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Abstract 

Adolescence in the Development of the Prefrontal Cortex and Mediodorsal Thalamus 

Laura Jacqueline Benoît 

 

Cognitive impairments are a hallmark of many, if not all, psychiatric disorders. They 

include deficits in working memory, attention, and cognitive flexibility. The prefrontal cortex 

(PFC) is essential for these cognitive functions and has been implicated in psychiatric disorders, 

including schizophrenia. The PFC receives reciprocal inputs from the thalamus, and this 

thalamo-PFC circuitry supports cognition. In patients with schizophrenia, who have impaired 

cognitive functioning, thalamo-PFC connectivity is disrupted. This finding is also seen in 

adolescents at high risk for the disorder, even before diagnosis. 

While impaired cortical maturation has been postulated as a mechanism in the etiology 

of schizophrenia, the postnatal development of thalamo-PFC circuitry is still poorly understood. 

In sensory cortex, activity relayed by the thalamus during a postnatal sensitive period is 

essential for proper cortical maturation. However, whether thalamic activity also shapes 

maturation of the PFC is unknown. 

Here, I will present evidence to support the hypothesis that adolescence represents a 

sensitive period, during which the PFC is susceptible to transient perturbations in thalamic input 

activity, resulting in persistent changes in circuitry. 

In Chapter 1, I present the existing literature on schizophrenia and our current 

understanding of its etiology. I then review the structure and connectivity of the PFC and its 

inputs, including the thalamus, in the context of schizophrenia and cognition. Next, I discuss the 

role of adolescence in the development of these structures and circuits. Finally, I introduce the 



 
 

concept of sensitive periods and outline the hypothesis that a similar process may occur in the 

context of the adolescent development of thalamo-PFC circuitry. 

To assess cognitive functioning in mouse models, I developed an operant-based 

working memory task. In Chapter 2, I describe this newly developed task and demonstrate that 

behavioral performance in the task is susceptible to PFC lesions. Thus, the task offers a new 

approach to studying PFC cognitive function. 

In Chapter 3, I discuss work done to address the hypothesis of adolescence as a 

sensitive period in the development of thalamo-PFC circuitry. I established an approach 

whereby I can transiently reduce activity in the thalamus during specific time windows. In this 

way, I compared the persistent effects of transient thalamic inhibition during adolescence and 

adulthood. I found that adolescent thalamic inhibition causes long-lasting deficits in cognitive 

behavioral performance, including the operant-based working memory task described in 

Chapter 2 and a cognitive flexibility task, decreased PFC cellular excitability, and reduced 

thalamo-PFC projection density. Meanwhile, adult thalamic inhibition has no persistent 

consequences on behavior or PFC excitability. 

Adolescent thalamic inhibition also results in disrupted PFC cellular cross-correlations 

and task outcome encoding during the cognitive flexibility task. Strikingly, exciting the thalamus 

in adulthood during the behavioral task rescues PFC cross-correlations, task outcome encoding, 

and the cognitive deficit.  

These data support the hypothesis that adolescence is a sensitive period in thalamo-

PFC circuit maturation as adolescent thalamic inhibition has long-lasting consequences on PFC 

circuitry, while adult thalamic inhibition has no persistent effects. Moreover, these results 

highlight the role of the thalamus as a non-specific facilitator of PFC activity, expanding our 

understanding of this thalamic function to additional cognitive contexts. By supporting PFC 



 
 

network activity, boosting thalamic activity provides a potential therapeutic strategy for rescuing 

cognitive deficits in neurodevelopmental disorders. 

Finally, in Chapter 4, I conclude with a general discussion. I highlight major take-aways 

from this work as well as next steps in our exploration of these crucial neural circuits. Together, 

the findings outlined here offer new promise for early diagnosis and treatment options for 

patients with cognitive impairments and psychiatric disorders. 
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Chapter 1: The Postnatal Development of the Prefrontal Cortex 

and the Mediodorsal Nucleus of the Thalamus in the Context of 

Schizophrenia and Cognition 

1.1 Schizophrenia 

Schizophrenia is a severe, chronic psychiatric disorder, with a worldwide prevalence 

approaching 1 percent (McGrath et al., 2008; Moreno-Küstner et al., 2018). It is one of the most 

disabling and economically impactful medical conditions, identified by the World Health 

Organization in the top 30 illnesses contributing to the global burden of disease and top 10 

global leading causes of disability (Murray, 1990). In addition to the effects of schizophrenia 

itself, people with the disorder are at a higher risk for co-occurring disorders, including other 

psychiatric disorders such as substance use disorders (Buckley et al., 2009) and metabolic 

conditions such as type II diabetes (Hoffman, 2017; Olfson et al., 2015; Pillinger et al., 2017), 

multiplying the impact on people and families affected by the disorder. In the US, meta-analyses 

have identified large racial disparities, with black Americans being at least 2.4 times more likely 

than white Americans to be diagnosed with schizophrenia (Barnes, 2004; Chien & Bell, 2008; 

Olbert et al., 2018; Schwartz & Blankenship, 2014). Similar racial disparities were seen when 

analyzing lifetime rates of psychotic symptoms. Given that race is a social construct with no 

biological basis, this racial discrepancy points to the complex pathogenesis of schizophrenia, 

which includes many environmental and psychosocial factors (Stilo & Murray, 2019).  

1.1.1 Pre-Diagnosis 

The typical onset of schizophrenia is seen in late adolescence (Gogtay et al., 2011), with 

prodromal symptoms seen sometimes years before diagnosis (Häfner et al., 1994). Given these 
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early indicators, schizophrenia is thought to have a developmental origin, with risk factors 

identified in both the prenatal and postnatal periods (Insel, 2010; Millan et al., 2016; Paus et al., 

2008; Sakurai & Gamo, 2019; Weinberger & Berman, 1996; Welham et al., 2009). For instance, 

gestational exposure to infection has been implicated in the development of schizophrenia 

(Brown & Derkits, 2010; Insel, 2010), and during adolescence, exposure to various 

perturbations, including cannabis and stress, increases risk of later illness development 

(Arseneault et al., 2002; Gomes & Grace, 2017). 

These widespread risk factors further underline the complex pathogenesis of 

schizophrenia, which makes prevention and early diagnosis very challenging. However, early 

treatment of schizophrenia is associated with improved outcomes (Häfner & Maurer, 2006; 

McEvoy, 2007). As a result, one area of interest lies in the identification of early indicators, 

which could help prevent many of the long-term effects of untreated psychosis. Some studies 

have begun to look at potential early markers, such as changes in white matter, in patients at 

clinical high risk for psychosis (Di Biase et al., 2021). Meanwhile, whole-brain resting state 

functional imaging of patients with diagnosed mental disorders has shown a highly consistent 

network organization across individuals, but the small differences that do exist may be 

predictive of the diagnosis (Spronk et al., 2021). These studies, among others, have spurred 

further research into the identification of biological markers, specifically in regional 

interconnectivity, that can help diagnose schizophrenia, ideally in the early stages before the 

first psychotic episode. 

Due to our incomplete understanding of these early biological markers for psychiatric 

disorders, there is some debate in the field about whether the appropriate early interventions 

should focus on early symptoms or simply reducing exposure to known risk factors (Malhi et al., 

2021; Woods et al., 2021). However, both sides of this debate can agree that the most 
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productive path forward comes from a better understanding of the biological processes involved 

in the etiology of these disorders. 

1.1.2 Diagnosis 

Schizophrenia is characterized by three major categories of symptoms: positive, 

negative, and cognitive. The Diagnostic and Statistical Manual of Mental Disorders (DSM-5) 

designates that for diagnosis, a patient must experience positive symptoms (i.e., delusions, 

hallucinations, or disorganized speech) and/or negative symptoms (i.e., diminished emotional 

expression, avolition, or catatonia), which must coincide with social and/or occupational 

dysfunction (Diagnostic and statistical manual of mental disorders: DSM-5™, 5th ed, 2013). 

1.1.3 Cognitive Symptoms 

While only positive and negative symptoms are used in the diagnosis of the disorder, 

cognitive symptoms (i.e., deficits in attention or working memory (Huang et al., 2019)) are 

equally prominent and severely compromise functional outcomes for patients with schizophrenia 

(Bowie et al., 2008; Green et al., 2000; Millan et al., 2012b). However, most currently available 

therapeutics target other symptoms, leaving the cognitive impairments untouched, or even 

worse (Hill et al., 2010; Millan, 2006; Millan et al., 2012b). Moreover, these cognitive deficits are 

seen throughout the entire course of the disorder, including before diagnosis (Davidson et al., 

1999), at the first psychotic episode (Saykin et al., 1994), and in later stages of the disorder 

(Breier et al., 1991; Heaton et al., 1994), indicating that they cannot simply be attributed to the 

chronicity of the disorder or long-term consequences of anti-psychotic medications and 

treatments. In addition to schizophrenia, cognitive impairments have also been demonstrated in 

most, if not all, psychiatric disorders, including mood, anxiety, panic, and developmental 

disorders (Kolb & Whishaw, 1983; Millan et al., 2012a; Weinberger & Berman, 1996). Despite 

the widespread nature of these symptoms and their importance on quality of life, treatment of 
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cognitive symptoms remains elusive. Given this clinical discrepancy, recent research has 

focused on understanding the circuitry and mechanisms involved in cognition and cognitive 

deficits.  

1.2 Prefrontal Cortex  

Decades of research have identified the prefrontal cortex (PFC), an evolutionarily 

conserved part of the frontal lobe, as an important center for cognitive function (Frontal lobe 

function and dysfunction, 1991). Several reports have demonstrated a striking resemblance 

between the cognitive deficits observed in patients with frontal lesions and deficits seen in 

schizophrenia, suggesting that alterations in the PFC may play a role in cognitive symptoms in 

this disorder (Kolb & Whishaw, 1983; Kraepelin et al., 1919; Muller et al., 2002). Indeed, 

functional imaging studies have confirmed the importance of the PFC in cognition and support 

the hypothesis that cognitive deficits arise from disruptions to PFC activity (Ingvar & Franzen, 

1974; Karlsgodt et al., 2009; Weinberger & Berman, 1996). 

One area of interest lies in understanding the role of intrinsic PFC circuitry and its 

external inputs. As with other parts of cortex, the PFC has a multi-layered architecture, with 

distinct cellular and molecular characteristics distributed across the layers (Santana & Artigas, 

2017). It is made up of several different cellular populations, which form synaptic connections 

with other cells within the PFC as well as other cortical and subcortical regions. 

1.2.1 Pyramidal Neurons 

Excitatory, glutamatergic pyramidal neurons make up approximately 75% of the total 

neuronal population in the PFC (Beaulieu, 1993; Volk & Lewis, 2010). While the total number of 

neurons in the PFC is not changed in patients with schizophrenia (Thune et al., 2001), there is 

evidence of changes in arborization (Konopaske et al., 2018), dendritic spines (Black et al., 
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2004; Garey et al., 1998; Glantz & Lewis, 2000), protein markers (Arion et al., 2015; Glantz & 

Lewis, 1997; Mirnics et al., 2000; Perrone-Bizzozero et al., 1996), and other cellular 

characteristics such as somal size (Pierri et al., 2001; Rajkowska et al., 1998). One major 

hypothesis proposes that excessive synaptic pruning may account for the changes in dendritic 

arborization (Boksa, 2012; Rapoport & Gogtay, 2008). However, the precise mechanisms 

contributing to these changes remain elusive. Some hypothesize that existing abnormalities in 

glutamate transmission may be revealed by excessive pruning (Deakin et al., 1989; Sherman et 

al., 1991) or that normal developmental synapse elimination may be disrupted (Feinberg, 1982; 

McGlashan & Hoffman, 2000). Recent work has also looked at the role of microglia in the 

immune system and complement activity in mediating this pruning (Sekar et al., 2016; Sellgren 

et al., 2019; Yilmaz et al., 2021). Altogether, it is clear that the PFC and its pyramidal cell 

population are implicated in schizophrenia in numerous ways.  

1.2.2 Interneurons 

The second major cellular population in the PFC consists of inhibitory GABAergic 

interneurons, which make up approximately 25% of the PFC neuronal population (Beaulieu, 

1993; Volk & Lewis, 2010). As with the pyramidal cells, many abnormalities have also been 

identified in the interneuron population, including changes in a GABA synthesizing protein, 

GAD67 (Hashimoto et al., 2008a). Other GABA-associated proteins have also been implicated 

in schizophrenia, indicating that both the production and reuptake of GABA is compromised in 

the PFC in schizophrenia (Hashimoto et al., 2008b; Ohnuma et al., 1999).  

PFC interneurons are often described in subpopulations with distinct characteristics. 

Populations that express the neuropeptide somatostatin (Morris et al., 2008) or cholecystokinin 

(Eggan et al., 2008) have been shown to be affected in schizophrenia. Much of the research 

has traditionally focused on interneurons that express that calcium-binding protein, parvalbumin 
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(PV), which make up approximately 25% of PFC GABAergic neurons (Condé et al., 1994) and 

receive inputs from pyramidal cells (Melchitzky et al., 2001). In schizophrenia, the total number 

of PFC PV neurons is unchanged (Hashimoto et al., 2003; Woo et al., 1997), but protein 

expression is altered in PV cells (Cruz et al., 2009; Hashimoto et al., 2003; Volk et al., 2002; 

Woo et al., 1998), resulting in impairments in GABA signaling (Volk & Lewis, 2010). Moreover, 

PV interneurons are of particular interest because they are crucial for the generation of gamma 

oscillatory activity (Buzsáki & Wang, 2012). Gamma oscillations have been shown to play an 

important role in cognitive functioning and are disrupted in patients with schizophrenia (Chen et 

al., 2014; Cho et al., 2006; Hirano et al., 2015; Kirihara et al., 2012; Light et al., 2006; Tanaka-

Koshiyama et al., 2020; Uhlhaas & Singer, 2012). 

1.3 The development of the PFC in schizophrenia 

The importance of the PFC in schizophrenia has also been highlighted in 

neurodevelopmental models, which suggest that disruptions to PFC maturation during 

adolescence may lead to schizophrenia (Feinberg, 1982; Rapoport et al., 2012; Weinberger, 

1987). Specifically, Feinberg’s hypothesis states that in schizophrenia, aberrant activity-

dependent pruning during adolescence may lead to persistent changes in PFC circuit function 

(Feinberg & Campbell, 2010). In addition to dendritic pruning (Boksa, 2012; Schafer & Stevens, 

2013), there are several other markers of PFC adolescent development that are disrupted 

during adolescence in the progression of schizophrenia (Millan et al., 2016). For instance, 

during adolescence, the PFC undergoes a period of volumetric reduction. Cytokines related to 

this process are shown to be elevated in the circulation in people at clinical high risk for 

psychosis (Cannon et al., 2015). Similarly, grey matter loss in the PFC is already seen in 

adolescents at clinical high risk (Dazzan et al., 2011).  
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One crucial component of PFC maturation is interneuron development, as dysregulation 

of the interneurons can lead to an excitatory/inhibitory imbalance and disruption of neural 

oscillatory activity, which in turn leads to impaired cognition (Kann, 2016; Lewis, 2012; Lewis et 

al., 2012; Marín, 2012; Millan et al., 2012b; Uhlhaas, 2013; Woo et al., 2010). GABA-

glutamatergic coupling is also crucial for proper PFC maturation as it impacts subcortical 

circuits, and its disruption can lead to psychosis (Bodatsch et al., 2015; Marín, 2012; Uhlhaas, 

2013). 

With the extensive impact of interneuron development on subsequent psychiatric health, 

there are numerous factors that have been identified in this process. For instance, adolescent 

NMDA receptor hypoactivity can have implications for proper gamma oscillatory activity (Woo et 

al., 2010). In addition, the expression of PV undergoes changes during adolescence, which are 

altered in schizophrenia (Samantha J. Fung et al., 2010). The Na-K-Cl co-transporter, a GABA-

A receptor-associated protein (Deidda et al., 2014; Morita et al., 2014), and Kv3 potassium 

channels (Kann, 2016; Marín, 2012; Uhlhaas, 2013; Woo et al., 2010; Yanagi et al., 2014), 

which are responsible for the rapid repolarization of GABAergic interneurons, also play 

important roles in neural circuit maturation and in PFC interneurons’ ability to mediate cognition, 

and they are implicated in schizophrenia. Intracellular neuregulin 1-ERBB4 is important for 

migration of cortical interneurons and axon myelination, and its levels are altered in 

schizophrenia (Karam et al., 2010; Marín, 2012; Mei & Nave, 2014). Extracellular matrix 

disruptions (Berretta, 2012) and abnormal regulation by neurotrophins, such as BDNF (Mondelli 

et al., 2011), can also have long-term consequences on proper interneuron development and 

later psychosis. Altogether, this work points to numerous important processes that occur in the 

adolescent development of PFC interneurons that impact cognitive functioning and psychiatric 

health later in life. 
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1.4 PFC Inputs 

The PFC also receives inputs from a variety of cortical and subcortical regions (Divac et 

al., 1978; Hoover & Vertes, 2007; Markowitsch et al., 1978). These inputs are highly 

heterogeneous, including dopaminergic projections from the ventral tegmental area (Bjorklund 

et al., 1978; Clarkson et al., 2017; Gee et al., 2012; Robinson & Sohal, 2017; Seamans & Yang, 

2004; Seong & Carter, 2012), serotonergic projections from the raphe nuclei (Garcia-Garcia et 

al., 2017; Vertes et al., 1999), cholinergic projections from the basal forebrain (Bigl et al., 1982), 

noradrenergic projections from the locus coeruleus (Chandler, 2016), and glutamatergic 

excitatory projections from the contralateral PFC, the amygdala, the hippocampus, and the 

thalamus. The excitatory glutamatergic projections converge onto the same PFC pyramidal cell 

populations, with a distinct regional organization along the pyramidal cells (Little & Carter, 

2012). The projections from the amygdala (Salzman & Fusi, 2010), hippocampus (Sigurdsson & 

Duvarci, 2016), and thalamus (Ouhaz et al., 2018; Parnaudeau et al., 2018) are also disrupted 

in patients with cognitive deficits. 

1.4.1 Amygdala 

The amygdala is traditionally viewed as the emotional center of the brain and separate 

from cognitive processes. Due to its connections with the PFC, we now understand that there 

are many interactions between emotion and cognition that make the two processes inseparable 

(Lang & Davis, 2006; Salzman & Fusi, 2010). Indeed, there are many complex cognitive-

emotional behaviors that rely on the integration of regions that have been conceptualized as 

either affective or cognitive (Barbas & Zikopoulos, 2007; Murray & Izquierdo, 2007; Pessoa, 

2008; Price, 2007). For instance, the uncinate fasciculus (UF) is a white matter tract that 

projects from limbic structures, like the amygdala, to the frontal lobe. Human studies have found 
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disruptions to the UF in patients with schizophrenia, and this finding has been associated with 

cognitive deficits and later disorder progression (Singh et al., 2016).  

Interestingly, different psychotic disorders show differential connectivity, with patients 

with schizophrenia showing reduced amygdalar-PFC functional connectivity (Anticevic et al., 

2014b; Ho et al., 2019; Hoptman et al., 2010; Tian et al., 2011) and patients with bipolar 

disorder I with psychosis showing an increased connectivity between the regions (Ho et al., 

2019). Meanwhile, it has been well-documented that patients with schizophrenia have a 

reduced amygdalar volume (Ho et al., 2019; Okada et al., 2016; van Erp et al., 2016), but 

because this is not seen in patients with other psychotic disorders and has typically been 

identified later in the disorder progression, the volumetric reduction may also be related to 

exposure to anti-psychotic medications, which can result in brain tissue loss (Fusar-Poli et al., 

2013).  

Altogether, this body of evidence clearly implicates the amygdala in patients with 

schizophrenia. With the discrepancies seen in the phenotypes across different psychotic 

disorders and the later manifestation of these findings, the amygdalar metrics can best be used 

to monitor disorder progression or cognitive and emotional symptoms. 

1.4.2 Hippocampus 

The hippocampus is another subcortical region that projects to the PFC. It is a complex 

structure that plays an important role in learning and memory. It is implicated in patients with 

schizophrenia, with abnormal activation during certain behaviors, such as memory tasks 

(Heckers & Konradi, 2010). The functional connectivity between the PFC and the hippocampus 

is also altered in patients with schizophrenia (Fletcher, 1998; Heckers et al., 1998; Liang et al., 

2006; Pettersson-Yeo et al., 2011; Weinberger et al., 1992). This dysconnectivity was seen both 

at rest (Zhou et al., 2008) and during cognitive tasks, such as working memory tasks (Henseler 
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et al., 2010; Meyer-Lindenberg et al., 2005; Rasetti et al., 2011). Furthermore, an effective 

connectivity study found that the hippocampal influence over the PFC was reduced in 

schizophrenia (Benetti et al., 2009).  

Anatomically, numerous studies have also identified a reduction in hippocampal volume 

in patients with early-onset schizophrenia (Barr et al., 1997; Sumich et al., 2002; Szeszko et al., 

2003). While this finding is established in early stages of the disorder, it also persists in chronic 

schizophrenia (Nelson et al., 1998). In addition, patients with schizophrenia have changes in 

cerebral blood flow in the hippocampus, which is linked to hippocampal hypermetabolism 

(DeLisi et al., 1989; Kawasaki et al., 1992; Malaspina et al., 2004; Medoff et al., 2001), and this 

phenotype has been tied to symptom severity (Liddle et al., 1992; Molina et al., 2003; 

Silbersweig et al., 1995). Interestingly, this hippocampal hypermetabolism has been shown to 

precede the volume loss, suggesting that the hypermetabolism, driven by glutamate, may be the 

cause for this hippocampal atrophy (Schobel et al., 2013). As with the amygdala, anatomical 

abnormalities have also been identified in the major fiber bundle that connects the hippocampus 

to the frontal lobe, in this case, the fornix (Zhou et al., 2008). 

Altogether, the hippocampus along with its connection to the PFC are clearly impaired in 

patients with schizophrenia, and this disruption is important for cognitive symptoms and 

functioning. 

1.4.3 Thalamus 

Another major excitatory input to the PFC that has been greatly studied in the context of 

cognitive functioning and psychiatric disorders comes from the thalamus. The thalamus is a 

heterogeneous structure located deep in the brain, which is made up of multiple nuclei, with 

each nucleus projecting to and receiving inputs from largely non-overlapping areas (EG & 

McCormick, 2007). First order thalamic nuclei receive sensory inputs from the periphery and 
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project to primary sensory and motor cortical areas (Guillery, 1995). For instance, the lateral 

geniculate nucleus receives input from the retina before projecting to the primary visual cortex 

(Bickford, 2016; Sherman & Guillery, 1998). Meanwhile, higher order nuclei receive their inputs 

directly from the cortex, with nuclei like the mediodorsal nucleus of the thalamus (MD) exhibiting 

reciprocal connectivity with the PFC (Harris et al., 2019; Ray & Price, 1992).  

While the thalamus has traditionally been viewed as a simple relay station (Jones, 2012; 

Levin et al., 1991), it is now clear that thalamic nuclei play a more substantial regulatory role in 

coordinating cortical activity, especially the higher order nuclei (Giraldo-Chica & Woodward, 

2017; Mukherjee et al., 2020; Sherman, 2016). For instance, in addition to the MD projections to 

pyramidal cells in the PFC, the MD also projects onto PFC PV interneurons, contributing to 

additional complexity in these thalamocortical projections (Canetta et al., 2020; Delevich et al., 

2015; Mukherjee et al., 2020). 

The thalamus is one of the major brain regions that has been implicated in schizophrenia 

(Cronenwett & Csernansky, 2010; Giraldo-Chica & Woodward, 2017; Glahn et al., 2008; 

Pergola et al., 2015; Sim et al., 2006). Thalamic volume has been shown to be reduced in 

patients with schizophrenia, even in early stages of the disorder (Huang et al., 2015; Huang et 

al., 2017; Rao et al., 2010). Imaging studies have demonstrated a hyperconnectivity between 

the thalamus and sensory regions and hypoconnectivity between the thalamus and cerebellar 

and prefrontal regions (Anticevic et al., 2014a; Cheng et al., 2015; Damaraju et al., 2014; 

Klingner et al., 2014; Kubota et al., 2013; Li et al., 2016; Marenco et al., 2012; Neil D. 

Woodward et al., 2012). The thalamo-PFC decreased correlation has also been measured in 

patients during cognitive testing (Giraldo-Chica et al., 2017; Mitelman et al., 2005; Pinault & 

Deschenes, 1998; Woodward et al., 2012), where it has been linked to impairments in 

functioning. 
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Unlike the amygdalar findings, these thalamic phenotypes have been observed in early 

stages of the disorder as well as in patients at clinical high risk for schizophrenia, even before 

diagnosis. For instance, decreases in thalamic volume have been seen in younger patients with 

psychosis or at clinical high risk (Harrisberger et al., 2016; Lunsford-Avery et al., 2013). While 

many of these studies have looked at overall thalamic volume, more recent work has also 

identified the specific thalamic nuclei that are most impacted. These young patients have been 

shown to have reduced volumes of the pulvinar, MD, and ventrolateral nuclei (Huang et al., 

2020). Interestingly, this study also correlated these volumes with cognitive impairments, finding 

that smaller nuclei was associated with worse cognitive performance, especially for the pulvinar 

nucleus and, to a lesser extent, the MD (Huang et al., 2020). 

In addition, thalamic dysconnectivity with the PFC and other regions is also seen at rest 

in younger adolescents at clinical high risk for schizophrenia, before diagnosis (Anticevic et al., 

2015), and in early stages of the disorder (Woodward & Heckers, 2016b). Remarkably, this 

thalamic dysconnectivity is more apparent in those who are later diagnosed with the disorder 

(Anticevic et al., 2015). These findings have been replicated and show an intermediate level of 

thalamic dysconnectivity in those at clinical high risk, with those in the early stages of the 

disorder demonstrating the same levels as people with chronic schizophrenia (Fryer et al., 

2021). Moreover, adolescents at clinical high risk or with early schizophrenia also demonstrate 

disrupted PFC circuitry during working memory tasks (Fryer et al., 2013). Together, these 

studies establish that the thalamic dysconnectivity begins prior to the full onset of schizophrenia, 

with an increase in severity for those who ultimately develop the disorder. Meanwhile, the 

effects of chronic psychosis or long-term anti-psychotic medications do not appear to worsen 

this phenotype. These findings raise the intriguing possibility that thalamo-PFC dysconnectivity 

could be part of the developmental etiology of schizophrenia (Anticevic et al., 2014a; Anticevic 

et al., 2015; Cho et al., 2016; Woodward & Heckers, 2016a). 
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1.5 The MD-PFC circuit in animal models 

It is clear that the PFC and its inputs, including the MD, are greatly implicated in 

schizophrenia and cognitive dysfunction. As a result, researchers have used animal models to 

better explore the mechanisms involved in the functioning of these circuits. A large body of work 

in rodent and primate models has focused on the role of this reciprocal MD-PFC circuit. It has 

been shown to be essential in many cognitive behaviors, including working memory and 

cognitive flexibility (Alcaraz et al., 2018; Bolkan et al., 2017; Chakraborty et al., 2016; Dias et al., 

1996; Dunnett et al., 1999; Ferguson & Gao, 2018; Granon et al., 1994; Hsiao et al., 2020; 

Kupferschmidt & Gordon, 2018; Larsen & Divac, 1978; Parnaudeau et al., 2018; Rikhye et al., 

2018a; Rikhye et al., 2018b; Saalmann, 2014; Schmitt et al., 2017; Spellman et al., 2021; 

Stamm & Weber-Levine, 1971; Watanabe & Funahashi, 2012). Both the PFC and the MD are 

individually important for cognitive functioning, as lesions or other disruptions to either region 

lead to cognitive impairments (Benoit et al., 2020; Dunnett et al., 1999; Ouhaz et al., 2021; 

Parnaudeau et al., 2013; Rikhye et al., 2018a). Furthermore, upon acute inhibition of either MD-

to-PFC or PFC-to-MD projections, cognitive functioning is also impaired (Alcaraz et al., 2018; 

Bolkan et al., 2017; Marton et al., 2018), while stimulation of these projections enhances 

behavioral performance in cognitive tasks (Bolkan et al., 2017; Schmitt et al., 2017). Together, 

these findings not only identify the PFC and MD as crucial players in cognition; they also 

underscore the bidirectionality of the reciprocal circuit. 

Many of the behavioral paradigms that have implicated the MD-PFC circuit are delay-

containing cognitive tasks. As a result, it has been of great interest to discover the mechanisms 

at play during these crucial delay periods. Activity in both PFC and MD during the delay period 

have been implicated in proper task functioning (Bolkan et al., 2017; Watanabe & Funahashi, 

2012). Analysis of PFC cellular activity has indicated subsets of neurons whose activity tile over 
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the course of the delay to maintain the trial-specific information (Bolkan et al., 2017). However, 

upon MD inhibition, this tiling is disrupted, along with behavioral performance. This study, along 

with others, has led to the hypothesis that the thalamic inputs to the PFC may act as a non-

specific amplifier supporting PFC task-specific activity (Bolkan et al., 2017; Hsiao et al., 2020; 

Parnaudeau et al., 2018; Rikhye et al., 2018a; Rikhye et al., 2018b; Schmitt et al., 2017). Thus, 

broad excitation from the MD to the PFC allows the PFC to maintain rule specificity or trial 

information during the task. It has also been proposed that the MD acts as a selectivity gating 

mechanism to allow for modulation of PFC signaling, affecting the functional connectivity of 

specific task-relevant cortical ensembles (Rikhye et al., 2018a; Rikhye et al., 2018b; Schmitt et 

al., 2017). In this way, while the MD may not encode trial-specific information, it is sensitive to 

the overall task context. Within this cognitive task context, non-specific MD activity can enhance 

PFC ensembles, reinforcing the cue or trial information encoded within these ensembles and 

allowing for improved task performance (Bolkan et al., 2017; Schmitt et al., 2017). 

While these studies provide consistent evidence for the role of the MD as a non-specific 

amplifier of PFC encoding, other studies in primates have indicated specific stimulus or spatial 

representations in thalamic activity during the delay period (Tanibuchi & Goldman-Rakic, 2003; 

Watanabe & Funahashi, 2004a, 2004b, 2012). The reasons for this discrepancy may be related 

to a number of factors, including the species and the task used, and further exploration of MD 

activity during cognitive behavioral testing should continue to study this question. 

1.6 The postnatal development of the MD and PFC 

This literature has offered important insights into the role of the MD-PFC circuit in the 

adult. However, clinical work, as illustrated above, also implicates the development of this circuit 

during vulnerable periods. Therefore, several groups have outlined the developmental 

milestones of the thalamus, PFC, and thalamo-PFC projections in rodents (Bitzenhofer et al., 
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2020; Caballero et al., 2014; Caballero et al., 2020; Chini & Hanganu-Opatz, 2021; Delevich et 

al., 2021; Ferguson & Gao, 2014; Goodwill et al., 2018; Konstantoudaki et al., 2018; Miyamae et 

al., 2017a; Paus et al., 2008; Rios & Villalobos, 2004; Van Eden & Uylings, 1985; Yang et al., 

2014a).  

By birth, the MD projections to the PFC have already arrived in both the developing 

deeper cortical layers as well as the cortical plate, which will later develop into the superficial 

layers of the PFC (Figure 1.1) (Van Eden, 1986). These projections continue to increase after 

birth, reaching a peak around P10, and after a period of steep cell loss at P13, they show a 

gradual increase in density that levels off before P60 (Ferguson & Gao, 2014; Rios & Villalobos, 

2004). Meanwhile, the volume of the PFC increases in the postnatal period, peaking around 

P24. At that point, it decreases, reflecting a period of dendritic pruning in PFC pyramidal 

neurons, a process which has its fastest rate around P30 (Marmolejo et al., 2012; Pattwell et al., 

2016; Zuo et al., 2005). It has been postulated that this pruning could result in part from 

refinement of thalamo-cortical synaptic contacts during this period (Ferguson & Gao, 2014).  

These developmental trajectories support the hypothesis that the MD plays a vital role in 

the postnatal development of the PFC in two primary ways: (1) the early presence of MD 

afferent fibers across the PFC layers from birth indicate that these thalamic afferent fibers may 

play a role in the laminar development of the PFC (Van Eden et al., 1991); and (2) the changes 

in PFC volume follow the changes in density of the MD projections, suggesting that the 

refinement of the thalamic projections may inform the subsequent PFC development (Ferguson 

& Gao, 2014; Rios & Villalobos, 2004; Van Eden, 1986; Van Eden & Uylings, 1985). 

Furthermore, as discussed above, Feinberg’s hypothesis states that, in schizophrenia, 

aberrant activity-dependent pruning during adolescence may lead to persistent changes in 

prefrontal circuit function (Feinberg, 1982; Feinberg & Campbell, 2010). There is some debate 
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over the exact ages that define adolescence in mice, but, given the context outlined in this 

section, it is reasonable to use the period post-weaning (postnatal day P20-21) through the 

major volumetric changes of these regions (P50-60) as this window includes many of the major 

developmental milestones that are presumed to occur in adolescence (Ferguson & Gao, 2014). 

 

Figure 1.1. Developmental trajectory of MD-PFC projections and PFC volume in mice. In 
the typical development of the mouse, MD-PFC projections (blue line) have already arrived at 
birth. They increase in density in early life before a steep period of loss at P13 and a 
subsequent gradual increase in density that has stabilized by P60. Meanwhile, PFC volume 
(green line) increases in early life, peaking around P24. Next, there is a period of gradual 
decrease in PFC volume, in part due to MD-PFC synaptic refinement (red shading), all of which 
stabilizes by P60. The early presence of MD-PFC projections and the changes in MD-PFC 
projections preceding and informing PFC volumetric changes indicate that MD-PFC input 
maturation may influence PFC development. Adapted from (Ferguson & Gao, 2014). 

1.7 Sensitive Periods 

Given the extensive maturation of the PFC during this period, it has been hypothesized 

that adolescence may represent a “sensitive period” in the development of the region (Bicks et 

al., 2020; Canetta et al., 2021; Yamamuro et al., 2020). Sensitive periods denote developmental 
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time windows when brain circuits are particularly receptive to certain kinds of inputs, sometimes 

requiring that input for proper development. As such, changes to those inputs during the 

sensitive period can lead to long-lasting changes in the anatomy and function of the circuit 

(Hensch, 2004; Takesian & Hensch, 2013b). Frequently, these windows represent periods in 

which the refinement of brain circuitry and function is particularly susceptible to changes in 

neuronal activity.  

A classic example is in the visual system, where transient developmental monocular 

deprivation can permanently impair acuity in the deprived eye (Wiesel & Hubel, 1963). This 

impairment in function persists even after the deprivation in visual input is reversed, as the 

thalamo-cortical inputs representing the closed eye are permanently disrupted in an activity-

dependent manner. In addition to the visual system, sensitive periods have also been identified 

and characterized in other sensory systems, including somatosensory (Crair & Malenka, 1995; 

Feldman et al., 1998) and auditory (Caras & Sanes, 2015; de Villers-Sidani et al., 2007) 

cortices. 

While sensitive periods in the circuit refinement of sensory cortices have been well-

documented (Caras & Sanes, 2015; de Villers-Sidani et al., 2007; Sun et al., 2019; Wiesel & 

Hubel, 1963), recent evidence suggests that similar transient changes in activity during 

postnatal development can have lasting changes in the PFC (Bicks et al., 2020; Bitzenhofer et 

al., 2021a; Canetta et al., 2021; Larsen & Luna, 2018a). Primarily, these studies have focused 

on changes to intrinsic components of PFC circuitry, such as interneuron or layer II/III pyramidal 

neuron activity (Bicks et al., 2020; Bitzenhofer et al., 2021b; Canetta et al., 2021). Interestingly, 

these studies cover slightly different, but overlapping, periods, which span from P7 to P50. 

Given the developmental time points outlined above, this large epoch encompasses periods of 

intense growth and subsequent refinement in the PFC. This opens the possibility that there may 
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be multiple sensitive periods throughout postnatal development that might influence different 

aspects of circuit development. 

Some have also highlighted several mechanisms found in sensory sensitive periods, 

including facilitators like BDNF expression (Anomal et al., 2013; Deidda et al., 2015; Hanover et 

al., 1999; Huang et al., 1999) and NMDA receptor changes (Chen et al., 2000; Erisir & Harris, 

2003) and brakes like perineuronal net formation (Balmer et al., 2009; McRae et al., 2007; 

Nabel & Morishita, 2013; Takesian & Hensch, 2013a) and myelination (Bavelier et al., 2010; 

McGee et al., 2005; Yang et al., 2012). These facilitators and brakes have also been identified 

in PFC adolescent development (Baker et al., 2017; Flores-Barrera et al., 2014; Hill et al., 2012; 

Larsen & Luna, 2018b; Mount & Monje, 2017). These markers also span the early postnatal 

through late adolescent periods, further supporting the notion that overlapping developmental 

processes may occur throughout early life. In addition, PV cell activity is important in sensitive 

period plasticity (Baho & Di Cristo, 2012; Chattopadhyaya et al., 2007; Fu et al., 2012; Wu et al., 

2012), and PV cells in the PFC also undergo important periods of maturation during this time 

(Miyamae et al., 2017b; Yang et al., 2014a).  

While thalamic input activity has been shown to be important for sensory cortex 

maturation, including the visual cortex (Caras & Sanes, 2015; de Villers-Sidani et al., 2007; 

Takesian & Hensch, 2013b; Wiesel & Hubel, 1963), the role of thalamic input activity to the PFC 

during this time period remains unexplored. Given the importance of PFC inputs in cognitive 

functioning and schizophrenia as well as the role of MD inputs in PFC development, a better 

understanding of the impact of developmental thalamic dysfunction on the PFC will offer crucial 

insights into the etiology of psychiatric disorders and cognition.  
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1.8 Conclusions 

There is a growing body of literature surrounding the etiology of schizophrenia and the 

development of cognitive circuits. In this chapter, I have outlined the extensive evidence 

implicating the PFC and its inputs, such as the MD, in the disorder. I have also outlined the roles 

of the MD-PFC circuit in cognition. In addition, it is clear that adolescence is a period of 

vulnerability in the progression of disorders such as schizophrenia and represents a period of 

intense maturation for the PFC and its associated circuitry. As a result, several groups are now 

studying the mechanisms at play during adolescence in the PFC. One leading hypothesis is that 

adolescence represents a sensitive period in PFC development, with recent studies supporting 

this theory.  

However, several open questions remain. First, it is still unclear what role the inputs to 

the PFC have during this sensitive period. The adolescent development of the MD indicates that 

it may play an integral role in PFC development, but this has yet to be fully explored. Second, 

the evidence so far points to a very large window for the sensitive period. Future work will need 

to explore the mechanisms at play in subsections of the adolescent window. We may find that 

different aspects of PFC circuitry mature during separate or overlapping periods. Third, there 

are numerous developmental processes that occur during adolescence in the PFC, including 

synaptic pruning, interneuron development, etc. Future work should explore which of these 

processes can be disrupted and the long-term consequences. As noted in the previous point, 

there may be different processes impacted in different time windows. Fourth, in sensory 

sensitive periods, one area of research has focused on the possibility of re-opening sensitive 

periods to reverse the effects of developmental insults (Hensch & Bilimoria, 2012). It remains to 

be seen whether similar processes may be possible for PFC development. This work would 

have great implications for treatment of psychiatric disorders. 
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This thesis delineates work done to address the first of these questions: to better 

understand the role of thalamo-PFC inputs during adolescence in long-term PFC function and 

cognition. To address this question, first, a new cognitive behavioral paradigm was developed to 

test working memory deficits and PFC dysfunction in mice. Second, I established a model to 

transiently reduce activity in the MD and midline thalamus. This model was then used to 

compare the long-term effects of adolescent and adult thalamic inhibition on cognitive 

behavioral performance and PFC cell properties. I found that adolescent, but not adult, thalamic 

inhibition impaired subsequent PFC functions and behavior, confirming that adolescence is 

indeed a sensitive period. Next, I explored the effects of adolescent thalamic inhibition on MD-

PFC projection cell density and PFC cellular activity during a cognitive flexibility task, finding 

that both metrics were disrupted by our manipulation, highlighting additional long-term 

consequences of this adolescent manipulation. Finally, I acutely enhanced thalamic activity to 

rescue the behavioral and PFC activity impairments caused by the adolescent thalamic 

inhibition. This finding indicates that, even following a developmental thalamic disruption, 

cognitive functioning can still be salvaged in the adult. 

Altogether, these findings point to the importance of thalamic activity during adolescence 

in the development of the thalamo-PFC circuit and PFC function. This work also offers hope for 

potential treatments that could rescue functioning even following developmental disturbances. 
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Chapter 2: Medial Prefrontal Lesions Impair Performance in an 

Operant Delayed Non-Match to Sample Working Memory Task* 

2.1 Abstract 

Cognitive functions, such as working memory, are disrupted in most psychiatric 

disorders. Many of these processes are believed to depend on the medial prefrontal cortex 

(mPFC). Traditionally, maze-based behavioral tasks, which have a strong exploratory 

component, have been used to study the role of the mPFC in working memory in mice. In maze 

tasks, mice navigate through the environment and require a significant amount of time to 

complete each trial, thereby limiting the number of trials that can be run per day. Here, we show 

that an operant-based delayed non-match to sample (DNMS) working memory task, with shorter 

trial lengths and a smaller exploratory component, is also mPFC-dependent. We created 

excitotoxic lesions in the mPFC of mice and found impairments in both the acquisition of the 

task, with no delay, and in the performance with delays introduced. Importantly, we saw no 

differences in trial length, reward collection, or lever-press latencies, indicating that the 

difference in performance was not due to a change in motivation or mobility. Using this operant 

DNMS task will facilitate the analysis of working memory and improve our understanding of the 

physiology and circuit mechanisms underlying this cognitive process. 

 
*This chapter was published as an article in Behavioral Neuroscience in 2020. Benoit, L. J., Holt, E. S., 
Teboul, E., Taliaferro, J. P., Kellendonk, C., & Canetta, S. (2020). Medial prefrontal lesions impair 
performance in an operant delayed nonmatch to sample working memory task. Behavioral Neuroscience, 
134(3), 187–197. https://doi.org/10.1037/bne0000357. PMID: 32134300 

L.J.B., S.E.S., and C.K. designed the experiments. L.J.B. performed the experiments and analyzed the 
data. E.S.H. and E.T. assisted in the performance of the experiments. L.J.B., S.E.S., and C.K. interpreted 
the results and wrote the paper. 

 

https://psycnet.apa.org/doi/10.1037/bne0000357
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2.2 Introduction 

Cognitive deficits are a hallmark of most, if not all, psychiatric disorders. Cognitive 

processes, which range from attention and working memory to social cognition and the use of 

language, can be disrupted in psychotic, stress-related, developmental, and mood disorders 

(Kolb & Whishaw, 1983; Millan et al., 2012a; Weinberger & Berman, 1996). Importantly, these 

symptoms are often predictors of long-term functional outcomes (Green et al., 2000). However, 

most currently available therapeutics target other symptoms of these disorders, leaving the 

cognitive impairments untouched, or even worse (Hill et al., 2010; Millan, 2006). Given this 

current therapeutic limitation, it is incumbent upon us to better understand the underlying 

neurobiology of these cognitive behaviors in order to develop more effective treatments. 

Decades of research have identified the prefrontal cortex (PFC), an evolutionarily 

conserved part of the frontal lobe, as an important center for cognitive function (Frontal lobe 

function and dysfunction, 1991). Several reports demonstrated a striking resemblance between 

the cognitive deficits observed in patients with frontal lesions and those deficits seen in 

schizophrenia, suggesting alterations in the PFC may play a role in cognitive symptoms seen in 

this disorder (Kolb & Whishaw, 1983; Kraepelin et al., 1919). Therefore, the study of the roles 

that prefrontal circuits play in cognitive functions is essential to furthering our understanding of 

the pathophysiology of schizophrenia, or any disorder with alterations in PFC circuitry. 

In addition to patient-based research, much of our current knowledge of the role of PFC 

circuitry in behavior is based on animal studies. Using primates and rodents, researchers have 

manipulated specific brain circuits to determine their role in cognitive behaviors. To assess 

spatial working memory in rodents, a delayed non-match to sample (DNMS) T-maze task is 

frequently used (Bolkan et al., 2017; Kellendonk et al., 2006; Parnaudeau et al., 2018; 

Parnaudeau et al., 2013). In this task, the animal is trained to run from the start arm of a T-
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shaped enclosure to the available open arm during the initial sample phase, where it receives a 

reward. The animal then returns to the start arm, where it is held for a variable delay period. In 

the subsequent choice phase, both arms of the maze are opened, and the animal must go to 

the opposite arm (“non-match”) from the one that was presented during the sample phase in 

order to receive a reward. Longer delays increase task difficulty and are accompanied by a 

decrease in performance. 

Previous work in rodents has shown that this DNMS T-maze task is dependent on the 

medial PFC (mPFC) both during the acquisition of the task, when there is a short delay, and 

upon introduction of longer delays, which increasingly tax working memory (Aultman & 

Moghaddam, 2001; Bolkan et al., 2017; Granon et al., 1994; Kellendonk et al., 2006). During the 

introduction of longer delays, the inputs to the mPFC that contribute to different phases of this 

task have been further explored. Input from the mediodorsal nucleus of the thalamus (MD), a 

higher order thalamic nucleus has been shown to be important during the delay (maintenance) 

phase, while input from the ventral hippocampus (vHip) is critical for the sample (encoding) 

phase (Bolkan et al., 2017; Spellman et al., 2015). In addition, activity in mPFC-to-MD 

projections is necessary during the choice (selection) phase (Bolkan et al., 2017; Parnaudeau et 

al., 2018).  

These studies have provided important insight into the circuits involved in different 

aspects of spatial working memory. However, in the T-maze only a limited number of trials can 

be completed on a given day due to the long trial lengths. For example, in our hands the initial 

sample phase lasts 17 seconds on average, with individual delay lengths lasting up to 120 

seconds. This long trial length, combined with the distances needed to travel to obtain each 

reward, limits the number of trials that can be completed in a given day. As a result, it is harder 

to detect small effect sizes when two different experimental manipulations are compared. 
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Moreover, a reduced number of trials per day also limits the number of conditions or 

manipulations that can be introduced on a given day (e.g. testing multiple delay lengths in the 

same day). Finally, the ability to have more trials per day facilitates the analysis of in vivo 

physiological data collected during task performance. In addition to long trial lengths, the T-

maze also has a strong explorative spatial component, with the animal navigating through long 

maze arms while encoding and subsequently retrieving a memory. With shorter time scales in a 

smaller, enclosed operant box, the working memory tested is less dependent on interference 

from navigating through the arms.  

As an alternative to this traditional DNMS T-maze task, several operant versions have 

been developed, which are inherently less exploratory, allow many more trials per day to be 

conducted, and facilitate the simultaneous collection of data from a large number of animals. 

One version, developed by Rossi et al., allows the mice to select one of two levers during the 

initial sample phase (Rossi et al., 2012). The levers are then removed, and subsequently 

reinserted after a given delay; the mouse must choose the lever it did not pick in the sample 

phase in order to correctly earn a reward in the choice phase. While performance in this task 

deteriorated in a delay-dependent manner and was impaired by mPFC lesion, there are several 

strategies the animal can develop to solve the task that avoid using working memory. For 

example, after selecting the initial sample lever, the mouse can immediately wait in front of the 

opposite lever until it appears, effectively overriding the need to utilize working memory during 

the delay time. To circumvent this limitation, an alternative task has been developed in which 

mice press an initial sample lever to initiate a delay phase, but then must make an entry to a 

noseport on the opposite wall at the end of the delay phase in order to trigger the presentation 

of both levers during the choice phase. However, while versions of this task have been shown to 

be dependent on the dorsomedial striatum (Akhlaghpour et al., 2016) and hippocampus (Goto & 

Ito, 2017), it is imperative to know whether it is also dependent on the mPFC.  
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In this study, we implemented an operant-based DNMS task, similar to that used by 

Akhlaghpour et al (Akhlaghpour et al., 2016) and Goto et al (Goto & Ito, 2017), in which mice 

performed as many as 160 trials per day, to establish its dependence on the mPFC. We found 

that mPFC lesions impaired both the acquisition of the task, which was done in the absence of a 

delay, and task performance after introduction of different delays. We further showed that trial 

length, reward collection, and lever-press latencies were unchanged by the lesion, indicating 

that an underlying decrease in motivation was not responsible for the impaired task 

performance in mPFC lesioned animals. Thus, the DNMS operant-based task will serve as a 

useful complement to the DNMS T-maze task, facilitating the study of prefrontal circuitry and 

physiology in working memory. 

2.3 Results 

The goal of this study was to investigate the role of the mPFC in an operant-based 

DNMS working memory task. To address this question, we created an excitotoxic lesion of the 

structure using an injection of ibotenic acid, or conducted a sham surgery using an injection of 

phosphate buffered saline (PBS), before training the mice in the DNMS working memory task 

(Figure 2.1a).  

2.3.1 Confirmation of the lesion location.  

Post-hoc histology showed that the lesioned region typically encompassed both the 

prelimbic and infralimbic portions of the mPFC. In some animals, the lesion also spread to 

anterior portions of the cingulate cortex (Cg1 and Cg2). No spread was seen to any of the motor 

or sensory cortices. The lesioned regions showed a number of distinct characteristics including 

1) a loss of cell density, 2) an accumulation of non-cellular Nissl clumps, and 3) a contraction of 

the lesioned region, which were used to define the lesion boundaries (Figure 2.1 b, c, d).  
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Figure 2.1. Experimental Timeline and Extent of Lesion. a) Timeline of experimental 
procedures. b) Schematic representation of the maximal (light) and minimal (dark) extent of 
damage caused by the mPFC ibotenic acid injection in coronal slices. c) Example Nissl staining 
from a sham (left) and lesion (right) coronal slice. Dashed lines outline area with lower cell 
density and accumulation of Nissl found with dead tissue. Arrowheads indicate the shift of the 
white matter tract as a result of contraction of the medial regions. d) Higher magnification of 
example lesion coronal slice from c. Solid outlines show control region borders from the Paxinos 
and Watson Mouse Brain Atlas. Dashed lines outline the shifted border of the white matter tract. 

2.3.2 Acquisition performance is impaired by the mPFC lesion. 

Following a post-surgical recovery period, the mice began the first stages of training, 

which involved shaping in operant boxes with a reward milk dipper, levers, and noseport (Figure 

2.2a), as described in the Methods section. The shaping was learned similarly across the two 

groups. To learn the lever press, the sham group took 1.438 ± 1.031 days, and the lesion group 

took 1.412 ± 0.795 days. An unpaired t-test showed that the groups were not significantly 

different from one another (p=0.9363). Similarly, to learn to poke the noseport, the sham group 

took 1.688 ± 0.793 days, and the lesion group took 1.706 ± 0.686 days, with an unpaired t-test 
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showing no significant difference between the groups (p=0.9436). The mice then learned the 

DNMS task with a 0-second delay; this period represents the acquisition stage of the task 

(Figure 2.2b). Mice with an mPFC lesion were significantly slower to acquire the task, requiring 

more days of training to reach a criterion level of performance (Figure 2.2c, d). While all animals 

began with a chance level of 50% performance, sham mice were able to learn the task more 

quickly. A two-way repeated measures ANOVA showed a significant main effect of lesion over 

time (p=0.0234) and a significant time x lesion interaction (p=0.0108). Bonferroni post-hoc 

analysis found the sham group performance to be significantly higher than the lesion group 

performance during training days 7 and 8 (day 7: p=0.0067; day 8: p=0.0191). While the sham 

mice were able to reach a criterion of 3 consecutive days above 80% performance in 8.56±2.58 

days (mean ± standard deviation (SD)), the lesion mice took 12.24±4.12 days to reach the same 

level of performance.  

Given this deficit in performance, we wanted to know whether other aspects of the 

behavior were affected. We found no difference between the groups for any other parameters 

measured. Total time to complete each trial did not change with training and was not different 

between groups (Figure 2.2e, f). Similarly, the latency between pressing the sample and choice 

levers were also the same across both groups (Figure 2.2g). This indicated that there was no 

gross motor impairment in the lesioned animals and suggested that the performance deficit of 

the lesioned group was not the result of a longer ‘experienced delay time’ in the task. There was 

also no change in the latency between the choice lever selection and reward retrieval (Figure 

2.2h), nor was there a difference in the percentage of rewards retrieved, with both groups 

retrieving over 99% of offered rewards (Figure 2.2i). These similarities indicate that the 

difference in behavior is likely not a result in a change in motivation to earn the milk reward. 

Finally, the percentage of aborted trials (recorded when the animal failed to make the second 

noseport entry in the 5-second time limit) was below 5% for both groups, with no animal 
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aborting more than 12% of trials (Figure 2.2j), indicating that the animals in both groups had 

similar numbers of trials on each day in which to learn the task. Together, these data indicate 

that both the sham and lesion groups experienced the task similarly during the acquisition 

stage. However, the lesion group still took longer to acquire the task.  

 

Figure 2.2. Acquisition of an operant DNMS task is impaired by an mPFC lesion. a) Layout 
of the operant box. Left: Front wall, containing a milk dipper and two levers, one on either side 
of the dipper. Center: Back wall, containing a noseport and a 1.0-amp house light. Right: Top 
view of the operant box. The milk dipper and levers on the front wall are represented on the 
right side of the image, and the noseport on the back wall is represented on the left side of the 
image. b) Schematic illustration of the trial sequence for the acquisition of the task, including a 
0-second delay. c) Performance of sham (light) and lesion (dark) groups over the 19 days of 
acquisition indicated as the percentage of correct trials on each day (n=16 sham mice, 17 lesion 
mice; two-way repeated-measures ANOVA (rmANOVA), main effect of lesion, F (1,31)=5.687, 
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*p = 0.0234; time x lesion interaction, F (18,558)=1.951, *p = 0.0108). d) Number of days to 
reach the criterion of 3 consecutive days with a performance above 80% correct (two-tailed 
unpaired t-test, sham vs. lesion, t=3.048, df=31, **p = 0.0047). e) Mean length of each trial 
throughout acquisition (two-tailed unpaired t-test, t=0.1582, df=31, p=0.8753). f) Length of each 
trial for each day of acquisition. Dashed line represents the introduction on Day 6 of the 
imposed time limit for the second noseport entry. In the first five days of acquisition, there was 
unlimited time for the second noseport entry (two-way rmANOVA, main effect of time, F 
(4,110)=0.9300, p=0.4494; main effect of lesion, F (1,31)=0.2091, p=0.6507; time x lesion 
interaction, F (4,110)=0.3293, p=0.8578). Starting with Day 6, there was a 5-second time limit 
imposed on the second noseport entry (two-way rmANOVA, main effect of time, F 
(13,403)=1.240, p=0.2479; main effect of lesion, F (1,31)=0.004387, p=0.9476; time x lesion 
interaction, F (13,403)=1.064, p=0.3888). g) Latency between sample lever press (S) and 
choice lever press (C) throughout acquisition (two-tailed unpaired t-test, t=0.7222, df=31, 
p=0.4756). h) Latency between choice lever press and reward retrieval throughout acquisition 
(two-tailed unpaired t-test, t=0.7522, df=31, p=0.4576). i) Percentage of rewards awarded that 
were retrieved (two-tailed unpaired t-test, t=0.6377, df=31, p=0.5283). j) Percentage of trials that 
were completed, not aborted (two-tailed unpaired t-test, t=0.1954, df=31, p=0.8464). 

2.3.3 Delay performance is impaired by the mPFC lesion. 

When every animal had reached the acquisition criterion, the delay testing began. 

Delays (2, 4, 8, or 16 seconds) were introduced between the sample and choice lever 

presentations (Figure 2.3a). Each delay condition was randomly interspersed within a given day, 

and the testing was repeated over several days. The performance was summed across the last 

four days of testing for the data presented in Figure 2.3. The baseline level of performance with 

a 0-second delay, taken as the average performance across the last 3 days of acquisition, was 

not significantly different between the groups (mean ± SD, sham: 90.65±5.93%, lesion: 

89.90±5.74%). However, the performance with delays was impaired for the lesion group 

compared with the sham group (Figure 2.3b). A two-way repeated measures ANOVA showed a 

significant main effect of the lesion across delays (p=0.0075) and a significant delay x lesion 

interaction (p=0.0014). This impairment was driven by the differences in performance in the 2- 

and 4-second delay conditions, where sham mice performed above or close to criterion level 

(2s: 83.27±7.84%; 4s: 77.41±6.31%), but lesion animals performed worse (2s: 74.84±9.38%; 

4s: 65.01±11.35%). Bonferroni post-hoc analysis for each delay condition showed a significant 
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difference between the groups at those two delays (p-values: 2s: 0.0209, 4s: 0.0002), and a 

trend-level difference between the groups’ performances at the 8-second delay condition 

(p=0.0919, sham: 69.25±10.36%, lesion: 62.34±9.91%), but no effect at the 16-second delay 

condition (p>0.9999, sham: 59.85±7.41%, lesion: 56.64±6.58%) where the performance for both 

groups was close to chance (50%). 

 

Figure 2.3. Delay performance of an operant DNMS task is impaired by an mPFC lesion. 
a) Schematic illustration of the trial sequence for the task, including randomly interleaved 2-, 4-, 
8-, and 16-second delays. b) Performance of sham (light) and lesion (dark) groups indicated as 
the percentage of correct trials for each of the four delay lengths as well as baseline (‘Base’: 
mean performance from the last 3 days of acquisition; n=16 sham mice, 17 lesion mice; two-
way rmANOVA, main effect of lesion, F (1,31)=8.179, **p = 0.0075; delay x lesion interaction, F 
(4,124)=4.729, **p = 0.0014; Bonferroni post-hoc corrected p-values: 2-s t=2.907, df=155, 
#p=0.0209; 4-s t=4.279, df=155, ###p=0.0002). c) Mean length of each trial for each delay 
length (two-way rmANOVA, main effect of lesion, F (1,31)=0.1205, p=0.7308; delay x lesion 
interaction, F (3,93)=0.05374, p=0.9835). d) Latency between sample lever press (S) and 
choice lever press (C) for each delay length (two-way rmANOVA, main effect of lesion, F 
(1,31)=0.5730, p=0.4548; delay x lesion interaction, F (3,93)=1.485, p=0.2238). e) Latency 
between choice lever press and reward retrieval throughout delays (two-tailed unpaired t-test, 
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t=0.3436, df=32 p=0.7334). f) Percentage of rewards awarded that were retrieved (two-tailed 
unpaired t-test, t=0.6530, df=31, p=0.5186). g) Percentage of trials that were completed, not 
aborted (two-tailed unpaired t-test, t=0.6034, df=31, p=0.5507). 

As with the acquisition stage, we also measured other parameters to assess whether the 

difference in performance might be accounted for by differences in behavior other than working 

memory. As before, trial length and the latency between sample and choice lever presses for 

each delay condition were the same between groups (Figure 2.3c, d). Similarly, the latency to 

collect the reward and the percentage of rewards retrieved were similar between groups (Figure 

2.3e, f), as were the percentage of completed trials (Figure 2.3g). Cumulatively, these findings 

suggest that mPFC lesioned mice show an impairment in performance of a DNMS working 

memory task, that is not due to motor or motivational impairments. 

 

Figure 2.4. Delay performance is impaired by an mPFC lesion, but learning, over 10-trial 
blocks, is unaffected. Performance for sham (light) and lesion (dark) groups over blocks of 10 
trials for each delay length: a) 2-second delay (two-way rmANOVA, main effect of time, F 
(15,465)=3.328, ****p<0.0001; main effect of lesion, F (1,31)=8.262, **p = 0.0073; time x lesion 
interaction, F (15,465)=1.271, p = 0.2162); b) 4-second delay (two-way rmANOVA, main effect 
of time, F (15,465)=5.788, ****p<0.0001; main effect of lesion, F (1,31)=13.77, ***p = 0.0008; 
time x lesion interaction, F (15,465)=0.4330, p = 0.9692); c) 8-second delay (two-way 
rmANOVA, main effect of time, F (15,465)=5.183, ****p<0.0001; main effect of lesion, F 
(1,31)=3.75, p = 0.0605; time x lesion interaction, F (15,465)=0.4050, p = 0.9777); d) 16-second 
delay (two-way rmANOVA, main effect of time, F (15,465)=3.509, ****p<0.0001; main effect of 
lesion, F (1,31)=1.570, p = 0.2195; time x lesion interaction, F (15,465)=1.982, *p = 0.0151). 
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With the complicated structure of the task during this stage (i.e., having all four delay 

lengths randomly interleaved within one day), there was an improvement in performance for 

both the sham and lesion groups over time. Therefore, the difference in total performance 

observed between the two groups might have multiple explanations. It could be due to: 1) a 

difference in learning to cope with the newly introduced, variable delays, or 2) a difference in 

memory maintenance. To distinguish between these two possibilities, we evaluated the learning 

from day to day and within a day by analyzing performance in 10-trial blocks for each delay 

(Figure 2.4). At all delay lengths, a two-way repeated measures ANOVA showed a significant 

main effect of time (p<0.0001 for all delays), indicating learning. In addition, there was a 

significant main effect of lesion at 2s and 4s, as was seen with the pooled data analysis (p-

values: 2s: 0.0073, 4s: 0.0008) and a trend-level effect at 8s (p=0.0605), but no effect at 16s 

(p=0.2214). Crucially, there was no time x lesion interaction at the delays that revealed a 

difference between the groups (p-values: 2s: 0.2162, 4s: 9692, 8s: 9777). This analysis 

indicates that while there is an impairment in the performance of the lesion animals during the 

delays, this difference cannot be attributed to a difference in learning during the delay condition, 

but rather is explained by a difference in memory.  

Both the acquisition and delay stages of this task demonstrated an impairment due to 

the mPFC lesion; however, the acquisition stage clearly represents a difference in learning 

whereas the delay stage appears to denote a difference in memory or task execution. While we 

were interested to discover how the performance in these two stages was differentially affected, 

we also wanted to know how they might be related. To that end, we analyzed each animal’s 

performance during both stages using a linear regression analysis of the total performance at 

each delay versus the acquisition, as measured by the number of days to reach the criterion 

(Figure 2.5). This analysis revealed a significant though weak correlation between days to 

criterion and performance for each of the delays (2s: R2=0.2850, p=0.0014; 4s: R2=0.3783, 
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p=0.0001; 8s: R2=0.2201, p=0.0059; 16s: R2=0.2943, p=0.0011). The correlation between days 

to criterion and delay performance demonstrates that the two stages are related. The R2 values 

indicate that 22-37% of the variance in the delay performance can be explained by the days to 

criterion. Thus, the deficit in learning does not fully account for the difference in delay 

performance. 

 

Figure 2.5. Correlations between acquisition and performance at each delay show a 
linear relationship. Each animal’s delay performance, at each of the 4 delays, versus that 
animal’s acquisition performance, measured in days to criterion. At each delay, a linear 
regression was evaluated across all animals (sham light, lesion dark). All 4 delays demonstrated 
significant, weak linear relationships with the days to criterion (solid line with 95% confidence 

intervals in dashed lines). a) At 2-second delay, R
2
=0.2850, **p=0.0014; b) at 4-second delay, 

R
2
=0.3787, ****p=0.0001; c) at 8-second delay, R

2
=0.2201, **p=0.0059; d) at 16-second delay, 

R
2
=0.2943, **p=0.0011. 

2.4 Discussion 

2.4.1 The mPFC is required for acquisition and delay performance of an operant-based 

DNMS working memory task. 

In rodents, working memory describes the ability to hold information online for short 

periods of time and then use it to accomplish a goal. Working memory can be assessed in a 

variety of different tasks where a delay separates the acquisition of information from the period 
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in which the information must be used for the correct performance of the task. In this study, we 

used mice to investigate the role of the mPFC in an operant-based DNMS working memory task 

similar to one previously shown to be dependent on the striatum (Akhlaghpour et al., 2016) and 

the hippocampus (Goto & Ito, 2017). Although the mPFC, a structure that has been implicated 

in many cognitive functions and psychiatric disorders, has previously been shown to be required 

for other working memory tasks, we wished to validate this structure’s importance for the current 

operant-based task, which offers several advantages including a smaller exploratory component 

and a higher daily throughput. To that end, we explored the impact of an mPFC lesion on both 

learning and delay performance in the current operant working memory task in mice.  

Our data demonstrate that lesioning the mPFC impaired both acquisition and delay 

performance in this operant task. During the acquisition of the task, where the trials contained a 

short (0s) delay between the sample and choice phases, all animals began at a chance level of 

performance (50% correct). As they continued to train in the task, the lesioned animals were 

slower to perform the task correctly than the sham animals. All mice eventually learned the task, 

reaching the criterion of 3 consecutive days above 80% correct performance; however, the 

lesioned animals took more days to reach this criterion. After all animals reached a similar high 

level of performance, delays were introduced. As expected, both sham and lesioned animals 

showed delay-dependent effects on performance, with accuracy dropping as the delay time 

increased. Additionally, lesioned animals showed impaired performance with the delays relative 

to sham animals that was most evident for the shorter delays of 2 and 4 seconds, when the 

sham animals continued to perform at a relatively high level. For the longer delays of 8 and 16 

seconds, the sham animals performed very close to chance, likely making it difficult to see any 

additional deficit in the performance of the lesioned mice.  
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Other parameters of the task, such as the time taken to complete each trial or the 

percentage of total rewards collected, which might have reflected a change in mobility or 

motivation, were unaffected. This result indicates that the deficit in acquisition and delay task 

performance in the mPFC lesioned mice is not due to them experiencing longer effective delays 

or being less motivated to earn rewards. Moreover, as learning rates during the delay condition 

are comparable in lesioned versus non-lesioned mice a deficit in learning cannot explain the 

deficit observed under the delay condition. This interpretation is supported by the relatively 

weak correlation in the performances of individual animals during both stages. Thus, the deficit 

observed in the delay stage can at least partly be explained by a deficit in memory. 

2.4.2 There are also costs associated with the DNMS operant task. 

This operant DNMS task offers several advantages highlighted throughout this paper, 

such as shorter trial lengths and a smaller exploratory component. However, there is an 

associated cost of prolonged training. In the T-maze DNMS task, animals acquire the task within 

a week whereas in the operant task DNMS task, it took the animals three weeks. In addition, 

maze tasks heavily depend on locomotor exploration which is a more ethologically relevant 

behavior for a mouse than lever pressing. Performing the T-maze task, which requires spatial 

exploration of goal arms likely engages different, but also overlapping, neuronal circuitry than 

performing the operant task. In this context, it will be interesting to determine whether sample 

encoding is also dependent on the ventral hippocampal input to the mPFC in the operant DNMS 

task as it has been observed for the T-maze task (Abbas et al., 2018; Bolkan et al., 2017; 

Spellman et al., 2015).  

2.4.3 Similar findings have been documented in other working memory tasks. 

Previous work has demonstrated the importance of the mPFC in maze-based spatial 

working memory tasks in rodents. These studies showed that a lesion of the mPFC in either 
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mice or rats impairs the acquisition of a DNMS T-maze task (Granon et al., 1994; Kellendonk et 

al., 2006), and that acute optogenetic silencing of projections to and from the mouse mPFC 

impairs performance of the task after delays are introduced (Bolkan et al., 2017). Similarly, 

delay performance in this task is impaired by an mPFC lesion in rats (Aultman & Moghaddam, 

2001). Furthermore, studies disrupting the rat mPFC showed that this region is also important in 

several other more complicated maze-based working memory tasks, including a figure-eight 

maze (Yoon et al., 2008) and a radial arm maze (Seamans et al., 1995). These results, 

combined with those of the current study, demonstrate that the mPFC is an essential structure 

for the acquisition and performance of various working memory tasks with a non-match-to-

sample structure.  

Several studies also explored the role of the mPFC in maze-based working memory 

tasks that instead require delayed alternation. In the delayed alternation T-maze task, the 

animal starts by selecting one of two arms to visit. In all subsequent trials, the animal must 

choose the opposite arm from the one previously visited in order to receive a reward. While this 

task does require working memory, the alternation from trial to trial allows for an alternating 

strategy that would not work in the DNMS task, where for each trial the sample arm is newly 

chosen. Despite this difference, Larsen and Divac showed that performance in a delayed 

alternation T-maze task was impaired following a prefrontal lesion in rats, similar to what has 

been seen in DNMS T-maze tasks (Larsen & Divac, 1978). Therefore, it appears the mPFC is 

essential for both DNMS as well as delayed alternation based T-maze working memory tasks. 

Other investigators have studied the role of the mPFC in an operant version of a delayed 

alternation task, finding that an mPFC lesion impairs performance (Dunnett et al., 1999; Rossi et 

al., 2012). For instance, in Rossi et al, an mPFC lesion in mice impaired both acquisition and 

delay performance, similar to our findings (Rossi et al., 2012). Of note, their operant task 
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differed from the delayed alternation T-maze task of Larsen & Divac in several important ways. 

First, it was less dependent on information collected during exploratory behavior in the arms. 

Second, the operant sample phase allowed the animal to select a new sample each trial, while 

the delayed alternation T-maze task described above had one sample to start the entire set of 

trials, requiring that the animal alternate from arm to arm on each subsequent trial. However, 

similar to the delayed alternation task described above, the animal could adopt a non-working 

memory based strategy to solve the task. In this case, after selecting the initial sample lever, the 

animal could immediately wait in front of the opposite lever until it appeared, effectively 

overriding the need to utilize working memory during the delay time. Nevertheless, in this task, 

Rossi et al found that lesioning the mPFC of mice did impair performance. Additionally, in this 

paradigm, the animal had a fixed amount of time to perform as many trials as possible, and 

animals with an mPFC lesion performed significantly more trials and made significantly more 

lever presses. At one level, this contrasts with our findings, as we saw no effect of the mPFC 

lesion on the time to complete each trial or in the latencies between different actions within a 

trial. However, given that in the Rossi et al task, the animals could complete as many trials as 

possible in ninety minutes, the lesioned animals may have been able to attempt more trials than 

controls because their higher error rate resulted in less time spent consuming rewards. We 

would not be able to detect this in our experiment given that our daily sessions were based on a 

fixed number of trials rather than a fixed amount of time.  

Altogether, this rich literature suggests that the mPFC is required for working memory as 

assayed in a variety of different T-maze and operant-based tasks. Our results support this 

notion by demonstrating the necessity of the region for this operant-based version of the DNMS 

paradigm. 
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2.4.4 The mPFC is not necessary for all operant-based cognitive tasks. 

While many DNMS tasks, including the one presented in this study, are dependent on 

the mPFC, this is not necessarily the case for all operant-based tasks where information needs 

to be maintained over a sustained period of time. For instance, in a different operant-based task 

where animals need to press the opposite lever from that indicated by a visual cue following a 

delay, Kahn et al found no effect of a mPFC lesion (Kahn et al., 2012). This apparent conflict 

with our findings may be explained by several differences between the tasks.  

First, in the task presented here, we introduced all delay lengths within a single day, a 

more complicated trial structure that required an adjustment period, whereas Kahn et al tested 

one delay length over three days before switching to the next delay length. Our data do not 

indicate that the impairment we see is due to a difference in learning during the delay stage; 

however, it is possible that the DNMS task is simply more difficult than the Kahn et al task and 

therefore requires the mPFC while the easier task did not.  

Second, as with the task described in Rossi et al., in the task described in Kahn et al, the 

animal could adopt the alternate strategy of waiting in front of the correct lever immediately 

following the presentation of the light cue, negating the need to use any working memory. Given 

that the animals in Kahn et al were heavily trained on the task, having completed 6 weeks of 

training followed by a 3 week-long sustained attention test before beginning the delayed version 

of the task, it is possible that they adopted this more efficient strategy by the time the working 

memory test began.  

Third, the difference between our results may arise because the cued information is 

passively given in the Kahn et al task, where our task requires the animal to move to press the 

cued lever. Several studies have shown that locomotion can enhance neural activity and 

learning in response to visual stimuli, indicating that the involvement of movement in the sample 
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encoding phase of our task may lead to a difference in the cognitive processing of this phase of 

the trial (Dadarlat & Stryker, 2017; Kaneko et al., 2017; Pakan et al., 2018; Stryker, 2014). Thus, 

differences in the trial structure between the Kahn et al task and the one presented in this study 

may be quite substantial on a neural and circuit level, explaining the differences in mPFC 

dependence.  

2.4.5 The mPFC is part of a larger network supporting working memory performance in 

this task. 

Previous studies have used in vivo electrophysiology to investigate the roles and 

relationships of the hippocampus, MD, and mPFC during the different task phases of the DNMS 

T-maze paradigm (Abbas et al., 2018; Bolkan et al., 2017; Parnaudeau et al., 2013; Spellman et 

al., 2015). This approach has led to critical new insights into the properties of these circuits, 

including the directionality of essential projections during different task phases (e.g., vHip-to-

mPFC during the encoding phase, MD-to-mPFC during the maintenance phase, and mPFC-to-

MD during the choice phase) and the differential roles of specific cell types involved (e.g., 

parvalbumin vs. somatostatin interneurons). In addition to the mPFC, the DNMS operant task 

used in this paper has previously been shown to rely on the dorsomedial striatum (Akhlaghpour 

et al., 2016) and the hippocampus (Goto & Ito, 2017; Goto et al., 2010). With all of the parallels 

between the T-maze and the operant-based DNMS tasks, we might expect the MD, which is 

crucial for the maintenance and choice phases of the T-maze, to play a similar role in this 

operant task.  

Given the multi-region network that appears to be involved, an electrophysiological 

approach similar to what has been done with the T-maze might be used down the line to explore 

the communication between regions during the DNMS operant task. Some studies already have 

started to ask these questions in similar tasks (Hyman et al., 2010), but the exact circuitry 
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involved is still unknown. Furthermore, given the importance of mPFC in task acquisition, 

physiological recordings should also be done during this period. These studies would allow us to 

better understand the circuit connectivity involved in the encoding, maintenance, and selection 

of the correct lever. They might include: 1) in vivo electrophysiology to measure local field 

potentials in the mPFC, hippocampus, dorsomedial striatum, and MD to explore any 

directionality in coherence of oscillatory activity between the regions during the task; 2) acute 

optogenetic silencing or activation of specific interneuron populations in the mPFC to elucidate 

their differential roles; or 3) acute manipulation of projections between the mPFC and the MD, 

hippocampus, or dorsomedial striatum to understand the specific elements of circuit connectivity 

required for the task. 

In sum, this study demonstrates the importance of the mPFC in an operant-based 

working memory task. This operant task has several advantages over T-maze DNMS tasks. 

First, the short task phase allows a large number of trials to be assessed each day, enabling 

multiple different conditions and manipulations to be introduced on a given day. Additionally, this 

short task phase allows for temporally precise manipulations and interpretations of task-related 

neural activity when combined with in vivo recordings and imaging studies. In addition, the 

automated nature of the task allows for multiple animals to run simultaneously in an 

experimenter-independent environment. With this task, future experiments will be able to delve 

deeper into questions regarding the neural circuitry and communication contributing to this type 

of cognitive, prefrontal-dependent behavior.  

2.5 Methods 

Animals. All experiments were carried out on male C57/Bl6 mice purchased from 

Jackson Laboratory (Stock #000664). Mice were aged 8 weeks at the start of experiments and 

housed under a 12-h light-dark cycle in a temperature-controlled environment with food and 
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water available ad libitum. Mice were group housed with littermates (5 mice/cage). During 

behavioral training and testing, mice were food-restricted and maintained at 85% of their initial 

weight. All procedures were done in accordance with guidelines derived from and approved by 

the Institutional Animal Care and Use Committees at Columbia University and the New York 

State Psychiatric Institute. 

Surgical procedures. Mice were anesthetized with ketamine (10mg/ml) and xylazine 

(1mg/ml) and head-fixed in a stereotactic apparatus (Kopf). Mice were injected bilaterally into 

the mPFC with either ibotenic acid (Sigma-Aldrich, I2765), dissolved in ddH2O at 10 mg/ml, or 

phosphate buffered saline (PBS), at a volume of 0.25 μl (0.1 μl/min). The ibotenic acid was 

stored at -20°C, and just prior to the injection was re-dissolved at 37°C. The mPFC coordinates 

used were: +1.8 AP, ±0.35 ML, -2.5 DV (skull at bregma). 

Behavioral apparatus. Eight identical operant-conditioning chambers (ENV-307A; Med 

Associates, Georgia, VT) were used. The chamber measured 15.24 cm long x 13.34 cm wide x 

12.7 cm high. Each chamber was housed in a sound-attenuated box and equipped with two 

retractable levers (ENV-312-3M) on the front wall (the 13.34 cm side), with one milk dipper 

between them (ENV-302RM-S, Figure 2.2a). The back wall contained one noseport (ENV-

313M) directly opposite to the milk dipper. A 1.0-A house light was positioned directly above the 

noseport. A computer (COM-106-NV, Intel i5-7400) controlled and recorded all experimental 

events and responses via an interface (MED-SYST-16e-V). Med-PC V programs were used to 

administer and record all behavioral tasks. 

Behavioral procedures. Two weeks following the ibotenic acid injection, mice were 

gradually food restricted to 85% of their body weight. Mice were then shaped to the different 

parts of the operant task. First, the mice were given 2 days of dipper training, during which the 

mice were presented with the dipper containing 1 drop of evaporated milk (0.01 ml). Each day, 
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the animals were given the opportunity to obtain 20 rewards in a maximum of 30 min with a 

random inter-trial interval (ITI), averaging 5 seconds. For the next 3 days, the animals were 

trained to associate a lever press with a milk reward. Each day, the mice were given a 

maximum of 60 minutes with each retractable lever, baited with High-Calorie Nutritional Gel 

(Tomlyn), to receive a maximum of 60 rewarded lever presses on each side. Every second trial, 

a 10-second ITI was introduced. Next, the mice were given one day during which each lever 

was presented 30 times in a pseudo-random order to receive a maximum of 60 rewards. For 

this experiment, pseudo-random refers to a random distribution with the restriction that the 

same lever cannot be presented for more than 2 consecutive trials. In the final step of shaping, 

the noseport was introduced. Each trial began with an illuminated noseport. When the noseport 

was entered, one of the two levers would extend in a pseudo-random order, and a lever press 

would result in a milk reward, followed by a 5-second ITI. Each day, the animal could perform a 

maximum of 60 rewarded trials within a maximum of 60 minutes. After 4 days of noseport 

training, the animals began the acquisition stage of the behavior. 

Acquisition was repeated on 19 consecutive days. Throughout the 19 days, the animals 

were given unlimited time to complete the required trials. Each trial began with the house light 

being turned on and an illuminated noseport to signal an initial noseport entry. The first noseport 

entry triggered the start of the sample lever presentation. During the sample phase, only one 

lever was presented in a pseudo-random order. After the sample lever press, the noseport was 

immediately re-illuminated (following a 0-second delay) signaling a second noseport entry. 

Following the second noseport entry, the choice phase began, and both levers were presented. 

If the animal pressed the opposite lever to the sample lever of that trial (non-match), the trial 

was recorded as “correct” and a dipper reward was given. If the animal pressed the same lever 

as the sample, the trial was recorded as “incorrect” and the dipper was not presented. This final 

step was followed by a 10-second ITI during which the house light was turned off. 
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During the first 5 days of acquisition, there were 120 trials per day total; 60 trials with 

each lever presented as the sample. Furthermore, the animal had unlimited time following the 

sample lever press for the second noseport entry. 

For the subsequent 10 days of acquisition (120 trials per day), mice had a 5-second time 

limit in which to make the second noseport entry. This restriction allowed us to shape the 

animals’ behavior to ensure a standardized length of delay between subjects. If the animal did 

not make a noseport entry in the time allotted, the trial was aborted and was omitted from the 

calculations. 

Finally, during the last 4 days of acquisition, the number of trials was increased to 160 

trials. This allowed the animals to adjust to the longer days before the delays were introduced. 

During the acquisition stage, all mice achieved a criterion level of performance, defined 

as 3 consecutive days above 80% correct.  

Following acquisition, the delay stage began. In this stage, each trial had the same 

structure as during the acquisition stage, with one difference: a delay of 2, 4, 8 or 16 seconds 

was introduced between the sample lever press and the second noseport illumination. Each day 

every mouse was presented with a total of 160 trials with 40 trials of each delay condition 

randomly interspersed. This testing was repeated for 5 days. On the first day of testing, all 

animals performed poorly even at the shortest (2-second) delay (despite a previous high 

performance with 0-second delays), demonstrating the need for a short adjustment period to the 

new task parameters. The data from this adjustment period was therefore excluded, and the last 

4 days, when the performance was more consistent, were taken together for analysis. 

All behavioral testing was conducted during the light cycle. 
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Statistics. A two-way repeated measures ANOVA was used to assess significant overall 

effect of lesion and interactions between lesion and time during the acquisition stage or between 

lesion and delay length during the delay stage. Two-tailed t-tests were performed to compare 

the number of days to criterion for the lesioned and sham-lesioned groups, as well as other task 

characteristics. 

Histology. At the end of experimentation, mice were transcardially perfused with PBS 

followed by 4% PFA. Fixed tissue was then sectioned (40 μm coronal) using a vibratome and 

mounted on charged slides. The tissue was stained with Cresyl Violet (Sigma-Aldrich C5042) to 

target Nissl bodies. Eight slices for each animal spanning and extending past the mPFC (from 

AP +3.2 to -0.5 relative to bregma) were then examined with a brightfield light microscope 

(Zeiss) to assess the location and extent of the lesion, which was determined based on loss of 

cell density, accumulation of clumped Nissl staining from dead tissue and contraction of the gray 

matter (Hunt & Aggleton, 1998) (Figure 2.1c). 

Data availability. The data that support the findings of this study are available from the 

corresponding author upon reasonable request.  

Code availability. Med-PC V and Matlab code used for administering the behavior and 

analysis of the data that support the findings of this study is available from the corresponding 

author upon reasonable request. 
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Chapter 3: Adolescent thalamic inhibition leads to long-lasting 

impairments in prefrontal cortex function† 

3.1 Abstract 

Impaired cortical maturation is a postulated mechanism in the etiology of 

neurodevelopmental disorders, including schizophrenia. In sensory cortex, activity relayed by 

the thalamus during a postnatal sensitive period is essential for proper cortical maturation. 

Whether thalamic activity also shapes prefrontal cortical maturation is unknown. Here, we show 

that inhibiting the mediodorsal and midline thalamus during adolescence leads to a long-lasting 

decrease in thalamo-prefrontal projection density and cortical excitability. Adolescent thalamic 

inhibition also causes prefrontal-dependent cognitive deficits during adulthood that are 

associated with disrupted prefrontal cross-correlations and task outcome encoding. In contrast, 

thalamic inhibition during adulthood has no long-lasting consequences. Strikingly, exciting the 

thalamus in adulthood during a cognitive task rescues prefrontal cross-correlations, task 

outcome encoding, and cognitive deficits. These data point to adolescence as a sensitive 

window of thalamo-cortical circuit maturation. Furthermore, by supporting prefrontal network 

activity, boosting thalamic activity provides a potential therapeutic strategy for rescuing cognitive 

deficits in neurodevelopmental disorders.  

 
†This chapter is under review at Nature Neuroscience. It has been modified from the pre-print version of 
this publication, which can be found at: Benoit, L. J., Holt, E. S., Posani, L., Fusi, S., Harris, A., Canetta, 
S., Kellendonk, C. Adolescent thalamic inhibition leads to long-lasting impairments in prefrontal cortex 
function, 09 August 2021, PREPRINT (Version 1) available at Research Square 
https://doi.org/10.21203/rs.3.rs-730508/v1  

L.J.B., S.E.S., and C.K. designed the experiments. L.J.B. performed the experiments and analyzed the 
data. S.E.S. and E.H. assisted in the performance and analysis of the experiments. A.Z.H. assisted in the 
design, performance, analysis, and interpretation of experiments. L.P. and S.F. assisted in the analysis of 
experiments. L.J.B., S.E.S., and C.K. interpreted the results and wrote the paper. 
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3.2 Introduction 

Sensitive periods denote developmental time windows of heightened plasticity during 

which alterations in experience can lead to long-lasting changes in the anatomy and function of 

the nervous system (Hensch, 2004; Takesian & Hensch, 2013b). Frequently, these windows 

represent periods in which the refinement of brain circuitry and function is particularly 

susceptible to changes in neuronal activity. A classic example is in the visual system, where 

transient developmental monocular deprivation can permanently impair acuity in the deprived 

eye (Wiesel & Hubel, 1963). This impairment in function persists even after the deprivation in 

visual input is reversed, as the thalamo-cortical inputs representing the closed eye are 

permanently disrupted in an activity-dependent manner. While sensitive periods in the circuit 

refinement of sensory cortices have been well-documented (Caras & Sanes, 2015; de Villers-

Sidani et al., 2007; Sun et al., 2019; Wiesel & Hubel, 1963), recent evidence suggests that 

similar transient changes in activity during postnatal development can have lasting changes in 

the prefrontal cortex (PFC), an associative cortical area that supports higher cognitive 

functioning (Bicks et al., 2020; Bitzenhofer et al., 2021a; Canetta et al., 2021; Larsen & Luna, 

2018a; Nabel et al., 2020). 

Disturbances in PFC function are believed to underlie the cognitive symptoms found in 

psychiatric disorders, such as schizophrenia. Schizophrenia is thought to have a developmental 

origin (Insel, 2010; Sakurai & Gamo, 2019; Weinberger & Berman, 1996), and one prominent 

hypothesis is that during adolescence, a vulnerable period for the development of this disorder, 

the maturation of the PFC is disrupted (Feinberg & Campbell, 2010). In schizophrenia, recent 

studies have identified a decreased correlation between activity in the thalamus and the 

dorsolateral PFC under resting conditions, a finding which may have a structural basis (Katz et 

al., 1996; Kubota et al., 2013; Marenco et al., 2012). This decreased correlation has also been 
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measured in patients during cognitive testing (Giraldo-Chica et al., 2017; Mitelman et al., 2005; 

Pinault & Deschenes, 1998; Woodward et al., 2012), where it has been linked to impairments in 

functioning. Strikingly, decreased thalamo-prefrontal connectivity was also seen in younger 

adolescents at high risk for psychosis, and it predicted later illness conversion (Anticevic et al., 

2015; Marenco et al., 2012; Woodward & Heckers, 2016a), raising the intriguing possibility that 

decreased input from the thalamus could be part of the developmental etiology of PFC 

dysfunction in the disorder (Anticevic et al., 2014a; Anticevic et al., 2015; Cho et al., 2016; 

Woodward & Heckers, 2016a).  

Here, we directly test the hypothesis that input activity from the thalamus during 

adolescence is important for PFC circuit maturation and that decreasing this input during 

adolescence will lead to long-lasting impairments in the functioning of the PFC. To address this 

question, we used a combination of viral genetics and the designer receptor, hM4DGi, to 

selectively reduce activity of the thalamus during adolescence. Using a Cre/LoxP strategy, 

hM4DGi expression was restricted to the midline thalamus including the mediodorsal thalamus, 

an area that projects to the medial PFC (mPFC) in the mouse. We found that transient thalamic 

inhibition during adolescence led to several persistent changes in adulthood, including (1) 

deficits in two mPFC-dependent cognitive tasks, (2) decreased excitatory drive onto mPFC 

pyramidal cells, (3) decreased anatomical thalamo-mPFC input, (4) reduced mPFC neuron 

cross-correlations, and (5) impaired mPFC neuron encoding of extra-dimensional set shifting 

task outcomes. In contrast, inhibiting the thalamus for a comparable period during adulthood 

had no long-lasting effects on excitatory inputs to mPFC cells or behavior. These data point to 

adolescence as a sensitive time window of thalamo-cortical circuit maturation. Strikingly, 

enhancing thalamic excitability during adulthood rescued the behavioral deficits and restored 

the ability of mPFC neurons to encode task outcome in mice that received adolescent thalamic 

inhibition. Prior studies have suggested that the thalamic inputs act as a non-specific amplifier 
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supporting prefrontal activity during the delay periods of a working memory task and a 

contextual switching task (Bolkan et al., 2017; Hsiao et al., 2020; Parnaudeau et al., 2018; 

Rikhye et al., 2018a; Rikhye et al., 2018b; Saalmann, 2014; Schmitt et al., 2017). Our data 

suggest that the thalamus plays a broader function in facilitating mPFC activity that is not 

restricted to delay-containing tasks. Thus, this study demonstrates first the importance of 

thalamic input activity during adolescence for adult prefrontal cortical circuit function and second 

offers therapeutic insights into how to reverse cognitive deficits arising from a developmentally 

altered brain. 

3.3 Results 

3.3.1 A chemogenetic approach to transiently and chronically reduce thalamic cell 

activity during development or adulthood 

We first aimed to establish that we can inhibit thalamic activity during adolescence and 

adulthood. Therefore, we stereotactically injected an adeno-associated virus (AAV) carrying a 

Cre-dependent version of the inhibitory designer receptor, hM4DGi (hereafter referred to as 

hM4D), into the thalamus of GBX2-CreERT mice (Figure 3.1a). Viral injections were performed 

at postnatal day P13 and Cre-mediated recombination was induced by tamoxifen injection at 

P15-16, at a time when GBX2 expression is restricted to the mediodorsal and midline thalamus, 

thereby limiting viral spread (Figure 3.1b, c). To determine the efficacy of hM4D-mediated 

inhibition of thalamic neurons, we performed whole-cell patch clamp recordings from thalamic 

neurons in both adolescent and adult brain slices. Application of the DREADD ligand, clozapine-

n-oxide (CNO), led to a hyperpolarization of thalamic neurons consistent with activation of G-

protein coupled inward rectifying potassium (GIRK) channels (Figure 3.1d). Thalamic neurons in 

control animals did not respond to CNO. CNO-application led to comparable effects sizes in 

adolescent and adult brain slices that were consistent with published results in adult thalamic 
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neurons (Parnaudeau et al., 2013). Crucially, CNO-application hyperpolarized thalamic neurons 

in animals that had been exposed to twice daily intraperitoneal (i.p.) CNO injections for two 

weeks, suggesting that chronic CNO treatment does not lead to hM4D receptor de-sensitization 

(Figure 3.1d). These data indicate that repeated hM4D activation can continuously inhibit 

thalamic neuron activity during adolescence and adulthood. 

 

Figure 3.1. A chemogenetic approach to reversibly and chronically inhibit thalamic cells 
during development or adulthood. (a) Experimental design and timeline. Mice were injected 
with virus at P13, and whole cell patch clamp recordings were made at P35 or P105 in cells 
expressing hM4D-mCherry or control, GFP, at baseline and in response to bath application of 
10 µM. Animals were either never exposed to CNO prior to perfusion (naïve) or given twice daily 
1 mg/kg CNO i.p. injections for two weeks (chronic). (b) Example images illustrating hM4D-
mCherry expression in the midline thalamus in adolescent and adult animals. (c) Superimposed 
traces of hM4D-mCherry viral spread (pink shading) relative to mediodorsal and midline 
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thalamic nuclei (dashed black lines) in coronal slices. Distance from bregma listed beside each 
coronal slice. (d) Quantification of CNO-induced hyperpolarization. Control cells at P35 and 
P105 were pooled because CNO did not show an effect at either age. CNO induced a 
significant hyperpolarization in both P35 and P105 cells expressing hM4D relative to control 
cells. Dots indicate individual cell responses and bars indicate mean ± SEM. Control: n=15 cells, 
5 animals; hM4D naïve young: n=13 cells, 5 animals; hM4D chronic young: n=8 cells, 3 animals; 
hM4D naïve adult: n=5 cells, 3 animals; hM4D chronic adult: n=5 cells, 3 animals; 1-way 
ANOVA, effect of treatment F(4, 41)=3.203, p=0.0223; Holm-Sidak post-hoc, P35 hM4D naïve 
vs. Control *p=0.0480, P35 hM4D CNO-exposed vs. Control *p=0.0480, P105 hM4D naïve vs. 
Control *p=0.0480, P105 hM4D CNO-exposed vs. Control *p=0.0366. *p<0.05 

3.3.2 Thalamic activity in adolescence, but not adulthood, is required for cognitive 

functioning 

We then tested the long-term effects of transient thalamic inhibition during adolescence 

(P20-50) on prefrontal-dependent cognitive task performance. To this end, CNO (1 mg/kg) was 

injected twice daily in hM4D and control GFP mice from days P20-50, and the animals were 

tested forty days later, at P90 (Figure 3.2a). To assess cognition during adulthood, we chose an 

operant-based Non-Match to Sample (NMS) working memory task (Figure 3.2b), whose 

acquisition is delayed after a lesion of the mPFC (Benoit et al., 2020) and an odor- and texture- 

based attentional set shifting task (ASST), in which the extra-dimensional set shifting 

component of the task (EDSS) is sensitive to mPFC lesions (Figure 3.2c) (Birrell & Brown, 2000; 

Bissonette et al., 2008). Following adolescent thalamic inhibition from P20-50, we found that the 

acquisition of the NMS task was impaired in animals expressing hM4D compared with controls 

(Figure 3.2d). No changes were seen in any other task variables, such as trial length, task 

latencies, or rewards consumed (Figure 3.4), suggesting that the impairments in performance 

were not due to a decrease in motivation or mobility.  

Similarly, in a second cohort of mice tested in the ASST, we found that the mPFC-

dependent EDSS was impaired in animals expressing hM4D compared with controls (Figure 

3.2e). Meanwhile, behavior in the non-mPFC-dependent initial acquisition portion of the set 
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shifting task (IA) was unchanged. No changes were seen in any other task variables, including 

IA or EDSS task latencies (Figure 3.5).  
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Figure 3.2. Thalamic activity in adolescence, but not adulthood, is required for cognitive 
behavioral performance. Schematics of (a) the Non-Match to Sample (NMS) task and (b) the 
attentional set-shifting task (ASST). (c) Adolescent experimental timeline. CNO was 
administered from P20-50 to mice expressing hM4D or GFP in the thalamus, and behavioral 
testing was conducted 40 days later, at P90. (d) Adolescent-inhibited hM4D animals take 
significantly longer to acquire the NMS task (left), taking significantly more days to reach 
criterion (right). Control: n=17 animals; hM4D: n=21 animals; learning curve: 2-way repeated 
measures (rm) ANOVA, effect of time F(4.201,151.2)=102.0, p<0.0001, effect of group 
F(1,36)=3.143, p=0.0847, effect of group x time F(13,468)=2.088, *p=0.0137; days to criterion 
(3 consecutive days above 70%): Control: (mean ± standard error of the mean, SEM) 5.35±0.27 
days, hM4D: 7.05±0.51 days; unpaired t-test: t=2.746, df=36, **p=0.0094. (e) Adolescent-
inhibited hM4D animals are no different than controls in the initial acquisition (IA) of the ASST 
(left, Control: n=14 animals, 15.71±1.88 trials, hM4D: n=16 animals, hM4D: 11.81±1.50 trials; 
unpaired t-test, t=1.639, df=28, p=0.1125) but take significantly more trials in the extra-
dimensional set shift (EDSS) than controls (right, Control: n=14 animals, 10.57±0.42 trials, 
hM4D: n=15 animals, hM4D: 15.07±1.79 trials; unpaired t-test, t=2.372, df=27, *p=0.0251). (f) 
Adult experimental timeline, with CNO administered P90-120 and testing at P160. There were 
no differences in either (g) the acquisition of the NMS task (Control: n=6 animals, hM4D: n=10 
animals; learning curve: 2-way rmANOVA, effect of time F(5.501,77.01)=40.21, p<0.0001, effect 
of group F(1,14)=1.462, p=0.2467, effect of group x time F(17,238)=0.8680, p=0.6126; days to 
criterion: Control: 7.33±0.67 days, hM4D: 7.40±1.02 days; unpaired t-test, t=0.04654, df=14, 
p=0.9635) or (h) the IA (Control: n=20 animals, 10.60±0.59 days, hM4D: n=18 animals, 
11.39±0.76 trials; unpaired t-test, t=0.8260, df=36, p=0.4142) and EDSS (Control: 12.40±0.89 
trials, hM4D: 10.76±0.64 days; unpaired t-test, t=1.442, df=35, p=0.1583) portions of the ASST 
between adult-inhibited hM4D animals and controls. Learning curves depict mean performance 
± SEM for each day. For other plots, dots represent individual animals; lines represent mean ± 
SEM. *p<0.05, **p<0.01 

 

Figure 3.3. Adolescent-inhibited hM4D animals have a significantly worse overall 
performance during the first 8 days of the NMS task. Post-hoc analyses show that this 
difference is strongest at day 4. Control: n=17 animals; hM4D=21 animals. 2-way rmANOVA, 
effect of time F(3.129,112.7)=87.66, p<0.0001, effect of group F(1,36)=4.575, *p=0.0358, effect 
of group x time F(7,252)=1.546, p=0.1523; Holm-Sidak post-hoc analysis at day 4, *p=0.0456. 
Learning curves depict mean performance ± SEM for each day. *p<0.05 
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Figure 3.4. Other metrics in the NMS task were unaffected by thalamic inhibition. In the 
NMS task, no metrics of mobility or motivation were affected by adolescent (top) or adult 
(bottom) thalamic inhibition, including (a) mean trial length, adolescent: Control: n=17 animals, 
18.94±1.61 s, hM4D: n=21 animals, 19.03±1.26 s; unpaired t-test: t=0.04228, df=36, p=0.9665; 
adult: Control: n=6 animals, 19.41±4.19 s, hM4D: n=10 animals, 19.05±1.50 s; unpaired t-test: 
t=0.09631, df=14, p=0.9246, (b) mean sample lever press-choice lever press latency, 
adolescent: Control: 4.932±0.199 s, hM4D: 5.372±0.252 s; unpaired t-test: t=1.321, df=36, 
p=0.1949; adult: Control: 5.304±0.416 s, hM4D: 4.999±0.102 s; unpaired t-test: t=0.8949, df=14, 
p=0.3875, (c) mean latency to collect reward, adolescent: Control: 0.5781±0.0143 s, hM4D: 
0.5801±0.0125 s; unpaired t-test: t=0.1086, df=36, p=0.9141; adult: Control: 0.6091±0.0396 s, 
hM4D: 0.6137±0.0233 s; unpaired t-test: t=0.1064, df=14, p=0.9168,and (d) percentage of 
rewards retrieved, adolescent: Control: 99.78±0.05%, hM4D: 99.71±0.07%; unpaired t-test: 
t=0.7668, df=36, p=0.4482; adult: Control: 99.36±0.21 s, hM4D: 99.62±0.10 s; unpaired t-test: 
t=1.199, df=14, p=0.2503. (e) Adolescent (top) and adult (bottom) thalamic inhibition do not 
change delay performance. There are no differences in performance at any delay length tested 
(2s, 4s, 8s, 16s). Adolescent: 2-way rmANOVA: effect of group F(1,38)=0.7487, p=0.3923, 
effect of delay length F(2.63, 100.00)=125, p<0.0001, effect of group x delay length 
F(3,114)=0.2506, p=0.8608; adult: 2-way rmANOVA: effect of group F(1,14)=0.1574, p=0.6975, 
effect of delay length F(2.50,34.97)=40.65, p<0.0001, effect of group x delay length 
F(3.42)=0.3923, p=0.7591. Dots represent individual animals; lines represent mean ± SEM.  
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Figure 3.5. Other metrics in the ASST were unaffected by thalamic inhibition. In the ASST, 
no metrics of mobility or motivation were affected by adolescent (top) or adult (bottom) thalamic 
inhibition, including median latency to dig during (a) IA (adolescent: Control: n=14 animals, 
24.29±5.84 s, hM4D: n=16 animals, 32.47±8.91 s; unpaired t-test: t=0.7448, df=28, p=0.4626; 
adult: Control: n=20 animals, 53.50±9.41 s, hM4D: n=17 animals, 45.44±6.95 s; unpaired t-test: 
t=0.6682, df=35, p=0.5084) or (b) SS (adolescent: Control: n=14 animals, 34.57±8.39 s, hM4D: 
n=15 animals, 32.07±4.32 s; unpaired t-test: t=0.2708, df=27, p=0.7886; adult: Control: n=20 
animals, 90.20±12.58 s, hM4D: n=17 animals, 78.44±13.70 s; unpaired t-test: t=0.6323, df=35, 
p=0.5313). (c) Similarly, the breakdown of types of errors during EDSS, perseverative (P) and 
random (R), was unaffected. Following adolescent inhibition (top), there was an overall effect of 
the manipulation, with increased numbers of both perseverative and random errors (2-way 
rmANOVA, effect of group F(1,27)=4.215, *p=0.0499). Following adult inhibition (bottom), there 
was no change in either type of error (2-way rmANOVA, effect of group F(1,35)=1.369, 
p=0.2499). Dots represent individual animals; lines represent mean ± SEM. *p<0.05 

To address whether the primary contribution of this behavioral deficit came from the 

thalamo-mPFC projections, or other thalamic projections, we next targeted only thalamo-mPFC 

projections during adolescent inhibition. We used a dual virus approach, with a retrogradely-

transported viral vector containing Cre recombinase injected into the mPFC and a viral vector 

containing Cre-dependent hM4D into the thalamus (Figure 3.6a). Using the same behavioral 
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timeline, we found the same behavioral findings in the ASST, with intact IA and impaired EDSS 

in the adolescent-inhibited animals (Figure 3.6b, c).  

 

Figure 3.6. Thalamo-mPFC projection activity during adolescence is required for adult 
cognitive flexibility. (a) Schematic for viral injections to target thalamo-mPFC projections. At 
P12, one virus was injected into the mPFC containing a retrogradely transported Cre driver, and 
another virus was injected into the thalamus containing floxed, Cre-dependent hM4D or the 
control GFP. (b) Adolescent-inhibited hM4D animals are no different than controls in the IA 
portion of the ASST. Control: n=12 animals, 9.75±0.70 trials; hM4D: n=14 animals, 10.00±0.70 
trials; unpaired t-test, t=0.2507, df=24, p=0.8042. (c) Adolescent-inhibited hM4D animals take 
significantly more trials in the EDSS to reach criterion than controls. Control: 10.25±0.37 trials; 
hM4D: 13.00±1.02 trials; unpaired t-test, t=2.385, df=24, *p=0.0254. Dots represent individual 
animals; lines represent mean ± SEM. *p<0.05 

These results indicate that adolescent thalamic inhibition results in long-term, persistent 

consequences to mPFC-dependent cognitive processes. To test whether adolescence is in fact 

a sensitive period, or whether the circuit is sensitive to transient changes at any age, we also 

inhibited the thalamus for a comparable time window during adulthood, P90-120, and tested the 

long-term effects forty days later, at P160 (Figure 3.2f).  
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While there was an effect of age on performance in the NMS task, with the older P160 

animals performing worse than the P90 animals, adult thalamic inhibition affected neither 

acquisition of the NMS task (Figure 3.2g) nor trials to criterion in the EDSS task (Figure 3.2h), 

supporting the hypothesis that adolescence is a sensitive period in which changes in thalamic 

activity influence the development of thalamo-mPFC circuit maturation. 

3.3.3 Thalamic activity in adolescence, but not adulthood, is required for prefrontal 

excitability 

To determine whether thalamic inhibition during adolescence leads to long-lasting 

changes in mPFC circuit function, we used slice physiology to measure spontaneous excitatory 

and inhibitory activity in mPFC layer II/III pyramidal cells, which receive projections from the 

thalamus (Figure 3.7a). Following adolescent thalamic inhibition, the frequency of spontaneous 

excitatory post-synaptic currents (sEPSCs) was reduced, while the sEPSC amplitude was 

unchanged (Figure 3.7b, c). This change in frequency, but not amplitude, suggests a decrease 

in the quantity or functionality of pre-synaptic excitatory inputs. In contrast, we found no 

changes in frequency or amplitude of spontaneous inhibitory post-synaptic currents (sIPSCs) 

(Figure 3.7b, d) pointing to a selective decrease in excitatory drive onto mPFC neurons.  

These effects were again selective to thalamic inhibition during adolescence as we 

found no changes in excitatory or inhibitory inputs to prefrontal pyramidal cells following chronic 

thalamic inhibition in adulthood (Figure 3.7f, g). These findings, consistent with the behavioral 

results, point to adolescence as a sensitive time period during which thalamic activity regulates 

the development of the mPFC.  
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Figure 3.7. Thalamic activity in adolescence, but not adulthood, is required for mPFC 
pyramidal excitability in adulthood. (a) Adolescent experimental timeline and schematic. 
Whole cell patch clamp recordings were made from pyramidal cells in layer II/III of the mPFC 
from hM4D and control mice. These pyramidal cells receive excitatory inputs from the thalamus 
as well as inhibitory inputs from local interneurons. (b) Representative traces showing 
spontaneous excitatory post-synaptic currents (sEPSCs, left) and spontaneous inhibitory post-
synaptic currents (sIPSCs, right). (c) sEPSC frequency is significantly reduced following 
adolescent thalamic inhibition relative to control mice, but sEPSC amplitude is unchanged. 
Control: n=20 cells, 5 animals; hM4D: n=24 cells, 7 animals; frequency: Control: 4.438±0.429 
Hz, hM4D: 3.202±0.325 Hz; unpaired t-test, t=2.337, df=42, *p=0.0243; amplitude: Control: 
28.71±2.57 pA, hM4D: 29.82±1.47 pA; unpaired t-test, t=0.3881, df=42, p=0.6999. (d) sIPSC 
frequency and amplitude are also unchanged. Control: n=20 cells, 5 animals; hM4D: n=21 cells, 
7 animals; frequency: Control: 3.421±0.376 Hz, hM4D: 2.627±0.323 Hz; unpaired t-test, 
t=1.606, df=39, p=0.1163; amplitude: Control: 32.29±2.08 pA, hM4D: 31.03±1.84 pA; unpaired t-
test, t=0.4450, df=34, p=0.6592. (e) Adult experimental timeline. (f) sEPSC and (g) sIPSC 
frequency and amplitude are unchanged following adult thalamic inhibition. Control: n=12 cells, 
3 animals; hM4D: n=12 cells, 3 animals; sEPSC: n=12 Control cells, n=12 hM4D cells; 
frequency: Control: 4.674±0.448 Hz, hM4D: 4.675±0.561 Hz; unpaired t-test, t=0.001936, df=22, 
p=0.9985; amplitude: Control: 27.78±1.68 pA, hM4D: 29.75±1.78 pA; unpaired t-test, t=0.8048, 
df=22, p=0.4296; sIPSC: n=12 Control cells, n=12 hM4D cells; frequency: Control: 3.775±0.506 
Hz, hM4D: 2.825±0.625 Hz; unpaired t-test, t=1.181, df=22, p=0.2501; amplitude: Control: 
25.49±0.82 pA, hM4D: 23.69±1.82 pA; unpaired t-test, t=0.9030, df=22, p=0.3763. Dots 
represent individual animals; lines represent mean ± SEM. *p<0.05 

3.3.4 Adolescent thalamic activity is required to maintain thalamic projection density to 

the mPFC 

We next aimed to discover whether decreased subcortical anatomical inputs may 

contribute to the decrease in sEPSC frequency measured in the mPFC following adolescent 

thalamic inhibition. To test this question, we injected a retrogradely transported fluorescent 

protein, GFP, into the mPFC of adult mice that had experienced adolescent thalamic inhibition. 

Three weeks later, we used stereology to calculate the density of retrogradely labelled neurons 

in the thalamus, as well as in the basolateral amygdala (BLA, Figure 3.8a), an additional region 

that projects to layer II/III of the mPFC. After outlining the regions using DAPI staining, we found 

a decrease in the density of cells projecting from the thalamus to the mPFC (Figure 3.8c). In 

contrast, we found no change in the density of cells projecting from the BLA (Figure 3.8d), 

suggesting that there is no global competition between subcortical regions projecting to the 
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mPFC, as has previously been seen in early postnatal lesion studies (Guirado et al., 2016). The 

difference in thalamic projections is maintained when the thalamus/BLA ratio is taken (Figure 

3.8e), indicating that there is not an artificial effect caused by different injected viral volumes 

across animals and groups. We saw no change in overall cell density within the thalamus based 

on DAPI-positive cell counts (Figure 3.9), suggesting a loss of thalamic inputs to the mPFC 

rather than thalamic cells. 

3.3.5 Enhancing thalamic excitability in the adult animal rescues the cognitive 

impairments induced by adolescent thalamic inhibition 

The anatomical changes suggest that the circuit alterations are persistent. Previous work 

has shown that exciting the thalamus can enhance performance in prefrontal-dependent 

cognitive tasks including in a working memory and a 2-alternative forced choice task (Bolkan et 

al., 2017; Schmitt et al., 2017). Moreover, it has been suggested that the thalamus may act as a 

non-specific amplifier of mPFC activity during the delay periods of those behaviors (Bolkan et 

al., 2017; Hsiao et al., 2020; Rikhye et al., 2018a; Rikhye et al., 2018b; Schmitt et al., 2017). 

Even though our task does not include delays in which the trial-specific information must be kept 

online, we aimed to discover whether activation of the remaining thalamic inputs would still 

improve behavior and whether this amplification can overcome the developmental circuit 

abnormalities.  

Therefore, we enhanced thalamic activity during the set shifting task using a stabilized 

step-function opsin (SSFO, Figure 3.10a). To correct the impaired EDSS behavior, we activated 

the SSFO with a 5 second pulse (473nm, 4mW) before the start of the EDSS portion of the task 

(Figure 3.10b). Because the SSFO will slowly inactivate over time, we repeated the 5 s pulse 

during the intertrial interval (ITI) every 30 minutes while the animal was engaged in the task. 
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Figure 3.8. Adolescent thalamic activity is required to maintain the density of projections 
to the mPFC from the thalamus, but not from the BLA. (a) Experimental timeline and 
schematic. At P70, a retrograde tracer, GFP, was injected into the mPFC, before perfusion 3 
weeks later. (b) Representative confocal images illustrating GFP staining in the mPFC (left), 
thalamus (middle), and basolateral amygdala (BLA, right) in control (top) and hM4D (bottom) 
animals. Outlines were determined using DAPI staining. (c) Stereology was conducted using 
DAPI staining for outlines of regions and GFP staining for cell counting. Quantification of GFP-
positive cell density showed a significant decrease in thalamo-mPFC projecting cells in 
adolescent-inhibited hM4D animals compared to controls (top, Control: n=6 animals, 453.2±61.3 
cells/mm2, hM4D: n=7 animals, 260.3±56.1 cells/mm2; unpaired t-test, t=2.326, df=11, 
*p=0.0401). Stereological estimates showed no difference in overall thalamic area (bottom, 
Control: 5.539±0.232 mm2, hM4D: 5.429±0.178 mm2; unpaired t-test, t=0.3834, df=11, 
p=0.7087). (d) Stereology in the BLA showed no differences in either GFP-positive cell density 
(top, Control: 602.4±61.1 cells/mm2, hM4D: 578.5±61.0 cells/mm2; unpaired t-test, t=0.2749, 
df=11, p=0.7885) or BLA area (bottom, Control: 5.687±0.211 mm2, hM4D: 5.432±0.163 mm2; 
unpaired t-test, t=0.9713, df=11, p=0.3523). (e) The ratio of thalamic to BLA projection cell 
densities showed a significant reduction in adolescent-inhibited hM4D animals compared to 
controls (top, Control: 0.742±0.065, hM4D: 0.467±0.091; unpaired t-test, t=2.376, df=11, 
*p=0.0368) but no change in region area (bottom, Control: 0.981±0.055, hM4D: 1.006±0.049; 
unpaired t-test, t=0.3471, df=11, p=0.7351). Dots represent individual animals; lines represent 
mean ± SEM. *p<0.05 

 

Figure 3.9. Thalamic DAPI staining shows no differences in overall cell density in the 
thalamus for control or hM4D animals. Control: n=6 animals, 13902±474 cells/mm2, hM4D: 
n=7 animals, 14642±1051 cells/mm2; unpaired t-test, t=0.6050, df=11, p=0.5575. Dots represent 
individual animals; lines represent mean ± SEM. 

We performed a crossover experiment where each animal performed the ASST twice, 

with and without SSFO activation, ten days apart. We replicated the behavioral deficit in the 

adolescent thalamus-inhibited animals when the SSFO was not active, and found that 

increasing thalamic excitability via SSFO activation during EDSS was sufficient to rescue the 

behavior of adolescent thalamic inhibition animals to control levels (Figure 3.10d). The effects of 

SSFO activation did not persist from the first day of testing to the second testing day, and 
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repeating the experiment did not influence behavior (2-way rmANOVA; effect of light 

F(1,46)=6.302, p=0.0156, effect of run day F(1,46)=2.512, p=0.1199, effect of light x day run 

F(1,46)=1.364, p=0.2488). These data give an important mechanistic insight: even though the 

sensitive period in the circuit occurs in adolescence, thalamo-mPFC circuitry can still be acutely 

manipulated in adulthood to rescue the behavioral deficits. 

 

Figure 3.10. Acute thalamic activity enhancement rescues the ASST behavioral deficit 
following adolescent thalamic inhibition. (a) Experimental timeline. At P70, a stabilized step-
function opsin (SSFO) was injected into the thalamus along with optrodes. Behavioral testing 
was done at P90 and P100. (b) Schematic for behavior. For the light ON animals, the SSFO 
was stimulated before the EDSS and again every 30 min during the inter-trial interval (ITI) until 
completion of the task. Animals were randomly assigned to two groups: (1) light ON (SSFO 
activation) on Day 1 at P90 and light OFF on Day 2 at P100; (2) light OFF on Day 1 at P90 and 
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light ON on Day 2 at P100. (c) There is no significant difference in IA performance between the 
control or hM4D light OFF groups (2-way rmANOVA; effect of group F(1,23)=2.407, p=0.1344, 
effect of light F(1,23)=0.3319, p=0.5702, effect of group x light F(1,23)=0.001148, p=0.9733; 
Holm-Sidak post-hoc: Control Light OFF vs. hM4D Light OFF p=0.4425). Further, all groups 
showed equivalent trials to criterion during the IA (Holm-Sidak post-hoc: Control Light OFF vs. 
ON p=0.8925, hM4D Light OFF vs. ON p=0.8925). (d) hM4D light OFF animals take significantly 
more trials to reach criterion during EDSS compared with control light OFF animals. Acute 
SSFO stimulation (light ON) during the EDSS rescued the behavior in the adolescent-inhibited 
hM4D animals but had no effect on control animals (2-way rmANOVA; effect of group 
F(1,23)=5.407, p=0.0292, effect of light F(1,23)=5.002, p=0.0353, effect of group x light 
F(1,23)=5.002, p=0.0353; Holm-Sidak post-hoc: Control Light OFF vs. ON p>0.9999, hM4D 
Light OFF vs. ON **p=0.0035; Light OFF Control vs. hM4D **p=0.0046, Light ON Control vs. 
hM4D p=0.8197). Dots represent individual animals, lines connecting performance with light 
OFF and light ON. Control: n=10; hM4D: n=15. **p<0.01 

3.3.6 Oscillatory activity does not explain the behavioral deficits and rescue 

In sum, developmental thalamic inhibition leads to altered prefrontal circuit function, 

which results in impaired EDSS behavior. This deficit is then rescued by acute thalamic 

activation. To better understand the network mechanisms driving these findings, we examined 

several metrics of mPFC activity during the behavior: local field potential (LFP) activity, single 

unit cellular activity, and neural ensemble activity. 

Prior work from our group, using the same set shifting task, identified an increase in the 

power of gamma frequency (40-90 Hz) oscillations in the mPFC before correct, but not 

incorrect, choices during the EDSS behavior (Canetta et al., 2021). Moreover, this correct trial 

induced gamma signal was attenuated in mice that performed poorly in this set shifting task 

following developmental inhibition of their prefrontal parvalbumin (PV) expressing interneurons 

(Canetta et al., 2021). Similarly, other studies have also highlighted the importance of mPFC 

interneuron activity and the associated changes in task-related gamma power in proper EDSS 

behavior (Canetta et al., 2016b; Cho et al., 2015; Cho et al., 2020; Goodwill et al., 2018; 

Mukherjee et al., 2019b).  

Consistent with our prior results (Canetta et al., 2021), we found that mPFC gamma 

power was increased specifically before the decision in correct trials compared with power in 
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incorrect trials of control animals (Figure 3.11a, d). However, this difference in correct vs 

incorrect gamma power was still observed after adolescent inhibition of the MD, albeit with a 

smaller-appearing effect size (Figure 3.11b, d). Moreover, thalamic SSFO activation had no 

significant effect on mPFC gamma power (Figure 3.11c, d). These results suggest that changes 

in gamma power do not explain the deficit in the behavioral performance in mice that experience 

adolescent thalamic inhibition. 

 

Figure 3.11. Adolescent thalamic activity is not required for the mPFC gamma signature 
during the EDSS, which is not changed by acute thalamic activation. (a) Control animal 
without SSFO activation (Light OFF) mPFC normalized power (artificial units, A.U.) as a function 
of frequency during the 6 seconds preceding the decision point during the EDSS during correct 
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trials (green), and incorrect trials (orange). Red shading indicates 40-90 Hz (gamma). Lines and 
shading indicate mean ± SEM. (b) As in (a), but for adolescent-inhibited hM4D Light OFF 
animals. (c) As in (a), but for adolescent-inhibited hM4D animals that have acute SSFO 
activation during EDSS (Light ON). (d) Mean gamma power (40-90 Hz) is significantly increased 
in correct vs incorrect trials for all three groups, and this pattern is not significantly different 
across groups. Control Light OFF: left, blue; hM4D Light OFF: center, pink; hM4D Light ON: 
right, purple. Control Light OFF: n=9 animals, 88 correct trials, 23 incorrect trials, Correct: 
0.1774±0.0064; Incorrect: 0.1625±0.0066; linear mixed effects model: fixed effect (Trial Type), 
****p=5.1208e-05; hM4D Light OFF: n=14 animals, 177 correct trials, 89 incorrect trials, Correct: 
0.1813±0.0048; Incorrect: 0.1765±0.0068; linear mixed effects model: fixed effect (Trial Type), 
**p=0.0014916; hM4D Light ON: n=15 animals, 137 correct trials, 41 incorrect trials, Correct: 
0.1697±0.0043; Incorrect: 0.1652±0.0099; linear mixed effects model: fixed effect (Trial Type), 
*p=0.015341. Linear hypothesis F-test to compare differences: Control vs. hM4D: p=0.3092; 
hM4D vs. hM4D Light ON: p=0.7607. Lines and error represent mean ± SEM. Dots represent 
individual trials for each animal (colors of the dots). (e) Mean difference in gamma power 
between correct and incorrect trials by animal shows no differences across groups, all groups 
having an increased gamma power for correct over incorrect trials. Control Light OFF: 
0.0134±0.0043; hM4D Light OFF: 0.0093±0.0025; hM4D Light ON: 0.0115±0.0045; 1-way 
ANOVA, F(2,35)=0.2329, p=0.7935. Lines and error represent mean ± SEM. Dots represent 
individual animal mean difference. *p<0.05, **p<0.01, ****p<0.0001 

Other cognitive tasks are known to generate thalamo-cortical oscillations in the beta 

frequency range (12-30 Hz) (Bolkan et al., 2017; Parnaudeau et al., 2018; Parnaudeau et al., 

2013). In the ASST, we recorded an increase in beta power during the trial compared to the 

inter-trial interval (ITI, Figure 3.12a). This beta activation was equivalent across all trial types 

(Figure 3.12e) and was not affected by the developmental manipulation (Figure 3.12b). In 

addition, we found no changes in a variety of other physiological metrics, including thalamo-

mPFC coherence in the beta frequency range across trial types (Figure 3.12c, d, f) and phase-

locking between mPFC cell firing and thalamic beta oscillatory activity (Figure 3.13). 

Altogether, these data show that changes in oscillatory activity cannot explain the 

behavioral deficit in mice that experienced developmental thalamic inhibition. As a result, we 

next analyzed the activity of cells and neural ensembles in the mPFC. 
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Figure 3.12. Thalamic beta oscillatory activity is engaged during the ASST. Mean thalamic 
beta (12-30 Hz) power is specifically enhanced during the EDSS trials compared to the ITI for 
(a) control (n=10 animals, ITI: 0.1822±0.0042; Trial: 0.2044±0.0036; linear mixed effects model: 
fixed effect (Trial), p=3.2642e-16) and (b) hM4D (n=15 animals, ITI: 0.1866±0.0018; Trial: 
0.2124±0.0022; linear mixed effects model: fixed effect (Trial), p=2.0872e-41) animals. (c) As in 
(a) except for mean beta (12-30 Hz) mPFC-thalamic coherence (ITI: 0.3890±0.0090; Trial: 
0.4146±0.0080; linear mixed effects model: fixed effect (Trial), p=2.0137e-07). (d) As in (b) 
except for mean beta mPFC-thalamic coherence (0.3968±0.0041; Trial: 0.4331±0.0044; linear 
mixed effects model: fixed effect (Trial), p=6.7099e-19). (e) Mean thalamic beta power (88 
correct trials, 23 incorrect trials, Correct: 0.2052±0.0041; Incorrect: 0.2011±0.0075; linear mixed 
effects model: fixed effect (Trial Type), p=0.18827) and (f) beta mPFC-thalamic coherence 
(Correct: 0.4188±0.0092; Incorrect: 0.3984±0.0152; linear mixed effects model: fixed effect 
(Trial Type), p=0.72808) are unchanged across trial types in controls. Dots represent individual 
trials for each animal (colors of the dots). Lines and error represent mean ± SEM. ****p<0.0001 
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Figure 3.13. Adolescent thalamic inhibition has no effect on phase locking between 
thalamic oscillatory activity and mPFC single unit firing during the ASST. Pairwise phase 
consistency (PPC) values show no differences between phase-locking of mPFC cell firing and 
thalamic beta oscillatory activity in (a) control (n=6 animals, 27 cells, Correct PPC: 
0.01575±0.00420; Incorrect: 0.01904±0.00642; paired t-test: t=0.4114, df=26, p=0.6841) or (b) 
hM4D (n=7 animals, 22 cells, Correct: 0.01623±0.00441; Incorrect: 0.01205±0.00561; paired t-
test: t=0.7443, df=21, p=0.4649) animals. Dots represent individual cells, with lines connecting 
each cell’s correct and incorrect PPC value.  

3.3.7 Adolescent thalamic activity is required for adult mPFC neurons to encode task 

outcome 

To determine whether thalamic inhibition may alter encoding of information within the 

mPFC, we analyzed the firing rates of single units in the mPFC. Most mPFC units showed task-

modulated activity with cells showing either enhanced or decreased activity during the EDSS 

task trials compared with the ITI (Figure 3.14). However, overall single unit firing rates (FR) 

were not altered by either the developmental manipulation and or the SSFO rescue (Figure 

3.15b). This was true during the ITI, over the course of the trial, in the pre-decision, and in the 

post-decision periods, when looking at either raw FR (Figure 3.17) or FR that were normalized 

to ITI activity (Figures 3.18, 3.19). Furthermore, FR did not significantly vary between different 

trial types, such as correct trials and incorrect trials (Figure 3.15c). Again, this was true 

throughout the different epochs of the trial (Figures 3.17, 3.18, 3.19). Thus, individual FR do not 
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predict trial outcomes in control animals, and this metric was not affected by either 

developmental thalamic inhibition or acute thalamic activation. These findings were consistent, 

even when selecting only the task-modulated cells, or other subcategories, such as cells that 

increased their firing rates during the trial or cells that decreased their firing during the trial. 

 

Figure 3.14. Breakdown of cells by their firing rates show that most are modulated during 
EDSS trials. Breakdown of cells by behavior during the trial compared to the inter-trial interval 
(ITI), with cells that have a significantly increased firing rate during the trial (increasers), 
decreased firing rate (decreasers), or unchanged firing rate compared to the ITI (non-changers). 
This shows a majority of cells modulated during EDSS trials, with (a) 80% modulated in control 
animals, (b) 81.82% modulated in adolescent-inhibited hM4D animals, and (c) 71.83% 
modulated in hM4D animals during EDSS thalamic activation. 
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Figure 3.15. Adolescent thalamic activity is required for mPFC cellular encoding of ASST 
trial outcome. (a) Control Light OFF cell mean firing rate (FR) during EDSS, z-scored, 
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normalized to the ITI. Time in s represents time before and after the decision point (dashed 
black line). Color scale represents z-score for each time bin. (b) FR during the trial across the 
different experimental conditions showed no changes in population activity. Control Light OFF: 
n=8 animals, 75 cells, 3.650±0.639 Hz; hM4D Light OFF: n=12 animals, 55 cells, 3.487±0.777 
Hz; hM4D Light ON: n=13 animals, 71 cells, 3.058±0.516 Hz; 1-way ANOVA, F(2,194)=0.2493, 
p=0.7796. Dots represent individual cells; lines represent mean ± SEM. (c) FR during correct 
rule and incorrect rule trials for cells from control Light OFF animals (left), adolescent-inhibited 
hM4D Light OFF animals (center), and thalamic-activated hM4D animals (right) show no 
differences in FR for different trial types. Dots represent individual cells, lines connecting FR for 
correct and incorrect trials. Control Light OFF: FR during Correct: 3.570±0.647 Hz, Incorrect: 
3.744±0.630 Hz; paired t-test: t=0.6546, df=71, p=0.5148; hM4D Light OFF: Correct: 
3.607±0.859 Hz, Incorrect: 3.676±0.873 Hz; paired t-test: t=0.3174, df=48, p=0.7523; hM4D 
Light ON: Correct: 3.058±0.519 Hz, Incorrect: 3.023±0.550 Hz; paired t-test: t=0.1539, df=70, 
p=0.8781. (d) Peak cross-correlation values for each pair of cells within an animal during correct 
(green) and incorrect (orange) trials across experimental conditions shows decreased cross-
correlations in adolescent-inhibited hM4D Light OFF animals compared to both control Light 
OFF and rescued thalamic activation animals. This graph has been truncated along the y-axis to 
better demonstrate the mean and SEM. The complete distribution, along with the firing patterns 
of the truncated cells, in Figure 3.16. Control Light OFF: n=6 animals, 73 cells, 507 cell pairs, 
0.0177±0.0430; hM4D Light OFF: n=9 animals, 52 cells, 181 cell pairs, 0.0124 ±0.0212; hM4D 
Light ON: n=11 animals, 69 cells, 327 cell pairs, 0.0201±0.0414; linear mixed effects model, 
fixed effect of group: Control Light OFF vs. hM4D Light OFF: *p=0.041622; hM4D Light OFF vs. 
hM4D Light ON: **p=0.0090838. Bars with error represent mean ± SEM. Individual dots 
represent cell pair correlations for each trial outcome type. (e) Schematic of the linear decoder. 
For a hypothetical pair of neurons, neither cell’s firing rate alone shows a strong difference 
between correct and incorrect trial firing (dots along the x and y axes). However, when plotted 
together, it is possible to train a linear decoder (red dashed line) to discriminate between trial 
outcomes. With this training, we can then test the decoder on additional trials (lightly shaded 
circles). In this example, the linear decoder performs at 100%. (f) Decoding trial outcome using 
FR during the EDSS. Decoder performance is significantly above chance for control Light OFF 
animals, at chance for hM4D Light OFF animals, and rescued by acute thalamic activation. 
Actual decoder performance in colored diamonds (Control Light OFF: blue; hM4D Light OFF: 
red; hM4D Light ON: purple). Shuffled trial outcomes show chance decoder performance, mean 
± standard deviation (black circles and error bars) and individual shuffles (grey circles). Control 
Light OFF: n=4 animals, 60 cells, 1000 shuffles, actual performance: 74.71%, shuffled 
performance: 49.95±3.75%, ****p=3.9604e-11; hM4D Light OFF: n=7 animals, 45 cells, 1000 
shuffles, actual performance: 43.25%, shuffled performance: 51.13±7.49%, p=0.2926; hM4D 
Light ON: n=9 animals, 61 cells, 1000 shuffles, actual performance: 69.41%, shuffled 
performance: 50.15±3.08%. *p<0.05, **p<0.01, ****p<0.0001 



   
 
 

71 
 

 

Figure 3.16. Peak cross-correlation values for all cell pairs. (a) Un-truncated plot with peak 
cross-correlations from all cell pairs for control, hM4D, and hM4D light ON groups. Statistics are 
as represented in the truncated version in Figure 3.15. Bars and error represent mean ± SEM. 
(b) Firing rates of cells that had a peak cross-correlation above 0.08 (the cut-off used for the 
graph in Figure 3.15). These cells do not show a particular pattern of firing across correct and 
incorrect trials. Each dot represents cell firing rate for each trial type, lines connecting each 
cell’s FR for correct and incorrect trials. Control: n=33 cells with peak cross-correlation above 
0.08 from 6 animals; hM4D: n=6 cells from 3 animals; hM4D Light ON: n=26 cells from 5 
animals.  
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Figure 3.17. Raw firing rates during different phases of EDSS trials. Raw firing rates show 
no differences between groups across different epochs of the EDSS: (a) during the ITI (1-way 
ANOVA, F(2,194)=0.5915, p=0.5545), (b) over the course of the trial (overlapping 2s bins, with 
x-axis labels depicting the middle of each bin; 2-way rmANOVA, effect of group 
F(2,194)=0.2743, p=0.7604; dots and lines represent mean ± SEM), during the (c) pre-decision 
(all trials: 1-way ANOVA, F(2,194)=0.2492, p=0.7797; correct vs. incorrect trials: 2-way 
rmANOVA, effect of group F(2,189)=0.2507, p=0.7785, effect of trial type F(1,189)=0.1220, 
p=0.7273, effect of group x trial type F(2,189)=0.02524, p=0.9751; Holm-Sidak post-hoc correct 
vs. incorrect, Control: p=0.9962; hM4D: p>0.9999; hM4D Light ON: p=0.9707) and (d) post-
decision (all trials: 1-way ANOVA, F(2,194)=0.2433, p=0.7843; correct vs. incorrect trials: 2-way 
rmANOVA, effect of group F(2,189)=0.3826, p=0.6826, effect of trial type F(1,189)=0.2501, 
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p=0.6176, effect of group x trial type F(2,189)=0.5463, p=0.5800; Holm-Sidak post-hoc correct 
vs. incorrect, Control: p=0.6988; hM4D: p=0.9761; hM4D Light ON: p=0.9475) periods, both 
across trial types (left) and between correct and incorrect trials (right). Dots represent individual 
cells; lines either represent mean ± SEM or connect correct and incorrect trials. 

 

Figure 3.18. Normalized firing rates across different EDSS trial types and phases. Firing 
rates normalized to the ITI show no differences between groups across different epochs of the 
EDSS: (a) during the trial (1-way ANOVA, F(2,194)=0.8801, p=0.4164), (b) between correct and 
incorrect trials (2-way rmANOVA, effect of group F(2,189)=0.7554, p=0.4712, effect of trial type 
F(1,189)=1.521, p=0.2189, effect of group x trial type F(2,189)=0.7342, p=0.4812; Holm-Sidak 
post-hoc correct vs. incorrect, Control: p=0.2067; hM4D: p=0.9981; hM4D Light ON: p=0.9848), 
(c) over the course of the trial (overlapping 2s bins, with x-axis labels depicting the middle of 
each bin; 2-way rmANOVA, effect of group F(2,194)=0.9097, p=0.4044; dots and lines 
represent mean ± SEM), and (d) during the ITI (1-way ANOVA, F(2,194)=2.533, p=0.0821). 
Dots represent individual cells; lines either represent mean ± SEM or connect correct and 
incorrect trials. 
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Figure 3.19. Normalized firing rates during different phases of EDSS trials. Firing rates 
normalized to the ITI show no differences between groups across different epochs of the EDSS: 
during the (a) pre-decision (all trials: 1-way ANOVA, F(2,194)=0.8216, p=0.4413; correct vs. 
incorrect trials: 2-way rmANOVA, effect of group F(2,189)=0.6661, p=0.5149, effect of trial type 
F(1,189)=0.5679, p=0.4520, effect of group x trial type F(2,189)=0.4469, p=0.6403; Holm-Sidak 
post-hoc correct vs. incorrect, Control: p=0.5151; hM4D: p=0.9983; hM4D Light ON: p>0.9999) 
and (b) post-decision (all trials: 1-way ANOVA, F(2,194)=0.9407, p=0.3921; correct vs. incorrect 
trials: 2-way rmANOVA, effect of group F(2,189)=0.9687, p=0.3815, effect of trial type 
F(1,189)=1.702, p=0.1936, effect of group x trial type F(2,189)=0.6456, p=0.5255; Holm-Sidak 
post-hoc correct vs. incorrect, Control: p=0.2171; hM4D: p=0.9994; hM4D Light ON: p=0.9347) 
periods, both across trial types (left) and between correct and incorrect trials (right). Dots 
represent individual cells; lines either represent mean ± SEM or connect correct and incorrect 
trials. 

Behavioral outcomes may also be understood by analysis of multi-neuronal activity in 

the mPFC (Narayanan & Laubach, 2009; Stefanini et al., 2020; Yuste, 2015). Previous studies 

have highlighted the benefits of analyzing firing rates across multiple neurons to better elucidate 
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task behaviors, contexts, and outcomes (Stefanini et al., 2020). We therefore chose to analyze 

the mPFC cell activity as a neural ensemble. 

First, we were interested in the correlation between the firing of cells. We therefore 

analyzed cross-correlations between the firing of each cell, finding a peak correlation during the 

EDSS trials for each pair of cells. Adolescent thalamic inhibition reduced peak cross-

correlations, and they were recovered following acute thalamic SSFO activation (Figure 3.15d).  

We also employed a linear decoder to elucidate differences in firing for trials that have 

different outcomes at the network-level (Figure 3.14e). Taking the firing rates for all cells in an 

experimental group across all trials, we trained a linear decoding algorithm using 50% of all 

trials for each cell to predict whether the behavioral outcome would yield a correct or incorrect 

trial. We then tested the decoder on the other 50% of trials to determine whether we could 

predict trial outcome based on cell firing rates. To determine chance performance, we employed 

the same decoding algorithm using randomly shuffled trial outcomes, repeated 1000 times 

(Bernardi et al., 2020). Employing this decoder on the control group showed a resulting 

performance that was significantly better than chance, at 74.71% accuracy (Figure 3.14f). This 

finding is eliminated following adolescent thalamic inhibition, where the decoder was no better 

than chance at 43.25% accuracy. Crucially, acute thalamic enhancement rescued the decoder 

performance to 69.41% accuracy.  

Of note, no subset of neurons contributed more to the decoder performance, with an 

even distribution across the populations in all three groups (Figure 3.20a, b). Similarly, the 

decoding performance discrepancies across groups are visible with randomly selected 

subgroups of neurons. The pattern can be seen with as few as 5 neurons (Figure 3.20c). 

Moreover, the control decoding performance was not seen when applied to trials in the IA 



   
 
 

76 
 

portion of the ASST (Figure 3.20d), indicating the specificity of the role of the mPFC during the 

EDSS.  

 

Figure 3.20. The decoding performance does not depend on a particular subset of cells. 
(a) Histogram of control (blue), hM4D (red), and hM4D Light ON (gold) cell decoding weights 
show the distribution of the contributions across cells is unchanged across groups, with few 
cells in each group contributing more than the general population. (b) Firing rates of cells that 
had a significantly elevated decoding weight relative to the shuffled data. There are very few 
cells (<10% for each group) that contribute significantly more than when shuffled, and further, 
these cells do not show a particular pattern of firing across correct and incorrect trials. Each dot 
represents cell firing rate for each trial type, lines connecting each cell’s FR for correct and 
incorrect trials. Control: n=7 cells from 3 animals; hM4D: n=1 cell from 1 animal; hM4D Light 
ON: n=5 cells from 2 animals. (c) The decoder performance was calculated using randomly 
selected subgroups of neurons, repeated 25 times for each multiple of 5 neurons. Each point 
represents mean performance for the 25 repetitions of random selection, with error bars 
representing standard deviation. Significant separation between hM4D and both Control and 
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hM4D Light ON groups is already seen with 5 neurons. Chance performance at 50% shown with 
the dashed black line. 2-way rmANOVA Holm-Sidak post-hoc for each chunk, analysis with 5 
neurons: Control vs. hM4D: p<0.0001, Control vs. hM4D Light ON: p=0.1557, hM4D vs. hM4D 
Light ON: p<0.0001. (d) Decoding performance (blue diamond) is no better than chance for 
control animals during the IA portion of the ASST. Black dot and lines represent mean and 
standard deviation of shuffled decoding performance; grey circles represent individual shuffles. 
n=3 animals, 47 cells, 1000 shuffles; actual performance: 50.35%, shuffled performance: 
50.13±3.14%, p=0.9438. 

Together, these findings show that adolescent thalamic inhibition disrupts prefrontal 

encoding of EDSS task outcome in adulthood while decreasing correlated activity between 

prefrontal neurons. This disruption can be rescued by acute thalamic activation during 

adulthood. 

3.4 Discussion 

3.4.1 Adolescence is a sensitive period for the development of thalamo-mPFC circuitry 

Thalamic input activity has been shown to be important for sensory cortex maturation, 

including the visual cortex (Caras & Sanes, 2015; de Villers-Sidani et al., 2007; Takesian & 

Hensch, 2013b; Wiesel & Hubel, 1963). More recent studies have also begun to explore how 

neuronal activity shapes the development of higher cognitive structures, such as the medial 

prefrontal cortex (mPFC) (Bitzenhofer et al., 2021a; Canetta et al., 2021; Larsen & Luna, 

2018a). Primarily, these studies have focused on changes to intrinsic components of mPFC 

circuitry, such as interneuron or layer II/III pyramidal neuron activity (Bicks et al., 2020; 

Bitzenhofer et al., 2021b; Canetta et al., 2021), or the effects of changes to frontal activity on 

other cortical regions (Nabel et al., 2020). Some have also highlighted similarities between 

mechanisms found in sensory sensitive periods and mPFC adolescent development, including 

BDNF expression, NMDA receptor changes, and the formation of perineuronal nets (Baker et 

al., 2017; Flores-Barrera et al., 2014; Hill et al., 2012; Larsen & Luna, 2018b). This paper is the 
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first to explore whether afferent input from the thalamus shapes cortical maturation and whether 

inhibition of thalamic activity leads to long-lasting changes in mPFC function and behavior. 

We found that thalamic inhibition during adolescence leads to persistent impairments in 

mPFC circuit function and cognitive behaviors in adulthood. Specifically, we observed 

impairments in two mPFC-dependent behavioral tasks assessing the acquisition of a non-match 

to sample rule and attentional set shifting. These changes were associated with a decrease in 

cortical excitability. We determined that adolescence is a sensitive period because the 

impairments in behavior and excitability were not observed following a comparable thalamic 

inhibition during adulthood. These results indicate that excitatory activity from the thalamus 

during adolescence is essential for mPFC and thalamo-mPFC development. This mirrors the 

findings in sensory sensitive periods, where thalamo-cortical inputs are compromised following 

sensory deprivation, ultimately leading to cortical restructuring (Fagiolini & Hensch, 2000a; 

Hensch, 2004; Wiesel & Hubel, 1963). 

3.4.2 Adolescence is a key period of cortical maturation 

While sensitive periods in sensory systems often occur during very early postnatal 

development (Caras & Sanes, 2015; de Villers-Sidani et al., 2007; Wiesel & Hubel, 1963), we 

found that adolescence is a sensitive period for mPFC and thalamo-mPFC development. 

Adolescence is known to be a period of vulnerability in the development of psychiatric disorders 

such as schizophrenia in humans (Insel, 2010; Morgunova & Flores, 2021; Sakurai & Gamo, 

2019; Weinberger & Berman, 1996). Moreover, functional imaging studies have shown that 

thalamo-prefrontal hypoconnectivity, a finding in patients with schizophrenia, is already present 

in young adolescents at clinical high risk for the disorder (Anticevic et al., 2015; Giraldo-Chica et 

al., 2017; Marenco et al., 2012; Mitelman et al., 2005; Pinault & Deschenes, 1998; Woodward & 

Heckers, 2016a; Woodward et al., 2012). We chose to inhibit thalamic activity in mice during the 
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P20-50 window because it is known that the mPFC and thalamo-cortical projections are 

maturing during this time (Bitzenhofer et al., 2020; Caballero et al., 2014; Caballero et al., 2020; 

Chini & Hanganu-Opatz, 2021; Delevich et al., 2021; Goodwill et al., 2018; Konstantoudaki et 

al., 2018; Miyamae et al., 2017a; Paus et al., 2008; Yang et al., 2014b). In rodents, the volume 

of the mPFC peaks around P24 after which point it decreases, reflecting a period of dendritic 

pruning in mPFC pyramidal neurons, which peaks around P30 (Marmolejo et al., 2012; Pattwell 

et al., 2016; Van Eden & Uylings, 1985; Zuo et al., 2005). It has been postulated that this 

volumetric change and pruning could result in part from refinement of thalamo-cortical synaptic 

contacts during this period (Ferguson & Gao, 2014). Furthermore, one hypothesis originally 

presented by Feinberg states that in schizophrenia aberrant activity-dependent pruning during 

adolescence may lead to persistent changes in prefrontal circuit function (Feinberg & Campbell, 

2010). Although we did not study the effects of thalamic inhibition on cortical pruning, we show 

that decreased thalamic input activity is important for cortical circuit maturation. Future studies 

should address how much altered pruning contributes to the anatomical and slice physiological 

changes described here. 

In addition to dendritic pruning, the mPFC also undergoes changes in myelination and 

interneuron development, which together promote emergent changes in network activity and 

behavioral functionality (Caballero et al., 2014; Paus et al., 2008; Uhlhaas & Singer, 2011). 

Therefore, the P20-50 window represents a possible period of heightened thalamo-cortical 

projection refinement in normal development, which may in turn affect multiple other 

components of prefrontal development.  

Our work does not explain how thalamic inhibition immediately alters mPFC or thalamo-

mPFC function during adolescence, as we focused on the long-term consequences measured 

in the adult animal. Recent work has investigated the mechanisms at play during adolescence in 
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control cortical function (Nabel et al., 2020). Other studies have explored homeostatic plasticity 

in sensory systems following changes in activity (Wen & Turrigiano, 2021; Wu et al., 2021). 

They found that different forms of plasticity (e.g. changes in intrinsic excitability and synaptic 

excitation and inhibition) occur at different developmental stages. However, these effects on 

plasticity were only analyzed within 1 or 2 days after the change in activity or during the 

developmental period, and the persistence of these effects remains unknown. Future studies 

will address the mechanisms involved in adolescent development of the thalamo-mPFC circuit 

in controls as well as immediate plasticity mechanisms in the mPFC that are induced by 

thalamic inhibition during adolescence. 

3.4.3 Adolescent thalamic inhibition impairs thalamo-cortical projections  

Thalamic projections to the mPFC are a crucial source of excitatory input to mPFC 

pyramidal cells. Following adolescent thalamic inhibition, we found reduced mPFC pyramidal 

excitability in adulthood. Due to the reduction in spontaneous excitatory post-synaptic current 

frequency, but not amplitude, we hypothesized that this change was primarily driven by a 

reduction in pre-synaptic inputs and that decreased inputs from the thalamus may contribute to 

this change.  

We were able to confirm this hypothesis through retrograde labelling. Adolescent 

thalamic inhibition led to a reduction in thalamo-mPFC projection cell density. However, this 

intervention had no effect on mPFC-projecting cells from other subcortical regions, such as the 

BLA, indicating specificity to thalamo-cortical projections. This result is distinct from what has 

been observed after early developmental subcortical lesions, which showed a compensatory 

increase in BLA-mPFC projections following early postnatal (P7) ventral hippocampal lesions 

(Guirado et al., 2016). We believe this thalamo-mPFC projection reduction is due to a decrease 

in axonal arborization rather than thalamic cell numbers because DAPI staining in the thalamus 
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was unchanged. Moreover, before adolescence, the thalamus has already undergone a period 

of heightened apoptosis around P13, further supporting the notion that inhibiting the thalamus 

during adolescence comes primarily at a period of thalamo-cortical synaptic refinement 

(Ferguson & Gao, 2014; Rios & Villalobos, 2004). Since we used bilateral injections of 

retrograde virus to investigate the impact of developmental thalamic inhibition on cortical 

projections, we were unable to determine whether there were any changes to cortico-cortical 

contralateral projections. Future studies could examine whether intra-cortical connectivity is also 

affected. 

We demonstrated that non-specific acute thalamic activation in adulthood following 

adolescent thalamic inhibition was sufficient to rescue the behavioral cognitive deficit. However, 

we also found that this restored cognitive ability was not long-lasting as there was no residual 

effect 10 days following the thalamic activation. Thus, it is unlikely that a one-time thalamic 

activation is sufficient to regrow the lost thalamic inputs. Rather, it simply boosted activity of the 

remaining thalamic projections, further pointing to a non-specific role for these inputs. 

3.4.4 Task-evoked oscillatory activity cannot explain the behavioral outcomes 

Our previous studies have shown the importance of task-induced gamma for predicting 

behavioral performance during EDSS and that this signal can be persistently disrupted following 

adolescent inhibition of mPFC PV interneurons (Canetta et al., 2021). Here, we also found that 

mPFC gamma power was correlated with behavioral performance in control animals, with 

elevated gamma in correct trials compared with incorrect trials, but this pattern was not affected 

by adolescent thalamic inhibition. Consistent with the unchanged gamma power in 

developmental thalamic inhibition mice, we did not find any deficits in cortical inhibition in adult 

mice that experienced adolescent thalamic inhibition, as we had observed following adolescent 
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PV inhibition (Canetta et al., 2021). This suggests that the long-term consequences of 

adolescent thalamic inhibition may not necessarily involve cortical PV interneurons.  

Beta oscillatory activity has also previously been identified in thalamo-prefrontal 

manipulations, often in the context of working memory behaviors (Bolkan et al., 2017; 

Parnaudeau et al., 2013). While we did find task-induced beta oscillations, these were not 

correlated with behavioral outcome in controls and were not affected by adolescent thalamic 

inhibition.  

Altogether, these data suggest that, despite reduced thalamic inputs to the mPFC, 

oscillatory measures of the thalamo-mPFC circuitry cannot explain the deficits observed during 

the EDSS behavior following adolescent thalamic inhibition. Thus, while these oscillations may 

be necessary for the proper execution of this task, they are not the only mechanism at play. 

3.4.5 The thalamus supports local mPFC encoding of behavioral trial outcomes 

To determine whether adolescent thalamic inhibition disrupts single unit activity in the 

adult animal, we examined average mPFC cell firing rates during EDSS trials but found no 

changes in individual neuron firing rates across different trial types or throughout the trial. 

However, recent theories suggest that multiple neurons can form ensembles that determine 

functional properties and outcomes, in ways beyond single neuron firing (Stefanini et al., 2020; 

Yuste, 2015).  

When we studied the cross-correlations between cell pairs, we found that cross-

correlations were disrupted following adolescent thalamic inhibition. This disruption was rescued 

by acute thalamic activation, pointing to a role of thalamic inputs in enhancing mPFC cellular 

communication. The cell-cell cross-correlations found in both correct and incorrect trials likely 

reflects the fact that the animals are learning throughout the task, receiving feedback during 

both types of trials. We hypothesize that the enhanced cross-correlation in control animals 



   
 
 

83 
 

allows the animals to incorporate this feedback during both correct and incorrect trials. By 

contrast, following adolescent thalamic inhibition, the decreased cross-correlation across both 

trial types speaks to the animals’ inability to incorporate information during both correct and 

incorrect trials. 

To further explore the effects on population encoding, we trained a linear decoding 

algorithm using a subset of trials to predict the EDSS trial outcome based on mPFC neuronal 

ensemble activity. Using this decoder, we were able to accurately predict trial outcome in control 

animals, but the decoding ability was entirely lost, down to chance levels, following adolescent 

thalamic inhibition. Of note, this inability to decode does not indicate that there is no information 

present in the activity. There are several technical reasons why we may see a chance level 

decoder performance, including a high level of noise. It is also possible that the hM4D animals 

are using a different circuit to ultimately perform the task due to inadequate thalamo-cortical 

circuitry, which could explain why the mPFC cell activity no longer helps to predict trial outcome. 

Importantly, mPFC neurons regained the ability to encode task outcome after thalamic 

stimulation, suggesting that thalamic excitation rescues outcome encoding and task 

performance.  

Other thalamo-cortical circuits, namely in motor circuitry, have shown a task-specific role 

for both thalamic and cortical activity (Guo et al., 2017). In addition, modifying activity of different 

mPFC cell types have also demonstrated task-specific roles for mPFC cellular subpopulations 

(Kamigaki & Dan, 2017). Meanwhile, thalamic input to the mPFC has been hypothesized to non-

specifically amplify or sustain local mPFC connectivity and encoding (Rikhye et al., 2018a; 

Rikhye et al., 2018b; Schmitt et al., 2017). Further analysis of previous work done in a T-maze 

working memory task shows that acute thalamic suppression leads to a mild, but significant, 

decrease in mPFC cell cross-correlations (Figure 3.21) (Bolkan et al., 2017). This study points 
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to a role of the thalamus as a non-specific amplifier of mPFC cellular encoding during this 

cognitive flexibility task in two major ways. First, adolescent thalamic inhibition disrupted 

thalamo-mPFC projections in adulthood, which coincides with both reduced mPFC cellular 

cross-correlations and disrupted mPFC task outcome encoding. Second, non-specific thalamic 

activation, even in the context of fewer thalamic projections, during the EDSS was sufficient to 

restore these cross-correlations and outcome-specific mPFC activity. 

 

Figure 3.21. Acute thalamic inhibition during a working memory T-maze task decreases 
peak cross-correlation values in the mPFC. Peak cross-correlation values for pairs of mPFC 
single units during the delay period of a working memory T-maze task for correct (green) and 
incorrect (orange) trials, as described in Bolkan et al 2017 (Bolkan et al., 2017). Acute thalamo-
mPFC inhibition (Light ON) during the delay shows decreased cross-correlations compared with 
the same cell pairs at baseline (Light OFF). n=9 animals, 891 cells, 5254 cell pairs; Light OFF: 
0.0048±0.0002; Light ON: 0.0043±0.0002; linear mixed effects model, fixed effect of group: 
Light OFF vs. ON: ****p=3.587e-17. Bars with error represent mean ± SEM. Individual dots 
represent cell pair correlations for each trial outcome type. This graph has been truncated along 
the y-axis to better demonstrate the mean and SEM.  

Prior studies have found that hyper-activation of mPFC neuronal populations can have 

detrimental effects, reflecting an inverted U-shaped pattern of mPFC neuronal activity and 

functional outcomes (Tanaka, 2008; Taylor et al., 2007). By enhancing thalamic activity, we 

found improved behavioral performance in the adolescent-inhibited animals and no change in 

performance in the control animals. Thus, thalamic SSFO activation, which facilitates activity of 

thalamic neurons that are engaged in the task, does not lead to the over-stimulation of mPFC 
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neurons that direct mPFC activation might. This finding further supports the theory of the 

thalamus as a facilitator of mPFC ensemble activity as this manipulation may modulate activity 

of a subset of mPFC neurons without increasing overall mPFC activity. This is also consistent 

with our finding that thalamic SSFO activation does not increase mPFC activity overall, with no 

increase in firing rate.  

The mPFC itself has been intensively studied in cognitive flexibility tasks, such as the 

ASST. Some studies have pointed to the post-decision period as a crucial point for the mPFC 

during the EDSS (Cho et al., 2020; Spellman et al., 2021). While we found mPFC encoding 

throughout the trial, the decoder performed better when using post-decision versus pre-decision 

period firing activity within a trial, indicating that the mPFC may indeed be particularly important 

in the period following the choice. 

3.4.6 The mPFC and the thalamus are interconnected in cognition 

Many of the analyses and interpretations in this study have focused on the impact of 

adolescent thalamic inhibition on adult mPFC functioning. However, separating mPFC function 

from thalamic function in the context of cognition is almost impossible as the two regions are 

reciprocally connected. Thus, changing activity in one part of the circuit will change activity in 

the other part of the circuit. Indeed, in schizophrenia, prefrontal-dependent cognitive deficits are 

also linked to the thalamus and its reciprocal connectivity to the PFC (Giraldo-Chica et al., 2017; 

Mitelman et al., 2005; Pinault & Deschenes, 1998; Woodward et al., 2012).  

In agreement with this tenet, we found that adolescent thalamic inhibition and cognitive 

deficits were linked with reduced thalamo-mPFC projections. Moreover, thalamo-mPFC 

projection-specific inhibition during adolescence led to similar behavioral deficits as GBX2-

driven thalamic inhibition, pointing to the importance of these projections in cognitive function. 

However, the impact of adolescent thalamic inhibition did not extend to all aspects of thalamic 
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function. Beta and gamma oscillations in the thalamus were unaffected by adolescent thalamic 

inhibition. In addition, we found no changes in power in the epsilon band (>100 Hz), a metric for 

multi-unit activity (Belluscio et al., 2012; Keller et al., 2016; Park et al., 2021; Scheffer-Teixeira 

et al., 2013) (Figure 3.22).  

 

Figure 3.22. Adolescent thalamic inhibition does not impact thalamic multi-unit activity in 
the ASST. Mean thalamic epsilon firing rates during EDSS trials for each animal show no 
significant differences in thalamic activity for control or adolescent-inhibited hM4D animals. 
Control: n=10 animals, 8.606±2.114 Hz; hM4D: n=15 animals, 5.726±1.499 Hz; unpaired t-test, 
t=1.144, df=23, p=0.2643. Dots represent individual animals; lines represent mean ± SEM.  

While our preliminary analysis of thalamic function showed no effects, it is possible that, 

in addition to mPFC and thalamo-mPFC differences, other changes intrinsic to the thalamus 

may still contribute to the behavioral deficits. However, it should also be noted that the exact 

role of the thalamus in these cognitive behaviors remains an area of debate (Block et al., 2007; 

Ferguson & Gao, 2018; Ouhaz et al., 2021; Schmitt et al., 2017). Therefore, future studies 

should probe thalamic function more directly during cognitive testing following adolescent 

thalamic inhibition. 

3.4.7 Acute thalamic enhancement following developmental inhibition offers great 

promise for therapeutic interventions 

Following thalamic inhibition during adolescence, we found persistent anatomical 

changes in thalamic projections to the mPFC. Nevertheless, we were able to rescue the 
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behavioral deficits by acutely enhancing activity in the thalamic in the adult mouse, even though 

this manipulation is unlikely to reverse the anatomical changes. We and others have previously 

shown that enhancing thalamic excitability during the delay of a prefrontal-dependent working 

memory and a 2AFC task enhanced performance in both tasks (Bolkan et al., 2017; Schmitt et 

al., 2017), while inhibiting the thalamus impaired mPFC-dependent contextual switching (Rikhye 

et al., 2018a). Our data suggest that the thalamus plays a broader function in amplifying mPFC 

activity that is not restricted to delay-containing cognitive processes. This result offers a major 

insight into potential therapeutic interventions in this circuit, as it indicates that even with 

persistent changes in circuit anatomy, a relatively non-specific thalamic excitation may still be 

able to improve behavior. Human imaging studies have pointed to the importance of the 

thalamo-prefrontal connectivity in cognitive functioning (Giraldo-Chica et al., 2017; Mitelman et 

al., 2005; Pinault & Deschenes, 1998; Woodward et al., 2012). In patients with schizophrenia, 

deficits in cognition have been related to hypoconnectivity between the thalamus and PFC, 

which is already seen in young adolescents before their diagnosis (Anticevic et al., 2015; 

Marenco et al., 2012; Woodward & Heckers, 2016a). Given the relevance of thalamo-prefrontal 

circuitry in psychiatric disorders like schizophrenia, this study offers key mechanistic insights 

into the etiology of, and potential therapies for, these disorders.  

3.5 Methods  

Animal Husbandry. All animal procedures were done in accordance with guidelines 

derived from and approved by the Institutional Animal Care and Use Committees at Columbia 

University and the New York State Psychiatric Institute. Animals were housed under a 12 h 

light-dark cycle in a temperature-controlled environment with food and water available ad 

libitum, unless otherwise noted. Heterozygous GBX2-CreERT (Jackson Labs, Stock #022135) 

males, back-crossed for at least 5 generations, were bred with C57/Bl6 females (Jackson Labs, 
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Stock #000664) to produce offspring that were used in all experiments. At postnatal day 10 

(P10), tail samples were collected from offspring to genotype (Transnetyx, Inc). At P13, GBX2-

CreERT heterozygous offspring were used for viral injections. These mice were housed in 

cages with the mother and littermates. At P15 and P16, all offspring were given intraperitoneal 

(i.p.) injections of tamoxifen (Sigma-Aldrich, T5648), dissolved in corn oil, at 75 mg/kg. All 

offspring were weaned at P28, and GBX2-CreERT heterozygotes were kept for experiments 

and group housed with same-sex littermates (5 mice/cage). 

For thalamic inhibition, mice were given i.p. injections of clozapine-N-oxide (CNO), 

dissolved in 0.9% saline, at 1 mg/kg, twice per day. All mice were given CNO, regardless of viral 

vector or group. These injections took place every day P20-50 for adolescent inhibition and 

P90-120 for adult inhibition. 

At P70, mice used for cell density studies were injected with virus, and mice used for in 

vivo optogenetic neurophysiology recordings during behavioral experiments were virally injected 

and implanted with optrodes. Implanted mice were subsequently housed in cages of 2-3 

mice/cage. 

All behavioral testing and in vivo recordings were done 40 days after the last CNO 

injection in adult mice (>P90). During behavioral training and testing, mice were food-restricted 

and maintained at 85% of their initial weight.  

For the dual virus approach, C57/Bl6 males and females were bred together and all 

pups were used for the experiment. Surgeries were conducted at P13, and mice were given i.p. 

injections of JHU37160 (an alternative hM4D ligand to CNO (Bonaventura et al., 2019)), 

dissolved in 0.9% saline, at 0.01 mg/kg, twice per day. Again, all mice were given the ligand, 

regardless of viral vector or group. These injections took place every day P20-50. 
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Surgical procedures. For the viral injections at P13, mice were anesthetized with 

ketamine (4 mg/ml) and xylazine (0.6 mg/ml) and head-fixed in a stereotactic apparatus (Kopf). 

Mice were injected bilaterally in the midline thalamus with AAV5-hSyn-DIO-hM4D-mCherry 

(Addgene #44362) or a control virus, either AAV5-hSyn-DIO-EGFP (Addgene #50457) or AAV5-

hSyn-DIO-mCherry (Addgene #50459) at a volume of 0.25 µl (0.1 µl/min).  

For the dual virus approach surgeries at P13, mice were injected bilaterally in the midline 

thalamus as above, with AAV5-hSyn-DIO-hM4D-mCherry or the control, AAV5-hSyn-DIO-

EGFP. They were also injected bilaterally in the mPFC with rgAAV-hSyn-Cre-WPRE-hGH 

(Addgene #105553) at a volume of 0.25 µl (0.1 µl/min). 

The juvenile midline thalamus coordinates used were: -1.0 AP, ±0.25 ML, -3.0 DV (skull 

at bregma), and the juvenile mPFC coordinates used were: -0.92 AP, ±0.13 ML, -1.45 DV (skull 

at bregma).For the cell density study surgeries at P70, mice were anesthetized with ketamine 

(10 mg/ml) and xylazine (1 mg/ml) and head-fixed in a stereotactic apparatus (Kopf). Mice were 

injected bilaterally into the mPFC with retrograde AAV-CAG-GFP (Addgene #37825) at a 

volume of 0.25 µl (0.1 µl/min). The mPFC coordinates used were: +1.8 AP, ±0.35 ML, -2.5 DV 

(skull at bregma).  

For the in vivo optogenetic neurophysiology experiments, mice were anesthetized with 

isoflurane and head-fixed in a stereotactic apparatus (Kopf). All mice were injected bilaterally 

into the midline thalamus with AAV5-CaMKII-hChR2(C128S/D156A)-EYFP (University of North 

Carolina Vector Core) at a volume of 0.4 µl (0.1 µl/min). The midline thalamus coordinates used 

for the viral injection were: -1.2 AP, ±0.35 ML, -3.2 DV (skull at bregma). During the same 

procedure, mice were also implanted with an optrode, consisting of a 36-channel narrow 

electronic interface board (Neuralynx, Bozeman, MT), a single stereotrode bundle, additional 

local field potential (LFP) wires, and 2 flat tipped, ferrule-coupled optical fibers (0.22 NA, 200 µm 
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diameter). Stereotrodes for recording spikes were made from 13 µM tungsten fine wire 

(California Fine Wire, Grover Beach, CA) and were coupled to one 50 µM tungsten wire for 

recording LFPs. This stereotrode bundle was then unilaterally targeted to the left mPFC. 

Another 50 µM tungsten wire was glued to the left optical fiber, extending 450 µm below the 

bottom of the fibers. Both fibers and the wire were implanted into the midline thalamus. For 

signal processing, skull screws placed over the cerebellum and olfactory bulb served as ground 

and reference, respectively, while spikes were referenced to a local mPFC stereotrode wire. 

Coordinates were as follows: mPFC: +1.85 AP, -0.35 ML, -1.4 DV (brain); midline thalamus: -1.2 

AP, ±0.3 ML, -2.7 DV (brain). 

All coordinates are in mm relative to bregma (AP, ML) and skull or brain surface (DV) 

where specified. 

Behavioral procedures. All behavioral tasks were conducted during the light cycle. At 

P90, mice were gradually restricted to 85% of their body weight.  

Non-Match to Sample working memory task: The task was conducted as previously 

described in Benoit et al, 2020 (Benoit et al., 2020). Eight identical operant-conditioning 

chambers (ENV-307A; Med Associates, Georgia, VT) were used. The chamber measured 15.24 

cm long x 13.34 cm wide x 12.7 cm high. Each chamber was housed in a sound-attenuated box 

and equipped with two retractable levers (ENV-312-3M) on the front wall (the 13.34 cm side), 

with one milk dipper between them (ENV-302RM-S). The back wall contained one noseport 

(ENV-313M) directly opposite to the milk dipper, which delivers 1 drop of evaporated milk (0.01 

ml). A 1.0 A house light was positioned directly above the noseport. A computer (COM-106-NV, 

Intel i5-7400) controlled and recorded all experimental events and responses via an interface 

(MED-SYST-16e-V). Med-PC V programs were used to administer and record the task. Mice 

were shaped to the different parts of the operant task. They were first given 2 days of 
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habituation to the milk dipper, followed by 7 days of training to associate a lever press with a 

milk reward. Lastly, they were given 5 days of noseport training before beginning the acquisition 

stage of the behavior. 

During acquisition, each trial began with the house light being turned on and an 

illuminated noseport to signal an initial noseport entry. The first noseport entry triggered the start 

of the sample lever presentation. During the sample phase, only one lever was presented in a 

pseudo-random order. After the sample lever press, the noseport was immediately re-

illuminated (following a 0 second delay) signaling a second noseport entry. Following the 

second noseport entry, the choice phase began, and both levers were presented. If the animal 

pressed the opposite lever to the sample lever of that trial (non-match), the trial was recorded as 

“correct,” and a dipper reward was given. If the animal pressed the same lever as the sample, 

the trial was recorded as “incorrect,” and the dipper was not presented. This final step was 

followed by a 10 second inter-trial interval (ITI) during which the house light was turned off.  

Acquisition was repeated every day with 120 trials per day; 60 trials with each lever 

presented as the sample, in a pseudo-random order. For this experiment, pseudo-random refers 

to a random distribution with the restriction that the same condition cannot be presented for 

more than 2 consecutive trials. Beginning on day 6 of acquisition, mice had a 5-second time 

limit in which to make the second noseport entry. This restriction allowed us to shape the 

animals’ behavior to ensure a standardized length of delay between subjects. If the animal did 

not make a noseport entry in the time allotted, the trial was aborted and was omitted from the 

calculations. For the final 3 days of acquisition, the total number of trials was increased to 160 

trials. Throughout the experiment, mice were given unlimited time to complete the required 

trials. 
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During the acquisition stage, all mice achieved a criterion level of performance, defined 

as 3 consecutive days above 70% correct.  

Attentional Set Shifting cognitive flexibility task: The task was conducted as previously 

described in Canetta et al, 2016 (Canetta et al., 2016a). Mice were first habituated to the testing 

arena on day 1. On days 2-3, they were trained to dig in both bedding media (corn cob and 

paper pellet, both unscented) to obtain a food reward. Once the animals dug reliably when 

presented with both types of bedding, testing began. For each trial, mice were placed at the 

opposite end from 2 terra cotta pots containing different odor/medium combinations. For initial 

acquisition (IA), mice needed to learn that the cinnamon scent, not the paprika scent, predicted 

a Honey Nut Cheerio reward, irrespective of the bedding media. For the first 5 trials, mice could 

explore both pots until they found the reward, but the trial was only scored as correct if the 

animal initially chose the correct pot. From the 6th trial onward, once the mouse began digging in 

a pot, the entrance to the area containing the other pot was closed off. Criterion was reached 

when the mouse made eight of ten consecutive correct choices. If the mouse did not meet 

criterion in 30 trials, the animal did not advance to the next stage (one animal from the 

adolescent manipulation hM4D group did not meet the IA criterion). If the mouse did reach 

criterion, extra-dimensional set shifting (EDSS) began. In the EDSS portion of the task, the 

animal needed to learn that the type of bedding medium (paper pellets, not corn cobs) predicted 

the Honey Nut Cheerio reward, irrespective of odor. Criterion was reached when a mouse made 

eight of ten consecutive correct choices. 

For optogenetic experiments, mice completed the task twice, 10 days apart. Animals 

were randomized to receive the light ON or OFF on Run Day 1 or Run Day 2 during the EDSS 

portion of the task. For Run Day 1, the rules in the IA and the EDSS were as described above, 

with odor (cinnamon rewarded) predicting the reward in the IA and texture (paper rewarded) 
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predicting the reward in the EDSS. For Run Day 2, the rule in the IA was the same as the EDSS 

for Run Day 1, with paper rewarded. The rule in the EDSS for Run Day 2 was odor predicting 

the reward, with paprika rewarded. For the EDSS on the second run, mice that previously had 

the light ON for Run Day 1 had the light OFF and vice versa. There was no effect of Run Day on 

overall performance; therefore, the light conditions could be pooled across runs for analysis. 

Optogenetic Parameters. In optogenetic stabilized step-function opsin (SSFO) 

experiments, for the light ON run, a 5 s blue light pulse (473 nm, 4 mW) was used for opsin 

activation prior to the first EDSS trial. The light was delivered via flat tipped 200 µm diameter, 

0.22 NA fiber optics. To ensure continued opsin activation throughout the EDSS trials, the 5 s 

pulse was repeated between trials every 30 min. 

Slice Electrophysiology. Whole-cell current and voltage clamp recordings were 

performed in layer 2/3 mPFC pyramidal cells and midline thalamic cells. Recordings were 

obtained with a Multiclamp 700B amplifier (Molecular Devices) and digitized using a Digidata 

1440A acquisition system (Molecular Devices) with Clampex 10 (Molecular Devices) and 

analyzed with pClamp 10 (Molecular Devices). Following decapitation, 300 µM slices containing 

mPFC or midline thalamus were incubated in artificial cerebral spinal fluid (ACSF) containing (in 

mM) 126 NaCl, 2.5 KCl, 2.0 MgCl2, 1.25 NaH2PO4, 2.0 CaCl2, 26.2 NaHCO3, and 10.0 D-

Glucose, bubbled with oxygen, at 32°C for 30 minutes before being returned to room 

temperature for at least 30 minutes prior to use. During recording, slices were perfused in ACSF 

(with drugs added as detailed below) at a rate of 5 mL/min. Electrodes were pulled from 1.5 mm 

borosilicate-glass pipettes on a P-97 puller (Sutter Instruments). Electrode resistance was 

typically 3-5 MΩ when filled with internal solution consisting of (in mM): 130 K-Gluconate, 5 

NaCl, 10 HEPES, 0.5 EGTA, 2 Mg-ATP, and 0.3 Na-GTP (for thalamic recordings; pH 7.3, 280 
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mOsm) or 130 mM Cs-Gluconate, 10 HEPES, 2 MgCl2, 0.2 EGTA, 2.5 MgATP, 0.3 NaGTP, 

and 5 Lidocaine N-ethyl bromide (for pyramidal cell recordings; pH 7.3, 280 mOsm). 

Midline thalamic recordings: Animals were sacrificed at P35 or P105 after either 

receiving CNO for 2 weeks or not. hM4D (mCherry-tagged) or GFP-infected thalamic cells were 

identified by their fluorescence at 40x magnification under infrared and diffusion interference 

contrast microscopy using an inverted Olympus BX51W1 microscope coupled to a Hamamatsu 

C8484 camera. Intrinsic and active membrane properties (resting membrane potential, input-

output firing frequency curve) were recorded in current clamp using the K-Gluconate 

intracellular solution detailed above before and after 10 µM CNO was bath applied to the slice. 

mPFC recordings: Animals were sacrificed for recordings at P90 for the adolescent 

manipulation or P160 for the adult manipulation. mPFC pyramidal cells were visually identified 

based on their shape and prominent apical dendrite at 40x magnification under infrared and 

diffusion interference contrast microscopy using an inverted Olympus BX51W1 microscope 

coupled to a Hamamatsu C8484 camera. Spontaneous excitatory post-synaptic currents 

(sEPSCs) were recorded in voltage clamp at a holding potential of -55 mV and spontaneous 

inhibitory post-synaptic currents (sIPSCs) were recorded in voltage clamp at a holding potential 

of +10 mV. 60 seconds of the current recording for each condition was analyzed. Recordings 

were filtered with an eight-pole low-pass Bessel filter, and sEPSCs and sIPSCs were detected 

using MiniAnalysis (Synaptosoft). All event data was averaged by cell.  

In vivo electrophysiology. In vivo electrophysiology recordings were performed while 

the animals were performing the attentional set shifting task. Field potential signals from the 

mPFC and midline thalamus were referenced against a screw implanted in the anterior portion 

of the skull above the olfactory bulb. Recordings were amplified, band-pass filtered (1-1000 Hz 

LFPs; 600-6000 Hz spikes) and digitized using a Digital Lynx system (Neuralynx). LFPs were 
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collected at 2kHz, while spikes were detected by online thresholding, collected at 32 kHz, and 

sorted off-line. TTLs were manually inserted to record the timing of relevant events (e.g., trial 

start, decision point, trial end). 

Histology. Adult mice were deeply anesthetized with 100 mg/kg ketamine and 5 mg/kg 

xylazine (i.p.). For in vivo electrophysiology experiments, electrolytic lesions were induced at 

each recording site by passing current (50 µA, 30 s) through electrodes prior to perfusion. All 

animals were perfused with phosphate-buffered saline (PBS) followed by 4% paraformaldehyde 

in PBS. Brains were dissected out and post-fixed in 4% PBS overnight before being transferred 

to 1% PBS for long-term storage. Brains were sectioned serially at 40 µm for cell density 

studies, and 50 µm for all other experiments, on a vibratome (Leica, Buffalo Grove, IL, USA). 

The following primary antibodies were used: mCherry (rabbit-anti-dsred; Takara Bio, 

Mountainview, CA, USA; 632496, 1:250) or green fluorescent protein (GFP; Abcam, Cambridge, 

UK, ab13970, 1:1000). Primary antibody incubation was 48 hours at 4˚C. Alexa Fluor-

conjugated secondary antibodies (Invitrogen, 1:1000) were used for secondary detection. 

Stained tissue slices were then mounted on slides with Vectashield mounting medium 

containing DAPI (Vector Labs). Viral expression was confirmed from mCherry or GFP staining, 

and locations of recording site lesions were confirmed under DAPI. 

Stereology was used to assess retrogradely-labeled cell numbers in the midline 

thalamus and BLA in adult developmental manipulation and control animals for the cell density 

studies using StereoInvestigator software (MBF Biosciences, Williston, VT, USA). Every 3rd slice 

was used, and regions were traced using DAPI staining. During image acquisition and 

quantification, the investigator was blind to the treatment.  

LFP and single-unit analysis. Neuralynx files containing LFP and spike data were 

imported into Matlab with Neuralynx MATLAB import/export package v 4.10.  
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LFP samples were notch filtered using the MATLAB Chronux package to remove 60 

cycle noise (http://chronux.org/; rmlinesmovingwinc.m). Mechanical artifacts were eliminated by 

removing samples whose voltage was more than 3 standard deviations from the entire signal 

mean. The cleaned signal was then root-mean-squared. Power and coherence were calculated 

using the wavelet transformation package in MATLAB. These values were averaged over the 

relevant time windows (e.g., 6 s before the decision point). Frequency ranges were as follows: 

40-90 Hz for gamma, 12-30 Hz for beta. 

Single units were automatically clustered using Klustakwik (Ken Harris) based on spike 

sorting of the first two principal components, peak voltage and energy from each stereotrode 

channel. Clusters were then accepted, merged or removed based on isolation distance, visual 

inspection of feature segregation, inter-spike interval distribution, cross-correlation in spike 

timing for simultaneously recorded units, and stability across the recording session. From 

recordings during the optogenetic experiment, we isolated 75, 55, and 69 single units from the 

control, hM4D, and hM4D light ON groups, respectively.  

To analyze the phase-locking of single cells in the mPFC with the LFP in the thalamus in 

the beta range, we calculated the pairwise phase comparison (PPC) (Vinck et al., 2010) of 

mPFC spikes to thalamic LFP. The LFP signal was first digitally bandpass-filtered (12-30 Hz) 

using a zero-phase-delay filter (filter0, K. Harris and G. Buzsaki), and the Hilbert transform of 

the bandpass-filtered signal was calculated to obtain the oscillatory phase. The magnitude of 

the phase-nonuniformity of spike times relative to the filtered LFP oscillation was then calculated 

for the 6 s before the decision point in correct and incorrect trials. Of note, we chose the period 

before the decision point given our previous findings in that window (Canetta et al., 2021). 

However, we found similar results when looking in the 6 s period after the decision point or the 

http://chronux.org/
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full 12 s window. In order to avoid spuriously high or low PPC values, only units that fired at 

least 50 spikes in each condition were used.  

Statistics. Statistical analysis and graph preparation for all data was done with Prism 9 

software (Graphpad Software, San Diego, CA, USA) or custom scripts in MATLAB (Mathworks, 

Natick, MA, USA) and Python. One-way ANOVA, two-way repeated measures ANOVA, and 

unpaired or paired two-tailed t-tests were used to analyze slice physiology, behavior, cell 

density, and single unit firing rates. For the slice physiology acute CNO experiment, Holm-Sidak 

post-hoc analyses were used to compare the hyperpolarization upon bath application of CNO 

for all hM4D groups to the control. For the optogenetic behavior, Holm-Sidak post-hoc analyses 

were used to compare light off vs. light on outcomes.  

To analyze differences in gamma power for each group, we fit linear mixed models with 

gamma power as outcome. The random effect was animal, and the fixed effect was either trial 

(ITI vs. trial) or trial outcome type (correct vs. incorrect). Power as a function of frequency was 

plotted by averaging the gamma power across the 6 s before the decision point. Mean power or 

coherence was calculated for those 6 s for the range of 40-90 Hz for gamma, or 12-30 Hz for 

beta. Of note, we chose the period before the decision point given our previous findings in that 

window (Canetta et al., 2021). However, we found similar results when looking in the 6 s period 

after the decision point or the full 12 s window. 

For all cells for each experimental group, firing for all cells were binned into 50 ms 

windows. These firing rates were then smoothed by taking the average firing rate of the 

surrounding 5 bins (i.e., 250 ms). These smoothed firing rates were then used in the 

subsequent analyses, where indicated. 

To represent z-scored firing rates, the mean and standard deviation was calculated for 

the firing rate for all EDSS ITI time bins. The smoothed firing rates for each time bin for the 12 s 
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surrounding the decision in each trial were calculated using the ITI mean and standard 

deviation. The mean z-score was then taken across all trials for each time bin. 

Mean firing rates were taken for each cell across the 12 s surrounding the decision of 

each trial. Mean firing rates were calculated first for all trials. Then, the mean firing rate was 

taken for each trial outcome type (correct vs. incorrect). Paired t-tests were used to compare the 

firing rates across trial types. 

For cross-correlations, firing rates were binned into 50 µs windows. For each trial, the 12 

s surrounding the decision point was taken, and the spike train for each trial was concatenated 

with the trains for that cell and trial outcome type. The firing for each spike train was normalized 

to overall firing rate, and the Matlab function, xcorr, was then applied to all pairs of cells within 

each animal, using a maximum lag time of ±80 ms. The peak cross-correlation value for each 

cell pair was used in the analysis, with each cell pair having a peak cross-correlation during 

correct and incorrect trials. We then fit a linear mixed model with peak cross-correlation as 

outcome, fixed effects of group (control, hM4D, hM4D Light ON) and trial outcome type (correct 

vs. incorrect), and random effects of animal and cell. Of note, because the analysis requires cell 

pairs, certain animals were removed from the analysis if they had only one isolated cell (Control: 

2 eliminated animals; hM4D: 3; hM4D Light ON: 2). 

Decoder. The linear decoder was custom-written using Python. The smoothed firing 

rates for the 12 s around the decision (described above) were used for each trial, and the trial 

outcome (i.e., correct or incorrect) was also used in the decoder. The analysis was done using 

the trials from the EDSS (Figure 3.15f) or the IA portion of the task (Figure 3.20d). Of note, 

certain animals were removed from the analysis if they had fewer than 2 neurons or fewer than 

2 of each trial outcome (EDSS: Control: 4 eliminated animals; hM4D: 5; hM4D Light ON: 4; IA: 

Control: 5). 
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The neural decoder algorithm was based on linear classifiers trained on pseudo-

simultaneous population activity created by combining 50 ms-binned neural patterns recorded 

from different animals performing the same behavioral task. The decoding algorithm was cross-

validated and tested against a null model with shuffled trial condition labels. 

Cross-validation: We computed the decoding performance using a 20-fold cross 

validation (CV) scheme.  

For each CV fold, we randomly selected half of the trials of each condition and used 

them to build pseudo-simultaneous (PS) activity (see below) which was used to train a Support 

Vector Machine (SVM) with a linear kernel to classify PS patterns into one of the two 

conditions.  

Similarly, the remaining half of the trials were used to build PS activity that was used to 

test the trained SVM. The decoding performance was then assessed as the mean accuracy on 

the test set over the CV folds. 

Pseudo-population: To build pseudo-populations, we randomly selected 50 ms binned 

neural patterns from training and testing trials of all animals and concatenated them to form a 

larger pseudo-simultaneous neural pattern. To obtain the training and testing data sets used in 

the cross-validation scheme, this procedure was repeated 10 x N times per condition, where N 

is the total number of neurons. 

n-timebins decoding: To increase the signal to noise ratio of the decoder, we used a 

procedure where the decoder is trained to classify groups of n time bins sampled from the two 

conditions (n=1 corresponding to standard single time-bin decoding). In practice, this was done 

when building pseudo-population activity by randomly sampling n different time bins for each 

individual animal to build a single pseudo-simultaneous time bin. Unless specified otherwise, we 

used n=5.  
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Null model and p-value: All decoding performance values were tested against M 

repetitions of a null model by shuffling the condition labels of individual trials. After each shuffle 

of the labels, the exact same decoding procedure described above was repeated on the 

shuffled data. Unless specified otherwise, we used M=1000. The p-value associated to the 

decoding performance was computed by comparing the performance of the shuffled model to 

the performance of the data. 

Implementation: The analysis was performed in Python3 by using the decodanda 

package and the sklearn implementation of SVM classifier. 

Data availability. The data that support the findings of this study are available from the 

corresponding author upon reasonable request. 

Code availability. Med-PC V, MATLAB, and Python code used for administering the 

behavior and analysis of the data that support the findings of this study is available from the 

corresponding author upon reasonable request. 
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Chapter 4: Conclusions and Future Directions 

4.1 General Conclusions 

Here, I have described experiments performed to explore the importance of adolescence 

in the development of the medial prefrontal cortex (mPFC), the mediodorsal nucleus of the 

thalamus (MD), and the MD-mPFC circuit. To accomplish this, I first summarized the previous 

literature on this topic in Chapter 1. Next, in Chapter 2, I outlined work done to develop a new, 

operant-based working memory task that is mPFC-dependent, high throughput, and has a 

relatively small exploratory component. In Chapter 3, I used this behavioral paradigm, among 

others, to discover the impact of adolescent thalamic inhibition on long-term functioning of the 

MD-mPFC circuit. I employed an innovative technique combining viral genetics and 

pharmacogenetics to transiently reduce activity in the MD and midline thalamus during specific 

time windows.  

Using this model, I tested the effects of adolescent thalamic inhibition on adult 

functioning and found deficits in mPFC-dependent cognitive behavioral performance, mPFC cell 

excitability, MD-mPFC anatomical projection density, mPFC encoding of trial information, and 

mPFC single cell cross-correlational activity. The same intervention during adulthood had no 

long-term consequences, indicating that adolescence is a sensitive period, in which changes to 

thalamic input activity has persistent effects on the MD-mPFC circuit. Notably, acute thalamic 

enhancement during the cognitive behavior rescued the behavioral deficit as well as the mPFC 

cellular encoding and cross-correlational activity (Figure 4.1).  

This work highlights the importance of thalamic activity during the adolescent period for 

subsequent adult functioning of the mPFC and the MD-mPFC circuit. Moreover, the rescue of 
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behavior and mPFC activity from acute thalamic activation points to the potential for effective 

treatments of cognitive dysfunction, even after a developmental insult. 

 

Figure 4.1. Model for adolescence as a sensitive period in the development of the MD-
mPFC circuit. Transient MD inhibition during adolescence leads to persistent impairments in 
MD-mPFC dependent behaviors and circuitry. However, acute activation of the MD during 
behavior in adulthood can rescue these behavioral and physiological deficits. Meanwhile, 
transient MD inhibition during adulthood has no long-term consequences on MD-mPFC circuitry. 
These results point to a model in which adolescence is a sensitive period in the development of 
the MD-mPFC circuit, but acute interventions can still restore functioning during adulthood. 

In this chapter, I will explore the implications of these findings and discuss future 

avenues of research in this field. 

4.2 Behavioral tasks to study the mPFC and MD 

4.2.1 An operant-based working memory task to study mPFC functioning 

In Chapter 2, I described a newly developed operant-based delayed non-match to 

sample (DNMS) working memory task for mice, which has several advantages over the 

previously used maze-based tasks. First, this new operant task allows us to test mPFC 

functioning in a cognitive task that includes a smaller exploratory component and relies less on 
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spatial information than classical maze-based tasks. Second, animals can complete many more 

trials per day in the operant task compared with maze tasks due to the shorter trial lengths and 

smaller rewards, which provides the possibility of testing multiple different interventions over the 

course of a single session. Finally, with operant boxes, an experimenter can run several animals 

simultaneously, with very limited experimenter-induced bias during the behavioral task. 

Importantly, despite the differences between this operant task and the traditional maze-based 

tasks, this task is still mPFC-dependent, with impaired performance following an mPFC lesion, 

as described in Chapter 2 (Benoit et al., 2020).  

The role of specific mPFC circuits in this operant task remains to be elucidated. In one 

maze-based task, the T-maze, MD-mPFC inputs are necessary for delay period maintenance, 

while vHip-mPFC inputs are essential for sample period encoding (Bolkan et al., 2017; 

Spellman et al., 2015), but it is unknown whether both inputs are required for this operant task. 

Acute inhibition of MD-mPFC or vHip-mPFC projections would address this question, allowing 

for further characterization of the operant task and a more thorough basis for comparing it to 

maze-based tasks. 

The operant DNMS task has two main stages: (1) the acquisition stage, with no delay 

between the sample and choice lever presentations, and (2) the delay stage, with delays of 2s, 

4s, 8s, and 16s between the sample and choice. While the mPFC lesion explored in Chapter 2 

showed deficits in both stages of the task, the developmental manipulation from Chapter 3 only 

caused deficits in the first acquisition stage, but no changes in the second delay stage (Figure 

3.4). 

One explanation for the milder behavioral phenotype found after the developmental 

inhibition is that it may have less of an impact on adult mPFC function than an excitatory lesion. 

Following adolescent thalamic inhibition, mPFC pyramidal cells demonstrate a reduction in the 
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frequency of sEPSCs, a finding that can be explained (at least in part) by a reduction in the 

density of MD-mPFC projections. However, we observed no evidence of changes in other 

mPFC circuits, with no differences in the densities of BLA-mPFC or vHip-mPFC projections 

(Figure 3.8) or changes in sIPSCs of mPFC pyramidal cells (Figure 3.7). There may be 

additional changes to mPFC circuitry, such as changes in cortico-cortical projections or 

recurrent excitation within the cortex. These are two metrics that we did not evaluate but should 

be explored down the line. Even so, the mPFC circuitry is likely less disrupted following 

adolescent thalamic inhibition than following the mPFC lesion, which causes gross anatomical 

changes and cell death, likely implicating many additional mPFC-related circuits (Figure 2.1). It 

is therefore possible that adolescent thalamic inhibition leaves enough mPFC function intact for 

the animals to perform the delay stage of the task, while the excitotoxic lesion may not.  

Furthermore, due to the structure of the task, all animals progress from the first to the 

second stage at the same time. Because of natural animal variability, some animals reach the 

criterion in the first stage more quickly than others. As a result, to maximize consistency across 

animals, all mice were trained in the acquisition stage until every animal reached a high 

performance, with many animals performing at a high level for several days after reaching the 

criterion. This overtraining, in combination with having more aspects of mPFC circuitry intact, 

may have aided the development of an alternative strategy for performing the task by the end of 

the acquisition stage, resulting in unimpaired performance during the delay stage. Of course, 

the lesioned animals may have also developed a strategy using circuits that do not involve the 

mPFC, but the adolescent-inhibited animals would have had more options given the milder 

mPFC disruption. The nature of an additional circuit would still need to be identified, with a 

major question about whether some residual mPFC function is required for its proper 

functioning. 
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Overall, the operant DNMS task is still a new behavioral paradigm, and future work 

should explore the numerous potential circuits that could be involved in proper task execution. 

In addition to the MD-mPFC or vHip-mPFC inhibition experiments described above, other 

experiments could include manipulation of other aspects of mPFC circuitry, such as interneuron 

or layer-specific disruptions. Furthermore, in vivo recordings of mPFC and MD activity during 

the task would give important insights into the mechanisms at play during each trial and over the 

course of learning. 

4.2.2 The role of the MD and MD-mPFC projections in Attentional Set Shifting 

In addition to the working memory task, in Chapter 3, we also tested the effects of 

adolescent thalamic inhibition on adult cognitive flexibility. The behavioral paradigm that has 

frequently been used to assess this function is called the Attentional Set Shifting Task (ASST), 

which is a modified version for rodents of the Wisconsin Card Sorting Test (WCST), used in 

humans. Our data clearly show that adolescent thalamic inhibition, which disrupts MD-mPFC 

projections and task-specific mPFC cellular activity, impairs the extra-dimensional set shift 

(EDSS) portion of the task, but not the initial acquisition (IA) portion. Moreover, acute thalamic 

activation during the EDSS entirely rescued both the behavioral deficit and the mPFC cellular 

activity. Thus, I hypothesize that the behavioral deficit is due to impaired mPFC or MD-mPFC 

function, which can be rescued by enhanced thalamic activity. 

Consistent with this, many studies have shown that this phenotype (i.e., intact IA and 

impaired EDSS) is typical of mPFC disruption (Birrell & Brown, 2000; Bissonette et al., 2008; 

Canetta et al., 2016b). The ASST findings following thalamic manipulations are less clear. In 

one study, MD lesions also led to disruptions to EDSS (Ouhaz et al., 2021). Similar findings 

were seen upon MD inactivation via bupivacaine infusions in another cognitive flexibility task 

(Block et al., 2007), and enhancement of MD-mPFC activity improved rule switching behavior 
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(Schmitt et al., 2017). However, in another study, pharmacogenetic inhibition of MD-mPFC 

projections led to disruptions to IA but no changes in EDSS (Ferguson & Gao, 2018). Because 

of slight variations that can exist in these types of behavioral paradigms, future experiments 

should include a repeat of the ASST, as performed in Chapter 3, in adults upon acute inhibition 

of the MD or MD-mPFC projections. 

Moreover, other cognitive tasks have shown that beta oscillatory activity in the MD plays 

an important role in thalamo-mPFC connectivity and task performance (Bolkan et al., 2017; 

Parnaudeau et al., 2018; Parnaudeau et al., 2013). While there were no disruptions to MD beta 

activity or MD-mPFC beta coherence during the ASST following adolescent thalamic inhibition 

(Figure 3.12), these measures should also be explored during the ASST upon acute thalamic 

inhibition. 

4.3 Effects of adolescent thalamic inhibition on circuit properties 

4.3.1 mPFC circuitry 

The work described in Chapter 3 focuses on the changes to mPFC cells and MD-mPFC 

projections caused by adolescent thalamic inhibition. We found decreased sEPSC frequency in 

mPFC layer II/III pyramidal cells, with no changes to either sEPSC amplitude or sIPSCs. 

Adolescent thalamic inhibition also resulted in reduced MD-mPFC projections and no changes 

to BLA-mPFC or vHip-mPFC projections. In addition, we found that mPFC cell-cell cross-

correlations and task-specific ensemble activity were disrupted during the ASST. For a deeper 

understanding of the effects on mPFC circuitry, additional analyses should be performed. These 

could include slice recordings to measure spontaneous activity of mPFC pyramidal cells in the 

deep layers V and VI as well as mPFC interneurons, including PV cells (which are discussed in 

more depth below). Other experiments could investigate functional thalamo-mPFC connectivity 

using optogenetics during slice recordings, as has been done previously in non-manipulated 
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mice (Canetta et al., 2020). In this way, it would be possible to determine the strength of 

synaptic projections from the MD onto interneurons and pyramidal cells across mPFC layers. 

Moreover, the mPFC is also reciprocally connected to the contralateral side as well as other 

cortical regions. Previous work has demonstrated the importance of both local and long-range 

cortical projections during adolescent development in proper cortico-cortical projection 

maturation (Nabel et al., 2020). Further exploration of these cortical inputs and projections via 

anatomical tracing and slice electrophysiology would inform the impact on this aspect of mPFC 

circuitry. 

4.3.2 Thalamic cells 

In addition to the impact of thalamic inhibition on the mPFC, whether there are also 

persistent changes to the cells within the thalamus has yet to be explored. We found no 

differences in the overall cellular density in the MD (Figure 3.9), nor did we see changes in MD 

activity during the ASST behavioral testing, including local field potential oscillatory activity in 

the beta (Figure 3.12) and gamma ranges (Figure 3.11) and multi-unit activity as deduced from 

power in the epsilon band (Figure 3.22). However, MD neurons may still be compromised at the 

functional level. To address this possibility, first, slice electrophysiological studies of adult MD 

cells to measure cell-intrinsic properties and sEPSCs would provide insight into the functioning 

of the MD cells and mPFC-MD projections following adolescent thalamic inhibition. Second, in 

vivo single unit recordings in the MD during the ASST could reveal changes to MD cellular 

function during impaired cognitive performance. 

Together, these analyses of mPFC and thalamic cellular populations would greatly add 

to our understanding of the circuit-level consequences of adolescent thalamic inhibition. 
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4.4 Dividing the MD and midline thalamic cellular populations 

In Chapter 3, we explored two possible approaches for expressing the inhibitory 

DREADD, hM4D, in the thalamus during adolescence: 1) using the GBX2-Cre line, which 

affects MD-mPFC projections, central MD cells (which project to the orbitofrontal cortex (OFC)), 

and other midline thalamic cells (Figure 3.1b); and 2) using the dual virus approach, by injecting 

a retrogradely transported Cre into the mPFC and a Cre-dependent hM4D into the MD to target 

only mPFC-projecting cells (Figure 3.6a). The dual virus approach recapitulates the cognitive 

deficit in the ASST found with the GBX2-Cre approach, indicating that this behavioral deficit is 

due to compromised mPFC and thalamo-mPFC functioning (Figure 3.6c). However, the GBX2-

Cre approach may also affect thalamo-OFC circuitry, which has been associated with deficits in 

reversal learning (Boulougouris et al., 2007; Schoenbaum et al., 2002). Therefore, it would be 

important to explore the impact of GBX2-driven thalamic inhibition on OFC-dependent 

behaviors, such as reversal learning.  

Moreover, future work could compare recordings of the MD in slice or during the ASST 

with these two approaches to thalamic inhibition. Any differences would highlight the role of 

these additional MD projections and may indicate another avenue of exploration into the 

adolescent development of other MD circuits. 

4.5 Mechanisms and timing in the sensitive period 

4.5.1 Narrowing and expanding the sensitive period window 

In our manipulations, we inhibited thalamic activity for 30 days, from P20-50. The goal of 

this long disruption was to encompass several important milestones in the development of the 

MD and the mPFC. However, as noted in Chapter 1, there are different processes occurring 
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throughout this period. Therefore, future experiments should aim to narrow this window and 

discover the mechanisms at play over the course of the 30 days. 

A first set of experiments could test the long-term consequences of thalamic inhibition on 

mPFC and MD functioning during subsections of the window (e.g., P20-35 and P35-50). As 

outlined in Chapter 3, we know that this manipulation has no effect after P90, but we should 

also explore the periods directly surrounding P20-50, including P0-20 and P50-70. Prior work 

has looked at the effects of transient manipulations during the gestational period (Canetta et al., 

2016b; Lodge & Grace, 2009), and one study has also looked at the effects of transient mPFC 

manipulations in the P7-11 period (Bitzenhofer et al., 2021a). As a result, we might expect the 

earlier window to be susceptible to transient changes. 

As for the later window, one study found long-term impacts of a transient increase in 

mPFC PV activity from P60-70 (Mukherjee et al., 2019a). However, this manipulation was done 

in a genetic developmental risk factor mouse model with impaired interneuron function, leaving 

uncertainty about whether this later plasticity would be seen in control mice. Indeed, other 

studies also found that it was possible to induce plasticity at later ages (>P45) in visual cortex 

by modulating interneuron activity in animals with reduced GABA levels, but in control animals, 

this was only possible during the visual sensitive period (P15-20) (Fagiolini et al., 2004; Fagiolini 

& Hensch, 2000b). Moreover, as outlined in Chapter 1, there are fewer changes taking place in 

the MD and mPFC development after adolescence. Nevertheless, it would be important to 

determine whether the P50-70 period is also susceptible to transient changes in thalamic 

activity. 

The nature of the changes caused by manipulations during these different windows may 

vary depending on the developmental processes occurring at the time of the manipulation. 

Therefore, it will be essential to employ a host of different metrics to evaluate the long-term 
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impacts of transient thalamic inhibition during these different windows on adult functioning. 

These should include the same techniques described above, such as slice electrophysiological 

recordings of mPFC and thalamic cells, anatomical tracings of thalamo-mPFC projections, and 

in vivo recordings of the mPFC and thalamus during cognitive behaviors.  

4.5.2 Characterization of the mechanisms during development 

Moreover, further exploration of the processes during inhibition at the time of the 

manipulation will also give important insights into the mechanisms that are disrupted. In Nabel 

et al, the authors evaluated circuit dynamics during control conditions over the pre-adolescent, 

adolescent, and adult periods (Nabel et al., 2020). This work offered important insights into the 

developmental trajectory of anterior cingulate cortex projections onto the primary visual cortex. It 

also demonstrated that it is possible to successfully record both ex vivo and in vivo from 

adolescent animals. Similarly, adolescent thalamo-mPFC circuit development will be better 

understood by characterization of the projections during the developmental stages, such as at 

P20, P35, and P50. 

This work should include several different techniques to understand multiple aspects of 

circuit development. First, slice electrophysiological recordings of mPFC and thalamic cells 

would reveal changes in the spontaneous activity, offering insights into the progression of 

inhibitory and excitatory synaptic inputs. Second, anatomical tracings to quantify thalamo-mPFC 

projection cell density, synaptic density, and the arborization of the projections would indicate 

the temporal development of outgrowth and pruning. Third, in vivo recordings of the mPFC and 

the MD during cognitive behaviors as well as at baseline would demonstrate how encoding of 

task relevant information changes with circuit maturation. 

These recordings should be done under control conditions and during adolescent 

thalamic inhibition throughout the developmental period. Together, this work will expand our 
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understanding of the role of adolescence during the development of the thalamo-mPFC circuit in 

control animals and will demonstrate the direct impact of developmental perturbations as they 

occur. 

4.6 The role of amygdalar and hippocampal projections 

Here, I have focused on the thalamic inputs to the mPFC. The reasons for this choice 

are outlined in Chapter 1 and include evidence on cognitive functioning and schizophrenia 

across humans and animal models that implicate the MD and the MD-mPFC reciprocal circuit. 

Crucially, the developmental timelines of the MD and the mPFC both point to the importance of 

adolescence and the potential of the MD leading mPFC development during this period. 

However, as noted above, both the amygdala and the hippocampus also project to the mPFC 

and are disrupted in patients with schizophrenia. As a result, future work could also explore the 

long-term consequences of transient disruptions to either of these inputs. 

There is an extensive body of literature exploring the long-term consequences of 

neonatal vHip lesions (NVHL), a developmental model for studying schizophrenia, which 

demonstrates changes in mPFC functioning that extends to its other subcortical projections 

(Guirado et al., 2016; O'Donnell, 2012). However, due to the permanent nature of lesions, this 

work does not identify the impact of the vHip disruption in specific time windows. The proposed 

experiments using transient DREADD inhibition during different postnatal time windows would 

therefore enrich our understanding of different periods in the development of these other mPFC 

inputs. 

4.6.1 The Competition Hypothesis 

Experiments exploring the consequences of transient disruptions to the hippocampus 

and amygdala would also offer evidence toward a “competition hypothesis.” As was mentioned 
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in Chapter 1, the projections from the amygdala, hippocampus, and thalamus all converge onto 

the same mPFC layer II/III pyramidal cells (Little & Carter, 2012). In sensory sensitive periods, a 

reduction in activity from one input (e.g., the left eye) can lead to a compensatory increase in 

projections from another input (e.g., the right eye) (Hensch, 2004; Hubel & Wiesel, 1970; 

Wiesel, 1982). Therefore, we originally hypothesized that a decrease in activity from the 

thalamic inputs to the mPFC may lead to a compensatory increase in projections from the 

hippocampus or the amygdala. In other words, the thalamus, hippocampus, and amygdala 

could all be competing for territory on the mPFC pyramidal cells, and with a retraction of 

thalamic inputs, the hippocampal and amygdalar inputs could take over. 

However, our data so far do not support this hypothesis. There were no differences in 

mPFC projection cell densities from the BLA or vHip (Figure 3.8). A previous NVHL study in rats 

found that the early vHip lesion led to an increase in BLA-mPFC projection density (Guirado et 

al., 2016). The differences found between our data and this study could have several 

explanations: (1) the vHip-mPFC and BLA-mPFC projections may engage in competition in a 

way that does not involve the MD-mPFC projections; (2) the window for this competition may 

occur at a different time point than our transient manipulation; or (3) the decrease in activity may 

not be a strong enough manipulation to cause the systemic changes that are caused by the 

lesion. 

These different hypotheses could be addressed with transient, pharmacogenetic 

inhibition of hippocampal or amygdalar inputs to the mPFC during different time windows and 

subsequent testing of all inputs to the mPFC. 

4.7 PV interneurons in the mPFC receive MD innervation 

Within the cortex, I have focused on the primary cellular population in the mPFC: 

pyramidal cells. They receive projections from the MD, as well as the other subcortical inputs 
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described above. However, the MD also projects onto the second major mPFC cellular 

population: interneurons. Specifically, MD projections target PV-expressing interneurons 

(Canetta et al., 2020; Delevich et al., 2015). Thus, thalamic or thalamo-mPFC inhibition should 

affect both mPFC pyramidal and PV cells. 

As noted in Chapter 3, adolescent thalamic inhibition has no long-lasting impact on 

either mPFC pyramidal sIPSCs or gamma oscillations, both of which are mediated by PV cells 

(Cardin et al., 2009; Hu et al., 2014; Markram et al., 2004; Sohal et al., 2009). This is in contrast 

to other recent work which targeted mPFC PV cells directly during a similar time period (Canetta 

et al., 2021). In that study, adolescent PV inhibition led to changes in cognitive behavioral 

performance that mirrored the effects of adolescent thalamic inhibition, but the recordings ex 

vivo and in vivo found deficits in PV dysfunction, including reduced sIPSC frequency in 

pyramidal cells and disruption to gamma oscillations, two measures that are not affected after 

adolescent thalamic inhibition.  

While the circuit dysfunction causing the behavioral phenotype may be specific to the 

manipulation, there may be more direct metrics of PV function that could be affected by thalamic 

inhibition. The slice electrophysiology experiment to record from PV interneurons mentioned 

above could reveal the impact of adolescent thalamic inhibition on spontaneous firing in PV 

cells. Similarly, retrograde labeling of cells projecting to the PV cells would indicate if the 

reduction in MD-mPFC projections affects projections onto PV cells and pyramidal cells 

differentially. 

Furthermore, enhancing PV activity in adolescent-inhibited mice may reverse or impact 

the cognitive deficits. The same study that inhibited PV cells during adolescence found that 

acute PV activation during the ASST rescued the behavioral and gamma deficits (Canetta et al., 

2021). Moreover, other genetic models that disrupt interneuron activity and cognitive flexibility 
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were also rescued by PV stimulation in the gamma frequency range (Cho et al., 2020). While 

thalamic inhibition caused no significant changes in gamma oscillatory activity during the task, it 

is possible that PV activation could still improve behavioral performance and mPFC cellular 

encoding by engaging this circuit suggesting a second mechanism, in addition to boosting 

thalamic activity, that could be exploited therapeutically. 

In line with this idea, clonazepam, a benzodiazepine which facilitates interneuron 

activity, was shown to restore gamma activity and behavioral deficits in the genetic interneuron 

model (Cho et al., 2015; Cho et al., 2020). Given the potential translational implications of this 

intervention, it would also be very informative to study the use of clonazepam as a rescue for 

behavioral deficits after transient thalamic inhibition. 

4.8 Re-opening the sensitive period 

In Chapter 3, after anatomical and physiological changes to mPFC circuitry caused by 

adolescent thalamic inhibition, we found that non-specific thalamic activation was sufficient to 

rescue the cognitive behavioral deficit and mPFC cellular encoding. Previous work showed that 

an optogenetic rescue of interneuron activity during this task in the previously mentioned 

genetic model not only rescued the behavior during the stimulation, but also persisted a week 

later (Cho et al., 2015). While we were interested to discover whether thalamic activation would 

also have continued effects, we found that the rescue did not persist 10 days after the 

intervention. This suggests that a one-time thalamic activation is not sufficient to induce enough 

plasticity to restore the MD-mPFC projections, leaving the structural deficits unchanged. 

However, it is still unknown if chronic thalamic activation could have more persistent effects. 

Moreover, it will be crucial to discover whether there are other interventions that will be 

more long-lasting. Prior work in sensory sensitive periods has explored mechanisms for re-

opening or extending the sensitive period in visual cortex (Hensch & Bilimoria, 2012). Several 
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studies have explored the possibility of influencing the sensitive period facilitators (such as 

interneuron maturation or BDNF) or brakes (such as myelination or perineuronal nets) (Hensch 

& Bilimoria, 2012). Because of the clear translational implications, there has been a great deal 

of interest in the possibility of manipulating excitatory/inhibitory balance or GABA transmission 

with already available pharmacogenetic drugs, including benzodiazepines (Hensch et al., 1998) 

and the antidepressant fluoxetine (Vetencourt et al., 2008). 

Studies with benzodiazepines have thus far been limited to extending the sensitive 

period in control animals or opening the sensitive period in adulthood in genetically modified 

animals, with no possibility of re-opening the sensitive period after inhibition has matured 

(Fagiolini et al., 2004; Fagiolini & Hensch, 2000b). Meanwhile, chronic fluoxetine has been 

shown to restore plasticity in adult rats, via manipulation of the excitatory/inhibitory balance in 

the visual cortex (Vetencourt et al., 2008). This re-opened sensitive period in the visual cortex 

was also observed with environmental enrichment (Sale et al., 2007) and food restriction, 

perhaps due to increased serum corticosterone levels (Spolidoro et al., 2011).  

Indeed, environmental factors are crucial in determining plasticity in the brain. In NVHL 

models, cognitive training during adolescence is sufficient to rescue behavioral impairments in 

the adult (Lee et al., 2012). Given the importance of cognitive enrichment, stress, or 

socioeconomic status in psychiatric disorders and brain development (Markham & Greenough, 

2004; Tooley et al., 2021), future work could aim to manipulate environmental factors to re-open 

the mPFC sensitive period and reverse the impairments caused by adolescent thalamic 

disruption. 

4.9 Implications for patients with schizophrenia 

As described in Chapter 1, functional imaging studies have long implicated the thalamo-

PFC circuitry in patients with schizophrenia and cognitive dysfunction (Anticevic et al., 2014a; 
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Giraldo-Chica et al., 2017). Moreover, young adolescents at clinical high risk for the disorder 

already demonstrate impaired connectivity between the thalamus and the PFC, with severity 

linked to subsequent diagnosis (Anticevic et al., 2015). Other studies have also identified 

adolescence as a vulnerable period in the development of schizophrenia and other disorders, 

during which environmental exposures can be risk factors (Arseneault et al., 2002; Gomes & 

Grace, 2017). Thus, early disruptions to the MD-PFC circuit may be partially responsible for the 

persistent changes seen in adult patients with these disorders.  

Therefore, a better understanding of the mechanisms of MD-PFC development during 

adolescence and the impact of changes to this process will greatly advance our pursuit for early 

diagnosis and treatment of psychiatric disorders like schizophrenia. This work could lead to the 

identification of early markers of cognitive impairments and psychiatric disorders, which would 

allow for early diagnosis, even before the onset of symptoms, and create opportunities for 

preventative interventions, which would greatly improve long-term patient outcomes. Moreover, 

treatments for any disorder with cognitive dysfunction could be developed to target, and even 

reverse, the developmental processes that cause these symptoms. Together, earlier diagnosis 

and improved treatment options will offer great promise for patients with psychiatric disorders.  
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