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Di Liang, Student Member, IEEE, Zhi-Hui Zhan , Senior Member, IEEE, Yanchun Zhang ,

and Jun Zhang , Fellow, IEEE

Abstract— As a powerful measure to alleviate greenhouse gas
emissions and global warming issue, new energy vehicle (NEV)
has aroused extensive attention from the whole society in recent
years. In the past few decades, many studies have been conducted
on the dispatch of traditional fuel-driven vehicles. As a means of
transportation, NEV has the characteristics of fuel-driven vehi-
cles, but the dispatch is different because of its unique refueling
manner. With the popularization of NEV, its unique dispatch
research is imminent. This paper comprehensively considers
electricity and charging piles during the NEV dispatch (NEVD)
process. An NEVD framework containing a novel dispatch model
is proposed, which elaborates the application service of NEV.
To the best of our knowledge, this study is the first to combine
NEVD with service system. Based on the formulated model,
an efficient ant colony system (EACS) approach enhanced by
pre-selection strategy and local pruning strategy is designed to
dispatch NEVs to passengers. Experiments are carried out to
investigate the applicable scenarios of ACS-based algorithms. The
results verify that the proposed EACS algorithm is an effective
and efficient approach to solve the NEVD problem.

Index Terms— New energy vehicle dispatch (NEVD), ant colony
system (ACS), pre-selection, local pruning.

I. INTRODUCTION

W ITH the growing travel needs and the development of
mobile internet technology, online taxi booking has

become very popular in current daily life [1]. Meanwhile,
environmental protection policies have prompted the rise of
new energy vehicle (NEV), making online booking service
for NEV as a new trend. One representative commercial
application is Caocao [2], which is a famous NEV online
booking service in China. Different from traditional fuel-
driven vehicles, electric-powered vehicles primarily rely on
charging piles for energy supply and have different charging
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modes, such as fast-charging and regular-charging. In the
actual traffic planning, factors such as charging facilities and
battery characteristics are needed to be taken into account,
which brings new challenges to the planning and design
approaches that are oriented to traditional fuel-driven vehi-
cles [3]. For example, as the charging power is limited, for
fast-charging or regular-charging, the charging time needs
to be considered. However, the fueling time of fuel-driven
vehicles is very short and can be neglected. Research efforts
on NEV mainly focus on energy management system [4]–[8],
intelligent charging system [9]–[13], and transportation design
such as optimizing charging station locations [14]–[16] and
route optimization [17]–[19]. However, there are few studies
on booking dispatch of NEV, which is exactly the primary
focus of this paper.

Vehicle dispatch is usually performed by a centralized
service platform in order to facilitate the unified management
of vehicle resources. This global dispatch mode provides cus-
tomers with strong security and high efficiency, while it also
imposes heavy computational burden to the dispatch center.
A robust dispatch approach is needed to support the allocation
of daily service requests. The vehicle dispatch methods in the
literature are mainly for traditional fuel-driven taxi [20]–[22].
That is, only the locations of vehicles and customers are
considered when dispatching vehicles for bookings.

Some previous work focuses on a first-come-first-served
(FCFS) approach [1], [23]. When a request comes, dispatch
system assigns it to the nearest taxi or a shortest-travel-time
taxi without considering whether this assignment will affect
subsequent requests. The FCFS approach can reduce response
time, but it cannot guarantee the global optimal allocation for
all requests. As described in [23], in rush hours, over a hundred
thousand passengers need to be matched to taxis every second
by Didi Chuxing (a ride-hailing service platform in China).
Therefore, in a certain area, requests within a small time
window (e.g., 5 seconds) can be processed simultaneously. For
doing this, Seow et al. [20] partition geographical region into
some logical dispatch areas and propose a collaborative multi-
agent system to automate taxi dispatch in a distributed fashion.
The agents on behalf of taxi drivers conduct intragroup nego-
tiation, so as to minimize the total travel time. However, they
only consider scenarios where the number of requests is equal
to that of taxis. Moreover, some heuristic algorithms are pro-
posed to solve taxi dispatch problem [24]–[26]. Jung et al. [24]
formulate a dynamic shared-taxi problem and apply a hybrid
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approach combining simulated annealing and insertion heuris-
tic to assign passenger requests in real time.

As a kind of evolutionary computation optimization algo-
rithms, ant colony optimization (ACO) [27] is notable for
its adaptability and global search capability. Moreover, ant
colony system (ACS) is an efficient ACO variant that is
firstly proposed by Dorigo and Gambardella [28] to solve
the traveling salesman problem (TSP), which is a typical
combinatorial optimization problem (COP). Many studies have
shown that ACO/ACS can effectively solve real-world COPs,
such as aircraft arrival sequencing and scheduling [29], cloud
workflow scheduling [30], [31], virtual machine placement
[32], [33], water distribution system design [34], and vehicle
routing problem [35]. In addition, a parallel ACS is performed
based on region decomposition to optimize taxi-passenger
matching in [26]. As NEV dispatch (NEVD) problem can
be modeled as a COP similar to taxi dispatch (i.e., taxi-
passenger matching) problem, ACS is applicable and suitable
to solve it. Nevertheless, the NEVD problem is much more
challenge than traditional fuel-driven taxi dispatch due to its
more complex constraints such as electricity and charging
facilities. Therefore, a more efficient ACS approach is in great
need.

This paper makes an attempt to analyze the commercial
application background and propose an NEVD framework,
which elaborates the application mode of NEVD from the
underlying facilities to the upper-level commercial objectives.
Based on the actual traffic operation scenarios of NEV, we pro-
pose a novel dispatch model that takes into account the traffic
factors such as electricity and charging facilities. To solve
the NEVD problem, an efficient ACS (EACS) is designed by
combining pre-selection strategy and local pruning strategy.

The remainder of this paper is organized as follows.
Section II introduces and analyzes the NEVD framework.
Section III outlines a model of NEVD problem. Section IV
develops the EACS algorithm in detail. Section V shows
the experimental process and gives a discussion about the
applicability and efficiency of EACS by comparing it with
other algorithms. Finally, conclusions and future work are
drawn in Section VI.

II. NEVD SYSTEM

The framework of NEVD system is depicted in Fig. 1,
which demonstrates the service of NEV, with emphasis on
the dispatch model and solution. The framework consists of
the following six layers.

A. Facility Layer

As the basis of this framework, facility layer is composed
of underlying hardware devices and network technologies that
support intellisense. Global positioning system (GPS) is used
to track NEVs and customers in real time. A wireless access
point is a networking hardware device that allows wireless
terminals to connect to a wired network. It can upload data
such as electricity of NEVs acquired by wireless sensors.
Customers send service requests and receive feedback from the
dispatch center via mobile devices. A wireless communication
network is a medium for information transmission.

Fig. 1. The proposed NEVD framework.

B. Network Layer

Network layer lists entities connected by Internet of Things
(IoT) technology, including NEVs, charging piles, drivers, and
customers. Among them, the energy supply of NEVs mainly
includes electric, hybrid electric, and fuel-cell [5]. Only the
electric vehicle is considered in this paper. As an energy-
supplement device, charging piles can provide power sources
for NEVs. Through the underlying equipment and technology,
these entities are connected as a whole for information sharing.

C. Data Source Layer

Through IoT technology, entities can exchange data with
each other, which is shown in data source layer. The NEV-
related data include location, speed, and power. When cus-
tomers send requests by mobile phones, the dispatch center
will acquire their current location and destination information.
In addition, the location information of charging piles should
be known. These data reflect the characteristics of each entity
and provide support for upper-layer dispatch.

D. Dispatch Platform Layer

Dispatch platform layer is the core layer of the dispatch
framework, which provides decision-making basis for unified
and centralized dispatch. Based on the dispatch-related data
acquired from data source layer, a dispatch model of NEV
is established. Compared with the traditional taxi-passenger
matching model, it considers the remaining electricity of
NEVs, charging piles, and charging characteristics of the
battery.
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As a novel variant of taxi dispatch, the NEVD problem is an
NP-hard problem, which can be solved by many evolutionary
computation algorithms such as ACS, genetic algorithm (GA),
and differential evolution algorithm. In this paper, we consider
ACS as a powerful tool for solving NEVD. Pre-selection and
local pruning strategies are integrated into ACS to improve its
performance.

E. Assessment Layer

After the dispatch model and the solution are designed,
the decision results need to be assessed, which is performed by
assessment layer. Since NEVD is service oriented, the quality
of NEVD design should be evaluated by service quality. For
NEV, the implementation of the service is assessed accord-
ing to four aspects in this paper: 1) customer satisfaction;
2) transportation cost; 3) energy efficiency; and 4) environmen-
tal benefits. Customer satisfaction consists of two levels: one
is whether a request is accepted; another is customer waiting
time. During transportation, the consumption of energy such
as electricity, and the damage of equipment such as NEVs
and batteries constitute transportation cost. Energy efficiency
and environmental benefits are related to fuel consumption and
carbon emissions, respectively.

F. Business Target Layer

Corresponding to the evaluation criteria of assessment layer,
business target layer shows the ultimate commercial goal of
the framework, which includes maximizing corporate profits,
providing customers with high-quality service, and maximiz-
ing social benefits.

The NEVD framework combines the dispatch of NEV with
application services to perform the matching task between ser-
vice requests and NEVs. Moreover, this framework is scalable,
it can implement different system functionalities or targets
by changing the interfaces of certain layers. For example,
in the research and development stage of NEV, it is vital to
study the battery power to improve charging rate and reduce
energy consumption, so as to improve energy efficiency. In the
operation stage, if we expect to improve user experience,
the cleanliness of NEVs or the friendliness of drivers should
be taken into account in the dispatch platform layer.

This paper focuses on the establishment of NEVD model
and the study of ACS-based dispatch algorithms. The two
aspects will be highlighted in the following sections.

III. NEVD MODELING

Consider a real-world scenario, there are multiple NEVs and
charging piles scattered in a certain geographical area. The
location of each pile is fixed and the NEVs can be tracked
in real time by GPS satellites. When some customers request
NEV service in a given time window, these requests with des-
tination information are sent to the dispatch center through the
wireless communication network. The dispatch center assigns
NEV service to all the customer requests based on a dispatch
approach, so as to maximize total customer satisfaction. An
example of NEVD scenarios is depicted in Fig. 2 where each
customer is matched with the nearest NEV.

Fig. 2. A scenario of NEVD.

TABLE I

BASIC NOTATIONS FOR THE NEVD PROBLEM

The basic notations for the NEVD problem are listed
in Table I. We consider the matching of N service requests
(customers) to M NEVs in the area of l× l size that are made
in a time window. It should be noted that the cancellation
of customer requests is not considered in the NEVD model.
In fact, if there is any request cancelled during the time
window, this request will not be considered or processed
by the dispatch algorithm. If there is any request cancelled
during the execution of the dispatch algorithm, this request
is still matched to NEV, but the matching result will not be
fed back to the corresponding customer. Moreover, if there
is any new request coming during the execution of the
dispatch algorithm, it can be processed in the next time
window.

Since NEVs rely on electricity for energy supply, it is nec-
essary to consider whether the remaining electricity can take
customers to their destinations during the dispatch process.
In order to elaborate the electricity constraint, we define two
scenarios that an NEV v j (1 ≤ j ≤ M) satisfies the request
made by customer ci (1 ≤ i ≤ N). 1) The NEV itself has
enough energy to take ci to the destination, denoted as

D(e j ) ≥ d(ci , v j )+ d(ci , ti ) (1)

where D(e j ) is the physical distance that the electricity e j can
support, measured by kilometer, and d(ci , ti ) is the distance
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between departure location and destination of ci . 2) In the case
of insufficient energy, there is a charging pile on the way to ti
(i.e., the destination of ci ), and the required charging time is
not more than time limit that customers can tolerate (denoted
as tl):

E(ti ) = 1 (2a)
d(ci , v j )+ d(ci , ti )− D(e j )

k(cr)
≤ tl (2b)

where k(cr) represents the distance that an NEV can travel per
unit time of charging. In order to shorten the charging time,
a flexible mode is adopted, that is, the amount of charging is
determined according to the needs.

This paper focuses primarily on total customer satisfaction,
which can be measured from two levels. One is global
acceptance rate, that is, the more requests accepted, the higher
total customer satisfaction. The other is total customer waiting
time, that is, shorter waiting time means higher customer
satisfaction. The waiting time consists of the travel time of
an NEV v j to reach the departure location of customer ci

and the time to wait for charging if necessary, which is
calculated by

wt (ci , v j ) =

⎧⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨
⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎩

d(ci , v j )

s
, if D(e j ) ≥ d(ci , v j )+ d(ci , ti )

d(ci ,v j )
s + d(ci , v j )+ d(ci , ti )− D(e j )

k(cr)
else if E(ti ) = 1

and
d(ci , v j )+ d(ci , ti )− D(e j )

k(cr)
≤ tl

NA, otherwise

(3)

where “NA” means that for a customer-NEV pair that does not
satisfy the electricity constraint, i.e., constraint (1) or (2), it is
not regarded as a candidate and therefore the waiting time is
not calculated. In real-world scenarios, vehicle travel time is
calculated using real-time traffic information, but for the sake
of clarity, it is assumed that the traffic condition is static so
that a shorter distance means a shorter driving time. Moreover,
since the distance between a customer and its destination is not
influenced by the dispatch results, it is not considered in the
waiting time. To further simplify the model, the situation after
an NEV has reached its destination is not considered in this
paper. That is, if an NEV satisfies the electricity constraint
of one customer ci , it is a legal candidate to be assigned
to ci .

In order to better combine the two levels of satisfaction mea-
surement, we define a ‘logical distance’ between customers
and NEVs. It combines the geographical distance between
customers and NEVs with the time penalty for charging. The
logic distance is calculated as

ld(ci , v j ) =

⎧⎨⎨
⎨⎩

s ·wt (ci , v j ), if v j satisfies electricity

constraint of ci

N · l, otherwise

(4)

Equation (4) indicates that if v j satisfies the electric-
ity constraint of ci , the logical distance between them is

determined by customer waiting time and vehicle speed.
Otherwise, the logical distance is set to a large penalty
value.

The NEVD problem for maximizing total customer
satisfaction is formulated in a two-hierarchical structure
as

maximize f1(S) =
N�

i=1

M�
j=1

xi j (5)

minimize f2(S) =
N�

i=1

M�
j=1

�
xi j · wt (ci , v j )

�
(6)

subject to xi j =

⎧⎨⎨
⎨⎩

1, if vehicle j is assigned to

customer i

0, otherwise

(7)

M�
j=1

xi j ≤ 1 (8)

N�
i=1

xi j ≤ 1 (9)

In (5), f1(S) is the number of requests that are satisfied in
the solution S. The primary task of NEVD is to maximize
the vehicle-passenger matching success rate. Equation (6)
calculates the total waiting time of all accepted requests. When
evaluating two solutions, we compare their f1 values first and
the one with a larger f1 value is better. If they have the same
f1 value, then we compare their f2 values, and the one with
a smaller f2 value is better. In (7), if an NEV is assigned
to one request, it must first satisfy the electricity constraint
of the request. Constraints (8) and (9) help guarantee that a
request (or NEV) is only assigned to one NEV (or request)
at most.

IV. EACS ALGORITHM FOR SOLVING THE

NEVD PROBLEM

ACS is an efficient global stochastic search algorithm
inspired by the foraging behavior of ants [28]. In ACS, a
set of ants cooperate via pheromone, which records global
experience. Moreover, a greedy heuristic is introduced to
guide the search. Take the TSP as an example, each ant
randomly starts from a city and then determines the next city to
visit by considering the pheromone and heuristic information.
It constructs a tour by repeating this process until all the
cities are visited. When a complete tour has been constructed,
a local pheromone updating rule is performed to evaporate the
pheromone on the edges of the path, making other ants prefer
to explore other edges. After all the ants have constructed
their solutions, a global pheromone updating rule is applied to
deposit the pheromone on edges of the globally best solution.
Through repeated iterations, ACS can gradually approach the
optimal solution.

Based on the ACS optimizer, the EACS algorithm is applied
to solve the NEVD problem. Its complete procedures are
described as follows.
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A. Initialization Configurations

As the core issue is to assign NEVs to service requests, it is
reasonable to set pheromone between vehicles and customers.
The pheromone value τ (i, j) indicates the preference that
NEV j is assigned to customer i according to the historical
experience. To initialize the pheromone τ0, we first construct
a dispatch solution πFCFS using the FCFS approach and set τ0
by

τ0 = (M · Lnn)−1 (10)

Lnn =
N�

i=1

M�
j=1

�
xi j · ld(ci , v j )

�+ (min(N, M)

− f1(πFC F S)) · N · l ∀(i, j) ∈ πFC F S (11)

where min(N , M) represents the maximum number of requests
that can be satisfied in an ideal situation, i.e., the smaller one
between N and M . Herein, the FCFS approach dispatches
the NEVs to the requests one by one in a greedy fashion
according to the logical distance. This process follows the
order in which requests arrive in the time window (although
these requests can be processed concurrently, their arrival is
still sequential). That is, the first request is assigned with
the NEV with smallest logical distance to it, then the second
request is assigned with the NEV with smallest logical distance
to it among the remaining NEVs, and so on. This way, all the
requests are assigned with their NEVs, or some requests can
not be satisfied due to no NEVs can meet the constraints.
Equation (11) contains the total logical distance of accepted
requests and the penalty for refused requests.

B. Solution Construction

After initialization, ants iteratively construct feasible solu-
tions to find an optimal solution (i.e., dispatch scheme).
Different from randomly selecting the first city in TSP, in the
NEVD problem, the order of requests arriving at the dispatch
center in the time window is randomly shuffled before solution
construction. Then each ant constructs a potential solution by
assigning requests (customers) to NEVs one by one, in the
order they are shuffled. Since the solution construction process
for each ant is similar, without loss of generality, the following
process is described based on one ant. In each step of con-
struction, the ant selects a proper NEV for the corresponding
customer. In the kth assignment, a set of candidate NEVs for
ci is defined as

Ji = { j |
N�

i=1

xi j = 0 and [D(e j ) ≥ d(ci , v j )+ d(ci , ti ) or

(E(ti ) = 1 and
d(ci , v j )+ d(ci , ti )− D(e j )

k(cr)
≤ tl)],

1 ≤ j ≤ M} (12)

whose element j represents the NEV that has not been

assigned before (i.e.,
N	

i=1
xi j = 0) and satisfies the electricity

constraint of ci . Then the ant selects an NEV j for ci from
Ji according to a state transition rule.

Pheromone and heuristic information are two key compo-
nents in the state transition rule, where the pheromone has
been defined above. Heuristic information is introduced to
guide the search of ants according to the logical distance
between customers and NEVs. Referring to the application of
ACS on TSP [28], heuristic information in the state transition
rule is designed as

η(i, j) = 1

ld(ci , v j )
(13)

where η(i, j) is the heuristic information between customer
i and NEV j . The NEV with the shorter logical distance
from the customer is given greater priority to be chosen.
Then, the probability that NEV j is assigned to customer i
is calculated by

p(i, j) =

⎧⎨⎨⎨
⎨⎨⎩

[τ (i, j)] · [η(i, j)]β	
u∈Ji

[τ (i, u)] · [η(i, u)]β , if j ∈ Ji

0, otherwise

(14)

where τ (i, j) is the pheromone value between customer i and
NEV j , and β (β > 0) is a parameter that controls the relative
importance of pheromone versus heuristic information [28].

In the ACS algorithm, the state transition rule is as follows:
For customer i , the ant chooses NEV j from the set Ji

according to the rule given by

j =
⎧⎨
⎩

arg max
u∈Ji

{[τ (i, u)] · [η(i, u)]β}, if q ≤ q0

J, otherwise
(15)

where q is a random number uniformly distributed in [0,1],
J is a random variable selected from Ji according to the
probability distribution in (14), and q0 (0 ≤ q0 ≤ 1) is a para-
meter that controls the exploitation and exploration behaviors
of the ant. If q ≤ q0, then the ant chooses the NEV whose
pheromone and heuristic information are maximal, measured
by τ (i, u) · η(i, u)β , for exploitation. Otherwise, the NEV is
determined as a random number J which is selected according
to the probability in (14), for better exploration.

C. Pheromone Updating Rule

In ACS, pheromone records the historical knowledge accu-
mulated by ants. During the calculation process, a local
pheromone updating rule and a global pheromone updating
rule are performed to change the amount of pheromone. When
an ant has constructed a feasible solution, the local pheromone
updating rule is applied on each customer-NEV pair of the
solution as

τ (i, j) = (1− ρ) · τ (i, j)+ ρ · τ0 (16)

where ρ (0 < ρ < 1) is the pheromone decay parameter.
Conversely, only the historically best solution (optimal solu-

tion so far) πBest is allowed to perform the global pheromone
updating rule. After all the ants have constructed their solu-
tions, the pheromone on each customer-NEV pair of πBest is
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Fig. 3. Pre-selection strategy.

increased as

τ (i, j) = (1− ε) · τ (i, j)+ ε ·�τ (17)

�τ =
⎛
⎝

N�
i=1

M�
j=1

�
xi j · ld(ci , v j )

�+ (min(N, M)

− f1(πBest)) · l
⎞
⎠
−1

∀(i, j) ∈ πBest (18)

where ε is the pheromone enhancement parameter. Equation
(18) ensures that customer-NEV pairs of a solution with more
accepted requests and shorter waiting time can deposit more
pheromone.

These two pheromone updating rules guide search behavior
of ants by adjusting the impact of environment on them.
The local pheromone updating rule allows other ants have a
greater chance to explore new customer-NEV pairs by reduc-
ing the pheromone on the assigned pairs. Therefore, it helps
to increase the population diversity. The global pheromone
updating rule enhances the desirability of ants for customer-
NEV pairs of the historically best solution. It is able to guide
the search in a more promising direction and accelerate the
convergence of the population.

D. Pre-Selection Strategy

When carrying out experiments, we found that with a certain
number of customers, the running time of ACS generally
increases proportionally with the number of NEVs, showing
poor scalability. While in real-world scenarios, it is common
that the number of NEVs is usually multiple of the concurrent
requests. In order to reduce the running time, a pre-selection
strategy is proposed to perform on initial NEVs before an ACS
process so as to decrease the number of NEVs to be assigned.
As some NEVs are filtered out, it is critical to effectively select
the NEVs to reduce the loss of accuracy.

Fig. 3 shows an example of the pre-selection strategy for
initial NEVs. For the convenience of illustration, only NEVs
and requests (customers) in a given time window are shown
and charging piles are ignored. An NEV closer to one customer

in this figure means that the NEV has a shorter logical distance
to the customer. The calculation of logical distance between
customers and NEVs has been described above. Before an
ACS process, some NEVs “near” these customers are selected.
The process follows the order in which the requests arrive.
For the first customer (request), we select K NEVs with the
shortest logical distances from it. Then other K NEVs with
the shortest distances from the second customer are selected
by the second customer among the remaining M-K NEVs,
and so on. By this means, K × N NEVs that have more
power and are geographically closer with these customers are
selected. In the subsequent search process of ants, only these
pre-selected NEVs are assigned to customers. Note that the
pre-selection strategy is only applied to scenarios where M is
larger than K × N . Therefore, if the pre-selection strategy is
performed, the M in (12) and (18) is replaced by K × N .

E. Local Pruning Strategy

The actual passenger-NEV matching is an instant service,
which needs to be completed in a short time. In fact, it is
not necessary to consider all of the available NEVs when
dispatching for a customer because too long away NEVs (e.g.,
with very large logical distance) are unlikely to be suitable for
this customer. Therefore, a local pruning is needed to reduce
the number of considered NEVs, which can also significantly
reduce the computation time. In the taxi dispatch service [20],
it has been empirically confirmed that an efficient way is to
assign a taxi in the vicinity of the customer location, so as to
reduce response time. Therefore, this heuristic experience is
integrated into the ACS process in this paper.

In order to further improve the efficiency of ACS, a local
pruning strategy is proposed to perform during the solution
construction process. It is assumed that the NEV assigned to
ci should be found among a limited number of T (e.g., 10)
NEVs that are nearest from ci in terms of logical distance
[20]. Therefore, when an ant selects an NEV for ci , only the
T NEVs with the shortest logical distances to the customer
location are considered, denoted as the considered NEVs set
Ti for the customer ci .

The pre-selection and local pruning strategies efficiently
reduce computation time by decreasing the number of NEVs
to be assigned. With these two strategies, the ACS is named
EACS in this paper, and the set of candidate NEVs defined in
(12) is adjusted as

Ji = { j |
N�

i=1

xi j = 0 and [D(e j ) ≥ d(ci , v j )+ d(ci , ti ) or

(E(ti ) = 1 and
d(ci , v j )+ d(ci , ti )− D(e j )

k(cr)
≤ tl)]

and j ∈ Ti , 1 ≤ j ≤ K · N} (19)

F. Complete EACS Algorithm

The complete EACS algorithm is shown in Fig. 4 and is
described in the following seven steps.

Step 1: Calculate the logical distance between customers
and NEVs.
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Fig. 4. Flowchart of the EACS algorithm.

Step 2: Assign NEVs to customers by the FCFS approach
and set the initial pheromone τ0 according to (10) and (11).
Set the generation gen = 1.

Step 3: Pre-select K × N NEVs from the initial M NEVs.
Step 4: Let each ant construct a feasible solution and

perform the local pheromone updating rule on each assigned
customer-NEV pair as (16).

Step 5: Evaluate the fitness of each ant and record the best
solution.

Step 6: Find out the historically best solution and perform
the global pheromone updating rule as (17).

Step 7: Termination check. When the maximal generations
G is reached, the algorithm terminates. Otherwise, move to
step 4 and continue optimizing.

The solution construction process in step 4 is described in
detail in the sub-flowchart of Fig. 4.

V. EXPERIMENTS AND COMPARISONS

A. Parameter Configurations and Test Cases

Experimental tests are conducted in this section to verify the
performance of EACS. All the algorithms are implemented in
C++ and run on a PC with a Xeon quad-core CPU E3 and
8.0GB RAM.

Two test scenarios are designed in different physical areas.
One is resource-shortage scenario, which means the num-
ber of NEVs is less than that of customers. The other is
resource-rich scenario, that is, NEVs are more than customers.
We have published the datasets used in the experiments on
GitHub (https://github.com/liangdii/NEVD). As EACS is dif-
ferent from ACS in the pre-selection strategy and local pruning
strategy to reduce the running time on resource-rich scenario
(i.e., M is much larger than N), the EACS is only applied
in the resource-rich scenario and is to compare with FCFS,
greedy algorithm (denoted as Greedy), multi-agent assignment

algorithm with collaborative local mediation(MA3-LM) [20],
GA, and ACS. In the resource-shortage scenario (i.e., M is
smaller than N), there is no need to perform the pre-selection
strategy and local pruning strategy. Therefore, the EACS
is exactly the ACS, and is compared with FCFS, Greedy,
MA3-LM, and GA.

Algorithm 1 Greedy Algorithm for the NEVD Problem
Begin
1. For i =1 to I //I is the number of shuffle times
2. Shuffle the order of requests;
3. Use FCFS to assign the NEVs based on the above

ordered requests;
4. Record the fitness of the solution by (5) and (6);
5. End of For
6. Output the best dispatch solution;

End

The FCFS has been described in Section IV-A. Different
from FCFS, the greedy algorithm randomly shuffles the order
of requests before assignment and uses FCFS to assign the
NEVs based on these ordered requests. The order is randomly
shuffled for a number of times and the best solution among
these tries is output as the final solution. The complete
procedure of the greedy algorithm is shown in Algorithm 1.
MA3-LM is a well-perform state-of-the-art approach proposed
to solve taxi-passenger dispatch problem [20]. In this paper,
MA3-LM is extended to solve the NEVD problem. Moreover,
the cases in [20] are with the same number of customers and
vehicles, while herein the number of vehicles is different from
customers.

Algorithm 2 Genetic Algorithm for the NEVD Problem
Begin

1. t ←0;
2. Initialize a population P(t);
3. Evaluate fitness of P(t);
4. Keep the best individual in P(t);
5. While (termination criterion not met) do
6. P(t)←selection operation to P(t);
7. P(t)←crossover operation to P(t);
8. Resolve coding conflicts;
9. Mutation: randomly exchange two gene values of

an individual;
10. t ← t + 1;
11. P(t)← P(t − 1);
12. Evaluate fitness of P(t);
13. Update the best individual;
14. End of While
End

As there are no evolutionary-based approaches to solve the
NEVD problem in the literature, we also design a GA-based
approach in this paper for comparisons. The complete pro-
cedure of GA for solving the NEVD problem is shown in
Algorithm 2. Herein, each individual is encoded with the
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TABLE II

PARAMETER CONFIGURATIONS FOR THE EACS ALGORITHM

TABLE III

EXPERIMENTAL RESULT COMPARISONS IN TEST I WITH RESOURCE-SHORTAGE SCENARIO

number of customers N as its length, each gene stands for
a customer. The value of each gene is generated randomly
in [1, M], meaning the index of NEV that assigned to this
customer. The fitness function (line 3) is set to the inverse of
the total logical distance of all matched customer-NEV pairs
like (10) and (11). If there are conflicts between customer-
NEV pairs after crossover operation (line 8), we reassign an
NEV with the shortest logical distance from the conflicting
customer among all unassigned NEVs.

The parameter configures for EACS are shown in Table II.
The ACS-related parameters are the population size NP = 20,
maximal generation number G = 150, q0 = 0.9, ρ = 0.1,
ε = 0.1, and β = 2.0. Through the investigation of BYD (a
famous high-tech company for NEVs in China), most electric
vehicles on the market have a driving range between 150 km
and 400 km, and can be quickly charged 80% in 0.5 to 2 hours
[36]. Therefore, the charging rate k(cr) is set to 3 km/min in
this paper. In order to determine whether there is at least a
charging pile on the way to the destination ti , a probability
parameter ep = 0.6 is defined here. For each request, if a
random number uniformly distributed in [0, 1] is smaller
than ep, then NEVs are allowed to charge on the way to
the destination ti . The other NEVD-related parameters are
set as tl = 10 min and s = 50 km/h (i.e., 0.833 km/min).
The other EACS-related parameters K = 2 and T = 10. The
population size of GA is 20 and the maximal iterations of GA,
MA3-LM, and Greedy are 1000, 3000, and 3000, respectively.
Moreover, distances between customers and their destinations
d(ci , ti ) and kilometers that can be supported by the remaining
electricity of NEVs D(e j ) are randomly generated following
uniform distribution in [10 km, 80 km] and [5 km, 100 km].
All distance values are accurate to one decimal place during
the calculation in all test cases.

As Greedy, MA3-LM, GA, ACS, and EACS are random
algorithms (i.e., except FCFS), they perform 30 independent
runs on each instance for fair comparison. Referring to the
two-hierarchical objective defined in (5) and (6), we com-
pare the requests acceptance rate (i.e., RAR, which can

be calculated by f1/N) and the average waiting time (i.e.,
AWT, which can be calculated by f2/ f1) herein. For those
random algorithms run 30 times, the mean values of RAR
and AWT are compared. The best results are highlighted in
boldface. To further validate the performance of the proposed
ACS-based algorithms (i.e., EACS and ACS) on the NEVD
problem, a statistical test called Wilcoxon’s signed rank test
is conducted between the ACS-based algorithms and other
stochastic algorithms at the 5% significance level. In order
to be consistent with the two-hierarchical objective evaluation
rule, we first conduct the significance test on RAR of 30 runs.
If there is no statistically significant difference on RAR, then
AWT of 30 runs is tested. We mark the cases with “+”, “≈”,
and “−” to indicate that EACS/ACS performs significantly
better than, similarly to, and significantly worse than the
compared algorithm, respectively. The symbol “\” in tables
represents the tested algorithm.

B. Test I: Small Physical Area

A number of service requests are generated following uni-
form distribution in a physical area of 10 km× 10 km. In order
to simulate different resource configurations, the number of
NEVs is set to 0.8-10 times that of requests. The results
of resource-shortage scenario and resource-rich scenario are
given in Table III and Table IV, respectively. The RAR column
and AWT column represent the requests acceptance rate and
average waiting time (in minutes), respectively.

As shown in Table III, ACS and GA perform better while
FCFS performs the worst compared with the other four
algorithms because FCFS only allocates NEVs in a fixed
order of requests. FCFS and MA3-LM can obtain shorter
customer waiting time, while they perform worse than the
other three algorithms in terms of the number of accepted
requests. This may be due to that FCFS simply dispatch the
nearest vehicle to a customer without considering the influence
on the subsequent customers. Therefore, the RAR may be low
because many other customers can not be satisfied, while the
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TABLE IV

EXPERIMENTAL RESULT COMPARISONS IN TEST I WITH RESOURCE-RICH SCENARIO

TABLE V

EXPERIMENTAL RESULT COMPARISONS IN TEST II WITH RESOURCE-SHORTAGE SCENARIO

AWT for those accepted customers can be shorter. However,
too low acceptance rate means the FCFS and MA3-LM may
not be suitable for the resource-shortage NEVD problem.
Also, the RAR of Greedy and GA become worse than that of
ACS when the number of customers and vehicles increases.
Therefore, ACS has the best global search ability to obtain
the best dispatch results than the other compared approaches
when considering both the RAR and AWT metrics.

For the resource-rich scenario, the results in Table IV further
show that both EACS and ACS have the best performance.
MA3-LM is the worst approach on both the RAR and AWT,
indicating that it is only suitable for cases where the number
of vehicles is equal to that of requests as suggested in
[20]. As the number of NEVs increases, the performance of
FCFS and Greedy gradually improves because the influence
of the assigned NEVs on subsequent dispatch becomes less
significant. Therefore, the Greedy and FCFS may have good
performance on resource-rich scenario, but perform signifi-
cantly poorly on resource-shortage scenario. In general, only
the ACS and EACS obtain the best results on both the RAR
and the AWT metrics on all the 10 cases in resource-rich
scenario, indicating that the ACS-based algorithms have the
best ability in optimizing the NEVD problem.

C. Test II: Large Physical Area

Similar to Test I, Test II is made in a large physical
area of 100 km × 100 km with resource-shortage scenario
and resource-rich scenario. The dispatch results are given
in Table V and Table VI, respectively.

From Table V and Table VI, we can see that MA3-LM ranks
third in resource-shortage scenario while performs the worst
in resource-rich scenario. GA obtains poor results when the
number of customers and NEVs is large. This may be due to
that the increase of coding length makes GA converge more
difficult. Similar to Test I, Greedy and FCFS perform gradually
worse as the number of NEVs decreases when the number
of customers is fixed. ACS obtains the maximum matching
success rate in resource-shortage scenario. In general, EACS
performs slightly better than ACS in resource-rich scenario.
This indicates filtering out some unimportant NEVs before
dispatch can help enhance the solution quality of EACS.

D. Efficiency Validation of EACS

To validate the efficiency of the EACS, it is also compared
with IBM ILOG CPLEX Optimization Studio 12.8.0, which
is a commercial linear program solver. We compare the RAR,
AWT, and running time on some respective cases in Test I
and II. Note that for the resource-shortage cases, the EACS
algorithm is actually the ACS algorithm. The results listed
in Table VII show that EACS can use much shorter time to
obtain dispatch results similar to those of CPLEX. In the
resource-shortage cases, it performs similarly to CPLEX.
In the resource-rich cases, it can obtain the same optimal
solutions as CPLEX. On the computation time, it runs much
faster than CPLEX. Moreover, two large-scale cases with 500
requests in the large physical area are also tested. The EACS
can obtain the optimal solutions in about 15 seconds. However,
CPLEX spends more than 3 minutes with 3000 NEVs and
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TABLE VI

EXPERIMENTAL RESULT COMPARISONS IN TEST II WITH RESOURCE-RICH SCENARIO

TABLE VII

COMPARISON RESULTS BETWEEN EACS AND CPLEX

cannot find a feasible solution in 30 minutes with 5000 NEVs,
which is unbearable for this time-sensitive application.

Therefore, EACS is a reasonable and efficient approach for
solving the NEVD problem. It can provide promising dispatch
results in various scenarios and has good scalability. To further
reflect the efficiency of EACS, Table VIII lists the running time
of EACS for all instances in Test I and Test II.

E. Analysis of ACS Parameters

The ACS parameters include the population size NP,
the maximal generations G, q0, β, ρ, and ε. In this section,
we take C6, C7, D11, and D12 as examples to study the
influences of these parameters on the performance of ACS
and EACS on the NEVD problem in both the resource-
shortage scenario and resource-rich scenario. Note that when
one parameter is investigated, the others remain the same as
in Table II.

The investigation begins with the parameters NP and G.
We set NP from 5 to 50 with a step length of 5 and G from
50 to 500 with a step length of 50. Fig. 5 and Fig. 6 show
the influences of the parameters on the number of accepted
requests and the average customer waiting time. It can be
seen that the solution quality of D11 and D12 is not very

Fig. 5. Influence of the population size (NP) on C6, C7, D11, and D12.
(a) Number of accepted requests. (b) Average customer waiting time (in
minutes).

Fig. 6. Influence of the maximal generations (G) on C6, C7, D11, and
D12. (a) Number of accepted requests. (b) Average customer waiting time (in
minutes).

sensitive to the parameters and all the requests are satisfied.
As anticipated, the solution quality of C6 and C7 improves
as NP or G increases. However, larger population size or
generation number can lead to delays in service response time.
Since the improvement in quality is not very significant when
NP ≥ 20 or G ≥ 150, especially in resource-rich scenario, this
paper sets NP to 20 and G to 150, so as to make a tradeoff
between the solution quality and the computation time.

The next parameter tested is q0. We set q0 from 0 to
1.0 with a step length of 0.1. The number of accepted requests
and the average customer waiting time are plotted in Fig. 7.
The tendency of the curves indicates that it is better to
adopt a larger q0 for better performance. More requests are
satisfied when q0 ≥ 0.8 and the average customer waiting
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TABLE VIII

COMPUTATION TIME OF EACS FOR ALL INSTANCES

TABLE IX

EXPERIMENTAL RESULT COMPARISONS OF EACS, EACS-noPS, EACS-noLP, AND ACS FOR PROBLEM D11-D15

TABLE X

GEOGRAPHICAL DISTANCE COMPARISONS FOR PROBLEM D12-D15

Fig. 7. Influence of the parameter q0 on C6, C7, D11, and D12. (a) Number
of accepted requests. (b) Average customer waiting time (in minutes).

Fig. 8. Influence of the parameter β on C6, C7, D11, and D12. (a) Number
of accepted requests. (b) Average customer waiting time (in minutes).

time generally decreases with the increase of q0 from 0 to
0.9. Therefore, q0 is set to 0.9 in this paper.

Then parameter β is investigated. As shown in Fig. 8,
although the customer waiting time tends to decrease with the

Fig. 9. Influence of the parameter ρ on C6, C7, D11, and D12. (a) Number
of accepted requests. (b) Average customer waiting time (in minutes).

Fig. 10. Influence of the parameter ε on C6, C7, D11, and D12. (a) Number
of accepted requests. (b) Average customer waiting time (in minutes).

increase of β, fewer requests are accepted with a larger β in
both C6 and C7. Moreover, the large value of customer waiting
time when β is 0 indicates that the heuristic information plays
an important role in the search process. Therefore, β is set to
2.0 in this paper.

Finally, parameter ρ in local updating rule and ε in global
updating rule are investigated. The results are plotted in
Fig. 9 and Fig. 10. The fewest requests are accepted when
ρ or ε is set to 0, which indicates the importance of the
pheromone updating. As shown in Fig. 9, a relatively small ρ
seems to be better in improving the solution quality. This may
be due to that a smaller ρ helps to slow down the pheromone
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Fig. 11. Influence of the parameters K and T on EACS. (a) Average customer waiting time with different K values on D8 and D9. (b) Average customer
waiting time with different T values on D1 and D7. (c) Mean CPU time (in milliseconds) on D8.

Fig. 12. Power consumption and emissions of different algorithms under
different test cases. (a) Standard coal consumption. (b) Carbon dioxide
emissions.

evaporation on the matched customer-NEV pairs and to use
the historical knowledge about the problem. Fig. 10 shows that
the solution quality is not very sensitive to ε when it is set
from 0.1 to 1.0.

F. Analysis of Other EACS-Related Parameters

In this section, the impact of parameter K and T on the
performance of EACS is investigated. We set parameter K
from 1 to 5 with a step length of 1 and T from 10 to 50 with
a step length of 10. For each case tested, 30 independent
runs are carried out and the mean dispatch results are plotted
in Fig. 11(a) and (b). As all the requests are accepted in
these cases, only the average customer waiting time is shown.
As shown in Fig. 11(a) and (b), the dispatch results are
nearly invariant with different K and T , except when K = 1.
In addition, the runtime (in milliseconds) on D8 with different
K and T is investigated. Fig. 11(c) confirms that the mean
CPU time increases as K or T increases.

G. Effectiveness of Pre-Selection and Local Pruning
Strategies

In order to investigate the effectiveness of two strategies
in the proposed EACS, a further comparison is conducted
between EACS and its variants on test D11-D15. The variants
without pre-selection or local pruning are termed as EACS-
noPS and EACS-noLP, respectively. The situations are similar
in other resource-rich cases.

The dispatch results obtained by EACS, EACS-noPS,
EACS-noLP, and ACS are listed in Table IX. As all the
requests are accepted in these cases, the requests acceptance

rate (i.e., RAR) is not listed. The results show that EACS
gains the best performance, followed by EACS-noPS and
EACS-noLP, whereas ACS performs the worst. In addition,
a further comparison is carried out in terms of running time
and maximal function evaluations (FEs) when the solution
quality cannot be improved any more. The results show that
the running time of EACS and EACS-noLP is not sensitive
to the increase of NEVs and is maintained at a low level.
However, the running time of EACS-noPS and ACS increase
with the number of NEVs and ACS runs the slowest.

Therefore, both pre-selection and local pruning help EACS
to be more effective and efficient. Pre-selection helps EACS
reduce runtime and local pruning helps improve the accuracy
of solutions and further reduce runtime.

H. Energy and Carbon Savings

In the above sections, we focus on requests acceptance and
average waiting time, so as to maximize customer satisfaction.
In this section, geographical distance traveled by NEVs is
concerned to study the energy and carbon emissions that can
be saved by each algorithm.

Table X gives the geographical distance (in km) traveled by
NEVs according to the dispatch results of each algorithm for
problem D12-D15. The results show that EACS is the best
approach that can obtain the dispatch solution with shortest
geographical distance for all the dispatched NEVs.

According to [3], an electric vehicle will consume
0.36 kg/kWh of standard coal and generate 0.897 kg/kWh of
carbon dioxide emissions during the fuel production phase,
and consume 15 kWh per 100 km during the fuel use phase.
By using this information and the results in Table X, we can
calculate the standard coal consumption and carbon dioxide
emissions according to the dispatch results of EACS, ACS,
Greedy, and FCFS for problem D12-D15. The results are
plotted and compared in Fig. 12(a) and (b), respectively. The
results of GA and MA3-LM are not plotted because they are
too poor and are out of the range.

Fig. 12 shows that EACS can obtain the least standard coal
consumption and carbon dioxide emissions while ensuring
high quality of service to customers.

VI. CONCLUSION

Different from the traditional dispatch for fuel-driven vehi-
cles, this paper proposes a dispatch framework oriented to
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NEV and constructs an NEVD model, which considers other
traffic factors such as the electricity of vehicles and charging
piles compared to traditional dispatch. Two-level measurement
of customer satisfaction is designed, which combines the
acceptance rate of service requests and average waiting time.
EACS, an efficient ACS-based algorithm, is proposed to solve
this NP-hard problem. In EACS, pheromone is distributed
between customers and NEVs, which represents the preference
of one NEV is assigned to one customer. Moreover, pre-
selection and local pruning strategies are integrated to speed
up global search.

Extensive experimental tests are carried out in four sce-
narios, including both small and large physical areas, both
resource-shortage and rich scenarios. The results show the
effectiveness and advantage of the ACS-based algorithms.
In the resource-shortage scenario, ACS has obvious advantages
in terms of solution quality. In the resource-rich scenario,
EACS can obtain higher user satisfaction within less runtime.
Moreover, transportation cost, fuel consumption, and carbon
emissions can be reduced by EACS. Future work will include
dynamic dispatch of NEV by considering the real-time traffic
data during the execution of EACS and implementing NEVD
in a distributed way to further reduce the computation time.
In this sense, dynamic optimization strategies [37] and distrib-
uted strategies [38] can be adopted to enhance the performance
of EACS.
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