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REVIEW ARTICLE

Whey proteins: targets of oxidation, or mediators of redox protection

Linda Giblina , A. S€uha Yalçınb , G€okhan Biçimb , Anna C. Kr€amerc, Zhifei Chenc,
Michael J. Callanand , Elena Arranza and Michael J. Daviesc

aTeagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland; bDepartment of Biochemistry, School of Medicine, Marmara
University, _Istanbul, Turkey; cDepartment of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark;
dDepartment of Biological Sciences, Cork Institute of Technology, Cork, Ireland

ABSTRACT
Bovine whey proteins are highly valued dairy ingredients. This is primarily due to their amino
acid content, digestibility, bioactivities and their processing characteristics. One of the
reported bioactivities of whey proteins is antioxidant activity. Numerous dietary intervention
trials with humans and animals indicate that consumption of whey products can modulate
redox biomarkers to reduce oxidative stress. This bioactivity has in part been assigned to
whey peptides using a range of biochemical or cellular assays in vitro. Superimposing whey
peptide sequences from gastrointestinal samples, with whey peptides proven to be antioxi-
dant in vitro, allows us to propose peptides from whey likely to exhibit antioxidant activity in
the diet. However, whey proteins themselves are targets of oxidation during processing par-
ticularly when exposed to high thermal loads and/or extensive processing (e.g. infant formula
manufacture). Oxidative damage of whey proteins can be selective with regard to the residues
that are modified and are associated with the degree of protein unfolding, with
a-Lactalbumin more susceptible than b-Lactoglobulin. Such oxidative damage may have
adverse effects on human health. This review summarises how whey proteins can modulate
cellular redox pathways and conversely how whey proteins can be oxidised during processing.
Given the extensive processing steps that whey proteins are often subjected to, we conclude
that oxidation during processing is likely to compromise the positive health attributes associ-
ated with whey proteins.
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Introduction

Milk proteins (whey proteins (�20%) and caseins
(80%)) are high-quality sources of amino acids (AA) in
the human diet. Bovine milk proteins and peptides
play important roles in human health not just in
terms of nutrition but also in terms of their notable
bioactivities. The major bovine whey proteins are
a-Lactalbumin (a-Lac) and b-Lactoglobulin (b-Lg) with
immunoglobulins, bovine serum albumin (BSA) and
lactoferrin as minor proteins (Table 1). Whey proteins
provide a complete protein source and are rich in
both sulphur-containing and branched-chain AAs.
Whey proteins do not coagulate under the acidic con-
ditions present in the stomach, and are considered
to be “fast proteins” since they reach the jejunum
shortly after entering the gastrointestinal tract and
have a digestible indispensable AA score of 1.09 [1].
Whey proteins exhibit a wide range of bioactivities
including antioxidant, antibacterial, antifungal,

antiviral, antihypertensive, antithrombotic, opioid and
immunomodulatory properties [2]. Consequently,
whey products are recognised as value-added ingre-
dients and are commonly used in the sports nutrition
market, nutritional beverages for the elderly and infant
formula (IF) [3]. These products are also prized in food
formulation as they improve product quality by water-
binding, stabilising aerated food products and acting
as emulsifying agents [4]. Whey products can be sup-
plied as ingredients for food formulations as whey pro-
tein concentrate (WPC), whey protein isolate (WPI) or
as whey hydrolysates (WH) all of which differ in the
degree of processing and protein content (Table 2).
However, numerous processing steps from milk to
whey powder to food formulation inherently expose
whey proteins themselves to redox modifications. This
review summarises how whey proteins can modulate
cellular redox pathways and conversely how whey pro-
teins can be oxidised during processing.
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Whey proteins and their ability to modify
redox pathways – studies in animal models
and humans

The antioxidant and detoxifying bioactivities of whey
proteins are most likely linked to their contribution to
glutathione (GSH) synthesis, recently reviewed in
Corrochano et al. [5]. Whey proteins are rich in Cys with
b-Lg containing 5 Cys residues, a-Lac has 8 Cys, BSA
has 35 Cys and lactoferrin contains 34 Cys, although in
each case the majority of Cys is present as disulphide
bonds. The thiol (R-SH) group of Cys reacts rapidly with
many oxidants. This AA when present with Gly and Gln
in the tripeptide, GSH, is an important cofactor and
antioxidant in mammalian cells and tissues. Reduced
GSH, is readily oxidised to the disulphide species, oxi-
dised glutathione (GSSG), with the latter then readily
recycled by the enzyme GSH reductase, at the expense
of nicotinamide adenine dinucleotide phosphate
(NADPH), back to its reduced form. Other oxidised spe-
cies can however also be formed from GSH including
GSH sulphonamide and oxy acids, with the latter spe-
cies being irreversible products. GSH detoxifies a num-
ber of endogenous and exogenous toxins including
toxic metals, petroleum distillates, lipid peroxides, qui-
nones, bilirubin and prostaglandins through direct con-
jugation. Cell lines (e.g. C2C12, MRC-5, PC12, Caco2,
HUVEC, 9HTEo, HepG2, and REPE-1) exposed to various
whey products (WPC and WPI) have documented
increases in GSH levels with some exceptions [5]. Whey
products have also been reported to increase activities
of the protective enzymes superoxide dismutase (which
removes superoxide radicals) and catalase (which
reduces H2O2 to water) and decrease levels of reactive
oxygen species, lipid peroxidation and DNA damage in
cellular assays [5]. However using cell lines with whole
proteins has its limitations, not least of which is the
altered redox homeostasis of immortalised cell lines [6]

and the nonphysiological exposure of cells to intact
dietary proteins.

Human or animal intervention trials with diets that
include whey products are the best assessment of
impact on cellular redox pathways although reliable
and consistent data with well-defined biomarkers is
rather limited. In a significant number of cases generic
and non-specific assays of antioxidant activity have
been used, which is not ideal. Table 3 lists rat and
mouse studies with a focus on redox parameters, where
animals consumed different whey products (WPC and
WPI) at a dosage of 0.02–1 g/kg body mass over a
period of 7–84 d. Redox biomarkers were measured in
liver, brain, erythrocyte, muscle, serum, kidney, colon,
salivary gland or parathyroid gland in the presence or
absence of various stressors (exercise, diabetes, heat,
brain injury, hepatotoxicity, dyslipidaemia, schizophre-
nia or aflatoxin). Although conflicting data have been
reported [7], the majority of trials have reported
increases in GSH and other antioxidant markers.
However exactly which species, and what concentra-
tions, are responsible for these changes is unclear in
most cases. Human dietary whey intervention trials
with a focus on redox readouts have been reviewed
previously by Corrochano et al. [5], with additional trials
detailed in Table 4. These intervention trials generally
recruit participants for, on average, a 3-week study with
or without an exercise routine, measuring plasma GSH
as an indicator of whole body redox status. Many stud-
ies report increases in plasma GSH from time zero with
whey intervention but others observe no effect on
plasma GSH levels (Table 4) [8,9]. Whether or not a sin-
gle redox analyte detected at very low levels in the
plasma is a good biomarker of redox state at a global
or local tissue level is debatable [10,11].

There is also some evidence from intervention
trials that whey proteins may decrease plasma GSH lev-
els, cause heart damage and liver injury [12,13]. Oral

Table 1. Bovine whey proteins.
Bovine whey protein Concentration (g/L) in bovine milk Molecular mass (kDa) AAs

Total 7
b-Lactoglobulin 3.5 18.3 162
a-Lactalbumin 1.2 14.2 123
Immunoglobulins 0.7 150–900 Variable
Bovine serum albumin 0.4 66.4 583
Lactoferrin 0.02–0.35 80 700

Table 2. Composition of different bovine whey products.
Whey powder type Protein (%) Fat (%) Lactose (%)

Whey protein concentrate (WPC) 34–80 1–7 4–52
Whey protein isolate (WPI) 90–95 0.5–1 0.5–1
Hydrolysed whey protein (WH) 80–90 0.5–8 0.5–10
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Table 3. Animal studies with different whey products and the antioxidant responses reported.
Bovine whey product, sourcea Dose and time Species/tissue/organ/disease Resultsb Reference

WPC, Dairy
Cooperative Poland

0.3 g/kg; 7–14 d Rat; salivary gland,
parotid gland

"GSH; "GSH-Px; "SOD; WPC
improved redox
homeostasis in
salivary glands

[131]

WPC, Dairy
Cooperative Poland

0.3–0.5 g/kg; 7–21 d Rat; liver " hepatic GSH; " hepatic MDA [132]

WPC, Davisco 0.02–0.04–0.06–0.08–0.1 g/kg
bw (30 d)

Rat; CCl4 hepatotoxicity; liver #MDA; WPC prevented liver
damage induced by CCl4

[133]

Un-denatured WP,
ProtherV

R

, Italy
18%; 3 weeks Rat; CCl4 hepatotoxicity; liver "GSH [134]

WP, Green Land for Food
Industries, Egypt

10%; 28 ds Rat; CCl4 hepatotoxicity; liver, #MDA; "GSH [135]

WPC, Davisco 0.1 g/mL; 30 d Rat; CCl4 hepatotoxicity; liver, #MDA; "CAT; "GST [136]
WPI, Davisco 0.1 g–0.2 g/kg; Rat; lipolysaccharides/

liver, serum
"SOD; #DNA damage;

#Caspase-3 (apoptosis)
[137]

WPC, Davisco 0.3 g/kg; 30 d Rat; sflatoxin-contaminated
diet; liver, testes

"GSH, #LP, #DNA damage;
WPC prevents genotoxicity
of aflatoxins

[138]

WPC, Davisco 0.3 g/kg; 30 d Rat; aflatoxin-contaminated
diet; liver, testes

"GSH, #LP, #DNA damage;
WPC reduced oxidative
stress induced by aflatoxins

[139]

WPC, Probiotica 0.15 g/kg; 8 weeks Rat; exercise model;
muscle, liver

WP increased hepatic GSH
and protected against
exercise induced muscle
protein oxidation

[140]

WPI, Diamond Whey, Italy 20% Mouse; exercise model;
muscle, liver

#LP; #GSH/GSSG [141]

WPC, Camillotek, India 0.3 g/kg; 28 d Rat; erythrocyte from young
and aged animals

#T-SH; #sialic acid; " ipid
hydroperoxides; " protein
carbonyls; WPC restores
redox status in erythrocytes

[142]

WPI, Davisco 0.15 g/kg; 28 d Rat; non-alcoholic fatty liver " hepatic GSH, #hepatic MDA [143]
WP, Immunocal 3.3% twice daily; 28 d Mouse; traumatic brain injury "GSH/GSSG; prevented

reduction of GSH/GSSG
in brain

[144]

WPI, Bioplex Nutrition, USA 100 g; 12 weeks Mouse; brain mitochondria #MDA; #4-hydroxyalkenals;
increased brain
mitochondria activity

[145]

WP, Immunocal 0.66 g/kg; 60 d Mouse; ALS model Treatment prevented disease-
associated reductions in
whole blood and spinal
cord tissue GSH

[146]

WPC 0.3 g/kg; 28 d Rat; neurodegeneration; brain "Beclin-1; "Atg-3 (Autophagy);
"FRAP; #PC; "T-SH; #ROS;
#NO; "acetylcholinesterase

[142]

WPI, Immunocal 0.33 g/mL; 6 weeks Mouse; schizophrenia
model; brain

"GSH/GSSG ratios; "GSH [147]

WP, Turkey WP supplemented diet; 21 d Rat; burn injury model;
liver, kidney

Whey protein suppressed
burn-induced changes in
hepatic and renal tissue

[148]

WP, Turkey WP supplemented diet; 21 d Rat; experimental laparotomy
and colonic anastomosis;
liver, abdominal wall, colon

Whey protein
supplementation increased
GSH and suppressed MDA
in different tissues

[149]

WPI, Balance Muscle
Technologies, New Zealand

150—250 g/kg; 4 weeks Rat; HLAP; colon No change DNA damage [150]

WP, mozzarella cheese 10 g/100 g; 6 weeks Rat; iron overload; toxicity;
plasma, erythrocyte

"SOD, "GSH, no change GSH-
Px in erythrocytes; no
change plasma VitE; WP
had antioxidative and
antigenotoxic effects

[7]

WP, Immunocal 0.1 g; 4 weeks Murine; iron overload/toxicity #MDA; #Hexanal; "GSH-
Px; "GSH

[151]

aWPI: whey protein isolate; WP: whey protein, type not specified; WPC: whey protein concentrate.
bGSH: glutathione; GSH – Px: glutathione peroxidase; CAT: catalase; GPT: glutamic-pyruvic acid transaminase; ALP: alkaline phosphatase; SOD: superoxide
dismutase; GST: glutathione S-transferase; GSSG: oxidised glutathione; LP: plasma lactate; T-SH: total thiol; PC: protein carbonyl; ROS: reactive oxygen
species; NO: nitric oxide; MDA: malondialdehyde, CCl4: carbon tetrachloride.
FRAP: ferric-reducing antioxidant power.
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Table 4. Human intervention trials with whey products and physiological response.
Bovine whey producta Description of the study Resultsb Reference

WPI undenatured Open-labeled clinical trial, 38 patients with
non-alcoholic steatohepatitis were given 20 g
whey protein isolate for 12 weeks.

Improvements in liver biochemistries, increased
plasma GSH, total antioxidant capacity, and
reduced hepatic macrovesicular steatosis in
patients compared to time zero (study start).

[152]

WPI 23 cancer patients received 4 0g WPI plus
2.64mg zinc and 0.76mg selenium oral
snack for 12 weeks compared to a control
group (n¼ 19) who received 40 g
maltodextrin.

Baseline assessments at 6 and 12 weeks.
Controls showed a significantly lower %
change in plasma GSH levels whereas there
was a significant time-dependent increase in
the intervention group from time zero to 12
weeks and between whey and maltodextrin
intervention at both 6 weeks and 12 weeks.

[153]

WP A pilot open-label study of dietary
supplementation with pressurised whey in
27 cystic fibrosis patients. Whey dosage:
20 g/d in patients <18 years and 40 g/d in
older patients for 1 month.

Whole blood glutathione levels did not change
from time zero to 1 month. Oral
supplementation with pressurised whey
improves nutritional status and can have
additional beneficial effects on inflammation
in patients with cystic fibrosis.

[8]

WPC immunocal 10 cystic fibrosis patients received whey
protein isolate (20 g/d) for 3 months
compared to a cystic fibrosis control group
(n¼ 11) who received a casein placebo.

46.6% increase from time zero was observed in
the lymphocyte GSH levels with whey.

[154]

WPI 5 d of energy balance, energy deficit, and
resistance exercise after energy deficit. 8
males and 7 females healthy resistance-
trained subjects completed resistance
exercise and consumed either placebo or
30 g whey protein immediately post-exercise.

Muscle biopsies were obtained at 1 and 4 h
into recovery in each trial. Resting protein
levels of autophagy-related gene protein 5
decreased after energy deficit compared
with placebo.

[155]

WPI Acute study 4 h: Healthy, 9 sedentary male
subjects fed two doses (0.8 or 1.6 g/kg
body mass).

No effect of the supplementation at either
dose over the 4-h sampling period on blood
glutathione concentration.

[9]

Chronic study: 18 males subjected to 6-week
aerobic (bike) training period and whey
supplementation

The aerobic training period resulted in
significantly lower glutathione
concentrations in whole blood, an effect
that was mitigated by WPI supplementation.

WPI WPI (40 g/d) were supplemented to 31
overweight people with impaired fasting
glucose/DM2 for 12 weeks.

An increase in glutathione peroxidase, a
decrease in uric acid and no change in
glutathione reductase, total antioxidant
status, oxidative damage, inflammation and
glucose markers were observed at 12 weeks
compared to time zero.

[156]

Significant improvements in anthropometric
parameters and fat mass were also detected.

WPI Whey protein supplementation (30 g, three
times per day) and resistance training in 10
overweight young men compared to a
control group and resistance training
only group.

Increased levels of total antioxidant capacity
and GSH was observed after whey
supplementation compared to other
treatment groups and compared to pre-test.
Plasma vitamin C levels were significantly
increased with whey supplementation
compared to pre-test. Although exercise can
lead to antioxidant system improvement and
reduce some cardiovascular risk factors
among overweight subjects, the combination
of resistance training and whey consumption
was more effective.

[157]

WPI immunocal The effects of WPI supplementation (20 g/d) for
6 months on 15 Parkinson’s disease patient
was compared to 16 patients on soy protein
supplementation.

Significant increases in plasma concentration of
reduced GSH and the ratio of reduced to
oxidised glutathione were found in the 15
WPI-supplemented patients compared to
baseline. This was associated with a
significant decrease of plasma levels of
homocysteine.

[158]

WPI immunocal or irotectamin Oral supplementation with two different Cys-
rich whey protein formulas for 30 HIV-
infected patients. Patients were randomised
to a supplemental diet with a daily dose of
45 g of whey proteins.

Oral supplementation with Protectamin
significantly increased plasma GSH levels in
patients with advanced HIV-infection
compared to baseline.

[159]

WPC A double-blind clinical trial for 4 months with 9
HIV-infected children (6 years) who received
whey protein (month 1¼ 20% RDA protein,
month 2¼ 30% RDA, month 3¼ 40% RDA,

WPC supplementation significantly increased
erythrocyte GSH levels and significantly
decreased CD8þ cells compared to baseline.

[160]

(continued)
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gavage of adult male Sprague Dawley rats (n¼ 6) with
the environmental pollutant acrolein (0.005 g/kg
body weight/d) for 30 d resulted in a significant
decrease in GSH levels (8.38 ± 1.17 nmol/mg protein) in
red blood cells compared to the control group
(11.31 ± 1.63 nmol/mg protein) (p< .05) [12]. Addition
of whey protein at a dosage of 0.2 g/kg body weight/d
did not halt the loss of GSH. In addition, this co-treat-
ment with whey protein exacerbated an observed
increase in plasma homocysteine levels and creatine
kinase levels induced by acrolein, such that the levels
of these markers in the co-treatment group were signifi-
cantly higher than in the controls. This led the authors
to hypothesise that intake of acrolein together with
whey proteins may cause heart damage in rats [12].
Liver may also be adversely affected by whey treat-
ment. G€urgen et al. [13] investigated liver health in
Wistar albino male rats (n¼ 10) after a whey protein
diet for 5 d (short-term) or 4 weeks (long-term). Hepatic
injury was observed by abnormal hepatocyte histology
and significantly increased levels of serum aspartate
amino transferase and hepatic interluekin-1b in rats
that consumed whey compared to the control group,
with the markers of liver injury worsening with increas-
ing time of exposure to whey protein diet (p< .05).

Bioavailable antioxidant whey peptides

In addition to providing essential AAs and reduced
thiols (Cys residues), whey proteins also contribute pep-
tides with potential antioxidant activity [5,14,15].
However to be bioactive beyond the gut, whey pepti-
des must survive gut transit and be bioavailable to their
target [16]. The harsh conditions of the upper gastro-
intestinal tract function to hydrolyse proteins into indi-
vidual AAs for transport across the intestinal barrier.
Several recent studies have tracked the fate of whey
proteins during upper gastrointestinal digestion using
in vitro digestion models [14,17–20] or gastric [18,21]
and jejunal effluents [22,23] from pigs [18,21,24] and
humans [19,22,23] post consumption of various dairy
foods (IF, WPI, skim milk powder, unpasteurised milk,

whey powder, and lactoferrin). Based on these studies,
Table 5 lists locations within individual whey proteins
from which peptides have been identified in the intes-
tinal phase. b-Lg has four gut-resistant “hotspots;” con-
sisting of fragments (f) with the following amino acid
residues from the primary sequence f(41–58), f(92–100),
f(126–138) and f(149–154). a-Lac also has 4 hotspots;
f(17–27), f(63–68), f(80–90) and f(97–102). BSA has 5;
f(11–18), f(107–114), f(219–224), f(489–495) and
f(514–518). Lactoferrin has 7; f(67–77), f(140–145),
f(216–228), f(289–295), f(309–318), f(332–337) and
f(592–594). This suggests that these regions of the pri-
mary sequence are somewhat resistant to gastrointes-
tinal digestion and peptides from these hotspots may
survive the gut long enough to be transported across
the intestinal barrier. Certainly, the presence of proline
and/or aspartic acid, or glutamic acid residues within a
peptide appears to confer a resistance to gastrointes-
tinal digestion [23]. It should also be noted that peptide
profiles differ according to degree of processing [24].
Table 5 also details whey peptides that have been
reported to have potential redox activity encrypted
within these hotspots [5,25–35]. These whey peptides
have been reported to show redox activity in the ferric-
reducing antioxidant power assay (FRAP), 2,20-azino-
bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay,
oxygen radical absorbance capacity assay (ORAC) or the
1,1-diphenyl-2-picrylhydrazyl (DPPH) radical assay. It
should however be noted that all of these assays are
generic in vitro assays conducted in the absence of
alternative targets, and hence the data cannot be read-
ily translated to more complex systems. In some cases,
however, they have also been shown to boost cellular
antioxidant status, albeit in vitro [5,15]. Cross matching
gastrointestinal resistant hotspots to antioxidant bio-
activity allows us to propose a list of potential antioxi-
dant whey peptides likely to arrive in the bloodstream,
post whey consumption. Little is known about peptides
derived from whey circulating in the bloodstream.
Jakobsson et al. [36] quantified a-Lac (140–250 mg/L
serum/L human milk/kg body weight) by radioimmuno-
assay in blood plasma from 1 month old breastfed

Table 4. Continued.
Bovine whey producta Description of the study Resultsb Reference

month 4: 50% RDA) compared to
control group.

WPI, pressurised 2-week period, 18 healthy males and 18
healthy females were randomised into three
different groups. Each group ingested 15,
30, or 45 g/d pressurised whey protein in
the morning in bar format for 14 d.

Increases in lymphocyte GSH levels from pre to
post supplementation was affected by the
amount of whey protein ingested, with
45 g/d of whey supplementation over
2 weeks increasing lymphocyte GSH by 24%
from baseline.

[161]

aWPI: whey protein isolate; WP: whey protein, type not specified; WPC: whey protein concentrate.
bGSH: glutathione.
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infants (n¼ 3), 30–60min after feeding. Kuitunen et al.
[37] also reported that plasma from 20 full term infants
was positive for a-Lac and b-Lg, levels of which
declined over time (almost 60% reduction by 8 months
of age) as the infant gut barrier matured. No informa-
tion on the sequences of the bioavailable peptides was
provided. However, we have recently identified a num-
ber of antioxidant whey peptides post in vitro gastro-
intestinal digestion capable of traversing the tight
junctions of Caco2-HT29 monolayers (a widely accepted
model for the intestinal barrier) and arriving in the
basolateral compartment [15].

Redox modification of whey during processing

As whey products typically undergo several processing
steps from milk to final food matrix, there is substantial
evidence that processing can induce or exacerbate
redox reactions that modify whey proteins. At the out-
set, milk produced for consumer consumption is heat-
treated to kill bacteria and increase shelf life. Multiple
methods are used including low (e.g. 15 s at 74 �C),
high (e.g. 15 s at 90 �C), and ultrahigh (e.g. 145 �C for a

few seconds) temperature treatments. Most commercial
milk is also homogenised by high pressure treatment to
reduce fat globule size. Bovine liquid whey is then pro-
duced by either the enzymatic treatment of milk (sweet
whey) or by the addition of acids or minerals (acid
whey) both of which result in the precipitation, and
therefore removal, of caseins. Significant modifications
on whey proteins occur with processing, due to heat
treatment (pasteurisation and spray drying), exposures
to high pressures (e.g. during homogenisation), light
exposure, the use of sterilisation/disinfection agents
such as H2O2 (permitted at concentrations � 16mM in
the USA [38]), high pH values (employed to give hydro-
lysed protein samples e.g. for IF) and long-term expos-
ure to reducing sugars (e.g. lactose, glucose, galactose.
and products from these).

Oxidation, glycation, and racemisation of
whey proteins

Thermal treatment of milk and milk products can result
in a significant increase in the level of oxidative modifi-
cation and formation of protein carbonyls (with the

Table 5. Whey peptide sequences resistant to upper gastrointestinal digestion and antioxidant peptides encrypted within
these sequences.

Whey proteina,b
Hotspots: location of peptide sequences resistant

to gastrointestinal digestionc Antioxidant whey peptides within these hotspotsb,c,d

b-Lg
[14,20,22,23,162]

f(41–58) f(40–48), f(42–46), f(42–47), f(43–49), f(43–51), f(45–57),
f(50–56), f(52–61), f(55–61), f(56–62), f(58–61)
[26–28,32,33]

f(92–100) f(89–96), f(92–100), f(94–100), f(95–101), f(95–110), f(96–105),
f(96–100)
[25,27–29]

f(126–138) f(122–131), f(122–134), f(123–131), f(123–134), f(123–135),
f(124–131), f(125–135)
[25,30]

f(149–154) f(145–149), f(149–156), f(150–160), f(151–162)
[26,27,31]

a-Lac
[14,20,22,23]

f(17–27) f(13–19), f(15–22), f(16–23), f(19–20), f(25–26)
[27,33]

f(63–68)
f(80–90) f(82–88)

[27]
f(97–102) f(99–102), f(101–104)

[15,34]
BSA
[14,22]

f(11–18)
f(107–114)
f(219–224)
f(489–495)
f(514–518)

Lactoferrin
[14,19]

f(67–77)
f(140–145)
f(216–228) f(228–229)

[35]
f(289–295)
f(309–318)
f(332–337)
f(592–594)

aWhey proteins: b-Lactoglobulin (b-Lg), a-Lactalbumin (a-Lac), and bovine serum albumin (BSA).
bReferences are in square brackets.
cPeptide location (fragment) on primary sequence of whey protein is stated as name of whey protein, fragment (position from amino acid to amino acid)
for example b-Lg f(41–58).
dAmino acid in italic indicates the start or end of the antioxidant peptide sequence falls outside the gut resistant hotspots.
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sites of some of these characterised [39]) and crosslinks.
The levels of these materials have been proposed as a
marker of milk powder quality [40]. The highest levels
of protein oxidation products have been reported to be
present in powdered IF [39,41–44]. a-Lac has been
reported to show enhanced oxidation compared to
b-Lg [45]. A recent study has reported that thermal
treatment can induce reducible (disulphide) crosslinks
in isolated b-Lg (100 mM), but not isolated a-Lac
(150 mM) in both the absence and presence of H2O2

(500 mM), which appears to be associated with the pro-
tein unfolding and the accessibility of the free Cys-121
residue on b-Lg [46,47]. Blocking this thiol prevented
cross-link formation, underlining the importance of this
residue. Mixed cross-links between b-Lg and a-Lac were
detected when both proteins were co-treated [47].
Disulphide cross-links can also be generated via thiol-
disulphide exchange (i.e. nonoxidative) reactions, with
these occurring via attack of a free thiol (and usually the
more reactive anion form) on a disulphide bond, with
this resulting in an exchange of partners, and hence
cross-link formation [48,49]. This process occurs more rap-
idly at higher temperatures and on protein unfolding, as
this increases the accessibility of reaction sites [48]. These
reactions can be enhanced by the addition of free thiols
[50] and higher Ca2þ concentrations [51].

Exposure to both heat and H2O2 appears to have a
greater effect than either agent alone, with this
ascribed to the occurrence of a mechanism involving
the formation of a sulfenic acid (RSOH species) at
Cys121 in b-Lg mediated by H2O2, once this residue is
made accessible by thermal unfolding [46,47]. Limited
loss of Met and Trp (at very high H2O2 concentration)
has also been detected with both b-Lg and a-Lac on
treatment with heat and H2O2 [46,47]. Increased expos-
ure to heat (longer times and higher temperatures) and
higher concentrations of H2O2 have been shown to
enhance the extent of modification, as do combinations
of these two factors [46,47]. No protection against dam-
age was detected when radical trapping agents were
included, indicating that these are molecular (two elec-
tron) and not radical (one electron) reactions [46].
These data indicate that oxidative damage can be
selective with regard to the residues that are modified,
and that unfolding of the proteins is a critical factor
with regard to the extent of damage. Decreasing heat
loads and oxidant exposure would therefore be
expected to minimise whey protein modification.

Photo-oxidation arising from light exposure of milk
preparations containing riboflavin (vitamin B2, an
endogenous component of milk) can induce changes in
milk protein structure (e.g. polymerisation, secondary

and tertiary structure of specific proteins), as well as
inducing the formation of protein carbonyls, the Tyr
oxidation products, di-tyrosine (di-Tyr) and 3,4-dihy-
droxyphenylalanine (DOPA), and the Trp-derived spe-
cies, N-formylkynurenine (NFK) and kynurenine (Kyn)
[52,53]. Different oxidant systems can therefore gener-
ate different patterns and extents of damage, and
involve alternative mechanisms, though the overall
effects (e.g. aggregation) may be similar. Light exposure
has been used as a nonthermal technology to control
pathogens and extend product shelf-life but this may
result in increased formation of carbonyls and hence
protein damage [54].

Presence of oxidation, glycation, and
racemised whey proteins in IF

Whey protein modification is a potential health risk
for infants fed with IF, and there is convincing data
that indicates that breastmilk has considerable health
benefits (reviewed [55]). Table 6 summarises the large
number of different types and levels of protein modi-
fications detected in IF samples. At a macromolecular
level, these include both reducible (presumed to be
disulphide-linked species, due to their loss on diothio-
threitol treatment) and (multiple types of) nonreduci-
ble protein aggregates [56]. Evidence has been
presented for the cross-linked species di-Tyr (a species
arising from radical reactions), as well as lysinoalanine
(LAL), lanthionine (LAN), and the precursor species for
the latter two products, dehydroalanine (DHA) (Table
6) [56,57]. Whether the DHA arises from base-cata-
lysed or radical-mediated reactions are unknown.
Significant levels of protein carbonyls are also present
in the samples, as detected by assaying total carbonyl
content and also by using immunoblotting on pro-
teins separated by SDS-PAGE, with the latter experi-
ments indicating that a significant quantity of the
carbonyls is present on high-molecular-mass aggre-
gates [56]. The exact nature of the proteins involved
and the sites within these proteins remain to be
determined, though it is clear that there are signifi-
cant structural changes to the IF proteins induced by
processing [58].

Modifications have also been detected on IF proteins
at the AA level, with evidence reported for the forma-
tion of Trp oxidation products (N-formylkynurenine,
NFK; kynurenine, Kyn; and 3-hydroxykynurenine,
3OHKyn), di-Tyr, Phe-derived materials (3-hydroxyPhe,
m-Tyr) and the Met oxidation product, methionine sulf-
oxide [56,59]. Some of these species are consistent with
the species detected on isolated whey proteins
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exposed to specific oxidant systems (e.g. heat/H2O2 and
also light in the presence of riboflavin) [46,47,52,60,61].
A number of the species detected are consistent with
the occurrence of radical reactions (e.g. di-Tyr, which
appears to be only formed by radical reactions), but
others (e.g. methionine sulfoxide) can be formed by
both radical and molecular (two electron) processes
(e.g. direct oxidation by H2O2) [62]. A number of these
materials may undergo additional reactions (e.g. redox
cycling) that may exacerbate damage [63].
Furthermore, some of these products (e.g. those from
Trp) may have multiple biological activities and contrib-
ute to disease, if taken up [64].

IF also contain significant levels of advanced glycation
endproducts (AGE) materials including the early stage
product furosine, and well-characterised AGEs including
NE-(carboxymethyl)lysine (CML), NE-(carboxyethyl)lysine
(CEL), pyrraline, and protein crosslinks, such as pentosi-
dine (from Lys and Arg residue linked by a pentose),
glyoxal lysine dimer (GOLD), methylglyoxal lysine dimer
(MOULD), and Arg-derived products such as argpyrimidine
and hydroimidazolone isomers [56,65–72]. The levels of
these materials have been examined using a wide variety
of both direct and indirect methodologies [66,73,74]. AGE
is a chemically heterogeneous group of compounds. AGE
formation in dairy products involve Maillard reactions, but

Table 6. Selected values of concentrations (nmol/mg protein except where otherwise indicated) of protein oxidation products,
advanced glycation endproducts (AGEs) and racemised AAs present in powdered infant formula samples.

Concentrations of oxidation products in infant formula samples

Products Intact protein IF Hydrolysed protein IF

Protein carbonyls 2.88a

8.6–60.9 [41]
19.4 [42]
6.5 [40]

0.85b

18.3 [42]

Dehydroalanine (DHA) 0.47a 0.58b

Lanthionine (LAN) 0.01a 0.09b

Lysinoalanine (LAL) 0.03a

Below limit of detection [57]
18.2 ng mg�1 protein [42]
150–920 ng mg�1 protein [163]
Higher values detected in liquid IF
samples [164,165]

0.29b

63.3 ng mg�1 protein [42]

Meta-tyrosine 0.97a 1.83b

Kynurenine 1.58a 4.54b

3-hydroxykynurenine 2.82a 7.40b

Methionine sulfoxide 64.97a 24.82b

Dityrosine 3.12a

2.95a

1.3 [42]

6.46b

1b

6.8 [42]
Carboxymethyllysine (CML) 36.3a ng mg�1 protein

60.1 ng mg�1 protein [42]
�12 and �145 ng mg�1 for low-temperature
treated, and high-temperature heated IF
respectively [125]
1.2 ng mg�1 protein [66]

81.0b ng mg�1 protein
212.4 ng mg�1 protein [42]

Furosine 2.3a mg mg�1 protein
5.6 mg mg�1 protein [42]
�2.7 mg mg�1 protein [66]
8.0–19.4 mg mg�1 protein [74]
13.2�15.5 mg mg�1 protein [166]
0.21–0.81 mg mg�1 protein [167]
�0.25�1.05 mg mg�1 protein [168]
7.0 mg mg�1 protein [169]

3.5b (mg mg�1 protein)
2.4 mg mg�1 protein [42]
2.6 mg mg�1 protein [74]
0.52–0.81 mg mg�1 protein [167]
�0.6�0.9 mg mg�1 protein [168]

D-His 2.7a,c 2.5b,c

D-Lys 1.6a,c 4.3b,c

D-Phe 1.4a,c 3.4b,c

D-Tyr 1.1a,c d

D-Arg 5.5a,c 32.0b,c

D-Ala 1.3a,c d

D-Ile 0.3a,c d

D-Leu 0.7a,c 1.4b,c

D-Met 7.2a,c d

D-Ser 0.5a,c d

D-Val 4.3a,c 0.3b,c

Data from [113] except where otherwise indicated.
aMean data from three commercial brands.
bData from three replicate measurements from a single commercial brand.
cData expressed as % of D-isomer relative to total (Dþ L) isomers.
dNot detected.
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the reaction conditions differ greatly depending on ther-
mal load during processing [75,76]. Multiple AGEs have
been characterised in foods (for a review of experimental
methods, see Aalaei et al. [77]) and in human tissues, pos-
sibly as a result of dietary exposure, including the Lys-
derived products: NE-(carboxymethyl)lysine (CML), NE-(car-
boxyethyl)lysine (CEL), pyrraline, and protein crosslinks
such as pentosidine (from Lys and Arg residue linked by a
pentose), GOLD, MOULD and Arg-derived products includ-
ing argpyrimidine and hydroimidazolone isomers.
Changes in AGE levels, most commonly measured by
mass spectrometry [65], have been used to assess glyca-
tion/glycooxidation status in foods [78,79].

Analyses for the presence of D-AAs showed that sig-
nificant levels of these un-natural AA isomers are also
present, though whether these arise via oxidation or
high temperature/high pH reactions is unclear [56]. In
some cases the levels of these species are very high,
but it is impossible to eliminate the possibility that
some of these arise during processing for analysis,
rather than these being present endogenously. Further
work needs to be carried out to clarify this point.

Comparison of IF samples containing native bovine
proteins with those that contain hydrolysed proteins
(hypoallergenic brands, which contain predominantly
small peptides and free AAs), shows that most markers
of modification are consistently present at higher levels
in IF with hydrolysed proteins [56]. This has been
ascribed to the additional processing required to gener-
ate these samples (i.e. longer and more complex pro-
duction times) as well as the decreased steric and
electronic hindrance for reactions at free AAs/small
peptides when compared to intact proteins. Thus many
modification reactions occur more rapidly with small
peptides/free AAs, than with intact proteins, though
this is not always the case. For glycation reactions, a fur-
ther factor that may enhance the extent of modification
in the hydrolysed protein brands, is the elevated level
of N-terminal amines generated on proteolysis of the
original protein peptide bonds [80]. This may be a sig-
nificant contributor to the higher levels of AGEs present
in these samples. However, the levels of side-chain
derived species, such as furosine and CML (formed from
reaction at the e-amine group of Lys side-chains) have
also been reported to be approximately double those
present in the intact protein brands [56].

Biological effects of oxidation, glycation, and
racemised AAs

The impact of modified proteins on human health has
been investigated to only a limited extent [81], but

there is increasing interest in the effects of oxidised
proteins on human health [82]. Consumption of oxi-
dised food components can increase the level of oxida-
tive stress in living tissues and this appears to
contribute to the development of some diseases
[83–85]. This area has been recently reviewed by
Delgado-Andrade and Fogliano [86]. This is considered
to be associated with the exposure of the gastrointes-
tinal tract and internal organs to potentially cytotoxic
and mutagenic materials [87–89]. Oxidised AAs/pepti-
des may impair homeostasis and cell toxicity via mul-
tiple different mechanisms. For example, L-Phe can be
oxidised by HO. to give m-Tyr, which is cytotoxic by a
pathway that appears to involve incorporation of the
oxidised AA into proteins [90]. Dietary intake of oxi-
dised Tyr (e.g. di-Tyr) in rats has been reported to
induce oxidative damage and hepatic fibrosis via
MAPK/TGF-b1 pathway [91]. Exposure to various Kyn
species (Trp oxidation products) appears to be injurious
as these have been associated with both neurotoxicity
and pathogenesis of intestinal diseases [44,92–94]. The
high levels of methionine sulfoxide (up to 74% of par-
ent Met) in some milk products appears to be respon-
sible for inducing changes in redox homeostasis, thus
showing a toxic potential [59,95]. This may arise from
the reduction of the methionine sulfoxide by the family
of methionine sulfoxide reductase enzymes present in
most organisms (including humans). These enzymes
require reducing equivalents from the thioredoxin/thio-
redoxin reductase/NADPH system, with the consump-
tion of NADPH resulting in a depletion of reducing
equivalents, an oxidative stress, and a change in the
redox homeostasis of the cell. Oral intake of some oxi-
dised AAs has been shown to induce hepatic and renal
fibrosis in mice, possibly via impairment of antioxidant
defence systems and modification of the Nrf2-ARE gene
pathway [96]. In addition, increased levels of protein
carbonylation, di-Tyr and advanced protein oxidation
products have been found in the liver, kidney and
blood of mice, in response to the intake of modified
materials, consistent with these causing oxidative injury
in vivo [96].

The safety of Maillard reaction products (MRPs) is a
concern, as some of these (e.g. acrylamide) are poten-
tial, or known, mutagens or carcinogens [97,98]. This
area has been recently reviewed [99,100]. However,
some MRPs have also been proposed to exert antioxi-
dative, antibiotic, and antiallergic activity [101,102].
Thus reductones have been shown to possess strong
antioxidative capacity through electron transfer, hydro-
gen atom donation and metal ion chelation (e.g. of Cu
and Fe ions which might otherwise act as pro-oxidants)
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[101–104]. Food-derived AGEs have, however, also been
reported to promote oxidative stress and inflammation,
and contribute to chronic disease [100,105]. A recent
study has demonstrated that oral intake of CML pro-
motes its accumulation in the gastrointestinal tract of
rats, stimulates inflammatory responses by downregu-
lating enzymatic antioxidative pathways and increases
the levels of inflammatory cytokines [106]. Long-term
exposure of rats to dietary AGEs has been reported to
increase colon permeability, modulate gut microbial
ecology in a detrimental manner and induce host meta-
bolic disturbances which can adversely impact host
health [107,108]. In contrast, other studies have
reported an absence of deleterious effects [109], and
even beneficial effects of dietary AGEs [99], with a sig-
nificant increase in the total antioxidant capacity of
plasma from rats observed after oral administration of a
diet supplemented with pronyllysine (a Lys product)
[110]. Whether dietary AGEs have a detrimental or
beneficial impact on human health is controversial, due
to difficulty in carrying out controlled trials [109,111].

As non-native AAs may be absorbed across the
gastrointestinal tract, the presence of modified whey
protein species in foods or IF may pose a health risk to
infants, and consequently a number of studies have
examined both the uptake of these modified AAs and
peptides across cell monolayers, and the effects of these
materials on cells in culture and animal growth [112].

Exposure (for 24–48 h) of nondifferentiated Caco2
cells (a human intestinal epithelial cell line) to a range
of modified AAs species (oxidised, glycated, D-isomers;
either singly or as mixtures), at concentrations similar to
those reported to be present in IFs (e.g. 20 mM), does
not appear to have deleterious effects on cell growth
[113]. In some cases, increased metabolic activity (as
measured by MTT assay) was detected compared to
control cells [113]. However, exposure to combined oxi-
dation products, AGEs or D-AAs for 2 h at concentra-
tions of 20 or 200 mM, increased protein carbonyl levels
in the cells in a dose-dependent manner, consistent
with the induction of oxidative stress [113]. Studies
with individual protein modification products suggest
that m-Tyr may be a driver of this change, possibly via
mis-incorporation (in place of Phe or Tyr) into new pro-
teins. Such incorporation has been shown in previous
studies to result in the formation and/or accumulation
of truncated and dysfunctional proteins [90,114,115].
Other studies have reported increased extracellular
matrix production induced by oxidised Tyr species in
rat kidneys [116].

Long term (e.g. 21 d) incubation of Caco2 cells on fil-
ter inserts in transwells results in the formation of intact

monolayers and expression of transport proteins and
brush border hydrolases [117]. At the equivalent con-
centrations to those detected in IF, and a 2-h exposure
time (to mimic gut transit times [117]) the modified
AAs did not induce changes in the transepithelial elec-
trical resistance (TEER), or permeability as assessed
using lucifer yellow [113]. These data indicate that
these concentrations of modified materials do not
induce gross changes to the monolayers, or cell toxicity,
under the conditions employed. Quantification of modi-
fied AAs added to the apical side of the transwells, at
20 or 200 mM, showed that there was no significant
decrease in the concentration of these species over the
2-h period, indicating that these species do not rapidly
equilibrate across the monolayer, and that these materi-
als are stable over this incubation period [113].
However, some material was detected (by LC-MS) in the
basolateral compartment, consistent with limited
monolayer penetration. The permeability was between
0.003 and 0.095% for the 20 mM concentration group,
with 3OHKyn being the least abundant, and m-Tyr the
highest. This high permeability of m-Tyr is consistent
with the induction of protein carbonyls by this com-
pound (see above). The permeability increased as the
apical concentration was increased, with di-Tyr giving
the highest basolateral concentrations [113]. The levels
of the modified AAs present in lysates from the Caco2
cells, after 2-h exposure, were too low to be detected
[113]. AGEs appear to be only slowly transported across
Caco2 cell monolayers [113,118]. Whether transepithe-
lial transport occurs via diffusion, AA transporters (eg
B� , þ, b� , þ, and yþ [119]), endocytosis, or other mecha-
nisms remains to be established. Previous studies have
shown that AGEs can penetrate across cell monolayers
[118,120–122], but this appears to occur, in at least
some cases, by uptake of di-peptides rather than free
AAs. Thus, evidence has been presented for uptake of
di-peptides containing CML, CEL, ArgP, and pyrraline
[118,122], via specific peptide transporters (e.g. the pro-
ton-coupled peptide transporter 1, PEPT1). These di-
peptides are then subject to intracellular hydrolysis to
the free modified AAs, which subsequently arrive in the
basolateral compartment via passive diffusion [122].
Whether this is also true for oxidised AAs remains to be
determined. Data have been reported on the plasma
and urinary levels of CML in breast milk- and formula-
fed infants consistent with uptake across the gastro-
intestinal tract in infants, and subsequent excretion in
urine [123]. Furthermore, infants fed on formula have
been reported to have significantly increased levels of
antibodies against oxidised low-density-lipoproteins,
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consistent with significant dietary exposure to oxidising
species [124].

Overall, these data suggest that modified AAs from
IFs may induce mild oxidative stress to cells, as evi-
denced by an increase in cellular protein carbonyls
[113]. However, these products appear to penetrate
across Caco2 cell monolayers to only a moderate extent
under the conditions examined. The effects of long-
term exposure, and potential accumulation [106], have
not been examined in great detail, and this may be sig-
nificant given that infants are typically fed every few
hours for many months. Whether this results in long-
term adverse health effects is controversial, though
some epidemiological studies have suggested that
long-term feeding with IF can induce inflammatory
responses [125] and predispose to an increased risk of
diabetes later in life [82,112,126–128]. Whether this is
related to exposure to the modified AAs present in IFs,
or from other effects (e.g. immunological responses to
bovine proteins [129,130]) remains to be determined.

Conclusions

Human intervention studies have provided evidence
that consumption of whey proteins can boost antioxi-
dant markers in blood and various organs. This health
benefit is likely to be as a result of the contribution of
reactive free thiol groups (Cys residues) for GSH synthe-
sis and the presence of bioavailable bioactive peptides.
However, whey proteins undergo considerable process-
ing steps from raw milk to consumed products which
makes them vulnerable to oxidation, glycation and rac-
emisation. These modifications may have adverse
effects on human health particularly when consumed
over a prolonged period of time, though there is a lack
of definitive data with regard to the specific effects of
known concentrations of specific products. Further
work is clearly warranted in this area. Alternative proc-
essing maps and storage conditions may be needed to
protect whey proteins from oxidation during processing
and capitalise on whey as a dietary antioxidant.
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