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ARTICLE INFO ABSTRACT
Keywords: Background: Alzheimer’s Disease (AD) is a complex and multifactorial disease and novel approaches are needed
Alzheimer to illuminate the underlying pathology. Metabolites comprise the end-product of genes, transcripts, and protein
Metabolites

regulations and might reflect disease pathogenesis. Blood is a common biofluid used in metabolomics; however,
since extracellular vesicles (EVs) hold cell-specific biological material and can cross the blood-brain barrier, their
utilization as biological material warrants further investigation. We aimed to investigate blood- and EV-derived
metabolites to add insigts to the pathological mechanisms of AD.

Methods: Blood samples were collected from 10 AD and 10 Mild Cognitive Impairment (MCI) patients, and 10
healthy controls. EVs were enriched from plasma using 100,000xg, 1 h, 4 °C with a wash. Metabolites from
serum and EVs were measured using liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic
resonance (NMR) spectroscopy. Multivariate and univariate analyses were employed to identify altered me-
tabolites in cognitively impaired individuals.

Results: While no significant EV-derived metabolites were found differentiating patients from healthy individuals,
six serum metabolites were found important; valine (p = 0.001, fold change, FC = 0.8), histidine (p = 0.001, FC
= 0.9), allopurinol riboside (p = 0.002, FC = 0.2), inosine (p = 0.002, FC = 0.3), 4-pyridoxic acid (p = 0.006, FC
= 1.6), and guanosine (p = 0.004, FC = 0.3). Pathway analysis revealed branched-chain amino acids, purine and
histidine metabolisms to be downregulated, and vitamin B6 metabolism upregulated in patients compared to
controls.

Conclusion: Using a combination of LC-MS and NMR methodologies we identified several altered mechanisms
possibly related to AD pathology. EVs require additional optimization prior to their possible utilization as a
biological material for AD-related metabolomics studies.
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1. Introduction

Alzheimer’s Disease (AD) is a chronic neurodegenerative disease and
comprises the largest part of dementia subtypes [1]. The amyloid hy-
pothesis has for a long time been the main focus in AD research and the
development of therapeutic interventions [2]. However, clinical trials
are continuously failing [3], which has led researchers on new paths to
uncover the complexity of this multifactorial disease [4]. Furthermore,
with the current diagnostic methods, such as positron emission tomog-
raphy and cerebrospinal fluid (CSF) proteins, some limitations hinder
their use as first-line diagnostic or even screening tools. CSF provides for
a biological fluid in close contact with the brain parenchyma, allowing
identification of brain-related molecules in higher concentrations
compared to that in peripheral blood samples. This biofluid may be
useful for the analysis of brain metabolic alteration [5], but limitations
associated with scanning methods and CSF sampling could be circum-
vented by blood-based biomarkers, as a minimally invasive diagnostic
tool [6]. Blood is a versatile body fluid being in close connection with
every organ, thus potentially reflecting their state [7]. The blood-brain
barrier (BBB) becomes disrupted during AD pathogenesis, potentially
allowing brain metabolites to be reflected in a blood sample [8].

With blood providing a complex matrix for biomarker investigations
and AD being a multifactorial disease, integration of in-depth technol-
ogies and large data structures are needed. The term “systems biology”
describes the understanding of the biological system as a whole, rather
than paying attention to single factors in disease pathologies. This
analytical power was realized by the omics-era [9]. Metabolomics is one
of the newest fields in the omics family [9] being the study and explo-
ration of all metabolites (<1,500 Da) in a cell, organ, or organism, and
comprises lipids, amino acids, vitamins, peptides, and minerals, among
others [10]. Since metabolites are the endpoints of genes, transcripts,
and protein regulations, minor changes in the level of the upstream
molecules can cause significant alterations in metabolites [11]. Not only
disease progression can cause such changes, but also medication,
nutrition, and environmental factors can affect metabolites [12]. Lastly,
metabolic pathways are evolutionarily conserved across species, making
them ideal targets for clinical studies [13].

The two most common methods for metabolomics studies are mass
spectrometry (MS)-based metabolomics and nuclear magnetic reso-
nance (NMR) spectroscopy [14]. Utilizing these two methods in com-
bination can overcome several of their limitations, thus providing
greater coverage of the metabolome, with MS-based metabolomics
identifying low abundance metabolites and NMR identifying core me-
tabolites in key metabolic pathways [12,13]. Interestingly, perturba-
tions in metabolic pathways have been shown to be one of the first
measurable changes to occur before manifestations of clinical symptoms
[15]. Several studies have also examined metabolic alterations in AD,
presenting different metabolic panels specific for AD [16-18].

Extracellular vesicles (EVs) are nano-sized particles, surrounded by a
lipid-bilayer, and packed with active biomolecules such as proteins,
lipids, and genetic material [19]. They are released by all cell types,
including cells present within the central nervous system (CNS) [20],
and hence, are important players in intercellular communication in
physiological and pathological conditions. EVs can be identified in a
wide variety of biofluids, including blood [19]. Several studies have
investigated their role in AD in relation to the spreading [21] and
clearing [22] of amyloid-p (Ap). In addition, EVs have been shown to be
able to bypass the BBB through various suggested mechanisms [23].
These features of EVs as potential sources of biomarkers have included
them in the term “liquid biopsies” [24]. With both metabolomics and
EVs being relatively new fields, the combination of the two in search for
biomarkers is therefore also scarce. Few studies have examined the
metabolome of EVs, mostly focused on biomarkers for various cancer
types [25]. To the knowledge of the authors, no study has yet explored
EV-derived metabolites in AD.

Therefore, this study aimed to explore metabolic perturbations
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related to pathological changes in AD, through the combined effort of
MS- and NMR-based metabolomics approaches. Both serum and EV-
derived metabolites were examined from patients with AD or Mild
Cognitive Impairment (MCI) and compared to that of healthy controls.
We identified several interesting metabolites distinguishing between
diseased and healthy individual samples. Also, serum seemed to be a
more suitable biological matrix for studying metabolic changes in AD;
however, further optimization is needed for EVs in order to become a
biological matrix of choice for future metabolomics studies.

2. Methods
2.1. Study participants

A total of 30 participants were enrolled for this study, distributed in
three groups with 10 AD patients, 10 MCI patients, and 10 healthy
controls. The patient groups were consecutively included from the
Department of Neurology at Aalborg University Hospital. Study inclu-
sion was at their time of diagnosis and blood samples were drawn prior
to initiation of treatment. The diagnosis of mild to moderate AD patients
was based on the International Classification of Diseases and Related
Health Problems 10th Edition (ICDpq) criteria [26] and the National
Institute of Neurological and Communicative Disorders and Stroke and
the Alzheimer’s Disease and Related Disorders Association (NINCD-
S-ADRDA) [27]. For MCI patients, the diagnosis was made based on the
Petersen criteria [28]. Paraclinical measurements of patients were per-
formed when necessary for diagnostic certainty and included the
Mini-Mental State Examination (MMSE), Addenbrooke’s Cognitive Ex-
amination (ACE), Function Activities Questionnaire (FAQ), CSF Af, CSF
phospho-tau (p-tau), and CSF total-tau (t-tau).

For comparison with patient groups, age- and sex-related donors
were recruited from the blood bank at Aalborg University Hospital.
Donors were required to be of age 65 or older and complete a ques-
tionnaire regarding physical and mental health, stating information
about i.e. fatigue, chest pain, and memory impairment. All included
participants signed a consent form prior to study inclusion. The study
was conducted in accordance with the Declaration of Helsinki and
approved by the local North Denmark Region Committee on Health
Research Ethics (N-20150010).

2.2. Sample collection and routine analyses

Collection and handling of blood samples were performed as previ-
ously described [29]. Briefly, using the median cubital vein as access
point and a 21-gauge needle, blood samples (plasma and serum) were
collected in 9 mL 0.105 M (3.2%) trisodium citrate (Vacuette, Greiner
Bio-One, Austria) and 10 mL clot activator tubes (BD Vacutainer, UK).
After blood collection, samples were subjected to double centrifugation
at 2,500 x g for 15 min at room temperature to obtain either platelet-free
plasma or serum. Plasma and serum were aspirated until 1 cm above the
buffy coat or pellet. Aliquots of plasma and serum samples were
snap-frozen in liquid nitrogen and stored at — 80 °C until further
processing.

In addition, routine analyses were applied as previously described to
ensure that study participants presented with no co-morbidities [29].
Briefly, measurements of normal system functioning and markers of
organ function and damage were investigated by; alanine transaminase,
albumin, carbamide, cholesterol, creatinine, C-reactive protein, glucose,
high and low-density lipoprotein, haemoglobin, lactate dehydrogenase,
and triglycerides.

2.3. Enrichment of extracellular vesicles
For MS, EVs were enriched from 1 mL plasma. A two-step centrifu-

gation process at 100,000xg for 1 h at 4 °C was performed using an
Avanti J-30i centrifuge together with a J A-30.50 fixed angle rotor, k-
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factor 280 (Beckman Coulter, Brea, CA, USA). In-between centrifuga-
tions pellets were washed with 1 mL 0.22 pm filtered buffer (10 mM
ammonium acetate in HPLC grade water). The resulting final EV pellets
were resuspended in 100 pL of the same buffer. For NMR analysis, EVs
were enriched from 1 mL plasma in triplicates for one sample per group.
A two-step centrifugation process at 100,000xg for 1 h at 4 °C was
performed using a LKB 2331 Ultrospin 70 (LKB, Bromma, Sweden). In-
between centrifugations pellets were washed with 1 mL 0.22 pm
filtered phosphate-buffered saline. The resulting final EV pellets were
resuspended in 150 pL of the same buffer, and due to the dilution of
samples and relatively high metabolite concentration requested for NMR
analysis (>1 pM), samples were pooled resulting in three samples in
total, one EV isolate from each group. Furthermore, we have previously
characterised pellets of EVs from the same enrichment, thus comfirming
their presence in our samples [30].

2.4. Mass spectrometry analysis

For MS-based metabolomics analysis, both serum and EV samples
were investigated. Samples were thawed on ice and four times volume
extraction solvent was added, followed by vigorous vortexing. For
serum, the extraction solvent comprised of methanol/acetonitrile/H20
(5:3:2), and for EVs methanol/acetonitrile (5:3) was used. Samples were
then centrifuged at 16,000xg for 15 min at 4 °C. The supernatant was
aspirated, lyophilized, and stored at — 20 °C. Prior to liquid
chromatography-mass spectrometry (LC-MS) analysis, samples were
dissolved in 0.1% formic acid (30 pL) and centrifuged at 16,000xg for 5
mintutes at room temperature.

The samples were analysed as in Dall et al. [31]. In brief, 5 pL was
injected using a 400 pl/min and the following composition of eluent A
(0.1% formic acid) and eluent B (0.1% formic acid, acetonitrile) sol-
vents: 3% B from 0 to 1.5 min, 3%-40% B from 1.5 to 4.5 min, 40%-95%
B from 4.5 to 7.5 min, 95% B from 7.5 to 10.1 min and 95%-3% B from
10.1 to 10.5 min before equilibration for 3.5 min with the initial con-
ditions. The flow from the UPLC was coupled to a Q Exactive HF mass
spectrometer (Thermo Fisher Scientific) for mass spectrometric analysis
in both positive and negative ion modes. The raw data were also pro-
cessed as in Dall et al. [31] using MZmine (v 2.53) [32].

2.5. Nuclear magnetic resonance spectroscopy analysis

NMR spectroscopy was used to investigate serum and EV-derived
metabolites. Samples were thawed for 30 min at 4 °C, vortexed, and
centrifuged at 12,100xg for 5 min at 4 °C using a multifuge 3 S-R
centrifuge (Heraeus, Hanau, Germany). A total of 400 pL serum super-
natant or EV isolate was mixed with 200 pL buffer (0.2 M NaPOg4, 99%
D0, pH 7.4), as previously described [33,34]. Samples were aliquoted
in 5 mm NMR tubes and kept on ice until analysed. A PULCON sample
consisting of glucose and buffer was used as an internal standard.

A Bruker AVANCE 800 MHz NMR spectrometer (Bruker BioSpin,
Rheinstetten, Germany) equipped with a cryogenically cooled, triple-
resonance (1H, 13C, I5SN) CPP-TCI probe, and operated at 298.1 K
(25 °C) was used to record 'H NMR spectra. T filtered Carr-Purcell-
Meiboom-Gill (CPMG) experiments with water presaturation were ob-
tained using the following parameters; 65536 data points covering a
spectral width of 20 ppm using 256 scans for serum and 128 scans for
plasma (EV) samples, with 32 dummy scans, a fixed receiver gain of 203,
and a relaxation delay (D1) of 4 s. Presaturation of the water resonance
was achieved during D1 by continuous irradiation at yB;/2n = 25 Hz. Ty
filtering was then performed with a 7-180°-t (r = 300 ps) pulse
sequence, which was repeated 256 times for 80 ms. The TopSpin 3.1
software (Bruker BioSpin, Rheinstetten, Germany) was used for spectral
acquisition and processing, including enhancement of spectral resolu-
tion using artificial zero-filling by adding digital data points to the free
induction decays, line broadening (0.3 Hz), Fourier transformation,
phase and baseline correction, and calibration to the r-alanine methyl
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Table 1

Demographics and clinical data of study groups. The presented values are
shown as mean + standard deviation. Abbreviations; Af: amyloid-p, ACE:
Addenbrooke’s Cognitive Examination, AD: Alzheimer’s Disease, Con: healthy
controls, CSF: cerebrospinal fluid, FAQ: Functional Activities Questionnaire,
MCI: Mild Cognitive Impairment, MMSE: Mini-Mental State Examination, p-tau:
phospho-tau, t-tau: total-tau. *Ages 51-70. Interval <500 for ages 71-90.

Con (n MCI (n = AD(n=10) p- Reference
=10) 10) value interval
Demographics
Female/ 6/4 8/2 6/4 - -
male (n)
Age 65 + 72+5 70 £5 0.005 -
(years) 0.5
Cognitive performance
ACE - 85.0 £ 5.6 58.7 £16.5  0.007 -
(n=6) (n=3)
FAQ - 4.0 +2.0(n 10.4 + 4.6 0.066 -
=3) (n=5)
MMSE - 27.4+£23 23.6 + 4.6 0.041 -
Paraclinical measurements
CSF Ap - 998.5 + 626.3 + 0.148 > 500
428.6 (n = 260.9 (n =
4) 6)
CSF t-tau - 563.0 + 628.2 + 0.760 <61
3639 (n= 288.9 (n =
4) 6)
CSF p-tau - 98.0 +61.3 80.5+29.5 0.556 < 450*
(n=4 (n=6)

peak (1.48 ppm), as previously described [35]. Metabolite annotation
was performed using 2D 'H-'H total correlation spectroscopy and
'H-13C heteronuclear single-quantum correlation spectra, the Human
Metabolome Database (HMDB) [36], and literature [33,37,38], while
quantification was based on integrating the sum of all points within a
signal of interest, as previously described [38].

2.6. Data analysis

For LC-MS, in serum and EV samples a total of 130 and 65 features
were annotated on MS2 level, respectively and were subsequently cor-
rected for signal drift using the statTarget R package [39]. For NMR
spectroscopy a total of 38 metabolites were identified. Prior to multi-
variate analysis, data were generalized log-transformed and auto-scaled
using MetaboAnalyst 5.0 (Xia Lab, Quebec, Canada) [40]. Supervised
sparse-partial least squared discriminant analysis (sPLS-DA) was used to
detect metabolites related to cognitive impairments. A five-fold cross--
validation (CV) repeated 100 times was employed. Scores plots of
sample grouping and loadings plots of selected metabolites are pre-
sented. Receiver operating characteristics (ROC) curves for group
discrimination were created based on the CV adjusted models. The area
under the curve (AUC) and 95% confidence intervals (CI) were used to
report the sensitivity and specificity of the models. Multivariate analysis
was performed using the mixOmics R package [41]. R script and files for
SPLS-DA can be accessed in Supplementary Materials File S1 and
Table S1 - S3.

Correlations were performed for metabolites identified by both MS
and NMR to assess methods’ compatibility using Pearson’s p (Supple-
mentary Material File Fig. S1). Data are presented as means + standard
deviations (SD). Group comparisons were performed using analysis of
variance (ANOVA) with Tukey’s honestly significant difference (HSD)
post hoc test in IBM SPSS Statistics 27 (SPSS, Chicago, IL, USA).
Benjamini-Hochberg false discovery rate (FDR) was applied for multiple
correction. Fold changes (FC) were calculated for between-group com-
parisons. A p-value < 0.05 was considered statistically significant.
GraphPad Prism 9.1.1 (GraphPad Software, La Jolla, CA, USA) was used
for data visualization.

Network analysis was conducted using MetScape version 3.1.3 [42]
for serum metabolites differentiating AD patients and healthy
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Fig. 1. Metabolic signatures related to cognitive
NMR impairment through MS- and NMR-based ap-
proaches. Sparse-partial least squared discriminant

analysis (sPLS-DA) models for serum metabolites,
together with receiver operating characteristics
(ROC) curves for each of the models. For LC-MS
serum samples (A) scores plot, (B) loadings plot,
and (C) ROC curves were shown. For NMR serum
samples (D) scores plot, (E) loadings plot, and (F)
ROC curves were shown. Each score represents a
sample and the loadings represent the variation in
a specific metabolite. The size of the bars indicates
their importance for the sample grouping, and the
color-coding indicate their importance for one of
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individuals. Networks were build using KEGG IDs. Logy FC was used to
indicate whether the affected metabolic pathways were altered in
diseased compared to healthy individuals. Tables for MetScape analysis
can be accessed in Supplementary Material File Table S4.

3. Results
3.1. Subject characteristics

The measured biochemical parameters, test results of cognitive
performances, and paraclinical measurements have been presented in
earlier studies by Nielsen et al. [29,30]. Briefly, most biochemical
measurements were within standard reference intervals, however, with
few individuals presenting elevated levels of LDL cholesterol and

triglycerides. A small but significant difference in age was found be-
tween healthy and diseased individuals (p = 0.005). AD patients pre-
sented with significantly lower scores of cognitive testing based on
MMSE (p = 0.04) and ACE (p = 0.007) tests, and higher scores on the
FAQ test, compared to MCI patients. For paraclinical measurements of
CSF markers, AD patients were observed to have slightly lower levels of
AP and p-tau and higher levels t-tau (Table 1).

3.2. Metabolic signatures of cognitive impairments

For this study, serum samples were measured by both LC-MS and
NMR, while EVs only by LC-MS due to samples being too diluted for
NMR, resulting in few signals obtained on the NMR spectrum (Supple-
mentary Material File Fig. S2).
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Table 2
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21 differentially altered metabolites in serum samples measured by mass spectrometry comparing all groups. Abbreviations; AD: Alzheimer’s Disease, ANOVA: analysis
of variance, Con: healthy controls, FC: fold change, FDR: false discovery rate, MCI: Mild Cognitive Impairment.

Metabolites Mean + SD [Intensities] ANOVA  FDR AD |Con MCI |Con AD |MCI
Con MCI AD FC p FC p FC p

1-Pentadecanoyl-sn-glycero-3-phosphocholine 970.2 + 282.5 1249.8 + 507.9 + 0.0004 0.020 0.5 0.021 1.3 0213 04 0.0003
478.9 210.0

Allopurinol riboside 1829.6 + 296.5 + 444.4 + 0.0004 0.020 0.2 0.002 0.2 0.001 1.5 0.915
1293.6 193.8 330.8

Inosine 1626.3 + 404.7 + 496.4 + 0.0005 0.020 0.3 0.002 0.2 0.001 1.2 0.950
1014.0 258.1 361.9

Guanosine 1809.1 + 401.2 + 590.5 + 0.0006 0.020 0.3 0.004 0.2 0.001 1.5 0.848
1069.5 387.7 556.7

1-Palmitoyl-sn-glycero-3-phosphocholine 997.1 + 246.8 1109.8 + 625.4 + 0.001 0025 06 0.011 11 0615 0.6 0.001
283.7 222.1

13-cis-Retinol 876.4 + 207.2 12449 + 590.3 + 0.001 0.032 0.7 0194 14 0.073 05 0.001
467.0 293.7

4-Pyridoxic acid 815.4 +£119.9 12345 + 1288.6 + 0.004 0.074 16 0.006 1.5 0.016 1.0 0.921
309.8 393.5

1-Myristoyl-sn-glycero-3-phosphocholine 1170.2 + 1198.8 + 5489 + 0.009 0.139 0.5 0.021 1.0 0991 05 0.016
527.6 534.9 271.9

2-Isopropylmalic acid 769.4 + 209.3 1164.1 + 1135.1 + 0.011 0.147 1.5 0.029 1.5 0.017 1.0 0.974
319.1 311.0

Leu-Leu 842.5 + 223.6 946.4 + 1366.4 + 0.011 0147 16 0.013 11 0816 1.4 0.051
319.7 488.3

7-Methylguanine 1021.0 + 1040.4 + 1308.5 + 0.013 0.156 1.3 0.021 1.0 0980 1.3 0.033
141.6 165.1 298.9

2-Phenylethanol,sulfate 724.1 + 390.3 845.6 + 1570.6 + 0.017 0.164 2.2 0.021 1.2 0912 19 0.054
503.7 882.6

1-Oleoyl-sn-glycero-3-phosphocholine 971.3 + 289.9 1070.1 + 674.4 £ 0.017 0.164 0.7 0.086 1.1 0742 0.6 0.017
270.7 289.6

L-Lysine 1138.1 + 795.2 + 1085.9 + 0.019 0.164 1.0 0.904 0.7 0.023 1.4 0.060
312.3 150.8 280.5

5-Androsten-3,17p-diol-3-sulfate 777.0 + 490.1 696.2 + 1478.9 + 0.020 0164 19 0.053 09 0957 21 0.028
513.6 775.1

1-Palmitoyl-2-hydroxy-sn-glycero-3- 892.4 + 397.8 1094.5 + 633.7 + 0.020 0.164 0.7 0230 1.2 0399 0.6 0.015
phosphoethanolamine 336.2 217.4

9(10)-Epoxy-12Z-octadecenoic acid 694.8 + 4129 13425 + 768.1 + 0.023 0.179 1.1 0.950 1.9 0.032 0.6 0.061
685.4 379.0

3-Methylglutarylcarnitine 600.8 + 190.9 995.2 + 1214.7 + 0.037 0251 2.0 0.031 1.7 0211 1.2 0.604
420.7 695.4

D-erythro-Sphingosine-1-phosphate 905.0 + 247.9 1156.4 + 732.4 + 0.039 0.251 0.8 0.523 1.3 0.263 0.6 0.031
454.3 255.8

Glycodeoxycholic acid 1370.1 + 837.6 + 527.0 + 0.039 0251 0.4 0.032 0.6 0226 0.6 0.590
869.5 691.7 314.6

Lys-Trp 827.9 + 106.5 736.1 + 47.4 774.3 £ 47.9 0.041 0251 0.9 0278 09 0.032 1.1 0.515

Table 3

Seven altered metabolites in serum samples measured by nuclear magnetic resonance spectroscopy comparing all groups. Abbreviations; AD: Alzheimer’s Disease,
ANOVA: analysis of variance, Con: healthy controls, FC: fold change, FDR: false discovery rate, MCI: Mild Cognitive Impairment.

Metabolites Mean + SD [pM] ANOVA FDR AD |Con MCI |Con AD |MCI
Con MCI AD FC p FC p FC p

Valine 118.4 £ 17.6 96.6 + 13.5 91.8 £10.7 0.001 0.016 0.8 0.001 0.8 0.009 0.9 0.730
Histidine 36.7 = 2.4 33.7 £ 3.0 31.7 £ 2.2 0.001 0.016 0.9 0.001 0.9 0.048 0.9 0.232
Formate 4.6 £ 0.9 3.0+0.8 41+0.8 0.001 0.016 0.9 0.415 0.7 0.001 1.4 0.026
Myo-inositol 40.2 £5.9 33.6 £ 3.8 34.6 £ 4.2 0.013 0.121 0.9 0.044 0.8 0.016 1.0 0.902
Glutamine 308.4 + 33.3 277.0 £18.0 283.0 £ 14.9 0.020 0.154 0.9 0.075 0.9 0.023 1.0 0.852
Dimetylamine 5.6 £2.2 4.0+1.3 3.6 £0.8 0.025 0.159 0.6 0.027 0.7 0.092 0.9 0.834
Isoleucine 44.8 £ 8.9 37.3+7.0 36.5 + 6.0 0.046 0.248 0.8 0.062 0.8 0.096 1.0 0.974

To facilitate the identification of possible metabolites associated
with cognitive impairment sPLSDA was performed. A small overlap
across the groupings could be observed for the serum samples measured
by LC-MS and NMR (Fig. 1A — F). Among the 130 measured metabolites
by LC-MS, 15 were found discriminating between groups by using 2
latent variables, with a classification error of 0.56 (Fig. 1A and B) and an
AUC = 0.70 (95% CI = 0.51-0.88) for AD patients compared to MCI
patients and controls, an AUC = 0.79 (95% CI = 0.62-0.95) for the MCI
group compared to AD patients and controls, and an AUC = 0.98 (95%
CI = 0.94-1.00) for healthy controls compared to patient groups
(Fig. 1C). For NMR, five metabolites were found significantly

contributing to sample grouping (Fig. 1D and E), with a classification
error rate of 0.50, and an AUC = 0.84 (95% CI = 0.69-0.98) for AD
compared to the MCI and control groups, an AUC = 0.61 (95% CI =
0.40-0.81) for MCI compared to the AD and healthy individuals, and an
AUC = 0.94 (95% CI = 0.85-1.00) for healthy controls compared to
patient groups (Fig. 1F). A less distinct separation was observed for the
EV samples with a greater classification error rate of 0.62 (Supplemen-
tary Material File Fig. S3), indicating lower accuracy of EV-based me-
tabolites in distinguishing patients from healthy individuals.

Several serum metabolites were found to be significantly altered,
with 6 of these being significant after FDR correction (Table 2) for LC-
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Fig. 2. Important serum metabolites identified for discrimination of cognitively affected and healthy individuals. Boxplots representation with medians, interquartile
ranges, and whiskers for minimum and maximum measurements. Significance is indicated by ** <0.01 and * <0.05. Allopurinol riboside, inosine, 4-pyridoxic acid,
and guanosine were measured by LC-MS, while valine and histidine were measured by NMR.

MS analysis. For NMR, seven metabolites were significantly altered,
with three of them being significant after FDR correction (Table 3). In
contrast, EV samples only showed 5 significantly altered metabolites,
and none of them being significant after FDR correction (Supplementary
Material File Table S5). Fig. 2 depicts the most important serum me-
tabolites found to differentiate between groups, including allopurinol
ribosine, inosine, 4-pyridoxic acid, guanosine, valine, and histidine.

3.3. Dysregulated pathway analysis related to cognitive impairment

To extrapolate metabolic changes possibly related to disease pa-
thology, pathway analysis was performed (Fig. 3). 4-pyridoxic acid
involved in vitamin B6 metabolism (log FC = 0.7, p = 0.003) was found
to be the most elevated metabolite, while inosine (logy FC = —1.7,p =
0.006) and guanosine (logs FC = —1.6, p = 0.007), both from the purine
metabolism were the most decreased metabolites. Other impaired
pathways included histidine and branch-chained amino acids (BCAAs,
valine, leucine, and isoleucine) metabolisms.

4. Discussion

In this study, we investigate serum and EV-derived metabolites
possibly related to cognitive impairments, including MCI and AD. Using
multivariate and univariate statistics, we identified altered metabolic
signatures in serum able to differentiate cognitive affected from healthy
individuals.

For serum samples, we investigated the metabolome using both LC-
MS and NMR to obtain a broader coverage of the metabolome. Although
LC-MS has a higher sensitivity and coverage (130 identified metabo-
lites), the reproducibility and robustness of NMR present great clinical
applicablitity [43] since the 38 identified metabolites could be

quantified (uM concentration).

Important serum metabolites revolved around BCAAs (valine,
leucine, and isoleucine), purine (inosine and guanosine), and histidine
metabolisms, which were found decreased, while 4-pyridoxic acid was
increased in AD patients. BCAAs have previously been associated with
increased risk for AD and dementia [44], hence, our study confirms
previous findings. Valine is the most extensively studied of the BCAAs in
relation to AD, and its levels were previously been found decreased in
AD patients [45]. Also, valine levels showed correlation with the
cognitive decline in patients [17]. A function of BCAAs is part of the
glutamate metabolism [46]. Glutamine is converted to glutamate, acting
as principal excitatory neurotransmitters in the CNS [47]. Decreased
levels of BCAAs, as we observed, could affect this conversion of gluta-
mine and glutamate, thereby decreasing neurotransmission. In line with
this observation, we found lower levels of glutamine in the cognitively
affected individuals, and a previous study has also reported decreased
levels of glutamate in AD patients [48]. In addition, a study found a
correlation between peripheral and CSF glutamine levels [49].

Guanosine possesses protective effects for neurons by i.e. modulating
neurochemical processes, reducing oxidative stress, and regulate
glutamate excitotoxicity and inflammation [50]. Inosine also provides
benefical effects on the CNS, by improving memory and learning, as well
as providing anti-inflammatory effects [51]. We also found decreased
levels of allopurinol riboside, a metabolite which inhibits the effects of
purine nucleoside phosphorylase on inosine [52]. This could be a
response to the already observed lower levels of the purines inosine and
guanosine, thereby partially preventing the conversion of inosine to
hypoxanthine and guanosine to guanine.

Histidine, a precursor to an important component in the immune
response histamine, was found decreased in AD in our study. Histidine
has been shown to possess multiple neuroprotective functions in relation
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Fig. 3. Dysregulated metabolic pathways related to AD pathology. Hexagonal nodes indicate altered metabolites in the study and circular nodes represent me-
tabolites involved in the pathway not identified in the study. Color codes represent the log, FC values, with red representing upregulated metabolites and blue
representing downregulated metabolites. Mapped metabolites are based on KEGG IDs. (For interpretation of the references to color in this figure legend, the reader is

referred to the Web version of this article.)

to cerebral hypoperfusion, promoting neurogenesis and BBB integrity
post disruption [53]. Furthermore, treatment with this amino acid
reduced glial scarring and promoted migration of astrocytes towards the
core, thus providing long-term neuroprotection [54]. Hence, our find-
ings may indicate possible derangements in the overall immune
response mechanisms.

Hyperhomocysteinaemia is a modifiable risk factor of AD and de-
mentia. Studies have shown that dietary supplementation with B vita-
mins, such as folate, B12, and B6 have the ability to lower homocysteine
levels, improve upon cognition, and decrease the progression of MCI and
AD [55]. 4-pyridoxic acid is the catabolic product of vitamin B6 [56],
and thus, our observations of an increased level in AD and MCI patients
could be due to preventive measurements by the study participants
taking these dietary supplements.

As part of their biogenesis, EVs are packed with molecular compo-
nents from their parental cell, including metabolites at possibly sub-
nanomole concentrations. Thus, even with the use of the more sensi-
tive MS methodology, adequate detection levels might still be difficult to
achieve [57]. This was evident in our study, both through a more limited
number of metabolites measured by MS when compared to serum, but
also when performing NMR analysis, since we were unable to recover
adequate metabolite information not even after pooling of several
samples per measurement. According to Gézsi and co-workers [58], the
detection limit, as well as an adequate volume for analysis complicates

the usage of EVs in omics studies. Despite our limited findings, few
studies in cancer research have investigated the EV metabolome, con-
firming that EVs are able to modify the metabolome of the recipient cell
[59]. Hence, several challenges remain to be resolved, including pre-
analytical and analytical steps related to enrichment procedure and
global consensus and standard operating procedures, before their usage
in metabolomics can be harnessed [25,60]. Thus, in terms of usage for
metabolic investigations, our study indicates serum as preferable
compared to EVs.

Although our study showed promising indications of metabolic sig-
natures in blood for AD, some limitations are to be mentioned. Firstly,
our study population consisted of small cohorts of patients and healthy
controls. However, even with small sample subset, clear differences
between diseased and healthy individuals were observed. Secondly,
although patient groups were verified clinally, not all patients had
paraclinical measurements or neuropsychological tests, as it was
deemed unnecessary for the diagnosis made by the physician. Thirdly,
the healthy individuals were on average younger compared to AD and
MCI patients, since recruitment of older blood donors was not feasible.
The difference in age was found to be significant, however, this was
possibly also due to the narrow age span in the control group, compared
to that of patients, although their age spans overlapped. In addition,
including CSF samples for disease characterisation using metabolomics
alongside blood samples could possibly strengthen the identification of
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CNS-related affected pathways reflected in the peripheral system, but
CSF sampling was not available in most of the patients and controls.
Lastly, characterising metabolic changes might provide targets for the
implicated molecular processes, which in turn could aid in alleviating
AD-related pathological processes such as neuro-inflammation and
—transmission.

Our findings aided in the search for molecular signatures related to
AD using untargeted metabolomics strategies, although, for such
discovery-based approaches, further validations are needed to confirm
these candidates in larger independent cohorts.

5. Conclusions

In this study, we identified several serum metabolite alterations in
AD and MCI patients related to BCAAs, purine, histidine, and 4-pyridox-
ate metabolisms. Also, serum provides a more suitable matrix for
investigating metabolic alterations in relation to AD pathology
compared to that of EVs, however, additional optimization is needed for
EVs to confirm this finding.
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