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ABSTRACT 

 In the past, many catastrophic failures have occurred due to lack of redundancy and 

managerial oversight. For example, it was found that local failures due to improper welds that 

connected the suspended truss to the anchor trusses caused the collapse of the Grand Sung-Soo 

Bridge in Seoul, South Korea on October 21, 1994. Due to a lack of structural redundancy, the 

initial bridge rib failure was followed by other bridge failures leading to system collapse (Cho et 

al. 2000). With proper system reliability analysis, such cascading failures could be foreseen by 

stakeholders. To help make better risk-informed decisions, system reliability methods have been 

developed to analyze general structures subjected to the risk of cascading system-level failures 

caused by local fatigue-induced failures. For efficient reliability analysis of such complex system 

problems, many research efforts have been made to identify critical failure sequences with 

significant likelihoods by an event-tree search coupled with system reliability analyses: however, 

this approach is time-consuming or intractable due to repeated calculations of the probabilities of 

innumerable failure modes, which often necessitates using heuristic assumptions or 

simplifications. Recently, a decoupled approach was proposed (Kim 2009; Kurtz et al. 

2010): critical failure modes are first identified in the space of random variables without system 

reliability analyses or an event-tree search, then an efficient system reliability analysis (Song & 

Ok 2010) was performed to compute the system failure probability based on the identified modes. 

In order to identify critical failure modes in the decreasing order of their relative contributions to 

the system failure probability, a simulation-based selective searching technique was developed 

by use of a genetic algorithm. The system failure probability was then computed by a multi-scale 

system reliability method that can account for the statistical dependence among the component 

events as well as among the identified failure modes (Song & Kang 2009).  

 Part of this work presents this decoupled approach in detail and demonstrates 

its applicability to complex bridge structural systems that are subjected to the risk of cascading 

failures induced by fatigue. Using a recursive formulation for describing limit-states of local 

fatigue cracking, the system failure event is described as a disjoint cut-set event (Lee & Song 

2010). Critical cut-sets, i.e. failure sequences with significant likelihood are identified by the 

selective searching technique using a genetic algorithm. Then, the probabilities of the cut-sets are 

computed by use of crude Monte Carlo simulations. Owing to the mutual exclusiveness of the 
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cut-sets, the lower-bound on the system cascading failure probability is obtained by a 

simple addition of the cut-set probabilities. A numerical example of a bridge 

structure demonstrates that the proposed search method skillfully identifies the dominant 

failure modes contributing most to the system failure probability, and the system 

reliability analysis method accurately evaluates the system failure probability with 

statistical dependence fully considered. An example bridge with approximately 100 

truss elements is considered to investigate the applicability of the method to realistic large-size 

structures. The efficiency and accuracy of the method are demonstrated through comparison with 

Monte Carlo simulations.  

 The aforementioned system reliability analysis is based off of an a priori inspection cycle 

time and computes the probability that the time until the system failure is smaller than the given 

inspection cycle. Since most field practitioners do not know this value beforehand, a new method 

has been developed to perform simplified reliability analysis for many performance levels 

simultaneously. The First-Order Reliability Method (FORM) (see Der Kiureghian 2005 for a 

review) is often used for structural reliability analysis. The proposed method uses a multi-

objective genetic algorithm, called Non-dominated based Sorting Genetic Algorithm II (NSGA II) 

(Srinivas & Deb 1994) to perform many FORM analyses simultaneously to generate a Pareto 

Surface of design points. From this Pareto surface, data on cases of “critical but unlikely failures” 

for short inspection cycle times and cases of “less-critical but highly likely failures” for long 

inspection cycle times can be found at once. From the nature of this method, this approach is 

termed as “Multi-Objective” FORM. Part of this work presents this Multi-objective FORM in 

detail. The applicability of this approach is shown through two numerical examples. The first 

example is a general situation with few random variables. The second example analyzes a 

statically indeterminate truss subjected to cyclic loading. Both numerical examples are validated 

with crude-MCS results and show that the method can find a full Pareto Surface, which provides 

reliability analysis results at a range of performance levels along with the probability distribution 

of the performance quantity. 
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CHAPTER 1 

INTRODUCTION 

1.1 MOTIVATION 

 There are currently many aging structures that are nearing or have already surpassed their 

design life. After many disastrous bridge collapses in the last 20 years, designers more than ever 

need to make proper risk-informed decisions on how and when to inspect and maintain these 

bridges, as well as where these bridges are most likely to fail. These bridge collapses initiate due 

to traffic loadings that cause a local component to fail after sufficient time has passed to reduce 

the cross section of a member via the formation of a large crack. The load is then redistributed 

and thus causes different cyclic stresses throughout the bridge structure, which may induce 

progressive member failures toward the system-level collapse of the bridge. These fatigue-

induced cascading failures are particularly disastrous because they may occur without much 

warning and at stress levels well below the yield stresses. A particularly notable example of this 

type of failure was the collapse of the Grand Sung-Soo Bridge in Seoul, South Korea on October 

21, 1994. Due to improper welds that connected the suspension truss to the anchor trusses, local 

fatigue failures caused one of the bridge ribs to fail (Cho et al. 2000). Due to a lack of structural 

redundancy, the load the central rib used to support was transmitted to the exterior ribs. Since 

these were unable to support the new load due to their faulty welds at the same location, these 

failed immediately, and dropped the full suspended truss in between the 10
th

 and 11
th

 piers. 

Another catastrophic cascading failure occurred August 1, 2007 when the I-35W Mississippi 

River Bridge collapsed during evening rush hour traffic (NTSB 2008). Here, an undersized 

gusset plate at one of the U10 nodes failed due to increased local loading from a bridge deck 

repaving operations amongst many other issues. The load was then redistributed and due to a 

lack of structural redundancy an immediate catastrophic bridge collapse occurred. With proper 

system reliability analysis, such cascading failures could be foreseen by stakeholders. They could 

then adopt proper inspection and managerial practices to prevent such catastrophes. 
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1.2 REVIEW OF IMPORTANT CONCEPTS 

 Before investigating various solutions for the aforementioned issue, several important 

concepts in the field of structural reliability analysis need to be discussed. Of these issues, 

system reliability analysis, the first-order reliability method, and operators used in genetic 

algorithms must be well understood. These specific issues, among others, will be discussed in the 

following sections. 

1.2.1 SYSTEM RELIABILITY ANALYSIS 

 To complete full system reliability analysis, one must first identify the set of all relevant 

basic random variables x = {x1,…,xn}
T
 and the subset of the outcomes of these random variables, 

Ω, which defines the  failure event of the system. The probability of the system failure can then 

be written as the n-fold integral 

          
Ω

                 (1) 

where f(x) is the joint probability density function (PDF) of x. Since it is difficult to evaluate 

such an integral for general systems which have many random variables, one must seek to find 

this probability in a more specific manner. Ω is typically characterized by sets of limit state 

functions present in a system. For a “component” reliability problem, once can define Ω as 

Ω                           (2) 

where g(x) is a single limit-state function, which indicates the failure domain by its non-positive 

sign.  For a general “system” reliability problem, one can define Ω as 

Ω                                   (3) 

where Ck here represents the k-th cut-set or failure mode of the system and the gj(x) represents 

the j-th limit-state function which describes one of the component events contained in Ck. The 

intersection here represents each cut-set, and, since any of these cut-sets will cause a system 

failure event, the union describes the system failure event described by the domain Ω. This can 

also be thought of as a series system of parallel subsystems. Parallel systems define Ω as 
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Ω                               (4) 

Here, all component events must occur at once to characterize a system failure. A good example 

of this kind of system is an assembly of electrical equipment items located in parallel. All 

equipment items must fail before the assembly can lose the connectivity. On-the-other-hand, 

series systems define Ω as 

Ω                               (5) 

Here, the occurrence of at least one of the component events constitutes a system failure. A good 

example of this kind of system is flow through a long pipeline. If the pipe fails at any point along 

the pipe, the system does not deliver full flow anymore and is said to have failed. This type of 

system could also be a statically-determinate structure, where a single component failure causes 

loss of global stability. Once one has characterized Ω and the associated limit-state functions, 

one can obtain Pf  in (1) through many methods. Of these many choices, the most standard and 

efficient methods available are the First- and Second- Order Reliability Method (FORM and 

SORM) (see Der Kiureghian 2005 for a review). These are particularly applicable to component 

reliability problems in (2). Other possible methods for system reliability analysis are sampling 

based methods such as Monte-Carlo Simulation and Importance Sampling, which will be 

described in Section 1.2.5, and response surface methods. 

1.2.2 NONLINEAR TRANSFORMATION TO THE SPACE OF UNCORRELATED 

STANDARD NORMAL SPACE 

 To perform FORM and SORM analysis with non-normal random variables, one must 

first use a nonlinear transformation to transform the space of the original random variables, x to 

that of standard normal uncorrelated random variables, u. Such a transformation will be 

designated as u = T(x) and exists as long as the joint cumulative density function (CDF) of x is 

continuous and is strictly increasing for each random variable in x. For FORM and SORM, the 

inverse transform x = T
-1

(u) and the Jacobian of T, Ju,x, are also needed. This transformation can 

be defined for four different types of situations, depending on the types of and the correlations 

between random variables in x: (1) statistically independent random variables, (2) dependent 

normal random variables, (3) Nataf distributed random variables, and (4) dependent non-normal, 
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non-Nataf random variables, as outlined by Der Kiureghian (2005). Since most cases 

encountered generally have non-normal random variables and have dependence, the Nataf 

distributed random variables will be discussed here. Since the Nataf distribution is much more 

applicable than the non-Nataf class, the last case will not be included in this discussion.  

 Suppose, for a given set of statistically dependent random variables x = {x1,…,xn}, i = 

1,…,n, their marginal CDFs Fi(xi) and correlation coefficients ρij, i,j = 1,…,n are given. Then, a 

Nataf distribution can be constructed via correlated standard normal random variables 

                                                                (6) 

where        denotes the marginal inverse CDF of the standard normal distribution. The 

correlation coefficients for the set of correlated standard normal random variables, z, can be 

found through the relationship (Liu & Der Kiureghian 1986) 

       
     

  
  

     

  
                      

 

  

 

  
             (7) 

where µi and  i are the mean and standard deviation of xi, ij is the correlation coefficient 

between xi and xj, ρ0,ij is the correlation coefficient between zi and zj, and                  is the 

bivariate normal PDF for zi and zj. Given that the marginal CDFs for all random variables in x 

were continuous and monotonically increasing and the correlation matrix R = |ρij| is positive-

definite, the Nataf distribution is valid given that R0 = |ρ0,ij| is a valid correlation coefficient 

matrix. The required transformation to obtain u is then given by 

    
   

           
  

           

                    (8) 

where L0 is the lower-triangular matrix obtained by Choleski decomposition of the correlation 

matrix R0. This completes the nonlinear transformation u = T(x). On the other hand, the inverse 

transformation x = T
-1

(u) consists of finding the correlated standard normal variables z = L0u 

and      
                 . 
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The Jacobian for the transformation u = T(x), i.e. Ju,x , is evaluated by Ju,z∙Jz,x where Ju,z 

is just   
   from (7), and Jz,x is a diagonalized matrix with terms 

    
      

     
                                (9) 

where      denotes the univariate standard normal PDF. 

1.2.3 THE FIRST-ORDER RELIABILITY METHOD 

 To simplify the component reliability analysis problem in (1) with (2), the first-order 

reliability method (FORM) linearizes the limit state function at the most likely point in the 

failure domain, which will be referred to as the design point in this discussion. The only 

requirement for FORM is that the limit states be continuous and differentiable in the 

neighborhood of the design point. If (1) is transformed to the standard normal uncorrelated space 

as discussed in the previous section and applied for a component reliability analysis is shown in 

(2), the equation becomes 

          
      

               
            (10) 

where G(u) = g(T
-1

(u)). To perform FORM, G(u) must be linearized about the design point u*, 

which is found by solving the constrained optimization problem 

                                    (11) 

where “arg min” represents the argument of the minimum of the designated function. Since G(u*) 

= 0, one can see that u* must be located on the limit state surface and have the minimum 

distance from the origin in the standard normal uncorrelated space as shown in Figure 1.1. Since 

the probability density decreases exponentially in the radial direction from the origin, and 

decreases exponentially in the tangential direction orthogonal to the location of a given point 

with reference to the origin, one can say u* has the highest probability density among all other 

outcomes of the limit state function G(u) < 0, and the vicinity around u* contributes most to the 

integral in (10). 
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 To linearize G(u) about u=u*, one can use 

                                                        (12) 

where        
  

   
   

  

   
  denotes the gradient row vector,                     is the 

normalized negative gradient row vector at the design point which point toward the failure 

domain, and        is the reliability index. This linearization replaces G(u) < 0 by the half 

space         , as shown in Figure 1.1. The first-order approximation of the failure 

probability is given by the probability in the hyperspace completely defined by the distance   in 

the u space; therefore, 

                           (13) 

where the 1 subscript denotes a first-order approximation. FORM is usually an appropriate 

approximation unless two situations occur: there are large curvatures at the location of u*, or 

there are multiple local or global solutions to (11). To address the issues of curvatures, SORM or 

importance sampling may be used. The second condition may be addressed using multiple 

linearizations, a more theoretically rigorous method or as described in Der Kiureghian & 

Dakessian (1998). 

 To perform FORM analysis, the main computational effort is oriented toward solving 

(11). One well-proven method to perform this optimization uses an iterative algorithm such as 

                                        (14) 

where di is the search direction vector and    is a step size. There are many ways to choose di 

and   , but a choice that applies to many problems is the one proposed by Hasofer and Lind and 

later generalized by Rackwitz and Fissler 

    
     

        
          

                 (15) 

This method will not converge with        when the principal curvature of the limit state 

surface satisfies         where    is a principal curvature at the design point. By monitoring a 
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merit function, m(u),    can be selected appropriately. The merit function is any continuous and 

differentiable function of u whose minimum coincides with the design point and the value 

decreases when the algorithm moves along di starting from ui. Zhang and Der Kiureghian (1995) 

have shown that a good choice of merit function is   

     
 

 
                           (16) 

where c is the penalty parameter and must be selected at each step to ensure         

        . It is sufficient to select          such that                 for the suggested 

algorithm above. This suggested method is well known as the HL-RF algorithm. Since the limit 

state function and its gradient are only known in the original space of random variables, the 

gradient and function value must be found for the u space to calculate the terms in (11), (12), 

(15), and (16). Since the transformation            is known, it follows that G(ui) = g(xi) and 

                 
      .  

1.2.4 FORM IMPORTANCE MEASURES 

 Once FORM analysis has finished, information about the relative importance of 

individual random variables can be obtained. Analyzing the transformed linearized limit-state 

function in the u space in (12), and remembering that the covariance matrix is the identity matrix 

along with the mean of u being a zero vector, the mean and variance of      , the linearized 

approximation of G(u) as shown by       in (12), are 

   
                       (17) 

   

           
     

       
                               (18) 

where (18) implements the fact that the vector    is a unit vector. From this information, one can 

clearly see that   
   

   

, guaranteeing that the reliability index is the one for the linearized limit 

state,      , and that the squared contributions of the alpha vector are proportional to the 

contribution of the standard normal uncorrelated random variables to the variance of the limit 

state function. The larger this contribution, the more important the random variable ui is; 
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therefore,     provides a relative importance measure for each ui, i = 1,…,n. From the expanded 

linearized limit-state function,                          , one can see that positive 

values of   indicate load type random variables and negative values of   indicate capacity type 

random variables.  

 Since significant correlation exists between random variables in most systems, obtaining 

relative importance of the original random variables,           , is preferred, since the 

importance vector for u will not reflect the effects of correlation. To model correlation effects, 

linearize the nonlinear transformation u = T(x) at the design point 

                              (19) 

For the purposes of this discussion, denote the value of x satisfying (19) by   .     can be 

considered as an approximation of x that corresponds to a given u based on the linear transform 

in (19). Since u is a linear function of   ,    must be jointly normal, making the covariance matrix 

of    

       
       

   
 
                (20) 

One can see from (20) that    is different from the original covariance matrix   since it depends 

on the linear approximation at the design point and that the magnitude of this difference depends 

on the non-normality of x.    can then be called the “equivalent normals” of x at the design point. 

If (20) is substituted into (19) using   , the first order limit state function described in (12) is 

redefined as: 

                                      (21) 

From (12), the variance is described in terms of the equivalent normals as follows. 

   

                    
                      

 
                    

            (22) 

where    is the diagonal matrix of standard deviations of   . The first portion of 22 accounts for 

the individual variances of the elements of   , whereas the second term accounts for the statistical 
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dependencies between elements of   ; therefore, elements of          provides relative importance 

measures of the equivalent normals, and approximately of the original random variables. 

Normalizing this vector, one obtains 

    
        

          
                (23) 

where    is defined as the relative importance vector of the random variables x. The meaning of 

the signs for    also holds for   . 

1.2.5 IMPORTANCE SAMPLING 

 As described previously, sometimes, due to high nonlinearities in the limit state functions, 

it becomes necessary to use a method other than FORM to estimate the failure probability. 

Importance sampling is one of these alternatives. A good summary of importance sampling is 

described by Melchers (1999). To start, consider the basic equation of crude-Monte Carlo 

Simulation (MCS) beginning from 1: 

                    Ω
             (24) 

where I[ ] is the “indicator function” which is equal to 1 when the expression between the 

brackets is true and 0 when the expression is untrue, and       is the joint PDF of the original 

random variables. If N samples of x are generated, 24 becomes: 

    
 

 
             

                            (25) 

It is clear that for a large enough sample, (25) provides an accurate, direct estimate of (1). 

 The size of the sample can be determined such that one can achieve a level of the 

coefficient of variation (COV, or    
) of the estimate    .     

 is defined as the ratio of the 

standard deviation to the mean of the estimate. First, the mean is defined as: 

       
 

 
                

 

 

 
           

 
              (26) 
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Second, the variance of the estimate is then defined as: 

         
 

  
                  

                          (27) 

Using the fact that the value of the index function I is a Bernoulli random variable, 

         
 

  
              

          

 
            (28) 

then,    
 is determined as: 

   
  

          

 

 

   
  

       

    
             (29) 

For example, if the probability desired is around 10
-2

, then around one million samples are need 

for    
     . For smaller probabilities, much larger sample sizes are required, making crude-

MCS an improper method for efficient, quick estimates of the failure probabilities. 

 To improve efficiency, various importance sampling methods have been developed. The 

basis of importance sampling is similar to (24): 

             
     

     
       Ω

              (30) 

where       is the “importance sampling” PDF and is selected based off of knowledge about the 

problem. If N samples of x are generated from      , (30) becomes 

   
 

 
           

     

     
  

                 (31) 

where it is obvious that the function of       is to scale the sampling such that much less 

samples are required. Many choices are available for      , but a dependable one is the jointly-

Normal uncorrelated PDF about the design point, u*, in the u space, if u* is known. The mean of 

this PDF will be u*. While the covariance matrix for these variables in the u space will have zero 

correlations, the standard deviations (the square-root of the diagonal elements) may not be 

simply one, as expected for normal PDFs in the u space. These values must be selected 
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appropriately with two notes of caution: standard deviations which are too small will cause the 

method to converge quickly to an incorrect value, and if they are too large, they will lose lots of 

efficiency. Importance sampling can improve the accuracy of FORM especially when high non-

linearity of the limit-state function exists. 

1.2.6 GENETIC OPERATORS 

 The two reliability methods developed in this thesis make use of genetic algorithm search. 

A proper summary of Genetic Algorithm search can be found in Holland (1975) and Goldberg 

(1989). This family of search algorithms are simulation-based searching techniques that require 

each data point be represented in a chromosome. The initial chromosomes are generated 

randomly or may be created in such a way to reflect the application. In this use, chromosomes 

are generated based off of knowledge about the random variables needed. These chromosomes 

consist of alleles, or individual data. In other words, x is an array of individual values of random 

variables xi’s, where x is a chromosome and xi is an allele value. A certain number of 

chromosomes are usually specified a priori using either a developed rule or the executor’s 

discretion. This is so-called population number. Once the population has been sampled, the 

chromosomes must be ranked to find which chromosomes will be in the mating pool. Genetic 

algorithms require the use of a fitness function to characterize which chromosomes are elite. A 

good example of a fitness function in the realm of structural reliability would be the event of a 

system failure, i.e. if a certain array of random variable values leads to a system failure. The use 

of elite here means that these chromosomes are most likely to pass their allele data to the 

offspring population. This offspring population will then become the next generation of parent 

chromosomes.  

 The offspring population is then developed through many possible ways, but, in most 

applications, one can expect to use two basic operators: crossover and mutation. Both of these 

require a certain probability of occurrence. Crossover can occur in many different ways, but 

typically a random number is generated to select a parent that will submit its allele data first or 

dominate a given receiving offspring’s allele data. Allele data may be interchanged as whole 

numbers or with a weighted average in the child chromosomes. There may be a single crossover 

point where allele data is exchanged in aggregate between two parent chromosomes to create a 
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child; on-the-other-hand, allele data may be from either parent alternating throughout the child 

chromosome. Since crossover typically helps the genetic algorithm converge, it typically has a 

high probability value, on the order of 90% to 100% in most applications. One can lower this 

value to keep certain high fitness chromosomes always present in the mating pool without 

modification to individual alleles, but this may or may not adversely affect the computational 

effort of the algorithm. The purpose of crossover is to search within the identified domains of 

high-fitness the chromosomes. One can think of this process as if two particular failure modes 

are identified that are associated to two parent chromosomes, crossover develops two offspring 

that are in the domain of the original chromosomes, finding other similar failure modes. This is 

best visualized in the standard normal uncorrelated space of random variables as seen in Figure 

1.2. If one parent chromosome is found in failure mode 1 and one in failure mode 3, a crossover 

operation may have an offspring in failure mode 2. 

 An important point to remember when using genetic algorithms is that they are sensitive 

to premature convergence if proper actions are not taken to force the methods to search deeper. 

To fix this issue, mutation, i.e. random changes to allele data in offspring, was developed.  

Mutation is typically applied after crossover, but may also be used interchangeably with 

crossover depending on the application. It can be implemented in many ways, but typically it is 

some sort of quantifiable random change to a given allele, whether it be a sign inversion, scaling, 

or addition. Since this genetic operator tends to redirect the genetic algorithm from its original 

searching path, causing higher computing times, it is usually assigned a low probability of 

occurrence, e.g. 30%. This is meant to mimic mutations in biological populations, where 

mutations typically are rare. In this mathematical realm, mutation is meant to search for high 

fitness chromosomes not present in the parent population. In system reliability in particular, 

mutation searches for failure modes not near the vicinity of those previously identified. For 

example, if, in the situation proposed by Figure 1.2, all most elite chromosomes indicate failure 

mode 1, mutation will help future generations identify the other two failure modes, stopping the 

genetic algorithm from converging prematurely.  

 One last method for determining the next population is leeching. Leeching is a process 

where past populations are saved and compared to current generations. If higher fitness function 

values are found in past populations, these are then given preference and placed into the next 
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generation. The members of the current population that have the worst fitness function values are 

replaced by these past dominant chromosomes from past populations. Leeching can be 

implemented in many ways. This operation helps genetic algorithms to converge quickly; 

however, one must not forget that genetic algorithms must not converge too quickly, or else an 

incorrect solution may be found. Leeching must only be used in appropriate situations. This 

process of generating new generations is repeated until some convergence criteria are met, but 

these are highly dependent on the exact application. 

1.3 RESEARCH OBJECTIVES 

 To address concerns that arise from the issues discussed in Section 1.1, several research 

initiatives have occurred. These technical challenges and several solutions to these are presented 

in the next section. Lastly, the overall organization of this paper will be discussed. 

1.3.1 TECHNICAL CHALLENGES AND SOLUTIONS 

 In past research efforts, the failure probabilities of structural systems have been 

characterized through component reliability analysis (Freudenthal et al. 1966; Thoft-Christensen 

& Baker 1982; Ditlevsen & Madsen 1996; Melchers 1999; Der Kiureghian 2005), which 

describes the system failure event by a single limit state; however, many have concurred that the 

complexity of a system-level failure may require system reliability analysis (Lee 1989; Moses 

1990; Park 2001; Song & Der Kiureghian 2003; Liu & Tang 2004), where the failure event is 

described as a Boolean function of multiple limit state functions. If this system event were 

described as a cut-set system,  

        
    
              

     
                (32) 

where    is the i-th component failure event representing the failure at a location or member, i = 

1,…,Ncomp; Cj is the j-th cut-set event, i.e. a failure mode, j = 1,…, Ncut, where a cut-set is defined 

as a joint realization of component events that constitutes a realization of the system event Nsys;  

and    
 is the set of the indices of the components that appear in the j-th cut-set. 
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 Component failure events,   ’s are usually statistically dependent on each other due to 

correlated or common random variables present in the limit state definition (Galambos 1990; 

Henwadi & Frangopol 1994). For similar reasons, cut-set events Cj are also statistically 

dependent since they share common or statistically dependent component events. Therefore, an 

accurate system reliability analysis method must account for statistical dependence among 

component and failure mode events to evaluate the system-level risk. For efficient system 

reliability evaluation, most of the existing failure-mode-based approaches employ approximation 

methods such as bounding formulas (Ditlevsen 1979; Feng 1989; Park 2001) or response 

surfaces (Zhao & Ono 1998). While these enable rapid system-level risk estimation, there are not 

flexible in including different types and amounts of available information or in accounting for 

statistical dependence. A new bounding approach using linear programming (Song & Der 

Kiureghian 2003) was developed to overcome these issues and was further developed for multi-

scale analysis (Der Kiureghian & Song 2008); however, solving such linear programming 

problems may cause computational or numerical issues when the feasible domain is small or the 

system event consists of a large number of component events. 

 Another major issue in system reliability analysis is that innumerable failure modes often 

exist, due to high degrees of redundancy in real structures and the redefinition of remaining 

component limit-states once stress has redistributed after a component failure. Stress 

redistribution and high-redundancy make it difficult to find all possible limit states for system 

reliability analysis, particularly for complex structures with large numbers of structural elements. 

To overcome these difficulties, some methods using an event tree (Murotsu et al. 1984; 

Karamchandani 1987; Srividya & Ranganathan 1992) have been developed to identify only the 

failure modes with significant likelihoods (Moses & Stahl 1978; Murotsu et al. 1984; Thoft-

Christensen & Murotsu 1986; Ranganathan & Deshpande 1984). The system failure probability 

can then be obtained using identified failure mode probabilities and statistical dependencies; 

however, while evaluating these individual failure mode contributions in the search process, 

large amounts of component and system reliability analyses must be performed, requiring high 

computational cost for structures with large amounts of redundancy. 

 To deal with such computational cost issues, Kim (2009) proposed a new framework for 

risk assessment that decouples the identification of the dominant failure mode from evaluation of 
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the system and failure mode event probabilities. This dichotomy reduces the need for large 

amounts of component and system reliability analyses in the failure mode searching process. 

First, dominant failure modes are obtained by a simulation-based selective searching technique 

inspired by genetic algorithm search, which identifies the dominant failure modes rapidly. These 

failure mode and system failure probabilities are then evaluated by system reliability analyses. 

While the system failure probability can be found by brute-force Monte-Carlo simulations given 

sufficient convergence time, this proposed selective searching method not only identifies the 

system failure probability but also the critical failure mode probability without prior system 

response knowledge. In this work, the proposed framework is applied directly and demonstrated 

for structures subjected to fatigue-induced sequential failures. 

 When dealing with fatigue-induced sequential failures, since the component failures 

happen in the time domain, one must specify an inspection cycle time, or time between the 

proper inspections of the structure’s performance. This inspection cycle time is often unknown a 

priori and based largely on precedence without proper risk-informed decision making. To help 

allay some of arbitration that is used for selecting an inspection cycle time, a new approach is 

proposed to find the system reliability for a range of given inspection cycle times simultaneously. 

While one could obtain such information from FORM or SORM, this approach, through the use 

of search inspired by the Non-dominated Genetic Algorithm II, does not rely on gradients to find 

the design points and does not need to repeat itself at many inspection cycle times. This approach 

is especially helpful when not much prior information about the system is available, since 

choosing the points for FORM analysis are limited by knowing which inspection cycle times are 

unrealistically large and small. FORM may also be misled by local gradients to find a local 

optimal solution instead of the desired global solution for the design point. Since this method 

does what FORM would do for many different points simultaneously, this method will be called 

Multi-Objective First-Order Reliability Method (MO-FORM). 

1.3.2 ORGANIZATION 

 For this thesis, the proposed selective searching method is applied to a bridge structural 

system subjected to the risk of fatigue-induced cascading failures. Using an efficient  

characterization of fatigue-induced failure modes developed by Lee & Song (2010), cascading 
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failure events are described as mutually exclusive (or disjoint cut-set events), making the system 

failure probability simply a sum of the probabilities of all identified critical failure modes. This 

thesis first introduces the simulated based selective searching technique, followed by a summary 

of the efficient formulation of fatigue-induced failure modes and methods used for calculating 

the probability of identified cut-sets. The proposed risk assessment framework is then 

demonstrated by a large-size planar truss bridge structure.  Lastly, the methodology of MO-

FORM will be introduced and discussed. The strength of the method will be analyzed and 

demonstrated for a general example. MO-FORM will then be applied to a statically 

indeterminate truss subjected to cyclic loading.  

  



 

17 
 

1.4 FIGURES 

Figure 1.1. FORM and SORM approximations for a component reliability analysis (Der 

Kiureghian 2005) 
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Figure 1.2. Three failure modes in the two-dimensional standard normal space (Kim 2009) 
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CHAPTER 2 

SYSTEM RELIABILITY ANALYSIS OF FATIGUE INDUCED SEQUENTIAL 

FAILURES USING SELECTIVE SEARCHING ALGORITHM 

2.1 BACKGROUND 

 Most methods developed to identify structural system failure modes can be categorized 

into two types of approaches (Shao & Murotsu 1999): the probabilistic approach, which 

includes the simulation based techniques (Grimmelt & Schueller 1982; Rashedi 1983; Melchers 

1994) and the branch and bound method (Murotsu et al. 1984; Thoft-Christensen & Murotsu 

1986; Karamchandani 1987); and the deterministic approach, which includes the β-unzipping 

approach (Thoft-Christensen & Murotsu 1986), the methods employing heuristic techniques 

(Xiao & Mahadevan 1994; Shetty 1994), the incremental loading method (Moses & Stahl 1978; 

Moses 1982; Lee 1989), or the methods based on mathematical programming (Corotis & Nafday 

1989).  

 Generally, the probabilistic approach is considered theoretically rigorous but 

computationally costly, whereas the deterministic approach is computationally efficient but has 

risks of overlooking important failure modes (Shao & Murotsu 1999). To address these problems, 

Shao & Murotsu (1999) proposed an improved simulation-based selective searching technique 

based off of genetic algorithms (GA) (Holland 1975; Goldberg 1989) finds the few most 

dominant failure modes that contribute most to the system failure probability. Since GA uses a 

population of multiple searching points, Kim (2009) extended the approach to find multiple 

failure modes simultaneously. This proposed searching method differs by the one proposed by 

Shao & Murotsu (1999) by the two most distinct GA strategies: searching direction and elitism, 

as explained in the following paragraphs. 

2.2 METHODOLOGY 

 Consider an n-dimensional random variable space x that represents all possible 

realizations of uncertain quantities in a system reliability problem. Using the nonlinear 

transformation u = T(x) as discussed in Section 1.2.2 one can find a realization of the random 
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vector X in the space of standard normal random variables u. This u space can be viewed in 

Figure 1.2. In the figure, the dotted lines show component limit states while solid lines represent 

the boundaries of the failure modes which consist of multiple component limit states. Since the 

joint PDF in the u space is solely determined the distance from the origin,   , failure modes 

closest to the origin are likely to make significant contribution to the system failure probability; 

however, it must be noted that the volume of the failure mode also affects the contribution to the 

system failure probability. The original method by Shao & Murotsu (1999) searches the random 

variable space from points on hyperspheres, starting with a larger radius, toward the origin, by 

generating sets of samples in the u space. This “inward” searching strategy is able to identify the 

most dominant failure modes closest to the origin. The corresponding values in the original 

random variable space can then be found through the inverse transform x = T
-1

(u) as described in 

a previous section. Each sample of x, or chromosome, is then ranked on its fitness function value 

based on its distance from the origin. The chromosomes with highest fitness function values are 

then selected as elite chromosomes for use in the mating pool to create the offspring for the next 

generation. This process is repeated until the failure mode nearest the origin is not renewed for a 

prescribed number of successive generations. 

 On the other hand, the searching method proposed by Kim (2009) reverses this search 

direction. This “outward” search finds multiple dominant failure modes in decreasing order of 

likelihood until the newly identified modes have negligible likelihoods. After this, the system 

failure probability can be obtained accurately from these critical failure modes. This method is 

implemented as follows. First, generate random samples in the u space for the first generation of 

the selective searching method. To search outward, these samples are generated on a hypersphere 

of smaller radius initially. This method will then be run for larger radii. If knowledge about the 

system reliability index is available a priori, the range of these radii must encapsulate this 

expected value and address the uncertainty inherent with this knowledge. From the knowledge 

described previously about the joint PDF in the u space, samples of a hypersphere of radius R are 

generated by 

             
  

    
                          (33) 
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where       
    

    
  

 
 is a “direction” vector, i.e. a point randomly generated on the surface 

of a unit-radius hypersphere, which is obtained from a normalized random vector in the u space 

      
    

    
  

 
. These direction vectors constitute the initial population for the selective 

searching method. There are many methods that can efficiently generate the u
i
’s. For this study, 

Latin Hypercube Sampling (McKay et al. 1979) is used. 

 Second, the sampling points u
i
(R) are transformed back to their original space using the 

nonlinear transformation x
i
(R) = T

-1
[u

i
(R)]. For a structural system, x may represent randomness 

in the capacities and material parameters in the structural components or imposed loadings. For 

each x
i
(R), structural analysis is performed to determine whether or not local failures have 

occurred. Should any member fail, the structural analysis is repeated with that member removed. 

Progressive failures can then be modeled by this framework. If system failures are found, the 

failure mode and corresponding sample points are recorded. These failure modes are then saved 

for the mating pool. 

 Third, a selective search is performed in the vicinity of the x
i
(R) that caused system 

failures. Since one structural member is often involved in multiple failure modes, unidentified 

additional failure modes may be relatively close to those known in the u space. To find these 

nearby failure modes, crossover between parents in the mating pool creates offspring that will be 

in these nearby regions. Figure 2.1 shows the crossover operation used in this method. As shown 

in the figure, for each allele location, a random value between 0 and 1 is generated. If this value 

is greater than 0.5, Parent 1’s allele data is passed to the offspring; otherwise, parent 2’s allele 

data is passed. This multi-point crossover generates the next-generation’s searching points so 

that they search for new failure modes in the vicinity of the parent populations. This helps to 

maintain diversity during the search process. One must note here that crossover will always 

occur in the operation, so the probability of crossover is 1. Since not all failure modes may be 

near the first identified failure modes, the mutation operator (see Figure 2.2) is used to search far 

from the current failure modes by simply inverting the sign of a given allele. Here, random 

values are generated again, and if the number is less than the probability of mutation, which is 

0.3 in Figure 2.2, the allele’s sign is inverted. As discussed in a previous section, this probability 

should not be high, as it will greatly increase the time cost of the method. 
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 Last, should no new failure modes be identified for a fixed number of new generations of 

samples, Nsame, the hypersphere radius will be increased by a small increment and the previously 

described process will be repeated. One should note that if Nsame is too small failure modes will 

not be found properly, and, conversely, if Nsame is too large the method becomes computationally 

costly. This process of searching and expanding the hypersphere radius continues until the failure 

probabilities of newly identified failure modes becomes less than a prescribed fraction of the 

failure mode with highest failure probability. 

2.3 DISJOINT CUT-SET FORMULATION 

 Since the component failures in the situations presented in the paper are based off of 

fatigue, a proper crack growth model must be used. In this thesis, the Paris-Erdogan crack 

growth model (Paris & Erdogan 1963) is used, i.e. 

  

  
                       (34) 

where a represents the crack length, N is the number of load cycles, C and m are material 

parameters, and ΔK is the stress intensity factor range. Using Newman’s approximation 

(Newman & Raju 1981), one can represent this stress intensity factor range as 

                            (35) 

where S represents the far-field stress range, and Y(a) is the “geometry” function, which accounts 

for the geometry of the crack and the applied stress. If (35) is substituted into (34) and then 

integrated, one can describe the time until a truss members under cyclic loading fails as 

  
  

 

      
  

 
 

         
   

   

  
              (36) 

where   
  is the time until the i-th member fails first, i.e. without preceding failures of other 

members;    is the applied loading frequency;    
 is the i-th member’s critical crack length at 

failure;   
  is the i-th member’s initial crack length when no members have failed; and   

  denotes 

the i-th member’s far-field stress range in the undamaged configuration. 
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 For sequential failures stemming from local member failures, one must model the load 

redistributions and find the time necessary for other members to fail after previous member 

failures. Using inspiration from Lee & Song (2010), these times are found efficiently while 

accounted for stress redistribution. For example, the time for the i-th component to fail after the 

local failure sequence {1→2→…→(i1)} has occurred can be found using the following 

recursive formula 

  
        

 

      
        

  
  

         
    

  
       

  
        

 

  
          

   

   

  
          (37) 

where   
       

 denotes the i-th member’s far field stress range after the load re-distributions 

inherent in the failure sequence {1→2→…→(i1)}. 

 For given outcomes X = x during the selective search, different component failure times 

are compared at each step to find the failure sequence corresponding to an outcome x
i
. For 

example, if   
  is smaller than   

        the cracking failure occurs first at component 5. 

Afterwards, if    
  is smaller than   

          the cracking failure sequence is updated to 

{5→2}. This process is repeated until the damaged structure meets certain failure criteria, as 

described in the following section. Once the full failure sequence is obtained, if the total of the 

accumulated time terms,   
    

      
         

, is smaller than a given inspection cycle Tins, 

x
i
 is identified as a proper system failure case, i.e. a point inside one of the shaded failure 

domains in Figure 1.2; otherwise, x
i
 is not a system failure case. 

 For the analyses in this study, a system level failure occurs if any of the following four 

criteria are satisfied: (1) local instability, (2) global instability, (3) excessively large stiffness 

matrix condition number, and (4) excessive nodal displacement. For the first criterion, since the 

example structure in this thesis is a planar truss, if less than two members are attached to a non-

supporting node, the structure becomes locally unstable. For the second criterion, a planar truss 

structure becomes globally unstable if 

                                          (38) 
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where NreactionDOF is the number of reaction degrees of freedom; Nnode is the number of nodes; and 

Nmember is the number of members. For the third criterion, if the condition number of the damaged 

structure’s stiffness matrix becomes excessively large compared to that of the original structure, 

the structure is considered to have a system-level failure. For the last criterion, if any nodal 

displacements become excessively large, the system is said to have failed, since the analysis 

mode here is linear elastic, and such large deformations would violate these assumptions. 

 Using (36) and (37), a failure sequence can be described in terms of the individual 

component failure times. The event that describes such a system failure event, e.g. 

{1→2→…→(i-1)}, is (Lee & Song 2010) 

     
    

             
    

             

      
            

                        
    

      
                       (39) 

The events in the first few brackets describe the component failure occurrence in the above 

stated failure event, such as “1 fails first,” “2 fails next,” until “i-th member fails last,” whereas 

the last event indicated that the failure event occurs within the inspection cycle time. Since these 

failure modes are defined using a mutually exclusive cut-set formulation, the lower-bound on the 

system failure probability can be found by a simple addition of the failure modes identified by 

the  selective searching technique, 

              
    
          

    
  

               (40) 

where     
   denotes the number of identified critical failure sequences. Since these failure 

sequences are mutually exclusive using (39), the statistical dependence between failure modes is 

fully accounted for. Lee & Song (2010) computed the probability of each failure mode, 

                
  , by performing SORM for the last event in (39) and FORM for all other 

events, followed by an efficient sampling method (Genz 1992) to perform the system reliability 

analysis. For numerical examples in this thesis, due to high nonlinearity of the limit state 

functions in (36) and (37), FORM and SORM analyses could not obtain accurate estimates of the 

component event probabilities in (39). To overcome this issue, crude-MCS is used to obtain 
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accurate probability estimates for the identified cut-sets, replacing component analyses followed 

by a system reliability analysis. These probability estimates are then added in (40) to obtain the 

lower bound of the system failure probability; However, having to perform a separate crude-

MCS to obtain failure mode probabilities does not make the current formulation of this method 

especially efficient when compared to general crude-MCS to obtain the system failure 

probability. Since this method does identify dominant failure modes and points within the 

associated failure domains, a method may be developed to address this issue using importance 

sampling in the future. 

2.4 NUMERICAL EXAMPLE 

 The above selective searching technique is now demonstrated using a planar truss bridge 

structure numerical example as shown in Figure 2.3. This structure has 97 elements (E1,…,E97) 

and 50 nodes (N1,…,N50). At N2 and N50, there are pin connections and roller connections at 

N1 and N49. This structure is both internally and externally statically indeterminate to the third 

degree. This model was inspired by the original model of the Grand Sung-Soo bridge in Seoul, 

South Korea before the catastrophic failure and has the same member geometry as defined in 

KSCE (1995). This example differs from the original example by an addition of three members 

at the hinges that connect the two anchor trusses to the suspended truss to add complexity. 

 Various models were considered for the loadings in this example, from using field data 

measurements to fully theoretical simulations. Since no proper field strain data were available 

from the original bridge, such a data-based method used in Zhou (2006) was deemed 

inappropriate, in favor of using the fatigue analysis recommended by the LRFD Bridge 

Specifications (AASHTO 2004). This entails executing a full influence-line load analysis using a 

truck that weight 75% of the AASHTO design truck. This method was used since it is commonly 

used among structural engineers and seems to be a nice medium between field data and 

something fully theoretical. Once component stress values for a given damage state and for each 

position of the design truck are obtained, the maximum and minimum stress values are used to 

describe component stress ranges for use in the disjoint cut-set formulation in Section 2.3. If no 

stresses for a given member are large enough to initiate crack growth occur, the corresponding 

member’s limit state can be neglected for that damage state. Using a full influence-line load 
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analysis is far superior than simply applying a given cyclic distributed load, since it is much 

more appropriate for modeling actual traffic fatigue.  

 See Table 2.1 for the distribution types and statistical parameters of the random variables 

used in this study: material parameters of the Paris-Erdogan crack growth model, i.e. Ci 

(mm/cycle/(MPa∙mm)
m

) and mi, the initial crack lengths   
  of the truss members i = 1,…,97, and 

the stress range multiplier I, to model the random traffic loading. Each of these random variables 

is modeled based on the suggestions in the literature (Lee & Song 2010). Another important 

aspect of these random variables is their statistical correlations. While   
  are correlated amongst 

themselves and I is considered uncorrelated with the other random variables, C and m have been 

found to have very strong negative correlations in the literature,      
       (Borrego et al 

2001; Yarema 1982). Due to this, when the random variables must be transformed from the real 

space to the u space, i.e. u = T(x), C and m cannot be modeled as Nataf variables generally; 

however, Gardoni et al. (2002) have suggested using a linear relationship for random variables 

that have strong correlation, e.g.           
 , based off of known statistical parameters: 

      
      

   

   

       
              (41) 

where    
 and    

 are the mean and standard deviation of Xi. This relationship is implemented to 

model m as a linear function of C, decreasing the space of random variables by a third and 

enabling the modeling all random variables other than m as Nataf distributed for the nonlinear 

transformation u = T(x). All members are assumed to have an elastic modulus of 200 GPa. The 

average daily truck (ADTT) for the Grand Sung-Soo was 4,483 (Cho et al. 2000). The ADTT 

was multiplied by 365 days to determine the annual loading frequency   . 

 A total of 60 significant failure modes were identified by the selective searching method, 

whose reliability indices range from 2.9986 to 4.7534. It is also noted that 45 modes with higher 

likelihood have similar reliability indices between 2.9986 and 4. See Table 2.2 for a list of the 

seven most significant failure modes and the associated reliability indices. The existence of these 

many critical failure modes with similar likelihood is indicative of the high degree of symmetry 

and redundancy of the bridge. It should also be noted that all of these 45 most critical modes 
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originate at members 61, 62, 63 and 64, which are the diagonals in the center of the suspended 

truss. The nature of these “competing” failure modes made it necessary to identify 63 modes. 

 An Nsame of 5 was used during the selective search. Using (40), the lower bound on the 

system failure probability with 60 modes is             (generalized reliability index 2.0521). 

This result is verified by crude-MCS which produces a system reliability index of 2.0140 with a 

coefficient of variation of 6.25%. The relative error between these two methods is only 0.16%. 

See Table 2.3 for a list of CPU time costs for the proposed method and crude-MCS. One must 

note here that the selective searching method not only finds the system failure probability but 

also all significant failure modes; by comparison, the current formulation of crude-MCS only 

tallies system failures and does not keep track of the failure mode contributions. Crude-MCS can 

keep track of the failure mode contributions, but this would increase the computational cost of 

the method significantly, since for every sample generated the failure mode would also have to 

be saved. Since the selective searching algorithm only identifies the most critical failure modes, 

this coupling of failure mode identification and probability calculation in crude-MCS would 

show the benefit of the selective searching algorithm. One should also note that the selective 

searching algorithm itself only requires 441 seconds. 

  The selective searching algorithm has many applications for field practitioners. Using 

the selective searching algorithm for a given inspection cycle time, one can find the critical 

members that are the root of cascading fatigue induced failures and devote more attention to 

controlling damage and implementing repairs for these members. One can also find the most 

likely failure paths and be sure to stop cascading failures should component failures occur. 
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2.5 FIGURES 

Figure 2.1. Crossover genetic operator for selective searching method (Kim 2009) 
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Figure 2.2. Mutation genetic operator for selective searching method (Kim 2009) 
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Figure 2.3. Planar truss bridge example 
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2.6 TABLES 

Table 2.1. Distribution types and statistical parameters of random variables 

Random variable Distribution Mean Coefficient of Variation 

C Lognormal 1.202∙10
-13

 0.533 

M Lognormal 3 0.02 

a
0
 Exponential 0.11 mm 1 

I Normal 1 0.1 

Table 2.2. Reliability indices of seven dominant failure sequences. 

Failure Sequence Reliability Index 

61→64 2.9986 

64→61 3.0193 

62→64 3.1159 

63→61 3.1389 

61→63 3.1523 

61→68→6 3.1701 

61→68→7 3.1728 

Table 2.3. Computational cost for the proposed method and MCS 

 CPU time (seconds) 

Proposed Method Failure mode search time: 441.0 sec (7.35 min) 

 Total time: 26,992 sec (7.50 hrs) 

Crude-MCS Total time: 27,024 sec (7.51 hrs) 
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CHAPTER 3 

MULTI-OBJECTIVE FIRST-ORDER RELIABILITY METHOD 

3.1 BACKGROUND 

 As described in Section 2.3, the critical term in (39) of the disjoint cut-set formulation is 

determined by the inspection cycle Tins, a time usually unknown a priori and based off of 

precedence and not proper risk informed decision making. To help field practitioners make better 

decisions, a multi-objective genetic algorithm is hereby proposed to find the reliability indices of 

many inspection cycle times at once, which is termed as multi objective first order reliability 

method (MO-FORM). This method is not hindered by local solutions as gradient-based design 

point search methods are, and does not have issues finding events that are highly unlikely (high 

reliability index) but possible critical failures, as they occur for small inspection cycle times, 

unlike crude MCS. The two objectives functions in this situation are the reliability indices and 

inspection cycle times. For this example, genetic algorithm-based search was chosen among 

many candidate algorithms for multi objective optimization. Due to its ease of implementation 

and fast convergence, the Non-dominated based Sorting Genetic Algorithm II (NSGA-II) (Deb et 

al. 2002) was selected in particular. NSGA-II is a modified version of the original NSGA that 

incorporates elitism and does not require an a priori sharing parameter. This multi-objective 

method obtains a surface of non-dominated solutions, so-called Pareto surface. 

3.2 METHODOLOGY 

 Several concepts regarding multi objective optimization must be explained before 

presenting the details of the proposed method. NSGA-II executes as follows: (1) initialize the 

population, (2) obtain objective function values, (3) assign fitness function values based off of 

Pareto Optimality, (4) find crowding distances, (5) find elite chromosomes for the mating pool, 

(6) use the genetic operators of mutation and crossover to obtain the new population, and (7) 

repeat the process until the result converges. Each of these will be discussed in the section to 

follow. Before beginning this discussion, NSGA-II requires two important parameters: Npop, the 

fixed number of chromosomes in each population, and Ngen, is the required number of 

generations. 
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 First, initialize the population. This can be achieved in many ways as described in Section 

2.2 for the selective searching method. Many different options were investigated over the course 

of this study, but the final method selected used LHS in the u space and then normalized each 

sample. These samples were then scaled so that their magnitude was much smaller than one. 

These magnitudes are equivalent to the reliability indices. Depending inversely on the number of 

random variables, these magnitudes could be anywhere between the order of 10
-2

 and 10
-10

. An 

issue with this method is its need for pre-specified bounds on each random variable during the 

evolution process. Due to the nature of the   
   being correlated random exponential variables, if 

one imposed these boundaries in the u space, when they are transformed back to the original 

space, some margins may become zero and infinity, causing this method to fail. This is a result 

of the scale of the problem as well as the correlations between random variables. These margins 

are used to fix the range of the values of the random variables so that crossover and mutation do 

not create offspring that consistently prevent proper convergence of NSGA-II. Initially they were 

used to sample the first population from a shifted uniform distribution as well as impose 

boundaries on the offspring. To remedy these issues, tight sampling around small reliability 

index values in the u space was used. The successive generations quickly populate a pre-

specified range of reliability indices despite these issues. 

 Second, obtain values of the objective functions. The first objective function is the 

reliability index. This is simply the magnitude of the sample in the u space and reciprocally 

corresponds to the likelihood of a failure event. The second objective function is the amount of 

time it takes for the system to fail based off the criteria discussed in Section 2.3. Since the failure 

modes are calculated using the disjoint cut-set formulation, the times between component 

failures can simply be calculated using (36) and (37) and summed to find the time until failure. 

These total failure times can then be considered to be the inspection cycle time threshold value 

for a given likelihood, since that would correspond to a system failure for the limit state 

        
        

                       (42) 

where the first term on the right-hand-side of the equation represents the “performance function.” 

The performance function is simply a measure of criticality. The higher the threshold value, the 

less critical the event. Thinking of this performance function as the length of time until failure, 
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larger values are less critical, since the structure will have a long period of time before the 

particular failure sequence occurs. If this value is small, then it is very critical because not much 

time will pass until the structure will fail, which leaves little time for inspection and maintenance 

actions. A graphical representation of these two objective functions and the resulting Pareto 

Surface is shown in Figure 3.1. One should also know that this performance function is a general 

concept. Any type of limit state that has a form similar to (42) is generally applicable to this kind 

on interpretation, i.e. yielding in a structural member (                    ). If the 

stress in a member is beyond that of the yield strength of the member, the member is said to have 

failed. The member may also have a range of possible yield strengths due to different types of 

materials. 

 Third, assign fitness function values based off of Pareto Optimality. Pareto Optimality is 

a general condition that occurs when no “Pareto Improvements” exist. A Pareto Improvement is 

a condition defined as a change in allocation of some quantity for a random variable where that 

variable is “improved” and no other variable becomes “worse off.” A feasible solution x* is a 

non-dominated or Pareto optimum if and only if there exist no feasible vector x where 

                                          (43) 

                                                   (44) 

where n is the number of objective functions. For a graphical explanation of this, see Figure 3.2. 

Here the feasible domain is up and to the right and depends on the problem definition and 

specifics. The Pareto surface are the points where there are no other possible points for smaller 

values of either objective function, f1(x) or f2(x). For the situation in this paper, these two 

functions are the reliability index and the time until the system failure respectively as discussed 

earlier. The fitness function value for NSGA-II uses these definitions of Pareto Optimality to sort 

chromosomes into “fronts.” Each front is based off of whether or not a chromosome is 

“dominated” (or has higher objective function values) than another chromosome. If not, this 

chromosome is considered to be non-dominated and placed in front number one. Based off of 

how dominated each chromosome is, they will be sorted to other fronts until all chromosomes 



 

35 
 

have been assigned a front value. To iterate, these fronts correspond to the objective function 

values. 

 Fourth, find “crowding distances” between chromosomes. Since the fitness function here 

is discrete based on which fronts chromosomes are in, many chromosomes will have the same 

fitness function values, making it necessary to have an additional parameter, crowding distance, 

to determine if a chromosome is a more ideal member for the mating pool. The crowding 

distance parameter is a measure of how densely points are distributed on a given front and is 

calculated by the average difference between the chromosomes that have the objective function 

values immediately lower and higher than the given chromosome, i.e. 

    
                 

             
               (45) 

where     is the crowding distance for the i-th objective function, where        , of the j-th 

chromosome, where        . For the chromosomes with the highest and lowest objective 

functions on a front, since there are not chromosomes on either side, cij is infinite. This process is 

repeated for each objective function. Once completed, the overall crowding distance for a given 

chromosome is obtained by 

       
 
                    (46) 

Since MO-FORM finds a surface of Pareto optimal points, having points spaced as far as 

possible from each other is desirable, making larger cj more desirable and their corresponding 

chromosomes elite. 

 Fifth, populate the mating pool with elite chromosomes. Now that the crowding distances 

and fitness function values are known, the mating pool can be populated. To obtain the mating 

pool, a tournament selection process is used. Tournament selection requires two parameters: 

“pool size” and “tour size.” The pool size is the number of parent chromosomes in the mating 

pool. This is typically half the population size (Deb et al. 2002). The tour size is the number of 

chromosomes compared at a given time for a spot in the mating pool. This is typically two. 

Despite the idea that a higher tour size would cause more diversity in selection and perhaps 
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better convergence, higher tour size values seem to have little effect. For a given tour, 

chromosomes are given priority for a higher fitness function value, e.g. the lowest front, and, if 

chromosomes are on the same front, larger crowding distance to encourage even spreads over the 

Pareto optimal surface. This process of generating tours continues until the mating pool is fully 

populated. Now that mating pool has been selected, the offspring population can be created using 

genetic operators. 

 Sixth, use the genetic operators of mutation and crossover to obtain the new population as 

described in Deb & Agarwal (1995). Simulated binary crossover is used for this method. This 

method is also a multi-point crossover operator, like the crossover operation described in Section 

2.2, and is described below: 

     
 

 
                                   (47) 

     
 

 
                                   (48) 

where      is the i
th

 child with j
th

 component,      is the i
th

 parent with corresponding j
th

 

component, and    is a number sampled from probability density 

     
 

 
                               (49) 

     
 

 
      

 

                         (50) 

where    is the distribution index for crossover. This is a value defined a priori, which is used as 

20 in this situation. The above relationships are then used to find 

         
 

                            (51) 

     
 

        
 

     

                    (52) 
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where u is a uniformly sampled random variable between (0,1). Crossover is implemented in this 

method with a 90% crossover rate. If crossover does not occur, mutation is used. In this method, 

polynomial mutation is used. To obtain an allele of the child chromosome      , use 

                
      

                  (53) 

where     
  being the upper bound and     

  being the lower bound on a given parent component, 

and    is found from the polynomial distribution as follows: 

        
 

                             (54) 

              
 

                                      (55) 

where    is a uniformly sampled random variable between (0,1) like u, and    is a mutation 

distribution index, similar to   , defined as 20 in this situation. Now that the offspring have been 

found, leeching is performed with respect to the parent population. This is done simply by taking 

both populations, sorting them by front and crowding distance as a whole, and then taking the 

resulting sorted population with the lowest front values and largest crowding distances as the 

next population. This seven-step process is then repeated Ngen number of times. 

3.3 MERITS OF THE MULTI-OBJECTIVE FIRST-ORDER RELIABILITY METHOD 

 Before implementing this method in numerical examples, several merits of MO-FORM 

are presented. First, unlike conventional gradient-based optimization algorithms, MO-FORM 

does not require gradients of the limit state functions to obtain design points. This is particularly 

useful when the limit state functions are highly nonlinear or discontinuous, which is a situation 

that may cause FORM to find an incorrect local solution or diverge. Additionally, MO-FORM 

has the ability to model discrete random variables, if need be. MO-FORM also finds many 

design points for the full structural system simultaneously, making it unnecessary to repeat 

FORM many times over a large range of reliability indices. This method is particularly useful 

when the inspection cycle time, or threshold value, is unknown, as many FORM analyses may be 

required to find an appropriate value. By choosing a performance function and the reliability 
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index as objective function, MO-FORM generates a Pareto surface. As seen in Figure 3.3, for a 

given value of the performance function value, one can find the most likely failure case. This 

case is indicated by the red arrows. The shaded red region represents all of the less likely cases. 

Likewise, for a given likelihood, one can find the smallest value of the performance function, as 

shown by the black arrows. The shaded grey region represents all of the larger values of the 

performance function. MO-FORM can also handle the cases of high reliability index values, or 

“rare but critical,” well, unlike general brute-force MCS. From the resulting Pareto surface, 

termed as “Design Surface,” one can obtain a first order approximation of probability functions, 

CDF and PDF, of the time until failure or whatever performance quantity is being modeled. 

From this approximate PDF, the statistical moments for this performance quantity can be found. 

Using the points on the Pareto surface, relative contributions of the random variables can be 

modeled, similar to the    vector described earlier. The corresponding    vector can also be found 

from this information to model the effects of correlations. 

3.4 SIMPLE NUMERICAL EXAMPLE 

 First, a simple theoretical example will be analyzed by MO-FORM. Letting the 

performance function,   , be 

        
     

    
                    (43) 

where            are random variables defined in Table 3.1, and    corresponds to the first 

term in (42). The objective functions are the same as those described previously, except that the 

inspection cycle time has been replaced with a general, measure of criticality. Also,    is 

statistically independent of the other random variables, and X1 and X2 are correlated with 

correlation      
    . For 50 in a population and 500 generations, the resulting Pareto surface 

is shown in Figure 3.4. This plot can be interpreted as follows: for the likelihood       , the 

most critical performance would be        .  

 If design changes occur, this Pareto surface will be affected in many ways. If the standard 

deviation or mean of X1 is changed, the Pareto surface is affected as shown in Figure 3.5. If the 

   
 is increased from 250 to 300, the Pareto surface uniformly shifts outward. Since X1 takes the 



 

39 
 

role of a “capacity” type variable in the performance function, an outward shift that makes each 

value of the performance function less likely by increasing the reliability index at each value is 

expected. If    
is decreased from 50 to 30, a rotation about the zero reliability index occurs. 

Since decreasing the variability does not directly relate to an increase of system performance at 

every performance level, this does not seem unreasonable. A decrease in this variability seems to 

give better performance for highly critical events than an increase in    
. If parameters in the 

performance functions are varied, other changes are expected, as shown in Figure 3.6. For 

increases on the exponents in (43), the “frequent but less-critical” range is improved, but the 

“rare but more critical” range is degraded. This is another case where Pareto surface rotation 

occurs. The most important merit of MO-FORM is its applicability to any general case. The 

above examples are simply possible changes that are easily modeled by MO-FORM, but are by 

no means exhaustive. 

 One should note here that these graphs only include positive values of the reliability 

index. While this is reasonable for most systems because most systems are not designed to have 

failure probabilities greater than 50%, the negative reliability index range can be obtained by 

either re-running MO-FORM for negative values of the of the performance value and then 

flipping the signs as a post-process, or by finding the performance function value that has a zero 

reliability index value and performing a clever rotation procedure where the Pareto surface is 

rotated 90⁰ counterclockwise above this value of performance function during the algorithm and 

then 90⁰ clockwise as a post-process. If this is done for the current numerical example, the result 

is shown in Figure 3.7. MO-FORM can model the full range of the reliability index. A MCS 

curve for one million samples is also plotted here for comparison. One can see that both the large 

negative and large positive values, e.g. the very likely but uncritical and highly unlikely but 

critical, of the reliability index are captured accurately at both tails by MO-FORM, while MCS 

cannot cover the same region nearly as well.  

 Since the full range of reliability index has been obtained, now the CDF and PDF can be 

obtained from MO-FORM. To obtain the CDF from the Pareto surface, simply use the following 

equation 

   
   

             
          

                             (44) 
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where      is the standard normal CDF and    
   

   is the CDF of the performance function 

values at   
 . The CDFs from both the MCS and MO-FORM for the current example are shown 

in Figure 3.8. The agreement for these MCS with MO-FORM is fairly strong here. From Figure 

3.9, one can also see that MO-FORM encapsulates the tail behaviors for critical values of the 

performance function, while the MCS cannot properly cover this region without further sampling. 

The PDF of the Pareto surface can be also found by the following equation from basic statistics 

and the chain rule 

   
   

   
    

   
  

   
          

   
     

  

   
              (45) 

where      is the standard normal PDF. Since numerical issues arise from evaluating 
     

  

   
 , 

cubic spline curve fitting is used to obtain the PDF directly from the Pareto surface. The result of 

this operation with a comparison of MCS is shown in Figure 3.10. Once can see that MCS agrees 

strongly with MO-FORM in this picture. Now that the approximate PDF has been obtained all 

statistics of the performance function can be obtained approximately, e.g.    
     

   etc. Relative 

measure of importance can also be found from the chromosome values that correspond to points 

on the Pareto surface, information that in unattainable from the MCS result. Since only three 

random variable are present in this example, the Pareto surface can be visualized in the space of 

random variables as a three dimensional line (see Figure 3.11). One can see that different random 

variables dominate regions in different parts of the Pareto surface from here. For example, 

changes in X1 directly affect the Pareto surface for both frequent but less critical cases as well as 

rare but more critical cases. Figure 3.11 shows a decent modeling of relative importance measure 

for problems with few random variables, e.g. 2 or 3. For larger problems, a separate 

representation has been developed, as will be described in Section 3.5.  

3.5 FULL BRIDGE NUMERICAL EXAMPLE 

 Now as an application of MO-FORM to a structural system, consider the truss structure 

shown in Figure 3.12. There are a total of 20 members in the model subjected to two applied 

cyclic loads at the upper corners, and a pin and roller at the base corners. This structure is 

externally statically determinate, while internally statically indeterminate to the fourth degree, 
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like many types of structures found in the field. These applied forces may be thought of as load 

affects from typical horizontal loads, such as wind loads. Here, the same system failure criteria 

and disjoint cut-set formulation are used to describe system failures as used previously. Unlike 

the simple previous simple example, this is a structure subject to the risk of the fatigue-induced 

cascading failures, and the first objective function is the time until the system failure, not just a 

general criticality function. For each member, the random variables described in Table 2.1 are 

used to describe the uncertainties in the material properties and initial crack lengths. Each 

member also has a modulus of elasticity of 200 GPa. Each vertical member has a sectional area 

of 1,000 mm
2
, horizontal member a sectional area of 2,000 mm

2
, and diagonal member a 

sectional area of 500 mm
2
. 

 Using 500 in a population and 2,000 generations, one obtains the Pareto surface in Figure 

3.13. In contrast, using 1,000 in a population and 1,000 generations, one obtains the Pareto 

surface in Figure 3.13. These two results of MO-FORM are compared with a surface created 

from brute-MCS of 10
6
 samples and a surface created from a few system-level FORM analyses. 

One can see from these two results that even though these two MO-FORM results have the same 

number of overall sample points, that the result for 1,000 in a population and 1,000 generations 

is slightly improved. One can also see the CPU times for the two MO-FORM results and crude-

MCS in Table 3.2. While crude-MCS can obtain a Pareto surface more quickly, one must also 

note that MCS does not find the specific values for the individual random variables on the curve 

or properly encapsulate the behavior in the negative reliability index region. Since NSGA-II 

restricts MO-FORM to only finding points in the feasible domain, one must conclude that the 

MCS needs further sampling to properly represent the negative region and that both the FORM 

and crude MCS results are dominated (see Figure 3.2) by MO-FORM. With higher sampling, 

MCS will converge better, but this would make MCS take a good deal longer. The sampling that 

MCS uses is also affected by the number of random variables used. For higher numbers of 

random variables, MCS requires an exceedingly large number of points to capture the surfaces in 

Figures 3.13 and 3.14, which makes general crude-MCS inappropriate for identifying Pareto 

surfaces.  

 Generating the CDF and PDF of the results of the MO-FORM analysis using 1,000 in a 

generation and 1,000 in a population in Figures 3.15 and 3.16 respectively, one can see strong 
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agreement from the results generated by crude-MCS. In Figure 3.17, one can see the relative 

importance values as found for the equivalent correlated normals,   2
, as described previously. 

Two random variables stand out the most from this figure, No. 31 and No. 41. No. 31 represents 

the initial crack length of the eleventh member, which is the vertical member at the bottom right 

area of the truss. No. 41 is the stress range multiplier to encapsulate randomness in the applied 

loads. While the eleventh member’s initial crack length is not obvious as an important random 

variable, one would expect the stress range multiplier to have a large effect here, since it directly 

impacts the amount of time needed for local failures in every member. One must note here that 

Figure 3.17 cannot be obtained from crude-MCS. 

 MO-FORM has many possible applications for field practitioners. Particularly for better 

decision making related to inspection cycle times, one can use MO-FORM to find the more 

likely but less critical cases and the less likely but more critical cases. From this information one 

can find the optimal inspection cycle time to prevent the likely cases and know what critical 

cases to be concerned with. One can then use the proposed importance measure scheme to find 

which random variables contribute most to the system failure and control them through 

inspection and repair. 
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3.6 FIGURES 

Figure 3.1. Two objective functions of MO-FORM and Pareto surface 
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Figure 3.2. Pareto optimal (non-dominated) surface 
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Figure 3.3. Pareto surface interpretation  
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Figure 3.4. Pareto surface for the simple MO-FORM example for 50 in a population and 500 

generations. 
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Figure 3.5: The effect of changes in X1 statistics on the Pareto surface 
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Figure 3.6: The effect of performance function parameter changes on the Pareto surface 
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Figure 3.7: Pareto surface for the full range of reliability index 
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Figure 3.8: CDF of the performance function g0(x) by MO-FORM and MCS  
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Figure 3.9: Tail behaviors of CDFs obtained by MO-FORM and MCS 
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Figure 3.10: PDF of the performance function obtained by MO-FORM and MCS 
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Figure 3.11: Pareto surface in the space of original random variables 
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Figure 3.12: Planar truss example 
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Figure 3.13 Pareto surface of the planar truss example for 500 in a population and 2000 

generations 
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Figure 3.14: Pareto surface of the planar truss example for 1000 in a population and 1000 

generations 
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Figure 3.15: CDF of the planar truss example  
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Figure 3.16: PDF of the planar truss example 
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Figure 3.17: Relative importance measures for the planar truss example  
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3.7 TABLES 

Table 3.1. Distribution types and statistical parameters of random variables in first MO-FORM 

example 

Random Variables Distribution Mean Coefficient of Variation 

X1 Lognormal 250 0.2 

X2 Normal 100          

X3 Normal 120          

Table 3.2. Computational cost for the proposed method and MCS 

 CPU time (seconds) 

Proposed Method (1000 in a population) Total time: 8,093.9 sec (2.25 hrs) 

                               (500 in a population)                     7,528.9 sec (2.09 hrs) 

Crude-MCS Total time: 4,620.2 sec (1.28 hrs) 
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CHAPTER 4 

FUTURE WORK 

 Despite much effort to improve and implement the selective searching algorithm and 

MO-FORM, many areas remain for improvement. For the selective searching algorithm, the 

major issue remains that using a full MCS to find all failure mode probabilities causes this 

method to take too much computation time. Since FORM and SORM cannot be used to the high 

non-linearities of the limit state functions, a simulation method such as importance sampling 

must be used to properly find the failure probabilities. Since the design-point must be found for 

convenient importance sampling, one may expect the points or elite chromosome found by the 

selective searching method would correspond to these design points; however, this is not the case. 

Due to high non-linearities of the limit state functions, the failure modes are not identified at 

hypersphere radii that correspond to their overall reliability indices necessarily. With higher 

population numbers, this could be remedied, but this would also make the overall computational 

effort much higher without much improvement over crude-MCS. To remedy this, an inward 

searching algorithm can be developed to find the actual design point in the u space. This 

algorithm must be able to handle a highly non-linear and unknown path and have proper 

convergence criteria to be able to properly identify the design point. Since sampling can handle 

any type of non-linear function, this algorithm can generate points about a given point, and find 

the point that is still inside the limit state function and closest to the origin. Lastly, this algorithm 

must operate efficiently. The failure mode probability can then be effectively computed quickly 

by importance sampling. 

 For MO-FORM, systems with large numbers of variables must be better handled. As 

mentioned previously, with larger number of random variables, crude-MCS does not generate 

points that have magnitudes smaller than 5 due to a size effect, making it difficult to find an 

appropriate comparison for MO-FORM. FORM generally is not an appropriate comparison, as it 

is gradient based and can be fooled by local gradients during its search. More efficient sampling 

methods may be used to generate proper comparative Pareto surfaces from MCS. Once better 

comparisons are found, if it is determined that the Pareto surfaces found by MO-FORM are 

inappropriate, several paths can be pursued. The effect of stopping leeching may be investigated, 
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as NSGA-II uses this for every offspring population and this may cause premature convergence. 

Increasing the mutation probability may also decrease the possibility of premature convergence. 

Trying to increase the margins of the random variables may also help stop premature 

convergence, as NSGA-II requires minimum and maximum values of alleles in chromosomes to 

run properly. These, among other possible routes can be invested to improve both the selective 

searching method and MO-FORM. 
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CHAPTER 5 

CONCLUSION 

 This work develops an efficient and accurate method to identify those cascading, fatigue-

induced failure sequences that contribute most to the system failure probability and to calculate 

the probabilities of both the system failure as well as these individual failure sequences. With the 

proposed approach, the failure mode search and the system failure probability evaluation are 

decoupled. The proposed approach finds these failure modes using a genetic algorithm, 

characterizes these using a mutually exclusive formulation, and finally calculates each of these 

mode probabilities using a sampling method. From the mutually exclusive formulation, the 

system failure probability is calculated by summing the mode probabilities while accurately 

modeling dependence. The advantages from this approach are three-fold: decoupling failure 

mode identification and system reliability analysis helps to prevent the computational cost from 

rapidly increasing with structural complexity; a simulation-based, genetic algorithm inspired 

approach identified cascading fatigue-induced failure sequences; and using a mutually exclusive 

formulation for these cascading fatigue-induced failure sequences accurately models statistical 

dependence at all levels.  

 Since the proposed method relies on an a priori specified inspection cycle time, and this 

value is typically unknown before-hand, MO-FORM was developed to perform multiple FORM 

analyses simultaneously for many inspection cycle values.MO-FORM can find both the “less 

likely, but more critical” cases as well as the “more likely, but less critical” cases. Criticality is 

measured by a performance function, which is implemented as the time until failure for the 

fatigue-induced sequential failure cases, while likelihood is modeled by the reliability index 

values for solutions. Using NSGA-II, a robust multi-objective genetic algorithm that relies on 

rules of Pareto Optimality for assigning fitness function values in terms of fronts to each 

chromosome, a Pareto optimal surface can be found of values for both the time until failure and 

likelihood. After analysis, the PDF, CDF and statistical moments can be obtained for all levels of 

the performance function. MO-FORM presents many advantages: accurate modeling of both 

uncritical and likely events as well as critical but unlikely events; non-gradient based search; and 

finding relative importance measure of individual random variables at different levels of 
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inspection cycle times. The applicability of MO-FORM was then demonstrated for a simple, 

general case of three random variables. MO-FORM was then compared to MCS with one million 

samples and was shown to be accurate, especially for large and small values of the reliability 

indices.  

 Both methods were then demonstrated for system reliability analysis of complex 

numerical examples: the selective searching algorithm was used to analyze a 97 member planar-

truss bridge with a full influence load analysis, and MO-FORM was used to analyze a 20 

member planar-truss.. MCS then confirmed that the proposed method can compute the system 

failure probability accurately and efficiently. MO-FORM was confirmed by both FORM and 

MCS as modeling the full range of inspection cycle times accurately and efficiently. 

 Several possible improvements for future work were then proposed for both methods. For 

the selective searching algorithm, a method to search for the exact design point given a point in 

the failure mode domain was suggested. The failure mode probability could then be calculated 

using importance sampling about the found design point, replacing the need for a 

computationally costly crude-MCS for failure mode probability calculations. For MO-FORM, 

several improvements to the genetic operators and allele margins were proposed. Since crude-

MCS is affected by problem scales and traditional FORM may be misled due to local gradients, 

it was also suggested that a better comparison for MO-FORM be developed. Once these 

proposed future improvements are developed, both methods will be greatly improved for general 

problems. 

 Both of these methods are strongly applicable for field practitioners. Using the selective 

searching algorithm for a given inspection cycle time, one can find the critical members that are 

the root of cascading fatigue induced failures and devote more attention to controlling damage 

and implementing repairs for these members. One can also find the most likely failure paths and 

be sure to stop cascading failures should component failures occur. To make better decisions 

about exact inspection cycle times, one can use MO-FORM to find the more likely but less 

critical cases and the less likely but more critical cases. From this information one can find the 

optimal inspection cycle time to prevent the likely cases and know what critical cases to be 

concerned with. One can then use the proposed importance measure scheme to find which 
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random variables contribute most to the system failure and control them through inspection and 

repair. For a more in-depth analysis, one could use the selective searching algorithms to find the 

critical failure modes. From these two methods, field practitioners can make better risk-informed 

decisions. 
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