])A
′.

Therefore S1 is a (τ,Q)-spanning set in (A1, G
∗
1). Let α ∈ S1 such that

∏τ−1
t=0

#PS1(α|[0;t]) =
N(S1). Pick an e ∈ P1(α(0), σ∗1) such that α(t) = v2t holds for all t ∈ [0; τ [. Then
from (A.2) we have

ν(v0) +
c1

2τ
≥ 1

2τ

2τ−1∑
j=0

w(ej)

=
1

τ

τ−1∑
t=0

log2
#PS1(α|[0;t]) +

1

τ
log2

#v2τ−1 −
1

τ
log2

#V0

≥ 1

τ
log2 rinv(τ,A1, G

∗
1,Σ1) +

c̄1

τ

(B.5)

where c̄1 = − log2
#V1.

From (B.4) and (B.5) we get

1

τ
log2 rinv(τ,A1, G

∗
1,Σ1) +

c̄1

τ
≤ ν(v0) +

c1

2τ
≤ ν(v̄) +

c1

2τ

≤ 1

τ
log2 rinv(τ,A2, G2,Σ2) +

c1 + 2c̄2 − c2

2τ
.

Since this inequality holds for every τ ∈ N, we get

h(A1, G
∗
1) ≤ h(A2, G2).
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Lemma 10. For a, b ∈ R and T ∈ N, it holds

a+
T∑
t=1

bat

(a− b)t
=

aT+1

(a− b)T
. (B.6)

Proof. We show the identity by induction over T . For T = 1, equation (B.6) is easy to
verify and subsequently, we assume that the equality holds for T − 1 with T ∈ N≥2. Now
we obtain

a+
T∑
t=1

bat

(a− b)t
=

baT

(a− b)T
+ a+

T−1∑
t=1

bat

(a− b)t

=
baT

(a− b)T
+

aT

(a− b)T−1
=
baT + aT (a− b)

(a− b)T
=

aT+1

(a− b)T

which completes the proof.
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