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Abstract
Average daily gain (ADG) and daily dry matter intake (DMI) are key determinants of beef industry profitability. These traits 
together with metabolic body weight (MWT) are combined as component traits to calculate residual feed intake (RFI), a 
common measure of feed efficiency in beef cattle. Recently, there have been significant efforts towards molecular genetic 
characterization of RFI through transcriptomic studies in different breeds and tissues. However, molecular mechanisms of 
RFI component traits still remain predominately unexplored. Therefore, in the current study, we investigated the hepatic 
transcriptomic profiles and their associations with ADG, DMI, and MWT in Angus, Charolais, and Kinsella Composite (KC) 
populations through global RNAseq analyses. In each population and for each trait, 12 steers with extreme phenotypes 
(n = 6 low and n = 6 high) were analyzed for differential gene expression. These animals were from 20 beef steers of each 
Angus, Charolais, and KC breed population that were initially selected for a transcriptome study of RFI. At a false discovery 
rate <0.05 and fold change >1.5, we identified 123, 102, and 78 differentially expressed (DE) genes between high- and low-
ADG animals of Angus, Charolais, and KC populations, respectively. For DMI, 108, 180, and 156 DE genes were identified 
between high- and low-DMI from Angus, Charolais, and KC populations, respectively, while for MWT, 80, 82, and 84 genes 
were differentially expressed between high- and low-MWT animals in Angus, Charolais, and KC populations, respectively. 
The identified DE genes were largely breed specific (81.7% for ADG, 82.7% for DMI, and 83% for MWT), but were largely 
involved in the same biological functions across the breeds. Among the most enriched biological functions included 
metabolism of major nutrients (lipids, carbohydrates, amino acids, vitamins, and minerals), small molecule biochemistry, 
cellular movement, cell morphology, and cell-to-cell signaling and interaction. Notably, we identified multiple DE genes that 
are involved in cholesterol biosynthesis, and immune response pathways for the 3 studied traits. Thus, our findings present 
potential molecular genetic mechanisms and candidate genes that influence feed intake, growth, and MWT of beef cattle.

Key words:   average daily gain, beef cattle, daily dry matter intake, liver transcriptome profiling, metabolic body weight

  

D
ow

nloaded from
 https://academ

ic.oup.com
/jas/article-abstract/97/11/4386/5580789 by Teagasc user on 03 January 2020

http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
http://orcid.org/0000-0003-4263-969X
mailto:changxi.li@canada.ca?subject=


Mukiibi et al.  |  4387

Introduction
Animal growth rate and feed intake are very important traits 
to the beef industry as they both directly and indirectly affect 
the productivity, and thus profitability of the industry. To finish 
beef cattle for meat production, feedlot operators maintain 
their animals in the feedlot and incur costs such as labor, 
management, veterinary, feed, and feeding-related costs, with 
the latter accounting for up to 75% of the total production 
costs (Ahola and Hill, 2012). It is therefore of great interest to 
beef producers to raise faster growing animals with minimal 
or reduced daily feed consumption to optimize productivity 
of production systems profits (Hill and Ahola, 2012). It has 
been reported that growth rate measured as average daily gain 
(ADG) and feed intake measured as daily dry matter intake 
(DMI) are moderately to highly heritable traits, with estimated 
heritability of 0.35 to 0.59 (Schenkel et al., 2004; Nkrumah et al., 
2007; Mao et  al., 2013). Additionally, ADG and DMI together 
with metabolic body weight (MWT) are key component traits 
used in the calculation of animal feed efficiency termed as 
residual feed intake (RFI) in beef cattle (Koch et  al., 1963). 
Furthermore, ADG and DMI are also important traits that 
can be included in beef cattle genetic selection and breeding 
programs to improve the efficiency of beef production (Amer 
et  al., 2001). In recent years, several transcriptome studies 
on different tissues including the liver have been performed 
to identify molecular mechanisms of feed efficiency traits 
including RFI in different beef cattle breeds or populations 
(Chen et  al., 2011; Al-Husseini et  al., 2014; Alexandre et  al., 
2015; Paradis et al., 2015; Tizioto et al., 2015, 2016; Kong et al., 
2016; Weber et al., 2016; Khansefid et al., 2017; Mukiibi et al., 
2018). In our recent transcriptome study involving the liver 
tissue of beef steers from 3 breeds including Angus, Charolais, 
and Kinsella Composite (KC), we identified 253 genes as 
associated with RFI, of which up to 85% were breed specific 
(Mukiibi et al., 2018). In addition, lipid metabolism was found 
as a key metabolic function associated with RFI across the 3 
studied populations (Mukiibi et al., 2018), and lipid synthesis 
and accumulation were predicted to be downregulated in 
the liver tissue of more efficient animals across the 3 breeds 
(Mukiibi et  al., 2018). With respect to ADG and DMI, several 
tissues especially of the digestive system including the rumen 
(Kern et al., 2016; Reynolds et al., 2017), duodenum (Lindholm-
Perry et  al., 2016a), jejunum (Lindholm-Perry et  al., 2016a; 
Foote et  al., 2017), and ileum (Lindholm-Perry et  al., 2016a) 
have been investigated to identify genes associated with body 
weight gain and feed intake in beef cattle. Genes associated 
to ADG and DMI have also been identified in the mesenteric 
adipose (Lindholm-Perry et al., 2017), spleen (Lindholm-Perry 
et  al., 2016b), skeletal muscle (Keel et  al., 2018), and liver 
(Tizioto et al., 2015; Zarek et al., 2017). However, each of these 
studies used a single breed or a breed population from their 
specific management and environmental conditions, making 
it difficult to directly infer common differentially expressed 
(DE) genes and biological functions associated with ADG and 
DMI across various beef cattle breeds. Therefore, in the current 
study, we analyzed RNAseq data of liver tissues of steers from 
our previous study for RFI (Mukiibi et al., 2018), with the aim 
to identify DE genes and metabolic or biological functions that 
underlie ADG, DMI, and MWT phenotypic differences of the 
animals from 3 Canadian beef populations including Angus, 
Charolais, and KC that were born, raised, and managed on the 
same ranch.

Materials and Methods

Animal Populations and Management

Populations and management of the animals used in this 
study have been described in our previous study by Mukiibi 
et  al. (2018). Briefly, the animals were managed under the 
Canadian Council of Animal Care (CCAC) guidelines on the 
care and use of farm animals in research, teaching, and testing 
(CCAC, 2009), and the experimental procedures were approved 
by the University of Alberta Animal Care and Use Committee 
(AUP00000777). Beef steers from 3 beef cattle herds including 
purebred Angus, Charolais, as well as the KC population were 
used in this study. All animals were born, raised, and managed 
similarly at the Roy Berg Kinsella Research Ranch, University of 
Alberta, Canada. The purebred Angus and Charolais cows were 
bred by artificial insemination (AI) followed by natural service 
bulls and their pedigree information was maintained by the 
Canadian Angus or Charolais Association, respectively. The 
KC herd descended from crosses between Angus, Charolais, 
or Alberta Hybrid bulls and the University of Alberta’s hybrid 
dam line that was generated by crossing composite cattle lines 
of multiple beef breeds as described by Goonewardene et  al. 
(2003). Commercial crossbred bulls have also been used in the 
KC herd since 2012. The animals used in this study were born 
during the months of April and May in 2014 and were castrated 
right after birth. The steer calves remained with their dams over 
the summer and grazed on a mixed tame grass pasture, then 
weaned at approximately 6 mo of age. They were transitioned to 
a backgrounding diet composed of 80% barley silage, 17% barley 
grain, and 3% rumensin pellet supplement, and then fed set-up 
diets with gradually decreasing barley silage and increasing 
barley grain proportions for 3 wk prior to introducing them to 
the finishing diet of 75% barley grain, 20% barley silage, and 5% 
rumensin pellet supplement (as fed basis).

GrowSafe Feedlot Test, Phenotype Measurement, 
and Calculations

In 2015, 50 Angus, 48 Charolais, and 158 KC steers were 
measured for individual feed intake between April and August 
using the GrowSafe system (GrowSafe Systems Ltd., Airdrie, AB, 
Canada). During the test period, animals were fed a finishing 
diet as described above. Mao et  al. (2013) have previously 
described the process of measuring the individual animals’ 
daily feed intake using the GrowSafe automated system in 
details. Briefly, the DMI value of each steer was calculated by 
averaging the daily feed intake measurements of the animal 
recorded over the feedlot test period (70 to 73 d). The daily feed 
intake measurements were then standardized to 12 MJ ME/kg 
of dry matter based on the energy content of the diet. Initial 
body weight and ADG for each animal were obtained from a 
linear regression of serial body weight (BW) measurements 
that were recorded on 2 consecutive days at the beginning, at 
approximately 14-d intervals during the feedlot test, and on 
2 consecutive days at the end of test. MWT was calculated as 
midpoint BW0.75, where midpoint BW was computed as the sum 
of initial BW of the animal and the product of its ADG multiplied 
by half the number of days under the feedlot test. The RFI value 
of each animal was computed as the difference between DMI 
of the animal and the expected feed intake of the animal based 
on the animal’s ADG and MWT. The expected feed intake of an 
individual animal was obtained from a linear regression of DMI 
on ADG and MWT of each breed population. Within each breed, 
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the feedlot tested animals were initially sorted by their RFI 
phenotypes, and consequently 20 animals including 10 with the 
lowest RFI phenotypes and 10 with the highest RFI phenotypes 
were selected for the differential gene expression study of RFI 
as described in the previous study (Mukiibi et al., 2018). In the 
current study, we analyzed the RNAseq data with respect to RFI’s 
component traits ADG, DMI, and MWT.

Liver Tissue Collection

At the end of the feedlot test, all animals from each of the 3 
breeds were slaughtered at Agriculture and Agri-Food Canada 
(AAFC) Lacombe Research and Development Centre (Lacombe, 
AB, Canada) between July and September of 2015. Steers were 
rendered fit for slaughter at a back fat thickness of ≥8 mm as 
predicted from a final ultrasound back fat measurement that 
was performed between the 12th and 13th ribs at the end 
of the GrowSafe feedlot test using an Aloka 500 diagnostic 
Realtime ultrasound machine with a 17-cm, 3.5-Mhz linear 
array transducer (Overseas Monitor Corporation Ltd., Richmond 
BC, Canada). In preparation for slaughter, steers of a single 
breed were randomly assigned to one of slaughter batches of 12 
animals each. The animals had access to both feed and water 
until transportation for slaughter. Each batch was slaughtered 
on a day within a 7- to 14-d period at the same abattoir with the 
same procedure. The animal age at slaughter was recorded and 
the 3 beef steer populations had average slaughter ages of 494 ± 
3, 518 ± 4, and 457 ± 4 d for Angus, Charolais, and KC, respectively. 
The liver sample of each animal was collected immediately after 
slaughter and the tissue was dissected from approximately the 
same location on the right lobe with the fibrous capsule removed. 
Samples were separately bagged, labeled, and were immediately 
flash frozen in liquid nitrogen. Subsequently, the liver samples 
were transported to the laboratory on dry ice within 6  h, and 
then stored at −80 °C until RNA extraction.

RNA Isolation and Purification

From the frozen liver samples, a total of 60 samples (20 from 
each breed) were selected for total RNA extraction based on their 
RFI values (i.e., 10 steers with high and 10 with low RFI values) as 
described previously (Mukiibi et al., 2018). The frozen liver tissue 
of each steer was pulverized into fine powder in liquid nitrogen 
with a pre-chilled mortar and pestle on dry ice. Total RNA was 
then extracted from 10  mg of the pulverized tissue using a 
Qiagen RNeasy Plus Universal Kit (Qiagen, Toronto, ON, Canada) 
and further purified using a Zymo RNA Clean and Concentrator 
(Zymo, Irvine, CA). RNA was quantified using a NanoDrop 2000 
Spectrophotometer (Thermo Scientific, Wilmington, DE) and was 
deemed acceptable if its absorbance (A260/280) was between 
1.8 and 2.0. RNA integrity was confirmed using a TapeStation-
Agilent instrument (Agilent Technologies, Mississauga, ON, 
Canada), and the RNA integrity number values for all samples 
were higher than 8.

cDNA Library Preparation and Sequencing

Preparation of cDNA libraries and subsequent next-generation 
sequencing of each of the 60 libraries were also described 
previously (Mukiibi et  al., 2018). Construction of cDNA libraries 
and sequencing were performed at the Clinical Genomics Centre 
(Toronto, ON, Canada) using the Illumina TruSeq RNA Sample 
Prep Kit v2 (Illumina, San Diego, CA), where mRNA was purified 
and enriched from 1 µg of each of the total RNA samples using 
oligo-dT attached magnetic beads, and then fragmented through 
elevated heating to produce mRNA fragments of length 120 to 

200 bp and a median of 150 bp. Thereafter, the first strand of the 
cDNA was synthesized using SuperScript II Reverse Transcriptase 
enzyme (Thermo Fisher Scientific, San Jose, CA) and the second 
strand was synthesized using the DNA Polymerase I and RNase H 
enzymes (Illumina). The cDNA libraries were validated using gel 
electrophoresis to confirm that the fragment size was 150 bp (on 
average) and concentration was on average 25 ng/µL per sample. 
Unique oligonucleotide adapters were added to the cDNA of each 
sample to allow for multiplexing. Of the prepared cDNA sample 
libraries, 48 (all Angus, all KC, and 8 Charolais) samples were 
single end sequenced (100 bp) under the high output run mode 
of the Illumina Hiseq 2500 System on 8 flow cell lanes. The other 
12 Charolais samples were sequenced under the rapid run mode 
of the same sequencing equipment. All sequence and phenotype 
data used in this study have been submitted to the Gene Expression 
Omnibus (GEO) repository under the accession number GSE107477.

RNAseq Data Bioinformatic Analyses

Raw sequence data for each sample was assessed for 
sequencing quality using FASTQC software (version 0.11.5) with 
default parameters (https://www.bioinformatics.babraham.
ac.uk/projects/fastqc/, accessed in July 2017)  (Andrews, 2010). 
Tophat2 (version 2.1.1) RNA-seq mapper was used to align and 
map the reads to the bovine reference genome UMD3.1 using 
default single-end read alignment parameters (Kim et al., 2013). 
Reads that were uniquely aligned to each gene annotated in 
the bovine gene transfer format (GTF) file (ftp://ftp.ensembl.
org/pub/release-89/gtf/bos_taurus/Bos_taurus.UMD3.1.89.gtf.gz, 
accessed in July 2017) were counted using HTSeq-count package 
(Anders et  al., 2015) with default parameters to generate 
read count tables that were further used for differential gene 
expression statistical analyses.

Differential Gene Expression Analyses

The 20 animals with the RNAseq data from each of the 3 cattle 
populations were sorted independently by their ADG, DMI, or 
MWT phenotypic values. Subsequently, out of the 20 samples, 
12 samples within each breed with extreme phenotypic values 
(n = 6 high and n = 6 low) for each trait were then analyzed for 
differential gene expression. The gene count tables generated 
by HTSeq-count, the bovine gene features annotation file 
(Release 89) downloaded from Ensembl Biomart, and the sample 
information file were used for differential gene expression 
statistical analyses using the R Bioconductor package edgeR 
(Robinson et al., 2010; Anders et al., 2013). Genes within each breed 
that had less than 1 count per million (CPM) of mapped reads in 
at least 6 samples (half of the analyzed samples) were filtered out 
from the analyses as proposed by Anders et al. (2013). Counts of 
the remaining genes were normalized using the trimmed mean M 
values (TMM) method (Robinson and Oshlack, 2010), to account for 
the technical variations between samples due to RNA extraction, 
cDNA library construction, and differences in library sequencing 
depths of genes (Robinson and Oshlack, 2010). The normalized 
counts were modeled using a generalized linear model, and the 
differential gene expression between high- and low-phenotype 
groups of each trait within a breed was tested using a likelihood 
ratio test under assumption of a negative binomial distribution 
with the trait group as a fixed effect. For Charolais, sequencing 
run mode, either rapid or high output, was also included in the 
model to account for the difference in the sequencing modes. 
Genes were considered significantly DE between the trait groups 
at a threshold of Benjamin–Hochberg’s false discovery rate (FDR) 
<0.05 and fold change (FC) of >1.5.
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Functional Enrichment Analysis

Functional enrichment analysis of the DE genes for each trait 
within a breed was performed using Ingenuity Pathway Analysis 
(IPA) software (Redwood City, CA; www.qiagen.com/ingenuity), 
with Ensembl bovine gene IDs and log2FC of the DE genes as 
input data. To increase the mapping rate to the IPA database, 
the DE bovine genes that did not map to the IPA database had 
their Ensembl IDs replaced by their respective human orthologue 
Ensembl gene IDs. The core analysis in IPA was performed on 
the mapped genes to identify significantly enriched biological 
functions, canonical pathways, and upstream regulators. 
Molecular and cellular functions (biological functions), canonical 
pathways, and upstream regulators were considered significantly 
enriched if the overlap comparison test (Fisher’s exact test) 
between the input DE gene list and the IPA Knowledge base 
database for that given biological function had a P-value less than 
0.05. Activation or deactivation of a specific enriched metabolic 
process, pathway or gene expression regulator was defined by 
the Z-score (Krämer et  al., 2014) that was calculated based on 
the log2FCs of the overlapping DE genes involved in a process or 
canonical pathway, where a negative or a positive score indicated 
deactivation or activation of a process, respectively.

Results

Phenotypic Differences Between Animal Groups

For ADG, the steer groups of high-ADG and low-ADG within 
all the 3 studied breeds were significantly different from each 
other at P <0.0042 with Bonferroni correction of 12 multiple tests 
at α <0.05 (Supplementary Table S1). There were no significant 
differences between high- and low-ADG steers groups across 
breeds for all the other phenotypic traits except for final 
ultrasound rib eye area for the KC steers.

For DMI, steers from low-DMI group significantly consumed 
less feed per day as compared to those from the high-DMI group 
within each breed (P  <  0.0042) (Supplementary Table S2). As 
expected, low-DMI steers had significantly lower RFI than high-
DMI animals in Charolais and KC (P < 0.0042), and for Angus, low-
DMI steers also had lower RFI than their high-DMI counterparts 
although the difference did not reach the significance level of 
P < 0.0042. When the steer groups in each breed were compared 
for the other production phenotypes, no significant difference 
was observed between the high- and low-DMI animals except 
for MWT, for which the low-DMI steers showed lower MWT than 
the high-DMI steers and the difference reached the significance 
level of P <0.0042 for the KC population.

For MWT, our results showed that animals in the high-MWT 
group within each of the studied populations had significantly 
(P  <  0.0042) higher MWT than those in the low-MWT group 
(Supplementary Table S3). It is observed that animals with high 
MWTs on average also had significantly (P < 0.0042) higher hot 
carcass weight (HCW) than those with lower MWT. For Angus, 
animals with low-MWT consumed significantly less feed 
per day as compared to the high-MWT animals. All the other 
phenotypes were not significantly different between the MWT 
groups across the 3 breeds.

Sequencing and Alignment Quality Assessment

High-throughput sequencing on average generated more than 
32, 40, and 29 million raw single-end sequence reads per cDNA 
library from the Angus, Charolais, and KC animals respectively 
(Table 1). FASTQC sequence data quality assessment results 
showed that the sequence reads were of high quality with the 

reads having an average length of 101 bp and an average Phred 
quality score of more than 36. For alignment to the bovine 
reference genome, we obtained a high unique feature alignment 
of approximately 87% reads per sample (Table 1).

Differential Gene Expression Between ADG 
Divergent Steer Groups

Of the 24,616 annotated bovine genes, 11,849, 11,923, and 
11,809 were found to be of adequate expression level (i.e., CPM 
in at least 6 samples > 1) for differential liver gene expression 
analyses in ADG divergent steers from Angus, Charolais, and 
KC populations, respectively. For Angus, 123 DE genes were 
identified between the ADG divergent steers, of which 74 
genes were upregulated and 49 genes downregulated in fast-
growing (high-ADG group) animals. For Charolais, we identified 
102 DE genes for ADG with 39 and 63 DE genes that were up- 
and downregulated, respectively, in the high-ADG steers. For 
KC, 78 genes showed significant DE between the high- and 
low-ADG steers, with 23 and 55 of these genes, respectively, 
up- and downregulated in the high-ADG steers. Based on 
FDR, the 40 topmost significantly DE genes which code for 
characterized proteins for each breed are presented in Table 2.  
The full list of all DE genes identified as associated with ADG 
for each breed are provided in the Supplementary File 1. 
Most of the DE genes (81.7%) were breed specific; however, a 
sizable number of DE genes were shared at least between 2 
breeds (Fig. 1a). Five DE genes including SLC17A9, CXCL3, IFI27, 
JSP.1, and ENSBTAG00000003492 were shared among 3 breeds, 
with SLC17A9, CXCL3, and IFI27 showing consistent direction 
of expression in fast-growing steers across the 3 studied 
populations as presented in Supplementary Figure S1.

Differential Gene Expression Between DMI Divergent 
Steer Groups

For DMI, 11,871, 11,961, and 11,793 genes were expressed 
sufficiently for differential gene expression in Angus, 
Charolais, and KC steers, respectively. For Angus, we identified 
108 DE genes, with 57 genes upregulated and 51 genes 
downregulated in the low-DMI steers. Among the Charolais 
steers, 180 genes (120 upregulated and 60 downregulated in 
the low-DMI animals) were differentially expressed. For KC, 156 
genes (107 upregulated and 49 downregulated in the low-DMI 
steers) were differentially expressed. The 40 most significant 
protein-coding DE genes by FDR are presented in Table 3, 
and all identified DE genes associated with DMI for each 
breed are provided in the Supplementary File 2. Also for DMI, 
most (82.7%) of the identified DE genes were breed specific, 
with only 4 DE genes including IFI27, ENSBTAG00000003492, 
ENSBTAG00000024700, and ENSBTAG00000047029 common 
among the 3 studied breeds, and a considerable number of 
DE genes (17 to 24 DE genes) were uniquely shared between 
breed pairs as shown in Fig. 1b. However, none of the common 
DE genes showed consistent expression direction across the 3 
breeds (Supplementary Figure S2).

Differential Gene Expression Between MWT 
Divergent Steer Groups

For MWT, 11,843, 11,908, and 11,774 genes were adequately 
expressed and hence were considered for analysis for the 
Angus, Charolais, and KC steers, respectively. Of these 
expressed genes, 80 (46 upregulated and 34 downregulated in 
the low-MWT steers), 82 (61 upregulated and 21 downregulated 
in the low-MWT steers), and 84 (44 upregulated and 40 
downregulated in the low-MWT steers) genes were differentially 
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expressed in Angus, Charolais, and KC steers, respectively. 
The 40 most significant DE genes (coding for characterized 
proteins) by FDR are presented in Table 4 and all identified 
DE genes associated with MWT in each of the studied breeds 
are provided in the Supplementary File 3. Comparison of the 
identified DE genes across breeds showed a similar trend as 
for ADG and DMI with most of the DE genes (83%) being breed 

specific and only 5 DE genes including MT1E, CTGF, PRAP1, 
TMEM45A, and CYP2B6 were identified as common across the 
3 breeds (Fig. 1c). Two of these shared genes (i.e., MT1E and 
CTGF) showed consistent expression across the 3 populations 
with MT1E (ENSBTAG00000038706)  being downregulated 
and CTGF upregulated in the low-MWT animals as shown in 
Supplementary Figure S3.

Table 1.  Averages of the sequencing quality and alignment assessment parameters for Angus, Charolais, and Kinsella Composite (KC) animals

Angus (SD1) Charolais (SD1) KC (SD1)

Total number of reads 32,419,572 (2,527,134) 40,796,790 (8,826,642) 29,571,035 (5,730,204)
Uniquely aligned reads 28,388,072 (2,394,131) 35,584,367 (8,224,313) 25,680,361 (4,964,214)
Average Phred Score 35.6 (0.23) 35.6 (0.60) 37.8 (0.18)
Uniquely aligned reads (%) 87.5 (1.12) 87.0 (2.01) 86.9 (0.84)

1SD = standard deviation.

Table 2.  Top 40 significantly (by FDR) differentially expressed genes of characterized proteins between high- and low-ADG steers from Angus, 
Charolais, and Kinsella Composite populations

Angus Charolais Kinsella Composite

Gene log2FC1 FDR2 Gene Log2FC1 FDR2 Gene log2FC1 FDR2

TMEM45A −3.87 4.69E-76 TMEM45A −1.81 2.08E-19 IFI27 −2.69 9.87E-39
SERPINA3 3.32 1.74E-55 HOPX −1.63 5.59E-16 LPIN1 −2.54 1.48E-34
GPX3 2.94 1.75E-53 AKR1B15 1.59 1.66E-14 IFI6 −1.67 5.27E-15
AKR1B15 2.68 2.33E-38 TNC −1.73 2.20E-13 SERPINA3 1.56 1.01E-14
GPNMB 1.85 3.79E-21 HLA-DQB1 −1.86 6.68E-13 ISG15 −1.59 8.76E-14
HP 2.43 8.42E-18 GPC3 −1.64 3.17E-12 HBB −1.49 8.54E-13
S100A2 1.58 1.09E-15 KEL 1.53 1.19E-11 HERC6 −1.44 2.45E-12
SERPINA3 1.95 7.74E-15 DDO −1.90 2.07E-10 GNMT −1.42 2.57E-12
HOPX 1.43 1.32E-14 GPX3 −2.20 2.72E-10 GADD45G −1.35 6.14E-11
IFI6 −1.47 1.96E-13 SERPINA3 2.45 3.14E-10 SLC5A8 1.75 9.76E-10
UGT2B7 −1.35 4.93E-13 AC108941.2 −1.55 3.09E-09 CES1 1.24 5.26E-09
IFI27 −1.42 2.42E-12 IGLV2-18 −1.60 3.17E-08 SERPINI2 1.29 3.15E-08
GPC3 −1.37 1.83E-11 CYP2B6 1.29 4.48E-08 CYP7A1 1.44 4.51E-08
HMGCS1 −1.30 2.50E-10 SLC25A45 1.80 1.42E-07 TSKU −1.24 1.43E-07
SECTM1 1.19 4.95E-10 SERPINA3 −1.61 1.97E-07 IFIT1 −1.38 1.43E-07
SULT2A1 1.18 7.65E-10 IGLV2-18 −1.44 3.27E-07 UHRF1 −1.60 2.15E-07
SPIDR 1.20 7.83E-10 SCD −1.26 3.28E-07 BOLA-DQA5 −1.29 2.72E-06
IGHG1 1.17 2.32E-08 S100A10 −1.14 4.06E-07 NOCT −1.10 3.39E-06
ECEL1 1.10 5.27E-08 STS −1.12 7.69E-07 WFDC2 −1.03 4.29E-06
JAKMIP2 1.44 9.89E-08 UHRF1 −1.47 1.48E-06 ZNF385B 1.19 4.29E-06
CYP51A1 −1.12 1.57E-07 CCDC80 −1.41 4.63E-06 MX2 −1.26 6.20E-06
AIF1L 1.02 2.62E-07 SLC13A2 −1.21 5.92E-06 RSAD2 −1.01 6.91E-06
AKR1C1 1.22 2.91E-07 EGR1 −1.33 6.60E-06 GSTM2 −1.07 9.32E-06
CCL24 1.35 4.38E-07 CRYAB −1.04 7.08E-06 C12orf45 −1.01 1.15E-05
DLK1 −1.28 4.54E-07 HIST1H2BI −0.99 7.11E-06 IGFBP1 0.97 1.50E-05
VCAM1 −1.28 2.21E-06 GNMT −0.90 3.75E-05 EXTL1 0.96 2.94E-05
MT1G 1.07 6.21E-06 EPCAM −1.05 8.16E-05 ALAS1 −1.00 3.46E-05
SQLE −0.99 1.05E-05 IFI27 −0.90 9.13E-05 STS −0.95 4.15E-05
IL1R2 1.09 2.69E-05 ACSS2 −0.88 1.24E-04 PLEKHG6 1.11 1.36E-04
SERPINE1 0.88 4.03E-05 SLC17A9 0.92 1.31E-04 LURAP1L −1.02 1.65E-04
SLC13A2 0.91 5.28E-05 SCD −1.29 1.37E-04 PRAP1 −0.93 1.92E-04
SERPINI2 −1.21 5.40E-05 THNSL2 0.91 2.19E-04 SCD −0.95 2.95E-04
TNFRSF10A −1.21 7.39E-05 RCL1 −0.88 2.30E-04 FKBP5 −0.89 5.62E-04
RAP1GAP 0.96 7.48E-05 MID1IP1 −0.85 2.42E-04 TAT −1.02 6.56E-04
OXER1 −0.84 8.35E-05 MBOAT2 −1.24 2.42E-04 FGF21 0.95 6.85E-04
SLC1A2 −0.88 1.25E-04 SOAT2 1.30 3.09E-04 ACE2 −0.84 7.03E-04
MAMDC2 −1.08 1.25E-04 FOXA3 −0.84 3.13E-04 MX1 −0.87 7.98E-04
DENND2A 0.82 1.50E-04 MAMDC2 −1.09 4.79E-04 IFI44L −0.83 8.80E-04
ROS1 −1.09 1.83E-04 REC8 −0.84 7.97E-04 WFS1 0.81 1.24E-03
CLBA1 1.15 2.55E-04 ISG15 −0.78 9.07E-04 ALOX15B 1.15 1.64E-03

1log2FC = log2(fold change of a gene in high-average daily gain [ADG] animals with reference to low-ADG animals).
2FDR = false discovery rate adjusted P-value.
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Gene Expression Across Traits Within Breed

DE genes identified to be associated with ADG, DMI, and MWT 
were compared with the DE genes for RFI as reported by 
Mukiibi et al. (2018) within each studied population as shown 
in Supplementary Figure S4. Within each breed, the DE genes 
were largely trait specific with only 4 (HP, ENSBTAG00000047029, 
SERPINA3, and IFI27), 1 (ENSBTAG00000048094), and 2 
(ENSBTAG00000022590 and ENSBTAG00000003492) DE genes 
shared across 4 traits in Angus, Charolais, and KC, respectively. 
However, there was some reasonable number of genes shared 
between pairs of the traits. For example, 46 genes were common 
between ADG and MWT, 31 genes shared between ADG and DMI, 
and 39 genes shared between ADG and RFI in Angus, Charolais, 
and KC steers, respectively.

Functional Enrichment for ADG-Associated 
DE Genes

For ADG, a total of 120, 102, and 78 DE genes were mapped to 
the IPA knowledgebase database for Angus, Charolais, and KC, 
respectively. These mapped DE genes were significantly (P < 0.05) 
involved in 20 molecular and cellular functions for Angus, 27 
for Charolais, and 27 for KC. Of all the identified molecular and 
cellular functions, 18 (60%) were common to all the 3 breeds 
as shown in Fig. 1d. The most significantly enriched functions 
included cellular movement, lipid metabolism, small molecule 
biochemistry, vitamin and mineral metabolism, cell-to-cell 
signaling and interaction, molecular transport, amino acid 
metabolism, and carbohydrate metabolism (Supplementary 
Figures S5–S7). It is worth noting that lipid metabolism and 
small molecule biochemistry functions were among the top 5 
enriched biological functions across the 3 breeds.

Within lipid metabolism, several metabolic processes 
related to lipid accumulation, lipid synthesis, lipid oxidation, 
and lipid transport were identified as enriched by the DE 
genes as shown in Figs. 2–4 for Angus, Charolais, and KC, 
respectively. Synthesis of lipids (e.g., steroids, fatty acids, 
and acylglycerol) was predicted to be downregulated 

(negative Z-scores) in the liver tissue of high-ADG 
animals from Charolais and KC steers (Figs. 3 and 4).  
Accumulation of lipid was predicted to be downregulated in 
Charolais (Fig. 3), while upregulated in Angus and KC high-
ADG steers, as shown in Figs. 2 and 4, respectively. Transport 
of lipid and fatty acid oxidation were predicted as upregulated 
in both Charolais and KC high-ADG steers. Some of the key 
DE genes associated with lipid metabolism identified in the 
current study include CYP7A1, IGF1, SAA1, HMGCR, and NROB2 
for Angus, SCD, FASN, APOA1, APOA4, SAA1, PDK4, and HMOX1 
for Charolais, and SCD, LPIN1, FGF21, CYP7A1, and CES1 for KC. 
Lists of all DE genes involved in each of the 5 topmost enriched 
functions within each breed are provided in Supplementary 
Table S4.

Other than being among the topmost enriched molecular 
and cellular functions for KC, amino acid and carbohydrate 
metabolism were also enriched for both Angus and Charolais 
with important enriched underlying processes. In relation 
to amino acid metabolism, some of the enriched metabolic 
processes included transport of amino acids, synthesis of 
amino acids, and catabolism of amino acids. Top amino acid 
metabolism-related processes for each breed and the DE genes 
involved in these processes, activation/deactivation score, and 
overlap test P-values are presented in Supplementary Table S5. 
For carbohydrate metabolism, glucose uptake, and carbohydrate 
synthesis (gluconeogenesis), carbohydrate oxidation and 
transport were among the enriched metabolic processes as 
shown in Supplementary Table S6.

IPA also revealed several interesting enriched activated or 
deactivated pathways for the identified DE genes in relation 
to growth rate in the 3 studied breed populations, with the 
topmost enriched pathways for each breed shown in Table 5. 
In Angus, superpathway of cholesterol biosynthesis was the 
most significantly (P  =  1.35E-05) enriched pathway involving 
4 of the DE genes (SQLE, HMGCR, HMGCS1, and CYP51A1) and 
was predicted to be inactivated in the high-ADG steers with 
a Z-score of −2.00 (Table 5). Liver X receptor (LXR)/retinoid X 
receptor (RXR) and PXR/RXR activation pathways were the most 

Figure 1.  Venn diagrams showing differentially expressed genes overlap among Angus, Charolais, and Kinsella Composite (KC) for (a) average daily gain (ADG), (b) daily 

dry matter intake (DMI), and (c) metabolic body weight (MWT). Venn diagrams showing significant enriched biological functions overlap among breeds for (d) ADG, (e) 

DMI, and (f) MWT.
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significant pathways involving 7 (IL1R2, SCD, RXRG, APOA1, 
APOA4, FASN, and SAA1) and 5 (GSTM1, SCD, CYP7A1, IGFBP1, 
and ALAS1) DE genes for Charolais and KC, respectively (Table 5).  
Additionally, IPA identified several upstream gene expression 
regulators and their predicted activation or deactivation level in 
the liver tissue of the high-ADG animals across the 3 studied 
breeds. SREBF1 is a transcription factor that was predicted as 
the most significant (P = 9.41E-11) expression regulator in Angus 
and was shown to regulate expression of 14 (AK4, CYP51A1, 
CYP7A1, GPNMB, GPX3, HMGCR, HMGCS1, IFI30, IL1R2, NR0B2, 
OAT, SERPINA3, SERPINE1, and SQLE) of the identified DE genes 
in this breed (Supplementary Table S7A). For Charolais, the P450 
oxidoreductase (POR) enzyme was the most significant (P = 1.86E-
12) regulator, regulating expression of 13 DE genes (ACTG1, 
APOA4, CSAD, CYP2B6, ELOVL2, GADD45B, HMOX1, NOCT, PDK4, 
SCD, SDS, SERPINA3, and SQLE) (Supplementary Table S7A). For 

KC, interferon-beta (IFN-β) was the most significant (P = 5.63E-
14) upstream regulator, predicted to regulate 12 DE genes (DUSP1, 
HLA-B, IFI44, IFI6, ISG15, MX1, MX2, MYC, OAS1, RSAD2, SLC16A6, 
and USP18) and to be inactivated in the high-ADG animals with 
a Z-score of −3.08 (Supplementary Table S7A).

Functional Enrichment for DMI-Associated DE Genes

For DMI, 107, 177, and 155 DE genes were mapped to the IPA 
database for Angus, Charolais, and KC, respectively, and we 
identified 27, 22, and 25 significantly enriched biological functions 
for Angus, Charolais, and KC respectively, with 18 of them (62%) 
common to all breeds (Fig. 1e). The top enriched functions 
associated with DMI included lipid metabolism, molecular 
transport, small molecule biochemistry, cell death and survival, 
carbohydrate metabolism, vitamin and mineral metabolism, 
cellular movement, cellular function and maintenance, 

Table 3.  Top 40 significantly (by FDR) differentially expressed genes of characterized proteins between high- and low-DMI steers from Angus, 
Charolais, and Kinsella Composite populations

Angus Charolais Kinsella Composite

Gene log2FC1 FDR2 Gene log2FC1 FDR2 Gene log2FC1 FDR2

IFIT1 −2.49 1.38E-34 SLC22A2 4.47 1.92E-47 IFI27 3.13 9.17E-50
GPX3 −2.38 1.42E-30 REC8 −2.61 1.22E-37 CXCL9 2.82 2.83E-44
GPNMB −2.23 4.16E-27 EGR1 2.38 3.46E-31 GBP3 2.99 3.15E-41
HBB 2.97 3.93E-26 IGLC1 2.48 3.46E-31 IFI6 2.24 1.09E-27
SERPINA3 −1.90 1.24E-20 IGHG1 2.31 3.95E-28 CYP2B6 −2.17 1.62E-27
ISG15 −1.83 1.04E-17 SERPINA3 2.47 3.92E-26 HERC6 2.07 1.07E-25
SFRP2 1.72 9.15E-17 CCDC80 2.25 1.56E-23 IFIT1 2.35 3.23E-25
HERC6 −1.44 1.18E-11 SFRP1 −1.79 1.00E-18 ISG15 2.03 3.28E-23
DDO −1.63 3.99E-10 GPX3 2.08 6.20E-17 CXCL10 2.22 1.06E-22
FKBP5 1.37 7.10E-10 BOLA-DQB −2.11 5.26E-16 TMEM45A −2.84 1.63E-22
RSAD2 −1.35 1.01E-09 CLDN15 1.61 4.46E-15 MX2 2.07 4.80E-20
SDS 1.36 1.82E-09 ABCG8 1.54 2.98E-14 AK4 1.79 2.11E-19
APOA4 1.29 6.27E-09 CES1 −1.52 2.20E-12 CD274 2.44 7.13E-16
MBOAT2 −1.28 7.41E-09 S100A10 1.41 1.49E-11 SERPINA3 −1.60 2.60E-15
CDHR5 −1.25 7.65E-09 CYP11A1 1.41 2.03E-11 AKR1B15 −1.75 7.10E-14
MX1 −1.26 1.44E-08 NNAT 1.63 8.45E-11 OAS1 1.44 1.49E-12
IL20RA −1.32 4.02E-08 FGF21 1.43 6.40E-10 GBP7 1.71 2.55E-11
SLC2A5 1.28 1.40E-07 AC108941.2 1.50 8.82E-10 RSAD2 1.36 2.55E-11
STEAP4 1.19 2.94E-07 CYR61 1.32 1.15E-09 MKI67 1.45 4.35E-11
GNMT 1.10 1.18E-06 PRAP1 1.26 1.73E-09 PSMB9 1.46 7.64E-11
MYOM1 1.21 2.78E-06 CUX2 1.41 2.73E-09 KYAT1 −1.21 1.03E-08
GPC3 1.06 7.85E-06 CARNS1 1.27 3.43E-09 IFI44L 1.15 1.01E-07
SERPINA3 −1.31 1.98E-05 TNC 1.32 4.57E-09 RTP4 1.17 1.01E-07
HP −1.52 2.27E-05 SLC7A2 −1.26 6.17E-09 ATP6V1C2 −1.66 2.12E-07
LPIN1 1.03 2.27E-05 HMGCS1 −1.26 2.55E-08 RBP5 −1.12 3.20E-07
SECTM1 1.02 2.28E-05 IL1R2 1.48 3.82E-08 GBP3 1.31 5.23E-07
SCD −0.99 3.23E-05 LPIN1 −1.23 4.91E-08 HAPLN3 −1.14 9.08E-07
NR1D1 −0.96 3.32E-05 CDH17 1.13 1.82E-07 CTGF 1.49 1.29E-06
CREM 0.96 3.57E-05 HP 1.61 3.99E-07 PSMB8 1.04 2.77E-06
PYROXD2 0.98 4.35E-05 IGLV2-18 1.29 6.43E-07 TAP1 1.02 4.52E-06
RTP4 −0.93 8.43E-05 ABCG5 1.16 6.55E-07 FOXS1 1.45 7.19E-06
SCD −0.95 9.57E-05 SLC4A4 −1.08 9.88E-07 PIM1 −1.00 8.79E-06
RNF125 0.96 1.20E-04 IFI27 −1.13 1.19E-06 WFS1 −0.99 9.48E-06
IFI44L −0.91 2.21E-04 CLDN4 1.47 2.00E-06 IFIT2 1.41 1.53E-05
NOCT 0.92 2.59E-04 FOS 1.21 2.91E-06 NLRC5 1.05 2.76E-05
CYP7A1 −0.88 3.43E-04 HOOK1 −1.04 2.91E-06 UBA7 0.97 2.77E-05
AKR1B15 −0.94 4.51E-04 SQLE −1.09 3.37E-06 RAB20 −0.96 3.20E-05
DDIT4 0.91 4.80E-04 STRIP2 −1.03 3.92E-06 CITED4 0.96 3.20E-05
SPTB −0.83 9.02E-04 IGLC1 1.15 4.94E-06 RRM2 1.36 3.20E-05
CKAP4 −0.83 9.42E-04 DLK1 1.19 5.02E-06 IL20RA 1.13 3.33E-05

1log2FC = log2(fold change of a gene in low-daily dry matter intake [DMI] animals with reference to high-DMI animals).
2FDR = false discovery rate adjusted P-value.
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cell-to-cell signaling and interaction, and cellular development 
(Supplementary Figures S8–S10). The genes involved in the top 
enriched molecular and cellular functions associated with DMI 
in each breed are provided in Supplementary Table S4. Lipid 
metabolism was among the top enriched molecular and cellular 
functions in Angus and Charolais. For KC, all the top enriched 
functions we identified were related to functionality of cells, with 
cellular function and maintenance being the most significantly 
enriched function. Within lipid metabolism for Angus, 30 DE 
genes were involved in several lipid-related metabolic processes 
including concentration and accumulation of multiple lipids 
(cholesterol, phospholipids, triacylglycerol, and acylglycerol), 
and catabolism of lipid as shown in Fig. 5. Accumulation of 
lipid and concentration of lipids such as cholesterols and 
triacyl glycerides were predicted to be downregulated in the 
low-DMI steers, whereas metabolism of membrane lipid 

derivative and quantity of polyunsaturated fatty acids were 
predicted to be upregulated. Some key DE genes involved in 
the metabolism of lipids in Angus included SCD, ARNTL, LIPN1, 
APOA4, and ABHD6. For Charolais, 47 DE genes were identified 
as involved in different lipid metabolism processes. Some of 
the processes including uptake of lipid, accumulation of lipid, 
and uptake of cholesterol were predicted to be downregulated 
in the liver tissue of low-feed intake animals as shown in Fig. 6. 
However, other processes such as synthesis of lipid, synthesis of 
cholesterol, transport of lipid, and fatty acid metabolism were 
predicted to be upregulated in the same animals as shown in 
Fig. 6. Some of the major DE genes related to lipid metabolism 
identified in Charolais included ABCA1, ABCG5, ABCG8, CYP7A1, 
NROB2, NPC1, CES1, SAA1, IL1B, and SULT1E1. For DMI in KC, 
51 DE genes were identified as involved in cellular function 
and maintenance, and these genes are mainly involved in a 

Table 4.  Top 40 significantly (by FDR) differentially expressed genes of characterized proteins between high- and low-MWT steers from Angus, 
Charolais, and Kinsella Composite populations

Angus Charolais Kinsella Composite

Gene logFC1 FDR2  Gene logFC1 FDR2 Gene logFC1 FDR2

GPX3 −2.55 5.66E-37 SERPINA3 4.94 1.74E-99 TMEM45A −5.23 2.12E-119
IFI27 2.50 1.14E-35 CYP2B6 −1.57 2.13E-17 HOPX −1.76 1.53E-17
SERPINA3 −2.45 9.25E-32 BOLA-DQB −1.83 1.04E-13 SERPINA3 −1.73 1.04E-16
IFI6 1.98 5.95E-22 IGLC1 −1.44 5.06E-13 IFI27 1.64 3.16E-15
SERPINA3 −2.51 4.61E-21 TMEM45A −1.25 2.49E-11 IFI6 1.54 5.51E-14
GPNMB −1.57 1.91E-14 ECEL1 1.17 6.28E-10 GPX3 −1.36 3.81E-11
SERPINI2 1.73 5.62E-13 AC108941.2 1.16 6.19E-08 CYP2B6 −1.36 1.02E-10
HBB 1.99 5.62E-13 KEL 1.20 6.19E-08 FBLN2 −1.36 6.92E-09
AKR1B15 −1.58 1.39E-12 FBLN2 1.17 6.19E-08 WFS1 −1.21 1.34E-08
AC108941.2 1.37 1.84E-11 HOPX −1.02 2.74E-07 CTGF 1.53 5.43E-08
SDS 1.37 5.82E-11 FGF21 −1.12 7.30E-07 HBB 1.32 1.72E-07
AIF1L −1.27 6.18E-10 S100A10 0.97 2.04E-06 CXCL9 1.29 5.13E-07
TMEM45A 1.26 9.39E-09 PLA2G2D 1.41 2.12E-06 UGT2B7 −1.08 7.53E-07
SULT2A1 −1.16 5.72E-08 PLTP 0.92 7.78E-06 CYP3A7-CYP3A51P −1.19 7.53E-07
CKAP4 −1.10 2.23E-07 IL1B 1.11 8.46E-06 ATP5MGL −1.47 9.00E-07
RAP1GAP −1.22 1.55E-06 KCTD12 1.02 1.93E-05 PIM1 −1.06 1.74E-06
NUF2 1.44 1.55E-06 CSF2RB 0.93 4.06E-05 IGHG1 1.06 2.99E-06
TNC 1.08 1.55E-06 SFRP1 −0.87 4.19E-05 ZNF385B −1.21 4.85E-06
CDHR5 −1.00 5.21E-06 MARCO 0.85 6.56E-05 IGLC1 1.39 9.42E-06
SLC13A2 −1.11 6.80E-06 PRAP1 −1.00 8.72E-05 IGLC1 1.00 2.61E-05
ROS1 1.32 9.40E-06 FAM47E −1.01 1.05E-04 BoLA-DQB1 0.97 3.59E-05
HP −1.57 1.81E-05 HLA-DQB1 1.05 1.25E-04 CES1 0.94 4.26E-05
AK4 0.92 6.05E-05 CSF1R 0.83 1.84E-04 SERPINI2 1.08 4.26E-05
DENND2A −0.89 1.12E-04 UCP2 0.80 3.12E-04 ASIP 1.00 9.88E-05
SFRP2 0.89 1.16E-04 ADGRE1 0.79 3.31E-04 UGT2B7 0.91 1.57E-04
SDCBP2 1.20 2.19E-04 PTN 0.91 3.31E-04 ACE2 0.88 1.79E-04
CYP2B6 0.88 4.01E-04 IGHA1 −0.89 5.98E-04 HP −1.34 1.89E-04
PLCD4 −0.89 4.20E-04 SLC13A2 1.02 1.05E-03 AKR1C1 1.01 2.44E-04
FAM13A 0.99 4.81E-04 PDK4 0.79 1.15E-03 REEP5 −0.86 3.59E-04
GNMT 0.82 6.79E-04 PTGS1 0.75 1.23E-03 TGM2 0.85 4.61E-04
CFH 0.95 7.04E-04 FADS1 0.91 1.25E-03 CDH11 −0.99 5.44E-04
CYR61 0.94 1.04E-03 SLC7A5 1.00 1.46E-03 PRAP1 0.85 5.49E-04
ABHD6 0.85 1.44E-03 SOAT2 0.86 1.94E-03 DDO 0.99 6.82E-04
HMGCR −0.83 1.44E-03 PPP1R3C −0.74 2.00E-03 CARNS1 0.88 1.00E-03
GPC3 0.81 1.76E-03 IGHG1 −0.71 2.79E-03 SLCO4A1 −0.95 1.46E-03
BICC1 −0.96 2.27E-03 LPIN1 0.72 2.96E-03 RAB20 −0.81 1.62E-03
IGFBP2 −0.80 2.49E-03 IGLV2-18 −0.95 2.96E-03 RFLNA −0.83 1.74E-03
ISG15 0.76 3.08E-03 RASL10A 0.99 3.33E-03 SDS −0.81 1.91E-03
PRAP1 0.79 3.30E-03 TMEM176B 0.71 4.09E-03 ECEL1 0.88 2.09E-03
DLK1 0.97 3.49E-03 SMPDL3B 0.81 4.75E-03 CLDN15 0.78 2.09E-03

1log2FC = log2(fold change of a gene in low metabolic body weight [MWT] animals with reference to high-MWT animals).
2FDR = false discovery rate adjusted P-value.
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number of immune-related functions such as proliferation of 
T lymphocytes, T-cell development, phagocytosis of cells, and 
T-cell homeostasis which were predicted to be upregulated in 
liver tissue of low-DMI animals as shown in Fig. 7.

Pyrimidine ribonucleotides interconversion was identified 
as the most significantly (P  =  1.20E-03) enriched pathway for 
Angus with 3 (NUDT5, CMPK2, and AK8) DE genes involved in 
this pathway (Table 5). For Charolais, lipopolysaccharide (LPS)/
interleukin-1 (IL-1)-mediated inhibition of RXR function was 
the most significant (P = 2.63E-10) pathway, with 15 of the DE 
genes (IL1R2, ABCG8, GSTM1, ABCG5, SULT1E1, JUN, SULT1C4, 
NR0B2, CYP7A1, SLC27A6, IL1B, ALDH3B1, HMGCS1, ABCA1, 
CYP2C19) involved in this pathway and it was predicted to be 
relatively activated (Z-score = 0.33) in the low-feed intake steers 
(Table 5). For KC, we identified IFN signaling pathway as the 
most significant (P = 1.00E-10) pathway for this breed involving 
8 of the identified DE genes (all upregulated) as shown in 
Supplementary Figure S11, and it was predicted to be activated 
(Z-score  =  2.83) in the low-DMI animals (Table 5). All the top 
enriched canonical pathways associated with DMI for each 
breed are presented in Table 5. Besides canonical pathways, 
IPA also predicted the top gene expression regulators and their 
activation/deactivation state as associated with feed intake 
for each of the breeds. IFN-α cytokine group was predicted 
as the most significant gene expression regulator in Angus 
and KC. It was predicted to be inactivated (Z-score = −0.63) in 
Angus and activated in KC (Z-score = 3.86) in low-DMI animals. 
For Charolais, FGF19 growth factor was the most significant 
(P = 2.30E-16) regulator involved in the regulation of 15 DE genes. 

Top 5 enriched upstream gene expression regulators and their 
predicted activation or deactivation state in the low-DMI steers 
from the 3 studied populations are presented in Supplementary 
Table S7B.

Functional Enrichment for MWT-Associated 
DE Genes

For MWT, 80, 81, and 83 DE genes from Angus, Charolais, and 
KC, respectively, were mapped to the IPA database. These genes 
significantly enriched 24, 24, and 19 molecular and cellular 
functions for Angus, Charolais, and KC, respectively, with 17 
of the enriched functions in common (68%) across breeds (Fig. 
1f). The major functions that were identified as associated 
with MWT included lipid metabolism, amino acid metabolism, 
small molecule biochemistry, vitamin and mineral metabolism, 
molecular transport, cell morphology, cellular movement, cell-
to-cell signaling and interaction, cell death and survival, and 
drug metabolism. The genes involved in these major molecular 
and cellular functions associated with MWT in each breed 
are provided in Supplementary Table S4. As for ADG and DMI, 
lipid metabolism and small molecule metabolism were among 
the top functions for both Angus and Charolais. Topmost (by 
P-value) enriched processes within amino acid metabolism 
and lipid metabolism for Angus, lipid metabolism and cellular 
movement for Charolais, and cell death and survival, and 
cellular movement for KC are presented in Supplementary Table 
S8. IPA additionally identified several significantly enriched 
canonical pathways associated with MWT in each of the breeds, 
and the top enriched canonical pathways are presented in Table 

Figure 2.  Lipid metabolism gene and molecular processes interaction network within lipid metabolism function as associated to average daily gain (ADG), and 

predicted activation or inhibition in high-ADG Angus steers.
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5. LPS/IL-1-mediated inhibition of RXR function was the most 
significant (P = 1.38E-05) pathway for Angus and was predicted 
to be inactivated (Z-score  =  −2.00) in the low-MWT steers. 
For Charolais, neuroinflammation signaling pathway was 
identified as the most significant (P  =  1.45E-04) pathway and 
predicted to be activated (Z-score = 1.89) in the low-MWT steers 
(Table 5). For KC, antigen presentation pathway was the most 
significant (P = 3.39E-04) involving 3 of the identified DE genes 
(HLA-B, HLA-DQB1, and HLA-DQA2) (Table 5). For the upstream 
gene expression regulatory factors, the ligand-dependent 
nuclear receptor RORA was identified as the most significant 
(P = 5.29E-07) expression regulator in Angus and was shown to 
affect expression of 8 of the DE genes including CCL24, CYP2B6, 
HMGCR, IGF1, ITPR1, SLC13A2, SULT1E1, and SULT2A1. Albeit, 
cytokines IFNG and IL6 were identified as the most significant 
gene expression regulators in Charolais and KC steers, 
respectively. IFNG was predicted to be activated (Z-score = 1.22), 
whereas IL6 was predicted to be inactivated (Z-score = −1.27) in 
the low-MWT steers of the respective breeds. The top enriched 
gene expression regulators associated with MWT for each breed 
are presented in Supplementary Table S7C.

Discussion
In the current study, we employed RNAseq analyses of liver 
tissue from 60 steers of 3 Canadian beef cattle populations 
(Angus, Charolais, and KC) to study gene expression difference 
between the high- and low-phenotype steer groups for 3 feed 

efficiency-related traits ADG, DMI, and MWT. To maximize 
the phenotypic divergence between 2 animal groups for the 
particular trait under investigation, we sorted the 20 steers of 
each of the 3 breeds and selected the 6 highest and 6 lowest 
steers for differential gene expression gene analyses. Each 
trait under investigation showed significant differences 
between the high- and low-extreme-phenotype animal groups 
(Supplementary Tables S1–S3). It is worth noting that with the 
aim of minimizing environmental differences between the 
studied animals, they were raised on the same experimental 
farm and were managed similarly. In addition, the 2 extreme 
groups of each population did not differ significantly in their age 
when the liver samples were collected (Supplementary Table 
S1–S3). Although the 2 extreme groups of the target trait also 
exhibited significant differences in a few of other production 
traits due to their biological correlations between the traits, the 
strongest divergence for ADG, DMI, or MWT provided suitable 
contrast of animal groups for differential gene expression 
analysis for each of the trait under investigation.

Our results showed a great diversity in terms of DE genes 
between breeds for the same trait (Fig. 1a–c). For example, of the 
252, 375, and 206 DE genes associated with ADG, DMI, and MWT, 
only 1% to 2% of them were shared among all 3 breeds, while 
81.7% to 83% were breed specific, and 3% to 8% are uniquely 
common between 2 breeds for a trait. This diversity of differential 
gene expression implies that probably these traits are largely 
controlled by different genes in different breeds. A similar trend 
of predominantly breed-specific differential gene expression 

Figure 3.  Lipid metabolism gene and molecular processes interaction network within lipid metabolism function as associated to average daily gain (ADG), and 

predicted activation or inhibition in high-ADG Charolais steers.
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profiles across breeds in the same animal populations (including 
animals used in the current study) has been previously observed 
and reported for RFI by Mukiibi et al. (2018). These breed-specific 
DE gene results concur with the identification of quantitative 
trait loci for feed efficiency traits by Saatchi et al. (2014), in which 
quantitative trail loci associated with RFI, ADG, DMI, and MWT are 
largely breed specific (Saatchi et al., 2014). When DE genes among 
the traits were compared within a breed, our results showed a 
relatively moderate number of gene overlap (12 – 29%) between 
MWT and ADG or DMI. This could be an indication of shared 
genetic mechanisms underlying these traits, which supports the 
moderate to high genetic correlations between MWT and ADG 
or DMI reported in beef cattle (Crowley et al., 2010; Mao et al., 
2013). In the liver tissue of Nellore cattle, Tizioto et  al. (2015) 
also reported DE gene overlap of 14% or 20% between RFI and 
ADG or DMI, respectively. In addition, IFI27 which was among 
the 7 DE genes associated with RFI, ADG, and DMI in the Nellore 
cattle steers (Tizioto et  al., 2015) was also identified as one of 
the 4 genes common to all the 4 traits in the current study for 
the Angus population. IFI27 codes for IFN-α-inducible protein 27 
and plays roles in the innate immune response (Dill et al., 2014), 
indicating the potential importance of immune-related genes in 
influencing feed efficiency and the related traits in beef cattle.

Although a low DE gene overlap for each trait was observed 
among the breeds, we identified significant overlap of the 
biological functions (60% to 68%) affecting the traits across 
the 3 studied breeds. These results suggest that despite the 
high diversity in terms of genes controlling these traits in each 
breed, the biological processes influencing the traits across the 

breeds or biological types are largely the same. Some of the 
major cellular and molecular functions identified as associated 
with ADG or DMI or MWT included lipid metabolism, molecular 
transport, carbohydrate metabolism, amino acid metabolism, 
vitamin metabolism, molecular transport, cell-to-cell signaling 
and interaction, cell morphology, cell death and survival, cellular 
movement, and immune-related functions. Given the central 
roles played by the liver in nutrient metabolism and distribution 
in the body (Jeremy et al., 2002; Rui, 2011), and its function as a 
major immunological organ in the body (Parker and Picut, 2005; 
Racanelli and Rehermann, 2006), we will further discuss the 
associations of lipid metabolism, amino acid and carbohydrate 
metabolism, and immunological functions with ADG, DMI, and 
MWT in the following sections.

Association of Lipid Metabolism With Growth Rate, 
Feed Intake, and Metabolic Body Weight

Lipid metabolism was identified in this study as an important 
biological function influencing growth rate, feed intake, and 
metabolic weight in beef cattle. These results are consistent 
with reports from other similar studies that have identified 
genes involved in lipid metabolism for feed efficiency (Chen 
et al., 2011; Alexandre et al., 2015; Tizioto et al., 2015; Weber et al., 
2016), growth rate (Kern et al., 2016; Lindholm-Perry et al., 2016a; 
Foote et al., 2017), and feed intake (Lindholm-Perry et al., 2016a) 
in beef cattle. Some of the highly represented lipid metabolic 
functions identified in our study as associated with ADG or DMI 
or MWT included synthesis of lipid, synthesis of cholesterol, 
accumulation of lipid, oxidation of fatty acids, and cellular 

Figure 4.  Lipid metabolism gene and molecular processes interaction network within lipid metabolism function as associated to average daily gain (ADG), and 

predicted activation or inhibition in high-ADG Kinsella Composite (KC) steers.
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Table 5.  Top enriched canonical pathways associated with growth rate, feed intake, and metabolic body weight in Angus, Charolais, and 
Kinsella Composite (KC) animals

Trait_breed1

Ingenuity Canonical 
Pathways P-value Ratio Z−score2 Molecules

ADG_ Angus Superpathway of 
Cholesterol Biosynthesis

1.35E-05 0.14 −2.00 SQLE, HMGCR, HMGCS1, CYP51A1

 Nicotine Degradation II 2.40E-05 0.08 −2.24 UGT2B17, FMO2, INMT, CYP51A1, CYP2C19
 LPS/IL-1 Mediated 

Inhibition of RXR 
Function

2.40E-05 0.04 2.24 IL1R2, NR0B2, FMO2, CYP7A1, LBP, HMGCS1, SULT2A1, 
CYP2C19

 Acute Phase Response 
Signaling

4.17E-05 0.04 0.82 SOCS3, HP, SAA1, SOCS2, SERPINA3, LBP, SERPINE1

 LXR/RXR Activation 4.37E-05 0.05 −1.00 IL1R2, SAA1, CYP7A1, LBP, HMGCR, CYP51A1
ADG_

Charolais
LXR/RXR Activation 1.23E-06 0.06 0.45 IL1R2, SCD, RXRG, APOA1, APOA4, FASN, SAA1

 LPS/IL-1 Mediated 
Inhibition of RXR 
Function

6.61E-05 0.03 0.00 IL1R2, SULT1E1, CPT1B, ALDH3B1, GSTA1, CYP2B6, CYP2C19

 PXR/RXR Activation 2.09E-04 0.06 NC SCD, GSTA1, CYP2B6, CYP2C19
 FXR/RXR Activation 2.63E-04 0.04 NC APOA1, APOA4, FASN, SAA1, FOXA3
 Glycine Betaine 

Degradation
8.71E-04 0.20 NC SDS, SHMT2

ADG_KC PXR/RXR Activation 3.39E-06 0.08 NC GSTM1, SCD, CYP7A1, IGFBP1, ALAS1
 Interferon Signaling 7.76E-06 0.11 −2.00 OAS1, MX1, IFI6, ISG15
 LPS/IL-1 Mediated 

Inhibition of RXR 
Function

1.38E-04 0.03  GSTM1, IL36G, GSTM4, CYP7A1, ALAS1, SOD3

 2-amino-3-
carboxymuconate 
Semialdehyde 
Degradation to 
Glutaryl-CoA

3.55E-03 1.00 NC ACMSD

 4-hydroxybenzoate 
Biosynthesis

3.55E-03 1.00 NC TAT

DMI_ Angus Pyrimidine Ribonucleotides 
Interconversion

1.20E-03 0.07 NC NUDT5, CMPK2, AK8

 Pyrimidine Ribonucleotides 
De Novo Biosynthesis

1.38E-03 0.07 NC NUDT5, CMPK2, AK8

 LXR/RXR Activation 2.69E-03 0.03 NC SCD, APOA4, SAA1, CYP7A1
 Activation of IRF by 

Cytosolic Pattern 
Recognition Receptors

3.39E-03 0.05 NC DHX58, IFIT2, ISG15

 GADD45 Signaling 3.63E-03 0.11 NC GADD45B, CDKN1A
DMI_

Charolais
LPS/IL-1 Mediated 

Inhibition of RXR 
Function

2.63E-10 0.07 0.33 IL1R2, ABCG8, GSTM1, ABCG5, SULT1E1, JUN, SULT1C4, 
NR0B2, CYP7A1, SLC27A6, IL1B, ALDH3B1, HMGCS1, ABCA1, 
CYP2C19

 Superpathway of 
Cholesterol Biosynthesis

2.34E-06 0.18 −2.24 SQLE, PMVK, IDI1, HMGCR, HMGCS1

 Mevalonate Pathway I 2.45E-06 0.31 −2.00 PMVK, IDI1, HMGCR, HMGCS1
 LXR/RXR Activation 5.13E-06 0.07 −1.34 IL1R2, ABCG8, ABCG5, SAA1, CYP7A1, IL1B, HMGCR, ABCA1
 Superpathway of 

Geranylgeranyl 
diphosphate Biosynthesis 
I (via Mevalonate)

7.94E-06 0.24 −2.00 PMVK, IDI1, HMGCR, HMGCS1

DMI_KC Interferon Signaling 1.00E-10 0.22 2.83 OAS1, IFI6, PSMB8, STAT1, TAP1, IRF1, IFITM1, ISG15
 Antigen Presentation 

Pathway
6.31E-09 0.18 NC PSMB9, NLRC5, HLA-B, HLA-DQB1, PSMB8, HLA-DQA2, TAP1

 Th1 Pathway 3.80E-07 0.07 1.41 NFIL3, CD3E, HLA-B, CD274, HLA-DQB1, HLA-DQA2, STAT1, 
CD3D, IRF1

 Th1 and Th2 Activation 
Pathway

5.25E-06 0.05 NC NFIL3, CD3E, HLA-B, CD274, HLA-DQB1, HLA-DQA2, STAT1, 
CD3D, IRF1

 PKCθ Signaling in T 
Lymphocytes

1.82E-05 0.05 2.45 CACNA1I, RAC2, CACNG1, CD3E, HLA-B, HLA-DQB1, CD3D, 
LCP2
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Trait_breed1

Ingenuity Canonical 
Pathways P-value Ratio Z−score2 Molecules

MWT_Angus LPS/IL-1 Mediated 
Inhibition of RXR 
Function

1.38E-05 0.03 −2.00 IL1R2, SULT1E1, CYP2B6, LBP, HMGCS1, SULT2A1, CYP2C19

 Melatonin Degradation I 8.13E-05 0.06 1.00 SULT1E1, CYP2B6, SULT2A1, CYP2C19
 Superpathway of Melatonin 

Degradation
1.10E-04 0.06 1.00 SULT1E1, CYP2B6, SULT2A1, CYP2C19

 IGF-1 Signaling 6.46E-04 0.04 NC CTGF, IGF1, CYR61, IGFBP2
 Mevalonate Pathway I 9.33E-04 0.15 NC HMGCR, HMGCS1
MWT_

Charolais
Neuroinflammation 

Signaling Pathway
1.45E-04 0.02 1.89 HMOX1, VCAM1, HLA-B, IL1B, HLA-DQB1, CSF1R, GRIN3A

 Prostanoid Biosynthesis 4.68E-04 0.22 NC PTGS1, TBXAS1
 Granulocyte Adhesion and 

Diapedesis
5.37E-04 0.03 NC VCAM1, SELL, IL1B, MMP11, SDC3

 Graft-versus-Host Disease 
Signaling

7.24E-04 0.06 NC HLA-B, IL1B, HLA-DQB1

 Altered T-Cell and B-Cell 
Signaling in Rheumatoid 
Arthritis

4.47E-03 0.03 NC HLA-B, IL1B, HLA-DQB1

MWT_KC Antigen Presentation 
Pathway

3.39E-04 0.08 NC HLA-B, HLA-DQB1, HLA-DQA2

 Pathogenesis of Multiple 
Sclerosis

4.47E-04 0.22 NC CXCL10, CXCL9

 Nicotine Degradation III 1.07E-03 0.05 NC UGT2B17, CYP2B6, CYP2C19
 Th1 Pathway 1.41E-03 0.03 NC SOCS3, HLA-B, HLA-DQB1, HLA-DQA2
 Melatonin Degradation I 1.62E-03 0.05 NC UGT2B17, CYP2B6, CYP2C19

1ADG = average daily gain; DMI = average daily dry matter intake; MWT = metabolic body weight.
2The Z-score indicates activation (+) or inactivation (−) of the process in high-ADG, low-DMI, or low-MWT steers. NC = not calculated.

Figure 5.  Lipid metabolism gene and molecular processes interaction network within lipid metabolism function as associated to daily dry matter intake (DMI), and 

predicted activation or inhibition in low DMI in Angus steers.

Table 5. Continued
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transport of lipid. With respect to growth, our results suggest that 
fast-growing animals tend to have reduced synthesis of lipid. 
This is demonstrated by the IPA results that showed synthesis 
of lipids involving 19 DE genes in Charolais and 10 DE genes 
in KC was predicted to be downregulated in the fast-growing 
animals (Figs. 3 and 4). Additionally, in Angus, 14 lipogenic genes 
(AKR1C3, IL1R2, SOCS3, NR0B2, F2R, IGF1, ELOVL5, CYP7A1, ABHD6, 
HMGCR, PGAP1, SQLE, CYP51A1, and HMGCS1) were identified as 
associated with ADG, of which 8 genes (IGF1, ELOVL5, CYP7A1, 
ABHD6, HMGCR, PGAP1, SQLE, CYP51A1, and HMGCS1) were 
downregulated in the liver tissue of high-ADG animals (Fig. 
2). The difference in lipid synthesis between fast- and slow-
growing animals could indicate differences in energy utilization 
efficiency, where the fast-growing animals optimize their energy 
towards protein deposition and less towards fat synthesis and 
deposition. Indeed, fast-growing animals tend to deposit less 
fat and produce more lean meat than the slow-growing animals 
(Mitchell, 2007). In our previous study, we identified 253 DE genes 
of liver for RFI in the same 3 breed populations (Mukiibi et al., 
2018), of which 14 DE genes including HMGCR, STS, IGF1, APOA1, 
LPIN1, MFSD2A, GSTM4, ELOVL2, SCD, PDK4, CES1, SQLE, NR0B2, 
and IGFBP2 were common to DE genes involved in lipid synthesis 
for ADG, DMI, and MWT from this study. These genes probably 
contribute to the variation in feed efficiency and its component 
traits through modulation of lipid synthesis. Additionally, 
associations of expression of lipogenic genes and the other lipid 
metabolic processes such as accumulation, transport, oxidation, 
and uptake of lipid with ADG, DMI, and MWT could in part 

explain the reported genetic relationships between these traits 
and carcass or meat fat content and fat composition traits in beef 
cattle (Lancaster et al., 2009; Inoue et al., 2011; Zhang et al., 2017). 
Therefore, the DE genes associated with lipid metabolism should 
be further investigated to identify causative DNA markers for the 
feed efficiency traits in beef cattle.

Notably, of the lipogenic DE genes identified in this study, 
several of them are involved in cholesterol metabolism. The 
superpathway of cholesterol biosynthesis was identified among 
the top significantly enriched pathways for ADG in Angus where 
it was predicted to be downregulated in the high-ADG steers, and 
for DMI in Charolais where it was predicted to be downregulated 
in the low-DMI steers. Four of the DE genes identified as 
associated with ADG in Angus (SQLE, HMGCR, HMGCS1, and 
CYP51A1) are involved in the cholesterol biosynthesis pathway 
and were all downregulated in the high-ADG animals. For DMI 
in Charolais, 5 DE genes including SQLE, PMVK, IDI1, HMGCR, 
and HMGCS1 are involved in the cholesterol biosynthesis 
pathway, and they were all downregulated in the low-DMI steers. 
Interestingly, HMGCS1, HMGCR, PMVK, SQLE, and IDI1 are key 
enzymes catalyzing important steps in cholesterol biosynthesis 
(Brown and Sharpe, 2016). For example, HMGCS1 codes for the 
3-hydroxy-3-methylglutaryl-CoA synthase 1 that characterizes 
the condensation of acetoacetyl-CoA and acetyl-CoA to 
3-hydroxy-3-methylglutaryl-CoA, an initial reaction in cholesterol 
biosynthesis (Brown and Sharpe, 2016). HMGCR encodes for 
3-hydroxy-3-methylglutaryl-CoA reductase, an enzyme that 
characterizes the reduction of 3-hydroxy-3-methylglutaryl-CoA 

Figure 6.  Lipid metabolism gene and molecular processes interaction network within lipid metabolism function as associated to daily dry matter intake (DMI), and 

predicted activation or inhibition in low-DMI Charolais steers.
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to mevalonic acid, a rate-limiting step in cholesterol synthesis 
(Brown and Sharpe, 2016). Gene SQLE codes for squalene 
monooxygenase, which is an enzyme that oxidizes the first 
oxygenation step in cholesterol/sterol biosynthesis and is 
considered a rate-limiting enzyme in this process (Brown and 
Sharpe, 2016). LXRs and RXRs, which are heterodimer nuclear 
receptors that regulate cholesterol metabolism through 
regulation of cholestrogenic enzymes, and carriers (Sharpe 
and Brown, 2013; Hong and Tontonoz, 2014) were identified to 
be associated with ADG, DMI, and MWT. Additionally, SREBF1 
transcription regulator was identified as an enriched regulator 
in this study (for ADG and MWT in Angus) and predicted to 
regulate several genes including cholesterol biosynthesis genes. 
SREBF1 codes for sterol regulatory element-binding protein 1, 
which is a key (together with SREBF2) expression regulator of 
genes involved in cholesterol biosynthesis (Hua et  al., 1995). 
These results present interesting revelations on the potential 
correlations of beef production traits such as growth rate with 
cholesterol content in beef as the liver is also a major site for 
cholesterol biosynthesis in the animal body (Bell, 1981).The 
associations of cholesterol biosynthesis with growth and feed 
intake is an interesting revelation from our results as they imply 
that selection of fast-growing animals or low feed intake could 
result in the production of beef with low cholesterol content, a 
dietary health concern of many beef consumers. Consistent with 
our findings, association of cholesterol metabolism with feed 
efficiency was reported by Karisa et al. (2014), and lower blood 
cholesterol content has been observed in more efficient beef 

animals as compared to inefficient animals (Alexandre et  al., 
2015; Bourgon et al., 2017). Also, downregulation of HMGCR and 
SQLE in the liver tissue of more feed efficient animals has been 
previously reported in crossbred steers (Mukiibi et al., 2018).

Association of Amino Acid and Carbohydrate 
Metabolism With Growth, Feed Intake, and 
Metabolic Body Weight

Amino acid metabolism was among the top enriched cellular 
and molecular functions associated with ADG in Charolais and 
KC animals, while carbohydrate metabolism was one of the top 
enriched functions in KC. With respect to amino acid metabolism 
in Charolais, processes such as metabolism of serine family 
amino acids (involving genes CSAD, SDS, and SHMT2), synthesis 
of amino acid (involving genes ARG1, CNDP2, CS, and SHMT2), 
and transport of arginine (involving genes ARG1 and SLC3A1) 
were strongly enriched. For KC, processes such as catabolism 
of amino acids, synthesis of l-proline, metabolism of essential 
amino acids, and others (shown in Supplementary Table S5) were 
enriched for KC with DE genes ARG1 and AASS being involved in 
most of these processes. ARG1 and AASS code for critical enzymes 
in amino acid metabolism. ARG1 codes for arginase enzyme 
which catalyzes conversion of arginine to urea and orthenine in 
the urea cycle (Morris Jr, 2002), whereas AASS codes for alpha-
aminoadipate-semialdehyde synthase, a bifunctional enzyme 
that catalyzes a 2-step conversion of lysine to alpha-aminoadipic 
semialdehyde in the lysine degradation pathway (Sacksteder 
et al., 2000). For Angus, amino acid metabolism was not among 

Figure 7.  Cellular function and maintenance gene and molecular processes interaction network as associated to daily dry matter intake (DMI), and predicted activation 

or inhibition in low-DMI Kinsella Composite (KC) steers.
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the most significant functions associated with ADG; however, it 
was significantly enriched by mainly amino acid transport DE 
genes including SLC16A10, SLC1A2, SLC25A15, and SLC3A1 as 
presented in Supplementary Table S5. Amino acid metabolism 
also showed a strong association with MWT in Angus steers with 
numerous enriched amino acid metabolic processes such as 
uptake of cystine (Supplementary Table S5). For DMI, amino acid 
metabolism was not among the top enriched biological functions 
in any of the 3 breeds; however, it was enriched in Angus and 
Charolais by 10 and 17 DE genes, respectively. Although in the 
current study, we did not identify large numbers of DE genes 
involved in amino acid metabolism, the few genes we identified 
are involved in key hepatic amino acid metabolic process such 
as catabolism and synthesis of amino acids. Through these 
processes, the liver modulates nitrogenous compounds content 
in the body (Reynolds, 1992).

As the liver is a major source of glucose in the body of a 
ruminant animal (Nafikov and Beitz, 2007), it is of interest to note 
that carbohydrate metabolism was among the most significantly 
enriched functions in Angus as well as enriched in Charolais and 
KC with respect to ADG. Key processes including oxidation of 
carbohydrate, synthesis of carbohydrate, glycogenolysis, intake of 
glucose, and gluconeogenesis were identified as associated with 
growth rate in the studied animals (Supplementary Table S6). 
In agreement with our results, Foote et al. (2017) have reported 
carbohydrate and amino acid metabolism associations with beef 
cattle growth and feed intake in the jejunum tissue. Studying the 
rumen epithelial tissue transcriptome of crossbred steers with 
divergent feed intake and growth phenotypes, Kern et al. (2016) 
reported that carbohydrate metabolism was associated with feed 
intake and body weight gain. Besides feed intake and body weight 
gain, hepatic carbohydrate, and amino acid metabolism have 
also been identified to be associated with feed efficiency in beef 
cattle (Chen et al., 2011; Mukiibi et al., 2018). These observations 
suggest that animals divergent for growth or feed intake might 
inherently possess differences in their carbohydrate (majorly 
glucose) synthesis or utilization for energy production.

Association of Immunological Functions With 
Growth, Feed Intake, and Metabolic Body Weight

In the current study, we identified immune function-related 
genes that were differentially expressed in the liver tissue 
of animals with divergent growth rate or feed intake or MWT 
phenotypes. For example, acute phase response signaling 
was among the top enriched canonical pathway for Angus 
steers with divergent growth rate phenotypes involving SOCS3, 
HP, SAA1, SOCS2, SERPINA3, LBP, and SERPINE1, and it was 
predicted as upregulated in the fast-growing animals. Within 
the composite breed KC, steers with divergent DMI had a large 
number of DE immune-related genes, and they were involved 
in multiple immune function processes such as engulfment of 
cells by macrophages, T-cell homeostasis, T-cell development, 
and differentiation of T lymphocytes, which were predicted to be 
upregulated in the liver tissue of low-feed intake KC. Additionally, 
IFN signaling pathway (involving OAS1, IFI6, PSMB8, STAT1, TAP1, 
IRF1, IFITM1, and ISG15), Th1 pathway (involving NFIL3, CD3E, 
HLA-B, CD274, HLA-DQB1, HLA-DQA2, STAT1, CD3D, and IRF1), 
and PKCθ signaling in T lymphocytes (involving CACNA1I, RAC2, 
CACNG1, CD3E, HLA-B, HLA-DQB1, CD3D, and LCP2) were among 
the top enriched pathways associated with feed intake in KC and 
also predicted to be activated in KC steers with lower feed intake 
(Table 5). Since the liver is a major organ to process absorbed 
materials from the gastrointestinal tract including microbes and 

toxins, it plays an important role in defending the body against 
invading pathogens through phagocytosis by the Kupfer cells or 
killing the infected cells through lysis and inducing apoptosis 
by natural killer cells and natural killer T cells (Nakamoto and 
Kanai, 2014). Immune genes from similar gene clusters as those 
identified in this study have also been reported to be associated 
to feed intake or gain in the rumen (Kern et al., 2016; Reynolds 
et al., 2017), duodenum (Lindholm-Perry et al., 2016a), jejunum 
(Lindholm-Perry et al., 2016a), and ileum (Lindholm-Perry et al., 
2016a) in beef cattle. With respect to hepatic transcriptome 
studies, associations of feed efficiency and hepatic immune 
response in beef cattle have been reported by Alexandre et al. 
(2015) and Paradis et al. (2015). Paradis et al. (2015) identified 5 
immune genes (HBB, MX1, ISG5, HERC6, and IF44) associated with 
feed efficiency in crossbred heifers. Similarly, in our study, MX1, 
ISG5, HERC6, and IF44 were also identified as associated either 
with ADG, DMI, or MWT in KC steers, whereas for Charolais 
steers, MX1, ISG5, and IF44 were either associated with DMI or 
MWT. These and several other genes we identified in this study 
are regulated by INF-α and INF-β signaling as shown by canonical 
pathways and upstream regulator results and are hence involved 
in innate immune function against invading pathogens (Stetson 
and Medzhitov, 2006; Boxx and Cheng, 2016). Our results and 
those reported by other similar studies in beef cattle indicate 
possible immunological adaptations to the feedlot challenges 
by some of the animals, which probably have implications on 
animal’s feed intake, growth, and feed efficiency.

Conclusions
We identified a total of 252, 375, and 206 protein-coding genes 
associated with growth rate, feed intake, and MWT of beef 
cattle, respectively, through hepatic transcriptome sequence 
data analyses. The majority of the identified DE genes for 
the traits were breed specific. However, most of the enriched 
biological functions are common across the 3 breeds. Functional 
enrichment showed that the identified DE genes were involved 
in multiple cellular and molecular functions that mainly include 
metabolism of lipids, carbohydrates, amino acids, vitamins and 
minerals, small molecule biochemistry, cellular movement, cell 
morphology, and cell-to-cell signaling and interaction. Further 
identification of pathways and upstream gene expression 
regulators revealed strong associations of both cholesterol 
biosynthesis and immune-related functions with growth, feed 
intake, and MWT. The DE genes and major biological functions 
associated with growth, feed intake, and MWT advance our 
understanding of genetic mechanisms that regulate feed intake, 
growth, and feed efficiency in beef cattle with  respective to 
various breeds/breed populations, which will also help with 
identification of causative DNA polymorphisms for the traits 
and lead to designing of better genetic and genomic selection 
and breeding programs to improve the traits.

Supplementary Data
Supplementary data are available at Journal of Animal Science 
online.

Supplementary Figure S1. Expression profile (log2(fold 
change)) in high-ADG steers of the 5 differentially expressed 
(DE) genes common across all 3 breeds.

Supplementary Figure S2. Expression profile (log2(fold 
change)) in low-DMI steers of the 4 differentially expressed (DE) 
genes common across all 3 breeds.

D
ow

nloaded from
 https://academ

ic.oup.com
/jas/article-abstract/97/11/4386/5580789 by Teagasc user on 03 January 2020

http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skz315#supplementary-data
http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skz315#supplementary-data
http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skz315#supplementary-data
http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skz315#supplementary-data
http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skz315#supplementary-data


4402  |  Journal of Animal Science, 2019, Vol. 97, No. 11

Supplementary Figure S3. Expression profile (log2(fold 
change)) in low-MWT steers of the 4 differentially expressed 
(DE) genes common across all 3 breeds.

Supplementary Figure S4. Venn diagram showing overlap 
between DE gene of ADG, DMI, MWT, and RFI from Mukiibi 
et  al. (2018), within Angus, Charolais, and Kinsella Composite 
populations.

Supplementary Figure S5. Enriched molecular and cellular 
functions associated with ADG in Angus steers.

Supplementary Figure S6. Enriched molecular and cellular 
functions associated with ADG in Charolais steers.

Supplementary Figure S7. Enriched molecular and cellular 
functions associated with ADG in KC steers.

Supplementary Figure S8. Enriched molecular and cellular 
functions associated with DMI in Angus steers.

Supplementary Figure S9. Enriched molecular and cellular 
functions associated with DMI in Charolais steers.

Supplementary Figure S10. Enriched molecular and cellular 
functions associated with DMI in KC steers.

Supplementary Figure S11. Interferon Signaling Canonical 
pathway associated with DMI in KC animals.

Supplementary Figure S12. Enriched molecular and cellular 
functions associated with MWT in Angus steers.

Supplementary Figure S13. Enriched molecular and cellular 
functions associated with MWT in Charolais steers.

Supplementary Figure S14. Enriched molecular and cellular 
functions associated with MWT in KC steers.

Supplementary Table S1. Differences of ADG and other 
performance traits between groups of high- (n = 6) and low-ADG 
steers (n = 6) of the 3 breeds.

Supplementary Table S2. Differences of DMI and other 
performance traits between groups of high- (n = 6) and low-DMI 
steers (n = 6) of the 3 breeds.

Supplementary Table S3. Differences of MWT and other 
performance traits between groups of high- (n  =  6) and low-
MWT steers (n = 6) of the 3 breeds.

Supplementary Table S4. Top 5 enriched functions and the DE 
genes involved in the functions for ADG, DMI, and MWT within 
Angus, Charolais, and KC populations. 

Supplementary Table S5. Enriched biological processes 
within amino acid metabolism biological functions associated 
with ADG in Angus, Charolais, and KC steers.

Supplementary Table S6. Enriched biological processes 
within carbohydrate metabolism biological functions associated 
with ADG in Angus, Charolais, and KC steers.

Supplementary Table S7. Predicted activated and deactivated 
gene expression regulators associated with ADG, DMI, and MWT 
in Angus, Charolais, and KC.

Supplementary Table S8. Enriched biological processes 
within the topmost enriched molecular and cellular functions 
associated with MWT in Angus, Charolais, and KC.

Supplementary File 1. All DE genes between high- and low-
ADG steers from Angus, Charolais, and KC populations.

Supplementary File 2. All DE genes between high- and low-
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