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Abstract: Purpose: To conduct a systematic review and multilevel meta-analysis of the current
literature as to the effects of interval training (IT) vs moderate intensity continuous training (MICT)
on measures of body composition, both on a whole-body and regional level. Methods: We searched
English-language papers on PubMed/MEDLINE, Scopus, CINAHL, and sportrxiv for the follow-
ing inclusion criteria: (a) randomized controlled trials that directly compared IT vs MICT body
composition using a validated measure in healthy children and adults; (b) training was carried
out a minimum of once per week for at least four weeks; (c) published in a peer-reviewed English
language journal or on a pre-print server. Results: The main model for fat mass effects revealed
a trivial standardized point estimate with high precision for the interval estimate, with moderate
heterogeneity (−0.016 (95%CI −0.07 to 0.04); I2 = 36%). The main model for fat-free mass (FFM)
effects revealed a trivial standardized point estimate with high precision for the interval estimate,
with negligible heterogeneity (−0.0004 (95%CI −0.05 to 0.05); I2 = 16%). The GRADE summary of
findings suggested high certainty for both main model effects. Conclusions: Our findings provide
compelling evidence that the pattern of intensity of effort and volume during endurance exercise
(i.e., IT vs MICT) has minimal influence on longitudinal changes in fat mass and FFM, which are
likely to minimal anyway. Trial registration number: This study was preregistered on the Open
Science Framework.

Keywords: intensity of effort; fat loss; fat mass; body fat; lean mass

1. Introduction

The relative components of fat mass and fat-free mass in the body, collectively termed
body composition, has important implications for human health. Excessive levels of body
fat show a high correlation with a panoply of disease states, including cardiovascular
diseases, metabolic disorders, certain cancers, osteoarthritis, and respiratory conditions [1].
Alternatively, low levels of fat-free mass are associated with a loss of strength, functional
capacity, and reduced bone mineral density [2–4], impairing both the quality and quantity
of life [1]. There is an interaction between these two components, whereby the combination
of low levels of fat-free mass (FFM) and high levels of body fat potentiate each other,
maximizing their impact on disability, morbidity, and mortality [5].

Exercise is commonly recommended as an intervention to improve body composition [6,7].
Interventional strategies often employed for this purpose include the following patterns.
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Moderate intensity continuous training (MICT), herein operationally defined as mod-
erate intensity of effort exercise (<80% peak heart rate or aerobic capacity) performed over
a longer (relative to interval training bouts) single bout.

Interval training (IT), herein operationally defined as exercise performed in multiple
shorter (relative to continuous training) bouts interspersed with recovery periods either at
lower intensities of effort, or as complete rest.

IT is often subclassified into high intensity interval training (HIIT), herein operationally
defined as high intensity of effort exercise (approximately >80% peak heart rate or aerobic
capacity) performed in multiple shorter bouts interspersed with recovery periods either
at lower intensities of effort or as complete rest, and sprint interval training (SIT), herein
operationally defined as maximal intensity of effort exercise (‘all out’ sprint) performed
in multiple shorter bouts interspersed with recovery periods either at lower intensities of
effort or as complete rest.

Although both MICT and IT show efficacy in improving body composition, contro-
versy exists as to whether one strategy is superior to the other for this purpose. For example,
an earlier meta-analysis by Keating et al. [8] reported little difference between MICT and IT
for body fat reduction, highlighting that, over the short term, neither intervention produced
clinically meaningful changes. Following this, Viana et al. [9] conducted a meta-analysis
with results showing that IT produced a 28.5% greater reduction in fat mass than MICT.
However, the paper was criticized for various methodological issues [10], ultimately lead-
ing to its retraction. More recently, Sultana et al. [11] carried out a meta-analysis that
included a comparison of IT vs MICT. The analysis did not find a benefit to low-volume
IT on measures of body composition when compared with MICT. However, they limited
their analysis to only single measures per study of the constructs of interest (i.e., total body
fat mass, body fat percentage, and lean body mass), whereas many studies often report
several measures (e.g., regional measures). Furthermore, although several studies have also
compared the effects of IT and MICT in younger populations, they limited the analysis to
adults. Additionally, it is not clear from their analysis which pre-post test correlations were
imputed and used for effect size calculations. The magnitude of pre-post test correlations
used in calculations of pre-post control group design effect sizes using pooled baseline
standard deviations can impact the heterogeneity determined in the meta-analysis [12].
Thus, although the standardized point estimates of Sultana et al. [11] models generally
suggested little difference between conditions, the accompanying interval estimates for
most outcomes included small effects in favor of either IT or MICT. Furthermore, their
models had essentially no heterogeneity, although this may be the result of imputation
of pre-post correlations that were relatively low. Application of multilevel meta-analytic
models with robust variance estimation to handle multiple effects per study might yield
a greater precision of estimates [13], and thus help to confirm whether small differences
do in fact exist, and if so, in which direction. Additionally, extraction of information to
permit calculation of pre-post test correlations within groups (i.e., see Higgins et al. [14])
would allow for a better estimate of the population pre-post test correlations and may
reveal heterogeneity not identified in previous analyses. Lastly, although Sultana et al. [11]
explored ‘within-condition’ effects for IT in studies that included a non-exercising control
condition, they did not similarly explore this outcome for MICT training.

It also has been speculated that specific exercise-induced effects might occur for hy-
pertrophy and regional fat mass. Endurance exercise may have beneficial effects on muscle
hypertrophy, similar to that of resistance training [15], and some researchers highlight that
IT, in particular, may produce a potent anabolic stimulus [16]. Furthermore, it has been
suggested that IT may be more effective than MICT for abdominal fat mass reduction [17].
However, to our knowledge, no previous review has pooled data from research that directly
compares changes in FFM between IT and MICT, nor specifically examined regional effects
on changes in fat mass.

Lastly, although prior meta-analyses have considered between-conditions comparison
of mean intervention effects [11], whether or not differences in the variance of treatment
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responses are present has been relatively less explored. A recent meta-analysis of aerobic
exercise in overweight and obese children and adolescents found no evidence of ‘true’ inter-
individual response variation in fat loss [18]. However, numerous studies have purported
that there may be inter-individual response variation to IT and MICT for a range of
outcomes [19–21], and indeed it has been argued that such variation may mask differences
between IT and MICT for fat loss [22]. Thus, we also sought to examine whether there is
evidence of ‘true’ inter-individual response variation for body composition outcomes for
both IT and MICT [23,24].

Given the gaps in the current literature, the purpose of this paper was to conduct a
systematic review and multilevel meta-analysis of the current literature as to the effects of
IT vs MICT on measures of body composition, both on a whole-body and regional level.
Secondarily, we sought to determine if intensity of effort influences exercise adherence
and/or adverse events, as well as whether inter-individual response to IT and MICT
influences changes in body composition.

2. Material and Methods

This systematic review was conducted in accordance with the guidelines of the “Pre-
ferred Reporting Items for Systematic Reviews and Meta-Analyses” (PRISMA) [25]. The
study was preregistered on the Open Science Framework (https://osf.io/dq784), where
the detailed prespecified methodological protocol can be viewed.

2.1. Inclusion/Exclusion Criteria

We included studies that met the following criteria: (a) randomized controlled tri-
als (both within- and between-group designs) that directly compared IT vs MICT (both
with and without adjuvant dietary interventions) for body composition using a validated
measure (DXA, BodPod, hydrostatic weighing, BIA, skinfolds, ultrasound, magnetic reso-
nance imaging, and computerized tomography) in healthy children and adults; (b) training
was carried out a minimum of once per week for at least four weeks; (c) published in a
peer-reviewed English language journal or on a pre-print server. We excluded studies
that employed: (a) participants with co-morbidities that might impair aerobic capacity
(respiratory conditions, musculoskeletal injury); and (b) an unbalanced resistance train-
ing component (e.g., one group performs resistance training whereas the other does not).
Note, our original pre-registration failed to specify the particular intensity of effort and
operationalization of this variable for determination of whether an IT intervention could
be considered ‘HIIT’. However, a small number of studies identified employed intensities
of >75% of peak heart rate or aerobic capacity for their IT conditions. Given our omission
of specificity in pre-registration, we felt that these studies should be included, as there
was still a reasonable difference in intensity of effort compared with the MICT conditions
(typically <60%).

2.2. Search Strategy

We carried out a comprehensive search of the PubMed/MEDLINE, Scopus, CINAHL,
and sportrxiv databases using the following Boolean string: (interval training OR intermit-
tent training OR high intensity OR sprint interval training OR aerobic interval training OR
HIIT OR HIIE OR high intensity interval training OR high-intensity interval training OR
high intensity interval exercise OR high intensity intermittent exercise OR high-intensity
intermittent exercise OR high intensity intermittent training OR high-intensity intermittent
training) AND (continuous training OR moderate-intensity continuous exercise OR moder-
ate intensity continuous exercise OR moderate-intensity continuous training OR moderate
intensity continuous training OR endurance training) AND (body fat OR adiposity OR
body composition OR abdominal fat OR visceral fat OR adipose tissue OR fat mass OR
fat-free mass OR lean body mass OR lean mass OR muscle mass). Moreover, we screened
the reference lists of articles retrieved to uncover any additional studies that might meet

https://osf.io/dq784
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inclusion criteria, as described by Greenhalgh and Peacock [26]. The search was finalized
on 6 March 2021; Figure 1 illustrates a flow chart of the search process.
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2.3. Screening/Coding of Studies

Search/screening was carried out separately by two researchers (DP and AR). These
researchers read all titles and abstracts and then reviewed full texts for papers deemed
relevant based on their title and abstract. Decisions then were made as to whether a study
warranted inclusion based on the stated criteria. Any disputes on the inclusion of a given
study were settled by a third researcher (MCM).

After determining which studies met inclusion, two researchers (DV and HZ) sepa-
rately coded the following variables for each study: authors, title and year of publication,
sample size, sex, body mass index (BMI), training status, age, description of the training
intervention (duration, intensity, frequency, modality), work matched (yes/no), nutri-
tion controlled (yes/no), method for body comp assessment (e.g., DXA, BodPod, BIA,
hydrostatic weighing, skinfolds, MRI, CT, ultrasound), number of adverse effects associ-
ated with the training intervention, adherence to the given training program, mean pre-
and post-study body composition values in addition to pre-post change scores with the
corresponding standard deviation or standard error, and where change score standard
deviations were not reported we extracted information to allow their calculation, including
confidence intervals for change scores or within-group pre-post t statistics or p values
(where p values were reported only to the studies’ level of alpha (e.g., p < 0.05) we took
this as a conservative value). In cases where body composition data were not reported
numerically, we either extracted the data from graphs when available via online software,
or attempted to contact the study’s authors. Coding was cross-checked between reviewers,
with any discrepancies resolved by mutual consensus. Consistent with the guidelines of
Cooper et al. [27], 30% of the included studies were randomly selected for re-coding to
assess for potential coder drift by a third researcher (BM). Agreement was calculated by
dividing the number of variables coded the same by the researchers by the total number of
variables; acceptance required a mean agreement of 0.90 to avoid re-extraction entirely, and
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after this was met, only those with differing codes were checked and updated. Extracted
data was also double-checked after this process by the lead author (JS) prior to analysis.

2.4. Methodological Quality and Certainty of Evidence

Two of the authors independently evaluated each study (JG and BJS) using the 11-point
Physiotherapy Evidence Database (PEDro) scale, which has been validated to assess the
methodologic quality of randomized trials [28] with acceptable inter-rater reliability [29].
Any discrepancies in agreement on a given scale item were settled by mutual agreement
between the researchers. Given that it is infeasible to blind participants and investigators
in supervised exercise interventions, we opted to remove assessment items specific to
blinding (numbers 5, 6, and 7 in the scale). After eliminating these items, this created
a modified 8-point PEDro scale with a maximum value of 7 (the first item is excluded
from the total score). The qualitative methodological ratings were amended, similar to
those used in previous exercise-related systematic reviews [30], as follows: “excellent”
(6–7 points); “good” (5 points); “moderate” (4 points); and “poor” (0–3 points). We also
followed the Grading of Recommendations, Assessment, Development and Evaluations
(GRADE) framework [31] for evaluating the certainty of evidence with respect to our
primary pre-registered outcomes (absolute fat mass, and absolute lean/fat free mass). We
used the GRADEpro online tool [32] for this assessment and generation of the summary
of findings table. It should be noted though that we did not pre-register the use of the
GRADE approach to evaluate the evidence presented but decided a posteriori that the
assessment would enhance the ability to draw practical inferences from the data.

2.5. Statistical Analyses

Quantitative synthesis of data was performed with the ‘metafor’ [33] package in R
(v 4.0.2; R Core Team, https://www.r-project.org/). All analysis code and data are openly
available in the Supplementary Materials (https://osf.io/6karz/). Studies were grouped
by design (i.e., within- or between-group), and depending on reporting in individual
studies, either post or delta comparisons, or pre-post comparison designs [12] for the
purposes of appropriate calculation of standardized effects (Hedges’ g) using the escalc
function in metafor were carried out. We used the pooled group baseline standard deviation
as the numerator as per Morris (29). Standardized effect sizes were interpreted as per
Cohen’s [34] thresholds: trivial (<0.2), small (0.2 to <0.5), moderate (0.5 to <0.8), and large
(≥0.8). Standardized effects were calculated in such a manner that a positive effect size
value favored the IT conditions.

As there was a nested structure to the effect sizes calculated from the studies included
(i.e., multiple effects nested within groups and nested within studies), multilevel mixed
effect meta-analyses with both study and intra-study groups included as random effects
in the model were performed. Cluster robust point estimates and the precision of those
estimates using 95% compatibility (confidence) intervals (CIs) were produced, weighted by
the inverse sampling variance to account for the within- and between-study variance (τ2).
Restricted maximal likelihood estimation was used in all models. Two main models were
produced for both pre-registered main outcomes (absolute fat mass and FFM), including
all standardized effect sizes, to provide a general estimate of the comparative treatment
effects. All other models were considered secondary and exploratory analyses.

For all models, we avoided dichotomizing the existence of an effect for the main
results and therefore did not employ traditional null hypothesis significance testing, which
has been extensively critiqued [35,36]. Instead, we considered the implications of all results
compatible with these data, from the lower limit to the upper limit of the interval estimates,
with the greatest interpretive emphasis placed on the point estimate. Given the large
number of included studies and effects, the main models are visualized here using ordered
caterpillar plots to aid interpretation, as opposed to traditional forest plots containing
study characteristics. Note that all study characteristics are available in the data file in the

https://www.r-project.org/
https://osf.io/6karz/
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Supplementary Materials (https://osf.io/dumq8/), as are more traditional forest plots for
the main models (see folder “Outputs and Figures” at https://osf.io/6karz/).

The risk of small study bias was examined visually through contour-enhanced funnel
plots. Q and I2 statistics were also produced and reported [37]. A significant Q statistic is
typically considered indicative of effects likely not being drawn from a common population.
I2 values indicate the relative degree of heterogeneity in the effects that are not due to
sampling variance and are qualitatively interpreted as: 0–40%: not important, 30–60%:
moderate heterogeneity, 50–90%: substantial heterogeneity, and 75–100%: considerable
heterogeneity [38]. For within-participant effects, pre-post correlations for measures are
often not reported in original studies; thus, for those studies where we had standard devia-
tions for pre-, post-, and change scores (or were able to calculate the latter from confidence
intervals, t statistics, or p values) we calculated the pre-post correlations directly as:

rpre−post =
SD2

pre + SD2
post + SD2

change

2 × SDpre × SDpost

and imputed the median correlation coefficient to studies as an appropriate estimate of the
population parameter.

In addition to the main models, we secondarily produced models for relative fat
and FFM (i.e., as a percentage of body mass), and refit all models using delta scores (i.e.,
changes) of outcomes in the raw units of measurement (i.e., kilograms and percentages)
to facilitate interpretation in a complementary fashion. We also produced models where
studies included a non-training control arm that examined the between-condition treatment
effects for both IT vs CON, and MICT vs CON, to determine the ‘within-condition’ effect
estimates on both their standardized and raw scales, i.e., the true treatment effect of
performing IT or MICT alone.

We planned to conduct exploratory subgroup and moderation analyses across stan-
dardized effects for the following: work matched/unmatched, modality of training (ambu-
latory, cycling, or other), sex (proportion of sample as males), age (years), BMI (kg·m2), inter-
vention characteristics including level of intensity of effort for IT (i.e., SIT vs HIIT), within-
session IT interval number and duration and their interaction, duration of MICT sessions,
the difference (i.e., MICT minus IT) in total weekly exercise duration (frequency × duration),
and duration of interventions (weeks), method of body composition measurement (DXA,
BIA, skinfolds, etc.), body composition region of measurement (upper, lower, trunk),
and whether nutrition was controlled or uncontrolled. Note, we originally mentioned
exploration of moderators for both standardised and unstandardised effects in our pre-
registration. However, we ultimately opted to just explore standardised effects for absolute
fat mass and FFM outcomes to compliment and explore heterogeneity in our main models.
Furthermore, we adapted the operationalization of some moderators (e.g., intervention
characteristics such as total weekly exercise duration) and some we could not explore
fully given the number of effects available for certain sub-groups (these are noted in the
analysis code). We also fit further (not pre-registered) models to examine adherence (num-
ber of attended sessions as a proportion of number of prescribed sessions) and dropout
(number of participants dropped out as a proportion of number of participants random-
ized) proportions, as well as a Poisson regression model for adverse event count data (per
1000 person-sessions). All exploratory models utilized the same multilevel mixed-effects
structure and specifications as the main models.

As a final exploratory (not pre-registered) analysis, we examined the variation in
responses between both IT and MICT conditions. We sought to identify whether there
was evidence of ‘true’ inter-individual variation from within-participant variability and/or
participant-by-treatment interaction in responses to interventions by comparing the stan-
dard deviations for change scores with those of non-exercise control conditions [23,39]. We
identified a mean-variance (on both the raw and log-transformed scales) relationship across
studies for change scores (see https://osf.io/6zb8y/). Thus, we opted to adjust for this
by employing a multilevel meta-regression of the log-transformed change score standard

https://osf.io/dumq8/
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deviations, adjusted for the log-change score mean [40], calculated such that positive values
showed that intervention condition (i.e., IT and MICT) variation exceeded control condition
variation—thus suggesting evidence of ‘true’ inter-individual response variation. Where
studies did not report change score standard deviations, or we were unable to calculate
it directly, this was estimated using the imputed median pre-post correlation coefficient
noted above as:

SDchange =
√

SD2
pre + SD2

post −
(
2 × rpre−post × SDpre × SDpost

)
Note that, given the different measurement devices used in individual studies, we

accepted pragmatically the inherent assumptions built into this comparison of a constant
Gaussian measurement error (i.e., that measurement error does not scale in a non-linear
fashion with measured scores).

3. Results
3.1. Search Results

From the initially reviewed 2085 search results, a total of 56 studies were determined
as meeting the inclusion criteria for our analysis. Two studies stated that body compo-
sition measures were performed, but did not report information on this outcome in the
manuscript [41,42]. Attempts to obtain the data from the corresponding authors proved
unsuccessful. Thus, we analyzed 54 studies that compared the effects of IT and MICT on
measures of body composition. Table 1 presents a summary of the methods of the included
studies. Table 2 presents descriptive information as to the included studies. Figure 2 shows
the contour enhanced funnel plot for all effects from these studies. Inspection of the funnel
plot did not reveal any obvious small study bias.

Table 1. Methods of included studies.

Study
Sample

Population
(age)

Duration
(weeks) Group (n) Modality/Intensity Frequency

(weeks)
Time per
Session

Body
Composition

Method

[43]

Obese
children

(aged 8–12
years)

12 MICT: 15
IT: 15

MICT: 80% of peak heart
rate

IT: 3–6 sets of 60 s sprint at
100% of the peak velocity
with 3 min active recovery

period at 50% of the
exercise velocity.

MICT: 2×
IT: 2×

MICT: 30–60
min

IT: 9–18 min
BIA

[44]

Young adults
with

intellectual
disabilities
(aged 16–18

years)

15
MICT: 15

IT: 17
CON: 14

MICT: Cycling,
walking/running,

stepping at 30% peak
watts

IT: First 7 weeks: 10, 15 s
sprint bouts at ventilatory
threshold (100 + RPM), 45

s recovery period at 50
RPM

Weeks 8–15: intensity
increased to 110% VT

MICT: 2×
IT: 2×

MICT: 40 min
IT: 40 min BIA

[45]

Down
syndrome

adults (mean
age 34 years)

12
MICT: 13

IT: 13
CON: 16

MICT: Continuous
cycling/walking at

70–80% VO2 peak, 85%
after week 6

IT: 10 × 30 s sprints, 90 s
rest period

MICT: 3×
IT: 3×

MICT: 30 min
IT: 30 min BIA
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Table 1. Cont.

Study
Sample

Population
(age)

Duration
(weeks) Group (n) Modality/Intensity Frequency

(weeks)
Time per
Session

Body
Composition

Method

[46]
Adolescents
(mean age 16

years)
7

MICT: 16
IT: 17

CON: 24

MICT: Running at
moderate intensity at 70%

VO2 max (VO2 max
retested at week 4)

IT: 4–6 all-out sprints ×
30 s, 30 s recovery period
(20 s recovery period for

week 7)

MICT: 3×
IT: 3×

MICT: 20 min
IT: 16 min Skinfolds

[47]
Children

(mean age: 11
years)

8 MICT: 16
IT: 18

MICT: Running at 65–75%
HRmax

IT: 3–6 bouts, 20 s
max-effort sprint, 60 s rest
period (40 s at week 5, 20 s

at week 8)

MICT: 3×
IT: 3×

MICT:
4–9 min

IT: 4–9 min
BIA

[48]
Obese adults

(mean age:
39 years)

12 MICT: 6
IT: 6

MICT: Brisk walking at 4
METs

IT: 4–7 intervals at a 2:1
ratio, then 5 boxing drills
× 3 intervals at a 2:1 ratio,
RPE 15–17 (>75% HRmax)

MICT: 4×
IT: 4×

MICT: 50 min
IT: 50 min Skinfolds

[49]

Obese adult
men

(mean age:
25 years)

4 MICT: 8
IT: 8

MICT: Continuous cycling
@ 65% VO2 peak

IT: 4–7 sprints × 30 s at
200% W-max, 120 s at 30

W in-between

MICT: 5×
IT: 3×

MICT:
40–60 min

IT:
10–17.5 min

DXA

[50]

Colorectal
cancer

survivors
(mean age:
62 years)

4 MICT: 14
IT: 21

MICT: Continuous cycling
at 50–70% HRpeak

IT: 4 cycling intervals ×
240 s at 85–95% HRpeak,

180 s active rest

MICT: 3×
IT: 3×

MICT: 50 min
IT: 38 min DXA

[51]

Obese
children

(aged 7–16
years)

12
MICT: 22

IT: 18
CON: 16

MICT: 60–70% HRmax
IT: 4 intervals of 240 s at
85–95% HRmax, 180 s

active recovery at 50–70%
HRmax

MICT: 3×
IT: 3×

MICT: 44 min
IT: 28 min

DXA and
ADP

[52]

Adult men at
risk for
insulin

resistance
(mean age:
48 years)

12 MICT: 16
IT: 21

MICT: Worked towards 6
kcal/kg per week for 6

weeks (+2 per week until
12 kcal/kg per week)

treadmill at 50–70% VO2
max

IT: Performed MICT
protocol until week 6 then
transitioned, 2–8 bouts of
60 s at 90–95% VO2 max,
60 s recovery period at

50% VO2 max

MICT: 3–4×
IT: 3–4×

MICT: Work-
dependent

IT: 4–16 min
DXA

[53]

Obese young
women

(mean age:
22 years)

8
MICT: 7

IT: 7
CON: 6

MICT: Continuous
treadmill at 50–70% at

HRpeak
IT: 4 intervals of 240 s at
85–95% HRpeak, 180 s

active rest

MICT: 3×
IT: 3×

MICT: 41 min
IT: 33 min BIA
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Table 1. Cont.

Study
Sample

Population
(age)

Duration
(weeks) Group (n) Modality/Intensity Frequency

(weeks)
Time per
Session

Body
Composition

Method

[54]

Sedentary
young men

(mean age: 21
years)

8 MICT: 6
IT: 6

MICT: Continuous
treadmill at 70–80% VO2

max
IT: 12 intervals of 60 s at
90–110% VO2 max, 60 s

rest period

MICT: 3×
IT: 3×

MICT: 30 min
IT: 30 min DXA

[55]
Obese young

men (aged
17–22 years)

6 MICT: 13
IT: 15

MICT: Cycling at 55–65%
VO2 peak

IT: 4 intervals of 240 s at
15% APmax, then 30 s at
85% APmax, then 120 s at

15% APmax

MICT: 5×
IT: 3×

MICT: 45–60
min

IT: 20 min
DXA

[56]
Overweight
men (aged

20–40 years)
12 MICT: 12

IT: 10

MICT: Walking/jogging at
65% HRmax

IT: 6–12 intervals of 60 s at
90–95% HRmax, 60 s

active rest

MICT: 3×
IT: 3×

MICT: 18–35
min

IT: 12–24 min
DXA

[57]

Sedentary
young men

(mean age: 27
years)

12
MICT: 10

IT: 9
CON: 6

MICT: Continuous cycling
at 70% HRmax

IT: 3 all-out intervals of 20
s at 0.5 kg/kg resistance,
120 s low-intensity active

rest

MICT: 3×
IT: 3×

MICT: 45 min
IT: 10 min ADP

[58]

Male police
officers

(mean age:
39 years)

8 MICT: 11
IT: 11

MICT: Continuous
running at 60–75%

V-shuttle max
IT: 7–10 intervals of

85–100% V-shuttle max
(V-shuttle based on

individual shuttle test
results)

MICT: 3×
IT: 3×

MICT:
27.8-33.4 min
IT: 14.8–19.1

min

DXA

[59]

Overweight
young
women

(mean age:
20 years)

6 MICT: 29
IT: 23

MICT: Continuous cycling
at 60–70% HRR

IT: 5–7 all-out intervals of
30 s, 240 s active recovery

MICT: 3×
IT: 3×

MICT: 20–30
min

IT: 22.5–31.5
min

DXA

[60]

Healthy,
sedentary

older adults
(aged

55–79 years)

8
MICT: 14

IT: 15
CONT: 14

MICT: 70% of peak heart
rate

IT: 4 × 4 min intervals at
90% of peak heart rate
with 3 × 3 min active

recovery periods at 70% of
peak heart rate.

MICT: 4×
IT: 4×

MICT: 47 min
IT: 40 min DXA

[61]

Inactive,
overweight
adults (aged
18–55 years)

12
MICT: 11

IT: 11
CONT: 11

MICT: 50–65% VO2peak
IT: cycling, 4–6 sets of

30–60 s at 120% VO2peak
with 120–180 s at 30 W.

MICT: 3×
IT: 3×

MICT:
30–45 min

IT: 20–24 min
DXA

[62]

Obese
adolescents
(mean age:
13 years)

12 MICT: 15
IT: 14

MICT: 60–70% of VO2max
IT: running for 2 min at

80–90% of VO2max
followed by recovery

periods of 1 min.

MICT: 3×
IT: 3×

MICT:
30–40 min Skinfolds
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Table 1. Cont.

Study
Sample

Population
(age)

Duration
(weeks) Group (n) Modality/Intensity Frequency

(weeks)
Time per
Session

Body
Composition

Method

[63]

Overweight,
inactive

adults (aged
35–60 years)

12

MICT: 17
IT (AIT): 11
IT (MVIT):

16

MICT: Walking, 65–75% of
HRmax

IT (AIT): jogging, 4 cycles
of 4 min at 85–95%

HRmax followed by 3 min
recovery at 65–75%

HRmax.
IT (MVIT): 30 s of “all out”
exercise followed by 4 min
of low intensity recovery.

MICT: 3×
IT (AIT): 3×
IT (MVIT):

3×

MICT: 48 min
IT (AIT):
40 min

IT (MVIT):
24.5–40 min

BIA

[64]

Healthy,
recreation-
ally active

young adults
(mean age:
23 years)

6 MICT: 10
IT: 10

MICT: running, 65% of
VO2max

IT: 4–6 bouts of 30 s
maximal running efforts
with 4 min of recovery

(active recovery
encouraged)

MICT: 3×
IT: 3×

MICT:
30–60 min

IT: 18–27 min
ADP

[65]

Overweight,
untrained
men (aged

28–46 years)

10 MICT: 7
IT: 7

MICT: 50% of VO2max
IT: 25 sets of 80 s at 35%

VO2max followed by 40 s
at 80% VO2max.

MICT: 3×
IT: 3×

MICT: 50 min
IT: 50 min Skinfolds

[66]

Adults with
type 2

diabetes
(mean age:
59 years)

52
MICT: 24

IT: 19
CONT: 24

MICT: cycling 40–60% of
HRR

IT: cycling, 2 min at
70–80% of HRR with 1

min at 40–60% of HRR. 1
min at 90% of HRR with 1
min resting at 40–60% of

HRR.

MICT: 3×
IT: 3×

MICT: 45 ±
7.1 min

IT:
33.1 ± 6.4 min

DXA

[67]

Postmenopausal
women with

type 2
diabetes

(mean age:
69 years)

16 MICT: 8
IT: 8

MICT: 55–60% of
individual HR reserve

IT: 60 cycle (maximum) of
8 s at 77–85% HRmax with

active recovery of 20–30
rpm for 12 s.

MICT: 2×
IT: 2×

MICT: 40 min
IT: 25 min DXA

[68]
Children
(aged 7–9

years)
12 MICT: 56

IT: 38

MICT: 20 min of
moderate-intensity

aerobic exercises and
games followed by 20 min

of sport.
IT: 20 min of 10–20 s of

high-intensity intermittent
exercises followed by 20
min of sports activities.

MICT: 2×
IT: 2×

MICT: 40 min
IT: 40 min BIA
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Table 1. Cont.

Study
Sample

Population
(age)

Duration
(weeks) Group (n) Modality/Intensity Frequency

(weeks)
Time per
Session

Body
Composition

Method

[69]

Sedentary
Obese Adults

(aged 34
years)

12
MICT: 14

IT: 16
1
2 IT: 16

MICT: 70% of peak HR
IT: 8 s of maximal

intensity sprint intervals
on a bike at 85–90% of
peak HR, with 12 s rest

intervals pedaling as slow
as possible. Sequence

continued until the 250
kcal target was met.

1
2 IT: Same as IT but with a

125 kcal target.

MICT: 3×
IT: 3×

1
2 IT: 3×

MICT: 32
min(avg.)

IT: 20
min(avg.)

1
2 IT: 10 min

(avg.)

DXA

[70]

Sedentary
adult men
(aged 29

years)

8 MICT: 12
IT: 12

MICT: 60-65% VO2max
IT: 3, 3 min intervals of
high intensity cycling at
80–85% VO2max with 2

active rest intervals.

MICT: 3×
IT: 3×

MICT: 45 min
IT: 18 min

total
including
5 min of

combined
warm-up and

cool down.

DXA

[71]

Adult men
with

metabolic
syndrome
(mean age:
48 years)

8 MICT: 13
IT: 13

MICT: cycling at 60–65%
of VO2peak

IT: 3 sets of 3 min cycling
at 80–85% VO2peak with a
2 min active rest between

sets at 50% VO2peak

MICT: 3×
IT: 3×

MICT: 45 min
IT: 18 min DXA

[72]

Sedentary
pre-

menopausal
women

(mean age:
45 years)

15
MICT: 21

IT: 21
CON: 20

MICT: Moderate intensity
swimming at ~70%

HRmax.
IT: 6–10 × 30 s all-out
swimming with 2 min

recovery in between each
bout at.~90% HRmax

MICT:3×
IT: 3×

MICT: 1 h
IT: 15–25 min

total.
DXA

[73]
Overweight
adults (mean
age: 40 years)

12
MICT: 8

IT: 8
CON: 7

MICT: Biking at 10% lower
than anaerobic threshold.
IT: Biking at 20% above

anaerobic threshold with
an exercise:pause ratio of

2:1.

MICT: 3×
IT: 3×

Both groups
completed

20 min in the
first week,

with
increments of

10 min per
week until a

total of
60 min per
session was
reached in
the fourth

week.

BIA
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Table 1. Cont.

Study
Sample

Population
(age)

Duration
(weeks) Group (n) Modality/Intensity Frequency

(weeks)
Time per
Session

Body
Composition

Method

[74]

Obese
adolescents
(mean age:
15 years)

12 MICT: 13
IT: 16

MICT: Boxing and Nordic
walking at 60–75% of

maximal HR.
IT: 4 to 6 intervals of 2

min–2 min 30 s in
duration at 90–95% of

HRmax interspersed by 1
min 30 s intervals at 55%

of HRmax

MICT: 3×
IT: 3×

MICT: 40 to
60 min.
IT: 24 to
32 mins

DXA

[75]

Obese
adolescents
(mean age:
14 years)

4 MICT: 8
IT: 10

MICT: 65% HRmax
IT: 1 min vigorous

treadmill exercise at 80%
to 90% HRmax

interspersed with 2 min
recovery intervals at 60%

HRmax

MICT: 3×
IT: 3× MICT: 50 min BIA

[76]

Recreationally
active men
(mean age:
21.7 years)

7 MICT: 7
IT: 8

MICT: Cycling at 60% of
VO2max.

IT: 4–6 Wingate sprints
(resistance = 7.5% of

subject BW) with 4.5 min
recovery

MICT: 3×
IT: 3×

MICT:
30–50 min
IT: 30 min

Skinfolds

[77]
Untrained
men (mean

age: 33 years)
12

MICT: 9
IT; 8

CON:11

MICT: 80% HRmax
IT: Five intervals of 2 min
of near-maximal running
(HR above 95% of their

HRmax at the end of the 2
min period interspersed

by 1 min rest.

MICT: 3×
IT: 2×

(attempted 3
but accom-

plished 2 on
average due
to injuries or

other
reasons)

MICT: 1 h
IT: 20 min DXA

[78]

Sedentary
obese males
(mean age:
48.4 years)

12 MICT: 13
IT: 20

MICT: Cycling at 60–65%
VO2max

IT: 3 sets of 180 s cycling at
80–85% VO2max with 120
s recovery period at 50%

VO2max

MICT: 3×
IT: 3×

MICT: 40 min
IT 13 min DXA

[79]

Untrained
women

(mean age:
28.4 years)

6 MICT: 12
IT: 11

MICT: Cycling at 70%
HRmax

IT: Cycling 15 sets 60 s at
90% HRmax with 30 s
recovery period at 60%

HRmax

MICT: 3×
IT: 3×

MICT: 29 min
IT: 22 min Skinfolds

[80]

Untrained
obese women

(mean age:
46 years)

12 MICT: 12
IT: 18

MICT: Deep water
running at 65–85% HRR
IT: Deep water running

8–15, 15 s sprints with 30s
recovery interspersed

with 5–14 min intervals at
70–75% HRmax

MICT: 3×
IT: 3×

MICT: 47 min
IT: 47 min
(including
recovery
periods)

Skinfolds
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Table 1. Cont.

Study
Sample

Population
(age)

Duration
(weeks) Group (n) Modality/Intensity Frequency

(weeks)
Time per
Session

Body
Composition

Method

[81]

Healthy
physically

inactive
adults (mean
age: 32 years)

12 MICT: 9
IT: 11

MICT: Treadmill, 60–80%
HRR

IT: Treadmill, 4 sets 240 s
at 85–95% peak HRR with
240 s recovery period at

65% peak HRR

MICT: 3×
IT: 3×

MICT:
20–65 min
(including

warm up and
cool down)

IT: 35 to
55 min

(including
warm up and

cool down)

BIA

[82]

Adults with
metabolic
syndrome

(mean age: 57
years)

16
MICT: 21
IT (a): 22
IT (b): 23

MICT: Cycling, 60–70% of
peak heart rate

IT (a) Cycling, 4HIIT
group-4 240 s sets at

85–95% peak heart rate
with 180 s recovery period
at 50–70% peak heart rate

IT (b) Cycling, 1HIIT
group- 1 set 240 s at

85–95% peak heart rate
with 180 s cool down at
60–70% peak heart rate

MICT: 5×
IT (a): 3×
IT (b): 3×

MICT: 30 min
IT (a): 4HIIT,

38 min
(including

warm up and
cool down).

IT (b): 1 HIIT,
17 min

(including
warm up and

cool down)

DXA

[83]
Sedentary

adults (mean
age: 31 years)

8
MICT: 7
IT (a): 9

IT (b): 11

MICT: Cycling, 65–75%
HRmax

IT (a): 2 × 4 HIIT, cycling
2 sets 240 s at 85–95%

HRMax with 120 s active
rest

IT (b): 5 × 1 HIIT, cycling
5 sets 60 s at 85–95%

HRMax with 60 s active
rest

MICT: 2×
IT (a): 2×
IT (b): 2×

MICT: 38 min
(including

warm up and
cool down)

IT (a): 15 min
(including

warm up and
cool down)

IT (b): 14 min
(Including

warm up and
cool down)

BIA

[84]
Sedentary
males (age

not reported)
4 MICT:12

IT: 12

MICT: Cycling, 45%
VO2max

IT: Cycling, 10 sets, 60 s at
85% VO2max with 30 s

rest period between sets

MICT:3×
IT:3×

MICT: 22 min
IT: 15 min
(including

rest periods)

BIA

[85]
Obese adults

(mean age:
46 years)

12 MICT: 13
IT:14

MICT: Treadmill, 60–70%
HRMax

IT: Treadmill, 4 sets 240 s
at 85–95% HRMax with

180 s rest periods at
50–60% HRMax

MICT:3×
IT: 3×

MICT: 47 min
IT: 42 min
(including

warm up and
cool down)

DXA

[86]
Sedentary

males (mean
age: 2 years)

6 MICT: 8
IT: 8

MICT: Cycling, ~65%
VO2Peak

IT: Cycling, four to six,
30 s ‘all out’ sprints

(Wingate test) with 270 s
rest between each test

MICT:5×
IT:3×

MICT: 40 to
60 min

IT: 20–30 min
(including

rest periods)

DXA
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Table 1. Cont.

Study
Sample

Population
(age)

Duration
(weeks) Group (n) Modality/Intensity Frequency

(weeks)
Time per
Session

Body
Composition

Method

[87]
Overweight
adults (mean
age: 42 years)

10 MICT: 44
IT: 46

MICT: Cycling, ~70%
MHR

IT: Cycling, >90% MHR,
repeated sprints of 15–60 s,
interspersed with periods

of recovery cycling

MICT: 5×
IT: 3×

MICT:
30–45 min

IT: 18–25 min
BIA

[88]

Trained
young adults

(mean age:
19 years)

8 MICT: 7
IT: 7

MICT: Rowing, Blood
Lactate Concentrations of

2–3 mmol/L
IT: Rowing, eight, 2.5 min
intervals at 90% of mean 4

min maximal power
output achieved during
the incremental exercise
test. Recovery duration
was until HR returned

70% MHR, at 40% of mean
maximal power output

MICT: 2×
IT: 2×

MICT:
35/40 min

IT: 27–55 min
(including
recovery)

DXA

[89]

Overweight
Young

Adults (mean
age: 20 years)

12
MICT: 16

IT: 17
CON: 19

MICT: Walking/Jogging,
HR associated with 50% of

VO2max
IT: Running, five, 3 min

intervals at the HR
associated with 85%

VO2max with 3 min active
rest at HR associated 50%

VO2max between each
interval

MICT: 5×
IT: 5×

MICT: 55 min
IT: 42 min
(Including

warm up and
cool down)

DXA

[90]
Overweight
Males (mean
age: 31 yrs)

12
MICT: 10

IT: 10
CON: 10

MICT: Cycling, ~60%
VO2peak

IT: Cycling, 15 s at a
power output equivalent
to ~170% VO2peak with

an active recovery period
of 60 s at a power output

equivalent to ~32%
VO2peak

Relative total work was
matched between both

groups

MICT: 3×
IT: 3×

MICT:
30–45 min

IT: 30–45 min
DXA

[91]

Obese
Children

(mean age:
15 years)

6 MICT: 13
IT: 14

MICT: Cycling, 65–70%
APMHR

IT: Cycling, ten, 2 min
bouts at 90–95% APMHR,

with 1 min of active
recovery at 55% APMHR

between each bout

MICT: 3×
IT: 3×

MICT: 40 min
IT: 40 min
(Including

warmup and
cool down)

ADP
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Table 1. Cont.

Study
Sample

Population
(age)

Duration
(weeks) Group (n) Modality/Intensity Frequency

(weeks)
Time per
Session

Body
Composition

Method

[92]

Healthy
Untrained

Adults (aged
18–32 years)

12
MICT A: 14
MICT B: 18

IT: 15

MICT A: Running, 4 m,
75% MHR

MICT B: Running, 2 m,
75% MHR

IT: Running, 8 bouts of
60 s intervals at 90% MHR

followed by 180 s rest
between each bout

MICT: 3×
IT: 3×

MICT A:
~32 min/~500

cal/session
MICT B: ~16

min/~250
cal/session
IT: 29 min

Hydrostatic
densitometry

[93]

Healthy
Inactive
Young

Females
(mean age: 21

years)

15 MICT: 15
IT: 15

MICT: Cycling, 60%
VO2peak

IT: Cycling, maximum of
60 bouts of 8 s:12 s ratio of

sprinting and slow
pedaling

MICT: 3×
IT: 3×

MICT:
20–50 min

IT: 15–30 min
(Including

warmup and
cool down

DXA

[94]
Obese Adults

(mean age:
43 years)

8
MICT: 6

IT: 7
CON: 8

MICT: Cycling, 50–65%
VO2 peak

IT: 2 min ratio of high to
low intensity of 90–105%

VO2peak and 30–45%
VO2peak

MICT: 4×
IT: 4×

MICT: 30 min
IT:30 min

(Including
recovery)

DXA

[95]
Overweight

Adults (mean
age: 56 years)

11
MICT: 12

IT: 13
CON: 7

MICT: Cycling, 50%
Wpeak

IT: Cycling, 1 min at 95%
Wpeak, with 1 min active
recovery at 20% Wpeak

between each bout.

MICT: 3×
IT: 3×

MICT:
135 min

IT: 75 min
(Including

the warmup)

DXA

[96]

Overweight
Young

Females
(mean age:
21 years)

12
MICT: 15

IT: 15
CON: 13

MICT: Cycling, 60%
VO2max until 300 kJ of

work is reached
IT: Cycling, repeated
4 min bouts at 90%

VO2max with 3 min
passive recovery between
bouts until 300 kJ of work

is reached

MICT: 3–4×
IT: 3–4×

MICT: Until
300 kJ of

work was
reached

IT: Until m of
work was
reached

DXA

Abbreviations: MICT = moderate intensity continuous training; IT = interval training; CON = control; BIA = bioelectrical impedance
analysis; DXA = dual energy x-ray absorptiometry; ADP = air displacement plethysmography.

3.2. Methodological Quality

Study quality, as assessed by the PEDro scale, had a mean rating of 5.6, indicating that
the overall pool of studies are of good quality. A total of 32 studies were rated as being of
excellent quality, 21 studies were rated as being of good quality, and 1 study was rated as
being of fair quality; no study in the analysis was deemed to be of poor quality. Individual
scoring is available in the online Supplementary Materials (https://osf.io/b28qd/).

3.3. Main Models
3.3.1. Fat Mass

The main model for all fat mass effects (55 across 29 clusters (median = 1, range = 1–6
effects per cluster)) revealed a trivial standardized point estimate with a high precision
for the interval estimate (−0.02 (95%CI = −0.07 to 0.04)), with moderate heterogeneity

https://osf.io/b28qd/
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(Q(54) = 79.08, p = 0.015, I2 = 36%). Figure 3 presents all standardized effects and interval
estimates for fat mass outcomes across studies in an ordered caterpillar plot.

Table 2. Descriptive characteristics.

Characteristic Number of Groups within Studies = 60

Age (years) 30 (21, 44)
Unknown 1

Sex (% Male) 54 (32, 100)
BMI (kg·m2) 28.3 (25.4, 30.5)

Unknown 7
Training Status

Recreationally Active 1 (1.7%)
Trained 1 (1.7%)

Untrained 58 (97%)
Was Nutrition Controlled?

No 31 (52%)
Yes 29 (48%)

Included Caloric Deficit?
No 57 (95%)
Yes 3 (5.0%)

Include Resistance Training Intervention?
No 59 (98%)
Yes 1 (1.7%)

Were IT/MICT Work-Matched?
No 34 (57%)
Yes 25 (42%)

Yes, matched for time 1 (1.7%)
Intervention Duration (weeks) 12 (8, 12)

IT Frequency (median days per week)
2 8 (13%)
3 44 (73%)

3.5 2 (3.3%)
4 3 (5.0%)

4.5 2 (3.3%)
5 1 (1.7%)

MICT Frequency (median days per week)
2 8 (13%)
3 38 (63%)

3.5 2 (3.3%)
4 3 (5.0%)

4.5 2 (3.3%)
5 7 (12%)

Was IT Performed as SIT or HIIT?
HIIT 45 (75%)
SIT 15 (25%)

IT Interval Number Performed 5 (4, 10)
Unknown 5

IT Interval Duration (median s) 60 (30, 180)
IT Total Exercise Duration (min) 9.4 (3.4, 16.0)

MICT Session Duration (min) 38 (30, 45)
Unknown 3

IT Adherence (% Sessions) 90 (83, 98)
Unknown 24

MICT Adherence (% Sessions) 90 (84, 97)
Unknown 25

IT Adverse Event Number
0 12 (63%)
1 2 (11%)
2 2 (11%)
3 1 (5.3%)
4 1 (5.3%)
5 1 (5.3%)

Unknown 41
MICT Adverse Event Number

0 10 (67%)
1 3 (20%)
2 2 (13%)

Unknown 45
Note: Values are Median (IQR) for continuous variables, and n (%) for categorical.
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3.3.2. Fat-Free Mass

The main model for all FFM effects (34 across 27 clusters (median = 1, range = 1–3
effects per cluster)) revealed a trivial standardized point estimate with a high precision
for the interval estimate (−0.0004 (95%CI = −0.05 to 0.05)), with negligible heterogeneity
(Q(33) = 37.77, p = 0.26, I2 = 16%). Figure 4 presents all standardized effects and interval
estimates for FFM outcomes across studies in an ordered caterpillar plot.
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3.3.3. GRADE Summary of Findings for Main Outcomes

For both fat mass and FFM there was a ‘high’ certainty of evidence with respect to the
effects identified. It was deemed that there was no serious risk of bias, inconsistency, indi-
rectness of evidence, or imprecision in estimates, nor were there other clear considerations
impacting on certainty of evidence grading. The GRADE summary of findings table for
our main outcomes is available in the Supplementary Materials (https://osf.io/pcyvx/).

3.4. Secondary Analyses

Between condition treatment effect models on both the raw effect scales, and using
relative fat outcomes (relative lean models not run due to limited data), showed similar
outcomes to the main models reported. Thus, for brevity, these are presented in the
Supplementary Materials along with caterpillar plots (see folder “Outputs and Figures”
> “Secondary Outcomes Outputs” > “Additional Between Condition Models” at https:
//osf.io/6karz/).

3.4.1. Within-Condition Treatment Effects

All within-condition models are also available in the Supplementary Materials (see
folder “Outputs and Figures” > “Secondary Outcomes Outputs” > “Within Condition

https://osf.io/pcyvx/
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Models” at https://osf.io/6karz/) and here we report just the results for absolute fat and
FFM outcomes on standardized and raw scales. In comparison to non-intervention con-
trol groups, the IT conditions resulted in small reductions in fat mass (Hedges’ g = −0.22
(95%CI = −0.36 to −0.08); kilograms = −0.20 (95%CI = −0.34 to −0.06)), and trivial in-
creases in FFM (Hedges’ g = 0.13 (95%CI = 0.04 to 0.22); and kilograms = 0.11 (95%CI = −0.04
to 0.26)). The MICT conditions also produced small reductions in fat mass (Hedges’
g = −0.20 (95%CI = −0.36 to −0.04); kilograms = −0.25 (95%CI = −0.39 to −0.11)), and
trivial increases in FFM (Hedges’ g = 0.07 (95%CI = −0.01 to 0.16); kilograms = 0.07
(95%CI = −0.02 to 0.15)).

3.4.2. Sub-Group and Meta-Regression Analyses

Sub-group and meta-regression models were not run for absolute FFM standard-
ized effects, given the negligible heterogeneity in the main model. When exploring sub-
group and meta-regression models for absolute fat mass standardized effects, only two
moderators—sex (proportion of males in sample; β = 0.0015 (95%CI = 0.00 to 0.0029)) and
the number of intervals performed per training session by IT (β = −0.0032 (95%CI = −0.0052
to −0.0013))—appeared to have an effect, albeit this effect was relatively small for both
covariates. Again, for brevity, all sub-group and meta-regression models are included in
the Supplementary Materials (see folder “Outputs and Figures” > “Secondary Outcomes
Outputs” > “Sub-group and Meta-regression Models” at https://osf.io/6karz/).

3.4.3. Adherence, Dropouts and Adverse Events

There was minimal difference in adherence or dropout proportions between con-
ditions, which were relatively high and low, respectively. Adherence for IT was 89.1%
(95%CI = 85.2% to 92.1%) and for MICT was 89.2% (95%CI = 84.5% to 92.7%), and dropouts
for IT were 16.1% (95%CI = 11.4% to 22.2%) and for MICT were 20.1% (95%CI = 12.3%
to 33.1%). Adverse events per 1000 person-sessions (i.e., the number of events per 1000
training sessions performed) were also relatively low with a minimal difference between
conditions, with values of 1.15 (95%CI = 0.31 to 4.34) and 1.07 (95%CI = 0.51 to 2.24) for IT
and MICT, respectively.

3.4.4. Inter-Individual Response Variation

There was no clear evidence of ‘true’ inter-individual variation in responses for either
IT or MICT conditions. The difference in intercepts when compared with CON conditions
were −0.15 (95%CI = −0.35 to 0.05) and −0.02 (95%CI = −0.22 to 0.18) for IT and MICT,
respectively (see figure in Supplementary Materials: https://osf.io/3mazj/).

4. Discussion

This is the most comprehensive meta-analysis to date comparing IT and MICT on
changes of measures of fat mass and FFM. Furthermore, GRADE assessment suggests high
certainty in the evidence presented. Our findings provide novel insights into the use of
different training strategies to bring about changes in body composition. Below, we discuss
the results and practical implications of our data for each outcome.

4.1. Changes in Fat Mass

It has been speculated that IT may confer superior fat loss benefits compared to MICT,
primarily mediated via a greater excess post-exercise oxygen consumption (EPOC) [97].
However, the overall magnitude of additional energy expenditure attributed to EPOC
during IT is modest [98], and thus is unlikely to be of practical meaningfulness from
a fat loss standpoint. Other proposed benefits of IT on fat reduction include enhance-
ments in appetite suppression, fat oxidation, and circulating catecholamines and lipolytic
hormones [98]. Despite this mechanistic rationale, our results do not support a superior-
ity of IT on reductions in fat mass. Analysis of standardized between-group treatment
effects showed similar changes for IT and MICT with both absolute fat mass as our pri-
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mary outcome (Hedges’ g = (−0.02 (95%CI = −0.07 to 0.04)), and percentage body fat
(Hedges’ g = −0.04 (95%CI = −0.08 to 0.01)). Raw absolute fat mass changes revealed a
trivial point estimate of −0.17 kg favoring MICT, although the interval estimate ranged
from −0.66 kg in favor of MICT to 0.31 kg in favor of IT. Comparison of raw relative (%)
fat mass changes in fat mass revealed a small point estimate of −0.30% favoring MICT,
but again, the interval estimate was imprecise, ranging from −0.63% in favor of MICT
to 0.04% in favor of IT. Taken as a whole, these findings suggest that changes in fat loss
are not meaningfully influenced by patterns of intensity of effort and duration (i.e., IT vs
MICT) during exercise.

When compared to non-exercising controls, IT and MICT produced small reductions in
fat mass, with minimal differences between conditions. The raw absolute fat loss amounted
to −0.22 kg for IT and −0.25 kg MICT, with standardized Hedges’ g ES values of 0.22 and
0.20, respectively. Relative changes in fat mass for IT and MICT showed similarly small
decreases vs controls, both on a raw (0.30% and 0.25%, respectively) and standardized
(0.28 and 0.24, respectively) basis. None of the studies that included control conditions
combined exercise with dietary intervention (i.e., caloric deficit) and thus, collectively,
these data suggest that exercise alone induces a small magnitude of fat loss regardless of
the patterns of intensity of effort and duration, at least under the methods employed in
current research. More extreme volumes of exercise may be necessary to induce meaningful
changes, irrespective of the intensity of effort. The observed changes in fat mass (~0.2 kg)
in present studies and intervention examined are unlikely to be clinically or aesthetically
meaningful in most populations. Indeed, these findings concur with earlier results from
Keating et al. [8].

The lack of overall fat loss achieved in both IT and MICT can be attributed, at least
in part, to the relatively low weekly exercise dose across studies (IT, median = 28 min
duration (range = 3 min to 120 min); MICT, median = 120 min duration (range = 48 min
to 250 min), and perhaps is confounded by a corresponding increase in energy intake [99]
and/or reduction in non-exercise activity thermogenesis [100]. Tightly controlled research
in identical twins shows that prolonged daily aerobic-type exercise can induce marked
reductions in fat mass under conditions of constant energy and nutrient intake [101].
However, the time commitment needed to achieve these results (~100 min/day) is infeasible
for the majority of the general public and is thus of limited practical relevance. Therefore,
our findings underscore the importance of dietary prescription to facilitate weight loss;
however, exercise may play an important supplementary role in the process [102].

In contrast to the recent meta-analysis from Sultana et al. [11], we did identify some
moderate heterogeneity in our main model, leading us to explore possible moderators. For
example, some evidence suggests that IT elicits greater reductions in abdominal adiposity
compared to MICT [17]. Given the well-established association between android fat and
cardiometabolic disease [103], such an outcome would potentially have major health impli-
cations if found to be true. However, our findings refute this contention, demonstrating
similar changes in abdominal fat mass between conditions. Moreover, we found that
relatively equal, albeit modest, fat loss occurred across the upper body, lower body and
trunk regions regardless of condition, indicating that endurance-oriented exercise does not
preferentially target specific fat deposits. Indeed, with the exception of sex and the number
of intervals performed during IT training sessions, both of which also only had very trivial
moderating effects, we did not identify any clear moderators of comparative treatment
effects for fat mass.

4.2. Changes in Fat-Free Mass

Some researchers have proposed that the performance of aerobic exercise can elicit
increases in skeletal muscle hypertrophy that are comparable to resistance exercise train-
ing [15]. However, a meta-analysis by Grgic et al. [104] refuted this contention, showing
significantly greater hypertrophic adaptations from resistance training vs aerobic train-
ing, both at the whole-muscle and myofiber level. However, it should be noted that
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Grgic et al. [104] did not subanalyze the effects of endurance exercise intensity on hyper-
trophy outcomes. A recent review speculated that IT may provide sufficient stimulus to
enhance muscle growth, particularly in middle-aged and older adults, as well as clinical
populations [16]. Furthermore, some emerging evidence suggests that, although traditional
resistance training and aerobic modality interventions may produce differing adapta-
tions, when duration and intensity of effort are matched, similar strength and endurance
adaptations may occur, although the impact on hypertrophy is less clear [105].

Our results suggest that endurance exercise intensity and duration may not mediate
hypertrophic adaptations. Specifically, analysis of changes in FFM, both on an absolute
and relative basis, demonstrated similar effects between IT and MICT. Between-condition
treatment standardized effects for absolute changes in FFM were essentially zero ((−0.0004
(95%CI = −0.05 to 0.05)), and comparison of effects on the raw scale showed a small point
estimate of 0.09 kg favoring IT, yet the interval estimate ranged from −0.18 kg in favor
of MICT, to 0.35 kg in favor of IT. There were limited data reporting relative changes
in FFM, with only three studies directly comparing MICT vs IT. Pooling of these data
revealed a moderate magnitude of effect (−0.98%) favoring MICT. However, due to the
lack of data, the confidence intervals around the point estimate were wide (−3.39% to
1.43%), and Hedges’ g values indicated a trivial standardized mean difference (0.17) with
similarly wide interval estimates (−0.69 to 0.35). From a practical standpoint, these findings
collectively suggest there may not be a meaningful difference between MICT and IT on
absolute changes in FFM.

Compared to non-exercising controls, our findings indicate trivial standardized ef-
fects for improvements in FFM for both conditions (IT, Hedges’ g = 0.13 (95%CI = 0.04 to
0.22); MICT, Hedges’ g = 0.07 (95%CI = −0.01 to 0.16)). IT showed absolute raw increases
of 0.11 kg whereas MICT showed increases of 0.07, although both the lower bounds of
the interval estimates included zero and the upper bounds did not reach particularly
meaningful values. These data collectively suggest that neither MICT nor IT meaning-
fully affect FFM under the methods employed across studies, and call into question the
claim that endurance-based exercise is a viable interventional strategy for promoting
muscle hypertrophy.

4.3. Exercise Adherence and Dropouts

Adherence was essentially identical between conditions, with both groups completing
~90% of sessions; dropouts were also similar and relatively low at ~13–17%. It has been
argued that the intensity of effort of exercise influences core affective response [106], and
that this is predictive of future intentions and behavior in relation to exercise [107]. How-
ever, a recent systematic review suggests that affective response may only differ trivially
between IT and MICT, and that enjoyment responses may demonstrate a small effect in
favor of IT [108]. Despite varying speculative theories regarding the intensity of effort
during exercise, and its impact on affect or enjoyment, and subsequent behaviors, the
results here suggest that adherence to IT and MICT is largely similar and relatively high, at
least over the duration of the studies and under the conditions in which the interventions
were employed. Indeed, it should be noted that exercise sessions in the included studies
were carried out with the aid of programming from the respective research teams and were
generally performed under direct supervision. It is well-established that programming and
supervision have positive effects on exercise adherence [109]. Thus, our findings in this
regard cannot necessarily be extrapolated to self-directed exercise programs. Given the
high interindividual variability observed in the psychological response to endurance exer-
cise [110], it would seem that allowing for a choice of training intensity would likely help
to improve long-term adherence. Future research should endeavor to test this hypothesis
under ecologically valid conditions.
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4.4. Adverse Events

Of the studies reporting adverse events, there was essentially no difference between
IT and MICT. On the surface, this would seem to suggest that both conditions are similarly
safe in the populations studied. However, most studies failed to report incidences of
adverse events. Furthermore, some studies lacked clarity as to whether there was a
comprehensive attempt to record all possible adverse events associated with the training
intervention. Thus, data on the topic is somewhat limited, precluding the ability to draw
strong inferences regarding the safety between protocols.

A recent meta-analysis that examined the effects of supervised IT in patients with
cardiovascular disease reported only five associated adverse cardiovascular events in
approximately 17,000 training sessions: one major cardiovascular event, one minor cardio-
vascular, and three incidences of musculoskeletal issues. Although these findings appear
to indicate that IT is generally safe, even in populations with non-communicable diseases
and other health risks, results may be confounded by underreporting of adverse events in
individual studies, and perhaps also by sampling bias for the types of individuals likely
to participate in such studies. Researchers are thus encouraged to track and disclose the
occurrence of such incidences in future studies on HIIT and MICT so that we can achieve a
greater understanding of the risks associated with each strategy.

4.5. Inter-Individual Response Variation

Variance of treatment responses to IT and MICT has been relatively underexplored,
despite numerous studies purporting that there may be inter-individual response variation
to IT and MICT for a range of outcomes [19–21]. Indeed, some have argued that such
variations may mask differences between IT and MICT for fat loss [22]. Evidence from the
HERITAGE Family Study would genetically support this speculation, given that a putative
dominant locus accounting for 31% of variance in fat mass changes was found [111].
However, we found no evidence of ‘true’ inter-individual variability in responses to
either IT or MICT. This is in agreement with findings from a recent meta-analysis of
aerobic exercise in overweight individuals and children and adolescents with obesity on fat
loss [18]. Given our findings, and the relatively low heterogeneity across the main models
for outcomes, the majority of apparent differences in study level results and apparent
‘response heterogeneity’ are likely attributable to sampling variance and random within-
subject variability.

4.6. Limitations

The present meta-analysis has several limitations that must be taken into account
when attempting to draw practical inferences on the effects of IT vs MICT on measures
of body composition. First and foremost, only three studies prescribed dietary energy re-
strictions for the interventional protocol. Thus, it is not clear whether one exercise strategy
may be superior to another when combined with a nutritional intervention. Second, only
one study supplemented the exercise intervention with a resistance training component.
It is possible that differences in intensity and duration between IT and MICT protocols
might alter responses when combined with resistance training. Although recent evidence
questions whether there is an interference effect from concurrent training, at least for hyper-
trophy [112], the specific roles of endurance exercise intensity and duration upon fat mass
under these conditions have yet to be elucidated. Third, very few studies involved trained
athletes, and the vast majority of subjects would be considered to be overweight/obese.
Thus, it remains to be determined how differences in endurance exercise intensity and
duration may affect body composition outcomes in lean and athletic populations. More-
over, the majority of included studies examined outcomes in younger to middle-aged
adults, limiting our ability to draw conclusions about the effects of IT and MICT on older
populations. Fourth, although we were able to separate studies that had included control
groups for the purpose of a ‘within-condition’ analysis of the true treatment effects for IT
and MICT, in addition to exploration of interindividual response variability, these were
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secondary exploratory analyses. Our search strategy and inclusion were not optimized
to identify all studies that included either IT or MICT and a non-training CON condition.
However, our estimates for within-group IT effects were not dissimilar to those reported
by Sultana et al. [11] for IT vs CON, who did include studies with either an MICT or a non-
training CON condition. Finally, our analysis is specific to body composition changes and
does not take into account the other potential effects of the different interventional exercise
strategies. Some evidence indicates that higher intensities of exercise may confer superior
health-related benefits such as improvements in glucose control, blood pressure, vascular
function, and cardiorespiratory fitness [113]. Thus, the use of a given endurance exercise
strategy should consider individual goals in combination with abilities and preferences.

5. Conclusions

Our findings provide compelling evidence that the patterns of intensity of effort and
duration during endurance exercise has minimal influence on longitudinal changes in fat
mass and FFM. From a practical standpoint, this implies that individuals can choose the
intensity of effort and duration combination (i.e., IT or MICT) that best suits their needs
and lifestyle. As a general rule, there is an efficiency/effort tradeoff along the intensity
of effort spectrum, whereby IT requires less time but more effort than MICT to promote
alterations in body composition. Given that exercise adherence is of paramount concern,
personal preference should thus guide prescription.

Our findings also indicate that structured exercise only has minor effects on fat loss
regardless of intensity of effort and duration when performed at relatively modest doses;
the amount of exercise required to achieve practically meaningful changes in this outcome
seems to be unrealistic for most individuals. It is much easier to create an energy deficit
from dietary restriction, which, therefore, should be the focus of weight loss interventions.
However, exercise may help to preserve FFM and functional performance during periods
of energy restriction [114], as well as facilitate sustenance of weight loss in combination
with a dietary intervention [115]. Thus, it should be considered an important adjunct to
nutritional approaches for those who endeavor to alter their body composition.
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