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BACKGROUND ANALYSIS PATHWAY

Total cardiovascular disease (CVD) prevalence risen dramatically from 271 1-Contact Pressure and Area Calculation in Different Deployment Positions

million in 1990 to 523 million in 2019, and CVD fatalities climbed gradually from
12.1 million in 1990 to 18.6 million in 2019 [1].

distal midway proximal

According to American Heart Association statistics, annual heart valve
procedures in the United States is above 100,000 in 2013, with approximately
50,000 AV replacements [2].

Initial position

The ideal replacement valve should be durable, should be resistant to
thrombosis, and should have excellent hemodynamics features.

half deployment
native leaflets

Transcatheter aortic valve replacement (TAVR) has been introduced about two
decades ago as an alternative for minimally invasive implantation of new
generation bioprosthetic heart valves.

Computational modeling can be used during therapy planning for the selection
of appropriate replacement valves for TAVR

OBIJECTIVE

* |n this NPRP funded project, we are establishing a mechanical and FS| analysis path,
for a detailed patient-specific hemodynamics analysis for TAVR, considering the
most important parameters affecting TAV efficiency. Figure4 :Contact pressure result from beginning of the deployment to end [4]
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2- Calculating aortic jet velocity and principal stresses

 This approach will enable to choose of the most suitable TAV type and deployment
position for the treatment.

MATERIALS AND METHODS

Patient Specific 3D Model
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Figure5 : Calculating jet velocity and principal stresses on the TAV stent and valves [6]

3- Paravalvular leakage analysis
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Figurel : Patient specific aortic root segmentation from medical images [3]
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Figure6 : Paravalvular leakage analysis with particle method [7]
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4- Choosing most suitable TAV
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Figure2 : Crimped stent centrally placed on the deflated balloon [4] e
TAV Deployment
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EXPECTED RESULTS

With this advanced analysis and simulation path, we expect to accurately estimate clinical TAVR parameters such
as contact pressure, contact area, principal stress, etc. before the operation during therapy planning. This
approach will help clinicians in optimal valve selection for TAVR patients
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