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Abstract 

 A high-speed, high-precision chip formation-based micro-groove cutting process 

has been developed for cutting grooves in metals with nearly arbitrarily shaped cross-

sections, which have widths and depths of a few hundred nanometers to a few microns, 

and lengths of tens of millimeters.  A flexible tool, consisting of a single-point cutting 

geometry mounted on the end of a small cantilever, is moved along a workpiece surface 

while a constant cantilever deflection is maintained to apply a cutting load.  Depth of cut 

for a given tool shape is determined by cutting load and workpiece material properties.  A 

major advantage of the flexible tool concept is increased depth of cut precision.  

Furthermore, the use of a flexible tool enables the process to be robust against machine 

tool registration error, guide misalignment, and component inertial deflections.  The 

process was implemented by fitting a 5-axis micro-scale machine tool with a specially 

constructed micro-groove cutting assembly. 

 Early, experiments using diamond-coated AFM probes as tools demonstrated 

process viability up to cutting speeds of 25 mm/min and chip formation at the sub-micron 

scale.  However, AFM probe geometries proved too fragile for this demanding 

application.  High quality tools with improved cutting geometries were designed and 

fabricated via focused ion beam machining of single-crystal diamond tool blanks, and 

tool edge radii of 50 - 64 nm were achieved.  The improved tools enabled well-formed 

rectangular grooves to be cut in aluminum at up to 400 mm/min with widths of 300 nm to 

1.05 μm and depths up to 2 μm.  Complex compound v-shaped grooves were also 

produced.  Virtually no tool wear (less than 20 nm) was observed over a cutting distance 
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of 122.4 mm.  Small amounts of side burr formation occurred during steady-state cutting, 

and exit burr formation occurred when a tool exited from a workpiece.  Parallel 1.05 μm 

wide grooves were controllably cut as close as 1.0 μm apart, and machining of 

intersecting grooves was successfully demonstrated.   

 To better understand process mechanics including chip formation, side burr 

formation, and exit burr formation at the small size scale involved, a 3D finite element 

model of the process was developed.  Validation with experimental results showed that 

on average the model predicted side burr height to within 2.8%, chip curl to within 4.1%, 

and chip thickness to within 25.4%.  An important finding is that side burr formation is 

primarily caused ahead of a tool by expansion of material compressed after starting to 

flow around a tool rather than becoming part of a chip. Also, three exit burrs, two on the 

sides of a groove and one on the bottom of a groove, are formed when a thin membrane 

of material forms ahead of a tool and then ruptures as the tool exits a workpiece.  Finally, 

conclusions about the process are drawn and recommendations for future work are 

presented. 
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Chapter 1 

Introduction 

1.1 Background and Motivation 

 There is an increasing demand for miniature devices with micro-scale features 

and macro-scale devices with surface textures that include micro-scale features.  Micro-

grooves are one such feature that appears in many devices.  Micro-grooves have typically 

been fabricated using various processes in which material is deposited, patterned using 

photolithography, and etched.  Such processes have enabled cost-effective production of 

large batches of devices and are responsible for many of the currently successfully micro-

electromechanical system (MEMS) devices on the market.  However, deposition, pattern, 

and etch-based processes have disadvantages that include limits on the materials that 

devices can be fabricated from, limits on feature geometries, the need for expensive 

equipment for some processes, the use of hazardous chemicals, and the need to fabricate 

a potentially expensive series of masks for each new type of device.  The later limitation 

can render prototyping, or the production of small batches of custom devices, more time-

intensive and expensive than would be desirable in some cases.  Therefore, it is desirable 

to develop additional micro-groove fabrication technologies that avoid these problems. 

Micro-grooves can, for example, be part of hot embossing molds, micro-forming 

dies, optical lithography masks, micro-fluidic devices, micro-optics, micro-heat 

exchangers, and engineered surface textures.  A few more specific applications are as 

follows: 
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1. A micro-optics application with demanding requirements is the fabrication of molds 

for next generation ultrathin LED backlight light guides, which involves cutting long 

grooves with complex cross-sections and depths of a about a micron in metals.  

2. The fabrication of high-density micro-heat exchangers may involve cutting many 

tightly packed, long, high aspect ratio micro-grooves with widths that may be as 

small as a few hundred nanometers and with pitches less than a micron. 

3. The fabrication of a series of intersecting curvilinear grooves with widths and depths 

of a few microns may be used to build up complex surface patterns on metallic 

surfaces, such as the recently developed anti-microbial texture developed by Sharklet 

Technologies [40].  Other patterns may be use to modify the wetting characteristics of 

a surface [41] or to achieve various optical diffraction effects. 

These applications impose the following process requirements: (1) the ability to 

cut grooves in metals that are between a few hundred nanometers wide and a few microns 

wide, (2) the ability to cut patterns of many grooves that are each several millimeters 

long, (3) the ability to cut patterns of curvilinear grooves, (4) the ability to cut grooves 

with nearly arbitrary cross-sections, and (5) the ability to cut grooves with minimal burr 

formation / material distortion.  Additionally, economic considerations impose the 

additional requirements of having (6) a good material removal rate, (7) the ability to cut 

fully programmable patterns of grooves, and (8) the ability to fabricate micro-grooves 

using relatively inexpensive equipment.  It is also highly desirable in general that a 

micro-groove process should be able to (9) achieve relative tolerances of approximately 

10-2 or better.  Lastly, it is desirable for a micro-groove cutting process to (10) be capable 
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of cutting grooves in flat or curved workpiece surfaces, which is of particular importance 

if a surface pattern is to be cut into a complex die or mold. 

Several processes exist, in addition to more conventional deposition, pattern, and 

etch-based processes, which are suitable for producing micro-grooves with various 

process-dependent characteristics.  Material removal processes based on the application 

of thermal energy are laser scribing and micro-electrical discharge machining (μ-EDM).  

A processes based on electrochemical dissolution is micro-electrochemical machining (μ-

ECM).  Mechanical material removal processes include micro-endmilling, micro-fly 

cutting, micro-scale shaping / planing, and atomic force microscope (AFM) scribing.   

 However, none of these processes meet all of the requirements previously listed.  

In particular, only solid-state ECM, micro-fly cutting, micro-scale shaping / planing, and 

AFM scribing are capable of achieving the target widths.  Furthermore, of these 

processes, solid-state ECM [33, 42] requires physical contact between a superionic stamp 

and a workpiece, which renders it difficult to cut features into large curved surfaces.  

Also, the stamp must still be fabricated using some other process.  Micro-fly cutting can 

only cut straight grooves, has been limited to v-shaped grooves when grooves widths 

were less than about 20 μm [14, 15], and requires a very rigid and expensive machine 

tool.  Micro-scale shaping / planing suffers from burr formation issues, and requires a 

stiff and expensive machine tool to perform well.  Also, very narrow grooves cut with 

this process have been limited to v-shaped cross-sections [31, 43].  Lastly, while AFM 

scribing can be used to cut extremely narrow grooves or can build up grooves as wide as 

the range of travel of the AFM by moving an AFM probe in a raster pattern during 

cutting, this process is extremely slow, is limited to grooves with very short lengths [24, 
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32, 44, 45], and requires expensive equipment.  Therefore, since no process meets all of 

the requirements previously listed, and there is a gap in current manufacturing 

capabilities that motivates the development of a new micro-groove cutting process 

1.2 Research Objectives, Scope, and Tasks 

1.2.1 Research Objectives and Scope 

 The ultimate objective of this research is to develop a cost-effective micro-groove 

cutting process capable of meeting the ten process requirements listed in the previous 

section.  That is, the ability to cut programmable patterns of curvilinear grooves with 

nearly arbitrary cross-sections in metals that are between a few hundred nanometers and a 

few microns wide, up to a few microns deep,  and between tens of microns to several 

millimeters long.  This process should have a good material removal rate, avoid 

significant burr formation / material distortion, and achieve relative tolerances of 

approximately 10-2 or better.  Also, this process should be capable of cutting grooves into 

curved surfaces. 

To achieve this objective, it is necessary to both design a new process and build a 

machine tool that can implement it.  Then, a thorough understanding of the process must 

be developed through both experimental and analytical studies in order to achieve good 

performance and enable process planing.  Lastly, it is necessary to demonstrate the 

viability of the process by fabricating parts with test features representative of types of 

features required in applications. 

Experimental work will be limited to cutting grooves that are between a few 

hundred nanometers and a few microns wide in smooth planar workpieces.  These 

workpieces will consist of a metal film evaporated onto a flat substrate.  In order to limit 
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the number of experiments conducted, only one homogenous workpiece material will be 

considered.  Simulations of the cutting process will similarly be limited in terms of the 

workpiece.  Lastly, any test parts intended to demonstrate process capabilities will be 

limited to small sizes sufficient to demonstrate the fabrication of features of interest.    

1.2.2 Research Tasks 

Task 1: Process Development 

A micro-machining process capable of meeting the research objectives will be 

developed.  This process will make use of a flexible single-point cutting tool consisting 

of a cutting geometry, similar to the geometry of a micro-planing tool, attached to the end 

of a cantilever.  During cutting, this tool will be moved across the surface of a workpiece 

while the cantilever is bent in order to apply a cutting load.  Therefore, a test-bed on 

which the process can be implemented will be developed by retrofitting an existing 5-axis 

machine tool.  Tool geometries for use with the process will also be developed. 

Task 2: Experimental Study of the Cutting Process 

The machine tool will be used to experimentally explore process characteristics.  

Initial experiential studies will be conducted, in which commercial AFM probes are used 

as flexible cutting tools, in order to gain a general understanding of the process.  Based 

on this understanding, the process will be improved until reasonably good results are 

achieved.  This will include selection of better machining conditions and selection of 

better tool geometries. 

Task 3: Process Modeling 

While experimental studies of the cutting process can provide useful insights, 

limitations inherent in experimentation, especially at the micro-scale, mean that a full 
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understanding of the process cannot be achieved through experimentation alone.  

Therefore, the third task will be to model the cutting processes.  This model will be used 

to gain an improved understanding of the cutting process in order to enable improved 

performance and process planing. 

Task 4: Fabrication Capabilities Demonstration 

The forth task of this research is to demonstrate the fabrication of the types of 

features that are required in order to fabricate parts representative of the applications that 

drove the process requirements listed in this chapter.  This includes demonstration of the 

ability to cut grooves of varying geometries, to cut very narrow grooves, to cut closely 

spaced grooves, and to cut surface patterns composed of multiple grooves. 

1.3 Thesis Outline 

 This thesis is organized as follows.  Chapter 2 presents a review of literature on 

micro-groove formation processes, other than conventional deposition, pattern, and etch-

based processes, which can be used to form micro-grooves with widths of 50 μm or less.  

The processes covered are laser scribing, micro-electrical discharge machining (μ-EDM), 

micro-electrochemical machining (μ-ECM), micro-endmilling, micro-fly cutting, micro-

scale shaping / planing, and atomic force microscope (AFM) scribing.  A summary of 

these processes, in which they are evaluated in terms of process requirements, follows 

and shows that there is a subset of useful micro-groove features that cannot be readily 

fabricated using currently available processes.   Hence, there is a need for a new process 

to fill this gap, which is the focus of this thesis.  This is followed by a more fundamental 

discussion of micro-scale chip formation-based material removal that focuses on features 

unique to the micro-scale.  Lastly, methods that can be used to model chip formation-
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based material removal process are discussed with emphasis given to finite element 

methods. 

 Chapter 3 describes the micro-groove cutting process and the machine tool 

developed to implement the processes.  In the chapter, the obstacles associated with 

meeting process requirements are first described.  Then, the design of a micro-groove 

cutting process intended to not be hampered by the presented obstacles is described.  

Next, requirements imposed upon a machine tool that is used to implement the developed 

process are given.  The machine tool used to implement the process is then described in 

detail.  The last part of the chapter describes the operation of the machine tool during 

process setup and during micro-groove cutting. 

 Chapter 4 discusses three early experiments where commercial AFM probes were 

used as flexible single-point micro-cutting tools.  The setup of the experiments is first 

discussed.  Then the results of the first experiment, where long cuts were made using 

multiple tool passes, are discussed.  Emphasis is placed on tool wear and the formation of 

grooves via multiple tool passes.  Next, a second experiment is discussed where process 

conditions are varied in a factorial design during short cuts using only one tool pass each.  

Due to the experimental setup, tool wear, groove geometry, effective rake angle, and chip 

morphology are more exactly related to process conditions during the second experiment.  

A third experiment is then discussed that demonstrates the ability to cut grooves that have 

curved trajectories.  Over the courses of the chapter, it is shown that the largest restriction 

on groove quality is the use of commercial AFM probes as tools, which are shown to not 

be suitable for micro-groove cutting. 
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 Chapter 5 concerns the development of improved cutting tools that offer superior 

performance to the AFM probes used in Chapter 4.  The chapter first proposes several 

micro-groove cutting tool design principles.  A tool fabrication process is then described 

that involves making four through cuts into a suitable tool blank using focused ion beam 

(FIB) machining in order to fabricate tool designs based on the proposed principles.  The 

tool fabrication procedure used to make several tools, which includes a description of the 

equipment used, follows. 

 Chapter 6 describes six experiments conducted using the improved tools 

introduced in Chapter 5 in order to evaluate their capabilities.  First, the tools used in the 

experiments and the experimental procedure are described.  The first four experiments 

are then described in order.  These experiments collectively evaluate the effects of 

varying cutting load, cutting speed, and tool geometry.  Emphasis is placed on tool wear, 

resultant groove cross-sectional geometry, burr height, variations in groove depth over 

the course of a cut, and chip morphology.  Next, a fifth experiment is described, which is 

used to evaluate how close together parallel rectangular grooves can be cut while 

maintaining control of the dimensions of the resultant features.  Lastly, a sixth 

experiment is described where grooves are cut that intersect each other in order to 

evaluate the ability to cutting complex surface patterns. 

 Chapter 7 discusses the development of a finite element model of the micro-

groove cutting process that was experimentally evaluated in Chapter 6.  The chapter starts 

by describing the capabilities that the model must posses in order to properly represent 

the process.  Then the overall modeling approach is discussed.  Next, acquisition of 

workpiece material properties is described.  This is followed by a discussion of how to 
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model the contact between the tool and workpiece, how to model tool and workpiece 

geometry, and what boundary conditions to use during simulations.  A study in which 

simulation parameters are varied in order to calibrate the model using experimental data 

follows.  Model results are also compared to experiments for validation purposes. 

 In chapter 8, the model described in Chapter 7 is used to examine micro-groove 

cutting in detail.  First, the design of simulation experiments is discussed.  Next, cutting 

forces, chip flow, and stress-strain states present during steady-state cutting at the 

symmetry plane of a cut are evaluated when cutting using three different depths of cut 

and two different rake angles.  Out-of-cutting plane effects present during steady-state 

cutting are then evaluated.  This includes a discussion of out-of-cutting plane workpiece 

material flow, side burr formation, and separation of a chip from a workpiece.  Next, the 

potential for the delamination of a thin film being cut is examined.  Exit burr formation is 

then discussed in detail and methods of potentially reducing exit burr size are presented. 

 Chapter 9 provides a brief summary of the work described in this thesis and gives 

several conclusions that are based on the completed work.  Recommended areas of future 

work are then outlined, which should be addressed in order to render the developed 

micro-groove cutting process commercially viable. 
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Chapter 2 

Literature Review 

 The previous chapter outlined the importance of micro-manufacturing processes 

capable of producing long micro-grooves, other than conventional deposition, pattern and 

etch-based processes.  Additionally, several criteria that such processes should satisfy 

were established.   

This chapter reviews research into the development of such non-

photolithography-based processes that can be used to form micro-grooves with widths of 

50 μm or less.  These processes can be based on application of thermal energy to a 

workpiece, induced electrochemical dissolution of a workpiece, or mechanical material 

removal.  Material removal processes based on the application of thermal energy include 

laser scribing and micro-electrical discharge machining (μ-EDM).  A material removal 

processes based on electrochemical dissolution of a workpiece is micro-electrochemical 

machining (μ-ECM).  Lastly, mechanical material removal processes suitable from 

micro-groove cutting include micro-endmilling, micro-fly cutting, micro-scale shaping / 

planing, and atomic force microscope (AFM) scribing.   

In this chapter, each of these processes is described and both advantages and 

disadvantages associated with these processes are presented.  Afterwards, via a summary 

and comparison of current processes capabilities, it is shown that there is currently an 

important subset of micro-groove features that cannot be readily fabricated using the 

currently available processes and that there is a need for a new process to fill this gap. 
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2.1 Laser Scribing-Based Micro-Groove Cutting 

2.1.1 Process Description 

Laser scribing can be used to cut grooves in a wide range of materials at fairly 

high speeds.  In laser scribing, material is removed via the interaction between focused 

laser light and a workpiece surface.  Material removal can be accomplished either 

through a pyrolithic process involving a rapid thermal cycle of localized heating, melting, 

and vaporization or through a photolithic process involving localized breaking of 

chemical bonds in the workpiece material [46].  A photolithic process usually occurs 

when cutting polymers with ultraviolet wavelength lasers, and a pyrolithic process occurs 

when laser cutting most other materials [46]. 

Lasers can be grouped into two types: continuous and pulsed.  Continuous lasers 

generate a beam with time-invariant power and are unsuitable for micro-scale machining 

because thermal damage will occur around laser processed regions and prohibit the 

formation of sharp structures [2].  Pulsed lasers rapidly generate a series of brief laser 

pulses that tend to have a higher peak power that the constant power of a comparable 

continuous laser.  When pulsed lasers are used for cutting, the length and power of the 

laser pulses has a significant effect on the cutting action.   

When the laser pulse length is on the order of nanoseconds, the electrons associated with 

the atoms that make up the workpiece surface absorb the laser energy, the absorbed 

energy is transferred to the crystal lattice of the workpiece material, and heat conducts 

into the workpiece.  As a result, a small portion of the workpiece will first heat to its 

melting point and then vaporize somewhat, which results in droplets of resolidified 

material and craters around the machining area [46]. With picosecond pulse times, 
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however, there is not enough time for the heat to conduct very far into the workpiece 

before it is carried away via ejected material.  As a result, melting of the workpiece only 

occurs up to an extremely shallow depth, which results in higher precision [46].  Lastly, 

with femtosecond pulse times, there is not enough time for heat to transfer from the 

electrons to the lattice and hence all energy is stored in a thin surface layer that directly 

evaporates without any melting occurring, which results in very high-precision ablation 

[46].  However, outside of a laboratory setting, femtosecond lasers are not readily used 

[46], and hence both a melt pool and ridges formed around the melt zone due to 

resolidification of debris are often present. 

 In addition to laser pulse time, factors that affect final groove geometry and 

quality include workpiece material properties, workpiece surface conditions, laser 

wavelength, laser power, timing of the laser pulses, speed the laser is scanned along the 

workpiece, how the beam is focused, and the pressure of any assist-gas.  All of these 

parameters must be selected correctly in order to cut grooves of acceptable quality that 

have a desired geometry, which can complicate the use of laser scribing as a general 

purpose groove cutting process. 

In particular, factors such as the timing of the laser pulses and material properties 

determine how heat flows through a workpiece during cutting.  The amount of energy 

that a given spot on a workpiece is exposed to depends on the how much energy is 

contained in each pulse, how focused the beam is, how frequent the pulses are, and how 

fast the laser is scanned along the workpiece.  Ideally the other parameters are adjusted to 

allow the speed parameter to be as high as possible while achieving a desired groove 

geometry.  However, if the cutting speed is too high for a given pulse frequency, ridges 
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can be formed at the bottom of the resultant groove, which can increase surface 

roughness [2].  Hence, cutting speeds reported in the literature have varied greatly, 

between 24 mm/min for glass in one reported case [47] and 18,000 mm/min for silicon in 

another case [1]. 

2.1.2 Laser Scribed Groove Characteristics 
 

One of the major advantages of laser scribing is the ability to quickly cut grooves 

in a wide range of materials, with different mechanical properties, that do not need to be 

electrically conductive.  Materials reported to have been cut in the literature include 

polymers, glasses, metals, ceramics, crystals, and amorphous materials.  Polymers that 

have been cut include polycarbonate, polyester, polyethylene, Plexiglas [46], and benzo-

cycle-butene resin [48].  Glasses that have been cut include Corning microscope slide 

material [47], commercial Vitrocom S-105 [47], doped silica [47], and fused silica 

capillary fibers [47].  Metals that have been cut include stainless steel [2, 49], tungsten [2, 

49], nickel-base alloys [49], copper [49], platinum [50], aluminum [50, 51], nickel [2], 

molybdenum [51], and gold [51].  Ceramics that have been cut include aluminum oxide 

[49], aluminum nitride ceramic [49], sapphire [2, 49], zirconium dioxide [50, 51], and 

aluminum titanate ceramic [52].  Lastly, some other materials cut include silicon [2], 

silicon dioxide [1], lithium-niobate [2], diamond-like carbon [2], and tin dioxide [51]. 

Laser scribing also allows micro-grooves with a few different cross-sectional 

shapes to be created.  The cross-sections that have been achieved in the literature are v-

shaped, trapezoidal, and round bottomed with sloped sidewalls.  V-shaped grooves can be 

cut using a single pass of a laser beam focused down to a small spot under certain cutting 

conditions and can be very well defined, as shown in Fig. 2.1A.  Trapezoidal grooves can 
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be achieved by using either a larger spot size and a single pass of a laser [52, 53] or by 

repeatedly passing a laser with a small spot size over a groove in a raster pattern that 

results in a wider flat bottomed groove like the one shown in Fig. 2.1B [1].  Round 

bottomed grooves can result from using a small spot size but different machining 

conditions than those used to produce v-shaped grooves [47].   

  

Figure 2.1: V-shaped (A) and trapezoidal (B) grooves cut in silicon [1] 

In the literature, laser scribing has not been used to cut grooves smaller than 

several microns wide.  This may well be because the smallest laser spot sizes available 

have been limited to no less than a couple microns and ultimate groove width tends to be 

a few microns larger than the spot size.  As an example, some of the narrow grooves 

reported to have been cut in various materials are as follows:  The groove in Fig. 2.2A is 

21 μm wide and was cut in stainless steel using a 10 kW peak power laser that was 

focused down to a 11 μm diameter spot, that delivered 2 nanosecond pulses at a rate of 

10 kHz, and that was scanned at 600 mm/min.  Also, as shown in Fig. 2.2B, grooves as 

narrow as 18.5 μm wide have been cut in nickel use similar machining conditions [2].  

Even narrower grooves 7-8 μm wide and a 12 μm wide have been reported to have been 

cut in lithium niobate and sapphire, respectively, using a 10 kW peak power laser that 

delivered 2 nanosecond pulses at a rate of 3 kHz while scanning at 180 mm/min and 

(A) (B)
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while focused to spot 4 μm in diameter [2].  Lastly, grooves as narrow as 6.3 μm have 

been laser scribed in glass [47].  Therefore, the limitations on groove shape and minimum 

groove width limit the usefulness of laser scribing for micro-groove cutting. 

  

Figure 2.2:  Grooves cut in stainless steel (A) and nickel (B) [2] 

2.2 Micro-Electrical Discharge Machining (μ-EDM) 
 
2.2.1 Process Description 

Micro-electrical discharge machining (μ-EDM) is a machining process that 

enables precise amounts of material to be removed from an electrically-conductive 

workpiece regardless of the strength or hardness of the material.  During μ-EDM the 

forces applied to the workpiece are negligible and hence extremely delicate parts can be 

machined.  Also, burr formation does not occur like with many mechanical material 

removal processes.  However, some of the removed material can redeposit around 

machined features under some cutting conditions.  Also, non-conductive workpieces 

generally cannot be cut with μ-EDM with the exception of thin non-conductive films on 

top of a conductive substrate. 

In both macro-scale EDM and μ-EDM, the tool and workpiece act as electrodes 

that are submerged in a suitably chosen dielectric fluid.  When the tool and workpiece are 

(A) (B)
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close enough to each other, they are oppositely charged with sufficient voltage to achieve 

dielectric breakdown of the fluid in the gap between them.  When the resultant current 

arcs between the electrodes, melting and vaporization of material on both the tool and 

workpiece surface occurs [54].  Following the electrical discharge, the plasma column 

formed between the tool and workpiece collapses.  It is generally believed that 

shockwaves, electromagnetic forces, and electrostatic forces generated from the plasma 

column collapse cause the ejection of molten material from the tool and workpiece [55].  

This process is repeated many times over the course of machining and the resultant debris 

is generally evacuated from the gap between the tool and workpiece via circulation of the 

dielectric fluid.   

In μ-EDM, the shape of the tool electrode has a large effect on the shape of the 

features produced.  In order to produce micro-grooves, there are four basic types of tool 

electrode shapes that have been investigated by several researchers: pin electrodes [3, 56, 

57], disk electrodes [4, 58], foil electrodes [5, 55, 59], and die electrodes [6]. 

2.2.2 μ-EDM Pin Electrode 
 

The simplest μ-EDM tool electrode that can be used for groove cutting is a pin 

with a diameter slightly smaller than the desired groove width.  To create a groove, the 

electrode is moved through the workpiece, along a trajectory that describes the groove 

shape, at a rate that maintains a constant gap between the tool and material to be 

removed.  This technique has the advantage of allowing the creation of a wide range of 

groove geometries but can be very slow [4].  For instance, sinking a pin electrode with a 

diameter of 55 μm into a 304 stainless steel, which does not even fully form a groove, has 

been done at a rate of only 1.302 mm/min when a deionized water dielectric fluid was 
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used [54]. Also, a similar sinking operation with a 33 μm diameter electrode and 

kerosene as the dielectric fluid could only be performed at 0.0264 mm/min when a 17-

7PH stainless steel workpiece was used [54]. 

However, despite its limitations, groove cutting using a pin electrode has been 

investigated as a means of manufacturing masks for photolithography.  For instance, 

photomasks have been fabricated that consist of a 120 nm thick chromium film deposited 

on borosilicate glass, which include grooves in the chromium that are 200 μm long, 22 

μm wide, and 120 nm deep that were cut using a 20 μm diameter pin electrode [3].  Such 

a groove is shown in Fig. 2.3.  Additionally, features such intercepting 40 μm wide, 100 

μm deep, and 300 μm long slots have been machined using a pin electrode [54]. 

Material removal rate can also be increased by rotating the pin electrode during 

machining, but this also increases tool wear and surface roughness.  For example, in one 

study the use of a rotating electrode increased the material removal rate by about 50% 

while also increasing tool wear by about 60% and increasing surface roughness by about 

45% [57].  However, even this increase in cutting speed is not enough to render cutting 

with a pin electrode time efficient. 

 

Figure 2.3: μ-EDM grooves cut with a pin electrode as part of a photomask [3] 
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2.2.3 μ-EDM Disk Electrode 
 

Material removal rates can be increased by using a rotating disk-shaped electrode, 

which is suitable for cutting straight grooves only, and the use of this type of electrode 

has been referred to as both rotating disk EDM [58] and electrical discharge grinding 

(EDG) [54].  The principle of operation is that a rotating disk, which may only be tens of 

microns thick and tens of millimeters in diameter, cuts via electrical discharges between 

the edge of the disk and a workpiece, as shown in Fig. 2.4A.  Since the rotating disk 

electrode has a greater area of near contact with a workpiece, more material can be 

removed per electrical discharge.  Also, the disk rotation can help remove debris from the 

gap.  Debris removal can be further enhanced by mounting the workpiece upside-down 

and cutting from beneath it so that gravity helps remove debris [58]. 

For example, using a rotating electrode with a thickness of 25 μm, the channels 

shown in Fig. 2.4B where cut, which are about 50 μm wide.  It has also been reported 

that EDG has been used to cut 60 mm long, 60 μm wide, and 900 μm deep channels in 

stainless steel [54]. 

  

Figure 2.4:  EDG (A) and channels cut via EDG (B) [4] 

 

(A) (B)
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2.2.4 μ-EDM Foil Electrode 
 

A foil tool electrode can be used to achieve even higher material removal rates, 

and consists of a piece of foil made of a material like as stainless steel as thin a 10 μm.  

The edge of the foil electrode is sunk into a workpiece, while μ-EDM is occurring in 

order to cut a groove, as shown in Fig. 2.5A [5], and hence an entire groove can be cut 

via a single operation, although the material removal rate is still fairly slow.  The grooves 

can be either straight, if a flat piece of foil is used, or curved if a bent piece of foil is used 

[59].  Also, removal of debris from the gap can be facilitated by mounting the workpiece 

upside-down and cutting from below, which allows debris removal to be aided by gravity 

[55].  This in turn permits grooves as narrow as twice the foil thickness to be cut [55].   

Stainless steel foil electrodes that are 10 μm thick have been used to successfully 

cut 50 μm wide, 7 mm long, and 7 – 69 μm deep grooves in brass, although variations in 

depth over successive grooves due to tool wear were significant [5].  An image of some 

of these grooves is shown in Fig. 2.5B.  Under different machining conditions, grooves 

with widths a small as 34 μm with a depth of 53 μm have been machined [59], and 

groove widths as small as 25 μm can be achieved [55].  The surface roughness of such 

grooves tends to be 1 – 3 μm Ra and the rate at which the grooves can be cut is about 4.1 

microns of groove depth per minute for a 20 mm long and 200 μm wide groove [55]. 
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Figure 2.5: μ-EDM with foil electrode (A) and resultant grooves (B) [5] 

2.2.5 μ-EDM Groove Cutting Die Electrode 
 

The most efficient, but also complex, μ-EDM tool is a die consisting of a series of 

raised sections that correspond to desired grooves to be cut into a workpiece via one μ-

EDM tool sinking operation.  Hence, the use of such an electrode can greatly increase the 

material removal rate.  However, the cost is that complicated tools must be fabricated, 

which must be carried out via some process that is inexpensive and repeatable since the 

tool electrode will wear out. 

One way to make such a complicated tool is to use the LIGA (Lithographie 

Galvanoformung Abformung) processes.  LIGA is a microfabrication process where a 

thick layer of radiation sensitive polymer, which has been coated onto a substrate, is 

selectively exposed to x-rays that break down the polymer in the irradiated areas so that 

the irradiated polymer can be removed to form deep trenches.  Nickel is electroplated 

onto the coated substrate and forms a negative of the pattern present in the polymer.  

High-aspect ratio features, feature sizes of about a micron, form accuracies of less than a 

micron, and surface roughness of about 30 nm are achievable using LIGA [4].   

LIGA fabricated electrodes can be used to machine structures as small as 10 μm 

with form accuracies of 1 μm [4].  Depending on the machining conditions and EDM-

(A) (B)
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technology used it is sometimes possible to get Ra values smaller than 0.1 μm and aspect 

ratios between 5 and 20 [4].  However, the LIGA process requires expensive specialized 

equipment to implement and is fairly slow. 

For example, Figure 2.6A shows an electrode fabricated by UV-LIGA, a less 

expensive process similar to LIGA that makes use of ultraviolet radiation instead of x-

rays but that has lower resolution.  The raised portions of the electrode are 250 μm high, 

the electrode is μm 1340 thick, and the electrode took 72 hours to fabricate [6].  Figure 

2.6B shows a series of 9.99 μm deep grooves cut in stainless steel using the electrode that 

have a surface roughness of 0.78 μm Ra, and Fig. 2.6C shows a magnified view of one of 

the grooves [6]. 

 

Figure 2.6: μ-EDM groove cutting electrode produced by UV-LIGA (A), features cut 

with the electrode (B), and a magnified view of a groove cut with the electrode (C) [6] 

2.3 Micro-Electrochemical Machining (μ-ECM) 

2.3.1 Overview 

Electrochemical machining (ECM) is a process capable of cutting micro-scale features in 

electrically conductive materials regardless of the mechanical properties of the materials.  

This process also has the advantages of negligible tool wear, negligible cutting forces, 

(A) (B) (C) 
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and smooth burr-free surface finish.  However, dimensional control in commonly used 

wet ECM processes is very complicated, and the fabrication of extremely tiny features on 

the order of a few microns in size does not currently appear possible.  More recently 

developed solid-state superionic stamping ECM processes mitigate these issues, but 

introduce additional process requirements [33, 42]. 

2.3.2 Wet (μ-ECM) Processes 

Conventional wet ECM is the controlled dissolution of portions of a workpiece 

surface via an electrochemical reaction.  In this reaction, either continuous or pulsed 

voltage is applied across a tool and workpiece where the tool is a positively changed 

anode and the workpiece is a negatively charged cathode.  The tool and workpiece are 

separated by a small gap through which an electrolyte flows.  The voltage induces a 

reaction in which the workpiece dissolves in some region around the tool while the tool 

does not dissolve, and reaction byproducts are carried away by the electrolyte.  The 

amount and shape of the material removed depends on the tool position, the tool shape, 

the amount of voltage applied, the timing of the voltage if it is pulsed, and the electrolyte. 

In micro-electrochemical machining (μ-ECM), the major challenge is insuring 

that material removal is localized, i.e., attempts to machine a narrow groove on one part 

of the workpiece do not cause changes to other parts of the workpiece.  One means of 

limiting the machined region is to cover the areas that are not to be machined with a 

protective mask that can be applied using conventional photolithography techniques [60].  

Due to the focus of this chapter, mask-based techniques are not further elaborated on.  

Other means of achieving localized workpiece dissolution involve control of process 

parameters and careful selection of tool shapes. 
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To achieve localized workpiece dissolution in μ-ECM, it is desirable to use a 

much smaller gap between the tool and workpiece than would be suitable in macro-scale 

ECM [61].    However, if a constant voltage is applied across the tool and workpiece, as 

is done at the macro-scale, a small gap will result in unwanted electrical discharges 

between the tool and workpiece.  This can be avoided by using a series of short voltage 

pulses that are each 5 – 5000 nanoseconds long [61].  In such a case, the gap between the 

tool and workpiece can be reduced to about 5 μm, which is a good value for 

micromachining [62].  When using pulsed voltage, dissolution of the workpiece only 

occurs during the voltage pulse and dissolution products such as sludge, gas bubbles, and 

heat can be flushed from the gap when no voltage is applied.  The use of pulsed voltage 

results in improvements in dimensional controllability, shaping accuracy, process 

stability, and allows for simplification of tool design [61]. 

There are several tool configurations that can be used to cut micro-grooves.  One 

method for cutting long grooves that extend from one end of a flat surface to the other 

end is to use a wire tool, as shown in Fig. 2.7A [7].  For example, as shown in Fig. 2.7B, 

a 10 μm diameter tungsten wire can be used to cut long grooves in 304 stainless steel as 

narrow as about 35 μm, when using 6.5 volt pulses with a pulse time between 200 and 

300 nanoseconds, a period of 7 microseconds, and through use of a 0.1 M sulfuric acid 

solution electrolyte [7].    

Alternatively, custom electrodes can be fabricated that can be sunk into a 

workpiece in order to create a set of grooves.  For example, Fig. 2.8 shows a groove cut 

in stainless steel using a 40 μm wide electrode that was shaped via electrical discharge 

machining [8].  It is also possible to use tool electrodes with a complicated shape that 
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allows a series of grooves to be cut in one electrode sinking operation, similar to how the 

LIGA fabricated electrodes described in the previous section were used.  In such 

operations, the introduction of low frequency and amplitude tool vibrations along the 

direction of tool travel can improve flushing conditions and increase shape accuracy [63]. 

 

Figure 2.7: Wire μ-ECM tool electrode (A) and features cut using a 10 μm wire while 

using two different voltage pulse lengths [7] 

 

Figure 2.8: Grooves cut in stainless steel via repeated μ-ECM sinking operations with a 

specially shaped electrode [8] 

However, issues associated with wet μ-ECM limit its usefulness in cutting 

microgrooves.  Specifically, a groove will be wider than the tool used to cut it, and a 

groove will not have exactly the same shape as the corresponding tool.  For example, 

based off features machined in the literature [7, 8, 62] using tools as small as 10 μm, it 

(A) (B)
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appears that the resultant grooves will usually be no less than about 6 μm wider than the 

electrode, which prevents arbitrary narrow grooves from being cut.  It has also been 

shown that tools with sharp corners will cut features that are larger than the tool and have 

rounded corners [61].  Hence, arbitrary groove cross-sections are very difficult to 

achieve. 

2.3.3 Solid-State Superionic Stamping μ-ECM Process 

 Solid-state superionic stamping μ-ECM uses a patterned solid electrolyte or 

superionic conductor as a stamp and etches a metallic film via an electrochemical 

reaction [42].  That is, the electrolyte, e.g. silver sulfide, is solid instead of the liquid used 

with conventional wet ECM processes.  During etching, the stamp, which must contain 

the pattern to be etched, is placed into physical contact with a workpiece.  Etching occurs 

on application of an electrical bias with the workpiece substrate as the anode and a 

metallic electrode at the back of the stamp as a cathode [42]. 

 This process has been used to produce features down to 50 nm on silver films of 

thicknesses ranging from 50 nm to 500 nm [42].  Etching of copper with a resolution of 

80 nm has also been demonstrated [33].  Therefore, unlike conventional wet μ-ECM, 

groove widths narrow enough to meet the groove width process requirement described 

Chapter 1 are possible with this process.  However, since direct physical contact between 

the stamp and workpiece is required, the shape of the stamp and workpiece must be very 

well matched.  This renders it difficult to cut into rough or curved workpiece surfaces.  

Also, as currently implemented, the stamp must itself be patterned and hence direct CNC 

control of the patterns cut cannot be accomplished like with processes where the pattern 

of grooves cut is dependent on the trajectory of a tool. 
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2.4 Micro-Endmilling 

2.4.1 Process Description 

Micro-endmilling is a versatile mechanical material removal process capable of 

cutting a wide range of structures in a wide range of materials.  Using this process, 

grooves with nearly vertical sidewalls can be cut at speeds up to several hundred 

millimeters per minute and at depths between a few microns and a few tens of microns.  

However, viable micro-endmills capable of cutting grooves with widths of 50 μm or less 

are relatively new.  Up until 2004 the smallest commercially available micro-endmills 

had a diameter of 50 μm [12], and today the smallest viable commercially available 

micro-endmills are 25 μm in diameter [9].   

Currently, development of micro-endmill designs with diameters of 50 μm or less, 

development of processes to produce these tools, and examination of the micro-

endmilling process at the micro-scale are areas of active research [11, 12, 13, 30, 64, 65, 

66].  Additionally, suitable machine tools must be employed in order to effectively 

perform micro-endmilling, and the development of such machine tools has also been of 

interest to several researchers [38, 67, 68]. 

2.4.2 Machine Tools Suitable for Micro-Endmilling 
 

Micro-endmilling has traditionally been performed on large, stiff, and expensive 

high-precision machine tools.  More recently, there has been considerable research aimed 

at developing small relatively inexpensive micro-scale machine tools (mMTs) suitable for 

micro-machining operations such as micro-endmilling [38, 67, 68].  This research has 

resulted in the development in lower cost commercially available machine tools [69]. 
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The main requirements for mMTs are that they must be stiff, they must be highly 

repeatable and hence able to achieve high accuracies via calibration, and they must be 

capable of achieving accelerations one to two orders of magnitude higher than are 

necessary during macro-scale machining.  The last requirement exists because of cutting 

mechanisms unique to micro-endmilling [68]. 

2.4.3 Micro-Endmill Design 

A significant challenge when micro-endmilling features with sizes of 50 μm or 

less is the design and fabrication of suitable micro-endmills.  One commercially available 

micro-endmill geometry, shown in Fig. 2.9A, is the scaled down geometry of a 

conventional macro-scale endmill, with two helical flutes, which is fabricated using 

precision diamond grinding of tungsten carbide.  Viable endmills with this geometry are 

commercially available at sizes as small as 25 μm in diameter [9].  However, subsurface 

damage, which can result from grinding, lowers the strength of ground endmills [11], and 

the grinding processes applies forces to a micro-endmill that can break it during 

fabrication unless great care taken [64].  Also, the helical grooves cut in the tungsten 

carbide blank, in order to form conventionally shaped endmills, reduce tool strength and 

stiffness [12], which are already very small due to unfavorable scaling laws. 

Therefore, much of the research into micro-endmills with a diameter of 50 μm of 

less has focused on the use of straight fluted endmills.  Figures 2.9B – 2.9H show several 

straight flute designs that have been fabricated and tested by various researchers [10 - 13] 

that are representative of what has been examined in the broader literature.  Figure 2.9B 

and Fig. 2.9G show single-flute endmills, where the former is fabricated using fewer cuts 

but the latter affords a greater relief angle on the cutting edge.  Figures 2.9C, 2.9D, 2.9F, 
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and 2.9H show several two-flute designs where Fig. 2.9C shows the simplest two-flute 

design and Fig. 2.9D shows the second simplest design, which is more suitable for 

plunging due to the end relief on the tool.  The design shown in Fig. 2.9F affords the 

most cutting edge relief out of the two-flute designs shown, and the design in Fig. 2.9H 

affords a zero degree rake angle, which is more positive than in the other designs.  Lastly, 

Fig. 2.9I shows an endmill cut out of sintered polycrystalline diamond that cuts not 

through the use of a well defined cutting edge but rather through the action of the many 

micro-asperities. 

  
 

   

Figure 2.9: Various types of micro-scale endmills (A) [9], (B-F) [10], (G) [11], (H) [12], 

and (I) [13] 

A comparative study involving all of the designs explored in the literature is not 

available.  However, it has been reported that out of the five designs shown in Figs. 2.9B 

(G) (H) (I) 

(A) 

(B) (C)

(D) (E) (F) 
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– 2.9F, the best cutting performance with achieved using the design in Fig. 2.9F when 

cutting duralumin, an age-hardening aluminum alloy [10].  Nearly burr-free precision 

machining of electroless nickel plating was achieved using the tool shown in Fig. 2.9G 

[11].  The tool shown in Fig. 2.9H achieved good results when cutting PMMA when the 

aspect ratio of the tool was low, but tended to deflect significantly when the tool was 

fabricated with a high aspect ratio, which limited the potential depth of cut [12].  Lastly, 

the fluteless design in Fig. 2.9G did a good job of cutting smooth channels in ultra low 

expansion glass [13]. 

2.4.4 Micro-Endmill Fabrication 

Fabrication of micro-endmills has been accomplished via diamond grinding [10, 

64], focused ion beam machining [30, 70 - 73], wire electrical discharge grinding [11, 13, 

66], and a combination of both electrical discharge grinding and focused ion beam 

machining [12].  Diamond grinding affords fast material removal rates and can be 

performed using relatively inexpensive equipment.  However, there are disadvantages 

associated with diamond grinding, which include subsurface damage [11], potential for 

tool breakage [64], and limitations on the smallest feature sizes that can be readily 

fabricated. 

Focused ion beam (FIB) machining permits tools to be cut out of any material 

regardless of hardness and can be used to achieve cutting edge radii as small as at least 

100 nm [3], and it applies no forces to the tool that might break it during fabrication.  

However, FIB fabrication of micro-endmills is also very slow.  For instance, a 25 μm 

diameter tool blank, produced via grinding and polishing, may require between one and 

three hours of FIB machining time in order to produce to useable tool [30, 73]. 
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Alternatively, μ-EDM can be used to fabricate tools made of tungsten carbide 

[66] and polycrystalline diamond that consists of sintered diamond grains in a cobalt 

matrix [13].  This fabrication method can be considerably faster than FIB machining 

while still minimizing the forces that the tool is subjected.  However, the surface finish 

and cutting edge quality that results is not very good [66].  However, a secondary FIB 

machining operation can be used to sharpen such a tool [64]. 

2.4.5 Micro-Endmilling Process Characteristics 

A variety of materials have been reported to have been successfully machined 

using micro-endmills with diameters of 50 μm or less.  Metals including brass [64], 4340 

steel [30], aluminum 6061-T6 [66], aluminum 6061-T4 [30], duralumin [10], and 

electroless nickel phosphorous plating [11] have been cut with tungsten carbide tools.  

Aluminum 6061-T4 and Brass have also been cut with high-speed steel tools [30].  

Plastics such as polymethyl methacrylate (PMMA) have been cut with both high-speed 

steel and tungsten carbide tools [12, 30, 70 - 73].  Lastly, tungsten carbide, silicon [65], 

and soda lime glass [13] have been cut with sintered polycrystalline diamond tools. 

The smallest diameter functional endmill reported in the literature had a diameter 

of 20 μm and was used to cut PMMA [12].  The widths of grooves cut with micro-

endmills tend to be between the tool diameter and 3 μm more than the tool diameter [12, 

71].  Grooves with nearly vertical sidewalls and depths of tens of microns have been 

achieved using multiple tool passes.  Also, reported surface finishes tended to be better 

than 200 nm Ra [10, 12, 13, 30, 66, 70, 71].  Claims about tool life in the literature 

included 6 hours of continuous machining in Al 6061-T6 with a 21.7 μm diameter tool 
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without tool fracture [30], and cutting a distance of 1000 mm in electroless nickel 

phosphorus platting without appreciable tool wear [11]. 

It should be noted, however, that there are several issues associated with micro-

endmilling that complicate the process.  These issues include: deflection and breakage of 

the endmills, runout, and burr formation.  Deflection and breakage of the endmills is 

problematic because stiffness reduces rapidly with a reduction in endmill diameter.  As a 

result, noticeable bending can occur with cutting with smaller diameter endmills, which 

can result in significant dimensional errors [12] and limit the smallest possible tool 

diameter.  Runout due to both spindle runout and tool geometrical errors can cause 

uneven chiploads to be taken by different flutes of the tool, which can induce vibrations 

in the tool that degrade surface finish [74].  Runout can also cause rubbing between non-

cutting portions of a tool and workpiece, which can generate enough forces on the tool to 

cause tool breakage [12].  Lastly, burr formation can greatly reduce the quality of grooves 

cut in some materials, and burr reduction strategies have been an area of active research 

[10, 64]. 

2.5 Micro-Fly Cutting 

2.5.1 Process Description 

Micro-fly cutting is a mechanical material removal process capable of producing 

patterns of long straight grooves.  In micro-fly cutting, a single-point diamond tool is 

fixed to a rotating spindle so that the tool engages a workpiece, produces a chip, and exits 

the workpiece once per spindle revolution while the workpieces is traversed underneath 

the tool to produce a groove.  As shown in Fig. 2.10A, the axis of rotation of the spindle 

can be oriented such that it lies in a plane parallel to a workpiece surface so that the 
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profile of the diamond tool will be reproduced in the workpiece.  Alternatively, the 

spindle can be mounted at a 45° angle relative to the workpiece, as shown in Fig. 2.10B, 

so that only the corner of a diamond tool does any cutting, which allows for the 

production of v-shaped grooves without the need for a tool with a complicated geometry 

[14]. 

 

Figure 2.10:  Micro-fly cutting of vertical sidewall channels (A), and v-grooves (B) 

2.5.2 Micro-Fly Cut Features 
 

Several different types of grooves can be produced via micro-fly cutting.  For 

instance, grooves with trapezoidal cross-sections can be cut in brass using a FANUC 

ROBOnanoUi machine [14].  These grooves, which are shown in Fig. 2.11A, have an 

opening angle of 3 degrees, a width of 20 μm, a pitch of 35 μm, and a depth of 100 μm.  

Grooves with v-shaped cross-sections have also been reported [14, 15, 17].  For example, 

Fig. 2.11B shows v-grooves with a 1 μm pitch and 0.5 μm depth that were cut in a 

oxygen free copper workpiece using the micro-fly cutting configuration shown in Fig. 

2.10B, a cutting speed of 20,000 rpm, a workpiece feed rate of 20 mm/min, and a depth 

of cut between 2 – 10 μm over the course of the workpiece [15]. 

(A) (B)
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Figure 2.11: Trapezoidal grooves [14] (A), and v-grooves [15] (B) formed by micro-fly 

cutting 

Micro-fly cutting has the limitation that all cuts must be in straight.  However, by 

rotating and indexing a workpiece when the tool is retracted it is possible to combine 

many grooves in order to produce fairly complex repeating features.  For instance, Fig. 

2.12A shows part of an injection-molding die where 50 μm wide posts were formed via a 

series of perpendicular cuts [16], and  Figs. 2.12B and 2.12C show arrays of micro-

pyramids formed via series of non-perpendicular v-groove cuts. 

   

Figure 2.12: Posts [16] (A), 3-sided pyramids [17] (B), and 4-side pyramids [17] (C) 

formed by micro-fly cutting 

2.5.3 Micro-Fly Cutting Process Characteristics 
 

Workpiece materials that have been cut using micro-fly cutting include brass, 

copper, and nickel phosphorous electroless plating.  Feedrates between 20 mm/min [15] 
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(A) (B)



 34

and 100 mm/min [17] have been reported, and devices such as a 12 mm diameter rotary 

encoder disk containing 32768 v-grooves have been fabricated in about 12 hours [15].  

Groove widths as small as 1 μm for v-grooves [15] and 20 μm for trapezoidal grooves 

have also been reported [14].  Lastly, Surface finishes as good as 1 nm Ra has also been 

reported in some cases when machining copper [15]. 

Micro-fly cutting does, however, have several issues that reduce the usefulness of 

the process.  One limitation imposed by the process is that, although v-grooves as narrow 

as 1 μm can be fabricated, grooves cannot follow a curvilinear path.  Also, a highly rigid 

machine with high precision positioning capability is required in order to make consistent 

high quality cuts, which significantly drives up equipment costs.  Wear over the course of 

many cuts, 32768 cuts in one study [15], can also be significant enough to require 

resharpening of the tool to avoid variations in groove geometry and temperature 

variations can affect groove depths over many cuts.  Lastly, burr formation can be a 

significant issue in some cases. 

Burr formation in micro-fly cutting has been a subject of some study [17, 80].  In 

micro-fly cutting, the single-point tool enters and then exists the workpiece once during 

each tool revolution, and hence exit burr formation is the predominant burr formation 

mode.  These burrs tend to be larger when the workpiece material is more ductile due to 

chips not being as easily separated from the workpiece.  Hence a better surface finish is 

achieved, for example, when cutting brass than when cutting copper [18].  Also, more 

significant burr formation occurs when the cutting tool has a large edge radius.  For 

instance, when cutting v-grooves in brass with a cutter surface speed of 350 m/min, and a 

depth of 10 μm, and a tool with edge radius of 80 nm burr formation occurs.  However, 
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when a tool edge with a 200 nm edge radius is used under the same conditions, 

significant burr formation occurs [18]. 

Another factor that has been found to have a significant effect on burr formation 

is the direction that the spindle is rotated relative to the direction of cut.  As shown in Fig. 

2.13 use of a down-cut, where the cutter moves in same direction as the workpiece feed 

when engaged with the workpiece, results in less burr formation than when cutting in the 

opposite direction [18].   

Cutting speed has been found to have very little effect on burr formation [17].  

However, uncut chip thickness has been found to have a significant effect on burr 

formation and should generally be minimized.  For instance, for a test cut in brass at a 

cutter surface speed of 180 m/min, the height of the resultant burr is plotted in Fig. 2.14 

for several uncut chip thicknesses [17].  As can been seen from the figure, burr formation 

is minimized when the undeformed chip thickness is minimized.  Hence selection of an 

undeformed chip thickness during process planing has to be dependent on the acceptable 

amount of burr formation since reduction in uncut chip thickness also reduces material 

removal rate. 

 

Figure 2.13: Effect of up-cut (A) and down-cut (B) on burr formation [18] 

(A) (B)
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Figure 2.14: Effect of undeformed chip thickness on exit burr height [17] 

2.6 Micro-Scale Shaping / Planing 

2.6.1 Process Description 

Micro-scale shaping is a mechanical material removal process suitable for 

producing arbitrary patterns of grooves that can have a wide variety of cross-sectional 

geometries.  In micro-scale shaping a workpiece is held stationary, and a single point 

cutting tool attached to a xyz motion platform is moved into and through the workpiece 

in order to remove material in the form of chips.  A similar process is micro-scale planing 

where the workpiece is moved and the cutting tool is held stationary.  From a chip 

formation standpoint these two processes are sufficiently similar that they are treated 

together in this section. 

Materials that have been cut include soft materials such as copper [14], electroless 

nickel phosphorous plating [21], and polycarbonate [19].  Also included are harder brittle 

materials that can be cut in a ductile mode at sufficiently small depths of cut such as 

gallium arsenide [43] and Pyrex glass [31].   

Using micro-scale shaping, grooves can be formed that have a similar cross-

section as the shaping tool, or larger features can be formed via multiple adjacent tool 



 37

passes.  Tools are typically made of single crystal diamond [14, 21 - 23], but researchers 

have also investigated high-speed steel and micrograin tungsten carbide tools [20].  These 

tools can generally be categorized as either having a v-shaped rake face or arbitrarily 

shaped rake face.  Tools with a v-shaped rake face are suitable for cutting v-shaped 

grooves and often have either a pyramidal or a flattened triangular geometry, where an 

example of the latter is shown in Fig. 2.15A.  These tools can be fabricated via lapping 

[14].  Fabrication of tools with arbitrary rake face geometries requires a more involved 

process such as focused ion beam (FIB) machining. [20].  An example of a representative 

FIB machined micro-scale shaping tool is shown in Fig. 2.15B. 

  

Figure 2.15:  A micro-scale shaping tool with a v-shaped rake face (A) [19] and a 

rectangular shaped rake face (B) [20] 

2.6.2 Cutting with Tools with a V-Shaped Rake Face 
 

Several researchers have conducted micro-scale shaping experiments using 

single-crystal diamond tools with v-shaped rake faces [14, 19, 21].  For example, 

curvilinear v-shaped grooves with a pitch of 35 μm have been cut in oxygen free copper 

at a speed of 20 mm/min without significant burr formation in order to make a mold for a 

double-focused lens [14].  Other researches have cut microgroove and micropyramid 

arrays in electroless nickel phosphorus plating [21].  Additionally, one hundred micron 
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deep v-shaped grooves have been cut in polycarbonate and silicon for use as fiber optic 

positioning guides while using depths of cut per tool pass of 2 – 6 microns and cutting 

speeds between 15 and 85.8 mm/min [19].  During such tests it has been found that the 

combination of workpiece material, cutting speed, and rake angle has an important effect 

on performance in micro-scale shaping [19]. 

One of the issues involved with cutting v-shaped grooves is the nature of the chip 

flow resulting from the tool shape.  That is, shearing occurs of both side edges of the rake 

face so material flows towards the center of the rake face.  As shown in Fig. 2.16A, this 

results in the formation of a material stagnation region, which has been attributed to the 

formation of significant side burrs, as shown in Figure 2.16B [21].  One method to 

alleviate this problem is to first take a relatively deep rough cut in which significant burr 

formation occurs and then perform a second tool pass in which the depth of cut is only 

about one micron [21].  During this second cut, chip flow is as shown in Fig. 2.16C, and 

neither the material stagnation region nor the resulting side burr are present, as shown in 

Fig. 2.16D. 

 

Figure 2.16: Chip flow using one tool pass (A-B) or two tool passes (C-D) [21] 

(B)(A) 

(D)(C) 
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2.6.3 Fabricating Tools with an Arbitrarily Shaped Rake Face 
 

Micro-scale shaping tools with arbitrarily shaped rake faces can be fabricated 

using FIB machining. In this machining process, a stream of ions, often gallium ions, are 

accelerated towards a workpiece and remove material from the workpiece atom by atom 

via sputtering.  This technique has been used to fabricate micro-scale shaping tools with 

widths as small as 10 μm [22] out of materials including C2 micrograin tungsten carbide, 

M42 high-speed steel [20], and single crystal diamond [23].  Furthermore, most other 

materials can be cut with this method. 

Like macro-scale shaping tools, the tools reported to have been fabricated by FIB 

machining have a well defined rake face, side clearance faces, and an end clearance face 

[20, 22, 23].  The shapes of the rake face have varied from simple rectangular shapes, as 

seen in Fig. 2.17A, to more complicated shapes such as the split rectangular rake face 

shown in Fig. 2.17B or the double v-shaped rake face in Fig. 2.17C. 

   

Figure 2.17: FIB machined micro-scale shaping tools with rectangular rake face (A) a 

split rectangular rake face (B), and a double v-shaped rake face (C) [22] 

Adams et al. described a procedure for fabricating micro-scale shaping tools via 

FIB machining and describe some of the issues that arise [20].  In the described 

procedure, the tools are first ground to achieve as close to the net shape as possible 

without using FIB machining because grinding is a much faster material removal process.  

(A) (B) (C)
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Next, the resultant cylindrical blank is held in a rotary spindle inside a FIB machine, 

which is used to change the orientation of the tool blank relative to the ion beam.  A 

series thru cuts are then performed with the tool blank, at different orientations in order to 

fabricate the tool, as shown in Fig. 2.18 [20].   

  

Figure 2.18:  Micro-scale shaping tool formation procedure [20] 

In order to produce a good tool via FIB machining it is necessary to take into 

account some characteristics of the FIB machining process.  One noteworthy 

characteristic is that the ion beam is not an infinitely narrow line of ions but rather a 

spread of ions with a Gaussian distribution.  This means that the edges of machined 

surfaces that face the beam tend to become rounded.  Hence, some researchers have 

chosen to fabricate the cutting edge of their tools by cutting the rake face first and then 

cutting the intersecting end clearance face from behind so that the cutting edge is partially 

shielded from the ion distribution by the bulk of the tool, as shown in Fig. 2.18 [20, 22].  

In this way the effect of the ion distribution on the quality of the cutting edge is reduced, 

and as a result edge radii between 0.4 and 0.04 μm have been achieved [20, 22].   
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Another characteristic of FIB machining is that the amount of material sputtered 

off a surface is a function of the angle of incidence between the beam and the surface.  As 

a result, a taper is introduced when cutting features, i.e., when cutting a trench the top of 

the trench will be wider than the bottom.  The angle of the taper is typically 2 – 4 degrees 

with respect to the ion beam [22].  Also, as shown in Fig. 2.18, it is possible to take 

advantage of this to achieve various relief angles [20]. 

2.6.4 Cutting with Tools with an Arbitrarily Shaped Rake Face 

Using FIB fabricated micro-scale shaping tools, grooves have been cut in several 

workpiece materials.  These materials have mostly been relatively soft and have included 

PMMA, Al 6061, brass [20], oxygen free copper, nickel phosphorous plating, and a 

micrograin aluminum alloy RSA-905 [23].  Groove depths between 4 and 10 μm have 

been investigated [20, 23].  Also, surface finishes between 0.11 and 0.25 μm Ra have 

been reported for aluminum and surface finishes between 0.17 and 0.29 μm Ra have been 

reported for brass at a cutting speed of 6.4 mm/min [20].   

It has been found that there is a closer match between tool width and groove 

width when smaller depths of cut per tool pass, such as 2 μm, are used rather than larger 

depths of cut per tool pass, such as 5 μm [20].  It has also been found that large grained 

materials tend to have a larger variation in cutting forces over the course of a cut, 

compared to micrograin or amorphous materials, due to variations in crystallographic 

orientation [23].  Lastly, cutting tests performed using several workpiece materials have 

shown that the cutting mechanism in micro-scale shaping is very similar to macro-scale 

cutting, as shown in Fig. 2.19 [23]. 

 



 42

 

Figure 2.19:  Chips generated during orthogonal machining of Al-6061 (A), RSA-905 

(B), oxygen free copper (C), and nickel phosphorus plating (D) [23] 

2.6.5 Load-Based Methods to Achieve Very Low Depths of Cut 
 

V-grooves with fairly large depths of cut can be achieved by using a conventional 

rigid machine tool that moves a micro-scale shaping tool along a set trajectory.  However, 

when extremely small depths of cut where desired some researchers chose to control the 

load on the tool rather than its position [31,43].  This is because extremely precise control 

of tiny loads can be easier than extremely precise control of tool position.  In such as 

case, the depth of cut is a result of tool geometry, workpiece material properties, applied 

load, and cutting conditions.  

Using such a load-based cutting method Goss, S.H., et al. [43] cut groves up to 10 

nm deep in gallium arsenide wafers using loads between 0 and 20 μN, which were 

applied via a nanoindenter while the workpiece was moved by stepper motors.  The 

cutting speed used was 25 μm / sec and the area of the patterns cut was 30 μm x 30 μm.  

Such a low load, and hence low depth of cut, allowed the material to be cut in a ductile 

mode [43].  In a similar manner, 300 μm long v-grooves between 10 and 120 nm in depth 

were cut in Pyrex glass at speeds of 10 μm / sec by using a nanoindenter with a 

Berkovich diamond tip to apply cutting loads between 0.1 and 10 mN [31]. 

 

(A) (B) (C) (D) 
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2.7 Atomic Force Microscope (AFM) Scribing 
 

The material removal methods listed in the previous sections are mostly used for 

creating grooves with widths on the order of 10 μm or wider.  For the creation of much 

narrower grooves, many researchers have considered the use of an atomic force 

microscope (AFM) as a machine tool.  This is because in atomic force microscopy, an 

extremely sharp AFM probe lightly contacts a surface in order to measure surface 

features via physical contact, and hence this probe can be used as a cutting tool.   

In the following subsections an overview of atomic force microscopy is provided 

in order to render both the capabilities and limitations of AFMs apparent.  Research into 

conventional scribing with an AFM is reviewed, and then research into ultrasonic AFM 

cutting is reviewed.  Finally, work aimed at overcoming some of the limitations inherent 

in cutting with an AFM is reviewed. 

2.7.1 General Overview of Atomic Force Microscopy 
 

An AFM is a device for measuring the 3d topography and surface characteristics 

of a small section of a sample with nanometer level lateral resolution and sub-nanometer 

elevation resolution.  An AFM can be used to measure several characteristics of a sample 

surface using various techniques.  However, in the context of this chapter, only contact 

mode measurement of surface topology is discussed. 

A schematic of a typical AFM is shown in Fig. 2.20.  In a contact-mode AFM, an 

extremely sharp AFM tip is brought into contact with a sample surface.  This AFM tip is 

mounted on the end of a flexible cantilever, and the assembly of the AFM tip and 

cantilever is called an AFM probe.  The forces on the AFM tip due to contact with the 

sample cause a slight deflection of the cantilever.  This deflection is measured by shining 
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a laser beam onto the back of the cantilever and measuring the angle it is reflected at via 

four photodetectors positioned in the path of the reflected beam.  The sample typically 

sits on a piezoelectric scanning stage capable of adjusting the lateral x-y position of the 

sample and sometimes the z height of the sample.  Alternatively, the scanning stage may 

only adjust the x-y position of the sample and a separate z-stage may adjust the height of 

the AFM probe.   

During metrology, the scanning stage is used to move the sample underneath the 

AFM probe in a raster pattern.  Any cantilever deflection due to the presence of surface 

topology is measured and input into a feedback loop that adjusts the distance between 

probe and sample surface in order to maintain a constant and extremely small cantilever 

deflection.  The trajectory of the z-stage can then be used to calculate the height of the 

sample surface at each point that the AFM tip contacts.  In effect, this allows the AFM to 

act like an extremely sensitive micro/nano-scale contact profilometer. 

 

Figure 2.20: Schematic of a typical AFM system [24] 
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The scanning stage used to move the sample is typically a piezoelectric scanner 

with extremely high resolution.  The piezoelectric material typically used in these 

scanners is lead zirconate titante (PZT), and two types of scanners are used 

commercially: a tripod scanner and a tube scanner [75].  The tripod scanner was 

developed first and consists of three independent piezoelectric actuators arranged 

orthogonal to each other such that they support the sample stage like a tripod.  Hence, by 

extending some combination of the actuators, precisely controlled 3D motion is possible.  

However, the most popular scanner today is the simpler tube scanner [75].  This scanner 

consists of a tube made of piezoelectric material.  One end of the tube sits on some highly 

stable surface, and the sample sits on top of the other end of the tube.  Four electrodes are 

attached to the outside surface of the tube, one in each quadrant.  By applying opposing 

voltages to the electrodes on opposite sides of the tube, the tube can be made to bend 

slightly, which laterally translates a sample placed upon the top of the tube.  All four 

electrodes can be employed to achieve lateral x-y motion and to extend or contract the 

tube for z-direction motion. 

These two scanner designs work well for metrology but have a few disadvantages.  

Specfically, there will usually be some coupling between the axes of motion [75], there 

can be significant hysteresis introduced by the piezoelectric material, maximum lateral 

motions tend not be very large, and in the case of tube scanners lateral motion introduce 

sample tilt [28].  However, some of these issues, such as hysteresis can be mitigated 

through the use of feedback control.   
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2.7.2 Conventional AFM Scribing Process Overview 

The force applied to a sample by an AFM tip, during AFM metrology, is on the 

order of nanonewtons, which ideally results in no modification of the scanned surface, 

i.e., only extremely small elastic deformations of the surface occur.  However, the force 

resulting from deformation of an AFM cantilever can be set to be considerably greater, 

which enables the AFM tip to scribe a surface.  Modification of a sample surface in this 

manner offers the advantage of being able to produce extremely small features and then 

being able to examine the features insitu using the same AFM probe, provided that the 

probe is not significantly worn during scribing. 

Micro-scale AFM scribing can be used to produce grooves, or pockets comprised 

of many grooves [76], that have depths between a few nanometers and few hundred 

nanometers and that have lengths between a few hundred nanometers and tens of 

microns.  Freeform patterns can also be cut using some more advanced AFMs that have a 

scanner that allows precise and repeatable positioning via feedback and, which provides 

software support for such operations [77].  The footprints of such patterns tend to be 

limited to about 100 μm x 100 μm due to limitations in the range of typical piezoelectric 

scanners, which is why most research into AFM cutting has been focused on production 

of very small features that easily fit in the working area of a AFM. 

A wide range of materials have been reported to have been cut.  These materials 

include metals such as aluminum [24, 44], gold [78], gold-palladium [79], and nickel 

[32].  Polymers including polymethylmethacrylate (PMMA) [80], polyimide [76], 

polystyrene, and polycarbonate [27] have been cut.  Lastly, semi conductor materials 

such as single crystal silicon [25, 45, 81] have been cut via AFM scribing. 
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The AFM probes used as cutting tools have included silicon probes [44, 78, 80], 

silicon nitride probes [76, 79], diamond tipped probes [24, 25, 32], and diamond coated 

silicon probes [45].  It has been reported that probes coated with hard materials such as 

diamond or carbon have a longer life during scribing [79].  However, the tip radius of 

coated probes can be up to a few hundred nanometers larger than the uncoated tip radius, 

which changes the nature of contact between the AFM tip and workpiece.  Additionally, 

probes used for cutting in the literature have included cantilevers made of silicon [44, 45, 

78, 80], silicon nitride [76, 79], steel [24, 25], and stainless steel [81].  Diamond tipped 

AFM probes with sapphire cantilevers are also commercially available [82]. 

In the literature, a wide range of experiments has been conducted using different 

cutting loads, cutting speeds, cut lengths, and number of AFM tip passes.  Experiments 

have used loads that range from 100 nN, when cutting 2 nm deep and 20 nm wide 

trenches in polyimide [76], to 100 μN when cutting 88.7 nm deep pockets in single 

crystal silicon [81].  However, the more typically employed loads are in the range of a 

few tens of micronewtons [24, 32, 45].  Reported cutting speeds tend to vary between 

0.006 mm/min [24] and 3 mm/min [44].  Also, the typical length of the cuts reported is 

between a few microns [24, 32, 45] and tens of microns [45].  However, cuts as long as 

the full range of motion of an AFM scanner are possible, which tends to be about 100 

μm.  Finally, the number of AFM tip passes can be as low a one, but has been reported to 

be as high as 1600 in some cases [44].   

2.7.3 Conventional AFM Scribing Process Characteristics 

Due to its importance as a material in microfabrication, several researchers have 

investigated AFM scribing of single crystal silicon [25, 45, 81].  These researchers have 
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observed three material removal regimes during experiments.  It has been found that 

when using a sharp diamond tip, plastic deformation of a silicon workpiece requires at 

least 14 μN of load [45].  At loads barely high enough to plastically deform the material, 

such as about 20 μN, very fine workpiece wear debris are generated, as shown in Fig. 

2.21A, but there is no evidence of residual stresses in the resultant surface or dislocation 

arrays that would indicate shearing [25].  This indicates a ploughing dominated cutting 

regime.  At higher loads, such as 40 μN, courser chip-like debris has been observed and 

there is evidence of residual stresses in the workpiece surface [25].  Even higher loads, 

such as 80 μN, have been shown to result in chip-like debris, as shown in Fig. 2.21B, and 

the presence of dislocation arrays [25].  This suggests a shearing dominated material 

removal mode.  Lastly, increasing the load to about 190 μN results in a transition to 

brittle material behavior, which results in poorer surface finish [81].  Hence, an AFM can 

be used to machine a silicon workpiece in a ductile ploughing mode, a ductile shearing 

mode, and a brittle fracture mode.  This is not unlike machining of brittle materials of 

larger size scale via processes like diamond turning.  Also, the transition from ploughing 

to shearing dominated modes can be seen in Fig. 2.21 as a transition in the shape of the 

load – depth curve and in chip morphology. 

   

Figure 2.21: Depth and chip morphology as a function of load when cutting (100) single 

crystal silicon with an AFM [25] 

(A) (B) (C)
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Several researchers have also investigated the cutting of metals with AFMs  [24, 

32, 44, 78].  Very thin gold films have been cut with loads of a few micronewtons and it 

has been found that grooves have a cleaner shape when multiple AFM tip passes are 

used, that tip shape plays a important role in the cutting process, and that the thickness 

and morphology of the film have a strong effect on the resultant structures [78].  It has 

also been found that, when cutting grooves in aluminum with a sharp diamond AFM that 

has a tip radius of 15 nm, there is a nonlinear increase in both depth and surface 

roughness with an increase in applied load, as shown in Fig. 2.22A [24].  Depth also 

increases with the number of tool passes used, while the surface roughness decreases, as 

shown in Fig. 2.22B [24].  The depth and roughness of grooves cut in aluminum have 

been found to not be affected by cutting speed, except at very low speeds of 1 μm/sec or 

less where the surface roughness increases [24].  Similarly, when pockets were cut nickel 

with an AFM, it was found that depth of cut increased nonlinearly with load, increased 

with the number of tool passes, and was not strongly affected by cutting speed [32]. 

  

Figure 2.22: Depth of cut and surface roughness when cutting grooves in aluminum as a 

function of load (A) and the number of AFM tip passes when the load is 8 μN (B) [24] 

(A) (B) 
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2.7.4 Ultrasonic AFM Scribing 

The majority of research into AFM scribing is as described previously, i.e., an 

AFM tip is smoothly moved over a surface under some load, and can be referred to as 

conventional AFM scribing.  However, there are some advantages to introducing low-

amplitude ultrasonic movements between the AFM tip and the workpiece [26, 27].  In the 

literature, one way in which such movements have been achieved is by depositing a film 

of a desired workpiece material onto a quartz crystal resonator [26, 27, 83].  Once the 

quartz crystal is mounted on a AFM scanner, as shown in Fig. 2.23, high frequency 

lateral oscillations can be introduced by applying alternating voltages of a suitable 

frequency to the quartz crystal resonator, also as shown in Fig. 2.23.  Alternatively, the 

AFM scanner can be redesigned to permit ultrasonic oscillations to be introduced directly 

without the need for a secondary ultrasonic stage [28]. 

   

Figure 2.23: Method of ultrasonically vibrating a sample during AFM scribing [26] 

There are two major advantages to ultrasonic excitation: increase in depth of cut 

when cutting both metals and polymers, and improvement in surface finish when cutting 

polymers.  [27].  For instance, when cutting aluminum using four AFM tip passes, an 

AFM tip load of 18.9 μN, and a speed of 0.18 mm/min, the use of 5 MHz ultrasonic 
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excitation can cause an increase in depth of cut from about 20 nm to 110 nm [26].  

Furthermore, the amount of increased depth rises with increasing load, rises with 

increasing numbers of tool passes, and decreases with increasing cutting speed [26]. 

Improvements in surface finish due to ultrasonic excitation can be seen when 

cutting some polymers such as polystyrene, polycarbonate, and PMMA that display poor 

cutting behavior during conventional AFM scribing.  That is, during conventional AFM 

scribing of a pocket, if the load on the tip is not sufficiently high a distorted raised surface 

will result instead of a groove or pocket.  When cutting with a sufficiently high load, a 

raised surface will still result during the first tool pass, and by about the third tool pass 

this raised surface will distort and form ridges.  After about twenty tool passes, a pocket 

will be formed with a very bumpy bottom surface and poorly controlled depth, as shown 

in Fig. 2.24A [27].  By contrast, if ultrasonic excitation is used, a groove or pocket can be 

formed during even the first AFM tip pass, and the resultant surface will be much 

smoother as shown in Fig. 2.24B [27].  

 

Figure 2.24:  Polystyrene surface after 20 conventional scratches at 0.18 mm/min and 5 

μN (A) and after 2 ultrasonic scratches at 0.18 mm/min and 3.6 μN (B) [27] 

2.7.5 Advanced AFM Platforms for Machining 
 

The piezoelectric scanners used to move the sample in a conventional AFM have 

several limitations.  The range of motion of these scanners used tends to be fairly limited.  

Also, interference between the three axes of motion exists and becomes significant during 

relatively large displacements [28].  Large displacements can also result in tilting of the 

(A) (B)
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sample when tube type scanners are used [28].  Furthermore, the considerable hysteresis 

and axis coupling / crosstalk that can occur renders complicated scan trajectories, 

covering an area greater than a few tens of microns, difficult to perform accurately and 

repeatedly unless position sensing and feedback is employed.  

Much research has been concentrated on AFM cutting while moving the sample 

in a repeating lateral raster pattern, in order cut a pocket, or while moving the sample 

back and forth along one axis of motion in order to cut a line [24, 25, 32, 81].  This is 

possibly because many commercial AFMs are set up such that these patterns are very 

easy to create.  However, in order to efficiently cut freeform curvilinear grooves it is 

necessary to be able to move the sample scanner in such as way as to achieve arbitrary 

trajectories like those that can be achieved with a CNC machine tool.   

One way of accomplishing such trajectory control is to equip a conventional tube 

scanner with position measurement sensors, such as optical levers, and use these sensors 

as the basis for standard CNC control of the sample stage and/or AFM probe position 

[84].  In fact, High-end AFMs that include closed-loop controlled scanners and software 

for AFM-based lithography are commercially available [77], but such machine are very 

expensive. 

There have also been proposals to build AFMs with altogether different motion 

platforms.  For instance, a nanometric AFM cutting machine has been constructed in 

which the sample scanner of a conventional AFM is replaced with a small and ultra high 

precision Stewart platform, as shown in Fig. 2.25A [28].  This motion platform has a 

movable range of 20 μm in the x-y lateral directions, a range of 100 μm in the z-

direction, and a motion accuracy of 100 nm.  It can also be used to induce ultrasonic 
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vibrations with frequencies up to at least 10 kHz and with amplitudes up to at least 59 nm 

[28].  Additionally, in order to achieve greater ranges of motion, other researchers have 

proposed constructing a modular AFM / nanometric cutting machine with both linear 

motors and piezoelectric actuators for motion control, as shown in Fig. 2.25B [29]. 

  

Figure 2.25:  Stewart platform for use with an AFM (A) [28] and layout of bench-type 

nanometer machining platform (B) [29]  

2.8 Summary of Processes and Gap in Capabilities 

Several existing groove cut processes have been reviewed that are capable of 

cutting grooves less than 50 μm wide, and each of these processes has been shown to 

have advantages and disadvantages.  The advantages of disadvantages of non-mechanical 

groove cutting process are summarized in Table 2.1, and a similar summary for 

mechanical groove cutting processes is provided in Table 2.2.  Additionally, each of these 

processes meets some of the micro-groove cutting process requirements listed in Chapter 

1, but none of the processes meet all of the requirements, as shown later in this section. 

 

(A) 

(B)
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Table 2.1: Summary of each existing non-mechanical micro-groove cutting process 

Process Advantages Disadvantages 

Laser 
Scribing 

• Very fast 
• Cuts most materials 
• No tool to wear out 

• Limit on smallest groove width 
• Ridges formed around cut due to 

resolidification molten material 
• Many process parameters that 

must be set experimentally 

μ-EDM • Cuts all electrically 
conductive material 

• Negligible cutting forces 

• Limits on smallest groove width 
• Finite tool life 
• Complicated tooling required for 

good material removal rates 
• Can’t cut non-conductive 

materials except thin films on a 
conductive substrate 

μ-ECM 
(Wet) 

• Cuts any electrically 
conductive material 

• Negligible cutting forces 
• Smooth burr free surface 

finish 
• No tool wear 

• Limits on smallest groove width  
• Difficult to design a tool that 

produces a specific geometry 
• Can’t cut non-conductive 

materials 

μ-ECM 
(Solid-
State 
Superionic 
Stamping) 

• Can cut very high resolution 
features in metallic 
workpieces 

• Can cut a entire pattern of 
features in one operation 

• Good surface finish 

• Need to fabricate a new stamp for 
each new pattern of grooves 

• Requirement of physical contact 
between stamp and workpiece 
renders the use of rough or curved 
workpiece surface difficult 

 
As shown in Tables 2.1 and 2.2, a major disadvantage of several of the processes 

is a limit on the narrowest possible grooves.  This is particularly problematic because the 

first process requirement established in Chapter 1 is the ability to cut grooves with widths 

between a few hundred nanometers and a few microns.  Figure 2.26 shows the widths 

that can be achieved using each process previously described.  The only processes that at 

least partially meet the requirement are solid-state superionic stamping μ-ECM, micro-fly 
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cutting, micro-scale shaping / planing, and AFM scribing.  Also, only AFM scribing and 

solid-state superionic stamping μ-ECM can achieve the full range of target widths. 

Table 2.2: Summary of each existing mechanical micro-groove cutting process 

Process Advantages Disadvantages 

Micro-
Endmilling 

• Cuts many materials 
• Fast material removal rates 
• Very vertical groove 

sidewalls 
• High-aspect ratio grooves 

• Smallest tool diameter and largest 
aspect ratio limited by tool 
stiffness 

• Tool fabrication can be difficult 
• Burr formation 
• Finite tool life 

Micro-Fly 
Cutting 

• Very narrow and shallow 
grooves 

• Relatively fast cutting speed 
• Low surface roughness 

• Burr formation  
• Finite tool life 
• Extremely rigid machine tool 

required 
• Only straight grooves can be cut 

Micro-
Scale 
Shaping / 
Planing 

• Can cut narrow channels  
• Arbitrary cross-sections 
• Can cut curvilinear grooves  

• Burr formation 
• Finite tool life 
• Requires high precision machine 

AFM 
Scribing 

• Can cut extremely narrow 
and shallow grooves 

• Insitu metrology cut features 

• Very low material removal rates 
• Cannot produce long grooves 
• Cannot produce deep grooves 

 

 

Figure 2.26: Groove width capabilities [2, 3, 7, 14, 21, 30 - 33] 
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Table 2.3 shows how well each process meets the other process requirements 

listed in Chapter 1.  As can be seen in the table, none of the processes meet all of the 

requirements.  Of the processes capable of achieving the target groove widths, solid state 

superionic stamping μ-EDM, is limited to groove patterns already present on a stamp, 

requires the production of stamp prior to machining, and imposes that requirement that 

the stamp and workpiece must perfectly match up so that good physical contact is 

achieve, which renders it difficult to cut into rough or curved surface.  Micro-fly cutting 

can only cut straight grooves, has been limited to v-shaped grooves when grooves widths 

were less than about 12 μm, and requires a very rigid and expensive machine tool.  

Micro-scale shaping / planing suffers from burr formation issues, and requires a stiff and 

expensive machine tool to perform well.  Also, very narrow grooves cut with this process 

are limited to v-shaped cross-sections.  Lastly, AFM scribing can be used to cut 

extremely narrow grooves or can build up grooves as wide as the range of travel of the 

AFM by moving an AFM probe in a raster pattern during cutting.  However, this process 

is extremely slow, is limited to grooves with very short lengths, and requires expensive 

equipment.   

 In conclusion, none off the micro-groove cutting processes in the existing 

literature meet all of the application-driven process requirements discussed in Chapter 1.  

This means that there is a gap in current manufacturing capabilities that motivates the 

development of a new micro-groove cutting process that is capable of meeting the 

statement requirements.  The following chapters of this work are aimed at the 

development of such a process, which will provide a useful micro-fabrication tool that 

does not currently exist. 
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Table 2.3: Satisfaction of groove cutting requirements by existing processes 

Key 
   Fully Meets Requirement  
   Partially Meets Requirement  
   Does Not Meet Requirement  
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Grooves with Lengths of Millimeters       
Curvilinear Grooves Patterns        
Arbitrary Cross-sectional Shapes        
Minimal Burrs / Redeposited Material         
Good Material Removal Rate        
Programmable Groove Patterns        
Costs Less than $100,000       
Can Cut Grooves into Curved Surfaces       

 
2.9 Chip-Based Micro-Scale Cutting Mechanics 

 As described in the previous sections, exiting micro-groove cutting processes are 

unable to meet the process requirements outlined in Chapter 1.  This thesis concerns the 

development of a new micro-groove cutting process that is capable of meeting these 

requirements.  The new process, which is described in detail in the next chapter, makes 

use of chip removal-based metal cutting.  Micro-scale metal cutting shares several 

similarities with macro-scale metal cutting, which is a well established field, and 

numerous textbooks are available on the subject [85 - 87].  Hence macro-scale metal 

cutting is not reviewed here for brevity. 

 However, these are also aspects of metal cutting that are unique to the micro-

scale.  These aspects of the process are introduced by the size of the edge radius of the 

tool relative to the uncut chip thickness and by the size of the uncut chip thickness 
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relative to the workpiece microstructure.  This subsection provides a brief review of the 

aspects of the chip removal-based cutting process that are unique to the micro-scale. 

2.9.1 Effective Rake Angle 

 At the macro-scale, cutting tools can often be treated as being sharp enough for 

edge radius effects to be negligible.  However, when cutting at the micro-scale, the 

assumption of a sharp tool can be invalid if the edge radius is on the same size-scale as 

the uncut chip thickness.  An example of such a situation is shown in Fig. 2.27 where the 

cutting edge of a tool has a radius, re, and the uncut chip thickness is given as tc. 

 As a result of the edge radius being on a similar size scale as the uncut chip 

thickness, the effective rake angle can be much more negative than the rake angle would 

be based on rake face orientation alone [88].  This effect can be estimated by drawing a 

line between the lowest point on the tool and the point on the rake face where the chip 

separates from the tool, as shown in Fig. 2.27 [89].  The point of tool-chip separation can 

in turn be estimated as some multiple, ξ, of the uncut chip thickness [89].  When lacking 

actual cutting data for a particular cutting operation, ξ can be roughly estimated to be 1.5 

[89] because this value is in the middle of the range of physically realistic values 

reasoned by Manjunathaiah et al. [90].   

 

Figure 2.27: Effective rake angle at the micro-scale 
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 Using the effective rake angle estimation method, it can be seen that effective 

rake angle is rendered significantly more negative when the edge radius is large relative 

to the uncut chip thickness.  This in turn increase the amount of ploughing expected, 

which can result in poorer surface finish.  Conversely, when the edge radius is small 

relative to the uncut chip thickness, the effective rake angle is very close to the value 

found based on rake face orientation alone, and the tool can considered sharp.  

2.9.2 Minimum Chip Thickness 

 As mentioned in the previous subsection, in micro-scale cutting the uncut chip 

thickness can be on the order of the edge radius of the tool.  As a result, the minimum 

chip thickness effect becomes significant.  The concept is that when the uncut chip 

thickness is less than the minimum chip thickness no chip is formed and no material is 

removed from the workpiece surface.  Ploughing of workpiece material via plastic 

deformation can still occur.  When the uncut chip thickness is greater than the uncut chip 

thickness a chip is formed, which removes material from the workpiece [91].  This was 

shown via molecular dynamics simulations used to study the ultimate accuracy that is 

achievable using edge-radiused tooling [92]. 

 The minimum chip thickness effect can be seen in Fig. 2.28, which shows finite 

element simulation results from the cutting of ferrite [34].  Figure 2.28A shows the 

cutting action when the uncut chip thickness does not exceed the minimum chip 

thickness.  Note that the material behind the cutting edge is at the same height as the 

material ahead of the cutting edge.  By contrast, Fig. 2.28B shows chip formation when 

the uncut chip thickness does exceed the minimum chip thickness. 
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Figure 2.28: Finite element simulation when cutting ferrite with an uncut chip thickness 

below (A) and above (B) the minimum chip thickness [34] 

 The minimum chip thickness can be expressed as a material dependent fraction of 

the cutting edge radius of a tool [93].  For example, using finite element analysis, the 

minimum chip thickness has been estimated as 14% - 25% and 29% - 43% of the edge 

radius for pearlite and ferrite, respectively [34].  Hence, if material removal is to occur 

effectively during very shallow cuts, it is important for the tool to be sharp enough to 

insure chip formation occurs.  The minimum chip thickness can be estimated for various 

materials using an analytical model [93]. 

2.9.3 Heterogeneous Workpiece Microstructure 

 Many commonly machined workpiece materials with useful properties have a 

heterogeneous microstructure.  For example, many brass alloys are composed of grains of 

alpha-brass and beta-brass.  Cast iron is composed of ferrite, pearlite, and nodules of 

graphite.  Also, depending of the heat treatment used, steel alloys can be composed of 

grains with various phase structures.  Furthermore, each of the constituent materials that 

make up a microstructure can have different material properties, e.g., flow stress, 

modulus of elasticity, and thermal conductivity. 

 It should also be noted that the microstructure of pure materials can also behave 

as if it were heterogeneous in some cases.  For example, a high purity aluminum 

(A) (B)
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workpiece is composed of many grains that are each a single aluminum crystal and the 

crystalline orientation of each grain can vary.  This causes a heterogeneous behavior 

because the material properties of each crystal are anisotropic, which has been shown to 

experimentally result in changes in cutting forces [94]. 

 In macro-scale machining, it is possible for the uncut thickness to be sufficiently 

large relative to the size of the grains that make up a workpiece for many grains to be 

present throughout the thickness of a chip.  Hence, models of the cutting process that 

ignore the microstructure may be effective in such a case.  However, at the micro-scale, 

uncut chip thickness can be so small that only a few grains are included throughout the 

thickness of a chip.  In extreme cases, the uncut chip thickness may even be less than the 

size of a single grain.  In such a case, the behavior of the material around the cutting zone 

can change significantly depending on the grains present in the cutting zone at a given 

time. 

 An approach used to investigate the effects of cutting through a heterogeneous 

microstructure is to create a finite element model where the mesh captures of the shape of 

the microstructure and material properties are specified for each region of the same 

material.  This approach has been successfully used to study orthogonal machining of 

cast iron [95 - 97].  Alternatively, a mechanistic model can be constructed where the 

microstructure is modeled and the specific cutting energy for a given constituent is used 

as the tool passes through that constituent.  This approach has been successfully used to 

model micro-endmilling through a cast iron workpiece [98]. 
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2.10 Modeling of Micro-Scale Cutting 

 Later in this thesis it will be necessary to model the chip formation-based micro-

groove cutting process described in the next chapter.  Therefore, this section provides a 

brief overview of modeling techniques suitable for use at the micro-scale.  Particular 

attention is played to the finite element modeling technique, which is capable of 

providing the most information about the cutting process at the micro-scale without 

requiring excessive amounts of computational resources. 

2.10.1 Model Types 

 The types of machining models available are analytical models, mechanistic 

models, molecular dynamics (MD) models, and finite element models.  Analytical 

models seek to describe the flow of material during cutting and the cutting forces 

generated using a series of specialized analytical expressions.  These models can vary 

significantly in complexity.  One type of analytical model particularly suitable for use at 

the micro-scale, where tool edge radius effects are prevalent, is the slip-line field model 

[99].  Using a slip-line field model as a basis, the effects of the minimum chip thickness 

and elastic recovery can also be handled [93] in order to get good force predictions and 

surface roughness information.  However, in the orthogonal cutting case, such models are 

generally limited to predicting surface generation under the cutting edge, and cannot 

predict what happens at the side of a orthogonal cut or predict burr formation.  Such 

models also fail to provide information about the stress and strains throughout a 

workpiece during cutting. 

 Mechanistic models allow for easy computation of cutting forces by means of a 

relationship between the cross-sectional area of a cut and the specific cutting energy of 
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the material being cut.  These models can also be adapted to handle heterogeneous micro-

structures [98].  However, these models do not provide detailed information about chip 

flow or the workpiece surface generated during cutting. 

 Molecular dynamics models explicitly model the interactions between molecules 

making up both the tool and workpiece during cutting.  This provides a very accurate 

representation of the cutting process and the resultant workpiece surface.  Such models 

have been used to explore processes such a nanometric orthogonal cutting [100] and 

nanometric cutting with an AFM tip [101].  However, simulations involving volumes of 

workpiece material larger than a few thousand cubic nanometers are computationally 

prohibitive  and hence even with recent increases in computer power, workpiece sizes 

have been limited to rectangular volumes less than 20 nm on a side [100 - 102].  

Therefore, while these models are suitable for gaining insights into micro-scale effects 

they are not suitable for simulating of the formation micro-scale features. 

 Finite element models can represent the cutting processes in a way that is 

computationally feasible when cutting features with sizes of less than a micron and 

larger.  This type of model can also provide detailed information about the cutting 

process, which includes stresses, strains, temperatures, cutting forces, and the shape of 

the finished workpiece.  Both 2D and 3D representation of the cutting process are 

possible even through 2D models are more common in the literature.  Therefore, finite 

element models are deemed most suitable for detailed study of a micro-groove cutting 

process of the type described later in this work. 
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2.10.2 Finite Element Model Uses 

 Finite element models have been used to study many aspects of machining both at 

the micro-scale and at the macro-scale.  Orthogonal cutting models have been used to, for 

example, investigate the effects of changing process parameters such as cutting speed, 

rake angle, and coefficient of friction on process characteristics including shear angle, 

chip thickness, strain, strain rate, stress, temperature, chip curl, tool-chip contact length, 

and cutting force [103 - 105].  Models capable of evaluating the effects of tool wear have 

also been instigated [106]. 

 Other researchers have used finite element modeling to investigate fundamental 

aspects of the cutting process.  For instance, the effect of using tools with large edge radii 

relative to the depth of cut, which is relevant to micro-scale cutting, has been investigated 

[107, 108].  Another set of studies investigated size effect at the micro-scale by 

addressing the contributions of the decrease in cutting temperature in the secondary shear 

zone seen at the micro-scale and the presence of strain gradient hardening [107, 109].  

The effect of cutting through a workpiece with a heterogeneous micro-structure has been 

addressed via finite element modeling [95 - 97].  Finite element modeling has also been 

used to gain insights into the actual method of separation between a chip and workpiece 

during machining, which lead to the conclusion that there is ductile fracture ahead of the 

cutting edge of a tool  [35, 108]. 

 Finite element models have been used to examine characteristics of chip 

formation and chip flow.  For instance, both 2D [110] and 3D [111] studies have 

investigated segmented chip formation.  Studies of chip breaking have also been 

performed [112]. 
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 Finite element models have been used to examine finished workpiece 

characteristics and how those characteristic can be adjusted by modifying the cutting 

process.  For example, residual stresses in the workpiece following cutting, which affect 

part quality and deformation, have been investigated [104, 113].  Exit burr formation has 

been investigated during orthogonal metal cutting [114, 115], during drilling [116, 117], 

and during face milling [118].  The geometry formed around the entry of a drilled hole 

has also been considered [119]. 

 Lastly, it should be noted that while the previously listed work was more 

academic in nature, finite element modeling of machining is now an industrially used tool 

for process improvement.  One software tool used for this purpose is AdvantEdge 

FEM™, which is produced by Third Wave Systems, Inc, and can handle both 2D and 3D 

machining simulations. [120] Another industrial software package is DEFORM™, which 

is produced by Scientific Forming Technologies Corporation and can also handle 2D and 

3D machining simulations, even through it is optimized for forming operations [121].  

Software packages like these are used for purposes including calculation of cutting forces 

and torques, determining ways of increasing material removal rates, improving tool life, 

predicting chip shape, shortening product design cycles, and reducing trial and error 

during manufacturing process setup [120].  Using such tools process such as milling, 

turning, broaching, sawing, drilling, boring, tapping, and groove cutting can be evaluated 

[120]. 

2.10.3 Finite Element Model Characteristics 

 Researchers have used finite elements to model orthogonal cutting.  Many of 

these models have treated the process as 2D via the plane strain approximation, which 
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allows for observations of chip formation and subsurface stresses provided that the wide 

of the cut is much greater than the depth of cut.  An example of a typical 2D finite 

element model is shown in Fig. 2.29. 

 

Figure 2.29: Example of a typical 2D finite element model of orthogonal cutting [35] 

 Models broadly differ based on (1) the integration scheme used to acquire the 

solution, (2) the formulation of the model, (3) how chip formation is modeled, (4) how 

thermal effects are modeled, and (5) whether the model is 2D or 3D. 

Integration Scheme 

 Metal cutting is an inherently nonlinear dynamic process, and hence finite 

element solution methods suitable for such systems must be employed.  Two solution 

methods are implicit dynamic analysis and explicit dynamic analysis.  The former 

method solves for dynamic quantities during a current time increment based on values 

from a previous time increment and at the current time increment.  Hence implicit, 

nonlinear equations must be solved at each time step, typically via some iterative solution 

method [122].  This method has been used by several researchers to simulate orthogonal 

cutting [103, 109, 123].  However, implicit dynamic analyses generally have problems 
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handing complex contact conditions, complex boundary conditions, and material failure, 

which can render it difficult to achieve solution convergence and limit modeling options. 

 Many other researchers have created machining models based on the use of 

explicit dynamic analysis [35, 110, 114, 116, 117, 119, 120, 124, - 127].  The explicit 

dynamics procedure calculates dynamic quantities during a current time step using only 

quantities that were already calculated in a previous time step via the use of a central-

difference time integration rule [122].  This method can accommodate complex contact 

conditions, complex boundary conditions, very large deformations, and material failure.  

However, use of this method does introduce the need to use many very small time 

increments in order to insure a stable solution.  The implications of this are discussed in 

much more detail in Chapter 7. 

Formulation of the Model 

 One of three finite element formulations is used when modeling machining 

processes: the Lagrangian formulation, the Eulerian formulation, or the adaptive 

Lagrangian-Eulerian (ALE) formulation.  When using the Lagrangian formulation, 

elements that make up the finite element mesh each corresponding to a piece of material 

that never leaves the element.  That is, deformation of the workpiece mesh corresponds to 

deformation of the underlying material.  This formulation can be used to simulate 

transient dynamic events such as the entrance of a tool into a workpiece, chip formation, 

and exit of a tool from a workpiece.  However, care has to be taken to avoid excessively 

distorted elements.  Many researchers have used this formulation when modeling metal 

cutting [35, 103, 104, 109, 114, 124, 123]. 
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 The Eulerian finite element formulation has also been used to model metal cutting 

[128].  Using this formulation, the configuration of the finite element mesh never 

changes.  Rather, material flows into and out of the elements.  This formulation is 

particularly suitable for modeling steady-state machining using a small number of 

elements.  However, prior knowledge about the shape of the chip must be acquired from 

some other source in order to properly select the mesh shape.  Transient events such as 

exit burr formation also cannot be handled by this method. 

 The ALE formulation is a hybrid of the Lagrangian and Eulerian formulations.  

During calculation of dynamic quantities for a time increment, the workpiece material 

moves with the mesh as with the Lagrangian formulation.  However, between selected 

increments the mesh is allowed to shift independent of the material, like with the Eulerian 

formulation.  The ALE formulation can be used to model transient events while avoiding 

highly distorted elements, or it can be used to model steady-state cutting in a similar 

manner to the Eulerian formulation.  The ALE formulation has been used to model 

machining processes by several researchers [125 - 127].  However, it should be noted that 

the parameters used to control the movement of the mesh independent of the underlying 

material must be carefully fine tuned for machining [125]. 

How Chip Formation is Modeled 

 Lagrangian and some ALE formulation cutting models must be able to handle 

chip formation and separation from a workpiece.  Several approaches have been used that 

can be broadly categorized as indentation-based, nodal separation-based, or element 

failure-based.  In the first approach, chip formation is treated as an indentation process 

where the tool is the indenter, and the chip forms solely due to plastic flow of workpiece 
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material around the tool.  Since the mesh has to flow around the tool, distortion of 

elements in the mesh becomes a significant concern.  Researchers modeling machining 

processes have relied on remeshing and solution mapping algorithms [95, 109, 110, 118 – 

120] or the ALE formation for this purpose [127].  Such an approach by itself, however, 

cannot simulate discontinuous chip formation. 

 Another approach used by several researchers is to is to model the chip and 

workpiece as two separate meshes that are joined by constraints initially applied at 

corresponding nodes [103, 104, 123].  Each of the nodal constrains are removed in 

sequence to allow a chip to separate from the uncut workpiece.  The separation criterion 

can vary significantly and be based on quantities such as effective plastic strain at a node 

[123], stress at a node [103], or distance between the cutting edge of the tool and a node 

[104]. 

 Yet another approach is to enable chip separation via failure and deletion of 

elements within a workpiece based on some damage law.  This allows the workpiece 

mesh to essentially be cut.  Experiments and simulations have suggested that this 

approach is physically realistic when a ductile fracture criterion is used [35].  The region 

in which elements can fail can be limited to a sacrificial layer between the chip and uncut 

workpiece [35, 114, 125] or can consist of the entire workpiece [116, 117, 124, 126]. 

How Thermal Effects are Modeled 

 During machining, heat is generated due to plastic work and due to rubbing 

between the tool and workpiece.  This heat conducts through the workpiece material and 

the tool material.  Heated workpiece material experiences thermal expansion and thermal 
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softening, which lowers its flow stress.  Finite element modeling of heat generation and 

heat transfer during machining has been treated with varying levels of detail. 

 Heat generation in the workpiece can be modeled as some fraction of the plastic 

work in the deformed workpiece material [122].  Many researchers that have chosen to 

address heat generation have made the assumption that heat generation occurs so quickly 

during machining that there is not enough time for the heat to conduct through the 

workpiece before a section of material gets hot enough to experience significant thermal 

softening.  Hence adiabatic heating is assumed where all thermal energy within an 

element remains in that element [114, 116, 123, 124].  This approach simplifies 

computation and reduces required computer time. 

 More advanced models have included also included heat generation at the 

interface between the tool and workpiece, which can be modeled as some fraction of the 

dissipated energy at the interface [103].  Other researchers have chose to coupled thermo-

mechanical models where heat conduction is model as well mechanical deformation [35, 

110, 125, 127].  However, as discussed in Chapter 7, such models can be computationally 

expensive at the micro-scale. 

Model Dimensionality 

 Many of finite element models of the cut in the literature examine the case of 

orthogonal cutting.  This allows for the use of a relatively simple model that still provides 

useful information about the cutting process.  One particularly common simplification is 

to treat orthogonal cutting using a 2D finite element model [35, 95, 103, 104, 109, 110, 

114, 123, 124, 125, 128].  This is generally accomplished via the use of the plane strain 

assumption, which is valid when all strain tensor components orientated out of the cutting 
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plane are small enough to be treated as zero.  This can be the case when the width of a cut 

is much greater than the depth of cut, and hence this is an implicit assumption built into 

in most 2D finite element models in the literature.   

 Full 3D finite element model-based studies of cutting have also been performed.  

For example, 3D finite element models have been used to simulate orthogonal [111, 126] 

and oblique [111, 127] cutting of a tab of material narrower than the tool used to cut it.  

Full 3D modeling of a portion of a cut during face milling [118] has also been performed.  

Drilling [119] and exit burr formation during drilling has been examined using 3D finite 

element models [116. 117].  Lastly, industrially used FEA packages are capable of 

simulating operations such as milling, turning, broaching, sawing, drilling, boring, 

tapping, and groove cutting [120].  However, it should be noted that 3D finite element-

based analysis of orthogonal groove cutting where the depth of cut is similar to or greater 

than the width of cut does not appear to have received much attention, which is of interest 

since such conditions can occur during chip formation-based micro-groove cutting. 

2.11 Chapter Summary 

 In this chapter several different micro-groove cutting processes were presented 

that have been previously reported in the literature.  Each of these processes was 

described in detail, and the capabilities of each process were compared to the process 

requirements established in Chapter 1.  Based on this comparison it was concluded that 

no existing process meets all of the requirements, and hence there is a gap in current 

manufacturing capabilities that needs to be filled by a new micro-groove cutting process.   

 Following discussion of exiting micro-groove cutting process, a brief discussion 

of orthogonal metal cutting was provided that emphasized the difference between cutting 
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at the macro-scale and at the micro-scale.  This was intended to provide background for 

later chapters in this work where micro-groove cutting, via a chip formation-based 

material removal process, is discussed.   

 A discussion of methods of modeling a chip formation-based material removal 

process followed, which is intended to provide background for Chapter 7 where the 

micro-groove cutting process developed in the next chapter is also modeled.  Particular 

focus was given to finite element models, since such models provide the most 

information about the cutting process at the micro-scale while remaining computationally 

feasible.  Additional details about finite element modeling that are relevant to the 

development of a new cutting model are provided Chapter 7. 

 In conclusion, a new micro-groove cutting process needs to be developed to fill a 

gap in current micro-manufacturing capabilities, which is the subject of this work.  The 

development of such a process is described in the next chapter.  In Chapter 4 and Chapter 

6, extensive experimentation is described that thoroughly demonstrates the viability of 

the process and its current capabilities.  Finite element modeling of the process is then 

performed in order to gain a better understanding of the process.  This is necessary 

because some process outputs cannot be readily observed experimentally. 
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Chapter 3 

Micro-Groove Cutting Process and Machine  
Tool 

3.1 Introduction 

 Chapter 2 established the need for a new micro-groove cutting process to meet the 

requirements established in Chapter 1.  This chapter describes a newly developed process 

intended to meet this need.  This process enables the formation of extremely narrow and 

shallow curvilinear features normally associated with AFM scribing while overcoming 

the limitations of AFM scribing such as low cutting speeds, limited cut lengths, limited 

groove cross-sections, and limited depth of cut.  Rather, the cut lengths, achievable cross-

sections, cutting speeds, and potential depths of cut are more in line with those possible 

using micro-scale shaping / planing.  However, in comparison to micro-scale shaping / 

planing, the new process enables much smaller features and the use of inexpensive 

machine tools with relaxed accuracy and stiffness requirements. 

In the first part of this chapter, process requirements are reiterated and obstacles 

to meeting these requirements are described.  In the second part of this chapter, the 

design of a micro-groove cutting process intended to not be hampered by the presented 

obstacles is described.  In the third part of this chapter, requirements imposed upon a 

machine to that is used to implement the developed process are given.  In the forth part of 

the chapter, the machine tool used to implement the process is described in detail.  The 
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last part of the chapter describes the operation of the machine tool during process setup 

and during micro-groove cutting. 

3.2 Requirements / Motivating Statements 

3.2.1 Process Requirements 

 In the first chapter, several requirements for a micro-groove cutting process were 

established based on the need to produce specific classes of parts with micro-scale 

features in an economically viable manner.  These requirements are repeated here for 

convenience. 

1. The ability to cut grooves in metals that are between a few hundred nanometers wide 

and a few microns wide. 

2. The ability to cut patterns of many grooves that are each several millimeters long.  

3. The ability to cut patterns of curvilinear grooves. 

4. The ability to cut grooves with nearly arbitrary cross-sections  

5. The ability to cut grooves with minimal burr formation / material distortion.   

6. Good material removal rate. 

7. The ability to cut fully programmable patterns of grooves 

8. The ability to fabricate micro-grooves using relatively inexpensive equipment.   

9. The ability to achieve relative tolerances of approximately 1% or better. 

10. The ability to cut grooves in flat or curved workpiece surfaces. 

 There are three challenges in regards to meeting these requirements.  The first 

challenge is being able to cut desired patterns of grooves.  The second challenge is being 

able to achieve various groove shapes.  The third change is being able to cut long, 

shallow grooves that meet a specified tolerance. 
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3.2.2 Example Process Specifications 

 The process requirement involving the achievement of a given tolerance at a 

given size scale is best explored through the use of example groove specifications.  

Therefore, consider a straight groove that has a rectangular cross-section.  Let the groove 

be 10 mm long, 1 μm deep, 1 μm wide, and have a 1% relative tolerance on groove 

depth.  I.e. uncertainty in groove depth should be no more than 10 nm.  Also, consider 

cutting this groove into a flat workpiece and alternatively into a workpiece with a 

sinusoidally varying height.  Such a specification is representative of features that are 

challenging to produce. 

3.2.3 Micro-Scale Shaping / Planing as a Candidate Process 

 Of the existing processes described in Chapter 2, micro-scale shaping / planing 

meets several of the process requirements.  Specifically, curvilinear patterns of grooves 

with various cross-sections can be readily cut.   Long grooves, meeting of exceeding the 

10 mm length specification in the example, can be readily cut.  Cutting speeds upwards 

of 85.8 mm/min with depths of cut per tool pass upwards of 6 μm can be achieved [19], 

which results in a good material removal rate.  Fully programmable patterns of grooves 

can be readily cut.  Lastly, although grooves cut in the literature have been wider than 

about 10 μm in most cases, there is no fundamental physical limitation that states that a 

micro-scale shaping / planing tool capable of cutting narrower grooves can not be 

fabricated 

 However, micro-scale shaping / planing does have problems with achieving the 

tolerance specified in the example.  Therefore, the micro-scale shaping / planing process 

only provides a good staring point for the development of a new process with improved 
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capabilities.  Determining a means of overcoming this issue is accomplished by 

examining why conventional micro-scale shaping / planing has this deficiency.  This 

involves a discussion of issues regarding encoder resolution, linear guide alignment, tool-

workpiece registration uncertainty, and machine tool stiffness. 

Encoder Resolution Issues 

Conventional high-precision machine tools require some means of determining 

the positions of the machine stages in order to control the trajectory of a tool relative to a 

workpiece.  This is typically accomplished via linear or rotary encoders that have some 

set resolution.  Also, in such machines, linear and rotary encoders are typically set to 

directly measure stage position without the use of mechanical amplification such a 

gearing, and hence there is ideally a one-to-one correlation between tool or workpiece 

motion and encoder output.  Therefore, encoder resolution has a direct impact on the 

accuracy of the machine tool and the tolerances that it can reliably achieve.   

Encoder outputs serves as inputs to feedback loops that are used to actuate the 

motors in such a way as to achieve target stage positions.   Since feedback algorithms are 

ultimately based on the measurement of position error, the actual position of the stages, 

and hence the tool relative to a workpiece, will dither by at least ± 1 encoder count.  In 

practice, depending factors such as friction of machine bearings, stage loadings, motor 

capabilities, and control electrics, stage dither can be significantly larger.  Hence an 

estimable of ± 2 encoder counts is more realistic. 

This means that if a machine tool has linear encoders with a resolution of 20 nm, 

such as the 5-axis micro-scale machine tool constructed at the University of Illinois [38], 

stage position will have an uncertainty of 80 nm imposed by encoder resolution alone.  
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Hence, when cutting a micro-groove where a relative tolerance of 10% is required, the 

shallowest groove that could be cut is 800 nm.  If a relative tolerance of 1% is required 

the shallowest groove that could be cut is 8 μm.  Alternatively, encoders with a 5 nm 

resolution, such as those sold by MicroE Systems [129] would enable grooves as shallow 

as 200 nm to be cut with 10% relative tolerance and grooves as shallow a 2 μm to be cut 

with 1% relative tolerance.  Therefore, in order to cut grooves with 1 μm or depth, such 

as the groove provided in the example specification, even higher resolution encoders with 

2.5 nm increments are need.  This increases machine tool cost and prohibits the use of 

many existing machine tools that do not generally have such high-resolution encoders. 

Linear Guide Alignment Issues 

 When constructing a machine tool, it is very difficult to perfectly align the stages 

of the machine.  Rather there is some misalignment that ensures that there will be error 

between the expected and actual position of a tool if the stages are assumed to be 

perfectly aligned.  With modern micro-scale machine tools, the solution to this problem is 

to construct a highly repeatable machine tool and then calibrate it so that any stage 

misalignments can be compensated for with software following calibration. 

 Many of the methods of machine tool calibration suitable for macro-scale 

machine tools are not suitable for smaller micro-scale machine tools [68].  An 

inexpensive calibration technique suitable for such machine tools has recently been 

developed [68].  Using this method, a three axis micro-scale machine tool (mMT) with 

100 nm resolution encoders was calibrated so that when endmilling slots, error in the 

depth of cut was only 0.8 μm per every 10 mm of travel [68], which is sufficient for 

micro-endmilling of slots that are tens of microns deep.  However, when cutting a 1 μm 
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deep groove this still causes an error of up to 80% of the groove depth.  Hence, an 

involved and expensive calibration technique would be required in order for most 

machine tools to be accurate enough to cut the groove given in the example specification.  

Issues Due to Tool / Workpiece Registration Uncertainty 

 In a conventional cutting process, the cutting edge of a tool travels along a 

precisely controlled trajectory that insures that it passes through a workpiece at a desired 

depth.  A difficulty that arises with this approach is that the location of the cutting edge 

must be known relative to the workpiece surface at all times during a cut with a level of 

accuracy at least as high as the tolerance on groove depth, assuming that all other factors 

contributing to uncertainty in the depth of cut are negligible.  I.e., extremely accurate tool 

/ workpiece registration is required.  For example, if a one micron deep groove is to be 

cut with 10% relative depth tolerance, the registration accuracy must be at least 100 nm 

or better and if 1% relative tolerance is required the registration accuracy must be at least 

10 nm or better, provided that other sources of error are negligible. 

 Three factors complicate acquiring and maintaining registration: (1) uncertainty in 

the cutting edge position, (2) uncertainty in the workpiece shape, and (3) uncertainty in 

the workpiece position.  Uncertainty in the cutting edge position during registration can 

be caused by limitations in tool setting accuracy.  Following registration, tool wear can 

cause additional uncertainty in the cutting edge position.  For instance, if 15 nm of 

material wears off the edge of a tool, a value taken from experiments that will be 

discussed in Chapter 6, then the cutting edge is actually 15 nm further from the 

workpiece than indicated during registration, which would result in 1.5% additional error 

when cutting a 1 μm deep groove. 
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 Uncertainty in the workpiece shape is a major problem when cutting grooves into 

a workpiece because it becomes necessary to know the exact shape of the workpiece to 

better than the groove depth tolerance.  Hence, the tolerance than can be achieved either 

becomes dependent on the tolerances that can be achieved during production of the 

overall workpiece shape or a detailed high-accuracy metrology step must be added.   

 Uncertainty in workpiece shape can be particularly problematic with cutting 

patterns of grooves into the curved surface of a mold or die.  This is because tolerances of 

approximately 100 μm may be acceptable on the overall part shape from a molding 

standpoint, but the inclusion of the micro-grooves increase the required tolerance to a 

fraction of a micron, which greatly increases cost.  This is particularly true since in 

macro-scale die making a tolerance of about 25 μm is generally considered tight.  

Furthermore, even when parts have a much simpler planar geometry, tolerances of 1 μm 

or better can be difficult to achieve.  This can be seen in Fig. 3.1, which shows a profile 

of a carefully ground and polished nickel workpiece prepared for used in micro-groove 

cutting experiments via several grinding and polishing operations.   Hence, if extremely 

tight tolerances are not practical in operations that precede micro-groove cutting, detailed 

metrology of a workpiece is necessary, which increases manufacturing time and cost. 

 However, even if the exact shape of the workpiece is known, problems still arise 

if the orientation of the workpiece relative to the tool is not known with accuracy better 

than the groove depth tolerance.  In order to achieve such accuracy, there must either be 

the ability to transfer a workpiece from any previous steps in a manner repeatable to at 

least than required tolerance or there must be a metrology apparatus integrated into the 

groove cutting machine tool.  The former option can be achieved through the use of a 
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calibrated kinematically repeatable pallet [68], but great care must be taken for small 

positioning errors to not compound themselves such that the overall error is beyond the 

allowable tolerance.  The latter option increases machine tool cost by the cost of the 

metrology system and detailed scanning of every workpiece can increase setup time by 

anywhere from minutes to hours depending on the system used. 

 

Figure 3.1: Polished nickel workpiece surface 

Machine tool Stiffness Issues 

 In conventional machining, in order for a cutting tool to pass through a workpiece 

along a precisely controlled trajectory, it is necessary for the machine tool to be highly 

rigid.  This is because the components of the kinematic linkage connecting the cutting 

edge and workpiece are subjected to various forces that that can cause them to deflect in 

unexpected ways.  This introduces positioning uncertainty that is influenced by the 

machine structure, inertial forces from stage movements, and cutting forces. 

 At the micro-scale inertial forces can be particularly significant.  This can be seen 

by mounting an extremely flat artifact to a machine tool in place of a workpiece and 
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mounting a laser displacement sensor in place of a tool.  Ideally, in such a setup, the laser 

sensor would output a straight line profile if a single machine tool stage is traversed such 

that the laser scans along the test artifact.  In practice, due to inertia, a deviation from this 

profile in excess of the roughness of the artifact can appear if the machine tool is 

insufficiently stiff.  For example, Fig 3.2 shows the output of a laser displacement sensor 

fitted to a high-precision machine tool constructed by Phillip et al. [38] where one of the 

machines stages was moved back and fourth.  It can be seen that inertia caused workpiece 

wobble that could introduce groove depth uncertainty as high as 300 nm, which indicates 

that this machine tool, costing about $50,000, would not be stiff enough micro-groove 

cutting using conventional micro-scale shaping / planing and a more expensive machine 

tool would be required. 

 

Figure 3.2: Apparent deviation from workpiece flatness due to inertia when translating a 

stage of an example 5-axis machine tool at 25 mm/min 
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3.3 Micro-Groove Cutting Process Design 

3.3.1 Process Concept 

 In the previous subsection it was shown that there are several difficulties 

associated with conventional micro-scale shaping / planing processes that render micro-

groove cutting at the desired size scale highly expensive.  For example, The FANUC 

ROBOnanoUi machine [14] would likely enable the process requirements to be meet, but 

this machine costs over $1,000,000.  Therefore, if chip formation-based metal cutting is 

to be used, some means of circumventing issues with encoder resolution, linear guide 

alignment, tool-workpiece registration, and machine tool stiffness must be developed. 

 In order to alleviate encoder resolution issues, some means of mechanically 

amplifying measured resolution instead of simply switching to increasing higher 

resolution encoders is desirable.  Also, in order to deal with uncertainties in tool and 

workpiece position due to linear guide misalignments, insufficiently accurate registration, 

and inertial effects, a means of having the cutting edge of a tool follow a workpiece 

surface via some intrinsic process mechanic is desirable as well.  Both of these features 

can be achieved through the use of a load-based cutting process. 

 Such a micro-groove cutting process, which is developed in this work, makes use 

a flexible cutting tool that can cut while applying selected loads via careful control of tool 

deflection.  Such a tool can be configured much like an AFM probe, i.e., a flexible 

cantilever that is held on one end and with a protrusion on the other end that is intended 

to contact a surface.  However, unlike an AFM probe, the geometry of the protrusion 

does not need to be suitable for metrology, but rather is optimized for cutting and will 

have a cutting edge.  Such a tool is shown schematically in Fig. 3.3 and is essentially a 
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flexible micro-scale planing tool.  This is the overall tool configuration use throughout 

this work. 

 

Figure 3.3: Example schematic of a flexible cutting tool 

The cutting geometry of the tool, i.e., the geometry of the protrusion on the free 

end the cantilever, may very significantly depending on the application.  A simple 

pyramidal geometry, which is already present on may AFM probes, might be used in 

some cases.  In other cases, geometry like that found on a macro-scale shaping, planing, 

or parting tool might be used.  Development of effective cutting geometries is the subject 

of later chapters in this work. 

In order to cut a micro-groove, the held end of the flexible tool is first advanced 

towards a workpiece until the cutting edge of the tool contacts the workpiece.  Advancing 

the held end of the tool even closer to the workpiece causes the cantilever to bend and 

applies a load onto the cutting edge, which causes it to sink into the workpiece.  The 

amount of cantilever deflection, and hence the amount of applied load, is maintained at 

some target value via feedback, which can be time varying, in order to control the load on 

the cutting edge.  While this occurs, the workpiece is traversed underneath the tool along 

a desired cutting path and a chip is formed from the action of the cutting geometry 

passing through the workpiece, as shown in Fig. 3.4.  The resultant depth of cut is 

determined by the workpiece material, tool geometry, and cutting conditions.   
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Figure 3.4: Micro-groove cutting 

There are two major advantages to this concept that alleviate the four issues 

previously discussed.  The first advantage is that use of a flexible cantilever to derive 

loads results in depth of cut resolution amplification.  This is because the cantilever 

deflections required to develop a load that results in a depth of cut can be several times 

larger than the depth of cut.  For example, it will be shown in Chapter 6 that a tool can be 

constructed with a 100 N/m stiffness that can cut a 1 μm deep groove in pure aluminum 

when a 1.4 mN load is used.  To derive such a load a cantilever deflection of 14 µm is 

required.  This is 14 times the resultant depth of cut.  Hence, if two position sensors of 

equivalent resolution were used to measure stage position and cantilever deflection, it 

would be possible to know the load applied at the cutting edge with 14 times more 

resolution than stage position.  This alleviates the issue associated with having a high 

enough encoder resolution. 

The second major advantage is that the cutting edge is spring loaded against the 

workpiece.  Hence, as long as constant cutting conditions are maintained, the cutting edge 

of the tool will pass through the workpiece at a constant depth.  I.e., the cutting edge will 

follow a trajectory that adjusts itself based of the contours of the workpiece surface in 

order to maintain a set depth of cut.  Hence, it is no longer necessary to eliminate 
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uncertainties in tool position relative to the workpiece surface due to linear guide 

misalignments, insufficiently accurate tool-workpiece registration, or undesired motions 

due to inertial effects on insufficiently stiff components.  The reduction in required 

machine tool capability results in a significant reduction in cost.  For example, using 

conventional micro-scale shaping / planing, a machine tool like the FANUC ROBOnano, 

which costs over $1,000,000, would be required.  However, using the developed process, 

a machine tool costing less than a $100,000 can be employed instead. 

3.3.2 Process Parameters 

 Several process parameters are associated with the new micro-groove cutting 

process.  Some of these are familiar from micro and macro-scale shaping / planing and 

others are introduced by the use of a flexible tool.  Parameters 1-6 make up the former set 

and parameters 7-11 make up the latter set.  

1. Cutting speed 

2. Cutting edge radius, re 

3. Rake angle 

4. Rake face shape: E.g. a rake face with a rectangular shape will cut a groove with a 

rectangular cross-section and a rake face with a v-shape will cut a groove with a v-

shaped cross-section. 

5. End clearance angle 

6. Side clearance angles 

7. Mounting angle: the angle the non-bending end of the tool is held at relative to the 

workpiece surface, as defined in Fig. 3.4. 
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8. Applied cutting load: the load applied at the cutting edge along a direction coincident 

with the direction of approach of the tool towards the workpiece (typically normal to 

the workpiece surface).  This load is set by setting amount of cutting edge 

displacement, cantilever stiffness, and the mounting angle. 

9. Cutting edge displacement: displacement of the cutting edge of the tool along the 

same direction that the cutting load is applied. 

10. Overall tool cantilever stiffness: the amount of applied load at the cutting edge that 

results from a unit cutting edge displacement. 

11. The maximum applied load that does not result in cantilever breakage. 

3.3.3 Issues that Arise Due to the Use of a Flexible Tool 

 There a three issues introduced by the use of a flexible cutting tool that must be 

addressed.  These are indirect control of depth of cut, cantilever bending behavior, and 

the increased complexity of setting the rake angle.   

The first issue arises from the fact that the trajectory of the tool cutting edge is not 

directly controlled, and hence the depth of cut is not directly controlled.  Rather, a 

cantilever deflection is controlled, which results in a load being applied at the cutting 

edge.  The depth of cut that results from this load is determined by cutting conditions, 

tool geometry, and workpiece material.  The relationship between these factors must be 

either determined experimentally or via simulations based on cutting mechanics. 

 The second issue that arises from the use of flexible tool is the need to account for 

the behavior of the tool cantilever.  Specifically, there is a need to select cantilevers with 

suitable stiffnesses, to be able to calculate the deflection required to generate a given 

load, and to insure that cantilever plastic deformation or breakage does not occur.  
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Mathematical models of varying complexity exist that enable these tasks to be performed.  

For the cantilevers used in this work, Euler-Bernoulli cantilever beam theory is adequate. 

 Figure 3.5 shows a cantilever beam, of length L, which is fixed on one end and 

free on the other end.  If a load of magnitude P and / or a moment of magnitude M is 

applied to the free end, it the resultant deflection, d, is given by Equation (3.1) where E is 

the modulus of elasticity and I is the area moment of inertia of the cantilever.  The 

cantilever stiffness can be found by dividing the applied load by resultant deflection.  

Equation (3.2) provides the end angle, ω, of the beam in radians. Equation (3.3) can be 

used to calculate the maximum tensile stress in the cantilever, σmax, which in the figure, 

occurs on the bottom of the fixed end of the cantilever.  In the equation, c is the distance 

between the neutral axis of the cantilever and the bottom of the cantilever.  

 

Figure 3.5: Cantilever beam 
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 Using Equations (3.1) and (3.2) bending characteristics of cantilever can be 

predicted, and by using Equation (3.3) in conjunction with cantilever material properties, 

the amount of applied load required for cantilever breakage due to material plastic 

deformation or fracture can be found.  Using these equations, a tool cantilever shape and 

material must be selected so that enough flexibility is achieved to insure sufficient 

resolution amplification, as described earlier.  Conversely, the tool must be stiff enough 

and strong enough to insure that loads can be developed that are sufficient to achieve a 

desired depth of cut. 

The third issue that arises from the use of flexible tools is increased complexity 

involved in setting the rake angle during cutting.  This is because the orientation of the 

rake face of a flexible tool changes whenever the cantilever portion of the tool bends, as 

shown in Fig. 3.6.  Hence, the rake angle is not set by geometry alone.  Rather, the rake 

angle is dependent on cutting forces that bend the tool cantilever as well as tool geometry 

and tool orientation.   

 

Figure 3.6: Change in rake angle due to applied load 
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As can be seen in Fig. 3.6 increased bending of the tool due to increased cutting 

forces normal to the workpiece surface will result in a more negative effective rake angle.  

Also, a greater mounting angle will result in a more positive effective rake angle.  Both 

these effect must be accounted for in order to set the rake angle during cutting.  

Additionally, it should be noted that when cutting micro-scale grooves, the 

assumption of a sharp tool might be invalid in some cases, which further affects the rake 

angle.  As described in Chapter 2, this occurs when the finite edge radius of the tool is 

similar in magnitude to the uncut chip thickness.  This edge radius effect has been 

addressed by many researchers and causes the effective rake angle to be more negative 

than it would be otherwise.   

3.3.4 Required Process Planning / Setup 

During micro-groove cutting, the ultimate goal is to cut a high quality micro-

groove of some desired depth that might vary over the course of the cut.  This involves 

having the cutting edge of the tool pass through the workpiece at controlled depths while 

the rake face of the tool maintains a constant orientation suitable for achieving good 

performance, i.e., the depth of cut is controlled and the rake angle does not change.  

However the depth of cut in turn depends on cutting conditions such a speed and applied 

load, cutting geometry, and workpiece material.  Therefore, it is necessary to be able to 

accurately control the load applied to the tool during cutting, which is empirically related 

the depth of cut, and to control rake angle. 

The applied cutting load is generated by bending of the tool cantilever, and hence 

in order to control the magnitude of the applied load the amount of cantilever deflection 

must be controlled.  As a load is applied to the cutting edge, the cantilever portion of the 
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tool will bend by an amount corresponding to the magnitude of the load, which in turn 

sets the orientation of the cutting geometry.  As described in the previous section, this is 

problematic because the rake and clearance angles of the tool then become a function of 

cutting load, and hence could end up varying between cuts or even over the course of a 

cut if several different depths of cut are desired.  This issue is avoided by taking 

advantage of the fact that both the load on the cutting edge and the orientation of the end 

of the tool cantilever are set by the amount of cantilever displacement at some point (the 

cutting edge is used in this work) and the angle the tool mounting angle.  Hence, a 

desired cutting load and cutting geometry orientation can be achieved by correctly setting 

these two values.   

The required cutting edge displacement and mounting angle must be calculated at 

the start of each cut and at every point where there is a change in the desired depth of cut, 

and hence a change in the required cutting load.  The calculation of these values can be 

achieved by using a cantilever beam model of the tool, or alternatively a finite element 

model of the tool.  In this work, a cantilever beam model is used where the cantilever 

portion of the tool is treated as an Euler-Bernoulli beam, and the cutting geometry is 

assumed to be rigid.  A diagram of this model is shown in Fig. 3.7. 

In the model, cutting forces are assumed to be applied only at the cutting edge.  It 

is also assumed that the applied force is oriented normal to the workpiece surface and 

equals Fn.  Force in the cutting direction, Fc, is neglected because it is unknown and 

because it is not expected to contribute much to cantilever deflection.  This is because Fc 

acts on the cantilever via a moment developed by pushing on the cutting geometry, and 

due to the shape of the tool the corresponding moment arm is small.  All angles are 
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specified such that rotations in the counterclockwise direction are positive.  Hence, the 

tool mounting angle defined previously is denoted as –θ, and the tool end angle is 

denoted as φ. 

 

Figure 3.7: Cantilever beam model of flexible tool 

The end angle of the tool can be calculated via Equation (3.4) where the other 

term in the equation, ω, is given by Equation (3.2).  The end angle is used calculate the 

loads applied to the Euler-Bernoulli beam as shown in Equations (3.5) and (3.6) where h 

is the distance the cutting edge extends from the cantilever.  Note that Equations (3.1) – 

(3.6) are coupled and may be solved iteratively.  The displacement at the cutting edge, δ, 

can be found from geometry and is given by Equation (3.7). 

(3.4)   φ θ ω= +  

(3.5)   cos( )nP F θ=  

(3.6)   ( ) sin( )M Fn h c φ= +  

(3.7)   ( ) ( )cos cos cosd c h c hδ θ φ θ= − + + +  
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This model is used during planning of the start of each cut and of every point 

where there is a change in the desired cutting load.  At these points, the desired load and a 

candidate mounting angle is fed into the model, which outputs the required cutting edge 

displacement and the resultant end angle of the tool, and hence the orientation of the 

cutting geometry as a result of cantilever bending.  The mounting angle is varied 

iteratively until the cutting geometry orientation is as desired, i.e., it is some constant 

value dictated by the tool design.  The pairs of cutting edge displacement and tool 

orientation values form two trajectories that are followed during the actual cutting 

operation. 

3.4 Machine Tool Requirements 

 A machine tool used to implement the described micro-scale groove cutting 

process must have several capabilities.  These include (1) the ability to measure tool 

deflection at a sufficient speed and with a sufficient amount of accuracy, (2) the ability to 

control the mounting angle, (3) the ability to control the orientation of the tool relative to 

the direction of cut, and (4) adequate tool / workpiece positioning.  Each of these 

requirements and the reasoning behind them are described in this section. 

3.4.1 Deflection Measurement Requirement 

 Any machine tool intended to make use of the described micro-groove cutting 

process must incorporate a sensor capable of measuring tool cantilever deflection.  

Several types of sensors can be used for this purpose.  For instance, the optical lever-

based laser displacement sensor commonly used in atomic force microscopes could be 

used.  This inexpensive yet highly sensitive sensor works by shining a laser beam onto 
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the back of a cantilever and positioning photosensors in the path of the beam such that 

more light will hit some sensors and less light will high others depending on the angle of 

the reflected beam, which is in turn dictated by the amount of cantilever deflection.  

Other sensors can include confocal laser displacement sensors, capacitive sensors, and 

strain gage-based sensors.  However, in the latter case the sensor would have to be 

incorporated into the flexible tool rather than being part of the machine tool. 

 The tool deflection measurement sensor must have sufficient measurement range, 

sufficient bandwidth, and sufficient resolution.  The required measurement range is 

dictated by the maximum amount of tool deflection desired during a cut.  Depending the 

tool design this value can varying arbitrary since an increasingly long cantilever can bend 

by increasing large amounts prior to permanent breakage.  For example, in this work, a 

minimum measurement range of 20 µm is required since all of the tools used, and 

discussed in later chapters, would fracture at or prior to this deflection.   Such a small 

measurement range is well within the capabilities of most sensors. 

 Required sensor bandwidth is determined by the maximum desired cutting speed, 

and the required distance between measurements in the direction of cut.  This distance, in 

turn, is selected such that a cutting load can be maintained in the presence of changes in 

the workpiece surface height or material properties.  If cutting speed, S, is given in 

mm/min, sample frequency, f, is given in Hz, and the required distance between 

measurements, dmeas, is given in microns, then the required bandwidth is given by 

Equation (3.8). 

(3.8)     
1000
60 meas

Sf d=   



 94

Hence, a homogeneous workpiece with a simple surface profile that does not 

change in height much can be cut using a low bandwidth sensor.  Alternatively a low 

cutting speed can be used to enable the use of a low bandwidth sensor.  On the other 

hand, higher bandwidth sensors enable more complex workpieces to be used and higher 

cutting speeds to be employed.  For example, say that a workpiece is homogeneous and 

the surface height varies sinusoidally in the direction of cut such that there is a distance of 

100 µm between peaks.  Also let it be assumed that 20 adjustments in cantilever 

deflection are sufficient to follow the feature and that the cutting speed is 400 mm/min.  

Then distance dmeas = 5 µm and the required sensor sample rate = 1333 Hz.  This is close 

to the 1562 Hz bandwidth of the sensor chosen for this work, which is discussed in more 

detail later in this chapter. 

Required sensor resolution is determined by the specified groove depth tolerance 

and the ratio of tool deflection to resultant groove depth, which in turn depends on tool 

stiffness and the amount of cutting load required to achieve a given depth of cut.  If the 

tool stiffness, k, is given in N/m, the required load to cut a feature, Fn, is given in mN, 

and the required relative tolerance, trel, is given in percent, then the required resolution, r, 

given in nm, can be estimated by equation (3.9) 

(3.9)     
10,000 n relF tr

k
=  

For example, it will be shown in a later chapter that it is possible to construct a 

tool that will cut a 1 µm deep groove into a pure aluminum workpiece when a cutting 

load of 1.4 mN is used.  Hence, if this tool has a 100 N/m stiffness, a deflection of 14 µm 

is required to achieve this depth of cut.  Therefore, in order to avoid load, and hence 

depth of cut, variations of greater than 1% a sensor resolution of 140 nm would be 
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required, which is readily achievable.  The required resolutions would increase if the 

depth of cut was decreased and the same relative tolerance was required and would 

decrease if a less stiff cantilever was used. 

3.4.2 Tool Mounting Angle Control Requirement 

 As described previously in this chapter, it is necessary to adjust the angle a 

flexible tool is held at relative to a workpiece surface, the mounting angle, in order to 

apply a desired cutting load while maintaining a desired rake angle.  Furthermore, since 

the required load may vary over the course of a cut it is necessary to be able to vary the 

mounting angle simultaneously.   Therefore, a suitable machine tool must include a rotary 

stage that allows the tool mounting angle to be varied.  The total amount of allowable 

variation need not be more than about 10° to accommodate all the flexible tools used in 

this work. 

3.4.3 Tool Orientation Control Requirement 

 Cutting geometries suitable for use in cutting micro-grooves will generally consist 

of a rake face, cutting edge, and non-cutting clearance faces.  During cutting, the tool 

must be orientated such that chips separate from the workpiece at the cutting edge and 

flow up the rake face.  The tool must also be oriented such that there is little to no 

rubbing between the workpiece and non-cutting faces of the tool.  This means that the 

direction of cut dictates how the tool must be oriented or vise versa.  This is shown in 

Fig. 3.8 where three example cuts are shown from a top down perspective where only the 

cutting geometry, and not the rest of the tool, is drawn.  Additionally, since the cutting 

geometry of a flexible tool is mounted onto the end of a cantilever, it is desirable for the 
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tool to cut through the workpiece in a direction coincident with the central axis of the 

cantilever in order to prevent cantilever twisting due to cutting forces. 

 

Figure 3.8: Example cutting tool orientations relative to direction of cut 

Both the need to avoid rubbing between the workpiece and non-cutting faces of 

the tool and the need to avoid cantilever twisting impose restrictions on allowable cutting 

trajectories.  To overcome this limitation it is necessary to be able to rotate either the tool 

or workpiece relative to the direction of cut.  Therefore, the machine tool must 

incorporate a rotary stage that enables either the workpiece or flexible cutting tool to be 

rotated. 

3.4.4 Machine Tool Stage Requirements 

 As mentioned when discussing the previous two requirements, two rotary stages 

are required in order to be able to control the tool mounting angle and in order to be able 

to change the orientation of the tool relative to the direction of cut.  The former stage 

must have a range of travel of at least 10° to accommodate the various tool mounting 

angles that may be necessary.  The latter stage must be able to rotate freely without limit 

in order to be able to perform the kinds of movements required to insure correct tool 

orientation relative to the direction of cut at all times. 
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 In addition to the rotary stages, at three linear stages are also required: two stages 

to traverse the workpiece underneath the flexible cutting tool and one stage to control the 

distance between the workpiece and the held end of the flexible tool.  The required 

resolutions of the first two linear stages and the rotary stage that controls the orientation 

of the tool relative to the direction of cut is dictated by the required tolerance on groove 

path shape.  Specifically the resolution must be set high enough that no location on the 

workpiece dithers more than the allowable tolerance on groove path shape where stage 

dither will inevitably be at least ± 1 count.  The resolution on the stage controlling the 

distance between where the tool is held and the workpiece can be set lower since tool 

deflection is what is regulated during cutting as opposed to stage position. 

3.5 Developed Micro-Groove Cutting Machine Tool 

A machine tool has been constructed in order to implement the micro-groove 

cutting process previously described in this chapter and to satisfy the requirements 

described in the previous section.  This machine tool consists of two parts: a groove 

cutting assembly and a 5-axis motion platform onto which the assembly is mounted.  The 

groove cutting assembly includes all the hardware required to make use of a flexible tool 

that would not tend to be included on a conventional machine tool.  The motion platform 

is an existing 5-axis micro-scale machine tool (mMT) that was previously developed at 

the University of Illinois at Urbana-Champaign (UIUC) [38] and used to study micro-

endmilling.  The spindle of the mMT has been removed to make room for the groove 

cutting assembly.   
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3.5.1 Groove Cutting Assembly Description 

A groove cutting assembly has been constructed for holding a flexible cutting tool 

and measuring deflection of the tool due to applied forces during cutting and workpiece 

registration.  The assembly is shown schematically in Fig. 3.9 mounted into the rotary b-

stage of the motion platform that is described in the next subsection.  As shown in the 

figure, the assembly consists of five parts: (1) a tool holder bar, (2) a 3-axis manual 

positioning stage, (3) a base plate, (4) an upright sensor mounting block, and (5) a 

confocal laser displacement sensor. 

 

Figure 3.9: Schematic of the micro-groove cutting assembly 

Prior to use, a flexible cutting tool is mounted to the tool holder bar via 

Aquabond™ thermal adhesive as shown in Fig. 3.10.  This is accomplished by heating 

the tool holder bar on a hot plate to a about 110° C, melting some of the adhesive onto 

the mounting site, gently setting the rigid end of the tool into the adhesive, and then 

allowing the tool holder bar to cool back to room temperature.  Note that the contact site 

is set at an angle relative to the rest of the tool holder, which insures that the tool cutting 

geometry is always closer to the workpiece than any other point on the tool.  This insures 
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that rubbing between other parts of the tool and the workpiece does not occur and cause 

undesirable gouging of the workpiece during groove cutting. 

 

Figure 3.10: Mounting of a flexible tool to the tool holder bar 

 The tool holder bar is shown in Fig. 3.11.  After gluing on a tool, the tool holder 

bar is attached to a 3-axis manual micro-positioning stage via three M4 bolts.  

Additionally, there are two 0.125” diameter hardened steel dowel pins press fit into the 

tool holder bar, which correspond to two high precision alignment holes drilled in the 

micro-positioning stage.  These pins constrain the tool holder bar’s placement much more 

effectively than bolts alone would, which in turn cuts down on drift in tool holder bar 

position than occurs as the bolts settle slightly in the hours following tightening. 

 

Figure 3.11: Tool holder bar 

Tool Mounting Site

Front Side Back Side 
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 The 3-axis manual micro-positioning stage is used to adjust tool position in order 

to align the end of the cantilever portion of a flexible tool with the beam from a confocal 

laser displacement sensor, which is used to measure tool deflection.  The manual micro-

stage, shown in Fig. 3.12, consists of a Standa 7T264-10SS ultra low profile two-axis 

micro-stage connected to a Standa 7T164-10 single-axis micro-stage via a 90-degree 

angle bracket.  Each axis of the manual micro-stage has 10 mm of travel and an 

adjustment sensitivity of 1 μm.   

 

Figure 3.12: Standa manual micro-positioning stage [36] 

The manual micro-stage is bolted to a base plate that is into turn bolted onto the b- 

stage of the 5-axis motion platform.  Also bolted to the base plate is an upright sensor 

mounting block, and bolted to this block is a Keyence LT-9010M confocal laser 

displacement sensor.   

The Keyence LT-9010M confocal laser displacement sensor, shown in Fig. 

3.13A, is used to measure tool deflection during cutting and workpiece registration.  The 

sensor can measure displacements with a resolution of 10 nm and has a measurement 

range of ± 0.3 mm.  The spot size of the laser is 2 μm in diameter, which is small enough 

to focus onto the 15 μm - 60 μm wide cantilevers used in this work.  The sensor can be 
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set to continuously measure the displacement of a single spot on a tool (displacement 

mode) or to continuously sweep back and forth (scanning mode).  The former option 

allows displacement of a single point to be measured at a rate of 1562 Hz, while the latter 

option allows the bent shape of the tool to be measured at a rate of 27 Hz via 13 points 

located at 10 μm lateral increments.  The sensor also has a built-in optical microscope, 

and an example of the output from the microscope during cutting is shown in Fig. 3.13B. 

   

Figure 3.13: Keyence LT-9010M confocal laser displacement sensor (A) [37] and video 

output from sensor (B) 

The outputs from the sensor of interest consist of a the video signal transmitted 

via USB, a voltage proportional to the measured displacement, a voltage flag indicating 

when a new measurement is being output, and a second voltage flag indicating the start of 

a scan when the unit is in scanning mode.  The voltage indicating the measured 

displacement value can vary between +10 and –10 volts.  In this work, the sensor is 

configured such that +10 volts indicates a measured value of +20 μm, 0 volts indicates a 

measured value of 0 μm, and –10 volts indicates a measured value if –20 μm. 

 The fully assembled micro-groove cutting assembly is shown from several 

different angles in Fig. 3.14.  In the figure, the base plate is sitting directly on a tabletop 

(A) (B)
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surface.  A bolt circle consisting of 5 holes, and visible in Fig. 3.14A and Fig. 3.14B, is 

cut into the base plate and used for mounting of the base plate onto the rotary b-stage of 

the 5-axis motion platform. 

   

Figure 3.14: Micro-groove cutting assembly 

It was found that during some groove cutting assembly movements that occur 

during cutting, the inertia of the upright axis of the manual micro-positioning stage and 

the tool mounting bar was sufficient to overcome the restraining forces imposed by 

springs inside the other two axis of the manual micro-positioning stage.  As a result the 

tool holder would sometimes vibrate in an undesired manner.  The amplitude of this 

vibration was only a few microns, but at the size scale involved such vibration is 

unacceptable, and is avoided by adding the ability to lock the position of the manual 

micro-positioning stage.  This is accomplished via the addition of a c-clamp that is 

tightened once the stage is in position as shown in Fig. 3.15. 

(A) (B) (C)
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Figure 3.15: Clamping of manual micro-position stage to lock its position 

3.5.2 Description of the 5-Axis mMT Motion Platform 

The groove cutting assembly was mounted onto the rotary b-stage of an existing 

5-axis mMT that was previously developed at the University of Illinois and Urbana-

Champaign (UIUC) [38].  The mMT served as a motion platform for linearly translating 

and rotating the micro-groove cutting assembly, and is shown in Fig. 3.16.  This machine 

was selected because of the high positional accuracy of its stages and because of the 

ability of the workpiece to be rotated 360 degrees.  Note that in the figure the spindle that 

would normally be attached to the machine has been removed to make room for the 

micro-groove cutting assembly, which mounts to the bolt circle on the b-stage of the 

machine. 

The stages of the mMT are driven by linear and rotary brushless AC motors.  The 

travel of the linear x, y, and z stages is 35 mm and each stage is equipped with an optical 

linear encoder with 20 nm resolution.  The machine also has a rotary b-stage that allows 

the micro-groove cutting assembly to rotate up to 180 degrees and a c-stage that allows 
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the workpiece to be rotated 360 degrees.  Each rotary stage is equipped with an optical 

rotary encoder with a resolution of 0.316 arcsec [38].   

 

Figure: 3.16: 5-axis mMT [38] without spindle attached 

 Workpieces are mounted to detachable pallets, like the one shown in Fig. 3.17, 

that join the to rotary c-stage of the mMT via a repeatable kinematic coupling.  The 

coupling consisting of 3 balls and mating v-grooves and is held together via magnets.  

The use of these pallets allows workpieces to be removed and then replaced with 

approximately 1 μm repeatability. 

 

Figure: 3.17: Workpiece kinematic pallet 
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3.5.3 Groove Cutting Assembly / mMT Hardware Integration 

The groove cutting assembly was bolted to the b-stage of the 5-axis mMT as 

shown in Fig. 3.18, which was taken from the same angle as the image of the mMT 

without the groove cutting assembly in Fig. 3.16.  This configuration enables the groove 

cutting assembly to be brought towards or retracted from the workpiece via the z-stage 

and rotated via the b-stage.  The workpiece can also be traversed in an x-y plane 

perpendicular to the direction of approach of the groove cutting assembly (the z-axis) and 

can be rotated about an axis parallel to the z-axis. 

  

Figure 3.18: 5-axis mMT with groove cutting assembly attached 

As stated earlier in this chapter, the tools used in the micro-groove cutting process 

only cut effectively in a narrow range of directions.  For the tools used in this work, these 

directions are nearly coincident with the axis of the tool cantilever.  Also, the tools were 

always mounted to the tool holder bar such that the axis of the cantilever nearly aligned 

with the x-axis of the mMT.  Hence, all cuts must be made such that the vector 

component of the instantaneous workpiece material velocity, near the cutting zone, in the 
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y-direction is very small.  This constraint would limit the types of groove patterns that 

could be cut if the machine only had 3 linear axes and the tool was limited to a fixed 

orientation.  However, since the workpiece can rotate via the mMT c-stage, it is possible 

to change the rotary orientation of the tool relative to the workpiece.  This renders it 

possible to produce curvilinear grooves without violating the velocity constant, as shown 

in Fig. 3.19. 

 

Figure 3.19: Ability of workpiece rotary stage to enable curvilinear cuts 

3.5.4 Groove Cutting Assembly / mMT Electronics Integration 

The 5-axis mMT is controlled by a fully programmable open architecture Delta 

Tau Turbo UMAC CNC controller [130].  This controller can be configured to control 

various numbers of machine axes, to provide various numbers of channels of digital I/O, 

and to provide various numbers of channels of analog I/O by adding or removing 

expansion cards and setting software flags.  Implementation of PID control with 

feedforward for each machine axes and coordinated trajectory control for multiple axes is 

implemented on the controller in its factory provided state.  Additionally, user programs 

can be run on the controller that directly read from input channels, perform various 

calculations, and affect the actions of any of the controlled stages.   

In addition to being configured to control the 5-axis mMT, the controller is also 

configured to accept inputs from the Keyence LT-9010M confocal laser displacement 
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sensor.  Specifically, the controller reads three analog outputs from the laser sensor using 

three 16-bit analog to digital (A2D) converter channels: an output voltage proportional 

the measured displacement, an output voltage flag indicating a new reading, and an 

output voltage flag indicating the start of a new scan with the laser is set in scanning 

mode.  The sample rate is 5000 Hz, which is the servo cycle update frequency of the 

controller. 

3.6 Groove Cutting Machine Tool Operation 

 In order to cut a set of micro-grooves using the developed process, five operations 

must be performed.  First, process planing must be carried out.  This involves calculating 

the orientation that the tool must be held at and the necessary amount of tool deflection 

for each cut to be performed as described previously in this chapter.  Second, the tool 

must be mounted to the tool holder bar and the position of the bar must be adjusted to 

allow the laser displacement sensor to reliably measure tool deflection.  Third, the 

workpiece must be registered such that the location of the cutting edge to the tool is 

known relative to the workpiece surface.  Fourth, the tool / laser displacement sensor 

must be calibrated in order to relate displacement at the cutting edge of the tool to laser 

displacement sensor output.  Fifth the grooves are cutting into the workpiece.  Each of 

these operations is described in the remainder of this chapter. 

3.6.1 Tool Setting 

 The tool to be used is mounted onto the tool holder bar using Aquabond™ 

thermal adhesive such that it is oriented as shown in Fig. 3.20A.  Next the tool holder bar 

is bolted to the 3-axis manual micro-stage included in the groove cutting assembly.  The 

manual micro-stage is then adjusted to get the end of the cantilever portion of the tool to 
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appear in the crosshairs of the Keyence LT-9010M confocal laser displacement sensor 

microscope output as shown in Fig. 3.20B.  Note that the cantilever will appear 

horizontal in the image if it is properly mounted to the tool holder bar.  Additionally, the 

manual micro-stage is used to adjust the distance between the cantilever and laser 

displacement sensor such that the sensor output reads between -10 and 0 μm.  Lastly, the 

manual micro-stage is locked in place via a clamp, as shown in Fig. 3.15, in order to 

minimize undesired movement during cutting.   

  

Figure 3.20: Mounted tool orientation (A) and aligned tool seen in the microscope (B) 

 Following tool setting, there may be a period where the output from the laser 

displacement sensor will drift with time.  One cause is thermal effects within the laser 

sensor itself, which can be minimized by turning on the sensor at least an hour prior to 

use so that it can reach a steady state temperature.  Another cause of drift is slight shifting 

in the bolts used to mount the tool holder bar and slight shifting of the clamp used to lock 

the manual micro-stage.  This drift typically reduces to an acceptable level of about 5 nm 

per minute or less within one hour.  The time required for the drift to reach acceptable 

levels can also sometimes be decreased by gently tapping the manual micro-stage. 

 

 

(A) (B)
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3.6.2 Workpiece Registration 

The workpiece must be registered such that the location of the cutting edge of the 

tool is known relative to the workpiece surface.  This can be done via a series of tool / 

workpiece touch-off operations because the cutting tool is sufficiently flexible for even 

light contact between the tool and workpiece to cause a detectable tool deflection.  

Hence, the location of a point on the workpiece surface relative to the cutting edge of a 

loaded tool is found by advancing the z-stage of the mMT, and hence the groove cutting 

assembly, towards the workpiece until a readily detectable deflection occurs.  In this 

work, such a deflection was considered to occur when the signal from the laser sensor, 

filtered via a digital 4th order Butterworth low pass filter with a cutoff frequency of 50 

Hz, exceeded a 80 nm threshold.  The full touch-off procedure is shown via a flow chart 

in Fig. 3.21. 

 

Figure 3.21: Tool / workpiece touch-off procedure 

All of the workpieces used in this work could be idealized as planes.  Hence, 

registration consisted of touch-off operations against three points on a workpiece that 

were not co-linear and then fitting the coordinates of these points to a plane.  This method 
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can also be extended to registration of non-planar workpieces provided that the 

workpiece geometry is well known and a sufficient number of touch-off operations are 

performed in order to enable a linear regression of the contact coordinates to the known 

geometry. 

3.6.3 Tool Calibration 

Prior to cutting, a calibration operation must be carried out in order to relate laser 

displacement sensor output to actual displacement of the cutting edge of the tool.  This is 

necessary because variations in tool mounting position, and hence the portion of the tool 

seen by the sensor, would otherwise render it difficult to correlate measured displacement 

to displacement at a known point on the tool, as shown in Fig. 3.22.  Furthermore, only 

deflection of a known point on the tool can be mathematically related to applied cutting 

load, which in turn controls the depth of cut. 

 

Figure 3.22: Cutting edge displacement and measured displacement 

A calibration curve is generated by moving the cutting edge of the tool into 

contact with a flat alumina artifact and then continuing to move the groove cutting 

assembly some additional distance toward the artifact.  Laser sensor output is related to 

the additional distance traveled to generate a calibration curve.  Also, in cases where a 
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tool is to be held at significantly different angles when cutting at different loads, a 

calibration curve may be generated for each angle in order to enable more precise control 

of the applied load.  The full calibration procedure is shown via a flow chart in Fig. 3.23 

and an example calibration curve, produced when calibrating with a 965 μm long tool, is 

shown in Fig. 3.24. 

 

Figure 3.23: Calibration procedure 
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Figure 3.24: Example calibration curve 

3.6.4 Micro-Groove Cutting 

Following tool setting, workpiece registration, tool / laser calibration, and process 

planning, micro-grooves can be cut.  In order to cut a micro-groove, the groove cutting 

assembly is first rotated via the mMT b-stage so that the tool is held at the correct 

mounting angle for the start of the cut.  The calculation of this angle was described 

previously.  Then, the cutting assembly is advanced towards the workpiece until the 

cutting edge of the tool contacts the workpiece where the cut is to start.   

In a standard CNC machine tool, where there is no tool flexibility, a tool 

trajectory would be specified that would have the tool pass through the workpiece at 

some specified depth.  The cut would be broken up into many time steps, e.g., 5000 steps 

per second in the case of the controller used in this work.  At each time step, the 

controller would calculate target positions for each machine stage based of the specified 

trajectory.  Also at each time step, the target positions, along with the actual stage 
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positions provided by the encoders, would be fed into the feedback algorithms regulating 

the position of each stage in order to execute the cut.  However, since tool deflection 

feedback is also used, this approach is slightly modified in work. 

Specifically, the xyzc-trajectory initially specified, if followed exactly, would 

only result in the cutting edge of the tool skimming over the surface of the workpiece.  

That is, a nominal trajectory is specified that tells the controller approximately where the 

stages need to be to perform the cut.  During the cut itself, in addition to stage positions, 

tool cantilever displacement is also read by the controller and converted to cutting edge 

displacement via the calibration curve.  The measured cutting edge displacement is used 

to adjust the z-component of the specified nominal trajectory in real time in order to 

insure that the corresponding cutting edge displacement, calculated during process 

planing, is achieved, as shown in the block diagram in Fig. 3.25.  This adjusted xyzc-

trajectory is used to calculate the target positions for the machine stages, which are fed 

into the feedback algorithms regulating the position of each stage, also as shown in Fig. 

3.25.  In this way the desired cutting edge displacement trajectory is followed and hence 

the desired cutting load trajectory is achieved.  After the move is complete, the tool is 

retracted and the process can be repeated for as many cuts as desired. 

Note that during cutting, the laser sensor can be set in either displacement mode 

or scanning mode.  The use of displacement mode results in the highest possible sensor 

bandwidth, which is ideal for reliably cutting a groove at speeds up to about 400 

mm/min.  However, the use of scanning mode enables the exact shape of the bent 

cantilever to be found, which can be useful from an experimental standpoint.  From a 

control algorithm standpoint, the difference is that the two zero order holds in the block 
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diagram in Fig. 3.25 update at 5000 Hz when the laser is set to displacement mode and 

only update at about 27 Hz when the laser is set in scanning mode.  Additionally, in the 

latter case, each update coincides with the time when the scanning laser passes over the 

same point on the tool cantilever. 

 

Figure 3.25: Block diagram of control algorithm used during micro-groove cutting 

3.7 Chapter Summary 

 In this chapter, a micro-groove cutting process was described that makes use of a 

flexible cutting tool and is intended to meet the process requirements established in 

Chapter 1.  A process based on a flexible cutting tool is used in order to mitigate issues 

associated with encoder resolution, linear guide alignment, tool-workpiece registration 

uncertainty, and machine tool stiffness that are present in conventional groove cutting 

with rigid tools.  This enables machine tools to be used for high precision micro-groove 

cutting that cost about a tenth of what they would otherwise. 
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 A machine tool was also described that is used to implement the micro-groove 

cutting process.  This machine tool consists of a groove-cutting module that can be 

mounting onto a suitable 5-axis motion platform and an existing micro-scale machine, 

which serves as the motion platform.  Also described is the set of steps required in order 

to cut a set of grooves using the machine tool.  This machine tool and the described 

groove cutting procedure are used in experiments described in the next chapter where 

commercial AFM probes are used as flexible cutting tools in order to evaluate the 

viability of the developed process. 
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Chapter 4 

Micro-Groove Cutting Experiments Using  
AFM Probes as Flexible Cutting Tools 

4.1 Chapter Introduction 

4.1.1 Overview 

 In the previous chapter, a new micro-groove cutting process was described that 

has several unique characteristics.  Therefore, in order to render the new process 

practical, a though understanding of the process must be acquired.  In particular, the 

mechanics of the process and the effects of machining parameters such as cutting speed, 

tool geometry, and tool load on groove geometry, chip morphology, and tool wear need 

to be understood.  The purpose of this chapter is to gain such an understanding. 

 In this chapter, the results are experiments are presented that explore the effects of 

varying cutting speed, varying cutting load, and varying the orientation of cutting 

geometry during micro-groove cutting.  The cutting geometry orientation is controlled 

through the combination of the load applied to a flexible tool and the angle that the tool is 

held at (mounting angle) relative to the workpiece during cutting. In the experiments 

described in this chapter, diamond-coated AFM probes were used as flexible cutting tools 

due to their low cost and the ease with which they could be obtained. 

Three experiments are described in which grooves are cut in aluminum 

workpieces.  The first experiment demonstrates groove formation, groove shape, and tool 

wear resulting from cutting long grooves via successive tool passes.  The second more 
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systematic experiment explores the effects of cutting speed, cutting load, and AFM probe 

mounting angle on groove geometry, tool wear, and chip formation when short grooves 

are cut using only one tool pass each.  Lastly, a third experiment is described in which the 

cutting of long curvilinear grooves is explored.  The results of these experiments clearly 

show the promise of the newly developed process, but also demonstrate the limitations 

imposed by using commercial AFM probes as tools, which are addressed in the next 

chapter. 

4.1.2 Acknowledgement of Previous Publication 

The contents of this chapter have been previously published by the author of this 

dissertation as a technical paper in the ASME Journal of Manufacturing Science and 

Engineering [131]. ASME holds the copyright for the published content.  Text, tables, 

and figures in this chapter are reproduced with the permission of ASME. 

4.2 Description of Experiments 

4.2.1 AFM Probes Used as Flexible Cutting Tools 

In all three experiments described in this chapter, NanoWorld Probepoint® DT-

NCHR AFM probes were used as flexible cutting tools.  An example of such an AFM 

probe is shown in Fig. 4.1.  Each probe consists of a monolithic silicon cantilever and 

AFM tip, with a nominal stiffness of 42 N/m, coated with a 100 – 200 nm thick layer of 

polycrystalline diamond.  The probes have a three-sided pyramidal geometry near the 

apex of the AFM tip and there are two clearance faces on the trailing side of the tip.  

There are also two faces on the leading side of the tip, but they are oriented such that only 

one face, the rake face, meets with the two clearance faces to form the cutting edge, as 
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shown in Fig. 4.1.  Both the cutting edge and tip apex have radii of 100 – 200 nm due to 

the conformal diamond coating. 

 

Figure 4.1: DT-NCHR diamond coated AFM tip 

4.2.2 Experimental Procedure 

Three different micro-groove cutting experiments were conducted.  The purpose 

of the first experiment was to examine the feasibility of cutting long grooves using 

multiple tool passes and to examine the formation of these grooves.  The second 

experiment was conducted in order to examine the effects of cutting speed, cutting load, 

and tool mounting angle during short cuts.  Lastly, the third experiment was conducted in 

order to examine the viability of cutting long continuous curvilinear grooves.  Process 

outputs of interest included effective rake angle during cutting, resultant groove 

geometry, tool wear, and chip morphology. 



 119

The workpiece used for Experiment 1 consisted of a 1.6 μm thick thermally 

evaporated aluminum film deposited on a polished silicon substrate.  During Experiments 

2 and 3 the workpiece consisted of a 1.2 μm thick aluminum film thermally evaporated 

onto a 10 nm thick chromium adhesion layer that was thermally evaporated onto a 

polished silicon substrate.  For both workpieces the depth of cut was less than 25% of the 

film thickness and the film Ra was less than 5 nm as measured with a Veeco NT1000 

Optical Profilometer. 

The test procedure was very similar to the general-purpose groove cutting 

procedure described in Chapter 3.  The only difference is during the process planning 

stage.  That is, the previous chapter described a process planning procedure where both 

the angle the tool is to be held at during cutting (the mounting angle) and the amount of 

deflection the tool should experience are calculated in order to achieve a desired cutting 

load and rake angle. However, in the experiments described in this chapter only, the 

mounting angle is manually set and a deflection is calculated to achieve a desired tool 

load.  Hence, the rake angle of the tool is allowed to vary due to changing cutting 

conditions and mounting angle in order to see the effect of cutting when using different 

rake angles. 

All grooves were cut in ambient air without the use of any lubricants or coolants.  

During these cuts, the applied cutting load was ramped up from zero to a desired steady 

state load over the first portion of each cut, which caused the depth of cut to ramp up 

from zero to some steady state value.   This was done to minimize tool breakage due to 

sudden loading. 



 120

Following each experimental trial the worn AFM tip was examined with an SEM.  

The SEM images were used to determine the amount of tool wear and to examine chips 

stuck to each tip.  The SEM images were also used to get the worn shape of each tip.  

During the second experiment the shapes of each tip were also used in combination with 

the bent shapes of each AFM cantilever to calculate the effective rake angle at the 

beginning and end of each test. A commercial AFM was used to image sections of each 

cut groove.  These images were examined and used to calculate parameters describing 

groove geometry: groove depth, groove width, groove skewness, groove kurtosis, and 

burr height.   

4.3 Experiment 1: Long, Multiple Tool Pass Cuts 

In the first experiment, seven tests were conducted at the conditions listed Table 

4.1.  In each test, 10 parallel grooves spaced 20 μm apart were cut using five tool passes 

per groove.  The first tool pass for each groove was 4 mm long, the second 3.9 mm long, 

the third 3.8 mm long and so on.  This meant that the groove shape following each tool 

pass could be later measured.   

Table 4.1: Experiment 1 Conditions 

Test 1A 1B 1C 1D 1E 1F 1G 
Speed (mm /min) 25 25 25 15 1.2 25 25 

Mounting Angle (deg) 5.0 6.2 5.1 5.2 5.2 18.4 29.8 
Nom. Load (mN) 0.26 0.4 0.68 0.4 0.4 0.4 0.4 

 
All grooves in Experiment 1 had the same general features.  This can be seen in 

Fig. 4.2, which shows SEM images of grooves from each test in the experiment.  It can 

be seen that groove depth and width appear fairly consistent over the few microns shown.  

The grooves are bordered with attached burrs and partially broken-off burrs. 
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(1A) 25 mm/min, 5.0°, 0.26 mN (1B) 25 mm/min, 6.2°, 0.4 mN 

(1C) 25 mm/min, 5.1°, 0.68 mN (1D) 15 mm/min, 5.2°, 0.4 mN 

(1E) 1.2 mm/min, 5.2°, 0.4 mN (1F) 25 mm/min, 18.4°, 0.4 mN 
 

(1G) 25 mm/min, 29.8°, 0.4 mN  
 

Figure 4.2: SEM images of grooves cut in Experiment 1 

4.3.1 Tool Wear 

Tool wear is important in micro-groove cutting because it has a significant effect 

on groove shape.  During Experiment 1, tool wear was expected to be significant due to 

the long distance cut.  Tool wear was measured using SEM images of each worn AFM 

tip, as shown in Fig. 4.3, and the wear values are tabulated in Table 4.2.  In the table, 

wear is the distance between the tip of each tool in its new and worn state and wear radius 

is the final radius of the cutting edge of each the AFM tip. Additionally, Fig. 4.4 shows 

SEM images of a new DT-NCHR AFM tip and worn tips from each trial. 

1 μm 1 μm 

1 μm 1 μm 

1 μm 1 μm 

1 μm
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Figure 4.3: Tool wear measurement 

Table 4.2: Tool wear during Experiment 1 

Test Speed  
(mm /min) 

Mounting 
Angle (deg)

Load 
(mN) 

Major 
Fracture

Worn 
Tip Profile

Wear 
(μm) 

Wear  
Radius (μm)

1A 25 5.0 0.26 No Round 0.56 0.60 
1B 25 6.2 0.4 No Round 0.61 0.37 
1C 25 5.1 0.68 No Round 0.93 0.36 
1D 15 5.2 0.4 Yes Flat 1.73 0.14 
1E 1.2 5.2 0.4 No Flat 0.65 0.38 
1F 25 18.4 0.4 Yes Flat 2.18 0.77 
1G 25 29.8 0.4 Yes Flat 1.5 0.46 

 

 

 
 

Figure 4.4: New and worn AFM probes used as flexible cutting tools 

The lowest wear was seen in tests 1A and 1B where the cutting speed was 25 

mm/min, the mounting angle was 5 – 6° and the applied loads were 0.26 and 0.4 mN, 

(New)                        (1A)                         (1B)                           (1C) 

(1D)                          (1E)                          (1F)                           (1G) 

5 μm
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respectively.  In these tests the level of wear was small and the worn tools were rounded, 

as shown in Fig. 4.4.  Hence, in Experiment 1, a low mounting angle, high cutting speed, 

and a moderate load resulted in low wear. 

Tests 1F and 1G in Table 4.2 demonstrated an increased incidence of tool wear 

due to increased fracture.  These two tests were conducted at high cantilever mounting 

angles so the rake angles were more positive than in all of the other tests.  In Fig. 4.4 it 

can even be seen that a large chunk of the tip appears to have broken off in test 1F.  

Comparing tests 1A, 1B, and 1C in Table 4.2 also shows a moderate increase in tool wear 

with load.  Also, as seen by comparing tests 1B, 1D, and 1E, lowering the cutting speed 

to be comparable to the speeds used when cutting inside an actual AFM (typically no 

greater than 1.2 mm/min) was not beneficial. 

4.3.2 Groove Formation  

AFM images of portions of the first and last grooves in tests 1A through 1G were 

captured after each tool pass.  The captured portions included sections of the grooves in 

each test that were formed by one, two, three, four, and all five tool passes.  Based on 

these images groove cross-sections were created from which the shape of each groove 

was extracted.  By observing how the cross-sections change when multiple tool passes 

are used, the groove formation process can be seen.  Also, by comparing the first and last 

groove cross-sections in each test, the effect of tool wear can be seen.  Figure 4.5 shows 

cross-sections of the first and tenth grooves cut in tests 1A – 1C following each tool pass.  

Similarly, Fig. 4.6 shows cross-sections of the first and tenth grooves cut in tests 1D, 1F, 

and 1G following each tool pass.  The cross-sections of the first groove from test 1E is 
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also shown in Fig. 4.6, but no other cross-sections are shown from that test because 

excessive snarling of chips attached to the tool caused the test to be ended prematurely.  

 

 

 

 

Figure 4.5: Cross-sections of the first and tenth grooves in tests 1A, 1B, and 1C following 

each tool pass 
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Figure 4.6: Cross-sections of the grooves in tests 1D – 1G following each tool pass 

It was found that the depth of cut generally increased the most during the first 

couple of tool passes.  The amount of material removed generally increased during all 
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tool passes.  The widths of the grooves also increased with each tool pass, which is 

expected due to the pyramidal shape of each AFM tip.  Reductions in depth occasionally 

occurred after a tool pass and were likely due to burrs or chips from a previous pass being 

pushed down into the groove.  Such events occurred more often when the tool was worn.  

It was also found that multiple tool passes resulted in a more uniform depth of cut over 

the course of a groove. 

 The groove depths achieved using a given cutting condition were generally less 

once the tool wore.  However, as can be seen in test 1B in Fig. 4.5, there appears to be an 

outlier event involving the first groove created during the first tool pass when the tool 

was new.  That is, the groove in the first tool pass is shallower than the groove created 

when the tool was worn.  This did not occur in most other tests and may be due to some 

unaccounted for event such as a piece of debris being temporary stuck to the tool. 

Furthermore, it was determined that there is some variation in groove depth along the 

length of the groove, which may partially explain this. 

Comparison of the cross-sections in the two figures shows the effect that speed 

has on the shape of the grooves.  It can be seen that when cutting at 1.2 mm/min the 

grooves ended up misshapen.  This may be because the large amount time required for 

each tool pass allowed the effects of workpiece fixturing drift and machine tool thermal 

drift to cause the successive tool passes to not line up well.  It can also be seen that both 

the depth and width of a groove tended to increase with increase load, as expected.  Also, 

at the highest tested load, test 1C, a much wider and somewhat asymmetric bowl-shaped 

groove resulted.  This is possibly due to cantilever twisting at the high load.  The effect of 

load and speed are examined more systematically in Experiment 2. 
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4.3.3 Chip Morphology 

SEM images showed chips attached to all of the AFM probes after the tests.  This 

indicated that shearing was present despite the very low depth of cut.  The chips varied in 

length from 1.6 – 961 μm and varied in average width from 0.4 – 0.75 μm.  Three chips 

types were observed: ribbon chips, washer-type helical chips, and tubular chips [132]. 

Each chip type is shown in Fig. 4.7.  Chip morphology is examined in more detail in 

Experiment 2. 

 

Figure 4.7: Chips seen in Experiment 1: (A) ribbon, (B) washer-type helical, and (C) 

tubular chips 

4.4 Experiment 2: Short, Single Tool Pass Cuts 

Following Experiment 1 it became clear that a systematic evaluation of the effects 

of cutting speed, tool orientation due to mounting angle, and cutting load was necessary.  

Wear data from Experiment 1 suggested that wear should be evaluated over shorter cuts 

in order to judge how much wear was due to rapidly occuring fracture and how much was 

due to slower abrasion.  Groove formation data suggested that only one tool pass often 

did most of the cutting and that it would be beneficial to consider grooves formed with 

only one tool pass.  The wear and groove geometry resulting from cutting at very low 

speeds (1.2 mm/min) suggested that there is little benefit in cutting so slowly.   
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In Experiment 2, cutting speed, mounting angle, and cutting load were varied over 

two levels each in a factorial scheme.  During each test, six parallel 1.5 mm long straight 

grooves, spaced 10 μm apart, were cut using one tool pass.  The test conditions are listed 

Table 4.3.  Also, during each cut the load was ramped up to the full nominal load over the 

first 0.5 mm of the cut.  Lastly, the angular orientation of the AFM tip was measured 

during groove cutting by setting the confocal laser displacement sensor into scanning 

mode, as described in Chapter 3, such that the laser beam continuously scanned across 

the AFM cantilever. 

Table 4.3: Experiment 2 test conditions 

Test 2A 2B 2C 2D 2E 2F 2G 2H 
Speed (mm /min) 25 25 25 25 15 15 15 15 

Mounting Angle (deg) 5 5 30 30 5 5 30 30 
Load (mN) 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 

 
4.4.1 Tool Wear 

The worn tool from each test was examined with a SEM.  Table 4.4 contains the 

tabulated wear data.  A factorial effect analysis was performed using wear and wear 

radius value as the responses.  Figure 4.8 shows two-way plots of the factors that affect 

wear.  It can be seen that wear increased significantly with increased cutting load.  It also 

increased significantly with increasing mounting angle.  This latter effect was much more 

dramatic at the higher cutting speed and higher load.  Furthermore, SEM images showed 

that significant tool fracture tended to occur at high mounting angles. This is consistent 

with the tendency of tools with more positive rake angles to experience fracture-based 

wear due to less material supporting the cutting edge. 
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Table 4.4: Tool wear data from Experiment 2 

Test Speed  
(mm/min) 

Mounting  
Angle (deg)

Load 
(mN) 

Major 
Fracture

Worn 
Tip Profile 

Wear 
(μm) 

Wear 
Radius 
(μm) 

2A 25 5 0.25 No Round 0.25 0.13 
2B 25 5 0.5 No Round 0.51 0.45 
2C 25 30 0.25 No Round 0.47 0.39 
2D 25 30 0.5 Yes Jagged 2.79 0.21 
2E 15 5 0.25 No Round 0.41 0.33 
2F 15 5 0.5 No Round 0.70 0.22 
2G 15 30 0.25 Yes Flat 0.65 0.22 
2H 15 30 0.5 Yes Round 1.64 0.75 

 

 

Figure 4.8: Interactions affecting wear 

Figure 4.9 shows two-way plots of the factors that affect the wear radius.  It can 

be seen that the resultant wear radius increased with increased load at low speeds and 

high mounting angles or at high speeds and low mounting angles.   Conversely, the wear 

radius decreased with increased load at low speeds and low mounting angles or high 

speeds and high mounting angles.  Note that at high mounting angles, the tip tends to 

experience fracture and can appear sharp while being unsuitable for cutting.  The 

relatively large wear radius seen at a high speed, high load, and low mounting angle was 

probably the result of significant abrasive rounding due to the large depth of cut at that 

condition. 
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Figure 4.9: Interactions affecting wear radius 

Comparison of the lowest wear conditions in the first and second experiments 

(tests 1A & 1B and tests 2A & 2B, respectively) showed that the amount of wear when 

cutting a total of 190 mm was only 0.16 – 0.26 μm greater than the amount of wear when 

cutting a total of 9 mm.  This indicates that the majority of wear occurred very early in 

each test.  This is taken to be due to a small amount of fracture early in each test followed 

by a long, very slow period of abrasive wear. 

4.4.2. Groove Geometry 

Five AFM images were captured of each of the six grooves cut in each test.  Each 

image covered a 3 μm by 3 μm area and images of the same groove were spaced 100 μm 

apart.  The only exception was test 2D where the groove was too shallow to easily 

measure and only one image was taken.  AFM images from the first groove in each test 

are shown in Fig. 4.10:  Note that the apparent side ridges in the AFM images can in 

some cases be folded-over burrs that appear like ridges due to limitations in AFM 

imaging.  The folded-over nature of the burrs in Experiments 1 and 2 can be seen in SEM 

images of the grooves, such as those in Fig. 4.2.  All the images from each test were also 

used to calculate parameters describing groove geometry and the calculated values are 

tabulated in Table 4.5.   
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(2A) 25 mm/min, 5°, 0.25 mN (2B) 25 mm/min, 5°, 0.5 mN 

(2C) 25 mm/min, 30°, 0.25 mN (2D) 25 mm/min, 30°, 0.5 mN 

(2E) 15 mm/min, 5°, 0.25 mN (2F) 15 mm/min, 5°, 0.5 mN 

(2G) 15 mm/min, 30°, 0.25 mN (2H) 15 mm/min, 30°, 0.5 mN 
 

Figure 4.10: AFM images of selected Experiment 2 grooves 
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Table 4.5: Experiment 2 groove geometry 

Test 2A 2B 2C 2D 2E 2F 2G 2H 
Speed (mm/min) 25 25 25 25 15 15 15 15 
Mounting Angle (deg) 5 5 30 30 5 5 30 30 
Load (mN) 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 
Groove  Ave 0.00 0.24 0.05 0.01 0.05 0.06 0.05 0.01 
Depth (μm) Std 0.01 0.02 0.04 - 0.03 0.04 0.01 0.02 
 Min 0.00 0.15 0.00 - 0.00 0.00 0.00 0.00 
 Max 0.04 0.29 0.15 - 0.16 0.18 0.09 0.07 
Groove  Ave 0.03 0.54 0.24 0.34 0.24 0.39 0.21 0.05 
Width (μm) Std 0.06 0.03 0.10 - 0.11 0.22 0.05 0.11 
Groove  Ave 0.04 0.06 0.04 - 0.36 0.05 0.02 0.01 
Skewness Std 0.27 0.05 0.38 - 0.72 0.22 0.27 0.07 
Groove  Ave 2.16 2.14 2.34 - 2.96 2.28 2.17 2.13 
Kurtosis Std 0.40 0.05 0.91 - 2.27 0.43 0.54 0.06 
Burr Height Ave 0.51 0.42 0.17 - 0.23 0.31 0.17 0.36 
(μm)  Std 0.29 0.10 0.08 - 0.14 0.13 0.08 0.12 

 
In Table 4.5, groove depth is defined as the distance between the original surface 

and the lowest point in the groove.  Groove width is how wide the groove is at the level 

of the original surface. Groove skewness and kurtosis are the same parameters used to 

describe the shape of a statistical distribution.  The magnitude of skewness indicates the 

amount of asymmetry in the groove. Kurtosis indicates how square verses peaked the 

groove is.  Lastly, burr height is an estimate of the height of a burr had it not folded over.  

An effect analysis was performed on each of these responses. 

Figure 4.11 shows the effects of the cutting conditions on groove depth via the 

three-factor interaction among the variables under study. Similarly, Fig. 4.12 shows the 

effects of the cutting conditions on burr height via the three-factor interaction among the 

variables under study.   
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Figure 4.11: Three-factor interaction affecting groove depth 

 

Figure 4.12: Three-factor interaction affecting burr height 

It can be seen in Fig. 4.11 that groove depth generally decreased with increased 

mounting angle.  Groove depth increased with increasing load at a low mounting angle 

and decreased with load at a higher mounting angle and high cutting speed.  The change 

in groove width with cutting conditions shows similar trends, which is reasonable since 

the engaged portion of the AFM tip widens with increasing depth of cut.  Comparison of 

groove skewness and kurtosis showed that squarer grooves tended to be very symmetric 

while more peaked grooves tended to be more skewed.  Also, the test condition that 

resulted in the deepest groove resulted in nearly the squarest groove shape.   

It can be seen in Fig. 4.12 that burr height is highly dependent on mounting angle 

at high speeds but not at low speeds.  Burr height increases with load at low speed but 

decreases with load at high speed.  Hence the interaction of speed with load and speed 



 134

with mounting angle is very important.  Note that the zero burr height at a high mounting 

angle, high speed, and high load was due to the extremely small amount of material 

displaced.  Also, burr height at a low mounting angle, high speed, and high load is large 

because of the large amount of material displaced.  

4.4.3 Effective Rake Angle during Cutting 

In machining, rake angle has a strong influence on cutting forces and the quality 

of cut surfaces.  As discussed in Chapter 2, the effective rake angle is set by the radius of 

the tool relative to the uncut chip thickness and by the orientation of the cutting tool.  In 

this chapter the tool orientation is allowed to vary as a function of cutting load and tool 

mounting angle.  The value of effective rake angle for each of the cutting conditions in 

Experiment 2 is calculated in order to evaluate the range of possible values when using a 

diamond coated AFM probe as a tool and in order to better evaluate the effect of effective 

rake angle on cutting performance.  

During cutting, the confocal laser displacement sensor was set to continuously 

scan across the AFM cantilever.  For each cut, all of the scans taken over the fully-loaded 

portion of the cut were averaged and a third-order polynomial was fit to the average 

profile using least squares.  The polynomial provided the orientation of the end of each 

cantilever and hence the orientation of each AFM tip / cutting geometry during cutting. 

Once the orientation was known, SEM images of the sides of the AFM tips used 

in the experiment before and after cutting were rotated to show the orientation of the tips 

during actual cutting.  Figure 4.13 shows images of the tool from each test where the new 

tip is shown on the left and the same tip after wearing is shown on the right.  The left face 

of each tip is the rake face and each tip is shown orientated how it would have been 
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during cutting if the workpiece was moving from left to right across the page.  The 

cutting edge is the lowest point in each image. 

 (2A) 25 mm/min, 5°, 0.25 mN  (2B) 25 mm/min, 5°, 0.5 mN  (2C) 25 mm/min, 30°, 0.25 mN

 (2D) 25 mm/min, 30°, 0.5 mN  (2E) 15 mm/min, 5°, 0.25 mN  (2F) 15 mm/min, 5°, 0.5 mN 
 

 (2G) 15 mm/min, 30°, 0.25 mN  (2H) 15 mm/min, 30°, 0.5 mN  
 

Figure 4.13: New (left) and worn (right) AFM tips in cutting orientation with rake faces 

on the left side 

Each image was used to calculate the ideal rake angle, i.e. the rake angle 

calculated without taking edge radius into account, and the edge radius of the tool.  

Assuming that the uncut chip thickness was equal to the resultant groove depth, the 

effective rake angle at the start and end of each cut was calculated as described in 

Chapter 2.9.1.  The resultant effective rake angles are listed in Table 4.6. 

As can be seen in Table 4.6, the ideal rake angle could be either positive or 

negative depending on the mounting angle.  However, the most positive effective rake 

angle, -40.5°, occurred when a high speed, low mounting angle, and high load was used.  

This means that the use of a higher mounting angle resulted in a much more positive ideal 

rake but the effective rake could be more negative.  Also, the highly negative rake angles 
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observed suggest that, despite significant chip formation, a large amount of ploughing 

also occurred.  This is supported by the presence of side burrs. 

Table 4.6: Calculated rake angles during groove cutting 

Ideal Rake 
(deg) 

Tip / Edge  
Radius (μm) 

Effective   
Rake (deg) 

Test Speed  
(mm/min) 

Mounting 
Angle 
(deg) 

Load 
(mN)

New Worn New Worn New Worn 
2A 25 5 0.25 -17.9 -18.3 0.15 0.13 -87.1 -84.4 
2B 25 5 0.5 -19.0 -19.0 0.19 0.45 -40.5 -53.0 
2C 25 30 0.25 10.3 10.3 0.16 0.39 -71.5 -79.7 
2D 25 30 0.5 9.4 9.3 0.17 0.21 -78.4 -46.8 
2E 15 5 0.25 -14.7 -14.7 0.17 0.33 -64.2 -70.4 
2F 15 5 0.5 -18.9 -18.9 0.13 0.22 -66.7 -68.8 
2G 15 30 0.25 11.0 11.0 0.20 0.22 -69.3 -54.1 
2H 15 30 0.5 8.6 7.6 0.19 0.75 -81.1 -83.7 

 
4.4.4 Chip Morphology 

An SEM was used to examine the chips stuck to each used tool and a 0.25 mm 

long segment of each cut.  The presence of these chips indicates that at least some portion 

of the cuts made at each test condition involved shear-based cutting mechanics.  

However, this does not necessarily mean that chip formation occurred at all points in 

each cut.  For instance, during tests 2A and 2H, which have the largest negative effective 

rake angles, significant groove formation, and hence chip formation, only occurred at the 

start of each cut and was followed by a section with very low and even zero groove 

depth.  In the other tests, except test 2B, short sections of zero groove depth were 

observed where chip formation may also have not occurred, although some of these 

sections may be the result of debris in the groove.  This variable depth phenomenon was 

not seen in Experiment 1, likely due to the presence of multiple tool passes. 

In both Experiments 1 and 2, most of the chips shared common features.  At least 

one side of a chip had a serrated texture typical of segmented chip formation at the 
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macro-scale when adiabatic shear band formation occurs due to thermo-plastic instability 

[87]. Such shear bands tend to occurs in materials, such as aluminum, where the decrease 

in flow stress due to thermal softening can be greater than the increase in flow stress due 

to strain hardening [87].  Additionally, most chips have wispy side-fringes from where 

the metal was sheared at the sides of the groove as the chip was formed.   

The chips from Experiment 2 are shown in Fig. 4.14.  The chip types were ribbon 

chips and washer-type helical chips [132], which are the same chip types that appeared in 

Experiment 1 at cutting speeds of 15 mm/min or higher.  Examples of ribbons chips and 

washer-type helical chips can be seen in Fig. 4.14(2A) and 4.14(2H), respectively.  

Observations about the chips from each test are contained in Table 4.7. 

Table 4.7: Experiment 2 chip morphology 

Test 2A 2B 2C 2D 3E 2F 2G 2H 
Speed  25 25 25 25 15 15 15 15 
Mounting Angle  5 5 30 30 5 5 30 30 
Load 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5 
Chip Type R R W/R R R R R W 
Snarling Med No No No No No Low No 

Min 1.0 2.0 1.1 4.2 1.7 2.4 1.5 2.5 
Max 18.3 378 25.6 4.7 22.3 19.5 10.7 94.2 
Mean 6.4 122 7.2 4.5 9.3 7.7 4.6 25.9 

Chip  
Length 
(um) 

Std 5.5 143 5.6 0.3 7.2 7.0 2.5 26.4 
Mean 0.64 0.78 0.51 1.04 0.75 0.93 0.43 0.57 Width   

(um) Std 0.16 0.20 0.10 0.26 0.13 0.17 0.12 0.12 
Chip Type Key   (R)ibbon (W)asher-Type Helical 

 
Table 4.7 shows the average chip widths to be larger than the average groove 

widths, suggesting partial ploughing and attachment of some of the burrs to the chips.  

Average chip width and average groove width also showed the same tends with cutting 

conditions.  This behavior suggests that only one chip was formed at a time. 
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(2A) 25 mm/min, 5°, 0.25 mN (2B) 25 mm/min, 5°, 

0.5 mN 
(2C) 25 mm/min, 30°, 0.25 mN

 
(2D) 25 mm/min, 30°, 0.5 mN (2E) 15 mm/min, 5°, 

0.25 mN 
(2F) 15 mm/min, 5°, 0.5 mN 

 

 

(2G) 15 mm/min, 30°, 0.25 mN (2H) 15 mm/min, 
30°, 0.5 mN 

 

 
Figure 4.14: Example chips from test 2A and test 2H 

It was also found that the number of tool passes had a significant effect on chip 

morphology.  For instance, when using only one tool pass in test 2A, ribbon-type chips 

resulted, but when using five tool passes in test 1A snarled washer-type helical chips 

resulted.  Additionally, the washer-type helical chips in Experiment 2 were less tightly 

coiled and only occurred at high mounting angles.  By contrast, high mounting angles 
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resulted in ribbon chips and some chips that could be broken up washer-type helical chips 

in Experiment 1.  This change in chip morphology is likely due to the very shallow depth 

of cut following the first tool pass. 

4.5 Experiment 3: Continuous Curved Cut 

During the second experiment, the cutting of short straight groove was evaluated.  

However, for many manufacturing applications, a curved groove may be desirable.  In 

order to evaluate the ability to cut such grooves a third experiment was conducted. 

The best condition from Experiment 2 was identified as a speed of 25 mm/min, a 

mounting angle of 5°, and a nominal load of 0.5 mN.  This condition was used to conduct 

test 3A.  In this test, the translational stages and workpiece rotary stage of the mMT were 

used to cut a continuous spiral pattern.  The inner radius of the spiral was 236 μm, the 

spacing between revolutions was 3 μm, and groove length was 82 mm.  A section of the 

spiral shaped groove is shown in Fig. 4.15.  The groove curvature is clearly visible and 

the groove is both well-formed and continuous.   

 

Figure 4.15: SEM images of a groove cut in a spiral pattern 

AFM images were taken of sections from the first fifteen revolutions of the 

groove, i.e., over the first 24 mm. An AFM image from the first revolution is shown in 
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Fig. 4.16.  It was found that the bottom of the groove was tilted slightly so that the 

deepest part of the groove was on the side of the groove centerline closer to the center of 

the spiral.  A like cause is that forces generated during the cut that were transverse to the 

direction of cut caused the AFM cantilever to twist.  The tilt might be corrected by using 

an AFM tip with appropriate side relief angles to minimize forces on the tool due to 

contact with the groove sidewall, or by using a more torsionally-stiff AFM cantilever. 

 

Figure 4.16: AFM image of a spiral-shaped groove section 

Fig. 17 shows plots of the groove depth and groove width as a function of 

distance cut.  Groove depth decreased over the course of the cut, which is consistent with 

results from Experiment 1 that indicate a reduction in groove depth with wear.  This 

reduction happens early in the cut and then stabilizes, which supports the existence of an 

initial period of fast tool wear followed by a period of much slower tool wear. 

 

Figure 4.17: Groove depth and width vs. distance cut 
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4.6 Discussion of Results  

In this chapter, the performance of the developed micro-groove cutting process 

was evaluated via three experiments where diamond-coated AFM probes were used as 

tools.  These experiments showed that the process has great promise for use in producing 

micro-grooves.  For instance, curved grooves as long as 82 mm with depths up to 0.29 

μm could be cut using a single tool pass and cutting speeds at least as high at 25 mm/min.   

It was found that even at the very small size scale involved, significant chip 

formation occurred during groove cutting.  However, there is also evidence that 

considerable ploughing of workpiece material occurred, particularly when using low 

loads or cutting conditions that give rise to highly negative effective rake angles.  Groove 

geometry was found to be highly dependent on cutting conditions, and for the tools used, 

the best grooves were formed when using the highest cutting speed, highest cutting load, 

and lowest probe mounting angle tested.  Groove depth consistency was also found to be 

improved by the use of multiple tool passes. 

 The only major problem identified was the presence of significant tool wear, 

which decreases groove quality, decreases groove precision, and can in extreme cases 

render it impossible to cut a recognizable micro-grooved.  It was found that tool wear was 

the most severe when using a high mounting angle because catastrophic fracture of the 

AFM tips tended to occur.  This is likely because increasing the mounting angle increases 

the rake angle of the tool and decreases the amount of material supporting the cutting 

edge, which is an issue also seen with macro-scale tools.  However, even when there was 

not catastrophic tool fracture, there was still significant wear, which consisted of a initial 
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period of fast more limited fracture-based wear followed by a long period of slow 

abrasive wear.   

Therefore, it can be concluded that initial experiments showed that the micro-

groove cutting process might be able to meet the process requirements outlined in 

Chapter 1.  However, commercial diamond-coated AFM probes are simply not suitable 

for use as tools because they are too limited in terms of their geometries, are too fragile, 

and wear too heavily.  This is not unreasonable since AFM probes are optimized for use 

in metrology and are not intended for use as cutting tools in such a demanding 

application as micro-groove cutting.  However, since this wear is largely fracture-based 

the solution to the problem is to simply design a cutting geometry that is more 

structurally sound.  Furthermore, by switching to a hard monocrystalline tool material 

like diamond or cubic boron nitride, instead of using polycrystalline diamond-coated 

silicon, the issue of abrasive wear can also be mitigated.  The design, fabrication, and 

testing of such improved flexible cutting tools is the subject of the next chapter.  
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Chapter 5 

Design and Fabrication of Flexible Micro- 
Groove Cutting Tools 

5.1 Chapter Introduction 

5.1.1 Motivation 

 In the previous chapter the viability of the micro-groove cutting process, 

described in Chapter 3, was demonstrated.  However, it was also shown that commercial 

AFM probes, even if coated with polycrystalline diamond, are not very good cutting 

tools.  In particular, AFM probes like the ones used in the previous chapter are shaped 

such that only grooves with bowl-shaped cross-sections can be produced.  Additionally, it 

was shown that such probes are not robust enough to withstand the forces they are 

subjected to when cutting under the conditions described in the previous chapter, which 

results in highly undesirable tool fracture.   

 However, the poor performance of the commercial AFM probes was not totally 

unexpected.  This is because commercial AFM probes are optimized for metrology 

applications where they are subjected to extremely small forces on the order of 

micronewtons.  However, the much more demanding cutting process described in this 

work subjects the tool to forces on the order of a few millinewtons.  This motivates the 

development of tool geometries specifically intended for used with the micro-groove 

cutting process rather than just relying in existing AFM probe geometries.  The design, 

fabrication, and testing of such tools is the subject of this chapter. 
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5.1.2 Overview 

 This chapter addresses design and fabrication of flexible cutting tools with 

suitable geometries for micro-groove cutting.  This topic is addressed by proposing a 

general set of cutting geometry design principles.  These principles were established 

through examination of successful tool geometries used for groove cutting at the macro-

scale and through consideration of the sorts of tool geometries that can be fabricated at 

the micro-scale.  In particular, the capabilities and limitations of fabrication by focused 

ion beam (FIB) machining were considered.  A set of fabrications steps capable of 

producing a wide range of geometries is also presented, and the implementation of these 

steps using commercially available equipment is discussed. 

5.2 Flexible Tool Design Principles 

 In the previous chapter, it was found that AFM probes are not robust enough to 

serve as effective cutting tools due to their geometry.  Additionally, such probes are 

limited in terms of the groove cross-sections they can produce.  Therefore, new tools 

were developed to reduce or eliminate these problems. 

 The new tools consist of a flexible cantilever with a piece of single-crystal 

diamond, with a prescribed cutting geometry, attached to one end.  Other materials such a 

cubic boron nitride (CBN) can also be used for cutting grooves in ferrous materials.  In 

this work, these tools were fabricated by modifying single-crystal diamond AFM probes 

via focused ion beam (FIB) machining, which was identified as suitable for achieving the 

types of geometries required for an effective cutting tool. 

 Cutting geometry requirements imposed by groove cutting in general were found 

by considering the shapes of existing tools that are also suitable for groove cutting such 
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as shaping tools, planing tools, and parting tools Requirements imposed by tool 

fabrication were found by considering the capacities and limitations of FIB machining.  

Requirements imposed by the cutting process were found by considering the results of 

the experiments described in the previous chapter.  These requirements are listed below 

and an example tool geometry that meets these requirements is shown in Fig. 5.1. 

 
1. The cutting edge radius, re, should be as small as possible to minimize ploughing and 

maintain a more positive effective rake angle. 

2. There should be plenty of material behind the cutting edge to support it so that it does 

not break off due to tool fracture like was seen in the previous chapter. 

3. The tool should have a suitable end clearance angle, βe, and side clearance angles, βs1 

and βs2, to minimize rubbing between non-cutting faces of the tool and the workpiece.  

Such rubbing can cause twisting of the tool during curvilinear cuts, can cause the tool 

to not cut straight, and may contribute to burr formation. 

4. Sharp corners should be avoided where the cutting geometry is joined to the rest of 

the tool in order to minimize stress concentrators that could cause premature tool 

breakages.  Rather, fillets should be used where possible. 

5. It should be possible to fabricate the tool using only through cuts because precise 

depth control during FIB machining is difficult. 

6. It should be possible to easily cut the geometry out of a tool blank shaped like a three-

sided pyramid since most diamond AFM probes will initially have this geometry. 

7. As described in Chapter 3, during process planing a tool deflection and mounting 

angle is selected that insures that a desired load and rake angle is achieved.  It is 

desirable for the mounting angle to at least be a few degrees in order to insure that the 
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cutting geometry, and not any other part of the tool, contacts the workpiece.  Hence, 

the rake face should be cut in an orientation that insures that this is possible. 

 

Figure 5.1:  Groove cutting geometry schematic 

Figure 5.2 shows progressively greater magnifications of an actual flexible cutting 

tool with a similar cutting geometry to the one shown in Fig. 5.1.  This tool, and all other 

tools described herein, was fabricated from a diamond AFM probe manufactured by 

Micro Star Technologies that consists of a single-crystal diamond AFM tip bonded to a 

sapphire cantilever with a metallic adhesive.  The cantilever is similarly bonded to a 

sapphire substrate.  Additionally, the probe is glued to a small aluminum plate using a 

silver-filled epoxy in order to facilitate handing.  The method by which this tool was 

fabricated is described in the next subsection. 
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Figure 5.2:  Example FIB machined flexible diamond tool with a rectangular rake face 

5.3 Tool Fabrication Process Plan 

Cutting tools have been fabricated by modifying commercial single-crystal 

diamond tipped AFM probes using a FEI Dual Beam 235 FIB machine.  During 

fabrication, the diamond tipped AFM probes essentially serve as tool blanks that were 

selected because they already had much of the required tool geometry.  The particular 

probes used had a diamond tip with a three-sided pyramidal geometry.  Hence, the tool 

fabrication process becomes a series of FIB machining steps required to cut a tool 

geometry out of a blank shaped like a three-side pyramid.  However, the FIB machining 

process could also be used with diamond blanks, or blanks made of other hard materials, 

which do not initially have a pyramidal shape. 

For tools with one straight cutting edge, like the tool shown in Fig. 5.2, 

modification of this diamond tip involves making four through cuts.  These cuts are 

shown in Fig. 5.3, where the solid gray region is removed in each cut and the tip is 

oriented such that the ion beam points into the page.  The first cut forms the rake and end 
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clearance faces.  The second and third cuts form the side clearance faces.  The fourth cut 

intersects the rake face to form the cutting edge.   

 

Figure 5.3: Single crystal diamond tool fabrication steps 

The use of through cuts, the directions of the cuts, and the sequence of the cuts were 

selected to mitigate three problematic issues associated with FIB machining.  The first 

issue is that it is difficult to control the exact depth of cut when machining using a 

focused ion beam.  This is because the depth of cut, as a function of time, depends on 

many factors including ion beam current, how fast the beam is swept over the workpiece, 

the workpiece material, the crystalline orientation of the material, and the angle of 

incidence of the beam.  Furthermore, when cutting a blind pocket it can be difficult to 

even judge what the depth of cut is.   The use of through cuts exclusively, eliminates the 

difficulties associated with this issue because it is very easy to determine when a through 

cut is complete by taking an image of the tool blank using the same ion beam that is 

doing the cutting. 
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The second issue is that in order to align a workpiece relative to the ion beam, it is 

necessary to use the same ion beam to image the workpiece much a electron beam would 

be used in an SEM.  During imaging the ion beam is set to a lower beam current than 

when intentionally cutting to reduce the material removal rate.  However, any finished 

face facing the ion source will still be etched and degraded due to the imaging process.   

This issue is dealt with by orienting the sample such a critical face of the tool never faces 

the ion beam.  For instance, in the first cut, the face of the tool blank that faces the ion 

beam is the same face that is to be removed in the third cut.  Also, in the last three cuts 

only the backside of the tool, opposite the rake face, ever faces the ion source.   

The third issue is that the ion beam does not consist of an infinity thin stream of 

ions that can be perfectly described with a vector.  Rather the beam consists of a 

Gaussian distribution of ions that is spatially centered on a vector describing the beam 

direction.  This means that when cutting, most of the ions will strike a target location, but 

some ions will also strike points around the target location.  Hence, if a pocket is cut by 

rastering the ion beam on a set area, all of the edges and corners of the pocket will be 

rounded. 

The third issue, which could potentially cause excessive rounding of the cutting 

edge, is also dealt with by cutting from the direction opposite of the rake face during the 

last three cuts.  This is because when cutting through a piece of material, a sharper edge 

is formed on the side furthest from the ion source because the bulk of the material shields 

that edge from the Gaussian distribution of ions that round the edge formed on the side 

facing the beam [20].  The fourth cut in particular is intended to take advantage of this in 

order to get the sharpest possible cutting radius, which was 50 - 64 nm is most cases.  
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However, if a rake face shape such as a v-shape or curved shape does not lend itself to 

the use of a fourth cut, that step can be eliminated at the cost of a larger cutting edge 

radius in the neighborhood of 100 nm. 

5.4 Tool Fabrication Procedure 

The previous subsection described a series of FIB cuts that can be used to modify 

an existing single-crystal diamond AFM probe, henceforth referred to as a tool blank, in 

order to produce a tool geometry suitable for cutting micro-grooves.  Now the 

implementation of these cuts using a FEI Dual Beam 235 FIB machine is described. 

The exterior of the FEI Dual Beam 235 FIB machine along with its control 

console is shown in Fig. 5.4, and the interior of its vacuum chamber is shown in Fig. 5.5.  

Both an electron beam column and an ion beam column are incorporated into the 

machine, which are each terminated by a pole piece within the vacuum chamber.  The 

electron column is orientated vertically and the ion column is titled so that it is set 52° 

from vertical.  The presence of these two columns allows the same machine to be used 

for scanning electron microscopy, FIB microscopy, and FIB machining.  The difference 

between FIB microscopy and FIB machining is that a much lower beam current is used in 

the former than the latter.  However, some etching of a sample will still occur when 

imaging with an ion beam.   

The sample to be imaged / cut is typically mounted onto a standard aluminum 

SEM sample stub that can be rotated using a motorized stage.  This rotary stage in turn 

sits on a motorized 3-axis stage.  Lastly, the 3-axis stage sits on a motorized sample tilt 

stage.  This 5-axis movement is useful for sample positioning, but is limited in regards to 

achievable sample orientations because of limits on stage travel imposed by the confines 
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of the vacuum chamber of the machine and by the placement of delicate components 

within the vacuum chamber. 

 

Figure 5.4: FEI Dual Beam 235 FIB machine exterior 

 

Figure 5.5: FEI Dual Beam 235 FIB machine vacuum chamber 
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In order to make the through cuts shown in Fig. 5.3 the tool blank must be rigidly 

mounted to a sample stub, and there must be electrical contact between the tool blank and 

sample stub.  The tool blank must also be precisely positioned and aligned relative to the 

direction of the ion beam prior to each cut.  Due to limitations in the travel of the five 

positioning stages, the later requirement means that the tool blanks must be mounted to a 

sample stub in specific orientations instead of arbitrarily. 

Figure 5.6A shows one of the AFM probes that are used as tool blanks.  As 

indicated by the scale bar in the image, the chip that the cantilever is mounted to is very 

small and can be difficult to handle.  To ease handling, some of the blanks were glued 

into divots in small aluminum plates using an electrically conductive silver filled epoxy, 

as shown in Fig. 5.6B.  Therefore, a way of mounting either of the configurations in such 

a way as to enable the four cuts in Fig. 5.3 is required. 

   

Figure 5.6: Tool blanks 

In order to make the first cut, the tool blank must be oriented such that the ion 

beam travels in a direction perpendicular with the tool cantilever, as shown in Fig. 5.7A.  

Additionally, to make the last three cuts, the tool blank must be oriented such that the ion 

beam travels in a direction coincident with the axis of the cantilever and towards the chip 

the cantilever is bonded, as shown in Fig. 5.7B.    

(A) 

(B)
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Figure 5.7: Required ion beam directions in first cut (A) and last three cuts (B) 

The ion beam in the FEI Dual Beam 235 FIB machine travels in a direction 52° 

from vertical.  Due to limits in the travels of the machine stages, this means that the tool 

blanks must be mounted to a 45°-angle sample stub during machining on order for the 

required orientations to be achievable.  A common way for attaching a sample to such a 

sample stub would be to use double-sided carbon tape.  However, this proved to not be 

rigid enough and allowed too much tool blank movement during FIB machining.  To 

alleviate this issue, a fixture was fashioned, shown in Fig 5.8A, that incorporates a vice 

that can hold the stand-alone tool blanks shown in Fig. 5.6A and that incorporates bolt 

holes to allow for fixturing of the mounted blanks shown Fig. 5.6B.  

    

Figure 5.8: Fixture for use in FIB machining AFM probe 

(A) (B)

Ion Beam

Ion Beam

(A) (B)

(1)

(2) 
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 The fixture is oriented within the FEI Dual Beam 235 FIB machine as shown in 

Fig. 5.9.  During the first cut, the fixture holds the blank in the first orientation labeled in 

Fig. 5.8B. This allows the ion beam to strike the side of the blank as shown in Fig. 5.7A.  

Prior to the second cut, the blank is removed from the fixture and replaced in the second 

orientation labeled in Fig. 5.8B. This allows the ion beam to strike the side of the blank as 

shown in Fig. 5.7B, which is necessary for the last three cuts.  These two different 

fixturing orientations were required due to limitations in the travel of the FIB machine 

stages.  However, a machine with a different stage configuration would not have this 

issue.  This would be beneficial since manually changing the position of a blank in the 

fixture requires venting and subsequent pumping down of the FIB vacuum chamber, 

which takes approximately 30 minutes to complete. 

 

Figure 5.9: Arrangement of fixture inside FEI Dual Beam 235 FIB during tool fabrication 

During FIB machining, the ion beam removes material by repeatedly sweeping 

the beam over areas where material is to be removed.  The trajectory that the beam 

follows, and hence of shape of the specified area, is controlled by a beam trajectory file.  
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This file is generated by software included with the machine that accepts a bitmap image 

where areas to be machined area in black and areas to be left alone are in white and a 

value indicating the distance per pixel in the bitmap image.  In addition to generating the 

beam trajectory file, the software also specifies the magnification that the machine should 

be set to during machining using the beam trajectory file generated.  Example images 

suitable for producing a tool like the one in Fig. 5.2 and are shown in Fig. 5.10. 

 

 

 

Figure 5.10: Image masks used during FIB machining 

Once the beam trajectory files have been prepared and the fixture is placed within 

the FIB machine, the following steps are followed to make each of the cuts.  First, the ion 

beam current is set low enough current that images can be taken of the blank using the 

Cut 1 Rough 
Pass Mask 

Cut 1 Finish 
Pass Mask 

Cut 2 Rough 
Pass Mask 

Cut 2 Finish 
Pass Mask 

Cut 3 Rough 
Pass Mask 

Cut 3 Finish 
Pass Mask 

Cut 4 Mask
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ion beam without the blank being etched very quickly (~ 10 pA) and the beam trajectory 

file for the cut is loaded.  Second, the blank is imaged with the ion beam in real time, and 

the area to be cut appears superimposed on the image.  The machine is set to the 

magnification provided by the software that produced the beam trajectory file and its 

stages are adjusted to get the area to be cut to line up with the appropriate location on the 

blank.  The ion beam path can also be electronically shifted slightly to allow for 

extremely fine alignment adjustments.  Third, the ion beam is set to scan along the path 

indicated by the beam trajectory file and the ion beam current is increased (~500 – 7000 

pA).  High ion beam currents, which result in fast but lass controlled cutting, are useful 

for hogging out material and lower ion beam currents are useful for finish passes.  Fourth, 

periodically, the machine is momentarily set back into imaging mode in order to see how 

far the cut has progressed.  Each FIB cutting operation is allowed to continue until the ion 

beam has removed all required material. 

5.5 Chapter Summary 

 This chapter described the design and fabrication of flexible cutting tools with 

cutting geometries intended to be significantly more effective than the geometries of the 

commercial AFM probes used as tools in the Chapter 4.  This involved the proposal of 

several tool design principles, introduction of a versatile tool fabrication procedure, and 

discussion of how this procedure was implemented using a commercial FIB machine.  In 

the next chapter, a series of experiments are described that evaluate the effectiveness of 

the new tool geometries introduced in this chapter. 
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Chapter 6 

Experiments Using FIB Machined Flexible 
Single-Point Cutting Tools 

6.1 Chapter Introduction 

 In the previous chapter a method of fabricating flexible cutting tools with 

geometries tailored to micro-groove cutting was described.  This chapter addresses 

evaluation of the performance of these tools when used to cut micro-grooves under 

various conditions.  This is accomplished by describing six experiments that evaluate 

micro-groove cutting under different conditions and while using different tool 

geometries.  The first four of these experiments involve cutting individual grooves that 

are spaced far enough apart to avoid complicating effects such as displaced material from 

one groove being involved in the formation of another groove.  These experiments 

establish relationships between process parameters, i.e., cutting load, cutting speed, and 

tool shape, and process outputs including groove shape, groove quality, tool wear, and 

chip morphology.  Of these relationships, the one between cutting conditions and groove 

shape is of particular interest because, due to the flexible nature of the tools, depth of cut 

cannot be controlled directly but rather is a function of cutting conditions, tool geometry, 

and workpiece material. 

 Tools capable of cutting relatively wide rectangular grooves, suitable for micro-

fluidics and surface texturing applications, are used in the first and fourth experiments 

where one micron wide grooves are cut using various cutting loads and speeds.  A 
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narrower tool, suitable for cutting rectangular grooves that could be used in high-density 

micro-heat exchangers, is used in the second experiment.  A tool suitable for cutting 

compound v-shaped grooves that could be used in optical applications such a light guides 

is used in the third experiment where the capability of achieving a desired groove shape 

with close tolerance is considered.  Note that compound v-shaped grooves, instead of 

simple v-shaped grooves, were considered because they represented a feature that was 

more difficult to manufacture and that had an actual application in LCD light guides. 

 The last two experiments explore interactions between existing grooves and 

grooves that are being cut because there are applications where such interactions are 

unavoidable.  Such interactions may occur in micro-optics applications, where grooves 

may need to be so closely spaced that material deformed during the formation of one 

groove is involved in the formation of another groove.  Also, when forming surface 

texturing patterns or networks of micro-fluidic channels it may be necessary to intersect a 

new groove and an existing groove.  For these reasons, the effects of cutting one micron 

wide parallel grooves in close proximity to each other were considered in a fifth 

experiment.  Also, the effects of cutting intersecting grooves under varying machining 

conditions and with different groove patterns were considered in a sixth experiment.  

6.2 Tools Used in Experiments 

 Three single-crystal diamond tools were fabricated and each tool was examined 

with an SEM in order to quantify the actual geometry that was achieved.  For example, 

Fig. 6.1 shows several images that describe tool D1.  The characteristics of each tool are 

listed in Table 6.1.  The listed back rake angles and end clearance angles are achieved 

when the tool is held such that the end of the bent cantilever is at a 7° angle with respect 
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to the workpiece surface, which is a condition that was enforced during all experiments.  

Also, the shape of the rake face of each tool is shown in Fig. 6.2. 

 

Figure 6.1: Overall shape of diamond tool D1 

Table 6.1: Fabricated diamond tools 

Tool D1 D2 D3 
Cantilever Stiffness (N/m) 100 100 102 

Shape Rectangle Rectangle Compound-V 
Back Rake Angle (°) 0 0 0 

End Clearance Angle (°) 20 20 10 
Side Clearance Angles (°) 2.98 5.0 ~ 7.0 

3.59 3.5 ~ 7.0 
Width (μm) 1.05 0.411 N/A 

Edge Radius (nm) 62 50 97 
Max Depth of Cut (μm) 2.32 2.38 2.03 

 

 

Figure 6.2: Rake face profiles of fabricated diamond tools 
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 Tools D1 and D2 were to have rectangular rake faces and were produced via the 

four FIB cuts previously described.   Figure 6.1 shows an example of this type of tool.  

As can be seen in Fig. 6.2, the overall shape of the rake face of each tool was fairly close 

to an actual rectangle.  By contrast, tool D3 in Fig. 6.2 had a compound v-shaped rake 

face where the two included angles were 90° and 120°.  When fabricating this tool, the 

fourth FIB cut was not used, which is the reason for the larger edge radius listed in Table 

6.1.  Also, some undesired rounding of the tip of the rake face was present, but this can 

be reduced through improved control of the FIB machining process. 

6.3 Experimental Procedure 

 The groove cutting procedure employed in this set of experiments was identical to 

the procedure described in Chapter 3.  Following each experiment, an SEM was used to 

characterize the micro-grooves, examine chips attached to the tool and workpiece, and to 

measure tool wear.  An AFM, loaded with a high-aspect ratio silicon AFM probe, was 

also used to measure groove geometry.  However, this latter measurement was 

complicated by the fact that the portion of the AFM probe that contacted each groove is 

of a similar size scale as each groove.  This caused some measurement distortion, shown 

in Fig. 6.3, despite the use of high-aspect ratio probes. 

 

Figure 6.3: AFM measurement distortion 
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 The distortion is caused by the finite aspect ratio of the AFM tip and any tilt in the 

tip relative to the groove.  In particular, the latter distortion source causes one side of a 

measured groove to appear to have a shallower slope than is actually present.  AFM 

probes with tilted tips were used in an attempt to compensate for this, but variations in 

the angle the AFM equipment held the probe and sample at insured that some tilt-based 

distortion was still present and must be accounted for when interpreting the AFM images. 

6.4 Solitary Groove Cutting Experiments 

Experiments were conducted to evaluate the factors that affect groove depth, 

groove shape, and tool wear.  Hence tool load, cutting speed, and tool shape were varied 

during four experiments, as described in Table 6.2.  In the first three experiments cutting 

speeds were limited to those used with some success in the previous chapter.  In the 

fourth experiment, an effort was make to determine if significantly higher speed cutting 

could be performed successfully or if such high cutting speeds would break the tool. 

Table 6.2: Conditions for Experiments 1, 2, 3, and 4 

Exp. Tool Tool 
Passes

Speeds 
(mm/min) 

Loads (mN) Total Distance 
Cut (mm) 

1 D1 3 25, 50 0.3, 0.4, …1.3, 1.4 122.4 
2 D2 5 25, 50 0.6, 0.8, 1.0, 1.2 52.0 
3 D3 3 50 0.3, 0.4, …1.3, 1.4 61.2 
4 D1 

Resharpened 
1 50, 100, 200, 

300, 400 
0.3, 0.5, 0.7, 0.9, 

1.1, 1.3 
180.0 

 
In each experiment, a separate groove was cut using each experimental condition 

where the conditions for a given experiment consisted of all combinations of the 

corresponding speeds and loads given in the table.  The workpiece in each experiment 

was a 3.1 μm thick film of thermally evaporated aluminum deposited onto a silicon 

substrate.  The order in which the conditions were used was selected randomly in 
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Experiments 1, 2, and 3.  However, in Experiment 4, speeds were tested in ascending 

order in order to determine at what speed, if any, that the tool would fail.  The order the 

loads were tested in was still selected randomly. 

6.4.1 Exp. 1 - Rectangular Groove Cutting Results 

 Over the course of Experiment 1, a total distance of 122.4 mm was cut in 

aluminum, and tool wear was evaluated by comparing SEM images of the tool before and 

after cutting.  It was found that the only change in tool geometry was a small increase in 

cutting edge radius from 62 nm to 81 nm.  Therefore, tool wear is not expected to have 

had a significant effect on groove formation for the material considered. 

AFM images were captured of sections of the workpiece representative of each 

cutting condition after each tool pass.  It was found that relatively high-aspect ratio 

grooves could be created.  However, this caused the type of AFM measurement 

distortions described earlier in this paper.  This is seen by scanning a section of a groove, 

rotating the sample 180°, taking another scan of the groove, and then matching up the 

two scans.  Figure 6.4 shows cross-sections assembled from two such scans of a groove 

cut at 50 mm/min with a 1.1 mN load.  The actual geometry is best represented by the left 

half of the solid line and the right half of the dashed line.   

 

Figure 6.4: Groove cut at 50 mm/min with a 1.1 mN load 
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 As can be seen in Fig. 6.4, the grooves were rectangular in shape.  However, it 

would have been impractical to create composite cross-sections, like in Fig. 6.4, for every 

groove.  Hence, it should be noted that for all other cross-sections shown in this chapter, 

one of the sidewalls may appear less vertical that it actually is.  In this experiment, for 

example, the left sidewall is more representative of the actual geometry.   

 Cross-sections of the grooves cut at 25 mm/min are shown in Fig 6.5 following 

each tool pass.  Similar cross-sections of the grooves cut at 50 mm/min are shown in Fig. 

6.6.  It was found that rectangular groove cross-sections were produced under all cutting 

conditions when the measurement distortion is taken into account.  All groove increased 

in depth following each tool pass.  Also, all grooves had side burrs with sizes dependent 

on cutting conditions.  Groove shape was found to not be affected by cutting speed. 

The depths of the grooves are plotted in Fig. 6.7.  As can be seen in the figure, groove 

depth increased with increased load and with an increased number of tool passes, but 

cutting speed had very little effect on the depth of cut.  Furthermore, the increase in depth 

of cut with load was more quadratic in nature than linear.  It can also be seen that groove 

depth increased the most during the first tool pass, increased less during the second tool 

pass, and increased even less during the last tool pass.  The spread of the data points for 

any given condition indicates that variations in groove depth are not large relative to the 

depth of cut, which is an improvement compared to the results presented in Chapter 4 and 

indicates the potential to achieve good relative tolerances. 
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0.3 mN, 25 mm/min 0.4 mN, 25 mm/min 0.5 mN, 25 mm/min 

0.6 mN, 25 mm/min 0.7 mN, 25 mm/min 0.8 mN, 25 mm/min 

0.9 mN, 25 mm/min 1.0 mN, 25 mm/min 1.1 mN, 25 mm/min 

1.2 mN, 25 mm/min 1.3 mN, 25 mm/min 1.4 mN, 25 mm/min 
 

Figure 6.5: Rectangular grooves cut at 25 mm/min following each tool pass 
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0.3 mN, 50 mm/min 0.4 mN, 50 mm/min 0.5 mN, 50 mm/min 

0.6 mN, 50 mm/min 0.7 mN, 50 mm/min 0.8 mN, 50 mm/min 

0.9 mN, 50 mm/min 1.0 mN, 50 mm/min 1.1 mN, 50 mm/min 

1.2 mN, 50 mm/min 1.3 mN, 50 mm/min 1.4 mN, 50 mm/min 
 

Figure 6.6: Rectangular grooves cut at 50 mm/min following each tool pass 
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Figure 6.7: Rectangular groove depth under different conditions 

 Burrs were generated on the top edges of all of the grooves.  The size of these 

burrs was found to directly relate to the depth of cut and number of tool passes used.  

This can be seen in Fig. 6.8 where burr height is plotted vs. groove depth following the 

first, second, and third tool passes.  It can be seen that when one tool pass was used, burr 

height increased nearly linearly with groove depth until a depth of about 850 nm was 

achieved, at which point burr height increased dramatically.  Additionally, when two tool 

passes were used, a similarly dramatic increase in burr height occurred when a groove 

depth of about 1500 nm was achieved.  This suggests that for the material considered 

there is a critical depth of cut per tool pass of about 750 - 800 nm, which is independent 

of cutting speed, in the range considered, and will result in significant burr formation if 

exceeded.  Hence, the maximum depth of cut per tool pass appears to be limited by 

acceptable burr size. 
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Figure 6.8: Rectangular groove burr height at different depths of cut 

 In addition to being used to create groove cross-sections, AFM images of the 

grooves were also used to see how the depths of the grooves varied along a cut.  

Variations in depth of cut can be caused by effects such a machine tool dynamics, tool 

dynamics, or cutting process-based variations in cutting forces.  For instance, the AFM 

probe modified to construct tool D1, used in this experiment, has a natural frequency of 

36.7 kHz.  Hence, when cutting at 50 mm/min, the period of groove depth variations 

caused by undamped cantilever vibrations at resonance would be 22.7 nm.  Furthermore, 

this period will increases with the introduction of damping.  Hence, it is desirable to 

examine the frequency of depth variations.  It is also desirable for depth variations to be 

as small as possible in order to achieve the best possible groove depth tolerances.  Hence, 

examination of groove depth variation magnitude is also desirable. 

 In order to extract either depth variation magnitude or frequency it is necessary to 

extract a line profile describing the depth of the groove floor.  The magnitude of the 
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variations can then be seen by plotting this profile.  The frequency of the variations can 

be found by using the known cutting speed to relate distance along the profile to time and 

then getting the frequency spectrum using a fast Fourier transform (FFT). 

 However, extraction of frequency information is complicated by limitations in the 

Digital Instruments / Veeco Dimension 3100 AFM used in the work.  Specifically, when 

scanning a sample, the AFM is only capable of capturing 512 data points in any direction.  

I.e., a AFM image can never contain more than 512 x 512 data points.  This means that if 

an image is taken of a small area, high frequency variations in groove depth can be 

observed but low frequency variations cannot.  Conversely, if an image is taken of a large 

area, low frequency variations can be seen by high frequency variations cannot as per the 

Nyquist sampling theorem.  Also, since the scanning stages of the AFM do not have built 

in position sensors, stitching images of small adjacent areas together is not a practical 

means of circumventing the 512 point limit. 

 Therefore, in order to see both low and high frequency variations in groove depth 

in the direction of cut, images were taken of selected grooves with scan sizes of 5 μm, 10 

μm, 20 μm, and 40 μm.  Hence, the images with a 5 μm scan size contained high 

frequency information and each progressively larger image contacted progressively lower 

frequency information.  Figure 6.9 shows the groove bottom profiles from each scan of 

the groove cut using one tool pass, a cutting speed of 50 mm/min, and a load of 0.7 mN.  

Figure 6.10 show similar profiles corresponding to the other groove examined in this 

manner, which is the groove that was cut using one tool pass, a cutting speed of 50 

mm/min, and a cutting load of 1.2 mN.  Figure 6.11 and Fig. 6.12 show the frequency 

spectra associated with the profiles in Fig. 6.9 and Fig. 6.10, respectively. 
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Figure 6.9: Scans at different length scales along a groove cut using one tool pass at 50 

mm/min and with a 0.7 mN load 

 

Figure 6.10: Scans at different length scales along a groove cut using one tool pass at 50 

mm/min and with a 1.4 mN load 
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Figure 6.11: Spectrum of scans at different length scales along a groove cut using one 

tool pass at 50 mm/min and with a 0.7 mN load 

 

Figure 6.12: Spectrum of scans at different length scales along a groove cut using one 

tool pass at 50 mm/min and with a 1.4 mN load 

Examination of Fig. 6.9 shows that, in the 0.7 mN case the Ra of the groove 

bottom was 17.7 nm.  The corresponding spectra in Fig. 6.11 show that there are no 
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significant frequency components above 3000 Hz, the majority of depth variations 

occurred below a frequency of 1000 Hz, and the largest frequency component was at 

about 300 Hz.  Therefore, the cantilever must be heavily damped because this is not 

nearly as high as the tool natural frequency of 36.7 kHz.  It is possible that tool mass / 

stiffness had very little effect on the cutting process and that the variations seen are due to 

other dynamic phenomenon. 

Examination of Fig. 6.10 shows that, in the 1.4 mN load case the Ra of the groove 

bottom was 50.4 nm, which is 2.85 times greater than in the 0.7 mN case.  In can be seen 

from the corresponding spectra, shown in Fig. 6.12, that there is very little variation at 

frequencies above 600 Hz.  Furthermore, the majority of variation occurs below 200 Hz 

and the largest frequency component is at 50 – 60 Hz.  This is again much lower than the 

undamped natural frequency of the tool, and is also lower than in the 0.7 mN load case.  

This frequency shift might be due to increased frictional damping along the tool-chip 

interface, which tends to increase in length with depth of cut in traditional machining.  

Alternatively, the low frequency component might be introduced by the significantly 

greater amount of burr formation with might introduces stochastic force components. 

 SEM images of the grooves were also examined and it was found that long curly 

chips were formed and tended to be attached to the workpiece at the end of each cut.  

These chips, shown in Fig. 6.13A, can be easily removed after cutting by using a nitrogen 

blow-off, as shown by Fig. 6.13B.  It is interesting to note that unlike the applications 

considered here, where these chips are a nuisance at best, in other applications requiring 

the formation of nanowires, the formation of these chips may be the primary objective.   
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Figure 6.13: Workpiece with attached aluminum chips (A) and after chips were removed 

with nitrogen blow-off (B) 

 The chips connected to the workpiece at the end of each cut were examined.  

Figure 6.14 shows chips produced when cutting under two different conditions.  It was 

found that the side of each chip that slides up the rake face of the tool during cutting is 

very smooth, and the opposite side of the chip has a rough serrated texture.  This is 

consistent with chip formation at the macro-scale and was also seen in Chapter 4 when 

cutting with an AFM probe.  Additionally, as seen in Fig 6.14B, the progressing front of 

deformed material at the point of chip formation has a somewhat rounded profile.  A 

more comprehensive examination of chip morphology is provided when discussing the 

results from Experiment 4 later in this chapter. 

 

Figure 6.14: Aluminum chip formed while cutting at 25 mm/min with a 0.9 mN load (A) 

and at 50 mm/min with a 0.5 mN load (B) 
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6.4.2 Exp. 2 - Very Narrow Groove Cutting Results 

 In order to determine if narrower grooves could be produced, a second experiment 

was conducted where a 411 nm wide diamond tool, tool D2 in Table 6.1, was used to cut 

several grooves.  SEM images were taken of the workpiece after each cut, and an attempt 

was made to capture AFM cross-sections of each groove.  However due to the extreme 

narrowness and high-aspect ratio of the grooves, AFM images could not be captured 

using available AFM equipment.  Therefore, less detailed information was collected via 

examination of SEM images and FIB cross-sections of selected grooves.   

 For example, an FIB machined cross-section of a groove cut using one tool pass 

at 25 mm/min and with a 1.2 mN load is shown in Fig. 6.15A.  Note that the groove 

cross-section appears much more tapered than it actually is due to redeposition of 

sputtered ions onto the groove sidewalls during FIB machining.  However, such a cross-

section can still be used to estimate groove width at the workpiece surface. 

 

Figure 6.15: FIB Cross-section from 1st tool pass (A) and chip formed during 2nd tool 

pass (B) at 25 mm/min with a 1.2 mN load 

 It was found that no measurable tool wear occurred over the course of the 52 

millimeters cut in Experiment 2.  Furthermore, narrow grooves were successfully cut and 
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chip formation occurred in all cases.  The widths of these grooves was about 300 nm, 

which is less than the 411 nm width of the tool and indicated the presence of 55.5 nm of 

elastic recovery at each sidewall.   

 Additionally, marks on the top workpiece surface near the grooves indicated that 

the tool reached its maximum possible depth of cut of 2.38 μm during some of the cuts, 

and that the shoulder of the tool (see Fig. 6.2B tool D2) rubbed against the workpiece.  

This can be seen in Fig 6.15B where the chip being formed during a second tool pass is 

significantly wider than the groove formed during the first tool pass.  This occurred 

during the second tool pass when a 1.2 or 1.0 mN load was used and during the fifth tool 

pass when a 0.8 mN load was used.  This indicates a depth of cut per tool pass of at least 

1.19 μm when using a load of 1.0 mN or greater.  As with the wider tool in Experiment 1, 

cutting speed did not appear to have had an effect on cutting behavior. 

6.4.3 Exp. 3 - Compound V-Groove Cutting Results 

 A third experiment was conducted to evaluate the capability of cutting a groove 

with a more complex desired cross-section.  The desired geometry was a compound v-

shape with a 0.95 μm deep section that has an included angle of 90° that transitions to a 

0.45 μm deep section with an included angle of 120°.  Inspection of the resultant groove 

cross-sections showed that the desired cross-section was achieved when using a 1.2 mN 

load, as can be seen in Fig. 6.16.  In the figure the actual groove cross-sections following 

each tool pass are shown as solid, dotted, or dashed lines, and the desired cross-section is 

shaded grey.  The only difference between the desired cross-section and actual groove 

shape, when a 1.2 mN load and three tool passes were used, was slight rounding at the 

bottom of the groove due to the rounded tool shape shown in Fig. 6.2. 
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0.3 mN, 50 mm/min 0.4 mN, 50 mm/min 

0.5 mN, 50 mm/min 0.6 mN, 50 mm/min 

0.7 mN, 50 mm/min 0.8 mN, 50 mm/min 

0.9 mN, 50 mm/min 1.0 mN, 50 mm/min 

1.1 mN, 50 mm/min 1.2 mN, 50 mm/min 

1.3 mN, 50 mm/min 1.4 mN, 50 mm/min 
 

Figure 6.16: All experimental compound v-groove cross-sections with desired cross-

section shaded grey (units in microns) 

Side burr formation was observed when cutting the grooves.  However, as shown 

in Fig. 6.17, these burrs were much smaller than the burrs that occurred when cutting 
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grooves with rectangular cross-sections.  In this experiment the largest burr height was 38 

nm when cutting with a 1.3 mN load and only one tool pass.  By contrast, burr heights 

between 50 and 250 nm were observed when cutting rectangular grooves at depths of cut 

below the critical depth of cut per tool pass, as shown in Fig. 6.8. 

 As can be seen in Fig. 6.17, the majority of the burr formation occurred in the first 

tool pass and the burr height was reduced in subsequent tool passes so that burr height 

following the third tool passes never exceeded 10 nm.  This reduction in burr height 

following the second tool pass with a v-shaped cutting tool is consistent with results in 

the literature concerning micro-scale shaping/planing with v-shaped diamond tools at a 

size scale about one order of magnitude larger [21]. 

 

Figure 6.17: Burr heights associated with compound v-grooves 
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6.4.4 Exp. 4 – High-Speed Micro-Groove Cutting Results 

 Experiment 4 examined the effects of cutting at higher speeds that used 

previously.  I.e., speeds up to 400 mm/min vs. speeds of 25 – 50 mm/min.  The exact 

cutting conditions are given in Table 6.2.  The goal of the experiment was to determine if 

it would be possible to use higher cutting speeds in order to achieve more desirable 

material removal rates or if there would be undesirable effects such a tool breakage or 

poorly formed grooves.  Following the experiment, tool wear was measured, groove 

cross-sections where characterized, and chip morphology was characterized. 

The experiment was conducted using tool D1 following several tests, not 

discussed herein, in which the tool accumulated a large amount of polymer debris due to 

handling that rendered it impossible to determine if the tool was too worn to be used 

again or not.  Therefore, step four of the FIB fabrication procedure described in Chapter 5 

was repeated in order to resharpen the tool.  The new edge radius of the tool was 67 nm. 

During the experiment a total distance of 180 mm was cut where distances of 84, 

24, 24, 24, and 24 mm were cut at speeds of 50, 100, 200, 300, and 400 mm, respectively.  

It was found that no tool breakage occurred and the edge radius of the tool only increased 

by 15 nm as a result of wear.  This is slightly less wear than seen in Experiment 1 at 

speeds of 25 and 50 mm/min. 

AFM images were captured of each groove and these images were used to create 

groove cross-sections, which are plotted in Fig. 6.18.  Note the due to AFM measurement 

distortion, which was discussed previously, the left side of each cross-section is more 

representative of the actual groove geometry than the right side. 
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Figure 6.18 shows that rectangular shaped grooves of good quality were achieved 

in all cases.  Also, both the overall shape of each groove and the amount of burr 

formation remained the same regardless of cutting speed.  However, depth of cut appears 

to be affected by cutting speed such that shallower depths of cut for a given cutting load 

are generally achieved when cutting at higher speeds.  However, this trend cannot be 

stated with certainty since the order of the cuts was not randomized out of necessity.   

Load = 0.3 mN Load = 0.5 mN 

Load = 0.7 mN Load = 0.9 mN 

Load = 1.1 mN Load = 1.3 mN 
 

Figure 6.18: Groove cross-sections cut at speeds between 50 and 400 mm/min 

 Many of the grooves were terminated with chip roots that connected to intact chip 

segments of various lengths, as observed previously in Experiment 1. These chips could 

have been easily removed via the use of a compressed air blow-off, but were retained 
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because they enabled chip morphology to be related to cutting conditions by carefully 

imaging the chips with an SEM.  Figures 6.19, 6.20, 6.21, 6.22, and 6.23 show SEM 

images of chips formed at cutting speeds of 50, 100, 200, 300, and 400 mm/min, 

respectively.  In each figure, chips formed using different cutting loads are identified.  If 

an image of a chip formed using a load of 0.3, 0.5, 0.7, 0.9, 1.1, or 1.3 mN is not present 

in a figure, it is because the chip separated from the workpiece prior to examination and 

hence could not be imaged. 

  
50 mm/min, 0.5 mN 50 mm/min, 0.7 mN 

  
50 mm/min, 1.1 mN 50 mm/min, 1.3 mN 

 
Figure 6.19: Chips formed at speeds of 50 mm/min 

  
100 mm/min, 0.3 mN 100 mm/min, 0.5 mN 

 

  

100 mm/min, 0.9 mN  
 

Figure 6.20: Chips formed at speeds of 100 mm/min 
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200 mm/min, 0.3 mN 200 mm/min, 0.5 mN 

  
200 mm/min, 0.7 mN 200 mm/min, 1.1 mN 

 
Figure 6.21: Chips formed at speeds of 200 mm/min 

  
300 mm/min, 0.3 mN 300 mm/min, 0.5 mN 

  
300 mm/min, 0.7 mN 300 mm/min, 0.9 mN 

 

  

300 mm/min, 1.1 mN  
 

Figure 6.22: Chips formed at speeds of 300 mm/min 
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400 mm/min, 0.3 mN 400 mm/min, 0.5 mN 

  
400 mm/min, 0.7 mN 400 mm/min, 0.9 mN 

 

  

400 mm/min, 1.1 mN  
 

Figure 6.23: Chips formed at speeds of 400 mm/min 

 Examination of Figs. 6.19 – 6.23 shows that all of the chips were either ribbon 

type or washer-type helical as seen previously when cutting with AFM probes in Chapter 

4.  Chips formed at a low 0.3 mN load, and hence with low depth of cut, tended to form 

tightly curled washer-type helical chips.  When the load was increased to 0.5 – 0.9 mN, 

straighter but still wavy ribbon type chips tended to form.  At loads of 1.1 mN and higher 

chips tended to include kinks where the chip must have gotten caught on the tool 

geometry and buckled.  Such an effect is intentionally induced in macro-scale cutting, via 

the use of a chip-breaker tool geometry, in order to break continuous chips into more 

manageable lengths.  However, due to the extremely ductile nature of the pure aluminum 

workpiece, the chips do not appear to break even when buckled. Lastly, the only speed 

related effect observed is than when cutting at 50 mm/min wash-type helical chips can 

form at higher loads than when cutting at speeds of 100 mm/min and higher. 



 182

Based off the groove cross-sections and images of the chips, parameters 

describing each cut were found and are tabulated in Table 6.3.  Note that the listed chip 

thickness and chip width values are actually the mean of at least three measurements.  

Also, it should be noted that since the experiment did not make use of a quick-stop 

apparatus, chip formation that occurred at the very end of a cut was not at the actual 

cutting speed due to tool deceleration.  Care was taken to only measure chip width and 

chip thickness at points on the chips sufficiently far from a chip root to insure that the 

measured portion of the chip formed at the tested cutting speed.  Note that no values are 

given in the table for cases where this was not possible due to the chip being too short. 

 Examination of the table shows that the greatest effect due to changes in cutting 

speed is a change in depth of cut.  Additionally, as the depth of cut increases or decreases, 

the chip thickness similarly increases or decreases.  Groove width, burr height, and chip 

width do not appear to be significantly affected by changes in cutting speed.  The effect 

of increasing the cutting load appears to be similar regardless of the cutting speed used. 
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Table 6.3: Chip and groove characteristics in Experiment 4 

Speed 
(mm/min) 

Load 
(mN) 

Chip 
Thickness 

(μm) 

Chip 
Width 
(μm) 

Groove
Depth 
(μm) 

Groove 
Width 
(μm) 

Burr 
Height 
(μm) 

50 0.3   0.389 1.022 0.074 
50 0.5 0.76 1.16 0.501 1.050 0.106 
50 0.7 1.10 1.40 0.746 1.156 0.151 
50 0.9   0.751 1.138 0.211 
50 1.1 1.13 1.51 0.928 1.203 0.246 
50 1.3 1.24 1.89 0.882 1.181 0.348 
100 0.3 0.64 1.01 0.287 0.983 0.069 
100 0.5 0.78 1.21 0.443 1.054 0.110 
100 0.7   0.492 1.134 0.137 
100 0.9 0.93 1.46 0.693 1.131 0.209 
100 1.1   0.757 1.176 0.222 
100 1.3   0.850 1.158 0.305 
200 0.3 0.50 0.99 0.250 0.990 0.063 
200 0.5 0.72 1.14 0.418 1.065 0.111 
200 0.7   0.530 1.073 0.174 
200 0.9   0.660 1.111 0.213 
200 1.1 1.08 1.59 0.682 1.198 0.204 
200 1.3   0.776 1.145 0.303 
300 0.3 0.48 0.98 0.267 0.970 0.066 
300 0.5 0.74 1.19 0.431 1.049 0.090 
300 0.7 0.90 1.33 0.503 1.083 0.151 
300 0.9   0.675 1.163 0.187 
300 1.1 1.10 1.70 0.687 1.212 0.170 
300 1.3   0.668 1.182 0.229 
400 0.3 0.50 1.09 0.257 0.976 0.079 
400 0.5 0.79 1.19 0.464 1.096 0.111 
400 0.7   0.500 1.104 0.132 
400 0.9 1.02 1.48 0.570 1.132 0.182 
400 1.1 1.10 1.68 0.750 1.184 0.205 
400 1.3   0.687 1.159 0.293 
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6.5 Interactions between Grooves  

6.5.1 Exp. 5 - Cutting Closely Spaced Grooves 

A fifth experiment was conducted to examine the effects of cutting very closely 

spaced parallel micro-grooves.  Two sets of grooves were cut into a workpiece, which 

consisted of a 3.1 μm thick film of thermally evaporated aluminum deposited onto a 

silicon substrate, using the conditions given in Table 6.4.  Each set contained seven 

parallel grooves that were spaced such that the gap between each pair of grooves was as 

given in the table.  The 1.05 μm wide tool D1 from Table 6.1 was used immediately after 

it had been used in Experiment 1 and then examined since no appreciable tool wear had 

occurred.  Resharpening of the tool for use in Experiment 4 did not occur until later. 

Table 6.4: Experiment 5 – Closely spaced parallel grooves 

Set Speed (mm/min) Load (mN) Passes Gaps Between Grooves (μm)
1 50 1.4 1 3, 2, 1.5, 1.0, 0.75, 0.5 
2 50 0.7 2 3, 2, 1.5, 1.0, 0.75, 0.5 

 
An SEM image of the first set of grooves, which were each formed by a single 

tool pass at a load of 1.4 mN, is shown in Fig. 6.24A. A similar image of the grooves in 

the second set, which were each formed by two tool passes and a 0.7 mN load, is shown 

in Fig. 6.24B.  AFM cross-sections of the two sets are shown in Fig. 6.25, which shows 

that groove depths achieved in both sets were about 1.0 μm.  This means that in the first 

set, the critical depth of cut per tool pass of 750 – 800 nm is exceeded (recall the earlier 

discussion of Fig. 6.8), which caused significant burr formation.  In the second set this 

value is not exceeded and burr formation is minimal. 
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Figure 6.24: SEM images of parallel grooves cut using one tool pass at a 1.4 mN load (A) 

and two tool passes at a 0.7 mN load (B) 

 

Figure 6.25: Cross-sections of parallel grooves cut using one tool pass at a 1.4 mN load 

(A) and two tool passes at a 0.7 mN load (B) 

 Via SEM image processing, the mean widths of the ridges of material between 

each pair of grooves were found.  The mean ridge widths are plotted in Fig. 6.26 verses 

the command distance between grooves.  Ideally, these two values would be identical.  

However, as can be seen in the figure, using one tool pass and a relatively high load 

caused significant deviation between the command and actual values.  This may be due to 

the presence of significant burr formation that affects the width of the ridge of material 

between two grooves. 
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Figure 6.26: Ridges between closely spaced grooves 

 When very small distances between grooves were commanded, the actual ridge 

widths tended to be larger than commanded.  Due to this effect, the minimum 

commanded width of a ridge of material between two 1 μm wide and 1 μm deep grooves 

that matched the actual width was about 1 μm for the tested tool and material 

combination.  A likely cause is elastic recovery of the ridge material.  That is, during 

cutting, material on the ridge sidewalls is compressed and then elastically recovers as the 

tool moves on.  Such compression and recovery was responsible for grooves being 111 

nm narrower than the tool used to cut them in Experiment 2.  Additionally, when forming 

a very narrow ridge of material between grooves, the ridge may bend over slightly due to 

cutting forces and then spring back once the tool has moved on.  Such bending and spring 

back would become more pronounced as a ridge of a set height is made thinner, which 

would cause it to act more like a cantilever. 
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6.5.2 Exp. 6 - Cutting Intersecting Grooves 

 A sixth experiment was conducted to examine the effects of one groove 

intersecting another groove, or another group of grooves.  The experiment considered the 

effect of the depths of the grooves, the effect of the angle at which the grooves 

intersected, and the differences between intersecting a lone groove and intersecting a 

group of closely spaced parallel grooves with narrow ridges of material between them.  

 The 1.05 μm wide tool and workpiece material from Experiment 5 were used 

after it was found that the tool was not appreciably worn, and the cutting speed was 50 

mm/min.  All grooves were cut using one 0.7 mN tool pass, two 0.7 mN tool passes, or 

three 0.85 mN tool passes, which resulted in groove depths of 0.5, 1.0, and 1.5 μm, 

respectively. 

 There were three test sets in the experiment, and in each set there were 18 test 

sites.  At each site, a different combination of intersected groove depth, intersecting 

groove depth, and intersection angle was used so that all combinations of the values in 

Table 6.5 were represented.  Individual grooves were intersected in the first set.  In the 

second set, parallel grooves spaced 2.0 μm apart were intersected.  In the third set, 

parallel grooves spaced 1.0 μm apart were intersected. 

Table 6.5: Experiment 6 – Intersecting grooves 

 Intersected Groove Depths 0.5, 1.0, 1.5 μm 
All Sets Intersecting Groove Depths 0.5, 1.0, 2.0 μm 
 Intersection Angles 45°, 90° 
Set 1 Individual grooves were intersected 
Set 2 Parallel Grooves spaced 2.0 μm apart were intersected 
Set 3 Parallel Grooves spaced 1.0 μm apart were intersected 

  



 188

In the first test set of Experiment 6, the effect of individual grooves intersecting 

was evaluated.  Figure 6.27 shows all of the intersections where vertical grooves, cut 

from top to bottom, intersected existing horizontal grooves at a 90° angle.  Figure 6.28 

shows similar intersections except the angle of intersection is 45°.  Again, the intersecting 

grooves were cut from top to bottom and the existing grooves were horizontal.  Note that 

in both figures, the intersecting grooves were spaced progressively closer together so that 

the two rightmost vertical grooves in each image were spaced only 1 μm apart. 

0.5 μm ←, 0.5 μm ⇓ 1.0 μm ←, 0.5 μm ⇓ 1.5 μm ←, 0.5 μm ⇓  

0.5 μm ←, 1.0 μm ⇓  1.0 μm ←, 1.0 μm ⇓  1.5 μm ←, 1.0 μm ⇓  

0.5 μm ←, 1.5 μm ⇓  1.0 μm ←, 1.5 μm ⇓ 1.5 μm ←, 1.5 μm ⇓ 
  

 
Figure 6.27: 0.5, 1.0, and 1.5 μm deep grooves intersecting at a 90° angle 
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0.5 μm ←, 0.5 μm  1.0 μm ←, 0.5 μm  1.5 μm ←, 0.5 μm  

0.5 μm ←, 1.0 μm  1.0 μm ←, 1.0 μm  1.5 μm ←, 1.0 μm  

0.5 μm ←, 1.5 μm  1.0 μm ←, 1.5 μm  1.5 μm ←, 1.5 μm  
  

 
Figure 6.28: 0.5, 1.0, and 1.5 μm deep grooves intersecting at a 45° angle 

 As can be seem in Fig 6.27 and Fig. 6.28, four grooves intersected an 

existing groove at each test site.  These intersections presented no problems during 

cutting.  Furthermore, it was possible for parallel intersecting grooves spaced as close as 

1 μm apart to be cut without significant distortion of the ridge of material between the 

grooves either before or after intersecting the existing groove. 

AFM images were taken of selected intersections where grooves with depths of 

0.5 and 1.5 μm intersected at a 90° angle.  Five 2D profiles were constructed based on 

each image.  One of the profiles showed the cross-section of the groove being intersected 

and the four other profiles showed variations in depth along the bottoms of the four 

intersecting grooves.  These 2D profiles are shown in Fig. 6.29 where the direction of cut 

was from left to right. 
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Figure 6.29: Cross-sections of intersected grooves and profiles of the bottoms of 

intersecting grooves 

 As can be seen in Fig. 6.29, there was a slight dip in the bottom of each 

intersecting groove.  This was expected since cutting is a constant load operation and 

there is not as much material to remove when intersecting an existing groove.  Also, each 

dip started 1 – 1.5 μm before the tool reached the sidewall of the groove being 

intersected.  This may have been caused by the collapse of the thin wall of material 

between the rake face of the tool and the sidewall of the groove about to be intersected in 

the moments before the grooves actually crossed.  Provided that the intersected groove is 

not much deeper than the intersecting groove, it appears that the dip will be small in 

magnitude and unlikely to be problematic.  
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 Exit burr formation, as depicted in Fig. 6.30, occurred during all intersections.  

This was expected because, when cutting the intersecting groove, the tool exits from the 

cut when it breaks though the sidewall of the existing groove, which is a known source of 

burr formation in machining [133].  Furthermore, the pure aluminum workpiece is highly 

ductile and prone to experiencing burr formation when cut.   

 

Figure 6.30: Exit burr formation during groove intersection 

 As a result of exit burr formation, it was found that burrs tended to block the 

groove being intersected.  For example, exit burrs formed during the intersection of 0.5 

μm deep grooves result in partial blockage of the intersected horizontal groove, as shown 

in Fig. 6.27.  Exit burrs fully block the intersected horizontal groove in Fig. 6.27 in the 

case where two 1.5 μm deep grooves intersected.  These burrs are generally as tall as the 

groove is deep.  Additionally, the widths of these burrs varied depending on the 

intersection conditions, which suggests that the amount of material incorporated into each 

burr also varied. 

 These results indicate that burr formation will tend to be present at groove 

intersections.  The approach required to deal with these burrs depends on the application.  

For instance, in applications such as surface texturing or micro-heat exchanger 

fabrication, the presence of burrs at intersection sites may be perfectly acceptable.  In 
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fact, for some surface texturing applications, burr formation might be used 

advantageously to achieve a particular pattern such as pockets to retain lubricant.  In 

other applications, such as micro-fluidics, full blockage of a channel by burrs would be 

undesirable.  In such cases burr reduction and/or removal strategies would have to be 

employed.  One means of reducing burr formation would be to avoid the use of highly 

ductile work material if the application allows such latitude.  Another method may be to 

use multiple tool passes to cut the grooves and to alternate back and forth between using 

a tool pass to cut a groove to be intersected and using a tool pass to cut an intersecting 

groove, which would result in shallower intersections and hence less burr formation.  

Burr reduction might also be accomplished via selection of better tool geometry or 

cutting conditions.  Burr removal might also be accomplished via an operation such as 

chemical etching, which could take advantage of the relatively large surface area and 

small volume of the burrs to attack them much faster than the surrounding grooves. 

 In the second test set in Experiment 6, the effect of intersecting parallel grooves 

spaced 2.0 μm apart was evaluated.  Figure 6.31 shows vertical grooves intersecting 

existing horizontal grooves spaced 2.0 μm apart.  In these images the angle of 

intersection was 90°, and the intersecting grooves were cut from top to bottom.  

Additionally, Fig. 6.32 shows an identical set of intersections except that the angle of 

intersection is 45°.  Note that in both figures, the intersecting grooves were spaced 

progressively closer together so that the two rightmost vertical grooves in each image 

were spaced only 1 μm apart. 

 It was found that when intersecting grooves with 2 μm wide ridges between them 

at a 90° angle, no distortion of the ridges occurred except for the appearance of exit burrs.  
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In the 45° angle cases there was some waviness induced in the intersecting grooves due 

to uneven loading / unloading of the tool, but the appearance of entrance and exit burrs 

was the only ridge distortion observed.  Furthermore, this was the case even when the 

intersecting grooves were spaced as close as 1 μm apart. 

0.5 μm ⇐, 0.5 μm ⇓ 1.0 μm ⇐, 0.5 μm ⇓ 1.5 μm ⇐, 0.5 μm ⇓ 

0.5 μm ⇐, 1.0 μm ⇓ 1.0 μm ⇐, 1.0 μm ⇓ 1.5 μm ⇐, 1.0 μm ⇓ 

0.5 μm ⇐, 1.5 μm ⇓ 1.0 μm ⇐, 1.5 μm ⇓ 1.5 μm ⇐, 1.5 μm ⇓ 
  

 
Figure 6.31: 0.5, 1.0, 1.5 μm deep grooves intersecting parallel horizontal ridges that are 

2.0 μm wide at a 90° angle 
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0.5 μm ⇐, 0.5 μm  1.0 μm ⇐, 0.5 μm  1.5 μm ⇐, 0.5 μm  

0.5 μm ⇐, 1.0 μm  1.0 μm ⇐, 1.0 μm  1.5 μm ⇐, 1.0 μm  

0.5 μm ⇐, 1.5 μm  1.0 μm ⇐, 1.5 μm  1.5 μm ⇐, 1.5 μm  
  

 
Figure 6.32: 0.5, 1.0, 1.5 μm deep grooves intersecting parallel horizontal ridges that are 

2.0 μm wide at a 45° angle 

 The third test set in Experiment 6 was identical to the second test set except that 

the grooves being intersected were spaced only 1.0 μm apart.  Hence, the ridge of 

material between each intersected groove was half as thick as in the previous test set.  

Figure 6.33 shows vertical grooves intersecting existing horizontal grooves spaced 1.0 

μm apart.  In these images the angle of intersection was 90°, and the intersecting grooves 

were cut from top to bottom.  Additionally, Fig. 6.34 shows an identical set of 

intersections except that the angle of intersection is 45°.   

It was found that the presence of thinner ridges resulted in significant ridge 

deformation when groove depth exceeded 0.5 μm.  However, the amount of deformation 
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was not as pronounced in the 45° angle cases.  Also, in the 45° angle cases, the 

deformation of the ridges appears to occur mostly on the side of each new groove 

corresponding to the side of the tool that exited from the cut first.  These results 

demonstrate the importance of cutting conditions during intersection of micro-grooves 

when cutting through very thin ridges of material. 

0.5 μm ⇐, 0.5 μm ⇓ 1.0 μm ⇐, 0.5 μm ⇓ 1.5 μm ⇐, 0.5 μm ⇓ 

0.5 μm ⇐, 1.0 μm ⇓ 1.0 μm ⇐, 1.0 μm ⇓ 1.5 μm ⇐, 1.0 μm ⇓ 

0.5 μm ⇐, 1.5 μm ⇓ 1.0 μm ⇐, 1.5 μm ⇓ 1.5 μm ⇐, 1.5 μm ⇓ 
  

 
Figure 6.33: 0.5, 1.0, 1.5 μm deep grooves intersecting parallel horizontal ridges that are 

1.0 μm wide at a 90° angle 
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0.5 μm ⇐, 0.5 μm  1.0 μm ⇐, 0.5 μm  1.5 μm ⇐, 0.5 μm  

0.5 μm ⇐, 1.0 μm  1.0 μm ⇐, 1.0 μm  1.5 μm ⇐, 1.0 μm  

0.5 μm ⇐, 1.5 μm  1.0 μm ⇐, 1.5 μm  1.5 μm ⇐, 1.5 μm  
  

 
Figure 6.34: 0.5, 1.0, 1.5 μm deep grooves intersecting parallel horizontal ridges that are 

1.0 μm wide at a 45° angle 

6.6 Experimental Conclusions / Summary 

 Testing of flexible cutting tools with geometries suitable for micro-groove cutting 

was the subject of this chapter.  Testing consisted of six experiments in which micro-

grooves with rectangular and compound v-shapes were cut in pure aluminum.  These 

experiments evaluated the effects of cutting conditions and the effects of grooves 

intersecting or being cut in close proximity to each other.  The conclusions from these 

experiments are as follows: 
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1. Focused ion beam modification of diamond AFM probes, as described in Chapter 5, 

can be used to produce flexible micro-scale groove cutting tools as narrow as 411 that 

have very effective cutting geometries.  Furthermore, these tools are capable of 

withstanding the forces they are subjected to during cutting much more effectively 

than the commercial AFM probes used as tools in the previous chapter. 

2. Grooves with one micron wide rectangular cross-sections could be repeatably cut in 

aluminum and the depth of cut could be well controlled by setting the cutting load.  

The relationship between groove depth and both cutting load and the number of tool 

passes is nonlinear.  Cutting speed only has a small effect on groove depth.  Also, it 

was found that there is a critical depth of cut per tool pass beyond which will result in 

greatly increased burr formation. 

3. Grooves as narrow as 300 nm but about 2 μm deep can be cut using the developed 

process.  A measurable amount of elastic recovery of the sidewalls of the grooves was 

observed, and therefore when such narrow grooves are cut, elastic recovery must be 

taken into account to achieve a prescribed groove width. 

4. The ability of cutting compound v-shaped grooves was demonstrated.  It was also 

found that a desired groove shape could be readily achieved when using a tool with 

identical geometry to the desired geometry.  Burr formation was much smaller than 

when cutting rectangular grooves.  Furthermore, burr formation was reduced even 

more after using a second tool pass. 

5. Grooves were cut in aluminum at speeds as high as 400 mm/min with less tool wear 

than when cutting at lower speeds of 25 – 50 mm/min.  Furthermore, groove quality 

and the amount of burr formation was found to not be strongly effected by cutting 
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speed.  Hence, it appears that cutting at higher speeds up to at least 400 mm/min is 

beneficial.   

6. Chips were found to remain attached to a workpiece, via their chip roots, following 

most micro-groove cutting operations.  These chips can be easily removed by 

blowing compressed air across the workpiece, and if left undisturbed can also be used 

to examine chip morphology corresponding to a particular cut.  It was found that chip 

morphology is primarily affected by cutting load, and hence depth of cut, during 

experiments where 1 μm wide grooves were cut in aluminum.  Specifically, at lower 

loads curly washer-type helical chips were formed.  At higher loads, wavy ribbon 

chips were formed.  At the two highest loads tested, bucked chips were formed that 

would likely be discontinuous if the workpiece material was not as ductile. 

7. One micron wide and deep parallel grooves, cut in pure aluminum, can be spaced 

about one micron apart controllably.  If a closer spacing was commanded, the ridge of 

material between the grooves became wider than commanded, which is likely due to 

elastic recovery.  In order to get the thinnest possible ridge of material between 

grooves, it was found that the depth of cut per tool pass should be kept low enough to 

avoid large amounts of burr formation, which affect ridge geometry. 

8. Grooves can be successfully cut that intersect existing grooves without affecting the 

characteristics of the intersected groove after the intersection point.  The depth of the 

intersecting groove briefly dips before the intersection point, possibly due to collapse 

of the sidewall of the intersected groove.   

9. Exit burr formation occurs during groove intersection, but it is expected that exit burr 

size can be reduced by avoiding the use of highly ductile work materials, if the 
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application allows such latitude, or by using other established burr reduction and/or 

removal techniques.   

10. If an intersected ridge of material between two existing grooves is too thin and has 

too high of an aspect ratio, it can deform during intersection.  However, sufficiently 

low aspect ratio ridges do not experience significant deformation. 

In conclusion, based on the experiments described in this chapter, it was found 

that the use of the improved flexible cutting tools described in Chapter 5 enables the 

production of high-quality micro-scale grooves, which can be cut at speeds up to at least 

400 mm/min.  However, even with the use of these very good tools there are still some 

issues that need to be addressed such as how to minimize side burr formation, how to 

minimize exit burr formation, and how to better control the morphology of the chips in 

order to enable chip control strategies.  A more fundamental understanding of the cutting 

process is required in order to address these issues than can be readily achieved via 

experimentation.  Hence, finite element simulation of the micro-groove cutting process is 

the subject of the next chapter. 
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Chapter 7 

Finite Element Modeling of the Developed 
Micro-Groove Cutting Process 
 
7.1 Introduction 

7.1.1 Motivation 

 In the previous chapters the micro-groove cutting process has been studied via 

experimentation.  This has resulted in the development of flexible tools that produce 

high-quality grooves, and has allowed cutting load to be correlated with depth of cut for a 

given tool geometry and workpiece material.  However, experimental studies do not 

reveal all the pertinent information about the cutting process, and hence there is a limit on 

how much process improvement can be achieved without the use of very large test 

matrices.  For example, because of the size-scale of the process it has not been possible to 

observe the cutting action directly, and hence information about chip formation and chip 

flow has been lacking.  Also unavailable is the stress / strain distributions within a 

workpiece and information on how a workpiece deforms as a tool passes through it.  

These limitations drive the need for a model of the cutting process, which is the subject 

of this chapter. 

7.1.2 Model Scope 

 In this chapter, a cutting model is developed for the purpose of simulating the 

types cuts described in Experiment 4 in Chapter 6.  Additionally, the model should be 
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able to simulate what happens when one groove intersects an existing groove, which 

results in exit burr formation as seen in Experiment 6 in Chapter 6.  In order to 

accomplish this, several process features must be addressed by the model, some of which 

are not typically addressed by models in the literature.  

 In the experiments of interest, a tool with a width of 1.05 μm was used to cut 

grooves with depths of approximately 0.25 to 1.0 μm using orthogonal cutting.  Hence, 

the width of the cut grooves was 1.05 - 4.2 times the depth of cut.  This invalidates the 

plane strain assumption often used in the literature to simplify orthogonal cutting into a 

2D problem.  Hence, the micro-groove cutting process involves distinctly 3D stress and 

strain fields that must be captured.  Direct evidence of this is seen in experiments where 

the shapes of the chip roots indicate spreading of the material ahead of a tool. 

 The workpiece material consists of a 3.1 μm thick film of thermally evaporated 

aluminum deposited on a flat silicon substrate.  During cutting, stress fields are expected 

to extend below the cutting edge of the tool and these fields may be affected by the 

transition from aluminum to silicon, which have different material properties.  Therefore, 

the configuration of the workpiece material must be accounted for by the model. 

 Side burrs and exist burrs were observed during experiments described in the 

previous chapter.  These burrs are of concern because they affect the ability to produce 

groove cross-sections with a specified tolerance.  Hence, a comprehensive model must be 

able to predict side and exit burr formation, which is also 3D process.  Furthermore, 

correct burr prediction involves correctly handling separation of chip material from the 

workpiece at the sides of the chip, which indicates that the modeled section of the 
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workpiece must include not just the chip but also enough material to the side of the chip 

to correctly handle workpiece deformation during chip separation. 

 The tooling using in Experiment 4 in Chapter 6 had a slightly rounded bottom, as 

shown in Fig. 7.1, as a result of limitations in how sharp a feature could be produced by 

FIB machining.  For this particular tool, the rounded end of the tool is well described by 

an arc with a radius of 893 nm.  Hence, the depth of cut at the center of groove is less 

than at the sides of a groove.  This results in non-uniform uncut chip thickness and must 

be accounted for by a model that is to correctly predict chip flow.  Also, the side edges of 

the tool were rounded to a radius of approximately 60 nm, which must also to be 

accounted for since this could have an effect on burr formation. 

 
Figure 7.1: Rake face of the tool used in Experiment 4 in Chapter 6 

 
 In summary, the micro-groove cutting model to be developed in this chapter must 

be able to handle the 3D stress / strain fields present due to the plane strain assumption 

being invalid.  The model must be able to account for the workpiece material 

configuration used in experiments.  It must also accuracy predict side burr formation and 

exit burr formation.  To accomplish this, separation between not just the bottom of the 

chip and the workpiece but also the side of the chip and the workpiece must be handled 

correctly. The model should also be able to predict chip flow with sufficient accuracy to 
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be able to correctly predict chip curl.  Lastly, rounded features on the FIB machined tools 

need to be handled by the model.  The need to handle the 3D stress / strain fields present 

during cutting, to handle chip separation at the side of the chip, to account for rounded 

tool geometry, and to predict side burr formation sets this model apart from existing 

machining models. 

7.2 Overall Modeling Approach 

7.2.1 Model Type 

 Several types of machining models exist: analytical models, mechanistic models, 

molecular dynamics (MD) models, and finite element models.  Analytical and 

mechanistic models are not well suited for predicting complex 3D surface morphology 

resulting from a groove cutting operation.  MD models provide accurate representations 

of the cutting process and resultant machined surface, but simulation volumes large 

enough for simulation of micro-scale cutting are computationally prohibitive [100 - 102].  

Finite element models can represent the micro-scale cutting processes in a way that is 

computationally feasible and can provide detailed information about the cutting process.  

Therefore, a finite element model is used in this work.  Additionally, the Lagrangian 

finite element formulation is used so that transient events such as exit burr formation can 

be modeled. The general purpose finite element software, Abaqus version 6.9 us used to 

implement the model.   

7.2.2 Consistent Units 

 In several finite element software packages, such as Abaqus 6.9, there is no built-

in set of units used by the software.  Rather, all calculations performed by the software 
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assume consistent units.  That is, a set of units where no conversion factors are necessary 

to specify derived units in terms of fundamental units.  Furthermore, the set of consist 

units used when providing inputs, such as material properties and element dimensions, 

determines the set of consist units in which outputs are provided. 

 Two common sets of consistent units are given in Table 7.1.  The MKS system is 

commonly used and is also known as the SI system of units.  However, in this work the 

mmNS system is used because it is more suitable when working with small dimensions 

such as those seen in a micro-scale cut.  This is because the use of the MKS system 

would result in such small numerical values that round-off errors might become an issue.   

Table 7.1: Consistent units 

 Meter / Kilogram /  
Second (MKS) System

Millimeter / Newton /  
Second (mmNS) System 

Length Meter Millimeter 
Time Second Second 
Mass Kilogram Tonne (1000 Kg) 
Force Newton Newton 
Temperature Degree Celsius Degree Celsius 
Area (Meter)2 (Millimeter)2 
Volume (Meter)3 (Millimeter)3 
Velocity Meter / Second Millimeter / Second 
Pressure Newton / Meter MPa 
Stress Newton / Meter MPa 
Energy Joule mJ 

 
7.2.3 Integration Scheme 

 Using the general purpose Abaqus finite element software, solutions can be 

acquired through an implicit dynamic analysis procedure (Abaqus/Standard) or through 

an explicit dynamics procedure (Abaqus/Explicit).  The explicit dynamics procedure 

evaluates a large number of small time increments where a central-difference time 

integration rule is used.  During each increment a tiny change in the state of each element 
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in the model is calculated based on the state of the elements at the start of the increment 

and any load / boundary conditions applied during the increment.  This procedure is 

suitable for analysis of short dynamic events, complex contact conditions, large 

deformations, and does not suffer from convergence problems that can arise when using 

direct-integration.  Hence, Abaqus/Explicit was selected for use in this work. 

 This explicit dynamics procedure imposes the requirement that the time required 

for a signal, such as a stress wave, to propagate through any element in the mesh must be 

less than the time increment used.  Otherwise, the model becomes unstable and gives 

erroneous results.  This requirement can result in the need for very tiny time increments, 

which can render simulations of even short periods of time computationally infeasible.  

Therefore, it is desirable to use as large of a time increment as possible without causing 

the model to become unstable, which is that task that Abaqus automatically performs. 

 An estimate of the largest stable time increment imposed by the purely 

mechanical response of a model is given by Equations (7.1) – (7.4), where Δtmech is the 

time estimate, Lmin, is the dimension of the smallest element in the mesh, ρ is the material 

density, ν is Poisson’s ratio, and E is the modulus of elasticity [122].  Additionally, if 

thermal effects are to be considered, Equations (7.5) – (7.6) provide a separate estimate 

Δtthermal, where k is the material thermal conductivity and c is the specific heat [122].  The 

smaller of the two estimates is close to the actual stable time increment. 

(7.1)    
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7.2.4 Element Selection Considerations 

As can be seen in Equations (7.1) and (7.5), the stable time increment decreases 

as the dimension of the smallest element in the model decreases.  For example, using 

Equations (7.1) - (7.4) to calculate Δtmech, it can be found that for aluminum the largest 

stable time increment imposed by the mechanical response of the model is 3.3 x 10-12 

seconds when a element size of 20 nm is used, which is the approximate element size 

required to accurately simulate uncut chip thickness on the order of 250 nm.  As a result, 

over 300 million time increments are required for each millisecond simulated.  Such a 

large number of increments are not practical given current computer hardware.   

To alleviate this issue, mass scaling can sometimes be used.  Mass scaling 

involves artificially increasing material density by some multiplier in order to reduce 

Δtmech.  This is practical in lower speed deformation simulations where inertial effects are 

limited, but cannot be used in high-speed simulations, such as those of ballistics impact.  

Fortunately, machining at the micro-scale involves relatively low speed deformations and 
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hence a mass scaling factor of 5000 is used.  This decreased the number of increments 

required per millisecond to a more practical 4.35 million. 

 As can be seen in Equation (7.5) the situation is worse with regards to the thermal 

stable time increment because said increment reduces with the square of the smallest 

element dimension.  At larger size scales, this is not a problem because α is generally 

small.  However, with a 20 nm element Δtthermal becomes a prohibitively small 2.3 x 10-12 

seconds, and mass scaling cannot be used to alleviate this issue.  This renders modeling 

of thermal conduction during cutting computationally infeasible at the size scale of 

interest without resorting to a new computational framework. 

 Fortunately, there is evidence that thermal softening is not very significant in 

machining of aluminum at the size scale of interest.  In fact, the size effect seen when 

cutting using small uncut chip thickness has been partially attributed to an increase in 

material shear strength due to a decrease in tool-chip interface temperature [105, 134].  

This explains the results of experiments where Al 7075-T6 was machined using diamond 

tools, with similar radii as the ones used in this work, where the amount of friction was 

seen to increase with decreasing uncut chip thicknesses below about 700 nm [135].  

Additionally, in a study where machining of Al 5083-H116 was modeled with finite 

elements, it was shown via calculations based on Oxley’s method [136] that the change in 

flow stress due to the temperature rise when cutting as fast at 10 m/min, with chip loads 

similar to those used in this work, should be negligible, which was supported by 

experimentally validated simulations [109].  Since cutting speed in this work is no greater 

than 0.4 m/min, thermal effects should also be negligible and are ignored. 
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 It should be noted however, that the evidence that suggests that thermal effect can 

be ignored regards situations where the tool and workpiece have high thermal 

conductivities, such as aluminum.  Other metals such a copper, some brasses, and some 

bronzes also have high thermal conductivities, and hence thermal effects can likely be 

ignored when simulating micro-scale cuts in them as well.  However, thermal effect 

would need to be more carefully considered when simulating cuts in materials, such as 

titanium, that have very low thermal conductivities. 

 Abaqus has many different types of element types suitable for different problems.  

8-node linear reduced integration elements (C3D8R) with “relax stiffness” hourglass 

control were selected because they are suitable for modeling problems without thermal 

effects and with large deformations.  All element settings were the Abaqus default, which 

is deemed suitable for use in the model. 

7.2.5 Chip Separation Criteria 

 In finite element modeling of orthogonal cutting processes in 2D, a common 

approach is to model the chip and the uncut workpiece as two separate pieces that are 

somehow tied together until a separation criterion is met.  Other researchers have used 

various element failure criteria that enable elements underneath, and possible within, a 

chip to fail under suitable conditions and subsequently be removed from the simulation 

[35, 108, 114, 124, 126].  In this work, element failure is used to model chip separation 

since this is an approach that is readily implemented in Abaqus / Explicit and because 

there is evidence of this being a physically realistic approach [35, 108].   

 During preliminary debugging simulations, not described in this chapter, all 

elements in the workpiece were permitted to fail if a failure criterion was met.  However, 
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this lead to problems with the algorithm that handles contact between the tool and 

workpiece, which renders simulation results highly unreliable.  Therefore, element failure 

is limited to zones of sacrificial elements in order to render tool workpiece contact better 

behaved.  This approach has been successfully used by other researchers in 2D 

simulations, where the sacrificial elements comprised a single layer underneath the chip 

[35, 108].  In order to extend this approach to 3D, a single layer of elements beneath the 

chip is allowed to fail and a region of elements on the side of the chip is allowed to fail.  

This is described in more detail in subsequent sections. 

7.3 Material Model 

7.3.1 Overview 

 Correct modeling of material properties is necessary in order to achieve accurate 

simulation results.  In this work, simulations were limited to those that represent the 

experiments conducted in the previous chapter, so that the simulations can be validated 

with experimental results.  To accomplish this, it is necessary to be able to model the 

thermally evaporated aluminum film that was cut, the silicon substrates the film sits on, 

and the single crystal diamond that makes up the cutting geometry of the tool.  Of course, 

simulations of micro-groove cutting with any other combination of materials could also 

be performed provided that the corresponding material properties are acquired. 

 The thermally evaporated aluminum film is expected to behave as a ductile metal 

and both elastically and plastically deform.  Therefore, both elastic and plastic material 

properties are required.  Additionally, in order for a chip to be able to separate from the 

workpiece, material properties must be specified that enable failure of elements that make 

up the aluminum film.  By contrast, both diamond and silicon are brittle materials that 
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tend to fracture rather than plastically deform.  Fracture of the diamond or silicon is not 

expected because both materials are much stronger than aluminum, and such fracture was 

not seen experimentally.  Therefore, only elastic properties need to be specified for these 

materials.  Additionally, material density must be specified for all materials. 

7.3.2 Elastic Properties 

 Elastic properties were found for single crystal silicon, single crystal diamond, 

and pure aluminum.  Single crystal silicon has anisotropic elastic properties that are 

readily available in the literature [137].  In Abaqus 6.9, such a material can be modeled 

though the use of a stiffness matrix in the form given by Equation (7.7) where the tensor 

on the left side of the equation is the stress tensor and the tensor on the right side of the 

equation is the strain tensor.  Table 7.2 provides the inputs to the stiffness matrix that 

result in the material being orientated such that the 1-direction and 3-direction lie along 

the [110] crystalline directions and the 2-direction lies along the [100] crystalline 

direction.  Material density is also included in the table. 

(7.7) 
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Table 7.2: Single crystal silicon properties at room temperature 

Stiffness Matrix D1111 194,360 MPa D3333 194,360 MPa 
 D1122 63,900 MPa D1212 79,560 MPa 
 D2222 165,700 MPa D1313 50,900 MPa 
 D1133 35,240 MPa D2323 79,560 MPa 
 D2233 63,900 MPa    

Density 2300 Kg/m3 [138] 
 
 Single crystal diamond and pure aluminum can be treated as isotropic elastic 

solids.  The elastic properties and density for diamond are listed in Table 7.3 and the 

same properties for aluminum are listed in Table 7.4.  Note that the modulus of elasticity 

for diamond is 12.68 times higher than aluminum.  Hence, very little deformation of the 

diamond is expected during cutting.  Furthermore, simulation of a material with such a 

high modulus of elasticity would result in a very small stable time increment, as 

discussed previously.  Therefore, diamond was approximated as a perfectly rigid 

material, which should not significantly affect accuracy. 

Table 7.3: Diamond properties at room temperature [39] 

Modulus of Elasticity 862,500 MPa
Poisson’s Ratio 0.2
Density 3360 Kg/m3 

 
Table 7.4: Aluminum properties at room temperature 

Modulus of Elasticity 68,000 MPa [39] 
Poisson’s Ratio 0.33 [139] 
Density 2698.9 Kg/m3 [39] 

 
7.3.3 Aluminum Flow Stress Model 

 In order to accurately simulate a machining process, suitable flow stress data must 

be acquired.  Ideally the data should be collected for the exact same alloy machined, at 

the same heat treat, and at the same size scale.  The data set should also include data at all 
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the strains and strain rates that are present during the machining process.  This is because, 

small changes in alloy composition and heat treat can have significant effects on material 

properties.  Also, apparent material strength has been shown to increase at smaller size 

scales [140].  Both strains and strain rates can also be as very high, which results in 

considerable strain hardening and strain rate hardening. 

 Unfortunately, it is not always possible to meet this ideal, and approximate values 

must be used.  This is in part because the high strain and strain rate testing required 

involves the use of specialized equipment and published data is not available for many 

alloys.  Also, the equipment required to collect high strain rate data, such as the split 

Hopkinson pressure bar apparatus [141], is limited to macro-scale testing.   

 Since high-strain rate micro-scale test apparatus is not available, macro-scale 

properties were used as an approximation.  This was deemed the best choice because of 

the importance of strain rate hardening in machining and due to the very limited amounts 

of micro-scale flow stress data.  Also, since little data is available for the 99.99% pure 

aluminum used in this work, data for 99% pure fully annealed Al 1100-0 was used. 

 Room temperature flow stress curves were collected from the literature for Al 

1100-0 or similar alloys differing only slightly in purity or heat treat.  Some very high 

strain rate data was also found for vapor deposited aluminum.  The material, heat treat, 

test method, and strain rate, for each flow-stress curve are listed in Table 7.5.  Note that 

when shear stress and strain data was found, the Mises criterion was assumed to be 

applicable and the material was assumed to be incompressible so that tensile stress-strain 

curves could be found through the use of Equations (7.8) and (7.9) [142] where σ is 

tensile stress, τ is shear stress, ε is tensile strain, and γ is shear strain. 
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(7.8)    3σ τ=    

(7.9)    3
γε =  

Table 7.5: Room temperature stress-strain curves 

Material 
Description 

Heat Treatment Test 
 

Strain  
Rate  
(sec-1) 

Reference

Al 1100-0  CSHPB 800 [142] 
Al 1100-0  TSHB 800 [142] 
Al 1100-0  QS 0.0045 [142] 
Ann. Com. Pure Ann. @ 600° F 2 hr, F.C. QS 0.00167 [141] 
Ann. Com. Pure Ann. @ 600° F 2 hr, F.C. QS 0.56 [141] 
Ann. Com. Pure Ann. @ 600° F 2 hr, F.C. CSHPB 1750 [141] 
Al 1100 Ann. @ 650° F 2 hr, F.C. 24 hr QS 0.002875 [143] 
Al 1100 Ann. @ 650° F 2 hr, F.C. 24 hr QS 0.015 [143] 
Al 1100 Ann. @ 650° F 2 hr, F.C. 24 hr QS 0.1 [143] 
Al 1100 Ann. @ 650° F 2 hr, F.C. 24 hr DDI 910 [143] 
Al 1100 Ann. @ 650° F 2 hr, F.C. 24 hr DDI 1450 [143] 
Al 1100 Ann. @ 650° F 2 hr, F.C. 24 hr DDI 1850 [143] 
Al 1100 Ann. @ 650° F 2 hr, F.C. 24 hr DDI 2500 [143] 
Al 1100 Ann. @ 650° F 2 hr, F.C. 24 hr DDI 3210 [143] 
Al 1100 Ann. @ 650° F 2 hr, F.C. 24 hr DDI 3750 [143] 
Al 1100 Ann. @ 650° F 1.5 hr, F.C. TSHB 490 [144] 
Al 1100  PSI 61776 [145] 
Al 1100  PSI 103345 [145] 
Al 1100  PSI 107387 [145] 
Al 1100  PSI 118356 [145] 
Vapor Deposited  PSI 2309401 [145] 
Vapor Deposited  PSI 2886751 [145] 
     
CSHPB Compressive Split Hopkinson Pressure Bar 
TSHB Torsional Split Hopkinson bar 
QS Quasi-Static 
DDI Direct Disk Impact 
PSI Pressure Shear Impact 
Ann. Annealed 
F.C. Furnace Cooled 
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 The flow stress data is plotted in Fig. 7.2 for plastic strains between 0 and 0.5.  

Note the sharp increase in flow stress that occurs at strain rates of higher than several 

thousand sec-1.  Generally, in finite element modeling, this data is fit to a function that is 

be used by the software to rapidly compute flow stress for a given strain and strain rate.  

One such empirical function commonly used in metal cutting simulations is the Johnson-

Cook flow stress model [146].  For example, this model has been used in 2D finite 

element simulations of micro-scale cutting in aluminum 2024-T3 [35]. 

 

Figure 7.2: Stress-strain curves at various strain rates 

 However, attempts to fit a material model to the data showed that the Johnson-

Cook plasticity model fit the data up to a strain rate of a few thousand sec-1 moderately 

well, but high-strain rate behavior was not captured.  I.e., the marked increase in flow 

stress at strain rates of 104 sec-1 and higher was not captured.  Furthermore, since this 

high strain rate data was captured for vapor deposited aluminum, it is particularly 

applicable.  Hence, a different empirical flow stress equation had to be developed.  
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 Examination of curves of flow stress vs. strain rate, where each different curve 

represents behavior at a different strain, shows that all the curves have about the same 

shape.  This is seen by normalizing each curve by the flow stress at a strain rate of 

0.00167 sec-1 to produce the normalized curves shown in Fig. 7.3.  Hence there is not a 

strong coupling between the effects of strain and strain rate.  Therefore, the flow stress 

can be described with a single stress-strain curve that is adjusted by some strain rate 

dependent flow stress multiplier curve.   

 

Figure 7.3:  Relationship between normalized flow stress and strain rate for Al 1100-0 

 A piecewise stress multiplier function is described by Equations (7.10) – (7.13) 

where R is the stress multiplier, ε pl  is the equivalent plastic strain rate, ε
．

t is the strain rate 

where one function transitions to another, ε
．

o is the quasi-static strain rate, and all other 

values are empirically fit constants.  The strain rate function f1 is in the form used in a 

relatively low strain rate flow stress model for 1100-0 [143], and f2 is in the form used in 

the Johnson-Cook plasticity model [146]. 



 216

(7.10)   

ε ε ε
ε

ε ε ε

⎧ ≤⎪= ⎨
>⎪⎩

1

2

( )
( )

( )

pl pl
tpl

pl pl
t

f if
R

f if  

(7.11)   
ε

ε ε
=
⎡ ⎤
−⎢ ⎥

⎢ ⎥⎣ ⎦

1
1( )

log( / )1
log( )

pl
ppl

o

o

f

D
 

(7.12)   
εεε ε

ε ε

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ + − ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

2 1( ) * log ( ) * log
pl

t
t

o o
f C f C  

(7.13)   
ε ε

ε ε
=1 2( ) ( )t t

pl pl
d f d f
d d  

 The function was fit to the data in Fig. 7.3 using a least squares regression, which 

resulted in the fit shown in Fig. 7.4 and the constants given in the first five columns of 

Table 7.6.  This fit had an R2 regression value of 0.99. 

 

Figure 7.4: Curve fit to the normalized flow stress data 
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Table 7.6: Flow stress data fit parameters 

oε  Do p tε  C A B n 
0.00167 5,988,024 0.139677 6820 1.41057 25.44 123.23 0.3215 

 
 The flow stress values in each stress-strain curve from the literature were divided 

by the values from the curve in Fig. 7.4 at each corresponding strain rate.  This caused all 

the stress-strain curves to line up fairly well, as shown in Fig. 7.5.  A function given by 

Equation (7.14), which is the strain rate independent portion of the Johnson-Cook 

plasticity model, was then fit to these adjusted curves.  In the equation, σo is the quasi-

static flow stress, ε pl is the plastic equivalent strain, and A, B, and n are parameters.  The 

parameters were found via least squares fit regression and are given in the last three 

columns of Table 7.6.  

(7.14)   ( )no plA Bσ ε= +  

 

Figure 7.5: Strain rate normalized stress-strain curves and fit curve 
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 The final stress/strain/strain rate relationship is described by Equation (7.15) 

where σ  is the flow stress.  This resultant function is shown as curves in Fig. 7.6, while 

actual data points are shown as dots.  As can be seen in the figure, the stress-strain-strain 

rate relationship is described fairly well. 

(7.15)   
o Rσ σ=  

 

Figure 7.6: Stress-strain data at various strain rates and material model calculated curves 

7.3.4 Aluminum Failure Model 

 In order to model separation of a chip from a workpiece, selected elements in the 

model are permitted to fail, and hence a material failure criterion for aluminum is 

necessary.  The Johnson-Cook damage model [147] has been used by several researchers 

[35, 125, 126] for this purpose in 2D finite element simulations of metal cutting.  This 

model is used to predict when material has become damaged.  Following the initiation of 

damage, the properties of the damaged material can be made to degrade, which is 
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followed by material failure.  Alternatively, the material can be assumed to immediately 

fail upon damage initiation, which is a commonly used approach in metal cutting that is 

also be used here. 

 In this work a slightly modified Johnson-Cook damage model is used, which is 

already implemented in Abaqus 6.9 [122], was used to determine when elements become 

damaged and are deleted.  Using this model, elements are assumed to become damaged 

during a time increment where a damage parameter, ωD, reaches unity.  This damage 

parameter is found in each time step by summing all instantaneous damage parameter 

values, ΔωD, from the current and previous time steps.  This can be seen in Equations 

(7.16) and (7.17) where εΔ pl  is the change in plastic equivalent strain during a time 

increment, and ε pl
D  is the equivalent plastic strain at the onset of damage based on the 

material state during a given time increment. 

(7.16)   1D Dω ω= Δ ≥∑  
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 The value of ε pl
D  is given by Equation (7.18) where d1 – d5 are material 

dependent parameters, ε pl  is the plastic equivalent strain rate, εo is a parameter used to 

non-dimensionalize the strain rate, θ̂  is the nondimensional temperature, and η is the 

stress triaxiality, which is the negative of the pressure stress divided by the Mises stress.  

The modification from the original Johnson-Cook formula only causes the sign of 

parameter d3 to be opposite from the originally published form.  Also, since thermal 

effects are neglected, θ̂ , remains zero at all times and the value of d5 is irrelevant. 
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 The values of d1 – d4 could not be found for high purity evaporated aluminum or 

even Al 1100-0 in the literature.  Instead, the most relevant values for d1 – d3 are as 

reported for Al 1100-H12 [148], which is a work hardened version of Al 1100-0.  Note 

that the sign of d3 is opposite what it would be using the published Johnson-Cook model 

due to the modified version used in Abaqus.  The most relevant value of d4 is the value 

reported for Al 2024-T3 [149].  These parameter values are listed in Table 7.7. 

Table 7.7: Modified Johnson-Cook damage model parameters 

d1 d2 d3 d4 oε  
0.071 1.248 1.142 0.007 1 

 
7.4 Contact Modeling 

7.4.1 Contact Algorithm 

 Contact between the tool and workpiece and between the workpiece and itself is 

modeled using the general contact algorithm in Abaqus 6.9.  Friction is modeled using a 

extended coulomb friction model, described by Equation (7.19), where frictional shear 

stress, τfric, is given by a constant coefficient of friction, μ, if the predicted frictional shear 

stress is below a set limit, τcrit.  If the predicted frictional shear stress exceeds the limit, 

the limit itself is used by the model.  This approach is based on the work of [150] and has 

been successfully used by several researchers [35, 103, 109, 125].  The basis for the 

approach is that the pressure on the rake face during machining can become so high that 

the frictional shear stress exceeds the shear strength of the material at the interface 



 221

between the chip and rake face, which causes seizing of a thin contact layer on the chip 

and localized plastic flow of the underlying chip material. 

(7.19) 

μ μ τ
τ

τ μ τ
<⎧⎪= ⎨ ≥⎪⎩

( )
( )

contact contact crit
fric

crit contact crit

p if p sliding
if p sticking  

7.4.2 Range of Physically Realistic Friction Values 

 The correct values of μ and τcrit must be found in order to get good model 

predictions.  One means of accomplishing this is to run simulations using several sets of 

values and select the values that provide predictions that are closest to experimental 

results, which is the approach taken in this work.  However, since simulations are 

expected to be time consuming, a study of the literature is used to narrow the range of 

values that need to be examined. 

 The most relevant experimental friction data found in the literature was from an 

experimental study where large grained high purity (99.999% pure) aluminum 

workpieces that were annealed for 30 minutes at 400° C were cut using orthogonal 

machining with a single crystal diamond tool that had an edge radius of 200 nm and a 0° 

rake angle [94].  The lowest cutting speed used was 300 mm/min, which is the same 

speed used in some experiments from the previous chapter, the shallowest depth of cut 

was 10 μm, and a cutting fluid (Ecoline™) was applied to the tool and workpiece prior to 

each experiment, which unfortunately changes the friction conditions.  The study showed 

that the coefficient of friction varied considerably from grain to grain, but for a finer 

grained material the mean value would be most representative, which is 0.15.  Therefore, 

since cutting fluid was used, this value forms a lower bound on range of values that may 

be suitable for the current simulations. 
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Additionally, several researchers have conducted finite element simulations using 

coefficient of friction that were later validated with experiments. One study involved 

simulating orthogonal cutting of Al 2024-T3 with diamond tools at speeds of 150 m/min 

and 180 m/min and with an uncut chip thickness of 105 μm [35, 108].  In that study, the 

coefficient of friction was 0.2 and a max allowable frictional shear stress of 20 MPa 

worked well.  The low max allowable frictional shear stress was attributed to thermal 

softening of material at the tool – chip interface.  Another study involved simulating 

cutting of Al 5083-H116 using a diamond tool with an edge radius of 5 microns at a 

speed of 200 m/min.  A coefficient of friction of 0.14 and max allowable frictional shear 

stress of 135 MPa was found to be effective in that study [107].  Yet another study 

simulated cutting of hot extruded Al 1100 using silicon a nitride based ceramic tool 

insert.  It was found that at a cutting speed of 0.6 m/sec a constant coefficient of friction 

of 0.27 gave the best results.  Based on these results, it was concluded that, for tool / 

workpiece material combinations closest to the experiments described in the previous 

chapter, the coefficient of friction is likely between 0.15 and 0.27.   

A common way of finding the max allowable friction shear stress, τcrit, appears to 

be to try several values until one is found that causes the model to give results consistent 

with experiments [35, 107 - 109].  In another instance, the value of τcrit was set slightly 

higher than a material shear strength value associated with complete failure of the 

material, which was used for chip separation modeling [151].  Lastly, τcrit can be 

estimated via careful evaluation of experimental cutting forces and observation of the 

area of seized chip contact [125], which can be found via a quick stop test [150].  Since 

sufficient cutting force data does not exit for the experiments described in the previous 
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chapter, the approach of running simulations to see the effect of varying τcrit is used, as 

described later in this chapter. 

7.5 Model Geometry 

 The previously selected 8-node elements are used to construct the workpiece used 

in the model, and the tool is mesh using rigid elements.  The overall mesh is shown in 

Fig. 7.7.  In the figure the direction of cut is indicated and it can be seen that the model 

makes use of half symmetry in order to reduce the amount of computer time required. 

 

Figure 7.7: Overall model geometry 

 The workpiece portion of the model consists of five parts that are meshed 

separately than joined using surface-based mesh tie constraints, which perform 

interpolation over interfaces where mating nodes do not line up perfectly.  The five parts 

are identified as the cut work (Fig. 7.8A), uncut work (Fig. 7.8B), support work 1 (Fig. 

7.8C), support work 2 (Fig 7.8D), and end support (Fig. 7.8E).  Note that all of the 

workpiece elements are assigned aluminum material properties except elements in the 

Direction
of Cut 
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bottom 2 μm of support work 2 and end support parts, which are assigned silicon material 

properties, where the [100] crystalline direction is coincident with the y-axis as it is 

defined in Fig. 7.7.  Additionally, two sets of aluminum material properties are used, one 

the does not allow for element failure and deletion and one that does, in order to handle 

separation of the chip from the workpiece. 

 

    
 

Figure 7.8: Workpiece components 
 
 Figure 7.9 indicates the regions that are capable of material failure in order for 

chip formation to occur.  A 3D view of a portion of the workpiece is shown in Fig. 7.9A, 

and a cross-sectional view of the mesh in a plane normal to the direction of cut is shown 

in Fig. 7.9B.  Workpiece elements that are allowed to fail if the Johnson-Cook damage 

criterion is met are darkly shaded and elements that are not allowed to fail are more 

lightly shaded.  Notice that the elements that can fail make up a single layer of elements 

(A) (B) 

(D) (C) (E)
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below the uncut chip and an eight element wide region of elements on the side of the 

uncut chip.  This configuration insures that the bottom of the chip separates from the 

workpiece exactly at the cutting edge of the tool, which is a good approximation provided 

that the tool is sharp.  The side of the chip is allowed separate from the workpiece 

anywhere in the selected region, since the exact location when separation should occur is 

not initially known. 

 

Figure 7.9: Material failure regions 

 Three features were introduced to facilitate chip formation without any element 

becoming misshapen to the point where simulation accuracy suffers.  As shown in Fig. 

7.10, a 40° tilt was introduced into the mesh in the direction of cut in order to pre-

compensate for element skew induced by shearing over the course of the simulation.  

Hence, the amount of skew experienced by an element at any time during a simulation is 

more limited, which increases simulation accuracy since highly skewed elements are not 

as accurate.  Such an approach has been previously used by several researchers in 2D 

simulations [35, 104, 123].  Additionally, as shown in Fig. 7.11, a crack with a 5° 

opening angle and a 400 nm depth was introduced where the tool initially enters the 

workpiece in order to encourage steady state chip formation to occur earlier in the 
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simulation than it would occur otherwise.  Lastly, as can be seen in Fig. 7.9B and Fig. 

7.11, the cross-section of the mesh was rounded to match the rounded bottom of the 

cutting tool used in Experiment 4 in Chapter 6. 

 

Figure 7.10: Mesh slant 

 

Figure 7.11: Initial crack in order to facilitate chip formation 

 The tool to be modeled was rounded it bottom with a radius of 893 nm.  

Additionally, some rounding with a radius of 60 nm was present on edges of the tool 

formed via a focused ion beam.  This means that a completely correct model of the tool 

would have a rounded cutting edge and rounded non-cutting edges.  However, if a 

rounded cutting edge is used, a very dense mesh would be required in the vicinity of the 

cutting edge, which would increase computer time significantly.  Also, in order for 

separation of the chip to occur there would have to be a region of elements in line with 

Direction of Cut
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the cutting edge capable of failure, which would cause the contact problem that motivated 

the use of a line of fallible elements below the chip to return. 

 Fortunately, a 60 nm cutting edge radius is sharp enough to approximate as 

infinitely sharp in this work.  The justification for this is that a chip will separate from a 

workpiece when the uncut chip thickness exceeds the minimum chip thickness, which is a 

material dependent fraction of the cutting edge radius.  For aluminum the minimum chip 

thickness is 40% of the cutting edge radius [152] or 24 nm in this case.  Such a small 

minimum chip thickness relative to the depth of cut, 265 nm being the shallowest depth 

of cut to be simulated, indicates that over 90% of the material will travel up the rake face 

of the tool during actual cutting and not be affected by the presence of the edge radius.  

Hence, the sharp tool approximation is valid provided that exact trust force predictions, 

which may be affected by the presence of ploughing under the tool, are not required.  

This is acceptable since finite element models often do a poor job of predicting thrust 

forces, and hence this is not a model output that will be considered in this work 

 A 3D view of the tool model is shown in Fig. 7.12A.  The tool was constructed 

from rigid 3D planar elements (R3D4) and takes advantage of half-symmetry to reduce 

the element count.  The tool model shown in the figure has a 0° rake angle, a 20° end 

clearance angle, a 5° side clearance angle, and a perfectly sharp cutting edge.  Also, as 

shown in Fig. 7.12B, the tool has a rounded bottom with a radius of 893 nm.  As shown 

in Fig. 7.12C, the side edge of the tool also has a radius of 60 nm.   
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Figure 7.12: Tool mesh 3D view (A), rake face view (B), and top down view (C) 

 When using this tool in a simulation, all of the elements that make up the bottom 

of the chip should slide up the rake face of the tool.  Hence, all of the nodes attached to 

each of these elements should also slide up the rake face.  If however, one or more of the 

nodes that make up one of these elements manages to slide under the tool, then the 

associated element will become highly deformed.  Such events can occur at the start of a 

simulation and may greatly impact the simulation results in a negative manner. 

 This problem can occurs because, as shown in Fig. 7.13, the failure of an element 

beneath the chip produces an open space between the bottom of the tool and the elements 

that make up the uncut workpiece.  The existence of this space is purely due to finite 

element descritization, and in actual cutting the space would be full of material being 

ploughed under the tool.  Hence chip material would not be able to flow into this space, 

i.e., the chip material would only be able to flow up the rake face because it would have 

nowhere else to go.   

(A) (B) (C)

Rake Face Cutting 
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Figure 7.13: Cause of nodes being able to slide under the tool 

 Since it is not realistic for nodes to slide under the tool though an empty space 

that is only present due to the FEA descritization, some means of constraining nodes to 

not flow into that space is needed.  This is accomplished by adding a separate rigid part 

placed such that it extends from the cutting edge and prevents nodes from moving in 

physically unrealistic manner.  This chip guide is shown in Fig. 7.14A and matches up 

with a tool as shown in Fig. 7.14B. Since this part is not physically real, contact between 

the chip guide and the workpiece is taken to be frictionless. 

 

Figure 7.14: Chip guide (A) and how it mates to the cutting tool (B) 

 

 

(A) (B) 
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7.6 Boundary and Contact Conditions 

 A cutting full simulation is broken into five time steps: the initial step, the cut 

entry step, the cut established step, the cut exit step, and the cut clear step.  These steps 

correspond establishment of initial conditions, initial entry of the tool into the workpiece, 

steady state cutting, exit of the tool from the workpiece, and moving the tool past the 

workpiece.  During each step, boundary conditions are applied, maintained, or modified.  

Table 7.8 provides the duration of each step and indicates the boundary conditions 

present in each step.  Figure 7.15 indicates where each boundary condition is applied 

except for the last two boundary conditions, which are directly applied to the tool and 

chip guide rigid bodies. 

 The boundary condition on the side of the crack, which is only active up through 

the second step, is intended to prevent the weakly supported material from spreading too 

much due to compression when the tool first enters the workpiece.  Also, the boundary 

conditions up through the cut est. step are aimed at simulating stead state cutting.  By 

contrast the boundary conditions are changed during the cut exit step to allow for 

simulation of the tool to exiting from the other side of the workpiece.   

Table 7.8: Boundary conditions 

Time Step Initial Cut Entry Cut Est . Cut Exit Cut Clear 
Duration (msec) 0.0 0.242 1.32 0.6 0.25 
Fixed X Entry B.C. Nodes fixed in x-dir 
Fixed Z Crack B.C. Nodes fixed in z-dir Inactive 
Pinned Sides B.C. Nodes fixed in all directions 
Pinned End B.C. Nodes fixed in all directions 
Pinned Exit B.C. 1 Nodes fixed in all directions Inactive 
Pinned Exit B.C. 2 Nodes fixed in all directions Inactive 
Symmetry B.C. Symmetry about xy-plane 
Tool Vel B.C. Inactive -5 mm/sec in x-dir 
Chip Guide Vel B.C. Inactive -5 mm/sec in x-dir Inactive 
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Fixed X Entry B.C. Fixed Z Crack B.C. Pinned Sides B.C. 

Pinned End B.C. Pinned Exit B.C. 1 Pinned Exit B.C. 2 
  

Symmetry B.C.   
 

Figure 7.15: Regions where boundary conditions are applied 

 As mentioned previously, the workpiece consisted of five parts that were joined 

with surface-based mesh tie constraints.  Additionally, there is a rigid tool part and a rigid 

chip guide part.  Over the course of the simulation, different parts are enabled to have 

contact with each other using the Abaqus general contact algorithm, and contact 

conditions are assigned to each contact pair.  The contact pairs during each time step and 

the corresponding contact conditions are given in Table 7.9.  Note that the change in 

contact conditions during the cut exit step is intended prevent the chip guide from 
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affecting the exit burr formation process and is acceptable because the situation that 

causes the chip guide to be necessary only occurs early in the simulations. 

Table 7.9: Contact pairs and conditions 

Part 1 Part 2 Friction Model Steps 
Tool Cut Work Extended Coulomb Friction All 

Chip Guide Cut Work Frictionless Initial, Cut Entry, Cut Est. 
Cut Work Cut Work Extended Coulomb Friction All 
Cut Work Uncut Work Extended Coulomb Friction Cut Exit, Cut Clear 

 
7.7 Friction and Material Failure Strain Effects 

7.7.1 Motivation 

 In order for the model to be useful for predictions it is necessary to find all model 

parameters that could not be found with confidence in the literature.  Specifically, the 

coefficient of friction, μ, must be found and the max possible frictional shear stress at the 

interface between the tool and chip, τcrit, must be found.  Also, since the Johnson-Cook 

damage parameters were found for a material that had experienced much more work 

hardening than the actual workpiece material, these parameters might require adjustment.  

These tasks are accomplished by running simulations while using different combinations 

of parameter values, and then comparing simulation and experimental results.  Multiple 

experimental conditions are simulated so that the parameters are not erroneously set to 

values that work well for one condition but do not work well at all for other conditions. 

 Once the correct parameters are found, results can be evaluated in order to gain an 

understanding of the cutting process that cannot be gained experimentally.  Additionally, 

useful insight into the cutting process can be gained by examining how model behavior 

changes as parameters of interest are changed. 
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7.7.2 Selected Experimental Cases 

 Experiment 4 in Chapter 6 was conducted using cutting speeds of 50 mm/min to 

400 mm/min.  It is desirable to simulate the highest speed cases because the computer 

time required for a simulation depends on how much time must be simulated, which is in 

turn dependent on how long it takes for a tool to travel a long enough distance to observe 

cutting mechanics.  However, the grooves produced in the 400 mm/min case were 

slightly wavy, likely due to the cutting action occurring faster than the limited bandwidth 

laser sensor and feedback control could easily handle.  Therefore, simulations of some of 

the cuts made at 300 mm/min were performed instead. 

 Three load cases were selected for simulation: 0.3 mN, 0.7 mN, and 1.1 mN.  For 

convenience, Table 7.10 lists the groove shape and chip characteristics that were present 

in each selected case during Experiment 4 in Chapter 6.  Also, Fig. 7.16 shows the cross-

sections of each of the grooves.  Recall that due to distortion in AFM measurements, the 

left sides of the cross-sections are more representative of the actual groove shape than the 

right sides, which appear more sloped than they actually are. 

Table 7.10: Selected groove and chip characteristics from Experiment 4 in Chapter 6 

Conditions Load (mN) 0.3 0.7 1.1 
  Speed (mm / min) 300 300 300 
Groove Shape Mean Depth (μm) 0.267 0.503 0.687 
 Mean Width (μm) 0.970 1.083 1.212 
 Left Burr Height (μm) 0.052 0.148 0.146 
 Right Burr Height (μm) 0.080 0.153 0.193 
Chip  Mean Chip Thick (μm) 0.475 0.901 1.102 
Characteristics Chip Thick Std (μm) 0.025 0.022 0.043 
 Mean Chip Width (μm) 0.976 1.332 1.703 
 Chip Width Std (μm) 0.023 0.044 0.025 
 Curl Radius (μm) 1.673 > 2.76 > 2.76 
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Figure 7.16: Selected groove cross-sections from Experiment 4 in Chapter 6 

 Additionally, for purposes of comparison to simulation results, the chip roots and 

chip curl during the selected cases was examined in more detail.  Figure 7.17 shows the 

chip roots with the cutting tool superimposed on then.  The images have been stretched at 

scaled so that they line up correctly.  Figure 7.18 shows chips formed from the same cuts.  

Based on these images, it is shown that the chip curls in each case once it separates from 

the tool.  In the 0.3 mN load case, the chip curl radius was 1.673 μm.  In the other cases 

the curl radius due to cutting mechanics alone could not be measured directly, since the 

chip ran into the upper portion of the tool, as can be seen in Fig. 7.17B and Fig. 7.17C.  

In these cases, the chip curl radius was greater than 2.76 μm since this is the radius below 

which the chip would clear the tool.  The radii are listed in Table 7.10. 

   

Figure 7.17: Chip roots formed when cutting at 300 mm/min in the 0.3 mN (A), 0.7 mN, 

(B) and 1.1 mN (C) cases 

(A) (B) (C)
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Figure 7.18: Chip formed when cutting at 300 mm/min in the 0.3 mN (A), 0.7 mN, (B) 

and 1.1 mN (C) cases 

7.7.3 Estimating the Max Allowable Frictional Shear Stress  

A common way of estimating the max allowable friction shear stress, τcrit, is to 

run simulations with several values until one is found that causes the model to give 

results consistent with experiments [35, 107 - 109].  In another instance, the value of τcrit 

was set slightly higher than a material shear strength value associated with complete 

failure of the material [151].  Alternatively, τcrit can be estimated via evaluation of 

experimental cutting forces and observation of the area of seized chip contact [125], 

which can be found via a quick stop test [150]. 

In the current case, experimental data does not exist and useful values have not 

been founded in the literature.  Therefore, several finite element model runs were 

performed using different values of τcrit: 100, 200, 300, and 400 MPa.  In each run, the 

coefficient of friction is assumed to be 0.2, the depth of cut is 500 nm, and the cutting 

speed is 300 mm/min.  The material properties used were the same given previously in 

this chapter in Table 7.2, Table 7.4, Equations (7.10) – (7.15), Table 7.6, and Table 7.7.  

These runs enabled observation of changes in chip shape and estimation of the shear 

strength of the work hardened material at the tool-chip interface. 

(A) 

(B) (C)



 236

It was found that chip shape did not change significantly due to changes in τcrit.  

Also, there were not very large changes in the work hardened material shear strength at 

the interface between the chip and tool.  This can be seen in Fig. 7.19A where the shear 

strength values at each node along the interface are plotted.  In each case, the mean 

material shear strength is about 300 MPa along the rake face, which indicates that most of 

the work hardening occurred in the primary shear zone. 

Additional, simulations were run to determine if the mean material shear strength 

at the interface remains 300 MPa when the coefficient of friction is varied.  These 

simulations used coefficients of friction of 0.15, 0.20, 0.25, and 0.3 where τcrit was set to 

300 MPa and all other simulation values were as before.  It was found that work hardened 

material shear strength at the interface is not strongly affected by the coefficient of 

friction in the range of 0.15 to 0.30, as shown in Fig. 7.19B. 

 

Figure 7.19: Shear strength of material due to work hardening of material along rake face 

Except for a few hot spots, the contact pressures at the rake face – chip interface 

are low enough that frictional shear stress is not nearly as high as the work hardened 
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shear strength of the chip material at the interface, which is likely why changing the value 

of τcrit does not have a large effect on simulation results. This can be seen in Fig. 7.20, 

which shows the contact pressures along the rake face mostly do not exceed 800 MPa in 

all of the simulations, which results in a frictional shear stress of only 240 MPa even if a 

coefficient of friction as high as 0.3 is used.  Hence, very little sticking is expected to 

occur.  This is consistent with results reported by [150] where sticking did not occur 

during cutting at what are considered low speeds for conventional macro-scale metal 

cutting.  This is fortuitous since it means that the τcrit value used in the simulations does 

not need to be as accurate as it would have to be otherwise.  Hence, in the remainder of 

the work τcrit is taken to be 300 MPa. 

 

Figure 7.20: Contact pressures at various heights up the tool rake face 

7.7.4 Finding Coefficient of Friction and Material Failure Values 

 The coefficient of friction can have a significant effect on model output and must 

be set accurately.  Also, the amount of plastic equivalent strain required for material 

failure can affect burr formation and must be modeled correctly.   To find the correct 
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values to use several simulations were run and the simulation outputs are compared to the 

previously described experimental results.  Once again, in all the simulations the material 

properties used were the same given previously in this chapter in Table 7.2, Table 7.4, 

Equations (7.10) – (7.15), Table 7.6, and Table 7.7. 

The simulations were run at a speed of 300 mm/min and depths of cut of 265 nm, 

500 nm, and 720 nm.  These depths are the mean depths during several different 

experiments conducted using cutting loads of 0.3, 0.7, and 1.1 mN, respectively.  For 

each depth, all combinations of two coefficients of friction, μ, and two Johnson-Cook 

damage model d2 values were simulated.  The values of μ used were 0.20 and 0.25.  

Parameter d2 was used as a variable because, as shown in Equation (7.18), it has the 

strongest effect on the value of plastic equivalent strain required for material failure.  One 

of the d2 values was 1.248, which is that value reported for Al 1100-H12 in the literature 

[148] and might be too high due to the work hardening present in that material.  The other 

d2 value of 0.9 and was selected arbitrarily. 

 After the simulations had each progressed to the point of capturing steady state 

chip formation, model outputs were compared to experimental results to see what 

combination of μ and d2 offers the best predictions overall.  This is accomplished by 

evaluating the effect of these parameters on chip thickness, burr height, chip curl radius, 

and groove shape, each of which can be obtained from the model and measured 

experimentally.  Figure 7.21 shows the simulated chip thickness results plotted along side 

the experimentally measured chip thicknesses.  Additionally, the side burr height was 

found in each of the simulations.  Figure 7.22 shows the simulated heights along with the 

experimentally measured burr heights. Note that there are two overlapping bars shown 
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for each experimental result in order to show the measured height of side burrs on the left 

and right side of each groove. 

 

Figure 7.21: Simulated and experimental chip thickness 

 

Figure 7.22: Simulated and experimental side burr heights 

 As shown in Fig. 7.23, during simulations where the depth of cut is 265 nm and d2 

is 0.9, the top of the side burr would peal away leaving behind a smaller side burr that 

more closely matched the experimental burr height. For all other conditions, burr pealing 

did not occur.  Since the amount of material pealing away is so small, this might 

represent an actual occurrence, which would not be observable.   
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265 nm, μ = 0.20, d2 = 1.248 265 nm, μ = 0.2, d2 = 0.9 265 nm, μ = 0.25, d2 = 1.248

265 nm, μ = 0.25, d2 = 0.9 500 nm, μ = 0.20, d2 = 1.248 500 nm, μ = 0.2, d2 = 0.9 
 

500 nm, μ = 0.25, d2 = 1.248 500 nm, μ = 0.2, d2 = 0.9  
 

Figure 7.23: Burr pealing seen in some simulations 

 Figure 7.24 shows plots of the groove cross-sections from the 265 nm depth of cut 

simulations with the experimental cross-section superimposed on each plot.  Figure 7.25 

and Fig. 7.26 show a similar set of plots from simulations with a 500 nm and 720 nm 

depth of cut, respectively.  In each figure, the shading indicates the predicted plastic 

equivalent strain (PEEQ).  Note the experimental cross-sections do not line up as well on 
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the right sides of the grooves due to distortion introduce by AFM measurement.  Also, 

the experimental and predicted groove bottoms are at different depths due to the deletion 

of the layer of sacrificial elements below the chip during simulations and due to slight 

difference in the experimental and simulated depths of cut. 

 
DOC = 265 nm, μ = 0.20, d2 = 1.248 

 
DOC = 265 nm, μ = 0.20, d2 = 0.9 

 
DOC = 265 nm, μ = 0.25, d2 = 1.248 

 
DOC = 265 nm, μ = 0.25, d2 = 0.9 

 
Figure 7.24: Experimental and simulated cross-sections of a shallow cut 
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DOC = 500 nm, μ = 0.20, d2 = 1.248 

 
DOC = 500 nm, μ = 0.20, d2 = 0.9 

 
DOC = 500 nm, μ = 0.25, d2 = 1.248 

 
DOC = 500 nm, μ = 0.25, d2 = 0.9 

 
Figure 7.25: Experimental and simulated cross-sections of a moderately deep cut 
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DOC = 720 nm, μ = 0.20, d2 = 1.248 

 
DOC = 720 nm, μ = 0.20, d2 = 0.9 

 
DOC = 720 nm, μ = 0.25, d2 = 1.248 

 
DOC = 720 nm, μ = 0.25, d2 = 0.9 

 
Figure 7.26: Experimental and simulated cross-sections of a deep cut 
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 In order to see the curl of the simulated chips, the positions of the nodes along the 

symmetry plane that contact and then separate from the rake face were extracted from 

each simulation and plotted.  Figures 7.27, 7.28, and 7.29 show plots of the chip shapes in 

the 265 nm, 500 nm, and 720 nm depth of cut simulations, respectively.  In each plot the 

darkened line segment towards the bottom of the plot represents nodes that experienced 

contact with the rake face. 

 Based on the plots, the simulated chip curl radius was calculated for each 

simulation where there was enough data points to successfully fit a circle to the chip 

profile after separation from the rake face.  The radii are plotted in Fig. 7.30 along with 

the experimentally determined chip curl radii.  Note that the bars for the 503 nm and 687 

nm depth of cut cases encompass the right side of the plot because it could only be 

determined that that actual radius was greater than 2.76 based experimental data.  Lastly, 

Table 7.11 contains all the simulation results for easy comparision reference. 

 

Figure 7.27: Simulated chip curl during simulations with a 265 nm depth of cut 
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Figure 7.28: Simulated chip curl during simulations with a 500 nm depth of cut 

 

Figure 7.29: Simulated chip curl during simulations with a 720 nm depth of cut 
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Figure 7.30: Simulated and experimental chip curl radii 

Table 7.11: Tabulated results from simulations and experiments 

Depth of 
Cut (nm) 

Coefficient 
of Friction 

J-C, D2 
Value 

Center Chip 
Thick (μm)

Contact 
Length (μm)

Burr Ht 
(nm) 

Curl Radius 
(μm) 

265 0.20 1.248 0.624 0.577 141 1.688 
265 0.20 0.9 0.588 0.568 74 1.442 
265 0.25 1.248 0.668 0.629 141 2.316 
265 0.25 0.9 0.626 0.613 76 1.742 
267 Experimental 0.475  52, 80 1.673 
500 0.20 1.248 1.026 1.176 170  
500 0.20 0.9 1.013 0.919 173 2.778 
500 0.25 1.248 1.049 1.046 171 5.619 
500 0.25 0.9 1.090 1.005 166 3.071 
503 Experimental 0.901  148, 153 > 2.76 
720 0.20 1.248 1.285 1.328 183 6.196 
720 0.20 0.9 1.315 1.263 196 4.4816 
720 0.25 1.248 1.356 1.395 212 Large 
720 0.25 0.9 1.361 1.333 186 Large 
687 Experimental 1.102  146, 193 > 2.76 

 
 The simulations results were examined to determine the best values of μ = 0.2 and 

d2.  Examination of Fig. 7.21 shows that predicted chip thickness increases with increased 

depth of cut depth of cut, which is consistent with experimental results.  Furthermore, the 

amount of increase due to a change in depth of cut is almost the same as the 

experimentally observed increase.  However, the predicted thickness was larger then the 
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experimentally observed thickness in all cases.  It is also shown that the predicted 

thickness always increased with an increased coefficient of friction and varied 

inconsistently when d2 was changed. 

 Burr height predictions also captured the trend of increased burr height with 

increased depth of cut, as shown in Fig. 7.22.  However, the magnitude of the burr height 

is overpredicted by nearly 100% at a low depth of cut unless d2 is set to 0.9, which causes 

the prediction to be correct to within the level of experimental uncertainly.  Setting, d2 to 

0.9 at larger depths of cut also improved prediction accuracy.  Changing the coefficient of 

friction, however, had inconsistent results.  The importance of d2 is expected because burr 

formation is strongly affected by separation of material at the side of the chip, which is in 

turn affected by the material failure criteria.  Furthermore, the d2 value from the literature 

of 1.248 was expected to be too high because the material the results were reported for 

had been work hardened significantly. 

 Examination of the cross-sections in Fig. 7.24 – Fig. 7.26 showed that overall 

groove shape was predicted fairly well in most cases.  Once again, setting of d2 equal to 

0.9 resulted in much better predictions in the 265 nm depth of cut case.  In the 500 nm 

depth of cut case, changing d2 had little effect, but there was some benefit to increasing 

the coefficient of friction.  In the 720 nm depth of cut case a lower coefficient of friction 

gave better prediction, but the change was not very significant. 

 As shown in Fig. 7.30, the chip curl radius was predicted to increase with 

increased depth of cut, which is consistent with experimental results.  The radius 

decreases when d2 is decreased and increases when the coefficient of friction increases.  

In the 265 nm depth of cut case, goods predictions were achieved when μ = 0.2 and d2 = 
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1.248 and also when μ = 0.25 and d2 = 0.9.  At 500 nm and 720 nm depths of cut, all 

predicted curl radii are in the potential experimental range 

 In light of the model’s intended use, correct chip flow and burr shape prediction 

are considered important.  Hence, use of parameters that result in a slightly less accurate 

chip thickness prediction in order to get a significantly more accurate burr height and 

chip curl prediction is deemed acceptable.  The best results were deemed to be achieved 

when μ = 0.25 and d2 = 0.9.  This is primarily due to the large decrease in burr height and 

chip curl radius prediction accuracy at lower depths of cut when other values were used. 

7.8 Finite Element Model Validation 

7.8.1 Model Accuracy 

 Experimentally measurable outputs from simulations using the values for τcrit, μ, 

and d2 found in the previous sections are tabulated in Table 7.12.  These models outputs 

are the chip thickness at the symmetry plane, the predicted side burr height, and the 

predicted chip curl radius.  The table also lists the experimentally measured values and 

the error in the predictions given by the model.  

Table 7.12: Model prediction accuracy 

Exp. Depth  
of Cut (nm) 

Sim. Depth 
of Cut (nm)

Characteristic Exp. 
Value 

Sim. 
Value 

Error 

267 265 0.475 0.626 31.8% 
503 500 0.901 1.090 21.0% 
687 720 

Chip  
Thickness (μm)

1.102 1.361 23.5% 
267 265 52, 80 76 0% 
503 500 148, 153 166 8.5% 
687 720 

Side Burr  
Height (nm) 

146, 193 186 0% 
267 265 1.673 1.742 4.1% 
503 500 > 2.76 3.071  
687 720 

Chip Curl  
Radius (μm) 

> 2.76 > 3.071  
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 It can be seen in Table 7.12 that chip thickness prediction errors are within 21.0 – 

31.8 %.  Burr height prediction errors are within 0.0 – 8.5 %.  Chip curl prediction error 

is only 4.1% in the case when simulation results and experimental results could be 

directly compared and appears acceptable in all other cases.  Therefore, the model is 

providing acceptably accurate results, and the model material properties given earlier in 

the chapter and the inputs found in the previous section will be used in all further 

simulations described in this work. 

7.8.2 Validity of 3D Modeling Requirement 

 Two dimensional finite element models are commonly used to simulate 

orthogonal metal cutting because of the accompanying reduction of required computer 

resources.  However, it was argued earlier in this chapter that a 3D model would be 

required to capture the pertinent mechanics of the micro-groove cutting process.  Model 

outputs are evaluated here to confirm these arguments. 

 In order to approximate the stress / strain state of a 3D cutting process using a 2D 

model, the plain stain assumption is typically made.  Using this assumption, out-of-plane 

components of the strain tensor are assumed to be zero, i.e., with a coordinate system 

defined as in Fig. 7.7, the ε33 strain tensor component is assumed zero.  Alternatively, the 

plane stress assumption can be made when the out-of-plane components of the stress 

tensor are zero, i.e., with a coordinate system defined as in Fig. 7.7, the σ33 stress tensor 

component is zero.  Hence, if the simulation results show that both this components are 

not very small then 2D approximations are not valid and will give erroneous results. 

 A top-down view of a workpiece surface during a simulated cut is shown in Fig. 

7.31, where the depth of cut is 500 nm and the rake angle is 0°.  Hence, the camera is 
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looking in the negative y-direction such that z-axis appears vertical in the figure.  Tensile 

out-of-cutting plane components of the plastic strain and stress tensors are indicated in 

the figure via grayscale shading.  It is clear that both these components are far too large to 

be approximated as zero.  In fact, out-of-plane tensile plastic strain is as high as 0.45 and 

out-of-plane compressive stress is as high as 130 MPa.  Hence, any 2D approximation of 

the micro-groove cutting process is completely incorrect, and the 3D model is required.  

This validates the arguments made earlier in this chapter. 

 

 
Plastic strain tensor component in 3-direction (ε33)   

 

 
Stress tensor component in 3-direction (σ33)   

 
Figure 7.31: Out of cutting plane tensile plastic strain / stress (ε33 / σ33) for a 500 nm deep 

cut using 0° rake angle tool 

7.9 Chapter Summary 

 In this chapter, the development of a finite element model of micro-groove cutting 

was described.  This model addresses the need to handle the 3D stress / strain fields 

3-Direction (z-axis) 

Direction of Cut

Tool

3-Direction (z-axis) 
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present during micro-groove cutting, to handle chip separation at the side of a chip, to 

account for rounded tool geometry, and to predict side burr formation during steady state 

cutting.  The model is also capable of simulating exit burr formation when a tool exits 

from a workpiece. 

 Model inputs were extracted from the literature where possible.  When literature 

values could not be found, the model was run using different inputs values and used to 

simulate cutting during three experiments from Chapter 6.  The model inputs that resulted 

in the most accurate predictions of the experimental results were selected for further use. 

 It was shown that when using the selected model parameters, good agreement is 

achieved between the model and experimental results.  Specifically, chip thickness 

prediction errors are within 21.0 – 31.8 %, burr height prediction errors are within 0.0 – 

8.5 %, and chip curl prediction error is only 4.1% in cases where simulation and 

experiment results could be compared.  Additionally, it was shown that out-of-cutting 

plane stress and strain components are large enough that the use of a 3D model is 

justified since 2D approximations cannot capture the stress/strain fields present. 

 In the next chapter, the model is used to examine process mechanics during steady 

state cutting at different depths of cut and with different rake angles.  Exit burr formation, 

when a tool exits the workpiece is also examined.  Those results will in turn be used to 

gain a better understanding of the micro-groove cutting process, which can be used to 

implement process improvements. 
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Chapter 8 

Model-Based Micro-Groove Cutting Process 
Study 
 
8.1 Design of Simulation Experiments 

 In the previous chapter, a 3D finite element model of the cutting process was 

developed that addresses the 3D stress / strain fields present during micro-groove cutting, 

addresses chip separation at the side of a chip, accounts for rounded tool geometry, 

predicts side burr formation, and can predict exit burr formation.  This model also was 

validated using experimental results.  In this chapter, the model is used to simulate micro-

groove cutting at three different depths of cut and with two different rake angles.  

Selected results from these simulations are examined in detail with the goal being to gain 

a better understanding of the micro-groove cutting process, which can be used to 

implement process improvements. 

 The geometry of the model is shown in Fig. 8.1.  The 1, 2, and 3 directions of the 

stress / strain tensors correspond to the x, y, and z directions, respectably, as shown in the 

figure.  The tool travels in the negative x-direction.  The model makes use of half-

symmetry and the symmetry plane lies parallel to the x-y plane.  The materials that make 

up the top 3 μm and bottom 2 μm of the model are aluminum and single crystal silicon, 

respectively.  The model is long enough in the cutting direction to ensure steady-state 

cutting is achieved, and exit burr formation can be examined by continuing to cut until 

the tool exits from the mesh.  All stress values are reported in MPa. 
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Figure 8.1: Overall model geometry 

 Simulations were conducted using all combinations of the depths of cut of 254 

nm, 500 nm, and 720 nm as well as the rake angles of 0° and 10°.  In each of these 

simulations the cutting speed was 300 mm/min and cutting was allowed to progress until 

steady-state chip formation occurred.  Additionally, in the case of a 500 nm depth of cut 

and a 0° rake angle, exit burr formation was simulated. 

 Figure 8.2, Fig. 8.3, and Fig. 8.4 show the simulated geometries of the 

workpieces, mirrored about the symmetry plane, during steady-state cutting when the 

depth of cut is 264 nm, 500 nm, and 720 nm, respectively.  In all cases, it can be seen that 

a chip separates from the workpiece, flows up the rake face, and separates from the rake 

face.  Side burrs are formed on the side of each groove.  Also, ahead of each chip, a 

rounded prow of material rise out of the workpiece. 
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254 nm depth of cut, 300 mm/min, 0° rake angle 

254 nm depth of cut, 300 mm/min, 10° rake angle 
 

Figure 8.2: Predicated steady-state workpiece shapes when the depth of cut is 265 nm 

500 nm depth of cut, 300 mm/min, 0° rake angle 

500 nm depth of cut, 300 mm/min, 10° rake angle 
 

Figure 8.3: Predicated steady-state workpiece shapes when the depth of cut is 500 nm 
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720 nm depth of cut, 300 mm/min, 0° rake angle 

720 nm depth of cut, 300 mm/min, 10° rake angle 
 

Figure 8.4: Predicated steady-state workpiece shapes when the depth of cut is 720 nm 

 In the next section, fundamental micro-groove cutting process characteristics 

including cutting forces, chip curl, chip thickness, and the stress / strain distributions 

present throughout the thickness of the chips are examined for each of the six simulated 

conditions.  Then, in the following section, out-of-cutting plane effects that result in side 

burr formation are examined, and a sequence of events that occur during side burr 

formation is described.  Afterwards, in another section, exit burr formation is examined, 

and a sequence of events leading to exit burr formation is described.  Lastly, a discussion 

of the potential for the delamination of a soft thin film on a substrate when micro-grooves 

are cut into the film is presented.  A summary of the results from the chapter follows. 

8.2 Fundamentals of the Micro-Groove Cutting Process 

 In micro-groove cutting experiments, the load applied to the tool normal to the 

workpiece surface is controlled and balances with the process dependent thrust force in 
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order to set the depth of cut.  However, the force in the cutting direction has not been 

measured experimentally due to its extremely small magnitude.  Conversely, finite 

element simulations tend to not do a good job of predicting thrust forces, but can 

accurately predict force in the cutting direction.  Hence, cutting force predictions in the 

direction of cut, which are shown in Fig. 8.5, are discussed here.  Note that the plot shows 

the output of the half symmetry model, which gives half the actual cutting forces. 

 

Figure 8.5: Predicted cutting forces in direction of cut 

 As can be seen in Fig. 8.5, the cutting force initially ramps up at the start of a cut 

when the tool enters the workpiece and then continues to rise until reaching a constant 

value indicative of steady-state cutting.  Oscillations in cutting force are due to the failure 

and deletion of discrete elements as a part of chip separation.  This is an artifact of the 

finite element model and would not be expected to occur during actual cutting. 

 The simulations indicate that the steady-state cutting force magnitudes increase 

linearly with an increase in depth of cut and decrease with increased rake angle, which is 
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consist with conventional machining.  Also, the amount of decrease in cutting forces that 

occurs when the rake angle is increased is greater when the depth of cut is large.  Note 

that cutting forces are small compared to the thrust forces.  This can be seen by recalling 

that in experiments using similar cutting conditions as in the simulations, and a 0° rake 

angle, the thrust forces were 0.3 mN, 0.7 mN, and 1.1 mN for depths of cut of 267 nm, 

503 nm, and 687 nm, respectively.  Due to a lack of experimental data this result cannot 

be directly verified.  However, the large difference between cutting forces and thrust 

forces is noteworthy because it is generally not seen in conventional micro-scale cutting.  

From a tool design perspective, this indicates that the ability of a tool to withstand high 

thrust forces might be more critical than its ability to withstand high forces in the cutting 

direction.   

 Simulation results were also evaluated at the symmetry plane in order to examine 

chip flow, the primary shear zone, and the secondary shear zone.  Figure 8.6 shows the 

deformed meshes during steady-state chip formation.  Note that the tops of the chips are 

truncated so that portions of the chips formed prior to the establishment of steady-state 

conditions are not shown.  In each case, the chip smoothly separates from the workpiece 

along the plane of elements under the chip that are permitted to fail.  Also, although the 

elements that make up the chips are deformed by shear, due to the initial slant of the 

mesh, this deformation is kept to an acceptable level.  Comparison of the meshes shows 

that chip thickness, tool-chip contact length, and chip curl radius all vary with cutting 

conditions, which is expected.  The numerical values are listed in Table 8.1. 

 



 258

265 Depth of Cut, 0° Rake Angle 265 Depth of Cut, 10° Rake Angle 

500 Depth of Cut, 0° Rake Angle 500 Depth of Cut, 10° Rake Angle 

720 Depth of Cut, 0° Rake Angle 720 Depth of Cut, 10° Rake Angle 
 

Figure 8.6: Deformed mesh at the symmetry plane during steady-state cutting 

Table 8.1: Predicted steady-state chip shapes 

Rake Angle (deg) 0 0 0 10 10 10 
Depth of Cut (nm) 265 500 720 265 500 720 
Chip Thickness (μm) 0.626 1.090 1.361 0.526 0.898 1.181 
Contact Length (μm) 0.613 1.005 1.333 0.510 0.810 1.137 
Curl Radius (μm) 1.742 3.071 Large 1.452 2.798 4.844 
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  As indicated in Table 8.1, chip thickness, tool-chip contact length, and the chip 

curl radius all decrease when the rake angle is increased from 0° to 10°.  By contrast, chip 

thickness, tool-chip contact length, and the chip curl radius all increase when the depth of 

cut in increased.  Hence, in order to set these chip flow characteristics at a given depth of 

cut it may be necessary to adjust the rake angle by changing the tool orientation.  Setting 

of chip flow characteristics in this manner might be desirable because a chip breaker 

geometry will only be effective if chip characteristic are within a range dependent on the 

chip breaker geometry, and at the micro-scale it is not practical to adjust the 

configuration of a chip breaker to accommodate changes in chip characteristics.  Also, if 

micro-groove cutting is being used to create micro-wires, i.e., the chip is the desired 

product, control of the chip thickness and chip curl would be desirable.   

 The stress and strain states of the chips and underlining workpieces are also 

examined at the symmetry plane.  Figure 8.7 shows the Von Mises stresses in each 

simulated case.  Similarly, Fig. 8.8 shows the plastic equivalent strains at the symmetry 

plane.  It can be seen that the most intense stresses in the symmetry plane occur at the 

cutting edge.  Other areas of lower, but still relatively intense, stresses are the primary 

and second shear zones, which are clearly delineated by the stresses present.  Note that 

the same Von Mises stress magnitudes tends to be present through each shear zone.  

Also, chip material that has moved past the shear zones is much less stressed. 

 The plastic equivalent strain is highest in the secondary shear zone in all cases.  

The amount of plastic strain, and hence the amount of work hardening increases when the 

depth of cut is increased.  Also, increasing the rake angle causes the majority of the 

plastic strain to become concentrated in the side the chip that passes through the 
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secondary shear zone.  By contrast, plastic strain is more evenly distributed throughout 

the chip when the rake angle is 0°.  This also changes the distribution of work hardening 

in the chip, which must be taken into account if a chip breaker is to be designed.  Since 

uniform strength through the thickness of the chip cannot be assumed. 

265 Depth of Cut, 0° Rake Angle 265 Depth of Cut, 10° Rake Angle 

500 Depth of Cut, 0° Rake Angle 500 Depth of Cut, 10° Rake Angle 

720 Depth of Cut, 0° Rake Angle 720 Depth of Cut, 10° Rake Angle 

 
 

Figure 8.7: Predicted Von Mises stresses at the symmetry plane 
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265 Depth of Cut, 0° Rake Angle 265 Depth of Cut, 10° Rake Angle 

500 Depth of Cut, 0° Rake Angle 500 Depth of Cut, 10° Rake Angle 

720 Depth of Cut, 0° Rake Angle 720 Depth of Cut, 10° Rake Angle 

 
 

Figure 8.8: Predicted plastic equivalent strains at the symmetry plane 

8.3 Out-of-Cutting Plane Causes of Burr Formation 

8.3.1 Out-of-Cutting Plane Material Flow 

 The action at the symmetry plane only partly describes chip formation because the 

micro-groove cutting process is inherently 3D, and hence out-of-cutting plane 

deformation must be accounted for.  Such deformation can be seen in Fig. 8.9, which 
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provides a top down view of the workpiece during steady-state cutting at a depth of cut of 

500 nm.  In the figure, the workpiece is moving from left to right and the tool is 

stationary.  It can be seen that material ahead of the tool is compressed and either 

becomes part of the chip or is forced to flow around the tool.  This is indicated by the 

arrows in the figure.  Such material flow strongly affects side burr formation. 

0° rake angle tool 10° rake angle tool 
 

Figure 8.9: Top-down view of deformed mesh from simulating a 500 nm deep cut 

8.3.2 Out-of-Cutting Plane Stress and Strains 

 To understand the state of the workpiece surface cutting it is necessary to not only 

consider stresses and strains on the surface of the workpiece, but to also consider 

subsurface stress and strains. This is accomplished by evaluating the stresses and strains 

at several elevations in the y-direction relative to the top surface of the workpiece, where 

the coordinate system is as defined in Fig. 8.1. 

 Figure 8.10 shows the Von Misses stresses in a workpiece at four different 

elevations relative to the workpiece surface when the depth of cut is 500 nm and the rake 

angle is 0°.  In the first image, the camera is looking down on the workpiece from a 

height of 0.45 μm above its surface.  Hence, the stresses on the workpiece surface and on 

the newly formed groove bottom are shown.  In the other three images, slices of the 
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workpiece are shown at depths of 0.2 μm, 0.4 μm, and 0.6 μm below the workpiece 

surface, which corresponds to 40%, 80%, and 120% of the depth of cut, respectively.  

Similarly, Fig. 8.11 shows the corresponding plastic equivalent strains. 

Top view 0.45 μm above workpiece surface Slice 0.2 μm below workpiece surface 

Slice 0.4 μm below workpiece surface Slice 0.6 μm below workpiece surface 

 
 

Figure 8.10: Mises stress slices: 0° rake angle and 500 nm depth of cut 

Top view 0.45 μm above workpiece surface Slice 0.2 μm below workpiece surface 

Slice 0.4 μm below workpiece surface Slice 0.6 μm below workpiece surface 

 
 

Figure 8.11: Plastic equivalent strain slices: 0° rake angle and 500 nm depth of cut 
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 The case where a 500 nm deep groove is cut using a 10° rake angle is also 

considered.  Figure 8.12 and Fig. 8.13 show the Von Misses stresses and plastic 

equivalent strains, respectively, at the same four locations as in the previous two figures.   

Top view 0.45 μm above workpiece surface Slice 0.2 μm below workpiece surface 

Slice 0.4 μm below workpiece surface Slice 0.6 μm below workpiece surface 

 
 

Figure 8.12: Mises stress slices: 10° rake angle and 500 nm depth of cut 

Top view 0.45 μm above workpiece surface Slice 0.2 μm below workpiece surface 

Slice 0.4 μm below workpiece surface Slice 0.6 μm below workpiece surface 

 
 

Figure 8.13: Plastic equivalent strain slices: 10° rake angle and 500 nm depth of cut 
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 Examination of Fig. 8.10 – Fig. 8.13 shows that region of high Von Mises stress 

and plastic equivalent strain extends ahead of the cutting tool, to the side of the cutting 

tool, and below the cutting tool.  The magnitude of strain fails off much more quickly that 

the stress.  Also, at a given distance from the cutting zone, the plastic equivalent strain is 

fairly uniform.  Where it is not uniform is within the chip itself where plastic equivalent 

strain is highest in the secondary shear zone but also fairly high at the side of the chip 

where it separates from the workpiece.  Strain in the center of the chip, away from the 

secondary shear zone, is relatively low. 

 The shape of the stress field is interesting because the area of highest stresses is 

near the edge of the tool where the rake face meets the side clearance face and also near 

where the side of the chip starts to separate from the workpiece.  This appears to be due 

to a stress concentration effect induced by the sharp edge of the tool and / or the sharp 

edge where the separating chip joins with the sidewall of the newly formed groove.  As a 

result, a spike shaped region of elevated stress extends from the side of the chip root in 

the direction of cut.  The magnitude of this effect might be controllable by varying the 

sharpness and shape of the tool where the rake angle meets the side clearance face, which 

could be of value because the high Von Misses stresses in this region appear to be a 

important component of the material failure that results in separation of the side of the 

chip from the workpiece. 

 Both the regions of significant stress and strain are smaller when using a tool with 

a 10° rake angle compared to a tool with a 0° rake angle, and the magnitude of the plastic 

equivalent strain is also less.  This indicates that a more positive rake angle may be 
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beneficial in cases when deformation of material around the groove must be kept to a 

minimum, such as when cutting delicate closely spaced features. 

8.3.3 Side Burr Formation and Chip Formation Steps 

 Side burr formation is not instantaneous and cannot be readily explained by 

showing the deformed shape of the workpiece, stress field, or strain field at any instant in 

time.  Rather, the deformation of the workpiece must be considered as a function of time 

as the tool passes through it.  Therefore, a slice of the workpiece is considered that lies 

parallel to the y-z plane and is located 7.5 μm from the start of the cut, as shown in Fig. 

8.14.  As the tool approaches the slice, the deformation, stress state, and strain state of the 

material that makes up the slice is considered at each point in time that is outputted by the 

model.  Hence, evaluation of images of the slice presented sequentially shows the 

formation of the side burr and the process by which the chip separates from the 

workpiece. 

 

Figure 8.14: Workpiece mesh slice 7.5 μm from the start of the cut 

 Images of the deformed shape of the selected slice of the workpiece and the Von 

Mises stresses present in the slice at various stages of side burr formation and chip 

Slice of 
Interest 

Direction 
of Cut 
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separation are shown in Fig. 8.15 for the case of a 500 nm deep cut with a 0° rake angle 

tool.  In each image the line of symmetry is on the right side.  Also, the tool, which is not 

shown, is traveling in a direction pointed out of page.  The distance provided below each 

image is how much more distance the tool must travel for the cutting edge of the tool to 

pass through the selected slice.  A negative value indicates that the tool has already 

passed through the slice.  A similar set of images, shown in Fig. 8.16, give the plastic 

equivalent strains in the slice at the same times as in Fig. 8.15. 

(1) Tool Distance = 2.50 μm (2) Tool Distance = 2.05 μm (3) Tool Dist. = 1.15 μm 

(4) Tool Dist. = 1.05 μm (5) Tool Distance = 1.00 μm (6) Tool Distance = 0.60 μm

(7) Tool Distance = 0.30 μm (8) Tool Distance = 0.05 μm (9) Tool Distance = -0.30 μm

 
 

Figure 8.15: Von Mises stress during side burr formation: 500 nm DOC, 0° rake 
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(1) Tool Distance = 2.50 μm (2) Tool Distance = 2.05 μm (3) Tool Dist. = 1.15 μm 

(4) Tool Dist. = 1.05 μm (5) Tool Distance = 1.00 μm (6) Tool Distance = 0.60 μm

(7) Tool Distance = 0.30 μm (8) Tool Distance = 0.05 μm (9) Tool Distance = -0.30 μm

 
 

Figure 8.16: Plastic equivalent strain during side burr formation: 500 nm DOC, 0° rake 

 Figure 8.15 and Fig. 8.16 show a sequence of steps that occur as the tool 

approaches and passes through the selected slice.  This sequence is as follows where each 

step corresponds to an image in the figures: 

1. (Tool Distance = 2.50 μm) A small amount of stress is induced in a semi-circular 

region near the surface of the workpiece at the line of symmetry.   

2. (Tool Distance = 2.05 μm) Stress spreads out radially from the point where the 

symmetry line meets the surface of the workpiece and a slight uplifting of the 

material near the symmetry line occurs. 
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3. (Tool Distance = 1.15 μm) Material near the line of symmetry is pushed up and forms 

a prow of material ahead of the tool.  Stresses form a noticeable gradient where stress 

is highest within the prow and decreases when moving away from the prow.  

Noticeable plastic strains are also present within the prow and reduce when moving 

away from it. 

4. (Tool Distance = 1.05 μm) The prow of material ahead of the tool starts to transition 

into a chip.  The material that is raised up on the side farthest from the line of 

symmetry starts forming what will become the side burr.  At the corner where the 

raised material meets the workpiece surface, intense localized stresses are generated.  

This is due to the spike shaped region of stress shown in Fig. 8.10 and Fig. 8.12 that 

is likely caused by a stress concentrator effect, as described previously. 

5. (Tool Distance = 1.00 μm) Material at the workpiece surface in the region of high 

localized stress fails and forms a notch.  Material on the side of the notch opposite the 

line of symmetry is now differentiated as a small side burr. 

6. (Tool Distance = 0.60 μm) The notch becomes a crack that extends downwards into 

the workpiece with the region of high localized stress remaining at its bottommost 

end.  Material on the side of the crack opposite of the chip starts to be pushed 

sideways away from the chip so that it can flow around the tool as shown in Fig. 8.9.  

This compresses the material below the burr, which causes it to be squeezed upward 

and increase the height of the burr. 

7. (Tool Distance = 0.30 μm) Material fails below the chip near the line of symmetry, 

which forms a crack underneath the chip.  This crack spreads sideways away from the 

line of symmetry to release the bottom of the chip.  Material not included in the chip 
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continues to flow sideways around the tool, become compressed, and push upward, 

which further increases the height of the side burr. 

8. (Tool Distance = 0.05 μm) The cracks below the chip and on its side meet to separate 

the chip from the workpiece.  The side burr is done growing at this point. 

9. (Tool Distance = -0.30 μm) The tool passes through the slice of material of interest 

and takes the chip material with it.  The groove is fully formed at this point. 

 The sequence that occurs when cutting a 500 nm deep groove using a 10° rake 

angle is also shown.  The configuration of the selected slice and the Von Mises stresses 

are shown in Fig. 8.17.  The corresponding plastic equivalent strain is shown in Fig 8.18. 

(1) Tool Distance = 2.20 μm (2) Tool Distance = 1.55 μm (3) Tool Distance = 1.00 μm

(4) Tool Distance = 0.75 μm (5) Tool Distance = 0.70 μm (6) Tool Distance = 0.30 μm

(7) Tool Distance = 0.15 μm (8) Tool Distance = 0.05 μm (9) Tool Distance = -0.30 μm

 
 

Figure 8.17: Von Mises stress during side burr formation: 500 nm DOC, 10° rake 
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(1) Tool Distance = 2.20 μm (2) Tool Distance = 1.55 μm (3) Tool Distance = 1.00 μm

(4) Tool Distance = 0.75 μm (5) Tool Distance = 0.70 μm (6) Tool Distance = 0.30 μm

(7) Tool Distance = 0.15 μm (8) Tool Distance = 0.05 μm (9) Tool Distance = -0.30 μm

 
 

Figure 8.18: Plastic equivalent strain during side burr formation: 500 nm DOC, 10° rake 

 Figure 8.17 and Fig. 8.18 show that when a 10° rake angle is used, the same 

sequence of side burr and chip formation events occurs.  However, the region of high 

stress does not penetrate as deeply into the workpiece when using a higher rake angle, 

which is consist with results shown previously in the chapter.  Also, when using a larger 

rake angle, all of the steps previously described do not occur until the tool is closer to the 

observed slice of material.  This makes sense because the rake face of the tool is leaning 

away from the slice of observed material instead of being oriented parallel with it.  There 

is also slightly more increase in burr height during the phase when material is flowing 
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around the tool, being compressed sideways, and being squeezed upward.  This 

difference in final burr height and in the timing of the burr and chip formation sequence 

can be seen in Table 8.2. 

Table 8.2: Chip separation and burr formation summary 

Rake Angle (deg) 0 10 0 10 
Depth of Cut (nm) 500 500 720 720 
Side Burr Height (nm) 166 177 186 194 
 Distance From Cutting Edge (μm) 
Stress Rises Noticeably 2.80 2.25 3.10 2.70 
Prow Formation Starts 2.05 1.55 2.20 1.70 
Side of Chip Starts to Separate  1.00 0.70 1.20 0.95 
Bottom of Chip Starts to Separate 0.30 0.15 0.20 0.15 
Chip Fully Separates 0.05 0.00 0.05 0.00 

 
 Additionally, side burr formation was also considered when cutting at a depth of 

720 nm.  For brevity, the plots are not shown here.  However, the plots appear very 

similar to the four previously shown plots.  One difference is that significantly high stress 

and strain fields extended further into the workpiece.  The burr height was also larger, 

likely due to the larger amount of material being squeezed upwards as it flows around the 

tool.  Also, the various stages in the burr formation and chip separation sequence occur 

when the tool is further away from the observed slice than when using a smaller depth of 

cut, which corresponds to the thicker chip produced when using a larger depth of cut. 

This information is summarized in Table 8.2. 

8.4 Exit Burr Formation 

8.4.1 Comparison of Experimental Burrs and Model Predictions 

 In Chapter 6 it was shown that exit burrs form when one groove intersects another 

groove, as shown in Fig. 8.19.  The burrs visible in the figure are attached to the side of 
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the grooves (side exit burrs).  However, when exit burr formation is typically addressed 

in conventional orthogonal cutting, the exit burr observed is formed at the bottom of the 

groove due to folding over of the chip prior to separation from the workpiece (bottom 

exit burrs) [114, 115].  In such treatments the width of the tool tends to be much larger 

than the depth of cut and the plane strain modeling assumption can be used.  Since this is 

not the case with the current process, the formation of side exit burrs is likely due to the 

3D nature of the stress and strains present during the cutting process. 

  

Figure 8.19: Exit burrs shown schematically (A) and via an SEM image (B) 

To examine exit burr formation, the simulations using a 500 nm depth of cut and 

both a 0° rake angle tool and 10° rake angle tool were continued until the point when the 

tool exited and cleared the workpiece.  The shape of the predicted exit burrs is shown in 

Fig. 8.20 for the 0° rake angle case, which shows both a bottom exit burr and a set of 

larger side exit burrs.  This is consistent with the experimentally observed results in 

Chapter 7.  Hence the model appears to capture the effects that result in side exit burr 

formation. 

(B)(A) 

Direction of Cut 
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Figure 8.20: Exit burr shape predicted during a 500 nm deep cut with a 0° rake angle tool 

8.4.2 Sequence of Events during Exit Burr Formation 

 In order to examine the process of burr formation, the deformation, stresses, and 

strains in the model were examined at each time step that was outputted by Abaqus for 

the 0° rake angle case.  Images of the 3D geometry present during selected time steps are 

shown in Fig. 8.21.  In each image the time after the start of the exit burr formation 

portion of the simulation is indicated for the purpose of synchronization with images in 

Fig. 22 – Fig. 25 that were taken at different time points in the simulation.  Also, note that 

the geometry is mirrored about the symmetry plane for additional ease of interpretation. 

 

 

 

 

Bottom 
Exit Burr 

Side  
Exit Burr 
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Figure 8.21: 3D view of exit burr geometry formation sequence 

 Additionally, in order to more clearly show the burr formation mechanism, the 

chip shape and Von Mises stresses were found on the plane of symmetry at selected times 

These stresses are shown in Fig. 8.22, where the tool is moving from right to left.  

Similarly, plastic equivalent strains at the symmetry plane were found at the same times 

and are plotted in Fig. 8.23.  These two sets of images provide the same type of 

information about bottom exit burr formation that has been found by other researchers via 

2D studies of exit burr formation. They also show how chip flow transitions to final chip 

removal at the end of the cut.  However, despite the existence of similar data based on 2D 

 (A)  0 msec  (B) 0.25 msec  (C) 0.35 msec

 (F) 0.45 msec

 (I) 0.70 msec  (H) 0.55 msec

 (E) 0.43 msec (D) 0.42 msec

 (G) 0.50 msec
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analysis, such results cannot be used to determine what will happen in the 3D case 

because, of the presence of out-of-cutting plane stresses and strains. 

 
 

Figure 8.22: Symmetry plane view of Von Mises stresses during exit burr formation 

 

 

(A) 0 msec (B) 0.25 msec 

(F) 0.54 msec 

(D) 0.45 msec (C) 0.35 msec 

(E) 0.50 msec 
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Figure 8.23: Symmetry plane view of plastic equivalent strain during exit burr formation 

 In addition to stress-strain information at the symmetry plane, stresses and strains 

were also examined on the top surface of the workpiece looking downwards in the 

negative y-direction.  The Von Misses stresses on the surface are shown in Fig. 8.24, 

where the tool is moving from right to left.  Similarly, plastic equivalent strains on the 

surface are shown at the same times in Fig. 8.25.  Note that the images have been 

mirrored about the line of symmetry to improve clarity.  Also, note that the tool appears 

solid white in each image and the top of the chip appears solid dark grey.  This should not 

be taken to indicate the stress or strain in the tool or chip. 

(A) 0 msec (B) 0.25 msec 

(F) 0.54 msec 

(D) 0.45 msec (C) 0.35 msec 

(E) 0.50 msec 
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Figure 8.24: Top down view of Von Mises stresses during exit burr formation 

 

(A) 0 msec (B) 0.25 msec

(F) 0.45 msec 

(D) 0.42 msec(C) 0.35 msec

(E) 0.43 msec

(G) 0.50 msec (H) 0.55 msec

(J) 0.75 msec (I) 0.61 msec 
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Figure 8.25: Top down view of plastic equivalent strain during exit burr formation 

 

(A) 0 msec (B) 0.25 msec

(F) 0.45 msec 

(D) 0.42 msec(C) 0.35 msec

(E) 0.43 msec

(G) 0.50 msec (H) 0.55 msec

(J) 0.75 msec (I) 0.61 msec 
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 Using the results presented in Fig. 8.21 – Fig. 8.25, a sequence of events that 

results in burr formation was determined and is as follow: 

1. Initially the tool is far enough from the end of the workpiece for the stresses ahead of 

the cut to be reduced to an insignificant level before reaching the boundary of the 

material.  This represents steady-state cutting. 

2. Significant stresses reach the end of the workpiece and the material on the side of the 

workpiece where the tool exits starts to bulge outward slightly as shown in Fig. 8.21B 

and Fig. 8.24B.  This represents the start of the formation of the exit burrs. 

3. As the distance between the tool and the end of the workpiece lessens, a membrane of 

material is formed that joins the sides and bottom of the end of the cut groove.  This 

membrane bulges outwards and bends over as shown in Fig. 8.24C and Fig 8.22C, 

respectively.  Also, as shown in Fig. 8.24C, intense stresses are present where 

membrane joints to the side of the groove near the top surface of the workpiece. 

4. The membrane continues to be pushed outward and bend over, which pulls material at 

the sides of the groove outward, resulting in side exit burr formation.  Notably, 

material near the top workpiece surface is pulled further outward than material near 

the bottom of the cut, as shown in Fig. 8.21D.  The continued bending also 

contributes to bottom exit burr formation.  At this point the intense stresses at the side 

of the membrane are also causing material at its sides to start to fail, as shown in Fig. 

8.21D and Fig. 8.24D.   

5. Material fails through the thickness of the thinning membrane at the two points where 

it joins to the groove sidewalls near the top surface of the workpiece, as shown in Fig. 

8.21E. 
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6. The failure points on the membrane expand downward, which separates the sides of 

the membrane from the workpiece, as shown in Fig. 8.21F.  At this point the material 

at the sides of the groove is no longer being pulled on by the membrane, and hence 

the majority of side exit burr formation ceases.  However, the chip, which contains 

what is left of the membrane, is still attached to the workpiece on its bottom, as 

shown in Fig. 8.22D.  Both high stresses and high plastic strains are present at this 

remaining connection point, as shown in Fig. 8.22D and Fig. 8.23D. 

7. The chip continues bending over and form a bottom exit burr until finally separating 

from the workpiece and leaving behind the bottom exit burr, as shown in Fig. 8.22F 

and two side exit burrs, as shown in Fig. 8.24H. 

8. Some material remains attached to the side of the groove ahead of the tool, which is 

not removed with the chip, as shown in Fig. 8.24H.  This material is pushed outwards 

at the tool passes, which results in some additional side exit burr formation until the 

tool clears the workpiece.  The end result is two side exiting burrs and one smaller 

bottom exit burr. 

 The way in which a membrane forms in front of the tool and then pulls on 

material at the sides of the groove to form side exit burr is an effect that can only be seen 

when considering the full 3D tool exit process.  This process explains both the presence 

and shape of experimentally observed side exit burrs shown in Fig. 8.19B.  This process 

is also affected by the rake angle of the tool, which can be seen in Table 8.3 that lists the 

lengths of the side exit burrs and bottom exit burrs that occur when cutting a 500 nm deep 

groove using tool with a 0° and a tool with a 10° rake angle.  As can be seen in the table, 
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increasing the rake angle from 0° to 10° slightly decreases side exit burr and causes a 

larger decrease in bottom exit burr. 

Table 8.3: Effect of rake angle on exit burr formation 

Depth of Cut (nm) 500 500 
Rake Angle (deg) 0 10 
Side Exit Burr Length (nm) 430 412 
Bottom Exit Burr Length (nm) 232 182 

 
8.4.3 Implications of Model Predictions during Ridge Intersection 

 It exit burr formation process described in the previous subsection may also 

explain deformation that occurs when cutting groove through thin ridges of material.  

Recall that during Experiment 6 in Chapter 6 an experiment was described where a 

groove was cut through a thin ridge of material at a 45° angle.  Hence, one side edge of 

the rake face exited from the cut before the other side edge.  In this situation, it was 

experimentally observed that the ridge material was highly deformed on the side of the 

groove corresponding to the side edge that exited the cut first, and was not as deformed 

on the other side of the groove, as shown in Fig. 8.26.   

 

Figure 8.26: Ridges intersected at a 45° angle that are deformed on one side 

 In light of the simulation results, it can be inferred that when the leading side edge 

of the rake face exited from the workpiece a membrane formed that pulled on the 

Direction of Cut
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material on the side of the groove nearest the leading side edge and deformed it.  This 

membrane then ruptured prior to the trailing side edge of the rake face exiting the 

workpiece.  Hence, when the trailing side edge of the rake face exited from the 

workpiece, the membrane had lost most of its ability to carry a load and nearby material 

was not pulled on nearly as strongly, which resulted in less deformation.  A similar effect 

should occur when using an oblique cutter to intersect a thin ridge at a 90° angle. 

8.4.4 Strategies for Exit Burr Reduction 

 During manufacturing, exit burr reduction is often desirable.  As just described, 

burrs are formed by the process of a membrane formed in front of a tool pulling on 

material at the sides of the groove and through bending over of the material in this 

membrane.  Side exit burr formation primarily stops with the membrane ruptures and 

spits into the two side exit burrs and the chip.  Bottom exit burr formation stops when the 

chip separates from the workpiece.  Therefore, exit burr formation can be reduced by 

constraining the membrane from being able to bulge or bend over as much, by 

constraining the material under the membrane from being able to fold over as much, and 

by encouraging the membrane to rupture earlier. 

 At the macro-scale, constraining of the workpiece material at the end of a cut to 

reduce exit burr formation is sometimes accomplished by the use of a backing material 

clamped against the surface the tool exits, which may or may not be cut through by the 

exiting tool [115].  However, such an approach would be difficult to implement at the 

size scale of the micro-groove cutting process.  What can be easily done is to plan the 

sequence of cuts used when manufacturing a part to reduce incidences of grooves being 

cut that intersect other grooves that are much deeper than the intersecting groove.  By 
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doing this, material at the bottom of the face that the tool exits from is better constrained 

and hence bottom exit burr formation can be reduced.  A more positive rake angle tool 

can also be used to slightly reduce bottom exit burr. 

 However, side exit burrs are larger than bottom exit burrs, and hence a strategy 

for reducing their size is required.  One strategy is to use of tool with a more positive rake 

angle.  However, as shown in Table 8.3, this only causes a small improvement.  Another, 

strategy is suggested by the presence of the intense localized stresses seen in Fig. 8.24C 

and Fig. 8.24D, which induces the membrane to start failing.  These stresses are likely 

caused by the sharp edges of the tool where rake face meets the side clearance faces and 

by the sharp edges where the sides of the chips meets the sides of the groove, both of 

which act as stress concentrators.  Therefore, if a higher stress concentration factor could 

be achieved the stresses might be even higher and cause the membrane to fail while the 

tool was further from exiting the workpiece, which would halt much of the side exit burr 

formation.  This might be accomplished through the use of sharper edge radii.  

Alternatively, structures such as ridges protruding from the side edges of the tools might 

be used. 

8.5 Film Delamination Potential 

 Until this point, only the stresses and strains at depths within the workpiece in 

close proximity to the cutting zone have been considered.  However, another concern is 

the stress-strain state of the interface between the aluminum film into which a groove is 

cut and the silicon substrate, which is well below the cutting zone.  This is because 

certain stress states could cause the film to delaminate.  This would be highly undesirable 

if grooves with various well controlled geometries are to be present in an intact metal 
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film.  However, if the goal is to remove some of a film in order to expose a part of the 

underlying substrate, then delamination would be desirable.  An example of such an 

application would be removal of a reflective film on top of a matte substrate or an opaque 

film on top of a transparent substrate in order to produce a photolithography mask. 

 Delamination can occur by subjecting the interface between the film and substrate 

to sufficient tensile stresses, i.e., pulling the film off the substrate.  Also, 2D finite 

element studies have shown that shear stresses developed at the interface between film 

and substrate can result in delamination [153].  Hence both these stresses at the interface 

and at distance away from the interface are considered. 

 In the coordinate system defined in Fig. 8.1, tensile stress at the interface is 

simply the σ22 component of the stress tensor.  Calculation of shear stress at the interface 

is slightly more complicated because no one shear stress component from the stress 

tensor is sufficient.  Rather an equivalent shear stress, τequiv, developed due to stress that 

would cause the film to slide along the substrate is calculated as shown in Equation (8.1) 

where τ12 and τ23 are stress tensor components.  The component of the shear stress that 

would tend to twist the film relative to the substrate is neglected here for simplicity. 

(8.1)    
2 2

12 23equivτ τ τ= +  

 In the model, aluminum material properties are used for the top 3 μm of the 

workpiece and silicon material properties are used for the bottom 2 μm.  Hence, the 

interface is 3 μm below the workpiece surface.  Figure 8.27 shows the tensile stresses in a 

plane parallel with the workpiece surface 1 μm, 2 μm, and 3 μm below the surface of a 

500 nm deep groove being cut using a tool with a 0° rake angle.  Similarly, Fig. 8.28 
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shows the corresponding equivalent shear stresses.  Note that the line of symmetry is on 

the bottom of each image and the vertical bar show midway along the bottom represents 

the location of the cutting edge of the tool, which is moving from right to left. 

 

500 nm depth of cut 
0° rake angle 
 
1 μm below surface 
 
Tensile Stress 
Max = 43.5 MPa 
Min = -37.2 MPa 

 

500 nm depth of cut 
0° rake angle 
 
2 μm below surface 
 
Tensile Stress 
Max = 14.2 MPa 
Min = -15.6 MPa 

 

500 nm depth of cut 
0° rake angle 
 
3 μm below surface 
(at interface) 
 
Tensile Stress 
Max = 3.0 MPa 
Min = -7.2 MPa 

 
Figure 8.27: Subsurface tensile stress normal to film when cutting with a 0° rake angle 

Cutting Edge
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500 nm depth of cut 
0° rake angle 
 
1 μm below surface 
 
Shear Stress 
Max = 18.0 MPa 

500 nm depth of cut 
0° rake angle 
 
2 μm below surface 
 
Shear Stress 
Max = 7.5 MPa 

500 nm depth of cut 
0° rake angle 
 
3 μm below surface 
(at interface) 
 
Shear Stress 
Max = 4.0 MPa 

 
Figure 8.28: Subsurface effective shear stress when cutting with a 0° rake angle 

 In order to evaluate the effect of using a more positive rake angle, the shear and 

tensile stresses were found at the same locations as in the previous figures for the case 

when the depth of cut is 500 nm and the rake angle is 10°.  This tensile stresses in a plane 

parallel with a workpiece surface 1 μm, 2 μm, and 3 μm below the workpiece surface are 

shown in Fig. 8.29.  Similarly, Fig. 8.30 shows the corresponding equivalent shear 
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stresses.  One again, the location of the cutting edge is indicated by a nearly vertical line 

near the middle of the bottom half of each image. 

 A summary of the max tensile stress, max compressive stress, and max shear 

stress in each image in Fig. 8.27 – Fig. 8.30 is provided in Table 8.4.  Note that the 

compressive stresses listed correspond to negative tensile stresses in the figures. 

500 nm depth of cut 
10° rake angle 
 
1 μm below surface 
 
Tensile Stress 
Max = 48.4 MPa 
Min = -23.0 MPa 

500 nm depth of cut 
10° rake angle 
 
2 μm below surface 
 
Tensile Stress 
Max = 17.3 MPa 
Min = -8.1 MPa 

500 nm depth of cut 
10° rake angle 
 
3 μm below surface 
(at interface) 
 
Tensile Stress 
Max = 5.3 MPa 
Min = -3.9 MPa 

 
Figure 8.29: Subsurface tensile stress normal to film when cutting with a 10° rake angle 

Cutting Edge
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500 nm depth of cut 
10° rake angle 
 
1 μm below surface 
 
Shear Stress 
Max = 15.9 MPa 

500 nm depth of cut 
10° rake angle 
 
2 μm below surface 
 
Shear Stress 
Max = 6.2 MPa 

500 nm depth of cut 
10° rake angle 
 
3 μm below surface 
(at interface) 
 
Shear Stress 
Max = 3.2 MPa 

 
Figure 8.30: Subsurface effective shear stress when cutting with a 10° rake angle 

Table 8.4: Subsurface stresses that could cause film delamination 

Depth  
of 

Cut  
(nm) 

Rake 
Angle 
(deg) 

Depth 
Below 
Surface

(μm) 

Max 
Tensile
Stress 
(MPa) 

Max 
Compressive

Stress 
(MPa) 

Max 
Shear 
Stress 
(MPa) 

Max Von 
Mises 
Stress 
(MPa) 

500 0 1 43.5 37.2 18.0 34.0 
500 0 2 14.2 15.6 7.5 17.9 
500 0 3 3.0 7.2 4.0 7.6 
500 10 1 48.4 23.0 15.9 30.9 
500 10 2 17.3 8.1 6.2 19.3 
500 10 3 5.3 3.9 3.2 5.8 
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 It can be seen in the Fig 8.27 and Fig. 8.29 that during cutting a compressive 

stress is developed ahead of the tool that would tend to push the film into the substrate.  

Such a stress is unlikely to cause film delamination and may actual help prevent it.  

However, tensile stresses are developed near and behind the cutting edge that would 

cause film delamination if sufficiently high.  As shown in Table 8.4, the magnitude of 

these tensile stresses is strongly dependent on the depth below the workpiece surface.  

For example, in the 0° rake angle case, a tensile stress of 43.5 MPa exists 1 μm below the 

workpiece surface, which is in excess of the quasi-static yield strength of the material.  

By contrast, 3 μm below the workpiece surface, the max tensile stress is only 3.0 MPa 

 Figure 8.28 and Fig. 8.30 show that the effective shear stresses below the 

workpiece surface exist both ahead of and behind the cutting edge.  The shear stresses 

ahead of the cutting edge tend to be lower in magnitude than those behind the cutting 

edge.  Furthermore, material ahead of the cutting edge is also subjected to compressive 

stresses and would tend to discourage delamination.  Hence, delamination is most likely 

to occur behind the cutting edge of the tool due to a combination of both shear and 

tension.  Also, the magnitude of the effective shear stress is strongly dependent on the 

depth below the workpiece surface.  For example, in the 0° rake angle case, an effective 

shear stress of 18.0 MPa exists 1 μm below the workpiece surface, and 3 μm below the 

workpiece surface, the max effective shear stress is only 4.0 MPa 

 Both the effective shear stresses and the tensile stresses are also affected by the 

rake angle.  Tensile stress increases when the rake angle in increased.  However, effective 

shear stress decreases when the rake angle is increased, which make sense in light of the 

decreased cutting forces when the rake angle is increased.   
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 Currently, the amount of tensile and / or shear stress required to cause film 

delamination is not known.  However, since delamination did not occur in experiments 

using a 3 μm thick film and a tool with a 0° rake angle, it can be inferred that the 

combination of a 3.0 MPa tensile stress and a 4.0 MPa effective shear stress is not 

sufficient to cause delamination.  By contrast, at a depth of 1 μm below the workpiece 

surface the tensile stress is in excess of the quasi-static yield strength of the workpiece 

material, but the material is not strained enough to experiment much work hardening.  

Hence, it is likely that a film that is only 1 μm thick would delaminate if a 500 nm deep 

groove was cut into it.  Hence, delamination will occur when using some combinations of 

groove depth and film thickness and will not occur with others.  Furthermore, it is likely 

that the depth of cut need not be the entire film thickness for delamination to occur. 

8.6 Chapter Summary 

 In this chapter, simulation results from the finite element model of the micro-

groove cutting process were evaluated and used to draw conclusions about the process.  

This involved evaluation of chip formation, side burr formation, the potential for film 

delamination, and exit burr formation through examination of deformed model geometry, 

stresses, and strains as they evolve over time. 

 At the beginning of the chapter, the 3D workpiece geometry present during 

steady-state cutting was presented.  Next cutting forces were examined in the direction of 

cut, and it was noted that the profile of these forces clearly indicates that onset of steady-

state cutting during the course of each simulation.  It was also noted that the magnitudes 

of the predicted steady-state cutting forces change with depth of cut and rake angle in a 

manner consistent with conventional cutting. 
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 Steady-state chip formation was examined via study of the behavior of material at 

the symmetry plane of the model.  It was shown that a primary and secondary shear zone 

exist, as expected.  It was also noted that the highest stresses were present at the cutting 

edge and the highest strains were present in the second shear zone.  Also, the depth of cut 

and rake angle had strong effects on chip thickness, chip curl radius, the amount of 

plastic strain in a chip, and the distribution of plastic strain in a chip.  Hence, it was 

concluded that these effects must be accounted for when designing and using a chip 

breaker geometry or when tailoring the characteristics of chips to produce micro-wires. 

 Out-of-cutting plane deformation, stresses, and strains were also examined by 

considering slices of the workpiece material at different depths below its surface.  It was 

shown that material that is not part of the chip, but is still near the cutting zone, is pushed 

sideways in order to flow around the tool, which results in significant out-of-plain strains.  

Additionally, it was shown that regions of high stress extend from the side edges of the 

tool and the chip.  This is concluded to be due to a stress concentrator effect, and plays an 

important role in chip separation from the workpiece.  It was also shown that an increase 

in rake angle reduced the stresses present. 

 Side burr formation was examined by considering a slice of material, in the path 

of the cutting tool, oriented normal to the direction of cut.  It was shown that side burr 

formation and chip separation involves complex 3D effects, and a sequence of events was 

described that occurs during side burr and chip formation.  It was shown that the chip 

does not separate simultaneously on all sides, but rather the side of the chip first starts to 

separate and the bottom of chip separates later.  Also, of particular interest was that side 
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burr formation appears to be largely due to upwards expansion of material compressed 

sidewalls when it flows around the tool rather than becoming part of the chip.   

 The model was used to examine exit burr formation.  It was shown that, once 

again, complex 3D effects are involved.  Because of these, rather than the single exit burr 

predicted to be attached to the bottom of the cut by 2D machining theory, there are three 

exit burrs: a burr attached to the bottom of the cut groove and a burr attached to each 

sidewall.  Furthermore, it was shown that this is the result of the formation and rupture of 

a membrane of material formed around that tool that initially bulges out of the workpiece 

prior to exit of the tool.  This concept of a rupturing membrane was used to explain 

previously seen experimental results.  It was also shown that increasing the rake angle 

slightly decreases the predicted side exit burr and causes a larger decrease in the smaller 

bottom exit burr. 

 Lastly, in cases where the workpiece consists of a soft film on a hard substrate, 

the potential for film delamination during cutting was examined.  It was shown that 

stresses can develop below a cut that can result in delamination if there is not enough film 

material between the bottom of the cut and the interface between the film and substrate.  

Hence, delamination may occur even if the depth of cut is not the same as the film 

thickness.  However it is also shown that the intensity of the stresses below the cut falls 

off sharply as depth increases.  Hence, if a film is thick enough relative to the depth of 

cut, film delamination will not occur. 

 The next chapter provides a summary of all the work previous presented herein.  

The chapter goes on to present several conclusions about the micro-groove cutting 
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process that has been developed.  Finally, future work that can be used for further 

improve the micro-groove cutting process is suggested. 
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Chapter 9 

Conclusions and Recommendations 

9.1 Summary of Work 

 The objective of this research was to develop a versatile, cost-effective micro-

manufacturing process capable of cutting micro-scale grooves, which meets process 

requirements imposed by potential applications.  In particular, the process was to be 

capable of cutting programmable patterns of curvilinear grooves with nearly arbitrary 

cross-sections in metals that are between a few hundred nanometers and a few microns 

wide, up to a few microns deep, and between tens of microns to several millimeters long.  

The process was to accommodate both flat workpieces and workpieces with curved 

surface geometries.  The process was to have a good material removal rate, avoid 

significant burr formation / material distortion, and be capable of achieving relative 

tolerances of approximately 10-2 or better.   

In order to achieve this goal, existing micro-manufacturing processes capable of 

producing micro-scale grooves were considered, but found incapable of satisfying the 

process requirements at a reasonable cost.  Therefore, a new process was developed that 

is similar to micro-scale shaping / planing, but which makes use of a flexible cutting tool.  

Rather than control the position of the cutting edge of the tool to achieve a depth of cut, 

controlled bending of the flexible tool is used to achieve a desired cutting load.  The load, 

combined with tool shape and workpiece material, determines the depth of cut.  The 

process was implemented by retrofitting an existing 5-axis micro-scale machine tool with 
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a specially constructed micro-groove cutting assembly.  The assembly included a means 

of holding the flexible cutting tool and measuring the amount of tool bending, which was 

used as an input to a feedback loop that regulated tool bending through a cut. 

Initial experiments were conducted using commercially available diamond-coated 

silicon AFM probes as flexible cutting tools.  These experiments explored how using 

different cutting load, cutting speed, numbers of tool passes, and tool orientation affected 

groove geometry and tool wear when cutting pure aluminum.  The ability of cutting long 

curved grooves was also evaluated.  It was shown that the process is viable, but improved 

tool geometries are required. 

Improved cutting geometries were designed that were more suitable for micro-

groove cutting.  An FIB machining procedure was developed that enabled these 

geometries to be produced on the ends of flexible tool blanks.  Experiments were 

conducted to evaluate the performance of the improved tools in terms of tool wear and 

the ability to control the cutting groove cross-sectional shape.  The ability to cut complex 

patterns of closely spaced and intersecting groove was also evaluated. 

A model of the micro-groove cutting process was developed in order to gain a 

more thorough understanding of the process.  The model made use of an Explicit 

Lagrangian finite element formulation, represented the workpiece in three dimensions, 

and handled separation of a chip from the workpiece via element failure based on the 

Johnson-Cook criteria.  The model addressed the 3D stress / strain fields present during 

micro-groove cutting, chip separation on the bottom and sides of a chip, rounded tool 

geometry, side burr formation, and exit burr formation.  Material properties were found in 
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the literature where possible and all other inputs were found via calibration.  Model 

predictions were compared to experiments to evaluate model accuracy. 

 The model was used to simulate cutting of micro-grooves, with depths of 265, 

500, and 720 nm, in a workpiece consisting of a 3 μm thick aluminum film on a silicon 

substrate where the rake angles considered were 0° and 10°.  The results were used to 

analyze steady-state chip formation and the associated stress / strain fields.  Side burr 

formation and exit burr formation were examined.  The potential of delamination of the 

film was also considered.  Several conclusions regarding potential process improvements 

were presented. 

9.2 Conclusions 

 The following conclusions can be drawn from the research presented in this work. 

9.2.1 Developed Micro-Groove Cutting Process 

1. A micro-groove cutting process has been developed that makes use of a flexible 

single-point cutting tool.  The tool is configured much like an AFM probe and 

consists of a cutting geometry mounted on the end of a flexible cantilever.  In order to 

cut a micro-groove, the end of the flexible tool opposite the cutting geometry is first 

advanced towards a workpiece until the cutting edge of the tool contacts the 

workpiece.  Advancing the held end of the tool even closer to the workpiece causes 

the cantilever to bend and applies a load onto the cutting edge, which in turn causes it 

to sink into the workpiece.  The amount of cantilever deflection, and hence the 

amount of applied load, is maintained at some target value via feedback in order to 

control the load on the cutting edge.  While this occurs, the workpiece is traversed 

underneath the tool along a desired cutting path and a chip is formed from the action 
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of the cutting geometry passing through the workpiece.  The resultant depth of cut is 

determined by the workpiece material, tool geometry, and cutting conditions.   

2. Using the developed cutting process, cantilever deflections required to develop a 

cutting load that results in a set depth of cut can be several times larger than the depth 

of cut.  This effectively amplifies the resolution of a machine tool used to implement 

the process with regards to depth of cut.  Also, the cutting edge is spring loaded 

against the workpiece.  Hence, as long as constant cutting conditions are maintained, 

the cutting edge of the tool will always pass through the workpiece at a constant 

depth.  Hence, the process is much more tolerant to uncertainties in tool position 

relative to the workpiece surface due to linear guide misalignments, insufficiently 

accurate tool-workpiece registration, or undesired motions due to inertial effects on 

insufficiently stiff components.  These advantages enable the process to be 

implemented on machine tools that cost about a tenth of what would be required 

using conventional ultra-precision machining. 

3. When cutting with the developed process, cantilever deflection rather than depth of 

cut is directly controlled.  Depth of cut is dependent on tool geometry, workpiece 

material, and applied cutting load.  For any given tool and workpiece, the relationship 

between cutting load and depth of cut must be found empirically.  The relationship 

between cutting load and cantilever deflection can be calculated using an Euler-

Bernoulli beam-based model of a given tool configuration. 

4. As a flexible tool bends in order to generate a cutting load, the orientation of its 

cutting geometry, and hence its rake face, will change.  Therefore, the rake angle is 

not set by tool geometry alone, but rather it is dependent on cutting forces, the tool 
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geometry, and the tool orientation.  To set a cutting load without having to tolerate 

changes in rake angle whenever the load is adjusted, both the angle the tool is held at 

and the amount of cantilever deflection must be set appropriately.  The combination 

of deflection and tool orientation required to achieve any given cutting load and rake 

angle can be calculated using an Euler-Bernoulli beam-based model of the tool. 

5. The developed micro-groove cutting process has been implemented by retrofitting a 

groove cutting assembly onto an exiting 5-axis micro-scale machine tool, which 

serves as a motion platform.  The assembly included a means of holding a flexible 

cutting tool and measuring the amount of tool cantilever deflection, which was used 

as an input to a feedback loop that regulated cantilever deflection throughout a cut.  In 

the constructed configuration, the machine tool is capable of dynamically adjusting 

workpiece position relative to the tool, adjusting the distance between the tool and 

workpiece, adjusting the orientation of the tool, and adjusting the amount of tool 

cantilever deflection.  The machine tool can also be used to implement cutting of 

curved grooves through the use of a rotary stage on which the workpiece is mounted. 

9.2.2 Micro-Groove Cutting Using AFM Probes as Tools 

1. The performance of the developed micro-groove cutting process was initially 

evaluated via experiments where diamond-coated silicon AFM probes, with a 

stiffness of 42 N/m, were used as tools.  These experiments showed that flexible tool 

can be used to controllably cut micro-scale groove in aluminum.  Also, even at the 

very small size scale involved, significant chip formation will occur during groove 

cutting.  However, considerable ploughing of workpiece material also occurs, which 

was largely attributed to the highly negative effective rake angles present due to the 
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large edge radii of the tools relative to the depth of cut.  Groove geometry was shown 

to be highly dependent on cutting conditions.  Groove depth consistency was also 

found to be improved by the use of multiple tool passes. 

2. When using commercial diamond coated AFM probes as tools, significant wear 

occurs, which decreases groove quality and precision.  In some cases, catastrophic 

fracture of an AFM tip can occur during cutting due to a lack of sufficient material 

supporting the cutting edge.  Even when there is not catastrophic tool fracture, there is 

still significant wear, which consists of an initial period of fast more limited fracture-

based wear followed by a long period of slow abrasive wear.  This lack of wear 

resistance is not unreasonable since AFM probes are optimized for use in metrology 

and are not intended for use as cutting tools in such a demanding application.  The 

solution to this problem is to use tools with cutting geometries that are more 

structurally sound and constructed of harder materials, such a monocrystalline 

diamond or cubic boron nitride. 

9.2.3 Fabrication of Improved Micro-Groove Cutting Tools 

1. A set of flexible micro-groove cutting tool design principles were established through 

consideration of experiment results cutting with AFM probes, consideration of 

successful tool geometries used for groove cutting at the macro-scale, and through 

consideration of the sorts of tool geometries that can be fabricated at the micro-scale 

using FIB machining.  These principles are that: (1) the cutting edge radius should be 

as small as possible to minimize ploughing and maintain a more positive effective 

rake angle.  (2) There should be plenty of material behind the cutting edge to support 

it and prevent tool fracture.  (3) The tool should have suitable clearance angles to 
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minimize rubbing with the workpiece. (4) Sharp corners that would result in stress 

concentration effects in the tool should be avoided. (5) It should be possible to 

fabricate the tool using only through cuts because precise depth control during FIB 

machining is difficult.  (6) It should be possible to easily cut the geometry out of a 

tool blank shaped like a three-sided pyramid since readily available tool blanks have 

this geometry.  (7) The rake face should be orientated such the mounting angle 

required to get a desired rake angle under commonly used cutting loads is at least a 

few degrees in order to insure that the cutting geometry, and not any other part of the 

tool, contacts the workpiece. 

2. Cutting tools have been fabricated by modifying commercial single-crystal diamond 

tipped AFM probes using a FEI Dual Beam 235 FIB machine.  During fabrication, 

the diamond tipped AFM probes serve as tool blanks that already have much of the 

required tool geometry.  The tool fabrication process developed is a series of four FIB 

machining steps that cut a tool geometry out of a blank shaped like a three-side 

pyramid, but could also be used with different shaped blanks.  These steps are 

designed to produce a tool that meets the tool design requirements while minimizing 

the presence of undesirable features introduced by the use of FIB machining.  High 

quality tools have been fabricated with edge radii of 50 - 64 nm is most cases. 

9.2.4 Machining Features Using Improved Cutting Tools 

1. Experiments were conduced using flexible cutting tools with improved geometries 

produced by FIB modification of diamond AFM probes.  These tools were 

successfully fabricated as narrow as 411 nm and had very effective cutting 

geometries.  The tools are also capable of readily withstanding the forces they are 
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subjected to during cutting.  Tool wear is very small when cutting aluminum, e.g., 

over a distance of 122.4 mm tool wear was only 19 nm on one case. 

2. An experiment was conduced using a 1 μm wide tool with a 0° rake angle at cutting 

speeds of 25 – 50 mm/min and at loads between 0.3 and 1.4 mN.  It was shown that 1 

μm wide rectangular cross-sections can be repeatably cut in aluminum and that depth 

of cut can be well controlled by setting the cutting load.  The relationship between 

groove depth and both cutting load and the number of tool passes is nonlinear.  

Cutting speed only has a small effect on groove depth.  There is a critical depth of cut 

per tool pass, and if this value is exceeded greatly increased burr formation occurs. 

3. In a second experiment, a 411 nm wide tool with a 0° rake angle was used to 

successfully cut grooves as narrow as 300 nm but about 2 μm deep at speeds up to 50 

mm/min.  It was shown that measurable elastic recovery of the sidewalls of the 

grooves occurs, and therefore when such narrow grooves are cut, elastic recovery 

must be taken into account to achieve a prescribed groove width. 

4. In a third experiment, the ability of cutting compound v-shaped grooves was 

demonstrated.  It was shown that a desired groove shape can be readily achieved 

when using a tool with identical geometry to the desired geometry.  Side burr 

formation is also smaller when using tools with v-shaped rake faces than when using 

tools with rectangular shaped rake faces.  Also, when using a v-shaped tool, side burr 

height is reduced via the use of second tool pass. 

5. In a fourth experiment, grooves were cut in aluminum at speeds as high as 400 

mm/min with less tool wear than when cutting at lower speeds of 25 – 50 mm/min.  

Furthermore, groove quality and the amount of side burr formation was found to not 
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be strongly effected by cutting speed.  Hence, higher speeds up to at least 400 

mm/min are beneficial.   

6. Chips can remain attached to a workpiece, via their chip roots, following micro-

groove cutting operations.  These chips can be easily removed by blowing 

compressed air across the workpiece, and if left undisturbed can also be used to 

examine chip morphology corresponding to a particular cut.  Chip morphology is 

primarily affected by cutting load, and hence depth of cut, when cutting 1 μm wide 

rectangular grooves in aluminum.  At lower loads curly washer-type helical chips are 

formed.  At higher loads, wavy ribbon chips are formed.  At sufficiently high loads 

buckled continuous chips can be formed. 

7. In a fifth experiment it was shown that one micron wide and deep parallel grooves, 

cut in pure aluminum, can be spaced about one micron apart controllably.  If a closer 

spacing was commanded, the ridge of material between the grooves became wider 

than commanded, which is likely due to elastic recovery.  In order to get the thinnest 

possible ridge of material between grooves, the depth of cut per tool pass should be 

kept low enough to avoid large amounts of burr formation, which affect ridge 

geometry. 

8. In a sixth experiment, it was shown that grooves can be successfully cut that intersect 

existing grooves without affecting the characteristics of the intersecting groove after 

the intersection point.  The depth of the intersecting groove briefly dips before the 

intersection point, possibly due to collapse of the sidewall of the intersected groove.  

Exit burr formation also occurs during groove intersection, and results in two burrs 

attached to the sidewalls of the intersecting groove.  If two closely spaced grooves 
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with a ridge of material between them are intersected the ridge of material can deform 

significantly during intersection if it is too thin or has too high of an aspect ratio.  

However, sufficiently low aspect ratio ridges do not experience significant 

deformation. 

9.2.5 Modeling of the Micro-Groove Cutting Process 

1. A more fundamental understanding of the micro-groove cutting process is required 

than can be readily gained experimentally in order to enable further process 

improvements such as minimization of side burr formation, minimization of exit burr 

formation, and chip control.  A finite element model of the process has been 

developed to help gain such an understanding.  The model, which uses a Lagrangian 

finite element formulation and an explicit dynamics procedure, is implemented using 

the Abaqus version 6.9 finite element software. 

2. Micro-groove cutting cannot be approximated using a 2D finite element model 

because the width of cut is on the order of the depth of cut and because side burr 

formation is a 3D event.  Therefore, the developed finite element model is fully 3D.  

The workpiece is modeled as a film of an elastic-plastic isotropic material with strain 

hardening and strain rate hardening that is perfectly bonded to a substrate modeled as 

an anisotropic elastic material.  Separation of a chip from the workpiece is handled 

through the use of element failure in specified sacrificial regions below and on the 

side of the chip, where the Johnson-Cook failure criterion is used.  The model does 

not treat thermal effects, because they are expected to be negligible and approximates 

the tool as sharp, which is reasonable given the very small edge radii on tool used in 

experiments.  The tool is modeled as rigid and tool curvature introduced by FIB 



 305

machining is incorporated.  Tool-workpiece contact was modeled using the Abaqus 

general contract algorithm and friction was modeled using an extended coulomb 

friction model.  The model geometry is designed to enable prediction of both steady-

state chip / burr formation and transient exit burr formation.  

3. Model inputs were extracted from the literature where possible.  When literature 

values could not be found, the model was run using different inputs values and used 

to simulate three different cuts performed in experiments.  Model inputs that resulted 

in the most accurate predictions of the experimental results were selected for further 

use.  It was also shown that when using the selected model inputs, good agreement is 

achieved between the model and experimental results. Specifically, chip thickness 

prediction errors are within 21.0 – 31.8 %, burr height prediction errors are within 0.0 

– 8.5 %, and chip curl prediction error is only 4.1% in cases where simulation and 

experiment results could be compared.   

9.2.6 Simulation-Based Micro-Groove Cutting Process Study 

 A 3D finite element model of the micro-groove cutting process was used to 

simulate micro-groove cutting at depths of 265, 500, and 720 nm using 1 μm wide tools 

with rake angles of 0° and 10°.  In each simulation, the workpiece consisted of a 3 μm 

thick aluminum film, perfectly bonded to a silicon substrate, and the cutting speed was 

300 mm/min.  Steady-state cutting was achieved in each simulation.   

1. Steady-state cutting forces in the direction of cut increase when the depth of cut 

increases and decrease when the rake angle increases, which is consistent with 

conventional cutting.  Also, during steady-state cutting primary and secondary shear 

zones are clearly present, and the highest strains in each cut occur in the secondary 
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shear zone.  Also, the depth of cut and rake angle have strong effects on steady-state 

chip thickness, chip curl radius, the amount of plastic strain in a chip, and the 

distribution of plastic strain in a chip.  Such effects must be taken into account when 

designing tool features such as a chip breaker. 

2. The simulations showed that regions of significant stresses and strains extend from 

the cutting zone, and that the magnitude of the stress decrease with increased rake 

angle.  Particularly intense stresses originate from the side edges of the tool and chip, 

and they extend ahead of the tool in the direction of cut.  These stresses are likely 

caused by a stress concentrator effect induced by the edges of the tool where the rake 

face meets the side clearance faces or by where the bottom of the chip meets the sides 

of the newly formed grooves.  These stresses play an important role in material 

failure at the side of the chip, which enables chip separation from the workpiece.  

Material ahead of the tool that does not become part of the chip is push aside by the 

tool and flows around it, which induces significant out-of-cutting plane strains at the 

sides of each cut. 

3. The sequence of events that occur during chip separation and side burr formation 

were studied using simulation results.  It is shown that a chip does not separate 

simultaneously form the workpiece on all sides, but rather the side of the chip first 

starts to separate and the bottom of chip separates later.  Side burr formation is 

primarily due to upwards expansion of material compressed sideways at the side of 

each groove after flowing around the tool rather than becoming part of the chip.  

4. The model was used to examine exit burr formation.  Rather than the single exit burr 

predicted to be attached to the bottom of the cut by 2D machining theory, there are 
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three exit burrs: a burr attached to the bottom of the cut groove and a burr attached to 

each sidewall.  This is the result of the formation and rupture of a membrane of 

material formed around that tool that initially bulges out of the workpiece prior to exit 

of the tool.  This concept of a rupturing membrane explains experimental results 

where material is only highly deformed on one side of a groove exiting from a thin 

ridge of material when both side edges of the tool do not break through 

simultaneously.  It was also shown that increasing the rake angle slightly decreases 

the predicted side exit burr length and causes a larger decrease in the smaller bottom 

exit burr length. 

5. In cases where a workpiece consists of a soft film on a hard substrate, the potential 

for film delamination during cutting exits.  Stresses can develop below a cut that can 

result in delamination if the interface between the film and substrate is close enough 

to the bottom of the cut.  Hence, delamination may occur even if the depth of cut is 

not the same as the film thickness.  However, the intensity of the stresses below a cut 

falls off sharply as depth increases, and hence if a film is thick enough relative to the 

depth of cut, film delamination will not occur. 

9.3 Recommendations for Future Work 

 The research described herein has resulted in the development of a micro-groove 

cutting process capable of filling a significant gap in current micro-manufacturing 

capabilities.  Also, through experiments and finite element modeling, a useful 

understanding of the process mechanics has been acquired.  However, several 

improvements to both the process and the finite model are possible.  The understanding 

of the process can still be expanded experimentally, and the model can still be used to 
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acquire more information about how the process can be improved.  Hence, recommended 

areas of future research are as follows. 

9.3.1 Machining of Stronger More Complex Materials 

1. In the presented work, workpiece material was limited to pure aluminum that was 

thermally evaporated onto a silicon substrate.  This provided a soft homogenous 

workpiece material with a fine grain structure, which simplified experiments and 

process modeling.  However, for many engineering applications, such a die making, it 

is desirable to cut grooves in much harder materials with more complex 

heterogeneous grain structures, such as steel.  Therefore, a series of experiments 

should be conducted to evaluate the machinability of harder materials and identify 

any issues that need to be addressed. 

2. When cutting material with heterogeneous grain structures, the phase structure varies 

from grain to grain, and hence material properties differ from grain to grain.  This is 

not an issue in macro-scale cutting because the tool is much larger than the grains.  

However, when cutting micro-grooves, a grain may be significantly larger than a tool. 

Hence, a tool will transition between materials with different properties throughout a 

cut.  This in turn will results in changes in depth of cut since, in a load-based cutting 

process, the depth of cut is partially determined by workpiece material properties.  To 

understand this effect, experiments should be conducted where the grains that the tool 

is cutting through are identified and characterized, and the events that occur when the 

tool transitions from one grain to another are carefully observed.  Such experiments 

should enable strategies for mitigating changes in depth of cut due to grain properties. 
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9.3.2 Improvements in Tooling 

1. All tools that offered good performance in this work had cutting geometry consisting 

of single-crystal diamond.  However, while diamond is very suitable for cutting 

materials such as copper and aluminum alloys, it is not suitable for cutting materials 

such as steel because the carbon in the tool will diffuse into the workpiece and cause 

unacceptable tool wear.  Therefore, the fabrication and use of tools with cutting 

geometries made of materials that are more inert than diamond, but still hard enough 

for use in cutting tools, such as single-crystal cubic boron nitride, should be explored. 

2. Only single-point cutting tools have been used in experiments.  This is not because of 

any limitation in the tool fabrication process.  Rather, single-point tools were used in 

order to not unnecessarily complicate experimental results. However, from a 

productivity standpoint, multi-point tools are appealing because they offer the ability 

to cut multiple-grooves simultaneously.  Hence, the use of such tools should be 

experimentally evaluated. 

9.3.3 Improvements in Process Implementation 

1. Currently, flexible tool bending is measured using a laser displacement sensor.  Such 

a system is functional.  However, the laser must sensor be capable of seeing the tool 

at all times, which can be problematic is a chip snarls around the tool and occludes 

the laser.  Also, when a tool is first mounted, it can drift in position relative to laser 

displacement sensor for up to an hour, which introduces a delay between tool loading 

and cutting.  A potential solution is to construct tools with integrated strain gages and 

use those to measure deflection. The output from an integrated strain gage would be 

insensitive to the presence of chips or debris on the tool and would not drift if tool 
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position shifts slightly.  Hence, fabrication and use of such tools is a suggested area of 

future development. 

9.3.4 Additional Simulation-Based Process Studies 

1. The developed finite element model has been used to explore side burr formation and 

exit burr formation using a tools of similar design with a 0° and 10° rake angle.  

However, there is evidence that other tool shapes may enable significant reduction in 

exit burr size.  Reduction in side burr size may also be possible.  Therefore, a series of 

simulations should be conducted in which a wide range of tool designs are explored.  

Of particular interest are designs aimed at increasing the stress concentration that 

occurs ahead of the side edges of a tool where the rake face meets the clearance faces. 

2. All simulations have made use of half symmetry in order to reduce the amount of 

computer time required for a simulation.  This is of value since, even when making 

use of half symmetry, simulations can require over a week of computer time.  

However, this limits tool to orthogonal cutters.  Since there may be advantages in 

oblique cutting, simulations should be run that do not make use of symmetry to study 

this effect.  It may be necessary to acquire more computer resources in order to 

perform a significant number of such simulations. 

9.3.5 Process Finite Element Model Improvements 

1. The plastically deformable workpiece material in the current model is treated as 

isotropic and homogenous.  This is suitable because the workpiece material consists 

of fine-grained pure aluminum.  However, many other desirable workpiece materials 

are heterogeneous and have grain sizes large enough for the tool to only be cutting 

through one grain at a time.  Additionally, the crystalline orientation of materials that 
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makes up individual grains can vary, which can result in different flow stress values 

depending on the direction of material deformation.  Therefore, useful additions to the 

model would be explicit handing of grain structure, implementation of different 

material properties for different gains, and the ability to implement anisotropic 

yielding within a grain when necessary. 

2. In this work, thermal effects were neglected for simplicity after it was argued that 

such effects are not significant when cutting materials such as aluminum at the size 

scale involved.  However, in order to handle materials with very low thermal 

conductivities, such as titanium, a more careful approach may be necessary.  In such a 

case, an adiabatic heat generation model appears to be the only computationally 

feasible option at the size scale involved when using the current finite element 

software.  This would render correct selection of the fraction of plastic work 

converted to heat extremely critical, which would likely require significant empirical 

model calibration. 

3. A chip breaker tool geometry may be beneficial in micro-groove cutting.  However, 

the use of such a geometry was not handled in any simulations.  This is because a 

long chip would have to be generated over the course of a simulation in order to see 

the chip breaker in action, which would render the simulation length computationally 

impractical when using the developed model.  However, a separate chip breaking 

model, making use of the adaptive Lagrangian Eulerian finite element formulation, 

might be constructed that accepts the state of the chip as it separates form the rake 

face as a boundary condition.  Therefore, research into the creation of such an add-on 

model is suggested in order to expand current predictive capabilities. 
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