

Examination of Bandwidth Enhancement and Circulant Filter Frequency Cutoff Robustification

in Iterative Learning Control

Tianyi Zhang

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

under the Executive Committee

of the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2021

© 2021

Tianyi Zhang

All Rights Reserved

Abstract

Examination of Bandwidth Enhancement and Circulant Filter Frequency Cutoff Robustification

in Iterative Learning Control

Tianyi Zhang

The iterative learning control (ILC) problem considers control tasks that perform a

specific tracking command, and the command is to be performed is many times. The system

returns to the same initial conditions on the desired trajectory for each repetition, also called run,

or iteration. The learning law adjusts the command to a feedback system based on the error

observed in the previous run, and aims to converge to zero-tracking error at sampled times as the

iterations progress. The ILC problem is an inverse problem: it seeks to converge to that

command that produces the desired output. Mathematically that command is given by the inverse

of the transfer function of the feedback system, times the desired output. However, in many

applications that unique command is often an unstable function of time. A discrete-time system,

converted from a continuous-time system fed by a zero-order hold, often has non-minimum

phase zeros which become unstable poles in the inverse problem. An inverse discrete-time

system will have at least one unstable pole, if the pole-zero excess of the original continuous-

time counterpart is equal to or larger than three, and the sample rate is fast enough. The

corresponding difference equation has roots larger than one, and the homogeneous solution has

components that are the values of these poles to the power of 𝑘, with 𝑘 being the time step. This

creates an unstable command growing in magnitude with time step. If the ILC law aims at zero-

tracking error for such systems, the command produced by the ILC iterations will ask for a

command input that grows exponentially in magnitude with each time step. This thesis examines

several ways to circumvent this difficulty, designing filters that prevent the growth in ILC.

The sister field of ILC, repetitive control (RC), aims at zero-error at sample times when

tracking a periodic command or eliminating a periodic disturbance of known period, or both.

Instead of learning from a previous run always starting from the same initial condition, RC learns

from the error in the previous period of the periodic command or disturbance. Unlike ILC, the

system in RC eventually enters into steady state as time progresses. As a result, one can use

frequency response thinking. In ILC, the frequency thinking is not applicable since the output of

the system has transients for every run. RC is also an inverse problem and the periodic command

to the system converges to the inverse of the system times the desired output. Because what RC

needs is zero error after reaching steady state, one can aim to invert the steady state frequency

response of the system instead of the system transfer function in order to have a stable solution to

the inverse problem. This can be accomplished by designing a Finite Impulse Response (FIR)

filter that mimics the steady state frequency response, and which can be used in real time.

This dissertation discusses how the digital feedback control system configuration affects

the locations of sampling zeros and discusses the effectiveness of RC design methods for these

possible sampling zeros. The sampling zeros are zeros introduced by the discretization process

from continuous-time system to the discrete-time system. In the RC problem, the feedback

control system can have sampling zeros outside the unit circle, and they are challenges for the

RC law design. Previous research concentrated on the situation where the sampling zeros of the

feedback control system come from a zero-order hold on the input of a continuous-time feedback

system, and studied the influence of these zeros including the influence of these sampling zeros

as the sampling rate is changed from the asymptotic value of sample time interval approaching

zero. Effective RC design methods are developed and tested based for this configuration. In the

real world, the feedback control system may not be the continuous-time system. Here we

investigate the possible sampling zero locations that can be encountered in digital control

systems where the zero-order hold can be in various possible places in the control loop. We show

that various new situations can occur. We discuss the sampling zeros location with different

feedback system structures, and show that the RC design methods still work. Moreover, we

compare the learning rates of different RC design methods and show that the RC design method

based on a quadratic fit of the reciprocal of the steady state frequency response will have the

desired learning rate features that balance the robustness with efficiency.

This dissertation discusses the steady-state response filter of the finite-time signal used in

ILC. The ILC problem is sensitive to model errors and unmodelled high frequency dynamics,

thus it needs a zero-phase low-pass filter to cutoff learning for frequencies where there is too

much model inaccuracy for convergence. But typical zero-phase low-pass filters, like Filtfilt

used by MATLAB, gives the filtered results with transients that can destabilize ILC. The

associated issues are examined from several points of view. First, the dissertation discusses use

of a partial inverse of the feedback system as both learning gain matrix and a low-pass filter to

address this problem The approach is used to make a partial system inverse for frequencies

where the model is accurate, eliminating the robustness issue. The concept is used as a way to

improve a feedback control system performance whose bandwidth is not as high as desired.

When the feedback control system design is unable to achieve the desired bandwidth, the partial

system inverse for frequency in a range above the bandwidth can boost the bandwidth. If needed

ILC can be used to further correct response up to the new bandwidth.

The dissertation then discusses Discrete Fourier Transform (DFT) based filters to cut off

the learning at high frequencies where model uncertainty is too large for convergence. The

concept of a low pass filter is based on steady state frequency response, but ILC is always a

finite time problem. This forms a mismatch in the design process, and we seek to address this. A

math proof is given showing the DFT based filters directly give the steady-state response of the

filter for the finite-time signal which can eliminate the possibility of instability of ILC. However,

such filters have problems of frequency leakage and Gibbs phenomenon in applications,

produced by the difference between the signal being filtered at the start time and at the final time,

This difference applies to the signal filtered for nearly all iterations in ILC. This dissertation

discusses the use of single reflection that produced a signal that has the start time and end times

matching and then using the original signal portion of the result. In addition, a double reflection

of the signal is studied that aims not only to eliminate the discontinuity that produces Gibbs, but

also aims to have continuity of the first derivative. It applies a specific kind of double reflection.

It is shown mathematically that the two reflection methods reduce the Gibbs phenomenon. A

criterion is given to determine when one should consider using such reflection methods on any

signal. The numerical simulations demonstrate the benefits of these reflection methods in

reducing the tracking error of the system.

i

Table of Contents

List of Charts and Graphs ... v

Acknowledgments.. xi

Dedication ... xii

Preface... 1

Chapter 1: Introduction ... 2

1.1 Iterative Control Basics .. 2

1.2 Repetitive Control Basics ... 5

Chapter 2: Influence of Discrete Control System Structure on Closed Loop Location of Sampling

Zeros ... 10

2.1 Sampling Zero Location ... 10

2.2 Closed Loop Location of Sampling Zeros Influenced by Different Discrete Control System

Configurations... 11

2.3 FIR Compensator Design Using Optimization of Learning Rate in the Frequency Domain

... 18

2.4 FIR Compensator Design Based on Individual Taylor Series Expansion Approximations of

Reciprocal of Each Transfer Function Zero .. 20

2.5 FIR Compensator Designs Based on an Improved Taylor Series Expansion of the

Reciprocal of All Zeros Simultaneously ... 21

2.6 Assumptions for Comparing Performance of FIR Design Approaches for Different Control

System Structures.. 23

ii

2.7 FIR Filter Zero Patterns from the Exact Discretization of the Continuous Time Transfer

Function .. 25

2.8 Repeated Zeros Pattern Produced by Discretization of Two Identical Systems 27

2.9 Adjacent Zero Pattern Produced by Discretization of Two Systems with the Same Pole-

Zero Excess ... 28

2.10 Sampling Zero Patterns Produced by Discretization of Two Systems with Different Pole-

Zero Excesses.. 29

2.11 Conclusion .. 30

Chapter 3: Good Performance Above Feedback Control System Bandwidth Using Command

Modified by Partial Inverse Model ... 37

3.1 Introduction ... 37

3.2 Bandwidth Concept ... 39

3.3 Bandwidth for Single Roots, Multiple Roots, and Dominant Roots................................... 40

3.4 Bandwidth Limitations in Feedback Control System Design ... 42

3.5 Singular Values of 𝑷 Matrix of the System Gives the Magnitude Response of the System

as the Matrix Size Goes to Infinity ... 46

3.6 Partial Inverse of the System 𝑷 Matrix ... 51

3.7 Partial Inverse Solution to Raise Bandwidth When Model is Good Up to Desired

Bandwidth ... 52

3.8 Handling a Deterministic Disturbance Associated with the Desired Trajectory 53

3.9 Correcting for Model Error by ILC Iterations .. 54

3.10 Simulation Plant Model .. 55

3.11 Using Partial Inverse of System as Prefilter to Modify the Command............................. 55

iii

3.12 Use Partial Inverse of System as a Learning Matrix in One-Step of Iterative Learning .. 57

3.13 Use Partial Inverse of the System in Iterative Learning Control 59

3.14 Conclusion .. 60

Chapter 4: On the Choice of Filtfilt, Circulant, and Cliff Filters for Robustification of Iterative

Learning Control ... 65

4.1 Zero-Phase Filtering in ILC .. 65

4.2 The Need of Frequency Cutoff in ILC .. 67

4.3 MATLAB Filtfilt .. 68

4.4 The Circulant Filter ... 70

4.5 Circulant Matrix Properties... 72

4.6 The Circulant Filter is a Steady-State Filter ... 73

4.7 Comparison Between a Toeplitz matrix of a Filter and the Circulant Matrix of a Filter ... 75

4.8 The Optimal Initial Conditions for a Zero-Phase Circulant Filter 76

4.9 A Step Further - Cliff Filter .. 78

4.10 Cliff Filter Formation .. 79

4.11 Cliff Filter Characteristics... 81

4.12 The Cliff Filter is a Special Case of the Circulant Filter .. 81

4.13 Numerical Simulation ... 84

4.14 Conclusion .. 86

Chapter 5: Designing Steady-State Filter for the Finite-Time Signal in Iterative Learning Control

... 91

5.1 Introduction ... 92

5.2 Stability and Robustness Issues in ILC ... 92

iv

5.3 The Mismatch between ILC and Frequency-based Cutoff and Resulting Issues 94

5.4 Three DFT-Based Steady-State Filter ... 95

5.5 Zero-Phase Circulant Filter, and New Proof to Show it Gives the Steady-State Response 96

5.6 Weighted Harmonic Filter .. 99

5.7 Difference Between Circulant Butterworth Filter and Harmonic Butterworth Filter 100

5.8 Cliff Filter ... 102

5.9 Gibbs Phenomenon ... 103

5.10 Improving the Frequency Response Representation of the Signal for Steady-State

Response Filters .. 106

5.11 Math of Single Reflection Method ... 108

5.12 Math of Double Reflection Method .. 109

5.13 Single Reflection Reduces Gibbs Phenomenon .. 110

5.14 Double Reflection Reduces Gibbs Phenomenon .. 112

5.15 Simulation ... 115

5.16 Discussion ... 119

5.17 Conclusion .. 120

Conclusion .. 127

References ... 131

v

List of Charts and Graphs

Figure 1- 1: A typical repetitive control system block diagram. .. 6

Figure 2- 1: Block diagram of G(s) with unity feedback .. 12

Figure 2- 2: Block diagram of 𝑮(𝒔) G(z) with unity feedback ... 12

Figure 2- 3: Block diagram of with H(s) in the feedback loop .. 13

Figure 2- 4: Block diagram of G(z) with H(s) in the feedback loop .. 13

Figure 2- 5: Block diagram of G(s) with the low-pass filter L(s) and the unit feedback 13

Figure 2- 6: Block diagram of G(z) with an anti-aliasing filter L(z) and unity feedback 14

Figure 2- 7. 6-term compensator design using three approaches to compensate sampling zero -

0.8836 with n=6, m=0 ..31

Figure 2-8. 7-term compensator design for two sampling zeros from 𝐺1(𝑠)𝐺2(𝑠) with n=7, m=3

(full image)...31

Figure 2-9. 7-term compensator design for two sampling zeros from 𝐺1(𝑠)𝐺2(𝑠) (detail)31

Figure 2-10. 10-term compensator designs for three sampling zeros (full image) with 𝑛 =

10,𝑚 = 2 ...31

Figure 2-11. 10-term compensator designs for three sampling zeros (detail)31

Figure 2-12. Learning rate of compensators in Figure 2-10 ..31

Figure 2-13. 10-term compensator designs for the same system as Figure 2-10, but sampling at

20 Hz (full view) with 𝑛 = 10,𝑚 = 2 ..32

Figure 2-14. 10-term compensator designs for the same system in Figure 2-13 (detail)32

Figure 2-15. Learning rate vs Frequency for system in Figure 2-13 ...32

Figure 2-16. 13-term compensator for four sampling zeros (full view) with 𝑛 = 13,𝑚 = 532

Figure 2-17. 13-term compensator for four sampling zeros (detail) ..32

vi

Figure 2-18. 13-term compensator for four sampling zeros (more detail)32

Figure 2-19. Learning rate vs Frequency for system in Figure 2-16 ...33

Figure 2-20. Sampling 𝐺1 (𝑠) at 20 Hz, sampling zero at −0.53, small radius circle with 𝑛 =

6,𝑚 = 0 ...33

Figure 2-21. Sampling 𝐺1 (𝑠) at 200 Hz, sampling zero at −0.9401, small radius circle with n=6,

m=0 ..33

Figure 2-22. Learning rate vs. frequency for 6-term filters in Figure 2-2033

Figure 2-23. Learning rate vs. frequency of 6 term filters in Figure 2-2133

Figure 2-24. Learning rate vs. frequency for sampling zero −0.8836, but using 17-term FIR

filter ..33

Figure 2-25. Learning rate vs. frequency for the 7-term filter in Figure 2-934

Figure 2-26. Learning rate vs. frequency for sampling zeros at −3.3104 and −0.2402 using 13-

term FIR filter ..34

Figure 2-27. Three 13-term FIR filters for repeated zeros at -0.8836 with 𝑛 = 13,𝑚 = −134

Figure 2-28. Learning rate graph for Figure 2-27 ..34

Figure 2-29. 33-term Improved Taylor filter vs. 13-term optimization filter and Taylor filter for

repeated zeros at −0.8836 ...34

Figure 2-30. Three 13-term FIR filters for repeated zeros at −1.2 with 𝑛 = 13,𝑚 = 1334

Figure 2-31. Learning rate graph for Figure 2-30 ..35

Figure 2-32. 11-term FIR compensator design using different approaches for adjacent zeros at –

0.8836 and -0.8 with 𝑛 = 11,𝑚 = −1 ...35

Figure 2-33. Learning rate figure for filters in Figure 2-32 ...35

Figure 2-34. Learning rate of a 28-term Improved Taylor filter vs filter Figure 2-3235

vii

Figure 2-35. 11-term FIR compensator design using different approaches for adjacent zeros at –

1.2 and -1.3 with 𝑛 = 11,𝑚 = 11 ...35

Figure 2-36. Learning rate figure for filters in Figure 2-35 ...35

Figure 2-37. 18-term Improved Taylor filter vs 11-term Optimization and Taylor filters36

Figure 2-38. 19-gain filter for united sampling zeros pattern with 𝑛 = 19,𝑚 = 536

Figure 2-39. Learning rate for Figure 2-31 ..36

Figure 2-40. 17 gain filter design for union case (full view) with 𝑛 = 17,𝑚 = 2........................36

Figure 2-41. 17 gain filter for union case (detail) ..36

Figure 2-42. Learning rate for Figure 2-40 ..36

Figure 3-1. The desired output, a trapezoidal trajectory from 0 to 90 degrees in 2 seconds62

Figure 3-2. Robot link output using the partial inverse of the system as command vs. using the

desired output as the command ..62

Figure 3-3. Oscillation effect of using partial inverse with a cut-off at 8 Hz between 0.85s to

0.95s ...62

Figure 3-4. Oscillation effect of the partial inverse with a cut-off at 8 Hz between 1.8s to 2s63

Figure 3-5. Reduced oscillation by using partial inverse as a prefilter with phasing out the cutoff

..63

Figure 3-6. Reduced oscillation effect using partial inverse as a prefilter with cut-off frequency at

16 Hz ..63

Figure 3-7. Robot link output using partial inverse in one-step learning vs prefilter63

Figure 3-8. A reduced oscillation effect using a modified partial inverse63

Figure 3-9. Robot link output using partial inverse as learning gain matrix vs output using

contraction mapping law in 3 iterations ..64

viii

Figure 3-10. The enlarged version of Figure 9 from 0 sec to 0.25 sec ...64

Figure 3-11. The enlarged version of Figure 9 from 1.9 sec to 2.0 sec ...64

Figure 4-1. First 10 time-step output of three zero-phase filters with 5Hz pure sinusoid inputs

..89

Figure 4-2. Last 10 time-step output of three zero-phase filters with 5Hz pure sinusoid inputs

..89

Figure 4-3. First 10 time-step output of three zero-phase filters with 10Hz pure sinusoid inputs

..89

Figure 4-4. Last 10 time-step output of three zero-phase filters with 10 Hz pure sinusoid inputs

..89

Figure 4-5. First 10-time step output of three zero-phase filters with 20Hz pure sinusoid inputs

..89

Figure 4-6. Last 10-time step output of three zero-phase filters with 20Hz pure sinusoid inputs

..89

Figure 4-7. First 10-time step output of three zero-phase filters with 5.1Hz pure sinusoid inputs

..90

Figure 4-8. Last 10-time step output of three zero-phase filters with 5.1Hz pure sinusoid inputs

..90

Figure 4-9. First 10-time step output of three zero-phase filters with 10.1Hz pure sinusoid inputs

..90

Figure 4-10. Last 10-time step output of three zero-phase filters with 10.1Hz pure sinusoid inputs

..90

ix

Figure 4-11. First 10 time-step output of three zero-phase filters with 20.1Hz pure sinusoid

inputs ..90

Figure 4-12. Last 10-time step output of three zero-phase filters with 20.1Hz pure sinusoid inputs

..90

Figure 5-1. 10-term partial sum of the Fourier series of a square wave123

Figure 5-2. 50-term partial sum of the Fourier series of a square wave123

Figure 5-3. 10-term partial sum of the Fourier series of the triangle wave 123

Figure 5-4. 50-term partial sum of the Fourier series of the triangle wave123

Figure 5-5. 11-terms summation of DFT a ¼ sine wave of length 100123

Figure 5-6. 31-terms Summation of DFT of a ¼ sine wave of length 100123

Figure 5-7. Adding all terms of DFT for a ¼ sine wave ..124

Figure 5-8. Adding 11 terms of DFT for a ½ sine wave of length 100124

Figure 5-9. Adding 21 terms of DFT for a ½ sine wave of length 100124

Figure 5-10. 5th order polynomial filtered result using Cliff Filter of 15Hz cutoff124

Figure 5-11. Single reflection illustration ..124

Figure 5-12. Double reflection illustration ..124

Figure 5-13. The command to the system for the 5th order polynomial as the desired trajectory,

and a 20Hz cutoff filters after 5000 iterations of ILC ...125

Figure 5-14. The command to the system for the parabolic input as the desired trajectory, and a

20Hz cutoff filters after 5000 iterations of ILC ..125

Figure 5-15. The history of RMS error in log scale of the output for the 5th order polynomial as

the desired trajectory in 5000 iterations of ILC ...125

x

Figure 5-16. The RMS error in log scale of the output for the parabolic as the desired trajectory

in 5000 iterations of ILC ..126

Table 2-1: Asymptotic Locations of Sampling Zeros as Sampling Period Goes to Zero11

Table 4-1. RMS Error between Output from Three Zero-phase Filter and the Desired Output, and

between Output from Zero-phase Butterworth Filter at Steady-state and the Desired Output88

Table 5-1. RMS Error of Output with 20Hz Cutoff for 5th Order Polynomial After the Learning

Finishes ..122

Table 5-2. RMS Error of Output with 20Hz Cutoff for the Parabolic Trajectory After the

Learning Finishes ...122

Table 5-3. RMS Error of Output with 20Hz Cutoff for 5th Order Polynomial After 5000

Iterations of Learning ..122

Table 5-4. RMS Error of Output with 20Hz Cutoff for the Parabolic Trajectory After 5000

Iterations of Learning ..122

xi

Acknowledgments

 The research and the dissertation could not be done without the help from my academic

advisor Prof. Richard W. Longman.

 Prof. Longman is not only an advisor, but also a tutor and mentor. I still recalled the first

course that Prof. Longman taught me, which is the introduction to modern control. He used the

clear, concise, yet accurate words to efficiently and elegantly illustrate complex concepts that

puzzle me for a while. The dead words on the book become as vivid explanations and life

experiences that help me get the essence of the concepts instead of being overwhelmed by

definitions and equations. It is a magic. As his PhD student, he taught me more than the

academic part. I am always astonished by his curiosity and love for the research he is working on

at his age, and he always want to move the research edge outwards for one more millimeter.

Ideas burst out when we had weekly meeting, and many of his questions motivate me to think a

little deeper and look a little wider. Prof. Longman has a notepad of the time table of weekly

meeting he holds, and it is often full. But he is energetic in every meeting and keep contributing

to the topics. Prof. Longman is generous, patient, and tolerant. I never recalled a moment that he

was disappointed with me for my weekly research, and when I felt overwhelmed and

disappointed with myself for the work I did, he would be the first one to comfort and encourage

me to move one. He is a role model to me not only in the attitudes towards the research but also

attitudes toward life and people.

 I would like to extend thanks to the other members of my dissertation committee, Prof.

Raimondo Betti, Prof. Homayoon Beigi, Prof. Nicolas W. Chbat and Prof. Minh Phan. I thank all

my lab members Dr. Zhu, Dr. Song, and Dr. Ji for their companionship in these years. I would

also thank the Department of Mechanical Engineering at Columbia supporting my studies.

xii

Dedication

 The story starts from two families.

 My father grew up in a big family. My grandparents have seven children, and my father

has two elder sisters, and four little brothers. It was hard to feed a large family in the famine era

from 1959 to 1961, and my father was born in 1959. My grandparents did not read or write in

their early 30s, and they learned to read and write later on, but they know knowledge made a

difference. My grandparents worked hard to support the family so that every child can attend

school at that time. However, the social turmoil and financial burden hovered above the family.

My two aunts started to work after they graduated from high school to provide financial support

to other family members. My father, too graduated from high school, became a primary school

teacher at that time since all college admission stopped during 1960s and 1970s in China. Not

until 1977, the college restarted the admission, and my father seized that opportunity to become

one of 270 thousand freshmen admitted that year after the 10-year pause in college admission in

a nation of one billion citizens. My father got his admission letter while he was digging a canal

for the local farm. The college was free at that time with financial support to every admitted

student in China, but still many admitted students like my father were worrying about the

transportation fee since their family could not afford. The government already had a solution for

that: each admission letter can be redeemed for a free train ticket at the railway stations to ensure

that every freshman can arrive at college even from the most remote area. My father got onto his

train and started his college.

 My father was 19 at that time. His oldest classmate was already 35 and was a father of

three children, and his youngest classmate was just above 15. The restart of college admission

ignited the passion for the knowledge again after 10-year pause of admission, and everyone was

xiii

taking their chances, and all admitted students are among top in their generations. All the top

students gathered around the college, and my father was still among the best of the best. When I

did the research for my family tree, I accidentally found a piece of thesis with grades for my

father’s sophomore. I quickly found the name of my father: he was the 1st among more than 200

students in his major. I also found another piece of thesis: his admission letter of the master

program. But I knew my father started to work right after his undergraduate. I never asked my

father about it, but I learned from his classmates that at that time they knew my father were

admitted to the master program but gave up later on even if he was offered the scholarship. The

financial burden from the family, I guess, made my father start to work just like what my two

aunts did for him. I think this is the biggest regret of my father to stop his academia.

 My mother grew up in a smaller family. I only have two uncles on my mother’s side. But

my grandparents, on my mother’s side, were indeed from the bottom of the society. My

grandfather told me that his family never had a piece of land as peasants and they lived on selling

hand-pulled noodle in the local market. My grandmother’s family was even financially worse.

My grandmother could only read and write her name even for now. My grandfather, in his early

day, did every short-term job as a low-wage laborer I could ever imagined: painting walls,

digging canals, and laying bricks. My grandfather first long-term job was a security guard and

secretary at the same time for delivering important thesis work for the new Chinese government

in early 1950s. My grandfather was trusted because he could NOT read, and it is the most

characteristic one wants for a delivery man of classified files. Later on, his boss told him

knowledge made a difference, my grandfather started to learn read and write and even got a high

school diploma in his forties. He became one of guys that changed his fate, far better than his co-

workers in his early days. I asked him what made that. My grandfather said he had two things to

xiv

thank for. The first one is his courage to leave his rural village in his hometown. The second one

is his persistence in learning. “Live and learn”, he said to me.

 I think, my grandparents on my father side never ever thought that their grandson could

be a PhD candidate in Columbia University in a nation they never heard of when they decided to

send every child to school with huge financial burden. Neither did my grandparents on my

mother side when they left their village to do every short-term job they could find in his early

days. So did my father when he decided to refuse the offer and started to work to provide

financial support for his family right after his undergraduate. When it comes to me who is the

one I want to dedicate to, all these pieces of stories and people come to my mind. These are only

a small fraction of stories of two families I decided to write here in my dissertation. I want to end

it with one quote from a hospital in Queens where I was on a bus. It wrote, “amazing things

happen here”.

1

Preface

 The dissertation has six chapters. The first chapter introduces the basics of iterative

learning control (ILC) and repetitive control (RC), and lays the foundation for the readers for the

next chapters.

 The second chapter discusses the sampling zero locations introduced from conversion of

the continuous-time transfer functions to the discrete-time transfer functions using zero-order

hold in different feedback systems, and the effectiveness of RC design methods to compensate

for these sampling zeros in RC. The third chapter discusses a partial inverse of the system based

on the singular value decomposition, and its potential to use as both the learning gain matrix and

cutoff filter in ILC, and its potential to use as a prefilter to increase the bandwidth of a feedback

control system. The fourth chapter introduces two DFT-based filters, Circulant Filter and Cliff

Filter, and gives the math proof that both filters give the steady-state response of a filter for a

finite-time input. The fifth chapter discusses Gibbs phenomenon in Discrete Fourier Transfrom

(DFT) based filters used in ILC, and proves that single reflection and double reflection of the

input signal can reduce the influence of Gibbs phenomenon, and shows that both single/double

reflection methods can reduce the tracking error of ILC when filtering is needed for robustness.

The sixth chapter is a summary of discussions in the dissertation.

2

Chapter 1: Introduction

Iterative Learning Control (ILC) considers control systems that perform a specific

tracking command repeatedly aiming at zero-tracking error at sampled times. The control system

returns to the same initial condition before the start of each run (iteration, or repetition). A sister

field of ILC is repetitive control (RC). Repetitive control aims to track periodic commands, and

uses the error in the last period to make adjustments to the command in the present period in

order to converge to zero-tracking error at the sample times. ILC has transients in every run, and

design methods in ILC are based on time domain models. But frequency design methods

rigorously apply in RC since the transients become negligible as time progresses in RC

applications. Both are in the discrete time domain. Early literature about ILC is motivated by

robots doing repetitive tasks, Arimoto el al., Casalino and Bartolini, and Craig, are all

independent contributors to the early development of ILC [1-3]. The origins of repetitive control

had different motivation, and early works include Inoue et al., Omada et al., and Hara et al [4-

6].

1.1 Iterative Control Basics

Iterative Learning Control (ILC) adjusts the command to a feedback control system based

on the errors in the previous iteration aiming at zero tracking error at sampled times. A Single

Input Single Output (SISO) linear discrete-time feedback control system is written in the

following state-space equation,

 𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) 𝑘 = 0, 1, 2, … ,𝑁 − 1

𝑦(𝑘) = 𝐶𝑥(𝑘) 𝑘 = 1, 2, … ,𝑁

(1-1)

We use underbar to denote the history of a signal, and all signals are expressed as column

vectors. The lower-case letter subscript is used to denote its iteration number in ILC. In this

3

dissertation, iteration is an interchangeable word with run or repetition to describe one-time start

and end of an operation, and in this dissertation, we use iteration for ILC, and use repetition for

RC. The column vector 𝑦∗ is the desired output of length 𝑁, 𝑦𝑗 is the output history at iteration j,

𝑒𝑗 is the error history at iteration j given by 𝑒𝑗 = 𝑦
∗ − 𝑦𝑗, and 𝑢𝑗 is the input history at iteration

j. There is a one time-step delay from input to output because of the zero-order hold assumption

for the feedback system.

 𝑦∗ = [𝑦∗(1), 𝑦∗(2),… , 𝑦∗(𝑁)]𝑇

𝑦𝑗 = [𝑦𝑗(1), 𝑦𝑗(2), … , 𝑦𝑗(𝑁)]
𝑇

𝑒𝑗 = [𝑒𝑗(1), 𝑒𝑗(2),… , 𝑒𝑗(𝑁)]
𝑇

𝑢𝑗 = [𝑢𝑗(0), 𝑢𝑗(1),… 𝑢𝑗(𝑁 − 1)]
𝑇

(1-2)

The input/output relationship of the feedback system in Equation (1-1) for any iteration 𝑗

is expressed in its convolution sum solution form as

𝑦𝑗(𝑘) = 𝐶𝐴𝑘𝑥(0) + ∑ 𝐶𝐴𝑘−𝑖−1𝐵𝑢𝑗(𝑖)

𝑁−1

𝑖=0

 (1-3)

or

 𝑦𝑗 = 𝑃𝑢𝑗 + 𝑂𝑥(0) (1-4)

where matrix P is a lower triangular Toeplitz matrix whose non-zero entries are unit pulse

responses of the system, and O is the observability matrix

𝑃 =

[

𝐶𝐵 0 0 ⋯ 0
𝐶𝐴𝐵 𝐶𝐵 0 ⋯ 0
𝐶𝐴2𝐵
⋮

𝐶𝐴𝑁−1𝐵

𝐶𝐴𝐵
⋮

𝐶𝐴𝑁−2𝐵

𝐶𝐵
⋮

𝐶𝐴𝑁−3

⋯
⋱
⋯

0
0
𝐶𝐵]

𝑂 = [𝐶𝐴, 𝐶𝐴2, 𝐶𝐴3, … , 𝐶𝐴𝑁]𝑇

(1-5)

4

A general linear iterative learning control law takes the form below

 𝑢𝑗+1 = 𝑢𝑗 + 𝐿𝑒𝑗 (1-6)

where 𝐿 is the learning gain matrix chosen by the designer. Previous literature has discussed

several designs of 𝐿. For example, a pure integral control based ILC design is given by 𝐿 =

𝑑𝑖𝑎𝑔(𝜙, 𝜙,…)[7]. The contraction mapping law or 𝑃 transpose law uses the learning gain matrix

in the form 𝐿 = 𝑃𝑇, where 𝑃 is the 𝑃 matrix of feedback system as shown in Equation (1-5), and

this 𝐿 produces the monotonic decay of the tracking error in terms of the Euclidean norm [8].

The partial isometry law uses 𝐿 = 𝑉𝑈𝑇, where 𝑈 and 𝑉 are singular vectors from the singular

value decomposition (SVD) of 𝑃 = 𝑈𝑆𝑉𝑇, and it too produces the monotonic decay of the

tracking error [9]. These methods discussed above are all special cases of the learning gain

matrices from the general ILC law based on the quadratic cost of errors and commands with

tuning parameters [10]. One can add a gain in front of 𝐿 to turn down the learning rate based on

robustness considerations.

From Equations (1-3), one computes for 𝑦𝑗 − 𝑦𝑗−1. The ILC problem assumes that each

iteration starts from the same initial conditions. Then its 𝑦𝑗 − 𝑦𝑗−1 = 𝑃(𝑢𝑗 − 𝑢𝑗−1), and the left

side of this equation, rewrite it as 𝑦𝑗 − 𝑦𝑗−1 = 𝑦𝑗 − 𝑦
∗ + 𝑦∗ − 𝑦𝑗−1 = −𝑒𝑗 + 𝑒𝑗−1; on the right

side of this equation, use Equation (1-6) to produce the relationship of the error history from

iteration to iteration as,

 𝑒𝑗 = (𝐼 − 𝑃𝐿)𝑒𝑗−1 = (𝐼 − 𝑃𝐿)
𝑗𝑒0 (1-7)

The learning gain matrix L makes the tracking error converge to zero for all possible

initial conditions, if and only if the absolute value of all eigenvalues 𝜆𝑖 of the following matrix

are less than one [11].

5

 |𝜆𝑖(𝐼 − 𝑃𝐿)| < 1 𝑖 = 1,2, … ,𝑁 (1-8)

A sufficient condition that guarantees monotonic decay of the error in the sense of the Euclidean

norm asks that the singular values 𝜎𝑖 satisfy [11],

 |𝜎𝑖(𝐼 − 𝑃𝐿)| < 1 𝑖 = 1,2, … ,𝑁 (1-9)

Typical ILC applications need a zero-phase low-pass filter to cut off the learning at high

frequency to increase the robustness of the system. Consider that the control action computed in

Equation (1-6) goes through a zero-phase low-pass filter written as an N by N matrix F

 𝑢𝑗+1 = 𝐹(𝑢𝑗 + 𝐿𝑒𝑗) (1-10)

Recalling Equation(1-4) and the definition of 𝑒𝑗 = 𝑦∗ − 𝑦𝑗, one can write,

 𝑒𝑗 = 𝑦
∗ − 𝑦𝑗 = −𝑃𝑢𝑗 + 𝑦

∗ − 𝑂𝑥(0) = −𝑃𝑢𝑗 + 𝑓

𝑓 = 𝑦∗ − 𝑂𝑥(0)
(1-11)

Plug Equation (1-11) to Equation (1-10),

 𝑢𝑗+1 = 𝐹𝑢𝑗 + 𝐹𝐿(−𝑃𝑢𝑗 + 𝑓) = 𝐹(𝐼 − 𝐿𝑃)𝑢𝑗 + 𝐹𝐿𝑓 (1-12)

Assuming that 𝑢𝑗+1 = 𝑢𝑗 = 𝑢∞ after reaching steady state, then,

 𝑢∞ = [𝐼 − 𝐹(𝐼 − 𝐿𝑃)]−1𝐹𝐿𝑓 (1-13)

The output and tracking error of the system at steady state can be written as [12],

 𝑦∞ = 𝑃[𝐼 − 𝐹(𝐼 − 𝐿𝑃)]−1𝐹𝐿𝑓 + 𝑂𝑥(0)

𝑒∞ = {𝐼 − 𝑃[𝐼 − 𝐹(𝐼 − 𝐿𝑃)]−1𝐹𝐿}𝑓

(1-14)

1.2 Repetitive Control Basics

Repetitive control (RC) seeks to make a feedback control system converge to zero

tracking error at each sample time for a periodic command and/or periodic disturbance. Figure 1-

1 shows the typical structure of a repetitive control system. Repetitive controller 𝑅(𝑧) modifies

6

the command to the existing feedback system 𝐺(𝑧) in the current period based on the error in the

previous period.

Figure 1- 1: A typical repetitive control system block diagram.

The simplest form of repetitive controller makes the equivalent of integral control action

in classical control but for t makes an integral controller for each frequency component. It adjusts

the command 𝑢(𝑘) based on the command 𝑢(𝑘 − 𝑝) and the error 𝑒(𝑘 − 𝑝 + 1) in the previous

period, 𝑝 is the period of the command as shown in Equation (1-15). It only uses one repetitive

control gain 𝜙 to adjust the command at each time step

 𝑢(𝑘) = 𝑢(𝑘 − 𝑝) + 𝜙𝑒(𝑘 − 𝑝 + 1) (1-15)

The 𝑢(𝑘) is the command to the feedback system at time step 𝑘, 𝑒 is the error of the desired

output minus the output, and 𝑝 is the period of the disturbance or command. The error 𝑒 is the

error shifted forward one time step in the previous period to reflect the fact that one first

observed a change of the output one step after the zero-order hold input is changed. Equation (1-

15) creates a sum of errors in previous periods, a discrete form of integral, applied to each time

step in the current time step 𝑘.

A more general form of repetitive control law in the z-domain is a compensator 𝑅(𝑧)

𝑈(𝑧) = 𝑅(𝑧)𝐸(𝑧) = [

𝐹(𝑧)

𝑧𝑝 − 1
]𝐸(𝑧) (1-16)

7

Equation (1-15) is a special case of Equation (1-16), where 𝐹(𝑧) = 𝜙𝑧. One might think

to use Nyquist stability criteria to determine the stability of the system in Figure 1-1, but it has

computational difficulty because of the p poles on the unit circle. With poles on the stability

boundary, the Nyquist contour must go around each pole. Huang and Longman give a method to

determine the stability of RC [13].

The output of the system in Figure 1-1 is 𝑌(𝑧) = 𝐺(𝑧)𝑈(𝑧) + 𝑉(𝑧), where 𝑉(𝑧) is the

constant or periodic disturbance. One uses Equation (1-6) and has 𝑌(𝑧) =
𝐹𝐺

𝑧𝑝−1
𝐸(𝑧) + 𝑉(𝑧). Use

𝑌∗(𝑧), the desired output, to deduct both sides of above equation, and recall 𝐸(𝑧) = 𝑌∗(𝑧) −

𝑌(𝑧). Rearrange the equation and one has the following result

 {1 − 𝑧−𝑝[1 − 𝐺(𝑧)𝐹(𝑧)]}𝐸(𝑧) = (1 − 𝑧−𝑝)[𝑌𝐷(𝑧) − 𝑉(𝑧)] (1-17)

The term 𝑧−𝑝 is a backward shift of one period. Since both 𝑌𝐷(𝑧) and 𝑉(𝑧) are periodic

functions of p time step, 𝑌𝐷(𝑧) and 𝑧−𝑝𝑌𝐷(𝑧) are the same and so are 𝑉(𝑧) and 𝑧−𝑝𝑉(𝑧). The

right-hand side of Equation (1-17) is zero. Equation (1-17) then becomes a homogeneous

equation for tracking error 𝐸(𝑧), and if one ensures all the roots of the characteristic polynomial,

which is the numerator polynomial in the curly bracket, have magnitude less than 1, then the

solution of 𝐸(𝑧) goes to zero for all possible initial conditions, as the time steps go to infinity.

Hence, it achieves the zero-tracking error of the periodic command and a perfect cancellation of

the influence of the periodic disturbance.

One can rewrite Equation (1-17) as

 𝑧𝑝𝐸(𝑧) = [1 − 𝐺(𝑧)𝐹(𝑧)]𝐸(𝑧) (1-18)

The term 𝑧𝑝 shifts 𝐸(𝑧) forward by one period. The left-hand side of Equation (1-18) is the error

in the next period, and the right-hand side of Equation (1-18) can be interpreted as the transfer

function [1 − 𝐺(𝑧)𝐹(𝑧)] times the current error 𝐸(𝑧). One might consider the term in the square

8

bracket in Equation (1-18) as a transfer function from one period to the next, and then substitute

𝑧 = 𝑒𝑖𝜔𝑇 to form the frequency transfer function. This suggests that if one can ensure the

magnitude of the frequency transfer function satisfies,

 |1 − 𝐺(𝑒𝑖𝜔𝑇)𝐹(𝑒𝑖𝜔𝑇)| < 1 ∀𝜔 (1-19)

for all frequencies up to Nyquist frequency, then the magnitude of all frequency components of

the error will decay from one period to the next indicating asymptotic stability. However, this

thinking is flawed because the frequency response is a steady state response, and it is being used

to model the change of error with time. One can only say that the magnitude on the left-hand side

of Equation (1-19) for a given frequency 𝜔 is an estimate of the decay in amplitude from one

period to the next under a quasi-steady-state assumption, i.e. that the decay rate is so slow that

we can approximate the response in each period as if it were in steady state.

Equation (1-19) gives a good estimation of the decay rate of the error, also called the

learning rate, from one period to the next period, and that the quasi-static assumption here is not

a serious issue for a reasonable size of 𝑝. Equation (1-19) is both necessary and sufficient for the

asymptotic stability for all possible 𝑝 [13]. Thus Equation (1-19) not only determines the

stability of the system, but also quantifies the error decay for each frequency component per

period, indicating the learning rate (convergence rate) to zero tracking error.

One repetitive controller design in Equation (1-16) uses an FIR filter simply making a

linear combination of errors observed before and after the time step 𝑘 in the previous period [14].

The corresponding z-transformation has the form

 𝐹(𝑧) = 𝑎1𝑧
𝑚−1 + 𝑎2𝑧

𝑚−2 +⋯𝑎𝑚𝑧
0 +⋯𝑎𝑛−1𝑧

𝑚−(𝑛−1) + 𝑎𝑛𝑧
𝑚−𝑛 (1-20)

9

The 𝑧0 term corresponds to the error one period back at time step 𝑘, 𝑒(𝑘 − 𝑝). The rest of the

terms are for errors before and after 𝑒(𝑘 − 𝑝) . The FIR design parameters are the coefficients in

front of each term and the values of n and m. If one rewrites Equation (1-20) as

 𝐹(𝑧) = (𝑎1𝑧
𝑛−1 + 𝑎2𝑧

𝑛−2 +⋯𝑎𝑚𝑧
𝑛−𝑚 +⋯𝑎𝑛−1𝑧

1 + 𝑎𝑛𝑧
0)/𝑧𝑛−𝑚 (1-21)

The value n determines the number of zeros in the FIR filter, and it is equal to 𝑛 − 1. The

number of poles at the origin is equal to 𝑛 −𝑚. Then, 𝑅(𝑧) has the form,

𝑅(𝑧) =

𝐹(𝑧)

𝑧𝑝 − 1
=
𝑎1𝑧

𝑛−1 + 𝑎2𝑧
𝑛−2 +⋯+ 𝑎𝑚𝑧

𝑛−𝑚 +⋯+𝑎𝑛−1𝑧
1 + 𝑎𝑛𝑧

0

𝑧𝑛−𝑚(𝑧𝑝 − 1)
 (1-22)

10

Chapter 2: Influence of Discrete Control System Structure on

Closed Loop Location of Sampling Zeros

Discrete-time equivalents of continuous-time models using zero-order hold usually have

zeros introduced outside the unit circle, making the inverse model unstable. Such zeros

introduced during the discretization are often called sampling, and sampling zero asymptotic

locations are known in general. The sampling zero outside the unit circle is a challenge in RC

design since it makes the inverse system model unstable. Previous literature has developed

several RC design methods designing an FIR filter that compensates these sampling zeros

outside the unit circle by introducing extra zeros outside the unit circle with unique patterns [14-

16]. The RC design methods above are discussed and tested considering the sampling zeros are

from a conversion of a continuous-time feedback system to a discrete-time feedback system

using zero-order hold on the input. In the real world, RC will often be needed on digital control

systems. The conversion to a discrete-time model maybe applied to a bock of blocks inside the

digital feedback control loop. A digital feedback control system may have multiple components

including the discrete controller, a continuous-time plant, a possible anti-aliasing filter, and the

possible sensor noise filter, etc. The sampling zero locations are affected by the system

components and its structure. It is the purpose of this chapter to discuss the influence of discrete-

time system structure and its components on the location of sampling zeros, and to discuss the

effectiveness of RC design for such cases.

2.1 Sampling Zero Location

There are two types of zeros when one converts a continuous-time transfer function 𝐺(𝑠)

fed by zero order hold to the corresponding discrete-time transfer function 𝐺(𝑧). The zeros of

𝐺(𝑧) in the z-plane which are the mappings of zeros of 𝐺(𝑠) in the s-plane are called intrinsic

11

zeros. The extra zeros of 𝐺(𝑧) which are introduced during this conversion are called sampling

zeros. In this section, we focus on sampling zeros and do not deal with intrinsic zeros. Åström,

Hagander, and Strenby discuss the asymptotic location of the sampling zeros as the sampling

time interval goes to zero [17]. Consider a discrete-time system created from a strictly proper

linear continuous-time system with n poles and m zeros, fed by a zero-order hold with a

synchronized sampler on the output. As the sampling time interval goes to 0, the m intrinsic

zeros of 𝐺(𝑧) converge to 1, and the remaining 𝑛 −𝑚 − 1 sampling zeros of 𝐺(𝑧) will have the

asymptotic locations indicated in Table 2-1.

Table 2-1: Asymptotic Locations of Sampling Zeros as Sampling Period Goes to Zero

No. of Sampling zeros Sampling Zero Locations

1 -1

2 -3.732, -0.268

3 -9.899, -1, -0.101

4 -23.2, -2.32, -0.432, -0.0431

They also conclude that all continuous-time systems with pole-zero excess larger than 2

will have sampling zeros outside the unit circle, provided that the sampling period is sufficiently

small. Such sampling zeros outside the unit circle are called unstable sampling zeros. In fact,

unstable sampling zeros occur for quite reasonable sample time intervals. For example, if 𝐺(𝑠)

having 3 poles at -1 and no zeros, as long as the sampling period is smaller than 1.8399 seconds,

it will have one sampling zero outside the unit circle [17].

2.2 Closed Loop Location of Sampling Zeros Influenced by Different Discrete

Control System Configurations

Consider the case that the control system is a continuous-time system 𝐺(𝑠) fed by a zero-

order hold, and the corresponding discrete-time model 𝐺1(𝑧) is an exact conversion of 𝐺(𝑠).

From Åström, Hagander, and Strenby’s discussion, we know how many sampling zeros there

will be and their asymptotic locations. However, in the real world, system 𝐺(𝑧) could be a

12

discrete control system, and it could be composed of a discrete controller 𝐶(𝑧), the plant 𝑃(𝑠),

and a transfer function 𝐻(𝑠) or 𝐻(𝑧) in the feedback loop with various block structures. Since

𝐺(𝑧) has continuous components, it will have sampling zeros too. But the sampling zero

asymptotic locations are different between 𝐺1(𝑧) and 𝐺(𝑧) even if they both have the same plant

𝑃(𝑠). It is the purpose of this section to discuss the difference of asymptotic location of sampling

zeros between 𝐺1(𝑧) and 𝐺(𝑧). In our comparison, we assume the continuous-time control

system 𝐺(𝑠) fed by a zero-order hold and the discrete-time control system 𝐺(𝑧) have one of the

following structures.

System 1. Continuous-time control system 𝐺(𝑠) composed of the controller 𝐶(𝑠) and the plant

𝑃(𝑠) with unity feedback, as shown in Figure 2-1.

Figure 2- 1: Block diagram of 𝑮(𝒔) with unity feedback

System 2. Discrete-time control system 𝐺(𝑧) composed of the discrete controller 𝐶(𝑧) and the

plant 𝑃(𝑠) with unity feedback, as shown in Figure 2-2.

Figure 2- 2: Block diagram of 𝑮(𝒛) with unity feedback

13

System 3. Continuous-time control system 𝐺(𝑠) composed of controller 𝐶(𝑠) and the plant 𝑃(𝑠)

with 𝐻(𝑠) in the feedback loop, as shown in Figure 2-3.

Figure 2- 3: Block diagram of 𝑮(𝒔) with 𝑯(𝒔) in the feedback loop

System 4. Discrete-time control system 𝐺(𝑧) composed of the discrete controller 𝐶(𝑧) and plant

𝑃(𝑠) with 𝐻(𝑠) in the feedback loop, as shown in Figure 2-4.

Figure 2- 4: Block diagram of 𝑮(𝒛) with H(s) in the feedback loop

System 5. Continuous-time control system 𝐺(𝑠) composed of the low-pass filter 𝐿(𝑠), the

controller 𝐶(𝑠) and the plant 𝑃(𝑠) with unity feedback as shown in Figure 2-5.

Figure 2- 5: Block diagram of 𝑮(𝒔) with the low-pass filter 𝑳(𝒔) and the unit feedback

System 6. Discrete-time control system 𝐺(𝑧) composed of the anti-aliasing filter 𝐿(𝑧), the

discrete controller 𝐶(𝑧) and the plant 𝑃(𝑠) with unity feedback as shown in Figure 2-6.

14

Figure 2- 6: Block diagram of 𝑮(𝒛) with an anti-aliasing filter 𝑳(𝒛) and unity feedback

System 1 and System 2 are a pair to compare the difference of the asymptotic location of

the sampling zero between a continuous-time control system 𝐺(𝑠) and a discrete-control system

𝐺(𝑧) with unity feedback. Systems 3 and 4 are a pair to compare the difference of the asymptotic

location of the sampling zeros between two systems with non-unity feedback. Systems 5 and 6

are a pair to compare the difference of the asymptotic location of the sampling zero between two

system with unity feedback and a filter structure.

There are three observations about the relationship between zeros of a single block and

the zeros of the system transfer function.

Observation 1. Zeros of a block on the feed-forward path are still zeros of the closed-

loop system. When one closes the loop, the transfer function of the block on the feed forward

path will be on the numerator of the closed loop transfer function. For example, in System 1, the

transfer function on the feed forward path is 𝐶(𝑠)𝑃(𝑠), and the closed loop transfer function is

𝐶(𝑠)𝑃(𝑠)/(1 + 𝐶(𝑠)𝑃(𝑠)). Thus, the zeros of 𝐶(𝑠)𝑃(𝑠) will also be zeros of the closed loop

transfer function. The same applies to discrete time systems like System 2, 4, and 6, but one

needs to perform conversion first and then do the block manipulation.

Observation 2. Poles of a block on the feedback path become zeros of the closed-loop

transfer function. For example, in System 3, one has a transfer function 𝐻(𝑠) in the feedback

loop, which could be rate feedback or a low pass filter. The system transfer function 𝐺(𝑠) of

15

System 3 is 𝐶(𝑠)𝑃(𝑠)/(1 + 𝐶(𝑠)𝑃(𝑠)𝐻(𝑠)). The denominator of 1 + 𝐶(𝑠)𝑃(𝑠)𝐻(𝑠), which is

same as the denominator of 𝐶(𝑠)𝑃(𝑠)𝐻(𝑠), will be flipped to the numerator of 𝐺(𝑠) to cancel

the poles of 𝐶(𝑠)𝑃(𝑠), leaving the poles of 𝐻(𝑠) as the numerator of 𝐺(𝑠). Thus, the poles of

H(s) become the zeros of 𝐺(𝑠) and the zeros of 𝐻(𝑠) becomes part of the denominator of 𝐺(𝑠).

The same applies to System 4, if one does the conversion and block manipulation.

Observation 3. The pole-zero excess of the closed-loop transfer function 𝐺(𝑠) is equal to

the pole-zero excess of the transfer functions on the forward path. This rule applies to continuous

control Systems 1, 3, and 5. For example, in System 1, according to Observation 1, the zeros of

𝐺(𝑠) are zeros of 𝐶(𝑠)𝑃(𝑠), thus the order of the numerator of 𝐺(𝑠) is equal to the order of

numerator of 𝐶(𝑠)𝑃(𝑠). On the other hand, the order of the denominator of 𝐺(𝑠), which is equal

to the order of the numerator of 1 + 𝐶(𝑠)𝑃(𝑠), is the same as the order of the denominator of

𝐶(𝑠)𝑃(𝑠) if 𝐶(𝑠)𝑃(𝑠) has more poles than zeros. A system with more poles than zeros is said to

be a strict proper system, and it is said to be proper if the system has the number of poles greater

than or equal to the number of zeros. For a typical control system, it is strict proper due to

causality. Therefore, the order of the numerator of 𝐺(𝑠) equals the order of the numerator of

𝐶(𝑠)𝑃(𝑠), and the order of the denominator of 𝐺(𝑠) equals the order of the denominator

of 𝐶(𝑠)𝑃(𝑠). Thus, the pole-zero excess of 𝐺(𝑠) is equal to the pole-zero excess of 𝐶(𝑠)𝑃(𝑠).

For System 3, the order of the numerator of 𝐺(𝑠) is equal to the order of the numerator of

𝐶(𝑠)𝑃(𝑠) plus the order of the denominator of 𝐻(𝑠). On the other hand, the denominator of 𝐺(𝑠)

is the numerator of 1 + 𝐶(𝑠)𝑃(𝑠)𝐻(𝑠), and the order of the numerator 1 + 𝐶(𝑠)𝑃(𝑠)𝐻(𝑠) is the

same as the order of the denominator of 𝐶(𝑠)𝑃(𝑠)𝐻(𝑠) if the control system is proper. For the

typical control system, due to causality, it is a proper system. Therefore, the order of the

numerator of 𝐺(𝑠) equals the order of the numerator of 𝐶(𝑠)𝑃(𝑠) plus the order of denominator

16

of 𝐻(𝑠), and the order of denominator of 𝐺(𝑠) is equal to the order of the denominator of

𝐶(𝑠)𝑃(𝑠)𝐻(𝑠). Since both numerator and denominator order of 𝐺(𝑠) has the components of the

order of denominator of 𝐻(𝑠) and it cancels, the pole-zero excess of 𝐺(𝑠) is still equal to the

pole-zero excess of transfer function 𝐶(𝑠)𝑃(𝑠). System 5 is a special case of System 1, thus this

rule still applies.

Based on the three observations above, there are three conclusions about the difference of

the asymptotic locations of sampling zeros for each pair of continuous-time system 𝐺(𝑠) and

discrete-time system 𝐺(𝑧) with the same plant.

Conclusion 1. For Systems 1, 3, and 5, sampling zeros come from the discretization of

the system transfer function 𝐺(𝑠); however, for System 2 and 4, sampling zeros come from the

discretization of the plant transfer function 𝑃(𝑠) alone; for System 6, sampling zeros come from

the discretization of plant 𝑃(𝑠) and the anti-aliasing filter 𝐿(𝑠) respectively. For example, in

System 1, sampling zeros come from the discretization of feedback control system transfer

function 𝐺(𝑠) which is 𝐶(𝑠)𝑃(𝑠)/(1 + 𝐶(𝑠)𝑃(𝑠)), but in System 2, the sampling zeros comes

from the discretization of plant 𝑃(𝑠) alone. Assuming both system 1 and system 2 have the same

plant transfer function, if the pole-zero excesses of the system transfer function 𝐺(𝑠) and the

plant transfer function 𝑃(𝑠) are different, than the asymptotic location of sampling zeros are

different for system 1 and system 2; if the pole-zero excesses of 𝐺(𝑠) and 𝑃(𝑠) are the same, the

asymptotic location of sampling zeros are different for system 1 and system 2.

Conclusion 2. For each pair of systems, the difference of the number of sampling zeros

between the two depends on the controller transfer function 𝐶(𝑠). For example, in System 1 and

System 2, Conclusion 1 concludes the sampling zeros of System 1 come from conversion of

𝐺(𝑠) and the sampling zeros of System 2 come from conversion of 𝑃(𝑠). Observation 3

17

concludes that pole-zero excess of 𝐺(𝑠), which is equal to 𝐶(𝑠)𝑃(𝑠)/(1 + 𝐶(𝑠)𝑃(𝑠)), is the

same as the pole-zero excess of 𝐶(𝑠)𝑃(𝑠). Thus, the number of sampling zeros in System 1

depends on the pole-zero excess of 𝐶(𝑠)𝑃(𝑠), and the number of sampling zeros in System 2

depends on the pole-zero excess of 𝑃(𝑠). There are three cases to determine the possible number

of sampling zeros between 𝑃(𝑠) and 𝐶(𝑠)𝑃(𝑠).

A. If 𝐶(𝑠) is an integral controller or PI controller, 𝐶(𝑠)𝑃(𝑠) will have one more pole-zero

excess than 𝑃(𝑠), thus System 1 will have one more sampling zero than System 2.

B. If 𝐶(𝑠) is a PD controller or PID controller, 𝐶(𝑠)𝑃(𝑠) will have one less pole-zero excess

than 𝑃(𝑠), thus System 1 will have one less sampling zero than System 2.

C. If 𝐶(𝑠) is P controller, Lead controller, Lag controller, or Lead-Lag controller, since the

pole zero excess of 𝐶(𝑠) is zero, 𝐶(𝑠)𝑃(𝑠) and 𝑃(𝑠) have the same pole-zero excess, thus

both systems have the same number of sampling zeros.

The asymptotic sampling zero locations only depends on the pole-zero excess of the

continuous-time system. Therefore, for Case A and Case B, System 1 and System 2 will have

different asymptotic sampling zero locations, and for Case C, System 1 and System 2 will have

the same asymptotic sampling zero locations. The same rule applies to System 3 and System 4.

The sampling zeros of System 4 come from sampling of 𝑃(𝑠) alone, but the sampling zeros of

System 3 come from discretization of 𝐶(𝑠)𝑃(𝑠)/(1 + 𝐶(𝑠)𝑃(𝑠)𝐻(𝑠)). Recall Observation 3,

pole-zero excess of System 3 is still the same as the pole-zero excess of 𝐶(𝑠)𝑃(𝑠), thus the result

discussed in the previous paragraph again applies.

Conclusion 3. With a prefilter, e.g. an anti-aliasing filter, in the discrete-time system like

System 6, sampling zeros are the union of sampling zeros from the prefilter and the plant

respectively, thus, the asymptotic sampling zero location is different from the result in Reference

18

17 which is based on the pole-zero excess of the transfer function alone. Suppose in System

6, 𝐿(𝑠) has pole-zero excess of 3, and 𝑃(𝑠) has pole zeros excess of 2, then one expects the

asymptotic location of sampling zeros is at -3.732, -0.268, and -1, which is different from a

typical system with pole-zero excess of four where the asymptotic sampling zero locations are at

-9.899, -1, and -0.101 suggested by Reference 17. For a special case, when 𝐿(𝑠) and 𝑃(𝑠) are

identical, one can expect repeated sampling zeros patterns; if 𝐿(𝑠) and 𝑃(𝑠) have the same pole-

zero excess but are not identical, for a reasonable sampling rate, one might have adjacent pairs of

sampling zeros; if 𝐿(𝑠) and 𝑃(𝑠) have different pole-zero excesses as we assumed previously,

the asymptotic location of sampling zeros in system 6 are a combination of the asymptotic

location of 𝐿(𝑠) and 𝑃(𝑠) respectively.

With established the possible changes in the pattern of sampling zeros that can occur with

different discrete control configurations, we now address the question of how these differences

influence the design of repetitive controllers.

2.3 FIR Compensator Design Using Optimization of Learning Rate in the Frequency

Domain

The repetitive controller will have a general form as suggested by Equation (1-16). To

design a repetitive controller is equivalent to design 𝐹(𝑧). Looking back at Equation (1-18), if

one can make 𝐺(𝑧)𝐹(𝑧) equal to one, then one can have 𝐸(𝑧) = 0, suggesting one has zero

tracking error after one period of command. An ideal repetitive controller uses 𝐹(𝑧) = 𝐺−1(𝑧)

and has zero tracking-error after one period of the command. However, as discussed above this

approach usually fails, 𝐺(𝑧) will have sampling zeros outside the unit circle, and its inverse is

not stable. Thus, 𝑅(𝑧) in Equation (1-16) is not stable leading to an unstable command to the

feedback system. This is the reason why the sampling zero location of the feedback system is a

19

key factor in our RC design. The previous literature discusses several design approaches to solve

this issue.

Panomruttanarug and Longman use a quadratic cost function to optimize the FIR

compensator 𝐹(𝑧), making it close to the inverse of the frequency response of the system transfer

function 𝐺(𝑧) [14]. Since the FIR compensator is only approximately the inverse of the

frequency response of 𝐺(𝑧), it bypasses the instability issue of the compensator 𝐹(𝑧) chosen as

the inverse of 𝐺(𝑧).

The cost function has the form

𝐽 = ∑[1 − 𝐺(𝑒𝑖𝜔𝑗𝑇)𝐹(

179

𝑗=0

𝑒𝑖𝜔𝑗𝑇)]𝑊𝑗[1 − 𝐺(𝑒
𝑖𝜔𝑗𝑇)𝐹(𝑒𝑖𝜔𝑗𝑇)]

∗
 (2-1)

where 𝑊𝑗 is a weighing factor, 𝜔𝑗 is a chosen set of frequencies from zero up to Nyquist

frequency, and the asterisk represents the complex conjugate. In the above equation, the number

of frequencies has been chosen as 180 corresponding to every one degree going around the unit

circle, which is usually sufficient. One only needs the frequency response of the system to

minimize this cost function, and one does not necessarily need the system model to do the

computation. Therefore, experimental data of the magnitude response 𝑀(𝜔) and the phase

response 𝜑(𝜔) of the system can be used to find the corresponding compensator. This is one

important benefit of using this design approach.

The minimum of J is achieved when one differentiates with respect to the filter

coefficients 𝑎𝑖 and sets it to zero. It produces the following n linear equations to solve for the

coefficients 𝑎𝑖

 𝐴𝑥 = 𝑏 (2-2)

20

 𝐴

= ∑𝑀2(𝜔𝑗)

[

1 𝑐𝑜𝑠 (𝜔𝑗𝑇) ⋯ 𝑐𝑜𝑠 ((𝑛 − 1)𝜔𝑗𝑇)

𝑐𝑜𝑠 (𝜔𝑗𝑇) 1 ⋯ 𝑐𝑜𝑠 ((𝑛 − 2)𝜔𝑗𝑇)

⋮ ⋮ ⋱ ⋮
𝑐𝑜𝑠 ((𝑛 − 1)𝜔𝑗𝑇) 𝑐𝑜𝑠 ((𝑛 − 2)𝜔𝑗𝑇) ⋯ 1]

 179

𝑗=0

(2-3)

𝑥 = [

𝑎1
𝑎2
⋮
𝑎𝑛

] (2-4)

 𝑏 = ∑𝑀(𝜔𝑗)

[

𝑐𝑜𝑠 (𝜑(𝜔𝑗) + (𝑚 − 1)𝜔𝑗𝑇)

𝑐𝑜𝑠 (𝜑(𝜔𝑗) + (𝑚 − 2)𝜔𝑗𝑇)

⋮
𝑐𝑜𝑠 (𝜑(𝜔𝑗) + (𝑚 − 𝑛)𝜔𝑗𝑇)]

 179

𝑗=0

 (2-5)

2.4 FIR Compensator Design Based on Individual Taylor Series Expansion

Approximations of Reciprocal of Each Transfer Function Zero

Xu and Longman present another approach of designing compensator F(z). This approach

handles the reciprocal of sampling zeros outside the unit circle by using a Taylor expansion of

the reciprocal of such sampling zeros, term by term [15]. This produces a power series and

overcomes the instability issue. For example, consider a third order system 𝐺(𝑧) having one

sampling zero 𝑧𝐼 inside the unit circle and one sampling zero 𝑧𝑂 outside the unit circle and all the

poles 𝑝𝑖 inside the unit circle

𝐺(𝑧) =

𝐾(𝑧 − 𝑧𝐼)(𝑧 − 𝑧𝑜)

(𝑧 − 𝑝1)(𝑧 − 𝑝2)(𝑧 − 𝑝3)
 (2-6)

The inverse of this system which is unstable can be written as

𝐺−1(𝑧) = [

(𝑧 − 𝑝1)(𝑧 − 𝑝2)(𝑧 − 𝑝3)

𝐾
] [

1

𝑧 − 𝑧𝐼
] [

1

𝑧 − 𝑧𝑜
] (2-7)

The corresponding FIR filter 𝐹(𝑧) uses the terms in the first square bracket and uses the Taylor

expansion of the next two terms. Recall the Taylor expansion of the following equation

21

 1

1 + �̂�
= 1 − �̂� + �̂�2 − �̂�3 +⋯ = ∑(−�̂�)𝑘

∞

𝑘=0

 (2-8)

This series has a convergence range of |�̂�| < 1. The 1/(𝑧 − 𝑧𝐼) term and 1/(𝑧 − 𝑧𝑜) can be

manipulated to have the same form as the above expansion

 1

𝑧 − 𝑧𝐼
=
1

𝑧
(

1

1 − 𝑧𝐼/𝑧
) =

1

𝑧
(1 +

𝑧𝐼
𝑧
+ (

𝑧𝐼
𝑧
)
2

+ (
𝑧𝐼
𝑧
)
3

+⋯) =
1

𝑧
∑(

𝑧𝐼
𝑧
)
𝑘

∞

𝑘=0

 (2-9)

1

𝑧 − 𝑧𝑜
=
1

𝑧𝑜
(

1

1 −
𝑧
𝑧𝑜

) =
1

𝑧𝑜
(1 +

𝑧

𝑧𝑜
+ (

𝑧

𝑧𝑜
)
2

+⋯) =
1

𝑧𝑜
∑(

𝑧

𝑧𝑜
)
𝑘

∞

𝑘=0

 (2-10)

Equation (2-9) has a convergence range of |𝑧𝐼/𝑧| < 1. Since |𝑧𝐼| < 1 and the z value

needed in the filter is on the unit circle, the Taylor expansion of Equation (2-9) will be

convergent. The same applies to Equation (2-10). Therefore, the unstable poles of the inverse

system transfer function are converted to a series of zeros. When one designs 𝐹(𝑧), one only

picks the number of terms needed in the Taylor expansions in Equations (2-9) and (2-10), and

the FIR filter 𝐹(𝑧) will have the form of

𝐹(𝑧) = [

(𝑧 − 𝑝1)(𝑧 − 𝑝2)(𝑧 − 𝑝3)

𝐾
] [
1

𝑧
∑(

𝑧𝐼
𝑧
)
𝑗

][
1

𝑧𝑜
∑(

𝑧

𝑧𝑜
)
𝑘

]

𝑚

𝑘=0

𝑛

𝑗=0

 (2-11)

2.5 FIR Compensator Designs Based on an Improved Taylor Series Expansion of

the Reciprocal of All Zeros Simultaneously

Prasitmeeboon and Longman created a modification of the Taylor expansion method

above [16]. The method above from Xu and Longman make Taylor series expansions of each

factor separately. The true Taylor expansion of the zeros terms expands the product and consider

some cross multiplications terms in the Taylor expansion. This method uses the mathematically

correct Taylor expansion for the multiplication terms. The results presented below indicate that

22

for many systems the expectation is correct, but for some systems the previous Taylor expansion

works better. For an example of the difference between the two expansions, expand the

following expression where both 𝑎1 and 𝑎2 are larger than 1

𝐺−1(𝑧) =

1

(𝑧 + 𝑎1)(𝑧 + 𝑎2)
 (2-12)

The method of Reference 15 first expands the individual terms to a chosen number of terms and

then multiplies them together, which in the case of using only two terms produces FIR filter

𝐹1(𝑧) as

𝐹1(𝑧) =

1

𝑎1𝑎2
(1 −

𝑧

𝑎1
) (1 −

𝑧

𝑎2
) =

1

𝑎1𝑎2
(1 − (

1

𝑎1
+
1

𝑎2
) 𝑧 +

𝑧2

𝑎1𝑎2
) (2-13)

The Taylor expansion of the product here suggests that mathematically one needs to consider the

𝑧2 term in both brackets because it can multiply with the constant term in the other bracket.

Therefore, the FIR filter 𝐹(𝑧), whose highest power is 2, should be

𝐹2(𝑧) =

1

𝑎1𝑎2
(1 −

𝑧

𝑎1
+
𝑧2

𝑎1
2 +⋯)(1 −

𝑧

𝑎2
+
𝑧2

𝑎2
2 +⋯)

=
1

𝑎1𝑎2
(1 − (

1

𝑎1
+
1

𝑎2
) 𝑧 + (

1

𝑎1𝑎2
+
1

𝑎1
2 +

1

𝑎2
2) 𝑧

2 +⋯)

(2-14)

The two Taylor expansion approaches help one interpret the circle-like zero patterns of

the FIR filter zeros designed by the Learning Rate Optimization method. For the Optimization

method in section 2.3, one needs to pick the value of 𝑛 and 𝑚 for the compensator. The value

𝑛 − 1 decides how many zeros will be in your FIR compensator 𝐹(𝑧), and the value 𝑛 −

𝑚 decides the number of poles at the origin in the FIR compensator 𝐹(𝑧). Generally speaking, a

larger value of 𝑛 means a better FIR filter performance: the learning rate is faster which one has

the same level of tracking errors in fewer periods. This result is quite natural since the more

terms in the FIR filter, the more its frequency response resembles the frequency response of

23

𝐺−1(𝑧). Given a value of 𝑛, one must select the value of 𝑚 so that the number of poles of

𝐺(𝑧)𝐹(𝑧) inside the unit circle equals to the number of zeros of 𝐺(𝑧)𝐹(𝑧) insides the unit circle.

Otherwise, stability condition Equation (1-19) is violated. Adjusting the value of 𝑚 adjusts the

number of poles at the origin addressing this need. The criteria as Equation (2-1) will also put

zeros more or less on top of the system poles inside the unit circle, once the m and n values are

picked based on the rule to equalize the number of poles and zeros of 𝐺(𝑧)𝐹(𝑧) inside the unit

circle.

For the Taylor Expansion Method in section 2.4, one can actually decide the number of

terms one needs to compensate each zero inside or outside the unit circle without worrying about

balancing the number of poles and the number of zeros within the unit circle, the math of the

Taylor Expansion for each term of 𝐺−1(𝑧) automatically satisfies this requirement. However, for

the Improved Taylor Expansion Method in section 2.5, the pick is subtle because one has a

Taylor expansion of 𝐺−1(𝑧) aligned in the increasing order of 𝑧, one can use the FIR filter

designed by Learning Rate Optimization or Taylor Expansion Method to assist in determining in

picking which section of expansion designed by Improved Taylor Expansion Method to use.

2.6 Assumptions for Comparing Performance of FIR Design Approaches for

Different Control System Structures

We now compare the performance of different FIR filter design approaches for the

possible sampling zero locations. In order to simplify the discussion, we make the following

three assumptions. 𝐺(𝑧) is the discrete-time system transfer function of system 1 to 6, assuming

system 1, 3, 5 with zero-order hold.

Assumption 1. All the poles of 𝐺(𝑧) inside the unit circle are canceled by putting zeros

on top of them in 𝐹(𝑧).

24

Assumption 2. There are no intrinsic zeros of 𝐺(𝑧). On one hand, this assumption

simplifies our discussion so that we can solely focus on the compensator performance for the

sampling zero patterns without the interference from the intrinsic zeros; on the other hand, even

if the system transfer function has intrinsic zeros, as it suggests, all these zeros will approach to

+ 1 as the sampling time interval decreases. Thus, the compensator zero patterns for those

intrinsic zeros should be more or less like the compensator zero patterns for sampling zeros

inside the unit circle.

Assumption 3. There are no zeros from the discrete controller in system 2, 4, and 6. This

assumption limits out discussion to the proportional controller for discrete control system.

However, since the zeros from the discrete controller will all be inside the unit circle, the

compensator zero patterns for those zeros from the discrete controller would be more or less like

the compensator zero patterns for sampling zeros inside the unit circle. Thus, this assumption

won’t affect our result, but will significantly simplify our discussion.

Assumption 4. Each sampling zero is compensated by the same number of zeros of FIR

compensator 𝐹(𝑧). On one hand, this assumption helps compare three methods on the same

baseline. On the other hand, the allocation of FIR filter zeros inside or outside the unit circle

depends on the location of the sampling zeros as well. For example, for fixed number 𝑛 = 15,

for sample zeros at -3.54 and -0.8, the best result comes when 𝑚 = 2; but, for sampling zeros at -

3.54 and -0.5, the best result comes when 𝑚 = 6. Therefore, we pick the value of 𝑚 so that each

sampling zero is compensated by the same number of FIR filter zeros, and this helps us compare

the three methods under the same standard.

25

2.7 FIR Filter Zero Patterns from the Exact Discretization of the Continuous Time

Transfer Function

In our numerical study, we will compare how three methods will compensate for the

sampling zeros only based on our assumption. Several examples show performance of the

previous three repetitive controller designs for continuous-time systems fed by zero-order hold.

Those examples use 𝐺2(𝑠) and 𝐺1(𝑠)𝐺2(𝑠) as the closed loop system transfer function 𝐺(𝑠).

Little previous research investigated the FIR filter design if the system has pole-zero excess

larger than 3, with no thorough and detailed comments were made about the FIR filter’s zero

pattern. This section will examine these situations. The sampling zeros are from the exact

conversion of system transfer function 𝐺(𝑠), and 𝐺(𝑠) is some combination of 𝐺1(𝑠) and 𝐺2(𝑠)

where 𝑎 = 8.8, ω0 = 37, 𝜁0 = 0.5. For a single sampling zero, the exact conversion of 𝐺2(𝑠) is

considered; for two sampling zeros, the exact conversion of 𝐺1(𝑠)𝐺2(𝑠); for three sampling

zeros, the exact conversion of 𝐺2(𝑠)𝐺2(𝑠); and for four sampling zeros, the exact conversion of

𝐺1(𝑠)𝐺2(𝑠)𝐺2(𝑠). Unless otherwise stated, the sample rate is 100 Hz. In the numerical study, we

assume that our 𝐺(𝑠) will be the combination of 𝐺1(𝑠), 𝐺2(𝑠)

𝐺1(𝑠) =

𝑎

𝑠 + 𝑎
 𝐺2(𝑠) =

𝜔0
2

𝑠2 + 2𝜁0𝜔0 + 𝜔0
2 (2-15)

For System 1, System 3, and System 5, based on the assumptions and Reference 17, its

asymptotic sampling zero locations are determined by its pole-zero excess of 𝐺(𝑠) only. For the

ease of format, the figures in the following sections are put in the end of this chapter. Assume

that Systems 1, 3, 5, will have the 𝐺(𝑠) as below, then,

1. When the pole-zero excess of 𝐺(𝑠) is two, meaning only one sampling zero is

introduced, there is no difference between the Taylor expansion approximation method and

26

Improved Taylor expansion method, as shown in Figure 2-7. In Figure 2-7, the sampling zero at -

0.8836, and the resulting FIR filter of the above two methods have the zeros coinciding with

each other; the two methods are different only when there are two or more sampling zeros, as

shown in Figure 2-8 and Figure 2-16, with two sampling zeros coming from 𝐺1(𝑠)𝐺2(𝑠) and

three sampling zeros coming from 𝐺2(𝑠)𝐺2(𝑠) fed by zero order hold.

2. FIR filter by the Taylor Expansion approximation method has a pattern with zeros

evenly distributed exactly on circles centered at the origin with radii equal to the distance

between the sampling zero and the origin as shown in Figure 2-7, 2-8, and 2-9; the number of

circles is equal to the number of sampling zeros, as shown in Figure 2-8.

3. FIR filter designed by Improved Taylor expansion approximation method has a zero

pattern of a distorted circle if it has more than one sampling zero, as shown in Figure 2-8 and

Figure 2-9. Moreover, if there is more than one sampling zero, the number of distorted circles is

always two: one is inside the unit circle and the other is outside the unit circle as shown in Figure

2-8, Figure 2-10, and Figure 2-17. This is a new pattern not observed before.

4. FIR filter designed by Learning Rate Optimization has a zero pattern of distorted circle

and the number of circles is always two if there are more than two sampling zeros: one circle is

inside the unit circle, and the other is outside the unit circle, as shown in Figure 2-7, 2-8, 2-10, 2-

13, and 2-16. Figures 2-10 and 2-13 both show the FIR filter for the same transfer function

𝐺2(𝑠)𝐺2(𝑠) while the first one is sampled at 100 Hz and the second at 20Hz. The two have

different zero patterns.

5. The three methods all generate FIR filters whose zeros form circle-like patterns. The

radius of these circle-like patterns expands and shrinks as the sampling zeros move close to or

move away from the origins as shown in Figures 2-7, 2-20, and 2-21.

27

6. For a fixed number of terms in the FIR filter, the learning rate increases as the

sampling zero is further from the unit circle; the learning rate decreases as the sampling zero is

closer to the unit circle; the sampling zeros which are too close to the unit circle might result in

unstable systems as shown in Figures 2-27 and 2-28.

7. For fixed locations of the sampling zeros, the learning rate increases as one includes

more terms in FIR filter; the learning rate decreases as one reduces the number of terms in the

FIR filter, as shown in Figure 2-23, 2-24, 2-25, and 2-26.

8. The Learning Rate Optimization method emphasizes low frequency performance,

Taylor expansion method has no preference for frequency because of its symmetric zero pattern,

and the improved Taylor expansion method emphasizes high frequency performance, as shown

in Figures 2-12, 2-15, 2-19, 2-25, and 2-26.

 For System 2 and System 4, its asymptoticly sampling zero location is determined by the

pole-zero excess of 𝑃(𝑠) only, if 𝑃(𝑠) and 𝐺(𝑠) have the same pole-zero excess, then its

asymptotic sampling zeros locations are same. Now the discussion above is applied to System 2

and 4.

2.8 Repeated Zeros Pattern Produced by Discretization of Two Identical Systems

 In System 6, as stated previously, with a pre-filter in the discrete control system, one

might have repeated sampling zeros. As an illustration, consider a discrete control system that

has identical transfer functions for both pre-filter and plant, consisting of the same combination

of 𝐺1(𝑠) and 𝐺2(𝑠) with 100Hz sampling rate. Observations 5, 6, 7, and 8 in the previous section

are valid here. And some new patterns are discovered.

9. For FIR filter by the Taylor Expansion approximation method, the zeros are evenly

distributed and repeated at each radius. However, the Improved Taylor method and Learning

28

Rate Optimization method have FIR filter zeros spread out, as shown in Figure 2-27 and Figure

2-30.

10. When repeated sampling zeros are close to the unit circle, FIR filter by Improved

Taylor Expansion approximation method can lead to an unstable system when there are

relatively few terms in the FIR filter, because, when sampling zeros are outside, its FIR filter

zeros can be inside, violating the rule of equal number of zeros and poles inside the unit circle.

For this case, Improved Taylor method is not improving the performance, as shown in Figure 2-

28 and Figure 2-31.

11. One solution to the case of repeated sampling zeros close to the unit circle is to

increase the number of terms in the FIR filter as shown in Figure 2-29. Figure 2-29 shows 33

terms are needed for the FIR filter designed by Improved Taylor method to have a better learning

rate than a 13-term FIR filter designed by Taylor Method.

2.9 Adjacent Zero Pattern Produced by Discretization of Two Systems with the

Same Pole-Zero Excess

In System 6, when this discrete control system has two transfer function with the same

pole-zero excess for the pre-filter and the plant but different transfer functions for each, there

will be adjacent sampling zeros after the exact conversions. Consider adjacent zeros inside the

unit circle at -0.8836 and -0.8, and adjacent zeros outside the unit circle are at -1.2 and -1.3.

Rules 5, 6, 7, 8, and 9 apply here, and there are some new phenomena.

12. For adjacent zeros inside the unit circle, FIR filter by Learning Rate Optimization

method and Improved Taylor method both have a zero pattern with zeros on a deformed circle

with a radius larger than the distance between the sampling zero and the origin, as shown in

Figure 2-32.

29

13. For adjacent zeros outside the unit circle, FIR filter by Learning Rate Optimization

method and Improved Taylor method have a zero pattern whose zeros tend to form a circle with

a radius smaller than the distance between sampling zeros outside the unit circle and the origin as

in Figure 2-35.

14. Like the repeated sampling zeros case, when sampling zeros are close to the unit

circle, FIR filter designed by Improved Taylor Method does not improved performance

compared to the one by Taylor Method as shown in Figures 2-33 and 2-36. Figure 2-34 shows

that when the number of terms reaches 28, Improved Taylor method has better performance than

an 11-term FIR filter by Taylor Expansion method for adjacent zeros inside the circle; Figure 2-

37 shows that Improved Taylor method needs an 18-term filter to have better performance than

an 11-term filter by Taylor expansion method for adjacent zeros outside the unit circle.

2.10 Sampling Zero Patterns Produced by Discretization of Two Systems with

Different Pole-Zero Excesses

 In System 6, when this discrete control system has two transfer functions with

different pole-zero excess for the pre-filter and the plant, there will be a new sampling zero

pattern after the exact conversion. As an illustration, we examine the case where the pre-filter

has the form of 𝐺2(𝑠) and the plant is 𝐺1(𝑠)𝐺2(𝑠), and we also examine the case when the pre-

filter has the form of 𝐺2(𝑠) and the plant is 𝐺2(𝑠)𝐺2(𝑠) so that one has four sampling zeros.

15. For the first case, since its sampling zeros are closer to the unit circle, the learning

rate is slower than the typical system with three sampling zeros as shown in Figure 2-39.

16. For the second case, since the sampling zeros are closer to the unit circle, the learning

rate is slower than the typical system with four sampling zeros, as shown in Figure 2-41. Also

30

since there are two adjacent zeros near the unit circle, its zero pattern is like what we describe in

Observations 12 to 14.

2.11 Conclusion

Previous RC literature emphasized handling of the zeros introduced by discretization of

the input/output of a continuous time feedback control system. These zeros have limiting patterns

that are only a function of the zero-pole excess. The previous literature presents three methods to

design FIR compensators to handle the sampling zeros outside the unit circle that prevent the use

of an inverse model. Each introduces extra zeros around distorted circles about the origin. We

show that the distortions make the Optimization method favor learning at low frequencies,

Taylor expansion method shows no preference, and Improved Taylor Expansion method favors

high frequencies. It is also shown that the Improved Taylor method has only an improvement if

there are enough terms in the FIR filter. Previous works studied RC design for the limiting

patterns for converting a continuous time feedback system, while here we study applications to

discrete feedback control systems. This includes a discrete controller, continuous plant that is

converted, possible feedback loop filter or rate term, and possible anti-aliasing filter. New

possible patterns of zeros that the FIR must compensate are discovered with possibly repeating

zeros, union of patterns from the same pole excess but different locations, and union of the

patterns from different pole excesses. Each of the three methods still work for these new

patterns.

31

Figure 2-7. 6-term compensator design using

three approaches to compensate sampling

zero -0.8836 with 𝒏 = 𝟔,𝒎 = 𝟎

Figure 2-8. 7-term compensator design for

two sampling zeros from 𝑮𝟏(𝒔)𝑮𝟐 (𝒔) with

𝒏 = 𝟕,𝒎 = 𝟑 (full image)

Figure 2- 9. 7-term compensator design for

two sampling zeros from 𝑮𝟏(𝒔)𝑮𝟐 (𝒔)

(detail)

Figure 2- 10. 10-term compensator designs

for three sampling zeros (full image) with
𝒏 = 𝟏𝟎,𝒎 = 𝟐

Figure 2-11. 10-term compensator designs

for three sampling zeros (detail)

Figure 2-12. Learning rate of compensators

in Figure 2-10

32

Figure 2-13. 10-term compensator designs

for the same system as Figure 2-11, but

sampling at 20 Hz (full view) with 𝒏 =
𝟏𝟎,𝒎 = 𝟐

Figure 2-14. 10-term compensator designs

for the same system in Figure 2-13 (detail)

Figure 2-15. Learning rate vs Frequency for

system in Figure 2-13

Figure 2-16. 13-term compensator for four

sampling zeros (full view) with 𝒏 =
𝟏𝟑,𝒎 = 𝟓

Figure 2-17. 13-term compensator for four

sampling zeros (detail)

Figure 2-18. 13-term compensator for four

sampling zeros (more detail)

33

Figure 2-19. Learning rate vs Frequency for

system in Figure 2-16

Figure 2-20. Sampling 𝑮𝟏(𝒔) at 20 Hz,

sampling zero at -0.53, small radius circle

with 𝒏 = 𝟔,𝒎 = 𝟎

Figure 2-21. Sampling 𝑮𝟏(𝒔) at 200 Hz,

sampling zero at -0.9401, small radius circle

with 𝐧 = 𝟔,𝐦 = 𝟎

Figure 2-22. Learning rate vs. frequency for

6-term filters in Figure 2-20

Figure 2-23. Learning rate vs. frequency of 6

term filters in Figure 2-21

Figure 2-24. Learning rate vs. frequency for

sampling zero -0.8836, but using 17 term

FIR filter

34

Figure 2-25. Learning rate vs. frequency for

the 7-term filter in Figure 2-9

Figure 2-26. Learning rate vs. frequency for

sampling zeros at -3.3104 and -0.2402 using

13-term FIR filter

Figure 2-27. Three 13-term FIR filters for

repeated zeros at -0.8836 with
𝒏 = 𝟏𝟑,𝒎 = −𝟏

Figure 2-28. Learning rate graph for Figure

2-27

Figure 2-29. 33-term Improved Taylor filter

vs. 13-term optimization filter and Taylor

filter for repeated zeros at -0.8836

Figure 2-30. Three 13-term FIR filters for

repeated zeros at -1.2 with 𝒏 = 𝟏𝟑,𝒎 = 𝟏𝟑

35

Figure 2-31. Learning rate graph for Figure 2-

30

Figure 2-32. 11-term FIR compensator

design using different approaches for

adjacent zeros at –0.8836 and -0.8 with 𝒏 =
𝟏𝟏,𝒎 = −𝟏

Figure 2-33. Learning rate figure for filters in

Figure 2-33

Figure 2-34. Learning rate of a 28-term

Improved Taylor filter vs filter Figure 2-32

Figure 2-35. 11-term FIR compensator design

using different approaches for adjacent zeros

at –1.2 and -1.3 with 𝒏 = 𝟏𝟏,𝒎 = 𝟏𝟏

Figure 2-36. Learning rate figure for filters

in Figure 2-35

36

Figure 2-37. 18-term Improved Taylor filter

vs 11-term Optimization and Taylor filters

Figure 2-38. 19-gain filter for united

sampling zeros pattern with 𝒏 = 𝟏𝟗,𝒎 = 𝟓

Figure 2-39. Learning rate for Figure 2-30 Figure 2-40. 17 gain filter design for union

case (full view) with 𝒏 = 𝟏𝟕,𝒎 = 𝟐

Figure 2-41. 17 gain filter for union case

(detail)

Figure 2-42. Learning rate for Figure 2-40

37

Chapter 3: Good Performance Above Feedback Control System

Bandwidth Using Command Modified by Partial Inverse Model

A common requirement specified to a feedback control system designer is the needed

bandwidth. When using typical feedback control laws, such as proportional, integral,

proportional plus derivative, etc. it can easily happen that the desired bandwidth requirement is

not achievable for any choice of control gains. Several ways of seeing the bandwidth limitation

the designer faces are presented. To address this situation, a method is offered to effectively raise

the bandwidth of a feedback system modifying its command based on the partial inverse of this

feedback system: given a desired tracking maneuver, one first uses the partial inverse of the

feedback system to compute the command and then applies it to the feedback system. This

method is founded in the effort to combine the learning gain matrix and the low-pass filter in

ILC. Bandwidth specification does not ask for high accuracy tracking within the bandwidth, but

if it is needed, a method is also presented to use ILC concepts to improve the tracking accuracy.

3.1 Introduction

Any feedback control system has a bandwidth associated with the transfer function from

command to response. Frequency components of command below this bandwidth frequency will

produce outputs that are reasonably close to the commanded component, but frequency

components above this bandwidth frequency have rapid amplitude attenuation as the frequency

increases. Unfortunately, the feedback control system designer has serious limitations concerning

how high a bandwidth can be produced by typical feedback control laws through optimization of

controller gain or gains. The initial objective of ILC is to eliminate tracking error at all

frequencies, at the expense of performing iterations to learn the command needed to produce the

desired output. The feedback controller then has a command that is not what the user wants the

38

system to do, but the command has the effect of making the system do what you want it to do.

ILC is iterating with the real world, it can also learn to counteract the influence of model error

and repeating deterministic disturbances.

ILC can be very effective. Experiments performed on a commercial robot at NASA

Langley Research Center decreased the tracking error of the robot following a high-speed

trajectory by a factor of 1000 in about 12 iterations for learning [11]. However, there are various

issues that appear when trying to use ILC to correct errors at all frequencies up to Nyquist. ILC,

in fact, can be viewed as aiming to converge to the inverse transfer function of the system: the

command to the system, modified by ILC, is equal to the desired output multiplied by the inverse

of the feedback system transfer function if one asks for zero tracking error at sampled time. The

discrete-time inverse transfer function for a majority of feedback control systems in the world is

unstable. If a continuous-time system with a pole-zero excess of 3 or more is fed by a zero-order

hold, and the discrete-time equivalent difference equation is computed using a reasonable sample

rate, the inverse model is unstable [17]. Moreover, the stability of ILC needs a model that is

accurate within plus or minus 90 degrees all the way to Nyquist frequency. Hence, ILC system is

not robust to unmodeled high-frequency modes, parasitic poles, residual modes, etc. One can

avoid potential instability by cutting off the learning using a zero-phase low-pass filter [18-19].

The cutoff frequency needs to be adjusted in hardware since one does not know what is wrong

with the model.

This chapter starts with the ILC concept, but formulates a completely different objective,

aiming to address the bandwidth limitation issues encountered by the feedback control system

designer, rather than aiming to achieve zero tracking error. The approach simply creates a finite-

time inverse model that is accurate up to the desired bandwidth, and assumes that one has a

39

reasonably good model up to this frequency. This approach simply adjusts the command based

on the partial system model inverse and applies it to the system. Given the limited tracking

accuracy requirements associated with the concept of the bandwidth in the original design, this

approach could be sufficient to effectively raise the bandwidth to a higher level. This approach

bypasses all of the issues described associated with ILC. But, in case, one wants to improve the

performance, one can then apply ILC iterating with the real world, so that it corrects for model

errors in the chosen frequency range.

3.2 Bandwidth Concept

The frequency response of feedback control systems plotted with logarithmic scales for

both the magnitude response (log or dB) and frequency, can be approximated by straight lines

with given slopes, which is routinely done when using Bode plots in classical design. For low

frequencies, the plot is approximately horizontal, meaning that the amplitude of the response in

this frequency range is close to a constant when the command is a sinusoid. At some

frequencies, the amplitude response starts to decay, usually with a slope given by a factor of 10

reduction in output when the frequency is increased by a factor of 10. The aim of the definition

of the bandwidth is to identify the frequency at which the system response starts such a decay for

a sinusoidal command. Frequency components of the command below this frequency have the

output reasonably close to the command amplitude, frequencies well above have the output much

smaller than the command amplitude. The bandwidth indicates the frequency when the control

system starts to ignore your command. This is straightforward for systems with dominant poles

in the frequency plot being real. We will generalize the concept somewhat for complex conjugate

dominant roots.

40

3.3 Bandwidth for Single Roots, Multiple Roots, and Dominant Roots

For a command of cos (𝜔𝑡), the steady-state frequency response of transfer function

𝐺(𝑠) is 𝑀(𝜔)cos (𝜔𝑡 + 𝜙(𝜔)) where 𝑀(𝜔) = |𝐺(𝑖𝜔)| and 𝜙(𝜔) is the phase angle of 𝐺(𝑖𝜔).

For a first-order differential equation 𝐺(𝑠) = 𝑏/(𝑠 + 𝑎)

𝑀(𝜔) = (
𝑏

𝑎
) |

1

1 + 𝑖(
𝜔
𝑎)
| (3-1)

For
𝜔

𝑎
≪ 1, then 𝑀(𝜔) ≈ (

𝑏

𝑎
). For

𝜔

𝑎
≫ 1 then 𝑀(𝜔) ≈ (

𝑏

𝑎
) (

𝜔

𝑎
)−1, and the magnitude decays by

a factor of 10 when 𝜔 increases by a factor of 10. The frequency dividing these two behaviors is

𝜔

𝑎
= 1 defining the bandwidth as 𝑎. At this frequency, the actual output amplitude has decreased

by a factor of
1

√2
= 0.707 or -3.02 dB. As a result, the bandwidth is the frequency at which the

amplitude of the output from a sinusoidal input has decreased by this factor 0.707 compared to

that of a very low frequency or DC.

It is important to note that the bandwidth of the first-order system is associated with the

root (𝑠 + 𝑎) = 0, which also determines the time constant of the first-order system as 1/𝑎. The

time constant describes how fast the transients disappear with time. The time you have to wait

for the initial condition influence on the output to be essentially gone is called the settling time,

often defined as 4/𝑎. By waiting this much time the original initial value of the transient term

𝐶𝑒−𝑎𝑡 has decayed to 1.8% of its original value, i.e. has negligible influence on the output. After

this time the output is listening to the command, and not the initial conditions. A higher

bandwidth indicates a shorter setting time.

In summary, the bandwidth is an indicator of what frequencies components of command

are executed well in the response after transients are gone. It also indicates the settling time of

41

the transients, showing what part of the trajectory is listening to the command and not the initial

conditions. And in addition, it can be shown that by indicating the settling time, it is telling the

control system user to limit all commands to ones that do not change substantially within a

settling time. Otherwise, the command will not be executed well. The discussion above suggests

that the designer often may want a higher effective bandwidth for the feedback system.

Consider a higher order system with all real roots:

𝐺(𝑠) =

𝑏

(𝑠 + 𝑎1)(𝑠 + 𝑎2)(𝑠 + 𝑎3)

𝑀(𝜔) = |𝐺(𝑖𝜔)| =
𝑏

𝑎1𝑎2𝑎3
|

1

1 + 𝑖(
𝜔
𝑎1
)
| |

1

1 + 𝑖(
𝜔
𝑎2
)
| |

1

1 + 𝑖(
𝜔
𝑎3
)
|

𝑙𝑜𝑔𝑀(𝜔) = 𝑙𝑜𝑔 (
𝑏

𝑎1𝑎2𝑎3
) + 𝑙𝑜𝑔 |

1

1 + 𝑖(
𝜔
𝑎1
)
| + 𝑙𝑜𝑔 |

1

1 + 𝑖(
𝜔
𝑎2
)
|

+ 𝑙𝑜𝑔 |
1

1 + 𝑖(
𝜔
𝑎3
)
|

(3-2)

The log-log plot is the sum of the first order plots like those in the previous section. Hence, if

𝑎1 < 𝑎2 < 𝑎3 then the first term determines when the overall plot starts to decay, and 𝑎1 is

approximately the -3.02 dB down frequency, or the bandwidth. Note that if instead of having real

roots 𝑎2, 𝑎3, they were a complex conjugate pair but the decay for 𝑎1 still dominated the plot,

then 𝑎1 is still the bandwidth. Other comments above apply again.

Consider a transfer function with a complex conjugate pair of poles with damping ratio

0 < 𝜁 < 1 and undamped natural frequency 𝜔𝑛

𝐺(𝑠) =

𝜔𝑏
2

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛2
 (3-3)

42

𝑀(𝜔) = |𝐺(𝑖𝜔)| = (
𝜔𝑏
2

𝜔𝑛2
) [(1 − (

𝜔

𝜔𝑛
)
2

) + 𝑖2𝜁 (
𝜔

𝜔𝑛
)]

−1

When (
𝜔

𝜔𝑛
) ≪ 1 then 𝑀(𝜔) ≈ (

𝜔𝑏
2

𝜔𝑛
2). When (

𝜔

𝜔𝑛
) ≫ 1 then 𝑀(𝜔) = (

𝜔𝑏
2

𝜔𝑛
2) (

𝜔

𝜔𝑛
)
−2

, and in this

region, when 𝜔 is increased by a factor of 10, the amplitude of the output is decreased by a factor

of 100. These roots can have a resonant peak around (
𝜔

𝜔𝑛
) = 1 with output magnitude given by

𝑀(𝜔𝑛) = (
𝜔𝑏
2

𝜔𝑛
2) (

1

2𝜁
). This is the point at which the asymptotic straight-line approximations start

to decay. This is what we choose to call the bandwidth for such roots. The root locations are

 𝑠 = −𝜁𝜔𝑛 ± 𝑖√1 − 𝜁2𝜔𝑛 (3-3)

Note that the radial distance from the origin to the roots is equal to what we defined as

the bandwidth for dominant complex roots, i.e. 𝜔𝑛. Thus, when real roots determine the

bandwidth, it is the distance from the origin to the root on the negative real axis, and when

complex roots determine the bandwidth, it is again the radial distance from the origin to the

roots. Dominant or slowest decaying roots on a circle centered at the origin all produce the same

bandwidth according to our definition, whether the root or roots are real or complex.

3.4 Bandwidth Limitations in Feedback Control System Design

The classical feedback control system designer does not have the ability to pick whatever

bandwidth he desires. Considering typical classical control laws, proportional (P), integral (I),

proportional plus derivative (PD), and proportional-integral-derivative (PID), adjusting the gain

or gains can only reach certain limited bandwidths. There are three types of bandwidth limitation

for the classical controller design.

First of all, the bandwidth is limited by the average root location constraint. We observe

the relationship between the roots and the coefficients in the associated characteristic polynomial

43

 𝑠3 + 𝛼2𝑠
2 + 𝛼1𝑠 + 𝛼0 = (𝑠 − 𝑠1)(𝑠 − 𝑠2)(𝑠 − 𝑠3)

 = 𝑠3 − (𝑠1 + 𝑠2 + 𝑠3) 𝑠
2 + (𝑠1𝑠2 + 𝑠2𝑠3 + 𝑠3𝑠1)𝑠 − 𝑠1𝑠2𝑠3

(3-5)

Applying a P controller to such a third order system will introduce a gain in 𝛼0, and leave

all other coefficients unaltered. Applying an I controller will convert from 3rd degree polynomial

to 4th degree, and again only influence the 𝑠0 term. Examining PD and PID one concludes that

none of the routine control laws can influence the coefficient of the next to the highest power.

The second coefficient is the negative of the sum of all roots 𝑠1 + 𝑠2 + 𝑠3. The average root

location is,

 𝜎 = (𝑠1 + 𝑠2 + 𝑠3)/3 (3-6)

If all roots are real, this condition says that no matter what controller one uses, one will not be

able to influence the average position. Therefore, the maximum possible bandwidth that could

possibly be achieved would occur when all roots were actually at the average position. For

proportional control, the average position is already defined before you turn on the controller; for

the integral controller alone, it raises the number of roots by one, and introduces a root at the

origin. Both of which make the resulting average position have a smaller maximum possible

bandwidth.

Consider if there were a complex conjugate pair. The real part of all the roots add up to

this average position. The best possible situation is to have all real parts actually at the average

position. According to the bandwidth defined above for complex conjugate roots, it is the radial

distance to the roots on this vertical line through the average position that determines bandwidth.

This suggests that one might be able to adjust the bandwidth substantially in this situation by

making the imaginary parts become arbitrarily large. This comes at a cost of a reduced damping

ratio and increasing the output overshoot. Design guidelines suggest that one would like to limit

44

the damping ratio 𝜁 to be no less than 0.707, suggesting making the lines from the origin to the

roots have an angle less than or equal to 45 degrees relative to the negative real axis. This rule

limits that peak overshoot, in response to a step input, to a reasonable amount. And it prevents

having undesirable high frequency oscillations in the transients. Using this rule, the bandwidth

could be increased from the value associated with the average position on the real axis by only

the square root of 2. Again, it is clear that there is a maximum possible bandwidth already

determined before the control system designer even starts to adjust the gains available.

Second, the bandwidth is limited by the rule of root locus. Having all the roots line up in

a manner so that one could reach the maximum possible values described in the previous section,

is very unlikely. Consider all real roots and a proportional controller. The root locus plot

produces asymptotic angles for the roots to approach as the gain increases. The centroid of the

asymptotes is given by 𝜎 equal to the sum of the poles, divided by the number of poles (when

there are no zeros). In other words, it is the average position of the roots that does not change

with controller gain. The angles that the asymptotes made with the positive real axis are

 𝜃 =
180

𝑛
± 𝑘

360

𝑛
 ; 𝑘 = 0,1,2, … (3-7)

This produces angles of asymptotes of the root locus going into the right half plane to be

at ±60 deg for 3rd order, ±45 deg for 4th order, etc. Suppose the loci actually following these

asymptotes, then the maximum distance from the origin to the complex roots would occur when

the roots were crossing the imaginary axis, and the bandwidth would then by √3𝜎/2 for 60 deg,

and 𝜎 for 45 deg.

Third, the bandwidth limitations are imposed by the feedback control system designer

because of the hardware constraints. There are various control problems where the control

system designer implements a low bandwidth, intentionally making the system have slow

45

performance like those in the controllers used on the Robotics Research Corporation robot [20].

Fitting frequency response data for each axis of this robot produces a third-order transfer

function from command to the response as,

𝐺(𝑠) = (

𝑎

𝑠 + 𝑎
)(

𝜔𝑛
2

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛2
) (3-4)

The robot uses harmonic drives, and although they are claimed to have no backlash, they

are flexible, inserting a rotational spring constant between successive links. A string of rigid

bodies connected by springs in this matter will have vibration modes. The complex conjugate

roots in this transfer function represent the first vibration mode occurring at an undamped natural

frequency 𝜔𝑛 = 37 rad/s, or about 5.5Hz. The control system designer inserted the first factor

into the closed loop behavior, producing a bandwidth of 𝑎 = 8.8 or 1.4Hz. This starts the decay

of output amplitude at 1.4 Hz, and by 5.6 Hz the output has been reduced from a DC gain of

unity by 6 dB or a factor of 4. The intention is to detune the control system so that commands do

not have much content at the resonant frequency, and hence, commands minimally excite the

lowest frequency vibration frequency in the robot.

The same design process is regularly used in spacecraft attitude control. Spacecraft often

have a relatively rigid hub, with various very flexible appendages attached, such as large

unfolded solar panels, or antennae of various kinds. When one wants to rotate the spacecraft by

rotating the hub, this excites vibrations of the flexible appendages. The approach to treating this

problem is to impose a bandwidth that attenuates components of any command that causes

vibrations of the appendages.

46

3.5 Singular Values of 𝑷 Matrix of the System Gives the Magnitude Response of the

System as the Matrix Size Goes to Infinity

Consider a closed-loop feedback control system represented in state variable form

 𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) 𝑘 = 0, 1, 2, … , 𝑝 − 1

𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝑣(𝑘) 𝑘 = 1, 2, 3, … , 𝑝

(3-5)

where 𝑥(𝑘) is the state variable, 𝑢(𝑘) is the command, and 𝑦(𝑘) is the output. In some physical

problems, there is a deterministic disturbance associated with the desired trajectory, and the 𝑣(𝑘)

is included as the equivalent output disturbance in such cases. One wishes to have the output

correspond to a desired trajectory 𝑦∗(𝑘) by proper choice of the command input.

The solution of the state-space equation is,

𝑦(𝑘) = 𝐶𝐴𝑘𝑥(0) +∑𝐶𝐴𝑘−𝑖−1𝐵𝑢(𝑖)

𝑘−1

𝑖=0

+ 𝑣(𝑘)

(3-10)

Using the history vectors defined in Equation (1-2) produces,

 𝑦 = 𝑃𝑢 + 𝐴𝑥(0) + 𝑣 (3-11)

𝑃 =

[

𝐶𝐵 0 0
𝐶𝐴𝐵 𝐶𝐵 0
𝐶𝐴2𝐵
⋮

𝐶𝐴𝑝−1𝐵

𝐶𝐴𝐵
⋮

𝐶𝐴𝑝−2𝐵

𝐶𝐵
⋮

𝐶𝐴𝑝−3𝐵

⋯ 0
⋯ 0
⋱
⋱
⋯

0
⋮
𝐶𝐵

]

 𝐴 =

[

𝐶𝐴
𝐶𝐴2

𝐶𝐴3

⋮
𝐶𝐴𝑝]

(3-12)

Given the desired output 𝑦∗, the input that produces it, 𝑢∗, is given by

 𝑢∗ = 𝑃−1[𝑦∗ − (𝐴𝑥(0)+ 𝑣)]

(6)

If one uses 𝑢∗ as the command, one should expect the output 𝑦 is exactly the desired

trajectory 𝑦∗, if one plugs Equation (3-13) back to Equation (3-11). Unfortunately, the matrix P

is usually ill conditioned as a result of zeros that are introduced in the equivalent z-transfer

function produced from a continuous time system fed by a zero-order hold. This is true whenever

47

the continuous-time transfer function has a pole excess of 3 or more and the sample rate is

reasonable [20]. Usually, the command 𝑢 uses the desired trajectory 𝑦∗, and one can see from

Equation (3-13) that for this case, the output will not be exactly as the desired trajectory.

In the math formation of ILC, it includes the disturbance and noise terms in Equation (3-

11). For constant and repeated disturbance and noises, the formulation of error convergence

equation will not change, thus the error will decrease to zero if the eigenvalues of 𝐼 − 𝑃𝐿 are less

than 1 as Equation (1-7). ILC can cancel the tracking error if there is constant or repeated

disturbance existing for the system. Phan shows that if there is non-repeated disturbance or white

noise excitation, larger eigenvalues of 𝐼 − 𝑃𝐿 can lead to larger tracking error for the system, and

one could add a small gain 𝜙 in front of 𝐿 to turn down the learning speed to reduce the steady-

state tracking error for the non-repeated disturbance and noise at a cost of a slower decreasing of

tracking errors from iteration to iteration [21].

In fact, the 𝑃 matrix of the system gives us the information about the steady-state

response of the system. The following material is a replica of the proof by Chen and Longman to

show this result. One can take the singular value decomposition of matrix P, 𝑃 = 𝑈𝑆𝑉𝑇, it

presents a relationship between this decomposition and frequency response, and shows that as

the size of the matrix gets large, the singular values in S approach the magnitude response of the

system at the frequencies that can be seen in the p time steps of data. The left and right singular

vectors in U and V respectively, look like sinusoids, and the relationship between each input and

the corresponding output singular vector, contains the phase change associated with the

frequency represented by the associated singular value [22].

The equation 𝑈(𝑧) = ∑ 𝑢(𝑘)𝑧−𝑘∞
𝑘=0 is the z-transformation for an infinite sequence

𝑢(𝑘). Substituting 𝑧 = 𝑒𝑖𝜔𝑇, one gets the frequency component of the infinite sequence 𝑢(𝑘).

48

Suppose 𝑢(𝑘) is 𝑝 steps long, then one can only see the discrete frequency components of 𝜔,

where 𝜔 = (2𝜋/𝑝)𝑛 = 𝜔𝑜𝑛 for 𝑛 = 0, 1, … 𝑝 − 1. The discrete Fourier transform is

𝑈(𝑒𝑖𝜔𝑜𝑛) = ∑𝑢(𝑘)(𝑒𝑖𝜔𝑜𝑛)
−𝑘

𝑝−1

𝑘=0

(3-14)

Define 𝑧𝑜 = 𝑒
𝑖𝜔𝑜, 𝑈𝑛 = 𝑈(𝑒

𝑖𝜔𝑜𝑛) = 𝑈(𝑧𝑜
𝑛), 𝑈 = [𝑈0, 𝑈1, …𝑈𝑝−1]

𝑇
, one can write the

relationship between 𝑈 and 𝑢 in matrix form, 𝑈 = 𝐻𝑢, where

𝐻 =

[

(𝑧𝑜
0)0 (𝑧𝑜

0)−1

(𝑧𝑜
1)0 (𝑧𝑜

1)−1
⋯

(𝑧𝑜
0)−(𝑝−1)

(𝑧𝑜
1)−(𝑝−1)

⋮ ⋱ ⋮

(𝑧𝑜
𝑝−1)

0
(𝑧𝑜

𝑝−1)
−1

⋯ (𝑧𝑜
𝑝−1)

−(𝑝−1)

]

(3-15)

The corresponding inverse discrete Fourier transform is then 𝐻−1 = (1/𝑝)(𝐻∗)
𝑇
, where 𝐻∗ is the

complex conjugate matrix of 𝐻, thus

𝑢 = (

1

𝑝
) (𝐻∗)

𝑇
𝑈

(3-16)

Note that for the above equation, one finds that 𝑢(𝑘) is just a linear combination of 𝑒𝑖(𝜔𝑜𝑛)𝑘,

which is also a linear combination of cos (𝜔𝑜𝑛𝑘) and sin (𝜔𝑜𝑛𝑘) for the discreted set of

frequencies.

Refer to Equation (3-11) without considering the initial condition and disturbance, then it

is 𝑦 = 𝑃𝑢. Multiplying on the left by 𝐻 on both sides, and inserting 𝐻−1𝐻 in front of 𝑢, one gets

its discrete Fourier transform,

 𝑌 = 𝐸𝑈

𝐸 = (
1

𝑝
)𝐻𝑃(𝐻∗)𝑇

(3-17)

Let �̂� = (
1

√𝑝
)𝐻, thus , �̂�−1 = (�̂�∗)

𝑇
, and one can rewrite

49

 𝐸 = �̂�𝑃(�̂�∗)
𝑇

𝑃 = (�̂�∗)
𝑇
𝐸�̂�

(3-18)

From Equation (3-16) we know that 𝑈𝑛 is the coefficient of 𝑒𝑖𝜔𝑜𝑛𝑘 in 𝑢(𝑘), and the system

response is 𝑌𝑛 = 𝑀𝑛𝑒
𝑖𝜃𝑛𝑈𝑛, thus as the value of 𝑝 is sufficient large, then matrix 𝐸 must

converge to a diagonal matrix

 𝐸 = 𝑑𝑖𝑎𝑔(𝑀0𝑒
𝑖𝜃0 , 𝑀1𝑒

𝑖𝜃1 , … ,𝑀𝑝−1𝑒
𝑖𝜃𝑝−1)

(3-19)

Recall Equation (3-18), We know that 𝑃 = (�̂�∗)
𝑇
𝐸�̂�. One can write �̂� = [ℎ0, ℎ1, … , ℎ𝑝−1]

𝑇
, and

corresponding �̂�
∗
= [𝑓

0
, 𝑓
1
, … 𝑓

𝑝−1
] where 𝑓

𝑛
= 𝑒−𝑖𝜃𝑛ℎ𝑛. The matrix 𝑃 can also be decomposed

using singular value decomposition so that 𝑃 = 𝑈𝑆𝑉𝑇, where the singular values on the diagonal

of S are [𝜎1, 𝜎2, … , 𝜎𝑝], and denote the associated singular vectors as the column partitions in

matrices 𝑈 = [𝑢0, 𝑢1, 𝑢2, … 𝑢𝑝] and 𝑉 = [𝑣1, 𝑣2, 𝑣3, … 𝑣𝑝]. Thus we have the following two

equations

 𝑃 = 𝑈𝑆𝑉 = 𝜎0𝑢0𝑣0
𝑇 + 𝜎1𝑢1𝑣1

𝑇 +⋯+ 𝜎𝑝−1𝑢𝑝−1𝑣𝑝−1
𝑇

𝑃 = (�̂�∗)
𝑇
𝐸�̂� = 𝑀0𝑓0

∗ℎ0
𝑇 +𝑀1𝑓1

∗ℎ1
𝑇 +⋯+𝑀𝑝−1𝑓𝑝−1

∗ ℎ𝑝−1
𝑇

(3-20)

The difference between the above two is that ℎ𝑛, 𝑓𝑛 are complex but 𝑢𝑛, 𝑣𝑛 are real. One

can eliminate the complex parts by matching the conjugate pairs. Note ℎ1 and ℎ𝑝−1 are a

complex conjugate pair, and both refer to the same frequency, thus 𝑀1 = 𝑀𝑝−1

 𝑀1𝑓1
∗ℎ1

𝑇 +𝑀𝑝−1𝑓𝑝−1
∗ ℎ𝑝−1

𝑇 = 𝑀1𝑓1
∗ℎ1

𝑇 +𝑀1𝑓1(ℎ1
∗
)
𝑇
= 𝑀1(2𝑓1𝑅ℎ1𝑅

𝑇 + 2𝑓
1𝐼
∗ ℎ1𝐼

𝑇) (3-21)

Entries numbered 𝑘 (starting from 0 at the top) in ℎ1𝑅, ℎ1𝐼, 𝑓1𝑅, 𝑓1𝐼 in the above are given by

cos(𝜔𝑜𝑘) , − sin(𝜔𝑜𝑘) , cos(𝜔𝑜𝑘+ 𝜃𝑛) , −sin (𝜔𝑜𝑘 + 𝜃𝑛), all multiplied by the 1/√𝑝 original

50

normalization. We can renormalize then by setting ℎ̂1𝑅 = √2ℎ1𝑅, and similarly for the other

vectors, so that each is now of unit Euclidean norm.

Now we have a mapping between the SVD of 𝑃 and the system frequency response. As

the number of time steps p in the desired trajectory, and correspondingly the size of matrix P,

tends to infinity, the following relationships to the steady state magnitude response 𝑀𝑖 and phase

change through the system 𝜃𝑖 are represented as seen in the matrix as follows. For 𝑖 =

𝑖, 2, … , 𝑝/2, where 𝑖 is the index of the singular value and corresponding singular vectors, it has

the following relationship

 𝜎𝑖 = 𝑀𝑖

𝑢𝑖(𝑘) = √2/𝑝 𝑐𝑜𝑠(𝜔0𝑖𝑘)

𝑣𝑖(𝑘) = √2/𝑝 𝑐𝑜𝑠(𝜔0𝑖𝑘 + 𝜃𝑖)

(3-22)

For the rest of the singular values and singular vectors, the relation is

 𝜎𝑖 = 𝑀𝑝−𝑖

𝑢𝑖(𝑘) = − √2/𝑝 𝑠𝑖𝑛(𝜔0𝑖𝑘)

𝑣𝑖(𝑘) = −√2/𝑝 𝑠𝑖𝑛(𝜔0𝑖𝑘 + 𝜃𝑖)

(3-23)

The singular values of 𝑃 give the magnitude frequency response. the column vectors of 𝑉

are input sinusoidal signals, and the column vector of 𝑈 are the corresponding output sinusoids.

One must examine the singular vectors using discrete Fourier transforms to identify which

singular value, and singular vector pair is associated with what frequency.

When p is not tending to infinity, we describe the corresponding values of 𝜎𝑖, 𝑣i, 𝑢i as

giving the finite-time frequency response. This supplies a way to define a bandwidth for the

finite-time problem. One can make a model of the input-output relation for each finite-time

frequency response up to a chosen frequency, and invert only this part of the matrix P. By doing

51

so we avoid the common instability of 𝑃−1. One can also avoid the need to use zero-phase low-

pass filtering for robustification to unmodeled high frequency dynamics, assuming the bandwidth

desired is not so high that the unmodeled parasitic poles affect the stability. One picks the

bandwidth by simply choosing the singular values and vectors for frequencies up to this

bandwidth, or perhaps a bit beyond if desired. We will illustrate this idea in detail in the next

section. Note that during ILC iterations, it shows that there can be accumulation of error in the

unaddressed part of the space [22]. One may want to limit the number of ILC updates for this

reason.

3.6 Partial Inverse of the System 𝑷 Matrix

Generally speaking, the command to the system is usually the desired output. The ideal

command would be the system inverse times the desired output so that this command after it is

given to the system, will automatically give the desired output. As mentioned before, this very

often produces an unstable control action. This instability is manifested in matrix P by having a

particularly small singular value (and associated singular vectors, one growing and the other

decaying exponentially with time steps). These difficulties are avoided here by multiplying the

desired output by the partial inverse that does not contain the small singular value(s), and only

contains singular values for the chosen frequency range as the command to the system. Assume

matrix P of the system in terms of the desired singular values of 𝑆𝐷, which corresponds to the

magnitude in the frequencies you don’t want to cut off, and the associated singular vectors 𝑈𝐷

and 𝑉𝐷, and 𝑆⊥ which corresponds to the frequency components above the cutoff frequency and

set to zero.

𝑃 = [𝑈𝐷 𝑈⊥] [

𝑆𝐷 0
0 𝑆⊥

] [
𝑉𝐷
𝑇

𝑉⊥
𝑇]=𝑈𝐷𝑆𝐷𝑉𝐷

𝑇
 (3-24)

52

By doing this, we are addressing the output below our desired frequency and we leave the ones

above the frequency untouched. Introducing this into the input-output equation for the history

vectors

 𝑦 = 𝑈𝐷𝑆𝐷𝑉𝐷
𝑇𝑢+ 𝐴𝑥(0)+ 𝑣

(𝑈𝐷
𝑇𝑦) = 𝑆

𝐷
(𝑉𝐷

𝑇𝑢)+𝑈𝐷
𝑇(𝐴𝑥(0)+ 𝑣)

𝑦
𝐷
= 𝑆𝐷𝑢𝐷 +𝑈𝐷

𝑇(𝐴𝑥(0)+ 𝑣)

(3-25)

The desired trajectory is to be specified as a linear combination of the chosen output basis

functions according to 𝑦𝐷
∗ = (𝑈𝐷

𝑇𝑦∗) and the input command that produces this output 𝑢𝐷
∗ =

(𝑉𝐷
𝑇𝑢∗) is then given as

 𝑢𝐷
∗ = 𝑆𝐷

−1𝑦𝐷
∗ − 𝑆𝐷

−1𝑈𝐷
𝑇(𝐴𝑥(0) + 𝑣) (3-26)

Rewrite Equation (3-26) and one can see that the command 𝑢∗ we use as command to the system

is

 𝑢∗ = 𝑉𝐷𝑆𝐷
−1𝑈𝐷

𝑇𝑦∗ − 𝑉𝐷𝑆𝐷
−1𝑈𝐷

𝑇(𝐴𝑥(0) + 𝑣) (3-27)

If one plugs Equation (3-27) back to Equation (3-11), we could see this command 𝑢∗will produce

exactly the desired output 𝑦∗ for frequencies below the desired frequency, that we have chosen,

and leaves the other frequencies untouched.

For the next three sections, we will illustrate the use of partial inverse of the system in

three cases.

3.7 Partial Inverse Solution to Raise Bandwidth When Model is Good Up to Desired

Bandwidth

The stated aim of producing a higher bandwidth is not asking for high accuracy. At the

bandwidth of a first order system the response to an input at the bandwidth frequency is

53

attenuated by 30% and the phase angle is wrong by 45 degrees. Since one is inverting the system

only up to the chosen raised bandwidth, it could often be the case that the model is good enough

in this frequency range that the partial inverse solution gives acceptable accuracy.

If this is the case, the procedure is very simple. Having a desired finite time trajectory,

compute the needed input history from Equation (3-27). Then apply it as the command input to

the feedback control system, instead of commanding the desired output as one normally does

with a feedback control system.

To compute the new command, one needs the A, B, C system matrices of the state

variable model. If there is no repeating disturbance 𝑣, this is enough. Otherwise, one needs to

know 𝑣. In this case, one makes one run to modify the command to address the influence.

3.8 Handling a Deterministic Disturbance Associated with the Desired Trajectory

Various problems have a disturbance function related to the command being executed,

that occurs every run. The gravity torque disturbance on a robot link as the link moves along the

desired trajectory can be modeled this way. If one is confident of the A, B, C model but are not

able to give a good model of the repeating disturbance, one can make one run to produce the

needed information, and then apply the inverse solution. First, apply the inverse solution

computed by Equation (3-27), but without the 𝑣 term, to the system

 𝑢𝐷
∗∗ = 𝑆𝐷

−1𝑦𝐷
∗ − 𝑆𝐷

−1𝑈𝐷
𝑇𝐴𝑥(0) (3-28)

The output is then 𝑦𝐷 = 𝑦𝐷
∗ + 𝑈𝐷

𝑇𝑣. Then, in the next run one has the inverse solution, including

the effect of the repeating disturbance, by applying

 𝑢𝐷
∗ = 𝑢𝐷

∗∗ + 𝑆𝐷
−1(𝑦𝐷 − 𝑦𝐷

∗) (3-29)

54

3.9 Correcting for Model Error by ILC Iterations

If the partial inverse model does not supply the accuracy that one desires, one can

perform iterative learning control iterations. Apply any input to the feedback control system for

the first run, for example, the desired output, or the inverse solution obtained above. Then update

the command from iteration j to iteration 𝑗 + 1 according to a chosen learning law

 𝑢𝐷,𝑗+1 = 𝑢𝐷,𝑗 + 𝜙𝐿𝑒𝐷,𝑗 (3-30)

where 𝜙 is an overall gain, L is the leaning gain matrix, and the error at run j is defined as 𝑒𝐷,𝑗 =

𝑦𝐷
∗ − 𝑦𝐷,𝑗 . Then

 𝑦𝐷,𝑗 = 𝑆𝐷𝑢𝐷,𝑗 + 𝑈𝐷
𝑇(𝐴𝑥(0) + 𝑣)

𝑦𝐷,𝑗+1 = 𝑆𝐷𝑢𝐷,𝑗+1 + 𝑈𝐷
𝑇(𝐴𝑥(0) + 𝑣)

𝑒𝐷,𝑗+1 − 𝑒𝐷,𝑗 = −𝑆𝐷(𝑢𝐷,𝑗+1 − 𝑢𝐷,𝑗)

𝑒𝐷,𝑗+1 = [𝐼−𝜙𝑆𝐷𝐿]𝑒𝐷,𝑗

(3-31)

The error in the addressed part of the error space will converge to zero as the iterations

progress for all error histories in the initial run, if and only if all eigenvalues of the matrix

[𝐼−𝜙𝑆𝐷𝐿] are less than unity in magnitude. There are various choices for the learning gain

matrix. The P transpose contraction mapping law picks L as 𝑆𝐷, making the eigenvalues equal

1 − 𝜙𝜎𝑖
2. This law is particularly robust to model errors, but converges very slowly at high

frequencies. The partial isometry law makes L the identity matrix and the eigenvalues are 1 −

𝜙𝜎𝑖 which learns substantially faster, but still attenuates as the frequency goes up to account for

the usual increased model error at higher frequencies. Of course, 𝐿 = 𝑆𝐷
−1 produces the inverse

solution and converges to zero error in one run if the model is perfect. One could use this for the

55

low frequencies where one trusts the model, and transition to one of the previous laws as the

frequency goes up.

In general, in iterative learning control, one uses a zero-phase low-pass filter to cutoff

learning at frequency to increase the robustness of the system to high frequency model

uncertainty. Here, we are interested in correcting the errors below the desired bandwidth

frequency, and welcome the fact that these can be eliminating faster without robustness issues

because the model is likely to be reasonably accurate in this frequency range. Since the partial

inverse based on bandwidth does not seek zero error, one can iterate until the error stops

decreasing to correct for error in the partial inverse model, but one would not normally need a

low-pass filter.

3.10 Simulation Plant Model

Simulations are performed for the robot link system model as shown in Equation (3-8).

The system is sampled at 100 Hz. The robot link is tracking a trapezoidal trajectory 𝑦𝑑 from 0

degrees to 90 degrees in 2 seconds, as shown in Figure 3-1. The trajectory holds 0 degrees for

0.2 seconds at the start, and the trajectory remains at 90 degrees for 0.2 seconds at the end. In

between, the trajectory moves smoothly from 0 to 90 in 1.6 seconds using a constant velocity

segment and parabolic blends. We assume that the robot link has all zero-initial conditions

𝑥(0) = 0, and the disturbance 𝑣 is modeled as a constant −1 degree disturbance adding to the

final output due to the gravity. The figures of simulation results are at the end of this chapter.

3.11 Using Partial Inverse of System as Prefilter to Modify the Command

The robot link input and output relation are characterized by Equation (1-4) after

applying the zero initial conditions

56

 𝑦 = 𝑃𝑢 + 𝑣 (3-32)

Usually, the input 𝑢 in this equation will use 𝑦𝑑, which is the desired trapezoidal trajectory.

Instead, use the command suggested by Equation (3-27) which uses the difference between the

desired trajectory 𝑦𝑑 and the constant disturbance 𝑣, and then applies it as the input to the robot

link

 𝑢 = 𝑃∗(𝑦𝑑 − 𝑣) (3-33)

 Figure 3-2 compares the resulting output of the robot link using this technique as command,

and the one using the desired output as a command. The red solid line is the desired output, the

trapezoidal trajectory; the blue dash-dot line is the output of the robot link using the desired

trajectory 𝑦𝑑 as command, and the black dash line is the output of the robot link using the

modified command by the prefilter in Equation (3-33) as the command. Using the desired output

as command, the output produced is far from desired. On the other hand, using the partial inverse

technique, the output is tracking the system much better, but with visible oscillation at the end of

the trajectory.

The oscillation feature of the output using the partial system inverse as command appears

from the start to the end. Figure 3-3 shows the enlarged portion of Figure 3-2 from 0.85 seconds

to 0.95 seconds. One can see the tiny oscillation of the black dash line which is the output of the

system using the partial inverse technique, while it is following the trajectory. Figure 3-4 shows

the enlarged Figure 3-2 between 1.8 seconds and 2 seconds. The oscillation phenomenon is more

obvious at the end of the trajectory compared to its start. The obvious oscillation effect at the end

is not diminished even if one extends the trajectory. Experiments with a trapezoidal trajectory of

3 seconds varying from 0 degree to 90 degree with a duration of 90 degree hold still for 1 second

still shows the oscillation effect at the tail of the trajectory. This means that this effect has little

57

to do with the transients of the system. One can also verify by checking the two peaks at Figure

3-4, one peak is at around 1.85 seconds, and the other peak is at around 1.97 seconds, thus the

period of the signal is about 0.12 second, which is roughly equal to 8Hz, which is equal to the

designed cut-off frequency of our partial inverse matrix.

This phenomenon resembles the Gibbs phenomenon where there is an overshoot of

Fourier series and other eigenfunction series occurring at simple discontinuities. In this case, the

singular values in partial inverse matrix increase from 1.0137 to 9.2556 and the rest are all zeros.

There is a sharp discontinuity in the singular matrix. One might guess if we smooth the singular

value in the partial inverse matrix, the oscillation effect at the tail might be reduced. And this is

the case. One uses a modified partial inverse matrix where the singular value, starting from

9.256, decreases linearly to zero in 16 entries, which means the next singular value next to

9.2556 is set to 15/16 of this number. Figure 3-5 shows the comparison between the output using

a modified partial inverse matrix as magenta dash line and output using partial inverse matrix as

black dash line at the tail end of the trajectory. Red solid line is the desired output. One sees that

with the smoothing of singular values of the partial inverse matrix, the oscillation effects at the

end is reduced.

One can also reduce this oscillation effect by using a higher desired frequency. Figure 3-6

shows the output of the robot link using the partial inverse matrix with a 16Hz cut-off frequency.

And one can barely see the oscillation effect at the tail end of the trajectory.

3.12 Use Partial Inverse of System as a Learning Matrix in One-Step of Iterative

Learning

Another approach to use the partial inverse of the system is to use it as the learning gain

matrix to do one-iteration of iterative learning, in order to eliminate the influence of a repeating

58

unmodeled disturbance. In Section 3.11, the output of the robot link is given by the command

𝐿(𝑦𝑑 − 𝑣), assuming the disturbance is known. Here, the repeated disturbance is not know. The

initial command to the system is the partial inverse of the system 𝐿 to multiply the desired

trajectory 𝑦𝑑 Then using this as the input 𝑢1 = 𝑃
∗𝑦𝑑 to the robot link produces output 𝑦1. In the

next iteration, use the command in the previous iteration plus error times the partial inverse of

the system 𝐿 as the new command for the system, and use it as the command for the system

afterwards. This corresponds to the one-iteration learning control, where

 𝑢 = 𝑢1 + 𝑃
∗(𝑦𝑑 − 𝑦1) (3-34)

Figure 3-7 shows the results of both approaches. The partial inverse of system is cutoff at

16Hz. Red solid line is the desired output 𝑦𝑑, blue dash-dot line is the output of the robot link

using the one-step of iterative learning as Equation (3-34), and the black dash line is the output

of the robot link using as prefilter assuming we know the disturbance as Equation (3-33). In the

simulation, the disturbance 𝑣 is a constant -1 degree adding to the output. The different is that,

for the first approach of the prefilter, we assume we know 𝑣 = −1; for one-step ILC, we do not

know the form of 𝑣, and the command to system only use the output information in the previous

iteration. The one-step iterative learning approach is good at handling constant disturbance even

when one does not know its form, and this is the strength of the iterative learning. Moreover, the

one-step iterative learning also improves the tracking performance compared to simply using the

partial inverse as the prefilter to modify. But the oscillation phenomenon still exists, and one can

attenuate it by phasing out the cutoff, or raising the corresponding cut-off frequency of the partial

inverse as stated in the previous section.

Figure 3-8 shows is the enlarged version of Figure 3-9, as we can see, use one-iteration of

learning using the partial inverse of the system, the tracking performance improves.

59

3.13 Use Partial Inverse of the System in Iterative Learning Control

One of the strengths of using the partial inverse of the system as a learning gain matrix is

that it can finish the learning process in one step. A limitation is that the model used to create the

partial inverse is imperfect. The field of Iterative Learning Control iterates with the real world

instead of a model of the world, aiming to get zero error in the world. Hence, it is compensating

for model error. We can apply ILC instead aiming only for zero error in the space of the

addressed frequencies up to the bandwidth. The result is an improved performance within the

bandwidth. Because the bandwidth should normally be in a range where the model inaccuracy is

small, the usual slow learning at high frequencies in ILC is not necessary for robustness in this

situation. Here we investigate benefit of applying additional ILC iterations to improve the

performance within the chosen bandwidth. A small number of iterations can significantly

improve performance.

The simulation settings are the same. The system is still the 3rd order robot link with

constant disturbance of −1 degree on the system. The desired trajectory is still the trapezoidal

curve from 0 to 90 in 2 seconds. A simulation is done for two learning gain matrices: one

learning gain matrix is the partial inverse of this robot link up to 16 Hz, and the other learning

gain matrix is the contraction mapping law as stated in Chapter 1. Figure 3-9 shows the result of

this approach in ILC in 3 iterations. The red solid line the desired trajectory, the blue dash-dot

line is the output of the robot link using the partial inverse of the robot link system as the

learning gain matrix, and the black dash line is the output of the robot link using contraction

mapping law as the learning gain matrix. After just three iterations, ILC using partial inverse

show faster convergence than the traditional contraction mapping method. Figure 3-10, and

60

Figure 3-11 are enlarged version of Figure 3-9 show that the partial inverse of the system as the

learning gain matrix can converge faster in small number of iterations.

3.14 Conclusion

When designing feedback control systems, one is not able to adjust the usual control

gains to achieve any desired bandwidth. It is easy to have the situation where one is unable to

make the feedback control system perform desired fast maneuvers that require a high bandwidth.

Often the system model is good up to the desired higher bandwidth, but becomes poor at

particularly high frequencies where there can be unmodeled parasitic poles or residual modes.

For this case, a method is developed that allows the feedback control system to perform as if it

has the higher bandwidth. A method is presented to make an inverse model limited to the

frequency range needed. Then instead of simply commanding the desired trajectory to the

feedback control system, and having a poor response because the trajectory has frequency

content above the control system bandwidth, one can use the inverse model for this frequency

range to find the command needed, and simply apply this as the command input to the control

system. Provided the model is good in this frequency range, one achieves the performance of a

system with the desired higher bandwidth, by simply applying a modified command.

Bandwidth is a steady state frequency response concept and does not precisely apply to finite

time trajectory tracking. The partial inverse needed for this approach is generated using a

singular value decomposition of the input-output matrix. This can generate a finite-time

frequency response model which is used to interpret the bandwidth requirement in terms of finite

time trajectories.

If one wants to improve performance beyond what is achieved by use of the partial

inverse model, one can apply ILC iterations to converge to zero error in the addressed finite-time

61

frequency response part of the output space. ILC usually aims for zero tracking error up to as

high a frequency as possible. This introduces various issues of robustification to high-frequency

model errors. This thesis seeks to address the bandwidth frustrations of feedback control system

designers, and this modified objective bypasses many difficult issues in Iterative Learning

Control. The partial inverse model may produce the desired tracking accuracy, or one can start

from this result and apply ILC to improve the tracking within the chosen frequency range.

62

Figure 3-1. The desired output, a trapezoidal trajectory from 0 to 90 degrees in 2 seconds

Figure 3-2. Robot link output using the partial inverse to modify command vs. using the

desired output as the command

Figure 3-3. Oscillation effect of using partial inverse as a prefilter with cut-off at 8 Hz

between 0.85s to 0.95s

63

Figure 3-4. Oscillation effect of the partial

inverse as a prefilter with a cut-off at 8 Hz

between 1.8s to 2s

Figure 3-5. Reduced oscillation by using

partial inverse as a prefilter with phasing

out the cutoff

Figure 3-6. Reduced oscillation effect using partial inverse as a prefilter with cut-off

frequency at 16 Hz

Figure 3-7. Robot link output using partial

inverse in one-step learning vs prefilter

Figure 3-8. A reduced oscillation effect

using a modified partial inverse matrix

64

Figure 3-9. Robot link output using partial

inverse as learning gain matrix vs output

using contraction mapping law in 3

iterations

Figure 3-10. The enlarged version of Figure

9 from 0 sec to 0.25 sec

Figure 3-11. The enlarged version of Figure 9

from 1.9 sec to 2.0 sec

65

Chapter 4: On the Choice of Filtfilt, Circulant, and Cliff Filters for

Robustification of Iterative Learning Control

The original aim of ILC is to converge to zero-tracking error at every time step for a

finite-time trajectory, which is equivalent to zero error for all frequencies up to Nyquist

frequency. This is in contrast to classical feedback control design that aims and sometimes

struggles to achieve a desired bandwidth, the upper limit of reasonable performance. Achieving

zero tracking error at all frequencies pushes our ability to create sufficiently accurate models.

Parasitic poles or residual modes at high frequencies can destabilize the ILC learning process.

Hence, a noncausal zero-phase low-pass filter is used for robustification to the model errors at

high frequencies. Such zero-phase low-pass filter are often generated by the MATLAB Filtfilt

command which uses a causal low-pass filter to filter the signal forward and backward. Initial

conditions are needed for both forward and backward filtering processes, producing transients at

the start and the end of the filtered result. These transients are unrelated to the frequency cutoff

objective. The Filtfilt command calculates optimized initial conditions to reduce these transients

[23]. Previous publication demonstrated that the initial condition picked by Filtfilt could cause

instability of ILC [19][24]. Two alternative filters are presented here, a Circulant Filter, and a

Cliff Filter. A math proof is presented to show that the Cliff Filter is a special case of a Circulant

Filter. The Circulant Filter gives the steady-state response of a filter for a finite-time signal, and

when it is used as a zero-phase low-pass filter in ILC, it gives the steady-state response without

transients. This solves the instability issue of the Filtfilt command.

4.1 Zero-Phase Filtering in ILC

The solution to stabilization of ILC in the presence of high frequency model errors, is to

use a zero-phase low-pass filter to filter the command given to the feedback system, cutting off

66

the learning process at frequencies where model error or unmodeled high frequency dynamics

cause instability of the learning process. The phase error of the feedback system model is

primarily responsible for this instability, thus the low-pass filter in ILC needs to be a zero-phase

filter.

This chapter discusses zero-phase low-pass filtering used in ILC. For each run, the

filtering is applied to the command to the feedback system, and the stability of ILC is achieved at

the expense of not asking for zero tracking error above the cutoff frequency of the zero-phase

low-pass filter. A zero-phase low-pass filter generated by the Filtfilt command in MATLAB, can

starts with an IIR Butterworth low-pass filter, apply it to the finite-time signal from the first step

to the last producing attenuation above the cutoff, and also put in phase lag since it is not a zero-

phase filter. Then the filtered result is filtered backward in time producing twice as much

attenuation above the cutoff and putting in phase lead that cancels the phase lag introduced by

the forward filtering, then reverse the second filtered result. For both forward and backward

filtering, the IIR filter needs initial conditions, and the Filtfilt command calculates the optimized

initial condition to reduce the transients [24]. The previous ILC applications use the zero-phase

low-pass filter generated by the Filtfilt command [25-26]. But the Filtfilt command does not

eliminate the transients in the output, and research has shown that such transients can destabilize

the ILC system [19][24]. Bing and Longman suggests to use a circulant Butterworth filter which

gives a close approximation to the steady-state response of a filter for a longer input signals [24].

In this chapter, it is proved that the Circulant Filter gives the steady-state response of a filter for

any length of the input signal, and when it is used as a zero-phased filter, it eliminates the initial

condition. Plotnik and Longman suggest to use a Cliff Filter – a finite-time version of the ideal

filter [19]. We prove that the Cliff Filter is a special case of Circulant Filter.

67

4.2 The Need of Frequency Cutoff in ILC

The simplest form of ILC uses a learning gain matrix 𝐿 = 𝜙𝐼, where 𝜙 is a scalar gain,

and 𝐼 is the identity matrix as in Equation (1-6). This modifies the command to the feedback

system by a constant multiplying the error observed in the last run. If the feedback system is at

the steady-state and the error 𝑒 happens to be a sinusoidal function, then its product 𝐿𝑒 = 𝜙𝑒, the

corrective signal, is modified by the magnitude and phase change of the system. Many systems

have a phase change of -180 deg or more at higher frequencies, and for any error above such

frequencies, the phase change has the effect of reversing the sign of the corrective signal 𝐿𝑒.

Therefore, errors at these frequencies will be amplified. It is the task of the ILC designer to

create a learning gain matrix L that acts as a compensator, doing what it can to cancel the phase

change produced going through the feedback system.

However, such a compensator 𝐿 requires one to have an accurate system model up to the

Nyquist frequency and it is often not realistic. The issue can be illustrated by the ILC design for

the Robotics Research Corporation robot at NASA Langley Research Center [25]. The feedback

controllers for each joint of the 7 degrees of freedom robot had a bandwidth of 1.4 Hz. The

Nyquist frequency was 200 Hz. Each joint is controlled by a DC motor on the previous joint

running through a harmonic drive that has some flexibility. This makes a chain of masses

connected by rotational springs. There will be a set of vibration modes for such a string of

masses. The first mode was in the region of 5.7 Hz. The second mode was not easily identified

but was around 18 Hz. It was not possible to perform frequency response tests at this frequency

and above because of the small output signals. The dynamics between 18 Hz and Nyquist at 200

Hz are unknown. One kind of modeling suggests that there should be five more vibrations modes

that were well above the range of frequencies where we could test the response.

68

ILC does not care if we were able to model at these high frequencies. If the model is

sufficiently wrong in its phase, the ILC will persist in making the error grow. The error may

appear to be buried in the noise level, but if the lack of a good model at these higher frequencies

results in phase errors violating |1 − 𝑃𝐿| < 1, then the error will grow. Eventually, it will rise

above the noise level and produce clear exponential growth of the error.

4.3 MATLAB Filtfilt

Perhaps the default zero-phase low-pass filter is a Butterworth low-pass filter made into a

zero-phase filter. One can use other filters, like Chebyshev, but Butterworth stays at or below the

desired unity output up to the cutoff frequency, making it possible to cut off at a higher

frequency as the model error grows with increasing frequency, and it starts with a continuous-

time Butterworth filter, converts it to discrete-time using the bilinear transformation, and does

the pre-warping to tune the cutoff [27]. Such a filter can be put in state variable form as in

Equation (1-1), but with a direct feedthrough D term. Then there is an equation relating input to

the output of the form of Equation (1-5).

To make a zero-phase filter, one first filters the signal forward in time, producing

attenuation above the cutoff, but producing phase lag at the same time in the signal. The filter

used in this first step is called forward filter. Then one reverses the time in the output sequence

and filters it again. This doubles the attenuation above the cutoff and puts in phase lead to cancel

phase lag produced in the forward filtering. The filter used in this second step is called backward

filter. Then one reverses the time in the final output to revert to forward time. This is called

forward-backward filtering. One could also use backward-forward filtering to achieve zero-phase

as well, which is to reverse the input sequence first, filter it, and reverse the output and filter it

69

again. Note that there are initial conditions needed in forward filtering, and also initial conditions

needed in backward filtering [23].

Recall Equation (1-5), we denote the 𝑃 matrix of the forward filter by 𝐻𝑓, its

observability matrix as 𝑂𝑓, and this IIR filter needs initial conditions as indicated by 𝑥0;

correspondingly, the backward filter’s P matrix is denoted by 𝐻𝑏, observability matrix as 𝑂𝑏, and

the initial conditions as 𝑥𝑁−1.The output of the forward filter and the backward filter can be

expressed respectively as

 𝑌𝑓 = 𝐻𝑓𝑈 + 𝑂𝑓𝑥0

𝑌𝑏 = 𝐻𝑏𝑌𝑓
𝑅 + 𝑂𝑏𝑥𝑁−1

(4-1)

Use 𝑅 to denote the action of reversing the output, which is a row reversing operator.

Denote 𝐶 as a column reversing operator. Below are some easily proved properties for row and

column reversing operators.

 𝐴𝑅𝐶 = 𝐴𝑇 𝑖𝑓 𝐴 𝑇𝑜𝑒𝑝𝑙𝑖𝑡𝑧 𝑚𝑎𝑡𝑟𝑖𝑥 (4-2)

Using the results in Equation (4-2), the output of forward-backward filtering 𝑌𝑓𝑏 can be

expressed as,

 𝑌𝑓𝑏 = (𝐻𝑏𝑌𝑓
𝑅 +𝑂𝑏𝑥𝑁−1)

𝑅
= 𝐻𝑏

𝑇𝐻𝑓𝑈 +𝐻𝑏
𝑇𝑂𝑓𝑥0 +𝑂𝑏

𝑅𝑥𝑁−1 (4-3)

and the output of backward-forward filtering 𝑌𝑏𝑓 can be expressed as (note that, 𝐻𝑏
𝑇𝐻𝑓 ≠ 𝐻𝑓𝐻𝑏

𝑇)

 𝑌𝑏𝑓 = 𝐻𝑓𝐻𝑏
𝑇𝑈 + 𝐻𝑓𝑂𝑏

𝑅𝑥𝑁−1 + 𝑂𝑓𝑥0 (4-4)

MATLAB uses the command Filtfilt, using forward-backward filtering as in Equation (4-

4), to achieve zero-phase filtering but with optimized initial conditions to reduce the transients.

The parameters of the Filtfilt command include the input signal and the base filter system model,

eg. the transfer function or state-space equation of the Butterworth filter. The Filtfilt command in

an early version of MATLAB extends the input by reflected thorough the end-points [19]. A

70

number of points, which its number is equal to three times the filter order, are added to both ends

of the input. The signal values are chosen as an odd reflection about the end value of the signal –

making a mirror reflection of this number of endpoints in the signal, and then reflect in the

vertical plane about the end value. Plotnik and Longman showed that this approach, when

applied in the context of iterative learning control, could could destabilize the system [19].

The current MATLAB Filtfilt command uses the method of calculating the optimized

initial conditions for both forward filter and backward filter to reduce the effects of transients

[24]. The approach to pick the initial conditions for the forward filter and that for the backward

filter seeks to make the forward-backward filtering result 𝑌𝑓𝑏 and the backward- forward filtering

𝑌𝑏𝑓 results as close as possible to each other, equivalent to minimize ‖𝑌𝑓𝑏 − 𝑌𝑏𝑓‖2
2
, meaning the

square of its Euclidean norm.

 𝑌𝑓𝑏 − 𝑌𝑏𝑓 = (𝐻𝑏
𝑇𝐻𝑓 − 𝐻𝑓𝐻𝑏

𝑇)𝑈 + (𝐻𝑏
𝑇 − 𝐼)𝑂𝑓𝑥0 + (𝐼 − 𝐻𝑓)𝑂𝑏

𝑅𝑥𝑁−1 (4-5)

Note that Equation (4-5) is a linear equation for 𝑥0 and 𝑥𝑁−1, the minimizing arguments are

given by the least square estimate, and the optimal initial conditions are given as

(
𝑥0
𝑜𝑝𝑡

𝑥𝑁−1
𝑜𝑝𝑡) = [(𝐻𝑏

𝑇 − 𝐼)𝑂𝑓 , (𝐼 − 𝐻𝑓)𝑂𝑏
𝑅]
+
(𝐻𝑏

𝑇𝐻𝑓 − 𝐻𝑓𝐻𝑏
𝑇)𝑈 (4-6)

where + superscript means the pseudoinverse. The corresponding output given by the Filtfilt

command is expressed as

 𝑌 = 𝐻𝑏
𝑇𝐻𝑓𝑈 + 𝐻𝑏

𝑇𝑂𝑓𝑥0
𝑜𝑝𝑡 + 𝑂𝑏

𝑅𝑥𝑁−1
𝑜𝑝𝑡

 (4-7)

4.4 The Circulant Filter

The previous section presents how MATLAB creates a zero-phase filter: first design a

base filter such as a low-pass Butterworth filter, then use forward-backward filtering to have a

zero-phase filter, with optimized initial conditions reduce the transients in the output. This

71

section introduces the zero-phase Circulant Filter. A Circulant Filter 𝐻 comes from making the

Toeplitz matrix of the typical low-pass filter, like Butterworth filter, into a circulant matrix.

A general form of an 𝑛 × 𝑛 circulant matrix 𝐶𝑐𝑖𝑟 is

𝐶𝑐𝑖𝑟 =

[

𝑐0 𝑐𝑁−1 𝑐𝑁−2 ⋯ 𝑐1
𝑐1 𝑐0 𝑐𝑁−1 ⋯ 𝑐2
𝑐2
⋮

𝑐𝑁−1

𝑐1
⋮

𝑐𝑁−2

𝑐0 ⋯ 𝑐3
⋮ ⋱ ⋮

𝑐𝑁−3 ⋯ 𝑐0]

 (4-8)

The circulant matrix of a filter gives a steady-state response of a filter. Song and

Longman first considered the concept of applying the circulant low-pass filter in the ILC

problem [22]. One can derive the Circulant Filter, starting from H that is a lower triangular

Toeplitz matrix of Markov parameters of a low-pass filter. The Circulant Filter is achieved by

filling in the upper zero triangular entries with Markov parameters to produce matrix �̂�. The first

column is the N Markov parameters. The second column is obtained by moving the original

column entries down one, and the last Markov parameter that is moving out of the bottom of the

matrix is inserted in place of the zero above the diagonal. The remaining columns are filled

analogously.

One can make it a zero-phase filter by applying forward-backward filtering as we did

before. The Circulant Filter is shown in the following section to directly give the filter’s steady-

state frequency response. It is proved that if we use the circulant low-pass filter as the base filter,

and we make it a zero-phase filter, the optimized initial condition in Equation (4-6) are zero.

The Toeplitz matrix of a filter does not give us a steady-state response of a filter, and it

has transients in it. Chen and Longman consider the filter input and output relationship in matrix

form as in Equation (1-5), where the 𝑃 matrix is a lower-triangle Toeplitz matrix of Markov

parameters [22]. Equation (1-5) uses P to represent the feedback system whose command is

72

adjusted by ILC. The same form represents the input-output relationship of a chosen filter (with

appropriate adjustment of the time delay). Chen and Longman show that as the size of the P

matrix increases, its singular values converge to the magnitudes of the steady state magnitude

frequency response, and the relationship between the input and output singular vectors contains

the phase of the frequency response [22]. Therefore, a finite size 𝑃 matrix of the classic IIR or

FIR filter as in Equation (1-5) only represents the intended steady-state response as the matrix

size N tends to infinity.

4.5 Circulant Matrix Properties

 Recall the definition of DFT, where 𝜔 = 𝑒−𝑖2𝜋/𝑁

𝑋(𝑘) = ∑ 𝑥(𝑛)𝜔
𝑘𝑛

𝑁−1

𝑛=0

 (4-9)

The matrix form of Equation (4-9) is

 𝑋(𝑘) = 𝑊𝑥(𝑛) (4-10)

The DFT matrix W has column partitions, 𝑊 = (𝑤0, 𝑤1, … , 𝑤𝑁−1), and W is a symmetric matrix

with columns 𝑤𝑘, 𝑘 = 0,1, … ,𝑁 − 1

 𝑤𝑘 = [𝜔0𝑘, 𝜔1𝑘, 𝜔2𝑘, … , 𝜔(𝑁−1)𝑘]
𝑇
 (4-11)

Multiplying any vector by W produces its discrete Fourier transform (DFT).

Next show that the columns of the DFT matrix 𝑤𝑘 are eigenvectors of a circulant matrix

[28].

Property 1: For any 𝒏 × 𝒏 circulant matrix, its eigenvectors are the n columns of the DFT

matrix.

Consider multiplying circulant matrix 𝐶𝑐𝑖𝑟 times 𝑤𝑘. For simplicity, use the index of the

matrix from 0 to 𝑁 − 1. For the lth component in (𝐶𝑐𝑖𝑟𝑤
𝑘)𝑙

73

(𝐶𝑐𝑖𝑟𝑤
𝑘)𝑙 = ∑ 𝑐𝑗−𝑙𝜔

𝑗𝑘 = 𝑊𝑁
𝑙𝑘 ∑𝑐𝑗−𝑙𝜔

(𝑗−𝑙)𝑘

𝑁−1

𝑗=0

𝑁−1

𝑗=0

 (4-12)

Note that the remaining sum is now independent of l because both 𝑐𝑗 and 𝜔𝑗 are periodic in 𝑗

with period 𝑁. Thus, Equation (4-12) can be written as

 𝐶𝑤𝑘 = 𝜆𝑘𝑤
𝑘

𝜆𝑘 = ∑ 𝑐𝑗−𝑙𝜔
(𝑗−𝑙)𝑘

𝑁−1

𝑗=0

(4-13)

Therefore, the eigenvectors of a circulant matrix form a DFT matrix.

Property 2: The product of the DFT matrix with the first column of a circulant matrix gives a

column vector containing its eigenvalues.

From Equation (4-12), by arranging its order, we can see that this equation is actually the

DFT matrix times the first column of 𝐶𝑐𝑖𝑟 if one notices the periodicity in its column vector.

4.6 The Circulant Filter is a Steady-State Filter

Using Equation (1-5), a linear causal filter, like Butterworth filter 𝐻, can always be

expressed in matrix form (adjusting for the time delay through the system as needed)

 𝑌 = 𝐻𝑈 + 𝑂𝑥0 (4-14)

where 𝑌 = [𝑦0, 𝑦1, … , 𝑦𝑁−1]
𝑇 is the vector of outputs, 𝑈 is the vector of inputs, 𝑂 is the

observable matrix of dimension N, and 𝑥0 is the initial condition. Then 𝐻 is a Toeplitz matrix of

the Butterworth pulse response coefficients

𝐻 =

[

ℎ0 0 0 ⋯ 0
ℎ1 ℎ0 0 ⋯ 0
ℎ2 ℎ1 ℎ0 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮

ℎ𝑁−1 ℎ𝑁−2 ℎ𝑁−3 ⋯ ℎ0]

 (4-15)

74

In order to distinguish the closed-loop feedback system state-space equation from the

state-space equation of the filter, one writes the equation of the filter as

{
𝑥(𝑘 + 1) = 𝐴𝑓𝑥(𝑘) + 𝐵𝑓𝑢(𝑘)

𝑦(𝑘) = 𝐶𝑓𝑥(𝑘) + 𝐷𝑓𝑢(𝑘) 𝑘 = 0, 1, 2, …𝑁 − 1
 (4-16)

Then

ℎ𝑖 = {

𝐷𝑓 , 𝑖 = 0

𝐶𝑓𝐴𝑓
𝑖−1𝐵𝑓 , 𝑖 ≥ 1

𝑂 = [𝐶𝑓 , 𝐶𝑓𝐵𝑓, … , 𝐶𝑓𝐵𝑓
𝑁−1]

𝑇

(4-17)

Now write Equation (4-15) in its circulant matrix form as

�̂� =

[

ℎ0 ℎ𝑁−1 ℎ𝑁−2 ⋯ ℎ1
ℎ1 ℎ0 ℎ𝑁−3 ⋯ ℎ2
ℎ2 ℎ1 ℎ0 ⋯ ℎ3
⋮ ⋮ ⋮ ⋱ ⋮

ℎ𝑁−1 ℎ𝑁−2 ℎ𝑁−3 ⋯ ℎ0]

 (4-18)

The corresponding filter is the circulant Butterworth filter, which is non-causal and is expressed

as

 �̂� = �̂�𝑈 + 𝑂𝑥0 (4-19)

Now we prove that �̂� gives the steady-state response of the filter. Recall Property 1 that

any circulant matrix can be diagonalized by invertible matrix 𝑊, which creates the discrete

Fourier transform. Then �̂� is expressed as

 �̂� = 𝑊−1Λ𝑊 (4-20)

From Property 2, the eigenvalues are equal to the DFT matrix times the first column of

the circulant matrix, which here is �̂�. For �̂�, the first column is the unit pulse response of the

filter so that the eigenvalues of its circulant matrix �̂� is the discrete Fourier transform of the unit

impulse response of the filter

75

 col (Λ) = 𝑊 ∗ [ℎ0, ℎ1, ℎ2, … ℎ𝑁−1]
𝑇 (4-21)

where col (Λ) is a column vector of the eigenvalues along the diagonal of Λ. The frequency

response is defined as the discrete-time Fourier transform of the unit pulse response, and the

discrete Fourier transform is the sampled frequency version of the discrete-time Fourier

transform with discrete frequencies 2𝜋𝑘/𝑁, k from zero to N – 1.

Thus, Equation (4-19) now becomes

 𝑌 = �̂�𝑈 = 𝑊−1Λ(𝑊𝑈) (4-22)

where, first the input is converted by the discrete Fourier transform, 𝑊𝑈, then multiplied by the

frequency response of the discrete filter at the frequencies that can be observed in N steps, and

then the inverse transform is taken to go back to the time domains. So 𝑌 = �̂�𝑈 gives the steady-

state response of the filter.

4.7 Comparison Between a Toeplitz matrix of a Filter and the Circulant Matrix of a

Filter

Let us closely compare, eg. two Butterworth filters, expressed in Equation (4-14) and

Equation (4-22). Both filter matrices use the length 𝑁 pulse response of the same Butterworth

filterer. Equation (4-14) represents an input and output relationship of a classic causal low-pass

Butterworth filter, with H its Toeplitz matrix. The transients in the output Y appear in two parts:

the initial condition expressed in 𝑂𝑥0, and the particular solution associated with zero initial

conditions as contained in 𝐻. Thus, when we use Equation (4-14), even when we set the initial

condition term to zero, one cannot conclude that all transients have been removed from the

response.

Now consider Equation (4-19) using the circulant matrix, and gives us the input-output

relationship of a Circulant Filter �̂�. By setting the initial condition to zero, it removes the

76

transients from the initial condition and Equation (4-19) becomes Equation (4-22). As proved in

the previous section, Equation (4-22) gives the steady-state response of a filter having same

length N pulse response as Butterworth. Transients are eliminated.

4.8 The Optimal Initial Conditions for a Zero-Phase Circulant Filter

Suppose a classic infinite impulse response (IIR) Butterworth filter is expressed in matrix

form 𝐻, and we create the corresponding circulant Butterworth filter �̂�. As suggested by

Equation (4-22), the initial condition for the circulant Butterworth filter is zero when one needs a

steady-state response. Thus, when making this non-causal circulant Butterworth filter a zero-

phase filter, intuitively, one would think the corresponding optimal initial condition should be a

zero-initial condition as well. Now we verify this claim using the optimization method stated in

the previous section.

Suppose that the circulant Butterworth filter �̂�, e.g., derived from the low-pass

Butterworth filter 𝐻, is expressed as Equation (4-19) with the initial condition to be decided. For

both backward and forward filter, we use the same Circulant Filter. Therefore, the corresponding

zero-phase filter will have output

 𝑌 = �̂�𝑇�̂�𝑈 + �̂�𝑇𝑂𝑥0 + 𝑂
𝑅𝑥𝑁−1 (4-23)

Recall Equation (4-6), where the optimal initial condition for the zero-phase filter is determined.

Replace the filter matrix H by its corresponding circulant matrix �̂�, thus Equation (4-6) becomes

(
𝑥0
𝑜𝑝𝑡

𝑥𝑁−1
𝑜𝑝𝑡) = [(�̂�𝑇 − 𝐼)𝑂, (𝐼 − �̂�)𝑂]

+
(�̂�𝑇�̂� − �̂��̂�𝑇)𝑈 (4-24)

Denote the entries in �̂� as ℎ𝑖𝑗, then the 𝑖𝑗𝑡ℎ components in the parenthesis of Equation (4-21) can

be expressed as

77

(�̂�𝑇�̂� − �̂��̂�𝑇)
𝑖𝑗
= ∑[(ℎ𝑖𝑘)

𝑇ℎ𝑘𝑗 − ℎ𝑖𝑘(ℎ𝑘𝑗)
𝑇
] = ∑[ℎ𝑘𝑖ℎ𝑘𝑗 − ℎ𝑖𝑘ℎ𝑗𝑘]

𝑁−1

𝑘=0

= 0

𝑁−1

𝑘=0

 (4-25)

One of the properties of the circulant matrix is that each row and column only contains the same

entries, but in a different order, by arranging it, Equation (4-25) is actually zero. Thus, the

optimal condition for the circulant matrix zero-phase filter is zero initial condition for both 𝑥0

and 𝑥𝑁−1.

 𝑥0
𝑜𝑝𝑡 = 𝑥𝑁−1

𝑜𝑝𝑡 = 0 (4-26)

Thus, the corresponding input-output relationship of a zero-phase Circulant Filter is given by

 𝑌 = �̂�𝑇�̂�𝑈 (4-27)

The zero-phase Circulant Filter will have the form of �̂�𝑇�̂�.

Equation (4-7) gives a zero-phase filter using a typical Butterworth filter, and Equation

(4-27) gives the zero-phase filter using the circulant Butterworth filter. Filtfilt command in

Equation (4-7) has transients buried in all its three terms 𝐻𝑇𝑈,𝑂𝑥0
𝑜𝑝𝑡

and 𝑂𝑅𝑥𝑁−1
𝑜𝑝𝑡

. Equation (4-

27) using the circulant Butterworth filter has no such transients. First, note that Equation (4-27)

removes the transient effect from the initial conditions 𝑥0 and 𝑥𝑁−1 since both terms are zero.

Second, �̂� gives the steady-state response of the filter and �̂� has no transients in it. The

drawback of using a Circulant Filter is that it is not a causal filter, and needs future inputs. But

this is not a problem for ILC since it is a batch process and we know the input to the filter before

each run.

In summary, a zero-phase circulant Butterworth filter, has two advantages over the

typical MATLAB Filtfilt using Butterworth filter. First of all, the zero-phase circulant

Butterworth filter gives the steady-state response of the filter and it eliminates the effects of the

transients. The MATLAB Filtfilt, on the other hand, is only reducing the effects of the transients

78

instead of eliminating it. Second, the zero-phase circulant Butterworth filter has no need to

compute initial conditions, but MATLAB Filtfilt needs to compute for the optimal initial

conditions. Moreover, one can then create the zero-phase version using this matrix �̂� instead of

the original Toeplitz matrix H. This approach addresses one aspect of the mismatch between

steady-state frequency response and the finite time nature in ILC. ILC is a finite-time problem

but the filtering is based on frequency response thinking suggesting the system is at the steady-

state without transients. In the early application of zero-phase filter used in ILC, this is the

fundamental mismatch that we try to address the frequency-based filtering for a finite-time

signal. The Circulant Filter addresses this issue, and gives the steady-state response for a finite-

time signal.

The Circulant Filter acts on the N time-step signals in ILC, assuming that the signals have

a period of N-steps. The signal decomposed into these frequencies has the same start point and

endpoint. If the signal does not have this property, then there will effectively be a step

discontinuity in the frequency representation from the end of the signal to the beginning of the

signal, producing the Gibb’s phenomenon, and causing convergence to the average value at the

discontinuity. The next chapter will address this issue in the application of the Circulant Filter in

ILC.

4.9 A Step Further - Cliff Filter

The Filtfilt command and the Circulant Filter considered above, both rely on a chosen

Butterworth filter (or other similar alternatives). The available causal filters are imperfect in both

the passband, transition band, and the stopband: the passband magnitude response is not 1, and

the stopband magnitude response is not zero. The imperfect stopband may leave high-frequency

components in the command that destabilize the ILC. This section develops the Cliff Filter with

79

magnitude response is unity in the passband with zero phase, the magnitude response is zero in

the stop band, and the phase lag is 0. For the Cliff Filter, forward-backward filtering is not

necessary.

4.10 Cliff Filter Formation

Each ILC iteration contains N time steps. These can be perfectly represented using

Fourier series as a sum of sine and cosine functions. The number of such functions depends on

whether N is odd or even. To understand, start with the unit circle 𝑧 = 𝑒𝑗𝜔 and divide the circle

into N evenly spaced values, 𝜔𝑘 =
2𝜋𝑘

𝑁
, 𝑘 = 0, 1, 2, . . . , 𝑁 − 1, starting with 𝜔 = 0, or DC. The

DC term only needs a constant term, 𝑘 = 1 and 𝑘 = 𝑁 − 1 produce complex conjugates which

together deliver the sine and cosine for the fundamental frequency for N time-step signal, and

𝑘 = 2 and 𝑘 = 𝑁 − 2 produce sine and cosine for the first harmonic, etc. If N is odd, then there

is one term for 𝜔𝑘, 𝑘 = 0, then there are
𝑁−1

2
 frequencies represented by the complex conjugate

pairs, 𝜔𝑘 =
2𝜋𝑘

𝑁
 and 𝜔𝑘 =

2𝜋(𝑁−𝑘)

𝑁
. If N is even, then there is a k for which 𝜔𝑘 = 𝜋

corresponding to Nyquist frequency, which is fully represented by the cosine and needs no

complex conjugate pair.

The Cliff Filter is implemented as follows. (1) Take the Discrete Fourier Transform

(DFT) of the 𝑁 steps of data. (2) Set the components to zero for the complex conjugate pairs

corresponding to frequencies above the cutoff 𝜔𝑐 =
2𝜋𝑚

𝑁
. (3) Take the inverse DFT to get the

filtered signal in the time domain with frequencies above the cutoff deleted.

The ideal filter is

𝐻𝑑(𝑒

𝑗𝜔) = {
1 |𝜔| < 𝜔𝑐
0 𝜔𝑐 < |𝜔| < 𝜋

 (4-28)

80

where 𝜔𝑐 is the cutoff frequency. The interval between frequencies that can be seen in the N

samples of data is 2𝜋/𝑁. The Cliff Filter makes the magnitude and phase of those frequency

samples to be the same as the ideal filter, and leave the frequencies one could not see alone. Take

the 𝑁 samples of an ideal filter 𝐻𝑑(𝑒
𝑗𝜔) at the frequencies 𝜔𝑘 =

2𝜋𝑘

𝑁
, 𝑘 = 0, 1, 2, . . . , 𝑁 − 1, and

assign them to a vector 𝐻(𝑘), where 𝐻(𝑘) = 𝐻𝑑(𝑒
𝑗𝜔𝑘), then the Cliff Filter’s impulse response

(also the coefficient in z-domain) is expressed as,

ℎ(𝑛) =
1

𝑁
∑𝐻(𝑘)𝑒𝑗2𝜋𝑘𝑛/𝑁
𝑁−1

𝑘=0

 𝑛 = 0, 1, 2, … ,𝑁 − 1 (4-29)

In order to make ℎ(𝑛) a real value, it needs to satisfy the following conditions. When N is

an odd number

 𝐻(0) 𝑖𝑠 𝑟𝑒𝑎𝑙,

 𝐻(𝑁 − 𝑘) = 𝐻∗(𝑘) 𝑘 = 1,2, … ,𝑁 − 1

(4-30)

When N is an even number

 𝐻(0) 𝑖𝑠 𝑟𝑒𝑎𝑙, 𝐻(𝑁/2) = 0

𝐻(𝑁 − 𝑘) = 𝐻∗(𝑘), 𝑘 = 1,2, … ,
𝑁

2
− 1

(4-31)

To design the Cliff Filter from the N samples of ideal filter, form a diagonal matrix called

𝐻𝑐 containing the 𝑁 samples on its diagonal. Then the Cliff Filter in matrix form is

 𝑌 = (𝑊−1𝐻𝑐𝑊)𝑈 (4-32)

where 𝑊 is the DFT matrix, 𝑊−1is the inverse DFT matrix, 𝑈 is the input to be filtered, and 𝑌

is the output or filter result. The Cliff Filter matrix 𝐻𝑐𝑙 is then

 𝐻𝑐𝑙 = 𝑊
−1𝐻𝑐𝑊 (4-33)

The matrix 𝐻𝑐 is a diagonal matrix with indices starting from 0 and progressing to 𝑁 − 1

81

 𝐻𝑐 = 𝑑𝑖𝑎𝑔(1,1,⋯ ,1,0,⋯ ,0,1,1,⋯ 1) (4-34)

The ones on the diagonal go from index 0 to index 𝑚 − 1, and from index 𝑁 −𝑚 + 1 to

index 𝑁 − 1. The rest of the entries are all zeros. Thus, in the frequency domain, the

corresponding Cliff Filter 𝐻𝑐𝑙 cutoff is at 𝜔𝑐 =
2𝜋𝑚

𝑁
.

4.11 Cliff Filter Characteristics

The Cliff Filter is derived from the ideal filter at the sampled frequency. It belongs to the

type of filters designed by the frequency-sampling method. For a typical frequency sampling

filter, one only determines the frequency response of the filter at sampled frequencies 𝜔𝑘,

without considering frequencies in between. Since it only has a finite pulse response, the Cliff

Filter is an FIR filter.

For a typical application, where the input sequence length is larger than the length of the

FIR filter. It could be a problem when the in-between frequencies are not addressed [29]. For

example, for a 100-length FIR, the frequency sampling method could only determine the

frequency response at 𝜔𝑘 =
2𝜋𝑘

100
 rad/sample, 𝑘 = 0, 1, 2, … 99. But when the input length is

1000, the DFT of such input can see frequency components as small as
2𝜋

1000
 rad/sample.

However, the ILC problem is a finite-time problem, and the Cliff Filter addresses all frequencies

that can be seen. At every frequency that can be seen in the DFT, there is full control of the

frequency response.

4.12 The Cliff Filter is a Special Case of the Circulant Filter

This section shows that the Cliff Filter matrix in Equation (4-33) is a circulant matrix. As

above, we consider a size N square matrix with index going from 0 to 𝑁 − 1.Equation (4-33) can

be rewritten as

82

 𝐻𝑐𝑙 = 𝑊
−1𝐻𝑐𝑊 = 𝑊−1(𝐼 − 𝐻𝐶)𝑊 = 𝐼 −𝑊−1𝐻𝐶𝑊 (4-35)

which 𝐻𝐶 is a diagonal matrix with ones from the index (𝑚,𝑚) to index (𝑁 −𝑚,𝑁 −𝑚) on the

diagonal, i.e. wherever there is a one/zero on the diagonal of 𝐻𝑐 there is a zero/one at the same

position on the diagonal of 𝐻𝐶, and vice versa. Note that the identity matrix is circulant, and that

the sum or difference of circulant matrices is circulant. We know that the addition of Circulant

Filters gives the Circulant Filter [29]. Hence, proof that the final term in Equation (4-33) is

circulant, proves that 𝐻𝑐𝑙 is circulant.

Matrix 𝑊 is the DFT matrix and 𝑊−1 is its inverse. The ijth component in the 𝑁 by

𝑁 DFT matrix can be expressed as 𝑊𝑖𝑗 = 𝜔
𝑖𝑗, where 𝜔 = 𝑒−

𝑗2𝜋

𝑁 and 𝑖 = 0,1,2, … ,𝑁 − 1, 𝑗 =

0,1,2, … ,𝑁 − 1. The power of exponential is the product of 𝑖 and 𝑗 and we write in this way

since this also indicates the location of the entries. For example, 𝜔23 is the entry at row 2 and

column 3 and its value is 𝜔6 in the DFT matrix 𝑊. The same notation applies for 𝑊−1as well.

The i,j th component in the inverse DFT matrix can be expressed as (𝑊−1)𝑖𝑗 =
1

𝑁
(𝜔∗)𝑖𝑗, where

𝜔∗ = 𝑒
𝑗2𝜋

𝑁 and 𝑖 = 1,2, … ,𝑁 − 1, 𝑗 = 1,2, … ,𝑁 − 1. Note that 𝜔 and 𝜔∗ are complex conjugate

pairs. We use an asterisk to indicate the complex conjugate. 𝑊−1 has a coefficient
1

𝑁
 in the front,

and this will not affect our proof so we neglect it.

We develop the proof in two stages. First we show that the component in the 𝑖th row and

𝑗th column is equal to the component in 𝑖 + 1th row and 𝑗 + 1th column for 𝑖 = 0, 1,2, … ,𝑁 − 2.

This leaves out the entry that moves out of the matrix at the bottom and enters at the top in the

next column, treated in the second stage.

Matrix 𝑊−1 can be written in terms of its column partitions

83

 𝑊−1 = [𝑤∗0, 𝑤∗1, 𝑤∗2, …𝑤∗𝑁−1] (4-36)

where 𝑤∗𝑖 is a column vector, the 𝑖th column in 𝑊−1 matrix, 𝑖 = 0, 1, 2, … ,𝑁 − 1,

 𝑤∗𝑖 = [(𝜔∗)0𝑖 (𝜔∗)1𝑖 (𝜔∗)2𝑖 … (𝜔∗)(𝑁−1)𝑖]𝑇 (4-37)

The DFT matrix 𝑊 has corresponding row partitions

 𝑊 = 𝑐𝑜𝑙[𝑤0, 𝑤1, 𝑤2, … , 𝑤𝑁−1] (4-38)

where col indicated to display the entries as a column partitioned vector, and where 𝑤𝑖 is a row

vector given by the 𝑖th row of 𝑊, 𝑖 = 0, 1, 2, … ,𝑁 − 1. The 𝑖th row of the 𝑊 matrix is,

 𝑤𝑖 = [𝜔𝑖0, 𝜔𝑖1, 𝜔𝑖2, … , 𝜔𝑖(𝑁−1)] (4-39)

Since 𝐻𝐶 only has ones and zeros on the diagonal, it only picks columns 𝑚 to column

𝑁 −𝑚 in 𝑊−1 and rows 𝑚 to row 𝑁 −𝑚 in 𝑊. Then 𝑊−1𝐻𝐶𝑊 becomes

𝑊−1𝐻𝑐̅̅ ̅𝑊 = ∑ (𝑤∗)𝑘 𝑤𝑘

𝑁−𝑚+1

𝑘=𝑚+1

= ∑ [(𝜔∗)0𝑘(𝜔∗)1𝑘, (𝜔∗)2𝑘, … , (𝜔∗)(𝑁−1)𝑘]𝑇
𝑁−𝑚+1

𝑘=𝑚+1

∙ [𝜔𝑘0, 𝜔𝑘1, 𝜔𝑘2, … , 𝜔^𝑘(𝑁 − 1)]

(4-40)

The 𝑖𝑗 components in Equation (4-40), where 𝑖 = 0, 1, … ,𝑁 − 1, 𝑗 = 0, 1, 2. , …𝑁 − 2, are

(𝑊−1𝐻𝐶𝑊)𝑖𝑗 = ∑ (𝜔∗)𝑖𝑘𝜔𝑘𝑗
𝑁−𝑚+1

𝑘=𝑚+1

= ∑ (𝜔∗)𝑘(𝑖−𝑗)
𝑁−𝑚+1

𝑘=𝑚+1

 (4-41)

Now study the relationship between the 𝑗th column and 𝑗 + 1th column of 𝑊−1𝐻𝐶𝑊

(𝑊−1𝐻𝐶𝑊)𝑖𝑗 = ∑ (𝜔∗)𝑘(𝑖−𝑗)
𝑁−𝑚+1

𝑘=𝑚+1

= ∑ (𝜔∗)𝑘[(𝑖+1)−(𝑗+1)] = (𝑊−1𝐻𝑐̅̅ ̅𝑊)𝑖+1,𝑗+1

𝑁−𝑚+1

𝑘=𝑚+1

(4-42)

84

 The second stage of the proof is to show that the last component in the 𝑗th column becomes the

first component in column 𝑗 + 1. When 𝑖 = 𝑁 − 1

(𝑊−1𝐻𝑐̅̅ ̅𝑊)𝑁−1,𝑗 = ∑ (𝜔∗)𝑘(𝑁−1−𝑗) = { ∑ (𝜔∗)𝑘(0−𝑗)
𝑁−𝑚+1

𝑘=𝑚+1

} (𝜔∗)𝑘𝑁
𝑁−𝑚+1

𝑘=𝑚+1

 (4-43)

Recall that 𝜔∗ = 𝑒
𝑗2𝜋

𝑁 , and (𝜔∗)𝑘𝑁 = 1, thus Equation (4-43) becomes

(𝑊−1𝐻𝑐̅̅ ̅𝑊)𝑁−1,𝑗 = ∑ (𝜔∗)𝑘(0−𝑗−1)
𝑁−𝑚+1

𝑘=𝑚+1

= (𝑊−1𝐻𝑐̅̅ ̅𝑊)0,𝑗+1 (4-44)

This is the needed result to conclude that the Cliff Filter is a Circulant Filter.

 As a summary, Cliff Filter has the good properties of both ideal filter and Circulant Filter.

Compared to the circulant Butterworth filter we presented above, first, Cliff Filter has a perfect

passband and a stopband, and it has no phase lag like ideal filter, thus it does not need to use

forward-backward filtering technique to make it a zero-phase filter; second, Cliff Filter is also a

Circulant Filter, it gives the steady-state response of the filter and it does not need to compute for

the initial condition as does the MATLAB Filtfilt.

4.13 Numerical Simulation

This section compares the outputs of the Filtfilt based on Butterworth filter 𝐻, the

circulant zero-phase Butterworth filter, and the Cliff Filter. The filter details are:

(1) Filtfilt and the circulant filter use a 5th order low-pass Butterworth filter with a cutoff at 15Hz

and sampling frequency 100Hz. The Cliff Filter also uses a 15Hz cutoff.

(2) Filtfilt uses the matrix form in Equation (4-13), with output based on Equation (4-7).

(3) The circulant zero-phase Butterworth filter uses Equation (4-18), with output based on

Equation (4-26).

85

(4) The output of the Cliff Filter is from Equation (4-31) where 𝐻𝑐 has the value 15 for 𝑚, which

corresponds to a 15Hz cut off, as shown in Equation (4-34).

(5) Three cosine test signals are uses: 5Hz, 10Hz, and 20Hz. The first two are in the passband

where the ideal response would be identical to the input, and the third is above the cutoff, and the

ideal response would be zero.

(6) Test sinusoids are also considered at 5.1, 10.1, and 20.1Hz to see the behavior of Circulant

Filter if the input signal has a frequency not seen by DFT.

The major difference between the Filtfilt and the zero-phase Circulant Filter is that the

former calculates initial conditions, and the latter is guaranteed steady-state frequency response.

The Butterworth settling time is about 0.16s, so after the 17th time step the response is close to

steady state. Figures 4-1 to 4-6 show the first 10 time steps, and the last 10 time steps of the

output for the input sinusoids for different frequencies to focus on where the differences are most

obvious, Figures 4-1 and 4-2 for 5Hz, Figures 4-3 and 4-4 for 10Hz, and Figures 4-5 and 4-6 for

20Hz. The input cosine, i.e. the desired output, is shown as a dashed line for Figures 4-1 through

4-4, and desired output, which is zero, is shown as the dashed line in Figures 4-5 and 4-6. To the

resolution of the figures, the zero-phase circulant and the Cliff Filter are close to the dashed line

in each case, but the Filtfilt result deviates significantly, with the deviation significantly larger

for higher frequencies.

Figures 4-7 to Figure 4-12 show corresponding plots when the input is a cosine of 5.1Hz,

10.1Hz, and 20.1Hz which are not among the discrete frequencies for which the filters were

designed. This time the circulant and the Cliff Filter show some deviation, but the Filtfilt still has

the largest error.

86

Because the results appear similar after the first 10 steps and before the last 10 steps,

Table 4-1 gives a more detailed analysis of the differences at all time steps. The Root Mean

Square (RMS) of the error is given, where the error is based on error between the test filter and

the ideal filter. Consider 5, 10 and 20Hz. The first column of results is for the 5th order zero-

phase Butterworth, the basis for the Filtfilt and the zero-phase circulant. Observe that the Filtfilt

RMS error is larger than the Butterworth because it has transients as initial conditions, while the

circulant is precisely the same as the steady state Butterworth, indicating that the circulant, as

discussed earlier, gives the steady-state Butterworth response. On the other hand, the Cliff Filter

column show essentially perfect RMS error levels that are numerical zeros, 10−16, 10−15 and

10−15. The results of 5.1, 10.1, and 20.1Hz are also given in the table, and the Filtfilt, circulant,

and Cliff Filters all have similar error levels, except for Filtfilt at 20.1Hz has somewhat larger

error than the others. These results suggest that the Cliff Filter should be the preferred cutoff

filter in ILC.

Since these results are all simulation results, it is hard to tell what happens between

samples and how stable each of the outputs are in between samples. A potential experimental

result shows how the output behaves between samples.

4.14 Conclusion

This chapter investigates several candidates for zero-phase low-pass filters for use in ILC

to create stability and robustness to unmodeled high frequency dynamics. The default choice is

perhaps the Filtfilt command in MATLB. For ILC one prefers to apply this to Butterworth filters

because they do not exceed unity gain in the passband, allowing a higher cutoff. This filters the

signal forward, and then filters the result backward (or vice versa) to cancel the phase change.

Both forward and backward filters need initial conditions, and this introduces transients at the

87

start and end of the filtered result, unrelated to the frequency cutoff purpose of the filter. Filtfilt

picks these initial conditions, currently it aims to make the forward and backward results as

similar as possible. An earlier version used a different method, and Plotnik and Longman

demonstrated that the initial conditions chosen could make the ILC iterations unstable.

Two alternatives to the Filtfilt approach are presented here, each of which does not ask

for initial conditions. The first approach uses the convolution sum solution of a low pass filter,

choosing a Butterworth filter, packaged as a Toeplitz matrix of its Markov parameters. Then the

matrix is modified to be a circulant matrix, which is shown to give the steady state frequency

response. We call such a filter a circulant Butterworth filter if we use Butterworth filter as a base.

When converted to zero phase by the forward-backward approach to cancel phase, it is shown

that the optimal initial conditions are zero. The issue of picking initial conditions is avoided. And

the serious issue of transients is avoided, because the filter produces steady state behavior

directly, and this is the intension when designing a cutoff filter.

The second approach simply asks for an ideal filter, we term it a Cliff Filter. The

Butterworth fails to maintain perfect unity gain up to the cutoff, may require a transition zone,

and simply decays with increasing frequency above this. The ideal filter has zero phase and unity

gain from DC to the cutoff frequency, and zero gain above the cutoff frequency. In the finite

time ILC problem, any signal can be represented by a Fourier series containing a finite number

of frequencies based on the number of time steps in the data. By making a filter that computes

these components without gain or phase distortion up to the cutoff, and eliminates the remaining

components above the cutoff, one creates the Cliff Filter. We prove that the Cliff Filter is also a

Circulant Filter, and compared to the typical zero-phase Circulant Filter, the Cliff Filter not only

88

gives the perfect cutoff with no phase lag and it does not need to compute for initial conditions

which forward-backward filtering technique requires.

When applying a cutoff filter in hardware implementations of ILC, the most common

objective is to create ILC that learns to as high a frequency as possible. The cutoff is used to

prevent unmodeled high frequency dynamics (residual modes, parasitic poles) from destabilizing

the learning process. Since one usually does not know what is wrong with one’s model, the

cutoff is tuned in hardware. The usual slow growth of the instability makes this feasible.

Table 4-1. RMS Error between Output from Three Zero-phase Filters and the Desired

Output, and between Output from Zero-phase Butterworth Filter at Steady-state and the

Desired Output

Frequency

Zero-phase

Butterworth

Filter at Steady-

State

Filtfilt Circulant Filter Cliff Filter

5Hz 5.96 × 10−6 5.22 × 10−3 5.96 × 10−6 6.34 × 10−16

10Hz 7.78 × 10−3 3.13 × 10−2 7.78 × 10−3 1.07 × 10−15

20Hz 1.98 × 10−2 1.19 × 10−1 1.98 × 10−2 1.81 × 10−15

5.1Hz 7.35 × 10−6 5.62 × 10−3 8.06 × 10−3 8.34 × 10−3

10.1Hz 8.68 × 10−3 3.56 × 10−2 1.87 × 10−2 1.70 × 10−2

20.1Hz 1.86 × 10−2 1.45 × 10−1 3.94 × 10−2 3.79 × 10−2

89

Figure 4-1. First 10 time-step output of three

zero-phase filters with 5Hz pure sinusoid

inputs

Figure 4-2. Last 10 time-step output of

three zero-phase filters with 5Hz pure

sinusoid inputs

Figure 4-3. First 10 time-step output of three

zero-phase filters with 10Hz pure sinusoid

inputs

Figure 4-4. Last 10 time-step output of

three zero-phase filters with 10 Hz pure

sinusoid inputs

Figure 4-5. First 10-time step output of three

zero-phase filters with 20Hz pure sinusoid

inputs

Figure 4-6. Last 10-time step output of

three zero-phase filters with 20Hz pure

sinusoid inputs

90

Figure 4-7. First 10-time step output of three

zero-phase filters with 5.1Hz pure sinusoid

inputs

Figure 4-8. Last 10-time step output of

three zero-phase filters with 5.1Hz pure

sinusoid inputs

Figure 4-9. First 10-time step output of three

zero-phase filters with 10.1Hz pure sinusoid

inputs

Figure 4-10. Last 10-time step output of

three zero-phase filters with 10.1Hz pure

sinusoid inputs

Figure 4-11. First 10 time-step output of three

zero-phase filters with 20.1Hz pure sinusoid

inputs

Figure 4-12. Last 10-time step output of

three zero-phase filters with 20.1Hz pure

sinusoid inputs

91

Chapter 5: Designing Steady-State Filter for the Finite-Time Signal

in Iterative Learning Control

The previous chapter discussed the need of zero-phase low-pass filter to address the

stability and robustness in ILC. A typical choice of such zero-phase low-pass filter is given by

the Filtfilt command in MATLAB. It creates a mismatch in the ILC design process, the filter is

designed based on the frequency thinking, which steady state frequency response, but it is used

to finite-time signals for iteration in ILC. The previous chapter addressed this mismatch

introducing two steady-state filters, the Circulant Filter and the Cliff Filter, for the finite-time

signal. Both eliminate the transients produced by the typical filters. But, both filters present

issues of the frequency leakage and the Gibbs phenomenon. The frequency leakage appears

when the signal is not one of the discrete frequencies that one can see in the number of time steps

in each signal.. The Gibbs phenomenon appears if the signal’s start and end points are not equal,

which is nearly always the case during ILC iterations. Both will reduce the tracking accuracy

and convergence rate of ILC. Two approaches, single reflection and double reflection, are

studied in this chapter: One is to do an even reflection about the endpoint of the signal, filter the

extended signal, and then use the first half of the resulting signal. The second approach does an

odd reflection about the endpoint of the original signal, then does an even reflection of this odd-

reflected signal and then uses the first one fourth of the filtered signal. This is done to not only

have continuity across the endpoints of the extended signal, eliminating the discontinuity at the

endpoints, but to maintain continuity of the first derivative of the signal. A math proof is

provided to show that both methods can reduce Gibbs phenomenon, and also provide a formula

indicating when it is important to use single/double reflection on signals with different start and

92

end points. Simulation results show that both single reflection and double reflection can reduce

the tracking error of ILC.

5.1 Introduction

As discussed in Chapter 4, ILC needs a zero-phase low-pass filter. A typical candidate of

such filter is given by the Filtfilt command in MATLAB. This filter is designed based on desired

steady-state frequency response, i.e. the frequency response after all initial condition effects have

become negligible. But ILC contains initial condition influence at the start of every run, so there

is a mismatch in the modeling. The previous chapter addresses this mismatch introducing steady-

state filter for finite-time signal, and this chapter addresses the issues of the frequency leakage

and the Gibbs phenomenon in the application of such filters.

5.2 Stability and Robustness Issues in ILC

The stability condition for ILC in the frequency domain is that |1 − 𝐿(𝑧)𝐺(𝑧)| < 1 be

satisfied for all 𝜔 up to Nyquist, where 𝐺(𝑧) is the system transfer function, 𝐿(𝑧) is the transfer

function of the ILC law, and 𝑧 = exp (𝑖𝜔𝑇) with 𝑇 the sample time interval and 𝜔 the radian

frequency. It is a necessary and the sufficient condition for ILC stability independent of the

number of time steps in the desired trajectory [11]. This condition requires one have a

sufficiently accurate model up to the Nyquist frequency so that one can design 𝐿(𝑧) to cancel the

phase of 𝐺(𝑧) of the real world, instead of one’s model of the real world, to within −90 and +90

degrees when the magnitude of 𝐿(𝑧)𝐺(𝑧) is arbitrarily small, and the phase must be within a

reduced interval for larger magnitudes. To get some intuition on these limits, consider a

compensator 𝐿(𝑧) that is just a constant multipling 𝐺(𝑧). If the phase of 𝐺(𝑧) is −180 degrees,

then the absolute value on the left of the convergence condition is clearly larger than one. The

ILC law 𝐿(𝑧) is needed that aims to cancel the phase of 𝐺(𝑧) to prevent this from happening. In

93

the real world, ILC is a finite-time system that may not enter into steady state, and one uses the

stability criteria of the time-domain version. But this frequency thinking explains what the ILC

law must do.

The accuracy of the available model usually deteriorates as the frequency increases. One

expects that there are missing high frequency dynamics, sometimes described as parasitic poles

or residual modes. Confidence in one’s model is usually expressed as a function of frequency.

One usually needs to introduce a zero-phase low-pass filter 𝐹(𝑧) applied to the ILC command

the system to increase the robustness of the ILC to the model errors. Then the ILC is prevented

from trying to fix tracking errors at high frequencies where the model is uncertain. The stability

condition becomes |𝐹(𝑧)(1 − 𝐿(𝑧)𝐺(𝑧))| < 1 [20], so the cutoff frequency is chosen to

attenuate |1 − 𝐿(𝑧)𝐺(𝑧)| when it becomes larger than one at high frequencies. The cutoff can be

based on one’s confidence in the model, but it can also be tuned in hardware based on observed

error transformed to the frequency domain. The approach is introduced in experiments on a robot

at NASA Langley Research Center [20][25]. A model developed from test data for the command

to response of the feedback controllers for each joint, was good up to 18Hz, while Nyquist

frequency was 200Hz. Analytically we knew to expect more vibration modes between 18Hz and

200Hz, that were not visible in the data. The resulting final error level after convergence of the

ILC was below the reproducibility level of the hardware when evaluated on a day-to-day basis. If

the phase of 𝐿(𝑧)𝐺(𝑧) with 𝐺(𝑧) being the real-world behavior, is outside the error limits

described above, then the error grows at these frequencies eventually appearing above the noise

level, unless there is a filter cutoff. Reference 30 suggests using this as a technique for

experiment design for system identification.

94

A separate stability issue is commonly produced by the conversion of a continuous time

differential equation fed by a zero-order hold input, with output sampled synchronously. Most

discrete control systems have this applied to the plant. For reasonable sample time intervals 𝑇,

perhaps a majority of physical systems will have a zero or zeros introduced in the equivalent

plant discrete time transfer function, that are outside the unit circle [17]. ILC is an inverse

problem, given the desired output of the discrete control system, converge to a command input to

the discrete system to produces it. This converts the zeros into poles, and makes the ILC problem

aims to converge to an unstable command needed for zero error. The poles outside are on the

negative real axis of the z-domain which corresponds to a growing oscillation at Nyquist

frequency. It shows that this instability can be eliminated by the zero-phase low-pass filter

discussed above, that is introduced for the different purpose of robustification to high frequency

model error [12].

5.3 The Mismatch between ILC and Frequency-based Cutoff and Resulting Issues

The ILC problem is a finite-time tracking problem, but the filter discussed above aims to

cut off the learning based on frequency, i.e. it is designed using frequency response thinking

considering the system is in steady-state. The ILC system may not enter into the steady state.

In spite of the finite-time natures of ILC, we choose to try to produce the cutoff based on

system steady-state frequency response because the robustness considerations are likely based on

model confidence as a function of frequency. We need this cutoff since we do not want the

control action to contain any frequency component corresponding to signal growth with iteration.

In Chapter 4, we discuss several approaches to designing the filter based on steady-state

frequency response thinking. Zero phase IIR filters are applied to the signal going forward

though the data, and then they are applied in backward time, classified as Filtfilt designs. Each

95

direction needs initial conditions which create unwanted filter transient at the beginning and the

end of the filter result. It has been shown that the filter designed by using the Filtfilt command

producing the initial conditions can destabilize the ILC algorithm [24]. In Chapter 4, we

discussed the steady-state filter for the finite-time signal which is based on converting signals

using Discrete Fourier Transforms (DFT). This eliminates the issue of filter transients. We

provide two candidates which are Circulant Filter and Cliff Filter.

Another issue to consider is that every ILC run restarts from a repeating initial condition,

and the initial portion of the response then contains transient response not related to frequency

response. Our thinking is that whatever the command input is, including this transient, the filter

should eliminate any component that might produce excitation of undesired frequencies. Thus,

the cutoff filter should remain based on frequency components of the signal.

The use of DFT to decompose the finite-time command input to be filtered, introduces

other issues. The DFT of a finite time signal exhibits phenomena referred to as leakage effects.

When the endpoint is not the same as the start point in the data set to be filtered, then it is

represented by sines and cosines that have the same start point and end point, i.e. of the period of

the number of time steps. This results in a finite time version of the Gibbs phenomenon

occurring to handle the discontinuity of the signal at the start/end point. Particular attention is

paid here to finding ways to have the DFT of the finite-time signal be as little affected as

possible by these phenomena, trying to make it be as close as possible to the steady-state

frequency response.

5.4 Three DFT-Based Steady-State Filter

Perhaps the earliest use of zero-phase low-pass filtering in ILC is the MATLAB Filtfilt at

the time [20][25]. Plotnik and Longman showed that the handling of the initial conditions could

96

result in unstable ILC, and then introduced the concept of a Cliff Filter [19]. Bing and Longman

introduce the concept of the Circulant Filter and use the system identification to indicate that it

gives the steady-state frequency response in approximation [18]. In the last chapter, it is proved

that the Cliff Filter is a special case of a Circulant Filter, and proved that the Circulant Filter does

give the steady-state response, and shows that one does not need to calculate the optimal initial

conditions for the Circulant Filter when making it a zero-phase filter by using the forward-

backward filtering technique. Juang and Longman generalizes such ideas and introduce the

harmonic filters [12].

5.5 Zero-Phase Circulant Filter, and New Proof to Show it Gives the Steady-State

Response

Chapter 4 introduces the Circulant Filter. A Circulant Filter starts with the typical

Toeplitz matrix 𝑃 of a filter, e.g. a Butterworth filter, as shown in Equation (1-5). The first

column of both filters is the same, which are the length-𝑁 filter pulse response history. To form

the Circulant Filter, the next column is the result of the previous column shifting downwards by

one entry and the last entry move to the top, and similarly for the remaining columns. The

Circulant Filter is given below where the hat denotes that this matrix is a circulant matrix.

�̂� =

[

ℎ0 ℎ𝑁−1 ℎ𝑁−2 ⋯ ℎ1
ℎ1 ℎ0 ℎ𝑁−3 ⋯ ℎ2
ℎ2 ℎ1 ℎ0 ⋯ ℎ3
⋮ ⋮ ⋮ ⋱ ⋮

ℎ𝑁−1 ℎ𝑁−2 ℎ𝑁−3 ⋯ ℎ0]

 (5-1)

Chapter 4 uses the property of circulant matrix to prove that the Circulant Filter gives the

steady-state response of the associated filter. Below is a new version of proof, based on the

properties of pulse response and DFT, to show that it gives the steady-state response of the filter.

97

Recall that the system response can be expressed as the linear convolution of its impulse

response ℎ[𝑛] and the input 𝑥[𝑛]

𝑦[𝑛] = ∑ 𝑥[𝑘]ℎ[𝑛 − 𝑘]

𝑁−1

𝑘=0

 (5-2)

In matrix form, it can be written as,

𝑦[𝑛] = [

𝑦[0]
𝑦[1]
⋮

𝑦[𝑁 − 1]

] = [ℎ[𝑛] ℎ[𝑛 − 1] … ℎ[𝑛 − 𝑁 + 1]] [

𝑥[0]
𝑥[1]
⋮

𝑥[𝑛 − 𝑁 + 1]

] (5-3)

Using the 𝐴, 𝐵, 𝐶, 𝐷 of the system state-space equation

ℎ[𝑛] = [

𝐶𝐵
𝐶𝐴𝐵
⋮

𝐶𝐴𝑁−1𝐵]

] ℎ[𝑛 − 1] = [

0
𝐶𝐵
⋮

𝐶𝐴𝑁−2𝐵]

]……ℎ[𝑛 − 𝑁 + 1] = [

0
0
⋮
𝐶𝐵]

] (5-4)

Equation (5-3) and (5-4) connect Equations (1-4) and (1-5). Recall the 𝑁 by 𝑁 DFT matrix 𝑊 is

given by

 𝑊 = {𝜔𝑁
𝑖𝑗
} 𝑖, 𝑗 = 0,1,2, …𝑁 − 1,

𝜔𝑁
𝑘 = 𝑒

−𝑗2𝜋𝑘
𝑁 , 𝑗 𝑖𝑠 𝑝𝑢𝑟𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑥

(5-5)

The steady state response of the system at sampled frequencies, denoted as 𝐻[𝑘], are

given by multiplication of DFT and the impulse response of the system as shown below. Note

that, the frequency resolution frequencies observable by the DFT are determined by the signal

length 𝑁.

 𝐻[𝑘] = 𝑊ℎ[𝑛] (5-6)

Recall the shifting property of DFT, that the DFT of ℎ[𝑛 − 𝑚] is 𝜔𝑁
𝑘𝑚ℎ[𝑘]𝑁, where subscript 𝑁

means modulo 𝑁. Then

98

 𝜔𝑁
𝑘𝐻[𝑘] = 𝑊ℎ[𝑛 − 1]𝑁 , 𝜔𝑁

2𝑘𝐻[𝑘] = 𝑊ℎ[𝑛 − 2]𝑁 ,

… .𝜔𝑁
𝑘(𝑁−1)𝐻[𝑘] = 𝑊ℎ[𝑛 − 𝑁 + 1]𝑁

(5-7)

Combine Equations (5-6) and (5-7) produces

 [𝐻[𝑘], 𝜔𝑁
𝑘𝐻[𝑘], … , 𝜔𝑁

𝑘(𝑁−1)𝐻[𝑘]] = [𝑊ℎ[𝑛],𝑊ℎ[𝑛 − 1]𝑁 , …𝑊ℎ[𝑛 − 𝑁 + 1]𝑁] (5-8)

Rewrite Equation (5-7) in matrix form. The right-hand side of the equation is equal to

 [𝑊ℎ[𝑛],𝑊ℎ[𝑛 − 1]𝑁 , …𝑊ℎ[𝑛 − 𝑁 + 1]𝑁]

= 𝑊[ℎ[𝑛], ℎ[𝑛 − 1]𝑁 , … ℎ[𝑛 − 𝑁 + 1]𝑁] = 𝑊�̂�
(5-9)

The left-hand side is equal to

 [𝐻[𝑘], 𝜔𝑁
𝑘𝐻[𝑘], … , 𝜔𝑁

𝑘(𝑁−1)𝐻[𝑘]] = 𝑑𝑖𝑎𝑔(𝐻[𝑘])𝑊 (5-10)

where 𝑑𝑖𝑎𝑔(𝐻[𝑘]) = 𝑑𝑖𝑎𝑔(𝐻[0], 𝐻[1], … , 𝐻[𝑁 − 1]). From Equations (5-9) and (5-10), one

can write

 𝑑𝑖𝑎𝑔(𝐻[𝑘]) = 𝑊�̂�𝑊−1

�̂� = 𝑊 ∗ 𝑑𝑖𝑎𝑔(𝐻[𝑘])𝑊−1

(5-11)

Thus, �̂� gives us the steady-state frequency response of the filter at sampled frequencies. One

can derive a circulant Butterworth filter from the Toeplitz matrix of filter as in Equation (5-1).

Then, the corresponding Circulant Filter will give the steady-state response of the Butterworth

filter. However, one should notice that such a circulant Butterworth filter is not a zero-phase

filter. It can be made into a zero-phase filter by using forward-backward filtering discussed in

Chapter 4.

To make a zero-phase filter, one first filters the signal forward in time, producing

attenuation above the cutoff, but producing phase lag in the signal at the same time. Then one

reverses the time in the output sequence and filters it again. This doubles the attenuation above

the cutoff and puts in phase lead to cancel phase lag produced in the forward filtering. Then one

99

reverses the time in the final output to revert to forward time. We refer to this as forward-

backward filtering. One could also use backward-forward filtering to achieve zero-phase, which

is to reverse the input sequence first, filter it, and reverse the output and filter it again. Note that

there are initial conditions needed in forward filtering, and also initial conditions needed in

backward filtering. In Chapter 4, we have proved that when the Circulant Filter is made as the

zero-phase filter using forward-backward filtering, its optimal initial conditions are zeros. Thus,

the zero-phase Circulant Filter 𝐻𝑐 has the form

 𝐻𝑐 = �̂�
𝑇�̂� (5-12)

Thus, the corresponding input-output relationship of a zero-phase Circulant Filter is given by

 𝑌 = �̂�𝑇�̂�𝑈 (5-13)

Note that a typical input-output relation of a low-pass filter can be expressed as in

Equation (1-4) with the 𝑃 matrix defined by Equation (1-5) for the state variable model of the

filter dynamics. Note that even if one sets the initial condition to zero, Equation (1-4) does not

give the steady-state response of the filter since the Toeplitz matrix 𝑃 itself contains transients.

Chen and Longman show the relationship between steady-state frequency response and the

singular value decomposition (SVD) of P [22]. As the length of the filtered signal tends to

infinity and the size of matrix 𝑃 increases to infinity, the singular values of 𝑃 converge to the

steady state magnitude frequency response of the system, and the right and left singular vectors

become sinusoids whose phase difference is the steady state phase frequency response. For a

finite-length signal, Equation (1-4) does not give steady-state response.

5.6 Weighted Harmonic Filter

Juang and Longman propose a similar idea of the Circulant Filter [12]. Instead of starting

by making the Toeplitz matrix of a Butterworth filter into a circulant one, it starts with having

100

the magnitude frequency response at sampled frequencies of a Butterworth filter, entered on the

diagonal of a diagonal matrix 𝑀, and then multiplies both sides by a DFT matrix pair, or a real

DFT matrix pair, to get a harmonic filter that produces the steady-state response of the filter.

Suppose that the frequency responses of a Butterworth filter at sampled frequencies are evenly

distributed between 0 and 2𝜋, and the corresponding magnitude frequency response is entered on

the diagonal of matrix 𝑀. Denote by 𝑊 the DFT matrix. Then the harmonic Butterworth

filter 𝐻ℎ is given by

 𝐻ℎ = 𝑊−1𝑀𝑊 (5-14)

 𝐻ℎ is also a circulant matrix. Filter 𝐻ℎ has phase lag in it, and if one wants to have a

zero-phase filter, one should use 𝐻ℎ
𝑇𝐻ℎ instead. One could make a zero-phase Butterworth filter

only by using the magnitude response 𝑀′ of a Butterworth filter, then the new filter 𝐻ℎ′ will be a

zero-phase filter but with the same magnitude response as the Butterworth filer at the sampled

frequency

 𝐻ℎ′ = 𝑊−1𝑀′𝑊 (5-15)

5.7 Difference Between Circulant Butterworth Filter and Harmonic Butterworth

Filter

We demonstrate the difference between a Circulant Filter and a harmonic filter using the

Butterworth filter to illustrate. A discrete Butterworth filter can be either characterized by its

difference equation, its impulse response, its z-transfer function, and its frequency response. All

these expressions can be interchangeable and are equivalent. Suppose a discrete Butterworth

filter can be expressed by the following difference equation and pulse response ℎ{𝑛}. Note that

the pulse response of a discrete Butterworth filter is infinite

 𝑦(𝑘) + 𝑎1𝑦(𝑘 − 1) + ⋯+ 𝑎𝑛𝑦(𝑘 − 𝑛) = 𝑏1𝑢(𝑘 − 1) + ⋯𝑏𝑚𝑢(𝑘 − 𝑚) (5-16)

101

ℎ{𝑛} = {ℎ[0], ℎ[1], … , ℎ[𝑛], … . }

The two are connected by the z-transfer function

𝐺(𝑧) =

𝑏1𝑧
−1 + 𝑏2𝑧

−2 +⋯+ 𝑏𝑚𝑧
−𝑚

𝑎1𝑧−1 + 𝑎2𝑧−2 +⋯+ 𝑎𝑛𝑧−𝑛
=∑ℎ[𝑛]𝑧−𝑛

∞

𝑛=0

 (5-17)

The corresponding frequency response 𝐺(𝜔) is a continuous function

𝐺(𝜔) = 𝐺(𝑧)|𝑧=𝑒−𝑗𝜔 =∑ℎ[𝑛]𝑒−𝑗𝜔𝑛

∞

𝑛=0

 (5-18)

This equation can be written in two terms, one is the summation from 0 to 𝑁 − 1, and the other

term sums from 𝑁 to infinity

𝐺(𝜔) = ∑ ℎ[𝑛]𝑒−𝑗𝜔𝑛
𝑁−1

𝑛=0

+ ∑ ℎ[𝑛]𝑒−𝑗𝜔𝑛
∞

𝑛=𝑁

 (5-19)

If we want to know the frequency response at sampled frequency 𝜔 =
2𝜋𝑘

𝑁
, write

𝐺(𝜔)|
𝜔=

2𝜋𝑘
𝑁
= ∑ ℎ[𝑛]𝑒−

𝑗2𝜋𝑘𝑛
𝑁

𝑁−1

𝑛=0

+ ∑ ℎ[𝑛]𝑒−
𝑗2𝜋𝑘𝑛
𝑁

∞

𝑛=𝑁

 (5-20)

The first term, on the right side of Equation (5-20) is actually the DFT of the first 𝑁 term

pulse response of the Butterworth filter. Recall that for the circulant Butterworth filter, one

knows its eigenvalues by computing the DFT matrix multiplied by its first column, i.e. the first

𝑁 terms of the Butterworth filter. We also prove that such eigenvalues are the steady-state

response of the filter expressed by this circulant matrix. This means that the circulant

Butterworth filter gives us steady-state response coming from the first 𝑁 terms pulse response of

the Butterworth filter instead of the infinite pulse response. The harmonic Butterworth filter

gives us the steady-state response of the Butterworth filter from the infinite pulse response.

102

Therefore, we have a new explanation for Equation (5-20). The left-hand side of the

equation, gives the steady-state response of a Butterworth filter which is what harmonic

Butterworth filter gives to us. The first term on the right-hand side of the equation gives the

steady-state response of an FIR filter whose pulse response is the same as the first 𝑁 terms of the

Butterworth filter which is what the circulant Butterworth filter gives us. The remaining is then

the error term. This explains the mismatch in Table 1 of Reference 22 where the system

identification of the Circulant Filter is always 0.01 smaller than that of the Harmonic

Butterworth filter.

The error term is useful since it can estimate the discrepancy between the two filters, and

it can indicate how large the filter matrix should be so that the errors are reduced to a chosen

threshold level

|𝑒𝑟𝑟𝑜𝑟| = |∑ ℎ[𝑛]𝑒−

𝑗2𝜋𝑘𝑛
𝑁

∞

𝑛=𝑁

| ≤ ∑|ℎ[𝑛]| |𝑒−
𝑗2𝜋𝑘𝑛
𝑁 | = ∑|ℎ[𝑛]|

∞

𝑛=𝑁

∞

𝑛=𝑁

 (5-21)

For a typical 5th order Butterworth filter, the error term is less than 0.01 when one uses more than

100-terms in the filter pulse response. This means that at sampled frequencies, the magnitude

difference between Harmonic Butterworth Filter and Circulant Butterworth Filter is less than

0.01.

5.8 Cliff Filter

Cliff Filter 𝐻𝑐𝑙𝑖𝑓𝑓 = 𝑊
−1𝑀𝑐𝑊, is a special case of weighted harmonic filter, where all

the diagonal terms in 𝑀 are either ones or zeros. Matrix 𝑀𝑐 is a diagonal matrix with indices

starting from 0 and progressing to 𝑁 − 1

 𝑀𝑐 = 𝑑𝑖𝑎𝑔(1,1,⋯ ,1,0,⋯ ,0,1,1,⋯1) (5-22)

103

Where there are 𝑚 + 1 ones for the first set and there are 𝑚 ones for the second set. Entry 1

applies to DC and entry i and 𝑁 − 𝑖 are complex conjugates associated with the same frequency.

The ones on the diagonal go from index 1 to index 𝑚 + 1, and from index 𝑁 −𝑚 + 1 to index

𝑁. The rest of the entries are all zeros. Then one multiplies both sides by the inverse DFT and

DFT matrix to get the Cliff Filter. Thus, in the frequency domain, the corresponding Cliff Filter

cutoff is at 𝜔𝑐 =
2𝜋𝑚

𝑁
.

5.9 Gibbs Phenomenon

The Gibbs phenomenon in the Fourier expansion of a continuous-time signal is observed

when the signal has a step discontinuity in time. The partial sum of the Fourier series converges

to the midpoint of the step discontinuity, and before and after the discontinuity there is

overshoot/undershoot whose maximum value is determined by the height of the discontinuity.

The Fourier series partial sum converges pointwise at all points before and after the

discontinuity, but convergence is not uniform as the points of overshoot / undershoot move while

the height remains constant as more terms are included in the series.

Consider the Fourier series expansion of a continuous-time square wave of the magnitude

of one with period 2𝜋. Its Fourier series is a sum of sine waves with odd frequencies

𝑓(𝑥) =

4

𝜋
∑

1

𝑛
sin (𝑛𝑥)

∞

𝑛=1,3,5…

 (5-23)

Also consider the Fourier series of the integral of the square wave which produces a triangle

wave of the same period. Its Fourier series is given as

𝑓(𝑥) =

𝜋

2
−
4

𝜋
∑

1

𝑛2
cos (𝑛𝑥)

∞

𝑛=1,3,5…

 (5-24)

104

Figures 5-1 presents the partial sum of the square wave with the amplitude 1 and the

period of 2𝜋 including only 10 terms in the sum in Equation (5-23), while Figure 5-2 shows the

partial sum including 50 terms. The overshoot / undershoot oscillation move closer to the

location of the discontinuity as more terms are included, but the maximum amplitude does not

decay. Figures 5-3 and 5-4 are plots for a triangular wave of the same period which is for the

integral of the square wave as Equation (5-24). The integration removes the step discontinuity.

Remaining evidence of the overshoot / undershoot and oscillation are not visible to graphical

accuracy, even after using only 10 terms in the sum.

For continuous-time signals, the Fourier series expansion converges pointwise to the

original signal in the limit as the number of frequencies included tends to infinity. If one

terminates the series prematurely, then the Gibbs phenomenon appears. Analogous behavior

occurs when one takes the DFT of a signal with a given number N of data points. The DFT can

only see a finite number of frequencies, all the frequencies one can observe in the data samples

(roughly N/2 frequencies, differing based on whether N is odd or even). If all frequencies in the

DFT are used to make a time domain reconstruction of the signal, then the reconstruction is

perfect at every point in the discrete time signal -- analogous to the infinite number of

frequencies in the continuous time Fourier series. But if the reconstruction of the time signal uses

a smaller number of frequencies, then the Gibbs phenomenon becomes evident. The signal will

converge to the midpoint of a step discontinuity, and there will be oscillation behavior before and

after the discontinuity.

Both the zero-phase Circulant Filter and the Cliff Filter investigated here, are based on

DFT analysis, and cutting out some higher frequencies to produce the desired cutoff. When we

use DFT to represent the signal, the math implies that such signal is periodic even if it is a finite-

105

time signal. Under this periodic assumption, signals with different starting and ending points will

have a jump discontinuity. This jump discontinuity contributes to the oscillations of the filtered

result. When we use these DFT-based filters to filter a command with different starting and

ending points in our ILC, then filtered result will have oscillation at both ends. When the start

and end of the signal being filtered are the same, then this phenomenon is no present.

We illustrate the above discussion in Figures 5-5 to 5-9 using three signals represented by

100 evenly distributed samples. The first signal is one fourth of a sine wave in 100 samples, the

second signal is one half of a sine wave in 100 samples, and the third has a full period of the sine

wave in 100 steps. Each signal can be expressed by its DFT, and the signal in the time domain

can be rebuilt by adding all sinusoidal components from DC to Nyquist frequency. In each figure

the dashed line shows the original signal and the circles give the signal rebuilt from its DFT.

Figures 5-5 and 5-6 examine the ¼ sine wave function and present the time function produced

using a partial sum of the DFT result including 11 terms, and 31 terms respectively, i.e. adding

frequencies from DC to
𝜋

5
 rad/s, and DC to

3𝜋

5
 rad/s respectively. The difference between the start

point and the endpoint of the one fourth of a sine wave tells us to expect to see a finite time

version of the Gibbs phenomenon produced by the discontinuity going from the end of one

period of the DFT signals to the start of the next. Large deviations from the dashed line are

observed. The continuous time result converges to the midpoint of the discontinuity. In the

sampled time result, if one uses interpolation between the starting point and the ending point in

Figure 5-5, the result does pass through the midpoint of the discontinuity. Figure 5-7 shows that

this finite-time version of the Gibbs phenomenon disappears completely when no frequencies are

eliminated from the DFT, and the time function reconstructed – it is guaranteed to pass through

all 100 points of the original signal.

106

For the ½ sine wave, Figure 5-8 shows the 11-term partial sum of its DFT. The

oscillation behavior at the end points is much less than the corresponding result for the ¼ sine

wave where there is an implied jump discontinuity. As one increases the frequencies included, it

will quickly converge to the original signal. One should notice that the implied periodicity

suggests that this ½ sine wave is periodic without a discontinuity, but will have a cusp at the end,

i.e. a step discontinuity of the first derivative. Figure 5-9 shows the 31-term partial sum of its

DFT. With continuity and first derivative continuity maintained, no Gibbs phenomenon and the

convergence rate is faster.

For the full cycle sine wave, due to the property of DFT, one needs to add only one

frequency sinusoid and the signal is rebuilt. Notice that the full cycle sine wave at both its first

and last points, it has first derivative continuity. This suggests that if our signal has not only

continuity but also the first-derivative continuity, the oscillation because of the frequency cutoff

will disappear much faster.

5.10 Improving the Frequency Response Representation of the Signal for Steady-

State Response Filters

The Cliff Filter aims for a perfect cutoff at the chosen cutoff frequency. This would allow

the ILC law to have zero tracking error up to the highest cutoff frequency possible in the

presence of high frequency model error. The Cliff Filter has zero magnitude in the stopband

which is desirable in ILC since an imperfect filter magnitude response decay with frequency in

the stopband contains some frequencies above the cutoff that might still be able to trigger the

instability of ILC because of the model error above the cutoff.

The Cliff Filter will exhibit a sampled time version of the Gibbs phenomenon. Figure 5-

10 illustrates this effect. The input signal is a 5th order polynomial from 0 to 1 sampling at 100Hz

107

with a signal length of 100. The polynomial satisfies boundary conditions of zero and zero slope

at the start and zero slope when reaching the endpoint at 1. The solid line in Figure 5-10 gives

this curve. The circles are the result of applying the Cliff Filter to 100-time steps samples of the

signal, using a 15Hz cutoff, when Nyquist frequency is 50Hz. Since the start point and end point

of the trajectory are not equal, there is an implied jump discontinuity producing the Gibbs

phenomenon. Eliminating the high frequency components above the cutoff in this finite time

signal results in the oscillation with substantial deviation from the original polynomial history at

both ends of the trajectory.

To address this, we seek a method to make the jump discontinuity disappear making a

signal that can be expressed purely in terms of sinusoids of the period of the number of time

steps. An intuitive solution to this problem would be a single reflection. The original signal of

length 𝑁 is reflected about its end point to create a signal of length 2𝑁 steps, having the start

point and the end point the same as shown in Figure 5-11. It illustrates the single reflection of the

same 5th order polynomial from 0 to 1 in 100-time step. The red portion of the curve shows the

original signal and the red portion plus the black portion shows the single-reflected signal. Then

one filters this single-reflected signal and only uses the first half of the filter result.

The 5th order polynomial with zero slope at the end, makes a smooth function at the end

point when reflected. Picking a different desired trajectory that has a non-zero slope at the end,

when reflected will have a cusp at the end, and the discontinuity of the first-derivative across the

end point might produce undesirable behavior of the filter result. We address this by considering

a double reflection.

For the same length 𝑁 signal, extend the trajectory with an odd reflection about the end

point of the original signal, to create a signal of length 2𝑁 − 1. Then do a further extension that

108

is an even reflection of the previously reflected signal to create the signal of length 4𝑁 − 2.

Figure 12 illustrates this or the 5th order polynomial desired trajectory. The red curve is the

original 5th order polynomial signal from 0 to 1 in 100-time step. The black curve shows the

result of the double reflection, guaranteeing that at the end point the signal is continuous with

continuous first derivative, and that the full signal returns to the start point. Note that the starting

point of the 5th order polynomial is also continuous with its first derivative. This is a good

property for the chosen desired trajectory to have so that the ILC does not have to work hard to

suddenly get from the initial conditions onto the desired trajectory initial slope in one time step.

In the 5th order polynomial case, the continuity of the zero initial condition and zero initial slope

matches the final value and slope after the double reflection.

5.11 Math of Single Reflection Method

Suppose the input to the plant at iteration 𝑗 + 1 is 𝑢𝑗+1 with length 𝑁 steps. Then extend

the signal by an even reflection of 𝑢𝑗 + 𝐿𝑒𝑗 about the end point, creating the new signal of length

2𝑁. Apply the cutoff filter to this 2𝑁 signal, and only use the first half of the result to form 𝑢𝑗+1.

Below we present a mathematical analysis to study the behavior of this approach.

Before the input reflection, the command at iteration 𝑗 to the plant is

 𝑢𝑗+1 = 𝐹(𝑢𝑗 + 𝐿𝑒𝑗) (5-25)

After the input reflection, the signal after filtering becomes

[
𝑢𝑗 + 𝐿𝑒𝑗

𝑢𝑅
 𝑗
+ 𝐿𝑅𝑒𝑗

] (5-26)

where 𝑅 is the row reversing operator. Denote by 𝐹∗ the filter but now the size is 2𝑁 by 2𝑁.

Divide 𝐹∗ in four blocks each of size 𝑁 by 𝑁 such that 𝐹∗ = [
𝑓11 𝑓12
𝑓21 𝑓22

]. Since we only use the

first half of the filtered single-reflected signal, the command at iteration j to the plant is

109

𝑢𝑗+1 = [𝑓11 𝑓12] [

𝑢𝑗 + 𝐿𝑒𝑗

𝑢𝑅
 𝑗
+ 𝐿𝑅𝑒𝑗

] (5-27)

Recall the equation 𝑒𝑗 = −𝑃𝑢𝑗 + 𝑓, and 𝐴𝐵𝑅 = 𝐴𝑐𝐵, where 𝑅 and 𝐶 are row operator and

column operator respectively to reverse the order of rows and columns.

 𝑢𝑗+1 = (𝑓11 + 𝑓12
𝑐 − 𝑓11𝐿𝑃 − 𝑓12𝐿𝑃)𝑢𝑗 + (𝑓11𝐿 + 𝑓12

𝑐 𝐿)𝑓 (5-28)

At steady state

 𝑢∞ = [𝐼 − (𝑓11 + 𝑓12
𝑐)(𝐼 − 𝐿𝑃)]−1(𝑓11 + 𝑓12

𝑐)𝐿𝑓 (5-29)

The only difference between Equation (1-13) and Equation (5-29) is that you change 𝐹 to 𝑓11 +

𝑓12
𝑐

5.12 Math of Double Reflection Method

 The single reflection approach does not consider the potential effects of a discontinuity in

derivatives of the signal, e.g. although the step discontinuity is gone in Equation (5-24), there is

still a cusp in Figures 5-3 and 5-4. The double reflection extends the trajectory in a way that

obtain continuity of the first derivative. For the simplicity of math, we will create a signal of 4𝑁

compared to one of 4𝑁 − 2 in the Section 5.10. When the 𝑁 is large, there would not be much

difference between the two. We do odd reflection at the end but doubling the end point to have

the signal of length 2𝑁, and do even reflection of this 2𝑁 signal creating a new signal of length

4𝑁. Then we filter it, but only use the first 𝑁-time steps as our input to the plant. After the input

reflection, the signal after the filter becomes

[

𝑢𝑗 + 𝐿𝑒𝑗

2𝑈 − 𝑢𝑅
 𝑗
− 𝐿𝑅𝑒𝑗

2𝑈 − 𝑢𝑗 − 𝐿𝑒𝑗

𝑢𝑅
 𝑗
+ 𝐿𝑅𝑒𝑗]

 (5-30)

110

where 𝑅 is again the row reversing operator, and 𝑈 is the end point of the unreflect signal. This

time define 𝐹∗ as the filter but now the size is 4𝑁 by 4𝑁. Partition 𝐹∗ into 16 blocks with each

block of size 𝑁 by 𝑁 such that that 𝐹∗ = [
𝑓11 ⋯ 𝑓14
⋮ ⋱ ⋮
𝑓41 ⋯ 𝑓44

]. Since we only use the first half of the

filtered double-reflected signal, the command at iteration 𝑗 to the plant can be written as,

𝑢𝑗+1 = [𝑓11 𝑓12 𝑓13 𝑓14]

[

𝑢𝑗 + 𝐿𝑒𝑗

2𝑈 − 𝑢𝑅
 𝑗
− 𝐿𝑅𝑒𝑗

2𝑈 − 𝑢𝑗 − 𝐿𝑒𝑗

𝑢𝑅
 𝑗
+ 𝐿𝑅𝑒𝑗]

 (5-31)

Then,

 𝑢𝑗+1 = (𝑓11 − 𝑓12
𝑐 − 𝑓13 + 𝑓14

𝑐)(𝐼 − 𝐿𝑃)𝑢𝑗 + (𝑓11 − 𝑓12
𝑐 − 𝑓13 + 𝑓14

𝑐)𝐿𝑓 + 2(𝑓12

+ 𝑓13)𝑈
(5-32)

 Since 𝑈 is changing every iteration, we do not have an equation to express the command to the

system after the learning process is finished as Equation (5-29) for the double reflection method.

5.13 Single Reflection Reduces Gibbs Phenomenon

This section studies conditions under which the single reflection method reduces the

Gibbs phenomenon. Denote a length-𝑁 input signal as 𝑢[𝑛], and its DFT as

𝑈[𝑘] = ∑ 𝑢[𝑛]𝑒−
𝑗2𝜋𝑘𝑛
𝑁

𝑁−1

𝑛=0

 (5-32)

The DFT of the reflected signal 𝑅[𝑘] is

𝑅[𝑘] = ∑ 𝑢[𝑛]𝑒−
𝑗𝜋𝑘𝑛
𝑁

𝑁−1

𝑛=0

+ ∑ 𝑢[2𝑁 − 1 − 𝑛]𝑒−
𝑗𝜋𝑘𝑛
𝑁

2𝑁−1

𝑛=𝑁

 (5-34)

Make a change of variables 𝑝 = 2𝑁 − 1 − 𝑛, and change variables from 𝑝 to 𝑛 again

111

𝑅[𝑘] = ∑ 𝑢[𝑛]𝑒−
𝑗𝜋𝑘𝑛
𝑁

𝑁−1

𝑛=0

+ 𝑒
𝑗𝜋𝑘
𝑁 ∑𝑢[𝑛]𝑒

𝑗𝜋𝑘𝑛
𝑁

𝑁−1

𝑛=0

 (5-35)

Given an input signal 𝑢[𝑛] of length 𝑁, then the reflected signal 𝑟[𝑛] is of length 2𝑁,

which is an even number. At Nyquist frequency 𝑘 = 𝑁, one can easily prove that the reflected

signal DFT 𝑅[𝑁] = 0.

𝑅[𝑁] = ∑ 𝑢[𝑛]{(𝑐𝑜 𝑠(𝜋𝑛) + 𝑐𝑜𝑠(𝜋𝑛 + 𝜋)} = 0

𝑁−1

𝑛=0

 (5-36)

Consider a high frequency range 𝑘 = 𝑁 −𝑚, where 𝑚 is a positive integer, and 𝑚 ≪ 𝑁.

In ILC the number 𝑁 can easily be a large number. Since 𝑚 ≪ 𝑁, then we can think of
𝜋𝑚

𝑁
≈ 0,

and the DFT of the reflected signal 𝑟[𝑛] at high frequencies is

𝑅[𝑁 −𝑚] = ∑ 𝑢[𝑛]{𝑒−𝑗𝑛(𝜋−
𝜋𝑚
𝑁
) + 𝑒−𝑗

(𝑛+1)(𝜋−
𝜋𝑚
𝑁
)}

𝑁−1

𝑛=0

≈ ∑ 𝑢[𝑛]{𝑒−𝑗𝑛𝜋 + 𝑒−𝑗(𝑛+1)𝜋} = 0

𝑁−1

𝑛=0

(5-37)

We conclude that a single reflection method will make the reflected signal’s DFT to be roughly

zero in the high frequency range.

Now examine the DFT of the initial signal 𝑥[𝑛] of length 𝑁 in the same range. When 𝑁 is

an even number, its Nyquist frequency corresponds to 𝑘 = 𝑁/2, and one can show that

𝑈 [
𝑁

2
] = ∑ 𝑢[𝑛]𝑒−𝑗𝜋𝑛

𝑁−1

𝑛=0

= ∑(−1)𝑛𝑢[𝑛]

𝑁−1

𝑛=0

 (5-38)

For a high frequency range 𝑘 =
𝑁

2
−𝑚, where 𝑚 is a positive integer, and 𝑚 ≪ 𝑁, since

2𝜋𝑚

𝑁
≈

0, then the DFT simplifies

112

𝑈 [
𝑁

2
−𝑚] = ∑ 𝑢[𝑛]𝑒−𝑗𝑛(𝜋−

2𝜋𝑚
𝑁

) ≈ ∑ 𝑢[𝑛]𝑒−𝑗𝜋𝑛
𝑁−1

𝑛=0

=

𝑁−1

𝑛=0

∑(−1)𝑛𝑢[𝑛]

𝑁−1

𝑛=0

 (5-39)

When 𝑁 is an odd number, 𝑋[𝑘] does not sample at Nyquist frequency, but we still can denote

its high frequency range as 𝑘 =
𝑁−1

2
−𝑚, where 𝑚 is a positive integer, and 𝑚 ≪ 𝑁. The DFT

in this case still can be simplified since
2𝜋(𝑚+

1

2
)

𝑁
≈ 0

𝑈 [
𝑁 − 1

2
−𝑚] = ∑ 𝑢[𝑛]𝑒−𝑗𝑛(𝜋−

2𝜋(𝑚+
1
2
)

𝑁
) ≈ ∑ 𝑢[𝑛]𝑒−𝑗𝜋𝑛

𝑁−1

𝑛=0

=

𝑁−1

𝑛=0

∑(−1)𝑛𝑢[𝑛]

𝑁−1

𝑛=0

 (5-40)

Now we can see that the reflected signal 𝑟[𝑛] has a DFT roughly equal to zero in the high

frequency range but the counterpart of original signal 𝑥[𝑛] is roughly equal to ∑ (−1)𝑛𝑥[𝑛]𝑁−1
𝑛=0 .

Statement 1. If the input signal 𝑥[𝑛] has the property that the magnitude of this

summation ∑ |(−1)𝑛𝑥[𝑛]𝑁−1
𝑛=0 | ≫ 0, then the single reflection will reduce the Gibbs

phenomenon.

The suggests that we can make three claims. First, if the signal 𝑥[𝑛] is symmetric or close

to symmetric about its mid point, there is no need for making a single reflection. For this case,

the Gibbs phenomenon is not present or it can be negligible. Second, if the signal 𝑥[𝑛] is

increasing or decreasing, or its increasing portion is significantly larger than its decreasing

portion or vice versa, then the single reflection will help reduce the Gibbs phenomenon. Third, if

the signal 𝑥[𝑛] is a periodic signal or close to a periodic signal, the single reflection will not help

reduce the Gibbs phenomenon. It is better to use the original signal in the filtering process.

5.14 Double Reflection Reduces Gibbs Phenomenon

This section studies the double reflection aiming to understand when it reduces the Gibbs

phenomenon. Compared to the single reflection, the double reflection tries to preserve first

113

derivative continuity in the discrete signal. Consider the DFT of the double reflection signal

𝑑𝑟[𝑛], denoted DR[k] and define 𝑊4𝑁 = 𝑒
−
𝑗2𝜋

4𝑁 .

𝐷𝑅[𝑘] = ∑ 𝑢[𝑛]𝑊4𝑁
𝑛𝑘

𝑁−1

𝑛=0

+ ∑ (2𝑢[𝑁 − 1] − 𝑢[2𝑁 − 1 − 𝑛])𝑊4𝑁
𝑛𝑘

2𝑁−1

𝑛=𝑁

+ ∑ (2𝑢[𝑁 − 1] − 𝑢[𝑛])𝑊4𝑁
𝑛𝑘 + ∑ 𝑢[2𝑁 − 1 − 𝑛]𝑊4𝑁

𝑛𝑘

4𝑁−1

𝑛=3

3𝑁−1

𝑛=2𝑁

(5-41)

By changing of variables, one can simplify the equation

𝐷𝑅[𝑘] = ∑ 𝑢[𝑛](𝑊4𝑁
𝑛𝑘 −𝑊4𝑁

(2𝑁−1−𝑛)𝑘 −𝑊4𝑁
(2𝑁+𝑛)𝑘 +𝑊4𝑁

(4𝑁−1−𝑛)𝑘) +

𝑁−1

𝑛=0

+ ∑ 2𝑢[𝑁 − 1]𝑊4𝑁
𝑛𝑘

3𝑁−1

𝑛=𝑁

(5-42)

We denote the first summation on the right side of the Equation (5-42) by 𝐷𝑅1[𝑘], and the

second summation by 𝐷𝑅2[𝑘], so that 𝐷𝑅[𝑘] = 𝐷𝑅1[𝑘] + 𝐷𝑅2[𝑘]. For 𝐷𝑅1[𝑘], note that the 2nd

term and 3rd term contain 𝑊4𝑁
2𝑁𝑘 = (−1)𝑘, and the last term has 𝑊4𝑁

4𝑁𝑘 = 1, then

𝐷𝑅1[𝑘] = ∑ 𝑢[𝑛](𝑊4𝑁
𝑛𝑘 + (−1)𝑘+1𝑊4𝑁

−(𝑛+1)𝑘
+ (−1)𝑘+1𝑊4𝑁

𝑛𝑘 +𝑊4𝑁
−(𝑛+1)𝑘

)

𝑁−1

𝑛=0

 (5-43)

When 𝑘 is an even number, 𝐷𝑅1 = 0; when 𝑘 is an odd number, we need to check its high

frequency range value. For a high frequency range like 𝑘 = 2𝑁 −𝑚, where 𝑚 is a positive

integer, and 𝑚 ≪ 𝑁, since 𝑒
𝜋𝑚

2𝑁 ≈ 0,

114

𝐷𝑅1[2𝑁 −𝑚] = 2∑ 𝑢[𝑛](𝑊4𝑁
𝑛𝑘 +𝑊4𝑁

−(𝑛+1)𝑘)

𝑁−1

𝑛=0

=2∑ 𝑢[𝑛]{𝑒−𝑗𝑛(𝜋−
𝜋𝑚
2𝑁

) + 𝑒−𝑗
(𝑛+1)(𝜋−

𝜋𝑚
2𝑁

)}

𝑁−1

𝑛=0

≈ 2∑ 𝑢[𝑛]{𝑒−𝑗𝑛𝜋 + 𝑒−𝑗(𝑛+1)𝜋} = 0

𝑁−1

𝑛=0

(5-44)

Thus, we know that when 𝑘 is even, 𝐷𝑅1[𝑘] = 0; and when 𝑘 is odd, 𝐷𝑅1[𝑘] ≈ 0. For the

second summation 𝐷𝑅2[𝑘], when 𝑘 = 0, 𝐷𝑅2[𝑘] = 4𝑁𝑢[𝑁 − 1]; 𝑘 ≠ 0, then

𝐷𝑅2[𝑘] = ∑ 2𝑢[𝑁 − 1]𝑊4𝑁
𝑛𝑘 = 2𝑢[𝑁 − 1] ∑

𝑊4𝑁
𝑛𝑘(1 −𝑊4𝑁

2𝑁𝑘)

1 −𝑊4𝑁
𝑘

3𝑁−1

𝑛=𝑁

3𝑁−1

𝑛=𝑁

 (5-45)

Previously, we calculated that 𝑊4𝑁
2𝑁𝑘 = (−1)𝑘, when 𝑘 is an even number but not a zero,

𝐷𝑅2[𝑘] = 0; when 𝑘 is odd, in the high frequency range as 𝑘 = 2𝑁 −𝑚, where 𝑚 is positive

integer, and 𝑚 ≪ 𝑁, so that 𝑒−
𝑗𝜋𝑚

𝑁 ≈ 1

𝐷𝑅2[𝑘] = 2𝑢[𝑁 − 1] ∑
𝑊4𝑁

𝑛𝑘(1 −𝑊4𝑁
2𝑁𝑘)

1 −𝑊4𝑁
𝑘

3𝑁−1

𝑛=𝑁

= 2𝑢[𝑁 − 1]
∓2𝑗

1 + 𝑒−
𝑗𝜋𝑚
𝑁

≈ ±2𝑢[𝑁 − 1]𝑗

(5-46)

In short,

𝐷𝑅[𝑘] = {
2𝑁𝑢[𝑁 − 1], 𝑘 = 0
0, 𝑘 ≠ 0, 𝑏𝑢𝑡 𝑘 𝑖𝑠 𝑒𝑣𝑒𝑛

±2𝑢[𝑁 − 1]𝑗, 𝑘 𝑖𝑠 𝑜𝑑𝑑, 𝑖𝑛 ℎ𝑖𝑔ℎ 𝑓𝑟𝑒𝑞𝑒𝑢𝑐𝑛𝑦 𝑟𝑎𝑛𝑔𝑒
 (5-47)

Recall that in the DFT transformation pair, there is a coefficient of
1

𝑁
 in front of the

inverse DFT matrix for a length 𝑁 signal. This coefficient is
1

𝑁
 for the original signal, but for

single reflection, this becomes
1

2𝑁
, and in double reflection it becomes

1

4𝑁
, since the signal length

is double and quadruple. If we move this coefficient from inverse DFT matrix to DFT matrix,

115

meaning the DFT definition is 𝑈[𝑘] =
1

𝑁
∑ 𝑢[𝑛]𝑒−

𝑗2𝜋𝑘𝑛

𝑁𝑁−1
𝑛=0 instead of Equation (5-32), then

Equation (5-47) can be rewritten as

𝐷𝑅[𝑘] =

{

𝑢[𝑁 − 1]

2
, 𝑘 = 0

0, 𝑘 ≠ 0, 𝑏𝑢𝑡 𝑘 𝑖𝑠 𝑒𝑣𝑒𝑛

±
𝑢[𝑁 − 1]𝑗

2𝑁
, 𝑘 𝑖𝑠 𝑜𝑑𝑑, 𝑖𝑛 ℎ𝑖𝑔ℎ 𝑓𝑟𝑒𝑞𝑒𝑢𝑐𝑛𝑦 𝑟𝑎𝑛𝑔𝑒

 (5-48)

This means that the odd term in the high frequency range can still be treated as 0 if 𝑁 is

large enough. The same statement applied to single reflection also applies here that if the input

signal 𝑥[𝑛] has the property that the magnitude of this summation ∑ |(−1)𝑛𝑥[𝑛]𝑁−1
𝑛=0 | ≫ 0, then

the single reflection will reduce the Gibbs phenomenon.

Double reflection will not help if the signal is periodic or has the same starting and

ending point. It helps for the signal having a significant discontinuity.

Compared to the single reflection, there are more terms that can be thought of as 0 in the

high frequency range since all the even 𝑘 in the high frequency range are actually zero. One

should also notice that in this double reflection, the term we are neglecting is
𝜋𝑚

2𝑁
 but in single

reflection that term is
2𝜋𝑚

𝑁
, this suggests that in double reflection, we can treat more high

frequency component terms as 0 compared to a single reflection. Also, in the double reflection,

the DFT gives the result that the signal’s frequency spectrum is moving further towards the low-

frequency range compared to the single reflection case.

5.15 Simulation

ILC simulations are performed using a 3rd order system that models all links of a Robotic

Research Corporation robot treated in Reference 9. The Laplace transfer function model for each

link is

116

𝐺(𝑠) = (

𝑎

𝑠 + 𝑎
)(

𝜔𝑛
2

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛2
) (5-49)

where 𝑎 = 8.8, 𝜁 = 0.5, 𝜔𝑛 = 37. The input comes through a zero-order hold updating at

100Hz. The discrete transfer function 𝐺(𝑧) producing the same output at the sample times, will

have two zeros introduced by the conversion to discrete time: one inside the unit circle and one

outside the unit circle. The partial isometry ILC law is used. After converting to a discrete time

state space model and computing matrix P with singular value decomposition 𝑃 = 𝑈𝑆𝑉𝑇 , the

ILC law is given by 𝐿 = 𝑉𝑈𝑇. The desired trajectory is chosen as a 5th order polynomial from 0

to 1 in 100 time steps. The command is the sampled version of this polynomial, and the

polynomial has the property that its value and its first derivative are both zero at time zero, and

the first derivative is zero at the end of the trajectory.

The numerical study tests three types of zero-phase low-pass filters: the Cliff Filter with a

sharp cutoff, the MATLAB default Filtfilt command using the 5th order Butterworth filter, and a

Harmonic Butterworth filter which only uses the magnitude response of the same 5th order

Butterworth filter. Since the Filtfilt command gives the zero-phase Butterworth filter having the

square of magnitude of the Butterworth filter, the corresponding Harmonic filter also has its

magnitude response to be the square of the magnitude response of the Butterworth filter for

comparison. All the filters compared has the same 20Hz cutoff, and the desired output of the

robot linnk is the 5th order polynomial from 0 to 1 in 100 time steps. Figure 5-13 presents the

command to the system with input signal to the filter of no reflection, single reflection, and

double reflection after 5000 iterations. The first row gives command to the system using Cliff

Filter cutoff at 20Hz (Nyquist frequency is 50Hz) after 5000 iterations, the second row is the

result of Filtfilt, and the third row is the result of Harmonic Butterworth Filter respectively.

117

From Figure 5-13, if there is no reflection of the input signal, both the Cliff Filter and the

Harmonic Butterworth Filter have large undesirable oscillation at both ends. Introducing a

single-reflection or a double-reflection, significantly reduces the oscillation for the Cliff Filter

and the Harmonic Butterworth Filter. The Filtfilt is not sensitive to whether you reflect or do not

reflect the signal for the smooth signal considered here.

Figure 5-14 presents corresponding results when the desired trajectory is changed to a

parabolic signal increasing from 0 to 4 in 100 time steps. This signal starts from zero with zero

slope. However, when it is represented by sine and cosine functions of period 100 time steps,

these functions try to fit a cusp occurring at the end of the trajectory. Without reflecting the

signal, both the Cliff Filter and the Harmonic Butterworth Filter will have substantial undesired

oscillation. The single reflection significantly reduces the oscillation for both filters. The double

reflection also reduces the oscillation. For Filtfilt, its Gibbs phenomenon is not obvious for all

three reflections compared.

From Equation (1-14), one can calculate the RMS error between the desired output and

the output of the 3rd order robot link model after the learning process finishes for filters without

reflection and for filters using single reflection. Table 5-1 gives the RMS errors of the outputs

for the 5th order polynomial input for no reflection and single reflection of the input signal to the

filters. The Root Mean Square (RMS) errors in the table indicate that the single reflection

method for this smooth signal does not significantly affect Filtfilt results. But single reflection

does help with both the Cliff and the Harmonic Butterworth filter cases. Table 5-2 gives the

RMS errors of the output for the parabolic signal after the learning process finishes. For the

parabolic signal, the, single reflection methods reduce the RMS error of the output for all three

filters.

118

As suggested by Equation (5-32), for the double reflection method, one could not have an

analytical formula of the command to the system after the learning process finishes, thus, one

could not know its RMS error between the desired output and the output of the 3rd order robot

link model after the learning process finishes. But, we can simulate such results for large number

of iterations. Figure 5-15 and Figure 5-16 gives the history of RMS error between the desired

output and the output of the robot link for the 5th order polynomial and parabolic signal as the

desired output respectively in 5000 iterations of learning. In both figures, the RMS error is

expressed in the log-scale of base 10 in the y-axis, and the x-axis shows the numbers of

iterations. Table 5-3 and 5-4 shows the RMS error between the desired output and the output of

the 3rd order robot link for the 5th order polynomial and the parabolic as the desired output after

5000 iterations of learning respectively.

One compares the Table 5-1 and Table 5-3, one can see that for Filtfilt, after 5000

iterations, its RMS error of the two are not same, but for Cliff Filter and Harmonic Filters they

are the same for both no reflection and single reflection. The same applies to Table 5-2 and Table

5-4. This indicates that for Filtfilt command, in 5000 iterations, it does not finish the learning

process, but for Cliff and Harmonic Filter, they finish the learning process. In fact, for the

polynomial desired output, the Cliff Filter with no reflection has the RMS error same as its final

value after the 2139 iterations, but for Filtfilt, its RMS error drops to the lowest level at after 121

iterations and starts to slowly increase afterwards. It is more apparent in Figure 5-16. The RMS

error of Filtfilt with no reflection drops to the lowest level 2.5250 × 10−5 at iteration of 2027

and then it starts to gradually increasing to 1.1385 × 10−4 with an increase of 1 × 10−8 for

every iteration after 4000 iterations. Based on Figure 5-15 and Figure 5-16, the RMS errors for

Cliff Filter and Harmonic Filter converges to RMS error of the final level when the ILC learning

119

process finishes. But for Filtfilt, its RMS error is still converging to the RMS error of the final

level very slowly.

5.16 Discussion

 Both single reflection and double reflection methods increase the computational

complexity. The filter’s input and output relation is characterized by a matrix 𝑃 of size 𝑁 by 𝑁 if

zero-initial conditions are considered. To compute the first element of the length 𝑁 output, it

involves 𝑁 multiplication and 𝑁 − 1 addition, and there are 𝑁 elements in the output in total. If

we use the big O notation in computer science to quantify the worst-case time complexity of the

running time of the computing, the filtering process’s running time is 𝑂(𝑁2), where 𝑁 is the size

of the input signal. The running time is growing as a quadratic function of the input signal length

𝑁. The single reflection of the input signal doubles the original signal length, and double

reflection method quadruples the length of the original input signal. The running time is at least

4-times and 16-times of the running time of no reflection of the signal, respectively. This is the

weakness of the single reflection and double reflection method, it reduces the Gibbs phenomenon

and tracking error of the output at the cost of increasing the time complexity of computation.

Converging faster, versus smaller tracking error. If you decide to stop learning at certain error

level, maybe it is less time.

 One could argue a potential of using multi-reflection methods to further reduce the

effects of transients for Filtfilt command. For example, in the dissertation, we only illustrate

single-reflection and double reflection method and use the first half and first quarter of the

filtered signal as the command to the system. A multi-reflection method, for example, can reflect

signal twice: one could do an even reflection at the end of the original signal of length 𝑁, and

then another even reflection at the end of the result of the first reflection. The new signal is

120

reflected twice to be a new signal of length 4𝑁. One could then filter this new signal, and use the

third quarter of the filtered output as the command to the system. Since the length of the signal is

increasing, the third quarter of signal is likely closer to steady state. However, one need to

consider the computing complexity of multi-reflection methods. The time complexity of the

filtering process is 𝑂(𝑁2), where 𝑁 is the length of input signal. Multiple reflection will

significantly increase the running time. For the multi-reflection method mentioned above, its

running time will be at least 16 times that of filtering the original signal with no reflection.

Therefore, multi-reflection methods improve filtered result at the costs of increasing running

time.

 In the discussion, we use the reflection of the original signal to build a new signal to

reduce the Gibbs phenomenon introduced by the implied jump discontinuity. In fact, one could

design any signal extension that brings the signal back to its initial value. The reason we choose

the reflection of the original signal is to keep the signal frequency domain spectrum after the

extension to be as close as possible to that before the extension. If we use a signal extension

method that significantly changes the frequency spectrum of the original signal in the low-

frequency range, then after the filtering process, those changes in the low-frequency domain are

kept. This reduces the Gibbs phenomenon but it changes the frequency spectrum of the original

signal, and the filtered result may be far from our desired trajectory. Thus, it is intuitive and

desired to use the reflection of the original signal as the extension of the original signal that gives

the minimal modification to the original signal low-frequency components.

5.17 Conclusion

In this thesis, we discuss the reasons why the ILC problem needs a zero-phase low-pass

filter in the applications. We also suggest that such a zero-phase low-pass filter should give the

121

steady-state response since the transients may destabilize the ILC system. We give three methods

of producing a steady-state frequency response filter, all of which are based on use of DFT. A

series of tests are reported for a Cliff Filter with a sharp frequency cutoff, a DFT based Harmonic

Filter with the cutoff based on a chosen Butterworth filter cutoff, and the Filtfilt cutoff picks

forward and backward filter initial conditions to minimize the difference between the two filter

results. One expects that in essentially all ILC iterations the start and the end of the signal to be

filtered will not be the same. Once converged they can be the same if the desired trajectory has

this property, but it needs not. Both extending the signal to be filtered with a single reflection

around the end time, and a double reflection that aims to preserve continuity of the first

derivative help reduce undesirable oscillation at both ends for the Cliff Filter and the Harmonic

Butterworth Filter. It also suggests that a single reflection is enough and it gives the best tracking

performance at the steady state.

122

Table 5-1. RMS Error of Output with 20Hz Cutoff for 5th Order Polynomial After the

Learning Finishes

Filter Type No Reflection Single Reflection

Cliff 1.5348 × 10−4 1.2684 × 10−6

Filtfilt 2.5778 × 10−5 2.5771 × 10−5

Harmonic 5.1795 × 10−4 4.0831 × 10−6

Table 5-2. RMS Error of Output with 20Hz Cutoff for the Parabolic Trajectory After the

Learning Finishes

Filter Type No Reflection Single Reflection

Cliff 7.8069 × 10−4 1.7752 × 10−5

Filtfilt 1.0612 × 10−4 5.2444 × 10−5

Harmonic 2.6 × 10−3 2.5956 × 10−5

Table 5-3. RMS Error of Output with 20Hz Cutoff for 5th Order Polynomial After 5000

Iterations of Learning

Filter Type No Reflection Single Reflection Double Reflection

Cliff 1.5348 × 10−4 1.2684 × 10−6 1.2938 × 10−6

Filtfilt 4.4285 × 10−6 1.6346 × 10−6 1.6021 × 10−6

Harmonic 5.1795 × 10−4 4.0831 × 10−6 4.0702 × 10−6

Table 5-4. RMS Error of Output with 20Hz Cutoff for the Parabolic Trajectory After 5000

Iterations of Learning

Filter Type No Reflection Single Reflection Double Reflection

Cliff 7.8069 × 10−4 1.7752 × 10−5 5.3610 × 10−5

Filtfilt 1.1385 × 10−4 2.4613 × 10−5 4.6804 × 10−5

Harmonic 2.6 × 10−3 2.5956 × 10−5 4.7524 × 10−5

123

Figure 5-1. 10-term partial sum of the Fourier

series of a square wave

Figure 5-2. 50-term partial sum of the

Fourier series of a square wave

Figure 5-3. 10-term partial sum of the Fourier

series of the triangle wave

Figure 5-4. 50-term partial sum of the

Fourier series of the triangle wave

Figure 5-5. 11-terms summation of DFT a ¼

sine wave of Length 100

Figure 5-6. 31-terms summation of DFT of

a ¼ sine wave of length 100

124

Figure 5-7. Adding all terms of DFT for a ¼

sine wave

Figure 5-8. Adding 11 terms of DFT for a ½

sine wave of length 100

Figure 5-9. Adding 21 terms of DFT for a ½

sine wave of length 100

Figure 5-10. 5th order polynomial filtered

result using Cliff Filter of 15Hz cutoff

Figure 5- 11. Single reflection illustration Figure 5-12. Double reflection illustration

125

Figure 5-13. The command to the system for the 5th order polynomial as the desired

trajectory, and a 20Hz cutoff filters after 5000 iterations of ILC

Figure 5-14. The command to the system for the parabolic input as the desired trajectory,

and a 20Hz cutoff filters after 5000 iterations of ILC

126

Figure 5-15. The history of RMS error in log scale of the output for the 5th order

polynomial as the desired trajectory in 5000 iterations of ILC

Figure 5-16. The RMS error in log scale of the output for the parabolic as the desired

trajectory in 5000 iterations of ILC

127

Conclusion

 Both Repetitive Control (RC) and Iterative Learning Control (ILC) aim at zero tracking

error of the command. The RC problem is to tracking a periodic command, and the tracking error

for each period of the command decreases as periods progress with the constant or periodic

disturbance existing in the feedback system; ILC is to track the command repeatedly, and the

tracking error for each time step of the command decreases as runs progress with the repeated

disturbance in the feedback system. In ILC, the feedback system returns to the same initial

conditions at the start of each run. Both RC and ILC design involve the inverse of the feedback

system. The inverse of the feedback system is often unstable, and it is the challenge for both RC

and ILC design. This dissertation addresses this challenge in RC and ILC.

 In RC design, one of the challenges is to compensate for the sampling zeros outside the

unit circle from the feedback system discrete-time model. The previous RC design methods are

discussed and tested assuming those sampling zeros are from the conversion of a continuous-

time feedback system model with zero-order hold. In the physical world, however, the feedback

system can either be continuous or discrete and can have different structure. Both the number of

sampling zeros and their asymptotic locations are affected by the feedback system structure and

its continuous/discrete components. The thesis discusses the asymptotic location of the sampling

zero for different feedback systems, and shows that the previous RC design is still applicable.

Moreover, the thesis also compared the performance of each RC design method. The desired RC

law would have a faster learning speed in the low-frequency range to achieve a faster

convergence to the command and a slower learning speed in the high-frequency range to increase

the robustness to the model error of the system. The thesis shows that the RC design method

using the cost function has the desired learning speed with a faster speed in low frequencies and

128

a slower learning speed for high frequencies, but RC design methods based on partial sum of

Taylor expansion of the system inverse transfer function does not have this characteristic and

they are more likely to be unstable if its RC law only uses a fewer number of errors in the

previous period. This discussion is presented in Chapter 2.

ILC is a finite-time problem since the command is finite-time. ILC decreases its tracking

error by updating the command to the feedback system every run. The zero-tracking error

suggests that the command to the feedback system is the multiplication of the system inverse and

the desired output. As the inverse transfer function of the feedback system is often unstable, the

modified command by RC/ILC is often unstable. This is the instability issue in ILC. Moreover,

ILC is very sensitive to model error, and this is the robustness issue in ILC. The solution to

instability and robustness issues of ILC is to use a zero-phase low-pass filter. The filter is

designed using the frequency thinking, but ILC is a finite-time problem. This is the basic

mismatch in ILC, the second part of dissertation from chapter 3 to 5 address this mismatch.

One solution to this mismatch, discussed in this thesis, is the partial inverse of system

based on singular value decomposition in chapter 3. This partial inverse of the system can be

used as the learning gain matrix in ILC with the function of the frequency cutoff at the same

time. This partial inverse of the system can also be used as a prefilter to modify the command to

the feedback system to raise its bandwidth. However, in both applications, one needs to have an

accurate model of the feedback system up to a certain frequency.

The other solution to this mismatch, discussed in chapter 4 and 5 in the thesis, is to have a

zero-phase low-pass filter that gives the steady-state response for a finite time system. Chapter 4

discusses two such filters: Circulant Filter and Cliff Filter. It proves that Circulant Filter’s

eigenvector matrix is the DFT matrix and the eigenvalues are the steady-state response of a filter.

129

It also proves that the Cliff Filter is a special case of the Circulant Filter with the characteristics

of an ideal filter. A typical Circulant Filter has a phase lag, and one needs to make the Circulant

Filter a zero-phase filter. It is proved that the Circulant Filter used as a zero-phase filter, its

optimal initial conditions are zero, a verification that the Circulant Filter gives the steady-state

response of the filter with no transients in the output.

Chapter 5 discusses the issues in the application of Circulant Filter and Cliff Filter. One

issue of the Circulant Filter, for example, is the previous research does not explain the frequency

response difference between the Circulant Filter designed based on Butterworth filter parameters

and a classic Butterworth filter at the steady state. It is proved that the circulant Butterworth

filter, if one gets the Circulant Filter from Butterworth filter parameters, gives the frequency

response of the FIR filter whose pulse response of length 𝑁 is the same as the first length-

𝑁 pulse response of the Butterworth filter. The derivation process also gives a formula to

estimate the error of the magnitude response between circulant Butterworth filter and that

Butterworth filter at the steady state, and one also can use the formula to find the size of

Circulant Filter needed to ensure the difference between the two is less than a threshold.

The second issue is the Gibbs phenomenon for the input with different starting and

ending points. Both Cliff and Circulant Filter belong to DFT-based filter. DFT suggests the

signal is periodic and input with different starting and ending points implies jump discontinuity,

introducing oscillation at both ends for the filtered result, which is the Gibbs phenomenon. Such

oscillation reduces the tracking accuracy in ILC. Chapter 5 discusses the single reflection and

double reflection of the signal to address this issue. It gives a math formula to estimate the DFT

of the original signal and single-reflected/double reflected signal in the high frequency range The

formula suggests that single reflection/double reflection methods reduce the Gibbs phenomenon

130

if the ∑ (−1)𝑛𝑢[𝑛]𝑁−1
𝑛=0 is significantly larger than 0, where 𝑢[𝑛] is the original signal having

different starting and ending points. It also demonstrates that for DFT-based filters, e.g. Circulant

Filter and Cliff Filter, single/double reflection method can increase the tracking accuracy in ILC

for the command with different starting and ending points.

131

References

[1] S. Arimoto, S. Kawamura, and F. Miyazaki, 1984, Bettering operation of robots by learning.

Journal of Robotic Systems, Vol. 1, 1984, pp.123-140.

[2] G. Casalino, and G. Bartolini, “A learning procedure for the control of movements of robotic

manipulators”. IASTED Symposium on Robotics and Automation, Amsterdam, The Netherlands,

1984, pp. 108-111.

[3] J. J. Craig, “Adaptive control of manipulators through repeated trials”. Proceedings of the

American Control Conference, San Diego, USA, 1984, pp. 1566-1573.

[4] T. Inoue, M. Nakano, and S. Iwai, 1981, High accuracy control of a proton synchrotron

magnet power supply. Proceedings of the 8th World Congress of IFAC, Vol. 20, 1981, pp. 216-

221.

[5] T. Omata, M. Nakano, and T. Inoue, “Applications of repetitive control method to

multivariable systems”. Transactions of SICE, 20, 1984, pp. 795-800.

[6] S. Hara, and Y. Yamamoto, Y., “Synthesis of repetitive control systems and its applications”.

Proceedings of the 24th IEEE Conference on Decision and Control, Fort Lauderdale, FL, 1985,

pp. 326-327.

[7] M. Phan and R.W. Longman, “A mathematical theory of learning control for linear discrete

multivariable systems”. Proceedings of the AIAA/AAS Astrodynamics Conference, Minneapolis,

Minnesota, USA, 1998, pp. 740-746.

[8] H. S. Jang and R. W. Longman, “A New Learning Control Law with Monotonic Decay of the

Tracking Error Norm,” Proceedings of the Thirty-Second Annual Allerton conference on

Communication, Control, and Computing, Monticello, IL, September, 1994, pp. 314-323.

[9] H. S. Jang and R. W. Longman, “Design of Digital Learning Controllers Using a Partial

Isometry,” Advances in the Astronautical Sciences, Vol. 93, 1996, pp. 137-152.

[10] J. Bao, and R. W. Longman, “Unification and Robustification of Iterative Learning Control

Laws,” Advances in the Astronautical Sciences, Vol. 136, 2010, pp. 727-745.

[11] R. W. Longman, “Iterative Learning Control and Repetitive Control for Engineering

Practice,” International Journal of Control, Special Issue on Iterative Learning Control, Vol. 73,

No. 10, July 2000, pp. 930-954.

[12] J. Juang and R. W. Longman, “Iterative Learning Control Inverse Problem Using Harmonic

Frequency Filters,” Advances in the Astronautical Sciences, to be published

132

[13] Y. C. Huang and R. W. Longman, “The source of the often observed property of initial

convergence followed by divergence in learning and repetitive control”. Advances in the

Astronautical Sciences, Vol. 90, 1996, pp. 555-572.

[14] B. Panomruttanarug and R. W. Longman, “Repetitive Controller Design Using

Optimization in the Frequency Domain,” Proceedings of the 2004 AIAA/AAS Astrodynamics

Specialist Conference, Providence, RI, August 2004.

[15] K. Xu and R. W. Longman, “Use of Taylor Expansions of the Inverse Model to Design FIR

Repetitive Controllers,” Advances in the Astronautical Sciences, Vol. 134, 2009, pp. 1073-1088.

[16] P. Prasitmeeboon, and R. W. Longman, “Using Quadratically Constrained Quadratic

Programming to Design Repetitive Controllers: Application to Non-Minimum Phase Systems,”

Advances in the Astronautical Sciences, Vol. 156, 2016, pp. 1647-1666.

[17] K. Åström, P. Hagander, and J. Strenby, “Zeros of Sampled Systems,” Proceedings of the

Nineteenth IEEE Conference on Decision and Control, 1980, pp. 1077-1081.

[18] R. W. Longman and W. Kang, “Issues in Robustification of Iterative Learning Control

Using a Zero-Phase Filter Cut Off,” Advances in the Astronautical Science, Vol. 127, 2007, pp.

1683–1702.

[19] A. M. Plotnik and R. W. Longman, “Subtleties in the Use of Zero-Phase Low-Pass Filtering

and Cliff Filtering in Learning Control,” Advances in the Astronautical Sciences, Vol. 103, 1999,

pp. 673-692.

[20] H. Elci, R. W. Longman, M. Phan, J.-N. Juang, and R. Ugoletti, “Discrete Frequency Based

Learning Control for Precision Motion Control,” Proceedings of the 1994 IEEE International

Conference on Systems, Man, and Cybernetics, San Antonio, TX, Oct. 1994, pp. 2767-2773.

[21] Phan, Minh Quang. A mathematical theory of learning control. Doctoral Dissertation.

Columbia University, 1989.

[22] K. Chen, and R. W. Longman, “Creating a Short Time Equivalent of Frequency Cutoff for

Robustness in Learning Control,” Advances in the Astronautical Sciences, Vol.114, 2003, pp. 95-

114.

[23] F. Gustafsson, “Determining the Initial States in Forward-Backward Filtering,” IEEE

Transactions on Signal Processing, Vol. 44, No. 4, 1996, pp.988-992.

[24] B. Song and R. W. Longman, “Circulant Zero-Phase Low Pass Filter Design for Improved

Robustification of Iterative Learning Control,” Advances in the Astronautical Sciences, Vol. 156,

2016, pp. 2161-2180.

[25] H. Elci, R. W. Longman, M. Q. Phan, J.-N. Juang, and R. Ugoletti, “Simple Learning

Control Made Practical by Zero-Phase Filtering: Applications to Robotics,” IEEE Transactions

133

on Circuits and Systems I: Fundamental Theory and Applications, Special Issue on

Multidimensional Signals and Systems, Guest Editors: S. Basu and M. N. S. Swamy, Vol. 49,

No. 6 June 2002, pp. 753-767.

[26] H. Elci, M. Phan, R. W. Longman, J.-N. Juang, and R. Ugoletti, “Experiments in the use of

Learning Control for Maximum Precision Robot Trajectory Tracking,” Proceedings of the 1994

Conference on Information Sciences and Systems, Princeton, NJ, March 1994, pp. 951-958.

[27] A. V. Oppenheim, Discrete-time signal processing. Pearson Education, 1999.

[28] R. M. Gray, "Toeplitz and circulant matrices: a review." Foundations and Trends in

Communications and Information Theory. Vol. 2, Issue. 3, 2006, pp. 155-240.

[29] T. McCreary, "On frequency sampling digital filters." IEEE Transactions on Audio and

Electroacoustics, Vol. 20, Issue. 3, 1972, pp.222-223.

[30] R. W. Longman, K. Xu, and B. Panomruttanarug, “Designing Learning Control that is Close

to Instability for Improved Parameter Identification,” Modeling, Simulation and Optimization of

Complex Processes, Bock, Kostina, Phu, and Rannacher Editors, Springer-Verlag, Heidelberg,

2008, pp. 359-370.

