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Abstract
1.	 Flooding threatens the functioning of managed grasslands by decreasing primary 

productivity and increasing nitrogen losses, notably as the potent greenhouse gas 
nitrous oxide (N2O). Sowing species with traits that promote flood resilience and 
mitigate flood-induced N2O emissions within these grasslands could safeguard 
their productivity while mitigating nitrogen losses.

2.	 We tested how plant traits and resource acquisition strategies could predict flood 
resilience and N2O emissions of 12 common grassland species (eight grasses 
and four legumes) grown in field soil in monocultures in a 14-week greenhouse 
experiment.

3.	 We found that grasses were more resistant to flooding while legumes recovered 
better. Resource-conservative grass species had higher resistance while resource-
acquisitive grasses species recovered better. Resilient grass and legume species 
lowered cumulative N2O emissions. Grasses with lower inherent leaf and root 
δ13C (and legumes with lower root δ13C) lowered cumulative N2O emissions dur-
ing and after the flood.

4.	 Our results highlight the differing responses of grasses with contrasting resource 
acquisition strategies, and of legumes to flooding. Combining grasses and legumes 
based on their traits and resource acquisition strategies could increase the flood 
resilience of managed grasslands, and their capability to mitigate flood-induced 
N2O emissions.
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1  | INTRODUC TION

Ecosystems are facing increasing climatic challenges (Hazeleger 
et al., 2015), including more frequent and severe floods (IPCC, 2018). 
Flood events compromise ecosystem functioning by reducing pri-
mary productivity (Reyer et  al.,  2013), disrupting nitrogen (N) and 
carbon (C) cycling (Sánchez-Rodríguez et al., 2019) and may increase 
N losses via emissions of the potent greenhouse gas nitrous oxide 
(N2O; Gebremichael et al., 2017). In N-fertilized grasslands, flooding 
has been shown to drastically increase N2O emissions compared to a 
non-flooded control (Oram, van Groenigen, et al., 2020). Determining 
if and how different plant species mitigate flood-induced N2O emis-
sions (Abalos et al., 2019) while maintaining primary productivity is 
an important management tool for creating resilient grasslands that 
mitigate N losses.

Previous research has shown the importance of plant traits for 
regulating N cycling and reducing N losses (Abalos et al., 2019; de 
Vries & Bardgett,  2016). Traits are indicative of a plant's strategy 
for nutrient uptake and growth; resource-acquisitive plants are fast 
growing with low tissue density and high rates of nutrient uptake, 
whereas slower-growing resource-conservative plants have oppo-
site traits (Reich, 2014). A plant's resource acquisition strategy can 
also explain the rate of litter decomposition and N release (Roumet 
et  al.,  2016). Resource-conservative plants have been linked with 
greater N retention in extensively managed, non-fertilized grass-
lands (de Vries & Bardgett, 2012), while resource-acquisitive plants 
become more important to retain N in more intensively managed, 
fertilized grasslands (Wang et al., 2018). Acquisitive plants can take 
up more N than conservative species (Grassein et al., 2015) and re-
duce N losses by mitigating N2O emissions (Abalos et al., 2018) and 
N leaching (de Vries & Bardgett, 2016).

Resource-conservative plants have been shown to have higher 
flood resistance than resource-acquisitive plants (Fischer et al., 2016) 
and could be important for mitigating N2O in flood-prone grass-
lands. Species with stress-tolerant strategies, that is, a high leaf dry 
matter content (LDMC) and low specific leaf area (SLA), prevail in 
wet and/or flooded environments (Oddershede et al., 2018; Zelnik 
& Čarni,  2008). Higher survival of conservative plants in flooded 
environments could reduce N losses, as N uptake continues and N 
inputs via litter are lower, compared to less flood-tolerant species. 
Traits not considered in the acquisitive-conservative spectrum but 
related to plant stress responses could better predict plant flood re-
sistance. For example, enrichment in leaf δ13C relating to stomatal 
closure (Farquhar et al., 1989) and an increase in water use efficiency 
(WUE) (Mariotte et al., 2013) or formation of adventitious roots and 
root aerenchyma (Evans, 2004). Another potentially beneficial trait 
is enrichment in leaf silicon (Si), which improves cell water balance 
(Farooq et al., 2009) and is known to mitigate abiotic stress (Thorne 
et al., 2020).

Different strategies may be key to plant survival and growth 
at different points in the flooding cycle. A flood imposes stress 
through oxygen limitation when the soil is saturated (Bailey-Serres 
& Voesenek, 2008) and reductions in available N via leaching but 

can also increase nutrient availability as the soil dries via de-
composition of new organic matter, potentially benefiting plants 
that can survive the stress and capture these nutrients (Wright 
et al., 2015). Therefore, conservative plants may better cope with 
flooding stress, better resisting, whereas acquisitive plants could 
begin taking up nutrients as the soil dries, recovering faster. This 
trade-off has been observed in response to drought (Ingrisch 
et al., 2018), and could occur in response to flooding. This implies 
that plants with different resource strategies could mitigate N 
losses via N2O emissions at different points during flooding and 
recovery.

Beyond a plant's inherent traits, the trait variation within a spe-
cies could influence plant flood resilience and N retention. Such 
intraspecific variation can be as large as the difference between 
species in response to warming (Malyshev et al., 2016) or drought 
(Jung et al., 2014). Wetland plant species exhibit a high degree of in-
traspecific trait variation (Albert et al., 2011), responding to flooding 
by elongating their shoots, forming root aerenchyma, aquatic roots 
and leaves (Colmer & Voesenek,  2009), or reducing SLA (Poorter 
et al., 2009). These plastic responses allow plants to better tolerate 
oxygen stress (Voesenek & Bailey-Serres, 2015). However, it is not 
well known whether non-wetland plants exhibit intraspecific vari-
ation in response to flooding, and whether this relates with flood 
resilience and N2O mitigation.

Designing flood-resilient grasslands that can mitigate flood-
induced N2O emissions requires a better understanding of grass-
land plant species flood responses, and the underlying role of plant 
traits and intraspecific trait variation. Here, we tested whether plant 
above- and below-ground traits (measured in non-flooded condi-
tions) could predict a plant community's flood resilience and flood-
induced N2O emissions. We determined whether flood-induced 
intraspecific trait variation was related resilience and N2O emissions 
in flooded conditions. We hypothesized that:

1.	 Resource-conservative species better resist flooding while 
resource-acquisitive species recover better.

2.	 Resource-conservative species reduce N2O emissions in flooded 
conditions compared to resource-acquisitive species, but that this 
reverses after the flood has passed.

3.	 Flooding affects plant traits. Plant species that exhibit more in-
traspecific trait variation will be more flood resilient and reduce 
flood-induced N2O emissions.

2  | MATERIAL S AND METHODS

2.1 | Experimental design and setup

We established a 14-week greenhouse pot experiment (March–June 
2019) with 12 grassland plant species grown in monocultures that 
experienced one of two rainfall treatments: temporarily flooded or 
non-flooded (control), replicated five times, arranged in five blocks: 
12 plant species ×  two rainfall treatments (flood or control) ×  five 
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replicates  =  120 pots/experimental units. The plant species cov-
ered a range of traits related to resource acquisition (Table S1): the 
grasses Agrostis stolonifera, Alopecurus pratensis, Brachiaria humidi-
cola, Dactylis glomerata, Festuca arundinacea, Lolium perenne, Phleum 
pratense and Poa pratensis; and the legumes: Trifolium pratense, 
Trifolium repens, Lotus corniculatus and Trifolium fragiferum. The ex-
perimental timeline was as follows: sowing seeds—6-week establish-
ment period (all 120 pots)—3-week flood (n = 60) or control (n = 60) 
treatment—5-week recovery (n = 60 pots that had experienced the 
flood) or control (n = 60). Greenhouse conditions were a day:night 
regime of 16:8 hr light:dark, 21:16℃.

Pots (20 cm diameter × 38 cm depth, sealed bottom) were filled 
with 11  kg (dry weight equivalent) topsoil collected from a field 
(51°59ʹ43.3ʺN, 5°39ʹ17.6ʺE). The soil is a sandy loam (84% sand, 
10% silt and 2% clay, with 4.1% organic matter, pHCaCl2

 of 5.6) classi-
fied as a typic endoaquoll (Soil Survey Staff, 2014). Air-dry soil was 
mixed with demineralized water (0.14 g water/g dry soil, 60% water 
holding capacity, WHC). Granular calcium ammonium nitrate, CAN 
(30 kg N/ha), was mixed into the soil before potting.

Seeds (Barenbrug BV, the Netherlands) were surface sterilized 
(1:1 demineralized water: household bleach for 30 min), rinsed and 
sown. Pots were thinned to 100 individuals (40 individuals for B. hu-
midicola, which had poor germination) 2 weeks after sowing.

Five weeks after sowing, above-ground biomass of all pots was 
cut 3 cm above the soil level, dried at 70℃ for 72 hr and weighed. 
Immediately following cutting, monocultures were fertilized with 
CAN (100  kg  N/ha), in line with managed grassland practices. Six 
weeks after sowing, pots in the flooded treatment were flooded 
with demineralized water, equivalent to 80  mm rainfall (100-year 
return, Rajczak et al., 2013), a realistic rainfall event within climate 
change scenarios (Stocker et al., 2013). The flooded water level was 
approximately 3 cm above the soil surface, below canopy height (i.e. 
no plants were submerged), and was maintained for 3 weeks. After, 
surface water was removed with a syringe and discarded. Pots in 
the control treatment were maintained at 60% WHC throughout the 
experiment by watering to weight 4–6 times per week. Directly after 
the 3-week flood (T1), and at the end of the experiment (T2, 5 weeks 
after the flood ended), above-ground biomass of all pots (n = 120) 
was harvested to 3 cm above the soil (as above). Root biomass was 
harvested at T2 by taking four soil cores (2 cm diameter × 28 cm 
depth) per pot. The cores were pooled, stored in plastic bags at 4℃ 
and washed over a 0.5-mm sieve. A representative subsample of 
roots was stored in 70% ethanol at 4℃ for root morphology mea-
surements. The rest of the clean roots were dried (70℃ for 96 hr) 
and weighed.

2.2 | Plant traits

Leaf traits of all monocultures (n = 120) were measured at T1 and T2. 
SLA and LDMC were measured according to Pérez-Harguindeguy 
et al. (2016), see Table 1 for trait acronyms and units. Above-ground 
biomass harvested at T1 was analysed for percent P, K, S, Ca and Si 

by ball-milling dried leaves and pressing into pellets using a hydrau-
lic press. Pellets were analysed with a portable P-XRF instrument 
(Niton XL3t900 GOLDD Analyzer; Thermo Scientific; Reidinger 
et  al.,  2012). Above-ground biomass (T1), and above- and below-
ground biomass (T2), was analysed for N, C and natural abundance 
δ15N and δ13C. Leaf or root material was ball-milled, weighed into 
tin cups (D1008; Elemental Microanalysis, UK) and analysed using 
an elemental analyser (PDZ Europa ANCA-GSL interfaced to a PDZ 
Europa 20-20 IRMS; Sercon Ltd.). Natural abundance δ15N and δ13C 
are expressed in ‰ deviation from reference standard pee-dee 
belemnite (13C), respectively, from air-N2 (15N). Biological N fixa-
tion (Ndfa) was estimated by growing legumes in N-free sand (see 
Supplementary Methods).

A subsample of fresh roots were stained with neutral red 
(1.54  g/L demineralized water), scanned (Epson Perfection 
V700/750), root length and volume were estimated with WinRhizo 
(Regent Instruments Inc., Canada), and scanned roots were dried 
(70℃ for 48 hr).

Traits measured on plants in the control treatment were used to 
predict the resistance, recovery and N2O emissions from monocul-
tures in the flooded treatment. Flood-induced intraspecific trait vari-
ation (the relative flood effect) was calculated in line with de Vries 
et al. (2016):

TA B L E  1   List of plant traits measured, their abbreviations and 
units

Abbreviation Plant trait Unit

Leaf traits

SLA Specific leaf area cm2/g

LDMC Leaf dry matter content mg/g

Leaf N Leaf nitrogen concentration mg N/g dry 
leaf

Leaf C Leaf carbon concentration mg C/g dry 
leaf

Leaf δ13C Leaf natural abundance 13C ‰

Leaf δ15N Leaf natural abundance 15N ‰

Ndfa Nitrogen derived from the atmosphere %

Leaf P Leaf phosphorus concentration %

Leaf K Leaf potassium concentration %

Leaf Ca Leaf calcium concentration %

Leaf S Leaf sulphur concentration %

Leaf Si Leaf silicon concentration %

Root traits

SRL Specific root length m/g

RTD Root tissue density g/cm3

Root N Root nitrogen concentration mg N/g dry 
root

Root C Root carbon concentration mg C/g dry 
root

Root δ13C Root natural abundance 13C ‰

Root δ15N Root natural abundance 15N ‰
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Leaf N uptake was calculated by multiplying above-ground biomass (g/
pot) by leaf N concentration (mg N/g leaf) measured at T1 or T2. Root 
N uptake is root N concentration at T2 multiplied by root biomass ac-
cumulated over the entire experiment.

2.3 | Nitrous oxide emissions

Fluxes of N2O were measured 29 times over 14  weeks using the 
closed flux chamber technique. Like Abalos et  al.  (2014), flux 
measurements were taken daily for 4 days after fertilizer addi-
tion and flooding, and subsequently two to three times per week. 
Polypropylene flux chambers (20 cm diameter × 14 cm height) fitted 
with Teflon tubes were placed on the pots for approximately 30 min. 
Gas measurements of the headspace were taken with an Innova 
1312 photo-acoustic infrared gas analyser (LumaSense Technologies 
A/S). Cumulative emissions were calculated assuming linear changes 
in gas concentration between measurements, which has been previ-
ously tested with this experimental setup (Abalos et al., 2014, 2018).

2.4 | Calculations and statistical analysis

Flood resistance and recovery were calculated in line with Ingrisch 
and Bahn (2018), using control monoliths as a dynamic baseline, 
paired by plant species within a block. Resistance is the baseline nor-
malized above-ground biomass of the flooded pots directly after the 
flood, and recovery is after a 5-week recovery period:

Statistical analyses were performed in R 3.6.2. (R Core Team, 2019). 
Two high outliers were removed from analysis of cumulative N2O emis-
sions, one which was mistakenly over-thinned at the start of the exper-
iment (P. pratense, flood) and one that was mistakenly over-fertilized 
(P. pratense, control). One above-ground biomass sample (T. pratense, 
flood, T2) went missing before it could be analysed for C, N, δ13C and 
δ15N; thus, it is not included in the analyses of these factors. Finally, 
six flooded monocultures had exceptionally high cumulative N2O emis-
sions (four P. pratense and two P. pratensis), relationships were tested 
with and without these six points, and both results are reported.

We tested the effects of plant species (12) or functional group 
(grass or legume) and rainfall treatment (control or flood) and the 
two-way interactions on cumulative N2O emissions (over the entire 
experiment), above-ground biomass (sum of three harvests), below-
ground biomass and plant traits using linear mixed-effects models, 
lme{nlme} (Pinheiro et al., 2016), with block as a random factor, fitted 
with a type III SS ANOVA, anova{base}. Tukey post-hoc tests were 
used to determine significance between levels of a factor using em-
means{emmeans} (Lenth, 2018).

A plant species' resource acquisition strategy was determined 
with principle component analysis (PCA) using the function pca 
{FactoMineR} (Le et al., 2008) on scaled (mean 0, SD ±1) traits indica-
tive of the leaf or root economic spectrum at T1 (leaf) and T2 (leaf and 
root). The relationships between control plant traits or above-ground 
resource strategy (PCA 1), or the relative flood effect (Equation 1), 
and resistance, recovery, cumulative N2O emissions until the end 
of the flood (T0–T1) or during the recovery period (T1–T2) were 
tested with lme models and ANOVA (as above). Relations frequently 
differed between grasses and legumes, so functional group and its 
interaction with the trait/strategy were included as explanatory vari-
ables. We further tested relations separately for legumes (n = 20) and 
grasses (n = 40) to understand relations within each functional group. 
N2O emissions (T1–T2) were log10 transformed to improve model fit. 
Residual plots were used to determine normality and homogeneity of 
variances. When residual variances were heterogeneous a variance 
structure was included in the model, varIdent{nlme}. Models with the 
variance structure were retained when they had a significantly lower 
AIC than the model without (tested with ANOVA).

3  | RESULTS

3.1 | Plant species flood resistance and recovery

Plant species differed in their flood resistance (F11,44  =  22.90, 
p  <  0.001) and recovery (F11,44  =  15.93, p  <  0.001), Figure  1. 
Legumes had lower resistance than grasses (F1,54 = 61.19, p < 0.001), 
but higher recovery (F1,54 = 4.12, p < 0.05). Flooding reduced the 
above-ground biomass of most species (Figure  S1a). Grasses pro-
duced more root biomass than legumes (Figure S1b).

3.2 | Plant traits help predict plant species 
resistance and recovery

Leaf traits followed the leaf economic spectrum (Figure 2A,B). Root 
traits did not vary along the root economic spectrum as predicted, 
primarily due to the strong impact of the legumes on root N, and the 
root economic spectrum was not used in further analysis (Figure 2C).

Traits of plants grown in control conditions helped predict mono-
culture flood resistance and recovery. Conservative grasses (low 
PCA 1 value, low SLA, leaf N and high leaf C:N) were more flood 
resistant (Figure 3, for statistics, see Table S2). High grass resistance 
was also related with lower LDMC, leaf δ15N, leaf and root δ13C, and 
SRL (Figure 3). Legumes with lower leaf and root C, root δ15N and 
Ndfa had higher flood resistance while resistance increased with in-
creasing leaf δ15N and leaf P (Figure 3).

Acquisitive grasses (a high PCA 1 value, SLA, leaf N and low leaf 
C:N) had higher recovery after 5 weeks than conservative grasses 
(Figure  4, for statistics, see Table  S2). Grass recovery decreased 
with increasing leaf C, leaf and root δ13C, and leaf δ15N (Figure 3). 
Grass recovery was positively related with SRL until 400 m/g and 

(1)
Relative flood effect =

Flood trait species j, block i − Control trait species j, block i

Control trait species j, block i
.

(2)
Resistance or recovery (%) =

Flood aboveground biomass species j, block i

Control aboveground biomass species j, block i
× 100.
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negatively related at higher SRL values while legume recovery was 
positively related with SRL (Figure 4).

3.3 | Monocultures differed in cumulative 
N2O emissions

Flooding significantly increased cumulative N2O emissions over the 
entire experimental period; a 3–288 fold increase depending on plant 
species (including the six high grass N2O values, flooding: plant spe-
cies interaction, F11,90 = 44.98, p < 0.001, Figure 5). In the flooded 

treatment, N2O emissions from legume monocultures were higher 
than from grass monocultures (including the six high grass N2O values, 
F1,53 = 305.86, p < 0.001). In control conditions, cumulative N2O emis-
sions did not differ between legume and grass monocultures. Fluxes of 
N2O peaked at the onset and recession of the flood (Figure S2).

3.4 | What mediates flood-induced N2O emissions?

Cumulative N2O emissions decreased with increasing plant bio-
mass above- (the sum of three harvests; F1,42 = 643.19, p < 0.001) 

F I G U R E  1   (A) Resistance, measured directly after the 3-week flood, and (B) recovery, measured 5 weeks after the flood ended, of 
grasses (yellow boxes) and legumes (blue boxes). Letters indicate significant differences between species, stars indicate differences between 
grasses and legumes based on a Tukey post-hoc test. The dashed line indicates the baseline
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and below-ground (F1,42 = 1,388, p < 0.001), and these relations 
remained significant without the six high N2O values (above-
ground: F1,37  =  16.75, p  <  0.001, below-ground: F1,47  =  315.75, 
p < 0.001). Higher grass leaf N uptake (T1) was related with lower 
N2O emissions until the end of the flood (T0–T1, F1,33  =  24.64, 
p < 0.001). During the recovery, this relation reversed as grasses 
with high N uptake (T2) related with higher N2O emissions (T1–
T2, F1,28 = 6.23, p < 0.05; removal of the six high points did not 
change significance). Legume leaf N uptake did not relate with 
N2O emissions during the flood (T0–T1) but was negatively re-
lated to N2O emissions during recovery (T1–T2, F1,13  =  55.18, 
p < 0.001). Below-ground, grass root N uptake was negatively re-
lated with cumulative N2O emissions during the recovery period 
(T1–T2, F1,28  =  24.15, p  <  0.001). Monocultures with higher re-
sistance emitted less N2O during the flood (T0–T1, F1,31 = 16.61, 
p  <  0.001, Figure  S3a), and higher recovery was related with 
lower N2O emissions afterwards (T1–T2, F1,27 = 136.11, p < 0.001, 
Figure S3b).

Grass monocultures with higher leaf C:N and lower leaf and root 
δ13C emitted less N2O emissions T0–T1 (Figure 6). Legume monocul-
tures with higher LDMC, leaf C:N, Ndfa, leaf Ca, root C, and root δ13C, 

and lower leaf δ15N, leaf Si, leaf K, and leaf S emitted less N2O during 
this period (Figure 6, for statistics, see Table S3).

Acquisitive grasses (a high PCA 1, Figure 1A) emitted less N2O 
than conservative ones during the recovery, T1–T2 (Figure  7A). 
Excluding the six high outliers, N2O emission from grass mono-
cultures during recovery were positively related with leaf C:N 
(opposite to the relation during T0–T1), leaf δ13C, leaf δ15N, root 
N and root δ13C, and negatively related with leaf N and root 
C:N (Figure  7). Cumulative N2O from legume monocultures was 
negatively related with Ndfa and SRL (Figure 7, for statistics, see 
Table S3).

3.5 | Flood-induced intraspecific trait variation

Leaf traits measured after the flood (T1) were distinctly grouped 
in flooded or control treatments (Figure S4a). Traits related to tis-
sue strength and stress tolerance were grouped, and negatively re-
lated with traits related to higher resource uptake (Figure S4a). The 
change in some traits differed between grasses and legumes (treat-
ment: functional group interaction; Figure S5; Table S4) and between 

F I G U R E  2   PCA biplots of the leaf economic spectrum (A) directly after flooding (T1) and (B) after the recovery period (T2) and the PCA 
biplot of (C) the root economic spectrum (T2)
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species (treatment: species interaction; Table S4). During the recov-
ery period, legume SLA increased and LDMC decreased in previ-
ously flooded monocultures compared to the control (Figure S5b). 
Previously flooded grass and legume monocultures became more 
acquisitive compared to the control (Figure  S5b). All other traits 
did not differ between previously flooded or control monocultures 
(Figure S5b), and traits were no longer grouped according to flood or 
control treatment (Figure S4b).

Flood-induced shifts in plant traits were not closely related 
to increases in resistance or recovery (Figure  S6). Lower flood-
induced N2O emissions T0–T1 were related with reductions in 
grass leaf δ13C (Figure S7). Legume monocultures that reduced leaf 
P, K and Ca emitted less N2O T0–T1 (Figure S7). After the flood, 
only grass leaf and root δ15N were positively related with N2O 

emissions, likely resulting from enrichment in soil δ15N with greater 
denitrification.

4  | DISCUSSION

We investigated whether plant traits and plant strategies could 
predict flood resilience and flood-induced N2O emissions. Plant 
traits related differently to flood resistance than to recovery, indi-
cating that different plant strategies are necessary for survival and 
regrowth, similar to drought studies (Ingrisch et  al.,  2018; Volaire 
et  al.,  2014). Conservative grasses better resisted flooding while 
acquisitive grasses recovered better. Legumes had lower flood re-
sistance but higher flood recovery than grasses, which was not 

F I G U R E  3   (A–T) Resistance relations with plant traits (measured in control conditions). Lines indicate significant relationship within 
grasses (yellow, n = 40) or legumes (blue, n = 20). One low point (Lotus corniculatus) was removed from (F), which did not change the relation. 
Brachiaria humidicola was removed from G, S, as it is a C4 species. For acronyms, see Table 1, for statistics, see Table S2



8  |    Functional Ecology ORAM et al.

related to their resource acquisition strategy. High resistance and 
recovery lowered cumulative N2O emissions regardless of the plant 
functional group, indicating that survival during and regrowth after a 
flood can mitigate N2O emissions. Identifying the underlying role of 
plant traits in grassland flood resilience and N2O emissions is a step 
towards designing flood-resilient managed grasslands that mitigate 
N2O. We considered the early growth stages of perennial grassland 
species and flooding in summer conditions. Longer-term studies that 
follow trait relations with resilience and N2O over different seasons 

are needed to increase our capacity to predict how managed grass-
lands will respond to flooding.

4.1 | Plant functional group and flood resilience

Grasses were more resistant than legumes, consistent with previous 
research on flooding (Ploschuk et al., 2017) and drought (De Boeck 
et  al.,  2018). In contrast, legumes recovered better than grasses 5 

F I G U R E  4   (A–P) Recovery relations with plant traits (measured in control conditions). Lines indicate significant relationship within 
grasses (yellow, n = 40) or legumes (blue, n = 20). Brachiaria humidicola was removed from G, O, as it is a C4 species. For acronyms, see 
Table 1, for statistics, see Table S2
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weeks after flooding, in line with Hofer et al. (2017) who found that 
legumes recovered quickly after drought. Thus, low resistance does 
not preclude fast recovery (Striker, 2012), and both resistance and re-
covery should be considered when selecting species for flood-resilient 
grasslands. The legumes T. pratense and T. repens produced the high-
est cumulative above-ground biomass in our experiment, aligning 
with the goal of sustaining high primary productivity in managed 
grasslands. Legumes are a vital component of managed grasslands 
as they can transfer biologically fixed N to surrounding non-legumes 
(Thilakarathna et  al.,  2016), promote C and N retention (De Deyn 
et al., 2009), and reduce the need for fertilizer while maintaining grass-
land yield (Fuchs et al., 2018). In combination with resistant grasses 
(e.g. L. perenne or F. arundinacea), legumes with high recovery could 
increase grassland yield stability in a climate with frequent floods.

4.2 | Plant traits and flood resistance and recovery

Resource-conservative grasses were more flood resistant while 
resource-acquisitive grasses had higher recovery after 5 weeks, in 
line with responses to drought (Ingrisch et  al.,  2018). Frequently 
flooded grasslands were found to favour conservative species with 
low SLA and high LDMC (Moor et al., 2017), and in a managed grass-
land, more conservative plant communities were found to better re-
sist repeated flooding (Oram, De Deyn, et al., 2020). After the stress 
has passed, acquisitive species could benefit from flood-induced in-
creases in nutrient availability (Wright et al., 2015), resulting in their 
fast recovery.

We found that other traits (measured in control conditions) not 
included in the resource acquisition strategy gradient could explain 
plant species resistance and recovery, and these relations generally 
differed between grasses and legumes. Grasses with a lower leaf 
and root δ13C in control conditions were more resistant to flooding. 
Leaf δ13C has been shown to decrease with increasing mean annual 
precipitation, indicating lower WUE (Diefendorf et al., 2010). Thus, 
plant species with a lower δ13C in control conditions may be better 
suited to wet environments, as they could keep their stomata open 
for longer. However, without knowing stomatal conductance, or 
proxies such as δ18O (Scheidegger et al., 2000), the extent to which 
the relation between inherent δ13C and resistance or recovery can 
be interpreted in terms of plant physiology is limited. The strong 
δ13C–resistance/recovery relations we find require further research 
to understand the underlying mechanisms and determine if inherent 
leaf and root δ13C can be reliably used to predict plant species flood 
resilience. Grasses with thicker roots had higher resistance, poten-
tially because they are less susceptible to damage and radial oxygen 
loss, promoting oxygen diffusion along the roots and allowing them 
to function in flooded conditions (Pedersen et  al.,  2020). Grasses 
with low leaf C:N, and leaf and root δ13C had higher recovery within 
5 weeks. These traits align with an acquisitive strategy, indicating 
potentially higher transpiration and faster N uptake.

We found that legumes with higher leaf P concentration better 
resisted the flood, in line with Striker and Colmer (2017). This signals 
that legumes with the capacity for higher P uptake (via characteris-
tics in root architecture, exudation or association with mycorrhizal 
fungi) may be better equipped to deal with flooding stress. Legumes 

F I G U R E  5   Cumulative N2O emissions in flooded and control conditions. Significant differences between monocultures are indicated by a 
small letter (non-flooded/control), or a capital letter (flood). Differences between flood and control within a plant species are indicated with 
a star
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with a higher Ndfa in control conditions were less resistant to flood-
ing, perhaps because legumes with higher symbiont dependence to 
meet their N nutrition suffer more when this symbiosis is potentially 
disrupted by flooding (Striker & Colmer, 2017). Legumes with higher 
SRL had higher recovery 5 weeks after flooding, possibly because 
legumes with fine roots are better able to take up nutrients post-
flood, improving recovery.

4.3 | Flood-induced N2O emissions

Flooding drastically increased N2O emissions, consistent with previ-
ous studies (Oram, van Groenigen, et al., 2020; Sánchez-Rodríguez 
et al., 2019). Plant species with a higher resistance and recovery miti-
gated flood-induced N2O emissions. Plant species with lower flood 
resilience could increase N2O emissions via dead plant litter that can 
be mineralized, as well as decreases in N uptake, both resulting in 
higher N availability for nitrifiers and denitrifiers. Plant species that 
recovered quickly likely mitigated flood-induced N2O emissions by 
taking up N, which is supported by the negative relation between 
root N uptake and cumulative N2O, as well as by increasing soil dry 
down and reducing soil water content.

Cumulative N2O emissions were only related with grass resource 
acquisition strategy in the recovery phase, and not during the flood, 

in contrast to our second hypothesis. Plant species with a high leaf 
C:N ratio had lower N2O emissions until the end of the flood, per-
haps because N-poor leaf litter is slower decomposing than N-rich 
litter (Roumet et al., 2016), and slower decomposition could underlie 
a negative relation between C:N ratio and N2O emissions in flooded 
conditions (Oram, van Groenigen, et al., 2020). Legume LDMC was 
negatively related with N2O emissions until the end of the flood po-
tentially also because of slower decomposition (Freschet et al., 2012). 
Post-flooding, resource-acquisitive grasses (high SLA and leaf N) had 
lower N2O emissions than conservative grasses. Acquisitive grasses 
also had higher recovery 5-week post-flood, which was related to 
lower N2O emissions. This is broadly in line with studies reporting 
that acquisitive, productive grasses can mitigate N2O emissions in 
non-flooded conditions (Abalos et al., 2018, 2020).

4.4 | Flood-induced intraspecific trait variation

We found that plant species subjected to flooding became more 
resource conservative, by increasing LDMC and reducing leaf N 
concentration, similar to studies showing that conservative species 
become more dominant in flooded environments (Moor et al., 2017; 
Oddershede et al., 2018). Flooding reduced grass leaf δ13C, indicating 
lower WUE (Farquhar et al., 1989), which signals that grasses were 

F I G U R E  6   (A–L) N2O emissions from flooded monocultures (T0–T1) were related with traits (measured in the controls). Lines indicate 
significant relationship within grasses (yellow, n = 40) or legumes (blue, n = 20). For acronyms, see Table 1, for statistics, see Table S3
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able to take up water and increase transpiration during the flood. 
In contrast, the legumes L. corniculatus and T. pratense increased 
their leaf δ13C (and thus WUE), a response frequently reported from 
drought studies (e.g. Mariotte et al., 2013). Flooding generally de-
creased leaf nutrient concentrations, but increased legume leaf Si. 
Silicon uptake has been linked to plant drought stress response, and 
can alleviate stress by increasing antioxidant enzymes and reducing 
oxidative damage (Thorne et  al., 2020). Effects of Si on transpira-
tion rates are variable, and uptake of Si in the transpiration stream 
is itself also altered by water availability (Brightly et al., 2020). The 
differing responses of leaf Si concentration between grasses and 
legumes potentially reflect the lower flood resistance of legumes 
compared to grasses: the increase in legume leaf Si could be a re-
sponse to this greater stress as Si can alleviate abiotic stress in leg-
umes (Putra et  al.,  2020). Five weeks after flooding, grasses and 
legumes became more acquisitive, increasing their SLA and reducing 
LDMC, compared to the same species that did not experience the 
flood. SLA can increase with growing season precipitation (Dwyer 
et al., 2014) and soil fertility (Ordoñez et al., 2009). The increase in 
N availability after flooding, supported by our finding that root N 

concentration of flooded plants was higher than non-flooded plants, 
could contribute to the shift in plant strategy.

4.5 | Flood-induced intraspecific variation in 
traits were not good predictors of resilience or 
N2O emissions

In contrast to our hypothesis, flood-induced trait shifts were not 
generally related to higher resistance or recovery except for grass 
SLA, which was reduced in response to the flood and related to in-
creased flood resistance. This could indicate a flood-tolerating strat-
egy (Moor et al., 2017), or a response to lower N availability during 
the flood, as grass SLA generally decreases with decreasing soil N 
(Knops & Reinhart, 2000). Flooding reduced leaf N concentration of 
all grasses, and the greater the decrease, the lower the resistance. 
Thus, the more flooding compromised N uptake, the less the species 
were able to resist. Overall, flood-induced intraspecific trait vari-
ation was not a good predictor of resilience or flood-induced N2O 
emissions.

F I G U R E  7   (A–L) N2O emissions from flooded monocultures (T1–T2) were related with traits (measured in the controls). Lines indicate 
significant relations; dashed lines include the six high points (n = 39), solid lines exclude these points (n = 33) for grasses (yellow) and 
legumes (blue, n = 20). For acronyms, see Table 1, for statistics, see Table S3
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5  | CONCLUSIONS

Flooding reduced plant biomass production and substantially in-
creased N2O emissions. Resource-conservative grasses were more 
flood resistant, whereas resource-acquisitive grasses recovered bet-
ter. More resilient plant species mitigated flood-induced N2O emis-
sions. Thus, combining grasses with different resource acquisition 
strategies and legumes could improve grassland flood resilience and 
mitigate flood-induced N2O emissions.
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