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Dopamine Neurons Make Glutamatergic Synapses In Vitro
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Interactions between dopamine and glutamate play prominent
roles in memory, addiction, and schizophrenia. Several lines of
evidence have suggested that the ventral midbrain dopamine
neurons that give rise to the major CNS dopaminergic projec-
tions may also be glutamatergic. To examine this possibility, we
double immunostained ventral midbrain sections from rat and
monkey for the dopamine-synthetic enzyme tyrosine hydroxy-
lase and for glutamate; we found that most dopamine neurons
immunostained for glutamate, both in rat and monkey. We then
used postnatal cell culture to examine individual dopamine
neurons. Again, most dopamine neurons immunostained for
glutamate; they were also immunoreactive for phosphate-
activated glutaminase, the major source of neurotransmitter
glutamate. Inhibition of glutaminase reduced glutamate stain-
ing. In single-cell microculture, dopamine neurons gave rise to
varicosities immunoreactive for both tyrosine hydroxylase and
glutamate and others immunoreactive mainly for glutamate,

which were found near the cell body. At the ultrastructural level,
dopamine neurons formed occasional dopaminergic varicosi-
ties with symmetric synaptic specializations, but they more
commonly formed nondopaminergic varicosities with asym-
metric synaptic specializations. Stimulation of individual dopa-
mine neurons evoked a fast glutamatergic autaptic EPSC that
showed presynaptic inhibition caused by concomitant dopa-
mine release. Thus, dopamine neurons may exert rapid synap-
tic actions via their glutamatergic synapses and slower modu-
latory actions via their dopaminergic synapses. Together with
evidence for glutamate cotransmission in serotonergic raphe
neurons and noradrenergic locus coeruleus neurons, the
present results suggest that glutamatergic cotransmission may
be the rule for central monoaminergic neurons.
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atal; cell culture; ventral tegmental area

Ventral midbrain (VM) dopamine (DA) neurons play a pivotal
role in the organization of movement and behavior (Iversen,
1995; Williams and Goldman-Rakic, 1995; Montague et al., 1996).
Degeneration of substantia nigra (SN) DA neurons gives rise to
Parkinson’s disease, whereas aberrant activity of ventral tegmen-
tal area (VTA) DA neurons appears to underlie psychosis in
schizophrenia (Egan and Weinberger, 1997). Natural rewards are
potent activators of VTA DA neurons, so that psychostimulants
that cause supraphysiological release of DA may reinforce their
own use, accounting in part for their addicting properties (Rob-
inson and Berridge, 1993; Di Chiara, 1995; Mirenowicz and
Schultz, 1996). Thus, the synaptic actions of DA neurons have
been the focus of considerable interest; however, they have been
difficult to resolve (Grenhoff and Johnson, 1997). DA appears to
be released in more of a paracrine than a synaptic manner. Single
DA neuron spikes evoke overflow of DA beyond the synapse
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(Garris et al., 1994), and DA receptors as well as the DA trans-
porter are often found at a distance from release sites (Pickel et
al.,, 1996), together raising the question as to the role of the
synaptic specializations of DA neurons.

Several lines of evidence suggest that DA neurons release an
excitatory amino acid such as glutamate (GLU). An early study
showed that SN stimulation evoked fast EPSPs in striatal (STR)
neurons (Kitai et al., 1976), although this was later ascribed to the
collateral activation of cortical afferents (Wilson et al., 1982). In
a recent study, stimulation of DA neuron axons in the median
forebrain bundle evoked fast non-DAergic excitation as well as
slower DAergic excitation (Gonon, 1997). Although the fast re-
sponse could result from attributable to activation of fibers of
passage, in SN-STR cortex slice cocultures in which such fibers
should be lacking, stimulation of the SN also evoked fast excita-
tory responses in STR neurons (Plenz and Kitai, 1996).

Because most DA neurons immunostain for phosphate-
activated glutaminase (PAG), the biosynthetic enzyme (EC
3.5.1.2) for neurotransmitter GLU, DA neurons may also be
GLUergic (Kaneko et al., 1990). Single DA neurons examined at
the ultrastructural level appear to have not only DAergic termi-
nals, identified by staining for the DA synthetic enzyme tyrosine
hydroxylase (TH), that have symmetric synaptic specializations
(associated with inhibitory actions), but also non-DAergic termi-
nals, identified by orthograde [*H]leucine transport, that have
asymmetric synaptic specializations (associated with excitatory
actions) (Hattori et al., 1991). In the nucleus accumbens (nAcc),
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a major mesolimbic target, immunostaining for DA itself reveals
terminals with symmetric as well as asymmetric specializations
(Ikemoto et al., 1996). Finally, 6-hydroxy-DA lesions of DA
neuron cell bodies reduce the number of terminals with asym-
metric specializations in the STR by 20% (MacMillan et al,,
1997), possibly reflecting the loss of non-DAergic terminals of DA
neurons. These morphological observations are consistent with
the possibility that some DA neuron synapses mediate fast
excitation.

To address this issue, we have first shown that most DA
neurons in the intact brain as well as postnatal VTA cell culture
immunostain for GLU. GLU immunostaining appears to reflect
neurotransmitter GLU, based on a comparative analysis of neu-
rotransmitter immunostaining and on demonstrating that inhibi-
tion of PAG leads to a reduction in GLU immunostaining (as
would be expected if the GLU visualized reflects neurotransmit-
ter GLU). In dual-immunostained single-cell microcultures, we
have seen that DA neurons give rise to two sets of varicosities,
one set that is both DAergic and GLUergic and another set that
appears to be mainly GLUergic. At the ultrastructural level,
single DA neurons give rise to synapses with both DAergic
symmetric and non-DAergic asymmetric synaptic specializations.
Stimulating DA neurons in microculture elicited strong GLUergic
autaptic excitation that was modulated by concomitant DA re-
lease via a presynaptic mechanism. Together with morphological
studies in the intact brain (Hattori et al., 1991), these observations
show that DA neurons release GLU and may do so selectively at
a subset of their synapses.

MATERIALS AND METHODS

Preparation of brain sections. Following animal protocols approved by
Columbia University, NYS Psychiatric Institute, and the University of
Rochester, adult male rats and old world monkeys (Macaqua nemestrina)
were deeply anesthetized with ketamine and perfused with 4°C heparin-
ized saline followed by 0.3% glutaraldehyde and 4% paraformaldehyde;
0.1 mg/ml ketamine was added to the saline to maintain GLU blockade
during fixation, which markedly reduced background GLU staining.
Free-floating cryostat sections (50 wm) were double fluorescence immu-
nostained as described below.

Cell culture. Mass cultures were prepared from the VTA, ventral
midbrain, nAcc, cerebellum, and hippocampus of postnatal day 2 (P2)-P4
rat pups using our previously established methodology for VTA and
nAcc neurons (Rayport et al., 1992; Shi and Rayport, 1994). Animal
protocols were approved by the Institutional Animal Care and Use
Committees of Columbia University and the N'YS Psychiatric Institute.
On the first of 2 culture days, two pups were anesthetized with ketamine
and then chilled in ice chips; their cerebral cortices were enzymatically
dissociated as a source of astrocytes. One hour before use, microwell
dishes that had been prepared in advance (by making 12-mm-diameter
circular holes in the bottoms of Petri dishes and attaching poly-D-
ornithine-coated coverslips to form 100 ul microwells) were coated with
laminin. Dissociated cortical cells were then plated; 1 hr later, they were
washed vigorously with cold medium to dislodge most cells, leaving only
tightly adherent astrocytes. Astrocytes reached near confluence after ~1
week; further division was then inhibited with fluorodeoxyuridine.

On the second of 2 culture days, 20 pups were prepared as described
above. A 2-mm-thick midline sagittal slice was made, and the VTA was
isolated in a 2 X 2 X 2 mm cube following established landmarks
(Rayport et al., 1992, their Fig. 4). This cube was further divided, and the
resulting 1 X 1 X 1 mm segments were incubated in papain at 32°C under
continuous oxygenation with gentle agitation for 90 min. The papain was
quenched with 10% calf serum, and the tissue segments were dissociated
by gentle trituration in the presence of DNase. Neurons were resus-
pended in serum-free media (to which 1% serum was added to ensure
glial longevity) and plated onto the preestablished cortical astrocytic
monolayers in the microwells. Cultures were maintained in a total vol-
ume of 2.5 ml, which filled the whole dish, and were never fed. Except as
noted, 0.5 mm kynurenate (K'YN) (Sigma, St. Louis, MO) was included
in the culture medium to block excitotoxicity.
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Microcultures were prepared following established methods (Segal
and Furshpan, 1990). Briefly, coverslips were coated with agarose to
create a substrate unfavorable for cell attachment and then mounted to
make microwell dishes. Collagen (Vitrogen 100, Collagen Corporation)
was applied as an aerosol to form substrate islands (50-150 pwm in
diameter) that were favorable for cell attachment. On the first culture
day, dissociated cortical cells were plated to form a glial substrate on the
collagen-coated areas; unattached cells were washed away with cold
medium after 2 hr. Astrocytes grew to confluence on the collagen dots
after ~1 week; a typical microwell had ~50 glial islands. On the second
culture day, dissociated VTA cells were plated at a density titrated to
maximize the number of single neuron microcultures.

Glutaminase inhibition. Glutaminase inhibition studies were performed
on mass cultures. The 6-diazo-5-oxo-norleucine (DON) enantiomers
(Sigma) were applied for 20 hr at a concentration of 5 mM. Cultures were
then fixed for TH-GLU immunocytochemistry. Occasionally very in-
tense GLU " cells were seen, possibly resulting from upregulation of
PAG after inhibition with L-DON (Kaneko et al., 1992); this reduced the
overall diminution in GLU staining. Consistent with this, there was
massive GLU-mediated cell death in L-DON-treated cultures if GLU
receptors were not blocked pharmacologically. Therefore, this series of
experiments was performed using the standard concentration of kynure-
nate and 10 um CNQX (Tocris).

Immunocytochemistry. For immunostaining, cells were fixed with 0.3%
glutaraldehyde and 4% paraformaldehyde and permeabilized with 1%
Triton X-100. This relatively high concentration of Triton X-100 maxi-
mized penetration of antisera, so that in the case of TH staining we
found stained cells throughout the depth of sections and in cultures saw
that cell bodies (typically the thickest parts of the culture) were stained
completely. Primary antisera were applied overnight in the culture mi-
crowells at 4°C with slow agitation. Secondary antibodies were applied at
room temperature for 1 hr. We used fluorescein or rhodamine secondary
antisera at 1:200 (Chemicon, Temecula, CA) or the ABC method with
diaminobenzidine (DAB) as the chromagen (Vectastain Elite kit). For
double or triple staining, we used the following antibody combinations: a
1:200 dilution of a polyclonal anti-TH antiserum (Chemicon) and a
1:2000 dilution of a monoclonal anti-GLU antiserum (Glu2, 1:2000;
Incstar, Stillwater, MN) (McDonald et al., 1989) with fluorescence;
1:10,000 anti-TH polyclonal with DAB followed by 1:50 anti-
synaptophysin monoclonal (Chemicon) and 1:2000 anti-GLU by fluores-
cence; 1:2 anti-TH monoclonal (Boehringer Mannheim, Indianapolis,
IN) and 1:1000 polyclonal anti-GABA (Sigma); 1:200 anti-TH and 1:250
anti-PAG monoclonal IgM (a gift from Takeshi Kaneko, University of
Kyoto) (Kaneko et al., 1990) with fluorescence. For cell counts, scaled
images (see below) were displayed using NIH Image software 1.61
(Wayne Rasband, National Institutes of Health; http://rsb.info.nih.gov/
nih-image) with a 32-color pseudocolor scale. Representative fields were
examined to identify cells that were clearly positive and ones that were
clearly negative. Using these levels of staining for reference, other fields
were then scored.

Imaging. Both Nomarski differential interference contrast and epiflu-
orescence images were acquired with a chilled CCD digital camera (Starl
Camera, Photometrics; IP-Lab Spectrum 3.1 software, Signal Analytics,
running on a Power Macintosh). Throughout a given experiment, imag-
ing parameters were held constant, the epifluorescence field iris was
stopped down to just outside the region of interest to reduce background
light scattering, and 2 or 5 sec exposures were made with the camera in
the high-gain mode. Varicosity staining was resolved by digital deconvo-
lution of stacks of images to obtain confocal slices using MicroTome 2.0
(VayTek) running under IP-Lab Spectrum. For display, the 12 bit IP-Lab
images (4095 shades of gray) were converted to 8 bit images (256 shades
of gray), scaling the extremes of the image intensity range to the full 8 bit
dynamic range. Color images and merges were made by placing the
individual 8 bit monochrome images in the red or green red—green-blue
channels of 24 bit color images (NIH Image software or IP-Lab Spec-
trum). Plates were made using Adobe Photoshop 4.0 and Macromedia
FreeHand 7.

Electron microscopy. For electron microscopy, cultures were stained for
TH using the ABC reaction and DAB and then dehydrated and embed-
ded following established protocols (Harris and Rosenberg, 1993).
Dishes were inspected at the light microscopic level to find compact
single-neuron microcultures, which were then serial sectioned. The rel-
atively high Triton X-100 concentration assured antibody penetration, as
was reflected at the ultrastructural level in TH staining throughout DA
neuron cell bodies. Although this approach unavoidably damaged mem-
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Figure 1.

Immunostaining of DA neurons in VM sections for GLU and GABA. Coronal sections of rat and monkey VM were double-
immunofluorescence-stained for the DA synthetic enzyme TH and GLU or GABA. A4, In rat VM, the majority of DA neurons (4,) were GLUergic (4,);
occasional DA neurons (4,, arrow) were non-GLUergic. In a color merge (4;), in which colocalization appears yellow, neuronal nuclei appear red,
reflecting selective GLU staining because TH is cytoplasmic. The dense cortical GLUergic projection to the DA cell groups accounts for the strong
GLUergic staining of the neuropil. B, GLUergic (B;) neurons are not GABAergic (B,), arguing that precursor GLU does (Figure legend continues).
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branes, compared with conventional electron microscope preservation
techniques (cf. Sulzer and Rayport, 1990; Rayport et al., 1992), presyn-
aptic and postsynaptic specializations were well preserved.

Electrophysiology. For recordings, cultures were placed on the stage of
an inverted microscope (Zeiss), and the medium was replaced with
oxygenated extracellular solution containing (in mm): 135 NaCl, 3 KCl,
2 CaCl,, 2 MgCl,, 10 glucose, and 10 HEPES, pH 7.35, at room
temperature. The bath was perfused continuously in some experiments
using a gravity flow system. Electrodes were pulled on a Flaming-Brown
P-80 PC micropipette puller (Sutter). The intracellular solution con-
tained (in mm): 140 gluconic acid, 0.1 CaCl,, 2 MgCl,, 1 EGTA, 2
ATP-Na,, 0.1 GTP-Na, and 10 HEPES, pH 7.25, with KOH. Electrode
resistances were 4-7 M(). After formation of a gigaohm seal, whole-cell
mode was achieved with brief suction. In some experiments, cells were
recorded using the nystatin perforated patch technique (Korn et al.,
1991). Voltage and current signals were recorded using an Axoclamp 2A
or Axopatch 200 interfaced to a Pentium PC (TL1-25 interface; Axon
Instruments, Foster City, CA) running pClamp 6.0 (Axon) or a Power-
Macintosh (Instrutech ITC-16 interface) running Pulse Control 4.7
(Richard J. Bookman, University of Miami; http:/chroma.med.mi-
ami.edu/cap) under IgorPro 3.0 (Wavemetrics). Off-line data analysis
was performed using Microsoft Excel and IgorPro. Numerical data are
expressed as mean = SEM, and significance of differences were evaluated
by ¢ test. Drugs were applied by local perfusion using a Y-tube system
(Greenfield and Macdonald, 1996). At the end of experiments, cells were
fixed on the stage of the microscope, their x,y coordinates were noted, the
field was imaged, and a circle was scribed on the underside of the
coverslip (Zeiss objective maker) to facilitate relocation of recorded cells
after immunocytochemistry.

RESULTS

GLU staining of DA neurons in situ

Because known GLUergic neurons display strong cytoplasmic
GLU immunoreactivity (Storm-Mathisen and Ottersen, 1990),
we double immunostained VM sections (coronal sections includ-
ing both the SN and VTA) for TH and GLU (Glu2 monoclonal)
to determine whether DA neurons were GLU ™. In rat, we found
that 91 * 4% of DA neurons were GLU ™" (n = 1551 neurons in
13 sections from four rats) (Fig. 14). The incidence of colocal-
ization in SN and VTA was not significantly different, so the data
were combined. The presence of GLU ™~ DA neurons suggests
that metabolic GLU, which should be present at the same level in
all DA neurons, does not contribute significantly to the GLU
staining of DA neurons in vivo. To rule out staining of GLU that
acts as a GABA precursor, we double-stained sections for GLU
and GABA; within the SN and VTA, GABA " cell bodies were
always GLU ~ (Fig. 1B). Moreover, double staining for TH and
GABA showed that TH™" neurons were always GABA ~ (Fig.
1C), as previously reported (Kosaka et al., 1987). In the monkey,
86 = 6% of DA neurons were GLU " (n = 714 neurons in four
sections from four monkeys) (Fig. 1 D). We were unable to assess
how the GLU immunostaining of DA neurons compared with
that of known GLUergic neurons in the hippocampus and cortex,
because afferent staining was so intense in those areas that cell
body staining could not be resolved.

GLU staining of DA neurons in vitro

We then used postnatal cell cultures made from restricted dissec-
tions of the VTA, in which 50% of the neurons are DAergic
(Rayport et al, 1992) and the others are almost entirely
GABAergic (L. Lin and S. Rayport, unpublished observations),

«
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to ask whether the GLU immunoreactivity reflects neurotrans-
mitter GLU. As in brain sections, we found by double immuno-
staining that in vitro 84 * 5% of VTA DA neurons were GLU
(n = 1503 neurons in 12 cultures prepared on five separate culture
days) (Fig. 2A4). We obtained similar levels of colocalization in SN
cultures. We corroborated these results using a polyclonal GLU
antiserum (Arnel, New York, NY) (Hepler et al., 1988); more-
over, a recent EM study using this antibody (Smith et al., 1996)
revealed significant GLU staining of DA neuron dendrites in the
intact VM.

We used cell cultures from brain regions with well character-
ized cell types to verify further the specificity of the Glu2 GLU
antiserum. In cultures from cerebellum, in which small cells are
GLUergic granule cells and large cells are GABAergic Purkinje
cells, we found that granule cells were GLU" and GABA ™.
Purkinje cells were GABA ™, but they were also GLU * (Fig. 2B).
Similarly, in cultures from hippocampus (Fig. 2C) and nucleus
accumbens (data not shown), most GLU ™ cells were GABA ~,
consistent with their being bona fide GLUergic neurons, whereas
GABA ™ cells were almost always GLU *. This indicates that in
vitro, Glu2 recognizes both GLUergic neurons and GABAergic
neurons, in which GLU is likely to be present as a GABA
precursor. This differs from the situation in the intact brain
(Ottersen and Storm-Mathisen, 1984; Conti et al., 1987), presum-
ably because neurons in culture are quiescent so that precursor
GLU levels build up to immunocytochemically detectable levels.

Contrary to the situation in the intact VTA and SN, some DA
neurons appear to be GABAergic. In a previous study, 2% of SN
and 0.6% of VTA DA neurons in high-purity postnatal cultures
were GABA™ (Masuko et al., 1992). In our cultures (Fig. 2D),
11 = 1.6% of DA neurons were GABA ™" (n = 299 cells in eight
cultures). These TH "/GABA ™" VM neurons may derive from a
minority population of SN reticulata neurons that send collateral
projections to both the tectum and the striatum and contain both
DA and GABA (Campbell et al., 1991). In contrast, hypothalamic
DA neurons are extensively GABAergic (Schimchowitsch et al.,
1991). Subtracting the fraction of DA neurons that are GABAer-
gic (in which GLU staining may reflect precursor GLU) from the
fraction that are GLUergic (reported above) yielded a corrected
incidence of 73% of DA neurons that are GLUergic.

To examine a marker more specific to neurons using GLU as a
transmitter, we double stained DA neurons for PAG (Fig. 3). We
found that 51.2% of DA neurons were PAG " (n = 78 neurons).
In nAcc cultures, which do not contain intrinsic GLUergic neu-
rons, there was no PAG staining (Fig. 3B), whereas in hippocam-
pal cultures, in which the majority of neurons are GLUergic,
many neurons stained for PAG (Fig. 3C). If in fact PAG activity
gives rise to the neurotransmitter GLU visualized by immuno-
staining, then inhibition of PAG should reduce the incidence of
GLU staining of DA neurons (Fig. 4). So, we pretreated cultures
with the irreversible PAG inhibitor 6-diazo-5-oxo-L-norleucine
(L-DON) and its inactive enantiomer b-DON. L-DON reduced
the incidence of GLU colocalization in DA neuron cell bodies
from 89 * 7% to 59 = 12%, whereas D-DON had no effect (91 =
8%) (n = 50 cells in each of three cultures per condition in three

not account for GLU staining; this is shown as a color merge in Bj;. In this field, both GLU ™ neurons are GABA ~ (B,, arrows). C, Furthermore, DA
neurons (C;) are never GABAergic (C,); this is seen more clearly in the color merge (C5). In this field, all nine DA neurons are GABA ™ (some are
indicated by C,, arrows). D, In monkey VM, the majority of DA neurons (D;) were GLUergic (D). Occasional DA neurons (D,, arrow) were

non-GLUergic. This is shown as a color merge in D3.
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Figure 2. Immunostaining of DA neurons for GLU in vitro. To evaluate
GLU staining of DA neurons, mass cultures of VTA, cerebellum, and
hippocampus were immunostained for GLU and GABA. A, In vitro the
majority of DA neurons in VM cultures (4;) were GLUergic (4,);
occasional DA neurons (A4,, arrow) were non-GLUergic. In the color
merge (Aj;), in which colocalization appears yellow, neuronal nuclei ap-
pear red, reflecting selective GLU staining. A neuron that is neither TH *
nor GLU " is seen (43, arrow). B, In a cerebellar culture in which granule
cells, which are small and GLUergic, can be distinguished from Purkinje
cells, which are large and GABAergic, only the putative large Purkinje
cell stains for GABA (B,), whereas the two granule cells do not stain
(arrows). However, both the Purkinje cell as well as the granule cells
appear GLUergic (B,). This is seen more clearly in the color merge (Bj3).
In this experiment, all large neurons were GABA ™ and GLU " (n = 16),
whereas all small neurons were only GLU * (n = 40). This indicates that
in vitro GABA neurons contain appreciable GLU, which is likely to be
present as a precursor to GABA. C, Hippocampal neurons are either
GLUergic (majority) or GABAergic (minority). In this culture, occa-
sional cells stained for GABA (C}, arrow), whereas most stained for GLU
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experiments). GLU staining of thin processes and varicosities
(which we have shown previously to be axonal) was largely elim-
inated by L-DON (Fig. 4C.).

Identification of two sets of synaptic varicosities

To examine the relationship between the DAergic and GLUergic
synapses of single DA neurons, we first TH immunostained single
VTA neurons in microculture. We found that the intensity of TH
staining varied considerably both in the processes and varicosities
of single DA neurons, consistent with the possibility that the cells
have non-DAergic release sites (Fig. 54). Second, we immuno-
stained the same microcultures for the intrinsic synaptic vesicle
membrane protein synaptophysin (SYN); this revealed a number
of TH 7/SYN " release sites. Third, we immunostained for GLU;
this revealed that the TH™ release sites were GLU". Such
TH /SYN */GLU " release sites were found in 75% of the single
cell microcultures so examined (n = 8). They were invariably near
the cell body, regardless of the size of the microculture. In single
DA neuron microcultures that were double-immunofluorescence-
stained for TH and GLU, the majority of varicosities stained for
both transmitters, whereas a minority stained for GLU alone (Fig.
5B). TH /GLU ™ sites were seen near the cell body overlaying
the proximal dendrites, whereas the TH */GLU ™ sites were more
peripherally distributed in the microculture, and in most in-
stances not in contact with dendrites.

We examined single TH™ neurons in compact microcultures
(Fig. 6, inset) at the ultrastructural level (n = 4). We used a high
detergent concentration to maximize antibody penetration. Al-
though this unavoidably damaged membrane preservation, pre-
synaptic and postsynaptic specializations were, in fact, more eas-
ily discerned. Somatic TH staining was patchy. Regions of intense
staining as well as regions of light staining each gave rise to lightly
and intensely TH-stained processes that intermingled in the neu-
ritic field (Fig. 64). Within individual processes, TH staining
sometimes abruptly started and stopped (Fig. 6B). Synaptic spe-
cializations were mainly found near the cell body. Rare TH™"
presynaptic terminals made symmetric synapses (Fig. 6C); most
presynaptic terminals were TH ™ and made asymmetric synapses
(Fig. 6D). In each of the four single-cell islands examined, there
were two or three symmetric specializations and six to eight
asymmetric specializations. Invariably, symmetric specializations
were made by TH™ axonal varicosities, whereas asymmetric spe-
cializations were made by TH ™ terminals; this association was
highly significant (x* = 21.5; df = 1; p < 0.0001). Axo-axonic
synapses were not seen.

DA neurons make GLUergic autapses

To test for synaptic release of GLU, we recorded from single
VTA neurons in microcultures. In a series of 52 consecutive VTA
neurons, 28 were DA neurons (TH™) closely matching their
incidence in our routine VTA cultures (Rayport et al., 1992).
Individual action potentials sometimes evoked reverberatory ac-
tivity similar to the epileptiform-like activity described in single

<«

(C,). In this experiment, 100% of GABA ™ neurons were also GLU *,
whereas 27% of GLU * neurons were GABA ™ (n = 38). So again, GLU
staining appears to identify cells that are GLUergic as well as GABAergic
cells, whereas GLU is likely present as a precursor to GABA. D, Immu-
nostaining of precursor GLU was not so much of a confound in VTA
cultures because most DA neurons were not GABAergic (D;) and most
GABA neurons were not DAergic (D,). However, occasional DA neurons
were GABAergic (D;) (see Results for incidence).
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Hippocampus

Figure 3.

PAG immunostaining in vitro. A, In a VTA culture, six neurons are shown (A4;, numbered). All the neurons in the field except for neuron 2
are DA neurons (4,); the level of TH staining varies in vitro as it does in vivo (Bayer and Pickel, 1990). In 4; and in subsequent panels, staining intensity
is shown on a pseudocolor scale in which warmer colors reflect more intense staining. Of the DA neurons, all except for neuron / show high levels of
immunoreactivity for PAG. The non-DA neuron (neuron 2) is PAG *. B, In nAcc, which is composed principally of GABAergic neurons (with a minority
population of cholinergic neurons) and has no GLUergic neurons, there was no PAG staining. In this field, all six neurons are PAG ~. C, In contrast, in
hippocampus in which most neurons are GLUergic, most neurons stain for PAG. Here the 13 neurons in the field show varying degrees of PAG staining.
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A3 TH + Glu

Figure 4. PAG inhibition reduces GLU immunostaining. In an untreated culture (A), a field is shown with two DA neurons (4;), both of which are
GLU " (4., A;). GLU staining was not diminished when cultures were pretreated with D-DON (5 mm for 20 hr), the inactive enantiomer of the
irreversible PAG inhibitor (B); here three of three TH * cells (B;) are GLU * (B,, B;). In contrast, with L-DON (5 mM for 20 hr), the active enantiomer,
there was a significant reduction in the GLU staining of DA neurons; here two of the four DA neurons in the field (C;) were GLU ~ (C,, arrows).
Although the reduction in cell body staining is not complete, there was an almost complete loss of GLU staining in DA neuron processes (C,, arrowheads;
C;). This field also contains one TH “/GLU * neuron (Cj, arrow), which most likely was GABAergic (see Results) and, as would be expected, showed
strong GLU staining after PAG inhibition.
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GLUergic hippocampal neurons in microcultures (data not
shown) (Segal, 1991). In most cells, large autaptic EPSPs were
seen. These were almost completely blocked by the GLU antag-
onist KYN and completely blocked by removal of extracellular
Ca?* (Fig. 74).

We found that 61% of DA neurons in these microcultures made
excitatory autapses (n = 17 of 28) but never inhibitory ones.
Application of the D2 antagonist sulpiride (1 um) revealed no
DA-dependent synaptic components (n = 14). Furthermore, we
saw no DAergic component in the synaptic response with perfo-
rated patch recordings (n = 10), arguing against a washout
problem. We found that 8% of TH ™ neurons made autaptic
EPSPs (n = 2 of 24; these might have been DA neurons that were
so disrupted after recording that they were spuriously deemed
negative); another 8% of TH ™ neurons made autaptic IPSPs
(n = 2 of 24). Excitatory autapses could be blocked with either
APV or CNQX (Fig. 7B), whereas inhibitory autapses were
blocked with the GABA 4 antagonist bicuculline (10 uM; data not
shown). Although some VTA DA neurons immunostained for
GABA (see above), the absence of autaptic IPSPs in DA neurons
argues that GABA is not a cotransmitter in these neurons.

The incidence of excitatory autapses was increased by growing
cultures in 0.5 mM K'YN, as was done in most of the experiments
reported. In a separate series of cultures grown without KYN, we
found excitatory autapses in 25% of DA neurons (n = 2 of 8),
showing that excitatory autapses did not arise as an artifact of
growing cells in KYN. Arguing against a presynaptic change, we
found no significant difference in the incidence of GLU immu-
nostaining of DA neurons between cultures grown in KYN (76 =
15%) and control cultures (88 = 3%), nor were there differences
in the incidence of DA neurons with TH 7/SYN ™ synapses. Most
likely KYN upregulates GLU receptors (Furshpan and Potter,
1989) and thus facilitated the detection of autapses. Growing
cultures under D2 blockade with sulpiride did not, however,
reveal any DAergic synaptic components.

Presynaptic modulation of GLU release

To see whether released DA might exert modulatory actions, we
voltage clamped VTA DA neurons (identified by subsequent TH
immunostaining) in single-cell microcultures (Fig. 8). Cells were
stimulated every 10 sec with a brief depolarizing step to elicit a
stable EPSC. Application of the D2 antagonist sulpiride aug-
mented autaptic EPSCs (n = 4 of 4; 123 = 3% of control),
whereas the D2 agonist quinpirole inhibited EPSCs (n = 4 of 4;
40 = 13%). Sulpiride could be blocking the action of ambient
DA; however, two of these experiments were performed with
continuous local perfusion so that ambient DA should have been
washed away. Therefore, the DA appeared to be released by the
cell itself.

We examined this in detail in DA neurons identified by the
presence of an excitatory EPSC that increased in amplitude with
sulpiride application (because D2 receptors are mainly found on
DA neurons in VTA cultures; Rayport et al., 1992; Rayport and
Sulzer, 1995; Kim et al., 1997; Rayport, 1998). As before, quin-
pirole inhibited (65 = 5%) and sulpiride augmented (111 * 5%)
autaptic EPSCs (n = 10 cells). We then rested cells for a mini-
mum of 2 min and examined the first two EPSCs in a stimulation
series. Under control conditions (saline), the second EPSC
(evoked 10 sec later) was significantly smaller than the first,
whereas in the presence of sulpiride there was no significant
difference between the two EPSCs (Fig. 9). Sulpiride did not
affect the amplitude of the initial EPSC, ruling out a role for
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ambient DA and showing that DA action is mainly attributable to
activity-dependent release. We repeated this experiment in re-
serpinized cells (90 min of 1 uMm reserpine, which depletes >90%
of DA content in VTA cultures; Sulzer et al., 1996) and found no
decrement in the autaptic EPSC at the second stimulation (n = 9
cells).

The lack of a DAergic PSC component suggests that the DA
action is presynaptic. To test this, we examined the effects of DA
on the paired pulse ratio (PPR); an increase in the PPR during
inhibition indicates a presynaptic mechanism (Davies et al., 1990;
Manabe et al., 1993). Cells were rested for 2 min and then
stimulated with a pair of depolarizing pulses separated by 35
msec. Quinpirole increased the PPR (Fig. 10), whereas in
sulpiride the PPR did not change (data not shown). To show that
activity-dependent DA release presynaptically inhibits GLU re-
lease, we compared the PPR at two paired stimulations separated
by 10 sec (Fig. 11). In saline, the PPR increased with the second
stimulation, whereas in sulpiride there was no change (the PPR
was 1.02 £ .04 in saline vs 0.93 = .05 in sulpiride; p < 0.05 using
t test). Therefore, DA released during the first stimulation appar-
ently increased the PPR at the second stimulation.

DISCUSSION

We have found that GLU appears to be a cotransmitter in DA
neurons. DA neurons immunostain for GLU both in rat and
monkey brain, arguing that this coincidence of staining is phylo-
genetically conserved. DA neurons in vitro stain similarly for
GLU. Immunostaining single DA neurons in microcultures re-
veals both DAergic—GLUergic and purely GLUergic synapses. At
the ultrastructural level, non-DAergic synapses of DA neurons
show asymmetric synaptic specializations of the kind associated
with excitation, whereas rarer DAergic synapses show symmetric
synaptic specializations. Stimulation of single DA neurons in
microcultures evokes Ca?"-dependent EPSPs mediated by both
NMDA and AMPA receptors, indicating that GLU is synapti-
cally released. Although the neurons also release DA, it has no
appreciable postsynaptic effect but rather presynaptically inhibits
GLU release.

Does GLU content imply that a neuron is GLUergic?

We have seen that most DA neurons immunostain for GLU,
confirming the original observations of Ottersen et al. (1984).
GLU could, however, be either neurotransmitter, precursor, or
metabolic GLU. The observation that GLU immunostaining of
DA neurons is comparable in intensity to that of known
GLUergic neurons in hippocampal cultures suggests that DA
neurons are GLUergic, because the highest levels of GLU
immunostaining appear to reflect neurotransmitter GLU
(Storm-Mathisen and Ottersen, 1990). Although neurotrans-
mitter content is not synonymous with release, with sufficient
cytoplasmic GLU content, non-GLUergic neurons show exo-
cytic GLU release (Dan et al., 1994). The presence of PAG, the
principal synthetic enzyme for neurotransmitter GLU (Kaneko
et al., 1995), in DA neurons in the intact brain (Kaneko et al.,
1990) and in culture argues that the GLU visualized is in fact
neurotransmitter GLU (Hamberger et al., 1979; Kaneko and
Mizuno, 1994) and is not metabolic. Furthermore, it argues
against the GLU being precursor to GABA, because PAG is
not found in GABAergic neurons (Kaneko and Mizuno, 1994).
Inhibition of PAG reduces GLU immunostaining of cell bodies
and largely eliminates GLU immunostaining of axons and
axonal varicosities, consistent with previous observations that
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A4 SYN + GLU

TH + GLU

3 um

Figure 5. DA neurons have two overlapping sets of synaptic varicosities. 4, Single DA neurons in microcultures were identified after TH staining with
DAB (A;). The culture was subsequently stained for SYN to identify presynaptic sites and then for GLU. As the DAB reaction product obscured any
fluorescence immunostaining, subsequent fluorescence immunostaining was consequently restricted to TH ™~ areas; this revealed several SYN "
presynaptic sites near the cell body (4,; the two most prominent ones are identified by arrows). Immunostaining for GLU revealed that these sites were
GLU" (A4;, A,). B, To examine the relationship between putative DAergic and GLUergic synaptic sites, we double (Figure legend continues).




Sulzer et al. « Dopamine Neurons Release Glutamate J. Neurosci., June 15, 1998, 18(12):4588-4602 4597

Figure 6. Ultrastructure of a DA neuron in single cell microculture. Sections are shown from a single DA neuron grown in microcultures and TH-stained
using DAB (inset). To maximize antibody penetration, we used a relatively high detergent concentration. Although this solubilized membranes, resulting
in an apparent degradation of the quality of ultrastructural preservation, it enhanced the visualization of synaptic specializations. 4, In the cell body,
TH staining was distributed in a patchy pattern throughout weakly stained cytoplasm. TH* processes emerged from intensely stained regions ( filled
arrows); nearby, TH ™ processes emerged from unstained regions (open arrows). B, Within the neuropil, distinctly stained and unstained processes
intermingled with each other; in some cases within a single process, a stained portion ( filled arrow) was clearly distinguishable from an unstained portion
(open arrow). C, Single TH-immunoreactive neurons formed morphological synapses on themselves (autapses). Those autapses were in close proximity
to the cell body (as seen at the light level; Fig. 5). In this cell, a total of eight autapses with clear postsynaptic specializations were identified after serial
sectioning; one autapse showed presynaptic TH staining and had symmetric synaptic membrane specializations. D, The other autapses had asymmetric
synaptic specializations with no detectable immunostaining of the presynaptic elements. Two of the seven TH ™ boutons (data not shown) made
asymmetric synaptic contacts with TH * dendritic elements. TH * varicosities at a distance from the cell body had accumulations of synaptic vesicles but
lacked presynaptic or postsynaptic densities (data not shown).

GLU in axonal processes is more susceptible to activity-
dependent depletion (Osen et al., 1995) and therefore reflects
neurotransmitter GLU.

DA neurons have two sets of terminals

The possibility that DA neurons make two morphologically dis-
tinct types of synapses has been extensively debated (for review,
see Hattori, 1993; Groves et al., 1994). On one hand, terminals
with asymmetric synaptic specializations of the kind classically
associated with excitatory actions have been identified by degen-
eration after 6-hydroxy-DA SN lesions or by orthograde radiola-
beling from the SN. On the other hand, immunostaining for TH
or DA has identified terminals with symmetric specializations

<«

classically associated with inhibitory actions (Pickel et al., 1981).
Both kinds of terminals have been identified with uptake of the
false transmitters a-methylnorepinephrine (Kaiya and Namba,
1981) and 5-hydroxy-DA (Groves et al., 1994), which produce
electron-dense deposits in monoaminergic synaptic vesicles. A
recent examination of DA-immunostained processes in the me-
dial nAcc of the monkey revealed synapses with asymmetric
specializations in contact with dendrites and dendritic spines as
well as en passant profiles with rarer synaptic specializations
(Ikemoto et al., 1996). Whether terminals with asymmetric spe-
cializations belong to DA neurons has been questioned (Groves
et al., 1994); however, given that the nigrostriatal projection is

immunofluorescence stained single DA neurons in microcultures for TH and GLU. Many varicosities double stained for TH (B,) and for GLU (B,). Just
above the cell body (the outlined region is shown 3X enlarged in each bottom panel), a cluster of smaller varicosities (bottom panel of B,, arrows) stains
primarily for GLU. Thus, DA neurons appear to have varicosities that are both DAergic and GLUergic and others that are just GLUergic.
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Figure 7. DA neurons make GLUergic EPSPs A
in microculture. A, Under whole-cell current
clamp, a single VTA neuron in a microculture
was stimulated with brief depolarizing current
pulses (traces shown are averages of 6 stimula-
tions). A large EPSP was evoked with fixed
latency (solid line), which was completely
blocked by local perfusion with Ca>*-free sa-
line (dashed line), and recovered fully in phys-
iological saline (data not shown). KYN (at a
high concentration that completely blocks
NMDA receptors via action at the allosteric
glycine site and competitively blocks AMPA
receptors with lesser potency) significantly at-
tenuated the EPSP (gray line). B, In another
cell recorded in Mg?"-free saline, a large fixed
latency EPSP was evoked, which was followed
by a prolonged depolarization; in some traces
this went on to trigger recurrent spikes (i.e.,
epileptiform-like activity). This EPSP was
largely blocked by CNQX; APV attenuated the =
later phase of the EPSP.

CNQX

Figure 8. D2 modulation of GLUergic EPSC. In
a neuron, subsequently shown to be TH ™, a large
autaptic EPSC was recorded under voltage
clamp. This was almost completely blocked by
CNQX (EPSC was 4% of control; traces shown
are averages of 10 stimulations; traces during
drug application are shown in gray). The revers-
ible D2 antagonist sulpiride enhanced the EPSC
(117%; shown here and in subsequent traces
without the initiating action current), whereas
the D2 agonist quinpirole markedly attenuated
the autaptic EPSC (76%). This suggests that con-
comitant DA release modulates the GLUergic
EPSC.

~95% DAergic (van der Kooy et al., 1981; Silva et al., 1990),
degeneration after chemical lesions of the SN or orthograde
labeling from the SN most likely identifies DA neuron terminals
(Hattori, 1993). Hattori et al. (1991) addressed this issue directly
using orthograde labeling with [*H]leucine and immunocyto-
chemical staining for TH and showed that there are two sets of
varicosities, one set that is double-labeled and has symmetric
specializations and a second set that is solely radiolabeled and has
asymmetric synaptic specializations.

Our morphological observations in single-cell microcultures, in
which we can be assured that all the processes arise from a single
neuron, indicate that DA neurons indeed have two types of
chemical synapses with distinct synaptic morphologies (Fig. 12).
The synapses are segregated to different postsynaptic domains,
with GLUergic terminals localized to proximal dendrites and the
TH-GLU varicosities more peripherally distributed and appar-
ently not contacting major dendritic branches. Taken together
with the synaptic physiology, our morphological observations
indicate that DA neurons make DAergic varicosities that are
involved in volume transmission and make GLUergic varicosities
that mediate rapid excitatory transmission. Supporting this con-
clusion, Gonon (1997) showed that stimulation of DA neuron

Sulzer et al. «+ Dopamine Neurons Release Glutamate

B

Mg2*-free

10mv 10 mV|

10 msec 10 msec

....................

ANremsaacs, T S —

CNQX 10 pM

Sulpiride Quinpirole

axons in the median forebrain bundle evokes either fast non-
DAergic excitation or delayed D1-mediated excitation. If this dual
action results from activation of both GLUergic and DAergic
terminals of DA neurons, then the two sets of terminals would
appear to have different postsynaptic targets. In contrast, seroto-
nergic raphe neurons in single-cell microculture, which also re-
lease GLU as a cotransmitter, show slow serotonergic inhibition
as well as fast GLUergic excitation (Johnson, 1994) and have a
single set of synapses with two different vesicle types (Johnson
and Yee, 1995). So although both DAergic and serotonergic
neurons appear to use GLU as a cotransmitter, they do so in
strikingly different ways.

Excitatory autapses of DA neurons

Autaptic EPSPs show both NMDA and AMPA components,
consistent with our immunocytochemical observations that GLU
itself is the neurotransmitter. Other excitatory amino acid candi-
dates that have been seen in DA neurons such as N-acetyl-
aspartyl-glutamate (Sekiguchi et al., 1992) or the spontaneously
occurring DA breakdown product trihydroxyphenylalanine
(Rosenberg et al., 1991) are more selective agonists (Trombley
and Westbrook, 1990; Newcomer et al., 1995). The neuropeptides
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Figure 9. Activity-dependent DA release modulates the EPSC. 4, When
two stimulations were delivered separated by 10 sec, the second EPSC was
significantly smaller (4;) in contrast to the same stimulation in the
presence of 1 uM sulpiride (4,). Cells were rested for a minimum of 2 min
between experimental trials. B, In another cell after exposure to reserpine
(1 um for 90 min) there was no significant reduction in EPSC size at
stimulation 2. C, Overall in 10 such experiments, there was a significant
DA-dependent inhibition at stimulation 2.
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Figure 10. DAergic presynaptic inhibition of GLU release. 4, To deter-
mine whether the locus of the D2 inhibition was presynaptic, we examined
the effects of quinpirole on paired pulse responses. In saline, there was
modest increase in the PPR (4;, 112%). Quinpirole both diminished the
size of the response (4,), in this case to 71% of the response in saline, and
increased the PPR (137%). B, In 10 experiments quinpirole significantly
increased PPR favoring presynaptic action.
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cholecystokinin and neurotensin have been found in rat DA
neurons (Hokfelt et al., 1984) and might account for the excita-
tory actions; however, they do not have GLU receptor activity.
Moreover, their expression may be superfluous in the rat (Bow-
ers, 1994), because they are not found in DA neurons in primates
(Savasta et al., 1990; Berger et al., 1991).

In contrast to the strong excitatory responses, we saw no direct
DAergic responses, although VTA neurons in culture express
D2-like DA receptors (Rayport and Sulzer, 1995) and are inhib-
ited, just as in the slice (Lacey et al., 1988) by the D2 agonist
quinpirole (Rayport et al., 1992; Kim et al., 1997). Furthermore,
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Figure 11.  Activity-dependent presynaptic inhibition. 4, A cell was stim-
ulated with two sets of paired pulses separated by 10 sec. In saline (4,),
there was an increase in the PPR from stimulation 1 to stimulation 2, as well
as a decrement in the first response at stimulation 2, whereas in sulpiride
(A,) there was neither an increase in the paired pulse ratio between
stimulation 1 and stimulation 2 nor a decrease in the first response of the
pair at stimulation 2. B, In 10 experiments, there was a significant difference
in the PPR between saline and sulpiride at stimulation 2, consistent with
activity-dependent D2-mediated presynaptic inhibition.

the cells show electrochemically detectable quantal DA release
from axonal varicosities (Pothos et al., 1998). If the DA release
were from the same varicosities mediating the excitatory re-
sponse, which show close synaptic appositions, then one must
postulate that the DA receptor density on the proximate postsyn-
aptic membranes is not sufficient to mediate a measurable action.
There may also have been subtle modulations of membrane
currents that went undetected in our experiments. However, our
ultrastructural observations indicate that synapses with asymmet-
ric specializations that putatively mediate the excitatory response
are invariably TH ~. Furthermore, TH* symmetric synapses are
rare, arguing that most DA release emanates from nonsynaptic
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Figure 12. Relationship of DA neuron terminals in microculture. To
illustrate the relationship between the two sets of DA neuron synapses, a
schematic of a single DA neuron in microculture is shown. Regions of TH
staining are shaded gray; DAergic synaptic vesicles in DAergic varicosities
are shown in white, whereas GLUergic vesicles in GLUergic terminals are
shown in black. DA neuron axons commonly arise from dendrites
(Hausser et al., 1995). The area outlined by the rectangle is expanded as
an inset that shows DA release (small white dots) from a DAergic varicos-
ity. This overflows to TH ™~ GLUergic terminals, binds to D2 receptors,
and mediates presynaptic inhibition. D2 autoreceptors are also present on
DAergic varicosities (Rayport, 1998), which would inhibit DA release
(Cragg and Greenfield, 1997). GLU receptors (GluR) are shown as
forming the postsynaptic densities of asymmetric synaptic specializations.

sites, either the more peripheral varicosities in the microcultures
or from somatodendritic regions.

Somatodendritic DA release (Cheramy et al., 1981) might
contribute to the modulation of the GLUergic EPSC. However,
VMAT staining is mainly seen in axonal varicosities, both in the
intact brain (Nirenberg et al., 1996) and in vitro (Pothos et al.,
1998), making somatodendritic release a less likely source. Fur-
thermore, the observation that some DA cells with autaptic EP-
SCs are inhibited by quinpirole but do not show a response to
sulpiride argues that the DA release is not as reliable as one
would expect if the release were from immediately adjacent
dendrites. Therefore, it appears more likely that the released DA
derives from overflow from DAergic varicosities that are at some
distance from the GLUergic synapses, much as it does in the
intact brain (Garris et al., 1994). Depending on the spatial rela-
tionships and the functional status of the DAergic and GLUergic
varicosities, the released DA might or might not modulate GLU
release.
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The inhibition of autaptic excitation by DA could be attribut-
able to either postsynaptic modulation of GLU receptor sensitiv-
ity or to presynaptic modulation of GLU release. Postsynaptic
modulation appears unlikely for three reasons. First, DA re-
sponses show rapid washout under whole-cell recording condi-
tions (Rayport et al., 1992), whereas quinpirole modulation per-
sisted for the duration of most experiments. Second, in paired
pulse facilitation experiments quinpirole increased facilitation,
consistent with a presynaptic locus of action (Davies et al., 1990;
Manabe et al., 1993). Third, stimulation of DA neurons caused an
increase in paired pulse facilitation, showing that evoked DA
release presynaptically inhibits GLU release.

Implications

The idea that monoaminergic neurons as a class might release
GLU was originally suggested by Kaneko et al. (1990), who
showed that monoaminergic neurons in each of the three major
CNS monoaminergic cell groups immunostain for PAG. Not only
do serotonergic raphe neurons make GLUergic EPSPs in micro-
cultures (Johnson, 1994), but noradrenergic neurons also immu-
nostain for GLU and mediate excitatory actions (Liu et al., 1995).
Thus, GLU colocalization appears to be the rule for the major
CNS monoaminergic projections, so that the cells may exert rapid
synaptic as well as slower modulatory actions.
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