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ABSTRACT

The statistical inference of a hidden Markov random process is a problem encoun-

tered in numerous signal processing applications including dynamic tomography. In

dynamic tomography, the goal is to form images of an object that changes in time

from its projection measurements. This work focuses on the case where the object’s

temporal evolution is significant and governed by a physical model. Solar tomography,

the remote sensing problem concerned with the reconstruction of the dynamic solar

atmosphere, has served as the motivating application throughout the development of

the dissertation.

The proposed state-space formulation provides a natural and general statistical

framework for the systematic tomographic reconstruction of dynamic objects when

faced with inevitable measurement and modeling uncertainties. In addition, the dis-

sertation offers signal processing methods that scale to meet the computational de-

mands of high-dimensional state estimation problems such as dynamic tomography.

Major contributions include a rigorous characterization of the convergence of the

ensemble Kalman filter, a new method for ensemble Kalman smoothing and the-

ory regarding its convergence, the first four-dimensional reconstruction of electron

density in the solar atmosphere, a new method for dynamic tomography called the

Kalman-Wiener filter that has the same computational complexity as filtered back-

projection, and a means for characterizing the spatial-temporal resolution of dynamic

reconstructions posed under the state-space formulation.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The statistical inference of a hidden Markov random process is a problem encountered

in many applications, including radar tracking of multiple targets [1], dynamic solar

tomography [2], geophysical data assimilation [3], and economic forecasting [4]. These

problems can be expressed in state-space form and recursive methods have been de-

veloped in the Bayesian framework to solve the resultant state estimation problem.

For certain applications, such as most forms of medical tomography, the state may

change by only a small amount during the measurement interval and can be regarded

as static. Dynamic medical tomography methods do exist for cases where the un-

derlying object exhibits significant quasi-periodic (cardiac cycle) [5], [6] or rigid-body

(patient movement) [7]–[9] motion. A review of dynamic medical tomography can be

found in [10].

This dissertation is concerned with the more general problem of reconstructing a

time-varying object from its projections when the state evolution is significant and

governed by a complicated physical model, a problem often encountered in remote

sensing. In such applications, the unknown object is typically a volumetric image and

its voxel representation can have a computationally overwhelming number of degrees

1



of freedom. While the focus is on remote sensing applications, note that the methods

developed in this dissertation are applicable to any high-dimensional state estimation

problem provided it exhibits the necessary structure.

The primary driving force behind this research has been the image formation

problem of solar tomography [2], [11]–[13]. The goal in this application is to recon-

struct the three-dimensional solar atmosphere from two-dimensional remotely sensed

projected images of Thomson scattered sunlight. Solar rotation provides the diver-

sity of view angles necessary for tomography, but the rate of rotation is extremely

slow relative to the highly dynamic and sometimes chaotic solar atmosphere. Two

weeks are required to observe the Sun over a 180◦ rotation and existing methods,

almost all of which assume that the Sun is static, will sometimes fail and produce

reconstructions plagued by artifacts [13]. As such, solar tomography provides an

extremely challenging, and hence highly motivating, application given its potentially

huge dimensionality (e.g., on the order of 105 unknowns in [13]), long measurement in-

terval of at least two weeks, huge data volume (the recently launched Solar Dynamics

Observatory measures 1.5 TB of images per day), and complicated physical dynamic

model [2]. Dynamic biomedical tomography is another ideal application for our meth-

ods which deserves special attention because of the potential direct human impact.

Joint work with George et al. [14] reconstructs a dynamic cardiac phantom with one

of the high-dimensional state estimation methods developed in this dissertation.

A natural framework for solving dynamic tomography problems is to model the

unknown object as a Markov random process and then estimate its properties given

the measurements. If minimum mean square error (MMSE) estimates of the unknown

object are desired, then it is necessary to compute the mean of the posterior distribu-

tion of the unknown object conditioned on the measurements, an extremely difficult

problem when the posterior distribution is complicated. The particle filter (PF) [15]–
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[19] has emerged as a viable state estimation method when faced with analytically

unwieldy posterior distributions. Although attractive because of its generality, stan-

dard PF methods are computationally intractable for cases where the state dimension

is large [20]–[22]. High-dimensional PF methods [23] have been developed when the

state can be conditionally divided into a large number of slowly varying or narrowly

distributed components plus a much smaller set of more dynamic or broadly dis-

tributed components. The standard PF has been applied to electrical capacitance

tomography [24], but it was necessary in that work to represent the unknown by only

a few parameters on a spline basis for computational tractability.

If the dynamic tomography problem can be posed under the linear state-space

model, then the classic Kalman filter (KF) [25]–[27] may be used to recursively com-

pute linear MMSE (LMMSE) state estimates. However, the KF must store and

operate on the state estimate error covariance matrix. The number of elements in

this matrix grows quadratically with the state dimension and becomes intractably

massive for large problems. The KF has solved several dynamic tomography prob-

lems [28]–[32], but always when the state dimension is relatively small.

Several high-dimension state estimation methods have been developed based on

various approximations to the KF. Four-dimensional variational data assimilation

(4D-VAR) [33], [34] assumes that the state transition model is deterministic and that

the prior error covariance can be parametrized. As a result, 4D-VAR cannot system-

atically adapt when the state dynamics deviate from the model as it has no model

uncertainty information. Motivated by the finite spatial correlation lengths of typ-

ical processes, the band-limited or banded KF [35]–[37] eliminates all bands in the

error covariance matrix beyond some prescribed distance from the diagonal, thereby

reducing computational expense. However, as mentioned in Section 4.4.1, trunca-

tion of the error covariance matrix destroys its positive definite structure, leading to

3



numerical instabilities. Other similar work [38], [39] truncates the inverse of the er-

ror covariance. Another related technique for high-dimensional dynamic tomography

involves the minimization of a spatially and temporally regularized quadratic cost

function [40]–[43] and can be equivalent to the KF under certain conditions [44], and

just as computationally demanding. Another approach to decrease the computational

cost of the KF is to apply state reduction [39], [45]–[47]. This strategy is application

dependent and is not pursued here, though such efforts could complement this work

and further reduce computational costs.

1.2 Methodology

The first proposed approach to dynamic tomography formulates the problem under

the linear state-space model and then estimates the state as a function of time with

the ensemble Kalman filter (EnKF) [3], [48]–[50]. The EnKF is a Monte Carlo ap-

proximation to the KF that is similar to the PF. The EnKF recursively processes an

ensemble of samples such that their average approximates the KF estimate. How-

ever, when the state dimension is large, the EnKF is tractable only when the ensemble

size is kept to a minimum, thereby trading off computational expense for increased

uncertainty in the approximate LMMSE estimates. The application of localization

or covariance tapering [51], [52] is an effective tool for mitigating issues associated

with small ensembles for certain problems by trading off some bias in the estimates

for significant reductions in variance. To date, the EnKF has solved a tomographic

problem in oceanography [53], but without localization, and in our recent work [14]

on dynamic biomedical tomography.

Unfortunately, covariance tapering introduces a state estimate bias that can be

difficult to characterize analytically [50]. In addition, Monte Carlo state estimates

are also corrupted by sample error [50]. The second proposed approach to dynamic
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tomography also exploits problem structure for high-dimensional tractability, but, in

contrast to the EnKF, directly in the signal model instead of in the state estimation

algorithm [54]. We show that the class of problems with a wide-sense stationary

(WSS) random field [55] state, line integral measurements, a linear shift-invariant

(LSI) state dynamic model, and WSS additive noise exhibits problem structure that

yields a relatively simple optimal spatial-temporal state estimator which we call the

Kalman-Wiener filter (KWF). This new state estimator has several advantages: it is

free of approximation bias and sample error and has the same computational com-

plexity as the classic filtered back-projection algorithm [56].

1.3 Contribution

The ultimate contribution of this dissertation is a general statistical framework for

the inference of high-dimensional hidden Markov random processes. High-dimensional

problems are challenging because of their computational demands. However, the ever

increasing speed and capability of computers guarantee that the high-dimensional

problems of today will one day be solvable using classic methods. On the other hand,

continued advancements in sensor technology provide ever increasing data volumes

at unprecedented spatial and temporal resolution and spectral diversity. As a rule,

the overall dimensionality of a problem must increase to take full advantage of an

expanding data volume. The goal of this research is the development of new statistical

signal processing methods that scale well with problem dimension to address the

computational challenges of the high-dimensional state estimation problems of today

and the future.

This dissertation offers several specific novel contributions to the fields of sig-

nal processing and statistics. First, the results in Section 5.1 and Section 5.2 (and

appearing in [50]) are the first covariance tapered EnKF dynamic tomographic recon-
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structions, and the joint work with George et al. [14] is the first use of the EnKF for

dynamic medical tomography. Second, no rigorous characterization of EnKF conver-

gence existed prior to the proof in Appendix A (and [50]). The proof is important

for the following reasons: it establishes a theoretical basis for the validity of the

EnKF by showing that it converges to a well defined limit, provides proof that the

unlocalized EnKF is a Monte Carlo KF algorithm, and explicitly identifies the bias

introduced by covariance tapering. Third, the ensemble Kalman smoother (EnKS)

developed in Section 4.6 is a new method for high-dimensional state smoothing. As

demonstrated by the results, state smoothing can yield estimates with greater fidelity

without much additional computational expense. The development of the EnKS in-

cludes a theoretical characterization of its convergence which is of equal importance

as the convergence results derived for the EnKF. Next, the KWF is, to the best of

our knowledge, a new method for the inference of WSS spatial random fields. The

KWF algorithm reduces the computational complexity of certain dynamic tomog-

raphy problems to that of filtered back-projection. Lastly, we extend the concept

of the local impulse response [57] to problems expressed under the linear dynamic

state-space signal model. The local impulse response provides a means for character-

izing the achievable spatial-temporal resolution in dynamic tomography and is useful

for understanding the type of features that can be reliably reconstructed given the

measurements and signal model parameters.

The dissertation also offers the following novel contributions from a scientific per-

spective. First, the temperature forward model in Section 3.4 (and appearing in [2])

is compactly expressed using a Kronecker matrix product, a significant simplification

over previous models. Second, the 4-D reconstruction of solar coronal electron density

presented in Section 7.5 (and appearing in [58]) is the first of its kind. Such recon-

structions will immediately impact any future joint research with our collaborators
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Cohen et al. [59] on the physical modeling of processes in the solar corona. The time

evolving solar plume reconstruction of Barbey et al. [60] appears to be the closest

related work in the literature, but their signal model is tailored specifically for solar

plumes and their method would be unsuitable for global electron density or temper-

ature reconstruction. Finally, the state-space framework for dynamic reconstruction

of the solar atmosphere is, in and of itself, novel to the heliophysics community. Our

approach was first suggested in [32] and then completed in [2] with the development

of a viable high-dimensional state estimation method.

1.4 Summary

The remainder of the dissertation is organized in the following manner. First, signal

models for framing dynamic signal processing problems are given in Chapter 2. Next,

forward models for tomography are developed in Chapter 3. Then, Chapter 4 devel-

ops computationally tractable state estimation methods for high-dimensional state

estimation applications such as dynamic tomography. The methods are evaluated in

Chapter 5, which presents the results of several numerical experiments designed to

test the performance of the state estimation methods in dynamic tomography scenar-

ios. Chapter 6 extends the concept of the local impulse response to spatial-temporal

problems expressed under the linear state-space dynamic model. Next, Chapter 7

focuses solely on solar tomography and ends with the first 4-D reconstruction of the

solar atmosphere. Conclusions and future research directions are given in Chapter 8.
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CHAPTER 2

SIGNAL MODELS

This chapter forms the mathematical foundation for the remainder of the disserta-

tion. Two broad signal model classes are considered: static and dynamic. First, we

define the linear static model which assumes the unknown does not change over the

measurement interval. Three dynamic models are then defined, each ranging in terms

of generality, from nonlinear, to linear, and finally to linear wide-sense stationary.

2.1 Linear Static Signal Model

Each measurement in the linear static model is given by

yi = H i x+ vi (2.1)

where the M -dimensional vector yi contains the measurements at the integer time in-

dex i, the matrix H i is the linear measurement operator, the N -dimensional vector x

is the unknown, and vi accounts for measurement noise. The available measurements

may then be combined to form the linear system of equations


y1

...

yI

 =


H1

...

HI

x+


v1
...

vI

 (2.2)
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or, equivalently,

y1:I = H1:I x+ v1:I (2.3)

where I is the total number of measurements. The covariance of the the unknown is

denoted by

Rx , Cov(x) , E
Ä
xxT

ä
− E(x) E(x)T (2.4)

where E(·) is the expectation operator and the covariance of the zero mean measure-

ment noise is denoted by

Rv1:I , Cov(v1:I) = E
Ä
v1:I v

T
1:I

ä
. (2.5)

2.2 Dynamic Signal Models

2.2.1 Nonlinear model

Under the discrete-time hidden Markov model (HMM), the unknown is the Markov

random process {xi, i ∈ N}. The observable measurements are denoted by the ran-

dom process {yi, i ∈ N}. The state and measurement processes are fully described

by the probability density functions (PDFs)

pX1(x1) (2.6)

fi(xi+1|xi) (2.7)

hi(yi|xi) (2.8)

where pX1(x1) is the prior PDF on the initial state x1, fi(xi+1|xi) characterizes the

state transition, and hi(yi|xi) is the forward model.

9



2.2.2 Linear model

A less general form of the discrete-time HMM is given by the state-space equations

xi+1 = F i xi + ui (2.9)

yi = H i xi + vi (2.10)

where F i models the linear component of the state transition and the vector ui

accounts for uncertainty in the state transition model.

The state and measurement noise random processes are mutually uncorrelated,

zero mean, and have known covariances

E
Ä
ui u

T
j

ä
= Qi δij (2.11)

E
Ä
vi v

T
j

ä
= Ri δij (2.12)

where δij is the Kronecker delta function. In addition, the unknown object at the

initial time index has known prior mean

µ1 , E(x1) (2.13)

and covariance

Π1 , Cov(x1) (2.14)

and is uncorrelated with the state and measurement noise.

10



2.2.3 Linear wide-sense stationary model

The last HMM is given by the state-space equations

xi+1(r) = {Fi xi}(r) + ui(r) (2.15)

yi(s) = {Hi xi}(s) + vi(s) (2.16)

where the notation {Fi xi}(r) denotes the result of applying the linear operator Fi to

xi at coordinate r ∈ Rd. Sometimes we will write {Fi xi} when the coordinate is not

important. The state-transition operator Fi is restricted to be a linear shift-invariant

(LSI) filter, meaning

{Fi xi}(r) =
∫
Rd
fi(r − ρ)xi(ρ) dρ , {fi ? xi}(r) (2.17)

where fi is the impulse response and ? denotes convolution. This class of state-

transition operators includes:

� The identity operator which results in a purely random walk state transition

model.

� Rigid-body motion, such as translation and rotation.

� State dynamics described by linear spatially invariant partial differential equa-

tions, including diffusion and advection. Such dynamic models are suitable in

a variety of physical scenarios.

Both (2.15) and (2.16) include an additive noise term that accounts for model uncer-

tainties. We delay discussing the statistical models for the noise until the end of the

subsection so that required notation can first be defined.

Each lowercase symbol in (2.15) and (2.16) is a wide-sense stationary (WSS)

spatial random field [55], [61]. For example, the state at time index i is the spatial

11



random field denoted (xi(r) : r ∈ Rd) where r is the spatial coordinate. The first

two moments of a WSS spatial random field X satisfy: (1) the mean is constant,

meaning µX(r) , E[x(r)] = µX , and (2) the auto-correlation

RX(r1, r2) , E[x(r1)x(r2)] (2.18)

is a function only of spatial separation, meaning RX(r1, r2) = RX(r1 − r2). Two

random fields X and Y are jointly WSS if the cross-correlation

RX,Y (r, s) , E[x(r) y(s)] (2.19)

is a function only of spatial separation. The d-dimensional Fourier transform of the

auto-correlation is the power spectrum denoted SX(f) where f ∈ Rd is the spatial

frequency coordinate.

All spatial random fields in this work are members of the Hilbert space X =

L2(Ω, F, P ), the zero-mean and finite variance spatial random fields [62]. An inner

product on X is

〈x(r), y(s)〉 = RX,Y (r, s). (2.20)

The induced norm is

‖x(r)‖ =
»
E[x(r)2] =

»
RX(r, r). (2.21)

Also included in the signal model (2.15) and (2.16) are the power spectrum of

the initial state SX1(f) and the power spectrum of the state and measurement noise

SUi(f) and SVi(f). In addition, the state and measurement noise are uncorrelated
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with the initial state, i.e.,

〈x1(r), ui(ρ)〉 = 0 and 〈x1(r), vi(s)〉 = 0 ∀ i (2.22)

and the state and measurement noise are uncorrelated, i.e.,

〈ui(r), vj(s)〉 = 0 ∀ i, j. (2.23)

The following lemma details the basic orthogonality properties of the linear WSS

signal model.

Lemma 2.1: Under the linear WSS signal model defined by (2.15) and (2.16), the

statistical assumptions (2.22) and (2.23) imply

(i) For i ≥ j, ui(r) ⊥ xj(ρ) and vi(s) ⊥ xj(r) (2.24)

(ii) For i > j, ui(r) ⊥ yj(s) and vi(s) ⊥ yj(σ) (2.25)

(iii) For i = j, ui(r) ⊥ yi(s) and 〈vi(r), yi(s)〉 = RVi(r − s) (2.26)

for all r, ρ ∈ Rd and for all s, σ ∈ Θ⊥.

Proof. The proof is a straightforward extension to the proof of Lemma 5.3.1 in [27]

concerning the basic orthogonality properties of the linear state-space model.
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CHAPTER 3

FORWARD MODELS FOR TOMOGRAPHY

The goal of tomography is to reconstruct a volumetric structure given its projection

measurements. Tomography is most widely known for its use in radiology to nonin-

vasively diagnose disease. As shown later in the chapter, the imaging methodology

also pertains to the volumetric reconstruction of the physical parameters of the Sun’s

inner atmosphere given a series of remotely sensed images.

The chapter begins with the definition of the X-ray transform, a mathematical

model for parallel beam tomography where each measurement consists of a set of

parallel line integrals of an unknown object. The discretized X-ray transform will later

be used as the forward model in several of the numerical experiments in Chapter 5.

Next, we define the related exterior and hollow X-ray transforms. These transforms

are relevant to the forward models for electron density and temperature of the Sun’s

inner solar atmosphere defined at the end of the chapter.

3.1 X-ray Transform

The X-ray transform [56] is defined by

{Hθi xi}(s) ,
∫
R
xi(s+ lθi) dl. (3.1)
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Figure 3.1 depicts the geometric parameters of (3.1) in the three-dimensional (3-D)

case where d = 3, the unit vector θi ∈ Sd−1 is parallel to the line of integration,

the set Sd−1 = {r ∈ Rd : ‖r‖2 = 1} is the unit sphere in Rd, the vector s ∈ Θ⊥i is

orthogonal to θi, the vector space Θ⊥i = {z : z ⊥ θi} defines the projection plane,

and the vector s + lθi ∈ Rd parametrizes the line of integration as a function of the

scalar l ∈ R. Note that the X-ray transform (3.1) involves the stochastic integration

of a spatial random field which exists in the mean square Riemann sense if and only

if [55] ∫
R

∫
R
RXi(s+ lθi, s+ l′θi) dl dl

′ <∞ (3.2)

where RXi(r, r
′) , E[xi(r)xi(r

′)] is the autocorrelation function of the spatial ran-

dom field xi. If the spatial random field xi is WSS, then (3.1) exists in the mean

square Riemann sense if and only if RXi(r) is continuous at r = 0 [63].

The continuous formulation of the X-ray transform (3.1) will be used in Sec-

tion 4.5.4. The discrete version can be used in the spatially discrete signal models

defined in Chapter 2. The discretization begins with the choice of a finite basis rep-

resentation for the spatial random field xi. Then, because the X-ray transform is

linear and the measurements are discrete in practice, the discrete form of the X-ray

transform is the M ×N matrix Hθi where M is the number of measurements at time

index i and N is the number of basis functions.

3.2 Exterior and Hollow X-ray Transforms

As implied by its name, the X-ray transform is useful for modeling the measurement

process in certain medical imaging scenarios [56]. Below, we define the related exterior

and hollow X-ray transforms that are used later to develop forward models for the

electron density and temperature in the solar tomography application.
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s

θi
s + lθi

Figure 3.1 Diagram of the three-dimensional X-ray transform geometric parameters.
The unit vector θi is normal to the projection plane. The vector s is orthogonal to θi
and is the position within the projection plane. The blue vector s+ lθi is the position
along the line-of-sight in red.

The exterior X-ray transform [64], [65] is defined by

{Ha
θi
xi}(s) =


∫
R
xi(s+ lθi) dl, ‖s‖2 ≥ a

undefined, otherwise

(3.3)

and is identical to the X-ray transform (3.1) except that lines-of-sight must be exterior

to the d-dimensional sphere with radius a. The discrete representation of (3.3) is

denoted by the M ×N matrix Ha
θi

.

The hollow X-ray transform is defined by

{H0–a
θi
}(s) =

∫
L(s, a)

xi(s+ lθi) dl (3.4)
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where

L(s, a) =


î»
a2 − ‖s‖22, ∞

ä
, ‖s‖2 < a

R, otherwise

(3.5)

and we denote its discrete form by the M × N matrix H0–a
θi

. The hollow X-ray

transform is also similar to (3.1) except that lines-of-sight terminate at the surface of

the d-dimensional sphere with radius a when ‖s‖2 < a.

3.3 Electron Density

The physical relationship between the intensity of remotely observed polarized light

and the density of free electrons in the corona integrated along the measurement

line-of-sight (LOS) is given by [11], [66]

yi(θi, s) = C
∫
L
H(s, s+ l θi)xi(s+ l θi) dl + vi(θi, s). (3.6)

The function yi(θi, s) is the polarized brightness (pB) measured at time index i from

a point-of-view defined by θi and s. The function xi is the electron density at a

specified point in the stellar atmosphere at a distance l along the line-of-sight and

the set L is the range of l corresponding to the ray from the observer to infinity.

The scalar C is a combination of several physical constants necessary to balance the

physical units of the equation. The Thomson scattering physics are encapsulated

in the known function H(s, s + l θ) [11], [66]. Lastly, the function vi(θi, s) is the

instrument-dependent measurement noise.

The statistics of the measurement noise vi(θi, s) are Poisson because scattering

governs the emission of pB light from the corona and the light sensors are most often

charged-coupled devices (CCDs). In practice, the true statistics of the measurement

noise may only be crudely specified given that coronagraphs are very complicated
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optical instruments and various systematic artifacts may persist even after calibration.

Often, only the variance of the noise for each pixel is known.

Measurements of pB are typically in the form of images. Each pixel of such an

image is the intensity of polarized light focused on a sensor, usually a cell of a CCD

camera. It will later be convenient to represent such an image by the vector yi, with

each of its M elements equal to a single pixel intensity of the pB image. The vector

yi is related to the continuous forward model (3.6) through

(yi)m =
∫
Sm
yi(θi, s) ds (3.7)

where (·)m is the mth element of the vector argument and Sm is the set of lines-of-sight

that are focused onto the mth image pixel.

Closed-form analytical solutions to Fredholm integral equations like (3.6) are pos-

sible only when the kernel H is of a simple form. However, the Thomson scattering

kernel in (3.6) is too complicated and the forward model must be discretized to ap-

proximate the solution through numerical techniques. A general expression for the

necessary finite basis expansion is

xi(r) ≈
N∑
n=1

(xi)n φn(r) (3.8)

where r is the 3-D position vector, N is the total number of basis functions, φn(·) is the

nth basis function, and the vector xi has N components. The corona is an amorphous

plasma with unknown correlation structure and it is therefore difficult to form a low-

dimensional basis that faithfully captures the corona. However, research exists in

characterizing the corona with consistent, but time independent, low-dimensional

models [67], [68]. Faced with such difficulties, a voxel basis, an orthogonal set of

18



3-D volume elements that span the reconstructed image domain, represents a general

choice that makes few prior assumptions. The choice of the basis functions has

a significant impact on the reconstructions as all features in the solar atmosphere

that cannot be expressed as a linear combination of basis functions are lost. The

unfortunate byproduct of a voxel basis is that N will typically be immense. For

example, dividing the reconstructed image domain into 100×100×100 voxels results

in N = 106.

The finite basis expansion results in the linear system

yi = H i xi + vi (3.9)

where the measurement operator H i is an M×N matrix. Each element of the matrix

H i is given by

[H i](m,n) , C
∫
L

∫
Sm
H(s, s+ l θi)φn(s+ l θi) ds dl (3.10)

where [·](m,n) is the (m, n)th component of the matrix argument. Note that the

measurement operator can be broken into two more easily understood operators

H i = Ha
θi

Λ. (3.11)

The matrix Ha
θi

is the discrete representation of the exterior X-ray transform (3.3)

and the N×N diagonal matrix Λ accounts for the spatial dependence of the scattering

function in (3.6). As previously discussed, the full statistics of the measurement noise

vector vi may not be known.
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3.4 Temperature

Differential emission measure (DEM) analysis is useful for determining the temper-

ature structure of the projected solar atmosphere. DEM tomography (DEMT) [69]

combines DEM analysis and tomography to reconstruct the 3-D electron temperature

distribution. The forward model is

yi(θi, s, λ) = C
∫
L

∫ ∞
0

ψ(λ, T )xi(s+ lθi, T ) dT dl + vi(θi, s, λ). (3.12)

Identically to (3.6), the vectors θi and s define the point-of-view of the observer rela-

tive to the Sun, the vector s+ lθi specifies a 3-D spatial location along an individual

measurement line-of-sight, and the scalar C ensures that physical units balance. The

function yi(θi, s, λ) is the extreme ultraviolet (EUV) or X-ray intensity measured at

wavelength λ at time index i and vi(θi, s, λ) is the measurement noise. The function

xi(s+ lθi, T ) is the local DEM at temperature T . The function ψ(λ, T ) depends on

the atomic physics of the emission process in the stellar plasma and may be calculated

with tools such as CHIANTI [70]. As discussed in Section 3.3, the full statistics of

the measurement noise vector vi may not be known.

Like pB, typical measurements of the EUV or X-ray corona are in the form of

images. The M pixels of an EUV or X-ray image at a particular wavelength can be

represented by the vector

[Y i](m, k) =
∫
Sm

∫ ∞
0

Φk(λ) yi(θi, s, λ) dλ ds (3.13)

where the mth element of the kth column of the M×K matrix Y i is the mth pixel in

the kth frequency band measured at time index i. Again, Sm is the set of lines-of-sight

that are focused onto the mth pixel. The function Φk(λ) is the frequency response of
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the instrument in the kth frequency band.

The temperature forward model (3.12) may be discretized by choosing both a

spatial and temperature basis

xi(r, T ) =
N1∑
n1=1

N2∑
n2=1

[X i](n1, n2)
φn1(r)ϕn2(T ) (3.14)

where r is the 3-D spatial coordinate, X i is an N1×N2 matrix with (n1, n2)th com-

ponent equal to the local DEM at the n1th spatial coordinate and n2th temperature,

φn1(·) is the n1th spatial basis function, and ϕn2(·) is the n2th temperature basis func-

tion. As argued in Section 3.3, it is difficult to determine a faithful low-dimensional

basis for the 3-D structure of the coronal electron density and the same is true for the

local DEM. DEMT research has so far focused on voxel spatial and uniform interval

temperature bases [69].

The measurements Y i are related to the elements of the matrix unknown X i by

[Y i](m, k) =
N1∑
n1=1

∫
Sm

∫
L
φn1(s+ l θi) dl ds

×
N2∑
n2=1

∫ ∞
0

∫ ∞
0

Φk(λ)ψ(λ, T )ϕn2(T ) [X i](n1, n2)
dλ dT + [V i](m, k) (3.15)

where the (m, k)th element of the M × K matrix V i is the measurement noise of

the mth pixel in the kth frequency band. Note that the terms in the sum over n2

in (3.15) only operate on the columns of the matrix X i for a fixed row. Similarly,

the terms in the sum over n1 not appearing in the sum over n2 operate only on the

rows of the matrix X i for a fixed column. Thus, it is possible to separate these two

operations. To do so, first define each element of the K ×N2 matrix Ψ by

[Ψ](k, n2)
=
∫ ∞
0

∫ ∞
0

Φk(λ)ψ(λ, T )ϕn2(T ) dλ dT (3.16)
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and note that the matrix Ψ corresponds to the column-wise operations on X i in

(3.15). Also note the function ψ(λ, T ) may only be evaluated at discrete points by

CHIANTI and the integrals in (3.16) must be evaluated numerically. Secondly, define

the M ×N1 matrix H0–a
θi

byî
H0–a
θi

ó
(m,n1)

=
∫
Sm

∫
L
φn1(s+ l θi) dl ds. (3.17)

The matrix H0–a
θi

corresponds to row-wise operations on X i in (3.15) and is the

discretized representation of the hollow X-ray transform (3.4). Finally, (3.15) can be

compactly expressed as

Y i = H0–a
θi
X i Ψ

T + V i. (3.18)

A matrix identity involving the Kronecker matrix product [71] may be applied to

(3.18) to give

vec(Y i) =
Ä
Ψ⊗H0–a

θi

ä
vec(X i) + vec(V i) (3.19)

where the operator vec(·) stacks the columns of the matrix argument into a vector

and ⊗ is the Kronecker matrix product. Note that (3.19) is now in the form of a

linear system of equations, cf. (3.9).
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CHAPTER 4

HIGH-DIMENSIONAL STATE ESTIMATION

The signal models in Section 2.2 provide a general statistical framework for dynamic

tomography. This chapter develops viable state estimation algorithms for solving

high-dimensional statistical inference problems under these models. While dynamic

tomography is the focus, we emphasize that the methods developed in this chapter are

applicable to any problem that can be expressed under a signal model in Section 2.2

and exhibits the necessary problem structure.

This chapter first addresses the filtering problem. Filtered estimates are causal

in the sense that they depend only on current and past observations in time and are

therefore ideal for online processing. We consider several methods for computing fil-

tered estimates: linear minimum mean square error (LMMSE) estimation under the

static signal model and the particle filter (PF), Kalman filter (KF), ensemble Kalman

filter (EnKF), and Kalman-Wiener filter (KWF), all under a dynamic model. Each

of these methods provides a different trade-off between signal model generality and

computational tractability. We note that the dynamic methods can also compute

predictive estimates to forecast the future evolution of the unknown in time. The

chapter concludes with methods for smoothed estimation where each estimate de-

pends on all available observations regardless of time. Smoothed estimates are ideal

for retrospective analysis of a complete data set.
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4.1 Linear Minimum Mean Square Error Estima-

tor

Under the static signal model defined in Section 2.1, the LMMSE estimator of the

unknown is given by [27]

“x = E(x) +
Ä
R−1x +HT

1:IR
−1
v1:I
H1:I

ä−1
HT

1:IR
−1
v1:I

î
y1:I −H1:I E(x)

ó
. (4.1)

If R−1x = λDTD, then the above estimator can be expressed through the following

optimization problem:

“x = arg min
x

∥∥∥y1:I −H1:I x
∥∥∥2
R−1
v1:I

+ λ
∥∥∥D Äx− E(x)

ä∥∥∥2
2

(4.2)

where the weighted vector norms are defined by ‖z‖2A , zTAz with A positive

definite. Note that (4.2) establishes the connection to a deterministic weighted least

squares formulation [27]. In this work, the matrix D is a discrete approximation to

a spatial derivative and penalizes roughness in the solution “x to the degree specified

by the regularization parameter λ. Iterative methods such as conjugate gradient [72]

can efficiently solve (4.2) when the matrices H1:I , Rv1:I , and D are large but sparse.

4.2 Particle Filter

Under HMMs, state estimation problems are solved by first choosing a statistical

objective such as the minimum mean square error (MMSE) criterion and then ap-

plying a suitable state estimation algorithm. Filtered MMSE estimates are denoted“x?i|i , E(xi |y1:i) where y1:i is the set of available measurements {y1, . . . ,yi}. Ex-

cept for a few special cases, the posterior distribution p(xi|y1:i) necessary to compute

the MMSE estimate “x?i|i cannot be derived under the general HMM defined in Sec-
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tion 2.2.1. The particle filter (PF) [15]–[19] circumvents this problem by instead

operating on a simpler proposal distribution denoted p(xi|xi−1, yi), which, when

properly weighted, approximates the posterior. However, the PF suffers from particle

degeneracy [20]–[22] especially when the state dimension is large. As a result, the

PF becomes computationally intractable and, in general, is unsuitable for dynamic

tomography.

The posterior PDF may be derived under the linear state-space model (2.9)-(2.10)

when the initial state prior, state noise, and measurement noise are jointly Gaussian.

In such special cases, the PF may use an optimal proposal PDF that minimizes the

variance of the importance weights [21], thereby minimizing degeneracy. The optimal

proposal PF algorithm [21] under (2.9)-(2.10) is initialized by generating L samples

from the initial prior PDF with uniform importance weight

xl0
i.i.d.∼ N (µ1, Π1) wl0 =

1

L
(4.3)

where xl0 is the lth initial sample, i.i.d. indicates the samples are independent and

identically distributed, N (m, Θ) denotes the Gaussian PDF with mean m and co-

variance Θ, and wl0 is the lth initial importance weight. Then, the following steps

are recursively applied for each measurement yi. First, the optimal proposal PDF is

sampled L times

xli
i.i.d.∼ p(xi|xli−1, yi) = N (ml

i, Θi) (4.4)

where

Θi , (HT
i R

−1
i H i +Q−1i−1)

−1 (4.5)

ml
i , Θi (Q

−1
i−1 F i−1 x

l
i−1 +HT

i R
−1
i yi) (4.6)
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and, for notational convenience, Q0 , Π1 and F 0 , I. Then, the importance weights

are updated with

wli = wli−1N (yi; H i F i−1 x
l
i−1, H iQi−1H

T
i +Ri) (4.7)

where N (x; m, Θ) denotes the value of the N (m, Θ) PDF evaluated at x. Finally,

the importance weights are normalized

µli =
wli∑L
l=1w

l
i

(4.8)

and approximate filtered or posterior MMSE estimates are computed as the weighted

average

x̄?i|i =
L∑
l=1

µli x
l
i. (4.9)

We emphasize that the processing and storage requirements of the optimal pro-

posal PF are at least as great as the Kalman filter discussed below. For example,

the matrix Θi (4.5) is N × N and its storage becomes computationally intractable

when the state dimension is large. As empirically demonstrated in Section 5.1, the

optimal proposal PF can require a very large number of particles L to produce faithful

approximations x̄?i|i even for a small dynamic tomography problem.

4.3 Kalman Filter

High-dimensional state estimation is computationally intractable under the general

HMM and the remainder of the dissertation focuses on the linear and linear WSS

state-space models. This section reviews the Kalman filter (KF) [25], [26], a recursive

algorithm for computing linear MMSE (LMMSE) state estimates denoted “xi|j under

the linear state-space model (2.9)-(2.10).
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The KF algorithm begins with the initial prior estimate “x1|0 = µ1 and estimate

error covariance P 1|0 = Π1. The estimate error covariance at time index i given the

measurements y1:j is denoted

P i|j , E
î
(xi − “xi|j) (xi − “xi|j)T ó . (4.10)

The KF then applies the following two recursive steps for each measurement yi. The

first step is the measurement update given by

Ki = P i|i−1H
T
i (H iP i|i−1H

T
i +Ri)

−1 (4.11)“xi|i = “xi|i−1 +Ki (yi −H i “xi|i−1) (4.12)

P i|i = P i|i−1 −KiH iP i|i−1 (4.13)

where Ki is commonly referred to as the Kalman gain. The second step is the time

update:

“xi+1|i = F i “xi|i (4.14)

P i+1|i = F iP i|i F
T
i +Qi. (4.15)

The KF measurement update can be expressed as the optimization problem [73]

“xi|i = arg min
xi

‖yi −H i xi‖2R−1
i

+ ‖xi − “xi|i−1‖2P−1
i|i−1

. (4.16)

The optimization problem (4.16) shows that the posterior estimate “xi|i represents a

trade-off between agreement with the measurement yi weighted by its uncertainty

given by the measurement covariance Ri in the first term and agreement with the

prior estimate “xi|i−1 weighted by the prior uncertainty P i|i−1 in the second term.
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Appendix B.2 shows how an additional quadratic penalty term can be appended to

(4.16) for the purpose of Tikhonov regularization [74], [75].

The Kalman gain (4.11) is a function of the prior estimate error covariance P i|i−1,

a symmetric positive definite matrix with N(N + 1)/2 ≈ N2/2 unique components

that can quickly become computationally unwieldy for volumetric image formation.

For example, if the unknown object is represented by 128 × 128 × 128 voxels, then

8 TB of memory is necessary to store P i|i−1 using 32-bit floating point elements. We

note that both the state transition operator F i and state error covariance Qi are

N ×N matrices and the measurement operator H i is M ×N and, as a result, each

of these matrices also becomes unwieldy when the state dimension N is large. This

is not an issue in practice for most remote sensing applications because F i, Qi, and

H i are typically sparse, banded, or have some other simplifying structure.

4.4 Ensemble Kalman Filter

The ensemble Kalman filter (EnKF) [3], [48]–[50] is a Monte Carlo approximation to

the KF developed to find approximate LMMSE estimates when the state dimension

N is large enough that the storage of the KF estimate error covariance becomes

computationally intractable. The general idea is to efficiently update an ensemble

of samples such that the ensemble sample mean approximates the LMMSE state

estimate. The sample mean is denoted

‹xi|j , 1

L

L∑
l=1

‹xli|j (4.17)

where ‹xli|j is the lth member of the ensemble and L is the total number of ensem-

ble members. The EnKF algorithm begins by sampling each initial prior ensemble
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member based on the prior information with

‹xl1|0 i.i.d.∼ N (µ1, Π1). (4.18)

In the EnKF measurement update, the sample Kalman gain is computed with

›Ki =
ï
(Ci ◦ P̃ i|i−1)H

T
i

òï
H i (Ci ◦ P̃ i|i−1)H

T
i +Ri

ò−1
(4.19)

where Ci is the covariance taper matrix discussed separately in Section 4.4.1, ◦ is the

Hadamard or element-by-element matrix product [71], and P̃ i|i−1 is the prior sample

error covariance

P̃ i|i−1 ,
1

L− 1

L∑
l=1

(‹xli|i−1 − ‹xi|i−1) (‹xli|i−1 − ‹xi|i−1)T (4.20)

and, as discussed below, P̃ i|i−1 is never explicitly computed or stored in the imple-

mentation of the EnKF. Then, each posterior ensemble member is computed with

‹xli|i = ‹xli|i−1 +›Ki (y
l
i −H i ‹xli|i−1) (4.21)

where each vector yli is sampled independently from N (yi, Ri). In the EnKF time

update, each posterior ensemble member is computed with

‹xli+1|i = F i ‹xli|i + uli (4.22)

where each vector uli is an independent sample from N (0, Qi). The additional ran-

domness introduced by the samples yli and uli may seem counterproductive, but is

necessary for the prior sample error covariance to be correct on average and match
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the KF error covariance [48]. The end result of the EnKF is the set of approximate

LMMSE estimates ‹xi|i for each time index i. The sense in which the EnKF estimates

approximate the LMMSE estimates and the fact that the approximation improves as

the ensemble size L increases is addressed by Theorem 4.1 in Section 4.4.2.

The computational advantage of the EnKF results from the use of the sample

error covariance P̃ i|i−1 in (4.19). Whereas the KF requires the storage of the N ×N

matrix P i|i−1 to compute the Kalman gain (4.11), the EnKF never explicitly computes

the sample error covariance P̃ i|i−1. The equation for the sample Kalman gain ›Ki

(4.19) has been written to emphasize that only the N ×M matrix (Ci ◦ P̃ i|i−1)H
T
i

is necessary for the computation of ›Ki and, in the severely underdetermined case

considered in this chapter (M � N), the storage requirement is relatively small.

As discussed in Appendix B.1, it is always possible to process the components of

the measurement yi sequentially (M = 1), and the storage requirement for this

intermediate result is then relatively negligible. Thus, in terms of computational

storage, the largest expense of the EnKF is the LN storage elements necessary for

the ensemble.

To minimize storage and processing requirements, a small ensemble size L is de-

sirable. The application of the covariance taper Ci in (4.19) is critical for reducing

the required ensemble size for large-dimensional problems and is discussed separately

in Section 4.4.1. Ideally, a well-informed choice of L would be based on a theoretical

error analysis of the EnKF. The best attempt to date is given in [76] in which the dif-

ficulties associated with such an analysis are noted and several key analytical results,

including the bias in the sample Kalman gain and the expected error between the

true and sample estimate error covariance matrices, are derived under the assump-

tion that HT
i H i = I and Ri = σ2I. As noted in [76], it is always possible to apply

a linear transformation to the state-space equations (2.9) and (2.10) to ensure that
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these conditions apply. However, the results then hold for the transformed system

and must be transformed back for interpretation, a process that is only possible if H i

is invertible. An operational method for choosing the ensemble size is demonstrated

in Section 5.1.

4.4.1 Covariance tapering

The ensemble size L represents a fundamental trade-off in the EnKF: the larger L

the closer the EnKF estimates are to the LMMSE estimates due to reduced sample

error but at the cost of increased storage and processing requirements. A serious

concern is that the sample error may be significant for sizable ensembles let alone the

computationally desirable situation when the ensemble size is small. For example,

the EnKF may be expected to perform poorly even at the break-even point L ≈ N/2

where the storage requirements for the KF and EnKF are the same. In this case

there are only N/2 available samples of the prior distribution from which to estimate

the approximately N2/2 unique components of the prior estimate error covariance

matrix and a significant amount of sample error is unavoidable especially when the

state dimension N is large.

Covariance tapering [76]–[78] can improve small sample size covariance estimates

by incorporating prior information regarding the structure of the population covari-

ance. As with all shrinkage estimators, covariance tapering introduces a systematic

bias into the estimator while simultaneously aiming to reduce its variance. For cer-

tain applications, the implication is that covariance tapering can provide biased yet

superior sample covariance estimates in terms of mean square error.

The EnKF prior sample error covariance P̃ i|i−1 is tapered by the matrix Ci in

the computation of the sample Kalman gain (4.19) in the hope of ultimately reducing

the EnKF estimate mean square error. Though the best choice of the taper matrix
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Ci is problem dependent, two properties it should satisfy are clear. First, the taper

matrix must be positive definite, which then ensures that the product Ci ◦ P̃ i|i−1 is

also positive definite by the Schur product theorem [71]. Also note that covariance

tapering is different from covariance truncation. Covariance truncation is equivalent

to tapering with a banded binary matrix, a matrix that is equal to 1 along prescribed

bands and 0 otherwise. A banded binary matrix is generally indefinite and will not

preserve positive definiteness when used as a taper matrix, resulting in algorithmic

numerical instabilities. Second, from a practical standpoint, a sparse taper matrix

results in numerous algorithmic simplifications that greatly reduce the computational

cost of the EnKF.

Some work has been done to characterize the taper matrix that results in the

greatest reduction in EnKF sample error [76], but, as noted in that work, it is difficult

to optimize over the class of positive definite matrices. A good choice for the taper

matrix incorporates prior knowledge of the error covariance matrix structure. Typical

physical dynamic systems are correlated over only a finite spatial distance. A taper

matrix that suppresses unphysical long correlations and is positive definite, sparse,

and easily computed is given in [79]. These taper matrices are constructed through

self convolution where Ci = BT
i Bi and Bi is the K × N matrix that represents

convolution with a specified finite impulse response filter. Figure 4.1 (left) shows a

taper matrix constructed in this manner that eliminates all error correlation beyond

a distance of 3 pixels in the tapered sample error covariance Ci ◦ P̃ i|i−1.

The form of the taper matrix in Figure 4.1 (left) is justified in the following

example. Figure 4.1 (right) shows the KF prior error covariance P i|i−1 for an 8 × 8

version of the dynamic tomography example studied in Section 5.2. Since the EnKF

sample error covariance P̃ i|i−1 approximates P i|i−1 (the exact sense is defined in

Section 4.4.2), P̃ i|i−1 will have similar structure as P i|i−1 in Figure 4.1 (right). A
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large error correlation in P̃ i|i−1 beyond 3 pixels is due to sample error because the

corresponding element of P i|i−1 in Figure 4.1 (right) is relatively small. The example

taper matrix in Figure 4.1 (left) eliminates such erroneous correlations in the product

Ci ◦ P̃ i|i−1.

4.4.2 Convergence

To date, the convergence of the EnKF has not been fully addressed. The best attempt

is in [76] where it is mentioned that the EnKF without covariance tapering (Ci = 1,

where 1 is the matrix with all elements equal to 1), henceforth the unlocalized EnKF,

converges to the KF as the ensemble size L increases. However, [76] provides no proof

and does not specify the sense of convergence. The theorem below states that the

EnKF estimates ‹xi|i converge in probability to the estimates given by the localized

Kalman filter (LKF) defined immediately after the theorem. Note that the LKF is as

computationally expensive as the KF and is not intended for use in large-scale state

estimation. A corollary to the theorem states that the unlocalized EnKF converges

to the KF. The theorem and corollary are important for the following reasons: they

establish a theoretical basis for the validity of the EnKF by showing that it converges

to a well defined limit, provide proof that the unlocalized EnKF is a Monte Carlo

KF algorithm, and suggest a new means for investigating the bias introduced by

covariance tapering through the comparison of the KF and LKF.

Theorem 4.1: For each time index i, the EnKF estimates ‹xi|i converge in probability

to the LKF estimates ‹x∞i|i defined below, i.e.,

‹xi|i p.−→ ‹x∞i|i (4.23)

in the limit as the ensemble size L→∞.
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Figure 4.1 An example taper matrix Ci (left) and the absolute value of the KF error
covariance P i|i−1 for an 8× 8 dynamic tomography numerical example (right).

Proof. See Appendix A.

The LKF is initialized with ‹x∞1|0 = µ1 and P̃
∞

1|0 = Π1. The LKF measurement

update is given by

›K∞

i = (Ci ◦ P̃
∞

i|i−1)H
T
i

ï
H i (Ci ◦ P̃

∞

i|i−1)H
T
i +Ri

ò−1
(4.24)‹x∞i|i = ‹x∞i|i−1 +›K∞

i (yi −H i ‹x∞i|i−1) (4.25)

P̃
∞

i|i = P̃
∞

i|i−1 −›K∞

i H i P̃
∞

i|i−1 − P̃
∞

i|i−1H
T
i (›K∞

i )T

+›K∞

i (H i P̃
∞

i|i−1H
T
i +Ri) (›K∞

i )T . (4.26)

The LKF time update is given by

‹x∞i+i|i = F i ‹x∞i|i (4.27)

P̃
∞

i+1|i = F i P̃
∞

i|i F
T
i +Qi. (4.28)

Corollary 4.2: For each time index i, the unlocalized (Ci = 1) EnKF estimates ‹xi|i
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converge in probability to the LMMSE estimates “xi|i, i.e.,

‹xi|i p.−→ “xi|i (4.29)

in the limit as the ensemble size L→∞.

Proof. When no covariance taper is applied, the LKF and KF are equivalent. Then,

apply the result of Theorem 4.1.

The LKF measurement update (4.25) may alternatively be expressed as the opti-

mization problem

‹x∞i|i = arg min
xi

‖yi −H ixi‖2R−1
i

+ ‖xi − ‹x∞i|i−1‖2(Ci ◦P∞i|i−1
)−1 (4.30)

which, when compared to (4.16), shows that covariance tapering alters the prior

error covariance used in the measurement update. The covariance taper bias will be

small when Ci ◦P i|i−1 ≈ P i|i−1 because (4.16) and (4.30) will almost be equal. Note

that this condition is applicable in the dynamic tomography example illustrated in

Figure 4.1.

4.5 Kalman-Wiener Filter

The optimal state estimation algorithm under the signal model in Section 2.2.3 is

derived in this section. The first three subsections contain intermediate results that

will ultimately be used in Section 4.5.3 to derive the optimal spatial-temporal esti-

mator. Some of these results are classic but are included for completeness. The final

subsection derives the optimal state estimation algorithm when the measurements

are noisy tomographic projections.
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4.5.1 Orthogonal projector

The orthogonal projector to a subspace of a Hilbert space is used throughout the re-

mainder of this section to guarantee optimality. We summarize the relevant properties

in the following theorem.

Theorem 4.3: If S is a complete subspace of the Hilbert space X, then there exists

a unique continuous linear operator PS called the orthogonal projector that has the

property

‖{PS x} − x‖ ≤ ‖y − x‖ (4.31)

for all x ∈ X and y ∈ S and equality holds if and only if y = {PS x}. Furthermore,

the orthogonal projector satisfies

{PS x} − x ∈ S⊥ and {PS x} ∈ S (4.32)

for all x ∈ X.

Proof. See [62].

An important property of the orthogonal projector PS results when the subspace

S can be factored into two orthogonal subspaces.

Lemma 4.4: Let A and B be orthogonal closed subspaces of the Hilbert space X.

Then PA⊕B = PA + PB where A⊕ B is the direct sum [62] of A and B.

Proof. See [62].

This lemma will later be used to derive a recursive estimator in Section 4.5.3.
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4.5.2 Optimal spatial estimator

The Wiener filter is the minimum mean square error (MMSE) optimal estimation

algorithm for WSS random fields. The following theorem summarizes the properties

of the Wiener filter that will later be used in Section 4.5.3.

Theorem 4.5: If X and Y are zero mean random fields, Y is WSS, and X and Y are

jointly WSS, then the Wiener filter is the MMSE estimator in the class of all linear

filters. This is stated mathematically as

‖x̂(r)− x(r)‖ ≤
∥∥∥∥∫

S
k(r, s) y(s) ds− x(r)

∥∥∥∥ (4.33)

where x̂(r) is the output of the Wiener filter, k(r, s) is a finite energy function, and

equality holds if and only if k(r, s) is the Wiener filter impulse response. Furthermore,

the Wiener filter impulse response is shift-invariant and has frequency response

{F k}(f) =
SX,Y (f)

SY (f)
(4.34)

where F is the Fourier transform.

Proof. See [27] for a proof for the case d = 1 or [80] for the multidimensional case

d > 1.

The following lemma shows that the Wiener filter is an orthogonal projector,

justifying its use as the optimal spatial filter in Section 4.5.3.

Lemma 4.6: The Wiener filter is the orthogonal projector of the random field X

onto the WSS random field Y, meaning

{Pspan(y) x}(r) = {k ? y}(r) (4.35)
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where span(y) is the subspace spanned by Y .

Proof. Note that (4.33) is a particular case of the inequality (4.31). Then, because

equality in (4.33) is satisfied if and only if x̂(r) = {k ? y}(r), the Wiener filter is the

orthogonal projector.

4.5.3 Optimal recursive spatial-temporal estimator

The derivation of the Kalman-Wiener filter (KWF) will proceed in three steps in a

manner analogous to the derivation of the Kalman filter [27]: initialization, measure-

ment update, and time update. The initialization step consists of identifying the

initial prior information for use in the first measurement update. In this case, the

given initial prior information consists of the prior estimate x̂1|0(r) = 0 and prior

error power spectrum SẌ1|0
(f) = SX1(f) where

ẍi|i−1(r) , xi(r)− x̂i|i−1(r) (4.36)

is the prior error.

The KWF measurement update is summarized in the following theorem.

Theorem 4.7: The KWF estimate measurement update is given by

x̂i|i(t) = x̂i|i−1(t) + {ki ? ei}(t) (4.37)

where ei(s) , yi(s) − {Hi x̂i|i−1}(s) is the innovation and the frequency response of

the Wiener filter is

Ki(f) , {F ki}(f) =
SẌi|i−1, Z̈i|i−1

(f)

SZ̈i|i−1
(f) + SVi(f)

(4.38)
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where z̈(s) , {Hi ẍi|i−1}(s), provided ẍi|i−1 and z̈i|i−1 are jointly WSS, z̈i|i−1 is WSS,

and the measurement noise vi is WSS. Furthermore, the measurement update on the

error power spectrum is given by

SẌi|i(f) = SẌi|i−1
(f)− 2<

î
Ki(f)SẌi|i−1, Z̈i|i−1(f)

ó
+ |Ki(f)|2 SZ̈i|i−1

(f) + |Ki(f)|2 SVi(f)

(4.39)

where <(·) is the real part of the complex argument.

Proof. First, we derive the estimate measurement update (4.37). Given (2.22) and

(2.23), the innovation has the following properties:

span(y1:j) = span(e1:j) and 〈ei(s), ej(σ)〉 = 0 for all i 6= j. (4.40)

The above properties and Lemma 4.4 give the result

x̂i|i(r) = {Pspan(e1:i−1) xi}(r) + {Pspan(ei) xi}(r)

= x̂i|i−1(r) + {Pspan(ei) xi}(r). (4.41)

In addition, Lemma 4.6 can be applied to (4.41) to give

x̂i|i(r) = x̂i|i−1(r) + {ki ? ei}(r) (4.42)

where the frequency response of the Wiener filter is given by

Ki(f) , {F ki}(f) =
SXi, Ei(f)

SEi(f)
. (4.43)

We now show that (4.43) is equivalent to (4.38). By definition, the cross-correlation
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between the state random field xi and innovation ei is given by

RXi, Ei(r − r′) = E[xi(r) ei(r
′)]

= E
î
xi(r) z̈i|i−1(r

′)
ó

+ E[xi(r) vi(r
′)] = E

î
xi(r) z̈i|i−1(r

′)
ó

(4.44)

and the last step holds because of (2.24). Then,

RXi, Ei(r − r′) = E
î
ẍi|i−1(r) z̈i|i−1(r

′)
ó

+ E
î
x̂i|i−1(r) z̈i|i−1(r

′)
ó

(4.45)

and, from (4.32),

ẍi|i−1(r) ∈ span(y1:i−1)
⊥ and x̂i|i−1(r) ∈ span(y1:i−1) (4.46)

which implies

RXi, Ei(r − r′) = E
î
ẍi|i−1(r) z̈i|i−1(r

′)
ó
. (4.47)

Then, because ẍi|i−1 and z̈i|i−1 are assumed jointly WSS,

SXi, Ei(f) = SẌi|i−1, Z̈i|i−1
(f). (4.48)

Finally, the auto-correlation of the innovation is by definition

REi(s− s′) = E
¶
[z̈i|i−1(s)− vi(s)][z̈i|i−1(s

′)− vi(s′)]
©
. (4.49)

The equation above can be simplified by first noting that

ẍi|i−1(r) ∈ span(x1, u1:i−1, v1:i−1) (4.50)
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and, as a consequence,

z̈i|i−1(r) ∈ span(x1, u1:i−1, v1:i−1). (4.51)

The above imply that

ẍi|i−1 ⊥ vi and z̈i|i−1 ⊥ vi (4.52)

by also noting properties (2.22) and (2.23). Then, the innovation has the simplified

power spectrum

SEi(f) = SZ̈i|i−1
(f) + SVi(f) (4.53)

because z̈i|i−1 and vi are assumed WSS and (4.52).

In the final step, we derive the recursive update on the error power spectrum

(4.39). First, we expand (4.37) as

ẍi|i(r) = ẍi|i−1(r)− {ki ? z̈i|i−1}(r)− {ki ? vi}(r). (4.54)

Then, by definition, the error auto-correlation is given by

RẌi|i
(r − r′) = E

î
ẍi|i(r) ẍi|i(r

′)
ó
. (4.55)

The above relationship and (4.52) can be used to derive the recursive power spectrum

update

SẌi|i(f) = SẌi|i−1
(f)−K∗i (f)SẌi|i−1, Z̈i|i−1(f)

−Ki(f)SZ̈i|i−1, Ẍi|i−1
(f)

+ |Ki(f)|2 SZ̈i|i−1
(f) + |Ki(f)|2 SVi(f)

(4.56)
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where (·)∗ is the complex conjugation operator.

The KWF time update is summarized in the following theorem.

Theorem 4.8: The KWF estimate time update is given by

x̂i+1|i(r) = {fi ? x̂i|i}(r) (4.57)

where fi is the impulse response of the state-transition operator as in (2.17). The

KWF error power spectrum time update is given by

Sẍi+1|i(f) = |Fi(f)|2 SẌi|i(f) + SUi(f) (4.58)

where the function Fi(f) , {F fi}(f) is the state-transition frequency response and

SUi is the power spectrum of the WSS state noise ui.

Proof. The MMSE optimal one-step prediction of the state is by definition

x̂i+1|i(r) , {Pspan(e1:i) xi+1}(r)

= {Pspan(e1:i) {fi ? xi}}(r) + {Pspan(e1:i) ui}(r). (4.59)

Note that {Pspan(e1:i) ui}(r) = 0 by (2.26). Then, we have

{Pspan(e1:i) {fi ? xi}}(r) =
ß
Pspan(e1:i)

∫
Rd
fi(r − r′)xi(r′) dr′

™
(r)

=
∫
Rd
fi(r − r′){Pspan(e1:i) xi}(r′) dr′

= {fi ? x̂i|i}(r) (4.60)

where the second step holds because the orthogonal projector is a linear operator.
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4.5.4 KWF tomographic projection measurement update

This subsection focuses on the case where the prior error ẍi|i−1 and measurement

noise vθi are WSS spatial random fields and the measurements are noisy tomographic

projections as in

yθi(s) = {Hθi xi}(s) + vθi(s) (4.61)

with xi and vθi uncorrelated. Under these conditions, the KWF measurement update

detailed in Theorem 4.7 can be derived in closed form. This derivation proceeds by

first stating the general statistical properties of a WSS spatial random field and its

noisy tomographic projection. These properties are the d-dimensional extension of

Jain’s work [81], [82] which only considers the 2-D case. Next, the KWF measurement

update is derived in closed form under the above conditions. The subsection concludes

with a corollary that shows that this KWF measurement update can be implemented

by the filtered backprojection algorithm.

We begin with the derivation of the cross-correlation between a WSS spatial ran-

dom field and its noisy tomographic projection.

Lemma 4.9: The cross-correlation between a WSS random field x and its noisy

tomographic projection yθi is given by

RXi, Yθi
(τ ) = {Hθi RXi}(τ ), τ ∈ Θ⊥i (4.62)

and note that the random fields xi and yθi are jointly WSS.

Proof. We have

RXi, Yθi
(t, s) = E[xi(t) yθi(s)]

=
∫
R
E[xi(t)xi(s+ lθi)] dl + E[xi(t) vθi(s)]
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=
∫
R
RXi(t− s− lθi) dl

= {Hθi RXi}(t− s).

The following theorem is the well-known projection slice theorem and will be

useful in deriving the cross power spectrum between a WSS spatial random field

and its noisy tomography projection below. We repeat the theorem for the sake of

completeness.

Theorem 4.10: A function x and its noisy projection {Hθ x} are related in the

frequency domain by

{F {Hθ x}}(f) = {F x}(f) (4.63)

where F is the Fourier transform operator and f ∈ Θ⊥.

Proof. See the proof to Theorem 1.1 in [56].

The following corollary is a direct consequence of Lemma 4.9 and Theorem 4.10.

Corollary 4.11: The cross power spectrum between a WSS random field xi and its

noisy projection yθi is given by

SXi, Yθi (f) = SXi(f), f ∈ Θ⊥i . (4.64)

Proof. We have

SXi, Yθi (f) , {F RXi, Yθi
}(f)

= {F {Hθi RXi}}(f)

= {F RXi}(f) , SXi(f)

44



where the last step is a consequence of Theorem 4.10.

We now derive the auto-correlation function for a noisy tomographic projection.

Lemma 4.12: The auto-correlation of a noisy projection yθi is given by

RYθi
(τ ) = {Hθi RXi, Yθi

}(τ ) +RVθi
(τ ), τ ∈ Θ⊥i . (4.65)

Proof. We have

RYθi
(s, σ) , E[yθi(s) yθi(σ)]

=
∫
R
E[xi(s+ lθi) yθi(σ)] dl + E[vθi(s) vθi(σ)]

=
∫
R
RXi, Yθi

(s+ lθi − σ) dl +RVθi
(s− σ)

= {Hθi RXi, Yθi
}(s− σ) +RVθi

(s− σ).

The following corollary addresses the power spectrum of a noisy tomographic

projection and follows directly as a consequence of Lemma 4.12.

Corollary 4.13: The power spectrum of a noisy projection yθi is given by

SYθi (f) = SXi(f) + SVθi (f), f ∈ Θ⊥i . (4.66)

Proof. We have

SYθi (f) , {F RYθi
}(f)

= {F {Hθi RXi, Yθi
}}(f) + {F RVθi

}(f)

= SXi, Yθi (f) + SVθi (f) = SXi(f) + SVθi (f)

45



where the last step has made use of Theorem 4.10 and (4.64).

We now summarize the relevant Wiener filter for estimating a WSS spatial random

field given a noisy tomographic projection measurement in the following theorem.

Note that the final result is also expressed in the notation used in Section 4.5.3.

Theorem 4.14: The impulse response of the Wiener filter for estimating a WSS

random field xi given its noisy projection yθi is

ki(t) =
1

|Sn−2|
{H∗θi{r ? wi}}(t) (4.67)

where |Sn−1| is the surface area of the n-dimensional unit hypersphere and is equal to

|Sn−1| = 2πn/2

Γ
Ä
n
2

ä (4.68)

where Γ(·) is the Gamma function, H∗θi is the backprojection operator, r is the ramp

filter with frequency response

R(f) = |f |, f ∈ Θ⊥i , (4.69)

and wi is the Wiener filter impulse response for signals in additive uncorrelated noise

with frequency response

Wi(f) =
SXi(f)

SXi(f) + SVθi (f)
, f ∈ Θ⊥i . (4.70)

Expressed using the notation of Section 4.5.3, the Wiener filter frequency response is

Wi(f) =
SẌi|i−1

(f)

SẌi|i−1
(f) + SVi(f)

, f ∈ Θ⊥i . (4.71)
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Proof. Given a single noisy tomographic projection yθi , the Wiener filter has fre-

quency response

Ki(f) =
SXi, Yθi (f)

SYθi (f)
, f ∈ Θ⊥i (4.72)

which simplifies to

Ki(f) =
SXi(f)

SXi(f) + SVθi (f)
(4.73)

by noting (4.64) and (4.66). By definition, the impulse response of the Wiener filter

is given by

ki(t) =
∫
Rd
Ki(f) ej2πf ·t dt

=
1

|Sn−2|

∫
Sn−1

∫
Φ⊥i

|f ′|Ki(f
′) ej2πf

′·t df ′ dφ (4.74)

where the above change to generalized polar coordinates is justified by (VII.2.8)

in [56]. Note that the Wiener filter (4.73) updates only on the plane f ∈ Θ⊥i and we

may plug this relationship into (4.74) by using a Dirac delta function as follows:

ki(t) =
1

|Sn−2|

∫
Sn−1

∫
Φ⊥i

|f ′|SXi(f ′) δ(θ − φ)

SXi(f
′) + SVθi

ej2πf
′·t df ′ dφ

=
1

|Sn−2|

∫
Θ⊥i

|f ′|SXi(f ′)
SXi(f

′) + Sθi(f
′)
ej2πf

′·t df ′

=
1

|Sn−2|

∫
Θ⊥i

R(f ′)Wi(f
′) e

j2πf ′·P
Θ⊥
i
t
df ′ (4.75)

where the matrix PΘ⊥i
= I − θi θTi is the orthogonal projector from Rd to Θ⊥i . By

the convolution property of the Fourier transform, (4.75) simplifies to

ki(t) =
1

|Sn−2|
{r ? wi}(PΘ⊥i

t). (4.76)

Finally, note that the adjoint of the projection operator is the backprojection operator
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defined by

{H∗θ x}(t) , x
Ä
PΘ⊥ t

ä
. (4.77)

Next we will develop a corollary to Theorem 4.14 that will show that the Wiener

filter (4.67) can be implemented using the standard filtered backprojection algorithm.

First we will require the following lemma that is closely related to Theorem 1.3 in [56].

Lemma 4.15: Given functions f and g we have

{{H∗θ g} ? f} = {H∗θ{g ? {Hθ f}}}. (4.78)

Proof. We have

{{Hθ g} ? f}(t) =
∫
Rd
{H∗θ g}(t− τ ) f(τ ) dτ

=
∫
Rd
g
î
θ, PΘ⊥ (t− τ )

ó
f(τ ) dτ

where we have expressed the function g using generalized polar coordinates. Then,

making the substitution τ = s+ lθ with s ∈ Θ⊥, we obtain

{{Hθ g} ? f}(t) =
∫

Θ⊥
g(θ, PΘ⊥ t− s)

∫
R
f(s+ lθ) dl ds

=
∫

Θ⊥
g(θ, PΘ⊥ t− s) {Hθ f}(s) ds

= {g ? {Hθ f}}(PΘ⊥ t).

Finally, the corollary below demonstrates that the KWF measurement update can

be accomplished using the filtered backprojection algorithm.

Corollary 4.16: The impulse response of the Wiener filter for estimating a WSS
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random field xi given its noisy projection yθi is

ki(t) =
1

|Sn−2|
{{H∗θi wi} ? g}(t) (4.79)

where g is the ramp filter with frequency response

G(f) = |f |, f ∈ Rd. (4.80)

Proof. We can make use of Lemma 4.15 to reformulate Theorem 4.14 by first noting

that the ramp filter r can be written as the projection of another function. In par-

ticular, consider the d-dimensional ramp filter (4.80) that, by Theorem 4.10, has the

property

{F {Hθi g}}(f ′) = G(f ′) = R(f ′), f ′ ∈ Θ⊥i , (4.81)

which implies

{Hθi g}(s) = r(s), s ∈ Θ⊥i . (4.82)

Then we have

ki(t) =
1

|Sn−2|
{H∗θi{r ? wi}}(t)

=
1

|Sn−2|
{H∗θi{{Hθi} g} ? wi}(t) (4.83)

which simplifies to (4.79) by Lemma 4.15.

4.6 Smoothed Estimation

The remainder of this chapter focuses on the smoothing problem under the linear

state-space model of Section 2.2.2. We consider only the Bryson-Frazier Kalman
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smoother [27], [83] because it leads to a new ensemble Kalman smoothing algorithm

discussed in the final subsection. Furthermore, we only consider the fixed-interval

smoothing problem where the goal is to compute smoothed estimates “xi:1:I based

on all available data. Methods for computing fixed-point and fixed-lag smoothed

estimates [27] can also be derived using the techniques we now develop.

4.6.1 Bryson-Frazier Kalman smoother

The Bryson-Frazier Kalman smoother [27], [83] consists of three stages. The first stage

processes the complete data set through the Kalman filter described in Section 4.3

and, for each time index i, stores the following quantities to disk for later use: the

Kalman gain Ki (4.11), the innovation

ei , yi −H i “xi|i−1, (4.84)

and the innovation covariance

Re,i , Cov(ei) = Ri +H iP i|i−1H
T
i (4.85)

in addition to the filtered estimate “xi|i and error covariance P i|i. The second stage

processes the time-reversed data set to compute the adjoint variable

λI+1 = 0 (4.86)

λi = (I −KiH i)
T F T

i λi+1 +HT
i R

−1
e, i ei (4.87)

and its covariance

ΛI+1 = 0 (4.88)
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Λi = (I −KiH i)
T F T

i Λi+1 F i (I −KiH i) +HT
i R

−1
e, iH i (4.89)

through the above backwards recursions. We note that

“ui|1:I = Qi λi+1 (4.90)

and, as a consequence, the adjoint variable is related to the smoothed estimate of the

state noise [27]. The final stage combines quantities found in the first two stages to

compute the smoothed estimate and error covariance:

“xi|1:I = “xi|i + P i|i F
T
i λi+1 (4.91)

P i|1:I = P i|i − P i|i F
T
i Λi+1 F iP i|i. (4.92)

4.6.2 Ensemble Kalman smoother

The Bryson-Frazier smoother is computationally intractable for high-dimensional

state estimation problems because its first stage is the Kalman filter. In the follow-

ing, we develop an ensemble Kalman smoother (EnKS) based on the Bryson-Frazier

approach that utilizes covariance tapering and a Monte Carlo methodology to ease

the computational burden in a manner similar to the EnKF of Section 4.4. Anal-

ogous to the development of the Kalman smoother, methods for ensemble Kalman

smoothing were developed not long after the publication of the EnKF. The first

was by van Leeuwen and Evensen [84], but that method is limited to relatively

low-dimensional problems because it does not utilize computational simplifications

like covariance tapering. Evensen and van Leeuwen developed another approach to

smoothing geared to nonlinear problems in [85], but, again, the method is not suited

to high-dimensional problems. Finally, Khare et al. [86] consider larger problems and
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investigate the implications of covariance tapering on ensemble smoothing. However,

they do not consider the convergence properties of their approach and neglect the

smoothed error covariance.

The EnKS can be thought of as a Monte Carlo approximation to the Bryson-

Frazier Kalman smoother that utilizes covariance tapering. The first stage of the

EnKS is the EnKF detailed in Section 4.4. At each time index i, the following

quantities are stored to disk for later use: the filtered estimate ‹xi|i, the ensemble

Kalman gain ›Ki (4.19), the ensemble innovation

ẽi , yi −H i ‹xi|i−1, (4.93)

the ensemble innovation covariance

R̃e i , Ri +H i

Ä
Ci ◦ P̃ i|i−1

ä
HT

i , (4.94)

and the prior and posterior ensembles denoted ›X i|i−1 and ›X i|i, respectively, where

the lth column of the matrix ›X i|j is given by

[›X i|j
]
(:, l)

= ‹xli|j. (4.95)

The second stage of the EnKS involves the following backwards recursion on the

ensemble adjoint variable:

‹λI+1 = 0 (4.96)‹λi =
Ä
I −›KiH i

äT
F T
i
‹λi+1 +HT

i R̃
−1
e, i ẽi (4.97)
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and its covariance

‹ΛI+1 = 0 (4.98)‹Λi =
Ä
I −›KiH i

äT
F T
i
‹Λi+1 + R̃

−1/2
e, i Zi (4.99)

where [Zi](:, l)
i.i.d.∼ N (0, I). It is easily shown that

Λi ≈
‹Λi
‹ΛT

i

L− 1
(4.100)

and the approximation is within the sample error when no covariance tapering is

applied, i.e., when Ci = 1.

The presence of a square root of the ensemble innovation covariance R̃
1/2

e, i in (4.99)

poses a significant implementation challenge especially when covariance tapering is

involved. Any hope to find a square root factor to (4.94) rests on factoring the prior

tapered ensemble covariance. To find this square root factor, first note that

Ci ◦ P̃ i|i−1 =
Å
C

1/2
i C

T/2
i

ã
◦
Å
P̃

1/2

i|i−1 P̃
T/2

i|i−1

ã
(4.101)

where AT/2 ,
Ä
A1/2

äT
, C

T/2
i is a convolution matrix used in the construction of the

covariance taper matrix as mentioned in Section 4.4.1, and

P̃
1/2

i|i−1 =
›X i|i−1√
L− 1

. (4.102)

Square root factors involving Hadamard products such as (4.101) have been addressed

in the literature on spatial temporal adaptive processing in radar applications [87],

[88]. The following lemma addresses the relevant square root factorization.
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Lemma 4.17: Let A be an M ×N matrix and B be an M × P matrix. ThenÄ
AAT

ä
◦
Ä
BBT

ä
=
Ä
AT � BT

äT Ä
AT � BT

ä
(4.103)

where � denotes the Khatri-Rao matrix product defined in Appendix C.

Proof. See the proof to P 6.4.2 in [89].

The square root factorization of (4.94) also requires the following lemma which is

the basis for numerically stable square root form implementations of the Kalman

filter [27].

Lemma 4.18: Let A and B be M ×N (M ≤ N) matrices. Then AAT = BBT if,

and only if, there exists an N ×N unitary matrix Θ such that A = BΘ.

Proof. See the proof to Lemma A.5.1 in [27].

Finally, the square root factorization of the ensemble innovations covariance (4.94)

required in (4.99) is summarized in the following theorem.

Theorem 4.19: Let Qi and Ri be the unitary and the upper triangular matrices

found in the QR decomposition [72] of the matrix

Ai =
ï
H i

Ä
C
T/2
i � P̃

T/2

i|i−1
äT

R
1/2
i

òT
. (4.104)

Then,

R
1/2
e, i = [Ri]

T
(1:M, :) (4.105)

where [·](1:M, :) selects the first M rows of its matrix argument.
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Proof. First note that

AT
i Ai =

ï
R̃

1/2

e,i 0

ò ï
R̃

1/2

e,i 0

òT
(4.106)

by Lemma 4.17. Then, by Lemma 4.18, (4.106) implies that there exists a unitary

matrix Θi such that

AT
i =

ï
R̃

1/2

e,i 0

ò
Θi. (4.107)

Note that the QR decomposition provides the following factorization:

Ai = QiRi. (4.108)

Finally, note that

AT
i = Ri

T Qi
T (4.109)

and Qi
T is a unitary matrix.

The third and final stage of the EnKS computes the ensemble approximation to

the smoothed estimate

‹xi|1:I = ‹xi|i +
Ä
C ′i ◦ P̃ i|i

ä
F T
i
‹λi+1 (4.110)

and the smoothed error covariance

P̃ i|1:I = P̃ i|i −
Ä
C ′i ◦ P̃ i|i

ä
F T
i

Ä
C ′′i ◦ ‹Λi+1

ä
F i

Ä
C ′i ◦ P̃ i|i

ä
(4.111)

where C ′i and C ′′i are two additional application dependent covariance taper matrices.
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4.6.3 Ensemble Kalman smoother convergence

The following theorem addresses the convergence of the EnKS as the ensemble size

L increases. This theorem concerning the asymptotic convergence of the EnKS is

important because it demonstrates that the approach converges to a well defined

limit which we call the localized Kalman smoother (LKS), shows that the EnKS

without covariance tapering is a Monte Carlo Bryson-Frazier smoother, and provides

a means for investigating the implications of the covariance taper.

Theorem 4.20: For each time index i, the EnKS estimates ‹xi|1:I converge in prob-

ability to the LKS estimates ‹x∞i|1:I defined below, i.e.,

‹xi|1:I p.−→ ‹x∞i|1:I (4.112)

in the limit as the ensemble size L→∞.

Proof. The proof proceeds in a manner similar to the EnKF convergence proof in

Appendix A. Again, Slutsky’s theorem plays an important role since the ensemble

members in the EnKS are identically distributed but dependent. The proof proceeds

by induction, showing that the terms in each stage converge in probability to the cor-

responding terms in the LKS. The details are omitted because of the close similarity

to the proof in Appendix A.

Like the Bryson-Frazier smoother, the LKS has three stages, the first being the

LKF defined by (4.24)-(4.28). The second stage is the backwards recursion for the

adjoint variable

‹λ∞I+1 = 0 (4.113)‹λ∞i =
Ä
I −›K∞i H i

äT
F T
i
‹λ∞i+1 +HT

i

Ä
R̃
∞
e, i

ä−1
ẽ∞i (4.114)
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where ›K∞i is the localized Kalman gain (4.24) and

R̃
∞
e, i , Ri +H i P̃

∞
i|i−1H

T
i (4.115)

ẽ∞i , yi −H i ‹x∞i|i−1. (4.116)

The backwards recursion for the covariance of the adjoint variable is given by

‹Λ∞I+1 = 0 (4.117)‹Λ∞i =
Ä
I −›K∞i H i

äT
F T
i
‹Λ∞i+1 F i

Ä
I −›K∞i H i

ä
+HT

i

Ä
R̃
∞
e, i

ä−1
H i. (4.118)

The final stage combines information in the first two stages to compute the localized

smoothed estimate and error covariance with

‹x∞i|1:I = ‹x∞i|i +
Ä
C ′i ◦ P̃

∞
i|i
ä
F T
i
‹λ∞i+1|1:I (4.119)

P̃
∞
i|1:I = P̃

∞
i|i −

Ä
C ′i ◦ P̃

∞
i|i
ä
F T
i

Ä
C ′′i ◦ ‹Λ∞i+1

ä
F i

Ä
C ′i ◦ P̃

∞
i|i
ä
. (4.120)

The following corollary to Theorem 4.20 addresses the convergence of the EnKS

when no covariance tapering is applied.

Corollary 4.21: For each time index i, the unlocalized (Ci = C ′i = C ′′i = 1) EnKS

estimates ‹xi|1:I converge in probability to the LMMSE smoothed estimates “xi|1:I , i.e.,

‹xi|1:I p.−→ “xi|1:I (4.121)

in the limit as the ensemble size L→∞.

Proof. When no covariance tapering is applied, the LKS and Bryson-Frazier Kalman

smoother of Section 4.6.1 are equivalent. Then, apply the result of Theorem 4.20.
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CHAPTER 5

NUMERICAL EXPERIMENTS

The following set of experiments evaluates the performance of the state estimation

algorithms developed in Chapter 4. The first experiment compares the PF, KF, and

EnKF in a relatively low-dimensional dynamic tomography scenario. The results

corroborate the computational intractability of the PF and the tremendous compu-

tational savings offered by the EnKF over the KF. The second experiment focuses on

the random walk signal model and its applicability to a dynamic tomography prob-

lem with known state dynamics. The next experiment shows that the KF and KWF

estimates are essentially equal and that the computational complexity of the KWF

is the same as filtered back-projection. The final two experiments consider the EnKS

in a 1-D example and demonstrate the convergence of the EnKS to the LKS.

5.1 Low-Dimensional Example

The purpose of the first numerical experiment is to demonstrate the performance of

the EnKF in reconstructing a dynamic 2-D object from tomographic measurements

when no deterministic model for the state process dynamics is given (F i = I). The

purely stochastic model is commonly used when little is known of the system dynamics

[44]. The dynamic object xi at each time index i is a vector representation of an image

where each element of xi corresponds to one image pixel. Each image is a sample of a
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random process that consists of the superposition of 256 randomly moving disks in a

2-D field. This dynamic process was chosen because it can be sampled at any spatial

and temporal resolution and, like many dynamic tomography problems that arise in

remote sensing and other fields, the dynamics of the process are complex and not

easily modeled. Two versions of this random process are studied in the experiment.

The first is at low resolution with a spatial resolution of 32 × 32 pixels (N = 322)

and a temporal resolution of 256 frames in a period T , the duration of the random

process measured in seconds. The second is at high resolution with 128× 128 pixels

(N = 1282) and 1024 frames in the same period T . Five images of the process at low

resolution are given in Figure 5.1 (left) and the first row of Figure 5.2. The same five

images at high resolution are given in Figure 5.3 (left) and the first row of Figure 5.4.

Each measurement yi consists of M uniformly spaced parallel line integrals of the

unknown object xi at a projection angle θi with M = 46 and M = 184 in the low and

high resolution cases. The projection angle θi sweeps uniformly through 360◦ a total

of 4 times in the simulation time T in both cases. White Gaussian noise has been

added to each measurement resulting in a 40 dB signal-to-noise ratio (SNR) defined

-5.1 -2.3 0.6 3.4 6.2 9.0 -5.1 -2.3 0.6 3.4 6.2 9.0

Figure 5.1 The initial state x1 (left) and the initial prior estimate µ1 (right) given
by the back-projected estimate (5.2) at low resolution. The error (5.3) between x1

and µ1 is 0.49.
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Figure 5.2 The results of the Section 5.1 numerical experiment at low resolution
where the vector xi represents a 32 × 32 image, each vector yi contains 46 parallel
line integral measurements, and the final time index is I = 256. Each column shows
the true image and the EnKF, LKF, and KF estimates of that image at a given time
index i on the same color scale.

60



-5.1 -2.4 0.3 2.9 5.6 8.2 -5.1 -2.4 0.3 2.9 5.6 8.2

Figure 5.3 The initial state x1 (left) and the initial prior estimate µ1 (right) given
by the backprojected estimate (5.2) at high resolution. The error (5.3) between x1

and µ1 is 0.45.
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-4.5 -2.2 -0.0 2.2 4.4 6.6 -4.6 -2.4 -0.2 2.0 4.2 6.4 -5.4 -3.1 -0.7 1.6 3.9 6.2 -5.9 -3.3 -0.6 2.0 4.6 7.3

Figure 5.4 The results of the Section 5.1 numerical experiment at high resolution
where the vector xi represents a 128×128 image, each vector yi contains 184 parallel
line integral measurements, and the final time index is I = 1024. Each column shows
the true image and two EnKF estimates with ensemble sizes L = 2048 and L = 256
at time index i on the same color scale.
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as

SNR , 10 log10

‖s‖22
‖v‖22

(5.1)

where

s ,
ï
(H1x1)

T , · · · , (HIxI)
T
òT

and v ,
Ä
vT1 , · · · ,vTI

äT
and I is the final time index. On average, ‖v‖22 = σ2

vMI, where σ2
v denotes the

measurement noise variance. White measurement noise enables the use of sequential

processing and related computational benefits as discussed in Appendix B.1. The low

and high resolution noisy measurements are shown in Figures 5.5 and 5.6.

The remaining state-space model parameters are detailed below. Because no sim-

ple model describes the dynamics of the random process xi, the state transition

matrix is set to F i = I and the state evolution is modeled as a random walk. The

measurement operator H i is a matrix representation of the Radon transform [56],

[90] at projection angle θi. Both the state noise covariance Qi and initial prior es-

timate error covariance Πi are of a form similar to the taper matrix Ci depicted in

Figure 4.1 (left) with correlation decreasing as a function of the spatial distance be-

tween pixels and no correlation above a distance of 2 pixels. The measurement noise

covariance is Ri = σ2
vI, where σ2

v is the measurement noise variance. The prior mean
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Figure 5.5 The 40 dB SNR low resolution tomographic measurements yi with SNR
defined in (5.1).
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Figure 5.6 The 40 dB SNR high resolution tomographic measurements yi with SNR
defined in (5.1).

of the initial state, the initial guess, is the so-called backprojected image

µ1 =
1

α
HT

1:J y1:J (5.2)

where α is a manually tuned scaling factor,

H1:J ,
Ä
HT

1 , · · · ,HT
J

äT
and y1:J ,

Ä
yT1 , · · · ,yTJ

äT
,

and J + 1 is the time index that θi is first greater than 180◦. The initial state x1

and the backprojected estimate µ1 are shown in Figures 5.1 and 5.3 for the low and

high resolution cases. All estimates computed in this experiment are regularized by

the method of augmenting the forward model (2.10) as discussed in Appendix B.2.

The regularization matrix is Di = (DT
x , D

T
y )T where Dx and Dy are first-order

difference approximations to the spatial derivative operators in the horizontal and

vertical directions. The regularization parameter λi and the scaling of all the model

parameters were manually tuned to produce the best possible estimates. Methods

such as cross validation [91], [92] exist to automatically and systematically select

such parameters based on available information.

The low resolution experimental results are given in Figure 5.2. The first row

shows the dynamic object xi at four uniformly spaced time indices. The next three
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Figure 5.7 A log-lin comparison of the error (5.3) for the results in Figure 5.2.

Table 5.1 Computation run-time (Time) and memory (Mem.).

Low resolution High resolution
Method L Time Mem. (MB) L Time Mem. (MB)

KF/LKF N/A 39.7 m 2 N/A (576 d) 512
EnKF 128 26 s 0.5 2048 11.2 h 128

256 6.0 h 16

rows show the corresponding EnKF, LKF, and KF estimates ‹xi|i, ‹x∞i|i, and “xi|i, re-

spectively. The EnKF taper matrix is the extreme case Ci = I in both the low and

high resolution scenarios. Figure 5.7 shows the relative error of the three estimation

methods defined as

ei ,
‖xi − zi‖2
‖xi‖2

(5.3)

with zi equal to µ1, ‹xi|i, ‹x∞i|i, or “xi|i, depending on context. The computational ex-

pense on a 2 GHz workstation is summarized in Table 5.1. Note that even in the low

resolution case, the EnKF is far less expensive than the KF and LKF. Though qual-

itatively and quantitatively different, the EnKF estimates at ensemble size L = 128

are comparable in quality to the KF and LKF estimates. The LKF is the asymptotic

limit of the EnKF and represents the upper bound on the average achievable quality.

At L = 128, the EnKF begins to approach this upper estimate quality bound as

evidenced by the similarity between the EnKF and LKF estimates in Figure 5.2 and

the error in Figure 5.7. When compared to the KF estimates, the LKF estimates
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show the effect of the bias introduced by covariance tapering without the additional

effect of sample error present in the EnKF estimates and any other bias associated

with a finite ensemble size. As shown in Figure 5.7, the effect of the covariance taper

bias is apparent, but it does not cause the LKF estimate error to be far worse than

the KF estimate error, especially at time indices i ≥ 96. Note that it may seem

surprising that the LKF outperforms the KF in Figure 5.7 at several time indices

since the KF is the LMMSE optimal estimation procedure and the LKF is a linear

filter. However, the KF is LMMSE optimal only over the average of all realizations of

the measurement process and when the parameters assumed in the state-space signal

model match the true system parameters. Section 5.2 further explores these issues

when the system dynamics are known (F i 6= I). Also, it may be possible to improve

upon the relatively poor performance of the LKF at time indices 32 ≤ i ≤ 96 by

dynamically adjusting model parameters as changes are detected in the estimated

system dynamics.

The numerical experiment results at high resolution are shown in Figure 5.4. At

this resolution, the KF and LKF become computationally intractable as shown in

Table 5.1, where the total computation time of the KF and LKF are listed paren-

thetically as it was extrapolated from the 13.5 h of processing necessary for the first

measurement. Results with smaller ensemble sizes such as L = 128 are not shown

because the visual quality of the EnKF estimates began to significantly degrade. The

results in Figure 5.4 demonstrate that, for this example, only a modest increase in

ensemble size is required to faithfully reconstruct the dynamic object even though

the state dimension N has increased by a factor 16 relative to the low resolution

experiment. Also, Figure 5.4 shows that increasing the ensemble size results in better

estimates, but at the cost of greater computational effort.

Figure 5.8 (left) explores the rate of convergence of the EnKF with respect to
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Figure 5.8 A log-log comparison (left) between the average sample bias b (5.4) and
average computation time, and (right) b and average sample standard deviation σ
(5.5). In both plots, the kth marker corresponds to ensemble size L = 2k+1 and the
first marker is filled (L ranges from 22–214).

ensemble size for an 8 × 8 pixel and 16 time step sampling of the same dynamic

process as above. A total of 64 independent EnKF trial estimates were computed

using the same measurements and model parameters. The dependent variable in

Figure 5.8 (left) is the average sample bias

b =
1

IN

I∑
i=1

N∑
n=1

∣∣∣(µx̃i|i − ‹x∞i|i)n∣∣∣ (5.4)

where µx̃i|i is the sample mean of the 64 trial estimates and (·)n denotes the nth

component of the vector argument. For large enough ensemble size, the curve is

linear with slope approximately −1/2 for both extreme (Ci = I) and no (Ci = 1)

covariance tapering. In other words, a quadratic increase in computation time is

required to halve the bias error in ‹xi|i. Put another way, L2 additional ensemble

members are required to halve the error because computation time and ensemble size

L are directly proportional. This rate of convergence is in agreement with other Monte

Carlo integration methods [17]. Figure 5.8 (left) is also an empirical verification of

Theorem 4.1 and Corollary 4.2. Both curves continue to decrease with slope −1/2 as
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the ensemble size, and, in direct proportion, the computation time increase. The top

curve demonstrates that ‹xi|i converges to “xi|i when there is no localization (Ci = 1)

and the bottom demonstrates that ‹xi|i converges to ‹x∞i|i when there is localization

(Ci 6= 1).

Figure 5.8 (right) demonstrates an operational procedure for determining the qual-

ity of the EnKF estimates. The curve is based on the same scenario as Figure 5.8 (left)

and compares the average sample bias (5.4) to the average sample standard deviation

σ =

ñ
1

I

I∑
i=1

trace
Å
Σx̃i|i

ãô1/2
(5.5)

where trace(·) is the matrix trace and Σx̃i|i
is the sample covariance of the 64 trial

estimates. The curve has a slope approximately 1, which implies (5.4) and (5.5) are

directly proportional and small σ implies better estimate quality.

Finally, the optimal proposal PF of Section 4.2 was compared to the EnKF for a

coarse 6 × 6 pixel (N = 36) and 8 time step sampling of the same dynamic process

as above. The PF resampled [21] the particles whenever the ratio of the number of

effective particles [21] to particles was less than half. In this example, the PF required

2048 particles to achieve the same estimate error as the EnKF with only 16 ensemble

members when averaged over 64 trials. This example empirically demonstrates the

inapplicability of the PF to even low-dimensional dynamic tomography.

5.2 Study of the Random Walk Dynamic Model

The goal of the second numerical experiment is to empirically evaluate the conse-

quences of assuming a purely stochastic state transition model (F i = I). We consider

67



a dynamic process that evolves according to the classic heat equation

∂ xt(s)

∂ t
= k∇2

s xt(s) (5.6)

where xt(s) is the temperature at time t and spatial coordinate s, k is the diffusion

coefficient, and ∇2
s (·) is the Laplace operator. Spatially and temporally discretizing

(5.6) results in the linear model (2.9) where the state transition operator F i is an

N ×N truncated convolution operator and the state noise ui accounts for all approx-

imation error. For this experiment, we consider a 16 × 16 pixel (N = 162) and 128

time step spatial-temporal discretization.

The measurements are M = 23 parallel line integrals of the dynamic object at

an angle θi that sweeps uniformly through 360◦ a total of 4 times by the final time

index. The remaining model parameters were similar to those in Section 5.1 but

scaled for the smaller problem size and new system dynamics. Somewhat different

model parameters were used in the two cases (random walk model and true model).

Specifically, the regularization parameter λ, scaling of the state noise covariance Qi,

and its correlation length were greater for the case of the random walk model (F i = I).

In addition, the random walk model ensemble size is double that used in the true

model case. These increases are reasonable given the greater estimation uncertainties

under the random walk model.

Figure 5.9 shows the EnKF, LKF, and KF estimates of the diffusive process re-

constructed from line integral measurements when the state dynamics are specified

(F i 6= I) and Figure 5.10 shows the error. The results in Figure 5.11 are computed

from the same data set assuming purely stochastic dynamics (F i = I) and Figure 5.12

shows the error. The estimates found when the state dynamics are known are clearly

superior to when the dynamics are ignored. This is not surprising; however, the

68



i = 32 i = 64 i = 96 i = 128

T
ru

th
x
i

E
n
K

F
‹ x i|i

L
K

F
‹ x∞ i|i

K
F
“ x i|i

0.1 0.4 0.7 1.0 1.3 1.6 0.1 0.2 0.4 0.6 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.7 0.1 0.1 0.2 0.3 0.4 0.5

Figure 5.9 The results of the numerical experiment of Section 5.2 comparing the
EnKF, LKF, and KF estimates when the system dynamics are given (F i 6= I). The
example is a 16 × 16 pixel tomography problem with 128 total time steps. The
estimate error (5.3) is shown in Figure 5.10.
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Figure 5.10 The log-lin comparison of the error (5.3) for the results in Figure 5.9.
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Figure 5.11 The results of the numerical experiment of Section 5.2 comparing the
EnKF, LKF, and KF estimates when the system dynamics are given (F i 6= I). The
example is a 16 × 16 pixel tomography problem with 128 total time steps. The
estimate error (5.3) is shown in Figure 5.10.
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Figure 5.12 The log-lin comparison of the error (5.3) for the results in Figure 5.11.

70



estimates found when the dynamics are ignored do capture the main features and

general morphology. The system dynamics may be unknown in practice and these

results demonstrate that dynamic tomography may still be possible, though faithful

models of the system dynamics will clearly improve the results. Also, note that the

KF outperforms the LKF in Figure 5.10 at all time indices but not in Figure 5.12.

This demonstrates that while the KF is LMMSE optimal, a significant mismatch be-

tween the state-space model and the true system parameters can result in estimates

that are a poor reflection of the true state.

5.3 Kalman-Wiener Filter Examples

The following section details the results of the two experiments that test the KWF

in simulation. The first experiment involves an unknown random process generated

through LSI filtering of white Gaussian noise with measurements given by further

LSI filtering. The experiment is designed to verify that the KWF and KF are nearly

equivalent in this case, where the KWF is essentially the frequency domain version

of the spatial domain KF. In addition, the O(N logN) computational scaling of the

KWF is demonstrated against the O(N3) scaling of the KF. The second experiment

examines the potential of the KWF in a 2-D dynamic tomography scenario. We

demonstrate that the KWF is a filtered backprojection algorithm with a time varying

filter.

5.3.1 Case 1: Convolutional measurements

The first numerical experiment involves a 1-D state random process (d = 1). The

initial state is generated by LSI filtering Gaussian white noise. Each measurement is

a noisy Gaussian blur of the state. The expressions for the cross-correlation and auto-

correlation functions required for the posterior error power spectrum update (4.39)
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are [63]

SẌi|i−1,Z̈i|i−1
(f) = H∗i (f)SẌi|i−1

(f) (5.7)

and

SZ̈i|i−1
(f) = |Hi(f)|2 SẌi|i−1

(f). (5.8)

The resultant WF in this case is

Ki(f) =
H∗i (f)SẌi|i−1

(f)

|Hi(f)|2 SẌi|i−1
(f) + SVi(f)

. (5.9)

At each time step, the state randomly circularly shifts one element to the left or right.

For this numerical experiment, the KF and KWF state dynamic models are a random

walk, i.e., F i = I where I is the identity matrix and Fi(f) = 1. The precise definition

of the remaining experimental model parameters is not essential because the goal here

is to compare the KWF to the KF and to investigate their scaling without regard to

the estimates generated by the methods.

The plot in Figure 5.13 shows the absolute difference between the posterior KF

estimate “xi|i and KWF estimate x̂i|i(r) at time index 128 for an N = 127 dimensional

sampling of the above problem. To be precise, the vertical axis of Figure 5.13 shows

∣∣∣î“xi|ión − x̂i|i(rn)
∣∣∣ (5.10)

where i = 128 and rn is the nth component of the discretized 1-D spatial coordinate.

Except at the edges (near n = 1 and n = 127), the KF and KWF estimates are almost

equal. The differences at the edges result from the fact that the KF assumes the state

has finite spatial support whereas the KWF state support is assumed infinite. These

differences are not statistically significant for this problem. For example, the relative
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Figure 5.13 A log-lin plot of the absolute difference between KF and KWF estimates
(5.10) at the final time index i = 128.

empirical mean square errors of the KF and KWF were 0.337 and 0.348, respectively,

after averaging over 64 realizations of the problem. Therefore, statistically speaking,

the KF and KWF give essentially equal results.

Figure 5.14 shows how the computational expense of the KF and KWF scale as a

function of the problem dimension N . Note that the asymptotic slope of the KF curve

in Figure 5.14 is 2.92 on the log-log plot and is 1.18 for the KWF. These asymptotic

slopes provide empirical proof for the O(N3) and O(N logN) computational com-

plexity of the KF and KWF. The KF and KWF also differ in storage complexity.

Whereas the KF must store approximately N2/2 elements of the symmetric error co-

variance matrix [50], the KWF need only store N samples of the error power spectral

density function SẌi|j(f). The resultant storage complexity is therefore O(N2) for

the KF and O(N) for the KWF.

5.3.2 Case 2: 2-D projection measurements

The goal of the second numerical experiment is to reconstruct a randomly translating

2-D Shepp-Logan head phantom (d = 2) from noisy projection measurements. We
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Figure 5.14 A log-log plot of execution time versus problem dimension N comparing
the KF and KWF.

consider a 512 × 512 square pixel sampling of the head phantom state (N = 5122).

Each projection is sampled at np = 725 uniform points. White Gaussian noise is added

to each projection at the 40 dB SNR level (5.1). The projections are sampled at 512

uniformly spaced angles over a 180◦ sweep about the head phantom. Between each

projection measurement, the state randomly shifts 0, 1, or -1 pixels in the horizontal

direction. Assuming that the images in Figure 5.15 have a physical dimension of

20 cm×20 cm (the average human skull is about 20 cm in length), then a single pixel

shift corresponds to about 0.4 mm of patient movement.

For this problem, the cross-correlation and auto-correlation functions for the pos-

terior update (4.39) are

SẌi|i−1,Z̈i|i−1
(f) = SẌi|i−1

(f cos θi, f sin θi) (5.11)

and

SZ̈i|i−1
(f) = SẌi|i−1

(f cos θi, f sin θi). (5.12)
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Figure 5.15 The left image shows the filtered backprojection reconstruction of a
40 dB SNR (5.1) head phantom that randomly walks in the horizontal direction while
the right image shows KWF reconstruction given perfect knowledge of the movement.

The WF is given by

Ki(f) =
|f |SẌi|i−1

(f cos θi, f sin θi)

SẌi|i−1
(f cos θi, f sin θi) + SVθi (f)

. (5.13)

Note that (5.11), (5.12), and (5.13) are the 2-D cases of the more general results

developed in Section 4.5. The initial prior error auto-correlation was chosen to be the

circularly symmetric exponential function RẌ1|0
(θ, τ) = e−a|τ |. The correlation length

a was hand tuned to minimize reconstruction error. The initial state was assumed

mean zero, i.e., x̂1|0(r) = 0.

Figure 5.15 (left) shows the filtered backprojection reconstruction of the moving

head phantom. Even the relatively small patient motion in this example yields severe

reconstruction artifacts. In contrast, given perfect knowledge of the patient motion,

the KWF gives the reconstruction Figure 5.15 (right). However, only imprecise or

statistical knowledge of the patient motion is available in practice. Suitable sources

for patient motion knowledge include direct patient position measurement and joint

estimation of motion by tracking features in the reconstructed images. Such statistical

knowledge may be incorporated into the KWF state dynamic model described in
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Section 2.2.3. Therefore, given sufficient statistical knowledge of patient motion, the

KWF can approach the performance demonstrated in Figure 5.15 (right).

5.4 One-Dimensional Ensemble Kalman Smoother

Example

The goal of the following experiment is to evaluate the performance of the EnKS in a

low-dimensional 1-D example. The problem dimension is small enough that the EnKS

state estimates can be compared to the Kalman smoother (KS) and localized Kalman

smoother (LKS) estimates. We show that the KS provides a superior estimate of the

state when compared to the KF, that the bias introduced by covariance tapering in

the LKS is relatively small, and that the EnKS with a relatively small number of

ensemble members provides estimates that are close to the LKS estimates.

The ground truth xi is the discretized harmonic oscillator depicted in Figure 5.16.

The 1-D example is discretized on an N = 128 grid and the oscillator passes through

one complete period over I = 32 time steps. A measurement yi consists of M = 64

direct noisy observations of randomly chosen state elements. In other words, the

matrix H i has M rows, each all zero except for a single randomly chosen column.

Each measurement is corrupted by AWGN at the 30 dB SNR (5.1) level and the

measurement noise covariance matrix is Ri = σ2
v I where σ2

v is the noise variance.

The initial state mean is µ1 = 0 and the initial state covariance Π1 is a Toeplitz

matrix with three bands indicating correlation with immediate neighbors only. The

state transition operator is F i = I, which models the state evolution as a random

walk, and the state noise covarianceQi is a Toeplitz matrix with three bands. Finally,

the covariance taper matrix Ci is also a Toeplitz matrix with three bands.

The results of the experiment are depicted in Figure 5.17 which shows the output

of the KF, KS, LKF, LKS, EnKF, and EnKS when the ensemble size is L = 16. From
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Figure 5.16 The ground truth xi used in the experiment described in Section 5.4 to
investigate the performance of the ensemble Kalman smoother (EnKS).

a qualitative comparison of the filtered and smoothed results, it is clear that taking

future observations into account through smoothing provides tremendous benefits in

this example. Also, the qualitative similarity between the KF and LKF results, and

between the KS and LKS results, demonstrates that the covariance taper does not

introduce a large bias in this example. Finally, the similarities between the ensemble

methods (EnKF and EnKS) and their limiting solutions (LKF and LKS) demonstrate

that the relatively small ensemble size of L = 16 is sufficient to obtain qualitatively

faithful estimates in this example.

A quantitative comparison is made in Table 5.2 which compares the relative error

relerror(x1:I , y1:I) ,
Ç∑I

i=1 ‖xi − yi‖22∑I
i=1 ‖yi‖22

å1/2

(5.14)

between the six estimates shown in Figure 5.17 to the ground truth shown in Fig-

ure 5.16. In addition, Table 5.2 provides the relative error between the EnKF and

LKF, and between the EnKS and LKS. The bias introduced by covariance taper-

ing can be quantified by comparing the LKF and KF, and the LKS and KS, and is
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Figure 5.17 A comparison of the Kalman filter (“xi|i), Kalman smoother (“xi|1:I),
localized Kalman filter (‹x∞i|i), localized Kalman smoother (‹x∞i|1:I), ensemble Kalman
filter (‹xi|i), and ensemble Kalman smoother (‹xi|1:I) reconstructions of the harmonic
oscillator experiment described in Section 5.4. All results are shown on the same
color scale as the ground truth (xi) in Figure 5.16.
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Table 5.2 A comparison of the relative error (5.14) between the filtered and smoothed
estimates depicted in Figure 5.17 to the ground truth depicted in Figure 5.16. In
addition, a comparison of the relative error between the EnKF and its limit as L→∞,
i.e., the LKF, and the EnKS and its limit as L→∞, i.e., the LKS.

Description x1:I y1:I relerror(x1:I , y1:I)

KF vs. Truth
¶“xi|i©Ii=1

¶
xi
©I
i=1

0.315

KS vs. Truth
¶“xi|1:I©Ii=1

¶
xi
©I
i=1

0.193

LKF vs. Truth
¶‹x∞i|i©Ii=1

¶
xi
©I
i=1

0.401

LKS vs. Truth
¶‹x∞i|1:I©Ii=1

¶
xi
©I
i=1

0.248

EnKF vs. Truth
¶‹xi|i©Ii=1

¶
xi
©I
i=1

0.413

EnKS vs. Truth
¶‹xi|1:I©Ii=1

¶
xi
©I
i=1

0.291

EnKF vs. LKF
¶‹xi|i©Ii=1

¶‹x∞i|i©Ii=1
0.077

EnKS vs. LKS
¶‹xi|1:I©Ii=1

¶‹x∞i|1:I©Ii=1
0.143

summarized in Table 5.3.

5.5 Ensemble Kalman Smoother Convergence

The following details a straightforward low-dimensional example aimed to empirically

verify the EnKS convergence result summarized by Theorem 4.20, which states that

the EnKS converges to the LKS as the ensemble size L increases. All parameters of

the linear dynamic model of Section 2.2.2 were chosen at random. In particular, the

initial state xi is an N = 8 random vector chosen from the distribution N (µ1, Π1)

Table 5.3 Quantification of the bias introduced by covariance tapering for the results
depicted in Figure 5.17.

Description x1:I y1:I relerror(x1:I , y1:I)

LKF vs. KF
¶‹x∞i|i©Ii=1

¶“xi|i©Ii=1
0.125

LKS vs. KS
¶‹x∞i|1:I©Ii=1

¶“xi|1:I©Ii=1
0.082
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where the initial state mean µi is a randomly sampled N element vector and the

initial state covariance Π1 is a random N × N symmetric positive definite (SPD)

matrix. The state process is sampled randomly according to xi+1 ∼ N (F i xi, Qi)

where the state transition operator F i is a random N ×N matrix and the state noise

covariance is a random N ×N SPD matrix. Similarly, each measurement is sampled

randomly according to yi ∼ N (H i xi, Ri) where the measurement operator H i is

a random M × N matrix with M = 6 and the measurement noise covariance is a

M ×M random SPD matrix. The covariance taper matrix Ci is a random N × N

SPD matrix and Ci = C ′i = C ′′i .

Figure 5.18 depicts the convergence of the EnKS to the LKS with increasing

ensemble size L. The plot shows the average EnKS estimate error

x ,
1

ntrial

ntrial∑
n=1

relerror
Å¶‹xi|1:I(n)

©I
i=1
,
¶‹x∞i|1:I©Ii=1

ã
(5.15)

as the ensemble size increases from L = 21 to L = 214. In this experiment, ntrials = 64

is the number of independent trials. The line of best fit has a slope of −0.511 which

agrees with the expected O(L−1/2) rate of convergence for Monte Carlo algorithms.

The empirical convergence of the EnKS error covariance to the LKS error covariance

is demonstrated in Figure 5.19. The vertical axis of this plot is the average EnKS

error covariance error defined as

P ,
1

ntrial

ntrial∑
n=1

relerror

Çß
vec
î
P̃ i|1:I(n)

ó™I
i=1
,
ß

vec
[
P̃
∞
i|1:I

]™I
i=1

å
(5.16)

where ntrial = 64. The horizontal axis is the ensemble size which ranges from L = 21

to L = 214. The line of best fit in this plot has a slope of −0.503, demonstrating the

expected rate of convergence.
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Figure 5.18 A log-log plot of the average EnKS estimate error x (5.15) versus
ensemble size L. Note that the horizontal axis is on a base-2 scale and the vertical
axis is on a base-10 scale.

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
11

2
12

2
13

2
14

log2(L)

10
−1

10
0

lo
g 1

0
(P

)

Empirical measurement

Line of best fit

Figure 5.19 A log-log plot of the average EnKS error covariance error P (5.16) versus
ensemble size L. Note that the horizontal axis is on a base-2 scale and the vertical
axis is on a base-10 scale.
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CHAPTER 6

SPATIAL-TEMPORAL RESOLUTION

This chapter develops a method to quantify the spatial-temporal resolution of the

state estimators defined in Chapter 4. We consider the local impulse response [57]

which describes the effect upon the average state estimate reconstruction due to

a perturbation at a single spatial-temporal coordinate. Methods exist to ascertain

the spatial resolution under the static signal model defined in Section 2.1, e.g., see

[57], and the spatial-temporal resolution under the linear dynamic model defined

in Section 2.2.2 with the restriction of a deterministic state-transition model where

xi+1 = F i xi and there is no state noise component ui, e.g., see [93], [94]. To the

best of our knowledge, Theorem 6.2 is novel because it quantifies the local impulse

response under the general fully stochastic signal model of Section 2.2.2.

The chapter begins with an overview of the LMMSE estimator spatial resolution

under the static signal model of Section 2.1. Then, we develop a method to quantify

the spatial-temporal resolution under the linear dynamic model of Section 2.2.2. Fi-

nally, the concept of local impulse response is illustrated by the numerical experiments

detailed in the last section.
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6.1 Linear Static Model

The local impulse response under the static signal model defined in Section 2.1 is

summarized by the following theorem.

Theorem 6.1: The local impulse response [57] for the jth parameter of the estimator

(4.1) is given by

lj =
Ä
HT

1:IR
−1
v1:I
H1:I + λDTD

ä−1
HT

1:IR
−1
v1:I
H1:I e

j (6.1)

where î
ej
ó
n
,


1, j = n

0, otherwise.

(6.2)

Proof. See Section II in [57].

6.2 Linear Dynamic Model

The local impulse response for the filtered LMMSE estimator computed by the

Kalman filter of Section 4.3 is summarized by the following theorem.

Theorem 6.2: Consider the filtered LMMSE estimator under the linear dynamic

signal model defined in Section 2.2.2. The filtered local impulse response for the kth

time index and jth parameter is denoted by lj, ki|i and may be computed by processing

the following simulated measurements through the Kalman filter with µ1 = 0:

y1:i = HB
1:i e

j
k (6.3)

where

HB
1:i , diag

Ä
H1, . . . , H i

ä
(6.4)
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and the function diag(·) forms the block diagonal matrix with its arguments as the

block elements. The unit vector ejk is defined by

î
ejk
ó
(l−1)M : lM

,


ej, l = k

0, otherwise

(6.5)

and [·](l−1)M : lM selects the lth block of length M from its vector argument.

Proof. First note that the Kalman filter is an affine function of the measurements

[26], meaning it may be written in the form

“xi|i = Ai y1:i + bi (6.6)

and, because the Kalman filter computes LMMSE estimates, the above parameters

are given by [63]

Ai = Cov(xi,y1:i) Cov(y1:i,y1:i)
−1 (6.7)

bi = E(xi)− Cov(xi,y1:i) Cov(y1:i,y1:i)
−1 E(y1:i) (6.8)

where

y1:i = HB
1:i x1:i + v1:i (6.9)

with

x1:i ,
ï
xT1 · · · xTi

òT
(6.10)

and

v1:i ,
ï
vT1 · · · vTi

òT
. (6.11)
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Next, we will require the expectation of the estimator conditioned on the state:

E
Ä“xi|i|x1:i

ä
= Ai E(y1:i|x1:i) + bi

= AiH
B
1:i x1:i + bi. (6.12)

The local impulse response is given by [57]

lj, ki|i ,
∂

∂ [xk]j
E
Ä“xi|i|x1:i

ä
= AiH

B
1:i e

j
k (6.13)

and note that (6.13) is equal to (6.6) if y1:i = HB
1:i e

j
l and bi = 0. Finally, it is not

difficult to show that

E(xi) = F i−1 F i−2 · · · F 1µ1 (6.14)

and

E(y1:i) = HB
1:i E(x1:i) (6.15)

which imply bi = 0 if µ1 = 0.

The local impulse response for smoothed and predictive LMMSE estimators are

addressed by the following corollary to Theorem 6.2.

Corollary 6.3: Consider the LMMSE predictor that produces the estimate “xi+1|i.

The predicted local impulse response lj, ki+1|i is given by

lj, ki+1|i = F i l
j, k
i|i . (6.16)

Furthermore, consider the LMMSE fixed-interval smoother that produces the esti-

mates {“xi|1:I}Ii=1. The smoothed local impulse response lj, ki|1:I can be computed by

processing the simulated measurements y1:I = HB
1:I e

j
k with the Kalman smoother
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defined in Section 4.6.1 with µ1 = 0.

Proof. First, note that the LMMSE prediction of the state xi+1 given the measure-

ments y1:i is “xi+1|i = F i “xi|i. Therefore, following the development in the proof of

Theorem 6.2,

lj, ki+1|i = F iAiH
B
1:i e

j
k (6.17)

which can be computed by applying the Kalman filter time update to lj, ki|i .

Next, note that the Kalman smoother is an affine function of the measurements

and can be written in the form

“xi|1:I = A′i y1:I + b′i (6.18)

where

A′i = Cov(xi,y1:I) Cov(y1:I ,y1:I)
−1 (6.19)

b′i = E(xi)− Cov(xi,y1:I) Cov(y1:I ,y1:I)
−1 E(y1:I) . (6.20)

The remainder of the argument then closely mirrors the proof of Theorem 6.2.

6.3 Illustrative Numerical Example

We now investigate the local impulse response in a numerical experiment with a

similar setup to the experiment detailed in Section 5.2. In this experiment, the

unknown state is a 16 × 16 and 48 time step spatial-temporal discretization of the

diffusive process described in Section 5.2. Each 40 dB SNR (5.1) measurement consists

of M = 23 parallel line integrals of the state that uniformly sweeps through 540◦ over

the 48 time steps. The state noise covariance matrix Qi is a symmetric positive
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definite matrix with 9 bands, indicating correlation with immediate neighbors only.

The initial state mean is µ1 = 0 and the initial state covariance is Π1 = α
Ä
DTD

ä
.

The parameter α was manually tuned and

D =

Dx

Dy

 (6.21)

where Dx and Dy are discrete approximations to the spatial derivative in the hori-

zontal and vertical directions, respectively.

This experiment focuses on the implications of knowing the state transition opera-

tor F i versus assuming the random walk model F i = I. Specifically, we will consider

the local impulse response of the Kalman filter and Kalman smoother for these two

cases at the 29th time index and spatial location depicted in Figure 6.1. The Kalman

filter and smoother estimates in these two cases are first shown in Figure 6.2 over the

range of two time indices, one prior and ones after the time index under study, i = 29.

Then, Figure 6.3 shows these estimates for time indices at an absolute distance of 6

and 12 from time index 29. As expected, the results when the state dynamic model

is known are superior to when the random walk model is assumed. Furthermore,

the smoothed results are superior to the filtered results. A quantitative evaluation

of the error is provided in Table 6.1. The potential improvement in estimate fidelity

offered through smoothing is exemplified by the fact that the smoothed estimate com-

puted with a poor state transition model has a smaller relative error than the filtered

estimate computed with the correct model.

The local impulse response for the estimators and time indices corresponding with

Figure 6.2 is shown in Figure 6.4. Similarly, the local impulse response correspond-

ing to Figure 6.3 is shown in Figure 6.5. All local impulse response functions are
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Figure 6.1 The unit vector ejk as viewed at time index 29. The unit vector is equal
to 0 at all other time indices.

Table 6.1 A summary of the relative error (5.14) between the Kalman filter and
smoother estimates and the ground truth in the spatial-temporal resolution study.
Two cases are considered: when the state transition operator F i is known and under
the assumption of the random walk model (F i = I).

Relative error

Estimator F i known F i = I

Kalman filter (“xi|i) 0.480 0.596

Kalman smoother (“xi|1:I) 0.135 0.356
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i = 27 i = 28 i = 29 i = 30 i = 31
x
i

“ x i|i
“ x i|i(F i

=
I

)
“ x i|1:I

“ x i|1:I(F
i

=
I

)

0.08 0.16 0.25 0.33 0.41 0.49 0.58 0.08 0.16 0.24 0.32 0.40 0.48 0.56 0.08 0.16 0.23 0.31 0.39 0.47 0.54 0.08 0.15 0.23 0.30 0.38 0.46 0.53 0.07 0.15 0.22 0.30 0.37 0.44 0.52

Figure 6.2 The state estimates within 2 time steps of the time index of interest,
i = 29, in the spatial-temporal resolution study. The first row shows the ground
truth at five time indices. The remaining rows show the Kalman filter estimate “xi|i
under the true and random walk (F i = I) state transition models and the Kalman
smoother estimate “xi|1:I , also for the two choices for F i.
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i = 17 i = 23 i = 29 i = 35 i = 41

x
i

“ x i|i
“ x i|i(F i

=
I

)
“ x i|1:I

“ x i|1:I(F
i

=
I

)

0.12 0.24 0.36 0.48 0.60 0.72 0.84 0.09 0.19 0.28 0.37 0.47 0.56 0.65 0.08 0.16 0.23 0.31 0.39 0.47 0.54 0.07 0.14 0.20 0.27 0.34 0.41 0.48 0.06 0.12 0.18 0.25 0.31 0.37 0.43

Figure 6.3 The spatial-temporal resolution study state estimates at times ±6 and
±12 centered at the time index of interest, i = 29. Similar to Figure 6.2, we show
the ground truth and Kalman filter and Kalman smoother estimates when the true
state transition operator F i is known and for the random walk model F i = I.
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i = 27 i = 28 i = 29 i = 30 i = 31

l2
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i|i
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i|i
(F

i
=
I

)
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,j

i|1
:I
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i|1
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=
I

)
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Figure 6.4 The local impulse response for time index 29 and spatial location depicted
in Figure 6.1 at the same time indices as Figure 6.2. The first two rows show the
filtered local impulse response l29, ji|i for two cases: known state transition operator F i

and random walk model F i = I. The last two rows show the smoothed local impulse
response l29, ji|1:I for the same two cases. For each row, portions shown in gray have an
absolute value less than one quarter of the maximum at time index 29. Note that
each local impulse response is shown on the same color scale.
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Figure 6.5 The local impulse response for time index 29 and spatial location depicted
in Figure 6.1 at the same time indices as Figure 6.3. The first two rows show the
filtered local impulse response l29, ji|i for two cases: known state transition operator F i

and random walk model F i = I. The last two rows show the smoothed local impulse
response l29, ji|1:I for the same two cases. For each row, portions shown in gray have an
absolute value less than one quarter of the maximum at time index 29. Note that
each local impulse response is shown on the same color scale.
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shown on the same color scale so that they may be compared. Portions of an impulse

response function appearing in gray correspond to absolute values less than one quar-

ter of the impulse response maximum. Note that the filtered local impulse response

functions are completely gray (in fact, they are uniformly equal to 0) at time indices

less than i = 29. This is expected because the filtered estimates are causal and, as

such, a perturbation cannot affect a filtered estimate prior to its occurrence. Also,

note that the smoothed local impulse response functions decay more quickly in time

than the filtered functions. In addition, the local impulse response functions under

the correct state transition models decay faster than the random walk case. Both

observations give another means to understand the differences in the relative error

reported in Table 6.1. Qualitatively, the local impulse response functions under the

random walk model are less smooth than their counterparts under the correct state

transition model, which explains why the random walk state estimates in Figure 6.2

and Figure 6.3 are less smooth than the corresponding state estimates under the

correct model. Finally, by comparing the first and last rows of Figure 6.4 and Fig-

ure 6.5, note that the smoothed random walk model response has smaller amplitude

and is less broad than the filtered correct model response at times near time index 29.

Though a full investigation of the spatial-temporal response at all spatial-temporal

coordinates would yield a more definitive answer, the previous observation provides

some insight as to why the smoothed incorrect model estimate has a smaller relative

error than the filtered correct model estimate.
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CHAPTER 7

DYNAMIC SOLAR TOMOGRAPHY

Several signal models for tomography were defined in Chapter 2. State inference

methods focused on the high-dimensional problems that can arise in dynamic tomog-

raphy were developed in Chapter 4 and evaluated in the numerical experiments in

Chapter 5. This chapter casts the problem of reconstructing the volumetric inner so-

lar atmosphere or corona under the linear dynamic models and demonstrates the use

of the ensemble Kalman filter to solve the resultant high-dimensional state estimation

problem.

The chapter begins with introductory material that motivates the problem. Then,

Section 7.2 identifies the data sources that remotely sense the Sun’s corona. Sec-

tion 7.3 discusses the validity of the signal models used in this study. Finally, Sec-

tion 7.4 details the model parameters that are later used to form the electron density

reconstructions that appear in Section 7.5.

7.1 Introduction

Much is still unknown regarding some of the fundamental physical processes of the

Sun. For example, long-standing questions remain regarding the physical mechanisms

that give rise to many of the geo-effective phenomena, collectively referred to as “space

weather,” that may in extreme cases damage satellites in Earth’s orbit, cause power
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distribution failures, or even harm astronauts [95]. To a large degree, our knowledge

of the solar environment has been obtained empirically from a variety of dedicated

space-borne and ground-based instruments. The current generation of Sun-observing

spacecraft generate a rich and complex suite of observations that provide the scientific

community with measurements at unprecedented resolution. New signal processing

methods are required to take full advantage of all available information to ultimately

address open stellar astrophysical questions. In particular, this chapter develops

signal processing methods to empirically reconstruct the 3-D time-varying structure

of the solar corona.

The corona [96] is the very sparse plasma that forms the upper atmosphere of the

Sun, beginning at about 2000 km above the solar surface. The corona is extremely

hot, with temperatures in excess of 106 K. Despite more than 50 years of research, the

non-thermal processes that heat the corona to such an extreme temperature over the

span of the relatively thin (102 km) transition region remain unknown [96], though it is

clear that the solar magnetic field provides a conduit for energy transport and storage

as well as several possible mechanisms for energy release. The solar magnetic field

is also central in driving the solar wind, coronal mass ejections (CMEs; occasional

violent solar explosions originating in the corona), and accelerating solar energetic

particles that all contribute to space weather. The solar magnetic field also has a

strong influence on the structure of the corona, a plasma with low β, the ratio of

plasma to magnetic pressure. As a consequence, the solar magnetic field traps the

structures of the corona.

In principle, tomographic analysis [90], [97] may be used to reconstruct the 3-

D corona given image measurements (2-D projections) from multiple points-of-view

(POVs) obtained by solar rotation or from spatially distinct sensors [98], [99]. Until

recently, measurements of the Sun have been available from only one POV at any given
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time and tomographic analysis of the corona has relied on solar rotation to provide

the necessary measurement diversity. With a synodic period of 27.3 d, almost 14 d

are required to observe the corona from a single POV over the 180◦ necessary for a

full tomographic analysis. The situation has recently changed with the launch of the

Solar and Terrestrial Relations Observatory (STEREO) [100] in October, 2006. The

mission provides two additional simultaneous POVs from dual satellites, one that

leads Earth’s orbit by 22◦/y and the other that lags by the same amount. However,

almost 5 d are still required to view the Sun over 180◦ when the STEREO satellites

are each separated from the Earth by 60◦.

This chapter develops state-space framework for reconstructing the time-evolving

3-D structure of the solar atmosphere. Solar tomography has some unique aspects

that challenge current state estimation methods, including the dimensionality of the

problem, the tomographic nature of the measurements that are corrupted by Pois-

son noise, nonlinear dynamics described by the equations of magnetohydrodynamics

(MHD) [101], [102] that govern the physics of electrically conducting fluids, and the

existence of additional prior knowledge, such as the empirical structure of the solar

magnetic field, that could also be incorporated into the analysis.

7.2 Data Sources

Several coronagraphs, specialized telescopes for measuring the relatively dim corona,

regularly measure polarized brightness (pB) images suitable for electron density to-

mography as summarized in Table 7.1. One example is the ground-based Mark-IV

coronagraph [103] at the Mauna Loa Solar Observatory (MLSO). Two pB images

measured by the Mark-IV are shown in Figure 7.1. Space-borne coronagraphs in-

clude the Large Angle and Spectrometric Coronagraph Experiment (LASCO) C2

instrument [104] on board the Solar and Heliospheric Observatory (SOHO) [105] and
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Figure 7.1 Four images of polarized brightness as measured by the Mark-IV coro-
nagraph at the MLSO (first row) and the C2 coronagraph on SOHO (second row).
The inner and outer radii of the Mark-IV images range from 1.1–2.85 R�, where R�
is the solar radius equal to 7 × 105 km, and from 1.5–6 R� for the C2 images. The
images in the left and right columns were measured on April 7 and May 4 of 2007, a
span of 27 d or one full solar rotation. As a result, the differences between images in
each row are due to solar dynamics.
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Table 7.1 Polarized brightness white light coronagraphs.

Name Location FOV (R�) Sensor pixels Time res. (images/d)a

Mark-IV MLSO 1.1 – 2.8 720 × 384b 1
C2 SOHO 1.5 – 6 1024 × 1024 1 – 6
C3 SOHO 3.7 – 30 1024 × 1024 1
COR1 STEREO 1.4 – 4 2048 × 2048 100
COR2 STEREO 2 – 15 2048 × 2048 100

aTemporal resolution is only approximate. Telemetry constraints and SNR requirements can
change over time and affect the sensor data rates.

bResolution is in polar coordinates r×φ. All other sensor spatial resolutions are given in Cartesian
coordinates x× y.

the COR1 and COR2 coronagraphs available as part of the Sun Earth Connection

Coronal and Heliospheric Investigation (SECCHI) suite of instruments [106] on both

STEREO satellites. The best quality measurements of pB are from space-borne

coronagraphs that are not affected by sky-scattered light that can plague terrestrial

coronagraph measurements.

Temperature reconstruction requires data at multiple wavelengths. Measurements

of the corona in the extreme ultraviolet (EUV) are routinely measured by dedicated

space-borne instruments as summarized in Table 7.2. Ground-based observations of

the corona in the EUV are not possible because Earth’s atmosphere absorbs EUV

emissions. Relevant instruments include the Extreme Ultraviolet Imaging Telescope

(EIT) [107] on SOHO, the EUV imager as part of the SECCHI instruments [106] on

STEREO, and the Atmospheric Imaging Assembly (AIA) [108] on the Solar Dynam-

ics Observatory (SDO). Four images of the EUV corona measured by the EIT are

shown in Figure 7.2. X-ray measurements are available, for example, from the X-ray

Telescope (XRT) [109] on Hinode [110].

Data for the dynamic coronal density reconstructions in Section 7.5 are acquired

from the COR1 coronagraph [111], the innermost coronagraph within the SECCHI
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Figure 7.2 Four images of the Sun to 1.5 R� as measured by the EIT on SOHO.
Three of the images were measured on May 4, 2008, at different EUV wavelengths:
(top left) at 171 Å, (top right) at 195 Å, and (bottom left) at 284 Å. The fourth image
is at 284 Å and was measured on April 7, 2008, 27 d prior to the previous images.
Differences between the images in the bottom row are due to solar dynamics because
the Sun rotates 360◦/27 d relative to the Earth.

Table 7.2 Extreme ultraviolet imagers.

Time res.
Name Location FOV (R�) Filter bands (Å) Sensor pixels (images/d)a

EIT SOHO 1 – 1.5 171, 195, 284, 304 1024 × 1024 4
EUVI STEREO 1 – 1.7 171, 195, 284, 304 2048 × 2048 50
AIA SDO 1 – 1.3 94, 131, 171, 193, 211 4096 × 4096 > 8640

304, 335, 1600, 1700

aTemporal resolution is only approximate. Telemetry constraints and SNR requirements can
change over time and affect the sensor data rates.
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instrument package. We will henceforth use COR1A to refer to the COR1 corona-

graph on the Ahead satellite, and likewise COR1B will henceforth refer to the COR1

coronagraph on the Behind satellite. The COR1 coronagraphs have a field of view of

1.3 – 4R�. We use data from 1.5 – 3R� to form the electron density reconstructions.

The lower radius is restricted to avoid systematic instrumental diffraction clearly visi-

ble in the COR1 images and is the same as the lower radius chosen in [112]. The upper

radius is restricted only to reduce computational costs for this work. Images from

polarization angles of 0◦, 120◦, and 240◦ are combined to form pB images, calibrated,

and background subtracted using the SECCHI_PREP (http://sohowww.nascom.nasa.

gov/solarsoft/stereo/secchi/doc/secchi_prep.html) IDL routine with the so-

called monthly-roll background images. Additionally, the calibration routine applies

an intercalibration factor to each COR1A and COR1B image [113]. However, we

find that the processed COR1 images still contain a few localized outlier values, due

most likely to cosmic rays hitting the detectors. We found that the simple rule of

discarding COR1 image pixels with values greater than 5× 10−8B� was sufficient to

remove all outliers. During the reconstruction process, the images were binned from

1024× 1024 to 256× 256 pixels to reduce computational costs.

The data used are from the four-week period between 1 February 2008 and 29

February 2008 of Carrington Rotation (CR) numbers 2066 and 2067. This time

period was chosen because it is close to a monthly calibration roll and, as result, the

background subtraction will best remove instrumental scattered light. In addition, we

choose this period to compare our results in Section 7.5 to [112] which also considers

CR 2066. During this time period, the spacecraft were separated by approximately

45◦. The data set used in this study consists of four images per instrument, per

day. The images used were spaced evenly, every six hours. The acquisition times

are 00:05:00 UTC, 06:05:00 UTC, 12:05:00 UTC, and 18:05:00 UTC. If no image is
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available for a time, that time is skipped. Thus, there are 115 images used in the

COR1A data set and 110 used in the COR1B data set.

7.3 Signal Model Suitability

The primary criticism of using the static approach in Section 2.1 for solar tomography

is that the solar atmosphere is not static. The bottom row of images in Figure 7.2

demonstrates that the dynamics of the solar corona can be significant over a period

of a 27 d full rotation where the differences between the two images are due to

changes in the solar atmosphere. Unphysical smearing artifacts may result in the

static reconstructions due to such changes [13]. Depending on the situation, the solar

atmosphere may change significantly at time scales of even less than a day.

The dynamics of the solar atmosphere are modeled by the nonlinear equations of

magnetohydrodynamics (MHD). However, we do not currently have a viable high-

dimensional state estimation procedure for problems posed under the general non-

linear dynamic model in Section 2.2.1. Incorporation of MHD models into our high-

dimensional linear methods poses two major difficulties. First, while the MHD equa-

tions are functions of the electron density and temperature, they also depend, for

example, on the energy density, vector velocity, and vector magnetic field at each

spatial location in the solar atmosphere. Including these additional parameters into

the signal model would significantly increase the dimensionality of the already large

problem. Secondly, the dynamic models in Section 2.2.2 require a linearized repre-

sentation of the MHD equations, a process that is questionable at the time scales

under consideration [2]. A less sophisticated model for the state dynamics would

only include the differential rotation of the Sun to account for the fact that the solar

atmosphere rotates at different rates depending on latitude. A very simple model

that is often used in practice [44] is the random walk model where F i = I and the
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evolution of xi is then assumed to be entirely stochastic. Despite the simplicity of

the random walk model, it can be superior to the static model [32].

7.4 Model Parameter Selection

The linear dynamic model of Section 2.2.2 includes measurement and state noise

covariance matrices Ri and Qi, the mean of the initial state x1, the initial state error

covariance Π1, the state dynamic model F i, and the covariance-taper matrix C. The

operational procedure used to choose each of these model parameters is described

below.

First, we use the state transition model F i = I, where I is the identity ma-

trix, which results in a purely random walk evolution model for the electron density.

The model is often used in practice when a better temporal dynamic model is not

known [44], and although it is simple, a dynamic tomographic reconstruction with a

random walk model can be superior to a static reconstruction [32]. Ideally, we would

incorporate nonlinear magnetohydrodynamics into the state transition operator F i.

Such an approach would require the joint estimation of the energy density, velocity,

temperature, and magnetic field in addition to electron density, greatly increasing the

dimensionality of the already huge problem [2]. Also, the dynamic reconstruction al-

gorithm in Section 4.4 cannot handle nonlinear operators, although methods do exist

for adapting the EnKF to such problems [114]. Incorporating a more sophisticated

dynamic model into our dynamic reconstruction framework is the subject of ongoing

research.

The covariance taper matrix C trades off some bias in the dynamic estimates for

a reduction in computational effort as discussed in [50]. Several choices for the taper

matrix were considered on a lower resolution reconstruction grid. We found that

the electron density reconstructed with the taper matrix C = I, which results in the
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greatest reduction in computational effort and largest additional bias, was comparable

to the electron densities reconstructed with non-diagonal taper matrices.

We assume that the STEREO/SECCHI-COR1 measurement noise is Poisson. A

convenient property of a Poisson random variable is that its mean is equal to its

variance. We make the common assumption that the mean of the kth measurement

at time index i is given by the kth element of yi. With this choice, the measurement

covariance Ri is a diagonal matrix with the diagonal equal to yi. This choice does

not account for correlations in the measurement noise, but this information, if known,

can easily be incorporated into the off-diagonal elements of Ri.

The state noise covariance Qi is constant in time, i.e. Qi = Q. This assumption

holds true under the random walk dynamic model if the temporal electron-density

variance and correlations are constant. An approximation to Q is found by first

estimating the state noise from the static reconstructions by computing the first-

order differences “ui = “xSi+1 − “xSi (7.1)

where the static reconstructions are the positively constrained regularized estimates

given by “xS
i = arg min

xi≥0
‖yi−I180:i −H i−I180:i xi‖22 + λ ‖Dxi‖22 (7.2)

and I180 corresponds to the time interval of 180◦ of solar rotation (about 14 days). To

use a similar notation, we will sometimes refer to the EnKF dynamic reconstructions

with the following: “xD
i , ‹xi|i. (7.3)

The nth element on the diagonal of Q is approximated as the temporal variance in

the nth element of the state noise estimate “ui. Correlations in the state noise can
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also be approximated in this manner to determine the non-diagonal elements of Q,

but we found that a diagonal model for the state noise was sufficient to obtain the

results in Section 7.5.

The remaining model parameters were chosen as follows. The spatial derivative

matrix D is a first-order difference approximation to the derivative in both azimuth

and elevation (but not radius). The same gradient operator is used as the spatial

regularizer in the static and dynamic reconstructions. The EnKF initial state mean

x1 is the static estimate “xS180. The EnKF initial state error covariance is Π1 = σ2 I.

The initial state error variance σ2 was increased until the initial prior had only a

minor impact on the final dynamic electron density reconstruction. We found that

σ2 = 1010 was sufficient to minimize the impact of the initial-state mean. Lastly,

with the other parameters set, the regularization parameter λ was varied until the

electron-density reconstruction was sufficiently smooth. We found that λ = 1.6×10−9

was a good choice for the static reconstructions and λ = 1.0 × 10−14 worked well in

the dynamic case. An unsupervised approach to choosing these remaining model

parameters could make use of methods such as cross validation [13], [91].

7.5 Electron Density Reconstruction

We now present tomographic reconstructions of electron density during February 2008

computed from COR1A and COR1B observations. The tomographic reconstructions

are best when data are available over at least half a solar rotation. To satisfy this

condition, all results are shown at dates after 14 February 2008. Each static recon-

struction “xSi (7.2) required, on average, nearly 30 minutes of computation while the

complete dynamic reconstruction, i.e., the computation of ‹xi|i at all time indices i,

required about 40 minutes with an ensemble size L = 32.

Figure 7.3 shows a representative sample of spherical shell slices of the 3-D electron-
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Figure 7.3 Two-dimensional spherical shell slices of reconstructed electron density
at radius 1.7 R�. Each column shows reconstructed electron density on a particular
date. The first row shows the static reconstruction of electron density computed using
COR1A pB measurements. The remaining rows show, in order, the dynamic COR1A,
static COR1B, and dynamic COR1B electron density reconstructions. The horizontal
and vertical axes of each image are the solar longitude and latitude, respectively, in
units of degrees ranging from 0◦ to 360◦ in the horizontal direction and −90◦ to 90◦

in the vertical direction. The electron densities are shown on a common scale as
indicated by the color bar in the last row with units of Ne cm−3. All non-positive
densities are shown in gray.
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density reconstructions. Each spherical shell slice is a latitude versus longitude plot

of reconstructed electron density at a constant radius of 1.7 R�. Each row of Fig-

ure 7.3 shows a COR1A static, COR1A dynamic, COR1B static, or COR1B dynamic

electron density reconstruction slice on three dates: 15 February 2008 00:05:00 UTC,

22 February 2008 00:05:00 UTC, and 29 February 2008 00:05:00 UTC.

We observe distinct changes in the structure of the streamer belt as a function

of time in all four reconstructions in Figure 7.3. The static reconstructions tend to

have larger, more connected non-positive patches that seem to coalesce toward large

areas near the poles. The non-positive patches in the dynamic reconstructions tend

to cluster around the high density regions in the streamer belt. These observations

agree with the assertion in [112] that non-positive patches appear along high density

borders. Also, in general, the dynamic reconstructed density is lower, more spread

out, and smoother than the static densities. The same effects would occur if the

dynamic reconstructions were more significantly spatially regularized than the static

reconstructions. This could also imply a larger dynamic relative residual, but this is

not the case as discussed below.

In Figure 7.4, we see a 3-D rendering of the coronal electron-density reconstruc-

tions on 25 February 2008 18:05:00 UTC. Each of the four reconstructions (COR1A

static and dynamic and COR1B static and dynamic) is shown with two isosurfaces.

The red isosurface is at a density of 2.5× 106 Ne cm−3 and the blue isosurface shows

non-positive patches of reconstructed electron density. In this view, we can see the

full 3-D nature of the reconstructed electron density and visualize how the density

structure extends throughout the reconstructed volume of the corona. When viewed

in 3-D, as opposed to 2-D slices such as in Figure 7.3, it is clear that the higher

densities are clustered near the Sun while the non-positive density artifacts are more

prominent near the outer boundary of the reconstructed corona. Also, it is clear
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Figure 7.4 Three-dimensional isosurfaces of the four electron-density reconstruc-
tions on 25 February 2008 18:05:00 UTC. The red isosurface shows densities at
2.5 × 106 cm−3. The translucent blue surface shows non-positive (non-physical) re-
constructed densities. The central orange sphere has radius 1 R� and represents the
Sun.
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that the non-positive artifacts are spatially much larger in the static reconstructions

whereas the dynamic non-positive artifacts are smaller and less connected.

Figure 7.5 examines the agreement between the reconstructed electron density

and the observed measurements in a plot of the relative residual defined as

r
(S or D)
i =

∥∥∥yi −H i “x(S or D)
i

∥∥∥
2

‖yi‖2
. (7.4)

The relative residual compares the difference between a pB image and the estimate

of that image computed from the forward model and an electron density reconstruc-

tion. We note that a small residual indicates good agreement with the measurements

but not necessarily good agreement between the reconstruction and the true electron

density. Indeed, one major concern with the residual as a performance metric is that

it must increase with the inclusion of spatial regularization, but with the trade-off of

reduced noise sensitivity and potentially better agreement between the reconstruc-

tions and the true coronal electron density [75]. This is exemplified in Figure 7.6

which compares the regularized and unregularized static electron-density reconstruc-

tions on 15 February 2008 00:05:00 UTC. We find that the regularized reconstruction

is clearly more physically reasonable even though the unregularized reconstruction

has a smaller residual. Ultimately, the relative residual shown in Figure 7.5 does not

by itself provide definitive proof that the dynamic reconstruction algorithm produces

more faithful electron-density reconstructions than the static approach. Instead, the

reduction in the relative residual shown in Figure 7.5 coupled with the reduction in

nonphysical artifacts discussed below provides evidence to support the conclusion that

the dynamic method is better than the static method, but further study is required.

Alternatively, we could evaluate our approach in simulations where the true elec-

tron density is known. For reference, note that the static and dynamic approaches
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Figure 7.5 The relative static and dynamic residual (defined in (7.4)) for the COR1A
(left) and COR1B (right) electron density reconstructions.
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Figure 7.6 A spherical shell slice at radius 1.7 R� of the 15 February 2008 00:05:00
UTC COR1A static electron density reconstruction with regularization (left) and
with no regularization (right), i.e. a static reconstruction computed with λ = 0 in
(7.2). Note that the left image is a copy of the upper-left image in Figure 7.3 and is
included for easy comparison to the unregularized reconstruction. Both images are
shown on the same color scale. The relative residual of the regularized reconstruction
is 0.239 and is 0.227 for the unregularized reconstruction.
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have been previously evaluated and compared in numerical experiments including

the simulated collapse of a magnetized molecular cloud [32], emergence of magnetic

flux in the solar corona [2], and diffusion [50]. In the context of this work, a more

realistic and thus more compelling comparison of the static and dynamic approaches

would consider a simulated time-dependent corona computed using hourly-updated

magnetrograms to drive a 3-D magnetohydrodynamic solar wind solution. However,

the development of such numerical simulations is an ongoing research effort in the

heliospheric modeling community. Though not considered in this work, we plan to

evaluate the dynamic and static reconstruction algorithms in more realistic coronal

simulations once they are available.

With the above caveats, we now consider the relative residual in Figure 7.5. We

see that the dynamic reconstruction typically has half the relative residual of the

static reconstruction for both the COR1A and COR1B results. The reduction in the

residual could be a result of decreased regularization. However, the results in Fig-

ure 7.3 and Figure 7.4 show that the dynamic and static reconstructions have similar

qualitative smoothness. The dynamic and static reconstructions also have quantita-

tively similar smoothness, i.e., ‖D “x(S or D)
i ‖2 is 1.24×107 and 1.14×107 in the static

and dynamic cases, respectively, for the time index i corresponding to 15 February

2008 00:05:00 UTC. In addition, the relative residuals in the dynamic reconstructions

are in fact smaller in comparison to the unregularized static reconstructions. These

observations support the conclusion that differences in spatial regularization alone

cannot explain the reduction in the dynamic residual. Further, for COR1B, there is

a significant jump in the residual starting at 23 February 2008 18:05:00 UTC. Data

outliers can cause such jumps, but they have been removed from the pB images prior

to computing the electron density reconstructions as discussed in Section 7.2. What

is most surprising is that the COR1B dynamic relative residual also exhibits a jump
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starting at 23 February 2008 18:05:00 UTC, but it is much less pronounced. One

difference between the static and dynamic reconstruction algorithms is that the dy-

namic method is provided with the measurement noise covariance Ri, a measure of

data quality. As a result, the dynamic method will be able to compensate for rela-

tively poor quality measurements (assuming Ri is correct) that could severely distort

the static electron density reconstructions.

Interestingly, the results presented in the previous figures have shown that the

EnKF produces fewer non-positive reconstructed densities than the static method.

This can be seen in Figure 7.4, where the dynamic reconstructions have smaller

volumes of non-positive artifacts. Figure 7.7 shows the percentage of non-positive

voxels as a function of time in the four electron-density reconstructions. We find

that the static reconstructions can have as many as twice the number of non-positive

voxels. We emphasize that the dynamic reconstruction method produces a more

physical result than the static method even though the dynamic algorithm does not

constrain the electron density to be positive.

Figure 7.8 shows the average reconstructed density versus altitude above the Sun.

The plot shows reconstructed electron density averaged over a spherical shell slice

(i.e., a latitude versus longitude slice similar to those in Figure 7.3) at a given radius.

All four reconstructions show a similar profile in the falloff of electron density with

distance from the Sun, with the COR1A densities generally greater than the COR1B

densities and static greater than dynamic. All four reconstructions increase in den-

sity at the largest altitudes, a reconstruction artifact common in tomographic imaging

when the lines of sight extend to infinity and significant enough density exists outside

of the finite reconstruction domain. On the other hand, there seems to be an artifact

in the COR1A reconstructions at the lowest altitude that is either not present or not

as severe in the COR1B reconstructions. In addition, the electron-density reconstruc-
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Figure 7.7 The percentage of non-positive reconstructed densities appearing in the
COR1A (left) and COR1B (right) electron-density reconstructions.
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Figure 7.8 A log–log depiction of the reconstructed electron density versus the alti-
tude above the Sun (an altitude of 1 R� is at the photosphere). Each plotted point
corresponds to reconstructed electron density averaged over a spherical shell slice at a
particular radius. As detailed in the legend, each curve in the figure is associated with
a static or dynamic reconstruction (indicated by S or D) based either on COR1A or
COR1B measurements.
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tions all decay linearly between about 1.7 and 2.2 R� on the log–log plot with a fitted

slope of about -6, indicating a clear power law in the falloff rate of average electron

density versus distance from the Sun.
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CHAPTER 8

CONCLUSIONS

This dissertation has developed a state-space formulation to the dynamic tomography

problem. The problem has been formulated under several stochastic state-space signal

models that offer different trade-offs between generality and ultimately computational

tractability. State estimation methods were developed with special attention to com-

putational scalability when faced with high-dimensional problems such as dynamic

tomography. The favorable computational aspects of these methods were demon-

strated in a series of numerical experiments. This work has also generated theoretical

contributions concerning convergence, state smoothing, and spatial-temporal resolu-

tion. The final chapter details the first time-dependent reconstruction of the global

solar corona and uses the formulation and methods developed in the dissertation.

8.1 Future Work

Continued research extending this work could benefit the statistical signal process-

ing field in a number of ways. This dissertation has focused on estimation under

quadratic cost functions, but estimation under the minimax or H∞ norm is also pos-

sible with the KF [27]. As a result, an adaptation of the EnKF may potentially solve

certain minimax estimation problems, opening the path to high-dimensional robust

estimation. While this dissertation offers theory regarding expected spatial-temporal
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resolution, it has not been applied in an operational setting. A full spatial-temporal

resolution characterization of the exterior and hollow X-ray transforms would quantify

the achievable limits in solar tomography. We note that theoretical bounds on spatial

resolution in tomography [115] could be extended to the dynamic case considered

here. Such bounds could help identify the appropriate lag-length for use in fixed-lag

smoothing, an approach with lower computational cost than fixed-interval smooth-

ing. Next, the KWF was developed under the proviso that the state dynamic model

is linear and shift-invariant. While convenient for the analysis, it is more restrictive

than the necessary joint stationarity condition. We note that conditions for the class

of linear operators that preserve joint stationarity have been identified [116], [117].

Lastly, a definitive connection between the EnKF and PF does not exist. The simi-

larities between the Monte Carlo methods are clear, but no theory yet relates them.

The connection could show how localization principles may be applied to the more

general PF and open a path to currently intractable high-dimensional applications.

Several future scientific research directions are also immediately suggested. For

one, we have so far considered COR1A and COR1B separately, but tomography im-

proves with additional simultaneous vantage points. A forthcoming paper will address

intercalibration issues between COR1A and COR1B and present 4-D electron den-

sity reconstructions based on both data sets simultaneously, perhaps combining data

from additional coronagraphs depending on further intercalibration issues. Second,

the random-walk dynamic model is certainly not the best possible choice for solar

tomography. The first step would be to consider the effects of differential rotation

which can be incorporated as a spatially varying rotation in the state dynamic model.

However, after a number of studies, it is still unclear how the rotation rate depends

on latitude and height [118]. We are also currently working towards incorporating

MHD physics into our dynamic reconstruction framework. A better dynamic model
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will improve our 4-D electron density estimates and, ultimately, enable forecasting of

the future electron density state in the solar corona. Further, the solar magnetic field

strongly influences the coronal electron density. Models for the solar magnetic-field

structure could be a powerful means to further constrain our dynamic tomographic

electron density reconstructions [119].
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APPENDIX A

CONVERGENCE PROOF

As suggested in [76], Slutsky’s theorem [120] is useful in proving that the unlocalized

EnKF converges and is repeated here because it is used in the proof of Theorem 4.1.

Theorem A.1 (Slutsky’s theorem): Consider two sequences of random vectors de-

noted {xn, n ∈ N} and {yn, n ∈ N}, a random vector x with N components, and a

constant vector a with M components. Let f(u, v) be a function that maps the M

and N dimensional vectors u and v to an M ×N matrix and is continuous at (u, a)

for all vectors u in the range of the random vector x. Suppose xn
d.−→ x and yn

p.−→ a

where d. and p. indicate convergence in distribution and probability. Then

f(xn, yn)
d.−→ f(x, a). (A.1)

The proof of Theorem 4.1 follows. The proof will proceed by induction and is

a generalization of the proof that the EnKF estimates xi|i converge to the LMMSE

estimates “xi|i [121].

Proof. The first step is to prove the base case by showing that the initial EnKF

estimate ‹x1|0 and error covariance P̃ 1|0 converge to the LKF estimate ‹x∞1|0 and error

covariance P̃
∞

1|0. The second step is to show that the posterior ensemble mean ‹xi|i
and covariance P̃ i|i converge to the LKF estimate ‹x∞i|i and error covariance P̃

∞

i|i under
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the assumption that the prior ensemble mean and covariance converge, i.e., ‹xi|i−1 p.−→‹x∞i|i−1 and P̃ i|i−1
p.−→ P̃

∞

i|i−1. The final step is to show that the EnKF time update

modifies the posterior ensemble such that the resultant ensemble sample mean and

covariance converge to the prior mean and covariance necessary at the next time step,

i.e., ‹xi+1|i
p.−→ ‹x∞i+1|i and P̃ i+1|i

p.−→ P̃
∞

i+1|i. The inductive proof that ‹xi|i p.−→ ‹x∞i|i at each

time index i is then complete.

Step 1: Because the initial EnKF ensemble is a set of i.i.d. samples (4.18), the

sample mean and covariance will converge in probability to the population mean and

covariance by the weak law of large numbers (WLLN), i.e.,

‹x1|0
p.−→ µ1 = ‹x∞1|0 (A.2)

P̃ 1|0
p.−→ Π1 = P̃

∞

1|0. (A.3)

Step 2: The next step is to show that the EnKF estimate ‹xi|i converges to the LKF

estimate ‹x∞i|i under the following assumptions on the sample mean and covariance of

the prior ensemble:

‹xi|i−1 p.−→ ‹x∞i|i−1 (A.4)

P̃ i|i−1
p.−→ P̃

∞

i|i−1. (A.5)

To begin, the posterior samples ‹xli|i can be written in terms of the prior samples by

expanding (4.21): ‹xli|i = ‹xli|i−1 +›Ki y
l
i −›KiH i ‹xli|i−1. (A.6)
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The posterior estimate can then be written as a function of the prior samples:

‹xi|i = ‹xi|i−1 +›Ki

Ç
1

L

L∑
l=1

yli

å
−›KiH i ‹xi|i−1. (A.7)

The first term in (A.7) converges in probability to the LKF estimate ‹x∞i|i−1 by assump-

tion (A.4). The two remaining terms in (A.7) involve the localized sample Kalman

gain ›Ki (4.19) which must first be characterized before proceeding further. Under

the assumption on the prior sample error covariance (A.5) and the fact that the

Hadamard matrix product is a linear operation, the term (Ci ◦ P̃ i|i−1)H
T
i appearing

in (4.19) converges in probability to (Ci ◦ P̃
∞

i|i−1)H
T
i . Note that the matrix

H i (Ci ◦ P̃ i|i−1)H
T
i +Ri (A.8)

inverted in the computation of (4.19) is positive definite and hence invertible be-

cause it is the sum of the positive semidefinite matrix H i(Ci ◦ P̃ i|i−1)H
T
i and the

positive definite measurement error covariance matrix Ri. Then, ›Ki converges in dis-

tribution to the localized Kalman gain ›K∞

i by Slutsky’s theorem. Also by Slutsky’s

theorem, the second and third terms in (A.7) converge in distribution to ›K∞

i yi and›K∞

i H i ‹x∞i|i−1, respectively. Note that yi and ‹x∞i|i−1 are nonrandom constant vectors

upon the observation of the measurements y1:i. Convergence in distribution to a con-

stant also implies convergence in probability to that constant [120]. Therefore, the

three terms in (A.7) converge in probability, and, because convergence in probability

is closed under addition, the end result is

‹xi|i p.−→ ‹x∞i|i−1 +›K∞

i yi −›K∞

i H i ‹x∞i|i−1 = ‹x∞i|i. (A.9)

Now, consider the convergence of the posterior sample error covariance matrix P̃ i|i
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which can be expressed as the sum of four terms by expanding (4.20) (with j = i−1)

and substituting (A.6) and (A.7) for the posterior samples ‹xli|i and sample mean ‹xi|i:
P̃ i|i =

1

L− 1

ñ
Ai

L∑
l=1

zli|i−1 (zli|i−1)
TAT

i +Ai

L∑
l=1

zli|i−1 (wl
i)
T ›KT

i

+›Ki

L∑
l=1

wl
i (z

l
i|i−1)

TAT
i +›Ki

L∑
l=1

wl
i (w

l
i)
T ›KT

i

ô
. (A.10)

The following symbols have been introduced above to conserve space: Ai , I −›KiH i, z
l
i|i−1 , ‹xli|i−1 − ‹xi|i−1, and wl

i , yli − 1
L

∑L
k=1 y

k
i . The first term of (A.10)

converges in distribution to

(I −›K∞

i H i) P̃
∞

i|i−1 (I −›K∞

i H i)
T (A.11)

by Slutsky’s theorem and the assumption on the prior sample error covariance (A.5).

Both the second and third terms involve a summation of the form

1

L− 1

L∑
l=1

zli|i−1 (wl
i)
T (A.12)

or its transpose. The convergence of (A.12) will first be examined component-wise,

i.e, consider the (m,n)th component of (A.12) expanded as

1

L− 1

Ñ
L∑
l=1

î
zli|i−1

ó
m

î
yli
ó
n
−

L∑
l=1

î
zli|i−1

ó
m

[yi]n

é
(A.13)

where [·]m is the mth component of the vector argument and yi ,
1
L

∑L
l=1 y

l
i. Note

that the second term above simplifies:

L∑
l=1

î
zli|i−1

ó
m

[yi]n =

Ñ
L∑
l=1

î‹xli|i−1 − ‹xi|i−1ómé [yi]n = 0. (A.14)
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Now, consider the first term of (A.13)

L∑
l=1

î
zli|i−1

ó
m

î
yli
ó
n

=
L∑
l=1

î
zli|i−1

ó
m

[yi]n +
L∑
l=1

î
zli|i−1

ó
m

î
vli
ó
n

(A.15)

where vli
i.i.d.∼ N (0, Ri). Then note that E

(î
zli|i−1

ó
m

)
= 0 because the samples in the

prior ensemble {x1
i|i−1, . . . , x

L
i|i−1} are identically distributed. As a result the first

term on the right-hand side (RHS) of (A.15) converges to 0, i.e.,

1

L− 1

L∑
l=1

î
zli|i−1

ó
m

[yi]n
p.−→ E

Äî
zli|i−1

ó
m

ä
[yi]n = 0 (A.16)

by the WLLN. Also note that the summands in the second term on the RHS of (A.15)

are mutually uncorrelated because

Cov
Äî
zki|i−1

ó
m

î
vki
ó
n
,
î
zli|i−1

ó
m

î
vli
ó
n

ä
= 0 (A.17)

for all k 6= l. Then the second term on the RHS of (A.15) also converges to 0, i.e.,

1

L− 1

L∑
l=1

î
zli|i−1

ó
m

î
vli
ó
n

p.−→ E
Äî
zli|i−1

ó
m

ä
E
Äî
vli
ó
n

ä
= 0 (A.18)

by the L2 WLLN [122, pg. 36] and the fact that zli|i−1 and vli are independent. Then

the first term on the RHS of (A.13) also converges to 0. Therefore, each component

of (A.12) converges to 0. Component-wise convergence then implies that (A.12)

converges in probability to 0, the matrix with all elements equal to 0. The fourth

term of (A.10) converges to ›K∞

i Ri (›K∞

i )T by Slutsky’s theorem. The first and forth

terms of (A.10) converge in distribution to a constant which also implies convergence

in probability to that constant. As a result, the convergence of each of the four terms
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of (A.10) then implies

P̃ i|i
p.−→ (I −›K∞

i H i) P̃
∞

i|i−1 (I −›K∞

i H i)
T +›K∞

i Ri (›K∞

i )T = P̃
∞

i|i. (A.19)

Step 3: The last step is to show that the EnKF time update results in an ensemble

with sample mean ‹xi+1|i and covariance P̃ i+1|i that satisfy the assumptions (A.4) and

(A.5) at the next time index (time index i+1) to complete the inductive chain. First,

consider the ensemble sample mean after the EnKF time update (4.22) given by

‹xi+1|i = F i ‹xi|i +
1

L

l∑
l=1

uli. (A.20)

The first term converges in probability to F i‹x∞i|i by (A.9). The second term converges

in probability to the vector 0 by the WLLN. The result is

‹xi+1|i
p.−→ F i ‹x∞i|i = ‹x∞i+1|i. (A.21)

The ensemble sample covariance after the time update can be expanded as

P̃ i+1|i =
1

L− 1

ñ
F i

L∑
l=1

zli|i (z
l
i|i)

TF T
i +F i

L∑
l=1

zli|i (u
l
i−ui)T +

L∑
l=1

(uli−ui) (zli|i)
TF T

i

+
L∑
l=1

(uli − ui) (uli − ui)T
ô

(A.22)

with zli|i , ‹xli|i − ‹xi|i, and ui , 1
L

∑L
l=1 u

l
i. The first term converges to F i P̃

∞

i|i F
T
i by

(A.19). The independence between the samples zli|i and uki implies that the second

and third terms of (A.22) converge in probability to the matrix 0 by a similar argu-

ment used to show that (A.12) converges in probability to the matrix 0. The last

term converges in probability to the state noise covariance matrix Qi by the WLLN.
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The result is

P̃ i+1|i
p.−→ F i P̃

∞

i|i F
T
i +Qi = P̃

∞

i+1|i. (A.23)
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APPENDIX B

IMPLEMENTATION DETAILS

B.1 Sequential Processing

The KF can sequentially process the components of the measurement yi when the

measurement noise is white and the noise covariance Ri is a diagonal matrix [26],

[27]. The main computational advantage is that the M ×M matrix inversion in the

evaluation of the Kalman gain (4.11) is reduced to scalar division. Note that the

whitening filter R
−1/2
i (the inverse matrix square root of Ri) may always be applied

to the measurements and sequential processing is always an option. However, R
−1/2
i

is generally computed by first taking the Cholesky factorization of the measurement

covarianceRi, an operation of the same computational complexity as matrix inversion

[72]. Ultimately, sequential processing is advantageous only when the measurement

noise is white, when the measurement noise statistics are constant in time and the

whitening filter needs to be computed only once, or when the inverse square root of

Ri may be easily computed.

The EnKF, with any taper matrix Ci, may also process the measurements se-

quentially and inherits the same benefits and caveats as the KF with sequential

processing. An additional benefit is that the product (Ci ◦ P̃ i|i−1)H
T
i is then an

N element vector in (4.19) and the storage requirement of the intermediate result is
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significantly reduced. However, the bias introduced by the covariance taper will in-

crease with sequential processing because the tapering operation is then applied once

for each component of yi instead of once for the complete measurement vector. Block

processing of the measurements is an option that can trade off the computational

advantage of sequential processing for reduced covariance taper bias.

B.2 Tikhonov Regularization

An additional quadratic penalty term may be appended to (4.16) by augmenting the

forward model (2.10). Johns and Mandel are the first to use this methodology in the

context of the EnKF [123]. However, they do not cite the earlier work of Baroudi,

Kaipio, and Somersalo who first suggest the approach in the context of the KF [28].

The procedure begins by augmenting the forward model in the following manner:

yi
0

 =

H i

Di

xi +

vi
wi

 (B.1)

which may be written succinctly as

y′i = H ′i xi + v′i (B.2)

where the augmented measurement noise vector v′i is zero mean, uncorrelated with

the initial state x1 and state noise ui, and has covariance

R′i , E
î
v′i (v

′
i)
T
ó

=

Ri 0

0 λ−1i I

 . (B.3)
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The resultant measurement update can be expressed as

“xi|i = arg min
xi

‖yi −H i xi‖2R−1
i

+ ‖xi − “xi|i−1‖2P−1
i|i−1

+ λi ‖Di xi‖22 (B.4)

where λi is the Tikhonov regularization parameter [74], [75]. With an appropriate

choice for Di, a prescribed degree of spatial smoothness can be enforced on the esti-

mates computed with the PF, KF, and EnKF by replacing the model parameters yi,

H i, and Ri with the augmented model parameters y′i, H
′
i, and R′i in the measure-

ment updates of the filters.
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APPENDIX C

THE KHATRI-RAO MATRIX PRODUCT

Definition C.1: Let A be a P ×N matrix and B be a M ×N matrix. The Khatri-

Rao product of the matrices A and B is defined by

A�B =
ï
[A](:, 1)⊗ [B](:, 1) . . . [A](:, N)⊗ [B](:, N)

ò
(C.1)

where ⊗ is the Kronecker matrix product, [·](:, n) selects the nth column of the matrix

argument, and A�B has dimensions PM ×N .

127



REFERENCES

[1] N. Gordon, D. Salmond, and C. Ewing, “Bayesian state estimation for tracking
and guidance using the bootstrap filter,” Journal of Guidance, Control, and
Dynamics, vol. 18, pp. 1434–1443, 1995.

[2] M. D. Butala, F. Kamalabadi, R. A. Frazin, and Y. Chen, “Dynamic tomo-
graphic imaging of the solar corona,” IEEE Journal of Selected Topics in Signal
Processing, vol. 2, pp. 755–766, 2008.

[3] G. Evensen, “Sequential data assimilation with a nonlinear quasi-geostrophic
model using Monte Carlo methods to forecast error statistics,” Journal of Geo-
physical Research, vol. 99, pp. 10 143–10 162, 1994.

[4] J. Geweke, “Bayesian inference in econometric models using Monte Carlo inte-
gration,” Econometrica, vol. 57, pp. 1317–1339, 1989.

[5] N. P. Willis and Y. Bresler, “Optimal scan for time varying tomographic imaging
I: Theoretical analysis and fundamental limitations,” IEEE Transactions on
Image Processing, vol. 4, pp. 642–653, 1995.

[6] N. P. Willis and Y. Bresler, “Optimal scan for time varying tomographic imaging
II: Efficient design and experimental validation,” IEEE Transactions on Image
Processing, vol. 4, pp. 654–666, 1995.

[7] J. L. Duerk and O. P. Simonetti, “Review of MRI gradient waveform design
methods with application in the study of motion,” Concepts in Magnetic Res-
onance, vol. 5, pp. 105–122, 1993.

[8] T. Ernst, O. Speck, L. Itti, and L. Chang, “Simultaneous correction for interscan
patient motion and geometric distortions in echoplanar imaging,” Magnetic
Resonance in Medicine, vol. 42, pp. 201–205, 1999.

[9] Z.-P. Liang and P. C. Lauterbur, Principles of Magnetic Resonance Imaging.
New York, NY: Wiley-IEEE Press, 2000.

128



[10] S. Bonnet, A. Koenig, S. Roux, P. Hugonnard, R. Guillemaud, and P. Grangeat,
“Dynamic X-ray computed tomography,” Proceedings of the IEEE, vol. 91, pp.
1574–1587, 2003.

[11] H. C. van de Hulst, “The electron density of the solar corona,” Bulletin of the
Astronomical Institutes of the Netherlands, vol. 11, pp. 135–150, 1950.

[12] R. A. Frazin, “Tomography of the solar corona. I. A robust, regularized, positive
estimation method,” Astrophysical Journal, vol. 530, pp. 1026–1035, 2000.

[13] M. D. Butala, R. A. Frazin, and F. Kamalabadi, “Three-dimensional estimates
of the coronal electron density at times of extreme solar activity,” Journal of
Geophysical Research, vol. 110, p. A09S09, 2005.

[14] A. K. George, M. D. Butala, R. A. Frazin, F. Kamalabadi, and Y. Bresler,
“Time-resolved CT reconstruction using the ensemble Kalman filter,” in Pro-
ceedings of the IEEE International Symposium on Biomedical Imaging, Paris,
France, 2008, pp. 1489–1492.

[15] N. J. Gordon, D. J. Salmond, and A. F. M. Smith, “Novel approach to
nonlinear/non-Gaussian Bayesian estimation,” IEE Proceedings F – Radar and
Signal Processing, vol. 140, pp. 107–113, 1993.

[16] J. S. Liu and R. Chen, “Sequential Monte Carlo methods for dynamic systems,”
Journal of the American Statistical Association, vol. 93, pp. 1032–1044, 1998.

[17] A. Doucet, N. de Freitas, and N. Gordon, Eds., Sequential Monte Carlo Methods
in Practice. New York, NY: Springer-Verlag, 2001.

[18] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on par-
ticle filters for online nonlinear/non-Gaussian Bayesian tracking,” IEEE Trans-
actions on Signal Processing, vol. 50, pp. 174–188, 2002.
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