
Kaon to two-pion decay and pion-pion scattering from lattice QCD

Tianle Wang

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
under the Executive Committee

of the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2021



© 2021

Tianle Wang

All Rights Reserved



Abstract

Kaon to Two Pions decay and Pion-Pion scattering from Lattice QCD

Tianle Wang

In this work, we present a lattice QCD calculation of two closely related quantities: 1). The

cc scattering phase shift for both � = 0 and � = 2 channels at seven energies in total, and 2). The

Δ� = 1/2,  → cc decay amplitude �0 and n′, the measure of direct CP violation. These two

results improve our earlier calculation presented in 2015[1]. The calculation is performed on an

ensemble of 323 × 64 lattice with 0−1 = 1.3784(68)GeV. This is a physical calculation, where the

chiral symmetry breaking is controlled by the 2 + 1 flavor Möbius Domain Wall Fermion, and we

take the physical value for both kaon and pion. The G-parity boundary condition is used and

carefully tuned so that the ground state energy of the cc�=0 state matches the kaon mass. Three

sets of cc interpolating operators are used, including a scalar bilinear “f" operator and paired

single-pion bilinear operators with the constituent pions carrying various relative momenta.

Several techniques, including correlated fits and a bootstrap determination of the ?-value have

been used, and a detailed analysis of all major systematic error is performed. The cc scattering

phase shift results are presented in Fig. 5.10 and Tab. 5.12. For the Kaon decay amplitude, we

finally get Re(�0) = 2.99(0.32)(0.59) × 10−7GeV, which is consistent with the experimental value

of Re(�0) = 3.3201(18) × 10−7GeV, and Im(�0) = −6.98(0.62)(1.44) × 10−11GeV. Combined

with our earlier lattice calculation of �2[2], we obtained Re(n′/n) = 21.7(2.6)(6.2)(5.0) × 10−4,

which agrees well with the experimental value of Re(n′/n) = 16.6(2.3) × 10−4, and

Re(�0)/Re(�2) = 19.9(2.3)(4.4), consistent with the experimental value of



Re(�0)/Re(�2) = 22.45(6), known as the Δ� = 1/2 rule.
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Chapter 1: Introduction

There are three most important discrete symmetry operations in particle physics, parity sym-

metry (P), time-reversal symmetry (T), and charge conjugation symmetry (C). In 1956, Lee and

Yang first pointed out that the violation of P-symmetry could be the solution to the g− \ puzzle[3].

This violation was later confirmed by the experimental results from beta decay of 60Co[4]. Later

in 1964, the violation of CP-symmetry was found in the neutral kaon decay, where the long-lived

kaon could decay to CP-even, two-pion final state. This violation is much weaker than the P-

violation. There are two sources of CP violation in this decay process: the first one is indirect CP

violation, which comes from the  −  ̄ mixing and can explain the majority of CP violation in

the experimental result. The second one is direct CP violation, where the CP-odd kaon eigenstate

decays directly to cc state. The second one is a much smaller effect ( $(10−3) compared to the

first one), and was first found in the later 1990s[5]. This small effect, which is highly sensitive

to the mechanism of CP violation in the Standard Model, is a good place for us to understand the

Standard Model. In Chapter 2 we will discuss in more detail the kaon decay, its phenomenology

and its relation to CP violation and the Standard Model, and discuss the quantity Re(n′/n), which

measures the direct CP violation.

CP violation is also important in helping us to understand the matter–antimatter imbalance

in our universe. The amount of CP violation in the Standard Model is believed to be too small to

explain for the dominance of matter over antimatter. This suggests possible new physics beyond the

Standard Model, and underscores the importance of a direct calculation of CP violation. However,

a standard perturbative calculation is hard to perform. This is because the strength of the strong

interaction increases at lower energy, which makes the pertubative expansion fail at low energy.

Some analytic tools, including chiral perturbation theory and dispersion theory, are invented to

overcome this problem, but they can not give us a result from first-principles.
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Lattice QCD is currently the only known method which can determine the properties of low-

energy QCD from first-principles with controlled systematic errors. In a typical lattice QCD cal-

culation, spacetime is discretized by the lattice spacing 0, which serves as a regulator of the theory.

In Chapter 3 we will describe the lattice method, how we treat the gauge action and fermion action

on the lattice, and how to make a calculation on the lattice. With the lattice method, people are

able to calculate various quantities, including the hadron spectrum, decay amplitudes and hadron

structure. These calculations can be compared with experimental values to measure parameters of

the Standard Model, or find possible physics beyond the Standard Model. Also, with lattice QCD

and the finite-volume Lüscher technique [6], we can calculate the cc scattering phase shifts within

the energy region from 2<c to approximately 4<c. Such calculations complement the existing

determinations of the scattering lengths obtained using chiral perturbation theory [7] and the dis-

persive calculations [8, 9, 10, 11] of the energy dependence of the phase shift based on the Roy

equations [12] and experimental input.

In this work, we are focusing on two closely related topics: The calculation of the cc scat-

tering phase shift for both the � = 0 and � = 2 channels foe energies around the kaon mass, and

the decay amplitude �0 for a single kaon decay to � = 0 two-pion state ( → cc(� = 0)), both

at physical pion mass. There are two main difficulties in these calculations: 1). The presence of

“vacuum diagrams" in both calculations, which gives rise to a much larger statistical error com-

pared with the  → cc(� = 2) and cc(� = 2) scattering calculation. 2). The final two-pion

state in the decay process is composed of two pions that are carrying momenta, which will be

an excited finite-volume state on a lattice with periodic boundary condition. Several techniques

are used to overcome these difficulties, including using a lattice with G-parity boundary condi-

tions (GPBC), which will be discussed in Sec. 3.4 and a more detailed discussion can be found

in Ref. [13], and using All-to-All propagators (A2A) to construct cc interpolating operators that

overlap better with physical state (See Ref. [14]). With these techniques, in 2015 the RBC/UKQCD

collaborations published the first lattice calculation of �0 using 216 lattice configurations with a

323 × 64 volume, an inverse lattice spacing of 0−1 = 1.3784(68) GeV, and with physical kine-
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matics[1]. We found Re(n′/n) = 1.38(5.15)(4.59) × 10−4, which is 2.1f lower than the experi-

mental value. Meanwhile, for an energy near the kaon mass we obtained a cc�=0 phase shift of

X0(�cc ≈ < ) = 23.8(4.9)(1.2)°, which is significantly lower than the dispersive result.

After several attempts to explain the discrepancy between these phase shift results as pure sta-

tistical error by including more statistics, or imperfect data analysis by using more sophisticated

methods, we concluded that a possible explanation for the discrepancy to be contamination from

one or more excited states whose contribution with increasing time is masked by the rather rapid

reduction in the signal-to-noise of our data. Therefore we introduced several new operators, includ-

ing a bilinear f operator which has the same quantum number as cc�=0 state, as well as other cc

interpolating operators in which the individual pions carry higher relative momenta. We can then

use a multi-state multi-operator fit to extract the ground state energy with a smaller excited state

contamination error. We also developed a method to obtain a more accurate measure of the quality

of the agreement between our data and our theoretical fitting formula. These will be explained in

detail in Chapter 4.

In Chapter 5 we present the new calculation on the cc scattering phase shift. We also extend

our calculation beyond a single cc energy by computing cc two-point correlation functions with

the two pions carrying several values of the total momentum, allowing for an exploration of the

scattering phase shift at center-of-mass energies between approximately 2<c and the kaon mass,

which allows us to directly calculate the LL factor from our lattice QCD data. We show that with

additional operators we obtain a significant improvement in statistical precision, and gain better

control over the contamination from neglected excited states. We also applied a second approach

to the analysis of our multi-operator, multi-state data, the generalized eigenvalue problem (GEVP)

method. This new method gave results consistent with those of our traditional fitting approach

with similar statistical errors.

In Chapter 6 we present in detail how we calculate �0 and n′/n on the lattice. Again we use mul-

tiple operators to suppress the excited state error. We also include an improved non-perturbative

determination of the renormalization factors relating the bare matrix elements to those of operators
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renormalized in the MS scheme (see Sec. 6.4). This calculation utilizes step-scaling technique to

raise the matching scale from 1.53 GeV to 4.01 GeV, significantly reducing the systematic error as-

sociated with the perturbative matching between RI-SMOM and MS scheme in which the Wilson

coefficients have been computed.

In writing Chapter 4, 5 and 6, the contents are mostly taken from Ref. [15], which I am the

principle author of, and Ref. [16], to which I am one of the major contributors.
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Chapter 2: Kaon decay and CP violation

The Standard Model is a theoretical model which includes our knowledge of the strong and

electroweak interactions. In this chapter, we first discuss the origin of CP violation in the Stan-

dard Model. Then we discuss the relation between CP violation and neutral kaon decay in a

phenomenological way, introducing two parameters, n and n′, which measure the direct and indi-

rect CP violation in this decay. Finally, we discuss the low energy effective theory for this decay,

writing down the operators we should include in the calculation and the corresponding Wilson

coefficients.

2.1 CKM matrix and CP violation

The CKM matrix describes the flavor mixing of fermions in the charged current. This mixing

originates from the difference between the fermion mass eigenstates and flavor eigenstates. There

is a free complex phase parameter in the CKM matrix, which leads to the CP violation in the weak

interaction. In this section, I will describe the above in more detail.

The Lagrangian !HF, which describes the interaction between fermions and Higgs, can be

written as:

− !HF = 5
UV
D @̄′!,UΦ̃D

′
',V + 5

UV

3
@̄′!,UΦ3

′
',V + 5

UV
4 ;̄′!,UΦ4

′
',V + h.c., (2.1)
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with the following notation:

®D′ = (D′, 2′, C′)

®3′ = (3′, B′, 1′)

®4′ = (4′, `′, g′)

®@′ = ((D′, 3′)) , (2′, B′)) , (C′, 1′)) )

®;′ = ((a′4, 4′)) , (a′`, `′)) , (a′g, g′)) )

(2.2)

and Φ̃, Φ are the two-component Higgs field; 5D, 53 and 54 are the 3×3 coupling matrix in the flavor

space, which are not necessarily diagonal. The prime suggests that the states here are the flavor

eigenstates and are not necessarily the mass eigenstates. After spontaneous symmetry breaking,

the vacuum expectation value of the Higgs field gives rise to the mass term:

− !HF,mass = D̄′!<
′
DD
′
' + 3̄′!<

′
33
′
' + 4̄′!<

′
44
′
' + h.c., (2.3)

We can then diagonalized the mass matrix using the 3 × 3 unitary matrices (U
!,'

(U = D, 3, 4), so

that
U′ℎ = (UℎUℎ

<′U = (U!<U(
U†
'

−!HF = D̄<DD + 3̄<33 + 4̄<44

(2.4)

where U = D, 3, 4 and ℎ = !, '. The 3×3 matrices <U are now diagonal and are the mass matrices,

whose three diagonal elements are the masses of the three generations of fermion U. We now look

at the quark contribution to the charged weak current (there will not be flavor mixing in the neutral

weak current):

�
`

ch,quark = 2D̄′!W
`3′! = 2D̄!W`(D†! (

3
!3! = 2D̄!W`+3! (2.5)

where + = (
D†
!
(3
!

is a 3 × 3 unitary matrix called Cabibbo–Kobayashi–Maskawa (CKM) matrix.
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This matrix describes quark flavor mixing in the charged current.

+ =

©­­­­­«
+D3 +DB +D1

+23 +2B +21

+C3 +CB +C1

ª®®®®®¬
(2.6)

The CKM matrix is a 3 × 3 unitary matrix, which means it has 9 real parameters, but some of

them are not physical since they can be removed by a quark rephasing:

U!,8 → 48\
U
8 U!,8, (8 = 1, 2, 3; U = D, 3), (2.7)

Notice an overall rephasing by the same amount will not change the CKM matrix, which means

five of the parameters are not free, and we only have four free parameters. Under the KM repre-

sentation, three of them can be interpreted as mixing angles, and the last one is a complex phase,

which makes the CKM matrix complex and leads to CP violation. This can be seen from the La-

grangian !��,2ℎ,@D0A: which describes the interaction between W-boson and the quark contribution

to the charged weak current:

!GF,ch,quark =
4

√
2sin\,

(,+
` D̄!W

`+3! + h.c.), (2.8)

Under the CP transformation, we have:

!GF,ch,quark
CP−−→ 4
√

2sin\,
(,+

` D̄!W
`+∗3! + h.c.), (2.9)

which suggests that a complex CKM matrix could lead to CP violation.
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2.2 CP Violation in Neutral Kaon Decay

Before we discuss CP violation in neutral kaon decay, it is important to first introduce kaon

mixing. There are two neutral kaon states,
�� 0〉 and

�� ̄0〉, which are related by CP operation:

CP
�� 0〉 = (−1)

�� ̄0〉 , (2.10)

These two states can mix with each other due to strangeness non-conservation. The time evolution

of the
�� 0〉 − �� ̄0〉 system can be formulated as:

8
3

3C
|q(C)〉 =

(
" − 8

2
Γ

)
|q(C)〉 , (2.11)

where |q(C)〉 = (0(C), 1(C))) = 0(C)
�� 0〉 + 1(C)

�� ̄0〉, and the mass matrix is given by

"8 9 = <
(0)
 
X8 9 +

〈8 |�, | 9〉
2< 

+ %
∑
=

〈8 |�, |=〉〈=|�, | 9〉
< − �=

(2.12)

Γ8 9 =
1

2< 

∑
=

〈8 |�, |=〉〈=|�, | 9〉2cX(�= − < ) (2.13)

which can be parameterized by:

" − 8
2
Γ =

©­­«
� ?2

@2 �2

ª®®¬ (2.14)

If CP is an exact symmetry, we have ? = @, and the CP eigenstates | ±〉 = 1√
2
(
�� 0〉 ∓ �� ̄0〉) will

also be the mass eigenstate. In the real world where CP is mildly violated, ? differs from @ by a

small amount, and the two mass eigenstates become:

| L/S〉 =
1√

|? |2+|@ |2
(
?
�� 0〉 ± @ �� ̄0〉) (2.15)
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where L/S stands for long/short lived kaon state whose lifetimes differ by a factor of 580. We can

rewrite the above equation in terms of the CP eigenstates:

| L/S〉 =
1√

1 + |n̄ |2

(�� 0
∓
〉

+ n̄
�� 0
±
〉)

n̄ =
? − @
? + @

(2.16)

This means that the long(short) lived kaon state is mostly composed of the CP odd(even) kaon

state, but with a small fraction of the other CP even(odd) kaon state. The mixing can be observed

from the oscillation of
�� 0〉 and

�� ̄0〉 states as a function of time, which reflects the tiny mass

difference between | S〉 and | L〉 states.

Notice that the B-wave cc final state is a CP-even state. If CP is conserved, the | L〉 state will

be CP-odd and will not decay to the B-wave cc final state. This means the | L〉 → cc decay mode

implies CP violation. There are two sources of CP violation in this decay. The first one, which

is called indirect CP violation, comes from the fact that | L〉 has a small component of CP-even

state, which could decay to the B-wave cc final state via CP conserved decay mode. The second

one, which is called direct CP violation, originates from the CP-odd component of | L〉 decaying

to the B-wave cc final state via the CP-violating decay mode.

We can introduce two parameters, n and n′, to describe the size of indirect and direct CP

violation in this decay. These two parameters are defined as:

〈c+c− | �, | !〉
〈c+c− | �, | (〉

= n + n′〈
c0c0

���, | !〉〈
c0c0

���, | (〉 = n − 2n′
(2.17)

They are related to the decay amplitudes of
�� 0〉 to B-wave cc final states with definite isospin

quantum numbers I (I=0/2), defined by:

�( 0 → cc(�)) = ��4
8X� (2.18)
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where X� is the scattering phase shift in isospin I channel. Applying the CPT symmetry, we also

get

�( ̄0 → cc(�)) = −�∗� 48X� (2.19)

A complex phase, or the imaginary part of �� , implies CP violation. After some algebra, we can

work out the expression for n and n′:

n = n̄ + 8
(
Im(�0)
Re(�0)

)
n′ =

84X2−X0

√
2

�����2
�0

���� ( Im(�2)
Re(�2)

− Im(�0)
Re(�0)

) (2.20)

Notice if direct CP violation is absent, Im(�2) = Im(�0) = 0, which implies n′ = 0; if indirect CP

violation is absent, n̄ = 0, which suggests Re(n) = 0. This suggests that n and n′ describe the size

of indirect and direct CP violation, respectively.

Currently the experimental value for n and n′ are[17]:

|n | = 0.002228(11),

arg(n) = 0.7596 rad,

Re(n′/n) = 16.6(2.3) × 10−4,

(2.21)

and the large relative error on Re(n′/n) suggests this is a quantity hard to measure in experiment.

One of the main topics of this work is to calculate it using lattice methods and to compare these

two results.

There is also an interesting experimental finding in the decay amplitudes �0 and �2. The

current experimental values for them are:

Re(�0) = 3.3201(18) × 10−7GeV,

Re(�2) = 1.479(4) × 10−8GeV,

Re(�0)
Re(�2)

= 22.45(6),

(2.22)
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The large dominance of the Δ� = 1/2 amplitude over the Δ� = 3/2 amplitude is called the Δ� = 1/2

rule, which will be verified in this work.

2.3 Effective Hamiltonian and Wilson Coefficient

In principle, given the full Lagrangian of the Standard Model, we can include both QCD and the

weak interaction in a lattice calculation. However, the large mass of gauge boson is incompatible

with the much smaller inverse lattice spacing 0−1, which typically has an order of 1 − 3 GeV. That

means if we include the gauge bosons directly in a lattice calculation, we will not be able to see

their kinematic effects. In other words, the lattice method is unable to deal directly with such high

energy contributions.

One standard way to solve this problem is to introduce an energy scale ` and divide the physics

into the high energy contribution (> `) and low energy contribution (< `). After that, we can use

the lattice method to calculate the low energy contribution. This can be done by the method of

operator product expansion, where the effective Lagrangian can be expanded as a set of local

operators, with coefficients that are ` dependent. These coefficients, which we call the Wilson

coefficients, include the high energy effects and can be evaluated using renormalization group

improved perturbation theory. Since the introduction of ` is artificial, the real physics should not

depend on `, which means both Wilson coefficient 28 and operator &8 should be a function of `,

so that the `-dependence cancels. In this work, we are using the 3-flavor effective lagrangian �eff

defined in Eq. (2.23), where both the heavy gauge boson and the c,b,t quarks are integrated out.

The Wilson coefficients are calculated to the next leading order in the MS scheme, and their value

with ` = 4GeV, is presented in Tab. 6.16.

�eff =
��√

2
+∗DB+D3

10∑
8=1
�8(`)&8(`) (2.23)
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where �� is the Fermi constant, and the ten &8 operators are defined as:

&1 = (B̄U3U)+−�(D̄VDV)+−�,

&2 = (B̄U3V)+−�(D̄VDU)+−�,

&3 = (B̄U3U)+−�
∑

@=D,3,B
(@̄V@V)+−�,

&4 = (B̄U3V)+−�
∑

@=D,3,B
(@̄V@U)+−�,

&5 = (B̄U3U)+−�
∑

@=D,3,B
(@̄V@V)++�,

&6 = (B̄U3V)+−�
∑

@=D,3,B
(@̄V@U)++�,

&7 =
3
2

(B̄U3U)+−�
∑

@=D,3,B
4@(@̄V@V)++�,

&8 =
3
2

(B̄U3V)+−�
∑

@=D,3,B
4@(@̄V@U)++�,

&9 =
3
2

(B̄U3U)+−�
∑

@=D,3,B
4@(@̄V@V)+−�,

&10 =
3
2

(B̄U3V)+−�
∑

@=D,3,B
4@(@̄V@U)+−�,

(2.24)

Here U and V are color indices, and the spin indices are contracted implicitly. &1 and &2 are called

current-current operators, &3, &4, &5 and &6 are called QCD penguin operators, and &7, &8, &9

and &10 are called electroweak penguin operators. Notice all these ten operators are dimension 6

operators. This is because those lower dimension operators (with dimension 4 and 5) which are

present will not contribute to the decay process, and the effects from higher dimension operators

will be suppressed by at least $(`/", ). Also notice that among the 10 operators, only 7 of them

are linearly independent, and we can prove the following three identities:

&10 −&9 = &4 −&3 (2.25)

&4 −&3 = &2 −&1 (2.26)

2&9 = 3&1 −&3. (2.27)
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One last thing that needs to be mentioned here is that the matrix element of the ten operators are

calculated in the lattice scheme, while the Wilson coefficient is evaluated in the MS scheme, so

a matching between lattice scheme and MS scheme must be performed. We will discuss this in

Sec. 6.4.
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Chapter 3: Lattice QCD

Due to the quark confinement, the QCD coupling constant becomes large at low energy, sug-

gesting a non-perturbative treatment is necessary for solving problems involving QCD at low en-

ergy. Introducing a lattice is a method that regularizes quantum field theory and defines problems

non-perturbatively. This feature suggests that the lattice method could be powerful in solving the

low energy part of the  → cc problem mentioned in Chapter 2. In this Chapter, we will first

briefly introduce the lattice method, including the treatment of the quark field and the gauge field.

Then we introduce the boundary conditions we use in this work, the G-parity boundary conditions,

which is different from the trivial periodic boundary conditions that most other groups use. We

then list the detailed information of the gauge ensemble we use in this work.

3.1 General Idea

In the continuous Quantum Chromodynamics (QCD), the expectation value of an operator

$(�`, k̄, k) can be obtained from the path integral:

〈$〉 =
1
/

∫
[�k̄][�k][��`]$(�`, k̄, k)48(QCD , (3.1)

where

/ =
1
/

∫
[�k̄][�k][��`]48(QCD , (3.2)

(QCD =
∫
34GL(G), (3.3)

L(G) =
∑
5

k̄ 5 (8 /� − < 5 )k 5 −
1
4
�0`a�

`a
0 , (3.4)

�0`a = m`�
0
a − ma�0` + 6 5 012�1`�2a, (3.5)
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Here k 5 is the spin-1
2 fermion field where 5 is the flavor index. According to Chapter 2, we

integrate out the heavier c,t,b quarks, so we are dealing with 3-flavor QCD where 5 ∈ {D, 3, B}.

The fields �0` are the spin-1 gluon fields while 6 is the QCD coupling constant, and 5 012 are the

SU(3) structure constants.

To make the numerical calculation accessible, the first step is to get rid of the sign problem

which originates from the fast oscillating factor 48(QCD . To do that we perform the Wick rotation,

which transforms the above definition from Minkowski space to Euclidean space. This is done by

introducing G0 → −8G4, which leads to the following modification:

〈$〉 =
1
/

∫
[�k̄][�k][��`]$(�`, k̄, k)4−(

�
QCD , (3.6)

L� (G) =
∑
5

k̄ 5 ( /�� + < 5 )k 5 +
1
4
�0`a�

`a
0 . (3.7)

Notice that the Dirac matrices in Eq. (3.7) should be the Euclidean gamma matrices. Later in this

work, I will neglect all superscript “E" and assume everything is defined in Euclidean space.

The next problem we met is the tremendously large dimension of the integral. Let us think of a

lattice with$(10) units on each dimension. The total number of sites of the lattice is$(104), even a

coarse mesh of 2 points on each dimension of the integral means $(103000) terms to be calculated,

which means we can not evaluate the integral in Eq. (3.6) directly. The solution is to approximate

this integral using a statistical method. This is usually done by generating a large number of

uniformly distributed samples and then calculating the ensemble average of the integrand. This is

usually not efficient since most of the samples will have a negligible contribution to the integral due

to the small factor of 4−(QCD . One way to solve this problem is to do importance sampling, which

means instead of generating samples that are evenly distributed in parameter space, we generate

samples (labeled by B1, B2, ..., B# ) so that their probability distribution function is proportional to

4−(QCD . With these samples, we can rewrite Eq. (3.6) with the following:

〈$〉 =
1
#

#∑
8=1
$(B8), (3.8)
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where # is the total number of samples we use for the measurement, and $(B8) is the observable $

evaluated on the sample B8. These samples are obtained from a Markov chain generated from the

Rational Hybrid Monte Carlo algorithm (RHMC) in this work.

Unfortunately, we are still unable to perform a numerical calculation with Eq. (3.6) and (3.8)

directly. This is because the fermion field, k̄ and k, are Grassman numbers which can not be

sampled on a conventional computation directly. One way to solve this problem is to notice that

the fermion part of the Lagrangnian is a bilinear function of the fermion field, and that we have the

following identity: ∫
[�k̄][�k]4−k̄"k = det("). (3.9)

We can then “integrate out" the fermion field analytically in Eq. (3.6) with following:

〈$〉 =

∫
[�k̄][�k][��`]$(�`, k̄, k)4−(QCD∫

[�k̄][�k][��`]4−(QCD

=

∫
[��`]$eff(�`)4−(�

∫
[�k̄][�k]4−

∑
5 k̄( /��+< 5 )k∫

[��`]4−(�
∫
[�k̄][�k]4−

∑
5 k̄( /��+< 5 )k

=

∫
[��`]$eff(�`)4−(�−(�∫

[��`]4−(�−(�

(3.10)

where

$eff =

∫
[�k̄][�k]$(�`, k̄, k)4−

∑
5 k̄( /��+< 5 )k∫

[�k̄][�k]4−
∑
5 k̄( /��+< 5 )k

, (3.11)

(� = −ln(det( /�� + < 5 )), (3.12)

(� =
1
4

∫
34G�0`a�

`a
0 (3.13)

and (� can be reconstructed using a “pseudo-fermion" scalar field that can be represented using

complex number.
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3.2 Gauge action

Given Eq. (3.10), the next step is to discretize the action on the lattice. In this Section, we

discuss the discretization of the gauge action. We first introduce gauge links *`(G), which are

SU(3) matrices. They have the physical meaning of connecting the =th site with its neighboring

site along the `th direction. They are related to the gauge field �`(G) via:

*(G, G + 0 ˆ̀) = *`(G) = 4860�`(G),

*(G + 0 ˆ̀, G) = *†`(G)
(3.14)

The link variable is critical in discretizing non-abelian gauge action (e.g., SU(3) gauge action for

QCD) where we need to preserves gauge invariance on the lattice. Terms that look like the product

of two fermion fields at different sites will show up when we discretize the fermion action on the

lattice. These terms break the SU(3) gauge-invariance explicitly. In order to fix that, the gauge

links are introduced, which can be understood as parallel transporting two fields onto the same

site, by which we preserve the gauge invariance for the fermion action.

Since both the gauge action and the path ordered products of gauge links which forms closed

loop are gauge invariant, we would expect the gauge action to be a function of all possible loop

product of links. It can be shown that for a sufficiently small box of fixed physical size that

perturbation theory can be used, the lattice action

(,� = V
∑
G,`<a

[
1 − 1

3
%`a(G)

]
(3.15)

will reproduce the conventional continuum field theory, where V = 6/62 and %`a(G) is the plaquette

link product defined by:

%`a(G) = ReTr
[
*`(G)*a(G + 0 ˆ̀)*†`(G + 0â)*†a (G)

]
. (3.16)
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This is called the Wilson action. An improved version of the gauge action can be written down as:

('� = − V
3

[
(1 − 821)

∑
G,`<a

%`a(G) + 21
∑
G,` 6=a

'`a(G)

]
+ const, (3.17)

where '`a(G) is the 1 × 2 rectangle plaquette link product defined as:

'`a(G) = ReTr
[
*`(G)*`(G + 0 ˆ̀)*a(G + 20`)*†`(G + 0 ˆ̀ + 0a)*†`(G + 0â)*†a (G)

]
(3.18)

The choice of 21 is somewhat arbitrary since all different values of 21 give the same continuum

limit. One choice is to set 21 = −0.331, and this is called the Iwasaki gauge action. In this work

we use Iwasaki gauge action.

3.3 Fermion action

The most naive way of discretizing the fermion action can be done by replacing the derivative

term by a finite difference with an extra gauge link which preserves the gauge invariance:

(naive
� = 04 ∑

G

{∑̀ 1
20
k̄(G)W`

[
*`(G)k(G + 0 ˆ̀) −*†`(G − 0`)k(G − 0`)

]
+ < 5 k̄(G)k(G)

}
(3.19)

However, this version of the fermion action describes a theory with 23 species of fermions with

degenerate mass instead of a single species. This is called the fermion doubling problem, where the

extra species of fermions are generated due to the exact chiral symmetry in the massless limit. This

can be understood by looking at the U(1)-axial anomaly: This anomaly appears in the continuum

limit due to the infinite number of degrees of freedom. It disappears on the lattice since the lattice

only supports a finite number of degree of freedom. The extra species of fermions are generated

to cancel the anomaly on the lattice. This argument suggests that one way of solving the doubling

problem is to break the chiral symmetry explicitly. One simple way to do that is to add a Laplacian
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term into the action:

(Wilson
� = (naive

� − 04 A

20
∑
G,`

k̄(G)
[
*`(G)k(G + 0 ˆ̀) +*†`(G − 0 ˆ̀)k(G − 0 ˆ̀) − 2k(G)

]
(3.20)

This is called the Wilson action, and it solves the doubling problem by giving the extra species of

fermion a divergent mass in the continuum limit. We don’t use this action in this work, since the

breaking of chiral symmetry makes our result less physical. Also, the chiral symmetry breaking

will lead to extra operator mixing, making the calculation more complicated.

The action we use in this work is called the Domain Wall Fermion action. It introduces a

fifth dimension with size !B and can solve the doubling problem with an exponentially suppressed

chiral symmetry breaking effect as we increase !B. This action can be written as:

(DWF
� = −

∑
G,G′,B,B′

k̄(G, B)�DWF(G, B; G′, B′)k(G′, B′) (3.21)

�DWF(G, B; G′, B′) = XB,B′� ‖G,G′ + XG,G′�⊥B,B′ (3.22)

�
‖
G,G ′ =

1
2

∑̀ [
(1 − W`)*`(G)XG+ ˆ̀,G ′ + (1 + W`)*†`(G′)XG− ˆ̀,G ′

]
+ (" − 4)XG,G ′ (3.23)

�⊥B,B′ =
1
2

[
(1 − W5)XB+1,B′ + (1 + W5)XB−1,B′ − 2XB,B′

]
−
< 5

2
[
(1 − W5)XB,!B−1X0,B′ + (1 + W5)XB,0X!B−1,B′

]
(3.24)

where the coordinate are in lattice units. Notice � ‖
G,G′ is actually the Wilson fermion Dirac operator

with A = 1 and " = −< 5 . Here " is called the domain wall height and satisfy 0 ≤ " ≤ 2. This

action results in a left-hand fermion mode that is bound to the B = 0 4-dimensional boundary

and a right-hand fermion mode that is bound to the B = !B − 1 boundary. These two modes

will decay exponentially along the fifth dimension, leading to the exponentially suppressed chiral

symmetry breaking effect as we increase !B. Despite the fact that we can not take !B as infinite in

the real calculation, one finds that the choice of !B = $(10) is large enough to neglect the residual

chiral symmetry breaking effects. While suppressing the chiral symmetry breaking effects with the

domain wall action, the introduction of the fifth dimension drastically increases the computational
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cost of the calculation.

3.4 G-parity Boundary Conditions

One more detail we should discuss here is the choice of the boundary conditions for the fermion

field (the boundary conditions that the gauge field obeys depends on that for the fermion field). We

always choose anti-periodic boundary conditions along the time direction. However, the choice of

the boundary conditions along the spatial directions is more flexible and usually depends on the

problem. For example, in most cases, we can choose the periodic boundary conditions, which is the

simplest. In the previous  → cc�=2 calculation, we chose the anti-periodic boundary conditions

for the down quark (this is called H-parity boundary conditions) to make the calculation easier.

In this work, where we want to measure the matrix elements for the  → cc�=0 decay, one

important challenge is that, if we use periodic boundary conditions, the mass of the initial kaon

state and the ground state energy of the final cc state do not match. This suggests that we need

to use multi-exponential fits to isolate an excited cc state whose energy matches the kaon mass.

This is difficult due to the presence of disconnected diagrams, which will introduce substantial

statistical noise. The trick of using HPBC also fails here. Because of that, we will use new

boundary conditions called G-parity boundary conditions(GPBC).

G-parity is defined as a product of charge conjugation and an isospin rotation by 180 degrees

about the y-axis:

�̂ = �̂4−8c�̂H = 4−8c�̂H�̂, (3.25)

Notice pions are all G-parity odd, and if we impose GPBC for the quark field, the pions will satisfy

anti-periodic boundary conditions. Because of that, their allowed momenta become odd-integer

multiples of c/!, which would change the spectrum of the final cc state, making it possible to

tune the lattice parameters so that the ground state energy of the final cc state matches the kaon

mass.

It can be shown that the gauge and translational invariance of the action requires that the gauge
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field*`(G) satisfy complex conjugate boundary conditions as:

*`(G + !) = *`(G)∗. (3.26)

In the following discussion we introduce a new notation where the field operators u, d and their

conjugates are reorganized into two-component vectors for convenience:

Ψ =
©­­«
3

�D̄)

ª®®¬ (3.27)

Ψ̄ = (3̄, D)�), (3.28)

where � is the 4 × 4 charge conjugation matrix. We will refer to the indices of these vectors as

flavor indices. It can be shown that this notation makes the application of a G-parity transformation

simpler:

Ψ(G + !G) = �̂Ψ(G)�̂−1 = 8f2Ψ(G), (3.29)

Ψ̄(G + !G) = �̂Ψ̄(G)�̂−1 = Ψ̄(G)(−8f2), (3.30)

where f2 is the second Pauli matrix. The relation between the new notation and the usual two-

component quark field can be written as:

@ =
©­­«
D

3

ª®®¬ = �12�Ψ̄
) + �21Ψ, (3.31)

@̄ =
©­­«
D̄

3̄

ª®®¬ = Ψ)��21 + Ψ̄�12, (3.32)

Ψ = �12@ + �21�@̄
) , (3.33)

Ψ̄ = @̄�21 + @)��12, (3.34)
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where

�12 =
©­­«
0 1

0 0

ª®®¬ =
1
2

(f1 + 8f2) �21 =
©­­«
0 0

1 0

ª®®¬ =
1
2

(f1 − 8f2) (3.35)

For later use we also define the following two matrices:

�0 =
©­­«
1 0

0 0

ª®®¬ =
1
2

(1 + f3) �1 =
©­­«
0 0

0 1

ª®®¬ =
1
2

(1 − f3) (3.36)

The strange quark is introduced into the G-parity framework as a member of an isospin doublet

that includes a fictional degenerate partner, B′. Note that this fictional B′ should be suitably weighted

out of the path integral to ensure that we are doing a physical 2 + 1 flavor calculation instead of an

unphysical 2 + 2 flavor calculation, cf. Ref. [16]. Similar to Eq. (3.27) and (3.28), we define the

following two-component vector:

Ψ� =
©­­«
B

�B̄′)

ª®®¬ (3.37)

Ψ̄� = (B̄, B′)�) (3.38)

With these definitions, we can write down the phase conventions for the meson states we use in
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our calculation:

|c+〉 =
8

2
k) (W5f1�)k |0〉 〈c+ | = 〈0| 8

2
k̄(W5f1�)k̄) (3.39)

|c−〉 = − 8
2
k̄(W5f1�)k̄) |0〉 〈c− | = −〈0| 8

2
k) (W5f1�)k (3.40)

|c0〉 = − 8
√

2
k̄f3W5k |0〉 〈c0 | = −〈0| 8√

2
k̄f3W5k (3.41)

| 0′〉 =
8
√

2
(k̄W5k�)|0〉 〈 0′| = 〈0| 8√

2
(k̄�W5k) (3.42)

| 0′〉 = − 8
√

2
(k̄�W5k)|0〉 〈 0′| = −〈0| 8√

2
(k̄W5k�) (3.43)

|f〉 =
1
√

2
k̄k |0〉 〈f | = 〈0| 1

√
2
k̄k (3.44)

It is worth mentioning that the kaon states in Eq. (3.42) and (3.43) are different from the usual

definition of the kaon due to the inclusion of the fictional B′ operator. It is easy to verify that

after including the B′ operator, the new kaon operator,  0′, satisfies periodic boundary conditions,

suggesting that the ground state kaon is stationary. This is important in our calculation since we

want our initial and final states to have zero total momentum. For more details on performing

lattice simulations with G-parity boundary conditions including further discussion of the lattice

symmetries and the treatment of the strange quark, we refer the reader to Ref. [13]. Also notice

that these expressions are not exactly the expression we use to construct the interpolating operators

on the lattice. The detailed expression for the interpolating operator will be discussed in Sec. 4.1.

For the remainder of this section we will focus specifically on how these boundary conditions

affect the measurement of the two-pion system.

Including GPBC introduces some significant differences from a calculation with periodic bound-

ary conditions(PBC). Three significant differences might be identified. First, the cc states that can

be studied with these two types of boundary condition will be different. When non-interacting

pions satisfy anti-periodic boundary conditions in all three directions, their allowed momenta be-

come (2=1 +1, 2=2 +1, 2=3 +1) c
!

, where =8 are integers. These are different from those on a volume

with PBC, where the allowed momenta are (2=1, 2=2, 2=3) c
!

. However, if we take advantage of
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moving frames, there is still a correspondence between the states that we can construct on a PBC

volume and those present for a volume obeying GPBC. For example, if we wish to work with a

cc state comprising two pions at rest, for a volume with PBC we can do the calculation in the

stationary frame, where the two component pion operators are constructed with zero momentum.

However, for a GPBC volume the calculation can be performed in a moving frame where both

pions have the same momentum, e.g. (c/!, c/!, c/!). With this choice, in the center-of-mass

frame these two pions are at rest.

Since a moving frame calculation relies on a distorted volume which doesn’t have cubic sym-

metry, there will be lower angular momentum partial waves whose phase shifts will enter the

quantization condition that determines the B-wave phase shift, e.g. 3-waves. In the stationary

frame the lowest partial waves that enter beyond the B-wave are those with with ; = 4. Fortunately

in this work the interaction energies involved in our moving frame calculations are relatively small

(around the kaon mass), and those higher partial waves that enter will have a negligible effect on

the B-wave phase shift.

A second troublesome aspect of G-parity is the breaking of cubic symmetry at the quark level

even for a lattice with cubic symmetry. As discussed in Ref. [13] there is a sign convention that can

be chosen when G-parity is imposed in one direction that can be changed by changing the relative

sign of the up and down quark fields. However, the choice of this sign in the remaining two

directions is not conventional and breaks cubic symmetry by identifying one of the four diagonals

connecting two corners of the cubic lattice and passing through its center. For a cubic volume

in a stationary frame, the symmetry group is broken down from $ℎ to �33 [18]. Because of

confinement, we believe that this breaking of cubic symmetry has only exponentially suppressed

effects on the QCD transfer matrix. However, the quark-level operators used to construct the

QCD eigenstates are affected and care must be taken when constructing translationally covariant

operators to suppress the creation of finite-volume states belonging to unwanted representations of

the cubic symmetry group $ℎ. This will be discussed when we write out the explicit form of these

operators in Sec. 4.1 and the remaining cubic-symmetry breaking effects are discussed in Sec. 5.4.
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Finally around-the-world effects in a moving frame will be different in a volume with GPBC

compared to one with PBC. When we are performing a moving frame calculation in a volume

with GPBC with one of the three smallest allowed total momenta (those with %tot = (±2, 0, 0),

(±2,±2, 0) or (±2,±2,±2) in units of c/!), the first-order around-the-world contribution will come

from a single pion propagating from one cc interpolating operator to the second (leg A) and a

second single pion propagating from the second, through the time boundary to the first (leg B).

This behavior is shown schematically as part of a later more detailed discussion in Figure 5.4.

For GPBC the momentum injected by each cc interpolating operator can change the direction

but not the magnitude of the momentum carried by the pion as it moves from leg A to leg B.

Thus, for GPBC this around-the-world pion can carry the same energy on each leg and so that its

contribution behaves as a constant when the time separation between the two operators is changed.

We refer to this case where the pions in both legs carry momenta of minimum magnitude as the

“first-order” around-the-world effect. The case in which the pion propagating in one of the legs

carries momentum greater than the minimum is termed “second-order”. Both cases are considered

when performing the fits described in Section 5.2.2. In contrast, for the three smallest non-zero

total momenta in a calculation with periodic boundary conditions all of the around-the-world terms

will be time-dependent since the pions in the two legs will have different energies.

3.5 Gauge Ensembles

In this work for both the cc scattering and  → cc calculation, we employ a single 323 × 64

lattice with 2+1 flavors of Möbius DWF with !B = 12 and Möbius parameters 1 + 2 = 32/12 and

1−2 = 1 and light and strange quark masses of 1×10−4 and 0.045, respectively. The Möbius DWF

is an improved version of DWF, which decreases !B while keeping the chiral symmetry breaking

effects the same[19]. We take the square root of the 2-flavor version of the heavier quark determi-

nant in Eq. (3.12) to ensure that we are doing the physical 2+1 flavor calculation, and further detail

can be found in [13]. We use Iwasaki+DSDR gauge action with V = 1.75, corresponding to an in-

verse lattice spacing of 0−1 = 1.3784(68)GeV [20]. The dislocation suppressing determinant ratio
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(DSDR) factor reduces the dislocations or tears in the gauge field that enhance chiral symmetry

breaking at coarse lattice spacings [21, 22, 23, 24]. It enables us to work with a large, (4.6 fm)3

spatial volume and therefore has good control over finite-volume systematic errors, without a dra-

matic increase in computational cost, albeit at the cost of increased discretization errors. We use

G-parity boundary conditions (GPBC) in all three spatial directions in order to obtain nearly phys-

ical kinematics for the  → cc decay, where the cc�=0 ground state energy matches the kaon

mass. It should be mentioned here that, in principle, GPBC can also be used to do the  → cc�=2

calculation, but we can not use the same lattice to do both calculations. This is because the inter-

action between two pions is attractive in cc�=0 ground state, while it is repulsive in cc�=2 ground

state, which makes the two energies different. Since we tune the lattice parameter so that the cc�=0

ground state energy matches the kaon mass, the cc�=2 ground state energy is different from the

kaon mass. This will be shown in Sec. 5.2.

In order to rapidly improve the statistical precision of our calculation, we generated configu-

rations via seven independent Markov chains, each originating from widely separated configura-

tions in our original thermalized ensemble. To compensate for any residual effects of the random

number error, we discarded the first 20 configurations of each stream. Subsequent algorithmic im-

provements, particularly the introduction of the exact one-flavor algorithm (EOFA) [25, 26] further

enhanced our rate of generation such that we have completed over 5000 MD time units to date.

In this work, with a measurement separation of 4 molecular dynamics time units (MDTU), the

measurement is performed on 741 configurations.
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Chapter 4: Measurement

In this section we start by describing the details of the interpolating operators we use in this

calculation. The introduction of GPBC suggests that we need to deal with the cubic symmetry

breaking carefully. We then discuss the matrix of two-point correlation functions, which is im-

portant in understanding the fitting strategies in Chapter 5 and 6. Next we list the contraction

diagrams for the cc scattering calculation. Those diagrams for the  → cc calculation will be

shown in Chapter 6. In the final section we outline the resampling methods used to determine

statistical errors and an improved method to assign a ?-value to those fits.

4.1 Interpolating Operators

Here we discuss the structure of the interpolating operators used in this work. There are two

different types of two-pion interpolating operators. The first type are denoted as “cc(. . .)" oper-

ators and are constructed as the product of two single-pion interpolating operators and for which

the parentheses and the quantity contained within are used both to specify the pion momenta and

to distinguish these labels from the general set of cc interpolating operators which can produce

two pions when acting on the vacuum, the set in which all of our operators reside. The second type

has the form of a quark-bilinear scalar sigma operator which shares the same quantum number as

� = 0 cc state. We start by constructing the single pion and sigma interpolating operators with

momentum ®% = ®? + ®@, where ®? and ®@ are the momenta of the individual quarks:
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c+(C, ®%) =
∑
®G, ®H
4−8( ®? · ®G+ ®@ · ®H)ℎ(| ®G − ®H |)Ψ) (®G, C)1

2
(1 − 48=? cf2)

8

2
W5�f1(1 + 48=@ cf2)Ψ(®H, C) (4.1)

c−(C, ®%) =
∑
®G, ®H
4−8( ®? · ®G+ ®@ · ®H)ℎ(| ®G − ®H |)Ψ(®G, C)1

2
(1 − 48=? cf2)

−8
2
W5�f1(1 + 48=@ cf2)Ψ

)
(®H, C) (4.2)

c0(C, ®%) =
∑
®G, ®H
4−8( ®? · ®G+ ®@ · ®H)ℎ(| ®G − ®H |)Ψ(®G, C)1

2
(1 − 48=? cf2)

−8
√

2
W5f3(1 + 48=@ cf2)Ψ(®H, C) (4.3)

f(C, ®%) =
∑
®G, ®H
4−8( ®? · ®G+ ®@ · ®H)ℎ(| ®G − ®H |)Ψ(®G, C)1

2
(1 − 48=? cf2)

1
√

2
(1 + 48=@ cf2)Ψ(®H, C) (4.4)

where, using the notation in Sec. 3.4, Ψ and Ψ are the quark and anti-quark isospin doublets

defined as:

Ψ =
©­­«

3

�D̄)

ª®®¬ and Ψ = (3̄, D)�). (4.5)

As explained in Ref. [13] the 2×2 flavor projection matrix (1+48=@cf2) ensures that the quark field∑
®G(1+48=@cf2)4−8 ®@·®GΨ(G) transforms as an eigenstate under translations (including positions which

translate through the boundaries) if the integer =@ = !@8/c−1/2 for all three components {@8}1≤8≤3

of the momentum vector ®@. Here � is the 4 × 4 charge conjugation matrix and ℎ(| ®G |) is the meson

smearing function. In this work, we choose all the smearing functions to be the 1B hydrogen wave

function ℎ(G) = 4−G/A , with a radius A = 2 for both the pion and sigma operators. This smearing

function is introduced to increase the overlap between the pion and sigma interpolating operators

and the lattice pion and cc ground states while at the same time reducing the overlap of the � = 0

cc operator with the vacuum state. In earlier studies this smearing was found to give a two-fold

reduction in statistical errors [14].

Following Sec. 3.4, a stationary (G-parity even) kaon-like state can be constructed as

(4.6)| ̃0〉 =
1
√

2

(
| 0〉 + | ′0〉

)
,

where  0 is the physical kaon and  ′0 a degenerate partner with quark content B̄′D. This | ̃0〉 state

can be created using the following operator

(4.7)O ̃0(C) =
8
√

2

∑
®G,®H
48 ®?·(®G−®H)k;(®G, C)W5ℎ(| ®G − ®H |)1

2
(1 + f2)kℎ(®H, C)
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where ®? = (1, 1, 1) c2! is the quark momentum and ℎ(G) is the same meson smearing function

defined above.

With the operators constructed above, we use the all-to-all (A2A) propagator technique [27]

to perform the measurements. The A2A technique divides the quark propagator into an exact

low mode contribution which we can calculate using the Lanczos algorithm and a high mode

contribution which can be accessed using stochastic approximation. In our calculation, we choose

the number of low mode eigenvectors to be 900 for the up and down quark, and 0 for the strange

quark. For the high mode contribution, we perform spin, color, flavor and time dilution (i.e. we

perform a separate inversion for each of the 24 colors, spins and flavors for each time slice). We

use the same spatial field of random numbers for these 24 inversions but a different such field for

each time slice [14]. We choose the number of random hits to be 1 (i.e. we use only a single

random field on each time slice) since increasing it does not reduce the uncertainty [14].

We will work with two groups of pion operators. The first is labeled as c(111) with 8 different

operators. These operators create pions carrying momenta (±c/!,±c/!,±c/!). The second group

is labeled as c(311) and contains 24 different operators. For this group one of the momentum

components is replaced by ±3c/!.

We then combine two of these single-pion interpolating operators to construct cc( ®?, ®@) opera-

tors with momenta ®% = ®? + ®@, where now ®? and ®@ are the momenta of the individual pions:

$
U,V
cc (C, ®?, ®@) = cU(C + 4, ®?)cV(C, ®@) , (4.8)

where U and V are isospin indices. As suggested by this equation, when we construct the cc( ®?, ®@)

operators, we separate the two single-pion operators in the time direction by 4 units. This sup-

presses the statistical error from the disconnected diagrams (the V diagram below) by a factor of

two in the � = 0 channel [28]. For consistency, when we construct the � = 2 cc(. . .) operators, we

also separate the two pion operators by 4 units in the time direction.
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4.1.1 Momentum decomposition

The cubic symmetry breaking mentioned in Section 3.4 manifests as differences in the cou-

plings between interpolating operators and meson states whose momenta are related by cubic ro-

tations (the energies themselves are not affected). In order to obtain cc interpolating operators

that respect the cubic symmetry and that can therefore be related to the continuum B-wave states,

it is vital that we control this symmetry breaking. In Ref. [13] it was demonstrated that the cubic

symmetry breaking in the pion states can be heavily suppressed by averaging over pairs of pion

interpolating operators of the same total momenta but with different assignments of quark mo-

menta. We apply this technique for the present work and extend it to include the sigma operator.

The two quark and anti-quark momentum pairs for each pion momentum are listed in Appendix A.

In Section 5.4 we carefully analyze our data in order to account for any residual cubic symmetry

breaking effects as a systematic error.

In evaluating the Wick contractions it is often convenient to utilize the W5-hermiticity of the

quark propagator G:

W5[G(G, H)]†W5 = G(H, G) , (4.9)

where the dagger (†) indicates the hermitian conjugate of the matrix in its spin, color and flavor

indices, in order to exchange the source and sink for a particular quark propagator. It is worth

mentioning here that W5-hermiticity is not an exact symmetry between the A2A approximations to

the quark propagators used here because of the asymmetric treatment of the source and sink in the

A2A approach. A further implication of our use of W5-hermiticity to combine related contractions

arises from the effective exchange of the @̄ and @ operators appearing in a meson field when W5-

hermiticity is used on both the propagator leaving @̄ and that arriving at @. By symmetrizing over

the assignments of momenta to the @̄ and @ factors in each meson field, we insure that this use of

W5-hermiticity does not result in a different amplitude. This determines the final pion interpolating

operator we use: for each pion momentum we average over a total of four quark and anti-quark

momentum assignments. For the sigma operator, since it satisfies PBC and has zero momentum
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we average over the eight different quark momentum assignments that are listed in Appendix A to

suppress cubic symmetry breaking. (Note: this symmetrical treatment of the quark and anti-quark

components of the meson field implies that the contractions presented in Refs. [14] and [16] for

the case of a local pion interpolating operator can be unambiguously extended to the case of a

non-local meson field.)

4.1.2 Total momentum

We perform both a stationary-frame calculation where the total two-pion momentum is zero

and moving-frame calculations for which the total momentum is non-zero. In the stationary-frame

calculation we include the scalar f operator for the � = 0 channel and for both isospin channels

two classes of bilinear pair “cc(. . .)” operators: One class has both pions in the group c(111) but

with opposite momenta, which we label cc(111, 111). The second class is made up of pions in the

group c(311), again with opposite momenta and are labeled cc(311, 311).

In the moving frame calculation we can also construct a cc(111, 311) operator for which the

constituent pion operators belong to the two different groups described above. For the present work

we did not collect data using a sigma operator with non-zero momentum; however the analysis

presented in the following sections suggests the inclusion of this operator may be beneficial in

future work. In summary, we therefore have three different classes of operators in the moving-

frame calculation for each isospin channel, as well as in the stationary frame � = 0 channel and

only two classes of operators in the stationary-frame, � = 2 calculation. (Note: our notation

distinguishing the two-pion interpolating operators does not specify the total momentum that they

carry which must be determined from the context.)

4.1.3 Angular momentum

After identifying numerous cc operators with different total momenta, the next step is to

project those cc operators onto angular momentum eigenstates. In this work we are interested

in only the B-wave phase shift but we will also use 3-wave states to estimate the size of cubic
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symmetry breaking in Section 5.4. The angular momentum ; indexes the irreducible representa-

tions of the continuum SO(3) Lie group, but the lattice (assuming we have successfully overcome

the cubic symmetry breaking) is symmetric under only a discrete subgroup of SO(3): either the

cubic group for the stationary frame or a smaller, related group in the case of the moving frame

for which relativistic length contraction alters the shape of the finite volume when viewed from

the perspective of the center of mass frame. In order to generate angular momentum eigenstates

on the lattice we must therefore establish a mapping from the irreducible representations Γ of the

discrete lattice symmetry group � to those of SO(3), from which, given a desired value of ;, we

can determine an appropriate choice of irreducible representation of � in which to construct our

lattice operators. In general this mapping is one-to-many such that to each representation Γ of �

there corresponds a set ((�, Γ) of values of ; to which it corresponds in the SO(3) group. As such

there are usually several representations which satisfy this condition, and we want to choose the

one that is the simplest and which couples to the fewest other values of ;, i.e. for which the set

((�, Γ) is the smallest. For example, we can always use the maximally symmetric representation

(�1) to obtain the B-wave phase shift. For 3-wave states in the stationary frame, we can use the )2

representation [18].

The second step is to construct an operator in the representation Γ by combining the operators

in one of the classes described above using the characters of Γ. The detailed procedure is as

follows:

$
UV

cc,Γ,8
( ®%, C) =

∑̂
)∈�

jΓ()̂)$UV

cc,8
(C + 4, C,

®%
2

+ )̂[ ®? ],
®%
2
− )̂[ ®? ]) . (4.10)

Here )̂[ ®? ] means we apply symmetry operation )̂ on momentum ®?. We sum over all elements

)̂ of the finite-volume symmetry group G, ®% is the total momentum, and j()̂) is the character of

each group element )̂ in the representation Γ. We choose ®? so that all the cc operators appear-

ing in the sum belong to the 8th class. After projection, for each total momentum ®%, instead of

having three or two classes of cc operators, we will only have three or two cc operators, each

transforming under a specific representation of � and constructed from the operators within that

class. Henceforth we will use the labels cc(111, 111), cc(111, 311), cc(311, 311) to refer to those
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projected operators rather than to the classes from which they were constructed.

In the moving-frame calculations reported here, due to the limited number of classes (two) of

single pion operators, we are only able to focus on the three sets of non-zero total momenta ®% with

the smallest individual components: ®% = (±2, 0, 0) c
!
, (±2,±2, 0) c

!
and (±2,±2,±2) c

!
, so that the

number of different classes of cc operators we construct on the lattice is more than one (three in

this work).

4.2 Matrix of two-point correlation functions

We begin a discussion of the correlation functions using a single operator constrained to a

single timeslice (recall our cc(. . .) operators have the pion bilinears on separate timeslices). For

isospin � the two-point cc correlation function is determined by the Euclidean Green’s function

� �(CB=: , CBA2) = 〈$ �†
cc(CB=: )$ �

cc(CBA2)〉 , (4.11)

where 〈. . .〉 indicates the expectation value from a Euclidean-space Feynman path integral, per-

formed in a finite spatial volume of side ! and time extent ) , obeying periodic boundary conditions

for the gauge field but anti-periodic boundary conditions for the fermion fields in the time direction

and �-parity boundary conditions in the three spatial directions.

Here and in our two earlier papers [13, 16] the hermitian conjugate which appears on the left-

hand operator in Green’s functions such as shown in Eq. (4.11) requires some explanation. For the

case that the operator involves Euclidean fields evaluated at a single time, the hermitian conjugate

represents a combination of path integral field variables which corresponds to the Hermitian con-

jugate of the indicated operator in the time-independent Schrödinger picture which is subsequently

transformed to the time-dependent Heisenberg picture operator whose expectation values are de-

scribed by a Euclidean path integral. For the case that the operator $ �
cc is itself the product of two

such operators evaluated at different times, each operator is to be interpreted in this fashion. In this

case the two operators appearing in this pair are always symmetrized to insure that the resulting
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two-point functions are positive as this notation suggests in spite of the fact that their order is not

exchanged by this prescription.

By inserting two complete sets of intermediate states, we can rewrite this two-point function as

� �(CB=: , CBA2) = 〈c |$ �†
cc |c〉〈c |$ �

cc |c〉4−C�c,8=4−()−C)�c,>DC

+ 〈0|$ �†
cc |cc〉〈cc |$ �

cc |0〉4−C�cc

+ 〈cc |$ �†
cc |0〉〈0|$ �

cc |cc〉4−()−C)�cc

+ 〈0|$ �†
cc |0〉〈0|$ �

cc |0〉X�,0

(4.12)

in the limit where both C ≡ CB=:−CBA2 and )−C are large so that we can neglect the contribution from

excited intermediate states. Notice the first term describes the “around-the-world effect”, which

is exponentially suppressed in ) . Here �c,8= and �c,>DC are the energies of the pions propagating

from the source along the positive and negative time directions, respectively. These two energies

should be the same in a stationary frame calculation but they may be different for a moving frame.

The second and third terms, which can be combined together into a cosh function of the time

separation t, describe the ground state cc scattering, one for the forward propagating cc along the

time direction and the other for the backward propagating case. The last term, which describes

the contribution of the vacuum intermediate state, appears only in the � = 0 channel and does not

describe the physics of cc scattering. This term is the largest source of statistical error because it

is time-independent and therefore results in a decreasing signal-to-noise ratio as we increase the

time separation C to suppress excited state contamination.

In practice, due to the rapid reduction in signal-to-noise ratio and the finite temporal extent

of the lattice it is necessary to include data in the region where C or ) − C is not very large. By

including data from smaller time separations our results will be affected by contamination from

excited-states. One way to suppress these errors is to expand the sum over intermediate states

in Eq. (4.12) to include not only the ground state but also one or more excited states and then

to fit using this more complicated expression. However, even if we only include one more state,

performing such a multi-state fit may be difficult using a single interpolating operator since we are
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attempting to determine an increasing number of parameters purely from the time dependence of

data with a rapidly falling single-to-noise.

While increasing statistics will ultimately allow the various states to be isolated, a far more

powerful technique is to introduce additional interpolating operators which all share the same

quantum numbers and therefore project onto the same set of states, albeit with different coeffi-

cients. While naively equivalent to increasing statistics, the additional operators actually introduce

a wealth of new information that helps constrain the fit. This additional information can also be ex-

ploited more directly using the GEVP technique (described in more detail in Section 5.2) whereby

the energies of # states can be obtained from Green’s functions comprising # operators using

only three timeslices. A simpler method which allows for the detection of the presence of excited

states using data from only a single timeslice by looking at the “normalized determinant” will be

discussed in Section 5.2.

In order to perform a stable fit where both ground and excited states are included, we introduce

additional interpolating operators which all share the same quantum numbers so that the number of

operators can be larger than or equal to the number of states included in the fit. Thus, we consider

the matrix of two-point correlation functions:

� �8 9 (CB=: , CBA2) = 〈$ �†
8

(CB=: )$ �
9 (CBA2)〉 , (4.13)

where indices 8 and 9 distinguish the operators. We can then expand Eq. (4.13) to include excited-

state contributions:

� �8 9 (CB=: , CBA2) = 〈c |$ �†
8
|c〉〈c |$ �

9 |c〉4−C�c,8=4−()−C)�c,>DC

+
<∑
==0

{
〈0|$ �†

8
|=〉〈=|$ �

9 |0〉4−C�= + 〈=|$ �†
8
|0〉〈0|$ �

9 |=〉4−()−C)�=
}

+ 〈0|$ �†
cc |0〉〈0|$ �

cc |0〉X�,0 .

(4.14)

Now the excited state contamination error has been reduced since the lightest state that we neglect

is the one with energy �<+1, which is higher than �1, the energy of the first state that we neglected

35



in Eq. (4.12). For simplicity in the discussion above we have identified a single time CB=:/BA2 that

is associated with each two-pion operator. However, these operators are constructed from two,

single-pion operators evaluated at the times CB=:/BA2 + 4 and CB=:/BA2 as shown in Eq. (4.10). In the

remainder of this paper we will use the variable C = CB=:−CBA2−4 to describe the separation between

the two operators which indicates a minimum distance of propagation needed to connect the two,

two-pion operators.

Assuming that the fit is able to reliably obtain the parameters then clearly the larger number of

states that are included in the fit, the smaller the resulting excited state contamination. However,

given the added computational cost and resulting fit complexity, we should be careful to include

only operators which help to distinguish the relevant excited states. An important criterion, dis-

cussed later, is the degree to which the operators introduced overlap with the state being studied or

a common set of excited states.

4.3 Contraction diagrams for cc scattering

We are interested in the scattering process for specific isospin channels. The � = 0 and � = 2

cc state with �I = 2 can be constructed from c+, c−, c0 states as below:

|� = 2, �I = 2〉 = |c+〉|c+〉 (4.15)

|� = 0, �I = 0〉 =
1
√

3

{
|c+〉|c−〉 − |c0〉|c0〉 + |c−〉|c+〉

}
. (4.16)

The matrix of two-point correlation functions for the cc and f operators can be obtained from

a linear combination of eight different diagrams, labeled as �, �, ', + , �fcc, +fcc, �ff and +ff,

each corresponding to a particular Wick contraction that is identified in Fig. 4.1. Their definition in

terms of quark propagator is given in Appendix C. They can be combined to obtain the two-point

36



Figure 4.1: Diagrams showing the contractions which contribute to the two-point functions involv-
ing the cc(. . .) and f operators. The solid dots indicate the positions of the pion two-quark oper-
ators and the dotted vertical lines passing through these points indicate the separate 3-dimensional
time slices on which these operators are placed, with the nearby pairs of lines separated by four
time units as described in Eq. (4.10). Identical diagrams appear for the f operator only with a sin-
gle vertical line at the source and/or sink, with the dots now representing the scalar bilinear. The
top 4 diagrams are labeled by �, �, ' and + diagrams from left to right, and the lower 4 diagrams
are labeled by �fcc, +fcc, �ff and +ff from left to right.

correlation functions as follows:

〈cc(C)cc(0)〉�=2 = 2� − 2�

〈cc(C)cc(0)〉�=0 = 2� + � − 6' + 3+
(4.17)

〈f(C)f(0)〉 =
1
2
+ff −

1
2
�ff

〈f(C)cc(0)〉 =
√

6
4
+fcc −

√
6

2
�fcc .

(4.18)

If we were to perform the contractions for each of the different total momenta by substituting

Eq. (4.10) into Eqs. (4.17) and (4.18), the number of different contractions to be evaluated for each

gauge configuration would be 7848, which is unnecessarily large. The technique which we employ

to reduce the number of momentum combinations takes advantage of three kinds of symmetry

in cc scattering: parity symmetry, which corresponds to changing each momentum from ®? to

− ®? , axis permutation symmetry, which permutes the three coordinate axes and an “auxiliary-

diagram” symmetry, which relies on the combination of W5 hermiticity and the “around-the-world”

contraction to show that two diagrams whose source and sink momenta satisfy a special relation are
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identical (For more details about the “auxiliary-diagram” symmetry, we refer readers to Ref. [29]).

Using a subset of the gauge configurations in this study, we have found that excluding all but one

of the momentum combinations that are related by these three symmetries does not increase the

statistical error for the measured cc energy. This strategy substantially reduces the number of

momentum combinations from 7848 to 1037 [29].

4.4 Estimating statistical errors and goodness of fit

In this paper we use multi-state correlated fits to determine the energies of each state and the

overlap amplitudes between the different states and operators. The fitting procedure is flexible, e.g.

we can perform a fit where the number of operators and states are different and we can perform

a “frozen fit” where some of the parameters are held fixed during the fit, which is useful in the

excited-state error analysis. An important benefit of our fitting procedure is our ability to calculate

a ?-value, which is a measure of how well our data matches with our theoretical expectation for

the time dependence of the two-point function being analyzed.

However, the determination of statistical errors and the calculation of a ?-value are not straight-

forward. Not only are we performing a correlated fit where the covariance matrix is itself deter-

mined by the data and therefore has its own, often substantial uncertainties, but there are autocor-

relations between configurations, since the sampling interval between neighboring configurations

used in our analysis is comparable to or smaller than the autocorrelation time which separates truly

independent samples. While our number of samples, 741, is relatively large compared to many

lattice calculations, if we group these samples into bins of two or four and thereby reduce the

autocorrelations between these binned samples, the resulting decrease in the effective number of

samples loses significant information about the fluctuations which is required for adequate control

of the covariance matrix upon which our correlated fits are based.

Fortunately, we have developed methods to solve both of these issues. These methods are

based on a combination of the jackknife and the non-overlapping blocked-bootstrap resampling

techniques [30]. The bootstrap technique uses uncorrelated, non-overlapping blocks of data for
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its samples and gives statistical errors unaffected by the autocorrelation between our 741 samples.

However, the inner jackknife resampling introduced to calculate the covariance matrix for each

outer bootstrap sample is applied to the unbinned data obtained as a union of all of the blocks in

a given jackknife sample. In this paper the block size is chosen to be 8 to suppress the effects of

autocorrelation. Finally the distribution of bootstrap means about the mean for the entire sample,

determines the proper j2 distribution that can be used to correctly determine the ?-value for the

fit. (Recall that the usual standard j2 distribution is not accurate when j2 is determined using an

uncertain covariance matrix in the presence of autocorrelations.) More details of this method can

be found in Ref. [30].
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Chapter 5: Results for cc scattering

In this chapter we briefly summarize our previous work on the cc scattering phase shift calcu-

lation[15]. In the first section we discuss the single-pion two point function and the corresponding

pion energy on our lattice with GPBC. In the second section we discuss the results for the finite

volume cc energies for isospin � = 0 and � = 2 channel calculated based on one stationary frame

and three moving frames. In the third section we discuss how we use Lüscher’s finite-volume quan-

tization method to calculate the physical phase shift. In the last section we discuss the systematic

errors in this calculation.

5.1 Single pion two-point function and its result

In order to determine the pion energy and mass, we calculate a two-point function using the

neutral pion operator:

�( ®?, CB=: , CBA2) =
〈
c0(CB=: ,− ®?)c0(CBA2, ®?)

〉
(5.1)

for all possible values of CBA2 and CB=: and then we average over CBA2 while keeping C = CB=: − CBA2

fixed. We have in total 32 different pion momenta, 8 from the c(111) group of operators and the

other 24 from the c(311) group. Up to the effects of the cubic symmetry breaking induced by the

boundary conditions, which are heavily suppressed by the procedure discussed in Section 3.4 and

the residual effects shown to be negligible in Section 5.4, the two point functions within each group

are related by cubic rotations hence we average the two-point functions within each group. This

leaves us with two correlation functions, �8c(C), where 8 ∈ {(111), (311)} represents the momentum

of the pion without specifying its direction.
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We then perform correlated fits of each correlation function to the form

�8c(C) = �8c(4−�
8
c C + 4−�

8
c ()−C)) (5.2)

using various fit ranges, all of which share the same upper limit Cmax = 29. Here �8c is related to the

normalization of the operator $8c while � 8c is the energy of a moving pion state with momentum

(1, 1, 1) c
!

or (3, 1, 1) c
!

. The fitted results for � 8c plotted as a function of Cmin are shown in Figure 5.1.

From both plots we can see a clear plateau starting from Cmin = 14. For that reason we choose the

fit range to be 14 − 29 and the fit results for that choice are listed in Tab. 5.1. The good ?-values

for both fits suggest that our data is well described by this single-state model.

Knowledge of the mass of the pion is required for the determination of the cc phase shifts via

the Lüscher procedure. Unfortunately, with GPBC we are unable to measure this mass directly

and must instead infer it from the energy of a moving state with a suitable choice of dispersion

relation. In Tab. 5.1 we give the results of applying the continuum dispersion relation to the (111)

and (311) moving pion energies, which are labeled as <c,CD. We can see that the resulting masses

are inconsistent, which we interpret as the result of discretization effects on the dispersion relation.

We also calculate the pion mass using the dispersion relation obeyed by a free particle on our

discrete lattice

cosh(�c) = cosh(<c) +
3∑
8=1

(1 − cos(?8)) , (5.3)

where the pion mass is identified as the energy of a pion with zero-momentum. The results are

listed in Tab. 5.1 as <c,LD and are consistent between the two momenta.

The large discrepancy between the two pion masses calculated using different dispersion re-

lations suggests that when we calculate the pion mass using the larger-momenta c(311) operators

the result has not only a statistical error that is 3 times larger than that from the c(111) operators,

but also a large systematic error. For the remainder of this paper, we will use <c,CD = 142.3(0.7)

MeV calculated from the c(111) operators using the continuum dispersion relation as the pion

mass. This 142.3(0.7) MeV value differs from the physical pion mass of 135 MeV by 7 MeV. This
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Figure 5.1: The Cmin dependence of the fitted energy �c for the c(111)(left) and c(311)(right)
cases. Here �c is shown in lattice units with Cmax fixed to be 29.

State Fit range �c �c ?-value <c,CD(MeV) <c,LD(MeV)
c(111) 14-29 6.194(11) × 106 0.19893(13) 0.99 142.3(0.7) 143.3(0.7)
c(311) 14-29 3.138(18) × 106 0.33948(47) 0.64 132.4(2.4) 144.3(2.3)

Table 5.1: Results for the fitted energies for the pion states with momenta in the groups (111) and
(311). The right-most two columns show the pion masses calculated from those energies using
the continuum (<c,CD) and free-particle lattice (<c,LD) dispersion relations. We have converted to
units of MeV by using the inverse lattice spacing for this ensemble, 1/0 = 1.3784(68) GeV, where
the error on 0 also has been propagated into the errors on the energies given here.

introduces an “unphysical pion mass” error into our results which will be discussed in Sections 5.3

and 5.4. We will neglect the discretization error that remains in our determination of the pion mass

since the 1 MeV discrepancy between the <c,CD and <c,LD in Tab. 5.1 is small compared to the 7

MeV “unphysical pion mass” error identified above.

5.2 Finite-volume cc energies

In this section we describe our multi-state, multi-operator fitting strategies and the resulting fit

parameters for both the stationary frame and the moving frame calculations and for both the � = 0

and � = 2 channels. Since these four situations are different, we will discuss them separately. At

the end of this section we briefly discuss results obtained from another data analysis technique,

the GEVP. This both provides alternative results for these quantities and an opportunity to com-
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pare these two methods. Because the primary focus of this paper is on the properties of the cc

ground state, this discussion of the GEVP method is limited to the ground state energies which it

determines.

5.2.1 Stationary frame

� = 2 Channel

In the stationary � = 2 channel, we have two classes of operators, cc(111, 111) and cc(311, 311).

We project them onto the trivial �1 representation of the cubic symmetry group, which is the ap-

proximate symmetry group of a finite-volume lattice. (A discussion of possible cubic symme-

try breaking effects resulting from our G-parity boundary conditions will be presented in Sec-

tion 5.4.) This projection results in two different cc operators, $0 = cc�1(111, 111) and $1 =

cc�1(311, 311). We then calculate the matrix of two-point functions constructed from these two

operators by measuring

�8 9 (CB=: , C = CB=: − CBA2 − Δ) = 〈$†
8
(CB=: )$ 9 (CBA2)〉, (5.4)

where Δ = 4 is the time-separation between two pion fields used to construct each cc operator. We

average over all values of CBA2 while fixing C and then average the data at C with that at C = )−C−2Δ to

improve the statistics. (The individual single-pion operators at the times CB=:/BA2+Δ and CB=:/BA2 that

make up each two-pion operator are constructed to be identical so when taking this second average

we are combining equivalent physical quantities.) We then try two different fitting strategies:

1) Fit the single two-point function �00(C) assuming a single intermediate state and an around-

the-world constant using the form

�00(C) = �

(
4−�cc C + 4−�cc ()−C−2Δ)

)
+ �, (5.5)

where � describes the normalization of the operator, �cc is the energy of the finite-volume cc
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Figure 5.2: The Cmin dependence of fitted ground state energy for the stationary cc�=2 channel (left)
with Cmax = 25 and the stationary cc�=0 channel (right) with Cmax = 15. Left: The circles represent
the two-operator, two-state fit and downward pointing triangles the one-operator, one-state fit.
Right: The pentagons represent the one-operator, one-state fit. The stars and downward pointing
triangles show the results from the two two-operator, two-state fits. Finally the circles show the
three-operator, three-state fit for Cmin = 3 and 4 while the diamonds show the three-operator, two-
state fit for Cmin = 5 − 8. For the � = 0 channel, including additional operators (especially the f)
substantially improves the determination of the ground state energy.

ground state and � is the around-the-world constant. Thus, a total of three fit parameters are

required. We neglect all data related to the second operator $1 so this is a one-operator, one-state

fit.

2) Fit the upper triangular component of the 2× 2 matrix of two-point functions �01 using two

intermediate states and three different around-the-world constants using the form

�8 9 (C) =
2∑
G=1

�8G� 9G

(
4−�G C + 4−�G()−C−2Δ)

)
+ �8 9 , (5.6)

where �8G is the overlap between the 8Cℎ operator and the GCℎ state; �G is the energy of the GCℎ state

and �8 9 is the around-the-world constant constructed from operators $8 and $ 9 for a total of 9 real

fit parameters. Note that, as the lower triangular component of the matrix is related to the upper

triangular component by the time-translational symmetry, we did not measure these terms in order

to reduce the computational cost.

For each case, we perform correlated fits with various choices for Cmin and set Cmax = 25. We
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plot the resulting ground state energy as a function of Cmin in the left panel of Figure 5.2. As we

can see from the plot, the introduction of the second operator does not noticeably improve the fit

result, as the ground state energies given by both fitting strategies are statistically consistent for

all Cmin and the statistical errors are also consistent. As we increase Cmin, the ground state energy

first decreases, which suggests a non-negligible excited state contamination for small Cmin and then

reaches a plateau for Cmin ≈ 10. We adopt the 2-operator, 2-state fit with the fitting range of 10−25

for our final result. In Tab. 5.2 we list the ?-values and the final parameters obtained from that

approach. We observe an excellent ?-value indicating a strong consistency between the data and

our model.

The fact that �00 is 60f resolved from zero suggests the importance of including these around-

the-world constants in our fits. This conclusion can also be reached by performing a similar fit

in which the only change is that these constants are excluded. These fits give ?-values that are

consistent with zero, suggesting that these constants are required.

We also observe that the matrix of overlap amplitudes �8G is nearly diagonal, where the operator

$0 predominantly couples to the ground state and the operator$1 couples almost exclusively with

the first excited state. The intercoupling between the operators and excited states is essential to

exploiting the power of the multi-operator technique; without it one is merely performing several

independent fits simultaneously. The fact that the amplitude matrix is near diagonal therefore likely

explains the lack of improvement of the fit to the ground state energy when the second operator

is introduced. The reason why this matrix is so diagonal can be intuitively explained by the weak

strength of the cc interaction potential in the � = 2 channel as indicated by the small phase shifts.

Such an interaction is required for the pions to exchange momentum and thus transform into other

cc states.

� = 0 Channel

In the stationary � = 0 channel, we have three classes of interpolating operator, two of which

are constructed from two-pion interpolating operators and the other is the stationary f operator.
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� = 2 channel (2,2,2) (2,2,0) (2,0,0) (0,0,0)
Fit range 10-25 12-25 11-25 10-25

Fit strategy 3op-3state 3op-3state 3op-3state 2op-2state
�00 0.3941(6) 0.2770(5) 0.1933(3) 0.4214(9)
�01 0.004684(565) 0.007011(548) 0.009301(455) 0.012(10)
�02 0.001209(1890) 0.005350(1812) 0.005249(1482) -
�10 −2665(31) × 10−6 −4632(27) × 10−6 -0.007711(43) -0.01164(10)
�11 0.08800(29) 0.07457(39) 0.07485(34) 0.0696(60)
�12 0.003506(901) 0.001437(1382) 0.0050(13) -
�20 −9626(124) × 10−7 −1522(11) × 10−6 −2327(14) × 10−6 -
�21 −3319(114) × 10−6 −3914(162) × 10−6 −4637(145) × 10−6 -
�22 0.04690(66) 0.04592(111) 0.03940(103) -
�0 0.3984(3) 0.4001(3) 0.4045(3) 0.41535(45)
�1 0.5453(7) 0.5480(10) 0.5514(9) 0.713(17)
�2 0.6902(28) 0.6874(40) 0.6916(48) -
�00 8097(68) × 10−9 4034(35) × 10−9 1979(19) × 10−9 940(16) × 10−8

�01 −5748(3888) × 10−12 −1388(169) × 10−11 −1865(157) × 10−11 134(350) × 10−11

�02 −1025(178) × 10−11 −8835(934) × 10−12 −9792(986) × 10−12 -
�11 1136(154) × 10−11 9200(1074) × 10−12 9798(1111) × 10−12 −101(16) × 10−9

�12 −2642(4459) × 10−13 206(3020) × 10−13 −2617(3372) × 10−13 -
�22 2967(3749) × 10−13 1084(2540) × 10−13 2153(2980) × 10−13 -

?-value 0.477 0.641 0.293 0.159

Table 5.2: Final fitting results for the � = 2, cc channel. The right-most column lists the parameters
obtained from a two-operator, two-state fit to the cc-cc correlation function in the case of total
momentum (0, 0, 0) that is discussed in this subsection. The next three columns from the right
show the parameters obtained from three-operator, three-state fits for three non-zero values of the
total momentum.
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After projecting the cc operators onto the �1 representation, we obtain three different operators:

$0 = cc�1(111, 111), $1 = cc�1(311, 311) and $2 = f and calculate the matrix of two-point

functions

�8 9 (CB=: , C = CB=: − CBA2 − Δ 9 ) = 〈$†
8
(CB=: )$ 9 (CBA2)〉 − 〈0|$8(CB=: )|0〉〈0|$ 9 (CBA2)|0〉, (5.7)

where the second term represents the vacuum subtraction which removes the disconnected piece in

Eq. (4.12), since it does not contribute to cc scattering. We then average over all CBA2 while fixing

C = CB=: − CBA2 and average the data at C with that at C = ) − C − Δ8 − Δ 9 . Here Δ0 = Δ1 = 4 while

Δ2 = 0. We then explore three different fitting strategies:

1) Fit �00(C) using a single state and the equation

�00(C) = �

(
4−�cc C + 4−�cc ()−C−2Δ0)

)
, (5.8)

where � and � have the same physical meaning as in the stationary � = 2 fit. This is a one-operator,

one-state fit and we have only two fit parameters in total. In contrast with the stationary � = 2

fit, here we neglect the around-the-world constant since an estimate of the size of the dominant

contribution resulting from a single pion propagating through the temporal boundary gives a value

which is approximately ten times smaller than the statistical error on these noisier � = 0 channel

data. Note, if fit as a free parameter, the result for this around-the-world constant is consistent

with zero and gives a ground-state energy consistent with the result obtained when this constant is

excluded, but with a statistical error that is 50% larger.

2) Fit the upper triangular components of the 2 × 2 submatrix spanned by $0 and one of the

other two operators using two states and the equation

�8 9 (C) =
#∑
G=1

�8G� 9G

(
4−�G C + 4−�G()−C−Δ8−Δ 9 )

)
, (5.9)

where # = 2, �8G is the overlap amplitude between the 8Cℎ operator and the GCℎ state, �G is the
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energy of the GCℎ finite-volume state and (8, 9) takes values from either {0, 1} or {0, 2}. Thus,

this is a six-parameter fit. An analysis similar to that mentioned in 1) above shows that the three

around-the-world constants should be excluded.

3) Fit the upper triangular component of the entire 3 × 3 matrix of two-point functions using

two or three states and the fitting form given in Eq. (5.9) where # = 2 or 3 is the number of states

we include in the fit. We neglect the around-the-world constants for the same reasons as above,

resulting in 12 (N=3) or 8 (N=2) fit parameters in total.

For each fitting strategy, we perform correlated fits with various values of Cmin and set Cmax = 15.

We do not extend Cmax to 25 as we did for the � = 2 channel since the data for C > 15 have larger

statistical errors than in the � = 2 case, so including them will not benefit our fit. However, adding

more fit points will destabilize the correlation matrix inversion procedure because of its increased

dimension. We also risk introducing data for which the neglected around-the-world contribution

may be a dominant component of the large-time data that has been introduced. This behavior

is suggested because although the around-the-world constants remain statistically consistent with

zero the ?-value does fall as Cmax is increased. Note that we do not observe any corresponding

statistically significant effects on the amplitudes and energies as Cmax is increased suggesting that

our fits remain robust even in the presence of around-the-world contributions. A similar issue is

encountered for the moving frame � = 0 fits and is discussed in greater detail in Section 5.2.2.

We plot the ground state energies from these fits as a function of Cmin in the right panel of

Fig. 5.2. For the three-operator case, we perform the three-state fit for Cmin ≤ 4 while for Cmin ≥ 5

we use the two-state fit as we observed that the three-state fits with Cmin ≥ 5 were unstable and did

not converge for many bootstrap samples, indicating that the third state can no longer be reliably

resolved in the data. As we increase the number of operators, the ground state energy at fixed

Cmin becomes significantly lower and the plateau region becomes more clear and begins earlier.

We conclude that in contrast with the � = 2 channel, the introduction of the two extra operators,

especially the f interpolating operator, substantially reduces not only the statistical error but also

the systematic error resulting from excited state contamination.
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Since the plateau region for the three-operator fit starts at C = 6, we choose the three-operator,

two-state fit with a fitting range of 6 − 15 to determine our final results. In the right-hand column

of Tab. 5.3 we list the ?-value and final parameters for that fit. We can see that especially for the

cc(111, 111) (a) and f (c) the overlap amplitudes between a given operator and the two states are

of comparable size, which explains the effectiveness of the multiple operators that we included.

This strong intercoupling between operators and states is consistent with the fact that the phase

shift and hence the cc interaction strength, is considerably larger than in the � = 2 case. Hence the

exchange of momentum between the two pions required for the mixing between states is enhanced.

For � = 2 the two cc operators assign momenta with different magnitudes to the pions and would

each couple to a different cc energy eigenstate if the pions were non-interacting.

The fact that the overlap between operator$0 and the first excited state is about half of the over-

lap of that operator with the ground state also provides a strong indication that there is likely to be

non-negligible excited-state contamination in a single-operator, single-state fit. This explains the

substantial discrepancy between the phase shift at an energy near the kaon mass that we published

in Ref. [1] and both the results presented here and those from the earlier dispersive prediction [9].

This can also be seen in the right panel of Fig. 5.2, where the single-operator fit reaches an apparent

plateau at around C = 6 or 7 with an energy that is consistent with our previously published value

but which is substantially larger than the ground-state revealed by the introduction of the additional

operators.

5.2.2 Moving frame

� = 2 Channel

In the moving � = 2 channel, we have three classes of operators, cc(111, 111), cc(111, 311)

and cc(311, 311). We project them onto the trivial representation of the little group of the cubic

symmetry group which leaves the total momentum unchanged. These little groups are �4E for

®%C>C = (±2, 0, 0) c
!

, �2E for ®%C>C = (±2,±2, 0) c
!

and �3E for ®%C>C = (±2,±2,±2) c
!

. For each choice

of ®%C>C , this gives us three different operators, $0 = cc�1(111, 111), $1 = cc�1(111, 311) and
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� = 0 channel (2,2,2) (2,2,0) (2,0,0) (0,0,0)
Fit range 6-10 8-15 7-15 6-15

Fit strategy 3op-3state 3op-3state 3op-3state 3op-2state
�00 0.3873(7) 0.2626(31) 0.1772(26) 0.3682(31)
�01 -0.02647(391) -0.05371(1262) -0.05431(776) -0.1712(91)
�02 -0.01354(312) -0.03438(559) -0.02450(274) -
�10 −1298(439) × 10−6 0.002231(1392) 0.005861(1306) 0.0038(3)
�11 0.08361(100) 0.06894(318) 0.06781(261) 0.0513(27)
�12 -0.01121(395) -0.01277(940) -0.02008(636) -
�20 −8172(1223) × 10−7 −1920(3981) × 10−7 4871(4239) × 10−7 -0.000431(4)
�21 0.000837(1050) 0.001713(2049) 0.003439(1464) -0.000314(17)
�22 0.04786(126) 0.04602(456) 0.03735(263) -
�0 0.3972(4) 0.3895(17) 0.3774(23) 0.3479(11)
�1 0.5264(37) 0.5129(100) 0.5032(75) 0.569(13)
�2 0.6881(93) 0.6758(243) 0.6514(183) -

?-value 0.094 0.016 0.635 0.314

Table 5.3: Table giving our final fitting results for � = 0, cc channel. The right-most column lists
the parameters obtained from a three-operator, two-state fit to the cc-cc correlation function in
the case of total momentum (0, 0, 0) that is discussed in this subsection. The next three columns
from the right show the parameters obtained from three-operator, three-state fits for three non-zero
values of the total momentum.
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$2 = cc�1(311, 311). We calculate the matrix of two-point functions constructed from these three

operators,�8 9 (CB=: , CBA2) and combine the various values of CBA2 and CB=: in the same way as was done

for the stationary � = 2 calculation, except for an extra step where for each value of | ®%C>C |, we also

average over all of the possible total momentum directions. This leaves us with three correlation

matrices, one for each | ®%C>C |. We then try three different fitting strategies for each | ®%C>C |:

1) Fit�00 alone with a single state and an around-the-world constant, as we did in the stationary

� = 2 calculation.

2) Fit the upper triangular component of the 2×2 submatrix spanned by$0 and one of the other

two operators using two states and three different around-the-world constants using the equation

�8 9 (C) =
#∑
G=1

�8G� 9G

(
4−�G C + 4−�G()−C−2Δ)

)
+ �8 9 , (5.10)

where the definitions of �8G , �G and �8 9 are the same as the stationary frame, # = 2 and (8, 9) takes

value from either {0, 1} or {0, 2}, giving nine fit parameters for either fit.

3) Fit the upper triangular component of the entire 3 × 3 matrix of two-point functions using

three states, six around-the-world constants and Eq. (5.10) with # = 3. In this case there are a total

of 18 fit parameters.

For each value of | ®%C>C | and fitting strategy, we perform correlated fits with Cmax = 25, vary the

value of Cmin and plot the fitted ground state energy as a function of Cmin in Figure 5.3, as in the

stationary � = 2 calculation.

Similar to the stationary � = 2 calculation, for all three values of | ®%C>C |, the introduction of the

two extra operators has little impact on the ground state energy. As we increase Cmin, the ground

state energy first decreases, suggesting a non-negligible excited state error for small Cmin and then

reaches the plateau region. This plateau starts at Cmin = 11 for %C>C = (±2, 0, 0) c
!

, Cmin = 12

for %C>C = (±2,±2, 0) c
!

and Cmin = 10 for %C>C = (±2,±2,±2) c
!

. We choose the three-operator,

three-state fit with tmax=25 and tmin fixed to the start of the plateau region identified above.

In Tab. 5.2 we list the ?-value and the final parameters for each choice of %C>C . With the chosen
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fit ranges we observe excellent ?-values for all values of the total momentum. The fact that for

each %C>C , �00 is 100f resolved from zero suggests the importance of including these around-the-

world constants in the fitting. The overlap matrices are all nearly diagonal as in the stationary � = 2

calculation so that each operator is dominated by a different one of the three states. Thus, as was

the case for the stationary frame � = 2 calculation, this explains why the introduction of these two

additional operators does not improve the determination of the ground state energy.

It is also worth mentioning that the constant terms we include in the fit only describe the lowest-

order around-the-world (ATW) effect mentioned in Sec. 3.4, where both the pions on leg A (direct

propagation between the two single-pion operators) and leg B (propagation through the temporal

boundary) carry a minimum momenta with components ±c/!. Here we refer to segments of an

around-the-world propagation path identified in Fig. 5.4. In contrast to the stationary case, the

higher-order ATW terms in the moving frame need not be described by a constant term in the

Green’s function. For example, one of the pions on leg A or leg B could be replaced by a pion one

of whose components has the larger ±3c/! value. This possibility still conserves momentum and

will show an exponential time dependence.

When compared with the first-order ATW effect, this second-order ATW effect is exponentially

suppressed by the energy difference between a pion with three ±c/! momentum components and

a pion with one component increased to ±3c/!. However, in our calculation, due to the time

separation Δ between the two single-pion operators that make up our cc operator, this second-order

effect can be enhanced in some cases. For example, we can look at the Green’s function constructed

from two $1 operators. We define the state that propagates between the two temporally-separated

pion operators in our cc operator as the “internal state". Notice we have two internal states here,

since we have two cc operators. For the first-order case, the two internal states cannot both be the

vacuum while conserving momentum, but for the second-order effect they can. This is illustrated

in Figure 5.4. Thus, in this example the second-order effect is enhanced at least by a factor of

4�Δ = 4.2, where � is the lowest energy of the internal state which we approximate by the � = 0

cc energy.
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� = 2 channel (2,2,2) (2,2,0) (2,0,0)
Fit range 10-25 12-25 11-25
��),,2=3 0.3985(3) 0.4002(3) 0.4045(3)
X� 411(1167) × 10−7 867(1981) × 10−7 −731(1700) × 10−7

Table 5.4: Fit results used for estimating the size of the second-order ATW effect in the � = 2
results given in Sec. 5.2.2. Here ��),,2=3 is the ground state energy when the second order ATW
term is included in the fit and X� is the energy difference between ��),,2=3 and �0 given in
Tab. 5.2, which is significantly smaller that the statistical error on �0 given in Tab. 5.2, in all three
cases.

In order to investigate the size of the higher-order ATW terms we perform a fit to the � = 2

data. It can be easily shown that third- and higher-order ATW effects are always exponentially

suppressed when compared with the first-order and second-order effects. This means we can per-

form a fit which includes some extra parameters which represent the second-order ATW effect and

neglect third- and higher-order effects. Here we fit the matrix of correlation functions with the

following fit function:

�8 9 (C) =
#∑
G=1

�8G� 9G

(
4−�G C + 4−�G()−C−2Δ)

)
+ �8 9 + �8 9

(
4−(� c1 −�

c
0 )C + 4−(� c1 −�

c
0 )()−C−2Δ)

)
. (5.11)

Compared with Eq. (5.10), the extra term with coefficient �8 9 describes the second order

ATW effect. Here �c0 and �c1 are the energies of moving pions with momenta (1, 1, 1)c/! and

(3, 1, 1)c/!, respectively. Their values can be obtained from Tab. 5.1. The fitting results for the

ground state cc energy and the sample-by-sample difference between the results with and without

the second order ATW effect are shown in Tab. 5.4. Since the difference is negligible and statisti-

cally consistent with zero, we conclude that we need not include the second- or higher-order ATW

effects in our fits.

� = 0 Channel

As in the case of the moving � = 2 channel, we have three classes of operators, defined as

$0 = cc�1(111, 111), $1 = cc�1(111, 311) and$2 = cc�1(311, 311) which are projected onto the
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trivial representation of the corresponding little group. We calculate the 3 × 3 matrix of two-point

functions constructed from these operators for each of the three values of | ®%C>C | in the same way

as was done for the � = 2 case. We fit the data using three fitting strategies that are similar to the

three used for the moving � = 2 case, except that we exclude the around-the-world constants from

all the fits. The effect of these constants will be discussed below. We then perform correlated fits

with Cmax = 15, vary Cmin and plot the ground state energy as a function of Cmin in Figure 5.3.

Figure 5.3 suggests that the introduction of the two extra operators does improve the fit result,

since the ground state energy from the one-operator, one-state fit is always 2f higher than its value

from the three-operator, three-state fit, suggestive of remnant excited state contamination in the one

state fit. The consistency of the ground state energy between the two-operator ($0, $1), two-state

fit and the three-operator, three-state fit in the plateau region suggests that operator $2 may not be

very useful. This is similar to the stationary � = 0 calculation, where the operator constructed from

the two c(311) operators plays little role in controlling the excited state error.

Another interesting feature is seen in the errors of the fitted parameters when we perform a

single-operator, single-state fit using only the cc(111, 111) operator. Consider how the sizes of

either the relative error of the amplitude, or the absolute error of the ground state energy change

as we decrease the total momentum from (2, 2, 2)2c
!

to (0, 0, 0) c
!

, when the fit range is fixed (e.g.,

6 − 15). The pattern is that these errors increase as the total momentum decreases, as can be seen

in Tab. 5.5! This behavior conflicts with the expectation that these errors would be approximately

the same based on the Lepage argument [31]. For our kinematics, the non-zero total momentum is

created by reversing some of the momentum components of one of the pions. Thus, if the modest

cc interactions are ignored, the four-pion states with zero total momentum which can contribute

to the error will have approximately the same energy as the states which contribute to the signal.

This unexpected phenomenon can be understood by comparing the contributions to the central

values of E0 and A0 and the corresponding errors obtained from the I=0 Green’s functions.. From

Eq. (4.17), there are four types of diagram that contribute to the � = 0 scattering. With
√
B ≤ < ,

the interaction between the pions is small, and the Green’s function is dominated by the D-type
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%C>C (2,2,2) (2,2,0) (2,0,0) (0,0,0)
�0 0.39852(36) 0.39439(44) 0.38553(85) 0.36917(364)
�0 0.15152(50) 0.07300(23) 0.03454(15) 0.01611(26)
X�0
�̄0

0.0033 0.0032 0.0044 0.016

Table 5.5: Single operator ($0) single state fit result with fit range 6−15 for the � = 0 channel. The
absolute error of the ground state energy and relative error of the amplitude are approximately the
same when %C>C = (2, 2, 2) c

!
and (2, 2, 0) c

!
and increase as we further decrease the total momentum.

This effect can be partially understood by comparing the number of momentum matched D-type
diagrams that dominate the central value of the Green’s function to the total number of D-type
diagrams.

diagrams when C ≤ 10 because in the non-interacting limit, the D-type diagrams represent products

of two separate single-pion Green’s functions. The V-type diagrams contain, in the stationary case,

a vacuum contribution that is explicitly subtracted and for all four choices of %C>C contributions

in which gluons propagate between the disconnected components. The error on these diagrams

does not decrease with increasing operator separation and becomes dominant when C ≥ 4. Given

that the V-type diagrams are by far the dominant contribution to the error within our fit ranges,

the size of the error on our fit results will depend primarily on the relative size of the V-diagram

contribution to the overall Green’s function, which, due to the dominance of the D-diagrams in the

signal, is closely related to the relative size of the V and D-diagram contributions. Assuming that

the errors on the amplitudes and the energies are uncorrelated, the pattern of these ratios as the

total momentum varies (our four cases) should then be reflected in the errors on the fitted energies

and amplitudes.

Notice that according to Eq. (4.10), the cc operator with definite momentum ®% will contain

1, 2, 4 and 8 terms for the four cases above with total momentum containing three, two, one or

zero non-zero components, respectively. Since the number of two-point function contractions that

we must evaluate grows like the product of the numbers of terms in its constituent operators, there

will be 1, 4, 16 and 64 different contractions needed for each type with total momentum (2, 2, 2) c
!

,

(2, 2, 0) c
!

, (2, 0, 0) c
!

and (0, 0, 0) c
!

, respectively. All these terms contribute V-type diagrams and

hence to the error of the Green’s function, with each of approximately the same size.
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However, not all of these terms contribute D-type diagrams (and hence to the central value of

the Green’s function), because of a mismatch between the momenta. This can be understood by

looking at the non-interacting limit in which a D-type diagram will only be non-zero when the two

independent single-pion Green’s functions are non-zero. This happens only when each of the two

pions in the source cc operator has the opposite momentum to that carried by one of the pions in

the sink cc operator, which we call momentum matching. Counting these terms gives the numbers

of momentum-matched D-type diagrams for these four possible total momenta: 2, 4, 8 and 16,

respectively. After dropping a common factor of two in this counting of D-type diagrams, these

estimates suggest that the proportions between the relative errors for these four total momenta

become 1
1 : 4

2 : 16
4 : 64

8 = 1 : 2 : 4 : 8. For a cosh fit, if the error of the amplitude and the error

of the energy are uncorrelated, we can see that the relative error of the amplitude and the absolute

error of the energy should be proportional to the relative error of the Green’s function, which

partially explains how the size of the errors on the ground state energy and amplitudes shown in

Tab. 5.3 changes as we decrease the total momentum. A similar analysis can be applied to the � = 2

channel, which suggests that these relative errors should be approximately the same, independent

of the total momentum, which is consistent with what is shown in Tab. 5.2.

Similar to the moving � = 2 channel, as we increase Cmin, the ground state energy first de-

creases, which suggests a non-negligible excited-state contamination for small Cmin. The ground

state energy then reaches a plateau region which starts with Cmin = 7 for %C>C = (±2, 0, 0) c
!

, Cmin = 8

for %C>C = (±2,±2, 0) c
!

and Cmin = 6 for %C>C = (±2,±2,±2) c
!

. For our final result we choose the

three-operator, three-state fit with Cmin equal to the beginning of the plateau region identified above.

The choice of Cmax is more subtle and will be discussed together with the effect of the neglected

around-the-world constants below. In Tab. 5.3 we list for each %C>C the fit range, fit procedure, as

well as the resulting ?-value and final parameters. We also observe in this table a trend towards

smaller intercoupling between the operators and states, i.e. a more diagonal amplitude matrix �8G ,

as we increase the total momentum and thus decrease the center-of-mass energy. This is again

consistent with our understanding of the relation between this intercoupling and the strength of the
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cc interaction, which also decreases as the center-of-mass energy is decreased. This also explains

why the additional operators appear to have the largest impact on the ground-state energy for the

moving frame, %tot = (2, 0, 0)c/! fits in Figure 5.3.

Next we discuss our treatment of the around-the-world constants in the fit. There are two

potential sources of systematic error in our results that must be treated carefully: the excited state

contamination and the around-the-world contributions. The first error is expected to be much more

significant and is discussed in Section 5.4. To leading exponential order in the time extent of

the lattice volume, the around-the-world contributions are time-independent constants even in this

moving frame calculation because of our G-parity boundary conditions. We observe that fitting

with these around-the-world constants as free parameters results in good ?-values for Cmin ≥ 6

but gives results for the constants that are either statistically consistent with 0 (%C>C = (2, 2, 2)

and (2, 0, 0)), or which have an unphysical, negative sign (%C>C = (2, 2, 0)). For all three cases

either their errors when the constants are unresolved or the non-zero fitted values when these

constants can be resolved are ten times larger than the expected size, that of the I=2 around-the-

world constant.

For the case of %C>C = (2, 2, 2) or (2, 0, 0), we can neglect these constants in the fit since there is

no statistical inconsistency between the fitted energy with and without these constants and we

expect that the effects of the true around-the-world constants will be approximately ten times

smaller than these sub-statistical effects. Note that excluding theses constants from the fit gives us

an improvement in the statistical error of the ground state energy by a factor of 1.2 − 1.5. For the

second %C>C = (2, 2, 0) case, the most likely explanation is that the constants are acting as “nuisance

parameters” that help to partially account for the excited state contamination but do not reflect true

around-the-world behavior. Rather than leaving the constants as free parameters and using an

unphysical model to describe our data we choose to fix the constants to zero and to account for the

systematic, excited-state contamination errors separately.

The model with zero around-the-world contributions should be a good description of the data

in the window [Cmin, Cmax] for which Cmin is large enough that excited state effects are small and Cmax
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small enough that the contribution of these constants is small relative to the size of the data. For

Cmax = 15 we observe very poor ?-values even for large Cmin ≤ 10. Reducing Cmax from 15 to 10 we

observe a significant improvement in the goodness-of-fit, finding acceptable ?-values for Cmin ≥ 6.

This behavior is consistent with the effects of around-the-world contributions, although the excited

state contributions may also play a role. Note however that, despite the dramatic improvement in

?-value observed when reducing Cmax from 15 to 10, we observe consistency in the ground-state

fit parameters and no loss of precision, suggesting that the around-the-world systematic error is

negligible and that the fits are under good control. In Figure 5.3 we use Cmax = 15 to show that

reasonable behavior is seen when the around-the-world constants are omitted even for this large

value of Cmax. Further evidence that supports the argument that for %C>C = (2, 2, 0) these constants

are “nuisance parameters” can be found by including them in the fit, fixing Cmax and increasing

Cmin. The resulting around-the-world constants monotonically decrease with increasing Cmin, which

suggests that they likely result from excited state contamination, which is expected to decrease as

Cmin is increased, rather than representing the effects of single-pion around-the-world propagation.

For uniformity, in Tab. 5.3 we choose to list the results for the three smallest total momenta with the

same value of Cmax = 15. This results in the small ?-value of 0.016 for the (2, 2, 0) case. However,

had we used Cmax = 12 we would have obtained equivalent results with a ?-value of 0.205.

5.2.3 Normalized determinant

It is important to emphasize that the introduction of these additional cc(. . .) operators (in all

cases) and f operators (in the stationary � = 0 case) offers something more than a simple statistical

improvement but gives new information about the underlying energy eigenstates. The two-point

Green’s functions �GH for G 6= 0 and/or H 6= 0 typically have larger statistical uncertainties than

�00 at the same C, suggesting that including these additional operators may lead to only a small

reduction in the statistical errors of the fitting parameters. However, in some cases including these

operators significantly improves the statistical error of the ground state energy, (e.g. the stationary

� = 0 case shown in Figure 5.2). We also observe in several cases a significant reduction in the
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energy of the apparent plateau as well as an earlier onset of the plateau region, suggesting that the

extra operators are dramatically improving our ability to resolve nearby excited states which may

be very difficult to distinguish from the ground state when we have only a single operator, even

with large statistics.

Some insight into how this improvement comes about can be gained by considering the “nor-

malized determinant” of the # × # matrix of Green’s functions, N (C), defined as

N (C) =

����� �4C(�(C))∏#
8=1�88(C)

����� , (5.12)

where �(C) is the matrix of Green’s functions. We normalize the determinant using the product

of the diagonal elements of the matrix so that this quantity does not depend on the scale of the

interpolating operators. In fact, it can be shown that 0 ≤ N (C) ≤ 1. If the number of intermediate

states that contribute to �(C), #′, is smaller than # then N (C) = 0 (since the #′, #-component

vectors constructed from the matrix elements of the # operators between these #′ states and the

vacuum, which determine the # × # matrix �8 9 do not span the entire # dimensional space on

which �8 9 acts). Thus, if at a given time C we find N (C) 6= 0, then we can be certain that at least

# distinct states are contributing to �(C). When N (C) ≈ 1, it suggests that these operators create

states from the vacuum which are orthogonal to each other.

In Figure 5.5 we plot N as a function of C for both the 2 × 2 matrix of stationary � = 0 two-

point functions comprising cc(111, 111) and f operators and the 3×3 matrix of Green’s functions

constructed from all three operators. For the two-dimensional matrix case we find at C = Cmin = 6,

N (C) = 0.31(7) giving unambiguous proof that more than one state must be present, while for

the three-dimensional matrix case, N (C) is relatively suppressed and takes value of 0.14(13) at

C = 5 and consistent with zero at C ≥ 6. The observation that the third state can no longer be

distinguished from the noise for C ≥ 5 explains why we were unable to perform reliable 3-operator,

3-state fits to the � = 0 stationary two-point functions with Cmin ≥ 5 earlier in this section. This

is closely related to the discussion of the size of the excited state systematic error, as will be
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explained in Section 5.4. We emphasize that the determinant is computed from two-point function

measurements at a single time separation and provides information beyond that which can be

obtained from the time dependence of a single operator. The slow decrease of N (C) as a function

of C throughout our fitting range suggests that there are states with similar energies, which can be

distinguished even at a single time separation by the multiple operators in our fitting procedure.

Note, according to Tab. 5.3 for the � = 0 channel these three nearby energies expressed in units

of MeV are: �0 = 547.5(6), �1 = 725(5) and �2 = 948(13). While the differences between

these energies are sufficient to easily see the time dependence of shown in Figure 5.5, they are

insufficient to be resolved in a single-operator fit, even with the statistical precision achieved with

741 configurations.

5.2.4 Comparison of multi-operator multi-state fits with the GEVP method

Multi-parameter fitting is a straightforward method to analyze the correlation functions be-

tween pairs of interpolating operators to determine the energies of finite-volume states which these

operators create and the overlap amplitudes between these operators and states. A second ap-

proach to analyze such data is the generalized eigenvalue problem (GEVP) approach [32, 33]. The

GEVP can be viewed as a generalization of the concept of effective mass, from single-operator

to multiple-operator Green’s functions. In principle, this approach has good control over the sys-

tematic error resulting from the excited states that are not included in the analysis. Following the

notation of Ref. [33], the #-dimension GEVP can be defined as

�(C)E=(C, C0) = _=(C, C0)�(C0)E=(C, C0) 1 ≤ = ≤ #, C0 ≤ C , (5.13)

where �(C) is the N-dimensional matrix of two-point functions, E=, 1 ≤ = ≤ # are the eigen-

vectors and _=(C, C0) are the corresponding generalized eigenvalues. (In this section only, we fol-

low the conventions of Ref. [33], and construct the correlation function �8 9 (C) from the product

$8(C)$ 9 (0)†.) In the limit where the lattice temporal extent, ) , is large, the energy of the =Cℎ state
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is related to _= by

�= = lim
C→∞

�eff
= (C, C0)

�eff
= (C, C0) = log(_=(C, C0)) − log(_=(C + 1, C0)) .

(5.14)

The GEVP approach can also be used to construct an operator �†= which creates the normalized

lattice energy eigenstate:

�=(C, C0) = 4−�C&=(C, C0)

&=(C, C0) = '=(C, C0)
#∑
8=1
$8E

=∗
8 (C, C0)

'=(C, C0) =

(
#∑

8, 9=1
E=∗8 (C, C0)�8 9 (C)E=9 (C, C0)

)−0.5
_=(C0 + C/2, C0)
_(C0 + C, C0)

.

(5.15)

It has been shown that in the region where C0 > C/2, the systematic error in the energy of the 8Cℎ

state resulting from states omitted from the analysis is constrained by [33]

Δ� = $
(
4−(�#+1−�8)C

)
. (5.16)

If ) is not sufficiently large, we need to consider two complications to the GEVP procedures

described above. The first is around-the-world propagation, which introduces time-independent

constants into the correlation functions for both isospin channels for each of our four values of

total momentum. One way to eliminate this effect is to introduce a “subtracted matrix of two-

point functions” �(C) defined as �(C) = �(C) − �(C + XC) and use this � matrix in the GEVP

calculation [34]. Notice that this step will not affect the formula for the energy, but a modification

is needed for the operator �= which is now given by

�=(C, C0) = 4−�C&=(C, C0)/
√

1 − 4−�=XC . (5.17)

The second complication comes from backward propagating states. One way to accommodate

this effect is to modify the relation between the eigenvalue and the corresponding energy. For more
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detail, see Ref. [35]. We will not use this method here but instead work with a smaller time range

where the effect of backward propagating states can be neglected.

In this paper we will compare only the ground state energies obtained in our fitting and GEVP

analyses. Specifically we compare the energies obtained from our multi-operator simultaneous

fits to the GEVP effective energy defined in Eq. (5.14). Our comparison of the fitting and GEVP

approaches begins by comparing the fitting results with those obtained from the GEVP at a fixed

time C chosen to be the same as the value of Cmin used in the fit while the value of the GEVP quantity

C0 is chosen as
⌈
C
2
⌉
. We find that the GEVP energy is statistically consistent with the fit result but its

statistical error is about five times larger. Actually the result of this direct comparison should not

be surprising, since much information is lost when the GEVP method is applied to a single (C, C0)

pair.

An improvement to the GEVP method proposed in Ref. [34] is to fit the set of generalized

eigenvalues _0(C, C0), as a function of C with C0 fixed and to include in that fit possible correction

terms from omitted excited states. This addresses the statistical noise problem identified above by

including more of the correlation function data in the GEVP analysis. We adopt a simple version

of this fitting approach and perform a correlated fit to the GEVP eigenvalues of the form

_0(C, C0) = 4−�0(C−C0), (5.18)

fitting all of the data from C = C0 + 1 to a largest value Cmax. As shown in Ref. [33], this functional

form for _0(C, C0) will contain errors from neglected higher energy states which are bounded by

Δ� = $
(
4−(�#+1−�0)C0

)
. (5.19)

By choosing the smallest value of C used in this GEVP fit to be one time unit above C0 we are

minimizing the statistical error in our result for �0 for a given choice of C0. We then treat C0 in

the same spirit as Cmin in our previous multi-parameter fitting of the matrix of Green’s functions
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(which we will call the “usual fit” in the remainder of this section). Thus, we vary C0 searching for

a plateau region for sufficient large C0 and then adopt as the result of this GEVP fitting that value

obtained for �0 from the smallest value of C0 within that plateau region.

While this procedure is similar to what is used in our usual fit, we have not carried out the

detailed discussion of the residual systematic errors coming from excited state contamination that

is attempted in Section 5.4 for our usual fit. Thus, we are unable to say if choosing a larger value

of C than C0 + 1 would have resulted in a sufficiently reduced systematic error to give a reduction in

the total error, overcoming the increase in statistical error that would result from increasing C − C0

above one.

In addition to examining the dependence of the GEVP result for �0 on C0, we must also make

sure that our choice of Cmax is appropriate: if Cmax is too large, then neglecting the backward prop-

agating state will introduce an error; if Cmax is too small, then we will have a small number of

input data points which makes our fit less reliable. We will choose Cmax to be no larger than that

used in our usual fit, so that we can use those earlier results to determine how we should treat the

around-the-world effects. Thus, based on the results obtained from our usual fit, we neglect the

around the world effects for the � = 0 channel and work directly with the correlation matrix �(C) of

two-point functions. For � = 2 these effects were found to be important so in that case we analyze

the subtracted matrix �(C) defined above, using XC = 1. For the � = 2 channel, where we perform

this matrix subtraction process, Cmax is taken to be 20, smaller than the Cmax = 25 in the usual fit,

due to the increased noise resulting from the construction of the subtracted matrix of two-point

functions �(C). The value of Cmax in the � = 0 channel is chosen to be 15, the largest used in the

usual fit. We can then plot the ground state energy from this GEVP fitting as a function of C0 and

look for the beginning of the plateau region and also the ?-value in order to determine C0.

Plots that include both the GEVP fit and the usual fit results are shown in Fig. 5.6. Notice the

x-axis represents Cmin for the usual fit, and C0 for the GEVP method. This choice for plotting was

made to best align both the central values and statistical errors from the two methods. For all but

the stationary � = 0 case, both the usual fit and the GEVP fit are performed with all operators and
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%C>C,� sub C0 fitting range �0 (GEVP) �0 (usual fit) ?-value
(222)�=2 y 10 11-20 0.39854(27) 0.39842(26) 0.385
(220)�=2 y 11 12-20 0.40021(29) 0.40010(32) 0.306
(200)�=2 y 11 12-20 0.40447(31) 0.40454(30) 0.294
(000)�=2 y 11 12-20 0.41528(46) 0.41535(45) 0.665
(222)�=0 n 6 7-15 0.3986(4) 0.3973(4)[17] 0.28
(220)�=0 n 8 9-15 0.3907(13) 0.3895(17)[19] 0.622
(200)�=0 n 6 7-15 0.3823(18) 0.3774(23)[52] 0.983
(000)�=0 n 5 6-15 0.3489(11) 0.3479(11)[10] 0.142

Table 5.6: Comparison between the ground state energy �0 obtained from the GEVP fit (GEVP)
and the direct matrix of two-point functions fit (usual fit) given in Tab.s 5.2 and 5.3, repeated
here for convenience. The C0 used for the GEVP fit is obtained from Fig. 5.6 by recognizing the
beginning of the plateau region and the resulting Cmin = C0 + 1 is shown in the fitting range above.
In the “sub” column we indicate whether (y) or not (n) we are using the subtracted matrix of two-
point functions �(C) to perform the GEVP calculation, removing the around-the-world effects. The
statistical error for both fits are shown in parenthesis while the systematic errors from excited state
contamination for the � = 0 channel, estimated in Section 5.4, are shown in square brackets.

the number of states the same as the number of operators. For the stationary � = 0 case, the usual

fit includes all the operators, and the number of states is 3 when Cmin < 5 and 2 when Cmin ≥ 5. For

the GEVP fit, the statistical error blows up when Cmin > 5 if we include all operators, so we have

used only two operators, $0 and $2, when Cmin > 5. It can be seen that for the � = 2 channel, the

two results are not only consistent with each other, but also show similar time-dependence. For

the � = 0 channel, the two results are not consistent, but this inconsistency may come from the

excited-state error, which will be discussed below.

The final results and the choices of fitting setup are shown in Tab. 5.6. The ?-values shown

suggest that the quality of all the GEVP fits are relatively good. From the table we can see that for

the � = 0 channel the GEVP fit results are approximately 2f larger than the results from the usual

fit if we only include the statistical error. However, the two are consistent if the systematic errors

arising from excited state contamination in the usual fit are included. These excited-state error

estimates were obtained by independent methods as described in Section 5.4 and are also listed in

Tab. 5.11 and match surprisingly well the differences between the results obtained from our usual

and GEVP fits.
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For the � = 2 channel the two results are consistent with each other with comparable statistical

errors which are much smaller than in the � = 0 case. Also notice that in all cases, the GEVP

method gives statistical errors that are no larger than the usual fit method, which suggests that the

GEVP fitting method is a useful tool for analyzing the matrix of Green’s functions for the scattering

considered here. We also expect that the usual fits may be less successful than the GEVP method

when we increase the number of operators in the fit due to instabilities that will likely result from

the larger number of fit parameters. As used here, the GEVP fit is far simpler, being a correlated fit

to a single one-parameter function of the time. The multi-operator fits will further suffer from the

quadratic increase in the number of elements in the covariance matrix, the inversion of which may

become unstable once it becomes too large. In the GEVP case, the size of the covariance matrix

depends only on the size of the fit window.

Nevertheless, for the problem at hand, fitting the matrix of two-point functions is more direct

than fitting the GEVP eigenvalues and, as we will show in Section 5.4, allows considerable flexibil-

ity in estimating the size of the systematic error arising from omitted excited states. In the GEVP

method the number of operators and the number of states must be the same, while in the usual

fitting approach they can be different. Currently, this is a crucial step in estimating the excited state

error as will be seen in Section 5.4 and in identifying a plateau in the stationary � = 0 case as can

be seen from the lower right panel of Fig. 5.6.

5.3 Determination of the phase shift

In this section we discuss in detail how we determine the cc phase shifts from the finite-volume

cc energies. We begin with Lüscher’s formula generalized to the case of anti-periodic boundary

conditions1 with a general total momentum. Next we discuss the strategy of working with energy

differences to reduce discretization errors, especially for the moving frame calculations. We then

calculate the cc scattering phase shifts at various center-of-mass energies for both isospin channels

using this technique. We also describe our method for specifying the energy at which these phase
1In this section we will focus on the case of anti-periodic boundary conditions obeyed by the pions, which result

from the G-parity boundary conditions obeyed by the quarks.
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shifts have been determined in order to reduce the effects of the slightly unphysical pion mass used

in our lattice calculation. Finally we calculate the Lellouch-Lüscher factor [36] that is needed to

interpret the finite-volume  → cc calculation [16].

5.3.1 Lüscher’s quantization condition for non-zero total momentum and anti-periodic boundary

conditions

Euclidean-space lattice QCD calculations determine finite-volume cc energies from which the

infinite-volume scattering phase shifts can be obtained using an approach developed by Lüscher [6].

While initially derived for the case of a stationary frame and periodic boundary conditions, this ap-

proach was later generalized to non-zero total momentum [37, 38, 39] and it is straightforward to

generalize this moving frame result to the case with anti-periodic boundary conditions. In particu-

lar, the B-wave phase shift, X(B) can be determined from the relation: X(B) +q ®3,W(B) = =c where = is

an integer and typically allows for more than one solution to this quantization condition, resulting

in a series of energy eigenstates in a single volume. The function q ®3,W(B) is defined by

tan
(
q
®3,W(B)

)
=

Wc3/2@

/
®3,W

00 (1, @2)
. (5.20)

Here B is the square of the invariant mass of the two-pion system, W is the Lorentz factor which

boosts the laboratory frame to the CM frame and @ is related to the magnitude of the momentum

: carried by either pion in their center-of-mass frame. Each of these quantities can be determined

from the finite-volume cc energy, �cc obtained from the lattice calculation:

B = �2
cc − ®%2

C>C , W =
�cc√
B
, :2 =

B

4
− <2

c, @ = :
!

2c
. (5.21)

The vector of integers, ®3, is related to the total momentum ®%C>C by

®3 =
!

2c
®%C>C (5.22)
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and /
®3,W

00 (B̂, @2) is the generalized Lüscher’s zeta function, which is defined as

/
®3,W

00 (B̂, @2) =
1
√

4c

∑
®A ∈N ®3,W

(®A 2 − @2)−B̂ , (5.23)

where the conventional argument B of the zeta function is replaced here by B̂ to remove the possible

confusion with the square of the center-of-mass energy and the set N ®3,W is defined as

N ®3,W =
{
®A
���®A = Ŵ−1

(
®= + ®3/2 + ®ℓ/2

)
, ®= ∈ Z3

}
. (5.24)

Here the vector ®ℓ represents the effect of the boundary conditions. If the particle satisfies periodic

boundary conditions in the 8Cℎ direction then ℓ8 = 0, while with anti-periodic boundary conditions

we have ℓ8 = 1. The quantity Ŵ−1 is a linear transformation on 3-vectors defined as

Ŵ−1(®=) =
1
W
®=‖ + ®=⊥ , (5.25)

using the notation of Ref. [40].

As defined in Eq. (5.23) the generalized zeta function diverges at B̂ = 1 and needs to be ex-

pressed differently to be evaluated at B̂ = 1. We use a simple generalization of a formula given

in Ref. [40] to do this. Combining all of these formulae we can obtain the cc scattering phase

shift at the energy
√
B from the finite-volume energy eigenvalue �cc determined from our lattice

calculation. Note that in obtaining Eq (5.20) we are implicitly neglecting the contributions to the

scattering of partial waves with ; ≥ 1. In the stationary frame, assuming the cc operators are

constructed in the trivial representation of the cubic group, cubic symmetry prevents states with

1 ≤ ; < 4 from contributing [6]. The interaction strength in the ; ≥ 4 channels is known to be

small and these interactions can be safely neglected [6].

However in the moving frame the relativistic length contraction naturally breaks the cubic

symmetry down to a smaller group, the trivial representation of which also allows for contributions

from 3-wave (; = 2) interactions. Previous calculations [41] have shown that the phase shifts in
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the ; = 2 channel are small around the kaon mass, which will be further suppressed in the moving

frame calculation where
√
B is smaller than < so we can therefore continue to assume B-wave

dominance. As described above, the G-parity boundary conditions also break the cubic symmetry

but the effects can be suppressed with a careful choice of cc operator. Any systematic errors

arising from this source are discussed further in Section 5.4.1.

5.3.2 Calculation technique

As shown above, the cc scattering phase shift is related to the energy of a finite-volume cc

state, or more specifically to the “pion momentum” : carried by either pion outside the range of

the strong force. However, on a discretized lattice with anti-periodic boundary conditions (i.e. a

case where the single-pion ground-state has non-zero momentum), the determination of : from

the measured cc energy must be performed carefully. If the cc interaction is relatively weak then

: , which is a measure of that interaction, will be close to its free field value and we must take

precautions that the potentially small difference between : and its free field value is nevertheless

large when compared with the discretization errors associated with the spatial momenta of the

pions in our calculation. However, as can be seen in Eq. (5.21), : is determined from differences

of larger quantities and care must be taken to insure that the quantities being subtracted have, to the

degree possible, common finite lattice spacing errors so that these errors will largely cancel in the

difference. Specifically the quantities being subtracted should be chosen so that their difference

will vanish in the limit that the cc interactions vanish, even when computed at finite lattice spacing.

This cancellation of finite lattice spacing errors can be accomplished by working with two

related quantities determined from our calculation: Δ� = �cc − 2�c, which measures the cc

interaction strength, and �c, the lowest energy of a moving pion. Using Δ� for example, the

effects of the finite lattice spacing upon the pion dispersion relation that enter both �cc and 2�c will

largely cancel, leaving only the subtler effects of the discretization upon the two-pion interaction

itself. Even for the case of non-zero total momentum ®%C>C , we will exploit our choice of anti-

periodic boundary conditions in all three directions and use for �c the ground-state, single-pion
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energy. Each of the three non-zero total momenta that we study can be formed from two pions

carrying the minimum allowed momenta ®? = (±1,±1,±1)c/! so that 2�c will be the minimum

energy of two interacting pions in the limit in which that interaction vanishes.

Thus, the quantities Δ� and �c will be computed on the lattice, and systematic errors estimated

to account for the residual effects of the finite lattice spacing. The results are finite-volume predic-

tions for Δ� and �c in the continuum limit, albeit with an unphysical pion mass, and in Section 5.4

we will estimate and propagate the systematic discretization errors on these quantities. (While it

would be better to determine Δ� and �c by performing calculations at multiple lattice spacings

and taking the continuum limit, this is at present beyond our available resources.) Adopting this

strategy to account for the discretization effects, we can then apply the generalization of Lüscher’s

finite-volume quantization condition without ambiguity using the continuum dispersion relation

:2 = (Δ� + 2�c)2/4 − �2
c + 3(

c

!
)2 − 1

4
®%2
C>C

=
Δ�2

4
+ Δ��c + 3(

c

!
)2 − 1

4
®%2
C>C , (5.26)

where we have continued to assume anti-periodic boundary conditions in three directions and note

that the last two terms on the right-hand side of Eq. (5.26) are exactly known.

The second line in Eq. (5.26) demonstrates the purpose of this rearrangement: our result for

: is proportional to the small quantity Δ� (a measure of the cc interaction strength) plus other

kinematic quantities that are determined without finite lattice spacing error. This guarantees that

at finite lattice spacing the phase shift determined in this way from the quantization condition will

vanish when Δ� → 0 so that the fractional finite lattice spacing errors expected in Δ� can be

directly propagated to determine the corresponding error in X(B).

We thereby obtain a value for the phase shift at an unphysical pion mass, from which a pre-

diction for the physical phase shift can be obtained by assigning suitable systematic errors for

discretization effects and the unphysical pion mass as will be discussed in Section 5.4.
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5.3.3 Phase shift results (statistical error only)

In this section we tabulate our results for the cc scattering phase shifts including their statistical

errors, computed according to the method described above. For each result we must specify the

energy at which the phase shift takes the quoted value and we choose to assign the appropriate
√
B

in such a way as to minimize the error introduced by the unphysical pion mass, 143 MeV, at which

our calculation is performed, a value 6% larger than the 135 MeV which we adopt as the physical

pion mass in this paper. For values of
√
B on the order of the kaon mass, the error associated with

this unphysical 8 MeV shift in the pion mass is small and is estimated using chiral perturbation

theory in Section 5.4. However, since the � = 0 and 2 phase shifts vanish when
√
B = 2<c, this

unphysical pion mass error can become large as
√
B approaches 2<c,unphy > 2<c,phy. This effect

can be easily eliminated if we view our computed phase shifts as functions of the pion momentum

: rather than
√
B, since a calculation of the phase shifts will give results which vanish at : = 0

independent of the pion mass.

Thus, for each computed value of the phase shift we use the measured lattice cc energy and

lattice pion mass to obtain the relative momentum : , and then when presenting our results for the

phase shifts assign an energy determined by combining this momentum in the continuum limit

with the physical pion mass by applying the dispersion relation

B = 4(:2 + <2
c,phy) . (5.27)

The effect of the unphysical pion mass on the actual strength of the interaction (i.e. upon the phase

shift itself) is small and is treated as a systematic error that we estimate using chiral perturbation

theory, as discussed in Sec. 5.4.

In Tab. 5.7 we list the phase shifts calculated from 4(3) different momenta of the center of mass

for the � = 2(0) channel and calculate the corresponding
√
B using Eq. (5.27). Here we only include

the statistical error. The full error budget will be discussed in Section 5.4. We do not provide a

result for the � = 0 channel in the case where %C>C = (2, 2, 2) c
!

. At this lowest value of
√
B the
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%C>C I �cc k
√
B X

(0, 0, 0) c
!

0 0.3479(11) 193.0(9) 471.0(1.5) 32.3(1.0)◦
(2, 0, 0) c

!
0 0.3774(23) 170.6(2.4) 435.1(3.8) 24.0(3.4)◦

(2, 2, 0) c
!

0 0.3895(17) 123.2(2.6) 365.6(3.4) 18.0(4.5)◦

(0, 0, 0) c
!

2 0.4153(4) 248.4(3) 565.4(5) -11.0(2)◦
(2, 0, 0) c

!
2 0.4045(3) 197.9(2) 479.1(3) -7.96(23)◦

(2, 2, 0) c
!

2 0.4001(3) 138.4(3) 386.7(4) -4.48(40)◦
(2, 2, 2) c

!
2 0.3984(3) 14.4(2.1) 271.5(4) -0.32(20)◦

Table 5.7: The phase shifts with statistical errors only for 4(3) different total momenta for the
� = 2(0) channel and the corresponding

√
B. Here the statistical error of each phase shift is obtained

not by simply propagating the statistical error of �cc, but a more elaborate method discussed in
Sec. 5.4.6 which removes the uncertainty of the energy at which we quote the phase shift.

attractive interaction between two pions results in a center-of-mass cc energy that lies below 2<c,

requiring that we determine a scattering length. Unfortunately the statistical error on the amount

that this energy is shifted below 2<c is so large that the corresponding scattering length is not well

determined.

5.3.4 Lellouch-Lüscher factor

In our companion calculation of the � = 0  → cc matrix elements [16], an important in-

gredient is the Lellouch-Lüscher factor [36], which removes both the difference in normalization

between states defined in finite and infinite volume and the leading power-law finite-volume cor-

rections to the finite-volume matrix element. This factor is defined as:

�2 =
4c< �2

cc

:3 (:
mX�

m:
+ @

mq
®3,W

m@
) , (5.28)

where X� is the isospin �, B-wave cc phase shift an q ®3,W is defined in Eq. (5.20). This formula

should be evaluated at �cc = < .

The moving frame calculation enables us to determine the phase shifts at various energies,

which allows us to perform an ab initio measurement of mX0
m:

using a finite-difference approxima-

tion. We now focus on the � = 0 case since our calculation has been tuned to give B close to <2
 

for the � = 0, cc ground state. We approximate the factor � using two different methods. In the

71



first we subtract the values of X0 at %C>C = (0, 0, 0) c
!

and %C>C = (2, 0, 0) c
!

, which gives

mX0
m:

= 0.372(153) (5.29)

and in the second method we replace the second total momentum with %C>C = (2, 2, 0) c
!

, and obtain

mX0
m:

= 0.205(63) . (5.30)

Both results are consistent with
mX0
m:

= 0.276(1) , (5.31)

which is calculated from the dispersive analysis [9, 16]. Note we have not attempted to account for

systematic effects arising from the finite-difference approximation or other effects here. Neverthe-

less we find good agreement between our lattice results and the dispersive prediction, albeit with

large statistical errors. These results are also presented in Ref. [16] where the dispersive result was

used for the final analysis. Note that these values differ slightly (within errors) due to different

choices of fit range and the finite-difference approximation being applied there to the phase shift is

a function of energy rather than a function of : .

5.4 Systematic error analysis

There are several sources of systematic error which affect our results: the breaking of cubic

symmetry by our G-parity boundary conditions, the non-zero lattice spacing of our single gauge

ensemble, the unphysical value of our pion mass and contamination of our multi-operator, multi-

state fits due to the presence of additional excited states, not included in our fit. In this section, we

describe our procedure for estimating the size of these errors. The full error budget for the phase

shifts we obtain is given at the end of this section and a comparison is made with the dispersive

predictions [9].
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5.4.1 Cubic symmetry breaking

One distinguishing feature of our calculation is our choice of boundary conditions: we use G-

parity instead of the standard periodic boundary conditions commonly used in other cc scattering

calculations. As discussed in Sec. 3.4 and in Ref. [13], G-parity boundary terms in the quark action

break the usual cubic symmetry of our lattice action and cubic volume. We will distinguish two

possible effects of this breaking of cubic symmetry by the boundary conditions: the effects on the

finite-volume eigenstates of the transfer matrix and the limitations on the symmetry properties of

interpolating operators constructed from the quark fields.

Since the physical states in our finite volume are pions which obey cubically anti-periodic

boundary conditions, we expect that the effects of this quark-level cubic asymmetry will be sup-

pressed exponentially in the linear size of our spatial volume. Local phenomena will not be affected

by these boundary terms but only phenomena which span the entire volume. This consideration

should apply to the size of the corrections to the standard cc finite-volume quantization condi-

tion, reducing these G-parity cubic symmetry breaking effects to the size of other finite-volume

corrections.

Of greater concern is our inability to confidently use cubic symmetry when interpreting the

rotational quantum numbers of the states produced by our interpolating operators. The G-parity

breaking of cubic symmetry limits the selection of quark momenta that can be introduced when

constructing interpolating operators resulting in operators which contain a mixture of representa-

tions of the cubic group. The only solution to this problem which we have found is an empirical

one: we must carefully construct pion interpolating operators to reduce the mixing of different

cubic symmetry representations below the level that we are able to observe.

As described in Ref. [13], a numerical investigation on single-pion correlation functions has

been performed on a smaller lattice, which suggests that if we construct these pion interpolating

operators with a single choice of quark momentum assignment chosen from the set of allowed

quark momenta (for example choice 1 of Appendix A of the present paper), then we observe a

clear cubic symmetry breaking effect in the overall normalization of the corresponding two-point
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functions. In that appendix we also introduce a second choice with the same total momentum but

with different assignments of quark momentum. We observe that if we construct our pion inter-

polating operators by averaging the two momentum choices, then the resulting cubic symmetry

breaking becomes sub-statistical. Since this cubic symmetry breaking is purely due to the bound-

ary condition, it will be further suppressed by the larger volume used in the current study, and is

therefore negligible in this work. While the normalization of the two single pion operators carry-

ing momenta which are related by cubic symmetry show small differences, the pion energies are

always the same providing evidence for the assertion in the preceding paragraph that the spectrum

of the transfer matrix shows only exponentially small cubic asymmetry.

We can also calculate the size of the cubic symmetry breaking in our cc interpolating operators

directly by studying the overlap between interpolating operators belonging to different represen-

tations of the cubic group. We will focus on the stationary frame since in the moving frame

calculation the B and 3-waves are coupled to each other even if we have exact cubic symmetry. If

we have exact cubic symmetry, we can project all three groups of cc interpolating operators (they

are cc(111, 111), cc(311, 311) and f) onto the �1 and )2 representations, which primarily map

onto the ; = 0 and ; = 2 representations of the continuum rotation group, respectively, and for each

group of operators these two representations will be orthogonal. However, if the symmetry group

is reduced to the �33 group, both �1 and )2 representations are no longer irreducible and contain

the same representations of �33 making a nonzero overlap between operators in these two repre-

sentations possible. The size of this overlap can then serve as a measure of the cubic symmetry

breaking.

We start by considering the two projections of the cc(111, 111) operators and define their

overlap as the average

� �,)2,�1
0,0 (C) =

1
)

∑
Csrc

〈$ �,)2
cc(111,111)(C + Δ + Csrc)†$ �,�1

cc(111,111)(Csrc)〉 , (5.32)

where Δ = 4, as introduced earlier in Eq. (5.4). Here and below we follow a convention simi-
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lar to that introduced in Section 5.2 in which the labels 0, 1 and 2 correspond to cc(111, 111),

cc(311, 311) and f respectively. If the cubic symmetry breaking effects are negligible, then

�
�,)2,�1
0,0 (C) will be consistent with 0.

Since we are interested in the size of these cubic symmetry breaking effects relative to the

correlation functions from which we obtain our results, we will present the normalized correlator

'�,)2,�1
0,0 (C) =

�
�,)2,�1
0,0 (C)√

�
�,)2
0,0 (C)� �,�1

0,0 (C)
. (5.33)

where � �,)2
0,0 (C) and � �,�1

0,0 (C) are defined by:

� �,R0,0 (C) =
1
)

∑
Csrc

〈$ �,R
cc(111,111)(C + Δ + Csrc)†$ �,R

cc(111,111)(Csrc)〉 , (5.34)

where R = �1 or )2. The ratio '�,)2,�1
0,0 (C) in Eq. (5.33) provides an estimate of the fractional con-

tamination in the correlation functions which we study that results from cubic symmetry breaking.

While we cannot be sure of the quantum numbers of the dominant state which propagates in the

mixed correlator given in Eq. (5.32), the ratio given in Eq. (5.33) divides by the time dependence

implied by the arithmetic mean of what we expect to be the lowest masses in the �1 and )2 chan-

nels.

The results are shown in Fig. 5.7, where the left panel shows the normalized overlap amplitude

for the � = 0 channel, and the right panel shows that for the � = 2 channel. Here and in the later

graphs shown in Figure 5.8 we choose the time ranges to best present our results. We exclude large

times because the statistical errors become very large and would require a highly compressed scale

to display. However, in each case sufficiently large times are shown that the signal from the states

which we study should be an important contributor to the correlation function, so the small size

of '�,)2,�1
00 (C) for those later times implies at most a fractional percent contamination of our results

from cubic symmetry breaking. Of special interest is the size of '�,)2,�1
0,0 (C) for C = 0 and 1 where

the statistical errors are very small and cubic symmetry breaking is not visible at the tenth of a
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percent scale.

Having verified the approximate cubic symmetry of the cc(111, 111) operator, we next calcu-

late the overlap amplitude between the cc(111, 111) operator in the )2 representation and the other

(311, 311) and f operators in the �1 representation by evaluating:

�
�,�1,)2
1/2,0

(C) =
∑
Csrc

〈$ �,�1
cc(311,311)/f(C + Δ + Csrc)†$ �,)2

cc(111,111)(Csrc)〉. (5.35)

The results are most easily interpreted if we again examine the normalized ratio

'
�,�1,)2
1/2,0

(C) =
�
�,�1,)2
1/2,0

(C)√
�
�,�1
1/2,1/2

(C)� �,)2
0,0 (C)

. (5.36)

The results are shown in Fig. 5.8, where the upper panel shows the overlap between the

cc�1(311, 311) and cc)2(111, 111) interpolating operators in the � = 0 and � = 2 channels, and the

lower panel shows the overlap between the � = 0, f and cc)2(111, 111) interpolating operators.

Similar to Fig. 5.7, all three overlap amplitudes are consistent with 0 at the fractional percent level,

which suggests both the cc(311, 311) and the f operators obey approximate cubic symmetry.

Based on the above results, we conclude that if we construct the pion interpolating operators

by averaging the two sets of quark momentum assignments as described in the appendix, we can

achieve accurate cubic symmetry at the meson level, despite the symmetry breaking at the quark

level. We therefore do not assign any systematic error arising from cubic symmetry breaking.

5.4.2 Finite lattice spacing

Fundamental to the connection between the scattering phase shifts and the two-particle finite-

volume energies is the recognition that it is the interaction between the particles, described by a

non-zero scattering phase shift, that causes the two-particle energy in finite volume to be shifted

away from the simple spectrum of non-interacting particles in a box. When adopting formulae to

determine the scattering phase shifts from the two-particle finite-volume energies in Section 5.3
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we were careful to preserve this connection for non-zero lattice spacing.

Specifically Eq. (5.26) determines the relative center of mass momentum : between the two

pions in the finite-volume cc ground state that enters Lüscher’s quantization condition as a function

of the energy difference Δ� between the finite volume cc energy and that of two non-interacting

pions. This difference would vanish in the absence of interactions, even at non-zero lattice spacing.

We then assign a relative systematic error to this measured energy difference that is of the same

size as is found for other similar quantities computed on this ensemble for which a continuum limit

has been evaluated. Thus, we use
Error(ΔE)

Δ�
= 202, (5.37)

where 2 is chosen from the finite lattice spacing errors reported in Ref. [20]. In detail we use the

average ChPTFV value of the magnitudes of 2��
5

, 2��
5 ( ) , 2��F0,0 and 2��√

C0,0
, given in Tab. XVII in that

paper which are the four coefficients which describe the 02 finite lattice spacing errors for these

four different physical quantities computed with the same lattice action and gauge coupling as used

here. This gives a relative error of 1.6% for Δ� which we round up to 2%.

Note this relative error is usually a small quantity, and therefore a small absolute error when

compared with �c and �cc since we are calculating the cc scattering phase shift at relatively low

energies (near the kaon mass). The error determined from Eq. (5.37) is then propagated in the

standard way to obtain the $(02) error for the scattering phase shift which we use for each of our

four values of total momentum.

5.4.3 Finite volume

Finite volume affects the energy of cc states in two ways. The first effect results in the quan-

tized finite-volume energies, is described by the Lüscher quantization condition and can be viewed

for large ! as a power law effect. The second effect falls exponentially with the system size and is

caused by the interaction radius being a finite fraction of the system size or, equivalently, the effect

of off-shell singularities when the Poisson summation formula is used to estimate finite-volume

effects. This second effect is usually much smaller than the first and is the source of the systematic
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error considered here. This exponentially suppressed correction for the � = 2 channel for periodic

boundary conditions can be formulated as [42]:

(: cot X(B))! = (:cotX(B))∞ + Δ�+ , (5.38)

where

Δ�+ = − <c√
2c

∑
®=,| ®=| 6=0

4−|®=|<c!√
| ®=|<c!

[
1 − 227

24
1

| ®=|<c!
+ ...

]
(5.39)

for the case of near-zero relative momentum. According to Fig. 2 from Ref [42], this correc-

tion introduces an approximate 1% relative error in the scattering length for a volume with peri-

odic boundary conditions but the same size and physical parameters as the volume with G-parity

boundary conditions studied here.

For our G-parity boundary condition lattice, since the pion satisfies anti-periodic boundary

conditions, the formula for Δ�+ has to be modified as follows:

Δ�+ = − <c√
2c

∑
®=,| ®=| 6=0

(−1)=G+=H+=I4−|®=|<c!√
| ®=|<c!

[
1 − 227

24
1

| ®=|<c!
+ ...

]
. (5.40)

This leads to a relative error of approximately 0.6%. We round this number up to 1% and adopt

it as an estimate of the finite volume effects for our more general case which includes the � = 0

channel, non-zero cc relative momentum and non-zero total momentum.

5.4.4 Unphysical kinematics

The pion mass which we measured on this ensemble is 142.3 MeV, which is 5% larger than

our choice for the physical pion mass (135 MeV) at which we wish to determine the scattering

phase shifts. We deal with this pion-mass mismatch in two steps. In the first step we shift the

cc energy at which we quote the phase shift, as has been discussed in Sec. 5.3, by expressing

the phase shift as a function of the two-pion relative momentum : in the center-of-mass system

and then identifying this value of : with a cc energy using the physical pion mass. We view this
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%C>C I
√
B Xqunphy Method

(0, 0, 0) c
!

0 471.0(1.5) 0.833◦ Linear extrapolation
(2, 0, 0) c

!
0 435.1(3.8) 0.708◦ Linear extrapolation

(2, 2, 0) c
!

0 365.6(3.4) 0.474◦ ChPT
(0, 0, 0) c

!
2 565.4(5) 0.181◦ ChPT

(2, 0, 0) c
!

2 479.1(3) 0.025◦ ChPT
(2, 2, 0) c

!
2 386.7(4) 0.057◦ ChPT

(2, 2, 2) c
!

2 271.5(4) 0.020◦ ChPT

Table 5.8: The assigned values for the systematic error resulting from our unphysical pion mass
and the methods used to determine them.

correction, which will be large for energies near the cc threshold, as the most important effect of

this pion-mass mismatch. In the second step we account for the remaining effects of this pion mass

mismatch as a systematic error in our result for the phase shift.

We estimate the remaining pion-mass-mismatch error by using ChPT to calculate the difference

between the scattering phase shift evaluated at these two different pion masses but at the same value

for : . The NLO ChPT prediction for the scattering amplitude of both the I=0 and I=2 channels

for small relative momenta are listed in Appendix B, and the predicted phase shift difference as a

function of
√
B is plotted in Fig. 5.9.

There is a remaining uncertainty in this approach that must be resolved. The ChPT calculation

is only valid for small : , a condition not valid for our stationary calculation, which results in the

rapid rise of the phase shift difference in the � = 0 channel when
√
B > 380 MeV. Similar behavior

is seen also in the � = 2 channel, although the breakdown appears to occur more slowly as a

function of
√
B, suggesting the ChPT result for this channel can be considered sufficiently reliable

for energies in our range of interest. We modify our systematic error determination for
√
B ≈ < 

to resolve this issue. Notice that the dispersive prediction, whose range of validity is expected to

extend above that of ChPT, shows a relation between the phase shift and
√
B that is close to linear

for a broad range of cc energy, up to and including the kaon mass [9]. This suggests that the

relation between the
√
B-dependence of the difference between the two phase shifts with different

pion masses will also be linear.

Thus, we can use ChPT to determine the phase shift difference at relatively small cc energy
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and then linearly extrapolate to higher energies. Here we perform a linear fit to the ChPT prediction

in the range 290 MeV≤
√
B ≤ 360 MeV. For the � = 2 channel the ChPT result remains linear over

the range of our data so we simply use the ChPT value to determine this I=2 systematic error. Our

assignments of these unphysical-pion-mass errors are listed in Tab. 5.8.

5.4.5 Excited state contamination

In Sec. 5.2 we tried different fit ranges to find a balance between minimizing the excited state

contamination error and the statistical error. For the preferred fit ranges shown in Tab. 5.2 and

5.3, there is no obvious evidence that the neglected excited states give a significant contribution

to the fitting result, as can be seen in the energy plots in Fig. 5.2 and Fig. 5.3. As discussed in

Ref. [41], the presence of an apparent plateau in the fitted energy as a function of the lower limit

of the fitting range does not imply that we can neglect excited state contamination since the noisy

data may make it difficult to find the “true” plateau before the effects of an omitted excited state are

obscured by the noise. An important example is our previous result for the ground state � = 0 cc

energy obtained from a portion of the current ensemble [1] where we significantly underestimated

this error.

A potentially more robust approach to estimating the error from omitted excited states than

examining the dependence of the fitted results on Cmin is to explicitly include an extra excited state

in the fit and to determine the size of the systematic shift in the resulting ground-state energy, an

approach we call performing an extra-state fit. Of course, in most cases such an extra-state fit will

require some additional assumptions since if this fit could have been easily performed we would

have included this extra state in our preferred fit. However, while such extra assumptions may have

been inappropriate for the determination of the preferred central value, their introduction may be a

reasonable approach to estimate an excited-state systematic error.

The difficulty associated with an extra state fit can be illustrated by the single-operator analysis

used in Ref. [1] to determine the energy of the stationary � = 0, ground state. Tab. 5.9 lists the

results from extra-state fits to the single-operator data presented in that earlier paper. In this case
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Cmin 3 4 5
�0 0.1589(107) 0.1555(133) 0.1538(48)
�1 0.05974(7064) 0.02679(2305) 7822(6959) × 103

�0 0.3666(124) 0.3643(133) 0.3606(75)
�1 1.207(725) 0.8429(4071) 4.835(173)
� −753(2366) × 10−7 −784(2362) × 10−7 −793(2223) × 10−7

Table 5.9: Single-operator two-state fit results with fit ranges Cmin − 25 for the stationary, � = 0
case. The amplitudes �0 and �1 are the couplings between the operator and the ground and first
excited state, �0 and �1 are their energies while � is the around-the-world constant introduced
in an analogous fashion as in Eqs. (5.5) and (5.6). The fit procedure fails when Cmin ≥ 6. The
single-state fit with fit range 6 − 25 gives �0 = 0.3606(74) which is consistent with the ground
state energy in all three extra-state fits.

our preferred single-state fit gave a ground state energy �0 = 0.3606(74) using the fitting range

6 − 25. We can see that for Cmin < 6 adding the extra state does not give a ground state energy that

can be resolved from the result of the preferred single-state fit. In addition the couplings between

the operator and the first excited state are consistent with 0. We cannot perform the extra-state

fit within the same fit range as the one we chose for the preferred single-state fit (6 − 25) since

the fitting procedure does not converge. We conclude that such (unconstrained) extra-state fits can

be misleading for data containing multiple nearby states with limited statistics and/or a rapid loss

of signal to noise as a function of time where the available fitting range is insufficiently long to

adequately distinguish the energy separations among the multiple nearby states.

One strategy to resolve this problem is to fix one or more of the parameters in the extra-state

fit. The first parameter we might fix is the energy of the extra state.

A prediction of this finite-volume energy can be obtained by finding the intersects between

Lüscher’s formula and a phenomenological model, or a fit to our lattice results, for the scattering

phase shift as a function of energy. For simplicity we chose to compute this estimate using the

dispersive predictions of Ref. [9]. Unfortunately we found that fixing this extra-state energy alone

typically does not solve the problem: sometimes the fitting procedure continues to fail while in

those cases where the fit converges, it gives a ground-state energy whose statistical error is several

times larger than the statistical error on the result from the preferred fit, which suggests that such
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an approach may over-estimate the excited state error, conflating it with the statistical error.

Thus, further assumptions are needed to obtain a statistically meaningful estimate of this

excited-state contamination error. Because of the very different pattern of operator-eigenstate cou-

plings we will adopt two different strategies, one for the � = 0 stationary cc state and the second

for the remaining seven cases: the three � = 0 calculations with non-zero total momenta and all

four � = 2 calculations. The method applied for the latter we will refer to as “method A", and that

applied in the special � = 0 stationary case as “method B".

For the three moving-frame � = 0 and all the � = 2 calculations, the operator-eigenstate over-

lap matrix is close to diagonal and the two-point function of a given operator with itself is well

described by one exponential coming from a single energy eigenstate. We call the operator which

couples primarily to the ground state the “ground-state operator", and the operator whose two-point

function is dominated by the =th excited state the “=th excited operator”. We can then make the

reasonable assumption, that because of the small value of the couplings between the ground-state

operator and those excited states that we include in the preferred fit, the extra-state contribution

to these small couplings can be neglected. That means that we can focus on the Green’s function

constructed from the ground-state operator only where the most important effect of an omitted

extra state is to change the two parameters (coupling and energy) associated with the ground-state.

The argument above suggests that we can perform a fit to the two-point function constructed

from the ground-state operator in which the number of states included is one more than the number

in the preferred fit, and that we can fix the couplings between the ground-state operator and the

excited states in that fit to those already determined by the preferred fit. Since these couplings

are small, we can also fix the energies of those excited states to their values from the preferred

fit. To summarize, if our preferred fit involved = operators and < states, we will fit the single

ground-state operator two-point function to an expression which includes < + 1 states: the < states

which appear in our preferred fit and the new extra state. The choice of whether or not to include

an around-the-world constant is the same as the choice made for the preferred fit. In this new fit,

we fix the extra-state energy to that given by the dispersive prediction and the parameters that are
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associated with the first < − 1 excited state energies and their overlap amplitudes with the ground

state to those values determined by the preferred fit.

It should be noticed that since the preferred fit and this extra-state fit are performed on data con-

structed using the same resampling method, these parameters should be fixed sample-by-sample.

Thus, for each bootstrap/jackknife sample, the fixed parameters we used will vary: they are the

ones obtained from exactly the same sample used when we perform the preferred fit. That leaves

us with three (or four) free parameters to be determined in this extra-state fit: the overlap between

the ground-state operator and the ground state, the ground-state energy, the overlap between the

ground-state operator and the <th excited state (the extra state) and possibly an around-the-world

constant. The results are shown in Tab. 5.10 and Tab. 5.11.

Unfortunately, as described this method gives us a statistical error on the ground-state energy

that is still much larger than that given by the preferred fit. This may be the understandable con-

sequence of trying to obtain information about two states from a single operator Green’s function,

a case where the number of states exceeds the number of operators. Some improvement must be

made. One possibility is to fix not only the energy of the extra state, but also its coupling with

the ground-state operator. In contrast to the energy of the excited state, we do not have external

information that could give us a reasonable theoretical value for this overlap amplitude. However,

we can argue that the result from the above fit gives us a reasonable estimate for the size of this

coupling.

Thus, in the notation introduced in Eq. (5.6) we view [�0< − X�0< , �0< + X�0<] as a reasonable

interval for the overlap amplitude between the operator$0 (using 0 to label the ground-state opera-

tor) and the <th excited state (our extra state). Here X�0< is the statistical error on the quantity �0<

found in the fit described above. We then perform three fits, where the only difference between

them and the one above is that we fix the coupling between the ground-state operator and the <th

excited state using �0<, �0< − X�0< and �0< + X�0< (Notice that for each bootstrap/jackknife sam-

ple, this coupling will NOT vary). We then calculate the difference between these three ground-

state energies and the ground-state energy obtained from the preferred fit. The largest difference
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gives our estimate of the excited-state error. The results are shown in Tab. 5.10 for the � = 2

channel and Tab. 5.11 for the � = 0 channel. As mentioned above, we refer to this method of

estimating the excited-state systematic error, based on the near-diagonal character of the matrix of

operator-eigenstate overlap amplitudes, as “method �”.

While this method gives a statistically precise result for the excited-state contamination error

for the three moving-frame � = 0 calculations and all four � = 2 calculations, the diagonal pattern

of the operator-eigenstate overlap matrix upon which it is based is not found for the stationary

� = 0 channel, where the couplings between the various normalized operators and eigenstates have

similar sizes. Consequently, we cannot apply the method � above in this case. We therefore adopt

a different approach, referred to as “method �”. While we are unable to perform a convergent

extra-state fit (3-operator-3-state fit) with the fit range that we chose for the preferred fit (6-15), we

can perform that fit using a fit range with a smaller Cmin, provided the extra-state energy is fixed.

For convenience, we again give the extra-state energy the value predicted by the dispersive result

for the � = 0 phase shift. This fit gives us values for the overlap amplitudes for the extra state and

each of the three operators being studied. We then perform a 3-operator-3-state fit with the same

fit range as the preferred fit (6-15), while fixing all the information about the extra excited state to

that obtained from the fit with the decreased value of Cmin. Note that in this case we did not observe

a significant increase in the error on the ground-state energy after applying this procedure, hence

it was not necessary to perform a second step holding these couplings fixed to the extrema of their

error bars as was the case for method A above.

To summarize, the eight parameters that are allowed to vary in this final fit are the six overlap

amplitudes between the three operators and the ground and first excited states, and the energies

of these two states. We then calculate the energy difference (for present purposes labeled as Δ�)

between the ground-state energy obtained from this extra-state fit and the preferred fit and the

statistical error on this difference (XΔ�). We then use X�exc = Δ� + XΔ� as our estimate of

the systematic error on the ground-state energy resulting from excited-state contamination. The

results are listed in the right-most column of Tab. 5.11. This small estimate for the excited state
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error for the � = 0 stationary case is supported by the determinant test result in Sec 5.2 where the

normalized determinant of the three dimensional matrix of the Green’s function is consistent with

zero, suggesting that the 3rd state is difficult to resolve with a fit range where Cmin is larger than 5.

I=2 channel %C>C = (2, 2, 2) c
!

%C>C = (2, 2, 0) c
!

%C>C = (2, 0, 0) c
!

%C>C = (0, 0, 0) c
!

Fit range 10-25 12-25 11-25 10-25
Fit strategy 1op-4state 1op-4state 1op-4state 1op-3state

�00 0.3935(10) 0.2768(8) 0.1934(3) 0.4206(13)
�01 0.004684(565)0.004684(565)0.004684(565) 0.007011(548)0.007011(548)0.007011(548) 0.009301(455)0.009301(455)0.009301(455) 0.01240(1021)0.01240(1021)0.01240(1021)
�02 .001209(1890).001209(1890).001209(1890) 0.005350(1812)0.005350(1812)0.005350(1812) 0.005249(1482)0.005249(1482)0.005249(1482) 0.1641(1176)0.1641(1176)0.1641(1176)
�03 -0.07301(3318)-0.07301(3318)-0.07301(3318) 0.03847(3424)0.03847(3424)0.03847(3424) -0.00001(3132)-0.00001(3132)-0.00001(3132) -
�0 0.3981(4) 0.4000(4) 0.4045(3) 0.4152(6)
�1 0.5453(7)0.5453(7)0.5453(7) 0.5480(10)0.5480(10)0.5480(10) 0.5514(9)0.5514(9)0.5514(9) 0.7128(170)0.7128(170)0.7128(170)
�2 0.6902(28)0.6902(28)0.6902(28) 0.6874(40)0.6874(40)0.6874(40) 0.6916(48)0.6916(48)0.6916(48) 0.9169(0.0000)0.9169(0.0000)0.9169(0.0000)
�3 0.6923(0.0000)0.6923(0.0000)0.6923(0.0000) 0.6934(0.0000)0.6934(0.0000)0.6934(0.0000) 0.8047(0.0000)0.8047(0.0000)0.8047(0.0000) -
�00 8118(71) × 10−9 4036(35) × 10−9 1981(16) × 10−9 9380(152) × 10−9

?-value 0.078 0.157 0.268 0.683
X�exc 0.0007 0.0004 0.0002 0.0006

Table 5.10: Results from the fits used to determine the excited state error for the ground-state
energies in the � = 2 channel. We use method � described in the text to estimate the error for all
four total momenta. As described in the text, these results are obtained in two stages. First all of the
quantities in bold font except for the extra-state amplitudes (�03 in columns 2-4 and �02 in column
5) are held fixed for the first stage fits. The results from the first stage fits for these four amplitudes
are shown in this table. For the second stage fits these four amplitudes are also held fixed at their
central values and at their central values plus and minus the statistical error shown. The largest
difference between the resulting ground-state energy and the ground-state energy obtained in the
preferred fit is shown in the final row and is our estimate of the excited state error.

5.4.6 Error budget

We will now combine all of the errors detailed in the earlier sections to provide values for the

seven cc phase shifts that we have computed at specific energies and their corresponding errors.

We divide these errors into two categories. The first are the measurement errors associated with

our lattice calculation of the finite-volume cc energies, which includes the statistical error and the

excited state contamination error. As is discussed below, this category of error requires special

attention since when we use Lüscher’s finite volume formalism to determine the scattering phase

shift, errors in this category lead to correlated errors in both the value for the phase shift and the
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I=0 channel %C>C = (2, 2, 2) c
!

%C>C = (2, 2, 0) c
!

%C>C = (2, 0, 0) c
!

%C>C = (0, 0, 0) c
!

Fit range 6-12 8-15 7-15 6-15
Fit strategy 1op-4state 1op-4state 1op-4state 3op-3state

�00 0.3861(25) 0.2633(36) 0.1760(37) 0.3638(50)
�01 -0.02647(391)-0.02647(391)-0.02647(391) -0.04909(1123)-0.04909(1123)-0.04909(1123) -0.05431(776)-0.05431(776)-0.05431(776) -0.1958(120)
�02 -0.01354(312)-0.01354(312)-0.01354(312) -0.03005(552)-0.03005(552)-0.03005(552) -0.02450(274)-0.02450(274)-0.02450(274) 0.01537(2140)0.01537(2140)0.01537(2140)
�03 -0.06485(3778) -0.03121(4065) -0.04877(3298) -
�10 - - - 0.003244(368)
�11 - - - 0.03248(709)
�12 - - - 0.05802(618)0.05802(618)0.05802(618)
�20 - - - −4396(72) × 10−7

�21 - - - −3644(264) × 10−7

�22 - - - 9394(5883) × 10−89394(5883) × 10−89394(5883) × 10−8

�0 0.3972(12) 0.3898(22) 0.3769(39) 0.3474(13)
�1 0.5264(37)0.5264(37)0.5264(37) 0.5148(91)0.5148(91)0.5148(91) 0.5032(75)0.5032(75)0.5032(75) 0.5484(208)
�2 0.6881(93)0.6881(93)0.6881(93) 0.6788(252)0.6788(252)0.6788(252) 0.6514(183)0.6514(183)0.6514(183) 0.6623(0.0000)0.6623(0.0000)0.6623(0.0000)
�3 0.6649(0.0000)0.6649(0.0000)0.6649(0.0000) 0.6610(0.0000)0.6610(0.0000)0.6610(0.0000) 0.6851(0.0000)0.6851(0.0000)0.6851(0.0000) -

?-value 0.212 0.545 0.953 0.082
X�exc 0.0017 0.0019 0.0052 0.0010

Table 5.11: Results used to determine the excited state error for the ground-state energies in the
� = 0 channel. We use method � for the three moving-frame results given in columns 2-4, as
described for the � = 2 states in the text, so the explanation in the caption to Tab. 5.10 applies.
Method � is used for the stationary frame calculation whose results are shown in column 5. In the
first stage of this procedure, only the extra-state energy �2 is held fixed and the other three overlap
amplitudes (�02, �12 and �22), all four shown in bold font, are determined to have the values
shown, using the fit range 4-15. In the second stage, these four quanties are fixed to the values
shown in the table and the preferred 3-operator-2-state fit carried out with the data effectively
shifted by the fixed extra-state contribution. The difference between the ground-state energies
determined from this extra-state fit and the preferred fit gives the excited-state error listed in the
final row, as described in the text.
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energy at which the phase shift is determined.

We refer to the second category of errors as tuning errors. These include the finite volume error,

finite lattice spacing error and the unphysical kinematics error. We assign these errors directly to

the seven phase shifts. They represent discrepancies between our physical results as presented and

those we actually obtain. For example, we describe our results as phase shifts in the continuum

limit, but in reality the number we obtain contains finite lattice spacing errors. Similarly we intend

our phase shift results to be for the case where <c = 135 MeV. In reality, our calculation was done

for a different pion mass and we have made a small correction to the energy at which the phase

shift is quoted to compensate for the shifted cc threshold arising from our incorrect mass and, as

was discussed in Section 5.4.4, the remaining errors were estimated using ChPT.

Our first category of errors, the measurement errors, requires special treatment if we are to

account for the tight correlation between the way the errors on the measured finite-volume energy

shift affect both the implied value of the phase shift and the energy at which that phase shift is

quoted. The issue is that we do not know the exact value of the finite volume cc energy �FV, only

that it lies with a certain confidence within the range �̄FV±Δ�FV, where �̄FV is the central value of

the energy and Δ�FV is the error. As a result, naively propagating the error through the evaluation

of the Lüscher function would produce a result for which uncertainties exists on both the phase

shift and the energy at which it is evaluated, and for which the errors are completely correlated

(through the Lüscher function). This unsatisfactory situation can be remedied by transforming the

result such that the phase shift is quoted at a fixed value of the energy and the uncertainty exists

only on the phase shift. To achieve this we note that the allowed finite-volume energies �FV mark

the intersections of the curve X(�), which describes the energy dependence of the phase shift, and

the Lüscher curve,(�) relating the energy to the phase shift at a fixed lattice size:

X(�FV) = ,(�FV). (5.41)

We imagine that the true intersect occurs at some energy � that is close to our measured central

value �FV and perform a first-order Taylor expansion in � of both sides of Eq. (5.41) about this
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central value

X(�FV) +
3X(�)
3�

���
�FV

(� − ��+ ) ≈ ,(�FV) +
3,(�)
3�

���
�FV

(� − ��+ ) . (5.42)

Rearranging the above we obtain an expression for the phase shift evaluated at our measured finite-

volume energy �FV

X(�FV) = ,(�FV) +
{
3,(�)
3�

− 3X(�)
3�

}
�FV

(
� − �FV

)
. (5.43)

This approach requires an estimate of the derivative of the phase shift X(�) with respect to its

energy. While this could be obtained from a fit to our data, we find it simplest to use the result from

the dispersive analysis [9] which agrees well with our data as can be seen from the comparisons

shown in Figures 5.10 and 5.11.

Thus, the statistical and excited state contamination errors on the measured finite-volume ener-

gies are each converted to errors on the phase shift at the fixed energy � = �FV using the following

relations:

ΔXstat/exc =
����3,(�)
3�

− 3X(�)
3�

����
�FV

Δ�stat/exc , (5.44)

where Δ�stat and Δ�exc are the statistical and excited state contamination errors that are assigned

to the measured finite-volume energy. The three tuning errors ΔXdis, ΔXFV, ΔXunphy coming from

non-zero lattice spacing, finite volume and unphysical pion mass are assigned directly to the phase

shifts. All of these errors are listed in Tab. 5.12, where the total systematic error shown in the final

column is the combination in quadrature of the systematic errors shown in columns 6 through 9.
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%C>C I
√
B(MeV) X ΔXdis ΔXFV ΔXunphy ΔXexc

(0, 0, 0) c
!

0 471.0 32.3(10)(14) 0.64 0.32 0.83 0.90
(2, 0, 0) c

!
0 435.1 24.0(34)(76) 0.46 0.23 0.71 7.6

(2, 2, 0) c
!

0 365.6 18.0(45)(49) 0.36 0.18 0.47 4.9
(0, 0, 0) c

!
2 565.4 -10.98(22)(44) 0.20 0.10 0.18 0.34

(2, 0, 0) c
!

2 479.1 -7.96(23)(29) 0.16 0.08 0.03 0.23
(2, 2, 0) c

!
2 386.7 -4.48(40)(77) 0.09 0.04 0.06 0.76

(2, 2, 2) c
!

2 271.5 -0.32(20)(63) 0.01 0.00 0.02 0.63

Table 5.12: The final error budget for each of the seven cc scattering phase shifts determined in
this paper. Here each of the energies (

√
B) is the center-of-mass energy at which the phase shift X

has been determined, adjusted to correct for the unphysical pion mass according to the procedure
described in Section 5.3. The right-most four columns are explained in the text. All of the angles
appearing in this table are expressed in degrees. Two errors are shown with the phase shift results
in the fourth column. The first is statistical and is given in Tab. 5.7. The second is systematic and
is the average in quadrature of the individual errors shown in columns 5-8.
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Figure 5.3: The Cmin dependence of the fitted ground state energy for the moving cc�=2 channel
(left) and moving cc�=0 channel (right) with Cmax = 25 (� = 2) and 15 (� = 0). The upper, middle
and lower panels are for total momenta (2, 2, 2) c

!
, (2, 2, 0) c

!
and (2, 0, 0) c

!
, respectively. Our final

results were obtained from three-operator, three-state fits. Reading from top to bottom the values
of Cmin for these results were for � = 2 Cmin = 10, 12, 11 and for � = 0 Cmin = 6, 8 and 7.
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Figure 5.4: A typical diagram for the decomposition of the ATW effect when the Green’s function
is constructed from two $1 operators. For the first-order ATW effect, both legs are pions with
momentum (1, 1, 1)c/!, which means if one of the internal states is the vacuum, e.g., internal state
1, then the other internal state cannot be the vacuum. For the second order ATW effect, we can
choose leg A to be (1, 1, 1)c/! and leg B to be (3, 1, 1)c/!, while keeping both internal states to
be the vacuum state.
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Figure 5.5: The t dependence of N (C), defined in Eq. (5.12) for the three dimensional (black,
which include all operators) and two dimensional (red, only include $0 and $2 operator) matrix
of Green’s functions for the stationary � = 0 case.
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Figure 5.6: The Cmin or C0 dependence of the fitted ground state energy from the GEVP and the
usual fit for the cc�=2 (left) and cc�=0 (right) channel with Cmax = 20 (� = 2) and 15 (� = 0).
The total momenta from the top down are (2, 2, 2) c

!
, (2, 2, 0) c

!
, (2, 0, 0) c

!
and 0. Here the G-axis

represents Cmin for the usual fit, and C0 for the GEVP fit. In the legend of the lower right panel, 2D
and 3D indicate a 2 × 2 and 3 × 3 GEVP matrix.
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Figure 5.7: The overlap amplitudes between the cc�1(111, 111) and cc)2(111, 111) operators in
the isospin � = 2 (left) and � = 0 (right) channels. The overlaps amplitudes are consistent with
zero at all time separations which implies negligible cubic symmetry breaking for the cc(111, 111)
interpolating operators.
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Figure 5.8: Upper: the overlap amplitudes between the normalized cc)2(111, 111) operator and the
normalized cc�1(311, 311) operator in the isospin � = 2 (left) and � = 0 (right) channels. Lower:
the overlap amplitude between the normalized f operator and the normalized cc)2(111, 111) oper-
ator. All overlap amplitudes are consistent with zero with errors more than two orders of magnitude
smaller than one which implies a negligible cubic symmetry breaking for these cc(311, 311) and
f interpolating operators.
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Figure 5.9: A ChPT calculation of the difference between the scattering phase shift evaluated at
the physical pion mass and the pion mass calculated for our ensemble, X�(<c = 142 MeV) −
X�(<c = 135 MeV), as a function of

√
B defined in Eq. (5.27) and shown in degrees. For the � = 0

channel, at large
√
B, the ChPT calculation begins to break down while at lower

√
B, the relation

is approximately linear, which is consistent with the dispersive prediction. The straight line is a
linear fit to the ChPT result in the region 290 MeV ≤

√
B ≤ 360 MeV.
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Figure 5.10: A graph of our results for the seven phase shifts for � = 0 and � = 2 as a function of
energy. Shown also on the plot are the corresponding dispersive results [9]. Note: the errors are
not shown for the dispersive results.
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Figure 5.11: The results for the � = 2 phase shifts together with the corresponding dispersive
results [9] that are shown in Fig. 5.10, but here with an expanded scale.

97



Chapter 6: Results for the  → cc decay amplitude

In this chapter we summarize our previous work on the  → cc decay amplitude calcula-

tion[16]. In the first section we discuss the result for the kaon two point function. In the second

section we discuss how we obtain the optimal cc operator that maximally projects onto the cc

ground state. In the third section we discuss the results for the finite volume  → cc matrix

element. In the fourth section we discuss the non-perturbative renormalization procedure and its

result. In the last section we summarize the procedure to determine �0 and n′ and present the

result.

6.1 Kaon two-point function and its result

In order to compute the  → cc matrix elements it is necessary to measure the energies and

amplitudes of the pion, kaon and cc two-point Green’s functions. In this section we present results

for the kaon two-point function. The results of the pion and cc two-point functions can be found

in Chapter. 5.

The two-point function
(6.1)� (C1, C2) = 〈0|O†

 ̃0(C1)O ̃0(C2)|0〉

is measured for all C1 and C2, and subsequently averaged over C2 at fixed C = C1 − C2. The data are

folded in C, i.e. data with C = C1 − C2 are averaged with those with C = !) − (C1 − C2), where !) is the

lattice temporal extent, to improve statistics. We perform correlated fits to the following function,

(6.2)� (C) = � 

(
4−< C + 4−< (!) −C)

)
,

where the second term accounts for the state propagating backwards in time through the lattice

temporal boundary. The chosen fit range, p-value and the results of the fit are given in Tab. 6.1,

where the results for pion are the same as those given in Tab. 5.1. In physical units our kaon mass

is 490.5(2.4) MeV, which is within 2% of the physical neutral kaon mass.

98



State Fit Range � � p-value
Kaon 10-29 4.5964(48) × 106 0.35587(10) 0.88
Pion 14-29 6.194(11) × 106 0.19893(13) 0.99

Table 6.1: Fit results in lattice units, fit ranges and p-values for the pion and kaon states. Here � is
the energy of the state in question, which for the kaon is equal to the kaon mass, < .

6.2 Optimal cc operator

For later use in this work, we define here an optimal operator that maximally projects onto the

cc ground state relative to the first-excited state.

Under the excellent assumption that the backwards-propagating component of the time depen-

dence is small in the fit window, the two-point functions can be described as a sum of exponentials:

(6.3)�ccUV(C) =
∑
8

�8U�
8
V4
−�8C ,

where again Greek indices denote operators and Roman indices states. We wish to define an

optimized operator that projects onto the ground state:

(6.4)Oopt =
∑
U

OUAU ,

for which

(6.5)
�ccopt(C) = 〈0|O†opt(C)Oopt(0)|0〉

≈ [�0
opt]24−�0C ,

where the approximate equality indicates that additional exponential terms resulting from excited-

state contamination, although suppressed, still exist for an optimal operator composed of a finite

number of cc operators. Expanding the Green’s function,

(6.6)

〈0|O†opt(C)Oopt(0)|0〉 =
∑
UV

AU〈0|O†U(C)OV(0)|0〉AV

=
∑
8

∑
UV

AU�
8
U�

8
VAV4

−�8C =
∑
8

[∑
U

�8UAU

]2
4−�8C .

Without loss of generality we can fix �0
opt = 1, which alongside Eq. (6.5) is sufficient to define A8:

(6.7)
∑
U

�8UAU = X8,0 .
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If the number of states is equal to the number of operators this can be interpreted as a matrix

equation,
(6.8)A®A = 0̂ ,

where the row index of A is the state index 8 and the column index the operator index U. Here 0̂ is

a unit vector in the 0-direction, and as such

(6.9)®A = A−10̂ .

which gives
(6.10)AU = [A−1]U,0

i.e. ®A is the first column of the inverse matrix.

As our cc fits include only two states, we drop the noisier cc(311) operator in order to form a

square matrix of correlation functions. We then obtain

®A ) = (5.24(18) × 10−7,−2.86(17) × 10−4) (6.11)

where the elements are the coefficients of the cc(111) and f operators, respectively. In Fig. 6.1

we compare the effective energy obtained with the optimal operator to that of the cc(111) and

f operators alone. We observe a marked reduction in the ground-state energy and a noticeable

improvement in the length of the plateau region resulting from the removal of excited-state con-

tamination, as well as a significant improvement in the statistical error. This optimal operator will

also be used in our matrix element fits in the following section.

6.3 Results from three-point correlation functions for Δ� = 1/2,  → ccΔ� = 1/2,  → ccΔ� = 1/2,  → cc decays

In this section we detail the measurement and fitting of the  → cc three-point Green’s

functions, from which the unrenormalized matrix elements 〈(cc)�=0 |&8 | 0〉 are obtained.

6.3.1 Overview of measurements

On the lattice we measure the following three-point functions,

(6.12)�8(C, C →snk
sep ) = 〈0|O†snk(C →snk

sep )&8(C)O ̃0(0)|0〉 ,
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Figure 6.1: A comparison of the effective ground-state energy obtained from the optimal operator
(i.e. the optimal combination of the f and cc(111) operators, and labeled “cc(111), f” here) with
the energies obtained from the f and cc(111) operators separately.

(a) type1 (b) type2

(c) type3 (d) type4

Figure 6.2: The four classes of  → cc Wick contractions.

where C denotes the time separation between the kaon and four-quark operators, and C →snk
sep the

time separation between the kaon and the cc “sink” operator, Osnk. As described in Ref. [43], the

Wick contractions of these functions fall into four categories based on their topology, as illustrated

in Fig. 6.2.

Note that here and below we take care to differentiate between the G-parity kaon state  ̃0,

which is a G-parity even eigenstate of the finite-volume Hamiltonian, and the physical kaon  0

that is not an eigenstate of the system. The matrix elements of the physical kaon are related to

those of the G-parity kaon by a constant multiplicative factor of
√

2 that serves as the analogue of
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the Lellouch-Lüscher finite-volume correction as described in Sec. VI.B. of Ref. [13].

In order to maximize statistics we translate the three-point function over multiple kaon times-

lices and average the resulting measurements. As the statistical error is dominated by the type3 and

type4 diagrams these are measured with kaon sources on every timeslice, 0 ≤ C < !) . The far

more precise type1 and type2 contributions are measured every eighth timeslice in order to reduce

the computational cost. For the remainder of this section we will assume all correlation functions

to have been averaged over the kaon timeslice where appropriate.

We compute each diagram with 5 different time separations between the kaon and the cc

sink operators, C →snk
sep ∈ {10, 12, 14, 16, 18}, with the Δ( = 1 four-quark operator inserted on all

intervening timeslices. Note these five time separations specify the time between the kaon operator

and the closest single-pion factor in the cc operator for those cases when the cc operator is a

product of single-pion operators evaluated on different time slices. (This convention of specifying

the minimum time separation from those cc operators which are non-local in the time is followed

throughout this chapter.) As these cc operators comprise back-to-back moving pions with zero

total momentum, we must measure each diagram for all possible orientations of the pion momenta

in order to project onto the rotationally symmetric state.

The type3 and type4 diagrams both contain a light or strange quark loop beginning and ending

at the operator insertion point that results in a quadratic divergence regulated by the lattice cutoff.

This divergence is removed by defining the subtracted operators [43, 44],

(6.13)&8 → &8 − U8 B̄W53 .

We will henceforth denote the unsubtracted operator with a hat notation, &̂8. The coefficients U8 in

Eq. (6.13) are defined by imposing the condition,

(6.14)〈0|
{
&̂8(C) − U8(C)[B̄W53](C)

}
O ̃0(0)|0〉 = 0 ,

where we have allowed U8 to vary with time as this was found to offer a minor statistical improve-

ment. Although the matrix element of this pseudoscalar operator vanishes by the equations of

motion for energy-conserving kinematics and is therefore not absolutely necessary for our calcu-

lation, the subtraction reduces the systematic error resulting from the small difference between our
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cc and kaon energies while simultaneously reducing the statistical error and suppressing excited-

state contamination.

Due to having vacuum quantum numbers, the � = 0 cc operators project also onto the vacuum

state and this off-shell matrix element dominates the signal unless an explicit vacuum subtraction

is performed,

(6.15)�8(C, C →snk
sep )→ �8(C, C →snk

sep ) − 〈0|O†snk(C →snk
sep )|0〉〈0|&8(C)O ̃0(0)|0〉 .

However, due to our definition of the subtraction coefficient U8 in Eq. (6.14), the vacuum matrix

elements appearing in the right-hand side vanish making this subtraction unnecessary. In practice

this cancellation is not exact in our numerical analysis for the following reason: While the cc

“bubble” 〈0|O†snk |0〉 is formally time-translationally invariant we observed a minor statistical ad-

vantage in evaluating this quantity with the cc operator on the same timeslice as it appears in the

full disconnected Green’s function that is being subtracted, such that it is maximally correlated.

Therefore, for the right-most term in Eq. (6.15) we compute

(6.16)
1
=C 

∑
C ∈{C }

〈0|O†snk(C + C →snk
sep )|0〉〈0|

{
&̂8(C + C ) − U8(C)[B̄W53](C + C )

}
O ̃0(C )|0〉 ,

where C is the kaon timeslice and {C } the set of timeslices upon which measurements were

performed, i.e. with the product of the  →vacuum matrix element and the cc bubble performed

under the average over the kaon source timeslice rather than after. As suggested by the above,

the coefficients U8(C) are computed separately from the C -averaged matrix elements and therefore

the cancellation between the two terms in brackets is exact only up to the degree to which the

time translation symmetry is realized at finite statistics. Due to our large statistics we found the

difference in the fitted &6 matrix element obtained with and without the vacuum subtraction to be

at the 0.1% level.

We perform measurements with all three two-pion operators described in Sec. 4.1. For the

 → cc matrix elements of the four-quark operators, the full set of Wick contractions for the

cc(111) and cc(311) sink operators can be found in Appendix B.1 and B.2 of Ref. [14], and those

of the f operator in Appendix D of this document. The Wick contractions for the  → cc matrix
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Figure 6.3: The contributions of the four Wick contraction topologies type1-type4 to the �2 (left)
and �6 (right) three-point functions with the cc(111) sink operator, plotted as a function of the
time separation between the kaon and the four-quark operator, C, at fixed C →snk

sep = 16. For clarity
we plot with an inverted x-axis such that the cc sink operator is on the left-hand side. These
correlation functions include the subtraction of the pseudoscalar operator.

elements of the pseudoscalar operator (with all three sink operators) as well as the  →vacuum

matrix elements of this and the four-quark operators are provided in Appendix E of this document.

In Fig. 6.3 we plot the contributions of the four classes of Wick contraction illustrated in Fig. 6.2

to the three-point functions of the (subtracted)&2 and&6 operators with the cc(111) sink operator.

As the individual topologies are not separately interpretable as Green’s functions of the QCD

path integral, their time dependence is not necessarily described by the propagation of physical

eigenstates of the QCD Hamiltonian. As such we cannot combine our data sets with different

C →snk
sep when generating such plots, and instead plot with a single, fixed C →snk

sep = 16. Despite the

inability to interpret the time dependence physically, we can look at the relative contributions of

each topology within the central region of the plot in which the behavior of the combined data is

dominated by the kaon and cc ground-states, i.e. the region in which we perform our fits below.

Our final choices of cut incorporate data from this set in the range 6 ≤ C ≤ 11 (cf. Sec. 6.3.5). In

this window we observe that for both the �2 and �6 correlation functions, the contribution of the

noisy, type4 disconnected diagrams is largely consistent with zero, albeit with much larger errors

for the former. �2 appears dominated by the type1 and type3 diagrams, which both contribute

with the same sign, with a negligible contribution from the type2 diagrams. The contribution of
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the type1 and type3 diagrams appears to behave similarly for the �6 three-point function, however

here we observe a strong cancellation between those and the type2 diagrams.

6.3.2 Determination of U8

The subtraction coefficients U8 are computed via Eq. (6.14) as the following ratio of two-point

functions,

(6.17)U8(C) =
〈0|&̂8(C)O ̃0(0)|0〉
〈0|[B̄W53](C)O ̃0(0)|0〉

,

where the average of the correlation functions over the kaon source timeslice is implicit as above.

The Wick contractions for the 〈0|&̂8(C)O ̃0(0)|0〉 two-point functions are identical to the com-

ponents of the type4  → cc diagrams that are connected to the kaon. While these connected

components are formally independent of the sink two-pion operator, in practice these quantities

were computed using code that was organized differently for the cc and f operators. As described

in Appendix E of this work and Appendix B.2 of Ref. [14], the factors entering the type4 diagrams

that determine the U8 were constructed from two separate bases of functions of the quark propa-

gators, one for the f and the other for the cc(. . .) operators, where for each basis W5 hermiticity

was used in a different way. While W5 hermiticity is an exact relation, the fact that we are using a

stochastic approximation for the high modes of the all-to-all propagator allows small differences to

arise between the values of the U8 computed in these two bases. We therefore have separate results

for the U8 from the cc and f three-point functions calculations.

In Fig. 6.4 we plot the time dependence of the U8 for all ten operators. We observe excellent

agreement between the results obtained from the two different bases of contractions as expected.

For a number of operators we find statistically significant but relatively small excited-state con-

tamination for small C that in all cases appears to die away by C = 6. While the effects of this

contamination are unlikely to significantly affect our final results, the cuts that we later apply to

our fits nevertheless exclude data with C < 6.
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Figure 6.4: The pseudoscalar subtraction coefficient U8 as a function of time for each of the ten
operators in the following order: &̂1-&̂3 on the first line, &̂4-&̂6 on the second, &̂7-&̂9 on the third
and &̂10 on the fourth. Red circles denote data obtained in the basis of correlation functions used
for the cc(111) operator, and blue squares for the f sink operator.
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6.3.3 〈cc | B̄W53 | ̃0〉 matrix elements

The  → cc matrix elements of the pseudoscalar operator B̄W53 are required to perform the

subtraction of the divergent loop contribution. In this section we independently analyze these

matrix elements in order to understand their time dependence and the corresponding effect of the

subtraction on the amount of excited state contamination in the final  → cc result.

In the limit of large time separation between the source/sink operators and the four-quark oper-

ator, only the lowest-energy cc and kaon states are present. Since the pseudoscalar matrix elements

vanish by the equations of motion when the decay conserves energy and the kaon and cc ground-

state energies in our calculation differ by only 2%, we expect the subtraction to result in only a

negligible shift in the central value but a marked improvement in the statistical errors in this limit.

However at finite time separations, the contributions of the excited states may take a long time to

die away due to the increasing magnitude of the corresponding matrix elements between initial

and final states of different energies. It is this concern that prompts us to study this system more

carefully.

The lattice three-point function

(6.18)�%(C, C →snk
sep ) = 〈0|O†snk(C →snk

sep ) [B̄W53](C) O ̃0(0)|0〉

for a generic sink cc operator, Osnk, has the following time dependence:

(6.19)�%(C, C →snk
sep ) =

∑
8 9

�8in�
9
out"

8 9

%
exp

(
−� 8inC

)
exp

(
−� 9

out(C
 →snk
sep − C)

)
,

where the subscript ‘in’ refers to the incoming kaonic state, ‘out’ to the outgoing two-pion state,

and " 8 9

%
is the matrix element for the term involving in and out states 8 and 9 , respectively. It is con-

venient to define an “effective matrix element” by dividing out the ground-state time dependence

and operator amplitudes,

(6.20)"
eff,snk
%

(C′, C →snk
sep ) = "00

% +
∑
8, 9 6=0

�′ 8in�
′ 9
out"

8 9

%
exp

(
−Δ� 8in(C →snk

sep − C′)
)

exp
(
−Δ� 9

outC
′
)
,

where
(6.21)C′ = C →snk

sep − C
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Figure 6.5: The effective pseudoscalar matrix element "eff,snk
%

as a function of the time separation
between the four-quark operator and the sink, C′. In the left pane we show the data for the cc(111)
operator (circles) and the f operator (squares) separately, and in the right pane we show the same
for the optimal operator. Colored data correspond to the different C →snk

sep as follows: red (10),
green (12), blue (14), orange (16) and mauve (18). The data for each of these different separations
are staggered in order such that C →snk

sep = 10 is the left-most point of each cluster and C →snk
sep = 18

the right-most.

is the separation between the four-quark operator and the sink and

(6.22a)�′ 8in/out = �8in/out/�
0
in/out ,

(6.22b)Δ� 8in/out = � 8in/out − �
0
in/out .

Note that "eff,snk
%

is dependent on the sink operator through the terms involving the excited states,

in which a ratio of ground and excited state amplitudes appears.

We measure the correlation function Eq. (6.18) for each of our three two-pion operators. Note

that a vacuum subtraction is also required here and is performed in the same way as for the four-

quark operators. In Fig. 6.5 we plot "eff,snk
%

for the cc(111) and f operators for each of the

five values of C →snk
sep . The corresponding data for the cc(311) operator is much noisier and has

therefore been excluded. The form of this plot can be explained as follows: As �0
in ≈ �0

out we

expect "00
%

to be small. If we then assume that the dominant excited state contributions come from

the term involving the excited kaon state and ground cc state (8 = 1, 9 = 0) and the term with the

ground kaon state and the first excited cc state (8 = 0, 9 = 1), then we expect the data to behave as

"
eff,snk
%

(C′, C →snk
sep ) ≈ �′1in "

10
% exp

(
−Δ�1

inC
 →snk
sep

)
exp

(
+Δ�1

inC
′
)

+ �′1out"
01
% exp

(
−Δ�1

outC
′
)
.

(6.23)
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This ansatz then implies an exponentially falling contribution from the excited pion state and an

exponentially growing piece from the excited kaon state, giving rise to a bowl-like shape assum-

ing that �′1in and �′1out have the same sign, which appears to be the case here. Furthermore, the

exponentially-growing piece in C′ is expected to be larger for smaller C →snk
sep , and indeed we ob-

serve that the turnover point at which the exponentially-growing term begins to dominate occurs

sooner for smaller C →snk
sep .

While the effective matrix elements of both sink operators initially trend towards zero, for the

more precise cc(111) data it seems that none of the five data sets are statistically consistent with

zero at their maxima, suggesting we do not reach the limit of ground-state dominance. This is not

necessarily an issue for our calculation given that the subtraction will heavily suppress these con-

tributions in our final result, and furthermore the inclusion of multiple sink operators will improve

our ability to extract the cc ground-state matrix element. In order to disentangle these two effects

it is convenient to examine the three-point function for the optimized sink operator discussed in

Sec. 6.2. The time dependence of "eff,snk
%

for this operator is also shown in Fig. 6.5. By definition

this operator heavily suppresses �′ 9out for 9 > 0, and indeed we find the data to be much flatter in the

low-C′ region and also considerably closer to zero. The exponential growth and C →snk
sep dependence

that enters due to the excited kaon term is expected to be largely unaffected by this transformation,

however it seems that in several cases the plateaus extend much further into the large-C′ region

than previously. It is likely that is due to an accidental cancellation owing to the fact that �′1out

is positive for the cc(111) operator and negative for the f operator (cf. Tab. 6.3) and hence the

exponentially-growing terms for these operators have opposite signs.

We conclude by discussing the expected size of the excited-state contamination in the matrix

elements of the subtracted four-quark operators arising from the pseudoscalar operator. In the

 → cc calculation, this dimension-3 operator is introduced to remove what in the continuum

limit would be a quadratic divergence resulting from the self-contraction between two of the four

quark operators appearing in those operators &̂8 with a component transforming in the (8, 1) or

(8, 8) representations of (*(3)! × (*(3)'. In our lattice calculation these terms behave as 1/02
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when expressed in physical units. To leading order in 0 this 1/02 coefficient does not depend on

the external states and is therefore removed from our 〈0|(cc)&̂8 ̃0 |0〉 amplitude by the subtraction

defined above, even though the coefficients U8 are determined from the 〈0|&̂8 ̃0 |0〉 matrix element

in Eq. (6.17). Because of the chiral structure of the (8, 1) and (8, 8) operators, these coefficients

have the structure: U8∼<B−<302 + . . . [45], where the ellipsis represents terms which are not power-

divergent.

Thus, the B̄W53 subtraction removes the leading 1/02 term in the matrix element of &̂8, leaving

behind a finite piece of size ∼(<B − <3)Λ2
QCD B̄W

53. This remainder is not physical and depends

on the condition chosen to define the U8. However, it will contribute to our final result if �cc 6=

< . For the ground-state component (8 = 0, 9 = 0) this term is thus heavily suppressed by the

factor (�0
cc − < ). However for the excited states we expect this piece to be on the order of the

physical contribution from the dimension-6 four-quark operator. As such it may result in a modest

enhancement of the excited state matrix elements. Providing we are able to demonstrate that we

have the excited cc and kaon states under control through appropriate cuts on our fitting ranges,

this should pose no obstacle to our calculation.

6.3.4 Description of fitting strategy

For a lattice of sufficiently large time extent that around-the-world terms in which states prop-

agate through the lattice temporal boundary can be neglected, and assuming that the four-quark

operator is sufficiently separated from the kaon source that the kaon ground state is dominant, the

three-point Green’s functions �8 of the weak effective operators defined in Eq. (6.12) have the

general form,

�8(C, C →snk
sep ) =

∑
9

1
√

2
� �

9

snk4
−< C" 9

8
4−� 9 (C

 →snk
sep −C) , (6.24)

where " 9

8
= 〈(cc) 9 |&8 | 0〉 is the matrix element of the four-quark operator &8 with the cc state

9 , with "0
8

corresponding to the physical  → cc matrix elements required to compute �0.

The factor of 1/
√

2 relates the matrix element involving the kaon G-parity eigenstate to that of the

physical kaon [13]. Here � is the amplitude of the G-parity kaon operator, � 9snk are the amplitudes
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of the sink operator with the state 9 , and � 9 is the energy of that state. These parameters are fixed

to those obtained from the two-point function fits in earlier sections: � and < to the results

given in Tab. 6.1, and � 9snk and � 9 to the results obtained from the three-operator, two-state cc fits

given in the last column of Tab. 5.3.

We perform simultaneous correlated fits over multiple sink operators to the form Eq. (6.24)

in order to determine the matrix elements " 9

8
, allowing for one or more states 9 . Independent

one-state fits are also performed to the optimized sink operator defined in Sec. 6.2. The fits are

performed to each weak effective operator separately, in the 10-operator basis (the relationship

between these 10 linearly-dependent operators serves as a useful cross-check of the fit results)

using the strategy outlined in Sec. 4.4. We apply a cut Cmin on the separation C between the kaon

and the four-quark operator in order to isolate the ground-state kaon, and also a cut C′min on the

separation C′ = C →snk
sep − C between the four-quark and sink operators. These cuts, the number of

sink operators, and the number of excited cc states included in the fit are varied in order to study

systematic effects.

For use below we again define an “effective matrix element” in which the ground-state cc and

kaon amplitudes and time dependence are multiplied out,

(6.25)
"

eff,snk
8

(C′) = �8(C, C →snk
sep )

(
1
√

2
� �

0
snk4

−< C4−�0(C →snk
sep −C)

)−1

= "0
8 +

∑
9

�
9

snk

�0
snk
"

9

8
4−(� 9−�0)C ′ .

These effective matrix elements converge exponentially to the ground-state matrix element at large

C′. Note that, unlike in Sec. 6.3.3, we are assuming that a cut, C′min, on the separation betwen the

kaon and four-quark operators has been applied that is sufficient to isolate the contribution of the

kaon ground state. As a result, these effective matrix elements can be assumed to be independent

of C →snk
sep and a weighted average of our five datasets of different C →snk

sep can be applied to improve

the statistical resolution of the data presented in our plots.
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6.3.5 Fit results

In this section we examine the results of fitting various subsets of our data, with the goal of

finding an optimal fit window in which systematic errors arising from both excited cc and kaon

states are minimized.

In Figs. 6.6 and 6.7 we plot the fitted ground-state matrix elements "0
8

as a function of C′min

for various choices of Cmin, the number of sink operators and the number of states. The three-

operator fits are performed using the cc(311), cc(111) and f sink operators; for the two-operator

fits we drop the noisier cc(311) data; and for the one-operator fits we further drop the f data. The

one-operator, one-state fits are equivalent to those performed in our 2015 work, albeit with more

statistics and more reliable cc energies and amplitudes.

The discussion below will be focused on these figures. We will first discuss general features

addressing the quality of the data and the reliability of the fits, and will then concentrate on search-

ing for evidence of systematic effects (or lack thereof) arising from kaon and cc excited states.

Based on those conclusions we will then present our final fit results.

Discussion of data and fit reliability

We will first comment on the fits to the optimal operator, labeled “opt.” in the figures. This

approach is outwardly advantageous in that the fits are performed to a single state and the covari-

ance matrix is considerably smaller. In Fig. 6.8 we compare the C′ dependence of the "eff,snk
2 and

"
eff,snk
6 effective matrix elements of this optimal operator to that of the cc(111) and f operators

alone, where we note a marked improvement in the quality of the plateau. This behavior, which is

also accounted for implicitly in the multi-state fits, demonstrates the power of the multi-operator

technique for isolating the ground state. In Figs. 6.6 and 6.7 we observe that the fit results for the

optimal operator agree very well with the multi-state fit results in all cases. While this approach

does not appear to offer any statistical advantage, the strong agreement suggests that our complex

multi-state correlated fits are under good control.

In Figs. 6.6 and 6.7 we observe for several ground-state matrix elements a trend in the fit results
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Figure 6.6: Fit results in lattice units for the  → cc ground-state matrix elements "0
1 − "

0
6 as

a function of C′min, the minimum time separation between the four-quark and sink operators that
is included in the fit. The results have been shifted along the x-axis for clarity in order of their
appearance in the legend. The legends are given in the format #ops × #states followed by the cut
Cmin on the time separation between the kaon and the four-quark operators. Here “opt.” is the fit to
the optimal operator and “sys.” is used to estimate the systematic error resulting from a third state.
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Figure 6.7: The extension of Fig. 6.6 to the ground-state matrix elements "0
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10.
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Figure 6.8: The effective matrix elements "eff,snk
2 (left) and "eff,snk

6 (right) for the cc(111) and f
sink operators and the two-operator two-state optimal sink operator (labeled “opt.” here), plotted
as a function of C′. The error-weighted average has been applied to the five different  → sink
separations subject to a cut of Cmin = 6.

8 P-value 8 P-value
1 0.314 6 0.446
2 0.737 7 0.843
3 0.02 8 0.88
4 0.123 9 0.581
5 0.421 10 0.545

Table 6.2: The p-values assessing how well the data with C′ ≥ 7 is described by the model for the
�8 correlation functions obtained by fitting to 3 operators and 2 states with C′min = 5 and Cmin = 6.

up to an extremum at C′min = 7, followed by a statistically significant correction at the level of 1-2f

for the fits with C′min = 8. In this and Sec. 6.6.1 we present substantial evidence that the systematic

errors resulting from excited kaon and cc states are minimal, which makes it unlikely that this

rise is associated with excited state contamination. Certainly if it were due to excited cc states

we would expect an improvement as more sink operators are added, but there is little evidence of

such, and likewise if excited kaon states were the cause we would expect an improvement as we

increase the Cmin cut, whereas no significant change is observed. The most likely explanation is a

statistical fluctuation in our correlated data set, and indeed in Fig. 6.8 we see evidence of such a

fluctation peaking at C′ = 7 which is likely driving this phenomenon.

Given the above, an interesting question we can ask is whether the models we obtain from

our fits with C′min = 5, which in all cases lie within the plateau region before this rise, are a good
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Figure 6.9: The "eff,snk
8 effective matrix element for the cc(111) (red circles) and f (blue squares)

sink operators overlaid by curves showing the function "eff,snk
8 (C′) predicted using the parameters

obtained by fitting the data with Cmin = 6 and C′min = 5. The lighter part of the band is the portion
of the curve outside of the fit region. An error-weighted average over C →snk

sep has been performed
to the data. Recall that the effective matrix elements are defined (Eq. 6.25) such that the result
converges to the ground-state matrix element at large C′.

description of the subset of data with C′ ≥ 7, or in other words how likely it is that these data are

consistent with this model allowing only for statistical fluctuations. In Tab. 6.2 we list the p-values

for these data using the model obtained by fitting to 3 sink operators and 2 states with C′min = 5

and Cmin = 6, computed using the technique discussed in Sec. 4.4 (with no free parameters). We

observe excellent p-values in all cases bar "0
3 , and to a lesser extent "0

4 . The lower p-values

for these operators are common for all of the multi-operator fits and are likely associated with

the statistical fluctuations described above which are more apparent for these matrix elements (cf.

Fig. 6.6). We expect that such unusual statistical fluctuations will be found when so many different

operators and fitting ranges are examined. Of most importance in a calculation of Im(�0) is "0
6 ,

for which we find that the model obtained with C′min = 5 is an excellent description of the data with

C′ ≥ 7. The p-value is in fact little different from the value ? = 0.525 obtained by fitting to these

data directly, suggesting that the models are equally good descriptions despite the tension in the

ground-state matrix elements.

For "0
7 and "0

8 (and to a lesser extent, "0
10) we observe a discrepancy between the one-

operator and multi-operator results at the 1-2f level that persists even to large C′min. Given the
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Figure 6.10: The C′ dependence of the "eff,snk
4 (left) and "eff,snk

6 (right) effective matrix elements
with the optimal sink operator. Each cluster of points, separated for clarity, shows the data for the
five different  → snk separations: 10,12,14, 16, and 18, from left to right in that order. The
darker, filled points are those that lie within our cut of Cmin = 6, and the lighter, hollow points are
those excluded.

very clear plateaus in the multi-state fit results, this disagreement is likely due again to statistical

effects in these correlated data. This is evidenced for example in Fig. 6.9 in which we overlay the

"
eff,snk
8 effective matrix element for the cc(111) and f sink operators by the multi-operator fit

curve. We observe that the fit curve for the cc(111) operator is completely compatible with the

data but favors a value that is consistently within the upper half of the error bar, suggesting that the

apparent flatness of the cc(111) effective matrix element represents a false plateau, and the fact

that the multi-operator method is capable of resolving the behavior is a testament to its power.

Excited kaon state effects

We now address excited kaon state effects. Because the data rapidly becomes noisier as we

move the four-quark operator closer to the kaon operator and thus further away from the cc oper-

ator, such effects are not expected to be significant. The simplest test is to vary the cut on the time

separation between the kaon operator and the four-quark operator, Cmin. The first three points from

the left of each cluster in Figs. 6.6 and 6.7 show the result of varying Cmin between 6 and 8 at fixed

C′min. As expected we observe no statistically significant dependence on this cut.

We can also test for excited kaon effects by examining the data near the kaon operator in
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more detail, alongside looking for trends in the five different  → sink separations at fixed C′.

The optimal operator proves convenient for examining this behavior as it neatly combines the two

dominant sink operators and should be flat within the fit window. In Fig. 6.10 we plot the data for

the "eff,snk
4 and "eff,snk

6 effective matrix elements with a distinction drawn between data included

and excluded by a cut on the kaon to four-quark operator time separation of Cmin = 6. We find no

apparent evidence of excited kaon state contamination even for data excluded by the cut, nor do

we observe any trends of the data in the  → sink separation.

We therefore conclude that excited kaon effects in our results are negligible.

Excited cc state effects

The dominant fit systematic error is expected to be due to excited cc states. Fortunately, given

that we can change both the number of operators and the number of states alongside varying the fit

window within a region where our data is most precise, there are a number of tests we can perform

to probe this source of error.

We begin by comparing the multi-operator fits to the one-operator (cc(111)) fit, the latter being

equivalent to the procedure used for our 2015 work. In the majority of cases we see little evidence

of excited state contamination in the one-operator data, as evidenced by its agreement with the

multi-operator fits as well as the strong consistency between the fits as we vary the fit window.

However for the "0
5 and "0

6 matrix elements we observe strong evidence of excited-state contam-

ination in these fits at smaller C′min. Fig. 6.6 clearly demonstrates how these effects are suppressed

as we add more operators: Initially the one-operator results converge with the 3-operator results at

C′min = 5 and 6, respectively, at which point the excited states appear to be sufficiently suppressed.

Introducing a second operator and state we eliminate part of this contamination and the conver-

gence appears earlier, at C′min = 4 and 5, respectively. Finally, in adding the third operator we find

results that are essentially flat from C′min = 3. This suggests that the 5% excited-state systematic

error on our 2015 result which used C′min = 4 was significantly underestimated for these matrix

elements.
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Parameter Value
2-state fit 3-state fit

Fit range 6-15 4-15
�0
cc(111) 0.3682(31) 0.3718(22)
�0
cc(311) 0.0038(3) 0.00333(27)
�0
f −0.000431(4) −0.0004318(42)
�0 0.3479(11) 0.35030(70)

�1
cc(111) −0.1712(91) 0.1748(67)
�1
cc(311) 0.0513(27) −0.0528(30)
�1
f −0.000314(17) 0.000358(13)
�1 0.569(13) 0.5879(65)

�2
cc(111) — 0.116(29)
�2
cc(311) — 0.063(10)
�2
f — 0.000377(94)
�2 — 0.94(10)

p-value 0.314 0.092

Table 6.3: Fit parameters in lattice units and the p-values for multi-operator fits to the � = 0 cc
two-point functions. Here �8 are the energies of the states and �8U represents the matrix element of
the operator U between the state 8 and the vacuum. The second column copies the parameters for
our usual fit which uses two-states and three operators from Tab. 5.3. The third column shows a fit
with the same three operators and one additional state that is used to probe the systematic effects
of this third state on the  → cc matrix element fits.

In general we observe excellent agreement between two and three-operator fits with two-states.

Unfortunately, as mentioned above, the cc(311) data are considerably noisier than those of the

other operators, and the associated cc energy and amplitudes are less-well known, and as such

these data contribute relatively little to the fit. Nevertheless we do observe that for the "0
5 and "0

6

matrix elements, the introduction of the third operator results in values that for low C′min (3 or 4)

are in considerably better agreement with the results for larger C′min, suggesting that in the regime

in which these data are less noisy (i.e. closer to the cc operator) the third operator is acting to

remove some residual excited-state contamination. We conclude that it is beneficial to include the

third operator.

In order to study the possibility of residual contamination from a third state we perform three-

operator, three-state fits to the matrix elements.Before that we first need to perform three-operator,

three-state fits to the cc three-point function. As mentioned in Sec. 5.2.1, this fit should be done
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Figure 6.11: The effective matrix element "eff,snk
6 for the cc(111) (red circles) and f (blue

squares) sink operators, overlaid by the fit curves. The lighter part of the band is the portion
of the curve outside of the fit region. The upper panels are for the 2-state fits and the lower panels
are for the 3-state fits. In each case the left panel is for C′min = 4 and the right panel C′min = 5. All
fits are performed with 3 operators and use Cmin = 6.

with t_min < 5 in order to obtain results that are resolvable from zero. We decide to choose

t_min = 4 to suppress the contribution from additional excited states beyond those of the third

state whose effects we are trying to estimate. The results are summarized in Tab. 6.3, together

with the results from the optimal fit in Sec. 5.2.1. Using the results in the third column of this

Table and the same fit ranges for C and C′ used in the three-operator, two-state fits. The results

for the ground-state matrix elements are also included in Figs. 6.6 and 6.7 with the label “sys.”.

We find that including this third state has very little impact and the results agree very well with

the three-operator, two-state fits. This again suggests that we have the cc excited-state systematic

error under control.
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A further test for excited-state contamination is to study the agreement of the fit curves with the

data outside of the fit region. To this end in Fig. 6.11 we plot the cc(111) and f operator data for

the "eff,snk
6 effective matrix element overlaid by the fit curves for the 3-operator, 2-state fits, and

for the 3-operator, 3-state fits described above, using C′min = 4 and 5. The fitted ground-state matrix

elements in these cases are all in complete agreement to within a fraction of their statistical errors.

We observe that the 3-operator, 2-state fit curve with C′min = 5 describes well the cc(111) data at

C′ = 4 but shows a tension for the f data at this timeslice. Fitting with C′min = 4 does not resolve

this tension, suggesting the effects of a third state are visible in the f operator data at C′ = 4. This

is consistent with the pattern of couplings of the operators to the states in Tab. 6.3 which show a

significant reduction in the couplings to higher states for the cc(111) operator but almost equal-

sized couplings of the f operator to all three states. The 3-operator, 3-state fit with C′min = 5 does not

appear to well resolve the contribution of the third state, which is consistent with our observation

that this state is no longer visible in the cc two-point data from this timeslice. However with

C′min = 4 we are able to resolve the effect of this state, and observe excellent agreement of the

model with the data even down to very low times. It should be noted however that the third-state

energy of �2 = 0.94(10) (in lattice units) obtained by our fits is somewhat larger than the value of

�2 = 0.692 predicted by dispersion theory suggesting that the effects of even higher excited states

may be playing a role here. Nevertheless the strong agreement between the ground-state matrix

elements for all of these fits suggest that the residual effects of the higher excited states on the

3-operator, 2-state fits are negligible.

For our final result we choose to focus upon the three-operator, two-state fits. While the major-

ity of the corresponding curves in Figs. 6.6 and 6.7 are essentially flat from C′min = 3, we opt for a

conservative and uniform cut of C′min = 5 at which we can strongly claim an absence of significant

excited-state effects. In the Sec. 6.6.1 we will consider means by which we can assign a systematic

error to this result.
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Param Value Param Value
"0

1 −0.00152(50) "0
2 0.00366(41)

"1
1 0.0015(22) "1

2 −0.0050(21)
p-value 0.488 p-value 0.743
"0

3 0.0005(11) "0
4 0.0052(13)

"1
3 0.0018(52) "1

4 −0.0045(59)
p-value 0.036 p-value 0.139
"0

5 −0.0100(13) "0
6 −0.0322(20)

"1
5 0.0182(49) "1

6 0.0563(81)
p-value 0.458 p-value 0.159
"0

7 0.02664(63) "0
8 0.08133(85)

"1
7 −0.0158(26) "1

8 −0.0464(45)
p-value 0.913 p-value 0.676
"0

9 −0.00330(71) "0
10 0.00292(57)

"1
9 0.0051(30) "1

10 −0.0048(27)
p-value 0.327 p-value 0.56

Table 6.4: Final  → cc matrix element results in lattice units obtained from a three-operator,
two-state fit with Cmin = 6 and C′min = 5. Here " 9

8
refers to the matrix element of the &8 operator

with cc state 9 .

Final fit results

As discussed above we choose the 3-operator, 2-state fit with C′min = 5 for our final result. As we

observe no significant dependence on the cut on the separation between the kaon and four-quark

operators we will choose Cmin = 6. In Tab. 6.4 we present the full set of p-values and parameters

for these fits. We obtain acceptable p-values in the majority of cases, with the notable exception

of the &3 four-quark operator for which ? = 4%. We find that this p-value is not improved

by increasing C′min, and also that the p-value of the one-operator, one-state fit with the same fit

range – with which our chosen value is in excellent agreement – has a p-value of 15%. The low

probability is therefore unlikely to be associated with any systematic effect and can be attributed

to low-probability statistical effects.

We conclude this section with a comparison of the statistical errors of the matrix elements "0
2
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and "0
6 to those determined in our 2015 analysis. Previously we obtained

(6.26)
"0

2 = 0.00424(116)

"0
6 = −0.0189(47) .

Comparing these values to those in Tab. 6.4 we find that the errors have reduced by factors of

2.8 and 2.4 for "0
2 and "0

6 , respectively. Comparing the 3-operator, 2-state fits to the 1-operator,

1-state fits in Fig. 6.6 we observe that the larger improvement for "0
2 can be explained by the

additional operators, however for "0
6 these two approaches have similar errors. The fact that the

error on "0
6 has improved considerably more than the factor of 1.9 expected by the increase in

statistics can therefore be attributed to the improved precision of the cc two-point function fits.

6.4 Non-perturbative renormalization of lattice matrix elements

The Wilson coefficients are conventionally computed in the MS (NDR) renormalization scheme,

and therefore we are required to renormalize our lattice matrix elements also in this scheme. This is

achieved by performing an intermediate conversion to a non-perturbative regularization invariant

momentum scheme with symmetric kinematics (RI-SMOM). As the name suggests, these schemes

can be treated both non-perturbatively on the lattice (provided the renormalization scale is suf-

ficiently small compared to the Nyquist frequency c/0) and in continuum perturbation theory

(providing the renormalization scale is sufficiently high that perturbation theory is approximately

valid at the order to which we are working). Thus, we can use continuum perturbation theory to

match our RI-SMOM matrix elements to MS, avoiding the need for lattice perturbation theory.

The matching factors have been computed to one-loop in Ref. [46].

In our 2015 calculation we computed the renormalization matrix at a somewhat low renormal-

ization scale of ` = 1.529 GeV in order to avoid large cutoff effects on our coarse, 0−1 = 1.38 GeV

ensemble. Due to this low scale, the systematic error associated with the perturbative RI to MS

matching was our dominant error, with an estimated size of 15%. In this work we utilize the step-

scaling procedure [47, 48] (summarized below) in order to circumvent the limit imposed by the

lattice cutoff and increase the renormalization scale to 4.0 GeV at which the error arising from the
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use of one-loop perturbation theory is expected to be significantly smaller. A separate step-scaling

calculation to 2.29 GeV was performed in Ref. [49] and we will utilize those results to study the

scale dependence of the perturbative and discretization errors in our operator normalization.

6.4.1 Summary of approach

Due to operator mixing, the renormalization factors take the form of a matrix. This is most

conveniently expressed in the seven-operator chiral basis in which the operators are linearly inde-

pendent and transform in specific representations of the (*(3)! ⊗ (*(3)' chiral symmetry group,

an accurate symmetry of our DWF formulation even at short distances. In this basis the renormal-

ization matrix is block diagonal, with a 1×1 matrix associated with the&′1 operator that transforms

in the (27, 1) representation, a 4× 4 matrix for the (8, 1) operators &′2, &′3, &′5 and &′6 , and a 2× 2

matrix for the (8, 8) operators &′7 and &′8.

In the RI-SMOM scheme the renormalized operators are generally defined thus,

(6.27)ORI
8 = /RI←lat

8 9 Olat
9

where Einstein’s summation conventions are implied and the label “RI” is used as short-hand for

the RI-SMOM scheme. The renormalization factors are defined via

(6.28)/−2
@ [%<]VUXW[ΓRI

8<]UVWX(?1, ?2) = �8< ,

where the index < is not summed over. Here U − X are combined spin and color indices, /@ is the

quark field renormalization, @ is a four-momentum that defines the renormalization scale and %<

are “projection matrices” described below. The quantities �8< on the right-hand side are found by

evaluating the left-hand side of the equation at tree level. ΓRI
8<

are computed as

(6.29)[ΓRI
8<]UVWX(?1, ?2) =

〈
�<

∑
G

428@GORI
8 (G)

〉UVWX
amp.

where the sum is performed over the full four-dimensional lattice volume and @ = ?1 − ?2. Here

�< are a set of seven four-quark operators that each create the four quark lines that connect to the
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weak effective operator,

�1 = �2 = �4 = �5 = B(−?1)3̄(?2)D(−?1)D̄(?2)

�3 = �6 = �7 = B(−?1)3̄(?2)
∑

@=D,3,B
@(−?1)@̄(?2) ,

(6.30)

where the momentum arguments indicate the incoming momenta and the quark momenta satisfy

symmetric kinematics: ?2
1 = ?2

2 = (?1− ?2)2 = @2 ≡ `2. The subscript “amp.” in Eq. (6.29) implies

that the external propagators are amputated by applying the ensemble-averaged inverse propagator,

such that the resulting Green’s function has a rank-4 tensor structure in the spin-color indices.

These Green’s functions are not gauge-invariant, hence the procedure must be performed using

gauge-fixed configurations, for which we employ Landau gauge-fixing. The use of momentum-

space Green’s functions introduces contact terms that prevent the use of the equations of motion

so that additional operators, beyond those needed to determine on-shell matrix elements, must

be introduced if all possible operator mixings are to be included, as is required if the RI-SMOM

scheme is to have a continuum limit. These are discussed below.

Note that the Wick contractions of Eq. (6.29) result in disconnected penguin-like diagrams that

interact only by gluon exchange; these diagrams are evaluated using stochastic all-to-all propaga-

tors and are typically noisy, requiring multiple random hits and hundreds of configurations. The

presence of disconnected diagrams also precludes the use of partially-twisted boundary conditions

and therefore limits our choices of the renormalization momentum scale to the allowed lattice

momenta.

The quark field renormalization /@ is also computed in the RI-SMOM scheme via the ampu-

tated vertex function of the local vector current operator, @̄W`@, from which we compute /+//@

where /+ is the corresponding renormalization factor for the local vector current. The factor /+ is

not unity as the local vector current is not conserved, however it can be computed independently

from the ratio of hadronic matrix elements containing the local and conserved (five-dimensional)

vector current allowing /@ to be obtained from the above. Alternatively, /@ can also be computed

from the local axial-vector current operator @̄W`W5@. Again the ratio /�//@ is determined from a
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three-point function evaluated in momentum space and, providing non-exceptional kinematics are

used, is equivalent up to negligible systematic effects at large momentum [50]. The quantity /� is

then determined by comparing the pion-to-vacuum matrix elements of the local and approximately

conserved (five-dimensional) axial current.

The independent projection matrices %< contract the external spin and color indices, and are

chosen with a tensor structure that reflects that of the operator with the same index. For the weak

effective operators, we can choose both parity-even and parity-odd projectors, which project onto

the parity-even and parity-odd components of the amputated Green’s function, respectively, and

which should both provide the same result due to chiral symmetry. In practice however we have

found that the parity-odd choices are better protected against residual chiral symmetry breaking

effects that induce non-zero mixings between the different (*(3)! ⊗ (*(3)' representations (cf.

Sec. 4.5 of Ref. [28]), and so we will use the parity-odd projectors exclusively. We consider two

different projection schemes: the “W` scheme”, for which the parity-odd projectors have the spin

structure,
(6.31)%

W`

< = ±W` ⊗ (W5W`) − (W5W`) ⊗ W` ,

and the “/@ scheme” with spin structure

(6.32)%
/@
< = ±/@ ⊗ (W5

/@) − (W5
/@) ⊗ /@ .

For the full set of parity-odd and parity-even projectors we refer the reader to Sec. 3.3.2 of

Ref. [14].

Similar choices of W` and /@ projector exist also for the quark field renormalization. We will

follow the convention of describing our RI-SMOM schemes with a label of the form SMOM(�, �)

where the quantities � and � in parentheses describe the choices of projector for the four-quark

operator and /@, respectively. In this work we consider only the SMOM(W`, W`) and SMOM(/@, /@)

schemes as previous studies of the renormalization of the neutral kaon mixing parameter � in-

dicate that the non-perturbative running is better described by perturbation theory for these two

choices than for the two mixed schemes [51]. We will compare our final results obtained using
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both intermediate schemes in order to estimate the systematic perturbative and discretization er-

rors in computing the RI to MS matching.

6.4.2 Operator mixing

The seven weak effective operators mix with several dimension-3 and dimension-4 bilinear

operators. For the parity-odd components these are (1 = B̄W53, (2 = B̄
→
/� W53 and (3 = B̄

←
/� W53

, where the arrow indicates the direction of the discrete covariant derivative. These are accounted

for by performing the renormalization with subtracted operators,

(6.33)&
′sub,lat
8

= &′8 +
3∑
9=1
1 9(

lat
9 .

The subtraction coefficients 1 9 are obtained by applying the following conditions,

(6.34)%
VU

9

〈
B(−?1)3̄(?2)Osub,lat

8
(@)

〉UV
amp.

= 0

with symmetric kinematics at the scale @2. The projection operators can be found in Sec. 7.2.6 of

Ref. [49]. In practice we find that the subtraction coefficients are small due to the suppression of

the mixing by a factor of the quark mass as a result of chiral symmetry, and also the observation

that the amputated vertex function Eq. (6.29) with a four-quark external state and a two-quark

operator necessarily involves only disconnected diagrams that are small at large momentum scales

due to the running of the QCD coupling.

Mixing also occurs with the dimension-5 chromomagnetic penguin operator and a similar elec-

tric dipole operator, conventionally labeled &11 and &12, respectively [52]. These operators do not

vanish by the equations of motion and therefore contribute also to the on-shell matrix elements,

but break chiral symmetry and as such are expected to be heavily suppressed [52, 53]. It is there-

fore conventional to neglect their effects in, for example, the determination of the Wilson coef-

ficients [54]. In our DWF calculation the dimension-1 mixing coefficients of these dimension-5

operators will be of order the input quark masses used in our RI-SMOM calculations or the DWF

residual mass — effects, when combined with the required gluon exchange, should be at or below

the percent level. Thus, in this work we neglect these operators.
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In addition to the lower-dimension operators there is also mixing with both gauge-invariant and

gauge-noninvariant dimension-6 two-quark operators. These operators enter at next-to-leading

order and above, and are therefore naturally small provided we perform our renormalization at

large energy scales.

The gauge-noninvariant dimension-6 operators vanish due to gauge symmetry and in many

cases also by the equations of motion, and therefore do not contribute to on-shell matrix ele-

ments [55]. These operators enter the renormalization only at the two-loop level [45] and above,

and given that the RI→ MS matching factors are at present only available to one loop, the system-

atic effect of disregarding these operators is likely to be much smaller than our dominant systematic

errors. Nevertheless we are presently investigating position-space renormalization [56] which does

not require gauge fixing and therefore does not suffer from such mixing, and as such we may be

able to remove this systematic error in future work.

Of the gauge-invariant dimension-6 operators,

(6.35)�1 = B̄
[
�`

[
�`, �a

] ]
Wa(1 − W5)3

is the only operator that mixes at one loop [57], with all others entering at two-loops and above. In

Ref. [49] we have investigated the impact of including the�1 operator in our RI-SMOM renormal-

ization and have computed the subsequent effect on the  → cc amplitudes. This can be achieved

without the need for measuring matrix elements of �1 between kaon and cc states by taking ad-

vantage of the equations of motion to rewrite those matrix elements for on-shell kinematics in

terms of the matrix elements of the conventional four-quark operators, such that the entire effect

of this operator is captured by changes in the values of the (8, 1) elements of the renormalization

matrix. Note that at present the results including the �1 operator have been computed only at the

2.29 GeV renormalization scale and not the 4.0 GeV scale used for our final result. However, as

demonstrated in Ref. [49] and also in Sec. 6.6.6, the effects of including �1 are at the few percent

level as expected, implying that the resulting systematic error is small compared to our other errors.
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6.4.3 Step-scaling

Step-scaling [48] allows for the circumvention of the upper limit on the renormalization scale

imposed by the lattice spacing through independently computing the non-perturbative running of

the renormalization matrix to a higher scale using a finer lattice. The multiplicative factor relating

the RI-SMOM operators renormalized at two different scales can be obtained from the ratio

(6.36)ΛRI(`2, `1) = /RI←lat(`2)(/RI←lat(`1))−1 ,

where `1 is a renormalization scale that lies below the cutoff on the original coarser lattice while

`2 is a higher scale, likely inaccessible on the coarser lattice. The quantity ΛRI(`2, `1) is computed

on finer lattices for which `2 also lies below the cutoff and can be applied thus,

(6.37)/RI←lat(`2) = ΛRI(`2, `1)/RI←lat(`1)

in order to raise the renormalization scale to `2, giving the renormalization matrix /RI←lat(`2)

which non-perturbatively converts our course-lattice operators into an RI scheme defined at a scale

`2 potentially much larger that the inverse of our coarse lattice spacing. We will take advantage

of this technique to avoid having to match perturbatively to MS directly at the lower energy scales

allowed by our coarse, 0−1 = 1.38 GeV lattice.

6.4.4 Details and results of lattice calculation

We use the step-scaling procedure to obtain the renormalization matrix at a scale of `2 = 4.006

GeV by matching between our V = 1.75, 0−1 = 1.378(7) GeV (32ID) ensemble and a second,

finer ensemble with V = 2.37 and 0−1 = 3.148(17) whose properties are described in Ref. [20]

under the label “32Ifine”. These ensembles have periodic spatial boundary conditions rather than

G-parity boundary conditions, but as previously mentioned, boundary effects can be neglected for

these high-energy Green’s functions. Such quantities are also constructed to be insensitive to the

quark mass scale, and therefore we can disregard the unphysically heavy 170 MeV and 370 MeV

pion masses on the 32ID and 32Ifine ensembles, respectively. Note also that, although we do not

take the continuum limit of the step-scaling matrix computed on the 32Ifine ensemble, the fine
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lattice spacing and the typically small size of discretization effects on such quantities [58] suggest

the induced error is also negligible compared to our other errors. We remind the reader that these

calculations do not include the �1 operator, and its absence in our calculation is treated as a source

of systematic error in Sec. 6.6.

Due to the presence of disconnected diagrams in our calculation, the choices of quark momenta

are restricted to the discrete values allowed by the finite-volume. The closest match between

allowed momenta on the 32ID and 32Ifine ensembles that can be chosen as an intermediate scale

is `32ID
1 = 1.531 GeV and `32Ifine

1 = 1.514 GeV, respectively. The fact that these scales differ by

1.1% introduces a systematic error that, given the slow evolution of the QCD V-function, can be

treated as negligible.

We obtain the quark field renormalization for the 32Ifine ensemble via the vector current op-

erator as described in Sec. 6.4.1. For the 32ID ensemble we use the axial-vector operator as the

corresponding renormalization factor, /� has been measured to much higher precision than /+

(0.05% versus 1.2%, respectively) [59]. The measurements of /� and /+ are treated as statis-

tically independent from those of the amputated vertex functions and are incorporated into the

calculation using the superjackknife technique.

On the 32ID ensemble we extend the calculation at `32ID
1 = 1.531 GeV performed in our previ-

ous work and documented in Ref. [14] from 100 to 234 configurations, where for each configura-

tion we have increased the number of stochastic sources used in the evaluation of the disconnected

diagrams from 1 to 20, improving the statistical errors substantially. We measure the amputated

Green’s function Eq. (6.29) with quark momentum choices

(6.38)
?1 = (0, 4, 4, 0)

2c
!
,

?2 = (4, 4, 0, 0)
2c
!
,

that satisfy symmetric kinematics ?2
1 = ?2

2 = (?1 − ?2)2 = (`32ID
1 )2. Combined with the following
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measurements of the quark field renormalization coefficient in the W` and /@ schemes at `32ID
1 ,

(6.39)
/
W`

@ (`32ID
1 ) = 0.7304(4) ,

/
/@
@ (`32ID

1 ) = 0.8017(4) ,

we obtain the renormalization matrices /RI←lat
8 9

for the SMOM(W`, W`) and SMOM(/@, /@) schemes

given in Tab. 6.5.

For the measurement of the step-scaling matrix on the 32Ifine ensemble we likewise use

(6.40)
?1 = (1, 1, 2, 0)

2c
!
,

?2 = (0, 1, 1, 4)
2c
!
,

at the low scale `32Ifine
1 = 1.514 GeV and

(6.41)
?1 = (4, 4, 3, 2)

2c
!
,

?2 = (0, 1, 4, 10)
2c
!
,

at the high scale `2 = 4.006 GeV. The corresponding values of /@ are

(6.42)
/
W`

@ (`32Ifine
1 ) = 0.8082(2) ,

/
/@
@ (`32Ifine

1 ) = 0.8884(5) ,

at `32Ifine
1 = 1.514 GeV and

(6.43)
/
W`

@ (`32Ifine
2 ) = 0.80235(9) ,

/
/@
@ (`32Ifine

2 ) = 0.83196(10) ,

at `2 = 4.006 GeV.

The results for the step-scaling matrix Λ(4.006 GeV, 1.514 GeV)8 9 in both schemes are given in

Tab. 6.6. In Tab. 6.7 we combine these step-scaling results with the 32ID /RI←lat results to produce
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0.43216(43) 0 0 0 0 0 0
0 0.4904(62) −0.0398(60) −0.0009(22) −0.0011(13) 0 0
0 −0.0375(24) 0.4937(25) −0.00242(93) 0.00637(68) 0 0
0 −0.011(19) −0.017(17) 0.5138(63) −0.0968(38) 0 0
0 0.0106(77) 0.0304(80) −0.0328(28) 0.3305(23) 0 0
0 0 0 0 0 0.49839(49) −0.092841(93)
0 0 0 0 0 −0.027045(31) 0.30819(31)

0.46763(46) 0 0 0 0 0 0
0 0.3670(66) −0.2593(71) −0.0025(25) −0.0005(15) 0 0
0 0.1575(98) 0.835(10) 0.0019(38) −0.0006(23) 0 0
0 −0.032(32) −0.016(30) 0.519(11) −0.0952(63) 0 0
0 −0.048(14) −0.077(17) −0.0578(46) 0.3866(36) 0 0
0 0 0 0 0 0.50244(50) −0.094095(95)
0 0 0 0 0 −0.060488(73) 0.37992(39)

Table 6.5: The elements of the 7 × 7 SMOM(W`, W`) (upper) and SMOM(/@, /@) (lower) renormal-
ization matrices /(1.531GeV)RI←lat

8 9
with renormalization scale ` = 1.531 GeV computed on the

32ID ensemble.

the final renormalization matrices at 4.0 GeV, where the errors on the two independent ensembles

have been propagated using the super-jackknife procedure.

As mentioned previously, we will also utilize step-scaled renormalization matrices computed

at `2 = 2.29 GeV both with and without the �1 operator included. This calculation used an

intermediate scale of ` = 1.33 GeV to match between the coarse and fine ensemble. Details of

this calculation can be found in Ref. [49]. In that work the statistical errors on /+ and /� were

not included in the results, and /+ was used rather than /� in the determination of /@ on the 32ID

ensemble. In order to match the procedure outlined above we have reanalyzed the data from that

work, the results of which are presented in Tab. 6.8 for ` = 1.33 GeV and Tab. 6.9 for ` = 2.29

GeV. Note, at present only results in the SMOM(W`, W`) scheme are available with �1 included.

6.5 Results for �0�0�0 and n′n′n′

In this section we combine our lattice measurements with experimental inputs to obtain Re(n′/n).

The set of Standard Model parameters and other experimental values used for these calculations

are listed in Tab. 6.10 and their uncertainties are accounted for as a systematic error in the follow-
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0.94514(24) 0 0 0 0 0 0
0 0.976(49) −0.155(41) −0.022(19) 0.023(15) 0 0
0 −0.105(20) 1.055(19) −0.0130(69) −0.0062(64) 0 0
0 −0.10(15) −0.13(12) 0.855(56) 0.243(47) 0 0
0 0.0010(750) −0.058(70) −0.031(27) 1.728(24) 0 0
0 0 0 0 0 0.96601(25) 0.23304(65)
0 0 0 0 0 0.00911(46) 1.8170(26)

0.89837(24) 0 0 0 0 0 0
0 1.110(77) 0.099(62) −0.002(24) 0.023(17) 0 0
0 −0.486(49) 0.532(41) −0.026(16) 0.009(10) 0 0
0 −0.19(28) −0.20(22) 0.844(82) 0.242(58) 0 0
0 0.09(12) 0.09(10) −0.027(40) 1.597(33) 0 0
0 0 0 0 0 0.97195(23) 0.18510(61)
0 0 0 0 0 0.07468(83) 1.6056(32)

Table 6.6: The elements of the 7×7 SMOM(W`, W`) (upper) and SMOM(/@, /@) (lower) step-scaling
matrices Λ(4.006GeV, 1.514GeV)8 9 between renormalization scales `1 = 1.514 and `2 = 4.006
GeV computed on the 32Ifine ensemble.

ing section. In this table the value of Re(�2) was obtained from the experimental measurement

of  + → c+c0 decays, and the value of Re(�0) from  ( → c+c− and  ( → c0c0 decays. The

relationship between the isospin amplitudes and the experimental branching fractions and decay

widths is described in detail in Secs. III.A and III.B of Ref. [60].

As previous mentioned, the Wilson Coefficients that incorporate the short distance physics

“integrated out” from the Standard Model are known in perturbation theory in the 10-operator

basis to NLO in the MS scheme. Partial calculations at NNLO are available in the literature [61,

62, 63, 64, 65], together with a preliminary study on a direct lattice determination [66]; in this

manuscript we utilize the complete NLO results of Ref. [54] in the MS-NDR scheme for our central

values, and the LO predictions to assign a systematic error due to the truncation of the perturbative

series.

For consistency with the NLO determination of the Wilson coefficients we follow Ref. [54] in

utilizing the 2-loop determination of UB given in Ref. [54] (and the 1-loop determination for the LO

Wilson coefficients used to estimate the systematic error) despite the fact that a 4-loop calculation

is available [67]. In order to fix the parameters of the 2-loop (1-loop) calculation, a value of UB at
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0.40845(42) 0 0 0 0 0 0
0 0.485(23) −0.114(20) −0.012(10) 0.0077(63) 0 0
0 −0.0908(93) 0.5248(89) −0.0089(37) 0.0061(26) 0 0
0 −0.051(70) −0.067(58) 0.432(30) −0.003(19) 0 0
0 0.021(37) 0.025(35) −0.073(15) 0.574(10) 0 0
0 0 0 0 0 0.47514(49) −0.01786(21)
0 0 0 0 0 −0.04460(26) 0.55914(99)

0.42011(43) 0 0 0 0 0 0
0 0.422(38) −0.207(36) −0.005(13) 0.0084(77) 0 0
0 −0.094(24) 0.570(24) −0.0120(83) 0.0059(47) 0 0
0 −0.14(14) −0.15(12) 0.424(44) 0.013(26) 0 0
0 −0.030(63) −0.073(66) −0.106(23) 0.620(15) 0 0
0 0 0 0 0 0.47715(49) −0.02113(24)
0 0 0 0 0 −0.05960(55) 0.6030(14)

Table 6.7: The elements of the 7 × 7 SMOM(W`, W`) (upper) and SMOM(/@, /@) (lower) renor-
malization matrices /(4.006GeV)RI←lat

8 9
with renormalization scale ` = 4.006 GeV computed by

applying the step-scaling matrices in Tab. 6.6 with the renormalization matrices in Tab. 6.5. This
matrix converts the lattice matrix elements computed in this work to the appropriate RI scheme at
` = 4.006 GeV

a reference scale is required, and to minimize the perturbative truncation error it is desirable that

this scale be close to the typical scale of the physical problem, in our case O(2 GeV). We therefore

utilize the 4-loop calculation of UB to run the value of U# 5 =5
B ("/ ) given in Tab. 6.10 down to 1.7

GeV in the 4-flavor theory, and use the result,

(6.44)U
# 5 =4
B (1.7 GeV) = 0.32733

as input to our 2-loop (1-loop) calculation. (The reason for choosing this scale will be discussed in

Sec. 6.6.9.)

6.5.1 Lellouch-Lüscher factor

The Lellouch-Lüscher factor � [36] removes the leading power-law finite-volume corrections

to the lattice matrix element. It is defined as

(6.45)�2 =
4c< �2

cc

:3

(
:
3X0
3:

+ @
3q

3@

)
,
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0.43432(44) 0 0 0 0 0 0
0 0.487(14) −0.033(14) −0.0013(47) −0.0044(35) 0 0
0 −0.0197(63) 0.4949(79) −0.0029(26) 0.0082(22) 0 0
0 −0.006(43) −0.008(42) 0.526(14) −0.111(10) 0 0
0 0.024(19) 0.043(22) −0.0350(73) 0.2907(63) 0 0
0 0 0 0 0 0.49785(50) −0.10138(10)
0 0 0 0 0 −0.024002(34) 0.27024(28)

0.43432(44) 0 0 0 0 0 0
0 0.488(13) −0.030(12) −0.0018(46) −0.0032(28) 0 0
0 −0.0221(59) 0.4874(61) −0.0015(25) 0.0060(16) 0 0
0 −0.005(42) −0.008(36) 0.526(14) −0.1110(81) 0 0
0 0.019(18) 0.027(19) −0.0336(69) 0.2872(48) 0 0
0 0 0 0 0 0.49785(50) −0.10138(10)
0 0 0 0 0 −0.024002(34) 0.27024(28)

Table 6.8: The elements of the 7 × 7 SMOM(W`, W`) renormalization matrix /(1.33GeV)RI←lat
8 9

with (upper) and without (lower) the effects of the �1 operator included. This matrix converts the
lattice matrix elements computed in this work to the SMOM(W`, W`) scheme at ` = 1.33 GeV

where X0 is the � = 0 cc scattering phase shift and q is a known function [6] of @ = !:
2c , appro-

priately modified for our antiperiodic pion boundary conditions [40], with : the interacting pion

momentum defined via

(6.46):2 =
(
�cc

2

)2
− <2

c .

Note that Eq. (6.45) differs by a factor of two from the corresponding equation in Ref. [36] due to

our different conventions on the decay amplitude (cf. Ref. [43]).

The calculation of the Lellouch-Lüscher factor requires the derivative of the phase shift with

respect to interacting pion momentum, or correspondingly the cc energy, evaluated at the kaon

mass. This derivative can be obtained from a phenomenological interpolating ansatz or direct

lattice calculation. In Sec. 5.3.3, we obtain the phase-shift at two values of the rest-frame energy

that are lower than the kaon mass. These results are also close to their corresponding dispersive

predictions, albeit with somewhat larger excited-state systematic errors. Using these results we can

directly measure the derivative of the phase-shift with respect to the energy using a finite-difference

approximation, for which we obtain

(6.47)
dX0
d@

= 1.76(74) rad
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0.41588(42) 0 0 0 0 0 0
0 0.500(23) −0.058(43) −0.0006(82) 0.00000(1300) 0 0
0 −0.055(13) 0.507(26) −0.0055(48) 0.0115(79) 0 0
0 0.020(68) −0.01(13) 0.496(22) −0.071(37) 0 0
0 0.010(46) −0.059(93) −0.032(18) 0.392(28) 0 0
0 0 0 0 0 0.48386(49) −0.063985(81)
0 0 0 0 0 −0.035289(72) 0.40653(45)

0.41588(42) 0 0 0 0 0 0
0 0.498(15) −0.063(14) 0.0003(53) −0.0011(33) 0 0
0 −0.0570(72) 0.5009(76) −0.0042(28) 0.0088(19) 0 0
0 0.024(45) −0.0010(400) 0.494(16) −0.0672(94) 0 0
0 0.051(30) 0.040(30) −0.052(11) 0.4245(79) 0 0
0 0 0 0 0 0.48386(49) −0.063985(81)
0 0 0 0 0 −0.035289(72) 0.40653(45)

Table 6.9: The elements of the 7 × 7 SMOM(W`, W`) renormalization matrix /(2.29GeV)RI←lat
8 9

with (upper) and without (lower) the effects of the �1 operator included. This matrix converts the
lattice matrix elements computed in this work to the SMOM(W`, W`) scheme at ` = 2.29 GeV

from the difference with the nearest energy to the kaon mass, and

(6.48)
dX0
d@

= 1.33(17) rad

from the next-to-nearest.

We can also obtain the derivative from the dispersive prediction of Colangelo et al [9]. The

derivative with respect to B = �2
cc, computed at our lattice cc energy using Eqs. 17.1-17.3 of

Ref. [9] with <c = 135 MeV, is found to be

(6.49)
dX0
dB

= 3.36(3) × 10−6 rad MeV−2 ,

where the error is the statistical error arising from the uncertainty in the lattice spacing and mea-

sured lattice cc energy. Note that this result is obtained at the physical pion mass, which is 5%

smaller than our lattice value. In order to estimate the impact of the difference in pion masses on

this derivative we use NLO chiral perturbation theory [69, 9] (ChPT) to estimate the derivative

with respect to energy at : = 0.1 GeV, at which ChPT is expected to be reliable. Assuming that

the slope with respect to
√
B is roughly constant (which is well motivated by the dispersion theory

result, cf. Fig. 7 of Ref. [9]) we estimate the change in dX0
dB evaluated at our lattice cc energy
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Quantity Value
�� 1.16638×10−5 GeV−2

+D3 0.97420
+DB 0.2243
qn 0.7596 rad
g 0.001558(65) -0.000663(33)i (*)
|n | 0.002228(11) (†)
l 0.04454(12) (†)

Re(�0)expt 3.3201(18) × 10−7 GeV (†)
Re(�2)expt 1.479(4) × 10−8 GeV (†)
<2(<2) 1.27(2) GeV (*)
<1(<1) 4.18(3) GeV (*)
<, (<, ) 80.379(12) GeV (*)
</ (</ ) 91.1876(21) GeV (*)
<C(<C) 160.0(4.8) GeV (*)

U
# 5 =5
B (</ ) 0.1181
U 1/127.955(10) (*)

sin2(\, ) 0.23122(3) (*)

Table 6.10: Standard Model and other experimental inputs required to determine �0 and Re(n ′/n)
from the lattice matrix elements. The parameters given in this table were obtained from the PDG
Review of Particle Physics [68], apart from those of Re(�0), Re(�2) and their ratio, l, which were
taken from Ref. [1]. Here qn is the phase of the indirect CP-violation parameter n . The CKM ratio
g = −+∗CB+C3/+∗DB+D3 is obtained using the Wolfenstein parameterization expanded to eighth order,
with parameters taken from the aforementioned review. The impact upon our result of the errors
on those quantities marked with a (∗) is incorporated as a systematic error in Sec. 6.6.8. The errors
on those quantities marked with (†) are included within the quoted statistical errors on our results.
The errors on the remaining quantities are neglected as their contributions to our final error are
small in comparison to our statistical error.
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as 1.2%. This value is small relative to the final systematic error we assign to the derivative in

Sec. 6.6.4 and can therefore be neglected here. Finally, applying dB/d@ = 4.18(5) × 105 MeV2,

where again the errors are statistical, we obtain

(6.50)
dX0
d@

= 1.405(5) rad .

The near-linearity of the dispersive prediction suggests that a linear ansatz,

(6.51)
dX0

d�cc
≈ X0
�cc − 2<c

may also be appropriate. With this ansatz we find

(6.52)
dX0
d@

= 1.259(36) rad .

Given that the derivative of the phase shift is a subleading contribution and that the above

values are all in reasonable agreement, we expect that the Lellouch-Lüscher factor can be obtained

reliably.

In our 2015 work [1] we also considered a linear ansatz in @,

(6.53)
dX0
d@
≈ X0
@

for which we obtain
(6.54)

dX0
d@

= 0.790(22) rad .

This value is not as well motivated as the ansatz in Eq. (6.52) and is in disagreement with all four

of the above results. Given the good agreement between our measured phase-shifts and the above

estimates of the derivative with the dispersive predictions, we will not include this result in our

systematic error estimate.

Given the good agreement between our phase shifts and the dispersive predictions [15] we will

use the dispersive result given in Eq. (6.50). The variation in the results will be incorporated as a

systematic error in Sec. 6.6.4.

We find
(6.55)� = 26.696(52) ,

where the error arises primarily from the uncertainty in measured cc energy and its small size

results from the small contribution of the cc scattering phase shift relative to that of the known

function q in Eq. (6.45).
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6.5.2 Renormalized physical matrix elements

The infinite-volume matrix elements of the seven chiral-basis operators &′'
9

in a scheme ' at

the scale ` can be expressed without ambiguity in terms of the matrix elements "′ lat
9

= 〈cc |&′ lat
9
| 〉

of the corresponding lattice operators:

(6.56)"′'(`) = /'←lat(`)
(
0−3�"′ lat

)
,

where 0 is the lattice spacing, /'←lat(`) a 7×7 renormalization matrix and � the Lellouch-Lüscher

factor obtained in Eq. (6.55).

The ten conventional, linearly-dependent operators &8 are defined in terms of the seven inde-

pendent operators &′
9

as follows:
(6.57)&8 =

∑
8

)8 9&
′
9 ,

where 1 ≤ 8 ≤ 10, 9 runs over the set {1, 2, 3, 5, 6, 7, 8} and the matrix ) is given by

(6.58)) =

©­­­­­­­­­­­­­­­­­­­­­­­­­­­­«

1/5 1 0 0 0 0 0

1/5 0 1 0 0 0 0

0 3 2 0 0 0 0

0 2 3 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

3/10 0 −1 0 0 0 0

3/10 −1 0 0 0 0 0

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®®¬
which can be found as Eqs. (58) and (59) of Ref. [46]. This relationship applies both to RI scheme

and bare lattice operators.

In our lattice calculation we have evaluated the matrix elements of all ten linearly-dependent

operators&8 as given in Tab. 6.4. This gives us a consistency test of the three Fierz identities: these

identities are obeyed to within statistical errors and with an absolute size at the 1% level, validating
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0.001217 0.0001759 0.001208 0.0006908 0.001206 0.0001964 0.0004749 7.289×10−5 0.0005008 -2.695×10−5

0.0001759 0.0008377 0.0003157 0.001220 0.0004747 0.0008078 0.0004188 0.0009140 5.226×10−5 0.0003670
0.001208 0.0003157 0.006443 0.003560 0.003463 0.003764 -0.0001617 -0.0007452 -0.0009426 -0.001024

0.0006908 0.001220 0.003560 0.008397 0.002873 0.006152 6.055×10−6 -0.0002789 -0.0003660 -0.001078
0.001206 0.0004747 0.003463 0.002873 0.008692 0.004380 -0.0006516 -0.001387 -0.0008054 -0.0003295

0.0001964 0.0008078 0.003764 0.006152 0.004380 0.02195 -0.001279 -0.006099 -0.0003987 -0.001377
0.0004749 0.0004188 -0.0001617 6.055×10−6 -0.0006516 -0.001279 0.002804 0.003961 0.001241 0.0006063

7.289×10−5 0.0009140 -0.0007452 -0.0002789 -0.001387 -0.006099 0.003961 0.01150 0.0004234 0.001589
0.0005008 5.226×10−5 -0.0009426 -0.0003660 -0.0008054 -0.0003987 0.001241 0.0004238 0.002475 0.0003710

-2.695×10−5 0.0003670 -0.001024 -0.001078 -0.0003295 -0.001377 0.0006063 0.001589 0.0003710 0.001571

Table 6.11: The 10×10 covariance matrix �8 9 between the unrenormalized, infinite-volume lattice
operators in the conventional basis and physical units of GeV3.

our code. We do not expect the Fierz relations to be obeyed to floating point accuracy since our use

of all-to-all propagators introduces a stochastic element into the inversion of the Dirac operator and

our use of W5 hermiticity differs between the ten operators introducing statistical noise in different

ways into each evaluation.

Since the Fierz identities are not obeyed exactly by the data in Tab. 6.4, we have a choice as

to how the ten linearly-dependent matrix elements " lat
8

in that table are to be combined to give

the seven independent matrix elements "′ lat
8

needed on the right-hand side of Eq. (6.56). To this

end we choose to treat "′ lat
8

as fit parameters whose best fit values are obtained by minimizing the

correlated j2:

(6.59)j2 =
10∑
8 9=1

(
" lat
8 −

7∑
:=1

)8:"
′ lat
:

)
(�−1)8 9

(
" lat
9 −

7∑
ℓ=1

)9ℓ"
′ lat
ℓ

)
.

The result is an optimal combination that provably minimizes the statistical error on the resulting

"′ lat
8

. The 10 × 10 covariance matrix �8 9 is estimated by studying the variation of the bootstrap

means of the matrix elements, and is given in Tab. 6.11. Note that we use the same covariance

matrix for the fit to each bootstrap sample (a frozen fit) and therefore do not take into account in

our errors the fluctuations in the covariance matrix over bootstrap samples. However such effects

are expected to be minimal due to our large number of configurations. The results for the bare

matrix elements obtained by this procedure, along with those obtained by applying Eq. (6.57) to

convert those results back into the 10-basis, are given in Tab. 6.12. These results are quoted in

physical units and incorporate the Lellouch-Lüscher finite-volume correction.

The results for the seven operators converted to the SMOM(W`, W`) and SMOM(/@, /@) schemes
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i &′
8

(GeV3) &8 (GeV3)
1 0.143(93) −0.119(32)
2 −0.147(24) 0.261(27)
3 0.233(23) 0.023(74)
4 - 0.403(72)
5 −0.723(91) −0.723(91)
6 −2.211(144) −2.211(144)
7 1.876(52) 1.876(52)
8 5.679(107) 5.679(107)
9 - −0.190(39)
10 - 0.190(35)

Table 6.12: The bare lattice matrix elements in the 7-operator chiral basis (second column) that
minimize the correlated j2 Eq. (6.59), and those results converted back into the 10-operator basis
by applying Eq. (6.57) (third column). These results are quoted in physical units and incorporate
the Lellouch-Lüscher finite-volume correction. The errors are statistical, only.

i SMOM(/@, /@) (GeV3) SMOM(W`, W`) (GeV3) MS via SMOM(/@, /@) (GeV3) MS via SMOM(W`, W`) (GeV3)
1 0.060(39) 0.059(38) −0.107(22) −0.093(18)
2 −0.125(19) −0.106(16) 0.147(15) 0.143(14)
3 0.142(17) 0.128(14) −0.086(61) −0.053(44)
4 - - 0.185(53) 0.200(40)
5 −0.351(62) −0.313(48) −0.348(62) −0.311(48)
6 −1.306(90) −1.214(82) −1.308(90) −1.272(86)
7 0.775(23) 0.790(23) 0.769(23) 0.784(23)
8 3.312(63) 3.092(58) 3.389(64) 3.308(63)
9 - - −0.117(20) −0.114(19)
10 - - 0.137(22) 0.123(19)

Table 6.13: Physical, infinite-volume matrix elements in the SMOM(/@, /@) and SMOM(W`, W`)
schemes at ` = 4.006 GeV given in the 7-operator chiral basis, as well as those converted pertur-
batively into the MS scheme at the same scale in the 10-operator basis. The errors are statistical
only.

are given in the left two columns of Tab. 6.13. The right two columns of that table show the matrix

elements of the ten conventional operators in the MS scheme obtained from the left two columns by

an application of Eqs. (6.57) and (6.58). For the convenience of the reader in utilizing these results

we also provide the covariance matrices for the SMOM(/@, /@) scheme matrix elements, which we

will use as our central values in Sec. 6.7, and also the MS matrix elements derived from them, in

Tabs. 6.14 and 6.15, respectively.
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0.001516 5.385 × 10−5 −9.167 × 10−5 0.0001252 −0.0003965 0.0004930 0.0007192
5.385 × 10−5 0.0003563 −4.099 × 10−5 0.0007596 0.0002981 2.914 × 10−5 −0.0002118
−9.167 × 10−5 −4.099 × 10−5 0.0002808 0.0003784 0.0004679 −4.656 × 10−5 0.0001516

0.0001252 0.0007596 0.0003784 0.003904 0.001679 −8.000 × 10−5 −0.0004013
−0.0003965 0.0002981 0.0004679 0.001679 0.008188 −0.0003817 −0.002110
0.0004930 2.914 × 10−5 −4.656 × 10−5 −8.000 × 10−5 −0.0003817 0.0005395 0.0009460
0.0007192 −0.0002118 0.0001516 −0.0004013 −0.002110 0.0009460 0.003937

Table 6.14: The 7×7 covariance matrix between the renormalized, infinite-volume matrix elements
in the SMOM(/@, /@) scheme in the chiral basis.

0.0004628 8.315 × 10−6 0.001058 0.0005998 0.0008504 0.0002622 0.0001246 −6.882 × 10−5 0.0001651 −0.0002894
8.315 × 10−6 0.0002367 0.0002796 0.0004981 0.0002866 0.0002532 5.669 × 10−5 0.0003026 −0.0001273 0.0001010

0.001058 0.0002796 0.003749 0.002929 0.002999 0.001681 −7.629 × 10−7 −0.0003280 −0.0002872 −0.001066
0.0005998 0.0004981 0.002929 0.002784 0.002406 0.001524 −6.156 × 10−5 7.545 × 10−5 −0.0005649 −0.0006666
0.0008504 0.0002866 0.002999 0.002406 0.003902 0.001607 −7.840 × 10−5 −0.0004062 −0.0002240 −0.0007878
0.0002622 0.0002532 0.001681 0.001524 0.001607 0.008059 −0.0003739 −0.002158 −0.0004472 −0.0004561
0.0001246 5.669 × 10−5 −7.629 × 10−7 −6.156 × 10−5 −7.840 × 10−5 −0.0003739 0.0005361 0.0009564 0.0001873 0.0001194
−6.882 × 10−5 0.0003026 −0.0003280 7.545 × 10−5 −0.0004062 −0.002158 0.0009564 0.004120 6.076 × 10−5 0.0004322

0.0001651 −0.0001273 −0.0002872 −0.0005649 −0.0002240 −0.0004472 0.0001873 6.076 × 10−5 0.0003912 9.882 × 10−5

−0.0002894 0.0001010 −0.001066 −0.0006666 −0.0007878 −0.0004561 0.0001194 0.0004322 9.882 × 10−5 0.0004892

Table 6.15: The 10 × 10 covariance matrix between the renormalized, infinite-volume matrix ele-
ments in the MS scheme in the chiral basis obtained using the SMOM(/@, /@) intermediate scheme.

6.5.3 Results for �0

We can now obtain �0 from our lattice calculation as follows:

(6.60)�0 =
��√

2
+∗DB+D3

10∑
8=1

(
IMS
8 (`) + gHMS

8 (`)
)
"MS
8 (`) .

The Wilson coefficients have been computed to next-to-leading order in QCD and electroweak

perturbation theory in the MS scheme [54], and at ` = 4.006 GeV take the values given in

Tab. 6.16. For the CKM matrix element ratio g we use the value given in Tab. 6.10. Combin-

ing these with the MS-renormalized matrix elements obtained in Tab. 6.13 we obtain the following

for the SMOM(/@, /@) intermediate scheme,

(6.61a)Re(�0) = 2.99(32) × 10−7 GeV ,
(6.61b)Im(�0) = −7.15(66) × 10−11 GeV .

and for the SMOM(W`, W`) intermediate scheme,

(6.62a)Re(�0) = 2.86(31) × 10−7 GeV ,
(6.62b)Im(�0) = −6.93(64) × 10−11 GeV .
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8 H8 I8
1 0 -0.199111
2 0 1.08976
3 0.0190166 -0.00525073
4 -0.0560629 0.0244698
5 0.0132642 -0.00607434
6 -0.0562033 0.0174607
7 -0.000271245 0.000134906
8 0.000521236 -0.000119628
9 -0.00946862 5.60698e-05

10 0.00186152 9.34113e-05

Table 6.16: The MS Wilson coefficients ®H and ®I at ` = 4.006 GeV computed via NLO QCD+EW
perturbation theory.

The values of Re(�0) agree to 4.1(4.2)% between the two schemes, and those of Im(�0) to

3.1(3.8)%. This excellent agreement suggests that the systematic errors resulting from discretiza-

tion effects and the truncation of the perturbative series in the non-perturbative renormalization

are minimal at our high 4 GeV scale. In the following section a more detailed discussion of these

systematic errors is presented.

The contributions of each of the ten operators to the real and imaginary parts of �0 are given in

Tab. 6.17. The result for Im(�0) is dominated by the &6 matrix element with a 14(4)% cancelation

from &4, where the errors are statistical only and the value is obtained using the SMOM(/@, /@)

intermediate scheme to match the scheme used for the previous work. This is in contrast to the

51(29)%-level cancelation observed in Ref. [1] and is largely due to a 5.5f increase in the &6

contribution from −3.57(91)×10−11 GeV to −8.78(60)×10−11 GeV (again using the SMOM(/@, /@)

intermediate scheme). This change appears to largely result from excited-state contamination in

our previous result, as we can see in Fig. 6.6 comparing the (larger-statistics) single-operator result

at the value of C′min = 4 used for our previous work to our favored three-operator, two-state result

with C′min = 5. This suggests that the 5% systematic error we formerly associated with excited-state

contamination was significantly underestimated.
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Re(�0) Im(�0)
i (/@, /@) (×10−7 GeV) (W`, W`) (×10−7 GeV) (/@, /@) (×10−11 GeV) (W`, W`) (×10−11 GeV)
1 0.383(77) 0.335(64) 0 0
2 2.89(30) 2.81(28) 0 0
3 0.0081(58) 0.0050(42) 0.20(14) 0.12(10)
4 0.081(23) 0.088(17) 1.24(35) 1.34(27)
5 0.0380(68) 0.0339(53) 0.552(99) 0.492(77)
6 −0.410(28) −0.398(27) −8.78(60) −8.54(57)
7 0.001863(56) 0.001900(56) 0.02491(75) 0.02540(75)
8 −0.00726(14) −0.00708(13) −0.2111(40) −0.2060(39)
9 −8.7(1.5) × 10−5 −8.5(1.4) × 10−5 −0.133(22) −0.128(21)
10 2.37(38) × 10−4 2.13(32) × 10−4 −0.0304(49) −0.0273(41)
Total 2.99(32) 2.86(31) −7.15(66) −6.93(64)

Table 6.17: The contributions of each of the ten four-quark operators to Re(�0) and Im(�0) for
the two different RI-SMOM intermediate schemes. The scheme and units are listed in the column
headers. The errors are statistical, only.

6.5.4 Incorporating experimental results to improve the determination of Im(�0)

The real and imaginary parts of �0 comprise different linear combinations of the same basis of

real lattice matrix elements. As the real part of the amplitude is precisely known from experiment

and is not expected to receive significant contributions from new physics, we can use this quantity

to replace part of the lattice input and thereby improve the precision of the imaginary part. The

appropriate procedure is discussed in Refs. [70, 71] in the context of the conventional basis of 10

non-independent operators, where the latter authors use it to eliminate the &2 matrix element. For

our purpose it is more convenient to express the method in terms of the unrenormalized matrix

elements in the 7-operator basis. We write

Re(�0) =
��√

2
+∗DB+D3

7∑
:=1

Re(FMS←lat
: )"′ lat

: (6.63)

Im(�0) =
��√

2
+∗DB+D3

7∑
:=1

Im(FMS←lat
: )"′lat

: (6.64)
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where the "′ lat
9

= 〈cc |&′
:
| 〉 are the matrix elements of the unrenormalized lattice operators in

the 7-basis in infinite-volume and physical units, and

Re(FMS←lat
: ) =

10∑
8=1

7∑
9=1

(
IMS
8 + Re(g)HMS

8

)
)8 9/

MS←lat
9 : (6.65)

Im(FMS←lat
: ) =

10∑
8=1

7∑
9=1

(
Im(g)HMS

8

)
)8 9/

MS←lat
9 : (6.66)

are the “lattice Wilson coefficients”. Here )8 9 is the 10 × 7 matrix expressing the 10 linearly-

dependent operators in terms of the seven independent operators in the chiral basis, given in

Eq. (6.58). The matrix /MS←lat is the product of the 7 × 7 perburbative matrix expressing the

seven MS operators in terms of the seven RI operators and the non-perturbative 7×7 matrix which

determines the RI operators in terms of the lattice operators.

We can then use Eq. (6.63) to remove the matrix element of the operator &′
ℓ

from Im(�0) if we

write

Im(�0) =
��√

2
+∗DB+D3

7∑
:=1

Im(FMS←lat
: )"′ lat

:

+_

[
Re(�0) − ��√

2
+∗DB+D3

7∑
:=1

Re(FMS←lat
: )"′ lat

:

]
(6.67)

and choose

(6.68)_ =
Im(FMS←lat

ℓ
)

Re(FMS←lat
ℓ

)

In Tab. 6.18 we present values for Im(�0) obtained through using this procedure to replace

successive lattice matrix elements. The most significant gain in statistical error is achieved by

replacing the matrix element "′ lat
3 , for which we obtain the following for the SMOM(/@, /@) inter-

mediate scheme,
(6.69)Im(�0) = −6.98(62) × 10−11 GeV

and for the SMOM(W`, W`) intermediate scheme,

(6.70)Im(�0) = −6.65(58) × 10−11 GeV
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i SMOM(/@, /@) (×10−11 GeV) SMOM(W`, W`) (×10−11 GeV)
1 −7.12(65) −6.89(63)
2 −7.26(72) −7.23(75)
3 −6.98(62) −6.65(58)
5 −5.05(1.98) −3.72(2.09)
6 −0.23(6.16) 0.81(4.92)
7 −2.09(4.67) −0.11(4.40)
8 2.39(9.00) 6.07(8.58)

Table 6.18: Values of Im(�0) obtained for each of the two intermediate schemes by eliminating
lattice data for the matrix element of operator &′

ℓ
in favor of experimental value for Re(�0).

which have 6% smaller statistical errors.

We could instead choose the parameter _ to give that result for Im(�0) with the smallest sta-

tistical error. Since the value obtained for _ from this procedure is extremely close to that needed

to remove the matrix element "′ lat
3 , we adopt the simpler procedure of eliminating "′ lat

3 and the

results given in Eqs. (6.69) and (6.70).

6.5.5 Determination of n′

Re(n′/n) can now be obtained via Eq. (2.20). We use the lattice values for the � = 0 and � = 2

cc scattering phase-shifts: X0 is given in Tab. 5.12 with

(6.71)X0 = 32.3(1.0)(1.4)◦ ,

and for X2 we use
(6.72)X2 = −11.6(2.5)(1.2)◦ ,

obtained from our continuum result [2]. Here the parentheses list the statistical error and an esti-

mate of the excited-state systematic error, respectively.

Writing n = |n |48qn , where both |n | and its phase qn can be found in Tab. 6.10, the overall

complex phase of n′/n is
(6.73)848(X2−X0)4−8qn = 48(X2−X0+c/2−qn ) .

The resulting real part of the complex phase,

(6.74)cos(X2 − X0 + c/2 − qn ) = 0.999(2) ,
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is in complete agreement with the value of 0.9998(2) obtained by combining PDG inputs [68] and

the dispersive values for the phase shifts [9].

For our primary result we use the more precise experimental values of Re(�0) and Re(�2),

and use the results for Im(�0) given in Eqs. (6.69) and (6.70) that incorporate the experimental

value of Re(�0). The continuum, lattice value for Im(�2) is given in Eq. 64 of Ref. [2] and must

be corrected for the 20% change of Im(g) = −0.0005558 used in that work to the value given in

Tab. 6.6.8. We obtain,
(6.75)Im(�2) = −8.34(1.03) × 10−13 GeV

For the SMOM(/@, /@) intermediate scheme we find

Re(n′/n) = 0.00217(26) (6.76)

and for the SMOM(W`, W`) intermediate scheme,

(6.77)Re(n′/n) = 0.00203(25) ,

where the error is statistical only.

It is illustrative to break the value of Re(n′/n) into the so-called “QCD penguin”

(6.78)Re
(
Y′

Y

)
QCDP

= −l cos(X2 − X0 + c/2 − qn )√
2|Y |

Im�0
ReA0

and “electroweak penguin”

(6.79)Re
(
Y′

Y

)
EWP

=
l cos(X2 − X0 + c/2 − qn )√

2|Y |
Im�2
ReA2

contributions, the sum of which is equal to Re(n′/n). These terms have opposite sign such that the

sum involves an important cancellation. For the electroweak penguin contribution we find

(6.80)Re
(
Y′

Y

)
EWP

= −7.96(98) × 10−4 .

Using the results for Im(�0) obtained using the SMOM(/@, /@) intermediate scheme we find

(6.81)Re
(
Y′

Y

)
QCDP

= 0.00297(26) ,
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and likewise for the SMOM(W`, W`) intermediate scheme,

(6.82)Re
(
Y′

Y

)
QCDP

= 0.00283(25) .

We observe that the two terms cancel at the 27(4)% and 28(4)% level relative to the QCDP contri-

bution for the SMOM(/@, /@) and SMOM(W`, W`) results, respectively. This degree of cancellation

is considerably less than the 71(36)% observed in our 2015 analysis. Here the errors are statistical

only.

We can also compute a purely lattice value of Re(Y′/Y) using Re(�0) from Eqs. (6.61a) and (6.62a),

Im(�0) from Eqs. (6.61b) and (6.62b), and both Re(�2) and Im(�2) from Eq. 64 of Ref. [2]. Note

we do not correct Re(�2) for the change in Re(g) as its contribution is much smaller than that of

the Wilson coefficients I8. For the SMOM(/@, /@) intermediate scheme we obtain

(6.83)Re(n′/n) = 0.00293(104)

and for the SMOM(W`, W`) intermediate scheme,

(6.84)Re(n ′/n) = 0.00309(112) ,

where the errors are again statistical. Unfortunately these pure-lattice results have considerably

larger statistical errors, which suggests that there is little statistical correlation between the results

for Im(�0) and Re(�0) which would be needed to reduce the error in their ratio. Thus, we will use

the results given in Eqs. (6.76) and (6.77) for our final results.

6.5.6 Origin of the change in n′ compared to our 2015 calculation

In this section we provide further insight into the origin of the significant change between our

2015 result of Re(n′/n) = 1.38(5.15)(4.59) × 10−4 and our results above. Several factors may

contribute to this effect:

1. The increase in the minimum time separation between the four-quark operator and the sink

cc operator from 4 to 5 in the  → cc matrix element fitting.

2. The change in the procedure for determining the derivative with respect to energy of cc

scattering phase-shift that enters the Lellouch-Lüscher factor.

148



3. The increase in statistics from 216 to 741 configurations.

4. The addition of the cc(311) and f sink operators.

5. The use of step-scaling to raise the renormalization scale from 1.53 GeV to 4.01 GeV.

6. The change in the value of the experimental inputs, notably that of the CKM ratio g from

0.001543 − 0.0006358 to 0.001558 − 0.0006638.

We first note that repeating the cc two-point function analysis for our larger data set but with a

one-state fit to a single operator (cc(111)), and a fit range 6-25 to match that of the 2015 analysis,

yields a result (in lattice units),

(6.85)
�0
cc(111) = 0.4028(32)

�0 = 0.3712(36)

that is consistent with the results of our 2015 analysis,

(6.86)
�0
cc(111) = 0.3923(60)

�0 = 0.3606(74)

to 1.5f and 1.3f for the amplitude and energy, respectively. Furthermore, the p-value of this fit

is 0.451 indicating an excellent fit to the one-state model. The ground-state energy is, however,

significantly larger than the value of �0 = 0.3479(11) found using three operators and two states

in Sec. 5.2.1.

We next repeat the analysis of the  → cc matrix elements but with only the cc(111) operator

and a one-state fit with C′min = 4 to match the 2015 analysis, utilizing the cc fit parameters from

Eq. (6.85) above. Recall C′min is the minimum time separation between the four-quark operator

and the cc sink for data included in the fit. We use the same input experimental parameters and

other analysis strategies as in the original work, including the approach to obtaining the Lellouch-

Lüscher parameter and the same SMOM(/@, /@) non-perturbative renormalization factors with ` =

1.529 GeV. We find,
(6.87)Re(n′/n) = 2.52(2.12) × 10−4 ,
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where the errors are statistical only. This result is completely consistent with our 2015 result,

(6.88)Re(n′/n) = 1.38(5.15) × 10−4 ,

indicating that a 3.4× increase in statistics is not sufficient to account for the difference.

Repeating the above but with the  → cc analysis and input parameters updated to match that

of the present work gives,
(6.89)Re(n′/n) = 4.20(1.96) × 10−4 ,

which is slightly larger but still considerably smaller than the results in the previous section. With

the step-scaled renormalization factors with ` = 4.01 GeV we find,

(6.90)Re(n′/n) = 6.50(2.10) × 10−4 .

Again we observe a small increase but insufficient to account for the difference.

The result in Eq. (6.90) differs now from our primary result only in the cc and  → cc fitting

strategies. Adopting the final fit ranges determined for the cc and  → cc fits in Secs. 5.2.1

and 6.3, such that the analysis now differs only in the number of cc operators, gives

(6.91)Re(n′/n) = 12.76(2.71) × 10−4 .

This result is now much closer to our final result. The behavior we observe here is consistent with

that displayed in Fig. 6.6 where we plot the dependence of the fitted matrix elements on the cut

C′min and the number of cc operators included in the fits to the matrix elements (the cc two-point

function fits remain unchanged between the results displayed in this figure). This figure shows

a significant discrepancy between the &6 matrix element obtained from a one-operator, one-state

fit with C′min = 4 and the plateau observed when further operators are included. With increased

statistics the onset of the apparent plateau for the one-operator, one-state fit does not occur until

C′min = 5 (equal to the C′min = 5 used to obtain the result in Eq. (6.91)) but the resulting value for the

&6 matrix element is still several standard deviations larger than the strong plateau observed in the

multi-operator fits.

We therefore conclude that the difference in Re(n′/n) between our present and 2015 analysis

results can be attributed primarily to unexpectedly large excited-state contamination in our previous
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8 Rel. diff
1 −0.04(16)
2 0.012(39)
3 −0.7(6.8)
4 −0.08(11)
5 0.017(38)
6 0.019(23)
7 0.0017(95)
8 −0.0044(45)
9 0.093(64)
10 −0.032(58)

Table 6.19: Relative differences between the ground-state elements obtained by fitting to 3 oper-
ators and 3 states with C′min = 4 and those of our primary fit with 3 operators and 2 states with
C′min = 4.

analysis masked by the rapid reduction in the signal to noise ratio, and that multiple operators are

essential to isolate the ground-state matrix element even with large statistics.

6.6 Systematic errors

In this section we describe the procedure used to estimate the systematic errors on our results.

We will quote the values as representative percentage errors on either the matrix elements or on �0

as appropriate. A discussion of the systematic errors in the Δ� = 3/2 calculation can be found in

Ref. [2].

6.6.1 Excited state contamination

In Sec. 6.3.5 we devoted considerable effort to finding an optimal fit window in which excited

state effects are minimal. We were unable to find evidence of such effects arising from excited

kaon states, which is to be expected given both the large relative energy of such states and also the

fact that the rapid growth of statistical noise as the four-quark insertion is moved away from the

cc operator implies that the data furthest from the kaon operator dominates the fit results. As such

we do not assign a systematic error to possible contamination from excited kaon states.

As for the contribution of excited cc states, we found little evidence for such effects even within
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the single operator fits to the cc(111) data, except for the &5 and &6 matrix elements where the

single-operator fits showed statistically significant deviations from the common plateau region that

did not die away until C′ = 6. We observed that by adding further sink operators and allowing for

more cc states substantially reduced the excited-state contamination such that the fits were highly

consistent even if we include data at times as low as C′ = 3. Despite this we chose a conservative

uniform cut of C′min = 5 for our fits.

In order to assign a numerical error to the contamination from excited cc states, we consider the

comparison of the 3-operator, 3-state fit with C′min = 4 and the 3-operator, 2-state fit with C′min = 5,

the latter being our chosen best fit. The former includes a third state and with C′min = 4 appears

capable of describing the data well outside of the fit range, as we observed in Fig. 6.11 (lower-left

panel). We compute relative differences under the bootstrap between the values of the ground-

state matrix elements, the results of which are shown in Tab. 6.19. The only statistically resolvable

difference, at 1.5f, is for the &9 matrix element, which has only a negligible contribution to

Im(�0). For the dominant &4 and &6 matrix elements the differences cannot be resolved within

our errors. We therefore conclude that the excited state systematic error is likely to be much smaller

than our dominant systematic errors and can be neglected.

6.6.2 Unphysical kinematics

As our values of �cc and < differ by 2.2(3)%, the  → cc matrix elements are not precisely

on shell. As discussed in Sec. 6.3, the primary result of these unphysical kinematics is the rise

of a divergent contribution from the pseudoscalar operator B̄W53 that vanishes when on shell by

the equations of motion. In order to suppress this error we perform an explicit subtraction of the

pseudoscalar operator that leaves behind a finite, regulator-independent term that represents the

dominant remaining systematic error from the unequal kaon and cc energies. As we are close to

being on shell we can reasonably assume a linear ansatz for the dependence of our result on the

energy difference �cc − < . We estimate the associated systematic error by observing the change

in the &2 matrix element as the kaon mass is increased by 4.5%. The measurement was performed
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8 Rel. diff
1 −0.0054(51)
2 −0.0086(19)
3 −0.06(73)
4 −0.0144(75)
5 −0.054(12)
6 −0.0521(75)
7 −0.0053(25)
8 −0.0072(21)
9 −0.0055(21)

10 −0.00234(85)

Table 6.20: Relative differences in the unrenormalized lattice matrix elements of &8 as the pseu-
doscalar subtraction coefficients U8 are uniformly increased by 5%

using 69 configurations of our original ensemble [1], with 3 different  → c time separations (10,

12, and 14), and we observed a 6.9% increase in the matrix element. We scale this increase by the

relative difference between our kaon and cc energies, giving 3%.

Another means of estimating this systematic error is to vary the subtraction coefficients U8 by an

amount consistent with the expected size of the residual contribution of the pseudoscalar operator.

Given that the operator is dimension-3, its coefficient is originally O(<B/0
2) where the strange

quark mass is in physical units. After the subtraction is performed, the residual term is expected to

be of size O(<BΛ
2
QCD), which has a relative size of ∼02Λ2

QCD, or ∼5%, of the original contribution,

for Λ&�� = 300 MeV. Increasing the subtraction coefficients U8 by this amount gives rise to

the differences in the unrenormalized lattice matrix elements given in Tab. 6.20. The observed

variations are generally consistent with the above, but to be conservative we assign a relative

systematic error of 5% on the matrix elements resulting from the off-shell difference �cc 6= < .

6.6.3 Finite lattice spacing

We use the value provided in Ref. [1] as an estimate of the finite lattice spacing systematic

error. This was obtained by comparing the values of the Δ� = 3/2 matrix elements between

the continuum limit [2] and the calculation [60] performed on our 323 × 64, V = 1.75 (32ID)

lattice. The parameters of the latter ensemble are identical to those used in this work to compute
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Operator 32ID continuum rel. diff
(27, 1) 0.0461(14) 0.0502(13) 8.7(4.1)%
(8, 8) 0.874(49) 0.993(22) 13.6(6.1)%

(8, 8)mix 3.96(23) 4.54(12) 14.8(6.6)%

Table 6.21: The three Δ� = 3/2 matrix elements in the MS scheme at ` = 3.0 GeV and in units
of GeV3 that contribute to �2, calculated on the 32ID ensemble (Ref. [60], Eq. (31)) and in the
continuum limit (Ref [2], Tab. XIV) along with their relative difference. Only statistical errors are
shown.

�0, albeit without G-parity boundary conditions and with a larger-than-physical light quark mass

giving a unitary pion mass of 170 MeV. The MS values for the three continuum matrix elements

that contribute to �2 are obtained by combining the continuum values of those matrix elements

in the SMOM(/@, /@) scheme (Tab. XIV of Ref. [2]) with the RI→ MS renormalization matrix

computed on the 32ID lattice (Eq. 66 of Ref. [2]). As such this estimate addresses only the

discretization errors on the matrix elements and not to those on the renormalization factors (which

are expected to be small). We find the values given in Tab. 6.21. Averaging the three relative errors

we arrive at an estimate of 12% discretization errors on the matrix elements.

6.6.4 Lellouch-Lüscher factor

As described in Sec. 6.5.1, the calculation of the Lellouch-Lüscher factor, �, that accounts for

the power-law finite-volume corrections to the matrix element, requires an ansatz for the derivative

of the cc phase shift with respect to energy. There we present values for this derivative obtained

from three methods:

• The Schenk parameterization [72] of the dispersive energy dependence obtained in Ref. [9]

• A linear approximation in the cc energy above threshold, 3X0
3�cc

= X0
�cc−2<c , which is inspired

by the dispersive low-energy dependence found in Ref. [9] and can be related to 3X0/3@ via

Eq. (6.46).

• A direct lattice calculation of the phase shift at energies close to and including the kaon mass.
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i Relative difference
1 −0.038(36)
2 −0.022(12)
3 0.070(576)
4 −0.018(31)
5 0.003(41)
6 0.006(6)
7 0(0)
8 0(0)
9 −0.031(17)
10 −0.023(21)

Table 6.22: The relative difference in "( matrix elements at ` = 1.33 GeV obtained through the
SMOM(W`, W`) intermediate scheme due to including the �1 operator.

Ignoring the noisier of the two lattice determinations, the results varied between dX0
d@ = 1.26 and

1.41, a 12% spread. The resulting values of � differ by 1.5% since the dominant contribution arises

from the derivative of the analytic function q. We therefore assign a 1.5% systematic error to the

matrix elements from this source.

6.6.5 Exponentially-suppressed finite volume corrections

We expect the remaining finite volume corrections to our matrix elements to be dominated by

the (exponentially-suppressed) interactions between the final state pions that are not accounted for

by the Lüscher and Lellouch-Lüscher prescriptions. In Refs. [2, 60] we performed an in-depth

analysis of the finite-volume errors on the matrix elements that comprise �2 using SU(3) chiral

perturbation theory, in which the mesonic loop integrals are replaced by discrete sums over the

allowed momenta. We do not expect these effects to depend strongly on the form of the four-

quark operator, and indeed comparable O(6− 6.5%) corrections were estimated for both classes of

operator that enter the calculation of �2. We therefore assign a representative 7% systematic error

to the matrix elements.
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6.6.6 Neglecting the contribution of the �1 operator

In the calculation of our step-scaled non-perturbative renormalization factors with scale ` =

4.01 GeV we have not incorporated the effects of the �1 operator. A previous lattice study [49],

performed in the SMOM(W`, W`) scheme and utilizing step-scaling from a low-scale of ` = 1.33

GeV on our 32ID ensemble to a high scale of 2.29 GeV on a finer lattice, revealed the effects on

�0 of including this operator to be on the order of a few percent when combined with the matrix

elements measured in our 2015 work [1]. Unfortunately the statistical errors on the differences

in the renormalized matrix elements at ` = 2.29 GeV with and without �1 included were found

to be too large to resolve the effect with any precision, and we find that this also applies to the

matrix elements obtained in the present work. (The renormalization matrices with and without �1

at ` = 2.29 GeV can be found in Tab. 6.9.)

As discussed in Ref. [49], the increase in the relative error on the bootstrap differences is

associated largely with the step-scaling matrix ΛRI that describes the running between the low and

high energy scales. However it is reasonable to expect that the largest effects of neglecting �1

appear at the low energy scale in the step-scaling where the QCD coupling is larger. We therefore

compare the matrix elements renormalized at the low scale in the MS scheme in order to estimate

the size of this systematic error with greater precision. We perform this comparison using the

SMOM(W`, W`) intermediate scheme with ` = 1.33 GeV, the renormalization matrices of which

are given in Tab. 6.8. The relative differences of the resulting MS matrix elements are given in

Tab. 6.22. While the observed differences are still poorly resolved, the typical size of the effect

appears to be O(3%), and we therefore assign a 3% systematic error to the effect of neglecting �1.

(This estimate is quite conservative given the tiny difference in the dominant,&6 operator observed

in the table.)

6.6.7 Sytematic errors in MS operator renormalization

The most important systematic errors in determining the renormalization matrix /MS←lat arise

from three sources: i) The omission of dimension-6, quark bilinear operators which vanish on

156



shell such as �1 discussed above. ii) Finite lattice spacing errors that result from our large choice

of RI renormalization scale `. iii) The perturbative truncation error introduced when one-loop

QCD perturbation theory is used to relate the RI-SMOM and MS schemes. In order to estimate

these systematic errors, we examine the difference between the results in the MS scheme obtained

from our two different intermediate RI-SMOM schemes. Rather than examining the matrix ele-

ments themselves, which can be statistically noisy and vary significantly in size and importance,

it is convenient to study instead the differences between the elements of the 7×7 lattice→ MS

renormalization matrix

'MS←RI←lat
1-loop 9ℓ (`) = �MS←RI

1-loop 9 : (`)'RI←lat
:ℓ (`) , (6.92)

where � is the perturbative matching matrix. In the absence of systematic errors the matrix

'MS←'�←lat is independent of the intermediate RI scheme. We can then study this systematic

error by examining the matrix

Ξ ≡
�����I − [

'
MS←SMOM(/@,/@)←lat
1-loop

]−1
'

MS←SMOM(W` ,W`)←lat
1-loop

����� , (6.93)

where I is the 7 × 7 unit matrix and |.| implies that the absolute value of each element is taken.

The ratio of '-matrices in this equation converts from the lattice scheme to MS through one inter-

mediate scheme, and converts back to the lattice scheme via the other scheme, and hence becomes

the unit matrix if no systematic errors exist. The difference from the unit matrix is therefore a

measure of the size of the systematic error: Under the reasonable assumption that the systematic

errors in the two schemes are comparable in size, we expect the elements of Ξ to vary between

zero and approximately twice the size of the systematic error present in each. We therefore assign

a percentage systematic error that is one half of the largest observed element of Ξ at a scale `.

In Tab. 6.23 we tabulate the non-zero elements of Ξ for various MS scales and step-scaling

procedures. Once again we observe that the effects of including or discounting the �1 operator,

while harder to statistically resolve after passing through the step-scaling procedure, are at the
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Element (8, 9) 1.33 GeV 1.53 GeV 2.29 GeV 4.01 GeV
(1,1) 0.07406(36) 0.062571(56) 0.04936(42) 0.01686(36)
(2,2) 0.182(34) 0.173(15) 0.044(54) 0.128(83)
(2,3) 0.313(38) 0.282(16) 0.132(58) 0.135(83)
(2,5) 0.006(11) 0.0036(50) 0.013(16) 0.009(31)
(2,6) 0.0005(95) 0.0030(42) 0.0099(100) 0.005(13)
(3,2) 0.276(33) 0.256(14) 0.119(33) 0.058(42)
(3,3) 0.417(38) 0.399(16) 0.197(37) 0.047(43)
(3,5) 0.006(10) 0.0076(47) 0.0084(94) 0.005(13)
(3,6) 0.0420(96) 0.0212(40) 0.0315(68) 0.0020(59)
(5,2) 0.00(14) 0.042(59) 0.18(18) 0.22(27)
(5,3) 0.04(15) 0.001(60) 0.20(19) 0.21(26)
(5,5) 0.004(39) 0.012(18) 0.034(50) 0.022(97)
(5,6) 0.037(34) 0.007(15) 0.044(31) 0.032(38)
(6,2) 0.139(65) 0.173(27) 0.010(110) 0.16(13)
(6,3) 0.321(74) 0.291(33) 0.14(12) 0.23(14)
(6,5) 0.027(20) 0.0104(75) 0.024(34) 0.055(46)
(6,6) 0.110(22) 0.0752(89) 0.052(26) 0.031(24)
(7,7) 0.01424(34) 0.008152(35) 0.01096(40) 0.00360(25)
(7,8) 0.003429(46) 0.002120(29) 0.002029(51) 0.00548(19)
(8,7) 0.026523(94) 0.024917(63) 0.02364(24) 0.00710(92)
(8,8) 0.14784(44) 0.12752(14) 0.09866(58) 0.0263(10)

Table 6.23: The non-zero elements of the matrix Ξ computed using the renormalization matrices
obtained at ` = 1.33 GeV and 1.53 GeV on the 32ID ensemble, as well as the step-scaled renor-
malization matrices with ` = 2.29 GeV and 4.01 GeV. We do not include the �1 operator here,
and its absence is treated as a separate systematic error in Sec. 6.6.6.
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percent scale.

As expected there is a general trend towards smaller values as we increase the scale that ap-

pears consistent with the factor of three decrease in U2
B between 1.33 GeV and 4.01 GeV that is

expected to describe the scaling of the missing NNLO terms. Unfortunately the statistical errors on

the results at 4.01 GeV are too large to resolve the residual systematic effects. Nevertheless, con-

sidering the results of this table and also the 3-4% differences observed in Re�0 and Im�0 between

the schemes in Sec. 6.5.3, we assign a 4% systematic error to the non-perturbative renormalization

factors.

6.6.8 Parametric errors

We propagate the parametric uncertainties shown in Tab. 6.10 to Re�0 and Im�0. For Re�0

the largest such uncertainty is the charm-mass dependence, which, however, is only a 0.3% effect.

For Im�0, the largest uncertainty is 5% from the g parameter, 3% from UB, and less than 1% from

the charm and top quark masses. The other uncertainties have been estimated but are negligible

compared to those quoted. We therefore estimate a total parametric uncertainty of 6% for Im�0

and 0.3% for Re�0.

6.6.9 Wilson coefficients

As mentioned previously we compare the NLO and LO determinations of the Wilson coeffi-

cients in order to estimate the systematic error arising due to missing higher-order terms. More

specifically, we compare Im(�0) obtained from LO and NLO Wilson coefficients, computed using

the 1-loop and 2-loop determinations of UB, respectively, while keeping fixed the renormalized ma-

trix elements in the MS scheme at 4.01 GeV obtained using the SMOM(/@, /@) intermediate scheme,

given in Tab. 6.13, together with the various input parameters, such as the quark masses and the

QCD coupling constant. For the latter we use the solution of the 4-loop V function [67] to compute

U
# 5 =4
B ( ˆ̀) in the 4-flavor theory, starting from the value of UB(</ ) in Tab. 6.10, and we study the

dependence of the LO prediction of Im(�0) as a function of ˆ̀, relative to the NLO result. (As
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expected, the NLO shows a mild dependence simply due to the mismatch between the running of

UB from the / pole (4 loops) and the running used in the calculation of the Wilson Coefficients (2

loops).) Starting at 8% at ˆ̀ ≈ <2, it increases up to 16% at ˆ̀ ≈ <1; hence for our systematic error

estimate on the Wilson coefficients, we choose the intermediate point ˆ̀ = 1.7 GeV for which the

NLO and LO difference is 12%. We have verified that fixing the value of Λ# 5 =4 leads to similar

conclusions.

Additionally we consider the same difference of LO vs NLO predictions for Im(�0), as a

function of the RI intermediate schemes and the scale of the RI to MS conversion, while keeping

fixed all parameters, U# 5 =4
B ( ˆ̀) included. We find that, despite varying the renormalization scale

by almost a factor of two and the use of different intermediate RI schemes, the differences in

the values of Im(�0) are quite consistent, in the range 11-15%. This suggests that the bulk of

the observed difference arises from the perturbative 3-to-4 flavor matching and running above the

charm threshold, which is common to all of these determinations, and that improved theory input

for the 3-to-4 flavor matching could significantly reduce it. (Note that in our calculation we take

the matching scale across a flavor threshold equal to the corresponding quark mass in order to

avoid large logarithms. Additional insights could be gained by studying the dependence on this

matching scale as in Ref. [65].)

In conclusion we assign a 12% systematic error on both Re�0 and Im�0 associated with the

NLO determination of the Wilson coefficients.

6.6.10 Error budget

We divide the systematic errors into those that affect the calculation of the matrix elements

of the MS weak operators &′
9

and those that enter when these matrix elements are combined to

produce the complex, physical decay amplitude �0. The former are collected in Tab. 6.24. In

order to obtain the final systematic error on Im(�0) arising from these matrix elements we note

that the result is dominated by the &6 operator with only a 20% cancellation from &4. In this

circumstance it is reasonable simply to apply the same flat percentage error to Im(�0) as to &6.

160



Error source Value
Excited state -

Unphysical kinematics 5%
Finite lattice spacing 12%

Lellouch-Lüscher factor 1.5%
Finite-volume corrections 7%

Missing �1 operator 3%
Renormalization 4%

Total 15.7%

Table 6.24: Relative systematic errors on the infinite-volume matrix elements of the MS-
renormalized four-quark operators &′

9
.

Error source Value
Re(�0) Im(�0)

Matrix elements 15.7% 15.7%
Parametric errors 0.3% 6%

Wilson coefficients 12% 12%
Total 19.8% 20.7%

Table 6.25: Relative systematic errors on Re(�0) and Im(�0).

Since Re(�0) is similarly dominated by &2, we apply the same strategy. For �0 we then arrive at

the error budget given in Tab. 6.25 which includes this error arising from the uncertainties in the

matrix elements as well as those arising from the use of perturbation theory when computing the

MS Wilson coefficients and the values of the needed Standard Model input parameters.

6.7 Final results and discussion

In this section we collect our final results including systematic errors and discuss the implica-

tions of our results. For consistency with our previous work we will use the SMOM(/@, /@) interme-

diate scheme for our central value.

6.7.1 Matrix elements

The renormalized, infinite-volume matrix elements in the RI and MS schemes are given in

Tab. 6.13, where the errors are statistical only. The corresponding relative systematic errors can
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i SMOM(/@, /@) (GeV3)
1 0.060(39)(9)
2 −0.125(19)(20)
3 0.142(17)(22)
5 −0.351(62)(55)
6 −1.306(90)(205)
7 0.775(23)(122)
8 3.312(63)(520)

Table 6.26: Physical, infinite-volume matrix elements in the SMOM(/@, /@) scheme at ` = 4.006
GeV given in the 7-operator chiral basis. The errors are statistical and systematic respectively.
Note that our 4% estimate of the renormalization systematic error includes both lattice systematic
errors and those associated with the truncation of the perturbative series in the RI→ MS matching.
While the latter are inappropriate to apply to matrix elements in the non-perturbative schemes, due
to our estimation procedure we are at present unable to isolate these two effects and as such apply
the full 4% systematic error also to these RI matrix elements.

be found in Tab. 6.24. For the convenience of the reader we have reproduced the matrix elements

in the SMOM(/@, /@) scheme including their systematic errors in Tab. 6.26. In order to allow the

reader to compute derivative quantities from these matrix elements, the covariance matrices for the

renormalized matrix elements in the SMOM(/@, /@) and MS schemes at 4.01 GeV can be found in

Tabs. 6.14 and 6.15, respectively.

6.7.2 Decay amplitude

For the real part of the decay amplitude we take the value from Eq. (6.61a) and apply the

systematic errors given in Tab. 6.25 to obtain

(6.94)Re(�0) = 2.99(0.32)(0.59) × 10−7 GeV ,

where the errors are statistical and systematic, respectively. The imaginary part is obtained likewise

from Eq. (6.69), giving

(6.95)Im(�0) = −6.98(0.62)(1.44) × 10−11 GeV .

The breakdown of the contributions of each of the 10 operators to these amplitudes can be found

in Tab. 6.17. We observe that, at the scale at which we are working, the dominant contribution to

Re(�0) (97%) originates from the tree operator&2, while&1 has a contribution of about 13% that is
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largely cancelled by that of the penguin operator [73, 74] &6. Likewise, the dominant contribution

to Im(�0) is from the QCD penguin [73, 74] operator, &6, with a 14% cancellation from &4.

6.7.3 A comment on the Δ� = 1/2 rule

The “Δ� = 1/2 rule” refers to the enhancement by almost a factor of 450 of the � = 0  → cc

decay rate relative to that of the � = 2 decay, corresponding to the experimentally-determined ratio

Re(�0)/Re(�2) = 22.45(6). A factor of two contribution to this ratio arises from the perturbative

Wilson coefficients [75, 76, 77]. While the remaining factor of ten has been viewed for some

time as a consequence of the strong dynamics of QCD, the origin of this large factor has remained

something of a mystery with no widely-accepted dynamical explanation.

In the past [78, 79, 60], and most recently in Ref. [2], when simulating with physical pion

masses we have observed a sizeable cancellation between the two Wick contractions of the dom-

inant (27, 1) operator contributing to the Δ� = 3/2 decay amplitude, leading to a significant sup-

pression of Re (�2). In these calculations we reproduced the experimental value of Re (�2) and

concluded that this cancellation was likely to be a very significant element in the Δ� = 1/2 rule. We

stress that the cancellation between the two leading contributions to Re (�2) depends sensitively on

the light quark mass and becomes much less significant as the light quark mass is increased above

its physical value. Note also that such a cancellation is not consistent with naïve factorization,

which predicts that both contributions have the same sign and differ in size by a factor of three due

to color suppression.

In order to obtain a quantitative, first-principles result for Re (�0)/Re (�2), we also require

knowledge of Re (�0) which we provide in Eq. (6.94) of this work. Combining this with our

earlier result for �2 [2], we obtain

Re(�0)
Re(�2)

= 19.9 (2.3) (4.4) , (6.96)

where the errors are statistical and systematic respectively. The value in Eq. (6.96) agrees very
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well with the experimental result, demonstrating quantitatively that, within the uncertainties, the

Δ� = 1/2 rule is indeed a consequence of QCD and thus providing an answer to an important

long-standing puzzle.

For earlier theoretical papers on the Δ� = 1/2 rule and the real parts of the individual amplitudes

�0 and �2, as well as some recent work, see Refs. [80, 81, 82, 83, 84, 85].

6.7.4 Result for Re(Y′/Y)

For Y′/Y we use Eq. (2.20), combining the lattice values for the imaginary parts of the decay

amplitudes with the experimental measurements of the real parts. The systematic error for Im(�0)

is taken from Tab. 6.25 and that of Im(�2) from Eq. 64 of Ref. [2]. The statistical and system-

atic errors on Im(�0) and Im(�2) are combined in quadrature and are therefore enhanced by the

cancellation between the two terms in Eq. (2.20). However, one further important systematic error

should be addressed: that arising from the effects of electromagnetism and the isospin-breaking

difference, <3 − <D, between the down and up quark masses.

While for most quantities these corrections enter at the 1% level or below, for n′ this familiar

situation does not hold. As can be seen from the formula used to compute n′ in the Standard Model

given in Eq. (2.20), the � = 0 and � = 2 amplitudes �0 and �2 enter with equal weight. However,

as is summarized by the Δ� = 1/2 rule, the amplitude �2 is 22.5 times smaller than �0. Thus, a

1% correction to �0 can introduce an O(20%) correction to �2 and a potential correction to n′ of

20% or more.

The effects on n′ of electromagnetism and <3 −<D have been the subject of active research for

some time [86, 87, 88]. The most recent results are those of Cirigliano et al. [88]. They provide

a correction that is appropriate for our calculation in which the contribution of the electro-weak

penguin operators &7 and &8 has been included. Their result is parametrized by Ω̂eff which is

introduced into a version of Eq. (2.20) which incorporates these effects:

Y′

Y
=
8l+4

8(X2−X0)
√

2Y

[
Im(�emp

2 )

Re(�(0)
2 )
−

Im(�(0)
0 )

Re(�(0)
0 )

(
1 − Ω̂eff

)]
. (6.97)
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Figure 6.12: The horizontal-band constraint on the CKM matrix unitarity triangle in the d̄ − [̄
plane obtained from our calculation of n′, along with constraints obtained from other inputs [17,
68, 90]. The error bands represent the statistical and systematic errors combined in quadrature.
Note that the band labeled n′ is historically (e.g. in Ref. [91]) labeled as n′/n , where n is taken
from experiment.

and find Ω̂eff = (17.0 +9.1
−9.0 ) × 10−2. Here we are reproducing Eqs. (54) and (60) from Ref. [88],

where Re(�(0)
0,2) refer to the real amplitudes in the absence of isospin breaking, Im(�emp

2 ) repre-

sents the dominant contribution to Im(�2) and arises from the electroweak penguin operators &7,8,

and Im(�(0)
0 ) additionally includes the effects of QCD penguin operators. At the present level

of accuracy, our use of the experimental rates for the real amplitudes, together with small differ-

ences from the definition of the isosymmetric limit in Ref. [88], do not affect the applicability of

Eq. (6.97) to our calculation. (For a review of earlier work on this topic see Ref. [89].) Note also

that l+ = Re(�+
2)/Re(�0), where the plus (+) indicates the amplitude obtained from charged kaon

decay, is equal to the value of l used to represent the isospin-symmetric ratio in this work and

given in Tab. 6.10.

Since a careful discussion of these corrections is beyond the scope of this work we choose to

treat these effects of isospin breaking as a systematic error whose size is given by the effect of

including Ω̂eff in Eq. (6.97). We find

Re(n′/n) = 0.00217(26)(62)(50) , (6.98)

where the errors are statistical and systematic, with the systematic error separated as isospin-
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conserving and isospin-breaking, respectively. We note that if we were to apply this negative

correction directly to our result for Re(n′/n), the central value obtained, 0.00167, would nearly

coincide with the experimental value, albeit with appreciable errors.

Our first-principles calculation of n′/n also allows us to place a new, horizontal-band constraint

on the CKM matrix unitarity triangle in the d̄− [̄ plane. In Fig. 6.12 we overlay this band with con-

straints arising from other sources. We find that our result is consistent with the other constraints

and does not at present suggest any violation of the CKM paradigm. For more information on how

this band was obtained, as well as the corresponding plot obtained using our 2015 results, we refer

the reader to Ref. [91].

166



Conclusion

In this paper we have presented in detail two related lattice calculations: The calculation of cc

scattering phase shifts for both the � = 0 and � = 2 channels, and the calculation of  → cc�=0

decay amplitude and n′. These two calculations substantially enhance the results of our 2015

lattice calculation [1]. Both the 2015 and the current calculation were performed on a single,

323 × 64 Möbius domain wall ensemble with the Iwasaki+DSDR gauge action, with an inverse

lattice spacing of 1.378(7) GeV and physical pion masses. G-parity boundary conditions are used

in the three spatial directions which induces non-zero momentum for the ground-state pions so that

the energy of the lightest two-pion state matches the kaon mass to around 2%, thereby ensuring a

physical, energy-conserving decay.

These two new calculations are based on an increase by a factor of 3.4 in the number of Monte

Carlo samples and include two additional cc interpolating operators, one of which is a four-

quark operator constructed from single-pion interpolating operators which each carry larger-than-

minimum momentum, while the other is a scalar two-quark operator (the sigma operator). With

these improvements we obtain an � = 0 cc scattering phase shift at 471 MeV of 32.3◦(1.0)(1.4)1.

Comparing this result with the one presented five years ago [1], we have the following improve-

ments: i) The statistical error is improved by a factor of 5. ii) We are able to provide a more reliable

and detailed systematic error analysis. iii) We have been able to resolve the 3f discrepancy be-

tween our earlier result for this phase shift and that predicted by a dispersive analysis [9] so that

1Note this number is slightly different from the number given in Ref. [16]. This is because we have now included
an estimate of the error due to the unphysical pion mass, resulting in a correction to the cc energy and we have refined
our excited state error estimation.
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our current results agree well with the dispersive prediction (cf. Fig. 5.10). The discrepancy is

now understood to have resulted from excited cc state contamination, which was underestimated

in Ref. [1] and is now under much greater control. These improvements also result in a signifi-

cant, 70% (2.6f if f is determined from only the statistical error) relative increase in the size of

the unrenormalized lattice value of &6, suggesting that our excited-state systematic error in the

 → cc calculation was previously underestimated. Our final results for the cc scattering phase

shift calculation are presented in Tab. 5.12 and illustrated in Figures 5.10 and 5.11, and a detailed

comparison of our old and new result of  → cc calculation can be found in Sec. 6.5.6.

In order to obtain a better estimation of the excited-state systematic error in the cc scatter-

ing calculation, we have employed a concrete procedure for estimating the error resulting from a

nearby excited state that was not included in our fit. As discussed in Sec. 5.4.5, we introduce one

additional state into our fit but with an energy fixed to that given by the dispersive calculation [9]

and with couplings to our operators carefully estimated, so as to avoid introducing instability in

the fits or inflating the statistical error. The resulting shift in the ground-state energy then provides

a meaningful indicator of the size of the corresponding systematic error.

In addition to computing the � = 0 phase shift for two pions with zero total momentum, we

also perform a moving-frame calculation with three different total momenta. The observation [30]

that three types of lattice symmetry can be used to significantly reduce the number of contractions

was exploited to reduce the contraction time by a factor of seven. The resulting values of the

cc phase shifts at lower energies not only allow us to perform a comparison with dispersive and

chiral perturbation theory predictions but also give us an independent evaluation of the Lellouch-

Lüscher correction needed to obtain the  → cc decay amplitude from a finite-volume lattice

QCD calculation. Because of the critical role played by the sigma interpolating operator in the

stationary frame calculation, we will include a sigma operator with non-zero total momentum in

future work. This operator might be expected to strongly couple to more states in the fit, in contrast

to the cc(311, 311) operator, and may significantly reduce the errors as it did for the stationary

case.
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In this work, we have used a combination of bootstrap and jackknife methods [29] together

with correlated fits to determine the ground-state energies, the operator-state overlap amplitudes,

the bare matrix elements, and the analysis of the excited-state error. This method allows us to

estimate the goodness-of-fit, which provides better guidance in our choice of fitting ranges and

multi-state fitting functions. In the cc scattering calculation, we also compared our multi-state

fitting with the GEVP method and found that our fitting procedure gave consistent statistical errors

for the � = 0 case with our implementation of the GEVP method. We did not attempt to estimate

the systematic errors resulting from the GEVP approach. The GEVP method may well excel when

more states and operators are included.

In the  → cc calculation, we have also included in this new calculation an improved renor-

malization technique. As discussed in Sec. 6.4, the lattice matrix operators must be renormalized

in the MS scheme in which the Wilson coefficients that parameterize the high-energy weak inter-

actions have been evaluated. This is accomplished by performing an intermediate non-perturbative

conversion into two RI-SMOM schemes, each of which can be matched perturbatively to MS at

some high energy scale. As we use a somewhat coarse, 0−1 = 1.38 GeV ensemble, our renormal-

ization scale was formerly limited by this cutoff and ` = 1.53 GeV was chosen as the momemtum

scale at which our RI-SMOM schemes were converted to MS. In the new calculation reported

here we have applied the step-scaling procedure to bypass the limitation imposed by the lattice

cutoff and raise our renormalization scale to 4.006 GeV, thereby improving our control over the

systematic error resulting from the perturbative matching to MS. This improved method results

in a reduced discrepancy between the results obtained from the two different RI-SMOM interme-

diate schemes and a reduction in the renormalization systematic error. In the future we expect to

improve this systematic error by further raising the renormalization scale.

We estimate the finite lattice spacing effects to be a significant source of error in both the cc

scattering and �0 calculations. Since we have results from only a single, somewhat coarse lattice

spacing our estimate of this error is necessarily indirect and uncertain. In the future we intend to

follow the procedure used in our �2 calculation [2] to compute �0 at two different lattice spacings,
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allowing us to perform a full continuum limit. This is hampered by the need to generate new

ensembles with GPBC, which alongside the high computational cost of the measurements and the

need for large statistics requires significantly more computing power than is presently available.

A second important systematic error, which we plan to reduce in future work, comes from

the effects of electromagnetic and light quark mass isospin breaking. As discussed in Sec. 6.7.4,

the small size of the amplitude �2 relative to �0 gives a potential twenty times enhancement of

such effects which are normally at the 1% level. The effects of electromagnetism and the quark

mass difference <3 − <D have been studied in considerable detail using chiral perturbation theory

and large #2 arguments, most recently in Ref. [88]. We take the size of their correction as an

important systematic error for our present result and are exploring possible methods to also use

lattice techniques to determine these effects [92, 93].

For our final result we obtain

(6.99)Re(n′/n)lattice = 0.00217(26)(62)(50) .

The third error here is the systematic error associated with isospin breaking and electromagnetic

effects, and the first and second errors are the statistical error and the remaining systematic error.

This result can be compared to the experimental value

(6.100)Re(n′/n)expt. = 0.00166(23) .

These values are consistent within the quoted errors.

We believe that n′ continues to offer a very important test of the Standard Model with exciting

opportunities for the discovery of new physics. For this promise to be realized substantially more

accurate Standard Model predictions are needed. Important improvements can be expected from

a simple extension of the work presented here, studying a sequence of ensembles with decreasing

lattice spacing so that a continuum limit can be evaluated. In addition, we are developing a second,

complementary approach to the study of  → cc decay which is based on periodic boundary

conditions. This avoids the complexity of the G-parity boundary conditions used in the present

work but requires that higher energy, excited cc states be used as the decay final state [94]. More

challenging is the problem posed by the inclusion of electromagnetism where new methods [92,
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93] are needed to combine the finite-volume methods of Lüscher [6] and Lellouch and Lüscher [36]

with the long-range character of electromagnetism.
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Appendix A: Quark level momentum distribution

A.1 Pion operator

In Sec. 4.1, Eqs. (4.1)-(4.3) we detail the interpolating operators for the charged and neutral

pions. The pion momentum, ®% = ®?+ ®@ is the sum of the momenta ®? and ®@ assigned to the quark and

antiquark, respectively. Given a pion momentum, there are multiple ways of distribute momentum

between quark and anti-quark component.

As shown in Ref. [13] the allowed quark momenta (for G-parity BCs in 3 directions) are

± c

2!
(1, 1, 1) +

2c
!
®= , (A.1)

where ®= is a vector of integers. While any combination of ®? and ®@ satisfying this condition result

in valid pion interpolating operators, we observed in Ref. [13] that the cubic symmetry breaking

manifest in the operator amplitudes between pion states of total momentum related by cubic rota-

tions is dramatically suppressed by averaging over pairs of bilinear operators with the same total

momentum but with different assignments of quark momenta. The specific criteria for selecting

those momenta are discussed in more detail in that paper; here in Tab. A.1 we list only the two

choices for each of the 32 total momenta. The momentum distribution is listed below for all 32

pions we use (in units of c/2!):

Recall that in addition to the above, we also symmetrize the momentum between the quark and

antiquark by averaging the assignments ( ®?, ®@) and (®@, ®?). Thus in practice our pion interpolating

operators comprise an average over a total of four quark field bilinears.
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Pion momentum quark momentum, choice 1 quark momentum, choice 2
( 2, 2, 2) ( 1, 1, 1) + ( 1, 1, 1) (-1,-1,-1) + ( 3, 3, 3)
(-2,-2,-2) (-1,-1,-1) + (-1,-1,-1) ( 1, 1, 1) + (-3,-3,-3)
( 2, 2,-2) ( 1, 1, 1) + ( 1, 1,-3) (-1,-1,-1) + ( 3, 3,-1)
( 2,-2, 2) ( 1, 1, 1) + ( 1,-3, 1) (-1,-1,-1) + ( 3,-1, 3)
(-2, 2, 2) ( 1, 1, 1) + (-3, 1, 1) (-1,-1,-1) + (-1, 3, 3)
(-2,-2, 2) (-1,-1,-1) + (-1,-1, 3) ( 1, 1, 1) + (-3,-3, 1)
(-2, 2,-2) (-1,-1,-1) + (-1, 3,-1) ( 1, 1, 1) + (-3, 1,-3)
( 2,-2,-2) (-1,-1,-1) + ( 3,-1,-1) ( 1, 1, 1) + ( 1,-3,-3)
( 2, 2, 6) ( 1, 1, 1) + ( 1, 1, 5) (-1,-1,-1) + ( 3, 3, 7)
( 2, 6, 2) ( 1, 1, 1) + ( 1, 5, 1) (-1,-1,-1) + ( 3, 7, 3)
( 6, 2, 2) ( 1, 1, 1) + ( 5, 1, 1) (-1,-1,-1) + ( 7, 3, 3)
(-2,-2,-6) (-1,-1,-1) + (-1,-1,-5) ( 1, 1, 1) + (-3,-3,-7)
(-2,-6,-2) (-1,-1,-1) + (-1,-5,-1) ( 1, 1, 1) + (-3,-7,-3)
(-6,-2,-2) (-1,-1,-1) + (-5,-1,-1) ( 1, 1, 1) + (-7,-3,-3)
( 2, 2,-6) ( 1, 1, 1) + ( 1, 1,-7) (-1,-1,-1) + ( 3, 3,-5)
( 2,-6, 2) ( 1, 1, 1) + ( 1,-7, 1) (-1,-1,-1) + ( 3,-5, 3)
(-6, 2, 2) ( 1, 1, 1) + (-7, 1, 1) (-1,-1,-1) + (-5, 3, 3)
(-2,-2, 6) (-1,-1,-1) + (-1,-1, 7) ( 1, 1, 1) + (-3,-3, 5)
(-2, 6,-2) (-1,-1,-1) + (-1, 7,-1) ( 1, 1, 1) + (-3, 5,-3)
( 6,-2,-2) (-1,-1,-1) + ( 7,-1,-1) ( 1, 1, 1) + ( 5,-3,-3)
(-2, 2, 6) ( 1, 1, 1) + (-3, 1, 5) (-1,-1,-1) + (-1, 3, 7)
( 2, 6,-2) ( 1, 1, 1) + ( 1, 5,-3) (-1,-1,-1) + ( 3, 7,-1)
( 6,-2, 2) ( 1, 1, 1) + ( 5,-3, 1) (-1,-1,-1) + ( 7,-1, 3)
( 2,-2,-6) (-1,-1,-1) + ( 3,-1,-5) ( 1, 1, 1) + ( 1,-3,-7)
(-2,-6, 2) (-1,-1,-1) + (-1,-5, 3) ( 1, 1, 1) + (-3,-7, 1)
(-6, 2,-2) (-1,-1,-1) + (-5, 3,-1) ( 1, 1, 1) + (-7, 1,-3)
( 2,-2, 6) ( 1, 1, 1) + ( 1,-3, 5) (-1,-1,-1) + ( 3,-1, 7)
(-2, 6, 2) ( 1, 1, 1) + (-3, 5, 1) (-1,-1,-1) + (-1, 7, 3)
( 6, 2,-2) ( 1, 1, 1) + ( 5, 1,-3) (-1,-1,-1) + ( 7, 3,-1)
(-2, 2,-6) (-1,-1,-1) + (-1, 3,-5) ( 1, 1, 1) + (-3, 1,-7)
( 2,-6,-2) (-1,-1,-1) + ( 3,-5,-1) ( 1, 1, 1) + ( 1,-7,-3)
(-6,-2, 2) (-1,-1,-1) + (-5,-1, 3) ( 1, 1, 1) + (-7,-3, 1)

Table A.1: The quark/anti-quark momenta choices for all 32 pion total momenta. For each total
momenta, two momentum choices are given to suppress the cubic symmetry given. All momenta
are given in units of c/2!.
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Index quark momentum
1 ( 1, 1, 1)
2 (-1,-1,-1)
3 (-3, 1, 1)
4 ( 3,-1,-1)
5 ( 1,-3, 1)
6 (-1, 3,-1)
7 ( 1, 1,-3)
8 (-1,-1, 3)

Table A.2: The 8 orientations of quark momentum we average to get the f operator with zero total
momentum. The anti-quark momentum in each case is the reverse of the quark momentum. All
momenta are given in units of c/2!.

A.2 f operator

In this work we use the f operator only in the case of zero total momentum, and as a result

the momenta assigned to the quark and anti-quark fields must be equal and opposite. We construct

an operator that is symmetric under cubic rotations by averaging over 8 orientations of the quark

momentum. The list of momenta assigned to the quark operator are given in Tab. A.2.
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Appendix B: Chpt prediction for phase shift

In this appendix we present the partial wave amplitude C �
;=0 results from the next-to-leading-

order (NLO) ChPT. These amplitudes are connected with the scattering phase shift by

C �;=0 =
(
B − 4
B

)1/2
48X
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;=0(B)sin[X�;=0(B)] (B.1)
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212 − 4814 −

199
144c2

)
:2

<2
c

+
(
16
3
13 +

112
3
14 +

265
216c2

)
:4

<4
c

]
+

<4
c

64c3 5 4
c

1√
1 + <2

c

:2

(
1 + 4

:2

<2
c

+ 4
:4

<4
c

)
log

©­­«
1 −

√
1 + <2

c

:2

1 +
√

1 + <2
c

:2

ª®®¬
+

<4
c

1152c3 5 4
c

√
1 +

<2
c

:2

(
27 + 112

:2

<2
c

+ 88
:4

<4
c

)
log

©­­«
√

1 + <2
c

:2 − 1√
1 + <2

c

:2 + 1

ª®®¬
+

<4
c

256c3 5 4
c

(
1 +

13
12
<2
c

:2

) −4[log(2)]2 +
[
log

(
4:2

<2
c

)]2

−
log

©­­«
√

1 + <2
c

:2 − 1√
1 + <2

c

:2 + 1

ª®®¬


2

+4 log
(
4:2

<2
c

)
log ©­«1 +

√
1 +

<2
c

:2
ª®¬ + 4

log ©­«1 +

√
1 +

<2
c

:2
ª®¬


2

+2 log
(
4:2

<2
c

)
log

©­­«
√

1 + <2
c

:2 − 1√
1 + <2

c

:2 + 1

ª®®¬ + 4 log ©­«1 +

√
1 +

<2
c

:2
ª®¬ log

©­­«
√

1 + <2
c

:2 − 1√
1 + <2

c

:2 + 1

ª®®¬
 .

(B.3)

The parameters 11 − 14 are linear combinations of low energy constants defined in Ref [95],

and we took their values from Ref [9]. In this work, these expressions are used to estimate the

unphysical pion mass error. The two pion masses we use are the lattice pion mass <lat
c = 142.3

MeV and physical pion mass <phy
c = 135 MeV.
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Appendix C: Contractions for cc and f operators

In this appendix we list the contraction formula for each diagram introduced in Sec. 4.3. The

first four diagrams are associated with the product of two cc interpolating operators, where the

four time slices are the time coordinates of the four single-pion interpolating operators, which are

Csrc − 4, Csrc, Csnk and Csnk + 4, respectively. The final four expressions correspond to the cases where

at least one of the source or sink operators is a f operator. The quantity %C0 ,C1 is the G-parity

quark propagator from C0 to C1 while the flavor-spin matrix (1 is defined as (1 = f3W5. These eight

amplitudes are obtained from the following contractions:

� =
1
2
)A

{
%C1,C3(1%C3,C2(1%C2,C4(1%C4,C1(1

}
(C.1)

� =
1
2

[(
1
2
)A

{
%C1,C3(1%C3,C1(1

})
·
(
1
2
)A

{
%C2,C4(1%C4,C2(1

})
+ (C3 ↔ C4)

]
(C.2)

' =
1
2

[
1
2
)A

{
%C1,C2(1%C2,C3(1%C3,C4(1%C4,C1(1

}
+ (C3 ↔ C4)

]
(C.3)

+ =
(
1
2
)A

{
%C1,C2(1%C2,C1(1

})
·
(
1
2
)A

{
%C3,C4(1%C4,C3(1

})
(C.4)

�ff = )A
{
%C1,C2%C2,C1

}
(C.5)

+ff =
(
)A

{
%C1,C1

})
·
(
)A

{
%C2,C2

})
(C.6)

�fcc = 8 · )A
{
%C1,C0%C0,C2(1%C2,C1(1

}
(C.7)

+fcc = 8 · )A
{
%C0,C0

}
· )A

{
%C1,C2(1%C2,C1(1

}
. (C.8)
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Appendix D: Wick contractions for the  → cc → cc → cc three-point function with

the fff operator

In this appendix we provide the expressions for the Wick contraction required to compute the

 → cc three-point function with the f operator. The corresponding diagrams for the cc(. . .)

operators can be found in in Appendix B.1 and B.2 of Ref. [14].

For this appendix we will utilize the notation described in Sec. 3.4 whereby the quark field

operators are placed in two-component “flavor” vectors k; and kℎ for the light and heavy quarks,

respectively, and the corresponding propagators are matrices also in this flavor index. In this

notation the creation operator for the G-parity even neutral kaon analog has the form,

(D.1)
O ̃0 =

8
√

2
(3̄W5B + B̄′W5D)

=
8
√

2
k̄;W

5kℎ ,

where the physical component corresponds to the usual neutral kaon operator (cf. Sec. VI.A of

Ref. [13]). The f creation operator has the form,

(D.2)
Of =

1
√

2
(D̄D + 3̄3)

=
1
√

2
k̄;k; .

For convenience we will treat the meson bilinears as point operators in which both quarks reside

on the same lattice site. (In our actual lattice calculation we use more elaborate source and sink

operators but those details are not needed to specify how we evaluate the Wick contractions.) The

ten effective four-quark operators &8 for 8 ∈ {1 . . . 10} written in the above notation are given in

Sec. 3.2.2 of Ref. [14]. While the exact forms are not important for this discussion, we highlight
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the fact that the operators are written in terms of a common set of matrices,

(D.3)
"
`

0,+±� = �0W
`(1 ± W5) ,

"
`

1,+±� = −�1W
`(1 ± W5) ,

where �8 are diagonal flavor matrices that pick out either the upper (0) or lower (1) element of the

vector upon which they act:

(D.4)�0 =
©­­«

1 0

0 0

ª®®¬ , �1 =
©­­«

0 0

0 1

ª®®¬ .
The matrices "`

8,+±� appear inside products of two bilinear operators and the space-time index `

is summed over implicitly. Following the notation of Ref. [14] we will suppress this index.

The Wick contractions of the  → cc three-point function with the f operator,

(D.5)A8 = 〈0|O†f(I)&̂8(H)O ̃0(G)|0〉 ,

where &̂8 are the unsubtracted four-quark operators, are divided into three classes by their topol-

ogy that we label with indices 1, 3 and 4 in homage to the conventional labeling of the cc(. . .)

contractions. The type3 and type4 diagrams are those that contain a quark loop at the location of

the four-quark operator, with type4 corresponding to that subset of those diagrams that are dis-

connected (i.e. for which the f operator self-contracts). For the cc(. . .) operators the remaining,

connected, contractions can be subdivided based on whether the two pion bilinear operators are

directly connected by a quark line (type2) or not (type1); no such distinction exists of course for

the f sink operator. Hence we classify all remaining diagrams as type1.

As in Ref. [14] it is convenient to write the ten expressionsA8 in terms of a common basis of, in

this case 23, functions �U(Γ1, Γ2) where the subscript indexes the function and Γ1,2 are spin-flavor

matrices.

We will first write down the expressions for the correlation functions A8 in terms of these

functions and will conclude the section with their definition. We list the contributions for each of
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the three types separately. The type1 contributions are as follows:

(D.6a)Atype1
1 =

1
2
�6("0,+−�, "1,++�) − 1

2
�1("0,+−�, "1,++�)

(D.6b)Atype1
2 =

1
2
�11("0,+−�, "1,++�) − 1

2
�8("0,+−�, "1,++�)

(D.6c)
Atype1

3 =
1
2
�6("0,+−�, "1,++�) +

1
2
�6("0,+−�, "0,+−�)

− 1
2
�1("0,+−�, "1,++�) − 1

2
�1("0,+−�, "0,+−�)

(D.6d)Atype1
4 = �11("0,+−�, "1,++�) − 1

2
�8("0,+−�, "1,++�) − 1

2
�19("0,+−�, "0,+−�)

(D.6e)Atype1
5 = �6("0,+−�, "1,+−�) − 1

2
�1("0,+−�, "1,+−�) − 1

2
�1("0,+−�, "0,++�)

(D.6f)Atype1
6 = �11("0,+−�, "1,+−�) − 1

2
�8("0,+−�, "1,+−�) − 1

2
�19("0,+−�, "0,++�)

(D.6g)Atype1
7 =

1
4
�6("0,+−�, "1,+−�) − 1

2
�1("0,+−�, "1,+−�) +

1
4
�1("0,+−�, "0,++�)

(D.6h)Atype1
8 =

1
4
�11("0,+−�, "1,+−�) − 1

2
�8("0,+−�, "1,+−�) +

1
4
�19("0,+−�, "0,++�)

(D.6i)Atype1
9 =

1
4
�6("0,+−�, "1,++�) − 1

2
�1("0,+−�, "1,++�) +

1
4
�1("0,+−�, "0,+−�)

(D.6j)Atype1
10 =

1
4
�11("0,+−�, "1,++�) − 1

2
�8("0,+−�, "1,++�) +

1
4
�19("0,+−�, "0,+−�) ,

the type3 contributions are:

(D.7a)Atype3
1 =

1
2
�2("0,+−�, "1,++�) − 1

2
�3("0,+−�, "1,++�)

(D.7b)Atype3
2 =

1
2
�10("0,+−�, "1,++�) − 1

2
�7("0,+−�, "1,++�)

(D.7c)
Atype3

3 =
1
2
�2("0,+−�, "1,++�) +

1
2
�2("0,+−�, "0,+−�) − 1

2
�3("0,+−�, "1,++�)

− 1
2
�3("0,+−�, "0,+−�) +

1
2
�14("0,+−�, "0,+−�) − 1

2
�16("0,+−�, "0,+−�)

(D.7d)
Atype3

4 = �10("0,+−�, "1,++�) − 1
2
�7("0,+−�, "1,++�) − 1

2
�18("0,+−�, "0,+−�)

+
1
2
�21("0,+−�, "0,+−�) − 1

2
�23("0,+−�, "0,+−�)

(D.7e)
Atype3

5 = �2("0,+−�, "1,+−�) − 1
2
�3("0,+−�, "1,+−�) − 1

2
�3("0,+−�, "0,++�)

+
1
2
�14("0,+−�, "0,++�) − 1

2
�16("0,+−�, "0,++�)
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(D.7f)
Atype3

6 = �10("0,+−�, "1,+−�) − 1
2
�7("0,+−�, "1,+−�) − 1

2
�18("0,+−�, "0,++�)

+
1
2
�21("0,+−�, "0,++�) − 1

2
�23("0,+−�, "0,++�)

(D.7g)
Atype3

7 =
1
4
�2("0,+−�, "1,+−�) − 1

2
�3("0,+−�, "1,+−�) +

1
4
�3("0,+−�, "0,++�)

− 1
4
�14("0,+−�, "0,++�) +

1
4
�16("0,+−�, "0,++�)

(D.7h)
Atype3

8 =
1
4
�10("0,+−�, "1,+−�) − 1

2
�7("0,+−�, "1,+−�) +

1
4
�18("0,+−�, "0,++�)

− 1
4
�21("0,+−�, "0,++�) +

1
4
�23("0,+−�, "0,++�)

(D.7i)
Atype3

9 =
1
4
�2("0,+−�, "1,++�) − 1

2
�3("0,+−�, "1,++�) +

1
4
�3("0,+−�, "0,+−�)

− 1
4
�14("0,+−�, "0,+−�) +

1
4
�16("0,+−�, "0,+−�)

(D.7j)
Atype3

10 =
1
4
�10("0,+−�, "1,++�) − 1

2
�7("0,+−�, "1,++�) +

1
4
�18("0,+−�, "0,+−�)

− 1
4
�21("0,+−�, "0,+−�) +

1
4
�23("0,+−�, "0,+−�) ,

and the type4:

(D.8a)Atype4
1 = −1

2
�5("0,+−�, "1,++�) +

1
2
�4("0,+−�, "1,++�)

(D.8b)Atype4
2 = −1

2
�12("0,+−�, "1,++�) +

1
2
�9("0,+−�, "1,++�)

(D.8c)
Atype4

3 = −1
2
�5("0,+−�, "1,++�) − 1

2
�5("0,+−�, "0,+−�) +

1
2
�4("0,+−�, "1,++�)

+
1
2
�4("0,+−�, "0,+−�) − 1

2
�13("0,+−�, "0,+−�) +

1
2
�15("0,+−�, "0,+−�)

(D.8d)
Atype4

4 = −�12("0,+−�, "1,++�) +
1
2
�9("0,+−�, "1,++�) +

1
2
�17("0,+−�, "0,+−�)

− 1
2
�20("0,+−�, "0,+−�) +

1
2
�22("0,+−�, "0,+−�)

(D.8e)
Atype4

5 = −�5("0,+−�, "1,+−�) +
1
2
�4("0,+−�, "1,+−�) +

1
2
�4("0,+−�, "0,++�)

− 1
2
�13("0,+−�, "0,++�) +

1
2
�15("0,+−�, "0,++�)
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(D.8f)
Atype4

6 = −�12("0,+−�, "1,+−�) +
1
2
�9("0,+−�, "1,+−�) +

1
2
�17("0,+−�, "0,++�)

− 1
2
�20("0,+−�, "0,++�) +

1
2
�22("0,+−�, "0,++�)

(D.8g)
Atype4

7 = −1
4
�5("0,+−�, "1,+−�) +

1
2
�4("0,+−�, "1,+−�) − 1

4
�4("0,+−�, "0,++�)

+
1
4
�13("0,+−�, "0,++�) − 1

4
�15("0,+−�, "0,++�)

(D.8h)
Atype4

8 = −1
4
�12("0,+−�, "1,+−�) +

1
2
�9("0,+−�, "1,+−�) − 1

4
�17("0,+−�, "0,++�)

+
1
4
�20("0,+−�, "0,++�) − 1

4
�22("0,+−�, "0,++�)

(D.8i)
Atype4

9 = −1
4
�5("0,+−�, "1,++�) +

1
2
�4("0,+−�, "1,++�) − 1

4
�4("0,+−�, "0,+−�)

+
1
4
�13("0,+−�, "0,+−�) − 1

4
�15("0,+−�, "0,+−�)

(D.8j)
Atype4

10 = −1
4
�12("0,+−�, "1,++�) +

1
2
�9("0,+−�, "1,++�) − 1

4
�17("0,+−�, "0,+−�)

+
1
4
�20("0,+−�, "0,+−�) − 1

4
�22("0,+−�, "0,+−�) .

The type1 contractions are:

(D.9a)�1(Γ1, Γ2) = tr
(
Γ2G;H,GW5GℎG,HΓ1G;H,IG;I,H

)
(D.9b)�6(Γ1, Γ2) = tr

(
GℎG,HΓ1G;H,GW5

)
tr

(
G;I,HΓ2G;H,I

)
(D.9c)�8(Γ1, Γ2) = trB 5

( [
Γ1G;H,IG;I,H

]
UV

[
Γ2G;H,GW5GℎG,H

]
UV

)
(D.9d)�11(Γ1, Γ2) = trB 5

(
G;H,GW5GℎG,HΓ1

)
UV

trB 5
(
Γ2G;H,IG;I,H

)
UV

(D.9e)�19(Γ1, Γ2) = trB 5
(
tr2

[
G;H,GW5GℎG,HΓ1

]
tr2

[
G;H,IG;I,HΓ2

] )
,

and the type3 are:

(D.10a)�2(Γ1, Γ2) = tr
(
W5GℎG,HΓ1G;H,IG;I,G

)
tr

(
G;H,HΓ2

)
(D.10b)�3(Γ1, Γ2) = tr

(
G;H,IG;I,GW5GℎG,HΓ1G;H,HΓ2

)
(D.10c)�7(Γ1, Γ2) = trB 5

( [
Γ2G;H,IG;I,GW5GℎG,H

]
UV

[
Γ1G;H,H

]
UV

)
(D.10d)�10(Γ1, Γ2) = trB 5

(
Γ2G;H,H

)
UV

trB 5
(
Γ1G;H,IG;I,GW5GℎG,H

)
UV
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(D.10e)�14(Γ1, Γ2) = tr
(
G;H,IG;I,GW5GℎG,HΓ1

)
tr

(
GℎH,HΓ2

)
(D.10f)�16(Γ1, Γ2) = tr

(
GℎH,HΓ1G;H,IG;I,GW5GℎG,HΓ2

)
(D.10g)�18(Γ1, Γ2) = trB 5

(
tr2

[
G;H,H

]
tr2

[
Γ2G;H,IG;I,GW5GℎG,HΓ1

] )
(D.10h)�21(Γ1, Γ2) = tr2

(
trB 5

[
GℎH,HΓ2

]
trB 5

[
Γ1G;H,IG;I,GW5GℎG,H

] )
(D.10i)�23(Γ1, Γ2) = trB 5

(
tr2

[
GℎH,H

]
tr2

[
Γ1G;H,IG;I,GW5GℎG,HΓ2

] )
,

where G; and Gℎ are light and strange quark propagators, respectively, and U, V are color indices.

We indicate spin and flavor traces as trB 5 and color traces as tr2; traces over all three indices (spin,

color and flavor) are denoted as tr without a subscript.

For simplicity, in Eqs. (D.13) given below for the type4 diagrams we do not include the dis-

connected f “bubble”,
(D.11)�f = tr

(
G;I,I

)
.

In computing the expectation values of these diagrams it is also necessary to perform a vacuum

subtraction. Thus, the expressions �∗
8

given in Eqs. (D.13) can be used to obtain the complete

contributions of the corresponding diagrams to the type4 amplitudes as follows:

(D.12)〈�8(Γ1, Γ2)〉 = 〈�∗8 (Γ1, Γ2)�f〉 − 〈�∗8 (Γ1, Γ2)〉 × 〈�f〉 ,

where �∗ are defined as:

(D.13a)�∗4(Γ1, Γ2) = tr
(
G;H,GW5GℎG,HΓ1G;H,HΓ2

)
(D.13b)�∗5(Γ1, Γ2) = tr

(
GℎG,HΓ1G;H,GW5

)
tr

(
G;H,HΓ2

)
(D.13c)�∗9(Γ1, Γ2) = trB 5

( [
Γ1G;H,H

]
UV

[
Γ2G;H,GW5GℎG,H

]
UV

)
(D.13d)�∗12(Γ1, Γ2) = trB 5

(
G;H,GW5GℎG,HΓ1

)
UV

trB 5
(
G;H,HΓ2

)
UV

(D.13e)�∗13(Γ1, Γ2) = tr
(
W5GℎG,HΓ1G;H,G

)
tr

(
Γ2GℎH,H

)
(D.13f)�∗15(Γ1, Γ2) = tr

(
Γ1G;H,GW5GℎG,HΓ2GℎH,H

)
(D.13g)�∗17(Γ1, Γ2) = trB 5

(
tr2

[
G;H,H

]
tr2

[
Γ2G;H,GW5GℎG,HΓ1

] )
(D.13h)�∗20(Γ1, Γ2) = tr2

(
trB 5

[
G;H,GW5GℎG,HΓ1

]
trB 5

[
GℎH,HΓ2

] )
(D.13i)�∗22(Γ1, Γ2) = trB 5

(
tr2

[
GℎH,H

]
tr2

[
Γ1G;H,GW5GℎG,HΓ2

] )
.
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Appendix E: Wick contractions for matrix elements required for subtraction

of the vacuum and pseudoscalar operator contributions

As described in Sec. 6.3 it is necessary to subtract a pseudoscalar operator % = B̄W53 from the

unsubtracted weak effective four-quark operators &̂8 in order to remove a divergent contribution for

off-shell terms. The subtraction and the evaluation of the corresponding coeffients, U8, require the

measurement of 〈O†cc%Õ ̃0〉, 〈%O ̃0〉 and 〈&̂8O ̃0〉 correlation functions. The vacuum subtraction

of the type4 diagrams also requires evaluating the 〈&̂8O ̃0〉 correlation functions. Here and below

we use the shorthand 〈��� . . .〉 to denote the n-point Green’s functions of the operators �, �, �,

and so on, in descending time order.

It is easy to see that the Avac
8

= 〈&̂8O ̃0〉 are directly proportional to the type4, disconnected

contributions to 〈O†cc&̂8O ̃0〉 with the cc “bubble” removed. The results are

(E.1a)Avac
1 =

1
√

2
(
�23("0,+−�, "1,++�) − �26("1,++�, "0,+−�)

)
(E.1b)Avac

2 =
1
√

2
(
�24("0,+−�, "1,++�) − �27("1,++�, "0,+−�)

)
(E.1c)Avac

3 =
1
√

2
(
�23("0,+−�, "1,++�) + �23("0,+−�, "0,+−�) − �26("1,++�, "0,+−�)

− �26("0,+−�, "0,+−�) + �29("0,+−�, "0,+−�) − �31("0,+−�, "0,+−�)
)

(E.1d)Avac
4 =

1
√

2
(
�24("0,+−�, "1,++�) + �25("0,+−�, "0,+−�) − �27("1,++�, "0,+−�)

− �28("0,+−�, "0,+−�) + �30("0,+−�, "0,+−�) − �32("0,+−�, "0,+−�)
)

(E.1e)Avac
5 =

1
√

2
(
�23("0,+−�, "1,+−�) + �23("0,+−�, "0,++�) − �26("1,+−�, "0,+−�)

− �26("0,++�, "0,+−�) + �29("0,+−�, "0,++�) − �31("0,+−�, "0,++�)
)

(E.1f)Avac
6 =

1
√

2
(
�24("0,+−�, "1,+−�) + �25("0,+−�, "0,++�) − �27("1,+−�, "0,+−�)

− �28("0,++�, "0,+−�) + �30("0,+−�, "0,++�) − �32("0,+−�, "0,++�)
)
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(E.1g)
Avac

7 =
1
√

2

(
�23("0,+−�, "1,+−�) − 1

2
�23("0,+−�, "0,++�) − �26("1,+−�, "0,+−�)

+
1
2
�26("0,++�, "0,+−�) − 1

2
�29("0,+−�, "0,++�) +

1
2
�31("0,+−�, "0,++�)

)

(E.1h)
Avac

8 =
1
√

2

(
�24("0,+−�, "1,+−�) − 1

2
�25("0,+−�, "0,++�) − �27("1,+−�, "0,+−�)

+
1
2
�28("0,++�, "0,+−�) − 1

2
�30("0,+−�, "0,++�) +

1
2
�32("0,+−�, "0,++�)

)

(E.1i)
Avac

9 =
1
√

2

(
�23("0,+−�, "1,++�) − 1

2
�23("0,+−�, "0,+−�) − �26("1,++�, "0,+−�)

+
1
2
�26("0,+−�, "0,+−�) − 1

2
�29("0,+−�, "0,+−�) +

1
2
�31("0,+−�, "0,+−�)

)

(E.1j)
Avac

9 =
1
√

2

(
�24("0,+−�, "1,++�) − 1

2
�25("0,+−�, "0,+−�) − �27("1,++�, "0,+−�)

+
1
2
�28("0,+−�, "0,+−�) − 1

2
�30("0,+−�, "0,+−�) +

1
2
�32("0,+−�, "0,+−�)

)
.

These results can be obtained by isolating the�23−�32 type4 contributions from the expressions in

Sec. 3.2.2 of Ref. [14] and multiplying the result by a factor of 1/
√

3. Equivalent results can also be

obtained from the type4 contributions given in Eq. (D.13) by multiplying the result by a factor of
√

2. When measured with A2A propagators the results computed in these two bases are not exactly

equal due to differing choices of where to employ W5-hermiticity, a symmetry that is broken by

the stochastic “high-mode” approximation and restored only in the large ensemble-size limit (or

the large-hit limit on a single configuration). This gives rise to the small differences observed in

Sec. 6.3.2.

In our notation the pseudoscalar operator becomes

(E.2)% = B̄W53 = k̄ℎW5�0k; ,

where �0 is defined in Eq. (D.4).

The 〈%O ̃0〉 and 〈O†cc%O ̃0〉 correlation functions with the cc(. . .) and f operators can be
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written in terms of three diagrams:

(E.3a)mix3 = tr
(
G;I2,GW

5GℎG,HW5�0G;H,I1W
5f3G;I1,I2W

5f3

)
(E.3b)mix3f = tr

(
G;I,GW5GℎG,HW5�0G;H,I

)
(E.3c)mix4 = tr

(
GℎG,HW5�0G;H,GW5

)
.

where G and H are the locations of the kaon source and the operator insertion, respectively. The f

sink operator is located at I, and the coordinates of the two pion bilinear operators in the cc(. . .)

operators are I1 and I2.

The result for Avac,P = 〈%O ̃0〉 is

(E.4)Avac,P = − 1
√

2
mix4 .

The amplitudes Acc(...),% = 〈O†cc%O ̃0〉 for the cc(. . .) operators are computed as

(E.5)Acc(...),% = − 3
√

6
(� mix4 + mix3)

where
(E.6)� = −1

2
tr

(
G;I1,I2W

5f3G;I2,I1W
5f3

)
is the cc self-contraction “bubble” introduced in Sec. B.2 of Ref. [14]. The corresponding result

for the f sink operator is

(E.7)Af,% =
1
2

(�f mix4 −mix3f)

where �f is defined in Eq. (D.11).
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