
ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal
Regular Issue, Vol. 10 N. 3 (2021), 227-240

eISSN: 2255-2863
DOI: https://doi.org/10.14201/ADCAIJ2021103227240

227

Israr ur Rehman, Zulfiqar Ali, Zahoor Jana

An Empirical Analysis on Software Development Efforts
Estimation in Machine Learning Perspective

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 10 N. 3 (2021), 227-240
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

An Empirical Analysis on Software
Development Efforts Estimation in
Machine Learning Perspective

Israr ur Rehmana, Zulfiqar Alib, and Zahoor Jana

a Department of Computer Sciences Islamia College University, Peshawar, Pakistan.
b Department of Computer Sciences, National University of Technology, Islamabad, Pakistan.
israr.rehman@gmail.com, zulfiqarali@nutech.edu.pk, zahoor.jan@icp.edu.pk

KEYWORDS ABSTRACT

Machine
Learning;
Multilayer
Perceptron;
Software Efforts
Estimation;
Software
Development

The prediction of effort estimation is a vital factor in the success of any software
development project. The availability of expert systems for the software effort
estimation supports in minimization of effort and cost for every software project at the
same time leads to timely completion and proper resource management of the project.
This article supports software project managers and decision-makers by providing
a state-of-the-art empirical analysis of effort estimation methods based on machine
learning approaches. In this paper five machine learning techniques; polynomial linear
regression, ridge regression, decision trees, support vector regression, and Multilayer
Perceptron (MLP) are investigated for software development effort estimation by
using benchmark publicly available data sets. The empirical performance of machine
learning methods for software effort estimation is investigated on seven standard
data sets i.e. Albretch, Desharnais, COCOMO81, NASA, Kemerer, China, and
Kitchenham. Furthermore, the performance of software effort estimation approaches
is evaluated statistically applying the performance metrics i.e. MMRE, PRED (25),
R2-score, MMRE, Pred(25). The empirical results reveal that the decision tree-based
techniques on Deshnaris, COCOMO, China, and kitchenham data sets produce more
adequate results in terms of all three-performance metrics. On the Albgreenretch and
NASA datasets, the ridge regression method outperformed then other techniques
except the pred(25) metric where decision trees performed better.

1. Introduction
Effort estimation is the process to realistically predict the efforts and cost based on incomplete,

uncertain, and noisy data to develop or maintain software (Leung and Fan, 2002). It plays a vital role
in the design of project plan, budget allocation, investment analysis, and devising pricing process

https://doi.org/10.14201/ADCAIJ2021103227240
https://adcaij.usal.es
mailto:israr.rehman@gmail.com
mailto:zulfiqarali@nutech.edu.pk
mailto:zahoor.jan@icp.edu.pk

228

Israr ur Rehman, Zulfiqar Ali, Zahoor Jana

An Empirical Analysis on Software Development Efforts
Estimation in Machine Learning Perspective

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 10 N. 3 (2021), 227-240
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

(Huang and Chiu, 2009). Ontime delivery of software products, within the availabale budget, to meet
an acceptable quality level always remains a key concern of almost all stakeholders of the software
industry. The trustable and accurate estimation of software development efforts and cost can help to
allocate resources appropriately and to construct an acceptable

schedule during the project planning phase. Underrating the needed software development effort
and cost compromises the software quality and hence eventually results in a negative impact on the
company’s business reputation. An accurate estimation of software size, effort, cost, quality, and risk are
the major concerns in software project management. Following are the principal challenges faced by the
software estimation process (Tosun et al., 2009) 1) the nonlinear relationship between software output
metrics and contributing factors; 2) the uncertain and stochastic behavior of software metrics measures;
3) the difficulty to assemble both expert knowledge and numerical project data in one model. Due to
the significant importance of software efforts and cost estimation many techniques have been proposed
in the literature (Albrecht and Gaffney, 1983) (Li et al., 2009). Generally, software estimation is made
by different methods including Expert judgment, algorithmic effort estimation, and estimation by anal-
ogy. (Boehm et al., 1995). Expert judgment depends on the accumulated experience of professionals
while algorithmic effort estimation is based on data analysis techniques to make the parameters-based
effort estimation models, such as the constructive cost model (COCOMO) (Benediktsson et al., 2003).
In analogy, method estimation is made by comparing the software project efforts with similar projects
developed previously in history. Different software cost estimation models have been proposed to assist
a project manager to make accurate and lucrative decisions (Boehm et al., 1995). Constructive Cost
Model (COCOMO) (Benediktsson et al., 2003) is a common mathematical method for software effort
estimation. It is based on 63 software projects which help to define mathematical equations for estimat-
ing development time, effort, and maintenance effort. Generally, a COCOMO model can be defined as:

E = x(KLOC)y (1)

where Edescribe the software effort in term of man per month while x and y are the constants which
rely on the class of different software projects. The KLOC stands for Kilo Line of Code, which con-
tains all instruction written during the implementation phase (Menzies et al., 2005). According to the
COCOMO model, the software projects can be divided into three categories, based on the complexity
level, such as organic, semidetached, and embedded. These models show some nonlinear attributes as
explained in Table 1.

Other well known models for software effort estimation are given in Table 2. These models have been
formed by analysing a huge number of delivered software projects from different organizations. (Choud-
hary, 2010). The soft computing techniques can be used to determine the effort estimation model (Mittal and
Bhatia, 2007). (Sheta, 2006) used Neural Networks (NNs) and Fuzzy Logic (FL) to build a software effort

Table 1: Basic COCOMO Model

Model Name Effort(E) Time(D)

Organic E
5.2(KLOC)1.50

= D
2.5(E)0.38

=

Semi-
Detached

E
3.0(KLOC)1.12

= D
2.5(E)0.35

=

Embedded E
3.6(KLOC)1.20

= D
2.5(E)0.32

=

https://adcaij.usal.es

229

Israr ur Rehman, Zulfiqar Ali, Zahoor Jana

An Empirical Analysis on Software Development Efforts
Estimation in Machine Learning Perspective

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 10 N. 3 (2021), 227-240
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

estimation model. Similarly, Neural Network (NN) and Linear Regression (LR) were adopted to estimate
the efforts in the early stages software life cycle (Kaur et al., 2010). (Wen et al., 2009) explored multiple data
sets with promising results for software development effort estimation. A survey was made by (Kocaguneli
et al., 2011) in which neural network is used for effort estimation models. Fuzzy logic and neural networks
were used for software engineering project management in (Musílek et al., 2000). A fuzzy COCOMO mod-
el was developed in (Ryder, 1995). Nowadays, several questions have been asked about the influence of
applying Soft Computing and Machine Learning methods to overcome the effort estimation issues.

Stefan Wagner and Melanie Ruhe provided the review on the impact of productivity factors in
software development in (Wagner and Ruhe, 2018). Chamkaur Singh et al. proposed an efficient
swarm intelligence-based approach for software maintenance effort estimation using particle
swarm optimization in (Singh et al., 2019). Ali Bou Nassif et al exploited Regression and Fuzzy
based models for software development effort estimation in (Nassif et al., 2019). P. Suresh Ku-
mar et al. provided the survey on the application of neural networks and deep learning for the
estimation of software efforts in (Kumar et al., 2020). Assia Najm et al. contributed by providing
the review on decision tree-based software development effort estimation in (Najm et al., 2020).

In this work, we have used different machine learning (ML) techniques such as polynomial
regression, ridge regression, decision trees, support vector regression, multilayer perceptron to ad-
dress the problems of nonlinearity and uncertainly in software efforts and cost estimation. The
main goal of this study is to investigate the validity of these techniques to predict software effort
estimation as an alternative to traditional estimation models. The empirical performance of machine
learning methods for software effort estimation is investigated on seven standard data sets i.e. Al-
bretch (Albrecht and Gaffney, 1983), Desharnais (Desharnais, 1989), COCOMO81 (Boehm, 1984),
(de Barcelos Tronto et al., 2008), NASA (Menzies et al., 2005), Kemerer (Li et al., 2008), China
(Menzies et al., 2013) and Kitchenham (Kitchenham et al., 2002). Furthermore, the performance of
machine learning-based software effort estimation approaches is evaluated statistically by applying
the performance metrics i.e. MMRE, PRED (25), and R2-score. All the implementation and testing
of the proposed work and the compilation of the results have been done in python. The contempo-
rary literature shows the mainly usage of the stated approaches due to which these machine learning
approaches are selected in this empirical study for effort estimation purposes.

This research paper contributes in multi-folds; by providing the review of machine learning-based
software effort estimation in Section 2. Section 3 provides the performance metrics applied for the
evaluation of software effort estimation approaches. In section 4, datasets are described that are used
for the empirical analysis of effort estimation state-of-the-art methods. Section 5, provides the per-
formance analysis of selected software effort estimation methods on the given data sets in terms of
statistical measures. The last section of the article concludes the empirical study work under the focus.

Table 2: Other Effort Estimation Models

Model Name Equation

Halstead E = 5.2(KLOC)1.50

Walston-Felix E = 0.7(KLOC)0.91

Bailey-Basili E = 5.5 +
0.73(KLOC)1.16

Doty(for
KLOC > 9)

5.288(KLOC)1.047

https://adcaij.usal.es

230

Israr ur Rehman, Zulfiqar Ali, Zahoor Jana

An Empirical Analysis on Software Development Efforts
Estimation in Machine Learning Perspective

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 10 N. 3 (2021), 227-240
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

2. Machine Learning based Software Effort Estimation
This section provides a survey of state-of-the-art machine learning-based effort estimation ap-

proaches proposed for software development.

2.1 Polynomial Liner Regression
Regression techniques predict the real-valued output. Regression is the primary and more often

used type of predictive investigation of supervised and unsupervised data. Regression measures are
responsible for explaining the relationship between dependent and independent variables. The depen-
dent variable is the real-valued output and the independent variable map the one or more features of the
model. The most simple type of the regression model containing two variable, one dependent variable,
and one independent variable is shown by the equation

y = q
0
x + q

1
 (2)

where x and y are the input and output (dependent) while q
0
 and q

1
 represent the slope and intercept

respectively. Polynomial regression allows us to use the mechanism of linear regression to fit very
complicated and non-linear function. In polynomial regression we can define new features from the
existing features which might actually get a better model. Let x

1
, x

2
and x

3
represent different features

then a typical polynomial regression can be given as:

y = q
0
x

1
+ q

2
x

1
+ q

2
x

3
+ q

3
x

1
x

2
+ q

4
x

2
x

3
+ q

4
x2

1
 (3)

2.2 Ridge Regression
Ridge Regression is a method responsible for analyzing the data which endure from collinearity.

Collinearity, elaborate the near-linear association among all the independent variables of the model.
Collinearity goes to false predictions of the coefficients. collinearity also increases the standard errors
and decreases the partial t-tests which degrade the prediction capability of the model. Least squares
predictions become unbiased When collinearity took place but the variances of the least square pre-
dictions are big enough so they could be away from the actual value. Ridge regression reduces the
standard errors when a degree of bias is added to the estimates (Regression,).

2.3 Decision Trees
Decision Trees are the type of supervised learning responsible for the regression and classification

of data. The major objective of the Decision Tree is to build a model which has the capability of predic-
tion. Decision Trees learn decision rules The goal is to create a model that predicts the value of a target
variable by learning simple decision rules deduced implicitly from the featured data.

The decision tree-like directed trees contain nodes. The node with no incoming edge is called the
root node and each of the other nodes consists of only one incoming edge. Inner node is the node that
has an outgoing edge and all other nodes are called leaves also called the terminal. According to a par-
ticular discrete function of the input attributes, each inner node split the instance space into multiple
subspaces. Mostly every test asses a single attribute such that the instance space is divided depending
on the attribute’s value. When the attributes are numeric then a range is referred by the condition. every
terminal is allocated to a class that represents the most suitable target value. Decision trees use if-then-
else rules for the approximation of the sine curve.

https://adcaij.usal.es

231

Israr ur Rehman, Zulfiqar Ali, Zahoor Jana

An Empirical Analysis on Software Development Efforts
Estimation in Machine Learning Perspective

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 10 N. 3 (2021), 227-240
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

From a given dataset a decision tree is automatically constructed by algorithms that work as an
inducer for decision trees. the ultimate objective is to come up with an optimized decision tree having
minimized generalization error. Decision tree inducers are algorithms that automatically construct a
decision tree from a given dataset. Typically the goal is to find the optimal decision tree by minimizing
the generalization error. There are also some other target functions like minimization of the number of
nodes or minimization of the average depth, which can also be defined with the help of decision trees
(Maimon and Rokach, 2005).

2.4 Support Vector Regression
Support Vector Regression (SVR) is a variant of support vector machine (SVM) used to predict or

estimate a continuous output value. SVR is responsible for minimization of the empirical error and
maximization of the geometric margin at the same time (Smola and Schölkopf, 2004).

Suppose we have data (x
1
, y

1
),(x

2
, y

2
)...,(x

n
, y

n
) where x

i
 ∈ ℜd which indicate input vector and

y
i
 ∈ ℜ indicate the output value. The aim is to define a function f(x) that has only deviation from the

actual output value y
i
 for all the data, and at the same time the function f(x) is as flat as possible as

shown below:

f x x() = + , ,
0 1 0 1
q q q q ∈ℜ

(4)

The flatness of the function f(x) means to find the smallest value of q
0
 such that:

Minimize
−

− +
s.t.

1

2

yi xi
yi xi

0
2 0 + 1

0 + 1
θ

θ θ ∈
θ θ ∈

≤
≤

 (5)

Occasionally we want to allow some errors are allowed which are comparable in a certain respect to
the "soft margin" loss function to deal with impracticable constraints of the optimization problem. The
constraints I be defined as:

+Minimize C
1

2 i i
i=

l
0

2

1
θ ξ ξ()∑ + *

s.t

yi xi i

yi xi i

i i

0 1

0 + 1

0

θ θ ∈ ξ

θ θ ∈ ξ

ξ ξ

≤

≤

≥

− − +

− + +

+

*

*

 6)

if

otherwise

0;

;
ξ =∈

ξ ∈

ξ ∈

≤

 − (7)

The main idea of support vector regression is to reduce the objective function considering both the
norm of weight vector q

0
and the losses evaluated by the variables x and x*.

https://adcaij.usal.es

232

Israr ur Rehman, Zulfiqar Ali, Zahoor Jana

An Empirical Analysis on Software Development Efforts
Estimation in Machine Learning Perspective

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 10 N. 3 (2021), 227-240
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

2.5 Multilayer Perceptron
The programing paradigm that mimics the microstructure of the brain is called Neural Network

which is the subfield of Artificial Intelligence. The neural network can be applied to several problems
varies from simple like pattern recognition to more complex like symbolic manipulation. The Multi-
layer Perceptron (MLP) belongs to the class of feed-forward neural networks. MLP comprises at least
three layers of nodes, an input layer, one or more hidden layers, and an output layer. The number of
hidden layers varies from one to multiple. Each node of MLP represents a neuron having a non-linear
activation function, excluding the input nodes. Backpropagation techniques are used by MLP for train-
ing. MLP can be applied to solve several different problems like regression, classification, interpola-
tion, and pattern recognition (Noriega, 2005).

Back-propagation involves two steps. In the first step, it performs feeding the input layer and pro-
mulgating forward through the network to produce the predicted output. The predicted output is then
mapped to the known output and the error is calculated. In a second step, the calculated error is used
to adjust the weights from the hidden to the output neurons. The weights from the input to the hidden
neurons are also adjusted by back-propagating the error. In MLP the value of weights represents the
knowledge which is gained from the environment (Haykin, 1999).

3. Performance Metrics
The mean magnitude of relative error (MMRE), PRED (0.25) and R2-score are used to evaluate the

performance of different techniques on different datasets.

3.1 Mean Magnitude of Relative Error (MMRE)
Mean Magnitude of Relative Error (MMRE) gives the average absolute difference between the

predicted values and actual targets. It can be defined as:

−

Ŷ
MMRE =

n

1

i=1

n Yi Ŷi

i

å

(8)

where Y
i
 is the actual effort value of ith project and Yˆi is the predicted value while n represents the

number of projects. The smaller value of MMRE means good prediction and vice versa.

3.2 PRED
PRED (25) represents the percentage of predictions that fall within 25% of the actual target value.

3.3 R2

R2 is the extent of fluctuation of the dependent variable which is able to be predicted from the inde-
pendent variable or variables. Formally, it can be define as:

−R =
SSR

SSTO
=

SSE

SSTO
12

(9)

https://adcaij.usal.es

233

Israr ur Rehman, Zulfiqar Ali, Zahoor Jana

An Empirical Analysis on Software Development Efforts
Estimation in Machine Learning Perspective

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 10 N. 3 (2021), 227-240
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

where SSR is the regression sum of error, SSE is the sum of square error and SSTO is the total sum of
squares. Let Y

i
, Yˆ

i
 and Y¯represent the target value, predicted value and mean of the target values respec-

tively. Then the SSR, SSE and SSTO can be defined as:

−SSR = Ŷi
-Y

i=

n

1

2
()∑

(10)

−SSE = Yi Ŷ
i=

n

1

2

()∑

11)

−SSTO = Yi
-Y

i=

n

1

2
()∑

(12)

Note, that the values of R2 lie in a range of zero and one. One means 100% accurate prediction and
vice versa.

4. Datasets Description
Different dataset such as: Albrecht (Albrecht and Gaffney, 1983), Desharnais (Desharnais, 1989),

COCOMO81 (Boehm, 1984), NASA (Menzies et al., 2005), Kemer (Li et al., 2008), China (Menzies
et al., 2013), and Kitchenham (Kitchenham et al., 2002) are used to train and validate the results of
different techniques.

4.1 Albrecht Dataset
This dataset contains the data of 24 projects where eighteen projects are written in Common Busi-

ness-oriented Language, four projects are written in PL/I, and two in DMS languages respectively.
This dataset contains six independent features such as input, output, query, file, function points, and
the total number of lines of source code. The person-hours, in 1000h, is consider as a dependent feature
(Albrecht and Gaffney, 1983).

4.2 Desharnais dataset
This dataset contains 10 input features and one output feature of 81 different projects. Four projects

of this dataset contain missing values of the feature which are not included in the dataset. The indepen-
dent features include Team-Exp, Manager-Exp, Year-End, Length, Transactions, Entities, Points-Adjust,
Envergure, Points-NonAjust, and Language. Person hours are considered as a dependent feature which
is recorded in 1000h (Desharnais, 1989).

4.3 COCOMO81 Dataset
It contains data of 63 software projects of different types which include business, scientific and sys-

tem projects. There are 16 independent variables: acap, pcap, aexp, modp, tool, vexp, lexp, sced, stor,
data, time, turn, virt, cplx, rely, loc, and effort. Every attribute of the project has a level of influence

https://adcaij.usal.es

234

Israr ur Rehman, Zulfiqar Ali, Zahoor Jana

An Empirical Analysis on Software Development Efforts
Estimation in Machine Learning Perspective

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 10 N. 3 (2021), 227-240
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

on effort estimation. Therefore all attributes are categorized accordingly. The range of the levels is
V-Low, Low, Normal, High, V-High, and E-High. A numerical value is associated with all of these
levels (Boehm, 1984) (de Barcelos Tronto et al., 2008).

Apart from the line of code (loc) and effort the remaining features fall into three groups: 1) having
a positive correlation with effort (stor, data, time, turn, virt, cplx and rely), 2) having a negative correla-
tion with effort (acap, pcap, aexp, modp, tool, vexp, lexp),3) having U-shaped correlation with effort
such as schedule constraint.

4.4 Nasa Dataset
The NASA dataset has 93 NASA projects from different centers, this dataset consists of 24 features

with 15 standard COCOMO discrete attributes in the range VeryLow to ExtraHigh. these features are
acap, pcap, aexp, modp, tool, vexp, lexp, sced, stor, data, time, turn, virt, cplx, rely, seven others de-
scribing the project like project name, record number, category of application, flight or ground system,
which nasa center, year of development, development mode. Other features are lines of code measure,
And the actual effort in person-months (Menzies et al., 2005).

4.5 Kemer Dataset
The Kemerer dataset is an organization-based data from Kemerer’s work (Li et al., 2008). This

dataset has data from an individual company. the data is of 15 business data processing projects. Every
project has six input features i.e. programming language, hardware, duration, KSLOC, Adj-FP , and
RAW-FP. LOOCV is used for the experiments because of the small size of the dataset and to enable
comparison to recent results reported by (Li et al., 2008) using the same experimental framework.

4.6 China Dataset
The China dataset is a newly developed dataset used for the estimation of software development

efforts. It contains 499 software projects described by 15 input features i.e. Adjusted Function points,
Input, Output, Enquiry, File, Interface, Added-functions, Changed-functions, Deleted-function, PDR-
AFP, PDR-UFP, NPDR-AFP, NPDR-UFP, Resource level, Development type, and two output features
are Duration and Effort. All features of this dataset have numerical values. (Menzies et al., 2013).

4.7 Kitchenham Dataset
Kitchenham dataset (Kitchenham et al., 2002) consists of 145 examples and 10 features includ-

ing project client code {1,2,3,4,5,6}, project type {A,C,D,P,Pr,U}, start date, duration, actual efforts,
adjusted function, estimated completion date and etc. For the evaluation our techniques we used the
numeric features only.

5. Results and Discussion
In this article we use seven benchmark software effort data sets to evaluate the proposed meth-

od: Albretch (Albrecht and Gaffney, 1983), Desharnais (Desharnais, 1989), COCOMO81 (Boehm,
1984; de Barcelos Tronto et al., 2008), NASA (Menzies et al., 2005), Kemerer (Li et al., 2008), China

https://adcaij.usal.es

235

Israr ur Rehman, Zulfiqar Ali, Zahoor Jana

An Empirical Analysis on Software Development Efforts
Estimation in Machine Learning Perspective

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 10 N. 3 (2021), 227-240
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

Table 3: Results for Albretch dataset

Method R2 MMRE Pred

Training Testing Training Testing Training Testing

Polynomial Linear Regression 1.0 0.845536 1.279818 0.653455 100.0 66.666666

Ridge Regression 0.998136 0.893205 0.111712 0.506187 88.888888 66.666666

Decision Trees 1.0 0.688425 0.0 1.293556 72.222222 33.333333

SVR -0.10424 0.024916 1.713777 0.886663 27.77777 16.666666

MLP 0.994552 -2.60918 0.819987 0.69916 72.222222 50.0

Table 4: Results for Desharnais dataset

Method R2 MMRE Pred

Training Testing Training Testing Training Testing

Polynomial Linear Regression 1.0 -2.9339 7.66318 2.76589 100.0 14.2857

Ridge Regression 0.99802 -2.13327 0.01589 2.45716 100.0 14.2857

Decision Trees 1.0 0.19974 0.0 1.09225 100.0 28.57142

SVR -0.12242 -0.01789 0.68479 1.30638 26.66666 28.5714

MLP 0.26782 0.04261 0.96377 1.74024 25.0 28.5714

(Menzies et al., 2013) and Kitchenham (Kitchenham et al., 2002). The datasets contain data from
a system called a database-oriented software system which is developed using a specific 4GL tool
suite. These data sets are used in some articles to explore the performance of techniques used for the
estimation of software development effort. Five machine learning techniques i.e. polynomial linear
regression, ridge regression, decision trees, SVR and MLP were applied to the benchmark datasets.
The performance of the proposed techniques for software development effort estimation is measure on
three metrics i.e. MMRE, pred(25), and R2-score. All the proposed machine learning techniques for
software development effort estimation are implemented and tested in python. Results show that All
of the five applied machine learning techniques used for the estimation of software development effort
outperformed the traditional prediction models. However, variation occurs in the results when we com-
pare the results of the proposed techniques among themselves. Several factors are responsible for such
variances in the performance results of the techniques like the size of the data set, the feature involved
in each dataset, and the nature of the software project. The detailed results of each dataset for all five
machine learning techniques again each performance metrics are shown in the tables discussed below.

Table 3 describe the results for all techniques including polynomial linear regression, ridge regres-
sion, SVR, Decision trees, and MLP applied on albretch dataset concerning three performance metrics
i.e. R2-score, MMRE, and pred(25). The outcomes show that the best technique for this dataset is ridge
regression. Ridge

Regression technique outperforms polynomial linear regression, SVR, Decision trees, and MLP all
in terms of R2-score, MMRE, pred(25).

Table 4 describe the results for all techniques including polynomial linear regression, ridge re-
gression, SVR, Decision trees and MLP applied on desharnais dataset concerning three performance
metrics i.e. R2-score, MMRE and pred(25). The results show that the best technique for this dataset

https://adcaij.usal.es

236

Israr ur Rehman, Zulfiqar Ali, Zahoor Jana

An Empirical Analysis on Software Development Efforts
Estimation in Machine Learning Perspective

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 10 N. 3 (2021), 227-240
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

is decision trees. Decision trees outperform polynomial linear regression, ridge regression, SVR, and
MLP all in terms of R2-score, MMRE, pred(25).

Table 5 describe the results for all techniques including polynomial linear regression, ridge regres-
sion, SVR, Decision trees, and MLP applied on COCOMO81 dataset for three performance metrics
i.e. R2-score, MMRE, and pred(25). The results show that the best technique for this dataset is decision
trees. Decision trees outperform polynomial linear regression, ridge regression, SVR, and MLP all in
terms of R2-score, MMRE, pred(25). Except for pred(25) in testing for SVR which is 12.5 is better than
decision trees which are 6.25.

Table 6 describe the results for all techniques including polynomial linear regression, ridge regres-
sion, SVR, Decision trees, and MLP applied on NASA dataset concerning three performance metrics
i.e. R2-score, MMRE, and pred(25). The results show that the best technique for this dataset Ridge Re-
gression. Ridge Regression outperforms polynomial linear regression, decision trees, SVR, and MLP
all in terms of R2-score, MMRE, pred(25). Except for pred(25) wherein training decision trees perform
better than ridge regression but in testing

the performance of both the methods is equal.
Table 7 describe the results for all techniques including polynomial linear regression, ridge regres-

sion, SVR, Decision trees, and MLP applied on kemer dataset concerning three performance metrics
i.e. R2-score, MMRE, and pred(25). The results show that the best technique for this dataset is MLP.
MLP outperforms polynomial linear regression, Ridge Regression, decision trees, and SVR, all in
terms of R2-score, MMRE, pred(25).

Table 5: Results for COCOMO81 dataset

Method R2 MMRE Pred

Training Testing Training Testing Training Testing

Polynomial Linear Regression 1.0 -6.944297 2.199594 5.147439 100.0 0.0

Ridge Regression 0.999975 -7.002276 0.017858 5.004696 100.0 0.0

Decision Trees 1.0 0.1045272 0.0 1.594110 100.0 6.25

SVR -0.127583 -0.017450 3.184352 2.908661 6.382978 12.5

MLP 0.310911 -8.351732 19.029081 19.175637 6.382978 6.25

Table 6: Results for NASA dataset

Method R2 MMRE Pred

Training Testing Training Testing Training Testing

Polynomial Linear Regression 0.99997 -29968.80 0.03532 120.628 94.20289 4.16666

Ridge Regression 0.99986 0.521286 0.051951 0.9028 95.65217 29.1666

Decision Trees 0.9999 0.01302 0.002359 1.22855 100.0 29.1666

SVR -0.08386 -0.083716 3.59744 2.25532 13.04347 8.3333

MLP 0.23409 0.12925 3.44438 2.50700 8.69565 12.5

https://adcaij.usal.es

237

Israr ur Rehman, Zulfiqar Ali, Zahoor Jana

An Empirical Analysis on Software Development Efforts
Estimation in Machine Learning Perspective

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 10 N. 3 (2021), 227-240
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

Table 8 describe the results for all techniques including polynomial linear regression, ridge regres-
sion, SVR, Decision trees, and MLP applied on china dataset concerning three performance metrics
i.e. R2-score, MMRE, and pred(25). The results show that the best technique for this dataset is decision
trees. decision trees outperform polynomial linear regression, ridge regression, SVR, and MLP all in
terms of R2-score, MMRE, pred(25). Except for MMRE and pred(25) in testing data, polynomial, and
ridge regression perform better than decision trees.

Table 9 describes the results for all techniques including polynomial linear regression, ridge regres-
sion, SVR, Decision trees, and MLP applied on Kitchenham dataset for three performance metrics i.e.
R2-score, MMRE, and pred(25). The results show that the best technique for this dataset is decision
trees. decision trees outperform polynomial linear regression, ridge regression, SVR, and MLP all in

Table 7: Results for Kemer dataset

Method R2 MMRE Pred

Training Testing Training Testing Training Testing

Polynomial Linear Regression 1.0 -5.7338 3.35587 2.33084 100.0 0.0

Ridge Regression 0.97527 -3.8487 0.06753 2.15077 90.9090 0.0

Decision Trees 1.0 -0.33416 0.0 3.24069 100.0 0.0

SVR -0.02717 -0.1627 0.59547 1.91245 9.09090 25.0

MLP 0.91074 -0.1644 0.11565 1.0908 81.81818 25.0

Table 8: Results for China dataset

Method R2 MMRE Pred

Training Testing Training Testing Training Testing

Polynomial Linear Regression 1.0 -9.6339 4.2255 0.17015 100.0 86.400

Ridge Regression 0.99939 0.54396 0.0888 0.22285 94.65 80.800

Decision Trees 1.0 0.72909 0.0 0.4577 100.0 50.3999

SVR -0.10324 -0.0555 1.797268 1.90826 16.04278 21.6000

MLP 0.49347 0.62603 0.73499 0.68097 32.3529 32.0

Table 9: Results for Kitchenham dataset

Method R2 MMRE Pred

Training Testing Training Testing Training Testing

Polynomial Linear Regression 0.999 -200.9284 0.1387 6.2888 82.40740 45.9459

Ridge Regression 0.9967 0.8806 0.2816 0.4182 62.96 40.54

Decision Trees 1.0 0.3725 0.0 0.3725 100 54.0540

SVR -0.0238 -0.14288 4.133 5.0021 3.70370 16.216

MLP 0.3016 -0.641 4.133 5.0021 3.70370 16.216

https://adcaij.usal.es

238

Israr ur Rehman, Zulfiqar Ali, Zahoor Jana

An Empirical Analysis on Software Development Efforts
Estimation in Machine Learning Perspective

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 10 N. 3 (2021), 227-240
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

terms of R2-score, MMRE, pred(25). Except for R2-score in testing data, ridge regression performs
better than decision trees.

6. Conclusion
Effort estimation could have a significant impact in the success of any software development proj-

ect. This research paper contributes in multi-folds; by providing the review of machine learning-based
software effort estimation techniques and empirical performance analysis on public benchmark data
sets. In this research work, five machine learning techniques; polynomial linear regression, ridge re-
gression, decision trees, support vector regression, and Multilayer Perceptron (MLP) are investigated
for software development effort estimation by using bench mark publicly available data sets. The
Albretch, Desharnais, COCOMO81, NASA, Kemerer, China, and Kitchenham databases are used for
the comparative performance analysis of machine learning methods for effort estimation. Furthermore,
the performance of software effort estimation approaches is evaluated statistically applying the per-
formance metrics i.e. MMRE, PRED (25), R2-score, MMRE, Pred(25). The experimental results show
that the decision tree-based techniques on Deshnaris, COCOMO, China, and Kitchenham Data Sets
provide promising results in terms of all three-performance metrics. On the Albretch and NASA Data
Set, the ridge regression method outperformed then other techniques except for the pred(25) metric
where decision trees performed better. With the rapid growth in the field of Big data analytics and the
internet of things (IoT), the nature of software development has been changed. In the future, we need
to explore a machine learning-based recommender system for predicting software development efforts.
For future research, newly proposed methods based on deep learning, swarm intelligence and fuzzy
logic-based effort estimation techniques can be investigated at larger size databases.

7. Acknowledgements
The authors wish to thank the Higher Education Commission of Pakistan and the Islamia College

University, Peshawar, Pakistan. This work is supported in part by a grant from the Higher Education
Commission of Pakistan and the Islamia College University, Peshawar, Pakistan.

8. References
Albrecht, A. J. and Gaffney, J. E., 1983. Software function, source lines of code, and development effort

prediction: a software science validation. IEEE transactions on software engineering, (6):639–648.
Benediktsson, O., Dalcher, D., Reed, K., and Woodman, M., 2003. COCOMO-based effort estimation for

iterative and incremental software development. Software Quality Journal, 11(4):265–281.
Boehm, B., Clark, B., Horowitz, E., Westland, C., Madachy, R., and Selby, R., 1995. Cost models for

future software life cycle processes: COCOMO 2.0. Annals of software engineering, 1(1):57–94.
Boehm, B. W., 1984. Software engineering economics. IEEE transactions on Software Engineering, (1),

pp. 4–21..
Choudhary, K., 2010. GA based Optimization of Software Development effort estimation. IJCST,

September.

https://adcaij.usal.es

239

Israr ur Rehman, Zulfiqar Ali, Zahoor Jana

An Empirical Analysis on Software Development Efforts
Estimation in Machine Learning Perspective

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 10 N. 3 (2021), 227-240
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

de Barcelos Tronto, I. F., da Silva, J. D. S., and Sant’Anna, N., 2008. An investigation of artificial neural
networks based prediction systems in software project management. Journal of Systems and Software,
81(3):356–367.

Desharnais, J.-M., 1989. Analyse statistique de la productivitie des projects informatique a partie de la
technique des point des function. Masters Thesis University of Montreal.

Haykin, S., 1999. Neural networks a comprehensive introduction.
Huang, S.-J. and Chiu, N.-H., 2009. Applying fuzzy neural network to estimate software development

effort. Applied Intelligence, 30(2):73–83.
Kaur, J., Singh, S., Kahlon, K. S., and Bassi, P., 2010. Neural network-a novel technique for software

effort estimation. International Journal of Computer Theory and Engineering, 2(1):17.
Kitchenham, B., Pfleeger, S. L., McColl, B., and Eagan, S., 2002. An empirical study of maintenance and

development estimation accuracy. Journal of systems and software, 64(1):57–77.
Kocaguneli, E., Misirli, A. T., Caglayan, B., and Bener, A., 2011. Experiences on developer participation

and effort estimation. In Software Engineering and Advanced Applications (SEAA), 2011 37th
EUROMICRO Conference on, pages 419–422. IEEE.

Kumar, P. S., Behera, H., Kumari, A., Nayak, J., and Naik, B., 2020. Advancement from neural networks
to deep learning in software effort estimation: Perspective of two decades. Computer Science Review,
38:100288.

Leung, H. and Fan, Z., 2002. Software cost estimation. World Scientific.
Li, Q., Wang, Q., Yang, Y., and Li, M., 2008. Reducing biases in individual software effort estimations: a

combining approach. In Proceedings of the Second ACM-IEEE international symposium on Empirical
software engineering and measurement, pages 223–232. ACM.

Li, Y.-F., Xie, M., and Goh, T. N., 2009. A study of project selection and feature weighting for analogy
based software cost estimation. Journal of Systems and Software, 82(2):241–252.

Maimon, O. and Rokach, L., 2005. Decomposition methodology for knowledge discovery and data
mining. In Data mining and knowledge discovery handbook, pages 981–1003. Springer.

Menzies, T., Butcher, A., Cok, D., Marcus, A., Layman, L., Shull, F., Turhan, B., and Zimmermann, T.,
2013. Local versus global lessons for defect prediction and effort estimation. IEEE Transactions on
software engineering, 39(6):822–834.

Menzies, T., Port, D., Chen, Z., Hihn, J., and Stukes, S., 2005. Validation methods for calibrating software
effort models. In Proceedings of the 27th international conference on Software engineering, pages
587–595. ACM.

Mittal, H. and Bhatia, P., 2007. A comparative study of conventional effort estimation and fuzzy effort
estimation based on triangular fuzzy numbers. International Journal of Computer Science and
Security, 1(4):36–47.

Musílek, P., Pedrycz, W., Succi, G., and Reformat, M., 2000. Software cost estimation with fuzzy models.
ACM SIGAPP Applied Computing Review, 8(2):24–29.

Najm, A., Marzak, A., and Zakrani, A., 2020. Systematic Review Study of Decision Trees based Software
Development Effort Estimation. Organization, 11(7).

Nassif, A. B., Azzeh, M., Idri, A., and Abran, A., 2019. Software development effort estimation using
regression fuzzy models. Computational intelligence and neuroscience, 2019.

Noriega, L., 2005. Multilayer perceptron tutorial. School of Computing. Staffordshire University.

https://adcaij.usal.es

240

Israr ur Rehman, Zulfiqar Ali, Zahoor Jana

An Empirical Analysis on Software Development Efforts
Estimation in Machine Learning Perspective

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 10 N. 3 (2021), 227-240
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

Ryder, J., 1995. Fuzzy COCOMO: Software cost estimation. Ph.D. thesis, PhD thesis, Binghamton
University.

Sheta, A., 2006. Software effort estimation and stock market prediction using takagi-sugeno fuzzy
models. In Fuzzy Systems, 2006 IEEE International Conference on, pages 171–178. IEEE.

Singh, C., Sharma, N., and Kumar, N., 2019. An Efficient Approach for Software Maintenance
Effort Estimation Using Particle Swarm Optimization Technique. International Journal of Recent
Technology and Engineering (IJRTE), 7(6C):1–6.

Smola, A. J. and Schölkopf, B., 2004. A tutorial on support vector regression. Statistics and computing,
14(3):199–222.

Tosun, A., Turhan, B., and Bener, A. B., 2009. Feature weighting heuristics for analogy-based effort
estimation models. Expert Systems with Applications, 36(7):10325–10333.

Wagner, S. and Ruhe, M., 2018. A systematic review of productivity factors in software development.
arXiv preprint arXiv:1801.06475.

Wen, J., Li, S., and Tang, L., 2009. Improve analogy-based software effort estimation using principal
components analysis and correlation weighting. In Software Engineering Conference, 2009.
APSEC’09. Asia-Pacific, pages 179–186. IEEE.

https://adcaij.usal.es

	An Empirical Analysis on Software Development Efforts Estimation in Machine Learning Perspective
	ABSTRACT
	1. Introduction
	2. Machine Learning based Software Effort Estimation
	2.1 Polynomial Liner Regression
	2.2 Ridge Regression
	2.3 Decision Trees
	2.4 Support Vector Regression
	2.5 Multilayer Perceptron

	3. Performance Metrics
	3.1 Mean Magnitude of Relative Error (MMRE)
	3.2 PRED
	3.3 R2

	4. Datasets Description
	4.1 Albrecht Dataset
	4.2 Desharnais dataset
	4.3 COCOMO81 Dataset
	4.4 Nasa Dataset
	4.5 Kemer Dataset
	4.6 China Dataset
	4.7 Kitchenham Dataset

	5. Results and Discussion
	6. Conclusion
	7. Acknowledgements
	8. References

