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ABSTRACT 

ELTANBOULY, SOHAILA S., Masters : June : [2021], 

Masters of Science in Computing 

Title: Multimodal Intrusion Detection System for Cyber-Physical Systems 

Supervisor of Thesis: Abdelkarim, Erradi. 

Cyber-Physical Systems (CPS) are deployed to control critical infrastructure in many 

fields, including industry and manufacturing. In recent years, CPS have been affected 

by cyberattacks due to the increased connectivity of these systems to the Internet. This 

work aims to develop a deep learning-based Intrusion Detection System (IDS) for 

detecting cyberattacks on CPS using multimodal learning techniques. This thesis 

reports the design, implementation, and evaluation of two IDS solutions based on 

different deep learning networks: Convolution Neural Network (CNN) and Recurrent 

Neural Network (RNN). For the first IDS, Gramian Angular Field (GAF) is used to 

convert CPS time-series data to images that are fed to a 3D CNN to train the attack 

detection classifier. The second IDS uses RNN with a multimodal attention approach 

for training the attack detector. Both solutions utilize CPS process data and network 

data to improve the attack detection accuracy. The performance of the proposed 

approaches is evaluated on SWaT datasets collected from a testbed that represents real-

world CPS. Experimental results demonstrate that both IDSs achieved improved 

performance and higher detection capability compared to related work. 
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CHAPTER 1: INTRODUCTION 

Cyber-Physical Systems (CPS) are composed of interconnected physical and 

cyber elements to monitor and control critical physical processes in different areas [1]. 

Some of the main application fields of CPS are healthcare, manufacturing, industry, 

and transportation. Historically, these systems were designed to operate at physically 

isolated locations on proprietary hardware and software. CPS encompasses different 

control systems, including supervisory control and data acquisition (SCADA) systems 

and programable logic control (PLC). Figure 1 illustrates the basic operations of 

industrial CPS according to NIST's Industrial Control Systems Security Guide [2].  At 

the bottom layer of the architecture are the control loops that utilize sensing and 

actuation components to directly control and manipulate the process. The sensors and 

actuators are connected to PLCs, where the control algorithms are implemented. The 

PLCs receive and interpret the sensors' signals. Then, based on the control algorithm 

and the target set points, they send back the required values to the actuators to adjust 

the process to the desired state. At the top level, there are the Human Machine Interfaces 

(HMIs) and the maintenance facilities. The operators use the HMIs to monitor and 

control the process via the PLCs as well as configuring and maintaining the control 

algorithm, set points, and all other parameters needed for the process operation.   
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Figure 1: Industrial CPS operation [2]. 

 

Recently, with the evolution in information and communications technology 

(ICT), these systems have been increasingly connected to corporate networks using 

standard protocols and hardware/software components to reduce cost and to allow 

remote monitoring and control. However, despite the great functionalities that this 

connectivity provides, it introduces new challenges in operating these systems and 

exposes them to vulnerabilities. Also, since the adapted technologies are coming from 

different vendors, new weaknesses have emerged that may cause the system's failures. 

Furthermore, many of the industrial communication protocols that have been used for 

communication between the different devices in the control network lack security 

mechanisms such as encryption and integrity [3]. Due to these vulnerabilities, intruders 

can target the system with cyber-attacks to gain unauthorized access to the control 

network and cause disturbances in the physical process. In the last decade, several 

sophisticated malware targeted industrial infrastructures, such as the Stuxnet worm that 

hit  Iran's nuclear infrastructure in 2010 and the Shamoon virus that targeted the Saudi 

Arabia oil company Aramco [4]. Moreover, in Qatar, an unknown virus targeted Ras 
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Gas company and hit its computer systems forcing the network to be offline for days 

[5]. 

Due to the severe consequences that such attacks may cause on the society, 

environment, and economy, security mechanisms are essential for CPS to ensure the 

stable operation of the process and avoid the catastrophic impacts of cyberattacks. Fault 

diagnosis systems, which detect any deviations between the actual and a simulated 

process, are not sufficient for security protection in CPS and need to be combined with 

Intrusion Detection Systems (IDS) for effective protection. IDS have been widely 

investigated for monitoring CPS security and for detecting cyber-attacks. According to 

the National Infrastructure Security Coordination Centre (NISCC), firewalls and IDS 

are recommended for SCADA systems and control networks to monitor the system 

processes and network traffic [6].  

IDS provides a protection layer for CPS by monitoring and analyzing the 

system's events to spot any signs of abnormality. The system's behavior should be 

continuously monitored to ensure the system's stable operation at the physical and 

network levels. Modeling the behavior of industrial processes accurately is a very 

challenging and time-consuming process that requires a deep understanding of the 

underlying process and its implementation details. Also, the IDS built to model an 

industrial process usually cannot be generalized for usage with other processes. 

Recently, to overcome these limitations, several CPS datasets have been created to 

enable the learning of complex models and behavior-based IDS using data mining 

techniques. Additionally, deep learning has been widely used for handling high-

dimensional data and extracting better feature representations.  

Multiple research efforts considered the design of IDS for CPS; however, most 

of them have focused on attack detection at one layer of the CPS, such as the network 
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layer or the physical layer. Since CPS are multilayer systems, the cyber-attack effect 

can be seen at one or multiple layers. Thus, deploying an IDS that considers the data 

from the different layers and different data sources across the CPS would enhance the 

detection accuracy. In this thesis, two different IDS are designed and developed using 

deep multimodal learning techniques that combine CPS process data and network data.  

1.1. Problem Statement 

CPS controls critical industrial infrastructure; therefore, any cyberattacks 

targeting these systems may cause catastrophic economic and social impacts if no 

proper protection mechanisms are applied. Thus, IDS is usually deployed to monitor 

the system's behavior to detect abnormal behaviors. For CPS, model-based IDS 

solutions are widely considered by modeling the behavior of the system. For example, 

in [7], the normal behavior of the CPS is modeled using multiple synchronized hybrid 

automata, which is then used to define IDS rules. However, modeling industrial 

processes accurately is a complex task that requires a deep understanding of the 

underlying process and a consideration for all the scenarios that may occur in the 

system. Due to these systems' complexity and the unknown disturbances during normal 

operation, the model-based IDS may suffer from low accuracy. On the other hand, 

signature-based IDS is also widely used by defining a set of patterns or rules for known 

attacks and violations. For example, a set of intrusion detection rules based on Modbus 

protocol specification and known attack signatures are defined in [8]. Even though 

signature-based IDS provide a low false alarm rate, but they come with the cost of 

incapability of detecting unknown attacks. This thesis focuses on building a multimodal 

IDS for CPS to detect cyber-attacks and any abnormal behaviors using deep multimodal 

learning techniques. The multimodal techniques could increase the attacks' 

discoverability and provide better detection over other techniques by leveraging data 
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from multiple sensors distributed across the CPS. More specifically, this thesis answers 

the following two research questions: 

• Can deep neural networks with multimodal techniques provide better 

performance for detecting CPS cyberattacks compared to other techniques? 

• How can deep multimodal techniques be adopted for building IDS for CPS? 

1.2. Thesis Objectives 

In this thesis, we aim to design a multimodal IDS that considers data from 

different CPS layers and can detect cyberattacks with higher accuracy. Multimodal 

deep learning approaches are investigated to combine data from different sensors to 

train a better attack detector. These techniques range from the simple concatenation of 

data at the input layer of the network, the fusion of the decisions from multiple 

classifiers at the output layer, to the learning of a hierarchical representation of the data 

across the network's hidden layers [9]. The focus of the thesis is on the later approach, 

which helps in learning a joint representation and finding the relationships between the 

different inputs. 

The aim of this research can be achieved through the following objectives: 

• Develop a CNN-based IDS trained on CPS time-series data preprocessed using 

Gramian Angular Field imaging. The IDS uses 3D CNN to capture better 

dependencies between the different time series along with using different merge 

techniques to fuse the data from different input sources.  

• Develop a multimodal IDS based on RNN and multimodal attention approach 

that considers different input modalities. 

• Conduct a comparative study with several state-of-the-art techniques using 

different evaluation metrics and datasets to validate the effectiveness of the 

proposed approaches. 
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1.3. Thesis Contribution 

In this thesis, the problem of CPS cyberattacks detection is tackled using two 

different approaches. In the first approach, named IDS-ITS, we developed and 

evaluated an IDS based on Imaging Time Series. The approach is based on converting 

the time series of the sensors' and actuators' readings to images using the Gramian 

Angular Field (GAF) method, then training a CNN classifier to detect attacks. The 

CNN-based solution is selected because of its effectiveness in image classification tasks 

(e.g., [10] and [11]). This approach aims to leverage and incorporate the advanced 

techniques of computer vision for time series classification by obtaining a visual 

representation of the time series that captures the temporal correlation between the data 

points in order to enhance the accuracy of attacks detection. 

In the second approach, named IDS-MAN, we developed and evaluated RNN-

based IDS that leverages Multimodal Attention Network (MAN). The approach uses 

the GRU alternative to avoid the vanishing gradient problem in standard RNN [12]. 

Each input is processed separately by GRU layers, then the Bi-Modal framework [13] 

is used to leverage the multimodal information from each pair of modalities. The model 

is trained using supervised learning. However, to provide a better generalization to 

detect unseen attacks, embedding vectors for the classes are learned, and the detection 

output is determined by the distance between the classes' embeddings and the input. 

The motivation of using attention for multimodal learning is to leverage the most 

significant information from the different data sources for an efficient fusion. Recently, 

Multimodal Attention mechanisms were successfully applied in a wide range of Natural 

Language Processing (NLP) tasks such as video description [14], visual question 

answering [15], and sentiment analysis [13].  

The contribution of the thesis can be summarized as follows: 
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• Design, implement and evaluate an IDS for CPS based on a two-pathways 3D 

CNN trained on imaging time-series produced using the Gramian Angular Field 

that converts sensors' and actuators' measurements and network traffic features 

into images. This representation enables the use of CNN, which is known for its 

superiority in image classification tasks. The evaluation of the proposed IDS 

demonstrates its superiority in terms of better attacks' discoverability by 

detecting some attacks that were not detected previously by related works.  

• Examine and evaluate four different multimodal merge techniques to enhance 

the IDS performance by combining the CNN two-pathways of process-level and 

network traffic features. 

• Design, implement and evaluate a multimodal IDS based on GRU that considers 

both CPS process data and network data as independent modalities. Then, use a 

multimodal attention approach to capture the inter-modality relations between 

each pair of modalities.  

• Enhance the generalization of attacks detection and compensate for the lack of 

labeled data for attack instances by developing an approach to learn embedding 

vectors for the normal and abnormal classes and perform the anomaly detection 

based on the cosine similarity.  

• Compare the two proposed models with other state-of-the-art techniques and 

evaluate the proposed models using different datasets. 

1.4. Thesis Outline  

This chapter presents an overview of the research problem along with the thesis 

objectives and contributions. The remainder of this thesis is organized as follows:  

CHAPTER 2: Provides the background of the IDS techniques and the deep learning 

approaches along with the related work. 
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CHAPTER 3: Explains the design and implementation of the proposed IDS-ITS. 

CHAPTER 4: Explains the design and implementation of the proposed IDS-MAN. 

CHAPTER 5: Presents the evaluation results of the developed IDSs. 

CHAPTER 6: Concludes and presents an agenda for future work. 
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CHAPTER 2: BACKGROUND AND RELATED WORK 

2.1. Background 

2.1.1. Intrusion Detection Systems 

Intrusion Detection Systems (IDS) provide a protection layer over CPS. Since CPS 

are multilayer systems, the IDS can be deployed at different areas of the system. The 

main two sources of data for IDS in CPS are the network traffic and the process data. 

Moreover, there are two main categories of IDS. The first one is the knowledge-based 

IDS which looks for events that match specific misbehavior. The second one is the 

behavior-based IDS that looks for events that deviate from the system's ordinary 

behavior. Figure 2 shows the different intrusion detection techniques for CPS. 

 

 

Figure 2: Intrusion detection techniques for CPS. 

 

2.1.1.1. Knowledge-Based IDS 

This type of IDS needs a predefined and well-established knowledge of specific 

patterns or misbehavior before implementing the IDS. This type of IDS can be 

categorized into signature-based and protocol analysis-based. In the signature-based 



  

10 

 

IDS, the signatures for the known attacks are defined. Then, the IDS compares the 

observed events' signatures with the predefined patterns to detect anomalies. This 

method requires a large amount of memory because all the signatures should be saved. 

Also, it fails in detecting the threats with unknown signatures [16]. The second type of 

knowledge-based IDS is the protocol analysis-based IDS. Each protocol has a 

specification that defines its format and communication patterns. This IDS depends on 

the protocol's specification and looks for packets that violate the protocol's normal 

activity.  

The two types of knowledge-based IDS can be combined. For example,  in [8], 

a set of intrusion detection rules based on Modbus protocol specification and known 

attack signatures are defined. The IDS raises an alert if the coming traffic matches the 

predefined signatures or if the rules are violated. To build this IDS, a vulnerability 

analysis was conducted and a detailed understanding of the protocol requirement and 

specification was needed to define the rules. However, even though the knowledge-

based IDSs have a low false alarm rate, any attack that does not match any defined 

signatures will be undetected. Thus, recently all the research works have been focusing 

on the behavior-based IDS or the combination of both techniques. 

2.1.1.2. Behavior-Based IDS 

Instead of using predefined knowledge, the behavior-based IDS looks for events 

that deviate from the system's ordinary behavior. There are different behavior-based 

IDS categories, which are rule-based, statistical techniques, process-analysis, and 

machine learning and deep learning techniques. The rule-based IDS works first by 

knowing some prior knowledge, such as the distribution of the data. Then, the detection 

mechanism relies on a set of fixed rules. However, contrary to the signature-based IDS, 

each rule is set for one specific metric in the system; for example, hop count and traffic 
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arrival rate can be used as rules to detect many kinds of attacks. The rule-based anomaly 

detection technique is computationally cheap, simple, and fast. Another type is the 

statistical-based IDS which is similar to the rule-based IDS in which it learns the 

underlying distribution of the data. An example of statistical-based IDS is inspecting if 

a sensor reading is within a specific range. Because of the similarities between the rule-

based and statistical-based IDS, some research considered the combination of them. For 

example,  He et al. [17] proposed a rule and statistical-based IDS. First, a set of rules 

for specific network features is defined, including features at the packet layer, the flow 

layer, and the inter-flow layer. Then, statistical analysis based on the system's historical 

behavior is conducted to extract long-term metrics. Then these metrics are used to 

detect anomalies and trends that do not fit with what is normally observed. All the 

extracted features in the four layers of the IDS are used to profile the system's normal 

behavior, and the anomalies are detected if they deviate from this profile. 

Another type of behavior-based IDS is the process-analysis based which builds 

physical models to predict the expected output of the process. Although this type of 

IDS detects the process's abnormal behavior with very high accuracy, modeling the 

industrial processes accurately is very challenging because it needs a deep analysis of 

the underlying process. In [18], the authors study the Linear Parameter Varying (LPV) 

CPS for the scenarios of false data injection attacks. A system model is obtained based 

on the LPV state-space model. The model can predict the expected future sensor 

measurements. Then, the attack detection is performed by obtaining an estimate of the 

system's state and calculating the difference between the output of the attack detector 

and the system's output. Finally, the anomalies are detected based on specific 

thresholds. 
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The last type of behavior-based IDS is using machine and deep learning 

techniques. There are three categories for this type which are classification, forecasting, 

and unsupervised. First, in the classification, the IDS categorizes the data into different 

classes. This type requires a dataset with sufficient anomaly samples. An example of 

this IDS type is [19], where different machine learning algorithms are compared, 

namely support vector machine (SVM) random forest, k-nearest neighbor, and k-means 

clustering for anomaly detection using Modbus protocol datasets. Moreover, in [20], an 

anomaly detector for the process data based on a probabilistic neural network (PNN) 

was proposed to map the input variables to output classes.  

Second, the forecasting technique is based on time-series prediction for the 

normal behavior of the system. Then the anomalies are detected if the difference 

between the actual time series readings and the predicted values exceeds a threshold. 

Many deep learning algorithms have been used for this type of IDS. For example, Long 

Short Term Memory (LSTM) is used by [21], 1D Convolution Neural Network (CNN) 

is used in  [22], and Multi-Layer Perceptron (MLP) is used in [23]. 

Third, the unsupervised technique creates a representational model for the 

normal behavior of the system. For example, in [24], two unsupervised machine 

learning methods are compared for anomaly detection using process data which are 

LSTM based Deep Neural Network (DNN) and one-class SVM. For the network traffic, 

Dong and Peng [25] used one-class SVM to build an anomaly detector for Modbus 

traffic. Moreover, Li et al. [26] proposed a Multivariate Anomaly Detection framework 

with Generative Adversarial Networks (GAN).  
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2.1.2. Deep Learning Techniques 

2.1.2.1. Convolution Neural Network (CNN) 

CNN is a specialized type of Neural Network that is mostly used in the computer 

vision field to process image data. The core component of the CNN is the convolution 

layer. The layer has several filters that are smaller in size than the input. Each filter 

moves across the input from top left to bottom right. The filter performs the convolution 

operation, which is the element-wise multiplication between the filter's weights and the 

input values. Then, the results are summed to represent all the learned features for this 

region. After the filter passes across the input, a features map is generated from each 

filter. For the output of the layer, all the feature maps resulting from the convolution 

layer are concatenated. The convolution layer's output is passed to an activation layer 

(e.g., ReLU, Tanh) to introduce non-linearity in the network. CNN also contains 

pooling layers that downsample the feature map's size by choosing one number (either 

the maximum of the average) from each map region to allow the network to train faster 

and focus on the most important features. Even though CNN is designed for 2-

dimensional data, they are extended to be used for 1-dimensional and 3-dimensional 

data. 

2.1.2.2. Gated Recurrent Unit (GRU) 

GRU is a type of RNN. The idea behind the RNN is to process sequential data 

by performing the same computation to every element in the input sequence, taking into 

consideration the computations of the previous elements. GRU was introduced by Cho, 

et al. in 2014 [12] to solve the vanishing gradient problem in vanilla RNN. The unit 

consists of two gates: the reset and update gates. The gates are updated as follow: 

𝑟𝑡 = 𝜎(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1) 

𝑧𝑡 = 𝜎(𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1) 
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where 𝑊𝑟, 𝑈𝑟, 𝑊𝑧, and 𝑈𝑧  are trainable weights, and 𝜎 is the sigmoid function. Both 

gates have similar equations; however, each has its own set of weights and differs on 

how its output is used. The variables 𝑥𝑡 and ℎ𝑡−1 represent the input of the current 

timestep and the hidden state of the previous unit. The reset gate determines how much 

to forget from the information of the previous timesteps. The following equation 

represents this operation: 

ℎ𝑡
′ = tanh(𝑊𝑥𝑡 + 𝑟𝑡 ⊙ 𝑈ℎ𝑡−1) 

when 𝑟𝑡 is 0 the corresponding information in ℎ𝑡−1 will be forgotten, indicating 

irrelevant information to the future timesteps. The update gate is used to determine 

which past information needs to be considered for future timesteps and which new 

information needs to be added. ℎ𝑡 is calculated as follows: 

 ℎ𝑡 = 𝑧𝑡 ⊙ ℎ𝑡−1 + (1 − 𝑧𝑡) ⊙ ℎ𝑡
′  

2.2. Related Work 

2.2.1. Anomaly-based Intrusion Detection Systems (AIDS) 

2.2.1.1. IDS for CPS 

Recently, deep learning techniques have been widely deployed for anomaly 

detection using various neural network types. Long Short Term Memory (LSTM) RNN 

has been used by Goh et al. [21] for cyber-attacks detection in CPS by modeling the 

system's normal behavior. Then, the differences between the actual and the ideal 

sensors values that the RNN predicted are calculated. After that, the cumulative sum 

method is used to detect any small deviation that could correspond to anomalies. RNN 

was also used by [27] in a sequence-to-sequence encoding-decoding approach. The 

time series are encoded to predict the next values, while the decoder is used to predict 

the future operational data using the attention method. Then, the difference between the 

prediction and the actual data is calculated to determine the anomalies.  
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Convolution Neural Network is used in [28] combined with Isolation Forest models 

to build a hybrid attack detection framework for ICS. The proposed framework consists 

of two stages trained independently: the features extraction stage using 1D-CNN and 

the detection stage using the Isolation Forest. An autoencoder based on 1D-CNN is 

trained to extract features from the continuous-time signals (i.e., sensor measurements). 

The Isolation Forest model is then trained to perform the detection using the extracted 

features combined with the actuator's signals. In [22], an anomaly detection approach 

is proposed based on measuring whether the predicted values deviate from the observed 

values using 1D CNN. CNN is trained as a time series prediction model to predict the 

future values of the features. Then, to detect the anomalies, the differences between the 

predicted and actual values are calculated, and the z-score of each feature is compared 

to empirically predefined thresholds to determine anomaly existence. 

Other types of neural networks are used for IDS in CPS. For example, an anomaly 

detector for critical infrastructure based on a probabilistic neural network (PNN) was 

proposed in [20]. The PNN consisted of four layers, and the Bayesian strategy is used 

to map the input variables to output classes. Moreover, Li et al. [26]  proposed a 

Multivariate Anomaly Detection framework with Generative Adversarial Networks 

(MAD-GAN). To detect anomalies, both the GAN's discriminator and generator were 

exploited. The discriminator is used to classify the time series input and the generator 

is used to measure the residual between the input and the reconstructed samples by the 

generator. Then, the two losses are combined to detect possible anomalies in the data. 

Shalyga et al. [23] used a genetic algorithm to find the best neural network architecture 

for anomaly detection. The best model was based on the multilayer perceptron. The 

detection method is based on time series forecasting, and the mean error is used to 

report an anomaly if the error is greater than the 99th percentile of the mean error. 
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 In [24], two unsupervised machine learning methods are compared for anomaly 

detection. The first method is LSTM based Deep Neural Network (DNN), which is used 

to implement probabilistic outlier detection. The second method is the one-class 

Support Vector Machine (SVM) used with the Radial Basis Function kernel to learn 

non-linear classification boundaries. DNN outperformed SVM with an improvement of 

0.4 in terms of F1-score. Lin et al. [29] used a different approach for anomaly detection 

by building a one-class classifier using a graphical-based approach (TABOR). Timed 

automata are used to model the behavior and the dynamics of the sensors and actuators. 

Then, Bayesian Networks are trained to capture the dependencies between the 

variables. TABOR works as a one-class classifier to detect any deviations from the 

normal learned behavior.  

2.2.1.2. Attention-based IDS 

The authors in [30] proposed an anomaly detection model for an ICS network in a 

real intelligent charging station and power supply system. The proposed model aimed 

to leverage the sequence relationship between network packets by capturing multi-

dimensional features from the traffic using Multi-Head Attention (MHA). The MHA 

helps in learning information from different traffic packets from different 

representation subspaces. The scaled dot-product is used as the attention function, and 

a residual connection is used to add the output of the MHA attention to the original 

data. The MHA layer's output is fed to a global average pooling and fully connected 

layers for classification. To evaluate the proposed model, two laboratory-scale State 

Grid ICS that reflect the industrial control network's characteristics are used. The results 

showed that the MHA model outperforms other methods such as LeNet, VGG, and 

AlexNet by an F1-score of 0.998. 
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An anomaly detection system of multi-stage attention with LSTM-based CNN is 

proposed in [31] for connected and automated vehicles. First, a CNN is used for the 

feature extraction, and the produced feature maps are converted into vectors to be fed 

to the Attention LSTM model. The softmax function is used for the attention weights, 

with Tanh as the alignment function. The attention mechanism aimed to analyze the 

data relationship and give scores to the data sequence based on their significance. The 

dataset used for evaluation included three sensors readings and four types of anomalies 

with different magnitudes. The results showed superior performance than other models 

even when the anomalous data had low magnitude in the input stream. 

An unsupervised attention-based deep learning framework is proposed in [32] for 

anomaly detection in network payloads and syscall traces. The proposed framework has 

three components. The first is the local model, which is implemented using either RNN 

or AutoEncoder (AE). The model used fixed-length subsequences to extract local 

features from the original input variable-length sequence. The second component 

constructs the normality clusters to represent the profile of the normal data. For 

clustering, the K-means algorithm is used to generate different clusters from the original 

training data to account for the normal data distribution irregularities. The third 

component is the attention network which aggregates the local feature vectors based on 

the normality. The additive attention is used to compute the correlation scores between 

the local feature vectors and the cluster centers. A global feature vector for each cluster 

is then calculated by the summation of the local feature vectors weighted by their 

attention distribution. For anomaly detection, the maximum likelihood estimation is 

used to select the final global representation from the set of global feature vectors for 

each cluster, and the vector with minimum distance is selected. The negative likelihood 

is used as the anomaly score to measure the distance between the sequence and the 
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center of the clusters. The sequence is considered anomalous if the score exceeds a 

user-defined threshold. The framework is evaluated on the CSIC-2010 and ADFA-LD 

datasets. The results showed superior performance compared to previous work and non-

attention models. 

Kundu et al. [33] proposed an unsupervised anomaly detection framework using an 

attention-based auto-encoder (A3D) to detect false data injection attacks. The A3D 

framework consists of two encoder layers followed by an attention layer to compute 

the optimal weight vectors of every timestep of the encoder output. The attention 

vectors are multiplied by the encoder output and serve as input to the decoder. The 

divergence of reconstruction error is utilized to detect and localize the attacks, and the 

threshold is set using the precision-recall curve. The used data are collected from a real-

world power grid, and a simulation of the grid is created to simulate the attack scenarios. 

The simulated attacks include compromising 4, 8, 12, 16, 20, and random devices out 

of 39 measuring devices. The A3D model showed consistent performance for all the 

attack scenarios ranging from 0.94 to 0.99 F1-score compared to other supervised and 

unsupervised non-attention models.  

In [34], a network intrusion detection model based on two attention mechanisms is 

proposed. The model consists of location-based attention, which is implemented by a 

fully connected layer with a softmax activation to assign weights to the input features 

based on their importance. Following that, two Bidirectional GRU layers are used to 

process the time series. Then, dot-product attention is adopted for utilizing the adjacent 

traffic information to predict the current. The traffic information is grouped into slices, 

and for each timestep, a hidden representation is computed by a single-layer perceptron. 

Then, the softmax function is used to obtain the attention weights, and the weighted 

sum is computed as the output of the attention layer. For evaluating the model, the 
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UNSW-NB15 dataset is used, and an improvement of 1.5% in the detection accuracy 

is achieved. 

2.2.2. Time Series Images 

The motivation of transforming time-series into images is to obtain a visual 

representation of the time series, which may reveal distinctive patterns that can be used 

to enhance the learning task. 

Yang et al. [35] proposed a method of imaging MTS data into 2D images by 

transforming each batch of the MTS into multiple images in which each image 

corresponds to one variable. Then the images are appended together vertically such that 

each time series is treated as an independent data channel. These aggregated images are 

then fed into CNN for classification.  

Similarly, in [36], the authors proposed an imaging MTS technique for sensors' 

classification by first transforming each time series into RGB colored images using 

GAF or MTF. Then, each image is separated into its three monochrome images so that 

for each mono-color, the images from all time-series are concatenated vertically into a 

bigger image of size 𝑚 ×  𝑠 ×  𝑚, where 𝑚 is the number of time-series and 𝑠 is the 

size of the individual images. Thus, the CNN will have 3 input channels; each 

corresponds to a mono-color and has a size of m x s x m.  

In [37], authors used the Gramian Angular Field and Recurrence Plot [38] to 

forecast the availability of crowdsourced services in a specific area based on their 

historical availability. For prediction, the obtained images are used as input to a residual 

learning-based deep neural network. The local phase quantization and local binary 

pattern features are extracted from the images. Then, Random Forest is used for 

classification. 
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In [39], the authors analyzed the fund price time-series data to provide a fund 

recommendation framework by using multiple variables. A total of 16 variables were 

considered, which are categorized into 4 data types. For learning, intervals of 60 trading 

days are used, and the variables are converted to 16 GAF matrices. To fuse the variables 

into one image, the 16 GAF matrices were learned as heat maps which are arranged in 

4x4 sequential data form using 4 different colors; each one corresponds to one data 

type. This arrangement results in 16 60x60 images concatenated into 240x240 images 

and fed as an input to the CNN. 
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CHAPTER 3: INTRUSION DETECTION SYSTEM BASED ON IMAGING TIME 

SERIES 

This chapter details the design of the intrusion detection system based on time series 

classification for CPS using imaging time-series approach and CNN. The high-level 

problem formulation for this IDS is: given a multivariate time-series of CPS data, either 

representing the physical process readings (i.e., sensors and actuators readings) or 

network traffic metrics, predict whether the system is operating normally or exhibiting 

abnormal behavior in the corresponding time-window.  

3.1. IDS-ITS Architecture 

Figure 3 depicts the proposed design for the Intrusion Detection System based on 

Imaging Time Series (IDS-ITS) for CPS. A sliding window-based approach is used for 

attack detection in which the time series is divided into 𝑇 time slots with an overlap 𝑙. 

The IDS-ITS takes as input a multivariate time series of size 𝑇 representing the physical 

process metrics of CPS (i.e., sensors and actuators) or network traffic to detect whether 

the data reflect the normal behavior of the system or exhibiting cyberattacks. The IDS 

will make a prediction every 𝑝 = 𝑇 − 𝑙. 

IDS-ITS network consists of two parts. The first part consists of two pathways. The 

first pathway is trained on the GAF images of the original MTS, 𝑆, of CPS attributes 

readings. For the second pathway, the input time series differs depending on the 

available data to the IDS. If the network data is available, the pathway is trained on the 

GAF images of the network traffic features extracted with the alignment of the process-

level data. Otherwise, the pathway is trained on the GAF images of artificial MTS 

representing the difference time series, 𝑆𝑑. This MTS is constructed by the difference 

between every two consecutive readings of the same attribute. Each pathway consists 

of 𝑁 3D-CNN blocks. Each 3D-CNN block consists of 1 convolution layer with ReLU 
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activation followed by a max-pooling layer. Then, the outputs of the pathways 𝑆𝐺𝐴𝐹 

and 𝑆𝑑_𝐺𝐴𝐹 are merged to obtain 𝑆𝐹. In the second part, the output 𝑆𝐹 is flattened and 

fed into a Batch Normalization layer followed by one fully connected layer and an 

output layer with sigmoid activation. The network is trained to minimize the cross-

entropy function  that measures how far is the network prediction 𝑌𝑝𝑟𝑒𝑑 from the actual 

output 𝑌𝑎𝑐𝑡𝑢𝑎𝑙.  

 

 

Figure 3: IDS-ITS architecture. 

 

3.2. Time-Series Images 

Our process of imaging time series is depicted in Figure 4. The Gramian Angular 

Field method [40] is used to obtain a visual description of the time series readings. In 

the following, we detail the process of generating the GAF images. 
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Figure 4: The process of imaging times series.  

 

Let X =  {x1, x2, … , xn} be a univariate time series of size 𝑛 and 𝑇 = 𝑡1, 𝑡2, … , 𝑡𝑛 is the 

corresponding timestamp i.e. 𝑥𝑖 is captured at a time 𝑡𝑖. The first step is to normalize 𝑋 

so that {𝑥𝑖}𝑖=1…𝑛 is in [−1,1]. This can be done as follows: 

    𝑥̂𝑖 =  
2𝑥𝑖 − max(𝑋) − min(𝑋)

max(𝑋) − min(𝑋)
 

The scaled time series denoted by 𝑋̂ is then transformed into polar coordinates. This 

can be achieved by applying the angular cosine on 𝑥𝑖̂ to obtain the angle and encoding 

the timestamp 𝑡𝑖 as the radius: 

{
Φ𝑖 = arccos(𝑥𝑖̂) , 𝑥𝑖̂ ∈ 𝑋̂

𝑟𝑖 =
𝑡𝑖

𝑐
, 𝑡𝑖 ∈ 𝑇

 

where 𝑐 is a constant to control the span of the polar coordinates. The GAF images can 

be constructed using Gramian Angular Summation Field (GASF) and Gramian Angular 

Difference Field (GADF). The motivation is to exploit the temporal correlation between 

the time intervals of the same attribute by trigonometric means. 

GASF is a matrix of the form: 

𝐺𝐴𝑆𝐹 = (

cos(Φ1 +  Φ1) … 𝑐𝑜𝑠(Φ1 +  Φ𝑛)

𝑐𝑜𝑠(Φ2 +  Φ1) … 𝑐𝑜𝑠(Φ2 +  Φ𝑛)
⋮ ⋱ ⋮

𝑐𝑜𝑠(Φ𝑛 +  Φ1) … cos(Φ𝑛 +  Φ𝑛)

) 
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Each 𝐺𝐴𝑆𝐹𝑖,𝑗 represents the temporal correlation by the summation of angular 

directions. The main diagonal of 𝐺𝐴𝑆𝐹 is the special case which represents the original 

angular information. 

GADF is a matrix of the form: 

𝐺𝐴𝐷𝐹 = (

cos(Φ1 −  Φ1) … 𝑐𝑜𝑠(Φ1 −  Φ𝑛)

𝑐𝑜𝑠(Φ2 −  Φ1) … 𝑐𝑜𝑠(Φ2 −  Φ𝑛)
⋮ ⋱ ⋮

𝑐𝑜𝑠(Φ𝑛 −  Φ1) … cos(Φ𝑛 − Φ𝑛)

) 

𝐺𝐴𝐷𝐹 reflects the temporal correlation by the difference of angular directions. Figure 

5 shows the GADF and GASF images of the Level Indicator Transmitter sensor (LIT-

101) from the SWaT-2015 dataset for both normal and attack instances.  

 

 

Figure 5: Gramian Angular Field of Level Indicator Transmitter sensor readings from 

the SWaT-2015 dataset for a window size of 30 seconds. 

 

The Gramian matrix has a size of 𝑛 ×  𝑛, where 𝑛 is the length of the raw time 

series. Piecewise Aggregation Approximation (PAA) is used to reduce the size of the 

image, which is a dimensionality reduction method for time-series data. PAA converts 

the time series from length 𝑛 to 𝑠 by dividing the time series into 𝑠 segments and replace 

the data points in each segment by their average value. After applying PAA, images of 

size 𝑠 ×  𝑠 are obtained. 
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3.3. Multivariate Time-Series 

The previous works for imaging MTS mostly use image concatenation to represent 

the images constructed from each time series into a 2D space. The main challenge of 

MTS classification is that the classifier has to capture the correlations and dependencies 

between the variables along with the features of the variables. The MTS consists of 

more than one time-dependent variable where each variable does not depend only on 

its previous values but also depends on the previous and current values of other 

variables. These dependencies introduce strong temporal correlations between the 

variables, which might not be captured by image concatenation. 

Our approach of imaging the MTS aims to preserve the temporal correlations by 

converting the time series into 3D images to capture more fine-grained representations 

of the features. The usage of 3D images will help capture the time dependencies by 

representing all the time series in the same time-space. To construct the 3D images, 

each MTS transformation will result in multiple images where each one corresponds to 

one univariate time series. All the images have the same size of 𝑠 ×  𝑠 where 𝑠 <  𝑛 

(𝑛 is the time series length). So, assuming there are 𝑚 variables, the transformation of 

each time window of the MTS to GAF will produce a 3D matrix of size 𝑚 ×  𝑠 ×  𝑠 

which can be perceived as a 3D image. 

3.4. Network Inputs 

There are two inputs to the IDS, the first input 𝑆 which is the MTS of the real 

readings of the variables in the CPS data. The MTS is defined as 𝑆 =  {𝑋1, 𝑋2, … , 𝑋𝑚}, 

where 𝑋𝑖 is a univariate time series and 𝑚 is the number of features in the dataset. All 

the univariate time series have the same length 𝑛, and the same timestamps 𝑇.  

For the second input, we consider two types. The first input type represents the 

difference time series 𝑆𝑑 = {𝑋𝑑1
, 𝑋𝑑2

, … , 𝑋𝑑𝑚
}, where 𝑋𝑑𝑖

 is a univariate time series 
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representing the difference between the readings at timestamp 𝑡 and the previous 

readings at timestamp 𝑡 − 1 such that each point 𝑥𝑑𝑡
∈ 𝑋𝑑𝑖

 is equal to 𝑥𝑑𝑡
= 𝑥𝑡 − 𝑥𝑡−1. 

The intuition behind the difference time series is that under normal operations of the 

CPS, the variations between every two consecutive readings are expected to be very 

small. On the other hand, in the case of cyber-attack, unexpected variations in the 

readings are usually exhibited.  

The second type of input is the network traffic. In this case, the same notations are 

applied where 𝑋𝑑𝑖
 refers to the time series of a specific network feature extracted by 

considering the aggregated network information at the same time-slots considered for 

collecting the process data. For example, if the process-level data are collected every 

second, the corresponding network features are extracted from all the packets in one 

second. Then, they are aggregated by either summing or averaging to have one input 

sample for each corresponding sample in the process-level data. Examples of 

aggregated network traffic are traffic volume, average inter-arrival time, and average 

response time.  

After constructing the input samples for both time series where each sample has a 

size of 𝑚 ×  𝑛, the samples are transformed into time series images using GADF or 

GASF to obtain images of size 𝑚 ×  𝑠 ×  𝑠. These images are the input to the CNN 

network. 

3.5. Merge Techniques 

The IDS network consists of two similar pathways 𝑆𝐺𝐴𝐹 and 𝑆𝑑_𝐺𝐴𝐹. The outputs of 

the two paths are merged to obtain 𝑆𝐹, which has the same 3D dimensions as the 

individual fused inputs, but a different number of activation maps based on the used 

merge technique. Several merge techniques are examined, which can be categorized 

into simple techniques and multimodal techniques. The simple techniques include 
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concatenation and addition. The multimodal techniques include the Compact Bilinear 

Pooling (CBP) and EmbraceNet. 

3.5.1. Concatenation  

A simple concatenation of two or more inputs where all the inputs to the 

concatenation layer have the same 3D dimensions. For example, assuming we have two 

inputs to the concatenation layer with sizes 𝑚 × 𝑠 × 𝑠 × 𝑓1 and 𝑚 × 𝑠 × 𝑠 × 𝑓2 where 

𝑓 is the number of activation maps determined by the number of filters in the previous 

convolution layer. Then the concatenation layer will stack the two inputs and result in 

one output of size 𝑚 × 𝑠 × 𝑠 × (𝑓1 + 𝑓2) 

3.5.2. Addition  

Element-wise addition consists of summing all the corresponding entries from 

all inputs. The output of the Add layer will have the same shape as its inputs. 

3.5.3. Compact Bilinear Pooling 

The bilinear pooling method computes the outer product of two vectors to 

produce a combined representation of the vectors. Lin et al. applied the bilinear pooling 

for fine-grained visual recognition [41]. The architecture consisted of two feature 

extractors represented by CNNs. The resulting vectors were multiplied by an outer 

product and pooled to obtain a bilinear vector that is fully connected to an output layer. 

Even though a significant improvement was achieved for the visual recognition task, 

the outer product operation results in a remarkably high dimension representation of 

the bilinear vector. To tackle this inefficiency, Gao et al. introduced compact bilinear 

pooling that compresses the bilinear pooling efficiently for one input [42]. The compact 

bilinear pooling was adopted by Fukui et al. for multimodal learning for the task of 

visual question answering and visual grounding [43]. 

CBP applies the count sketch projection function Ψ to each modality by 

projecting the vector 𝑣 ∈ 𝑅𝑛  to the vector 𝑦 ∈ 𝑅𝑑. To perform the projection, two 
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vectors are initialized randomly from a uniform distribution. The first vector 𝑠 ∈

{1, −1}𝑛, which has the same length as 𝑣 and contains either 1 or -1 for each index. The 

second vector ℎ ∈ {1, … 𝑑}𝑛, maps each index in 𝑣 to an index in 𝑦. To compute the 

values of 𝑦, first, it is initialized as a zero vector. Then for each element 𝑣𝑖, the 

corresponding element in ℎ is found, and 𝑦 is updated as: 

   𝑦[ℎ[𝑖]] = 𝑦[ℎ[𝑗]] + (𝑠[𝑖] × 𝑣[𝑖])  

After computing the count sketches for both modalities, the combined representation of 

the two modalities 𝑣1 and 𝑣2  is computed as: 

Φ(𝑣1, 𝑣2) =  𝐹𝐹𝑇−1(𝐹𝐹𝑇(𝑦1) ⊙ 𝐹𝐹𝑇(𝑦2)) 

where the outer product of the two vectors is replaced by a convolution of the count 

sketches vectors. Then, the convolution operation is replaced by an element-wise 

product in the frequency domain. In our work, CBP is used to get a combined 

representation of the two input paths. Figure 6 shows the steps of the CBP for two 

inputs. 

 

 

Figure 6: The steps of the multimodal compact bilinear pooling merge technique.  

 

3.5.4. EmbraceNet  

EmbraceNet [44] is a multimodal integration technique that consists of two 

components: the docking layers and embracement layers. The docking layers convert 

the input vectors to a dockable format to ensure that all vectors have the same size 𝑐. 

The conversion is done as: 
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𝑑𝑘 = 𝑓(𝑤𝑖 ∙ 𝑥 + 𝑏𝑖) 

where 𝑓, 𝑤𝑖, 𝑏𝑖, and 𝑥 are the activation function, the weight vector, the bias, and the 

input vector. In the embracement layer, the input vectors are combined into one vector 

of size 𝑐. First, for each index 𝑖 of the dockable vectors, a vector 𝑟𝑖 of a length equal to 

the number of inputs is created from a multinomial distribution such that only one value 

is equal to 1 and the rest are 0. Each value in the output vector is computed as: 

    𝑒𝑖 = ∑ 𝑟𝑖
𝑘 ∘ 𝑑𝑖

𝑘

𝑛

𝑘=1

 

where 𝑛 is the number of inputs. The output of the embracement layer combines data 

from all the inputs where 𝑟 determines which of the inputs contribute to each 

component in the output vector. Figure 7 illustrate the process of EmbraceNet with two 

inputs 𝑣1 and 𝑣2. 

 

 

Figure 7: The steps of EmbraceNet multimodal merge technique. 
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CHAPTER 4: INTRUSION DETECTION SYSTEM BASED ON MULTIMODAL 

ATTENTION NETWORK 

In this chapter, the design of the proposed Multimodal Attention Intrusion Detection 

System (IDS-MAN) is presented along with the details of all the constituent 

components. The IDS processes the inputs time series using GRU layers. Then a 

Multimodal Attention technique is used to capture the most important relationships 

between the different modalities.  

4.1. IDS-MAN Architecture 

The model aims to leverage the different data sources of the CPS to learn a joint 

representation and find some relationships between the inputs for enhancing the attack 

detection accuracy. Figure 8 depicts the architecture for the IDS-MAN model. The 

model consists of three components: the modality paths, the Multimodal Attention 

Network  (MAN), and the output network. First, the data extracted from each source 

are processed independently by different modality paths. The input data sizes differ at 

each path, while all the outputs share the same dimensions. The modalities 

representations are then passed to the multimodal attention layers to learn the pair-wise 

joint representation between every pair of modalities. After that, the outputs from the 

MAN layers and the modality paths are concatenated to represent the joint global 

representation of all the modalities and their relationships. The joint representation is 

then passed to a batch normalization layer to standardize its inputs, followed by a time-

distributed dense layer. The output network receives the flattened vector and passes it 

to a dense layer to reduce its dimension. The network is trained with joint supervision 

using two output layers, a softmax layer to separate the inter-class difference and a 

center loss layer to reduce the intra-class variations.  
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Figure 8: IDS-MAN architecture. 

 

4.2. Modality Path 

Separate network paths process the raw data from each modality before the fusion. 

Let 𝑋 =  {𝑥1, … , 𝑥𝑚} be the input to the IDS where 𝑚 is the number of modalities. 

Then 𝑥𝑖  ∈  ℝ𝑠× 𝑓𝑖, where 𝑠 is the number of timesteps that is unified for all the 

modalities, and 𝑓𝑖 is the number of features in the corresponding modality. Each 

modality path has 𝑁 GRU layers followed by one Dense layer. The output of the GRU 

layer can be represented by 𝑅𝑖 ∈ ℝ𝑠×𝑢, where 𝑢 is the number of units in the GRU 

layer. The output of the last GRU is passed to a time-distributed dense layer to process 

each temporal slice. The dense layer result in 𝐷 ∈ ℝ𝑠×𝑑, where 𝑑 is the number of units 

in the dense layer. For our model, we used bidirectional GRU (Bi-GRU) that consists 

of two GRUs. The first one processes the input in a forward direction where the state 

of each timestep is determined by the past timesteps. The second one processes the data 

in a backward direction in which the state of each timestep is determined by the future 

timesteps. The output is the concatenation of the forward and backward GRUs.   

4.3. Multimodal Attention Learning 

For the design of our IDS, we adopted the Multimodal Attention technique followed 

by [13]. The MAN layer receives the modalities' representations and learns the joint 
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representation for every pair of modalities. Figure 9 shows the inner computations for 

the MAN layer. Assuming we have two sources of data, 𝐷 and 𝑇. Then the modalities 

representations are 𝐷 ∈  ℝ𝑠×𝑑 and 𝑇 ∈  ℝ𝑠×𝑑 where 𝑠 is the timesteps and 𝑑 is the 

dimension of dense layer output. First, the cross-modality representations 𝑀1 and 𝑀2 

are computed by the dot product. Then, the attention weights for the 𝑀1 and 𝑀2 are 

calculated by the softmax function to assign probability scores to every timestep. 

 𝑀1 = 𝑇𝑇 ∙ 𝐷  and 𝑀2 = 𝐷𝑇 ∙ 𝑇  

 
𝑁1 =

𝑒𝑀1(𝑖,𝑗)

∑ 𝑒𝑀1(𝑖,𝑘)𝑠
𝑘=1

 

𝑓𝑜𝑟 𝑖, 𝑗 =  1, … , 𝑠 

 
𝑁2 =

𝑒𝑀2(𝑖,𝑗)

∑ 𝑒𝑀2(𝑖,𝑘)𝑠
𝑘=1

 

The intuition behind the dot product operation is to find the association between the 

feature vectors of every two timesteps in the two modalities. The attention weights are 

computed to emphasize the more contributing associations. After that, the modality-

wise attentive representations are calculated as follows: 

𝑂1 = 𝑁1 ∙ 𝑇 and 𝑂2 = 𝑁2 ∙ 𝐷 

Multiplying the attention weights by the modality representation implies that the 

modalities will have different contributions to the final representation. Finally, element-

wise matrix multiplication is computed to model the interaction between the 

multimodal specific representation of each modality (i.e., O) and the other modality 

representation. Then, the concatenation of the two matrices accounts for the output of 

the MAN layer.  

𝐴1 =  𝑂1 ⊙ 𝐷 and 𝐴2 =  𝑂2 ⊙ 𝑇 

𝑂𝑢𝑡𝑝𝑢𝑡(MAN) =  𝑐𝑜𝑛𝑐𝑎𝑡[𝐴1, 𝐴2] 
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Figure 9: The multimodal attention computations. 

 

After obtaining the pair-wise joint representations for every pair of modalities, all the 

outputs of the MAN layers are concatenated together with the modality paths' outputs 

obtaining a joint global representation. The output of the concatenation is 𝐹 ∈  ℝ𝑠×𝑑𝑐
 

where 𝑑𝑐 is computed as: 

𝑑𝑐  =  𝑠 × 𝑑(𝑚 + 2𝐶(𝑚, 2)). 

𝐶(𝑚, 2) =  
𝑚!

(2! (𝑚 − 2)!)
 

After that, a Batch Normalization layer is used to stabilize the network's training, 

followed by a time-distributed dense layer to perform the same processing to each 

timestep. The output of the dense layer is then passed to a flatten layer. 

4.4. Output Network 

The output network consists of three layers. The first one is a dense layer to reduce 

the size of the flattened vector. The output of this layer serves as the vector 

representation of the input which is used in the detection. It can be represented as 𝑉 ∈

ℝ𝑑𝑣
, where 𝑑𝑣 is the number of units in the dense layer. The second layer is a softmax 

layer to normalize the output to a probability distribution. The third layer is a center 
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loss layer which is used to learn embedding representations of the classes. The network 

is trained using joint supervision between the softmax loss 𝐿𝑠 and the center loss 𝐿𝑐. 

The total loss is given as: 

𝐿 =  𝐿𝑠 + 𝜆𝐿𝑐 

where 𝜆 is a scalar used to balance between the two losses.  

4.4.1. Center Loss 

The center loss is proposed in [45] to enhance the discriminative power of the 

learned features in deep neural networks and decrease the variance of the intra-class 

features. The intuition behind the center loss is to learn a center of deep features for 

each class and train the network to minimize the distance between the deep features and 

their class center. In this work, we adopt the same computations of the center loss but 

extend the deep feature's dimension to learn embedding vectors for the classes instead 

of centers. The center loss function is defined as follow: 

𝐿𝑐 =
1

2
∑‖𝑥𝑖 − 𝑣𝑦𝑖

‖
2

𝑏

𝑖=1

 

where 𝑏 is the batch size and 𝑣𝑦𝑖
 denotes the embedding vector of the class 𝑦𝑖. 

Typically, the class embedding vectors should be updated every epoch; however, 

because the network is trained using mini-batches of size 𝑏, a scalar parameter 𝛼 is 

introduced to control the learning rate of the embedding at each iteration. The update 

equation of the embedding vector is the same as the update equation for the centers 

proposed in the original paper, which is represented as follow:  

𝑣𝑗
𝑡+1 = 𝑣𝑗

𝑡 − 𝛼∆𝑣𝑗
𝑡 

∆𝑣𝑗 =
∑ 𝑣𝑗 − 𝑥𝑖 ∈𝑏

𝑖=1  𝑗

1 + ∑ (𝑦𝑖 = 𝑗)𝑏
𝑖=1
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4.5. Attacks Detection 

After training the network to produce embedding vectors for the classes, the cosine 

similarity is used to measure the similarity between the learned classes' embedding 

vectors 𝑣𝑗  and the vector of the input's deep learned features 𝑥𝑖. The cosine similarity 

between 𝑣𝑗  and 𝑥𝑖 is calculated as: 

cos(𝜃) =
𝑣𝑗 ∙ 𝑥𝑖

 ‖𝑣𝑗‖‖𝑥𝑖‖
 

Then the classification is determined based on the class with the highest similarity.  
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CHAPTER 5: INTRUSION DETECTION SYSTEM EVALUATION 

5.1. CPS Datasets 

There is a lack of available CPS datasets that provides multimodal data from 

different CPS layers. Thus, we used the SWaT-2015 dataset, which contains process-

level data from different physical process stages. In addition, we used the SWaT-2019 

dataset, which is a small-scale dataset containing process-level and network-level data  

5.1.1. The Secure Water Treatment Datasets 

For evaluating the proposed models, two datasets constructed from the Secure 

Water Treatment (SWaT) fully operational testbed are used  [46].  The process of SWaT 

has six stages. In the first stage, the raw water is stored in a tank, then passed to the 

second stage to assess the water quality. In the third stage, the water is filtered to remove 

unwanted materials, followed by a dechlorination process to remove any remaining 

chlorine in the fourth stage. After that, the water goes through the reverse osmosis 

system to reduce the inorganic impurities. At the last stage, the water is stored and 

prepared for distribution. Each stage in the process contains multiple sensors and 

actuators. Besides the physical process, the SWaT testbed communication is designed 

to resemble the real communications in CPS, consisting of a layered communication 

network of two levels, programmable logic controllers, human-machine interfaces, and 

a historian data server. The used datasets are collected using different data collection 

setups in 2015 and 2019.   

5.1.1.1. SWaT 2015 

This dataset contains data from 24 sensors and 27 actuators across the six stages 

of the process at the physical process level. The data were collected for 11 days, 

considering the testbed's normal operation for 7 days and several attack scenarios for 

the remaining 4 days. A total of 36 attack scenarios were conducted on different sensors 
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and actuators categorized into single-stage single-point, single-stage multi-point, multi-

stage single-point, and multi-stage multi-point. Each attack lasted between few minutes 

to several hours. During this period, the sensors' and actuators' data were continuously 

recorded every second in the historian server, resulting in a dataset containing 946,722 

samples for 51 attributes. Table 1 presents the attack scenarios in the SWaT-2015 

dataset. 

 

Table 1: Attack Scenarios in SWaT-2015 Dataset. 

Attack# Attack Point Attack Scenario 

1 MV-101 Open MV-101 to cause tank overflow 

2 P-102 Turn on P-102 to cause pipe bursts 

3 LIT-101 Increase by 1 mm every second to damage P-101 and 

cause tank underflow 

6 AIT-202 Set AIT-202=6 to cause P-203 to turn off and change the 

water quality 

7 LIT-301 The water level increased above HH, which causes the 

stop of the inflow. 

8 DPIT-301 Set DPIT >40kpa, which causes a decrease in the water 

level of tank 401 and  

an increase in the water level of tank 301 

10 FIT-401 Set FIT-401 <0.7 to shutdown the UV. 

11 FIT-401 Set FIT-401=0 to shutdown the UV. 

13 MV-304 Close MV-304 to halt stage 3. 

14 MV-303 Do not let MV-303 open to halt stage 3. 

16 LIT-301 Decrease water level by 1mm each second to cause tank 

overflow. 

17 MV-303 Do not let MV-303 open to halt stage 3. 

19 AIT-504 Set AIT-504=16 uS/cm, which causes the RO to 

shutdown and water go to drain. 

20 AIT-504 Set AIT-504=255 uS/cm, which causes the RO to 

shutdown and water go to drain. 

21 MV-101, 

LIT-101 

Keep MV-101 on and set LIT-101=700 mm to cause tank 

overflow 

22 UV-401, 

AIT-502, P-

501 

Stop UV-401, set AIT502=150, and force P-501 to 

remain on to damage the RO. 

23 P-602, DIT-

301, MV-302 

Set DPIT-301>0.4 bar, keep MV-302 open, and keep P-

602 closed to cause a system freeze.  

24 P-203, P-205 Turn of P-203 and P-205 to change water quality 
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Attack# Attack Point Attack Scenario 

25 LIT-401, P-

401 

Set LIT-401=1000 and keep P402 on to cause tank 

underflow. 

26 P-101, LIT-

301 

P-101 is turned on continuously and set LIT-301=801 

mm, which causes  

tank 101 underflow and tank 301 overflow 

27 P-302, LIT-

401 

Keep P-302 on, and set LIT401=600 mm for 9 minutes to 

cause tank overflow 

28 P-302 Close P-302 to stop the inflow of tank T-401 

29 P-201, P-

203, P-205 

Turn on P-201, P-203, and P-205 to cause wastage of 

chemicals 

30 LIT-101, P-

101, MV-201 

Turn on P-101 and MV-101, set LIT-101=700 mm, P-102 

started itself because LIT301 level became low. This 

cause tank 101 underflow and Tank 301 overflow 

31 LIT-401 Set LIT-401 to less than L to cause tank overflow 

32 LIT-301 Set LIT-301 to above HH to cause tank underflow and 

damage P-302 

33 LIT-101 Set LIT-101 to above H to cause tank underflow and 

damage P-101 

34 P-101 Turn P-101 off to stop the outflow. 

35 P-101; P-102 Turn P-101 off and keep P-102 off to stop the outflow 

36 LIT-101 Set LIT-101 to less than LL to cause tank overflow 

37 P-501, FIT-

502 

Close P-501 and set FIT-502=1.20 after 90 seconds to 

reduce the output. 

38 AIT-402, 

AIT-502 

Set AIT402=260 and AIT502=260 to cause the water to 

go to the drain because of overdosing 

39 FIT-401, 

AIT-502 

Set FIT-401=0.5 and AIT-502=140 mV to shutdown UV, 

and water  

will go to RO. 

40 FIT-401 Set FIT-401=0 to shutdown UV, and water will go to RO. 

41 LIT-301 Decrease value by 0.5 mm per second to cause tank 

overflow 

 

5.1.1.2. SWaT 2019 

This dataset considered two modalities of data: the physical process and network 

traffic. The duration is  3 hours and 40 minutes, which results in 13211 samples for the 

process data covering 81 sensors and actuator values. The raw network traffic is 

provided in pcap files capturing all the network activities of the testbed. The dataset 

contains two attack scenarios. For the first attack, the historian data are exfiltrated by 

injecting malware into the SCADA workstation using a USB thumb drive. The attack 
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has 4 instances with a duration of 5 minutes for each one. In the second attack, the 

SCADA workstation is infiltrated by the command and control (C2) malware to disrupt 

the sensor and actuator readings. The attack has 5 instances with a duration of 3 minutes 

each. The dataset does not provide the details of the attacks' targets and their impact. 

For our experiments, we extracted several protocol-based features from the 

network traffic. The timestamps of the network features are aligned with the recorded 

process features. Also, a time window of 1 second is used since the process features are 

recorded every 1 second. For each protocol, 6 features are extracted at the packet level. 

Then the feature's values are either averaged or summed for the duration of the time 

window. Along with the protocol-based features, 3 other features are extracted to 

describe the overall network traffic characteristics for the time window duration. The 

total number of features is 207 with 34 different protocols. Table 2 present the extracted 

features and their description. For this dataset, we have two modalities: the process data 

𝑃 ∈ ℝ𝑠×81, and the network data 𝑁 ∈ ℝ𝑠×207 where s is the size of the time window. 

 

Table 2: The Network Features for SWaT 2019 Dataset. 

Features Description 

Overall Average time-delta The average time between every two consecutive 

packets. 

Total data size The total size of the exchanged data. 

Total volume The total number of packets. 

Protocol-

based 

TCP stream average 

delta-time 

The average time between every two consecutive 

packets in the same TCP stream. 

Average response 

time 

The average time taken by the request to reach the 

destination and acknowledged by the sender 

Average frame 

length  

The average frame length of all the packets for the 

protocol 

Total data size The total size of the exchanged data across the 

network for the protocol 

Total frame length The total frame length of all the packets for the 

protocol 

Total volume   The total number of packets with the same 

protocol 
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5.2. Evaluation Metrics 

To evaluate the performance of the proposed models, we used precision, recall; 

also called sensitivity or true positive rate (TPR), specificity; also known as the true 

negative rate (TNR), F1-score, and accuracy.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑇𝑃𝑅) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑡𝑦 (𝑇𝑁𝑅) =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

𝐹1 =
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

where true positive (TP) refers to the correctly detected attacks, true negative (TN) 

refers to the normal samples that are classified correctly, false positive (FP) indicates 

having a normal sample that is misclassified as an attack, and false negative (FN) is 

when an attack sample is misclassified as normal. The accuracy and F1-score show the 

overall performance of the IDS. Thus, the hyperparameters tuning will be based on 

those two metrics. In addition, the recall for each attack is recorded for the sake of 

comparing our results with previous works. 

5.3. Data Preprocessing 

The SWaT-2015 dataset contains 946,722 samples with a distribution of 94% 

for the normal class and 6% for the attack class. Selecting the entire samples of the 

dataset would introduce a huge imbalance between the normal and the attack samples, 

and the prediction would be biased towards the normal class. Hence, in our experiment, 

only the 449,921 samples that are recorded under the attacks are considered. For the 

IDS-ITS model, the data is further balanced by performing undersampling for the 
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normal samples and oversampling for the attack samples. On the other hand, for the 

IDS-MAN model, imbalanced data is used.  

The datasets contain binary and continuous features with different ranges for 

each feature. Thus, feature normalization is needed to ensure that all features have the 

same scale. Feature normalization makes the learning process easier by ensuring that 

all the features have the same significance in training and avoid having the results 

skewed toward a particular feature. Standard normalization is used for the SWaT-2015 

dataset in which the data are standardized by removing the mean then scaling to the unit 

variance. For the SWaT-2019 dataset, the min-max normalization is used, which scales 

the data between [0,1]. 

For data splitting, we used an 80%-20% train-test split with cross-validation. In 

the SWaT-2015 datasets, the attacks are not repeated, so the testing is performed on 

unknown attacks for each fold. For the SWaT-2019 dataset, the splitting ratios vary for 

each split to ensure no attack instance span over the two splits.  

5.4. Experimental Settings  

The proposed models are implemented using the TensorFlow framework high-

level API, Keras. Our networks are created using Keras functional API since they have 

non-linear topologies and more than one input. The evaluation for the SWaT-2019 was 

carried using the Google Collaboratory platform with Google compute engine backend. 

For the SWaT-2015, the evaluation was performed on a Quad GPU Desktop with RTX 

6000. For evaluation, 5-fold cross-validation is used to test the models' performance on 

all the attack scenarios.  
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5.5. IDS-ITS Evaluation Results 

5.5.1. Model Parameters 

For the IDS-ITS model, the hyperparameters that need tuning are the window size 

and the sliding period. Besides, the network's hyperparameters which are the number 

of CNN blocks, the CNN layers' parameters, and the regularization values. 

5.5.1.1. Window Size 

To convert the time series to images, a window-based approach is used for attack 

detection. The choice of the time window size plays a major role in the performance of 

the anomaly detection system. The window size determines the most suitable period 

that reflects the system's behavior to detect the corresponding label for this period. 

Figure 10 shows the performance of the different window sizes ranging from 10s to 60s 

using a sliding window of 𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑖𝑧𝑒/2. For the SWaT-2015 dataset, smaller time 

windows tend to have better performance in which the time windows of 10s and 30s 

achieved the same F1-score. However, the lowest recall is obtained by the 10s window. 

Thus, for the SWaT-2015 dataset, we choose the time window of 30s, which provided 

the best balance between the precision and the recall. For SWaT-2019, we choose the 

time window of 40s, which obtained the highest F1-score. 

 

 

Figure 10: The evaluation metrics vs. window size ranging from 10s to 60s for the IDS-

ITS model. 
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After choosing the most suitable window size, we tune the period of the window 

slide. Figure 11 shows the model's performance with a sliding window of values 

ranging from 1s to 30s for the SWaT-2015 dataset. A sliding window of 1s means that 

the model will make a prediction as soon as a new sample arrives because in the used 

datasets, the data are collected every second. On the contrary, a sliding window of 30s 

means there will be no overlap between the samples, and only one prediction will be 

performed every 30s. For the SWaT-2015 dataset, the model trained with a sliding 

window of 1s obtained the best performance in terms of precision, recall, F1-score, 

accuracy, and TNR. For SWaT-2019, we used a sliding window of 1s to increase the 

number of samples since the dataset is small. 

 

 

Figure 11: The evaluation metrics vs. sliding period ranging from 1s to the window size 

for IDS-ITS 

 

5.5.1.2. Network Parameters 

The network's hyperparameters are tuned to achieve a balance between 

overfitting and underfitting. The hyperparameters of the IDS-ITS network include the 

number of CNN blocks, the CNN layers' parameters such as the number of filters and 

the kernel size, the activation function, the regularization value, and the learning rate. 
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Table 3 provides the tuned values. For training, we used Adam optimizer with an initial 

learning rate of 0.001. Moreover, to avoid overfitting, we used an early stopping 

condition to stop the training when the loss does not improve 3 epochs.  

 

Table 3: The Results of Hyperparameter Tuning for IDT-ITS. 

Hyperparameter Value 

CNN Layer 1 32 

CNN Layer 2 64 

CNN Layer 3 128 

CNN Kernel 3 

Dense Layer 256 

Activation ReLU 

L2 Regularization (hidden layers) 0.01 

L2 regularization (output layer) 0.3 (SWaT-2015), 0.01 (SWaT-2019) 

Initial Learning Rate 0.001 

 

5.5.2. Merge Techniques 

To compare the different merge approaches, similar models are trained with the 

different techniques. For SWaT-2015, the two inputs have the same dimension, so the 

4 merge techniques are used. On the other hand, for SWaT-2019, the images of the two 

modalities have different dimensions because each has a different number of features. 

So, to map the inputs to the same dimension before merging the two modalities, the 

images are flattened and passed to a dense layer. Thus, only three merge techniques are 

used since the CBP requires the input to be in image format. Figure 12 shows the 

performance of the different models trained using the 4 merge methods along with 

models that are trained using only one input. We refer to compact bilinear pooling as 

CBP, concatenation as CC, addition as Add, EmbraceNet as ENet. For SWaT-2015, OP 

refers to a one-path model trained on the original time-series images. For SWaT-2019, 

PP refers to the model trained using process-level data, and NP refers to the model 

trained with the network-level data.  
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For SWaT-2015, ENet achieved the best performance in terms of F1-score, 

accuracy, precision, and TNR, followed by CBP by a difference of 0.5% in the accuracy 

and F1-score. On the other hand, the CC obtained the highest recall but a lower F1-

score and accuracy by 8% compared to the ENet. Moreover, the models with two paths 

show an improvement of 0.3%, 0.6%, 8%, and 9% for Add, CC, CBP, and ENet, 

respectively, in F1-score compared to the OP model.  

 For SWaT-2019, ENet obtained the best performance for all the evaluation 

measures, followed by CC with accuracies of 79% and 76% and F1-scores of 56% and 

51%. On the other hand, the PP and NP models showed significantly lower F1-scores 

falling behind the ENet model, with 29% and 23% differences. The Add model 

achieved a slightly better F1-score compared to the PP and NP models. However, it 

obtained the lowest accuracy among all the models. 

 

 

Figure 12: The evaluation metrics for the different merge techniques for the IDS-ITS 

model. 

 

5.5.3. Input Paths for SWaT-2015 

The last column in Table 6 shows the recall values for each attack for five different 

variations of IDS-ITS for the SWaT-2015 dataset. To emphasize the significance of the 

difference time series 𝑆𝑑, the first model is trained using only one path with the original 
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time series 𝑆 while the other four are trained using the two paths with different merge 

techniques. The OP model achieved a better detection rate for 11 attacks compared to 

the average results of the two-path models, with an increase ranging from 1% to 37%.  

It is worth noting that most of the attack that obtained remarkably better results with 

the OP model target actuators with discrete values. This is because, for any variations 

in the actuator’s readings, the values of the difference between every two consecutive 

readings are discrete. In the case of attacks, the variations in the difference values only 

occur at the instances that indicate the start and the end of attacks. All other instances 

in which the values do not change have values equal to 0. Thus, adding the second 

network path that is trained on the difference time series does not contribute 

significantly in distinguishing these attacks since most of the records are zeros. For the 

two-path models, most of the attacks that obtained a remarkably higher detection rate 

target sensors with continuous values with small consistent variations in their readings. 

So, in general, for normal instances, the difference time series values are not constant.  

5.6. IDS-MAN Evaluation Results 

5.6.1. Model Parameters 

For the IDS-MAN model, three hyperparameters need to be tuned: the window size, 

the dimension of embedding vectors for the classes, and the learning rate 𝛼 for the 

embedding update. Moreover, all the network's hyperparameters need to be tuned, 

including the number of GRU layers, the number of units, and the regularization values. 

5.6.1.1. Window Size 

The window size refers to the number of timesteps to be considered for each 

input to the network. To tune the window size, we choose to compare between the sizes 

of 120, 90, 60, and 30 seconds with a sliding window of 5 seconds for SWaT-2015 and 

1 second for SWaT-2019. Figure 13 shows the results for both datasets. For SWaT-
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2015, we choose a window size of 30s, which achieved a slightly higher F1-score and 

TNR. For SWaT-2019, the window of size 60s obtained the best F1-score, accuracy, 

precision, and TNR. 

 

 

Figure 13: The evaluation metrics vs. window size ranging from 30s to 120s for the 

IDS-MAN model. 

 

After choosing the window size, we tune the period of the window slide. Figure 

14 shows the model's performance with a sliding window of values ranging from 1s to 

30s for the SWaT-2015 dataset. The model trained with a sliding window of 5s obtained 

the best performance in the recall, F1-score, and accuracy. For SWaT-2019, we used a 

sliding window of 1s to increase the number of samples since the dataset is small. 
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Figure 14: The evaluation metrics vs. sliding period ranging from 1s to the window size 

for IDS-MAN. 

 

5.6.1.2. Embedding vectors dimension 

Figure 15 shows the evaluation results for different dimensions of the embedding 

vectors. The dimension is tuned for the values 32, 64, 128, 256, and 512 for SWat-2015 

and 2, 8, 16, 32, and 64 for SWaT-2019. For SWaT-2015, the dimension of 32 achieved 

the best precision, TNR, and F1-Score, but the lowest recall. On the other hand, the best 

recall is obtained by the 256 dimension. Accordingly, we choose the dimension of 128, 

which provided the best balance between the precision and recall obtained by the other 

dimensions. For SWaT-2019, the embedding dimension of 32 achieved the best F1-

score, accuracy, precision, and recall. 
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Figure 15: The evaluation metrics vs. embedding dimensions for the IDS-MAN model. 

 

5.6.1.3. Learning Rate for the Embeddings 

The learning rate 𝛼 controls the update of the embedding vectors at each iteration 

to avoid the large change that could happen due to unrepresentative batches. Figure 16 

shows the IDS's performance for 𝛼 ranging from 0.1 to 1 with a step of 0.1. As shown 

from the figure, for SWaT-2015, the values of F1-score, recall, TNR, and accuracy are 

stable for 𝛼 between 0.1 to 0.6. On the other hand, as 𝛼 increases, the performance 

exhibits an increase in the recall value with the cost of the degradation of all other 

metrics. For SWaT-2019, no noticeable trend is observed. We choose 𝛼 = 0.4, which 

provided a balance between the TNR and TPR for both datasets. 

 

 

Figure 16: The evaluation metrics vs. learning rate 𝛼 for the IDS-MAN model. 
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5.6.1.4. Network Parameters 

The hyperparameters of the IDS-MAN network are the number of GRU layers, 

the number of units in the GRU and dense layers, the activation functions, the 

regularization value, and the learning rate. Table 4 provides the tuned values for the 

two datasets. For training, we used Adam optimizer with an initial learning rate of 

0.001. Moreover, to avoid overfitting, we used early stopping to stop the training when 

the loss does not show improvement for 10 epochs and return the weights of the best 

epoch.  

 

Table 4: The Results of Hyperparameter Tuning for IDS-MAN. 

Hyperparameter Value (SWaT-2015) Value (SWaT-2019) 

GRU Units 1 32 300 

GRU Units 2 64 - 

GRU Dropout 0 0.5 

Dense Units (before MAN) 64 128 

Dense Units (after MAN) 128 128 

Dense Dropout  0 0.7 

Activation LeakyReLU Tanh 

L2 Regularization  0.8 0.1 

Initial Learning Rate 0.001 0.001 

 

5.6.2. Merge Techniques 

For the SWaT-2015 dataset, we consider each stage of the process as a separate data 

source. On the other hand, for SWaT-2019, two different data sources are available, 

which are the physical process and the network traffic. 

To evaluate the significance of using different data sources for the IDS, we build 

three different models for SWaT-2019. Two models use data from one source, while 

the third model uses the two modalities. The model with two modalities uses the 

multimodal attention network (MAN). For the models with one modality, MAN is 

replaced by Self Attention (SA). Figure 17 shows the evaluation measures for the three 
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models. The model with two modalities achieved a remarkably higher F1-score with an 

increase of 22% and 38% for the process and network models. Moreover, significant 

improvements are shown in the accuracy, precision, and TNR. Meanwhile, the recall 

remains relatively constant for the three models.  

 

 

Figure 17: The evaluation metrics for the IDS-MAN model and the two SA models. 

 

To evaluate the effectiveness of using multimodal attention to combine the 

modalities, we constructed two models using simple merging techniques, which are 

concatenation and addition. Figure 18 shows the performance of the two merge 

techniques and the IDS-MAN. The IDS-MAN obtained the best performance for all the 

evaluation measures with an F1-scores of 71%, followed by CC 62% and Add 50% for 

SWaT-2019. The same sequence is observed with SWaT-2015 with F1-scores of 87%, 

75%, and 62%.  
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Figure 18: The evaluation metrics for the IDS-MAN and different merge techniques. 

 

5.7. Comparison with Related Work 

5.7.1. Evaluation using SWaT-2015 Dataset 

IDS-ITS is able to detect all the attacks with an average detection rate of 82%. The 

IDS-MAN achieved a better detection rate of 84%; however, two attacks were not 

detected. Some attacks were harder to detect due to the nature of the attack target. IDS-

ITS obtained low detection rates for attacks 13 and 14, while attack 14 is not detected 

by IDS-MAN. Those attacks target the same type of actuators in the same process: the 

motorized valves MV-303 and MV-304. The two attacks aimed to halt the operation of 

process 3. However, as mentioned in the dataset description, unexpected outcomes 

occurred, and the intent of the attacker was not achieved. Thus, these attacks were 

harder to detect since no effects are shown on other variables in the same process. 

Moreover, attacks 6, 19, 20, and 38 got low detection rates with IDS-ITS. Meanwhile, 

for IDS-MAN, attacks 3, 19, 31, 33, and 38 obtained low detection rates. All of those 

attacks did not cause an actual change in the process.  

The data types of the attack targets affect the detection of the attacks. Generally, all 

the attacks that target the motorized valves (MV) and pumps (P), which are actuators 

with discrete values, have a lower detection rate than the average. In IDS-ITS, the 

average detection rate for the attack with discrete value targets is 27% compared to 68% 
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for the attacks that have at least one target with continuous values. This behavior is only 

observed with the IDS-ITS since small transitions in the actuators' values are exhibited 

under attacks. So it was harder for the network to detect the patterns of the instances 

for these attacks. An exception to that is attack 28, which lasted for more than 9 hours. 

This suggests that the attack period also affects the detection rate of the attacks. The 

results show that, generally, the attacks that span more than 30 minutes have a higher 

detection rate with an average of 69% and 62% compared to an average detection rate 

of 48% and 40% for attacks with a period of less than 30 minutes for the IDS-ITS and 

IDS-MAN respectively. Since the attack period determines the number of instances 

used for training the model, attacks with larger periods will have higher chances of 

getting recognized.  

Another reason that affects the detection rate is the variance of the attack targets. 

The attacks with level sensors (LIT in SWaT) as the attack targets have significantly 

higher detection rates. It was observed that the values of these sensors have a very high 

variance. This observation also shows that variables with discrete values have lower 

detection rates since those variables typically tend to have low variance. This behavior 

is exhibited only with the IDS-ITS because of the characteristic of the imaging time-

series approach. GAF images capture the temporal correlations between every two 

points by the difference or the summation of their angular directions. So, having low 

variance results in images with similar patterns for normal and attack instances since 

the values do not change frequently, and the angular cosine will be equal for many of 

the values. On the other hand, for variables with high variance, different patterns are 

obtained from the normal and attack instances since the attacks set the variables to 

values beyond the normal range. Hence, the angular cosine values belonging to the 
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normal and attack instances are different, producing GAF images that can be more 

distinguishable. 

The IDS-MAN showed superior performance for detecting the multi-points attacks 

that target more than one sensor or actuator either at the same stage or at different 

stages. The average detection rate for multi-point attacks is 72% compared to 52% for 

single-point attacks. The contrary is observed for the IDS-ITS in which the single-point 

attacks obtained an average detection rate of 58% compared to 49% for the multi-point 

attacks. This result suggests that the IDS-MAN is able to provide better discoverability 

of some of the attacks by capturing the correlations between the sensors and actuators 

at the different stages of the process. 

The performance evaluation results for the SWaT-2015 dataset are summarized in 

Table 5. The accuracy and TNR are recorded; however, most related works did not 

include these measures. Moreover, Table 6 shows a comprehensive comparison with 

previous works in terms of the recall values per attack. The works for DNN, SVM, 

TABOR, 1D CNN, MLP, MAD-GAN, and 1D CNN-IF are described in section 2.2.1.1. 

The DNN and SVM [24] are considered as the baseline since they are the first work 

that used this dataset for IDS. The comparison shows that the IDS-ITS model achieved 

better results for 12 attacks. Moreover, it took the lead in detecting attacks 13 and 14, 

which are not detected by any previous work. On the other hand, the IDS-MAN 

achieved better results for 7 attacks compared to the related work and for 4 attacks 

compared to the IDS-ITS. Moreover, the IDS-MAN obtained the highest accuracy and 

TNR. 
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Table 5: Comparison Between Different Detection Methods for SWaT-2015 Dataset. 

Method Precision Recall F1 Accuracy TNR Detected  

Attacks 

DNN [24] 0.983 0.678 0.803 - - 13 

SVM [24] 0.925 0.699 0.796 - - 20 

TABOR [29] 0.862 0.788 0.823 - - 22 

1D CNN 1 [22] 0.968 0.791 0.871 - - - 

1D CNN 2 [22] 0.867 0.854 0.860 - - 30 

MLP [23] 0.967 0.696 0.812 - - 25 

MAD-GAN [26] 0.990 0.637 0.770 - - - 

1D CNN-IF [28] - - - 0.920 - 26 

IDS-ITS CC 0.737 0.865 0.796 0.767 0.660 35 

Add 0.768 0.820 0.793 0.776 0.727 34 

CBP 0.953 0.802 0.871 0.875 0.956 35 

Enet 0.957 0.807 0.876 0.880 0.960 35 

IDS-MAN 0.890 0.844 0.866 0.968 0.986 33 
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Table 6: Recall Comparison for the Individual Attacks Between Previous Works and 

the IDS-ITS Model with the Different Merge Techniques and the IDS-MAN Model for 

SWaT-2015 Dataset. 

# SVM TABOR 

 

CNN MLP 

IDS-ITS IDS-

MAN OP CBP CC Add Enet 

1 0.00 0.05 1.00 0.00 0.01 0.03 0.19 0.17 0.03 0.14 

2 0.00 0.93 1.00 0.76 0.02 0.12 0.30 0.22 0.02 0.94 

3 0.00 0.00 0.23 0.00 0.18 0.79 0.86 0.82 0.74 0.07 

6 0.72 1.00 0.90 0.95 0.08 0.11 0.50 0.32 0.08 0.96 

7 0.89 0.00 1.00 0.91 0.92 0.96 0.97 0.97 0.96 0.96 

8 0.92 0.61 1.00 0.98 0.10 0.16 0.72 0.59 0.18 0.97 

10 0.43 0.99 1.00 0.98 0.58 0.94 1.00 0.98 0.91 1.00 

11 1.00 1.00 1.00 0.99 0.85 0.95 0.99 1.00 0.99 1.00 

13 0.00 0.00 0.00 0.00 0.05 0.04 0.23 0.19 0.04 0.02 

14 0.00 0.00 0.00 0.00 0.03 0.12 0.28 0.23 0.04 0.00 

16 0.00 0.00 0.24 0.60 0.07 0.83 0.89 0.87 0.81 0.24 

17 0.00 0.60 0.63 0.00 0.16 0.14 0.45 0.34 0.10 0.60 

19 0.13 0.00 0.00 0.97 0.09 0.11 0.34 0.48 0.02 0.02 

20 0.85 1.00 1.00 0.00 0.03 0.04 0.34 0.36 0.02 0.93 

21 0.02 0.08 0.91 0.98 0.97 0.97 0.97 0.99 0.96 0.36 

22 1.00 1.00 1.00 0.98 0.18 0.01 0.01 0.25 0.09 0.99 

23 0.88 0.00 1.00 0.71 0.52 0.02 0.02 0.46 0.08 0.99 

24 0.00 0.00 0.17 0.92 0.31 0.01 0.02 0.65 0.02 0.36 

25 0.01 0.00 0.02 0.29 1.00 0.97 0.96 1.00 0.96 1.00 

26 0.00 1.00 1.00 1.00 0.99 0.98 0.96 0.99 0.98 0.97 

27 0.00 0.20 0.06 0.00 0.44 0.34 0.34 0.75 0.33 0.01 

28 0.94 1.00 1.00 0.03 0.97 0.96 0.97 0.90 0.96 0.98 

29 0.00 0.00 0.00 0.87 0.05 0.05 0.02 0.00 0.31 0.00 

30 0.00 1.00 1.00 0.83 0.92 0.96 0.96 0.96 0.96 1.00 

31 0.00 0.00 0.30 0.79 0.88 0.85 0.98 0.32 0.99 0.05 

32 0.91 0.00 0.94 - 0.92 0.94 1.00 0.94 0.94 0.91 

33 0.00 0.98 0.88 - 0.96 0.91 1.00 0.89 0.89 0.02 

34 0.00 0.99 0.60 0.33 0.65 0.02 0.90 0.20 0.04 0.54 

35 0.00 0.26 0.00 0.84 0.31 0.02 0.68 0.04 0.01 0.87 

36 0.12 0.89 0.88 0.81 0.92 0.88 0.99 0.90 0.90 0.20 

37 1.00 1.00 0.90 0.84 0.79 0.60 0.97 0.79 0.80 0.90 

38 0.93 1.00 0.86 0.77 0.64 0.07 0.68 0.53 0.04 0.08 

39 0.00 0.37 0.91 0.84 0.90 0.85 0.99 0.87 0.87 0.87 

40 0.93 1.00 1.00 0.78 0.96 0.84 1.00 0.89 0.88 0.85 

41 0.36 0.00 0.64 0.00 0.66 0.75 0.98 0.83 0.84 0.73 
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5.7.2. Evaluation using SWaT-2019 Dataset 

Table 7 presents the evaluation measures for the two proposed approaches with their 

one-path alternatives for the SWaT-2019 dataset. The IDS-MAN achieved the highest 

performance for precision, F1-score, accuracy, TNR, and fall behind the best recall by 

1%. The IDS-ITS with ENet comes in second place, followed by the IDS-ITS with CC. 

Generally, the models trained on one modality showed significantly lower performance 

compared to their counterparts.  

 

Table 7: Comparison Between the IDS-ITS and IDS-MAN for SWaT-2019 Dataset. 

Approach 
 

Precision Recall F1 Accuracy TNR 

IDS-ITS NP 0.242 0.515 0.329 0.573 0.588 

PP 0.208 0.372 0.267 0.584 0.638 

Add 0.248 0.630 0.356 0.538 0.514 

CC 0.441 0.607 0.511 0.764 0.804 

Enet 0.494 0.637 0.557 0.794 0.834 

PSA 0.355 0.804 0.493 0.684 0.656 

NSA 0.210 0.797 0.332 0.388 0.292 

IDS-MAN 0.648 0.794 0.714 0.878 0.898 

 

To analyze the recall values and understand the detection of the individual 

attacks that target different parts of the system, Figure 19 shows the individual 

accuracies of the normal samples, the instances of the exfiltrate historian data attack, 

the instances of disrupt sensor and actuator attack, and the overall accuracy. The PSA 

model detected the attacks that disrupt the sensors and actuators with an accuracy of 

87% compared to 45% for the network model and 61% for the IDS-MAN. For the 

attacks that exfiltrate the historian data, the network model obtained a high detection of 

98% compared to 77% for the process model and 89% for the IDS-MAN. On the other 

hand, the IDS-MAN classified 90% of normal instances with an increase of 24% and 

61% compared to the PSA and NSA models. The same behavior is observed with the 
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IDS-ITS, in which the NP model obtained an accuracy of 66% for the attacks that target 

the historian data while the PP model got an accuracy of 20%. On the contrary, the PP 

and NP models achieved accuracies of 71% and 21% for the attacks that target the 

process metrics.   

 

 

Figure 19: The classification accuracy of the individual sample types for the two 

approaches and their one-modality alternatives. 

 

5.8. Discussion 

5.8.1. IDS Performance 

The two proposed IDSs show different performances. As an overall result, the IDS-

ITS performed better with the SWaT-2015 dataset in terms of F1-score, recall, and 

precision. IDS-MAN achieved a higher accuracy; however, comparing accuracy for this 

scenario is misleading because with IDS-ITS, the data are balanced, while in IDS-

MAN, the data are imbalanced. Another important measure to consider when assessing 

the IDS performance is the TNR (specificity), which is not considered by the previous 

works. In this measure, the IDS-MAN scored the highest. For IDS, the value of the 

TNR should not be lower than the TPR (recall) value. Even though the goal of the IDS 

is to detect cyberattacks and achieve a high TPR, obtaining high TPR with the cost of 

lower TNR means that the IDS will have a high false-positive rate. The false-positive 
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rate is very critical for IDS in CPS because an action might be triggered to respond to 

the generated false alert, which may cause unnecessary disruption in the system. 

Accordingly, both TNR and TPR are equally important for IDS in CPS.  

From another perspective, the best-performed IDS-ITS with ENet, which 

outperforms the IDS-MAN and previous works in terms of F1-score, achieved a lower 

recall value compared to the IDS-MAN. By comparing these two models, we can 

observe that the IDS-MAN scored higher in terms of the TNR by 2.6% and TPR by 

3.7%. For the individual detection rates of the attacks, the IDS-MAN obtained a higher 

rate for 19 attacks compared to 16 attacks with the ENet IDS-ITS. Besides, the main 

advantage of the IDT-ITS is its ability to detect all the attack scenarios, which was not 

achieved by the IDS-MAN and the previous works. Detecting all the attacks is the top 

priority for IDSs. Even if the detection rates for some of the attacks are low, however, 

this will alert the operators, and further actions can be taken based on their assessment 

of the severity of the attack. 

5.8.2. Attacks Discoverability  

The intuition behind using different data sources is to increase the discoverability 

of the attacks and the performance of the IDS by capturing the correlations between the 

various attributes across the system. For the SWaT-2019 dataset, using data from two 

different modalities (process-level and network-level) clearly showed that the attacks’ 

discoverability is increased significantly compared to using only one data source. If one 

data source is used and the attack target is not monitored, some attacks can go 

undetected by the IDS. For example, for insider attackers with the intent of harming the 

physical process, a network IDS will have low discoverability for these kinds of attacks 

since the attack will not leave any footprints in the network traffic characteristics except 

for the payload. However, including the packets’ payload in the IDS introduces the 
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challenge of dealing with unstructured data. Moreover, it does not eliminate the need 

to consider the process-level data because the packets’ payload may not reflect the 

actual system state. This owes to the fact that the payload can be spoofed to reflect 

misleading information about the state of the system. Since industrial protocols such as 

Modbus lack encryption, the attacker can know the target's normal range by observing 

the network traffic and changing the payload accordingly to reflect the normal operation 

of the system while causing actual harm to the system.  

Besides that, using only IDS at the physical process is also not sufficient since the 

IDS will not be aware of the cyber level of the system. For example, considering a DOS 

attack that does not target the physical process directly, the attack most likely will not 

be detected by process-level IDS until the attack is propagated and causing a major 

delay in the operation of the process. However, considering the network traffic can help 

detect these attacks at an early stage and take actions accordingly to avoid major 

disruptions in the operations of the physical process.  

5.8.3. Real-Time Operation 

The two proposed approaches have similar requirements for real-time 

implementation. Both IDS operates in real-time by reading the process-level metrics 

continuously every specified period (e.g., every 1 second). Then if network traffic is 

used, the data has to pass through the features extraction stage. After that, the data go 

through the pre-processing stage, which involves normalizing the coming data using 

either the mean and variance of the training data or the min and max values. These 

numbers need to be stored to be able to scale the newly arrived data. Since the window-

based approach is used, when the IDSs operate for the first time, they will wait for a 

period equal to the window size in order to be able to make the first prediction. After 

that, the windows will start to overlap with the previous windows, and enough history 
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will be available for the IDSs to operate without delay by making a prediction at every 

slide of the window. For IDS-ITS, another pre-processing step is required, which is 

converting the data into images. Moreover, if the difference time-series is used, extra 

processing and memory are needed to calculate the differences between the current 

readings and their previous values and to scale the data.  

For efficiency, CNN is known to be faster than RNN because the RNN operates 

sequentially and has to keep a memory of the previous hidden states. However, since 

the input data dimension differs in the two approaches, this observation cannot be 

generalized. For the IDS-ITS, the image size plays a major role in the efficiency since 

smaller images size will have a much lower training and testing time. The image size 

in GAF is controlled by the PAA and is usually determined by the computation capacity 

or by tuning. Using PAA gives an advantage to the IDS-ITS because it can control the 

dimension of the input data using a well-established approach and implementation 

without further consideration. However, a drawback of using PAA is the pre-processing 

time in which the images constructed using PAA take longer since extra computations 

are needed. 

5.8.4. Recommendation 

5.8.4.1. Complexity 

The two proposed IDSs have different advantages and disadvantages. First, in terms 

of complexity, the IDS-ITS requires more preprocessing steps to convert the input time-

series to images which will cause a delay in the prediction time. Moreover, the use of 

3D CNN increased the computational cost required to train and evaluate the IDS. On 

the other hand, for the IDS-MAN, the only required preprocessing step is the feature 

normalization. Also, the IDS uses GRU, which is known to be faster than other RNN 

alternatives (i.e., LSTM) because it has fewer gates. For the complexity of the network 



  

62 

 

architecture, both CNN and GRU have different hyperparameters. However, the tuning 

results showed that more layers are needed in the IDS-ITS with the two datasets. 

Therefore, we can conclude that the IDS-MAN is better in terms of the overall 

complexity.  

5.8.4.2. Generalizability 

Any IDS has to be generalizable to be able to apply it to different systems. A 

common drawback for supervised IDS is that attack scenarios have to exist prior to the 

deployment and the training of the IDS, which is not always the case in real-time 

systems. In this work, we take advantage of the availability of datasets that contain 

different attack scenarios to build our IDS. For the IDS-ITS, the dataset has to be 

balanced in order for the IDS not to have any bias towards the majority class. This 

means that to train the network, many attack scenarios have to be presented to the IDS. 

Typically, for any CPS dataset, the number of anomalies is much lower than the number 

of normal instances since the occurrences of anomalies are rare. For this reason, we 

used oversampling and undersampling for balancing the number of instances in the two 

classes. A major drawback of undersampling of the normal instances is that some of 

the characteristics of the normal behavior will be lost, which may affect the 

generalizability of the IDS at the testing time. For the IDS-MAN, the IDS is trained to 

enhance the generalizability of attack detection by measuring the distance to the class 

embedding representation rather than using binary classification. The learning of the 

embedding representation eliminates the need to balance the datasets since the 

embeddings are learned accumulatively from all the class samples, so there is no bias 

toward any specific class during training. Moreover, a major advantage of the IDS-

MAN is that it can be easily extended for semi-supervised and unsupervised training. 

Then, rather than performing the detection based on the class with smaller distance or 
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higher similarity, a threshold for the normal behavior will be set using the training data, 

and the attack detection will be determined if the output from the network exceeds this 

threshold. 

5.8.4.3. Attack Detection 

The goal of any IDS is to detect all the attacks while maintaining a low FPR. For 

the SWaT-2015 dataset, the attack scenarios are not repeated, which means that the IDS 

is evaluated on attacks that are not seen in the training. This provides an indication that 

the proposed IDSs have good generalization for detecting unknown cyberattacks. In 

general, the IDS-ITS provided better attack detection since all the attack scenarios are 

detected. Moreover, in addition to its superiority in detecting attacks 13 and 14 that 

were not detected previously, the IDS-ITS showed a significant increase in recall values 

for some of the attacks compared to the previous works, e.g., attacks 3, 16, and 27. On 

the other hand, the IDS-MAN obtained lower FPR, but two attacks were not detected. 

For the SWaT-2019 dataset, both IDS detected the two attack scenarios, with IDS-

MAN taking the lead by 15%. Therefore, in terms of attack detection, both IDSs showed 

superior performance with one of the datasets while obtaining good performance with 

the other.   

5.8.5. Classification Output 

In the training of the two proposed IDS, the overall performance was mainly 

assessed based on the F1-score which provide a balance between the precision and 

recall. However, in some cases, optimizing a specific evaluation measure is of more 

interest. For example, since the impacts of cyberattacks on CPS can be very harmful, a 

high recall value might be more desirable than the overall F1-score to minimize the 

number of attacks that can go undetected by the IDS. In this case, the IDS has to be 

trained to favor the correctly detected attacks over other classifications. Since 
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supervised learning is used, the IDS can be trained to give more weight to the attack’s 

samples by providing a higher penalty for their misclassification. Hence the network 

would focus on reducing the errors for this class. Another solution is to increase the 

number of samples either by collecting new data or by oversampling. So, by having 

more attack samples, a slight bias would be introduced towards the attack class, and 

higher recall value will be obtained. On the other hand, if the distance-based 

classification in IDS-MAN is replaced by a threshold for the normal behavior, the recall 

can be increased by decreasing the threshold that determines how far the prediction 

should be from the normal behavior to be considered as attack.  
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CHAPTER 6: CONCLUSION AND FUTURE WORK 

Protecting CPS from cyberattacks has been a priority due to the catastrophic 

consequences that such attacks can cause. In this thesis, we report the design, 

implementation, and evaluation of two intrusion detection systems (IDS) based on deep 

learning and multimodal techniques to detect cyberattacks on the process and network 

layers of CPS without the need to have a deep understanding of the underlying process. 

In the first IDS, named IDS-ITS, we used Gramian Angular Field to convert CPS time 

series data into images to be used for training a CNN classifier for detecting attacks. 

The evaluation results of the proposed approach demonstrated better detection 

accuracy, and more attacks were discovered. The second IDS, named IDS-MAN, used 

multimodal attention techniques for enhanced learning of joint representation between 

multiple modalities in CPS by focusing on the most important features in the system. 

Moreover, we explore different merging techniques to combine the different inputs. 

The main advantage of using multimodal fusion techniques is to capture the cross-

modal correlation. The proposed models were evaluated using two datasets. The first 

dataset contains only process-level data, while the second contains data from the 

process and network levels.  

In the IDS-ITS, the two multimodal merging techniques, which are Compact 

Bilinear Pooling (CBP) and EmbraceNet (ENet), achieved significant improvement 

compared to the simple merge techniques. Similarly, in IDS-MAN, the model showed 

a performance degradation when the multimodal attention layer is replaced by simple 

merge techniques. Moreover, the results showed that considering different data sources 

across the CPS for the IDS can boost the performance and the effectiveness of the 

attacks’ discoverability and the overall IDS accuracy. The findings of the thesis could 

successfully answer the thesis questions and the stated hypothesis. We were able to 
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answer the first research question by using different multimodal merge techniques to 

show how these techniques can be adopted for building two completely different IDSs 

for CPS.  For the second research question, the IDS-ITS showed that the multimodal 

merge techniques provided better detection capability compared to the other 

techniques. Moreover, both IDSs showed a considerable enhancement in the 

performance of the IDS that considered different modalities compared to the IDS that 

only used data collected at one CPS layer.  

For future work, we will consider the use of dimensionality reduction 

techniques to enhance the efficiency as well as the performance of the IDS since some 

attributes may not be significant for the classification, which may lead to a negative 

impact on the IDS performance. These techniques are especially needed for the network 

features since the network traffic data are not structured, and many features can be 

extracted considering the different protocols and the huge amount of data collected at 

each second. Moreover, we will apply further hyper-parameters optimization to boost 

the classifier performance and evaluate IDSs using other datasets and testbeds. Another 

future research direction is to consider the techniques of imaging time series and 

multimodal attention for semi-supervised and unsupervised learning by considering 

other types of neural networks such as autoencoders and generative adversarial 

networks to enhance the generalizability of the IDS. The IDS-MAN can be extended to 

semi-supervised learning by clustering the unlabeled samples based on their distance to 

the embedding representations. Also, it can be modified for unsupervised learning by 

training the network on the normal samples only and setting a threshold to detect the 

deviations from the system's normal behavior.  

One of the limitations of our work is that the proposed IDSs are not tested with 

scenarios such as natural process disturbances or stealthy attacks. This limitation is 
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mainly due to the lack of datasets that capture such scenarios. Hence, we were not able 

to perform such evaluation. For future work, we are considering the construction of a 

multiclass multimodal dataset that includes different attacks and normal scenarios with 

data captured from different layers by using a CPS testbed. For the normal scenarios, 

natural disturbances and malfunction scenarios will be included to have a richer dataset 

that reflects the real-time operation scenarios in CPS. For the attack scenarios, several 

attack types that target different layers of the CPS will be implemented. The attacks 

will include the known attacks such as Denial of Service (DOS) and ARP spoofing. In 

addition, more specific attacks for the used industrial protocol and the process will be 

considered, such as change the function code of the Modbus packet or tamper a specific 

sensor/actuator value in the process. The dataset will include data from the different 

CPS layers, including the physical process, the network traffic, and the hosts such as 

the PLCs and HMIs. This will enable enhancing the proposed IDS to distinguish 

between the abnormal behaviors that could occur due to disturbances in the process or 

malfunction in the system and the malicious attack scenarios. Also, the IDS can be 

extended to determine the attack types and the attack targets.  
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