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Abstract: The debate of which quantitative risk measure to choose in practice has mainly focused on the

dichotomy between value at risk (VaR) and expected shortfall (ES). Range value at risk (RVaR) is a natural

interpolation between VaR and ES, constituting a tradeoff between the sensitivity of ES and the robustness of

VaR, turning it into a practically relevant riskmeasure on its own.Hence, there is a need to statistically assess,

compare and rank thepredictive performanceof differentRVaRmodels, tasks subsumedunder the term“com-

parative backtesting” in finance. This is best done in terms of strictly consistent loss or scoring functions, i.e.,

functions which are minimized in expectation by the correct risk measure forecast. Much like ES, RVaR does

not admit strictly consistent scoring functions, i.e., it is not elicitable. Mitigating this negative result, we show

that a triplet of RVaR with two VaR-components is elicitable. We characterize all strictly consistent scoring

functions for this triplet. Additional properties of these scoring functions are examined, including the diag-

nostic tool of Murphy diagrams. The results are illustrated with a simulation study, and we put our approach

in perspective with respect to the classical approach of trimmed least squares regression.
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1 Introduction

In the field of quantitative risk management, the last one or two decades have seen a lively debate about

which monetary risk measure [3] would be best in (regulatory) practice. The debate mainly focused on the

dichotomy between value at risk (VaRβ) on the one hand and expected shortfall (ESβ) on the other hand, at

some probability level β ∈ (0, 1) (see Section 2 for definitions). Mirroring the historical joust betweenmedian

and mean as centrality measures in classical statistics, VaRβ, basically a quantile, is esteemed for its robust-

ness, while ESβ, a tail expectation, is deemed attractive due to its sensitivity and the fact that it satisfies the

axiomsof a coherent riskmeasure [3].We refer the reader to [15, 17] for comprehensive academicdiscussions,

and to [58] for a regulatory perspective in banking.

Cont, Deguest and Scandolo [8] considered the issue of statistical robustness of risk measure estimates

in the sense of [30]. They showed that a risk measure cannot be both robust and coherent. As a compromise,

they propose the risk measure “range value at risk”, RVaRα,β at probability levels 0 < α < β < 1. It is defined
as the average of all VaRγ with γ between α and β (see Section 2 for definitions). As limiting cases, one obtains

RVaRβ,β = VaRβ andRVaR0,β = ESβ,whichpresentsRVaRα,β as anatural interpolationofVaRβ andESβ. Quan-
tifying its robustness in terms of the breakdown point and following the arguments provided in [33, p. 59],

RVaRα,β has a breakdown point of min{α, 1 − β}, placing it between the very robust VaRβ (with a breakdown
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point of min{β, 1 − β}) and the entirely non-robust ESβ (breakdown point 0). This means it is a robust – and

hence not coherent – risk measure, unless it degenerates to RVaR
0,β = ESβ (or if 0 ≤ α < β = 1). Moreover,

RVaR belongs to the wide class of distortion riskmeasures [52, 55]. For further contributions to robustness in

the context of risk measures, we refer the reader to [16, 36–38, 56]. Since the influential article [8], RVaR has

gained increasing attention in the risk management literature – see [13, 14] for extensive studies – as well as

in econometrics [5] where RVaR sometimes has the alternative denomination interquantile expectation. For
the symmetric case β = 1 − α > 1

2

, RVaRα,1−α is known under the term α-trimmed mean in classical statistics

and it constitutes an alternative to and interpolation of the mean and the median as centrality measures;

see [40] for a recent study and a multivariate extension of the trimmed mean. It is closely connected to the

α-Winsorized mean; see (2.3).

How is it possible to evaluate thepredictive performance of point forecasts Xt for a statistical functional T,
such as the mean, median or a risk measure, of the (conditional) distribution of a quantity of interest Yt? It is
commonlymeasured in terms of theaverage realized score 1

n ∑
n
t=1 S(Xt , Yt) for some loss or scoring function S,

using the orientation the smaller the better. Consequently, the loss function S should be strictly consistent
for T in that T(F) = argminx ∫ S(x, y)dF(y): correct predictions are honored and encouraged in the long run,
e.g., the squared loss S(x, y) = (x − y)2 is consistent for the mean, and the absolute loss S(x, y) = |x − y| is
consistent for the median. If a functional admits a strictly consistent score, it is called elicitable [27, 39, 44].
By definition, elicitable functionals allow forM-estimation and have natural estimation paradigms in regres-

sion frameworks [11, Section 2] such as quantile regression [34, 35] or expectile regression [42]. Elicitability

is crucial for meaningful forecast evaluation [18, 27, 41]. In the context of probabilistic forecasts with dis-

tributional forecasts Ft or density forecasts ft, (strictly) consistent scoring functions are often referred to as

(strictly) proper rules such as the log-score S(f, y) = − log f(y) (see [29]). In quantitative finance, and particu-
larly in the debate aboutwhich riskmeasure is best in practice, elicitability has gained considerable attention

[9, 17, 57]. Especially, the role of elicitability for backtesting purposes has been highly debated [1, 2, 27]. It

has been clarified that elicitability is central for comparative backtesting [24, 43]. On the other hand, if one
strives to validate forecasts, (strict) identification functions are crucial. Much like scoring functions, they are
functions in the forecast and the observation, which, however, vanish in expectation at (and only at) the

correct report. Thus, they can be used to check (conditional) calibration [26, 43].

Not all functionals are elicitable or identifiable. Osband [44] showed that an elicitable or identifiable

functional necessarily has convex level sets (CxLS): If T(F
0
) = T(F

1
) = t for two distributions F

0
, F

1
, then

T(Fλ) = t where Fλ = (1 − λ)F0 + λF1, λ ∈ (0, 1). Variance and ES generally do not have CxLS [27, 53], there-
fore failing to be elicitable and identifiable. The revelation principle [19, 27, 44] asserts that any bijection of
an elicitable/identifiable functional is elicitable/identifiable. This implies that the pair (mean, variance) –

being a bijection of the first two moments – is elicitable and identifiable despite the variance failing to be

so. Similarly, Fissler and Ziegel [21] showed that the pair (VaRβ , ESβ) is elicitable and identifiable, with the

structural difference that the revelation principle is not applicable in this instance. This is followed by the

more general finding that the minimal expected score and its minimizer are always jointly elicitable [6, 25].

Recently, Wang and Wei [51, Theorem 5.3] showed that RVaRα,β, 0 < α < β < 1, similarly to ESα, fails

to have CxLS as a standalone measure, which rules out its elicitability and identifiability. In contrast, they

observe that the identity

RVaRα,β =
β ESβ −α ESα

β − α
, 0 < α < β < 1, (1.1)

which holds if ESα and ESβ are finite, and the CxLS property of the pairs (VaRα , ESα), (VaRβ , ESβ) implies the

CxLS property of the triplet (VaRα ,VaRβ , RVaRα,β) (see [51, Example 4.6]). This raises the question whether

this triplet is elicitable and identifiable or not. By invoking the elicitability and identifiability of (VaRα , ESα),
identity (1.1) and the revelation principle establish the elicitability and identifiability of the quadruples

(VaRα ,VaRβ , ESα , RVaRα,β) and (VaRα ,VaRβ , ESβ , RVaRα,β). This approach has already been used in the con-
text of regression in [5].

Improving this result,we show that the triplet (VaRα ,VaRβ , RVaRα,β) is elicitable (Theorem3.3) and iden-

tifiable (Proposition 3.1) under weak regularity conditions. Practically, our results open the way to model

validation, to meaningful forecast performance comparison, and in particular to comparative backtests, of
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this triplet, as well as to a regression framework. Theoretically, they show that the elicitation complexity

[25, 39] or elicitation order [21] of RVaRα,β is at most 3. Moreover, requiring only VaR-forecasts besides

the RVaR-forecast is particularly advantageous in comparison to additionally requiring ES-forecasts since

the triplet (VaRα(F),VaRβ(F), RVaRα,β(F)), 0 < α < β < 1, exists and is finite for any distribution F, whereas
ESα(F) and ESβ(F) are only finite if the (left) tail of the gains-and-loss distribution F is integrable. As RVaRα,β
is used often for robustness purposes, safeguarding against outliers and heavy-tailedness, this advantage is

important.

We would like to point out the structural difference between the elicitability result of

(VaRα ,VaRβ , RVaRα,β)

provided in this paper and the one concerning (VaRα , ESα) in [21] aswell as themore general results of [6, 25].

While ESα corresponds to thenegative of aminimumof an expected scorewhich is strictly consistent forVaRα,

it turns out that RVaRα,β canbe represented as thenegative of a scaleddifferenceofminimaof expected strictly

consistent scoring functions for VaRα and VaRβ; see equations (3.1) and (3.2). As a consequence, the class of

strictly consistent scoring functions for the triplet (VaRα ,VaRβ , RVaRα,β) turns out to be less flexible than the
one for (VaRα , ESα); see Remark 3.9 for details. In particular, there is essentially no translation invariant or

positively homogeneous scoring functionwhich is strictly consistent for (VaRα ,VaRβ , RVaRα,β); see Section4.
The paper is organized as follows. In Section 2, we introduce the relevant notation and definitions con-

cerningRVaR, scoring functions and elicitability. Themain results are presented in Section 3, establishing the

elicitability of the triplet (VaRα ,VaRβ , RVaRα,β) (Theorem 3.3) and characterizing the class of strictly consis-

tent scoring functions (Theorem 3.7), exploiting the identifiability result of Proposition 3.1. Section 4 shows

that there are basically no strictly consistent scoring functions for (VaRα ,VaRβ , RVaRα,β)which are positively
homogeneous or translation invariant. In Section 5, we establish amixture representation of the strictly con-

sistent scoring functions in the spirit of [12]. This result allows to compare forecasts simultaneously with

respect to all consistent scoring functions in terms of Murphy diagrams. We demonstrate the applicability

of our results and compare the discrimination ability of different scoring functions in a simulation study

presented in Section 6. The paper finishes in Section 7 with a discussion of our results in the context of

M-estimation and compares them to other suggestions in the statistical literature, in variants of a trimmed
least squares procedure [35, 47, 49].

2 Notation and definitions

2.1 Definition of range value at risk

There are different sign conventions in the literature on riskmeasures. In this paper, we use the following con-

vention: if a random variable Y models the gains and losses, then positive values of Y represent gains and

negative values of Y losses. Moreover, if ρ is a riskmeasure, we assume that ρ(Y) ∈ ℝ corresponds to themax-

imal amount of money one can withdraw such that the position Y − ρ(Y) is still acceptable. Hence, negative
values of ρ correspond to risky positions. In the sequel, letF

0
be the class of probability distribution functions

onℝ. Recall that the α-quantile, α ∈ [0, 1], of F ∈ F
0
is defined as the set qα(F) = {x ∈ ℝ | F(x−) ≤ α ≤ F(x)},

where F(x−) := limt↑x F(t).

Definition 2.1. Value at risk of F ∈ F
0
at level α ∈ [0, 1] is defined by VaRα(F) = inf qα(F).

For any α ∈ [0, 1] we introduce the following subclasses of F
0
:

Fα = {F ∈ F
0
| qα(F) = {VaRα(F)}}, F(α) = {F ∈ F

0
| F(VaRα(F)) = α}.

Distributions F ∈ F(α) have at least one solution to the equation F(x) = α; distributions F ∈ Fα
have at most

one solution to the equation F(x) = α.
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Definition 2.2. Range value at risk of F ∈ F
0
at levels 0 ≤ α ≤ β ≤ 1 is defined by

RVaRα,β(F) =
{{{{
{{{{
{

1

β − α

β

∫
α

VaRγ(F)dγ if α < β,

VaRβ(F) if α = β.

Note that limα↑β RVaRα,β(F) = VaRβ(F) = RVaRβ,β(F). The definition of RVaR and the fact that γ → VaRγ(F) is
increasing imply that

VaRα(F) ≤ RVaRα,β(F) ≤ VaRβ(F). (2.1)

For 0 < α ≤ β < 1 and F ∈ F
0
one obtains that (i) RVaRα,β(F) ∈ ℝ; (ii) RVaR0,β(F) ∈ ℝ ∪ {−∞} and it is finite

if and only if ∫0−∞|y|dF(y) <∞; and (iii) RVaRα,1(F) ∈ ℝ ∪ {∞} and it is finite if and only if ∫
∞
0

|y|dF(y) <∞.
Moreover, RVaR

0,1
(F) exists if and only if

0

∫
−∞

|y|dF(y) <∞ or

∞

∫
0

|y|dF(y) <∞

and then coincides with ∫ y dF(y) ∈ ℝ ∪ {±∞}. For α < β and provided that RVaRα,β(F) exists, it holds that

RVaRα,β(F) =
1

β − α( ∫
(VaRα(F),VaRβ(F)]

y dF(y) + VaRα(F)(F(VaRα(F)) − α) − VaRβ(F)(F(VaRβ(F)) − β)), (2.2)

using the usual conventions F(−∞) = 0, F(∞) = 1 and 0 ⋅ ∞ = 0 ⋅ (−∞) = 0. If F ∈ F(α) ∩ F(β), then the cor-

rection terms in the second line of (2.2) vanish, yielding

RVaRα,β(F) =
𝔼F(Y𝟙{VaRα(F) < Y ≤ VaRβ(F)})

β − α
,

which justifies an alternative name for RVaR, namely Interquantile Expectation.

Definition 2.3. Expected shortfall of F ∈ F
0
at level α ∈ (0, 1) is defined by

ESα(F) = RVaR0,α(F) ∈ ℝ ∪ {−∞}.

Hence, provided that ESα(F) and ESβ(F) are finite, one obtains identity (1.1). If F has a finite left tail

(∫0−∞|y|dF(y) <∞), then one could use the right-hand side of (1.1) as a definition of RVaRα,β(F). How-
ever, in line with our discussion in the introduction, RVaRα,β(F) always exists and is finite for 0 < α < β < 1
even if the right-hand side of (1.1) is not defined.

Interestingly, [14, Theorem 2] establish that RVaR can be written as an inf-convolution of VaR and ES

at appropriate levels. This result amounts to a sup-convolution in our sign convention. Also note that our

parametrization of RVaRα,β differs from theirs.

Now, for α ∈ (0, 1
2

), RVaRα,1−α corresponds to the α-trimmed mean and has a close connection to the

α-Winsorized meanWα (see [33, pp. 57–59]) via

Wα(F) := (1 − 2α)RVaRα,1−α(F) + αVaRα(F) + αVaR1−α(F), α ∈ (0, 1
2

). (2.3)

2.2 Elicitability and scoring functions

Using the decision-theoretic framework of [21, 27], we introduce the following notation. Let F ⊆ F
0
be some

generic subclass and let A ⊆ ℝk be an action domain.Wheneverwe consider a functional T : F → A, we tacitly
assume that T(F) is well-defined for all F ∈ F and is an element of A. Then T(F) corresponds to the image

{T(F) ∈ A | F ∈ F}. For any subset M ⊆ ℝk we denote with int(M) the largest open subset of M. Moreover,

conv(M) denotes the convex hull of the set M.
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We say that a function a : ℝ→ ℝ is F-integrable if it is measurable and ∫|a(y)|dF(y) <∞ for all F ∈ F.
Similarly, a function g : A ×ℝ→ ℝ is called F-integrable if g(x, ⋅ ) : ℝ→ ℝ is F-integrable for all x ∈ A. If g is
F-integrable, we define the map

ḡ : A × F → ℝ, ḡ(x, F) := ∫ g(x, y)dF(y).

If g : A ×ℝ→ ℝ is sufficiently smooth in its first argument, we denote them-th partial derivative of g( ⋅ , y) by
∂mg( ⋅ , y).

Definition 2.4. A map S : A ×ℝ→ ℝ is an F-consistent scoring function for T : F → A if it is F-integrable

and if S̄(T(F), F) ≤ S̄(x, F) for all x ∈ A and F ∈ F. It is strictly F-consistent for T if it is consistent and if

S̄(T(F), F) = S̄(x, F) implies that x = T(F) for all x ∈ A and for all F ∈ F. A functional T : F → A is elicitable
on F if it possesses a strictly F-consistent scoring function.

Definition 2.5. Two scoring functions S, S̃ : A ×ℝ→ ℝ are equivalent if there is some a : ℝ→ ℝ and some

λ > 0 such that S̃(x, y) = λS(x, y) + a(y) for all (x, y) ∈ A ×ℝ. They are proportional if they are equivalent with
a ≡ 0.

This equivalence relation preserves (strict) consistency: If S is (strictly) F-consistent for T and if a is

F-integrable, then S̃ is also (strictly) F-consistent for T. Closely related to the concept of elicitability is

the notion of identifiability.

Definition 2.6. A map V : A ×ℝ→ ℝk is an F-identification function for T : F → A if it is F-integrable and

if V̄(T(F), F) = 0 for all F ∈ F. It is a strict F-identification function for T if additionally V̄(x, F) = 0 implies

that x = T(F) for all x ∈ A and for all F ∈ F. A functional T : F → A is identifiable on F if it possesses a strict

F-identification function.

In contrast to [27], we consider point-valued functionals only. For a recent comprehensive study on elicitabil-

ity of set-valued functionals, we refer to [20].

3 Elicitability and identifiability results

Wang and Wei [51, Theorem 5.3] showed that for 0 < α < β < 1, RVaRα,β (and also the pairs (VaRα , RVaRα,β)
and (VaRβ , RVaRα,β)) do not have CxLS on F

dis
, the class of distributions with bounded and discrete sup-

port. Hence, by invoking that CxLS are necessary both for elicitability and for identifiability, RVaRα,β and

the pairs (VaRα , RVaRα,β) and (VaRβ , RVaRα,β) are neither elicitable nor identifiable on F
dis
. Our novel con-

tribution is that the triplet (VaRα ,VaRβ , RVaRα,β), however, is elicitable and identifiable, subject to mild

conditions. We use the notation Sα(x, y) = (𝟙{y ≤ x} − α)x − 𝟙{y ≤ x}y and recall that Sα is F-consistent for
VaRα if ∫

0

−∞|y|dF(y) <∞ for all F ∈ F, and strictly F-consistent if furthermore F ⊆ Fα
(see [27]).

Proposition 3.1. For 0 < α < β < 1, the map V : ℝ3 ×ℝ→ ℝ3 defined by

V(x
1
, x

2
, x

3
, y) =(

𝟙{y ≤ x
1
} − α

𝟙{y ≤ x
2
} − β

x
3
+ 1

β−α (Sβ(x2, y) − Sα(x1, y))
) (3.1)

is an F(α) ∩ F(β)-identification function for (VaRα ,VaRβ , RVaRα,β), which is strict on Fα ∩ F(α) ∩ Fβ ∩ F(β).

Proof. The proof is standard, observing that

V̄
3
(VaRα(F),VaRβ(F), x3, F) = x3 − RVaRα,β(F), (3.2)

which follows from the representation (2.2).

Remark 3.2. The benefits of the identifiability result of Proposition 3.1 are two-fold. First, it facilitates (con-
ditional) calibration backtests in the spirit of [43]. There, the null hypothesis is that a sequence of forecasts
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(X
1,t , X2,t , X3,t), measurable with respect to the most recent information At−1, is correctly specified in the

sense that

(X
1,t , X2,t , X3,t) = (VaRα(Yt|At−1),VaRβ(Yt|At−1), RVaRα,β(Yt|At−1)).

By exploiting the strict identification property of V in (3.1), this null hypothesis corresponds to

𝔼(V(X
1,t , X2,t , X3,t , Yt)|At−1) = 0.

Clearly, such a conditional backtest can be conducted using any strict identification function. By invoking

[19, Proposition 3.2.1], any strict Fα ∩ F(α) ∩ Fβ ∩ F(β)-identification function for (VaRα ,VaRβ , RVaRα,β) is
given by

H(x
1
, x

2
, x

3
)V(x

1
, x

2
, x

3
, y),

where V is given in (3.1) and H : ℝ3 → ℝ3×3 is a matrix-valued function whose determinant does not vanish.

Second, Proposition 3.1 enables the characterization result of strictly consistent scoring functions pre-

sented in Theorem 3.7.

The following theorem establishes a rich class of (strictly) consistent scoring functions S : ℝ3 ×ℝ→ ℝ
for (VaRα ,VaRβ , RVaRα,β). By a priori assuming the forecasts to be bounded with values in some cube

[c
min

, c
max
]3, −∞ ≤ c

min
< c

max
≤∞ (here and throughout the paper, we make the tacit convention that

[c
min

, c
max
] := [c

min
, c

max
] ∩ℝ if c

min
= −∞ or c

max
=∞), the class gets even broader.

Theorem 3.3. For 0 < α < β < 1, the map S : [c
min

, c
max
]3 ×ℝ→ ℝ defined by

S(x
1
, x

2
, x

3
, y) = (𝟙{y ≤ x

1
} − α)g

1
(x

1
) − 𝟙{y ≤ x

1
}g

1
(y) + (𝟙{y ≤ x

2
} − β)g

2
(x

2
) − 𝟙{y ≤ x

2
}g

2
(y)

+ ϕ(x
3
)(x

3
+

1

β − α
(Sβ(x2, y) − Sα(x1, y))) − ϕ(x3) + a(y) (3.3)

is an F-consistent scoring function for T = (VaRα ,VaRβ , RVaRα,β) if the following conditions hold:
(i) ϕ : [c

min
, c

max
]→ ℝ is convex with subgradient ϕ.

(ii) For all x
3
∈ [c

min
, c

max
] the functions

G
1,x

3

: [c
min

, c
max
]→ ℝ, x

1
→ g

1
(x

1
) − x

1
ϕ(x

3
)/(β − α), (3.4)

G
2,x

3

: [c
min

, c
max
]→ ℝ, x

2
→ g

2
(x

2
) + x

2
ϕ(x

3
)/(β − α), (3.5)

are increasing.
(iii) y → a(y) − 𝟙{y ≤ x

1
}g

1
(y) − 𝟙{y ≤ x

2
}g

2
(y) is F-integrable for all x

1
, x

2
∈ [c

min
, c

max
].

If moreover ϕ is strictly convex and the functions in G
1,x

3

and G
2,x

3

in (3.4) and (3.5) are strictly increasing for
all x

3
∈ [c

min
, c

max
], then S is strictly Fα ∩ Fβ-consistent for T.

Proof. Let (x
1
, x

2
, x

3
) ∈ A, F ∈ F and (t

1
, t

2
, t

3
) := T(F). Then, since G

1,x
3

is increasing,

[c
min

, c
max
] ×ℝ ∋ (x

1

, y) → S(x
1

, x
2
, x

3
, y)

is F-consistent for VaRα and it is strictly F
α
-consistent if G

1,x
3

is strictly increasing. Similar comments apply

to the map [c
min

, c
max
] ×ℝ ∋ (x

2

, y) → S(t
1
, x

2

, x
3
, y). Hence,

0 ≤ S̄(x
1
, x

2
, x

3
, F) − S̄(t

1
, x

2
, x

3
, F) + S̄(t

1
, x

2
, x

3
, F) − S̄(t

1
, t

2
, x

3
, F)

= S̄(x
1
, x

2
, x

3
, F) − S̄(t

1
, t

2
, x

3
, F),

with a strict inequality under the conditions for strict consistency and if (x
1
, x

2
) ̸= (t

1
, t

2
). Finally,

S̄(t
1
, t

2
, x

3
, F) − S̄(t

1
, t

2
, t

3
, F) = ϕ(x

3
)(x

3
− t

3
) − ϕ(x

3
) + ϕ(t

3
) ≥ 0 (3.6)

since ϕ is convex. If ϕ is strictly convex and if x
3
̸= t
3
, the inequality in (3.6) is strict.

Remark 3.4. Provided condition (iii) in Theorem 3.3 holds and if ϕ is strictly convex and G
1,x

3

and G
2,x

3

are strictly increasing, then S given in (3.3) is still strictly F-consistent in the RVaR-component for general
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F ⊆ F
0
. That is, for F ∈ F,

argmin

x∈A
0

S̄(x, F) = qα(F) × qβ(F) × {RVaRα,β(F)}.

By making use of (2.3) and the revelation principle [19, 27, 44], Theorem 3.3 also provides a rich class

of strictly consistent scoring functions for (VaRα ,VaR1−α ,Wα), where Wα is the α-Winsorized mean. The

following proposition is useful to construct examples; see Section 6.

Proposition 3.5. Let S be of the form (3.3) with a (strictly) convex and non-constant function ϕ, and functions
g
1
, g

2
such that the functions at (3.4) and (3.5) are (strictly) increasing and condition (iii) of Theorem 3.3 is

satisfied. Then the following assertions hold:
(i) The subgradient ϕ of ϕ is necessarily bounded and the one-sided derivatives of g

1
and g

2
are necessarily

bounded from below.
(ii) S is proportional to a scoring function S̃ of the form (3.3) with a (strictly) convex function ϕ̃ such that ϕ̃ is

bounded with
β − α = − inf

x∈[c
min

,c
max
]
ϕ̃(x) = sup

x∈[c
min

,c
max
]
ϕ̃(x),

and strictly increasing functions g̃
1
, g̃

2
such that their one-sided derivatives are bounded from below by one

and such that the functions at (3.4) and (3.5) are (strictly) increasing and condition (iii) of Theorem 3.3 is
satisfied.

Proof. (i) The proof is similar to the one of [21, Corollary 5.5]: condition (ii) implies that for any

x
1
, x

1

, x
2
, x

2

, x
3
∈ [c

min
, c

max
]

with x
1
< x

1

and x
2
< x

2

it holds that

−∞ < −
g
2
(x

2

) − g
1
(x

2
)

x
2

− x
2

≤
ϕ(x

3
)

β − α
≤
g
1
(x

1

) − g
1
(x

1
)

x
1

− x
1

<∞.

Therefore, ϕ is bounded, and the one-sided derivative of g
1
is bounded from below by supx

3

ϕ(x
3
)/(β − α),

while the one-sided derivative of g
2
is bounded from below by − infx

3

ϕ(x
3
)/(β − α).

(ii) For any c ∈ ℝ, if we replace ϕ by ϕ̂ : x → ϕ(x) + cx, g
1
by ĝ

1
: x → g

1
(x) + cx/(β − α), and g

2
by

ĝ
2
: x → g

2
(x) − cx/(β − α) in formula (3.3) for S, then S does not change. Also, ϕ̂ is (strictly) convex if and

only if ϕ is (strictly) convex. Furthermore, conditions (ii) and (iii) of Theorem 3.3 hold for (ϕ, g
1
, g

2
) if and

only if they hold for (ϕ̂, ĝ
1
, ĝ

2
). By part (i) of the proposition, ϕ is bounded. Therefore, we can assume

without loss of generality that

− inf

x∈[c
min

,c
max
]
ϕ(x) = sup

x∈[c
min

,c
max
]
ϕ(x) = λ > 0

since ϕ is non-constant. Then the argument follows by setting S̃ = λ
β−α S.

Example 3.6. Proposition 3.5 in combination with Theorem 3.3 yields a straightforward recipe to generate

(strictly) consistent scoring functions for (VaRα ,VaRβ , RVaRα,β). The main degree of flexibility is the choice

of ϕ. For practical purposes, it can be easier to start with the choice of ϕ, which should be a (strictly) increas-
ing and bounded function. A rich source for such functions is the class of (strictly increasing) cumulative

distribution functions, which can easily be scaled to have an infimum of −(β − α) and a supremum of β − α.
Then ϕ can be obtained by integrating ϕ. The simplest choice for g

1
and g

2
is the identity, i.e., g

1
(x

1
) = x

1

and g
2
(x

2
) = x

2
. The only remaining degree of flexibility is then to add consistent scoring functions for VaRα

or for VaRβ. Table 1 contains some examples for choices of ϕ. For illustrative purposes, let us discuss the
score S

1
from Table 1 more closely. Just as in the case of S

3
, but less obviously so, the corresponding ϕ is

motivated by a distribution function. In this case, it is the logistic distribution e

x
3/(1 + ex3 ). Proper translation

and scaling according to Proposition 3.5 leads to

ϕ(x
3
) = (β − α)( 2e

x
3

1 + ex3
− 1) = (β − α)e

x
3 − 1

e
x
3 + 1
= (β − α) tanh( x3

2

).
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Scoring function ϕ(x3)

S1 (β − α) tanh(x3/2)
S2 (β − α)(2/π) arctan(x3)
S3 (β − α)(2Φ(x3) − 1)
S4 (β − α)(−𝟙{x3 < c1} + 𝟙{x3 > c2} + 𝟙{c1 ≤ x3 ≤ c2}2(x3 − (c1 + c2)/2)/(c2 − c1))

Table 1: Examples of scoring functions. In all cases we choose g1(x1) = x1 and g2(x2) = x2. The parameters
c1 , c2 ∈ ℝ satisfy c1 < c2, and Φ is the cumulative distribution function of a standard normal law.

An antiderivative of ϕ is given by ϕ(x
3
) = (β − α)(2 log(ex3 + 1) − x

3
). Therefore, upon choosing a(y) = 2y,

the explicit form of S
1
reads

S
1
(x

1
, x

2
, x

3
, y) = (𝟙{y ≤ x

1
} − α)x

1
+ 𝟙{y > x

1
}y + (𝟙{y ≤ x

2
} − β)x

2

+ 𝟙{y > x
2
}y + 2(β − α)(x

3

e

x
3

e
x
3 + 1
− log(ex3 + 1))

+
e

x
3 − 1

e
x
3 + 1
((𝟙{y ≤ x

2
} − β)x

2
− 𝟙{y ≤ x

2
}y − (𝟙{y ≤ x

1
} − α)x

1
+ 𝟙{y ≤ x

1
}y).

The particular choice of a(y) = 2y can be beneficial with regard to integrability conditions: With this choice,

S
1
is F-integrable if and only if the right tail of F is integrable, i.e., if ∫∞

0

y dF(y) <∞. In a risk management

context with our sign convention, the right tail corresponds to the gains, which are commonly less heavy-

tailed than the losses. While ϕ appearing in S
2
can easily be integrated with an antiderivative of

ϕ(x
3
) = (β − α)(2π )(

x
3
arctan(x

3
) −

log(x2
3

+ 1)
2

),

the antiderivative of ϕ for S
3
has no closed form solution, therefore requiring numerical integration. The

scoring function S
4
, where ϕ is an increasing piecewise linear function which is strictly increasing only on

[c
1
, c

2
], is in the spirit of the Huber loss [32, p. 79]. It is only strictly consistent on [c

1
, c

2
]3, but remains

consistent for all ofℝ3.

Striving for a full characterization of the class of strictly consistent scoring functions for

T = (VaRα ,VaRβ , RVaRα,β),

we shall next establish the counterpart of Theorem 3.3, providing necessary conditions for the strict consis-

tency. The main tool to derive such necessary conditions is Osband’s principle, originating from the seminal

dissertation of Osband [44]; see also [27] for an accessible intuition. We use the precise technical formula-

tion of [21, Theorem 3.2]. It is no wonder that necessary conditions for strictly F-consistent scores for T can

only be obtained for action domains A ⊆ ℝ3 such that the surjectivity condition A = {T(F) : F ∈ F} holds. By
invoking inequality (2.1), any such action domain is necessarily a subset of

A
0
:= {(x

1
, x

2
, x

3
) ∈ ℝ3 | x

1
≤ x

3
≤ x

2
},

which we therefore call the maximal sensible action domain. Issuing forecasts for T outside of A
0
, thus vio-

lating (2.1), would be irrational, comparable to, say, negative variance forecasts. Still, the scoring functions

of the form (3.3) allow for the evaluation of forecasts violating (2.1). Besides the surjectivity assumption

and further richness assumptions on the class of distributions F, we need to impose smoothness condi-

tions on the expected score as to exploit first-order conditions stemming from the minimization problem

of strict consistency; see Section A for the detailed technical formulations and [21] for a discussion of these

conditions.

We introduce the classFα
cont

⊂ Fα
of distributions inFα

which are continuously differentiable (and there-

fore also in F(α)). For any A ⊆ ℝ3, we denote the projections on the r-th component by

Ar := {xr ∈ ℝ | there exists (z1, z2, z3) ∈ A, zr = xr}, r ∈ {1, 2, 3}.
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For any x
3
∈ A

3

and m ∈ {1, 2}, let

Am,x
3

:= {xm ∈ ℝ | there exists (z1, z2, z3) ∈ A, zm = xm , z3 = x3}.

Theorem 3.7. LetF ⊆ Fα
cont

,0 < α < β < 1, T = (VaRα ,VaRβ , RVaRα,β) : F → A ⊆ A
0
, and letV = (V

1
, V

2
, V

3
)⊺

be defined at (3.1). If Assumptions (V1) and (F1) hold and (V
1
, V

2
)⊺ satisfies Assumption (V4), then any strictly

F-consistent scoring function S : A ×ℝ→ ℝ for T that satisfies Assumptions (VS1) and (S2) is necessarily of the
form (3.3) almost everywhere, where the functions Gr,x

3

: Ar,x
3

→ ℝ, r ∈ {1, 2}, x
3
∈ A

3

, in (3.4) and (3.5) are
strictly increasing and ϕ : A

3

→ ℝ is strictly convex.

Proof. First note that V satisfies Assumption (V3) on F ⊆ Fα
cont

. Let F ∈ F with derivative f and let x ∈ int(A).
Then one obtains

V̄
3
(x, F) = x

3
+

1

β − α(
x
2
(F(x

2
) − β) − x

1
(F(x

1
) − α) −

x
2

∫
x
1

yf(y)dy).

The partial derivatives of V are given by

∂
1
V̄
1
(x, F) = f(x

1
),

∂
2
V̄
2
(x, F) = f(x

2
),

∂
1
V̄
3
(x, F) = −F(x1) − α

β − α
,

∂
2
V̄
3
(x, F) = F(x2) − β

β − α
,

∂
3
V̄
3
(x, F) = 1,

and ∂r V̄1
(x, F) and ∂m V̄2

(x, F) vanish for r ∈ {2, 3} and m ∈ {1, 3}. Applying [21, Theorem 3.2] yields the

existence of continuously differentiable functions hlm : int(A)→ ℝ, l,m ∈ {1, 2, 3}, such that

∂m S̄(x, F) =
3

∑
i=1

hmi(x)V̄i(x, F)

for m ∈ {1, 2, 3}. Since we assume that S̄( ⋅ , F) is twice continuously differentiable for any F ∈ F, the second-
order partial derivatives need to commute. Let t = T(F). Then ∂

1
∂
2
S̄(t, F) = ∂

2
∂
1
S̄(t, F) is equivalent to

h
21
(t)f(t

1
) = h

12
(t)f(t

2
).

This needs to hold for all F ∈ F. The variation in the densities implied by Assumption (V4) in combination

with the surjectivity of T yields that h
12
≡ h

21
≡ 0 on int(A). Similarly, evaluating ∂

1
∂
3
S̄(x, F) = ∂

3
∂
1
S̄(x, F)

and ∂
2
∂
3
S̄(x, F) = ∂

3
∂
2
S̄(x, F) at x = t = T(F) yields

h
13
(t) = h

31
(t)f(t

1
), h

23
(t) = h

32
(t)f(t

2
).

By using again Assumption (V4) as well as the surjectivity of T, this implies that

h
13
≡ h

31
≡ h

23
≡ h

32
≡ 0.

So we are left with characterizing hmm for m ∈ {1, 2, 3}. Note that Assumption (V1) implies that for any

x = (x
1
, x

2
, x

3
) ∈ int(A) there are two distributions F

1
, F

2
∈ F such that

(F
1
(x

1
) − α, F

1
(x

2
) − β)⊺ and (F

2
(x

1
) − α, F

2
(x

2
) − β)⊺

are linearly independent. Then the requirement that

∂
1
∂
2
S̄(x, F) = ∂

1
h
22
(x)(F(x

2
) − β) = ∂

2
h
11
(x)(F(x

1
) − α) = ∂

2
∂
1
S̄(x, F)
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for all x ∈ int(A) and for all F ∈ F implies that ∂
1
h
22
≡ ∂

2
h
11
≡ 0. Starting with ∂

1
∂
3
S̄(x, F) = ∂

3
∂
1
S̄(x, F)

implies that

∂
1
h
33
V̄
3
(x, F) = (∂

3
h
11
(x) + h33(x)

β − α )
V̄
1
(x, F).

Again, Assumption (V1) implies that there are F
1
, F

2
∈ F such that

(V̄
1
(x, F

1
), V̄

3
(x, F

1
))⊺ and (V̄

1
(x, F

2
), V̄

3
(x, F

2
))⊺

are linearly independent.Hence,weobtain that ∂
1
h
33
≡ 0and ∂

3
h
11
≡ −h

33
/(β − α).With the sameargumen-

tation and starting from ∂
2
∂
3
S̄(x, F) = ∂

3
∂
2
S̄(x, F), one can show that ∂

2
h
33
≡ 0 and ∂

3
h
22
≡ h

33
/(β − α).

This means there exist functions

η
1
: {(x

1
, x

3
) ∈ ℝ2 | there exists (z

1
, z

2
, z

3
) ∈ int(A), x

1
= z

1
, x

3
= z

3
}→ ℝ,

η
2
: {(x

2
, x

3
) ∈ ℝ2 | there exists (z

1
, z

2
, z

3
) ∈ int(A), x

2
= z

2
, x

3
= z

3
}→ ℝ,

η
3
: int(A)

3

→ ℝ,

and some z ∈ int(A)
3

such that for any x = (x
1
, x

2
, x

3
) ∈ int(A) it holds that

h
33
(x) = η

3
(x

3
),

h
11
(x) = η

1
(x

1
, x

3
) = −

1

β − α

x
3

∫
z

η
3
(z)dz + ζ

1
(x

1
),

h
22
(x) = η

2
(x

2
, x

3
) =

1

β − α

x
3

∫
z

η
3
(z)dz + ζ

2
(x

2
),

where ζr : int(A)r → ℝ, r ∈ {1, 2}. Due to the fact that any component of T is mixture-continuous¹ and sinceF

is convexand T surjective, theprojection int(A)
3

is anopen interval.Hence, [min(z, x
3
),max(z, x

3
)] ⊂ int(A)

3

.

Due to Assumptions (V3) and (S2), [21, Theorem3.2] implies that η
1
, η

2
, η

3
are locally Lipschitz continuous.

The above calculations imply that the Hessian of the expected score, i.e., ∇2 S̄(x, F), at its minimizer

x = t = T(F), is a diagonal matrix with entries η
1
(t
1
, t

3
)f(t

1
), η

2
(t
2
, t

3
)f(t

2
) and η

3
(t
3
). As a second-order

condition, ∇2 S̄(t, F) must be positive semi-definite. By invoking the surjectivity of T once again, this shows

that η
1
, η

2
, η

3
≥ 0. More to the point, invoking the continuous differentiability of the expected score and

the fact that S is strictly F-consistent for T, one obtains that for any F ∈ F with t = T(F) and for any v ∈ ℝ3,
v ̸= 0, there exists an ε > 0 such that

d

ds S̄(t + sv, F) is negative for all s ∈ (−ε, 0), zero for s = 0, and pos-

itive for all s ∈ (ε, 0). For v = e
3
= (0, 0, 1)⊺, this means that for any F ∈ F with t = T(F) there is an ε > 0

such that

d

ds S̄(t + se3, F) = η3(t3 + s)s has the same sign as s for all s ∈ (−ε, ε). Therefore, η
3
(t
3
+ s) > 0 for

all s ∈ (−ε, ε) \ {0}. Using the surjectivity of T and invoking a compactness argument, η
3
attains a 0 only

finitely many times on any compact interval. Recall that int(A)
3

is an open interval. Hence, it can be approxi-

mated by an increasing sequence of compact intervals. Therefore, η−1
3

({0}) is atmost countable, and therefore

a Lebesgue null set. With similar arguments, one can show that for any x
3
∈ int(A)

3

the sets

{x
1
∈ ℝ | there exists (z

1
, z

2
, z

3
) ∈ int(A), x

1
= z

1
, x

3
= z

3
, η

1
(x

1
, x

3
) = 0},

{x
2
∈ [x

3
,∞) | there exists (z

1
, z

2
, z

3
) ∈ int(A), x

2
= z

2
, x

3
= z

3
, η

2
(x

2
, x

3
) = 0}

are at most countable, and therefore also Lebesgue null sets.

Finally, using [23, Proposition 1 in the supplement] (recognizing that V is locally bounded), one obtains

that S is almost everywhere of the form (3.3). Moreover, it holds almost everywhere that ϕ = η
3
and gm = ζm

for m ∈ {1, 2}. Hence, ϕ is strictly convex and the functions at (3.4) and (3.5) are strictly increasing.

1 For convex F a functional T : F → ℝk is called mixture-continuous if for any F, G ∈ F the map [0, 1] ∋ λ → T((1 − λ)F + λG) is
continuous.
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Combining Theorems 3.3 and 3.7, one can show that the scoring functions given at (3.3) are essentially the

only strictly consistent scoring functions for the triplet (VaRα ,VaRβ , RVaRα,β) on the action domain

A = {(x
1
, x

2
, x

3
) ∈ ℝ3 | c

min
≤ x

1
≤ x

3
≤ x

2
≤ c

max
}.

Corollary 3.8. Let
A = {(x

1
, x

2
, x

3
) ∈ ℝ3 | c

min
≤ x

1
≤ x

3
≤ x

2
≤ c

max
}

for some −∞ ≤ c
min
< c

max
≤∞. Under the conditions of Theorem 3.7, a scoring function S : A ×ℝ→ ℝ is

strictly F-consistent for T = (VaRα ,VaRβ , RVaRα,β), 0 < α < β < 1, if and only if it is of the form (3.3) almost
everywhere satisfying conditions (i)–(iii). Moreover, the function ϕ : [c

min
, c

max
]→ ℝ is necessarily bounded.

Proof. For the proof it suffices to show that for r ∈ {1, 2}, Gr,x
3

defined in (3.4) and (3.5) is not only increas-

ing on Ar,x
3

for any x
3
∈ A

3

, but on Ar = [cmin
, c

max
]. For x

3
∈ [c

min
, c

max
] = A

3

, we have A
1,x

3

= [c
min

, x
3
]

and A
2,x

3

= [x
3
, c

max
]. Let x

3
∈ A

3

and x
1
, x

1

∈ A
1

with x
1
< x

1

. If x
1
, x

1

∈ A
1,x

3

, there is nothing to show. If

however x
3
< x

1

, then x
1
, x

1

∈ A
1,x

1

. This means that

0 ≤ g
1
(x

1

) − g
1
(x

1
) − (x

1

− x
1
)
ϕ(x

1

)
β − α

≤ g
1
(x

1

) − g
1
(x

1
) − (x

1

− x
1
)
ϕ(x

3
)

β − α
,

where the second inequality stems from the fact that ϕ is increasing. If the function G
1,x

1

is strictly increas-

ing, then the first inequality is strict. The argument for G
2,x

3

works analogously.

Remark 3.9. Note the structural difference of Theorems 3.3 and 3.7 to [25, Theorem 1], [6, Proposition 4.14]

and in particular [21, Theorem 5.2 and Corollary 5.5]. Our functional of interest, RVaRα,β with 0 < α < β < 1,
is not a minimum of an expected scoring function – or Bayes risk –, but a difference of minima of two scoring

functions. Indeed, while ESβ(F) = −1β S̄β(VaRβ(F), F), we have that

RVaRα,β(F) = −
1

β − α (
S̄β(VaRβ(F), F) − S̄α(VaRα(F), F)).

This structural difference is reflected in the minus sign appearing at (3.4). In particular, it means that the

functions g
1
and g

2
cannot identically vanish if we want to ensure strict consistency of S, whereas the corre-

sponding function in [21, Theorem 5.2] may well be set to zero. [25, Theorem 2] generalizes our results and

presents an elicitability result of any linear combination of Bayes risks.

4 Translation invariance and homogeneity

There are many choices for the functions g
1
, g

2
and ϕ appearing in the formula for the scoring function S

at (3.3). Often, these choices can be limited by imposing secondary desirable criteria on S, e.g., acknowl-
edging that T = (VaRα ,VaRβ , RVaRα,β) is translation equivariant (meaning that T(FY+z) = T(FY ) + z for any
constant z ∈ ℝ) and positively homogeneous of degree 1 (meaning that T(FcY ) = cT(FY ) for any c > 0), it
would make sense if the forecast ranking were also invariant under a joint translation of the forecasts and

the observations on the one hand, and joint scaling of the forecasts and the observations on the other hand.

This would require translation invariance of the score differences on the one hand, i.e.,

S(x
1
+ z, x

2
+ z, x

3
+ z, y + z) − S(x

1

+ z, x
2

+ z, x
3

+ z, y + z) = S(x
1
, x

2
, x

3
, y) − S(x

1

, x
2

, x
3

, y)

for all (x
1
, x

2
, x

3
), (x

1

, x
2

, x
3

) ∈ A and y, z ∈ ℝ. On the other hand, it would require positively homogeneous

score differences, that is, there is some b ∈ ℝ such that

S(cx
1
, cx

2
, cx

3
, cy) − S(cx

1

, cx
2

, cx
3
, cy) = cb(S(x

1
, x

2
, x

3
, y) − S(x

1

, x
2

, x
3

, y))
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for all (x
1
, x

2
, x

3
), (x

1

, x
2

, x
3

) ∈ A, y ∈ ℝ and for all c > 0. While translation invariance seems to be partic-

ularly important when RVaR is used as a location parameter, i.e., when α = 1 − β < 1

2

, corresponding to the

α-trimmed mean, positively homogeneous score differences are relevant in a risk management context: the

forecast ranking should not depend on the unit in which the risk measures and the gains and losses are

reported, be it in, say Euros or in Euro Cents. We also refer to [22, 43, 45] for further motivations. This section

establishes that, unfortunately, there are no strictly consistent scoring functions for (VaRα ,VaRβ , RVaRα,β)
which admit translation invariant or positively homogeneous score differences under practically relevant

settings.

If one is interested in scoring functions with an action domain of the form

A = {x ∈ ℝ3 | c
min
≤ x

1
≤ x

3
≤ x

2
≤ c

max
}

possessing the additional property of translation invariant score differences, the only sensible choice is

c
min
= −∞, c

max
=∞, amounting to the maximal action domain A

0
. Similarly, for scoring functions with

positively homogeneous score differences, the most interesting choices for action domains are

A = A
0
,

A = A+
0

= {(x
1
, x

2
, x

3
) ∈ ℝ3 | 0 ≤ x

1
≤ x

3
≤ x

2
},

A = A−
0

= {(x
1
, x

2
, x

3
) ∈ ℝ3 | x

1
≤ x

3
≤ x

2
≤ 0}.

Proposition 4.1 (Translation invariance). Under the conditions of Theorem 3.7 there are no strictly F-con-
sistent scoring functions for (VaRα ,VaRβ , RVaRα,β), 0 < α < β < 1, on A

0
with translation invariant score

differences.

Proof. By using Theorem 3.7, any strictly F-consistent scoring function for the functional

T = (VaRα ,VaRβ , RVaRα,β)

must be of the form (3.3), where in particular ϕ is strictly convex, twice differentiable and ϕ is bounded.
Assume that S has translation invariant score differences. That means that the function

Ψ : ℝ × A
0
× A

0
×ℝ→ ℝ

defined by

Ψ(z, x, x, y) = S(x
1
+ z, x

2
+ z, x

3
+ z, y + z) − S(x

1

+ z, x
2

+ z, x
3

+ z, y + z)
− S(x

1
, x

2
, x

3
, y) + S(x

1

, x
2

, x
3

, y)

vanishes. Then, for all x ∈ A
0
and for all z, y ∈ ℝ,

0 =
d

dx
3

Ψ(z, x, x, y) = (ϕ(x
3
+ z) − ϕ(x

3
))(x

3
+

1

β − α
(Sβ(x2, y) − Sα(x1, y))).

Therefore, ϕ needs to be constant. Since ϕ is convex thatmeans that ϕ(x
3
) = dx

3
+ d with d > 0. But since

A
3

= ℝ, ϕ is unbounded, which is a contradiction.

The proof of Proposition 4.1 closely follows the one of [22, Proposition 4.10]. The fact that the latter assertion

entails a positive result has the following background: The strictly consistent scoring function for (VaRα , ESα)
given in [22, Proposition 4.10] works only on a very restricted action domain. To guarantee strict consistency

on such an action domain, one would need a refinement of Theorem 3.3 in the spirit of [23, Proposition 2

of the supplement]. However, since such a positive result on a quite restricted action domain is practically

irrelevant, we dispense with such a refinement and only state the relevant negative result here.

Proposition 4.2 (Positive homogeneity). Under the conditions of Theorem3.7 there are no strictlyF-consistent
scoring functions for (VaRα ,VaRβ , RVaRα,β), 0 < α < β < 1, on A ∈ {A

0
, A+

0

, A−
0

} with positively homogeneous
score differences.
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Proof. By using Theorem 3.7, any strictly F-consistent scoring function for the functional

T = (VaRα ,VaRβ , RVaRα,β)

must be of the form (3.3), where in particular ϕ is strictly convex, twice differentiable and ϕ is bounded.
Assume that S has positively homogeneous score differences of some degree b ∈ ℝ. That means that the

function Ψ : (0,∞) × A × A ×ℝ→ ℝ defined by

Ψ(c, x, x, y) = S(cx, cy) − S(cx, cy) − cbS(x, y) + cbS(x, y)

vanishes. Therefore, for all x ∈ A, for all y ∈ ℝ and all c > 0,

0 =
d

dx
3

Ψ(z, x, x, y) = (c2ϕ(cx
3
) − cbϕ(x

3
))(x

3
+

1

β − α
(Sβ(x2, y) − Sα(x1, y))). (4.1)

For the sake of brevity, we only consider the case A = A−
0

, the other cases being similar. Equation (4.1) implies

thatϕ(−x
3
) = ϕ(−1)xb−2

3

for any x
3
> 0. Due to the strict convexity ofϕ,weneed thatϕ(−1) > 0. However,

for b ≥ 1 we have infx
3
>0 ϕ(−x3) = −∞, and for b ≤ 1 we have supx

3
>0 ϕ(−x3) =∞. Hence, ϕ cannot be

bounded.

Remark 4.3. The negative result of Proposition 4.2 should be compared with the results of Nolde and Ziegel

[43, Theorem C.3] characterizing homogeneous strictly consistent scoring functions for the pair (VaRβ , ESβ).
Since they use a different sign convention for VaR and ES than we do in this paper, their choice of the action

domain ℝ × (0,∞) corresponds to our choice A−
0

. When interpreting RVaRα,β as a risk measure, negative

values of RVaR are the more interesting and relevant ones, using our sign convention. Inspecting the proofs

of Proposition 4.2 and of Proposition 3.5 (i) one makes the following observation: for b ≥ 1, Nolde and

Ziegel [43] state an impossibility result for their choice of action domain. In fact, the problem occurring in

our context is that ϕ is not bounded from below. In Proposition 3.5, this property is implied by the fact that

the function G
2,x

3

at (3.5) is increasing. And it is exactly such a condition that is also present for strictly

consistent scoring functions for the pair (VaRβ , ESβ); see [21, Theorem 5.2]. On the other hand, the com-

plication for b < 1 stems from the fact that ϕ is not bounded from above. This condition is related to the

monotonicity of G
1,x

3

at (3.4). Such a condition is not present for strictly consistent scoring functions for the

pair (VaRβ , ESβ). Correspondingly, there can be homogeneous and strictly consistent scoring functions for

b < 1 for this pair [43], while this is not possible for the triplet (VaRα ,VaRβ , RVaRα,β).

5 Mixture representation of scoring functions

When forecasts are compared and ranked with respect to consistent scoring functions, one has to be aware

that in the presence of non-nested information sets, model mis-specification and/or finite samples, the rank-

ingmay depend on the chosen consistent scoring function [46]. In the specific case of (VaRα ,VaRβ , RVaRα,β),
the forecast ranking may depend on the specific choice for the functions g

1
, g

2
, and ϕ appearing in Theo-

rem 3.3. A possible remedy to this problem is to compare forecasts simultaneously with respect to all consis-
tent scoring functions in terms of Murphy diagrams as introduced by Ehm, Gneiting, Jordan and Krüger [12].

Murphy diagrams are based on the fact that the class of all consistent scoring functions can be characterized

as a class of mixtures of elementary scoring functions that depend on a low-dimensional parameter. The fol-

lowing theorem provides such a mixture representation for the scoring functions at (3.3). The applicability

is illustrated in Section 6. Recall that Sα(x, y) = (𝟙{y ≤ x} − α)x − 𝟙{y ≤ x}y.

Theorem 5.1. Let 0 < α < β < 1. Any scoring function

S : [c
min

, c
max
]3 ×ℝ→ ℝ

of the form (3.3) with a : ℝ→ ℝ chosen such that S(y, y, y, y) = 0 can be written as

S(x
1
, x

2
, x

3
, y) = ∫ L1v (x1, y)dH1

(v) + ∫ L2v (x2, y)dH2
(v) + ∫ L3v (x1, x2, x3, y)dH3

(v), (5.1)
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where

L1v (x1, y) = (𝟙{y ≤ x1} − α)(𝟙{v ≤ x1} − 𝟙{v ≤ y}),
L2v (x2, y) = (𝟙{y ≤ x2} − β)(𝟙{v ≤ x2} − 𝟙{v ≤ y}),

L3v (x1, x2, x3, y) =
1

β − α (
𝟙{v > x

3
}(Sα(x1, y) + αy) + 𝟙{v ≤ x3}(Sβ(x2, y) + βy)) + (𝟙{v ≤ x3} − 𝟙{v ≤ y})v,

and H
1
, H

2
are locally finite measures on [c

min
, c

max
] and H

3
is a finite measure on [c

min
, c

max
]. If H

3
puts pos-

itive mass on all open intervals, then S is strictly consistent. Conversely, for any choice of measures H
1
, H

2
, H

3

with the above restrictions, we obtain a scoring function of the form (3.3).

Proof. An increasing function h : [c
min

, c
max
]→ ℝ can always be written as

h(x) = ∫(𝟙{v ≤ x} − 𝟙{v ≤ z})dH(v) + C, x ∈ [c
min

, c
max
], (5.2)

for some locally finite measure H and some z ∈ [c
min

, c
max
], C ∈ ℝ. The function h is strictly increasing if

and only if H is strictly positive, i.e., it puts positive mass on all open non-empty intervals. Furthermore,

the one-sided derivatives of h are bounded below by λ > 0 if and only if H(A) ≥ λL(A) for all Borel sets
A ⊆ [c

min
, c

max
], where L is the Lebesgue measure onℝ.

Using the arguments from Proposition 3.5, it is no loss of generality to show the assertion for a score S
such that λ(β − α) = − infx ϕ(x) = supx ϕ(x) and the one-sided derivatives of g1, g2 are bounded from below

by λ > 0.
Then there is a measure H

3
on [c

min
, c

max
] such that H

3
([c

min
, c

max
]) = 2λ(β − α), which is strictly posi-

tive if and only if ϕ is strictly convex, such that for all x
3
∈ [c

min
, c

max
] we have

ϕ(x
3
) = ∫𝟙{v ≤ x

3
}dH

3
(v) − λ(β − α) = ∫(𝟙{v ≤ x

3
} −

1

2

)dH
3
(v).

Using Fubini’s theorem, we find that

ϕ(x
3
) − ϕ(y) = ∫(𝟙{w ≤ x

3
} − 𝟙{w ≤ y})ϕ(w)dw

= ∫(𝟙{w ≤ x
3
} − 𝟙{w ≤ y})∫(𝟙{v ≤ w} − 1

2

)dH
3
(v)dw

= ∫∫(𝟙{w ≤ x
3
} − 𝟙{w ≤ y})𝟙{v ≤ w}dw dH

3
(v) − ∫ 1

2

(x
3
− y)dH

3
(v)

= ∫𝟙{v ≤ x
3
}(x

3
− v) − 𝟙{v ≤ y}(y − v) − 1

2

(x
3
− y)dH

3
(v).

Byusing (3.3), (5.2) andProposition 3.5, it is straightforward to check that a scoring function of the form (3.3)

can be written as in (5.1) with L3v replaced by

L̃3v (x1, x2, x3, y) = (𝟙{v ≤ x3} −
1

2

)(x
3
+

1

β − α
(Sβ(x2, y) − Sα(x1, y))) −

1

2

|x
3
− v| + 1

2

|y − v|,

and locally finite measures H̃
1
, H̃

2
on [c

min
, c

max
] instead of H

1
, H

2
such that H̃i(A) ≥ λL(A) for i = 1, 2,

and for all Borel sets A ⊆ ℝ and the measure H
3
. We can write H̃i = Hi + λL, i = 1, 2, for some locally finite

measures Hi, i = 1, 2. Integrating v → L1v with respect to λL, we obtain the function λ(Sα(x1, y) + αy), and
analogously for L2v . Using that H3

([c
min

, c
max
]) = 2λ(β − α) yields the claim with

L3v (x1, x2, x3, y) =
1

2(β − α)
(Sβ(x2, y) + βy + Sα(x1, y) + αy)

+ (𝟙{v ≤ x
3
} −

1

2

)(x
3
+

1

β − α
(Sβ(x2, y) − Sα(x1, y))) −

1

2

|x
3
− v| + 1

2

|y − v|,

which is equal to the formula given in the statement of the theorem. The scoring functions L1v and L2v are
consistent for VaR at level α and β, respectively. The scoring function L3v is of the form (3.3) with

g
1
(x) = g

2
(x) = x

2β − 2α
and ϕ(x) = |x − v|

2

,

which renders it a consistent scoring function for (VaRα ,VaRβ , RVaRα,β). The converse statement follows by

direct computations.
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Figure 1:Murphy diagrams for α = 1 − β = 0.1. Plots of expected elementary scores L1v , L2v , L3v in terms of v for the three
forecasters described in the text. For the second forecaster, the curves correspond to σ = 0.3, 0.5, 0.8 from bottom to top.
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Figure 2:Murphy diagrams for α = 0.01, β = 0.05. Plots of expected elementary scores L1v , L2v , L3v in terms of v for the three
forecasters described in the text. For the second forecaster, the curves correspond to σ = 0.3, 0.5, 0.8 from bottom to top.

6 Simulations

This simulation study illustrates the usage of consistent scoring functions for the triplet

(VaRα ,VaRβ , RVaRα,β)

when comparing the predictive performances of different forecasts for this triplet, e.g., in the context of com-

parative backtests [43]. We use the scoring functions given in Table 1 and discussed in Example 3.6. The only

modification is that in the cases of S
1
, S

2
, S

3
we additionally scale the functions ϕ (and therefore also ϕ),

working with ϕ̃(x
3
) = ϕ((β − α)x

3
). This choice has performed better in our simulations. We illustrate the

discrimination ability of the suggested scoring functions with a slightly extended version of a simulation

example of [28] which has also been considered in [24]. It features a cross-sectional setup. Similar simulation

studies can also be performed in an autoregressive time series framework.

Let us first introduce the data generating process. To this end, let (Wt , Zt , ut) be an i.i.d. sequence

with a centered Gaussian distribution and diagonal covariance matrix with diagonal entries (1, σ2, 1). The
variables Wt and Zt will play the role of explanatory variables, and ut is an unobservable error term. Let

Yt = Wt + ut be our sequence of observations. Therefore, Yt ∼ N(0, 2) and Yt|Wt ∼ N(Wt , 1), while Zt is com-

pletely uninformative since it is independent of Yt. Suppose we have three different forecasters who provide
point forecasts, aiming at correctly specifying T = (VaRα ,VaRβ , RVaRα,β) of the (conditional) distribution
of Yt. The first forecaster has access to the explanatory variablesWt , Zt and issues correctly specified condi-
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tional risk measure forecasts

T̂(1)t = T(FYt |Wt ,Zt ) = T(FYt |Wt )

= (Wt + Φ−1(α),Wt + Φ−1(β),Wt −
1

β − α (
φ(Φ−1(β)) − φ(Φ−1(α))))

for the time point t, where φ and Φ denote the density and quantile function of the standard normal distri-

bution, respectively. The second forecaster also has access to Wt and Zt. However, they use a wrong model,

issuing (correct) forecasts for Ỹt = Wt + Zt + ut rather than for Yt. That means

T̂(2)t = T(FỸt |Wt ,Zt ) = (T̂
(1)
1,t + Zt , T̂

(1)
2,t + Zt , T̂

(1)
3,t + Zt).

The third forecaster is uninformed and makes correct unconditional predictions:

T̂(3)t = T(FYt ) = (√2Φ
−1(α),√2Φ−1(β), −

√2
β − α (

φ(Φ−1(β)) − φ(Φ−1(α)))).

Applying the very definition of (strict) consistency, it holds for any (strictly) consistent scoring function

for T that

𝔼(S(T̂(1)t , Yt) | Wt , Zt) ≤ 𝔼(S(T̂(2)t , Yt) | Wt , Zt)

almost surely with a strict inequality in case of strict consistency. Therefore, also

𝔼(S(T̂(1)t , Yt)) ≤ 𝔼(S(T̂(2)t , Yt)).

That means, forecaster 1 should be (strictly) preferred to forecaster 2 under any (strictly) consistent scor-

ing function. Similarly, forecaster 1 should (strictly) outperform forecaster 3 with respect to any (strictly)

consistent scoring functions, due to increasing information sets; invoking [31]. Indeed, we have

𝔼(S(T̂(1)t , Yt) | Wt) ≤ 𝔼(S(T̂(3)t , Yt) | Wt)

almost surely such that𝔼(S(T̂(1)t , Yt)) ≤ 𝔼(S(T̂(3)t , Yt)) followswith strict inequalitieswhen S is strictly consis-
tent.When comparing forecasters 2 and3, it is not a priory clearwhich forecaster is preferred. It will generally

depend on the choice of the (strictly) consistent scoring function and on the size of the variance σ2. Recall-
ing that the limiting case of σ2 → 0 yields forecaster 1, forecaster 2 should be preferred for small σ2. Their
performance should deteriorate as σ2 increases.

Figures 1 and 2 provideMurphy diagrams of all forecasters computed from a sample of size N = 100000,
providing a good approximation of the population level. They are in line with our theoretical considerations

above concerning the ranking of the three forecasts.

We also consider a setup which is closer to the stylistic situation in comparative backtests in a risk man-

agement context. To this end, we compare the predictive performances using Diebold–Mariano tests [10]

based on the scoring functions in Table 1 (scaled as explained previously). We consider samples of size

N = 250 and repeat our experiment 10000 times. In the left panel of Table 2, we consider the case that

α = 1 − β = 0.1 where RVaRα,β is a trimmed mean. We report the empirical ratio of rejections of the null

hypothesis that forecaster i outperforms forecaster j, i, j ∈ {1, 2, 3}, i ̸= j, evaluated in terms of the score S
at significance level 0.05. That is, we consider the null hypothesis 𝔼(S(T̂(i)t , Yt)) ≤ 𝔼(S(T̂

(j)
t , Yt)) for all

t = 1, . . . , N, or in short, i ⪯ j. Analogously, in the right panel of Table 2, we consider the case that α, β
are both close to zero, that is, α = 0.01 and β = 0.05, which is a setting that is relevant if RVaRα,β is used as
a risk measure. For the scoring function S

4
, we have experimented a bit with the values c

1
and c

2
and report

the results for the choices that worked best in our experiments. A systematic study on how to choose these

two parameters goes beyond the scope of the present paper.

For the situation of the left panel of Table 2 concerning α = 1 − β = 0.1, we can see that forecaster 1 (2)
outperforms forecaster 3 with a power of 1 (almost 1) for all scoring functions used. For a comparison of fore-

caster 1 and forecaster 2, the situation is more interesting: Forecaster 1 outperforms forecaster 2 with regard

to all scoring functions considered. The power of the tests (and the associated discrimination ability of the

scoring functions) is very similar for S
1
, S

2
and S

3
(around 0.864 to 0.873). On the other hand, S

4
achieves

a considerably higher power of 0.956. The situation described in the right panel of Table 2 considering the
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H0 S1 S2 S3 S4

1 ⪯ 2 0 0 0 0
2 ⪯ 1 0.864 0.864 0.873 0.956
1 ⪯ 3 0 0 0 0
3 ⪯ 1 1.000 1.000 1.000 1.000
2 ⪯ 3 0 0 0 0
3 ⪯ 2 0.999 0.999 0.990 0.996

H0 S1 S2 S3 S4

1 ⪯ 2 0 0 0 0
2 ⪯ 1 0.675 0.671 0.670 0.522
1 ⪯ 3 0 0 0 0
3 ⪯ 1 0.992 0.992 0.994 0.817
2 ⪯ 3 0 0 0 0.002
3 ⪯ 2 0.740 0.742 0.768 0.258

Table 2: Power of Diebold–Mariano tests at significance level 0.05 for the scoring functions in Table 1 (suitably scaled) in the
case that α = 1 − β = 0.1 (left panel), and α = 0.01, β = 0.05 (right panel). In the first case we chose −c1 = c2 = 12 for the
scoring function S4, and c1 = −5, c2 = 1 in the second case. The null hypothesis i ⪯ j means that 𝔼(S(T̂ (i)t , Yt)) ≤ 𝔼(S(T̂

(j)
t , Yt))

for all t = 1, . . . , N for the scoring function specified in the column label. We chose σ2 = 0.52 for the forecaster 2.

parameter choice α = 0.01 and β = 0.05 leads to a different situation. The most obvious observation is that

the power is lower than in the symmetric situation depicted in the left panel for all null hypotheses, respec-

tively. This intuitively makes sense since differences in the tail behavior are more challenging to detect in

comparison to differences in the behavior of the central region of the distribution. Second, we can see that

the power of the scores S
1
, S

2
and S

3
is again very similar for all situations, whereas the score S

4
performs

apparently worse. This can be seen most strikingly for the null 3 ⪯ 2: the power of the scores S
1
, S

2
and S

3

is between 0.740 and 0.768, whereas S
4
yields a power of only 0.258. However, as mentioned above, for

a comparison between forecaster 2 and 3, it is also not possible to establish a general ranking for all consis-

tent scoring functions. In linewith this, the dependence of the ranking on the choice of the score is reflected in

the difference in power. Amore detailed study and comparison of other scoring functions and other situations

is deferred to future work.

7 Implications for regression

After illustrating the usage of consistent scoring functions in forecast comparison and comparative back-

testing in Section 6, we would like to outline how one can implement our results about the elicitability of

the triplet (VaRα ,VaRβ , RVaRα,β), 0 < α < β < 1, in a regression context. Then we would like to contrast our
ansatz to other suggestions for regression of the α-trimmed mean (which can be generalized to RVaRα,β).

The most common alternative approaches in the literature on robust statistics are the trimmed least squares
approach and a two-step estimation procedure using the Huber skipped mean.

7.1 A joint regression framework for (VaRα , VaRβ, RVaRα,β)

Let (Wt , Yt)t∈ℕ be a time series with the usual notation that Yt denotes some real-valued response variable

andWt is a d-dimensional vector of regressors. LetΘ ⊆ ℝk be some parameter space and letM : ℝd × Θ → ℝ3

beaparametricmodel for T = (VaRα ,VaRβ , RVaRα,β),0 < α < β < 1.Weassumea correctmodel specification,

that is, we assume that there is a unique θ
0
∈ Θ such that

T(FYt |Wt ) = M(Wt , θ0) ℙ-a.s. for all t ∈ ℕ, (7.1)

where FYt |Wt denotes the conditional distribution of Yt given Wt. That means, M(Wt , θ0) models jointly the

conditional VaRα, VaRβ and the conditional RVaRα,β. Let S be a strictly consistent scoring function of the

form (3.3) and suppose the sequence (Wt , Yt)t∈ℕ satisfies certain mixing conditions [54, Corollary 3.48]

(of which a special case is independence). Then one obtains under additional moment conditions that, as

n →∞,
1

n

n
∑
t=1

S(M(Wt , θ), Yt) −
1

n

n
∑
t=1
𝔼[S(M(Wt , θ), Yt)]→ 0 ℙ-a.s.



18 | T. Fissler and J. F. Ziegel, On the elicitability of range value at risk

It is essentially this law of large numbers result which allows for consistent parameter estimation with the

empirical M-estimator θ̂n = argminθ∈Θ n−1∑nt=1 S(M(Wt , θ), Yt); see, e.g., [11, 33, 43, 50] for details.
In summary, we can see that the complication of this procedure is that one needs to model the compo-

nents VaRα and VaRβ, even if one is only interested in RVaRα,β. The advantage is that one can substantially

deviate from an i.i.d. assumption on the data generating process. One can deal with serially dependent,

though mixing, and non-stationary data. One only needs the semiparametric stationarity specified through

equation (7.1).

7.2 Trimmed least squares

Most proposals for M-estimation and regression for RVaRα,β in the field of robust statistics focus on the

α-trimmed mean, α ∈ (0, 1
2

), corresponding to RVaRα,1−α. But they can often be extended to the general case
0 < α < β < 1 in a straightforward way. When this is the case, we describe the procedure in this more general

manner. Amajority of the proposals in the literature are commonly referred to as a trimmed least squares (TLS)
approach. However, strictly speaking, TLS actually subsumes different, though closely related estimation

procedures.

The first one was coined by Koenker and Bassett [35] – cf. [49] – and constitutes a two-stepM-estimator:

in a first step, the α- and β-quantile are determined via usualM-estimation. Then all values below the former

and above the latter are omitted and RVaRα,β is computed with an ordinary least squares approach. One can

also express this procedure using order-statistics. By using the notation from Section 7.1, anM-estimator for

RVaRα,β is given by

argmin

z∈ℝ

1

n

[nβ]
∑

i=[nα]
(z − Y(i))2.

Here, Y(1) ≤ ⋅ ⋅ ⋅ ≤ Y(n) is the order-statistics of the sample Y
1
, . . . , Yn. While this procedure seems to work

for a simplistic regression model (ignoring the regressorsWt and only modelling the intercept part), it is not

clear how to use it in amore interesting regression context, where one is actually interested in the conditional
distribution of Yt given Wt rather than the unconditional distribution of Yt. Moreover, since this approach
uses theorder-statistics of the entire sample Y

1
, . . . , Yn to implicitly estimate the α- and β-quantile, it requires

that these quantiles be constant in time. Hence, heteroscedasticity (in time) can lead to problems, even if

RVaRα,β is constant in time.

A second approach is described, for example, in [47, 48] and relies on order-statistics of the squared
residuals. It only seems to work for the α-trimmed mean. To be more precise, and again using the notation

from above, let m : ℝd × Θ → ℝ be a one-dimensional parametric model. Again, one assumes that there is

a unique correctly specified model parameter θ
0
∈ Θ such that

RVaRα,1−α(FYt |Wt ) = m(Wt , θ0) ℙ-a.s. for all t ∈ ℕ. (7.2)

For each θ ∈ Θ, define the residuals εt(θ) := Yt − m(Wt , θ) and the absolute residuals rt(θ) := |εt(θ)|. Define
the order-statistics of the absolute residuals 0 ≤ r(1)(θ) ≤ ⋅ ⋅ ⋅ ≤ r(n)(θ) for a sample of size n. Then an M-esti-

mator is defined via

θ̂n = argmin

θ∈Θ

1

n

[n(1−2α)]
∑
i=1

r2(i)(θ).

While this procedure appears to be fairly similar to an ordinary least squares procedure with the respec-

tive computational advantages, one should recall that the trimming crucially depends on the choice of the

parameter θ. That means even if the model m is linear in the parameter θ, one generally yields a non-convex
objective function with several local minima. Interestingly, the trimming takes place only for residuals with

large modulus. If the error distribution is symmetric, this procedure yields a consistent estimator for θ
0
in

an i.i.d. setting. If one wants to relax the assumption on the error distribution and is interested in modelling
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RVaRα,β for general 0 < α < β < 1 in (7.2), one could come up with the following ad-hoc procedure: Consider

the order-statistics of the residuals ε(1)(θ) ≤ ⋅ ⋅ ⋅ ≤ ε(n)(θ). Then define an M-estimator via

θ̂n = argmin

θ∈Θ

1

n

[nβ]
∑

i=[nα]
|ε(i)(θ)|2.

This procedure takes into account the asymmetric nature of trimming when dealing with β ̸= 1 − α, or
β = 1 − α and an asymmetric error distribution. However, as outlined above, this procedure can lead to

problems in the presence of heteroscedasticity or general non-stationarity of the error distribution if the

conditional VaRα and VaRβ of Yt given Wt depend on Wt. We would like to point out that, at the cost of

additionally modelling the α- and β-quantile, the procedure using our strictly consistent scoring functions
for the triplet (VaRα ,VaRβ , RVaRα,β) described in Section 7.1 does not rely on the usage of order-statistics

and it can in general deal with heteroscedasticity. The only degree of “stationarity” is required through (7.1).

Especially, stationarity is deemed too strong an assumption in the context of financial data; see [9].

Finally, we would like to remark that there are further procedures belonging to the field of TLS. For

instance, Atkinson and Cheng [4] propose an adaptive procedure where the trimming parameter is data

driven; see also [7]. However, we see no apparent way how to use such procedures if one is interested in

predefined trimming parameters α and β.

7.3 Connections to Huber loss and Huber skipped mean

In his seminal paper, Huber [32] introduced the famous Huber loss S(x, y) = ρ(x − y), where ρ(t) = 1

2

t2 for
|t| ≤ k and ρ(t) = k|t| − 1

2

k2 for |t| > k. Huber argues that “the corresponding [M-]estimator is related to Win-

sorizing” [32, p. 79]. What obtained significantly less attention – maybe due to its lack of convexity – is

another loss function he considers on the same page of the paper, which is defined as S(x, y) = ρ(x − y)
for ρ(t) = 1

2

t2 for |t| ≤ k and ρ(t) = 1

2

k2 for |t| > k. He writes about it: “the corresponding [M-]estimator is

a trimmed mean” (ibidem).

One could define an asymmetric version of the latter loss function by using Sk
1
,k

2

(x, y) = ρk
1
,k

2

(x − y)
with

ρk
1
,k

2

(t) =

{{{{{{{
{{{{{{{
{

1

2

k2
1

, t < k
1
,

1

2

t2, k
1
≤ t < k

2
,

1

2

k2
2

, t ≥ k
2
.

Assuming that F is continuouswith density f for the sake of the simplicity of the argument, the corresponding

first-order condition for a minimum of the expected score S̄k
1
,k

2

(x, F) is equivalent to

x = 1

F(k
2
− x) − F(k

1
− x)

k
2
−x

∫
k
1
−x

yf(y)dy.

Now, a suggestion similar to [47, p. 876] is to consider this loss with k
1
= VaRβ(F) and k

2
= VaRα(F) stem-

ming from some pre-estimate. However, one can see that the first order-condition is generally not solved by

RVaRα,β(F). Again, if one is interested in M-estimation for the trimmed mean or, more generally, RVaR, one

should use the scoring functions introduced in this paper at (3.3).

A Appendix

We present a list of assumptions used in Section 3. For more details about their interpretations and implica-

tions, please see [21] where they were originally introduced.
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Assumption (V1). F is convex and for every x ∈ int(A) there are F
1
, . . . , Fk+1 ∈ F such that

0 ∈ int(conv({V̄(x, F
1
), . . . , V̄(x, Fk+1)})).

Note that if V : A ×ℝ→ ℝk is a strictF-identification function for T : F → Awhich satisfies Assumption (V1),

then for each x ∈ int(A) there is an F ∈ F such that T(F) = x.

Assumption (V3). The map V̄( ⋅ , F) is continuously differentiable for every F ∈ F.

Assumption (V4). Let Assumption (V3) hold. For all r ∈ {1, . . . , k} and for all t ∈ int(A) ∩ T(F), there are

F
1
, F

2
∈ T−1({t}) such that

∂l V̄l(t, F1) = ∂l V̄l(t, F2) for all l ∈ {1, . . . , k} \ {r},
∂r V̄r(t, F1) ̸= ∂r V̄r(t, F2).

Assumption (F1). For every y ∈ ℝ, there exists a sequence (Fn)n∈ℕ of distributions Fn ∈ F that converges

weakly to the Dirac-measure δy such that the support of Fn is contained in a compact set K for all n.

Assumption (VS1). Suppose that the complement of the set

C := {(x, y) ∈ A ×ℝ | V(x, ⋅ ) and S(x, ⋅ ) are continuous at the point y}

has (k + d)-dimensional Lebesgue measure zero.

Assumption (S2). For every F ∈ F, the function S̄( ⋅ , F) is continuously differentiable and the gradient is

locally Lipschitz continuous. Furthermore, S̄( ⋅ , F) is twice continuously differentiable at t = T(F) ∈ int(A).
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