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Abstract

Reversion of tumor to a normal differentiated cell once considered a dream is now at the brink of becoming a
reality. Different layers of molecules/events such as microRNAs, transcription factors, alternative RNA splicing, post-
transcriptional, post-translational modifications, availability of proteomics, genomics editing tools, and chemical
biology approaches gave hope to manipulation of cancer cells reversion to a normal cell phenotype as evidences
are subtle but definitive. Regardless of the advancement, there is a long way to go, as customized techniques are
required to be fine-tuned with precision to attain more insights into tumor reversion. Tumor regression models
using available genome-editing methods, followed by in vitro and in vivo proteomics profiling techniques show
early evidence. This review summarizes tumor reversion developments, present issues, and unaddressed challenges
that remained in the uncharted territory to modulate cellular machinery for tumor reversion towards therapeutic
purposes successfully. Ongoing research reaffirms the potential promises of understanding the mechanism of
tumor reversion and required refinement that is warranted in vitro and in vivo models of tumor reversion, and the
potential translation of these into cancer therapy. Furthermore, therapeutic compounds were reported to induce
phenotypic changes in cancer cells into normal cells, which will contribute in understanding the mechanism of
tumor reversion. Altogether, the efforts collectively suggest that tumor reversion will likely reveal a new wave of
therapeutic discoveries that will significantly impact clinical practice in cancer therapy.
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Introduction
Cancer is a complex genetic disease that can be either
solid or hematological type. The GLOBOCAN report in
2018 estimated that the total number of new cases and
death is predicted to be 18.1 and 9.6 million, respectively
[1]. Uncontrolled proliferation and loss of cellular and
molecular architecture are typical characteristics of
cancers [2]. For many years, the somatic mutation theory
(SMT) was used as the basis for explaining the cause

behind carcinogenesis. SMT mostly relates to non-
inheritance cancers, including 90–95% of all cancer
types. In 1914, Boveri was the first person to introduce
the SMT first explanation, which showed that for
changing the cell’s phenotype, the genotype had to be
changed [3]. Over time, it has been claimed that a single
somatic cell contains multiple DNA mutations in cancer,
indicating that cancers are monoclonal [4]. Their central
premise was (1) cancer is a defect of the control of cell
proliferation, and (2) quiescent state is the default state
for metazoan cells [5]. Later, another theory came into
the picture called “The tissue organization field theory
of carcinogenesis” (TOFT), which considers DNA muta-
tions not the cause of cancer, as in SMT, but as the
effect [6]. Towards the end of the nineteenth century,
Bold, Cohnheim, and Ribbert provided theory based on
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the interactions between tissues; cancer produced in
embryonic residues and epithelial cells do not contain
any special proliferative power, but that their proliferation
results from being freed from the restrictions imposed by
normal tissue organization. Their basic premises are: (I)
Motility and proliferation are the default cellular states,
(II) Carcinogenesis, and neoplasia are the outcome of the
tissue architecture defects [7]. In the initial phase, carcino-
gens will disrupt the parenchyma’s normal interactions
and an organ’s stroma. It appears as the primary target
(The morphological field of developing organisms).
Neoplastic cells are reprogrammed to work as normal
cells in “normal tissue”.. Carcinogens initially disrupt
normal interactions among parenchymal and stromal cells
of an organ (an equivalent of the “morphogenetic fields”
of a growing organism). An emergent (supracellular)
phenomenon is involved in the cause of Carcinogenesis
and neoplasia. According to TOFT, pro-carcinogenic
agents disrupt and interfere with the normal tissue archi-
tecture, and lead to the destruction of cell-to-cell signaling
and conciliate the genomic integrity [8].
A large number of switches such as chromosomal instabil-

ity, loss of heterozygosity, accumulation of mutations, DNA
methylation, and intron retention (particularly in TSGs),
escape of the immunosurveillance of the immune system,
aberrations in metabolism, defect in DNA machinery,
uncontrolled cell division, neo-angiogenesis, dysregulation
of post-transcriptional modifications & post-translational
modifications (PTMs), a nexus of the tumor microenviron-
ment, and changes in the extracellular matrix composition,
are collectively responsible for the transformation of normal
cells into the malignant form [9].
The different output or so-called differentially-regulated

molecules between cancers vs. normal cells/tissues have
been used as potential anti-cancer therapy targets for
different malignancies [10]. Targeting different types of
tumors had been the center of attraction using other
chemical probes, antibodies, or mimetic to see an impact
on the tumor volume and or survival of the animals and
the patients. In recent years, changing cancer cell’s profile
into normal (also called phenotype reversion or tumor
reversion) also received a lot of attention.
The process of tumor reversion was first described in

the twentieth century while studying ovarian terato-
mas. Through embryonic differentiation, tumor cells
could rise to normal cells [11]. Interestingly, SV40 or
polyoma infected NIH/3T3 cells were enriched, and
those possessed enhancements of improved contact
inhibition, and sensitivity, along with attrition in the
capacity to produce a tumor. These variants of the
parental cell lines are described as “revertants”. The
tissues of embryonic origin reverted cancerous cells
into normal using the guidance cues from the normal
microenvironment [2].

Reversion of tumor cells involves the regeneration of
the whole or as a part of the standard growth control
mechanisms, which disappeared in the malignant cells.
Still, tumor progression has been a serious concern as it
poses severe challenges to biomedical scientists and
clinicians worldwide. Several therapeutic agents, includ-
ing standard of care (SOC) drugs, have been used to
treat cancer patients to inhibit/stop the tumor progres-
sion. In contrast to tumor progression, the phenomenon
of tumor reversion is less studied. Tumor reversion is a
biological process involving reprogramming of tumor
cells that overcome the aberrancies such as loss of
heterozygosity, mutations, inactivation of TSGs, hyper-
activation of oncogenes, and eventually leading to tumor
phenotype conversion into normal. The in vitro and
in vivo approaches are used to manipulate the cellular
machinery for correcting the behavior of tumor cells in
different malignancies [2].
Reports are showing that the morphogenetic fields can

guide tissue to behave differently. When applied on
tumor cells growing in the vicinity of normal tissues as
embryonic through cellular reprogramming, it could
revert into a normal phenotype [12]. Several studies
successfully used molecular reprogramming for reverting
the tumor phenotype [12–14]. Recently, similar experi-
mental approaches applied to several different malignan-
cies, including leukemia, [15] breast cancer, [15] prostate
cancer, [16] ovarian cancer, [17] and liver cancer, [18] to
study tumor reversion.
The high-throughput techniques such as DNA or

oligonucleotide microarrays were used to identify differ-
entially regulated genes between normal vs. cancerous
tissues. This technology provided significant insights on
significantly dysregulated genes and helped to under-
stand the changes in an individual or a set of genes in
different stages of the tumor.
Malignant cells originate from the normal cells, so the

major challenge is to reminiscence the molecular patho-
physiology behind tumor reversion, which has been
overlooked largely due to limited researcher interest and
involvement in this area of research. Still, a significant
number of evidence, based on the observations from
different studies showed that tumor microenvironment,
post-transcriptional modifications, PTMs, chemical com-
pounds including anti-sense oligonucleotides (ASOs),
and miRs raise the possibility that further advancement
in this field could make it possible to use tumor rever-
sion as an alternative strategy or synergistically along
with currently available SOCs.
In this review, we discussed current updates in the

field of tumor reversion including currently available
in vitro, in vivo, and 3D culture-based models to study
tumor reversion, different molecular events involved,
compounds exploited for tumor reversion, and above all
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the challenges along with critical scientific thoughts to
implement multi-omics [19], and the current state-of-
the-art technologies to delineate the molecular process
of tumor reversion.

Molecules involved in tumor reversion
Several molecular processes and molecules were
reported to be involved in tumor reversion (Table 1, and
Fig. 1); still, only a selected group of researchers focused
on dissecting the complicated biological process of
tumor reversion globally. The protein architecture of dif-
ferent molecules involved in tumor reversion is provided
in Fig. 2. Some of these critical molecules involved in
tumor reversion are:

Translationally controlled tumor protein 1 (TCTP1)
In humans, the Translationally Controlled Tumor Pro-
tein (TCTP) is encoded by the TPT1 gene, which is lo-
cated on 13q12-q1413. It consists of six exons and five
introns [32]. TCTP is a secretory calcium-binding pro-
tein whose expression has been reported in biological
fluids such as saliva and semen. TPT1 is a direct target
gene of TP53. The conditional KO mice of TPT1 showed
retardation in the development of the brain and leads to
death in the perinatal stage. The expression of TPT1
across different normal human samples has been shown
in Fig. 3. The TPT1 mRNA expression profile clearly
shows that at least a minimum count of 97.21 RPKM
was present across all the normal organs. The protein-
protein interactions (PPIs) of TCTP proteins are pro-
vided in Supplementary Table-1.
PPIs can be identified using phage display, immuno-

precipitation, and Yeast two-hybrid (Y2H) techniques.
Over 200 PPIs involve TCTP protein; as evident from
different PPI analysis platforms like Y2H, affinity cap-
tures mass spectrometry, Affinity Capture-
Luminescence, or Affinity Capture-Western [33].
Y2H is a molecular technique that is used for the

identification of PPIs especially the physical interactions
[34, 35]. The functioning of the cellular machinery
depends on the physical interactions between domains
of several transcription factors. These domains are struc-
turally and functionally different: DNA binding domain
(BD), and DNA activation domain (AD). Among these,
BD binds to the DNA sequence upstream of the reporter
gene, and AD stimulates the reporter gene expression.
The protein in questions (Query) fuses with BD and
known as BAIT, the library of proteins fuse with AD
and known as prey [36]. Y2H takes advantage of the fact
that gene transcription requires the binding of two do-
mains of a transcriptional activator protein. These do-
mains are called the DNA-binding domain and the
activator domain. For two-hybrid analysis, each domain
is fused to one of two candidate interacting proteins. If

these proteins interact then a functional transcriptional
activator is formed. This triggers the transcription of a
reporter gene, which gives an observable change in
phenotype. In Y2H, a reporter expressed if there is an
interaction between two proteins. In Y2H, one can
screen for interacting partners without purifying the
protein. There are some drawbacks of Y2H as well
including the limitations of testing for pairwise interac-
tions only. Y2H is prone to a high false-positive rate as
well. Some of the critical PPIs were between TCTP and
MCL1, TCTP and SPP1, & TCTP and BCL2L1 as listed
in Supplementary Table 1.
Dysregulation of TCTP in breast cancer led to the

restructuring of the tumor and initiation of making
duct-like structures giving the mnemonic impression of
normal breast tissue [15]. Overexpression of the TCTP
has been associated with a poor prognosis in ovarian
cancer. The siRNA knockdown of the TPT1 gene
showed retarded growth of the ovarian carcinoma cell
lines in vitro suggesting its role in cell proliferation [37].

SIAH E3 ubiquitin protein ligase 1 (SIAH1)
An E3 ubiquitin-protein ligase that is encoded by the gene
SIAH1, [32] involved in ubiquitination and degradation of
specific proteins via proteasome through an interaction of
SIAH1 with NUMB. Mutations in SIAH1 inhibit the β-
catenin degradation, and these mutations have been
reported in gastric cancer samples as well [38]. Not only
SIAH1 but also its homologs (Siah1 & Siah2) interacts
with DCC (deleted in colorectal cancer) and subjects it to
proteolysis through the ubiquitin-proteasome pathway
[39]. Inactivation of SIAH1 is associated with hepatocellu-
lar carcinoma (HCC) tumor progression [40]. Overexpres-
sion of SIAH1 in colorectal cancer (CRC) led to the
suppression of cellular proliferation and invasion of
malignant cells. In contrast, SIAH1 knockdown promotes
both proliferation as well as invasion of CRC cells [41].
Overexpression of SIAH1 in U937 cells not only induce
apoptosis but also led to tumor reversion [20].

Presenilin (PSEN1)
Human presenilin protein encoded by the PSEN1 gene,
which is located on locus 14q24.3. This protein possesses
one transmembrane domain, as well as one PSN domain
[32]. PSEN1 is an important γ-secretase complex member
that plays a crucial role in the NOTCH signaling pathway.
An upregulation and over-amplification of the PSEN1
were observed in cancerous tissues and cell lines of gastric
origin. It was positively correlated with lymph node (LN)
metastasis and poor survival rate in gastric cancer patients
[42]. An ASO blocking PSEN1 that was used in leukemic
cell lines (K562 and U937) induces apoptosis, and reverts
the tumor phenotype in the cell lines as well as in vivo in
the SCID mouse model [20].
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Tumor suppressor activated pathway 6 (TSAP6)
The official gene symbol for the tumor suppressor
activated pathway 6 (TSAP6) is STEAP3 that is mapped
to 2q14.2. It is a cell cycle control protein, which
possesses six transmembrane domains. Due to its active
role in tumor reversion/suppression, it was given the
name TSAP6 [10]. The blockage of TSAP6 using ASO
or siRNA-mediated knockdown induces cell death in
TP53 dependent manner [43]. An exosome discharge
model came into existence due to the exosome
secretory nature of TSAP6 [44]. The TSAP6 KO was
not efficient in making exosomes. TSAP6 transnation-
ally controls the secretion of TCTP, and sometimes
works as a detoxifier for the cells. Y2H assay revealed
that TSAP binds with TCTP. Following TP53 acti-
vated, TSAP6 gets active and behaves as a tumor sup-
pressor, and it was along with the TPT1 gene found
in the tumor revertants derived from U937 cell lines
suggests that it is also an important gene involved in
the process of tumor reversion [13].

KREV-1
The official gene symbol for KREV-1 is RAP1A (Ras-re-
lated protein Rap-1A). RAP1A gene is located on 1p13.3.

The RAP1A encodes the KREV-1 protein in humans.
This protein is a GTPase. Overexpression of KREV-1
protein was found to be associated with different malig-
nancies. Through AKT signaling, RAP1A promotes me-
tastasis in esophageal squamous cell carcinoma (ESCC),
[45] and an aggressive phenotype in colorectal cancer
through PTEN/FOXO3/CCND1 pathway [46]. The rever-
tants were obtained after prolonged exposure of prostate
cancer cell lines with Azatyrosine. The revertants ob-
tained were with elevated expression of KREV-1 showed
low colony formation and no tumorigenicity in the mouse
model; this suggests the role of KREV-1 in tumor rever-
sion [16].

MYC
MYC proto-oncogene, or bHLH transcription factor is
encoded by the gene MYC (alias c-Myc) that is located
on 8q24.21. MYC is a transcription factor that regulates
a large number of genes essential for the progression of
the G1 to S phase of the cell cycle. MYC is known to be
associated with tumor progression in different cancers,
including cervical, oral, and multiple myeloma [47–51].
MYC is very crucial for angiogenesis which is a key fac-
tor for the aggressive behavior of a tumor [51]. Tumor

Fig. 1 Different molecular alterations involved in tumor reversion. Molecular mechanism of tumor reversion involving different alternations
including PTMs such as phosphorylation, glycosylation, and other molecular changes such as microRNAs, transcription factors, RNA splicing
events, the impact of the tumor microenvironment, tumor-associated macrophages, and epigenetic modifications. The arrow with an upward
direction (↑) denotes an increase in the expression, and the arrow with a downward direction (↓) denotes a decrease in the expression. In the
figure, gene symbols in italic means denoting gene/mRNA, and non-italic means denoting protein
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regression has been an important event observed in the large
number of transgenic mouse models. The crucial question
about the fate of cells remains unclear i.e. if they change to a
non-malignant, malignant, or quiescent state. MYC inhib-
ition leads to complete tumor elimination in lymphoma and
osteosarcoma models [52, 53]. MYC inhibition reverses tu-
mors into a normal or dormant state of cells. This puzzle
was investigated in osteosarcoma and lymphoma where
blockade of MYC successfully remove the complete tumor.
Though intriguing, tumor cells derived from MYC-induced
breast and hepatocellular carcinoma were reverted into a
dormant state. Furthermore, dormant cells upon MYC re-
activation again reverted to tumor state [54, 55]. This indi-
cates the compulsiveness of MYC for the cells. MYC
inactivation led to tumor reversion in different tumors [56].

As low as two-fold decrease in MYC expression can lead to
tumor reversion in a cell-specific manner [57].
Tumor reversion was also observed upon MYC sup-

pression in several malignancies, including T and B cell
leukemia and lymphoma, squamous cell, and mesenchy-
mal cancers [52, 53, 58, 59].

Role of microenvironment and associated factors in
tumor reversion
Interaction between tumor and microenvironment
entities plays a crucial role in determining the behavior
of the tumor. Apart from malignant cells, the TME
cellular components are immune cells, the vasculature of
the tumor, and the lymphatic endothelial cells, fibro-
blasts, adipocytes, and pericytes. The term “TME”

Fig. 2 Protein Architecture of different proteins involved in the tumor reversion. Using the human protein reference database, the architecture of
proteins involved in tumor reversion or phenotypic tumor reversion has been shown include TPT1, SIAH1, TSAP6, SETDB1, YBX1, HOXD10, PSEN1,
KREV-1, ITGB1, and STAT3

Fig. 3 The mRNA expression of TPT1 across different normal human tissues. An mRNA expression of the TPT1 gene has been shown across all
possible normal human tissue samples including (from left-➔ to right) appendix, bone marrow, brain, colon, duodenum, endometrium,
esophagus, gall bladder, heart, kidney, liver, lung, lymph node (LN), ovary, pancreas, placenta, prostate, salivary gland, skin, small intestine, spleen,
stomach, testis, thyroid, and urinary bladder. The value of the expression is shown in form of Reads Per Kilobase of transcript per million mapped
reads (RPKM), which are the normalized unit for denoting transcript expression

Tripathi et al. Biomarker Research            (2021) 9:31 Page 7 of 27



sometimes is confusing giving the impression that only
cancerous cells are involved. In contrast, non-cancerous
cells are involved and those are essential for different
stages including tumorigenesis, progression, and metastasis.
Additionally, secretory proteins and blood vessels are also in-
volved [60, 61]. Stromal cells and the extracellular matrix
(ECM) constitute the structure of the TME. ECM consists of
proteoglycans, fibrous proteins including collagen, fibronec-
tin, laminin, tenascin, and hyaluronic acid [62]. TME has
been reported in a large number of studies to play a very
crucial role in tumor maintenance and progression. Further-
more, TME contributes to tumor reversion [63]. Tumor-
associated macrophages (TAMs) are the cells found in TME
and these are associated with the microvessel density of the
tumor tissues. TAMs are mainly of two types based on their
pro-tumorigenic (M2/Th2-activated) or anti-tumorigenic be-
havior (M1/Th1-activated). The balance between M1 and
M2 decides the kind of phenotypic behavior expected in a
tumor. The evolution of the TME depends on the stage and
type of the cancer. TME can revert the anti-tumor program
and favor a switch of infiltrated macrophages into an M2
phenotype with pro-tumor and immune-suppressive func-
tions [64]. TAM-specific inactivation of IKKβ, which disrupts
NF-κB signaling resulted in an M2-to-M1 switch, recruit-
ment of natural killer cells, and subsequent tumor regression
in an ovarian cancer model [65].
The M2 subtype of TAMs is crucial in creating an im-

munosuppressive TME because these macrophages can
secrete cytokines, growth factors, and chemokines, that
inhibit the immune checkpoints in the T-cells. This
property has been exploited for reverting the tumor in
several studies. TAMs are important in polarizing the
phenotype of a tumor. The macrophage depolarization
of an M2 phenotype via CSF-1R inhibition led to tumor
regression of established high-grade gliomas [66].
The embryonic microenvironment plays an important

role in reprogramming metastatic tumor cells [67]. The
nodal inhibitor showed no effect in tumors treated alone
than cultured within the vicinity of human embryonic
stem cells (hESC). The latter not only responded but
also the cells started initiated to show features alike nor-
mal phenotype [68].
The microenvironment plays an essential role in regu-

lating tumor growth [2]. The cultured breast cancer cells
treated with an antibody blocking integrin showed fea-
tures like normal cells e.g. ductal structures looking alike
normal breast epithelial cells [69].
It is also well established that the tumor progression in

solid tumors rely on new vasculature formation through
angiogenesis. Experimental evidences reveal that the most
human tumors arise without angiogenic activity and remain
dormant and viable as microscopic lesions for extended pe-
riods. The angiogenic phenotype in human tumors can also
spontaneously revert to the non-angiogenic phenotype in

the small population (~ 4–6%) of tumor cells. If the rate of
reversion to the non-angiogenic phenotype can be in-
creased therapeutically, this could lead to a novel anti-
cancer strategy through tumor reversion.

Alternative RNA splicing and tumor reversion
The process of RNA splicing is responsible for bringing
diversity at transcript as well as protein levels. The RNA
splicing machinery “spliceosome” orchestrates this process.
RNA splicing has been reported to play a crucial role in dif-
ferent biological mechanisms essential for cancer progres-
sion, metastasis, tumor-microenvironment interaction, drug
resistance, epithelial-mesenchymal transition (EMT), and
mesenchymal-epithelial transition (MET), in tumor rever-
sion. A peculiar characteristic of cancer cells is aberrant
RNA splicing, which forces the cells to reorganize their spe-
cific RNA spliced forms required for that particular stress/
cancer and contributing to the tumorigenesis. Cancer-
specific AS events have been documented that are respon-
sible for tumor progression as well [70]. The spliceosome
complex controls the RNA splicing events. There are several
cases where RNA splicing able to induce/modulate tumor
reversion. Serine/arginine-rich splicing factor 1 (SRSF1) gene
is also known as SF2/ASF. SRSF1 upregulation has been re-
ported in breast cancer. Notably, several endogenous splicing
targets of SF2/ASF, including novel oncogenic isoform of the
mTOR substrate, S6K1, are essential for SF2/ASF-mediated
transformation. Also, RNA interference (RNAi) of SF2/ASF
or the oncogenic S6K1 isoform resulted in the reversion of
the transformed phenotype [71]. A number of macrolide
splicing modulators (SPLMs) have been used for modulation
of RNA splicing for anti-cancer activities. These SPLMs not
only affect the total protein levels but also the PTMs (includ-
ing but not limited to, phosphorylation, and glycosylation).
Indole derivatives IDC92 have been tested for modulation of
RNA splicing in breast cancer where these were able to show
anti-proliferative activities in the cancer cells, and not only
reverse the abnormal splicing form ΔRON (of proto-
oncogene RON), but also the invasive phenotype of the
breast cancer cells without altering the splicing of other tar-
gets like SF2/ASF [71].
In cancer cells, the pyruvate kinase muscle isoenzyme

(PKM) plays a significant role in cancer cell metabolism
to adapt to a new ambience. In a study on head & neck
cancer cells, treatment with dietary-phytochemical able
to induce reversion of PKM2 (cancer-specific isoform)
into PKM1 (normal specific) isoform and also lead to in-
hibition of H&N cancer [72].
In the case of chronic lymphocytic leukemia (CLL),

macrolide SPLMs like pladienolide-B and FD-895 were
able to modulate the myeloid cell leukemia factor 1
(MCL1) gene transcript isoforms (larger-MCL1L: larger-
anti-apoptotic, and shorter, MCLS: pro-apoptotic) after
treatment in CLL-B cells. This impact was preferentially
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in CLL-B cells only [73]. Even derivatives of FD-895
were also able to recapitulate the same properties in
primary CLL-B cells and other leukemia and lymphoma
cell lines [74].

Non-coding RNAs and their role in tumor reversion
In addition to high-throughput techniques like RNAseq
have shown that the human transcriptome is complex
and its regulation is controlled through different
developmental stages [75]. The ncRNAs are functional as
those are able to transcribe but unable to translate into pro-
tein. The ncRNAs primarily are of two types: small ncRNAs
(< 200 nucleotide length) and long ncRNAs (lncRNAs, >
200 nucleotide length) [76]. Among sncRNAs are regula-
tory RNAs like microRNAs (miRNAs or miRs), rRNA,
tRNA, & splicing RNAs [77, 78].
The miRs are single-stranded, endogenously occurring

small RNAs with varying lengths from 20 to 23 nucleo-
tides post-transcriptionally regulate gene expression
[79]. An interaction via complementary base pairing
between miR, and mRNA is essential for target mRNA’s
translation or stability. These are involved in regulating
the gene expression by integrating with the RNA-
induced silencing complex (RISC). Further, miRs can
suppress the translation or degradation by binding to
the 3′-untranslated region (3′-UTR) of the mRNA [77].
In recent years, a different research group reported that
the target of miRs is the 3′-UTR, and in some cases
miRs target 5′-UTRs as well [80, 81].

Role of miRs in tumor reversion
In most studies, miRs or microRNAs have been reported
in tumor progression. Still, a few studies also reported
the role of miRs in tumor suppression, and rare cases in
reverting the tumor phenotype into normal (tumor re-
version). Among miRs, miR-155 is a known macrophage
polarization modulator. In the TAMs derived from the
bone marrow-derived macrophages (BMDMs), overex-
pression of miR-155 was able to polarize tumorigenic M2
macrophages (anti-inflammatory profile) into inducing
anti-tumor macrophage M1 (‘classic’ pro-inflammatory
phenotype). The miR-155 expression was upregulated in
M1 polarized macrophages types by > 120-fold suggesting
its crucial role in reversing a tumorigenic to anti-
tumorigenic phenotype [82]. Further, overexpression of
miR-99b in TAMs educated them towards the anti-cancer
phenotype that led to hindrance in the HCC and LLC
growth and further improved immune surveillance [83].
The tumor could serve as a good target for inducing

the tumor regression by targeting the genes using miRs
or anti-miRs in cancers with altered protein-forming
genes [84]. The miR-26a targeting c-MYC mRNA in-
duced tumor regression in HCC [85]. Another miR let-7
was originally discovered first in nematodes has been

reported in different malignancies. The let-7 group miRs
are essential for apoptosis, cellular proliferation, and
invasion of cancerous cells. The let-7 miR is essential in
maintaining the state of differentiation in somatic cells.
Ectopic overexpression of let-7 g in human ovarian can-
cer cell lines reduce cell’s growth, induces arrest of the
G0/G1 phase of the cell cycle, reduces EMT and cell
motility [86]. The reduced let-7 level was associated with
regression in the mesenchymal phenotype and shorter
survival. Higher let-7 expression and higher EMT could
not form a detectable tumor, but in contrast, a lower let-
7 level and lower EMT led to the tumorigenic phenotype
[87].
The miRs have been associated with HCC, and a large

number of differentially regulated miRs have been re-
ported between HCC vs normal. Among these, miR-21
and miR-17-92 were subtly upregulated in HCC as com-
pared with the normal tissue sample. The anti-sense
oligonucleotide-mediated inhibition of miR-17-92 and
miR-21 induced a significant reduction in cellular prolif-
eration, which was ~ 55 and 21%, respectively. Addition-
ally, considerable retardation was observed in the G1
phase of cell cycle in HepG2 cells. The knockdown of
miR-17-92 also decreased the anchorage-independent
growth significantly in HepG2 cells. Overall, this evi-
dence shows that miR-17-92 knockdown led to partial
phenotypic tumor reversion and suggests its involvement
in tumor reversion [88].
The miR-200 family consists of very important miRs,

including miR-200a, miR-200b, miR-200c, miR-141, and
miR-429. The ZEB (zinc-finger enhancer-binding protein)
/ miR-200 response loop is a cellular plastic cell engine for
the development and diagnosis. In particular, it can
advance cancer toward metastasis by controlling the cellu-
lar stem cell culture. Interestingly, miR-200c induced
overexpression overturns chemotherapy and EGFR-
mediated resistance in reproductive cancer [89]. The miR-
200c possesses pro-apoptotic properties and targets FAP1
(an apoptosis inhibitor) and makes the cancer cells per-
ceptive to apoptosis [90].
A systematic RNA screening led to the identification

of miRs playing a key role backed by MET in the starting
phase of phenotype reversion. These steps are directly
dependent on miR-205 and the cluster of miR-200 fam-
ily. The ectopic expression of the miR-200 family and
miR-205 can revert the mesenchymal to epithelial transi-
tion (MET) in mesenchymal cells. In concordance with
their EMT role, these miRs were lost in mesenchymal
phenotype bearing invasive breast cancer cell lines [91].
Another important type of ncRNAs subtype is

lncRNAs. We carried out an extensive search on it but
unable to find even a single study reporting role of
lncRNAs in tumor reversion. This is also largely possible
because there is not even a single study focused on
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either deploying lncRNA or RNAseq profiling as both of
these high-throughput techniques can capture the
lncRNA profile between normal vs cancer groups.

Transcription factors and tumor reversion
Alternative RNA splicing is the basis for bringing the di-
versity in the transcriptome and eventually in the prote-
ome as well. An optimum balance between isoforms is
critical for the normal biological functioning of different
organisms. Besides AS, transcription factors (TFs) play a
significant role in the regulation of different malignancies
[92]. The TFs are involved in tumor regulation, prolifera-
tion, progression, and metastasis and play a significant role
in regulating changing the phenotype from cancer to nor-
mal. Some of the TFs that have been reported in tumor
phenotypic reversions are discussed here.

Homeobox D10 (HOXD10)
The homeobox D10 gene (HOXD10) belongs to the
HOX family of genes that are important for various pro-
cesses related to development [93]. HOXD10 has been
reported to be involved in several different malignancies
[94]. An elevated expression of HOXD10 led to tumor
quiescence; it also has been reported as a TSG in pan-
creatic and cholangiocarcinoma [95]. HOXD10 induces
reversion of tumor phenotype in 3D culture conditions
in breast cancer [25].

Signal transducer and activator of transcription 3 (STAT3)
STAT3 is an important transcription factor that consists
of one SH2 domain and 3 CC motifs [32]. It is involved
in various diseases, including cancers. It plays a pivotal
role in inflammation, normal growth, and development.
Under pathological conditions, its aberrant activation
leads to growth, progression, angiogenesis, chemo-
resistance, and tumor cell’s survival [96]. Blockage/inhib-
ition of STAT3 showed a profound anti-cancer effect
in vitro as well as in vivo conditions [97–99]. Targeting
STAT3 by pharmacological or genetic means led to
tumor reversion as well [100].

Post-translational modifications in tumor reversion
PTMs are enzymatic modifications in proteins and play
a very significant role in cell signaling. All the PTMs
relevant to tumor reversion are summarized and dis-
cussed in Table 2. PTMs are the outcome of specific but
local physiological or stressed/disease states. PTMs are
critical events, which can alter the conformation of
the protein, their stability, and diversity. PTMs are very
crucial for biological processes, cellular proliferation, de-
velopment, differentiation, diseases/tumor progression,
and drug resistance [114]. PTMs are vital for dissecting
the mechanistic angle of the biology behind tumor rever-
sion, as we observed only a handful of PTMs concerning

tumor reversion. Among PTMs, phosphorylation (p) had
been a winner as it has been extensively studied for pro-
teins such as EGFR in lung adenocarcinoma [115].
Studying phosphorylation (p) is tricky because serine (S),
threonine (T), and tyrosine (Y) have varied ratios of
1000:100:1 [116]. Among these, studying pY is very diffi-
cult due to poor abundance in the system; therefore
studying pY in any biological setting requires enrich-
ment of the samples to capture the maximum possible
events for pY specific PTMs. It can be achieved using pY
specific anti-phosphotyrosine antibodies (Clone 4G10)
[115]. In contrast, pS and pT residues can be enriched
easily using Titanium Dioxide (TiO2) based enrichment
method. Only one study was carried out in the multiple
myeloma model of tumor reversion. The in vivo quanti-
tative proteomics labeling technique called stable isotope
labeling in animal cell culture (SILAC) was employed to
identify the proteins of interest between revertant vs par-
ental cells, and reported the significance of STAT3 in
tumor reversion [21]. In SILAC, the cell line first cul-
tured in heavy Arginine and Lysine that after sub-
culturing for five passages leads to replacing of the un-
labeled proteins by replacing light Arginine and Lysine.
One of the significant differences between iTRAQ versus
SILAC is that in the case of SILAC, there is a require-
ment of huge amount of protein. SILAC is performed on
intact protein, and iTRAQ on the peptides.
Phosphorylation of RB1 inhibited at S780 residue in

MCF-7 cell line after treatment with axolotl oocyte
extract, and subjected to cellular reprogramming and ar-
rest of the cell cycle as well. Furthermore, inhibition of
CDK activity, and reprogramming of tumor cells
occurred which leads to cell cycle arrest. The in vivo
reprogrammed tumors in mouse xenograft showed a de-
crease in the pS780 levels of RB1 protein [101].
In breast cancer cells, the p27 expression is essential

for tumor regression. Upon treatment with GGTI-2417
(a methyl ester prodrug that is a selective inhibitor of
GGTase I), an accumulation of p27 protein occurs in
G0/G1 phase, followed by induction of apoptosis in
breast cancer cells. An accumulation of nuclear p27 in
an in vivo mouse model led to regression of the tumor
compared with the controls [102].
Glycosylation is another significant PTM event that

has been observed in ~ 50% of the proteins. It has been
reported about tumor progression in the large number
of studies. There are selected studies that are only avail-
able on the role of glycosylation in association with tumor
reversion [107]. Glycosylation is mainly of three types
based on glycosidic linkage: O-, C-, and N-glycosylation.

Role of animal models in tumor biology
The animal models are integral part of the cancer
therapeutics-based studies. The tumor models for
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different cancers have proven to be very helpful not only
in understanding the disease biology but also for the de-
velopment of novel therapeutic targets. The characteris-
tics of these mice combine the features of the NOD/
ShiLtJ background, the severe combined immune defi-
ciency mutation (SCID), and IL2 receptor gamma chain

deficiency that results in lack of mature T, B, or functional
NK cells, and are deficient in cytokine signaling in NSG
mice leading to better engraftment of cells of interest.
Some of the important animal models including SCID
or transgenic used for different cancers other than
tumor reversions are summarized in Table 3.

Table 3 Animal models used for different malignancies in studying tumor biology (other than tumor reversion)

Model Type Malignancy Phenotype References

CC10-rtTA; (tetO7)CMV-K
RasG12D (Transgenic)

Lung Cancer Bronchogenic adenocarcinomas. Phenotype is
completely reversible upon Dox removal.

Fisher et al 2001 [117]

KPC Mouse model Pancreatic Adenocarcinoma It develops important key features observed in
human PDA including pancreatic intraepithelial
neoplasia alongside a robust inflammatory
reaction including exclusion of effector T cells.
KPC mouse contains a conditional point mutation
in the transformation related protein 53 gene
TP53R172H), and a point mutation in KRAS gene
(KRASG12D) both of which generate non-
functional proteins.

Hingorani et al 2005 [118]

NSG mice (NOD.Cg-Prkdcscid
Il2rgtm1Wjl/SzJ) used for
making human esophageal
tumor xenograft using TE11
cell line

Esophageal squamous cell
carcinoma

Subcutaneous treatment with pharmacological
inhibitor entospletinib (GS-9973) for 10 days led to
reduction in tumor growth by 55%.

Barbhuiya et al 2018 [119]

NOD-SCID mice implantation
with MDA-MD-231

Breast Cancer hMAb173 treatment led to 60% reduction in the
TNBC tumor growth compared to the control group.
The microscopic study revealed that hMAb173
treatment effectively degraded AXL in tumor cells.

Wu et al 2015 [120]

Eμ-Tcl-1 transgenic
mouse model

Chronic lymphocytic
leukemia

The TCL1 gene of human origin under the control
of the immunoglobulin heavy chain variable
region promoter and immunoglobulin heavy
chain enhancer (Eμ-Tcl-1). The model is time
consuming due to disease delayed development,
and TCL1 overexpression does not allow relextion
of the genetic complexity of CLL.

Bichi et al 2002 [121]

human/mouse radiation
chimera

CLL Transplantation of CLL PBMC into peritoneal
cavity of irradiated Balb/c or BNX mice, radio-
protected with bone marrow from SCID mice.

Shimoni et al 1997 [122]

NOD/SCID CLL Transplantation of CLL PBMC in NOD/SCID mice and
combining intravenously and in transperitoneally
injection.. However, these mice still retain normal
natural killer (NK), and myeloid cells, and these
cells were likely responsible for interfering with
the in vivo engraftment of some human
leukemia’s/lymphomas.

Durig et al 2007 [123].

Transgenic mice model with
human MET in hepatocytes
under the control of
tetracycline

Hepatocellular carcinoma In this study, early deaths prevented by feeding
the mating parents and newborn pups
doxycycline to repress expression of the MET
transgene. Continued expression of MET is
required for maintaining HCC.

Wang et al 2001 [124]

Transgenic mice model
expressing KRas4bG12D under
the control of doxycycline (a
form of tetracycline)

Lung adenocarcinoma DOX induction after two months led to
development of adenoma, and adenocarcinoma
of lungs, but removal of DOX in contrast caused
rapid downregulation of mutant KRas RNA and
auxillary apoptotic regression of an early
proliferative lesions as well as tumors.

Fisher et al
2001 [117]

K14-rtTA/TetRE-ErbB2 ‘Tet-On’
bitransgenic mouse system

Skin carcinoma Until ErbB2 expression induced by doxycycline
(Dox), the animals were normal, but prenatal
induction led to death. Skin hyperplasia observed
in animals after two days, and Dox withdrawal
reverted these changes to normal.

Xie et al 1999 [125]
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Role of chemical biology, and anti-therapeutic agents in
tumor reversion
In addition to the availability of several cell lines and
animal-based models, chemical probes have been reported
to induce tumor reversion. These include not only anti-
bodies but also natural product-based compounds such as
ellipticine, thioridazine, E7107, sertraline, metformin, and
thiazolidinedione (Fig. 4). Selected compounds have been
discussed below, as these have been directly or indirectly
impacted the process of tumor reversion.

Ellipticine
Ellipticine is a natural product of pyridoindole alkaloid
naturally derived from the leaves of Ochrosia elliptica
and Rauvolfia sandwicensis. Ellipticine’s anti-cancer ac-
tivity has been reported in a number of malignancies
[126]. It can induce phenotypic reversion in tumor cells
at non-cytotoxic concentrations in the cell lines [127].

Thioridazine
It is an antipsychotic drug that consists of antimicrobial
activity. It can restore doxorubicin sensitivity in
leukemia as well as in multidrug-resistant T-lymphoma
cell lines and capable of inducing apoptosis in these cells
[128]. It has been used as a tumor reverting agent be-
cause it inhibits TCTP [129].

Metformin
Metformin is prescribed as the first line of treatment for
type 2 diabetes [130]. It is capable of stimulating cell
survival and mitogenesis in many cancers including
breast, liver, colon, pancreas, and skin [131]. It has been
shown to reduce cancer by ~ 57% in T2DM patients

[132]. Metformin stimulates adenosine monophosphate
(AMP)-activated protein kinase. AMPK can be directly
activated by an increase in the ratio of AMP: ATP in
metabolic stress including hypoxia and glucose
deprivation [133]. MCF10ADCIS cell line is ductal car-
cinoma in situ models of breast cancer. It is capable of
making irregular, large spheroids without a lumen. Still,
treatment with metformin induces luminal-like morph-
ology and also reverses overexpression of markers such
as VIM, FN1, and CDH2 suggesting the role of metfor-
min in tumor reversion.

Thiazolidinedione (TZD)
It has been used for the treatment of type 2 diabetes.
TZD’s phenotype treated anaplastic thyroid carcinoma
cells changed to epithelial-like cell morphology. It is a
typical feature observed in the differentiation of epithe-
lial cells of thyroid origin, and also in the reversal of
EMT [134].

Sertraline
It is an antidepressant drug that is an inhibitor of
CYP2D6 and CYP2B6 in vitro [135]. Sertraline is used to
treat non-small cell lung cancer (NSCLC); it inhibits the
viability of NSCLC cells and shows synergy with erloti-
nib. Sertraline also has been used in the treatment of
breast cancer [136]. Sertraline is used with thioridazine
in cancer treatment and tumor reversion by targeting
the major driver protein TCTP [129].

LY294002
LY294002, a morpholine-based compound that is a
powerful inhibitor of phosphoinositide 3-kinases (PI3Ks)

Fig. 4 The chemical structures of compounds used for induce tumor reversion. A number of compounds have been used for reverting the
phenotype of a tumor into normal. The structure of the following compounds have been drawn here using ChemDraw: Ellipticine, E7107,
LY294002, Metformin, PD0325901, PD98059, Sertraline, Thiazolidinedione, Thioridazine, GGTI-2417, and GM6001
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[137]. LY294002 in coordination with DAPT (γ-Secre-
tase Inhibitor) inhibits Notch1, HES1, and pAkt in
gastric cancer cells, thus inhibit metastasis of gastric
cancer through mutual enhancement [138]. LY294002
and baicalein inhibit cellular proliferation and induce
apoptosis in liver cells via the PI3K/Akt signaling path-
way in combination with baicalein [139]. LY294002
combined with PI3K inhibitor and dibutyryl-cAMP led
to tumor reversion in mammary tumor cells through
cellular reprogramming of cell polarization and morpho-
genesis from tumorigenic to normal [140].

PD0325901
It is also called Mirdametinib, non-ATP-competitive
MEK I with IC50 of 0.33 nM in cell-free assays, roughly
500-fold more potent than CI-1040 on phosphorylation
of ERK1 and ERK2. PD0325901 showed its potential in
converting the tumor phenotype into the normal in an
isogenic cell line model derived from MCF10A [28].

E7107
E7107 is a macrolide that is a 7-urethane derivative of
pladienolide D (PLAD-D). Like pladienolide-B (PLAD-
B), spliceostatin, Herboxidiene, and Trichostatin A;
E7107 targets SF3B1 protein that is part of U2 snRNP of
the spliceosome complex. The spliceosome modulator,
E7107 reverses cancer aggressiveness and inhibits
castration-resistant prostate carcinoma in xenograft and
autochthonous prostate cancer models. Treatment of
LNCap (prostate cancer cell line) with E7107 led to
changes in the transcriptome, which are more like
normal cells, indicates that E7107 modulates the tran-
scriptome via modulation of spliceosome machinery by
binding to the SF3B1 protein. This suggests that RNA
splicing machinery also plays a vital role in the process
of tumor reversion [141].

In vitro, 3D-culture-based, and in vivo models for
studying the tumor reversion
The 3D models mimic more closely to in vivo behavior
of cells; therefore, many studies using breast cancer as a
preferred model were carried out using the 3D tech-
nique. Cancer cell culture in 3D, material, or embryonic
fields fortifies the TOFT anecdotal through the microen-
vironment’s ability to overcome the mutated genes’ ac-
tivity and promote the malignant phenotype’s reversion.
The co-culture of cancer cells with normal cells of the
microenvironment can guide cells into a normal pheno-
type through a process of reversion via the restoration of
a normal, and strong morphogenetic field [12, 142].
Additionally, 3D culture models have been used where
reconstructed, but normal tissue architecture mimicking
biological microenvironments was used and the tumor
cells successfully novitiate the normal tissue architecture

[143]. Further, these changes make these reversed cells
prone to apoptosis and differentiation, and at last
culminate the reprogramming of “normal” phenotype
[2, 67]. Tumor reversion has been studied in vitro,
in vivo, and 3D-culture-based models. A summary of
all these models is presented in Table 4.

OMICS approaches for solving the puzzle of tumor
reversion
Multi-omics approaches contributed to understanding
the multi-factorial diseases like cancer, diabetes, stroke,
essential hypertension, and meningitis [19]. This became
possible due to some of the landmark discoveries that
lead to the development of techniques such as transcrip-
tion activator-like effector nucleases (TALEN), zinc finger
nucleases (ZFNs), and clustered regularly interspaced
short palindromic repeat (CRISPR) [163].

Nuclease based genome editing techniques, and shRNA
screening
Unlike CRISPR, which can introduce multiple gene
mutations concurrently with a single injection, TALENs
are limited to simple mutations. CRISPR transfections
also have higher efficiency, whereas TALEN editing
often results in mosaicism, where a mutant allele is
present only in some of their transfected cells [164]. For
selecting TALEN nuclease sites, T must be before the
5′- end of the target DNA sequence. The shRNA vectors
generally provide high cell-to-cell uniformity within the
pool of treated cells and very consistent results between
experiments. In contrast, CRISPR and TALEN produce
results that are highly non-uniform from cell to cell due
to the stochastic nature of the mutations introduced.
Not in viruses and eukaryotes, but in prokaryotes, the
CRISPR/Cas system can be found naturally. The enzym-
atic activity of the Cas9 protein is comparable to anchor
scissors. Using CRISP-Cas9, gene editing can occur any-
where in the genome, as long as the short guide RNA
(sgRNA) binds upstream of a PAM sequence. The
sgRNA is a fusion of crRNA and tracrRNA [165].

ZFNs
ZFNs were the first custom DNA endonucleases, which
could recognize 3–4 bps sequences and cleave the target
DNA. Each zinc finger is typically made up of approxi-
mately 30 amino acid modules and is capable of
recognizing 3 to 6 nucleotide bases. Since ZFN is a het-
erodimer (it is composed of a zinc finger domain and a
Fok1 endonuclease domain), the endonuclease domain
must dimerize before it can create a double-strand break
in the DNA. However, this automatically happens as it
recognizes the binding site. The Fok1 nucleases are also
activated at this point. After cleavage, the cell then tries
to repair the breakage, either through non-homologous
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end joining (NHEJ) wherein it seals the two ends of the
DNA back together, or via homology-directed repair
wherein it uses a copy of the gene sequence to fix the
break, thereby incorporating the desired sequence into
the DNA [166]. Using ZFNs, major challenge is to
predict the specificity of the final arrangement, as
Zinc fingers are known to influence neighboring
fingers’ specificity.

TALENs
TALENs are fusion proteins (composed of a bacterial
TALE protein and Fok1 endonuclease) whose specificity
is derived from the protein-DNA association. It is nor-
mally comprised of 33–35 amino acid modules, each tar-
geting a single nucleotide. Thus, by assembling different
TALEN moieties, researchers can recognize any specific
DNA sequence they like. Compared to ZFNs, TALENs
are cheaper and produce faster results. They are also
more flexible and easier to design due to their well-
defined target specificities (the activity of each TALE
does not affect the binding specificity of neighboring
TALEs). However, both techniques are not limited to
mutagenesis in mouse embryonic stem cells and have
been successfully used to engineer modifications in sev-
eral animal and insect species (e.g. zebrafish, rats, live-
stock, fruit flies, monarch butterflies, and nematodes).
The note of caution is that TALEN motifs are also
linked with Fok1 endonuclease, so dimerization is re-
quired before it can successfully cleave the DNA [167].

Clustered regularly interspaced short palindromic repeat/
CRISPR associated 9 (CRISPR/Cas9)
CRISPR/Cas9 is an RNA-based bacterial defense mech-
anism composed of two types of RNA (one being the
trans-activating crRNA and a single guide RNA) and
Cas9 endonuclease. While the other two systems are
both man-made, the CRISPR/Cas system is derived from
bacteria. In nature, the CRISPR system is activated when
a virus or foreign pathogen invades a bacterium. With
the help of the appropriate Cas proteins, the system
captures and cuts a portion of the viral DNA and incor-
porates it into the CRISPR locus of the bacterial genome
[168]. When the same virus attacks the bacterium, the
CRISPR loci produce guide RNA (gRNA), which takes
the Cas proteins to the matching target sequence in the
viral DNA. The Cas proteins then bind to the target and
cleave the viral DNA at a specific location, rendering it
inactive. Compared to ZFNs and TALENs, the CRISPR/
Cas9 system is undeniably simpler, cheaper, and more
efficient [165]. Notably, the CRISPR/Cas9 system can be
designed for any genomic targets and multiplexed by
adding multiple gRNAs.
Genome editing advanced techniques such as CRISPR

could be exploited in addition to the classical human H1

parvovirus mediated generation of revertants. CRISPR
was successfully used for genome editing of the MDA-
MB-231 cell line to convert its aggressive phenotype into
a mild one [29]. CRISPR could be used for generating
models for cancers that have not been studied so far by
focusing on tumor reversion. CRISPR allows creating a
mutant or knockout of a particular gene without much
hassle.

Target discovery using shRNA screening
The major difference between shRNAs and siRNA is
that shRNAs can stably integrate into the genome
through virus-mediated transduction, but siRNAs transi-
ently expressed in the cells. siRNA sequences between
19 and 29 nt are generally the most effective. Between
siRNAs and miRs, siRNAs originate predominantly from
exogenous dsRNA, but in contrast, miRNAs originate
from the genome of the cell. siRNA-mediated gene silen-
cing represents a cell defense mechanism against
exogenous dsRNA, and miRNA-mediated gene silencing
is an integral gene expression regulation process. In the
case of siRNA, it is generated when the double-stranded
RNA cleaved by a nuclease called Dicer. Inactivation of
RNA using siRNAs referred to as RNA interference.
TCTP has been studied using shRNA in breast cancer
where inhibition of TCTP by shRNA led to induction in
the expression of TP53 with a significant decrease in
sphere-forming efficiency [169]. Another good example
where lipogenesis was suppressed using shRNA by tar-
geting FASN in breast cancer which led to tumor rever-
sion [30]. Screening the shRNA library could help us
in identifying the targets for tumor reversion as it was
done in some other conditions such as reversion of mul-
tidrug resistance in some cancers.
The gene expression plays a vital role in transforming

the phenotype of the malignant cells into normal cells.
Techniques like RNAseq could be crucial in delineating
the alternative RNA splicing events to identify differen-
tially regulated AS events such as intron retention, exon
skipping, alternative 3′SS, and 5′SS between normal vs.
cancer cell types. Furthermore, RNAseq can help to iden-
tify crucial lncRNAs playing a significant role in tumor
reversion, as we were unable to find even a single study-
reporting role of lncRNAs involved in tumor reversion.
Among multi-omics techniques, proteomics-based

techniques are crucial as they provide the landscape of
overall proteome and shed light on changes in the PTMs
[101, 102, 115].
Suppose we want to study and understand tumor

reversion in a better way. In that case, we must explore
different cancer-specific models using the high-through-
put multi-omics study to make a compendium of differ-
ential proteins regulated involved in control as well as in
the regulation of the process of tumor reversion.
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The cell line models with various tumorigenicity levels
could be ideal for dissecting the mechanism of tumor re-
version. Among those, the MCF10A cell line with other
variants like pre-neoplastic (MCF10A-T1K or T1K),
MCF10CA1h or CA1h (low-grade), and MCF10CA1a or
CA1a (high-grade) could be used for exploration of tumor
reversion by implementing in vitro proteomics techniques,
[170] such as isobaric tagging for absolute quantitation
(iTRAQ) coupled with LC-MS/MS. Interestingly, this is
the only study so far carried out in any of the malignancies
to study tumor reversion. These kinds of models have the
advantage of prohibiting genetic variants’ entry because all
these are in the same genetic background. Furthermore,
the 8-plex iTRAQ quantitative proteomics labeling tech-
nique allows running the technical replicates in parallel
i.e., a maximum of eight samples can be compared and
analyzed [171]. The iTRAQ technique has advantages in
terms of the usage of less amount of protein (50 μg) com-
pared with other methods. It enables quantitation of pro-
teins and peptides by labeling the samples with isotope
encoded reporter ions.

Small molecule library screening in tumor reversion
Small molecule library screening in a high-throughput
manner could help in the discovery of chemical leads
that are the potential starting point in the tumor rever-
sion process. HTS led to the identification of a novel
p110-δ inhibitor that accelerates the anti-myeloma effect
of bortezomib [172]. This facilitates rapid evaluation of
thousands of small molecules in physiologically and
biologically relevant assays for tumor reversion. The H1
parvovirus-based cell line models of tumor reversion
could be ideal for HTS to identify the lead small mol-
ecule with the potential to induce tumor reversion.

Challenges and future perspectives
Amongst reverting the phenotype approaches, reversion
of M2-like TAMs to the tumor-suppressive phenotype
by modulating the TME is the most promising one
because phenotypes of macrophages are highly sensitive
to TME stimuli [173].
In vitro and in vivo labeling techniques coupled with

LC-MS/MS must be applied to find differentially regu-
lated proteins crucial for cellular reprogramming and
tumor phenotype reversion. Additionally, these high-
throughput techniques could help in identifying the
PTMs crucial for this biological process. Also, studies
have shown that proteins with basic nature such as
histones are prone to PTMs, and various studies have
shown that miRs can target and regulate histones at
specific positions [174].
A number of studies directly or indirectly supporting

the fact that it is possible to change (complete or
partially) the morphological behavior of the tumor cells

exactly or nearly like a normal cell. Some of the difficult
questions still need to be addressed if tumor reversion
can be recapitulated among all types of malignancies.
Will it be an alternative to treatment options like
chemotherapy in the near future? The tumor regression
model ideally in the same genetic background could be
the best starting point using quantitative proteomics ap-
proaches such as SILAC and transcriptomics approach
using RNAseq to address the significantly altered
changes at protein and RNA levels. It is important from a
therapeutic perspective that it works at the molecular
level and drives a cancer cell to lose its malignancy by
halting the tumor progression. So activating the tumor
reversion pathway or mimicking, could be a promising
potential treatment option for cancer.

Conclusion
The molecular biology behind the process of tumor
reversion is not only interesting but intriguing as well.
The experimental evidence from different studies clearly
suggests the usefulness of handful of molecules, including
miR, post-transcriptional events in certain genes, and pro-
teins with associated PTMs as potential agents for pheno-
typic tumor reversion. To date, making tumor reversion,
as a treatment option remains a dream, but evidences, all
together suggest more molecular layers derived from in-
depth analysis using multi-omics approaches and shreds
of evidence, all together suggests that this dream could be-
come a reality in the near future.
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