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Abstract

Unsupervised Morphological Segmentation and Part-of-Speech Tagging for Low-Resource

Scenarios

Ramy Eskander

With the high cost of manually labeling data and the increasing interest in low-resource

languages, for which human annotators might not be even available, unsupervised approaches have

become essential for processing a typologically diverse set of languages, whether high-resource or

low-resource. In this work, we propose new fully unsupervised approaches for two tasks in

morphology: unsupervised morphological segmentation and unsupervised cross-lingual

part-of-speech (POS) tagging, which have been two essential subtasks for several downstream NLP

applications, such as machine translation, speech recognition, information extraction and question

answering.

We propose a new unsupervised morphological-segmentation approach that utilizes Adaptor

Grammars (AGs), nonparametric Bayesian models that generalize probabilistic context-free

grammars (PCFGs), where a PCFG models word structure in the task of morphological

segmentation. We implement the approach as a publicly available morphological-segmentation

framework, MorphAGram, that enables unsupervised morphological segmentation through the use

of several proposed language-independent grammars. In addition, the framework allows for the use

of scholar knowledge, when available, in the form of affixes that can be seeded into the grammars.

The framework handles the cases when the scholar-seeded knowledge is either generated from

language resources, possibly by someone who does not know the language, as weak linguistic



priors, or generated by an expert in the underlying language as strong linguistic priors. Another

form of linguistic priors is the design of a grammar that models language-dependent specifications.

We also propose a fully unsupervised learning setting that approximates the effect of scholar-seeded

knowledge through self-training. Moreover, since there is no single grammar that works best across

all languages, we propose an approach that picks a nearly optimal configuration (a learning setting

and a grammar) for an unseen language, a language that is not part of the development. Finally, we

examine multilingual learning for unsupervised morphological segmentation in low-resource setups.

For unsupervised POS tagging, two cross-lingual approaches have been widely adapted: 1)

annotation projection, where POS annotations are projected across an aligned parallel text from a

source language for which a POS tagger is accessible to the target one prior to training a POS

model; and 2) zero-shot model transfer, where a model of a source language is directly applied on

texts in the target language. We propose an end-to-end architecture for unsupervised cross-lingual

POS tagging via annotation projection in truly low-resource scenarios that do not assume access to

parallel corpora that are large in size or represent a specific domain. We integrate and expand the

best practices in alignment and projection and design a rich neural architecture that exploits

non-contextualized and transformer-based contextualized word embeddings, affix embeddings and

word-cluster embeddings. Additionally, since parallel data might be available between the target

language and multiple source ones, as in the case of the Bible, we propose different approaches for

learning from multiple sources. Finally, we combine our work on unsupervised morphological

segmentation and unsupervised cross-lingual POS tagging by conducting unsupervised stem-based

cross-lingual POS tagging via annotation projection, which relies on the stem as the core unit of

abstraction for alignment and projection, which is beneficial to low-resource morphologically

complex languages. We also examine morpheme-based alignment and projection, the use of

linguistic priors towards better POS models and the use of segmentation information as learning

features in the neural architecture.

We conduct comprehensive evaluation and analysis to assess the performance of our approaches of

unsupervised morphological segmentation and unsupervised POS tagging and show that they



achieve the state-of-the-art performance for the two morphology tasks when evaluated on a large set

of languages of different typologies: analytic, fusional, agglutinative and synthetic/polysynthetic.
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Chapter 1

Introduction

“Desire is the starting point of all achievement, not a hope, not a wish, but a

keen pulsating desire, which transcends everything.” — Napoleon Hill

1.1 Overview

The majority of world’s languages do not have annotated datasets, even for the basic Natural

Language Processing (NLP) tasks, such as morphological segmentation and part-of-speech (POS)

tagging, which in turn serve as the basis for several downstream applications, such as machine

translation, speech recognition, information extraction and question answering. However, the

supervised-learning approach is not always applicable since obtaining labeled data is costly and

time consuming, and annotators who are native speakers might not even be available. As a result,

semi-supervised and unsupervised techniques have been receiving increasing interest, especially

with the recent focus on tackling linguistic diversity as technology has become accessible around

the globe.

In this thesis, we present novel computational approaches for two morphology tasks: unsu-

pervised morphological segmentation and unsupervised cross-lingual POS tagging. We evaluate

our models on a large set of diverse languages across the typology spectrum, from analytic and

fusional languages to agglutinative and polysynthetic ones. We also develop minimally supervised

techniques that benefit from linguistic priors, when available. In addition, we propose a new

architecture in which we utilize morphological segmentation to improve POS tagging, especially
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for morphologically complex low-resource languages, where working in the stem/morpheme space

helps derive less sparse and more efficient POS-tagging models.

1.2 Unsupervised Morphological Segmentation

Morphological segmentation is the task of breaking words into morphemes/morphs, the smallest

meaningful units in a language that cannot be further divided. It is an essential subtask in many NLP

applications, such as machine translation (Nguyen et al., 2010; Ataman et al., 2017) and speech

recognition (Narasimhan et al., 2014). Morphological segmentation helps reduce model sparsity by

operating in the morpheme/morph space. In addition, it helps recognize out-of-vocabulary words by

recognizing the formation the underlying words. This is beneficial when processing low-resource

languages with rich morphology. Figure 1.1 shows two morphological-segmentation examples for

Arabic (upper part) and Amharic (lower part). The examples correspond to verse MAT 15:35 in the

Bible, “He commanded the multitude to sit down on the ground”.

ϝ΍ ϱΊϜΗ΍ϭ ϥ΃ ωϮϤΟ ϝ΍ ήϣ΃ ϑ

�Ê\  á0 �Ú ��Þ ÅÅ C�Ĉ �

νέ΃

νέϷ΍ ϰϠϋ ΍ϮΌϜΘϳ ϥ΃ ωϮϤΠϟ΍�

�Ê\ [ á0 �Ú ��ÞC�Ĉ �ÅÅ

ήϣ΄ϓ

=J@�PDA�LAKLHA KJ�PDA�CNKQJ@ KJ OK�PK�OEP�@KSJ DA�?KII=J@A@

ϰϠϋ

PDA�CNKQJ@ KJ PDAU�OEP�@KSJ PD=P PDA�LAKLHA PDAJ�DA�?KII=J@A@

�Ú[

�KNLDKHKCE?=HHU��ACIAJPA@��ATP

�=S��ATP

�KNLDKHKCE?=HHU��ACIAJPA@��ATP

�=S��ATP

Figure 1.1: Two morphological segmentation examples for Arabic (upper part) and Amharic (lower
part). Arabic reads right to left.

Since most languages lack adequate morphologically annotated resources, a number of publicly

available frameworks for unsupervised and semi-supervised morphological segmentation have been

developed. They rely on either generative models, such as Morfessor (Creutz and Lagus, 2007;

Grönroos et al., 2014), or discriminative ones, such as MorphoChain (Narasimhan et al., 2014). A

recent generative approach for morphological segmentation is based on Adaptor Grammars (AGs)

(Johnson et al., 2007). Formal grammars, and particularly context-free grammars (CFGs), are a

keystone of linguistic description and provide a model for the structural description of linguistic
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objects, where probabilistic context-free grammars (PCFGs) extend this model by associating a

probability to each context-free rewrite rule. AGs are Bayesian models that generalize PCFGs

by weakening their independence assumption using stochastic processes called adaptors into the

procedure for generating structures. In the case of morphological segmentation, a PCFG models

word structure, while an adaptor adapts the subtrees and their probabilities to the corpus they are

generating and acts as a caching model. For inference, AGs use a Metropolis-within-Gibbs or a

Hybrid MCMC sampler (Robert and Casella, 2013) that resembles the parse tree for each input

word by constructing a PCFG approximation.

In this thesis, we present MorphAGram 1, an AG-based framework for unsupervised and

minimally supervised morphological segmentation (Eskander et al., 2020a). We derive several

grammars that model word structure given language-independent specifications and specify three

learning settings (Eskander et al., 2016): 1) a Standard setting that is fully unsupervised; 2) a

Scholar-Seeded setting where affixes can be gathered from language resources and seeded into the

grammars prior to sampling; and 3) a Cascaded setting that is based on self-training by deriving

affixes in the Standard setting and then seeding them into a second round of learning. In addition,

since there is no specific grammar that works well across all languages, we propose an approach

that picks a nearly optimal configuration (a learning setting and a grammar) for a given unseen

language (Eskander et al., 2018). We also introduce new methods for incorporating linguistic priors

in the form of either designing a language-specific grammar or seeding high-quality affixes provided

by an expert in the language of interest (Eskander et al., 2021). Finally, we examine multilingual

training, in which we combine the lexicons of multiple related languages in low-resource setups.

We test our approaches on several languages of diverse typologies in different setups, ranging from

high-resource setups using Indo-European languages to low-resource setups using polysynthetic

languages (Eskander et al., 2019).

1https://github.com/rnd2110/MorphAGram
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1.3 Unsupervised Cross-Lingual Part-of-Speech Tagging

Part-of-speech (POS) tagging is the process of assigning one of the parts of speech to each word in

a given text. While POS annotations are only available for a small set of languages, most of which

are high-resource, efforts in documenting low-resource languages often contain translations, usually

of religious text, into other high-resource languages. One such parallel corpus is the Bible (Mayer

and Cysouw, 2014): 484 languages have a complete Bible translation, while 2551 have a part of

the Bible translated. Translations may also be available for other materials such as movie scripts

and user manuals. One popular approach to performing cross-lingual POS tagging is to harness

parallel corpora by projecting POS annotations from a high-resource language for which a POS

tagger is available onto a low-resource language that lacks POS-labeled data. Another approach

is to perform zero-shot model transfer by tagging texts in the target language by applying a POS

model of some other language, typically a related one. However, the efficiency of this approach

highly relies on the relatedness between the source and target languages (Pires et al., 2019).

Unsupervised cross-lingual POS tagging via annotation projection has a long research history

(Yarowsky et al., 2001; Fossum and Abney, 2005; Das and Petrov, 2011; Das and Petrov, 2011;

Duong et al., 2013; Agić et al., 2015; Agić et al., 2016; Buys and Botha, 2016). These approaches

either use large and/or domain-specific parallel data or rely on a large number of source languages

for projection. However, since projection could suffer from bad translation, alignment mistakes or

wrong assumptions, which could result in null alignments and noisy and unreliable annotations,

a key consideration for all these approaches is how to obtain high-quality training instances in

the target language, i.e., sentences with accurate POS tags projected from the source-language(s).

Projecting from multiple languages (Fossum and Abney, 2005; Agić et al., 2015; Agić et al., 2016),

graph-based label propagation (Duong et al., 2013), self-training and revision (Duong et al., 2013;

Agić et al., 2016) and coupling token and type constraints (Täckström et al., 2013; Buys and Botha,

2016) are all approaches that have shown to lead to training instances of better quality. However,

only one or two of these have been usually employed. Figure 1.2a shows an illustrative example of
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alignment and projection from Arabic onto Amharic, where null alignments lead to null projected

annotations in two Amharic words. The example corresponds to verse MAT 15:35 in the Bible.

νέϷ΍������� ϰϠϋ������ ΍ϮΌϜΘϳ������� ϥ΃�������
 ωϮϤΠϟ΍�������

�Ê\ ������� [ á0������� �Ú������ ��ÞC�Ĉ������� �ÅÅ�������

ήϣ΄ϓ�������
PDA�CNKQJ@ KJ PDAU�OEP�@KSJ PD=P PDA�LAKLHA PDAJ�DA�?KII=J@A@

=J@�PDA�LAKLHA KJ�PDA�CNKQJ@ KJ OK�PK�OEP�@KSJ DA�?KII=J@A@

(a) Word-based alignment and projection

νέϷ΍�ĺ�νέ΃������� ϰϠϋ�ĺ�ϰϠϋ������ ΍ϮΌϜΘϳ�ĺ�ΊϜΗ������� ϥ΃�ĺ�ϥ΃�������
 ωϮϤΠϟ΍�ĺ�ωϮϤΟ�������

�Ê\ �ĺ��Ê\������� [ á0�ĺ� á0������� �Ú�ĺ��Ú������ ��ÞC�Ĉ�ĺ�C�Ĉ������� �ÅÅ�ĺ�ÅÅ�������

ήϣ΄ϓ�ĺ�ήϣ΃�������

(b) Stem-based alignment and projection

Figure 1.2: An example of alignment and projection from Arabic onto Amharic. Arabic reads right
to left.

In this thesis, we present a framework for unsupervised cross-lingual POS tagging via annotation

projection in truly low-resource scenarios 2 (Eskander et al., 2020b), where only a limited and

possibly out-of-domain set of translations into one or more high-resource languages is available.

We standardize the different phases of the pipeline by integrating and expanding the best practices

in alignment, projection and training, where we exploit non-contextualized and transformer-based

contextualized word embeddings, affix embeddings and word-cluster embeddings within a rich

neural architecture. We also propose different weighted maximum-voting, Bayesian-inference and

hybrid setups for exploiting multiple sources, either in the projection phase or at decoding, as

translations might be available for more than one source language. Finally, we exploit our work on

unsupervised morphological segmentation to improve POS tagging by using the stem/morpheme as

the core unit of abstraction for alignment and projection in order to handle low-resource languages

with rich morphology in an efficient manner. Figure 1.2b shows an illustrative example of stem-
2https://github.com/rnd2110/unsupervised-cross-lingual-POS-tagging
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based alignment and projection from Arabic onto Amharic, where the stems are based on the

morphological segmentation in Figure 1.1. As illustrated, the use of the stem as the core unit of

abstraction eliminates the null alignments and their corresponding null projected annotations on the

Amharic side.

1.4 Evaluation and Analysis

We conduct comprehensive evaluation and analysis for our work on unsupervised morphological-

segmentation and cross-lingual POS tagging and show that our approaches yield the state-of-the-art

performance on both tasks. For morphological segmentation, we experiment on 13 typologically

diverse languages: analytic (English), fusional (German and Arabic) agglutinative (Turkish, Finnish,

Estonian, Zulu and Japanese) and synthetic/polysynthetic (Georgian, Mexicanero, Nahuatl (Mexi-

cano), Wixarika (Huichol) and Mayo (Yorem Nokki)). We also examine low-resource scenarios of

restricted data in the case of morphologically complex polysynthetic languages. In addition, we com-

pare MorphAGram to state-of-the-art systems, study learning curves and analyze the segmentation

outputs in all the experimental languages.

We evaluate our POS-tagging framework on 84 language pairs that belong to six source lan-

guages (English, Spanish, French, German, Russian and Arabic) and 14 target languages of diverse

typologies (Afrikaans, Amharic, Basque, Bulgarian, Finnish, Georgian, Hindi, Indonesian, Kazakh,

Lithuanian, Persian, Portuguese, Telugu and Turkish). We evaluate both the overall performance

of the system and the performance on open-class tags. In addition, we study ablation setups of

restricted data and/or computational resources, compare to state-of-the-art systems and specify the

supervised setups that approximate the performance of the unsupervised ones. We also show that

annotation projection outperforms zero-shot model transfer when the source and target languages

are less related.

Finally, as part of our evaluation, we introduce two gold-standard morphological-segmentation

datasets for Japanese and Georgian and a gold-standard POS-labeled dataset for Georgian.
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1.5 Our contribution

1. We introduce a publicly available framework for unsupervised and minimally supervised

morphological segmentation, MorphAGram, based on Adaptor Grammars (AGs). In MorphA-

Gram, we define several language-independent grammars that model word structure based

on different characteristics and introduce three learning settings for AGs: 1) Standard, with

no linguistic knowledge; 2) Scholar-Seeded, with seeded scholar knowledge in the form of

affixes generated from language resources, possibly by someone who may have never studied

the underlying language; and 3) Cascaded, a self-training approach that approximates the

benefits of linguistic knowledge for morphological segmentation in a fully unsupervised

manner. In addition, since there is no single grammar that works best across all languages,

we propose an approach that predicts a nearly optimal configuration (a learning setting and a

grammar) for the morphological segmentation of an unseen language.

2. We propose new approaches to incorporate linguistic knowledge, when available, as priors

in the segmentation models in the forms of 1) a grammar definition, through the design of

a grammar that models language-specific characteristics; and 2) linguist-provided affixes,

through seeding high-quality affixes compiled by an expert in the underlying language. In

addition, we examine multilingual morphological segmentation, in which we combine the

lexicons of multiple related languages for joint training in low-resource setups.

3. We standardize the process of annotation projection in a robust approach that exploits and

expands the best practices in the literature, where we aim at producing reliable annotations of

the proper quality needed to train an efficient POS tagger. This includes, but is not limited to,

the use of bidirectional alignments, coupling token and type constraints on the target side and

scoring the annotated sentences for the selection of reliable training instances. For training a

POS model based on the projected annotations, we design a rich BiLSTM (Hochreiter and

Schmidhuber, 1997) neural architecture that combines non-contextualized and transformer-

based contextualized word embeddings, affix embeddings and word-cluster embeddings,
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along with special handling for the null assignments resulting from missing and rejected

alignments or non-overlapping token and type constraints. To our knowledge, this is the first

work that exploits transformer-based contextualized word embeddings in unsupervised POS

tagging.

4. We introduce new approaches for exploiting multiple source languages: 1) multi-source

projection, where we combine the tags projected from multiple source languages onto the

target side prior to training the POS model; and 2) multi-source decoding, where we combine

the tags produced by multiple single-source models to tag a given text in the target language.

Our multi-source approaches are either based on weighted maximum voting or Bayesian

inference that constructs confusion matrices to learn what sources to rely on for specific sets of

tags. We also conduct weighted Bayesian inference, in which we combine both mechanisms

in hybrid setups. This makes a total of eight multi-source setups.

5. We combine our work on unsupervised morphological segmentation and unsupervised cross-

lingual POS tagging by introducing unsupervised stem-based cross-lingual POS tagging

via annotation projection, which relies on the stem as the core unit of abstraction. We use

our morphological-segmentation framework MorphAGram to derive the stems on the target

side and conduct both the alignment and projection in the stem space. In addition, we

examine the use of the morpheme as the core unit of abstraction for alignment and projection,

which allows for abstracting away from how the morphemes are combined in the source

and target languages (e.g., whether they are free-standing or not), which is beneficial when

projecting from a source language with rich morphology. Moreover, we examine the use of

linguistic priors in morphological segmentation in order to improve stem-based alignment and

projection towards better POS models. We also examine the use of segmentation information

(stems and affixes) as learning features in our neural architecture for POS tagging. To our

knowledge, this is the first work that exploits the stems and morphemes for unsupervised

cross-lingual POS tagging.
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6. We perform extensive evaluation and analysis for our morphological-segmentation and POS-

tagging frameworks. In the case of morphological segmentation, we evaluate MorphAGram

on 13 languages of diverse typologies within high-resource and low-resource setups, where

we introduce two new gold-standard morphological-segmentation datasets for Japanese and

Georgian. In the case of POS tagging, we evaluate our models on six source languages and

14 target languages of diverse typologies, for a total of 84 language pairs, where we introduce

a new gold-standard POS-labeled dataset for Georgian.

1.6 Thesis Outline

This thesis is organized as follows: Chapter 2 briefly overviews related work on unsupervised

morphological segmentation and unsupervised cross-lingual POS tagging. In Chapter 3, We discuss

our work on unsupervised morphological segmentation, where we present the MorphoAGram

framework along with the incorporation of linguistic priors and multilingual training. The next

three chapters, from 4 to 6, are dedicated to our work on unsupervised cross-lingual POS tagging.

Chapter 4 presents our POS-tagging architecture using a single source language, while Chapter 5

presents our multi-source approaches to exploit multiple source languages using weighted maximum-

voting, Bayesian-inference and hybrid setups. Chapter 6 then presents an end-to-end approach

in which we combine our work on unsupervised morphological segmentation and unsupervised

cross-lingual POS tagging for unsupervised stem-based cross-lingual POS tagging for low-resource

morphologically complex languages, where we use the stem as the core unit of abstraction. We

also present morpheme-based alignment and projection, the use of linguistic priors towards better

POS models and the use of segmentation information as learning features. Finally, we conclude and

discuss possible future directions in Chapter 7.
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Chapter 2

Related Work

“No man becomes rich without himself enriching others.” — Andrew Carnegie

2.1 Unsupervised Morphological Segmentation

2.1.1 A Glimpse of History

Morphological segmentation was first performed by applying manual rule engineering, which is

costly and time consuming. It also requires extensive linguistic knowledge, which might not be

accessible for several low-resource and endangered languages. The use of finite state automata

(FSA) was then widely investigated for morphological segmentation when labeled data is not

accessible (Koskenniemi, 1984; Johnson and Martin, 2003; Goldsmith and Hu, 2004). In this

classical approach, FSA are used to describe the possible word forms of a language given a lexicon

of words. One major concern is that FSA are not capable of generalizing to unseen words and

irregular structures, which makes them not suitable to process morphologically complex languages

of rich affixation and templatic morphology. Moreover, FSA are less efficient when applied in an

unsupervised manner without access to labeled data.

Another variation of the automaton approach is modeling the words as suffix trees, where the

nodes that have identical continuations can be compressed. Segmentation boundaries can then be

suggested where a node has a high branching factor, which represents a location where the next

letter has a low predictability (Harris, 1970; Déjean, 1998).

The task of unsupervised morphological segmentation received more focus with the early
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advances in machine learning, powered by the increasing interest in low-resource languages.

Kazakov (1997) and Goldsmith (2001) proposed the utilization of the minimum description length

(MDL) principle for unsupervised morphological segmentation, where the objective is to find the

most compact form of segmentation given an input corpus. However, the approach is hard to

generalize across out-of-vocabulary words and across different languages.

The success of the MDL principle in the task of unsupervised morphological segmentation was

the trigger for several unsupervised generative models that are bundled together as the Morfessor

family (Creutz and Lagus, 2007; Grönroos et al., 2014) (Section 2.1.2). Another generative

approach is based on Adaptor Grammars (AGs) (Johnson et al., 2007) (Section 2.1.3), where

probabilistic grammars are utilized to model word structure. In parallel, discriminative log-linear

models have been developed for the task of unsupervised morphological segmentation (Poon et

al., 2009; Narasimhan et al., 2015) (Section 2.1.4). However, while the discriminative models

are more efficient at handling larger amounts of available data than their generative counterparts

(Ruokolainen et al., 2016), the generative models learn better from small datasets and better allow

for the incorporation of linguistic priors as additional signals in minimally supervised learning

setups.

In addition to the unsupervised approaches, supervised morphological segmentation has been

widely investigated. For instance, Ruokolainen et al. (2013) proposed a CRF approach that is

efficient at learning from small labeled data, while Kann et al. (2018) proposed different neural ap-

proaches for the morphological segmentation of polysynthetic languages, where they experimented

with data-augmentation and joint-training setups. Another neural approach was proposed by Ansari

et al. (2019), in which they exploited rich annotated lexicons.

2.1.2 The Morfessor Family

Morfessor is a commonly used framework for unsupervised and semi-supervised morphological

segmentation. At first, Creutz and Lagus (2002) proposed two baseline segmentation approaches

that utilize an input corpus of plain text. The first approach is based on recursive segmentation,
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where it examines all the possible ways to segment each word in a recursive manner. It then assigns

the optimal segmentation that minimizes the segmentation cost based on the MDL principle, where

the cost is defined to be proportional to the number of morphs in the induced segmented corpus and

lexicon of morphs. The second approach is based on sequential segmentation, where it assigns each

word a random segmentation and then iteratively computes the probabilities of the morphs. It then

utilizes the Viterbi algorithm to find the lowest maximum-likelihood cost.

Morfessor Baseline-Length was then introduced by Creutz (2003), which is a generative model

of two main stochastic processes. The first process generates a lexicon of morphs, while the second

one generates a corpus that is a sequence of morphs. The segmentation is performed by generating

a corpus that has exactly the same sequence as the input corpus of plain text, where the recursive

segmentation approach by Creutz and Lagus (2002) is utilized to find the optimal segmentation.

However, two priors are needed in order to optimize the segmentation: 1) the most common morph

length; and 2) the proportion of morph types that appear only once.

Creutz and Lagus (2004) then introduced Morfessor Categories-ML. The model is a maximum-

likelihood (ML) model that analyzes the segmentation induced by the Baseline-Length model. The

model learns the categories of the morphs and the dependencies between these categories, where

the left and right character-level contexts are taken into consideration.

Morfessor Categories-MAP was subsequently introduced by Creutz and Lagus (2005a). The

system utilizes a probabilistic maximum-a-posteriori (MAP) model that builds hierarchical repre-

sentations of the morphs. The induced lexicon of morphs stores parameters that are related to the

meaning and formation of the morphs.

The different models of Morfessor were then combined together, and the first release was made

publicly available (Creutz and Lagus, 2005b; Creutz and Lagus, 2007). A Python version was then

released at a later stage by Virpioja et al. (2013).

Morfessor FlatCat was introduced by Grönroos et al. (2014). The system is based on Morfessor

Categories-ML and Morfessor Categories-MAP, but it uses a flat lexicon that allows for learning

from labeled data in a semi-supervised manner, in addition to unsupervised learning. Morfessor

12



FlatCat was made publicly available 1 by Smit et al. (2014).

Grönroos et al. (2014) reported BPR (Boundary Precision and Recall) F1-scores of 65.0%,

61.0% and 62.0% for English, Finnish and Turkish, respectively, using Morfessor Categories-MAP,

and BPR F1-scores of 69.0%, 52.0% and 51.0% for English, Finnish and Turkish, respectively,

using Morfessor FlatCat, where BPR measures the ability of the system to discover segmen-

tation boundaries (Virpioja et al., 2011). We use Morfessor as a baseline in the evaluation of

our morphological-segmentation framework, MorphaGram, and report its performance on our

experimental languages.

2.1.3 Adaptor Grammars

Adaptor Grammars (AGs) (Johnson et al., 2007) are nonparametric Bayesian models that learn

distributions over trees by generalizing probabilistic context-free grammars (PCFGs). An AG is

composed of two main components; a PCFG and an adaptor. The PCFG models the entity of

interest; that is, word structure in the case of morphological segmentation, while the adaptor is a

component that is based on the Pitman-Yor process (Pitman, 1995) and adapts the subtrees and their

probabilities to the corpus they are generating. It also acts as a caching model. For inference, AGs

use a Metropolis-within-Gibbs or a Hybrid MCMC sampler (Robert and Casella, 2013) that infers

the posterior distribution over the trees and all the hyperparameters of the model.

Johnson (2008a) explored AGs for the tasks of unsupervised word segmentation and unsuper-

vised morphological segmentation for Sesotho, where the grammars model sentence structure and

word structure, respectively. Johnson (2008a) reported morpheme-based F1-scores up to 39.3%.

However, the main takeaway is that there is a vast variation in how the different grammars perform.

In addition, more structured grammars achieve better segmentation than simpler ones.

Botha and Blunsom () extended AGs to model non-concatenative morphology, such as infixation,

circumfixation and root-templatic derivation. They replaced the PCFGs by PSRCGs (probabilistic

simple-range concatenating grammars). The components of a PSRCG are the same as those of a

1https://morfessor.readthedocs.io/en/latest/index.html
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PCFG except that nonterminals accept arguments (variables), where a variable that appears in a

production rule must be used exactly once on the left and the right sides. A nonterminal becomes

instantiated when its variables are bound to ranges through substitution. The approach achieves

BPR F1-scores up to 74.5% and 78.1% for Arabic and Hebrew, respectively.

Another work that utilizes AGs for morphological segmentation was proposed by Sirts and

Goldwater (2013), where they defined and compared different grammars to model word structure.

They also experimented with three setups: 1) Unsupervised: no labeled data; 2) AG ssv: a semi-

supervised approach in which small labeled data is used to extract counts of grammar rules and

subtrees in order to guide the sampler that operates on both the labeled and unlabeled data; and 3)

AG Select: a morphological template (metagrammer) that is a binary tree of four levels and is used

to discover the best grammar (subtree) using small labeled data. The different setups were evaluated

on English, Finnish, Estonian and Turkish, where the unsupervised setup achieves BPR F1-scores

of 66.1%, 67.5%, 61.6% and 61.1%, respectively, while AG ssv achieves BPR F1-scores of 70.5%,

69.7%, 70.0% and 70.3%, respectively, and AG Select achieves BPR F1-scores of 69.8%, 68.8%,

67.5% and 70.1%, respectively.

In the evaluation by Botha and Blunsom () and Sirts and Goldwater (2013), AG proved successful,

where they significantly outperform Morfessor in the cases of Arabic, Hebrew and Estonian by

average relative error reductions of 56.2%, 71.7% and 33.5%, respectively.

Our work on unsupervised morphological segmentation is based on AGs, where we define a large

number of language-independent grammars, define different learning settings that either are fully

unsupervised or exploit linguistic knowledge, derive new approaches for the automatic tailoring of

grammars for unseen languages and incorporate linguistic priors in a minimally supervised manner.

In addition, we examine multilingual joint-training using related languages in low-resource setups.

We compile our grammars and modules under the MorphaGram framework and evaluate it on 13

languages of diverse typologies.
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2.1.4 Log-Linear Discriminative Models

In parallel to the generative models described above, a number of log-linear discriminative models

were introduced for the task of unsupervised morphological segmentation and proved successful.

Log-linear models were first introduced for unsupervised morphological segmentation by Poon

et al. (2009). They used character-level bigrams and trigrams in addition to morpheme-level global

features to model word structure. The model incorporates exponential priors inspired by the MDL

principle along with contrastive estimation and sampling for learning and inference. The system

achieves BPR F1-scores of 78.1% and 66.9% for Arabic and Hebrew, respectively. One drawback

is that the system has a high degree of computational complexity, where it is suggested to impose

linguistic assumptions in order to reduce complexity.

Another log-linear model is MorphoChain 2 (Narasimhan et al., 2015). In MorphoChain,

words are modeled as morphological chains, where a morphological chain is a short sequence

of words that starts with a base word (a parent) and ends with a morphological variant, e.g.,

port → report → reporting . The model is a log-linear feature-based hidden Markov model

(HMM) that predicts the parent of a given word, where the segmentation is assigned by tracing the

changes in the chain until the parent is reached. The model utilizes several features that indicate the

transformations across the morphological chains, e.g., insertions, deletions and repetitions, along

with affix identity, suffix correlation and embedding-based similarity. The model achieves BPR

F1-scores of 76.2%, 61.2% and 79.9% for English, Turkish and Arabic, respectively. However,

the performance drops significantly when using small datasets, which is not suitable for truly

low-resource setups. We use MorphoChain as a baseline in the evaluation of our morphological-

segmentation framework, MorphaGram, and report its performance on our experimental languages.

2https://github.com/karthikncode/MorphoChain
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2.2 Unsupervised Cross-Lingual Part-of-Speech Tagging

2.2.1 A Glimpse of History

Part-of-speech (POS) tagging was first performed in a rule-based fashion, such as the work per-

formed by Greene and Rubin (1971), where they constructed rules to tag the Brown corpus 3.

Handcrafting rules requires linguistic knowledge that might not be available in truly low-resource

scenarios. In addition, it involves a significant overhead in terms of time and cost.

Since labeling data for POS tags is a time-consuming and expensive process, while annotators

might not even be available for some languages, several semi-supervised approaches have been

employed for POS tagging without reliance on annotated texts. A common formulation of a

minimally supervised POS tagger takes the form of an HMM in which the emission, P (wi|ti), and

transition, P (ti|ti-1...ti-n), probabilities are estimated from a lexicon that contains POS information.

An example is the work by Banko and Moore (2004), where they derived the HMM parameters

by constructing a lexicon of POS information based on the English Penn Treebank 4 (Marcus et

al., 1993) and applied different techniques for noise reduction. Another example is the work by

Li et al. (2012), in which they used the Wiktionary 5, large-scale, continuously growing and high

in coverage, to build HMM taggers. Another approach is joint learning, which assumes access

to small labeled data that can be combined with additional labeled data of one or more related

languages in a multilingual learning setup that exploits the common space shared across the training

languages. An example is the work by Cotterell and Heigold (2017), where they combined the

character embeddings of the target language with those of a related high-resource language and

experimented with different setups in which the source and target languages have either separate or

common output layers.

During the last two decades, there has been increasing interest in developing fully unsupervised

POS taggers that assume no access to language resources containing POS information nor labeled

3https://archive.org/details/BrownCorpus
4https://catalog.ldc.upenn.edu/LDC2015T13
5http://wiktionary.org
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data in the language of interest. This is necessary to process several low-resource and endangered

languages. It also speeds up the development of NLP resources for such languages as there is no

need to develop tailored taggers of language-specific information/data for each language.

There are two main approaches that have been proposed for fully unsupervised POS tagging:

1) cross-lingual POS tagging via annotation projection (Section 2.2.2); and 2) cross-lingual POS

tagging via zero-shot model transfer (Section 2.2.3). Both approaches rely on the existence of

another language, a source language, for which a POS model is accessible. In the annotation-

projection approach, the tags in the source are projected onto the target through a parallel text, while

in the model-transfer approach, the source model is applied directly on the target text.

2.2.2 Cross-Lingual Part-of-Speech Tagging via Annotation Projection

Unsupervised cross-lingual POS tagging via annotation projection assumes access to some parallel

text between the target language and a source one for which a POS tagger is accessible, which is

used to tag the text on the source side. First, a word-based alignment model is trained based on the

parallel text and is used to induce the word-level alignments between the source and target sides.

The source tags are then projected onto the target across the word-level alignments and become the

basis to train a POS tagger for the target language.

Unsupervised cross-lingual POS tagging via annotation projection was first introduced by

Yarowsky et al. (2001), where they applied noise-reduction and smoothing techniques to process

the potentially wrong and null alignments. They then used the induced transition and emission

probabilities on the target side to train an HMM POS tagger. They further extended their work

for other NLP tasks, namely noun-phrase bracketing, named-entity recognition and lemmatization.

They reported a 76.0% POS-tagging accuracy when projecting from English to French.

In addition to the noise-reduction and smoothing techniques by Yarowsky et al. (2001), several

approaches have been proposed to improve the projected annotations as they suffer from several

issues such as bad translation, alignment mistakes and inconsistencies between languages. These

techniques are 1) multi-source projection; 2) graph-based label propagation; 3) self-training and
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revision; and 4) coupling token and type constraints.

Multi-source projection was first introduced by Fossum and Abney (2005), where they combined

the outputs of single-source taggers based on different source languages through either maximum

voting or linear combination that is based on the tag distribution of the underlying word types

per source language. The approach achieves accuracies up to 89.8% and 67.4% when evaluated

on French and Czech, respectively, through multi-source projection from English, German and

Spanish.

In efforts to increase the coverage of the projected annotations, Das and Petrov (2011) proposed

graph-based label propagation to expand the projected tags on the target side. The induced distribu-

tions are then used to construct a log-linear feature-based HMM with L-BFGS, a quasi-Newton

method, optimization (Liu and Nocedal, 1989). They achieved an average accuracy of 83.4%

on eight Indo-European languages, namely Danish, Dutch, German, Greek, Italian, Portuguese,

Spanish and Swedish. Alternatively, Duong et al. (2013) applied self-training and revision, where

the implemented tagger is used to fill in the POS gaps in the annotated text of the target language,

which are mainly due wrong and null alignments. The probabilities are then recalculated and

become the basis for a new iteration. They achieved the same average accuracy of 83.4% as the

approach by Das and Petrov (2011), on the same evaluation sets, but using a model of considerably

less complexity.

Agić et al. (2015) combined multi-source projection with self-training and revision, where they

utilized a large number of source languages in a bootstrapping setup. The approach is to first project

the annotations from k source languages onto n− k target languages to build initial taggers that

are then used to fill in the gaps in the annotated texts of the target languages. Then, for each target

language, a new tagger is developed based on the projected tags from the remaining n−1 languages.

They showed that bootstrapping helps in 16 out of 25 target languages. The best results are achieved

in the cases of Portuguese and Spanish, with accuracies of 83.8% and 81.4%, respectively.

Agić et al. (2016) then improved the multi-source projection approach by Agić et al. (2015) by

weighting the projected tags based on the probabilities of the corresponding alignments along with
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the use of Efmaral 6 (Östling et al., 2016) for word-level alignments (instead of Fast_Align 7 (Dyer

et al., 2013)) and the Watchtower Corpus (WTC) 8 as the source of parallel data (instead of the

Bible). With the elimination of bootstrapping, they achieved relative error reductions of 3.7% and

26.9% for Portuguese and Spanish, respectively.

Täckström et al. (2013) improved the projection of the tags by coupling token and type con-

straints, where the token constraints represent the projected tags, while the type constraints represent

the tag distribution of each word type on the target side and are used to control the accepted token

constraints. They achieved an average accuracy of 84.9% on the same evaluation sets used by Das

and Petrov (2011) and Duong et al. (2013). Similarly, Buys and Botha (2016) coupled token and

type constraints, where the type constraints are assigned to those tokens of missing token constraints.

The coupled constraints are then used in a Wsabie neural model (Weston et al., 2011) that learns

to rank the set of tags allowed by the coupled constraints. They achieved an average accuracy of

80.1% on 11 Indo-European languages.

Some work on annotation projection exploits an existing lexicon of POS information in a semi-

supervised manner. For instance, Das and Petrov (2011) showed that extracting tagging dictionaries

from the treebanks and using them as constraint features in the feature-based HMM results in

an average error reduction of 62.0%. Also, Täckström et al. (2013) showed that the use of the

Wiktionary to define the type constraints improves the performance by a relative error reduction

of 3.3%. Another semi-supervised approach that relies on annotation projection was proposed by

Plank and Agić (2018), where they utilized Polyglot embeddings (Al-Rfou’ et al., 2013) and lexical

information from the Wiktionary within the approach proposed by Agić et al. (2016). They showed

significant error reductions of 50.6% and 41.2% for Portuguese and Spanish, respectively.

On another hand, Fang and Cohn (2016) proposed a distant-supervision approach in which they

trained a BiLSTM (Hochreiter and Schmidhuber, 1997) POS model on 1,000 manually annotated

words. They then trained another POS model on both the manually annotated words and words with

6https://github.com/robertostling/efmaral
7https://github.com/clab/fast_align
8https://www.jw.org/en/online-help/watchtower-library
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automatically projected tags, where the tag probabilities from the supervised model are adjusted into

a distribution that matches the projected tags (bias transformation) through the use of a confusion

matrix that models the correspondence between the manual tags and the projected ones. They

achieved an average accuracy of 91.7% on the same evaluation sets used by Das and Petrov (2011),

Duong et al. (2013) and Täckström et al. (2013). They also showed that coupling the manual and

projected tags prior to training the POS model underperforms the use of only the projected tags.

Another work that is based on annotation projection in a semi-supervised manner is the work by

Cucerzan and Yarowsky (2002), in which a bilingual dictionary is used to extract the tag distributions

of the words in the target language. However, the handling of inflected words and closed-class

words relies on manual paradigms and hand-crafted rules, while irregularities and out-of-vocabulary

words are handled through edit-distance measurements, which makes the approach costly and time

consuming, along with the need to access extensive linguistic knowledge.

While most prior work on POS tagging via annotation projection does tagging for several target

languages, some research focuses on specific language pairs, such as the projection from Russian to

Ukrainian in a fully unsupervised manner (Huck et al., 2019) and the projection from German to

Hittite using distant supervision (Sukhareva et al., 2017).

Our work on unsupervised cross-lingual POS tagging is based on annotation projection, where

we exploit and expand the best practices in the literature in order to produce reliable annotations

towards efficient neural POS models that combine word embeddings, affix embeddings and word-

cluster embeddings. Moreover, we derive new approaches for multi-source projection and decoding,

in addition to stem-based and morpheme-based alignment and projection using our morphological-

segmentation framework, MorphAGram. We evaluate our models using 6 source languages and 14

target languages, for a total of 84 language pairs of diverse typologies.

Finally, it is worth noting that there has been a lot of research on unsupervised and weakly

supervised cross-lingual learning via annotation projection for other tasks in NLP, such as named-

entity recognition (Ni et al., 2017; Ehrmann et al., 2011), dependency parsing (Tiedemann, 2014;

Rasooli and Collins, 2015) and semantic role labeling (Padó and Lapata, 2009).
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2.2.3 Cross-Lingual Part-of-Speech Tagging via Zero-Shot Model Transfer

In addition to conducting cross-lingual POS tagging through annotation projection, zero-shot model

transfer has been widely explored. In this approach, instead of learning a POS model of the target

language, a trained POS model of some other language, preferably a related one, is applied directly

on texts in the target language. For instance, Huck et al. (2019) showed the effectiveness of zero-shot

model transfer from Russian to Ukrainian, two highly related Slavic languages. They however

obtained noticeably better results through annotation projection. Another example was proposed

by Pasha et al. (2014), where they applied MADA (Habash and Rambow, 2005), a POS tagger of

Modern Standard Arabic, on Egyptian Arabic, a dialect of Arabic.

Pires et al. (2019) then widely investigated zero-shot model transfer by fine-tuning the multilin-

gual transformer-based BERT language model (mBert) (Devlin et al., 2019) for the POS tagging of

a source language and applying the fine-tuned model on the target one. While the approach does

not require annotations on the target side nor translations between the source and target languages,

it is highly sensitive to the relatedness between the source and target languages, where it cannot

generalize well across languages of different morphological typologies. For instance, while transfer-

ring from English to Bulgarian, two Indo-European languages, yields a POS-tagging accuracy of

87.1%, transferring from English to Japanese, two morphologically unrelated languages, results in a

significantly lower accuracy of 49.4%.

2.3 Part-of-Speech Tagsets

While English has nine main parts of speech that are commonly taught in school, namely adjective,

adverb, article, conjunction, interjection, preposition, pronoun, noun and verb, there are many

fine-grained categories that are necessary to describe the different morphosyntactic features of a

word, such as to distinguish between singular and plural nouns, past and present verbs, personal and

demonstrative pronouns, etc. A commonly used POS tagset in English NLP in the past is the one

used in the Brown corpus 9, which consists of 87 tags, including 10 nominal tags and seven verbal
9http://korpus.uib.no/icame/manuals/brown/index.htm
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ones. The Brown tagset was then the basis for the Penn-Treebank tagset 10, in which the number of

tags is reduced to 36, including four nominal tags and seven verbal ones. The Penn tagset has been

widely adopted in English NLP.

However, languages differ in their morphological characteristics. For example, English POS

tags are not sufficient to cover the morphological categories seen in other languages. For instance,

some languages have words marked for their case (accusative, dative, genitive and nominative), and

others have verbs marked for their aspect (active and passive). This was the motivation for Petrov et

al. (2012) to develop a universal POS tagset 11 that abstracts away from language-specific categories

while generalizing well across all languages. The universal tagset contains 12 POS tags that are

based on mapping the tags in the treebanks of 22 languages. Petrov et al. (2012) demonstrated that

the universal POS tags generalize well across language boundaries on an unsupervised grammar-

induction task and is giving competitive parsing accuracies to those of the corresponding supervised

task. The universal tagset by Petrov et al. (2012) had been widely used in cross-lingual POS tagging

(Das and Petrov, 2011; Duong et al., 2013; Täckström et al., 2013; Fang and Cohn, 2016) until

the development of the Universal-Dependencies (UD) POS tagset 12 as part of the UD project 13.

The UD tagset contains 17 universal tags and has become widely adopted in the NLP community

(Agić et al., 2015; Agić et al., 2016; Buys and Botha, 2016; Plank and Agić, 2018; Huck et al.,

2019). In this thesis, we use the UD tagset in our work on unsupervised cross-lingual POS tagging,

which allows us to build efficient cross-lingual models and to compare them to the state-of-the-art

approaches.

10https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
11https://github.com/slavpetrov/universal-pos-tags
12https://universaldependencies.org/u/pos
13https://universaldependencies.org
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Chapter 3

Unsupervised Morphological Segmentation

3.1 Overview

Morphological segmentation breaks words into morphemes/morphs, the smallest meaningful units

in a language. When learning morphological segmentation given a list of words in an unsupervised

manner, a reasonable objective is to find the segmentation that minimizes the size of the induced

lexicon of morphemes/morphs, in order to prevent under-segmentation, and that minimizes the

average number of morphemes/morphs per word, in order to prevent over-segmentation (Creutz and

Lagus, 2002).

In this thesis, we focus on unsupervised morphological segmentation via generative models that

are based on Adaptor Grammars (AGs) (Johnson et al., 2007). AGs are nonparametric Bayesian

models that generalize probabilistic context-free grammars (PCFGs) and have proved successful

for different NLP tasks including morphological segmentation, in which a PCFG models word

structure, in both unsupervised and minimally supervised learning setups (Sirts and Goldwater,

2013; Botha and Blunsom, ).

Our contribution is as follows:

• We introduce a publicly available AG-based framework for unsupervised and minimally su-

pervised morphological segmentation, MorphAGram 1, in which we define several language-

independent grammars that model word structure based on different characteristics (Sec-

tion 3.3.1) and introduce three learning settings for AGs: 1) Standard, with no linguistic

knowledge; 2) Scholar-Seeded, with seeded linguistic knowledge in the form of affixes com-

piled from language resources; and 3) Cascaded, a novel approach that relies on self-training
1https://github.com/rnd2110/MorphAGram
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to approximate the benefits of linguistic knowledge for morphological segmentation in a fully

unsupervised manner (Section 3.3.2). In addition, we propose an approach for the automatic

tailoring of grammars, where we predict a nearly optimal configuration (a learning setting

and a grammar) for the morphological segmentation of unseen languages (Section 3.3.3).

• We propose new approaches to incorporate linguistic knowledge as priors in the morphological-

segmentation models in terms of 1) grammar definition, through the design of a grammar that

models language-specific characteristics; and 2) linguist-provided affixes, through seeding

high-quality affixes compiled by an expert in the underlying language (Section 3.3.4).

• We examine multilingual morphological segmentation, in which we combine the lexicons of

multiple related languages for joint training in low-resource setups (Section 3.3.5).

• We perform extensive evaluation and analysis on 13 languages of diverse typologies within

high-resource and low-resource setups. The languages are English, German, Finnish, Estonian,

Turkish, Zulu, Japanese, Georgian, Arabic, Mexicanero, Nahuatl (Mexicano), Wixarika

(Huichol) and Mayo (Yorem Nokki). As part of the evaluation, we introduce two new gold-

standard morphological-segmentation datasets for Japanese and Georgian (Sections 3.4 and

3.5).

We show that MorphAGram is highly efficient for unsupervised and minimally supervised

morphological segmentation for all the experimental languages, including the polysynthetic ones

that we examine in truly low-resource setups. Using the BPR metric (Virpioja et al., 2011) that

measures the ability of the system to recognize segmentation boundaries, our fully unsupervised

setup achieves F1-scores ranging from 62.7%, for Zulu, to 82.5%, for Arabic, where the F1-scores

are at least 75.0% for eight languages out of our 13 experimental ones. Moreover, seeding the affixes

in the scholar-seeded setting achieves an average relative error reduction of 5.1%. We then compare

MorphAGram to two strong baselines, Morfessor (Creutz and Lagus, 2007; Grönroos et al., 2014)

and MorphoChain (Narasimhan et al., 2014), and show average relative error reductions of 22.8%

and 40.7%, respectively, using our fully unsupervised setup. We also show significant improvements

24



due to the incorporation of linguistic priors through the design of a Japanese-specific grammar and

through the seeding of Georgian and Arabic linguist-provided affixes. We achieve relative error

reductions of 4.2%, 33.2% and 32.9% for Japanese, Georgian and Arabic, respectively, (Section 3.5).

Finally, in the case of multilingual morphological segmentation, we obtain performance gains for

Estonian when we combine small-sized lexicons of Finnish and Estonian, two Uralic languages, for

joint training (Section 3.5.6).

This chapter contains and expands our work on unsupervised morphological segmentation

using AGs, where we introduce several grammar definitions and define three main learning settings

(Eskander et al., 2016), in addition to the automatic tailoring of AGs for unseen languages (Eskander

et al., 2018), examining low-resource and multilingual setups using polysynthetic languages (Es-

kander et al., 2019) and incorporating linguistic priors in a minimally supervised learning manner

(Eskander et al., 2021). The work is compiled and packaged into the MorphAGram framework for

unsupervised and minimally supervised morphological segmentation (Eskander et al., 2020a).

3.2 Background

Adaptor grammars (AGs) (Johnson et al., 2007) are nonparametric 2 Bayesian models that generalize

PCFGs by weakening their independence assumptions using additional stochastic processes called

adaptors into the procedure for generating structures. In this procedure, introducing dependencies

among the applications of rewrite rules extends the set of distributions over linguistic structures that

can be characterized by a grammar, better matching the occurrences of trees and sub-trees observed

in linguistic data.

AGs define a framework to implement nonparametric Bayesian learning of grammars and

are usually trained in an unsupervised manner using sampling techniques. AGs have been used

successfully for unsupervised and minimally supervised morphological segmentation (Sirts and

Goldwater, 2013; Botha and Blunsom, ). AGs have also been applied in other NLP applications, such

as word segmentation (Johnson, 2008a; Johnson, 2008b; Johnson and Demuth, 2010), named-entity

2The term “nonparametric” means that the learning process considers models with different sets of parameters.
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clustering (Elsner et al., 2009), transliteration of names (Huang et al., 2011) and native-language

identification (Wong et al., 2012).

An AG is composed of two main components: a PCFG and an adaptor. In the case of morpho-

logical segmentation, the PCFG is a morphological grammar that specifies word structure, while the

adaptor adapts the subtrees and their probabilities to the corpus they are generating and acts as a

caching model. The adaptor is based on the Pitman-Yor process (Pitman, 1995).

An AG has a vector of concentration parameters α. A nonterminal A that has αA = 0 is

unadapted, meaning that A expands as in an ordinary PCFG, where a production rule A → β is

picked with probability p(A→ β), and β is expanded recursively. If αA > 0, then A is adapted, and

αA becomes the Dirichlet concentration parameter associated with nonterminal A. For an adapted

nonterminal A that is expanded nA times before, there are two possible events.

1. A expands to subtree σ with probability nα
nA+αA

, where αA is the number of timesA expanded

to α before.

2. A expands as an unadapted nonterminal with probability αA
p(A→β)
nA+αA

.

Accordingly, an adapted nonterminal A either expands to a previously expanded subtree with a

probability proportional to the number of times it is utilized or expands as in an ordinary PCFG

with a probability proportional to the concentration parameter.

For inference, AGs use a Metropolis-within-Gibbs or a Hybrid MCMC sampler (Robert and

Casella, 2013) that resembles the parse tree for each word in the input lexicon, conditioned on

the parses of the other words. The algorithm constructs a PCFG approximation to the AG which

contains one rule for each adapted subtree α and uses a Metropolis accept/reject step to correct

for the difference between the true AG distribution and the generated PCFG approximation. Thus,

the sampler is used to infer the posterior distribution over the trees and all the hyperparameters of

the model, including the PCFG probabilities in the base distribution and the hyperparameters of

the Pitman-Yor process. For more comprehensive details about how AGs work, see Johnson et al.

(2007).
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3.3 The MorphAGram Framework

In this thesis, we introduce MorphAGram, a publicly available framework for unsupervised and

minimally supervised morphological segmentation that is based on Adaptor Grammars (AGs). In

MorphAGram, we define several language-independent grammars and introduce different learning

settings that are either unsupervised or minimally supervised. MorphAGram also allows for the

automatic tailoring of grammars for unseen languages and for the incorporation of linguistic priors,

in the form of either grammar definition or linguist-provided affixes. MorphAGram is also suitable

for multilingual learning, in which the lexicons of related languages are combined together. We

describe below the different components and modules in the MorphAGram framework.

3.3.1 Grammar Definitions

The first step in learning morphological segmentation using AGs is to define the grammars that

model word structure. The definition of a grammar relies on three main dimensions:

• Word Modeling: A word can be modeled as a sequence of generic morphemes/morphs or as

a sequence of a prefix, a stem and a suffix, where a nonterminal may be recursively defined to

allow for compounding.

• Level of Abstraction: Basic elements can be combined into more complex nonterminals,

e.g., Compound, or split into smaller ones, e.g., SubMorph.

• Segmentation Boundaries: This dimension defines the nonterminals that incur splits in

the final segmentation output. For example, a word can be segmented into a complex

prefix, a stem and a complex suffix (three-way segmentation), e.g., redis+cover+ing and

irre+place+ables, or it can be split into a stem and simple affixes (multiway segmentation),

e.g., re+dis+cover+ing and ir+re+place+able+s.

Table 3.1 lists nine grammars and their characteristics. Morph+SM and PrStSu2a+SM are two

baseline grammars that were first introduced by Sirts and Goldwater (2013), while the rest of the
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grammars are new derivations that we introduce and include in the MorphAGram framework. The

selection of the proper grammar relies on the target language and the downstream application as the

performance of the grammars differs across different languages, while a downstream application

might benefit from specific nonterminals or require a specific level of granularity in the induced

segmentation.

Grammar Word Modeling Compound Morph SubMorph Segmentation Boundaries
Morph+SM Morph Y Y Morph

Simple Prefix+Stem+Suffix Prefix-Stem-Suffix
Simple+SM Prefix+Stem+Suffix Y Prefix-Stem-Suffix

PrStSu Prefix+Stem+Suffix Y PrefixMorph-Stem-SuffixMorph
PrStSu+SM Prefix+Stem+Suffix Y Y PrefixMorph-Stem-SuffixMorph

PrStSu+Co+SM Prefix+Stem+Suffix Y Y Y Prefix-Stem-Suffix
PrStSu2a+SM Prefix+(Stem-Suffix) Y Y PrefixMorph-Stem-SuffixMorph
PrStSu2b+SM (Prefix-Stem)+Suffix Y Y PrefixMorph-Stem-SuffixMorph

PrStSu2b+Co+SM (Prefix-Stem)+Suffix Y Y Y Prefix-Stem-Suffix

Table 3.1: Grammar definitions for modeling word structure. Y=applicable.

It is noteworthy to mention that we derived and experimented with other grammar variations,

considering the combinations of the different characteristics, but we eliminated the grammars that

do not perform well across our development languages, namely English, German, Finnish, Estonian,

Turkish and Zulu (Section 3.4), and those that perform similarly to other grammars.

For word modeling, all the grammars model the word as a sequence of a prefix, a stem and a

suffix except the Morph+SM grammar, in which the word is modeled as a sequence of morphs. In

addition, in all the grammars denoted by PrStSu, prefixes and suffixes are recursively defined as a

sequence of affix morphs in order to allow for affix compounding.

Regarding the level of abstraction, all the grammars denoted by Co involve a high-level nonter-

minal, Compound, that expands to a prefix, a stem or a suffix, while those denoted by SM involve a

low-level nonterminal, SubMorph, that expands to a sequence of characters. These nonterminals

allow prefixes, stems and suffixes to share common information, which is efficient for languages of

rich affixation. We use the terms 2a and 2b to denote binary high-level nonterminals that combine

stems with suffixes (Stem-Suffix) and prefixes with stems (Prefix-Stem), respectively.
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(a) Morph+SM grammar

(b) Simple grammar

(c) Simple+SM grammar

(d) PrStSu grammar
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(e) PrStSu+SM grammar

(f) PrStSu+Co+SM grammar

(g) PrStSu2a+SM grammar
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(h) PrStSu2b+SM grammar

(i) PrStSu2b+Co+SM grammar

Figure 3.1: The representations of the word irreplaceables using different grammar definitions

31



Figure 3.1 shows how the word irreplaceables is represented using the nine grammar definitions

listed in Table 3.1. However, since SubMorph is a nonterminal that is not linguistically driven, its

exact instantiation depends on the output of the sampling process given a lexicon and the underlying

grammar.

3.3.2 Learning Settings

3.3.2.1 Standard Setting

In this setting, we train a morphological-segmentation model using a language-independent grammar

that does not model language-specific characteristics nor contain seeded knowledge about the

underlying language. This setting is typically used when processing an unseen language or a

language whose description is inadequate or lacking, as in the case of some low-resource and

endangered languages. For details on how AGs learn morphological segmentation in a fully

unsupervised manner, see Section 3.2.

3.3.2.2 Scholar-Seeded Setting

In this setting, we seed scholar knowledge that is compiled from language resources into the

grammars towards a more informed morphological-segmentation model. The intuition behind

seeding scholar knowledge is that for many languages, we have more or less extensive descriptions

of their morphology, where several online resources provide listings of affixes, usually without

contexts, such as the Wiktionary and online grammar references. We therefore investigate the

question of whether this data 3 can be used towards a minimally supervised setting, as opposed to a

fully unsupervised one.

AGs are a framework that is particularly well suited for applying scholar-seeded knowledge as

AGs take as input hand-crafted grammars. Accordingly, we can insert affixes into these grammars in

the positions where the affixes are generated, while we continue to allow the grammars to generate

3We note that this data is not “data” in the normal sense of machine learning; it is not in the same format as the
desired output (i.e., segmented words).

32



new affixes as we do not expect the scholarly resources to contain complete listings. For these

experiments, we consult only online resources, where we spend less than two hours per experimental

language to assemble prefixes and suffixes and seed them into the PCFGs as additional production

rules.

Figure 3.2 illustrates the Scholar-Seeded learning setting, where the prefixes re, im and ex and

the suffixes er and s are seeded into the PrStSu+SM grammar as PrefixMorph and SuffixMorph

production rules, respectively, prior to training the morphological-segmentation model.
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Figure 3.2: An example of the Scholar-Seeded setting, where some English affixes, as scholarly
knowledge, are seeded into the PrStSu+SM grammar

Since the seeded affixes are compiled from language resources, possibly by someone who

does not know the underlying language, they are not guaranteed to be correct or highly accurate.

Therefore, we seed the affixes into the grammars as unadapted nonterminals as we want to prevent

the sampler from spreading wrong information by producing multiple instances of the corresponding

subtrees. We verified this hypothesis by seeding the affixes once as adapted and once as unadapted

and found that the latter yields better performance across the development languages.
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3.3.2.3 Cascaded Setting

The Cascaded setting approximates the effect of the Scholar-Seeded setting in a language-independent

manner through self-training. That is instead of compiling a set of affixes from existing resources,

we use affixes obtained from an initial round of learning.

The Cascaded setting relies on two rounds of learning. In the first round, we train a morphological-

segmentation model using a high-precision grammar in the Standard setting and extract the list of

the most common affixes from the segmentation output. Next, we seed the list of extracted affixes

into the grammar of interest as unadapted nonterminals, in a similar way to how the affixes are

seeded in the Scholar-Seeded setting, and train another morphological-segmentation model using

the augmented grammar in a second round of learning.

We choose a grammar to be the basis for our Cascaded setting independently of the language as

the aim is to derive language-independent morphological segmentation. We do so by optimizing on

precision. The reason to choose high precision (rather than high F1-score) is that we want to be

certain of having true affixes in the grammar, rather than having as many affixes as possible (even if

some are incorrect). Therefore, we choose the PrStSu2b+Co+SM grammar as it achieves the highest

on-average precision when evaluated on our development languages (Tables 3.7 and 3.8). In addition,

we ran experiments in which we extracted and seeded n affixes, where n ∈ {10, 20, 30, 40, 50, 100},

and found that n = 40 yields the best on-average performance across the development languages.

Accordingly, we set n = 40 in all of our Cascaded setups.

Figure 3.3 illustrates the Cascaded learning setting, where the prefixes re, im and ex and

the suffixes er and s are generated from a first round of learning using the PrStSu2b+Co+SM

grammar and seeded into the PrStSu+SM grammar as PrefixMorph and SuffixMorph production

rules, respectively, for a second round of learning.
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Figure 3.3: An example of the Cascaded setting, where some English affixes are extracted from
an initial round of learning using the PrStSu2b+Co+SM grammar and seeded into the PrStSu+SM
grammar for a second round of learning

3.3.3 Automatic Tailoring of Grammars for Unseen Languages

3.3.3.1 Picking a Language-Independent Configuration

The experiments on our development languages show that the PrStSu+SM grammar results in

the best on-average performance of 71.2% in BPR F1-score in the language-independent settings,

Standard and Cascaded, where the Standard PrStSu+SM configuration yields the best language-

independent performance for English, and German, while the Cascaded PrStSu+SM configuration

yields the best language-independent performance for Finnish and Turkish (Table 3.7). Accordingly,

we choose to use the PrStSu+SM grammar to process any unseen language (a language that is not

part of the development). However, the preference between the Standard and Cascaded settings

differs across the development languages. We therefore exploit machine learning to derive a method

that chooses between the two settings for any given language of unexplored morphology.

We build a binary model that chooses between the Standard and Cascaded settings given only

six data points: two languages with the Standard class, namely English and German, and four

languages with the Cascaded class, namely Finnish, Estonian, Turkish and Zulu.

In order to extract learning features for the classification task, we conduct a learning round
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using the Standard PrStSu+SM configuration for 50 optimization iterations (one tenth of the

number of iterations in a complete sampling phase (Section 3.5.1)) as the purpose is to quickly

generate morphological clues that help in the classification rather than to obtain highly optimized

morphological segmentation. We choose the Standard PrStSu+SM configuration due to its high

efficiency across all the development languages in addition to its relatively short sampling time.

We then parse the segmentation output to extract 18 morphological features for classification. The

features are listed in Table 3.2 4, where a simple affix contains only one morph, while a complex

affix contains one or more simple affixes.

Feature ID Feature Description

F01 Number of distinct simple prefixes
F02 Average number of simple prefixes per word
F03 Average number of characters per simple prefix

F04 Number of distinct simple suffixes
F05 Average number of simple suffixes per word
F06 Average number of characters per simple suffix

F07 Number of distinct simple affixes
F08 Average number of simple affixes per word
F09 Average number of characters per simple affix

F10 Number of distinct complex prefixes
F11 Average number of complex prefixes per word
F12 Average number of characters per complex prefix

F13 Number of distinct complex suffixes
F14 Average number of complex suffixes per word
F15 Average number of characters per complex suffix

F16 Number of distinct complex affixes
F17 Average number of complex affixes per word
F18 Average number of characters per complex affix

Table 3.2: Classification features for the automatic selection of the language-independent setting

In the training phase, we perform leave-one-out cross-validation on the six development lan-

guages, where in each of the six folds of the cross-validation, we choose one language in turn as the

test language. We experiment with three classification methods, namely K-Nearest Neighbors, Ad-
4We only consider affixes that appear at least 10 times in the segmentation output.
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aBoost 5 and Naive Bayes, and report the gold and predicted classes for each language in Table 3.3,

where the gold standard is based on the results in Table 3.7. As illustrated, AdaBoost yields the

best performance as it predicts the right setting for all the development languages except English, in

which the results of the Standard and Cascaded settings differ by a BPR F1-score of only 0.7%.

Accordingly, we choose AdaBoost for classification.

Language Gold Setting
Classification

K-Nearest Neighbors AdaBoost Naive Bayes

English Standard
German Standard
Finnish Cascaded

Estonian Cascaded
Turkish Cascaded

Zulu Cascaded

Accuracy % 50.0 83.3 66.7

Table 3.3: The gold and automatically selected language-independent settings per development
language

We call our selection approach AG-LI-Auto; it works as follows: For an unseen language,

we first apply the Standard PrTuSu+SM configuration for 50 optimization iterations in order to

obtain the values of the morphological features listed in Table 3.2. We then apply the AdaBoost

classifier on those features in order to obtain the recommended language-independent setting

(Standard or Cascaded). We finally apply the PrStSu+SM grammar in the recommended setting for

morphological segmentation.

Studying the correlation between the morphological features and the output of the AdaBoost

classifier shows that features F05, F13 and F16, in Table 3.2, namely the average number of simple

suffixes per word, the number of distinct complex suffixes and the number of distinct complex

affixes, are the most significant ones for the selection of the best setting. This illustrates the high

reliance on information about suffixes as the three significant features are suffix-related.

5The randomization in AdaBoost gives different outcomes for Turkish, so we ran the training and testing phases for
100 times and voted for the most common outcome for Turkish.
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3.3.3.2 Picking a Language-Dependent Configuration

The experiments on our development languages show that the PrStSu+SM and PrStSu2a+SM

grammars result in the best on-average performance of 73.2% and 72.0% in BPR F1-score, respec-

tively, in the Scholar-Seeded setting, where the Scholar-Seeded PrStSu+SM configuration yields

the best Scholar-Seeded performance for English, German and Finnish, while the Scholar-Seeded

PrStSu2a+SM configuration yields the best Scholar-Seeded performance for Turkish (Table 3.7).

Accordingly, we derive a simple method to choose between the two grammars for the morphological

segmentation of any given language for which an evaluation dataset is not accessible, but one can

compile a set of affixes to conduct the Scholar-Seeded setting.

First, we conduct morphological segmentation using the Scholar-Seeded PrStSu+SM and

Scholar-Seeded PrStSu2a+SM configurations for the underlying language. We then parse the

segmentation outputs to extract the most frequent n affixes in each configuration, where we

empirically set n = 100. Finally, we choose the grammar that results in the highest number of

common affixes between the segmentation output and the seeded knowledge. We call this selection

approach AG-SS-Auto.

Language Gold Grammar Automatic Selection

English PrStSu+SM
German PrStSu+SM
Finnish PrStSu+SM

Estonian PrStSu2a+SM
Turkish PrStSu2a+SM

Zulu PrStSu+SM

Accuracy % 83.3

Table 3.4: The gold and automatically selected grammars per development language in the Scholar-
Seeded setting

Table 3.4 reports the gold grammar (from Table 3.7) and the automatically selected one for

each development language. Our selection method is able to pick the correct grammar for all the

development languages except Estonian, in which the results of the Scholar-Seeded PrStSu+SM

and Scholar-Seeded PrStSu2a+SM configurations differ by an F1-score of only 0.3%.
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3.3.4 Incorporating Linguistic Priors

We next propose the use of strong linguistic priors within AGs in order to enhance morphological

segmentation in a minimally supervised manner. We introduce two types of priors:

• Grammar Definition: A language-specific grammar that models specific morphological

phenomena is tailored for the language of interest.

• Linguist-provided Affixes: An expert in the underlying language compiles a list of care-

fully selected affixes and seeds it into the grammars prior to training the morphological-

segmentation model.

3.3.4.1 Linguistic Priors as Grammar Definition

While the grammars described in Section 3.3.1 are intended to be generic and to describe word

structure in any language, we hypothesize that a definition that imposes language-specific constraints

is more efficient. Therefore, we investigate the incorporation of linguistic priors in the form of a

grammar definition that models language-specific morphological phenomena. We utilize the best

on-average performing grammar PrStSu+SM with Japanese as a case study.

The language-independent grammar definition and its Japanese cognate are illustrated in Fig-

ure 3.4 on the left and right sides, respectively. We impose the following specifications for Japanese:

1. A word has a maximum of one one-character or two-character prefix.

2. A stem is recursively defined as a sequence of morphs in order to allow for stem compounding.

3. Characters are separated into two groups, Kana (Japanese syllabaries) and Kanji (adopted

Chinese characters).

4. SupMorph represents a sequence of characters that is either in Kana or Kanji.
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Figure 3.4: The language-independent PrStSu+SM grammar (left side) versus its Japanese cognate
(right side)

3.3.4.2 Linguistic Priors as Linguist-Provided Affixes

Similar to the Scholar-Seeded setting, described in Section 3.3.2.2, we compile a set of affixes and

seed it into the grammar trees before training the morphological-segmentation model. However,

a major difference is that in the Scholar-Seeded setting, the linguistic priors are weak as they are

generated from online resources by someone who may have never studied the underlying language,

where the purpose is to quickly collect additional clues for the sampler, while here we seed strong

priors that are carefully compiled by an expert who specializes in the underlying language. Another

difference is that the affixes are seeded in the Scholar-Seeded setting as unadapted nonterminals

in order to prevent the sampler from spreading wrong information, while here we seed the affixes
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as adapted nonterminals since they are guaranteed to be of high quality, and thus instantiating

corresponding subtrees in encouraged.

We use Georgian and Arabic as two case studies for the use of linguist-provided affixes. In the

case of Georgian, a linguist who is an expert in Georgian, as a second language, compiles a set of

119 affixes 6 that are collected from the leading reference grammar book by Aronson (1990), while

in the case of Arabic, a computational linguist who is a native speaker of Arabic compiles a set of

33 affixess 7.

3.3.5 Multilingual Morphological Segmentation

We conduct multilingual training in which we combine lexicons from different languages that are

closely related. We examine the case where the combined languages belong to the same language

family and share some morphemes, to different degrees, in low-resource scenarios. Our assumption

is that shared information across related languages can compensate for lacking information due to

limited vocabularies. More specifically, missing morphemes/morphs in the lexicon of one language

can be learned from the lexicon of another.

3.4 Languages and Data

We consider 13 languages that are spread across the typology spectrum and for which morphologi-

cally segmented datasets are available for evaluation. Six out of the 13 languages are development

ones that we use to derive the main conclusions concerning our grammar definitions, learning

settings and the automatic tailoring of grammars for unseen languages. These languages are English,

German, Finnish, Estonian, Turkish and Zulu. The other languages are test ones, namely Japanese,

Georgian, Arabic, Mexicanero, Nahuatl (Mexicano), Wixarika (Huichol) and Mayo (Yorem Nokki).

Information about the languages and their datasets are listed in Table 3.5.

6https://github.com/rnd2110/MorphAGram/blob/master/data/georgian/data/elk.txt
7https://github.com/rnd2110/MorphAGram/blob/master/data/arabic/data/elk.txt
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Language Typology Source
Number of Words

TRAIN DEV TEST

English Analytic Morpho Challenge 50,000 1,212 NA
German Fusional, more Synthetic Morpho Challenge 50,000 556 NA
Finnish Agglutinative, more Synthetic Morpho Challenge 50,000 1,494 NA

Estonian Agglutinative, more Synthetic Sega Corpus 49,621 1,492 NA
Turkish Agglutinative, more Synthetic Morpho Challenge 50,000 1,531 NA

Zulu Agglutinative, mildly Fusional Ukwabelana Corpus 50,000 1,000 NA
Japanese Agglutinative, more Synthetic Wikipedia 48,423 NA 1,000
Georgian Agglutinative, more Polysynthetic Wikipedia 50,000 NA 1,000

Arabic Fusional, less Synthetic PATB 50,000 NA 1,000
Mexicanero Polysynthetic Kann et al. (2018) 424 106 351

Nahuatl Polysynthetic Kann et al. (2018) 535 133 439
Wixarika Polysynthetic Kann et al. (2018) 664 166 546

Mayo Polysynthetic Kann et al. (2018) 509 126 419

Table 3.5: Typological and data-related information per experimental language. NA = Not applica-
ble.

English, German, Finnish and Turkish The data is compiled from the Morpho Challenge

competition 8 (MC2010) (Kurimo et al., 2010), where we select the most frequent 50,000 words

for training after filtering out the words that contain foreign letters. In addition, the gold-standard

development sets are collected from all the years of the competition.

Estonian The training and gold-standard development sets are the ones used by Sirts and Gold-

water (2013) 9 after filtering out the words that contain foreign letters. The data is based on

the Sega corpus 10, where the gold segmentation is collected from the Estonian Morphologically

Disambiguated Corpus 11.

Zulu The training data is collected from the Ukwabelana corpus (Spiegler et al., 2010), an

open-source Zulu corpus that is morphologically annotated, while the words in the gold-standard

development set are a randomly selected subset.

8http://research.ics.aalto.fi/events/morphochallenge2010/datasets.shtml
9through contacting the authors directly

10https://keeleressursid.ee/et/196-segakorpus-eesti-ekspress
11https://www.cl.ut.ee/korpused/morfkorpus
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Japanese The training data is based on the most frequent 48,423 words in the Japanese Wikipedia,

while the gold-standard test set is based on 1,000 randomly selected words from the training set 12

by contracting a native-speaker linguist for the annotation of the gold segmentation.

Georgian The training data is based on the most frequent 50,000 words in the Georgian Wikipedia,

while the gold-standard test set is in-house annotations conducted for 1,000 randomly selected

words from the training set 13. The annotations were first prepared by a non-linguist who is a

native Georgian speaker. A linguist who speaks Georgian as a second language then revised the

annotations in a second phase, corrected 193 segmentation examples and further annotated 116

words for additional alternative segmentation. We verified the fact that having the gold annotations

revised and corrected by a linguist improves evaluation quality.

Table 3.6 shows examples of the manually annotated Japanese and Georgian gold segmentation.

In the case of Georgian, in addition to morphological segmentation, the linguist coded each word

based on its syntactic category: nominal (475 words), verbal (359 words), numeral (44 words) and

other (122 words).

Japanese Word Segmentation

いました い +ま +した
勉強して 勉強 +し +て
始められません 始め +られ +ま +せん

Georgian Word Category Segmentation

tvitprinavi Nominal
tvi + t + prin + av + i
tvitprinav + i

iknebao Verbal
i + kn + eb + a + o
ikneb + a + o

totxmeti Numeral
t + otx + met + i
totxmet + i

visi Other
vi + s + i
vis + i

Table 3.6: Japanese and Georgian segmentation examples

12https://github.com/rnd2110/MorphAGram/blob/master/data/japanese/data/japanese.dev.gold
13https://github.com/rnd2110/MorphAGram/blob/master/data/georgian/data/georgian.dev.gold
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Arabic The training data is collected from the most frequent 50,000 words in the third release of

the Penn Arabic Treebank (PATB) (Maamourio et al., 2004) after removing diacritization, while the

gold-standard test set is based on a randomly selected subset of 1,000 words.

Mexicanero, Nahuatl, Wixarika and Mayo We use the datasets released by Kann et al. (2018)

after filtering out the words that are not white-space tokenized or containing foreign letters. The

four languages are polysynthetic ones and come in small datasets of less than 1,000 words, which is

challenging for the task of morphological segmentation in terms of morphological complexity and

data availability.

In all the languages, we train our models using the training sets (TRAIN) without seeing gold-

standard segmentation. For evaluation and analysis, we use the development sets (DEV) of the

development languages and the test sets (TEST) of Japanese, Georgian and Arabic. In the case of

the polysynthetic languages, we report the results on the development sets (DEV) released by Kann

et al. (2018), unless otherwise noted.

In the case of German, the gold segmentation includes actual morphemes as opposed to their

inflected forms (morphs). For example, the word wohlgefällige is segmented as wohl+ge+fall+ig+e

instead of wohl+ge+fäll+ig+e. However, since our system produces morph-based segmentation,

we processed the gold examples in which the concatenation of the morphemes does not yield the

surface word, where we tried to generate the gold morphs using simple rules that replace the vowels

in the morphemes by their corresponding umlauts before segmentation. We then excluded all the

gold examples in which the generated morphs do not form the surface word, which eliminated 29.2%

of the gold examples. We however report results when evaluating on the original gold-standard

development set, in addition to the filtered one, for completeness.

For the Scholar-Seeded affixes, we mainly rely on the Wiktionary to collect prefixes and suffixes

of the language of interest. If the Wiktionary does not provide a sufficient number of affixes, we

collect additional ones from grammar pages that we obtain by searching the Web. We however keep

the process of collecting the set of affixes less than two hours in length per language in order to
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preserve our low-resource settings.

We define what we call the degree of ambiguity. Assume we have a total of n morphs, where

i ∈ [1, n] indexes a morph, N i is the number of occurrences of morph i and M i is the number of

occurrences of the surface form constituting morph i, then the degree of ambiguity is defined as:

The degree of ambiguity indicates how ambiguous the morphs in the language are. A morph is

unambiguous if its surface form either unlikely or most likely represents the morph. For instance,

the English suffix ly is unambiguous as ly is unlikely part of a stem, and the English prefix ab is

unambiguous as ab is most likely part of a stem. In contrast, the common verbal suffix t in German

is ambiguous since an ending t is part of several stems. The division N i
M i

in the formula above

represents the probability that a specific surface form of a morph represents the morph, where a

value near 0.5 indicates that the morph is highly ambiguous, while summing and dividing over n is

for averaging across the morphs in the underlying language.

Figure 3.5 reports morph-level statistics for our experimental languages. This includes the

average number of morphs per word (Figure 3.5a), the maximum number of morphs per word

(Figure 3.5b), the average morph length (type-based) (Figure 3.5c) and the degree of ambiguity

(Figure 3.5d).

Zulu, Finnish and Turkish have the highest average number of morphs per word of 3.9, 3.5

and 3.5 respectively. We therefore expect low morphological-segmentation recall for these three

languages. Turkish is getting further interesting for the task of morphological segmentation as it

has the highest degree of ambiguity of 0.6. On another hand, Wixarika witnesses the maximum

number of 10 morphs per word, with an average of 3.3 morphs per word, lending itself as a strong

polysynthetic language.
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(a) Average number of morphs per word (b) Maximum number of morphs per word

(c) Average morph length (type-based) (d) Degree of Ambiguity

Figure 3.5: Morphological statistics

3.5 Evaluation and Analysis

3.5.1 Experimental Settings

We conduct our experiments in a transductive learning scenario, where the unsegmented words in the

evaluation set are included in the training set, which is common in the evaluation of unsupervised

morphological segmentation (Poon et al., 2009; Sirts and Goldwater, 2013; Narasimhan et al.,

2015). However, we do not see significant performance drops when adopting the inductive approach

instead, in which the training and evaluation sets do not include examples in common.

For training, we run the sampler for 500 optimization iterations for all the languages 14. In

addition, no annealing is used as it does not improve the results, and all the hyperparameters of the

14In a few cases, we run the sampler for fewer iterations in order to speed up the segmentation process. This includes
the execution of the PrStSu2b+Co+SM grammar in the cases of Turkish, Zulu, Georgian and Arabic, the seeded
PrStSu2b+SM grammar for Zulu and the seeded PrStSu+Co+SM grammar for Japanese
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model are automatically inferred. For evaluation, we compute all the results in this chapter as the

average of five runs since the sampler is non-deterministic.

We evaluate the performance of our morphological-segmentation framework MorphAGram

using two metrics: Boundary Precision and Recall (BPR) and EMMA-2 (Virpioja et al., 2011).

BPR is the classical evaluation method for morphological segmentation. It measures the ability of

the system to detect segmentation boundaries, where the boundaries in the proposed segmentation

are compared to the boundaries in the reference. On the other hand, EMMA-2 measures the ability

of the system to detect the morphemes/morphs. EMMA-2 is a variation of EMMA (Spiegler and

Monson, 2010), in which each proposed morpheme/morph is matched to each morpheme/morph

in the gold segmentation through one-to-one mappings. However, EMMA-2 allows for shorter

computation times as it replaces the one-to-one assignment problem in EMMA by two many-to-one

assignment problems, where two or more proposed morphemes/morphs can be mapped to one

reference morpheme/morph. EMMA-2 usually results in higher precision and recall than EMMA

and BPR as it tolerates failing to join two allomorphs or to distinguish between identical syncretic

morphemes/morphs. For more details about the evaluation metrics, see Virpioja et al. (2011).

We evaluate our system versus two state-of-the-art baselines: Morfessor (Creutz and Lagus,

2007; Grönroos et al., 2014) and MorphoChain (Narasimhan et al., 2014). Morfessor is a commonly

used framework for unsupervised and semi-supervised morphological segmentation and is publicly

available 15. Morfessor utilizes the minimum description length (MDL) concept for the selection

of the optimal segmentation for both the input vocabulary and the segmentation lexicon. It is also

based on an HMM that encodes the positional information of the morphs. MorphoChain is another

publicly available system for unsupervised morphological segmentation 16. In MorphoChain, words

are modeled as morphological chains, where a chain is a sequence of words that starts with a base

word (a parent) and ends up with a morphological variant. It uses a log-linear discriminative model

to predict the parent of a given word and uses the transformations in the underlying chain, along

with correlation and similarity measurements, to derive the morphological segmentation.

15https://morfessor.readthedocs.io/en/latest
16https://github.com/karthikncode/MorphoChain
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3.5.2 Performance of All Grammars

Tables 3.7 and 3.8 report the performance of our MorphAGram framework using the BPR and

EMMA-2 metrics, respectively, for the development languages (English, German, Finnish, Estonian,

Turkish and Zulu) using the nine grammars defined in Section 3.3.4.2.

Considering the BPR metric, there is a vast variation among the languages in how the grammars

perform. For instance, in the Standard Setting, the PrStSu+SM grammar yields the best F1-score

for English, German and Turkish, while the PrStSu2a+SM, PrStSu+Co+SM and PrStSu2b+SM

grammars yield the best F1-score for Finnish, Estonian and Zulu, respectively. We get a similar

pattern in the Cascaded setting except in the cases of Finnish and Zulu, in which the PrStSu+SM and

Simple grammars yield the best F1-score, respectively. However, the best grammar in the Scholar-

Seeded setting is the same as the one in the Cascaded setting except in the cases of Turkish and

Zulu, in which the PrStSu2a+SM and PrStSu+SM grammars yield the best F1-score, respectively.

When averaging across the development languages, the PrStSu+SM grammar gives the best

on-average F1-score in the Standard, Cascaded and Scholar-Seeded settings, achieving F1-scores

of 68.9%, 73.5% and 73.2%, respectively. The PrStSu2a+SM grammar then comes second in

the three settings with F1-scores of 68.6%, 69.0% and 72.0%, respectively. In contrast, the

PrStSu2b+Co+SM grammar gives the lowest F1-score in the three settings, but it consistently

yields the highest precision, which makes it ideal for the first round of learning in the Cascaded

setting, where the purpose is to use a conservative grammar that produces true affixes that we can

confidently seed in the second learning round. On the other hand, the PrStSu grammar achieves the

highest recall in the three learning settings but at the cost of relatively low precision.

Considering the EMMA-2 metric, we experience similar patterns to those of the BPR metric.

The only differences are that 1) the Morph+SM grammar yields the best F1-score for Estonian in

the Cascaded setting instead of PrStSu+Co+SM; 2) the PrStSu grammar gives the best F1-score for

Zulu in the Cascaded setting instead of Simple; and 3) the PrStSu2a+SM grammar yields the best

on-average F1-score in the Standard and Scholar-Seeded settings instead of PrStSu+SM. However,

none of these differences is statistically significant for p-value < 0.01.
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Language Grammar Standard Setting Cascaded Setting Scholar-Seeded Setting
Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

English

Morph+SM 79.6 69.8 74.3 80.2 70.0 74.8 79.1 69.0 73.7
Simple 50.7 64.7 56.9 51.6 64.7 57.4 51.1 65.1 57.2

Simple+SM 70.4 63.7 66.9 70.1 63.9 66.9 69.6 63.5 66.4
PrStSu 41.2 79.7 54.3 56.7 82.6 67.3 64.6 83.2 72.7

PrStSu+SM 72.7 78.6 75.5 72.0 77.9 74.8 75.3 78.5 76.9
PrStSu+Co+SM 86.1 66.3 74.9 86.5 65.1 74.3 85.6 66.6 74.9
PrStSu2a+SM 67.5 74.9 70.9 72.8 70.8 71.8 74.2 70.3 72.2
PrStSu2b+SM 48.1 71.4 57.5 49.8 74.6 59.7 50.6 75.5 60.6

PrStSu2b+Co+SM 98.3 22.7 36.9 98.2 23.2 37.5 98.2 22.7 36.8

German

Morph+SM 86.6 62.7 72.7 86.1 62.0 72.1 86.9 62.2 72.5
Simple 67.9 63.5 65.6 67.9 63.5 65.6 68.5 64.1 66.2

Simple+SM 83.6 65.0 73.1 83.4 64.9 73.0 83.0 64.8 72.7
PrStSu 59.7 83.9 69.7 66.6 84.2 74.4 70.1 86.4 77.4

PrStSu+SM 81.7 74.9 78.1 81.4 74.7 77.9 81.3 76.0 78.6
PrStSu+Co+SM 91.1 55.3 68.8 90.2 57.6 70.3 90.5 57.3 70.2
PrStSu2a+SM 81.7 71.5 76.3 79.5 69.4 74.1 80.1 70.1 74.7
PrStSu2b+SM 76.0 75.4 75.7 74.7 75.3 75.0 74.5 74.9 74.7

PrStSu2b+Co+SM 97.0 20.1 33.2 96.8 24.1 38.6 96.7 23.3 37.5

Finnish

Morph+SM 77.0 53.0 62.8 76.9 53.1 62.8 77.0 53.5 63.1
Simple 59.8 51.8 55.6 60.7 52.5 56.3 60.7 52.3 56.2

Simple+SM 76.0 49.1 59.6 76.0 49.1 59.7 75.7 48.7 59.3
PrStSu 46.5 59.8 52.3 56.7 72.3 63.6 50.4 76.3 60.7

PrStSu+SM 63.2 54.7 58.6 77.7 66.4 71.6 77.5 68.6 72.8
PrStSu+Co+SM 83.2 50.0 62.5 84.0 51.0 63.5 82.9 51.7 63.7
PrStSu2a+SM 71.5 67.1 69.2 78.0 61.5 68.8 72.0 67.4 69.6
PrStSu2b+SM 60.5 56.6 58.5 62.8 59.6 61.2 62.3 59.6 60.9

PrStSu2b+Co+SM 96.9 22.5 36.6 96.7 23.9 38.4 97.0 22.0 35.9

Estonian

Morph+SM 72.9 77.6 75.2 73.1 77.5 75.2 73.4 77.7 75.5
Simple 47.3 73.8 57.6 46.1 72.4 56.3 46.8 73.7 57.3

Simple+SM 65.2 75.9 70.2 65.8 76.6 70.8 65.5 76.2 70.4
PrStSu 38.1 84.2 52.5 53.5 87.5 66.4 49.4 79.8 61.0

PrStSu+SM 54.6 83.6 65.9 65.9 84.1 73.9 63.9 82.5 72.0
PrStSu+Co+SM 78.1 76.6 77.4 78.1 72.9 75.4 78.1 76.8 77.4
PrStSu2a+SM 53.4 86.0 65.9 66.6 78.6 72.1 67.3 78.0 72.3
PrStSu2b+SM 44.5 84.1 58.2 45.5 84.2 59.1 45.6 84.3 59.2

PrStSu2b+Co+SM 98.8 28.5 44.3 98.8 28.8 44.6 98.8 29.5 45.4

Turkish

Morph+SM 87.1 54.1 66.7 87.3 54.4 67.0 87.6 54.3 67.1
Simple 71.6 57.1 63.5 71.6 56.7 63.3 71.6 56.8 63.3

Simple+SM 88.1 51.5 65.0 88.6 51.8 65.4 88.4 51.7 65.2
PrStSu 58.9 70.7 64.3 72.4 76.7 74.5 60.8 72.3 66.1

PrStSu+SM 87.5 71.8 78.9 88.7 72.5 79.8 69.8 60.8 65.0
PrStSu+Co+SM 89.5 47.5 62.1 89.8 50.7 64.8 89.0 50.8 64.7
PrStSu2a+SM 83.9 71.5 77.2 88.4 64.0 74.2 83.7 71.0 76.8
PrStSu2b+SM 63.4 64.1 63.7 66.2 67.1 66.6 66.0 66.2 66.1

PrStSu2b+Co+SM 99.3 4.9 9.3 98.8 5.1 9.6 97.8 6.3 11.9

Zulu

Morph+SM 90.0 36.8 52.2 89.6 36.8 52.1 89.6 36.5 51.9
Simple 74.8 55.3 63.6 74.4 54.9 63.2 74.9 55.4 63.7

Simple+SM 88.6 38.8 54.0 89.0 39.0 54.3 89.3 38.8 54.1
PrStSu 59.8 50.4 54.7 75.8 53.0 62.4 74.9 68.3 71.5

PrStSu+SM 74.3 45.1 56.1 91.2 47.8 62.7 85.0 65.3 73.8
PrStSu+Co+SM 91.9 33.8 49.5 92.1 34.5 50.2 92.3 34.8 50.5
PrStSu2a+SM 62.9 44.6 52.2 64.0 45.4 53.1 76.9 58.4 66.4
PrStSu2b+SM 90.4 53.3 67.0 89.2 41.0 56.5 87.1 56.6 68.6

PrStSu2b+Co+SM 99.9 3.2 6.1 99.9 3.2 6.1 98.1 4.8 9.1

Table 3.7: The segmentation performance (BPR) of the different grammars on the development
languages. The best result per language-setting pair is in bold. The best language-independent
result per language is underlined.
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Language Grammar Standard Setting Cascaded Setting Scholar-Seeded Setting
Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

English

Morph+SM 93.2 78.1 85.0 93.3 78.3 85.2 93.1 77.5 84.6
Simple 81.4 72.8 76.9 82.2 72.9 77.3 81.6 73.0 77.1

Simple+SM 92.4 73.1 81.6 92.5 73.5 81.9 92.2 73.2 81.6
PrStSu 62.3 84.0 71.5 74.2 86.3 79.8 79.3 86.6 82.8

PrStSu+SM 87.7 85.0 86.3 86.8 84.5 85.6 88.5 85.1 86.7
PrStSu+Co+SM 95.6 77.0 85.3 96.2 76.0 84.9 95.2 76.8 85.0
PrStSu2a+SM 87.2 80.3 83.6 90.3 78.7 84.1 90.9 77.9 83.9
PrStSu2b+SM 74.8 77.4 76.1 75.4 80.7 77.9 75.3 80.9 78.0

PrStSu2b+Co+SM 100.0 48.8 65.6 100.0 48.8 65.6 100.0 48.7 65.5

German

Morph+SM 94.8 67.9 79.1 95.0 68.1 79.4 95.1 68.0 79.3
Simple 91.8 69.6 79.2 91.6 69.5 79.1 91.5 69.6 79.0

Simple+SM 95.9 70.6 81.3 95.8 70.5 81.2 95.7 70.5 81.2
PrStSu 75.5 84.9 79.9 79.2 86.1 82.5 81.5 88.5 84.8

PrStSu+SM 91.2 78.9 84.6 90.9 79.2 84.7 90.2 80.4 85.0
PrStSu+Co+SM 96.6 64.0 77.0 96.4 65.5 78.0 96.2 65.2 77.7
PrStSu2a+SM 93.9 75.4 83.6 93.3 74.8 83.0 93.4 75.2 83.3
PrStSu2b+SM 92.2 77.5 84.2 91.4 78.0 84.2 90.9 77.9 83.9

PrStSu2b+Co+SM 99.8 40.7 57.8 99.7 41.7 58.8 99.6 41.5 58.6

Finnish

Morph+SM 92.0 58.9 71.8 92.1 58.7 71.7 91.8 59.2 72.0
Simple 87.4 60.4 71.4 87.5 60.5 71.6 87.7 60.7 71.7

Simple+SM 94.9 56.4 70.7 94.9 56.4 70.8 94.9 56.4 70.7
PrStSu 67.1 64.0 65.5 67.7 72.4 70.0 63.6 77.1 69.7

PrStSu+SM 84.8 59.6 70.0 88.0 69.5 77.6 87.3 71.0 78.3
PrStSu+Co+SM 94.5 57.2 71.3 94.6 57.9 71.8 94.2 58.4 72.1
PrStSu2a+SM 86.1 70.3 77.4 92.3 66.6 77.4 86.4 70.5 77.6
PrStSu2b+SM 80.6 60.6 69.2 81.7 63.3 71.3 81.7 63.5 71.4

PrStSu2b+Co+SM 99.8 42.4 59.5 99.7 42.7 59.8 99.7 42.2 59.3

Estonian

Morph+SM 87.5 86.1 86.8 87.6 86.4 87.0 87.6 86.1 86.9
Simple 74.6 84.2 79.1 74.2 83.5 78.6 74.3 83.9 78.8

Simple+SM 87.2 85.5 86.4 87.3 85.9 86.6 87.2 85.6 86.4
PrStSu 53.7 88.4 66.8 66.5 91.1 76.9 68.2 87.0 76.4

PrStSu+SM 73.2 88.9 80.3 79.7 90.8 84.9 78.4 90.2 83.9
PrStSu+Co+SM 88.9 86.1 87.5 89.6 83.9 86.6 89.2 86.0 87.6
PrStSu2a+SM 71.2 89.5 79.3 86.3 87.2 86.8 86.7 86.7 86.7
PrStSu2b+SM 63.2 89.7 74.2 63.9 89.6 74.6 64.2 89.7 74.9

PrStSu2b+Co+SM 99.9 59.2 74.3 99.9 59.2 74.4 99.9 59.4 74.5

Turkish

Morph+SM 95.2 42.6 58.9 95.1 42.7 58.9 95.1 42.7 58.9
Simple 88.7 45.5 60.1 89.4 45.5 60.3 89.2 45.5 60.3

Simple+SM 97.1 40.3 57.0 97.2 40.5 57.2 97.1 40.5 57.2
PrStSu 68.7 54.5 60.8 78.0 59.4 67.5 69.8 54.9 61.5

PrStSu+SM 92.4 55.5 69.3 92.8 56.0 69.9 82.1 46.0 58.9
PrStSu+Co+SM 96.3 40.3 56.8 96.1 41.2 57.7 96.0 41.2 57.6
PrStSu2a+SM 91.1 55.0 68.6 93.8 48.3 63.7 91.0 54.8 68.4
PrStSu2b+SM 76.9 47.4 58.7 78.4 49.3 60.5 78.4 48.7 60.1

PrStSu2b+Co+SM 100.0 26.0 41.2 100.0 25.9 41.2 100.0 26.2 41.5

Zulu

Morph+SM 95.5 38.2 54.6 95.2 38.3 54.7 95.4 38.1 54.5
Simple 86.5 55.8 67.8 85.9 55.9 67.7 86.0 56.0 67.8

Simple+SM 95.5 39.0 55.4 95.6 39.4 55.8 95.6 39.1 55.5
PrStSu 74.8 53.7 62.5 83.4 57.2 67.8 81.1 67.9 73.9

PrStSu+SM 87.9 45.2 59.7 93.4 50.4 65.5 88.9 66.4 76.0
PrStSu+Co+SM 96.2 36.8 53.2 96.2 37.1 53.6 96.2 37.2 53.6
PrStSu2a+SM 82.9 47.4 60.3 83.5 47.9 60.9 86.7 57.3 69.0
PrStSu2b+SM 93.0 55.9 69.8 94.6 41.6 57.7 92.0 57.4 70.7

PrStSu2b+Co+SM 100.0 19.4 32.5 100.0 19.4 32.5 99.9 19.9 33.1

Table 3.8: The segmentation performance (EMMA-2) of the different grammars on the development
languages. The best result per language-setting pair is in bold. The best language-independent
result per language is underlined.
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One interesting phenomena is that the average number of morphs per word and recall are highly

correlated. The correlation is illustrated in Figure 3.6 based on the average BPR recall across all the

grammars in the Standard setting. The plot starts with Estonian, with the highest on-average recall

of 74.5% and the minimum of 1.9 average number of morphs per word, and ends with Zulu, with

the lowest on-average recall of 40.1% and the maximum of 3.9 average number of morphs per word.

The intuition is that with more morphs per word, the models are more likely to miss segmentation

points, and thus recall drops.

�hj][Q<[

�[OYQhP
�IgZ<[ 0kgXQhP

�Q[[QhP

;kYk

Figure 3.6: Average number of morphs per word versus recall. The calculations are based on the
average BPR recall across the grammars in the Standard setting.

When we use the original German gold standard, i.e., without filtering (Section 3.4), the

performance drops by absolute F1-scores of 35.9%, 36.4% and 36.4% in the Standard, Cascaded

and Scholar-Seeded settings, respectively, when using the BPR metric, and by corresponding

absolute F1-scores of 13.4%, 14.3% and 13.7%, respectively, when using the EMMA-2 metric.

The significant drop in the performance is due to the fact that MorphAGram segments words into

inflected morphs and does not restore the actual morphemes, and so do the baselines we compare to

in the rest of this chapter.

For the performance of the nine grammars on the test languages using the BPR and EMMA-2
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metrics, see Tables 1.1 and 1.2, respectively, in Appendix A. The results show similar patterns to

those of the development languages, where the PrStSu+SM grammar gives the best on-average

F1-score in the Standard, Cascaded and Scholar-Seeded settings, followed by the PrStSu2a+SM

grammar, while the PrStSu2b+Co+SM grammar gives the lowest F1-score in the three settings, but

it consistently yields the highest precision.

3.5.3 Automatically Selected Configurations versus Upper Bounds

We next apply our approaches for the automatic tailoring of the grammars (Section 3.3.3) to all of our

13 experimental languages. These are 1) AG-LI-Auto: to automatically select a language-independent

setting (Standard or Cascaded) for the best on-average PrStSu+SM grammar; and 2) AG-SS-Auto:

to automatically select a grammar (PrStSu+SM or PrStSu2a+SM) for the Scholar-Seeded setting.

However, when we apply the AG-LI-Auto setup for one of our six development languages, we

exclude its corresponding data point from the model. We also compare the performance to AG-

LI-Best and AG-SS-Best, two oracle setups that observe all of our results and choose the best

language-independent (Standard or Cascaded) and Scholar-Seeded configurations, respectively. We

report the performance in Tables 3.9 and 3.10 using the BPR and EMMA-2 metrics, respectively.

Considering the BPR metric, AG-LI-Auto can successfully pick the oracle language-independent

configurations of eight languages, namely German, Finnish, Turkish, Japanese, Arabic, Mexicanero,

Nahuatl and Wixarika. In the other five languages, AG-LI-Auto picks configurations that result

in an average F1-score drop of only 2.5% as compared to the oracle configurations. On the other

hand, AG-SS-Auto can successfully pick the oracle Scholar-Seeded configurations of nine languages,

namely English, German, Finnish, Turkish, Zulu, Arabic, Mexicanero, Nahuatl and Wixarika. In

the other four languages, AG-SS-Auto picks configurations that result in an average F1-score drop

of only 2.3% as compared to the oracle configurations.

Considering the EMMA-2 metric, we observe similar patterns to those of BPR except that

AG-LI-Auto fails to pick the oracle language-independent configuration of German, while AG-SS-

Auto is able to pick the oracle Scholar-Seeded configuration of Japanese. In addition, AG-LI-Auto
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Language Setup Setting Grammar Prec. Recall F1

English AG-LI-Auto Cascaded PrStSu+SM 72.0 77.9 74.8
AG-LI-Best Standard PrStSu+SM 72.7 78.6 75.5

German AG-LI-Auto & AG-LI-Best Standard PrStSu+SM 81.7 74.9 78.1
Finnish AG-LI-Auto & AG-LI-Best Cascaded PrStSu+SM 77.7 66.4 71.6

Estonian AG-LI-Auto Cascaded PrStSu+SM 65.9 84.1 73.9
AG-LI-Best Standard PrStSu+Co+SM 78.1 76.6 77.4

Turkish AG-LI-Auto & AG-LI-Best Cascaded PrStSu+SM 88.7 72.5 79.8

Zulu AG-LI-Auto Cascaded PrStSu+SM 91.2 47.8 62.7
AG-LI-Best Standard PrStSu2b+SM 90.4 53.3 67.0

Japanese AG-LI-Auto & AG-LI-Best Cascaded PrStSu+SM 81.5 78.2 79.8

Georgian AG-LI-Auto Standard PrStSu+SM 82.0 69.1 75.0
AG-LI-Best Cascaded PrStSu+SM 82.9 71.7 76.9

Arabic AG-LI-Auto & AG-LI-Best Standard PrStSu+SM 77.5 88.2 82.5
Mexicanero AG-LI-Auto & AG-LI-Best Standard PrStSu+SM 77.9 81.0 79.4

Nahuatl AG-LI-Auto & AG-LI-Best Standard PrStSu+SM 60.8 74.6 67.0
Wixarika AG-LI-Auto & AG-LI-Best Standard PrStSu+SM 82.7 70.9 76.4

Mayo AG-LI-Auto Standard PrStSu+SM 78.4 79.6 78.8
AG-LI-Best Cascaded PrStSu+SM 82.9 78.8 80.8

English AG-SS-Auto & AG-SS-Best Scholar-Seeded PrStSu+SM 75.3 78.5 76.9
German AG-SS-Auto & AG-SS-Best Scholar-Seeded PrStSu+SM 81.3 76.0 78.6
Finnish AG-SS-Auto & AG-SS-Best Scholar-Seeded PrStSu+SM 77.5 68.6 72.8

Estonian AG-SS-Auto Scholar-Seeded PrStSu+SM 63.9 82.5 72.0
AG-SS-Best Scholar-Seeded PrStSu+Co+SM 78.1 76.8 77.4

Turkish AG-SS-Auto & AG-SS-Best Scholar-Seeded PrStSu2a+SM 83.7 71.0 76.8
Zulu AG-SS-Auto & AG-SS-Best Scholar-Seeded PrStSu+SM 85.0 65.3 73.8

Japanese AG-SS-Auto Scholar-Seeded PrStSu+SM 82.3 77.6 79.9
AG-SS-Best Scholar-Seeded PrStSu 79.3 80.7 80.0

Georgian AG-SS-Auto Scholar-Seeded PrStSu+SM 84.3 67.9 75.2
AG-SS-Best Scholar-Seeded PrStSu 79.6 72.5 75.9

Arabic AG-SS-Auto & AG-SS-Best Scholar-Seeded PrStSu+SM 76.8 88.9 82.4
Mexicanero AG-SS-Auto & AG-SS-Best Scholar-Seeded PrStSu+SM 82.9 82.1 82.5

Nahuatl AG-SS-Auto & AG-SS-Best Scholar-Seeded PrStSu+SM 63.3 76.1 69.1
Wixarika AG-SS-Auto & AG-SS-Best Scholar-Seeded PrStSu+SM 81.1 74.9 77.9

Mayo AG-SS-Auto Scholar-Seeded PrStSu2a+SM 82.0 75.0 78.4
AG-SS-Best Scholar-Seeded PrStSu+SM 84.4 78.7 81.5

Table 3.9: The performance of our automatically selected configuration versus the oracle per-
formance (BPR). The upper part reports the language-independent performance (AG-LI-Auto and
AG-LI-Best). The lower part reports the Scholar-Seeded performance (AG-SS-Auto and AG-SS-Best).
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Language Setup Setting Grammar Prec. Recall F1

English AG-LI-Auto Cascaded PrStSu+SM 86.8 84.5 85.6
AG-LI-Best Standard PrStSu+SM 87.7 85.0 86.3

German AG-LI-Auto Standard PrStSu+SM 91.2 78.9 84.6
AG-LI-Best Cascaded PrStSu+SM 90.9 79.2 84.7

Finnish AG-LI-Auto & AG-LI-Best Cascaded PrStSu+SM 88.0 69.5 77.6

Estonian AG-LI-Auto Cascaded PrStSu+SM 79.7 90.8 84.9
AG-LI-Best Standard PrStSu+Co+SM 88.9 86.1 87.5

Turkish AG-LI-Auto & AG-LI-Best Cascaded PrStSu+SM 92.8 56.0 69.9

Zulu AG-LI-Auto Cascaded PrStSu+SM 93.4 50.4 65.5
AG-LI-Best Standard PrStSu2b+SM 93.0 55.9 69.8

Japanese AG-LI-Auto & AG-LI-Best Cascaded PrStSu+SM 91.0 82.4 86.5

Georgian AG-LI-Auto Standard PrStSu+SM 88.4 65.9 75.5
AG-LI-Best Cascaded PrStSu+SM 88.8 67.8 76.9

Arabic AG-LI-Auto & AG-LI-Best Standard PrStSu+SM 88.1 88.7 88.4
Mexicanero AG-LI-Auto & AG-LI-Best Standard PrStSu+SM 91.2 89.0 90.1

Nahuatl AG-LI-Auto & AG-LI-Best Standard PrStSu+SM 81.4 85.6 83.4
Wixarika AG-LI-Auto & AG-LI-Best Standard PrStSu+SM 85.9 75.7 80.4

Mayo AG-LI-Auto Standard PrStSu+SM 88.5 87.7 88.1
AG-LI-Best Cascaded PrStSu+SM 89.5 87.5 88.5

English AG-SS-Auto & AG-SS-Best Scholar-Seeded PrStSu+SM 88.5 85.1 86.7
German AG-SS-Auto & AG-SS-Best Scholar-Seeded PrStSu+SM 90.2 80.4 85.0
Finnish AG-SS-Auto & AG-SS-Best Scholar-Seeded PrStSu+SM 87.3 71.0 78.3

Estonian AG-SS-Auto Scholar-Seeded PrStSu+SM 78.4 90.2 83.9
AG-SS-Best Scholar-Seeded PrStSu+Co+SM 89.2 86.0 87.6

Turkish AG-SS-Auto & AG-SS-Best Scholar-Seeded PrStSu2a+SM 91.0 54.8 68.4
Zulu AG-SS-Auto & AG-SS-Best Scholar-Seeded PrStSu+SM 88.9 66.4 76.0

Japanese AG-SS-Auto & AG-SS-Best Scholar-Seeded PrStSu+SM 91.5 81.4 86.1

Georgian AG-SS-Auto Scholar-Seeded PrStSu+SM 90.0 64.8 75.3
AG-SS-Best Scholar-Seeded PrStSu 87.0 68.2 76.5

Arabic AG-SS-Auto & AG-SS-Best Scholar-Seeded PrStSu+SM 87.5 89.4 88.4
Mexicanero AG-SS-Auto & AG-SS-Best Scholar-Seeded PrStSu+SM 92.3 90.7 91.5

Nahuatl AG-SS-Auto & AG-SS-Best Scholar-Seeded PrStSu+SM 81.2 87.5 84.2
Wixarika AG-SS-Auto & AG-SS-Best Scholar-Seeded PrStSu+SM 84.7 79.5 82.0

Mayo AG-SS-Auto Scholar-Seeded PrStSu2a+SM 91.1 86.0 88.5
AG-SS-Best Scholar-Seeded PrStSu+SM 91.8 88.2 89.9

Table 3.10: The performance of our automatically selected configuration versus the oracle perfor-
mance (EMMA-2). The upper part reports the language-independent performance (AG-LI-Auto and
AG-LI-Best). The lower part reports the Scholar-Seeded performance (AG-SS-Auto and AG-SS-Best).
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and AG-SS-Auto result in lower gaps of 1.6% and 2.1% in the average F1-scores, respectively, as

compared to the corresponding oracle configurations.

3.5.4 Comparison to State-of-the-Art

We next compare the performance of our morphological-segmentation framework, MorphAGram,

to two strong baselines, Morfessor and MorphoChain (Section 3.5.1). We report the results in

Tables 3.11 and 3.12 using the BPR and EMMA-2 metrics, respectively, in terms of F1-score.

Language
Language-Independent Systems Scholar-Seeded and Oracle Systems

Baselines MorphAGram (Auto) MorphAGram (Oracle)

Morfessor MorphoChain AG-LI-Auto AG-SS-Auto AG-LI-Best AG-SS-Best

English 75.8 69.5 74.8 76.9 75.5 76.9
German 73.1 64.0 78.1 78.6 78.1 78.6
Finnish 62.9 55.7 71.6 72.8 71.6 72.8

Estonian 68.3 61.4 73.9 72.0 77.4 77.4
Turkish 64.9 60.6 79.8 76.8 79.8 76.8

Zulu 47.6 42.2 62.7 73.8 67.0 73.8
Japanese 79.6 61.8 79.8 79.9 79.8 80.0
Georgian 65.0 64.2 75.0 75.2 76.9 75.9

Arabic 78.2 77.1 82.5 82.4 82.5 82.4
Mexicanero 71.0 68.5 79.4 82.5 79.4 82.5

Nahuatl 60.3 56.1 67.0 69.1 67.0 69.1
Wixarika 72.9 38.7 76.4 77.9 76.4 77.9

Mayo 65.5 40.5 78.8 78.4 80.8 81.5

Average 68.1 58.5 75.4 76.6 76.3 77.3

Table 3.11: The performance of MorphAGram versus Morfessor and MorphoChain (BPR F1-score).
The best overall result per language is in bold. The best language-independent result per language
is underlined.

Considering the BPR metric, our scholar-seeded setup, AG-SS-Auto, outperforms our fully

unsupervised setup, AG-LI-Auto, in nine languages and on average, achieving an average relative

error reduction of 5.1%. As for the comparison to the baselines, AG-LI-Auto outperforms both

Morfessor and MorphoChain when evaluated on all the experimental languages except English,

with average relative error reductions of 22.8% and 40.7%, respectively. In the case of English,
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Language
Language-Independent Systems Scholar-Seeded and Oracle Systems

Baselines MorphAGram (Auto) MorphAGram (Oracle)

Morfessor MorphoChain AG-LI-Auto AG-SS-Auto AG-LI-Best AG-SS-Best

English 86.0 82.5 85.6 86.7 86.3 86.7
German 81.0 73.9 84.6 85.0 84.7 85.0
Finnish 73.1 68.9 77.6 78.3 77.6 78.3

Estonian 83.7 75.1 84.9 83.9 87.5 87.6
Turkish 61.2 61.1 69.9 68.4 69.9 68.4

Zulu 52.3 55.9 65.5 76.0 69.8 76.0
Japanese 85.8 76.3 86.5 86.1 86.5 86.1
Georgian 69.4 69.3 75.1 74.9 76.4 76.0

Arabic 85.7 85.3 88.4 88.4 88.4 88.4
Mexicanero 86.7 86.8 90.1 91.5 90.1 91.5

Nahuatl 80.9 81.0 83.4 84.2 83.4 84.2
Wixarika 73.3 62.4 80.4 82.0 80.4 82.0

Mayo 80.7 78.1 88.1 88.5 88.5 89.9

Average 76.9 73.6 81.5 82.6 82.3 83.1

Table 3.12: The performance of MorphAGram versus Morfessor and MorphoChain (EMMA-2
F1-score). The best overall result per language is in bold. The best language-independent result per
language is underlined.

Morfessor outperforms AG-LI-Auto by absolute 1.0%, while it comes second to AG-SS-Auto by

absolute 1.1%.

The biggest and smallest gaps between AG-LI-Auto and Morfessor occur in the cases of Turkish

and Japanese, respectively, where AG-LI-Auto achieves relative error reductions of 42.2% and

0.6%, respectively. On the other hand, the biggest and smallest gaps between AG-LI-Auto and

MorphoChain occur in the cases of Mayo and English, respectively, where AG-LI-Auto achieves

relative error reductions of 64.3% and 17.7%, respectively.

Considering the EMMA-2 metric, we observe similar patterns to those of the BPR metric, where

AG-LI-Auto outperforms both Morfessor and MorphoChain when evaluated on all the experimental

languages except English, with average relative error reductions of 20.1% and 30.1%, respectively.

However, the biggest gaps between AG-LI-Auto and the baselines occur in the cases of polysynthetic

languages, where AG-LI-Auto achieves a relative error reduction of 38.1% as compared to Morfessor
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in the case of Mayo and a relative error reduction of 48.0% as compared to MorphoChain in the

case of Wixarika.

It is worth noting that models that tend to consistently either under-segment or over-segment

across the whole lexicon achieve significantly better EMMA-2 scores than the corresponding

BPR ones, which is due to the one-to-many mappings in EMMA-2. This is one of the main

reasons why system rankings may differ depending on the evaluation metric. An example is the

considerable increase in F1-score from 40.5%, when using BPR, to 78.1%, when using EMMA-2,

when evaluating MorphoChain on Mayo, where MorphoChain does under-segmentation with 100%

precisions and low recalls at the detection of common affixes such as ka, su and wa.

One interesting finding is the ability of MorphAGram to handle polysynthetic languages, where

a word may contain several morphemes, in low-resource setups of about 1,000 available words.

Table 3.13 reports the performance of MorphAGram versus four supervised neural systems by

Kann et al. (2018), namely S2S (seq2seq), CRF, BestMTT (the best multi-task training system) and

BestDA (the best data-augmentation system), in terms of BPR F1-score when evaluating on TEST.

Language
Supervised Systems MorphAGram

S2S CRF BestMTT BestDA AG-LI-Auto AG-SS-Auto AG-LI-Best AG-SS-Best

Mexicanero 86.2 86.4 87.9 86.8 78.0 79.5 78.0 79.5
Nahuatl 72.7 74.9 73.9 73.2 72.3 74.4 73.6 74.4

Wixarika 79.6 79.3 80.2 81.6 76.8 78.6 76.8 78.6
Mayo 77.3 77.4 80.8 79.2 81.0 80.4 81.1 80.4

Table 3.13: The performance of MorphAGram versus the supervised neural systems by Kann et al.
2018) (BPR F1-score). The best result per language is in bold.

MorphAGram outperforms the supervised neural systems by Kann et al. (2018) when evaluated

on Mayo using the same training and evaluation sets, with the main difference that we do not use

the gold segmentation for training. In the case of Nahuatl, AG-SS-Auto is only 0.5% behind the best

supervised system, CRF, while the gaps in the cases of Mexicanero and Wixarika are relatively

small given the supervised nature of the baselines.
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3.5.5 Impact of Linguistic Priors

Table 3.14 reports the morphological-segmentation performance with the incorporation of linguistic

priors into the PrStSu+SM grammar in the form of a grammar definition, for Japanese, and linguist-

provided affixes, for Georgian and Arabic. The results are compared to those of the corresponding

regular settings using the BPR and EMMA-2 metrics. The use of linguistic priors consistently

improves the performance in all the settings, and all the improvements are statistically significant

for p-value < 0.01.

Language Setting
BPR EMMA-2

Precision Recall F1-Score Precision Recall F1-Score

Japanese

Standard 81.7 77.9 79.8 91.0 81.9 86.2
Cascaded 81.5 78.2 79.8 91.0 82.4 86.5
Scholar-Seeded 82.3 77.6 79.9 91.5 81.4 86.1
Standard-LS 83.1 79.0 81.0 91.7 82.4 86.8
Cascaded-LS 82.4 78.9 80.6 91.4 82.5 86.7
Scholar-Seeded-LS 83.0 78.6 80.8 91.7 82.3 86.8

Georgian

Standard 82.0 69.1 75.0 88.4 65.9 75.5
Cascaded 82.9 71.7 76.9 88.8 67.8 76.9
Scholar-Seeded 84.3 67.9 75.2 90.0 64.8 75.3
Scholar-Seeded-Ling 84.6 82.3 83.5 88.2 78.5 83.1

Arabic

Standard 77.5 88.2 82.5 88.1 88.7 88.4
Cascaded 76.3 86.4 81.1 88.1 86.8 87.4
Scholar-Seeded 76.8 88.9 82.4 87.5 89.4 88.4
Scholar-Seeded-Ling 81.4 96.2 88.2 89.0 96.5 92.6

Table 3.14: The performance on Japanese, Georgian and Arabic with and without the use of
linguistic priors within the PrStSu+SM grammar (BPR and EMMA-2). LS = Language-specific
grammar. Ling = Linguist-provided affixes. The best result per language-metric pair is in bold.

In the case of Japanese, the use of a language-specific grammar (Figure 3.4) leads to the best

performance in terms of precision, recall and F1-score, achieving relative error reductions of

6.0%, 4.2% and 4.5% in BPR F1-score in the Standard, Cascaded and Scholar-Seeded settings,

respectively, with corresponding EMMA-2 relative error reductions of 4.2% 1.5% and 4.5%,

respectively.
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In the case of Georgian, the use of linguist-provided affixes yields the best results, with relative

error reductions of 33.2% and 31.5% in BPR and EMMA-2 F1-score, respectively, as compared

to the regular Scholar-Seeded setting that uses affixes of lower quality. However, the regular

Scholar-Seeded setting achieves the best precision when evaluated using EMMA-2.

A similar pattern is seen in the case of Arabic, where the use of linguist-provided affixes yields

the best performance in terms of precision, recall and F1-score, achieving relative error reductions of

32.9% and 35.9% in BPR and EMMA-2 F1-score, respectively, as compared to the Scholar-Seeded

setting.

The use of linguist-provided affixes impacts recall more than precision, in both Georgian and

Arabic, as the sampler gets informed about the most common affixes in the underlying language,

which represent the majority of the affixes seen in the gold segmentation. However, precision also

improves as the probability of utilizing existing production rules that represent the seeded affixes is

usually higher than the probability of expanding new subtrees representing unseen affixes.

3.5.6 Performance of Multilingual Morphological Segmentation

We experiment with the following three multilingual setups:

• Finnic-Uralic: We combine the Finnish and Estonian lexicons as both are Uralic languages

that belong to the Finnic language family. We test low-resource setups where we combine

500, 1,000, 5,000 and 10,000 words from each language.

Mexicanero+Nahuatl: We combine the Mexicanero and Nahuatl lexicons as they are the

closest two polysynthetic languages in our set of experimental languages, where Mexicanero

is sometimes regarded as a dialect of Nahuatl.

Uto-Aztecan: We combine the lexicons of the four Uto-Aztecan polysynthetic languages we

experiment with (Mexicanero, Nahuatl, Wixarika and Mayo).

We examine our low-resource multilingual setups using the Standard PrStSu+SM configuration

and report the results in Table 3.15 using the BPR and EMMA-2 metrics.
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Language Training Setup
BPR EMMA2

Precision Recall F1-Score Precision Recall F1-Score

Finnish Finnish (500) 59.3 71.6 64.9 70.8 76.9 73.7
Finnish Finnic-Uralic (500) 56.2 70.4 62.5 69.2 75.3 72.1

Finnish Finnish (1,000) 59.7 71.7 65.1 71.5 76.7 74.0
Finnish Finnic-Uralic (1,000) 56.9 70.4 62.9 70.1 75.2 72.6

Finnish Finnish (5,000) 62.7 71.6 66.9 74.8 75.3 75.0
Finnish Finnic-Uralic (5,000) 61.8 69.2 65.3 75.3 72.6 73.9

Finnish Finnish (10,000) 67.1 71.7 69.3 79.3 74.2 76.6
Finnish Finnic-Uralic (10,000) 68.4 67.9 68.1 81.5 70.8 75.8

Estonian Estonian (500) 32.6 88.2 47.5 41.5 93.9 57.6
Estonian Finnic-Uralic (500) 34.1 86.4 48.9 45.8 92.6 61.2

Estonian Estonian (1,000) 33.2 87.8 48.2 43.2 93.1 59.0
Estonian Finnic-Uralic (1,000) 35.6 87.3 50.6 47.0 92.2 62.3

Estonian Estonian (5,000) 44.2 87.2 58.4 56.8 92.5 70.2
Estonian Finnic-Uralic (5,000) 45.7 86.1 59.7 59.4 91.5 72.0

Estonian Estonian(10,000) 57.1 85.4 68.4 71.4 91.7 80.3
Estonian Finnic-Uralic (10,000) 56.8 85.3 68.2 71.9 91.0 80.3

Mexicanero Mexicanro 77.9 81.0 79.4 91.2 89.0 90.1
Mexicanero Mexicanero+Nahuatl 78.9 79.8 79.3 92.7 88.4 90.4
Mexicanero Uto-Aztecan 77.5 77.2 77.4 92.4 86.3 89.2

Nahuatl Nahuatl 60.8 74.6 67.0 81.4 85.6 83.4
Nahuatl Mexicanero+Nahuatl 60.1 74.5 66.5 81.5 85.5 83.5
Nahuatl Uto-Aztecan 59.6 72.7 65.5 80.8 83.6 82.1

Wixarika Wixarika 82.7 70.9 76.4 85.9 75.7 80.4
Wixarika Uto-Aztecan 79.9 68.4 73.7 85.3 71.8 78.0

Mayo Mayo 78.4 79.6 78.8 88.5 87.7 88.1
Mayo Uto-Aztecan 75.6 76.9 76.2 85.7 85.8 85.7

Table 3.15: The performance of the low-resource multilingual setups. The best result per language-
setup pair is in bold. The improvements due to the use of a multilingual setup that are statistically
significant for p-value < 0.01 are circled.

The Finnic-Uralic multilingual training setup improves the performance for Estonian when

training on small datasets of 500 and 1,000 words, achieving relative error reductions of 2.5% and

4.5% in BPR F1-score, respectively, and corresponding larger EMMA-2 reductions of 8.6% and

8.0%, respectively. However, the improvement becomes statistically insignificant for p-value < 0.01
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when increasing the sizes of the merged lexicons to 5,000 words, while the monolingual setup

surpasses the multilingual one with further increasing the sizes of the merged lexicons to 10,000

words.

For the polysynthetic multilingual setups, none of the EMMA-2 improvements for Mexicanero

and Nahuatl in the Mexicanero+Nahuatl multilingual training setup is statistically significant for

p-value < 0.01, and thus the combination of the Mexicanero and Nahuatl lexicons does not benefit

either language. On the other hand, the Uto-Aztecan setup consistently results in performance drops

for the four polysynthetic languages.

In the cases where multilingual training helps, the performance improves due to an increase

in precision. This suggests that the addition of data points from another related language might

decrease the number of incorrectly expanded subtrees. Another observation is that combining the

lexicons of too many languages, like in the case of the Uto-Aztecan setup, does not benefit any of

the underlying languages as too many data points become misleading to the sampler and result in

over-segmentation.

3.5.7 Learning Curves

We examine the performance of the Standard (STD) and Scholar-Seeded (SS) PrStSu+SM configu-

rations on all the experimental languages except the low-resource polysynthetic ones when training

on different sizes of 500, 1,000, 5,000, 10,000, 20,000, 30,000, 40,000 and 50,000 words. The

learning curves are depicted in Figure 3.7 based on BPR F1-score.

At small training sets of 500 and 1,000 words, SS outperforms STD except in Arabic. With the

addition of more training data, there are four possible scenarios: 1) SS consistently takes the lead

(English, Finnish and Zulu); 2) STD and SS exchange positions and end up performing similarly at

the largest experimental training sets (German and Georgian); 3) STD and SS exchange positions

until one setting supersedes the other (SS in Turkish and STD in Estonian); and 4) SS and STD

behave almost similarly across the different sizes (Japanese and Arabic).

In the cases of English and Arabic, the performance of STD consistently increases with the
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Figure 3.7: The learning curves of the Standard and Scholar-Seeded PrStSu+SM configurations
(BPR F1-score)

addition of more training examples. Otherwise, the performance fluctuates with either an upward

pattern (German, Estonian, Turkish and Georgian) or a downward one (Finnish and Zulu), while the

pattern is nearly flat in the case of Japanese.

The possible downward pattern happens when a language tends to have a large number of

morphs per word, and thus the addition of data points confuses the sampler, causing excessive

unnecessary expansions of new subtrees. This explains the downward trends in Finish and Zulu,

which are the languages with the highest average number of morphs per word (Figure 3.5a). On the

other hand, the flat pattern in Japanese indicates early saturation, where the sampler expands the

majority of the new subtrees after examining a few hundreds of words.

It is noteworthy to mention that the performance of MorphAGram when only using 500 words

for training outperforms the performance of the baselines, Morfessor and MorphoChain, when they

utilize 50,000 words for training in the cases of English, German, Zulu, Japanese and Georgian. This
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is because MorphAGram learns well from a small amount of data, which is why it learns efficient

morphological-segmentation models for the polysynthetic languages in low-resource setups.

3.5.8 Error Analysis of Morphological Segmentation

3.5.8.1 Error Analysis in the Fully Unsupervised Setting

Table 3.16 lists some examples of correctly and incorrectly segmented words by our main MorphA-

Gram setups, AG-LI-Auto and AG-SS-Auto, for each experimental language. We next discuss the

most noticeable phenomena based on the segmentation outputs of MorphAGram, Morfessor and

MorphoChain and using the BPR metric.

English The performance of MorphAGram, Morfessor and MorphoChain noticeably differs across

the six most common affixes, namely ’s, ’, s (both the nominal plural suffix and the verbal present

suffix), er, ed and ing. The three systems achieve 100% F1-scores at the detection of the ’s suffix,

while they all tend to merge the ’ suffix with the preceding s suffix. However, both Morfessor and

MorphoChain outperform AG-LI-Auto and AG-SS-Auto at the detection of the s suffix with F1-scores

of 70.7% and 89.8% as opposed to 61.5% and 67.7%, respectively In contrast, AG-LI-Auto and

AG-SS-Auto considerably outperform Morfessor and MorphoChain at the detection of the er, ed

and ing suffixes with average F1-scores of 91.9% and 92.3%, respectively, as opposed to 67.7%

by Morfessor and 80.7% by MorphoChain. Moreover, MorphAGram is able to detect several

suffixes that both Morfessor and MorphoChain consistently fail to detect, such as iz, or and at.

MorphoChain further fails to detect several suffixes, such as ion, ant and ance. On another hand,

one common mistake by MorphAGram and MorphoChain is the segmentation of the ending e as a

separate suffix. This is because in several cases, the removal of an ending e forms another valid

word, e.g., as in made and huge.

German AG-LI-Auto and AG-SS-Auto are efficient at detecting the 10 most frequent affixes,

which are all suffixes, with average F1-scores of 69.7% and 77.0%, respectively, as opposed to
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Language word Gold Seg. AG-LI-Auto Seg. AG-SS-Auto Seg.

English
dismemberment’s dis+member+ment+’s dis+member+ment+’s dis+member+ment+’s
foot-faulting foot+-+fault+ing foot+-+fault+ing foot+-+fault+ing
peelers’ peel+er+s+’ peel+er+s’ peel+er+s’
necklace neck+lace necklac+e necklace

German
abzugrenzen ab+zu+grenz+en ab+zu+grenz+en ab+zu+grenz+en
anfeuchtet an+feucht+et an+feucht+et an+feucht+et
aufenthalte auf+ent+halt+e auf+enthalt+e auf+enthalt+e
verträglichkeiten ver+träg+lich+keit+en verträg+lichkeit+en verträg+lich+keit+en

Finnish
taudinkuvat taudi+n+kuva+t taudi+n+kuva+t taudi+n+kuva+t
peruskorossa perus+koro+ssa perus+koro+ssa perus+koro+ssa
pressujen pressu+j+en pressu+jen press+ujen
oikeudenhaku oike+ude+n+haku oikeude+n+haku oikeude+n+haku

Estonian
täieõiguslikud täie+õigus+liku+d täie+õigus+liku+d täie+õigus+liku+d
päikesepaistelises päikese+paiste+lise+s päikese+paiste+lise+s päikese+paiste+lise+s
ragisesid ragise+sid ragise+sid ragise+s+id
raudteejaamades raud+tee+jaama+des raudtee+jaama+des raudtee+jaama+de+s

Turkish

maksadımızı maksad+ımız+ı maksad+ımız+ı maksad+ımız+ı
püniversitelerle püniversite+ler+le püniversite+ler+le püniversite+ler+le
bozmasıydı boz+ma+sı+ydı boz+ması+ydı boz+ması+ydı
türkerden türker+den türker+den türk+er+den

Zulu
naloya na+lo+ya na+lo+ya na+lo+ya
angafike a+nga+fik+e a+nga+fike a+nga+fik+e
ngathola ng+a+thol+a nga+thola nga+thol+a
bayibona ba+yi+bon+a ba+yibona ba+yi+bon+a

Japanese
終わらせる 終わ+らせ+る 終わ+らせ+る 終わ+らせ+る
来る 来+る 来+る 来+る
散れません 散+れ+ま+せん 散+れ+ません 散+れ+ません
惚れました 惚れ+ま+した 惚れ+ました 惚れ+ました

Georgian
na˛ami na+˛am+i na+˛am+i na+˛am+i
s˚adionze s˚adion+ze s˚adion+ze s˚adion+ze
vizam v+i+z+am viz+am viz+am
tve˝ic tve+˝i+c tve+˝i+c tve+˝ic

Arabic
¢�d�As�¤ £+�+d�As�+¤ £+�+d�As�+¤ £+�+d�As�+¤
�A§d�t�� ��+©d��+�� ��+©d��+�� ��+©d��+��

TZwf�� ­+_wf�� ­+_wf�+� ­+_wf�+�
�wqtF¤ �w�+�+x+¤ �w�+
F+¤ �w�+
F+¤

Mexicanero
tikimpiyal ti+kim+piya+l ti+kim+piya+l ti+kim+piya+l
nibolsaiyo ni+bolsa+iyo ni+bolsa+iyo ni+bolsa+iyo
titakwatikaá ti+ta+kwa+ti+ka+á ti+ta+kwa+tikaá ti+takwa+tika+á
ukitasa u+ki+tasa u+ki+ta+sa u+ki+ta+s+a

Nahuatl
tikintlatlanilia ti+kin+tla+tlanilia ti+kin+tla+tlanilia ti+kin+tla+tlanilia
onisiaw o+ni+siaw o+ni+siaw o+ni+siaw
nankochtikate nan+koch+tika+te nan+kochtika+te nan+kochtika+te
otinechtiak o+ti+nech+tia+k o+ti+ne+chtia+k oti+nech+tia+k

Wixarika
kene’a’eriwatü ke+ne+’a+’eriwa+tü ke+ne+’a+’eriwa+tü ke+ne+’a+’eriwa+tü
püneniwe pü+ne+niwe pü+ne+niwe pü+ne+niwe
tsitepa’u tsi+te+p+a+’u tsi+tepa+’u tsi+te+pa’u
neputatsukaxi ne+pu+ta+tsuka+xi ne+pu+tatsu+ka+xi ne+puta+tsu+ka+xi

Mayo
usimpo usi+m+po usi+m+po usi+m+po
techowatuari techowa+tua+ri techowa+tua+ri techowa+tua+ri
ßohoßareka ßoho+ßa+re+ka ßoho+ßare+ka ßoho+ßare+ka
sikaye’wi sika+ye+’wi sika+ye+’wi si+ka+ye+’wi

Table 3.16: Samples of correct and incorrect morphological-segmentation examples
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considerably lower F1-scores of 53.8% and 53.4% by Morfessor and MorphoChain, respectively.

Regarding the prefixes, both MorphAGram and Morfessor can recognize the prefixes an, ab and auf

with high F1-scores of at least 83.3% despite their relatively low frequencies, while MorphoChain

is significantly less efficient at detecting the three affixes, with a maximum F1-score of 71.4%. On

another hand, MorphAGram is able to recognize several affixes that the other systems always fail to

detect. For instance, MorphAGram is able to detect the affixes end, recht and et with F1-scores of at

least 50.0%, while Morfessor consistently fails to detect end and et, and MorphoChain does not

recognize end and recht. However, the three systems tend to generally under-segment in the case of

German.

Finnish AG-LI-Auto and AG-SS-Auto significantly outperform Morfessor and MorphoChain at the

detection of the four most common morphs, which are all one-letter ones, namely i, n, t and a, with

average F1-scores of 57.9% and 58.9%, respectively, as opposed to 34.8% by Morfessor and 40.6%

by MorphoChain. These morphs constitute 17.1% of all the morphs, which is the main reason

behind the superiority of MorphAGram in the case of Finnish. In addition, MorphAGram is efficient

at detecting several long morphs of three or more letters that Morfessor and MorphoChain usually

fail to detect, such as ssa, ksi, ssä and stä. In addition, the three systems suffer at the detection of

some frequent morphs, such as j, with a maximum F1-score of 3.8% by AG-SS-Auto and Morfessor,

and u, with a maximum F1-score of 16.3% by AG-SS-Auto. However, similarly to German, the

three systems tend to generally under-segment in the case of Finnish.

Estonian AG-LI-Auto outperforms AG-SS-Auto at the detection of the 10 most frequent morphs,

achieving an average F1-score of 87.7%, as opposed to 77.2% by AG-SS-Auto, while Morfessor

and MorphoChain perform relatively similar to AG-SS-Auto. However, the performance of the

three systems on the most common morphs in Estonian is significantly better than on those of the

other languages. One reason is that only two morphs in the 10 most frequent ones are relatively

ambiguous, namely ks and ga, where their surface forms represent morphs 52.2% and 45.9% of the

time they appear, respectively. This is in addition to the fact that Estonian tends to have a small
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number of morphs per word, compared to the other experimental languages (Section 3.4). On

another hand, AG-SS-Auto consistently fails to detect the suffixes sid and des, where it tends to

segment them as s+id and de+s, respectively, while AG-LI-Auto achieves F1-scores of 98.2% and

90.3% at the detection of the two suffixes, respectively.

Turkish MorphAGram shows better detection of one-letter affixes than Morfessor and Mor-

phoChain. For instance, AG-LI-Auto and AG-SS-Auto detect the most common three one-letter

affixes, namely i, ı and t, with average F1-scores of 57.1% and 63.1%, respectively, as opposed to

17.5% and 32.4% by Morfessor and MorphoChain, respectively. However, the detection of these

affixes remains a challenge because they are highly ambiguous as their surface forms usually appear

as part of longer morphs. On another hand, the three systems detect the most frequent morph, ler (a

plural suffix), with 100% precisions. However, ler is part of longer morphs 25.1% of the time it

appears, which lowers the recalls to 58.8%, 32.0% and 64.5% by MorphAGram, Morfessor and

MorphoChain, respectively. Most of such under-segmentation errors occur when ler is followed

by a vowel. Another interesting case is the morph ma. Despite the fact that ma is the sixth most

frequent morph in the data, the three systems tend to merge it with sı due to the frequent occurrence

of ması. Another case is the suffix den, where AG-LI-Auto identifies it correctly with a 100.0%

F1-score despite its high degree of ambiguity, where den is a suffix only 47.5% of the time it occurs,

while Morfessor and MorphoChain achieve noticeably lower corresponding F1-scores of 62.5%

and 88.5%, respectively. However, the three systems tend to generally under-segment in the case of

Turkish.

Zulu One observed phenomenon in the case of Zulu is that our MorphAGram setups vary widely

in their performance. For instance, while AG-SS-Auto is able to detect the two most frequent

affixes, namely a and e, with F1-scores of 75.0% and 73.2%, respectively, AG-LI-Auto achieves

significantly lower F1-scores of 22.5% and 37.9%, respectively. However, AG-SS-Auto is more

efficient at detecting the two affixes when they appear at the end of a word. In contrast, Morfessor

and MorphoChain achieve lower F1-scores on the two morphs, which in turn affects the performance
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of both systems on Zulu as the two affixes constitute 23.1% of the morphs. Another interesting case

is the prefix nga, which AG-LI-Auto and AG-SS-Auto are able to identify with F1-scores of 79.0%

and 72.7%, respectively, which is supported by its low degree of ambiguity and high frequency.

However, both Morfessor and MorphoChain fail to detect the prefix most of the time, with low

F1-scores of 21.8% and 28.1%, respectively. On another hand, MorphAGram consistently fails to

detect the affix ng as its surface form is usually part of other affixes such as nga and ngi, while

Morfessor and MorphoChain can detect the affix with recalls of 7.0% and 35.2%, respectively.

Another observation is that AG-SS-Auto achieves a 100% F1-score on several affixes that AG-LI-Auto

and the baselines always fail to detect, such as el, is, bon and ek.

Japanese MorphAGram, Morfessor and MorphoChain achieve relatively low F1-scores up to

59.6% at the detection of the two most frequent morphs, namelyな andい. Moreover, MorphAGram

always fails at the detection ofま, the third most frequent morph, on which both Morfessor and

MorphoChain achieve a relatively low F1-score of 22.2%. Moreover, MorphoChain always fails to

detect several morphs, such asった andさせ. On another hand, there are several affixes that only

AG-LI-Auto can detect with 100.0% F1-scores, such asる and来, which rank fourth and sixteenth

in terms of frequency, respectively. However, the three systems consistently fail at the detection

of the suffixesせん andした. It is also observed that most of the errors made by Morfessor and

MorphoChain are due to under-segmentation; especially, 15 out of the 20 most frequent morphs are

one-letter ones. However, the under-segmentation in Morfessor is less excessive and allows for the

detection of long morphs of three or more letters, such asかった andしょう.

Georgian AG-LI-Auto and AG-SS-Auto significantly outperform Morfessor and MorphoChain

at the detection of the most common one-letter morphs, namely i, a, s, e, m, o and v, with average

F1-scores of 57.4% and 57.9%, respectively, as opposed to 37.3% by Morfessor and 42.0% by

MorphoChain. However, these morphs are highly ambiguous and difficult to detect. For instance,

the three systems achieve low recalls, up to 50.6%, at detecting the two most frequent morphs,

namely i and a, where their surface forms appear as part of longer morphs, such as ˝i, da and
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ga. MorphAGram can also detect several affixes that Morfessor and MorphoChain consistently

fail to detect, such as av, el and il. On another hand, the suffixes ze and ad are the mostly

recognized affixes among the most frequent ones, with up to a 100.0% F1-score by MorphAGram

at the detection of ze. However, the three systems tend to generally under-segment in the case of

Georgian.

For the performance of AG-LI-Auto with respect to the POS categories assigned to the words

in the gold standard, AG-LI-Auto achieves F1-scores of 73.4%, 68.5%, 82.8% and 83.6% on the

nominal, verbal, numeral and “other” categories, respectively. However, while the detection of the

verbal category witnesses the highest precision of 95.6%, it suffers the lowest recall of 53.4%. In

contrast, the detection of the nominal category has a high recall of 77.3%.

Arabic MorphAGram outperforms Morfessor and MorphoChain at the detection of the common

affixes ­ and �, which rank third and fourth in terms of frequency, respectively, and constitute 9.9%

of the morphs. AG-LI-Auto and AG-SS-Auto achieve average F1-scores of 89.1% and 89.4% on

the two morphs, respectively, as opposed to 59.4% and 62.3% by Morfessor and MorphoChain,

respectively. However, the three systems behave similarly at the detection of the two most common

affixes, namely �� and ¤. On another hand, one common mistake by MorphAGram and MorphoChain

is the segmentation of the beginning �. This is because many Arabic adjectives start with �, where

it is actually part of the stem. In addition, AG-LI-Auto and MorphoChain tend to over-segment �

when it is part of a stem, confusing it with the prefix �. Moreover, AG-SS-Auto consistently fails

to detect the verbal prefix x, where it merges it with the following morph. It is also observed that

some segmentation errors are actually correct regardless of the context, while the gold segmentation

is based on the contexts seen in the PATB. An example is the word ¢bK�, which means either ¢bJ+�

(she/it looks like) or ¢bK� (resembling).

Mexicanero MorphAGram outperforms Morfessor and MorphoChain at the detection of the eight

most common morphs, where AG-LI-Auto and AG-SS-Auto achieve average F1-scores of 85.1%

and 84.5%, respectively, as opposed to 26.5% by Morfessor and 9.1% by MorphoChain. However,
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none of the systems is able to detect the ninth most common morph, ka. Also, several morphs

are only recognizable by MorphAGram, such as ki and nich, which rank first and sixth in terms

of frequency, respectively. The errors made by Morfessor and MorphoChain are mainly due to

under-segmentation, where the surface forms of several morphs are part of longer ones, which in

turn results in 100% precisions and low recalls at the detection of those morphs.

Nahuatl AG-LI-Auto and AG-SS-Auto significantly outperform Morfessor and MorphoChain

at the detection of the 10 most common morphs, with average F1-scores of 70.0% and 77.4%

as opposed to 24.2% and 5.5%, respectively. Moreover, MorphAGram is the only system that

can detect the morphs k and tla, which rank second and sixth in terms of frequency, respectively.

However, none of the systems can achieve an F1-score of 100.0% at the detection of any of the seven

most common morphs. On the other hand, MorphoChain consistently fails to detect 15 morphs out

of the 20 most common ones due to severe under-segmentation. However, the three systems tend to

generally under-segment in the case of Nahuatl.

Wixarika AG-LI-Auto and AG-SS-Auto detect the two most frequent affixes, namely pü and ne,

efficiently with average F1-scores of 70.7% and 97.5%, respectively. In contrast, Morfessor and

MorphoChain detect the two affixes with lower average F1-scores of 63.3% and 15.3%, respectively.

Moreover, MorphoChain consistently fails to detect the next two most frequent affixes, namely ti

and ka. In addition, while MorphAGram can detect four out of the 10 most frequent morphs with

F1-scores of at least 80.0%, MorphoChain shows a high degree of under-segmentation, where it

achieves a 0.0% F1-score at the detection of seven out of the 10 most frequent morphs and up to

18.2% in F1-score on the rest of the morphs. However, none of the systems can detect the common

affixes p, e and r, which rank fifth, sixth and eleventh in terms of frequency, respectively. However,

the three systems tend to generally under-segment in the case of Wixarika.

Mayo MorphAGram outperforms Morfessor and MorphoChain at the detection of the two most

common morphs, namely m and k, where AG-LI-Auto and AG-SS-Auto achieve average F1-scores
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of 85.8% and 85.4%, respectively, as opposed to 53.5% and 0.0% by Morfessor and MorphoChain,

respectively. In fact, MorphoChain achieves a 0.0% F1-score at the detection of seven out of the 10

most frequent morphs, which constitute 24.1% of the morphs. Moreover, MorphAGram achieves a

100% F1-score on several morphs of high degrees of ambiguity, such as po and ri, whose surface

forms represent the morphs only 57.1% and 43.8% of the time they occur, respectively. However,

none of the systems is able to detect the morphs ßa and re.

3.5.8.2 Error Analysis when Using Linguistic Priors

We next analyze the main lines of improvements due to the incorporation of linguistic priors for

Japanese, Georgian and Arabic.

Japanese The use of linguistic priors in the form of a grammar definition improves the detection

of several affixes. For example, the affixesれば,踊,通,定め,終わ,り andられ receive relative

error reductions of more than 50.0% in F1-score. Two interesting cases are the affixesれば andし

た, which the regular Standard setting consistently fails to detect, but they can be detected through

the use of the Japanese language-specific grammar. In addition, the language-specific grammar

outperforms the language-independent one at the detection of stems because of the explicit modeling

of compounding. For instance, the detection of the common stemられ (be) improves by a relative

error reduction of 53.8% in F1-score.

Georgian The incorporation of linguist-provided affixes improves the recognition of the 10 most

common affixes from 52.2% to 81.1% in F1-score on average. Moreover, the detection of the affixes

ze, ˝i, eb, mo, ga, d, ob, is and s significantly improves by relative error reductions of more than

80.0% in F1-score. These affixes constitute 19.8% of the morphs in Georgian, which explains the

noticeable improvements with the incorporation of linguistic priors. However, the performance

on the affixes u and t, for instance, drops by absolute F1-scores of 30.7% and 2.5%, respectively,

although they are provided as linguistic priors. This is because the surface forms of these affixes are

part of other longer ones that the sampler mistakenly picks.
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Seeding linguist-provided affixes achieves F1-scores of 81.6%, 80.4%, 86.3% and 88.3% on

the nominal, verbal, numeral and “other” categories, respectively, which is an average relative

error reduction of 29.3% as compared to the Standard setting. In fact, the verbal and nominal

categories benefit from the linguistic priors the most with relative error reductions of 37.7% and

31.1%, respectively.

Arabic The use of linguistic priors in the form of linguist-provided affixes improves the detection

of the 10 most common affixes from 86.9% to 95.2% in F1-score on average. In fact, the detection

of several affixes improves significantly, where the affixes ��, ¤, ­, 
, �, �§,  ¤ and �¤ receive relative

error reductions of at least 80.0% in F1-score. These affixes constitute 34.9% of the morphs, which

explains the considerable improvements due to the use of linguistic priors. Two interesting cases are

the suffix �¤ and the prefix x, which the regular Standard setting consistently fails to detect, while

the use of linguist-provided affixes allows for their detection with F1-scores of 100.0% and 50.0%,

respectively.

3.6 Conclusion

In this chapter, we introduced MorphAGram, a publicly available framework for unsupervised

and minimally supervised morphological segmentation that is based on Adaptor Grammars (AGs),

where PCFGs are utilized to model word structure.

We proposed several language-independent grammar definitions and defined three learning

settings: Standard, Scholar-Seeded and Cascaded. While the Standard setting is fully unsupervised,

the Scholar-Seeded one utilizes linguistic knowledge by seeding affixes that are generated from

language resources into the grammars. The Cascaded setting is a fully unsupervised self-training

approach that automatically learns linguistic knowledge before seeding it into the grammars.

We next proposed a new approach for the selection of the optimal configuration (a learning

setting and a grammar) for an unseen language. This includes two setups: 1) AG-LI-Auto: a fully

unsupervised setup; and 2) AG-SS-Auto: a minimally-supervised setup that applies the Scholar-
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Seeded setting. In addition, we introduced new approaches for the incorporation of linguistic priors

within AGs: 1) designing a language-specific grammar; and 2) seeding linguist-provided affixes of

high quality. Moreover, we examined multilingual morphological segmentation in low-resource

setups, where the lexicons of different related languages are combined.

We evaluated MorphAGram on 13 languages of diverse typologies, namely English, German,

Finnish, Estonian, Turkish, Zulu, Japanese, Georgian, Arabic, Mexicanero, Nahuatl (Mexicano),

Wixarika (Huichol) and Mayo (Yorem Nokki), where we utilized high-resource and low-resource

setups. Our evaluation showed that AG-LI-Auto outperforms both Morfessor and MorphoChain,

two strong baselines, with average relative error reductions of 22.8% and 40.7% in BPR F1-score,

respectively. We also showed that linguistic priors help, where we achieved improvements upon the

design of a language-specific grammar for Japanese and the seeding of linguist-provided affixes for

Georgian and Arabic. Finally, in multilingual morphological segmentation, we showed performance

gains for Estonian upon combining small Finnish and Estonian lexicons.

We conducted extensive analyses where we analyzed the morphological characteristics of the

experimental languages and how the performance changes across datasets of various sizes. We also

reported the most noticeable phenomena upon analyzing the segmentation output of MorphAGram

as compared to the segmentation outputs by Morfessor and MorphoChain for each language. In

addition, we analyzed the segmentation outputs upon incorporating linguistic priors for Japanese,

Georgian and Arabic.
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Chapter 4

Unsupervised Cross-Lingual Part-of-Speech Tagging

4.1 Overview

Unsupervised cross-lingual part-of-speech (POS) tagging via annotation projection relies on the use

of parallel data to project POS tags from a source language for which a POS tagger is accessible

onto a target language across word-level alignments. The projected tags then form the basis for

learning a POS model of the target language.

POS tagging via annotation projection has a long research history that investigates several

unsupervised and semi-supervised approaches (Yarowsky et al., 2001; Fossum and Abney, 2005;

Das and Petrov, 2011; Duong et al., 2013; Agić et al., 2015; Agić et al., 2016; Buys and Botha,

2016). All these approaches either use domain-appropriate and/or large parallel data, rely on

multiple source languages to project from or exploit linguistic priors or annotations in the target

language. On the contrary, we focus on fully unsupervised learning in truly low-resource scenarios,

where we do not require access to domain-specific or large parallel data, parallel data of more than

two languages nor linguistic information on the target side. We use the Bible as the translation

source as it is available in a large number of languages, many of which are low-resource and meets

our low-resource assumptions: small in size and out-of-domain with respect to the evaluation sets.

One major concern is that annotation projection suffers from several issues such as bad trans-

lation, alignment mistakes and translation phenomena that do not fit the assumptions of word-

alignment models. Moreover, there is no one-to-one correspondence between the POS tags across

two different languages as languages differ in their morphological and syntactic typologies. This

could result in null alignments and noisy and unreliable annotations. As a result, a key considera-

tion for all the previous approaches in the literature is how to obtain high-quality alignments and
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projected annotations towards clean training instances in the target language.

�DA������ LKHEPE?=H�����
 LNEKNEPEAO������� IQOP������ >A������ OAP������� >U������ PDA������
L=NHE=IAJP�������
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(a) One-to-one English-to-German alignments

������� SE@A�����
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NALKNP�������
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 L=PRENPEJK������� LN=JAãEIą�������

���������PDA������

���������

(b) Non-one-to-one English-to-Lithuanian alignments

Figure 4.1: Word-based alignment examples

Figure 4.1a shows an example of perfect one-to-one alignments from English to German, where

each English word maps to one corresponding German word and vice versa. However, in practice,

this is rarely the case. Null, one-to-many and many-to-one alignments are unsurprising. Figure 4.1b

shows an example of aligning an English sentence to its Lithuanian translation, where some English

words remain unaligned (a and the), while multiple English words map to one Lithuanian word

(wide, of and European map to didelEuropos).

Our contribution is threefold:

• We present a framework for unsupervised cross-lingual POS tagging 1 in which we standardize

the process of annotation projection in a robust approach that exploits and expands the best

practices in the literature, where we aim to produce reliable annotations towards efficient

POS models. This includes, but is not limited to, the use of bidirectional alignments, coupling

token and type constraints on the target side and scoring the annotated sentences for the

selection of reliable training instances (Section 4.2.1).
1https://github.com/rnd2110/unsupervised-cross-lingual-POS-tagging
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• We use transformer-based contextualized word embeddings to train POS models based on

the projected annotations, which is, to our knowledge, the first work that utilizes transformer-

based contextualized embeddings for unsupervised cross-lingual POS tagging via annotation

projection. We design a rich BiLSTM (Hochreiter and Schmidhuber, 1997) neural architecture

that combines word embeddings, affix embeddings and word-cluster embeddings, along with

special handling for the null assignments resulting from missing and rejected alignments and

non-overlapping token and type constraints (Section 4.2.2).

• We conduct extensive evaluation and analysis using six commonly spoken source languages,

namely English, Spanish, French, German, Russian and Arabic, and 14 typologically diverse

target languages, namely, Afrikaans, Amharic, Basque, Bulgarian, Finnish, Georgian, Hindi,

Indonesian, Kazakh, Lithuanian, Persian, Portuguese, Telugu and Turkish, for a total of 84

target-source language pairs, where we introduce a new gold-standard POS-labeled dataset

for Georgian (Sections 4.3 and 4.4).

We show that our approach is highly efficient for POS tagging in a fully unsupervised setup,

where it achieves an average POS accuracy of 75.5% across all the language pairs. We also

demonstrate significant improvements over previous work, both unsupervised and semi-supervised.

Additionally, we study ablation setups that lack some of the exploited computational and linguistic

resources and show that our approach can still perform relatively well in such restricted settings

(Section 4.4).

We show that our models are able to predict at least as many as 85.0% of the correct decisions

made by the corresponding supervised ones in eight target languages, and thus annotation projection

might provide an alternative to supervised learning, which is usually costly and time consuming. We

also investigate how much manually labeled data is needed in order to develop supervised models

comparable to our best unsupervised ones (Section 4.5).

Finally, we demonstrate that our approach outperforms zero-shot model transfer when the source

and target languages are typologically dissimilar as zero-shot model transfer cannot generalize well

across unrelated languages (Section 4.6).
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This chapter contains our work on unsupervised cross-lingual POS tagging for truly low-resource

scenarios (Eskander et al., 2020b) and extends it by providing deeper evaluation and analysis, along

with the addition of two morphologically complex target languages, namely Georgian and Kazakh.

4.2 Methods

Our approach for unsupervised cross-lingual POS tagging is divided into two main phases:

1. generating POS annotations by performing cross-lingual projection via word-level alignments

between a high-resource language for which a POS tagger is available and the underlying

target language (Section 4.2.1); and

2. training a neural POS tagger for the target language based on the projected annotations

(Section 4.2.2).

The overall pipeline is illustrated in Figure 4.2.

4.2.1 Cross-lingual Projection via Word Alignments

We describe below the steps of projecting the POS tags from a source language onto the target one

via word-level alignments. An example of alignment and projection is shown in Figure 4.3, where

English and Persian are the source and target languages, respectively. The example corresponds to

verse EXO 16:30, “So the people rested on the seventh day.”, where the word-alignment models

(English-to-Persian and Persian-to-English) are trained on the entire Bible after the preliminary step

of white-space tokenization.

White-Space Tokenization Starting with a sentence-aligned parallel text, we first perform white-

space tokenization on both the source and target sides, where we separate punctuation marks and

symbols into standalone tokens. We use Stanza 2 (Qi et al., 2020) to tokenize five of our six

experimental source languages, namely English, Spanish, French, German and Russian, while we

2https://github.com/stanfordnlp/Stanza
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7UDLQ�$OLJQPHQW�0RGHOV

:RUG�/HYHO�$OLJQPHQWV

3URMHFW�7DJV

6RXUFH�7H[W 7DUJHW�7H[W

7DJJHG�6RXUFH�7H[W

7DJ�IRU�326
�XVLQJ�RII�WKH�VKHOI�7DJJHU�

7DJJHG�7DUJHW�7H[W

$SSO\�7RNHQ�	�7\SH�&RQVWUDLQWV

6FRUH�	�6HOHFW�7UDLQLQJ�([DPSOHV

7UDLQLQJ�'DWD

7UDLQ�326�0RGHO

326�0RGHO

7RNHQL]H��ZKLWH�VSDFHV� 7RNHQL]H��ZKLWH�VSDFHV�

7RNHQL]HG�7DUJHW�7H[W7RNHQL]HG�6RXUFH�7H[W

Figure 4.2: The overall pipeline of unsupervised cross-lingual POS tagging via annotation projection

use MADAMIRA 3 (Pasha et al., 2014) for Arabic white-space tokenization, for performance gain.

However, in order to keep our approach fully unsupervised, we tokenize the target side by applying

a large set of language-independent regular expressions that utilizes built-in Python expressions that

help recognize punctuation marks and symbols.

Word-Level Alignment Next, we use the sentence-aligned parallel text to train two word-

alignment models that align the texts of the source and target sides at the word level in both

directions. We experiment with two language-independent unsupervised alignment systems, namely

3https://camel.abudhabi.nyu.edu/madamira
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(a) Word-level alignments
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(b) Filtering out one-directional and low-confidence alignments
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(c) Tagging the source and projecting the tags (token constraints)
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(d) Generating type constraints

�K������ PDA������ �AKLHA������� NAOPA@������� KJ������ PDA������ OARAJPD�����
 @=U������� ���������

��������� ΪϨΘϓή̳������� �ϡ΍έ΁������� ϦϴϤΘϔϫ�����
 ίϭέέΩ������� ϡϮϗ������� β̡������

�������¼»»Î ������¼»»Î ��
��À½�½Í

������½Á�¼Î

������½¼�ÂÎ

��
��ÂÃ�ÁÎ�

������½¼�¿Î

������¼»»Î ������¼»»Î �@R��ÁÄÎ

������¾»�ÁÎ

������»�¾Î

����
��»�»ÁÎ

O?KNAÓ»�¿½

O?KNAÓ
»�Ä¾

O?KNAÓ»�ÃÄ O?K
NAÓ
»�½
Ä

O?
KN
AÓ
»�
¼À

�KQLHA@��KJOPN=EJPO�

	EHPANA@
�ULA��KJOPN=EJPO�

O?K
NAÓ
»�¾
À

(e) Filtering out type constraints of low probabilities and coupling token and type constraints

Figure 4.3: An English-to-Persian example of alignment and projection for verse EXO 16:30, “So
the people rested on the seventh day.”. The alignment models are trained on the entire Bible. Persian
reads right to left.
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GIZA++ 4 (Och and Ney, 2003) and Fast_Align 5 (Dyer et al., 2013), to generate the word-level

alignments and choose GIZA++ to align all of our target-source language pairs as it consistently

yields better results.

Our aim is to generate one-to-one word-level alignments of high quality to use as the basis for

annotation projection. However, word-level alignments suffer from non-precise translations. In

addition, there is no one-to-one correspondence between the words across parallel texts, which

results in null, one-to-many and many-to-one alignments. Accordingly, we eliminate long sentences

of more than 80 tokens and only consider bidirectional word alignments (intersecting source-to-

target and target-to-source alignments). Additionally, we exclude the alignment points where the

average of the alignment probabilities in the two directions is below some threshold α.

Referring to the English-Persian example in Figure 4.3, the English and Persian Bibles are used

to train word-alignment models in both directions. The alignment models are then used to derive

the word-level alignments in both directions for each verse (Figure 4.3a), where the one-directional

alignments and alignments of low confidence are eliminated (Figure 4.3b). This results in six

bidirectional alignments for verse EXO 16:30, namely {So, ,{پس {people, ,{قوم {rested, ,{آرام

{seventh, ,{هفتمین {day,درروز} and {., .}.

Tagging the Source Language for POS. Since cross-lingual projection requires a common POS

tagset for the underlying languages, we use the universal POS tagset of the Universal-Dependencies

(UD) project 6, which consists of 17 universal POS tags, namely ADJ (adjective), ADP (adposition),

ADV (adverb), AUX (auxiliary), CCONJ (coordinating conjunction), DET (determiner), INTJ

(interjection), NOUN (noun), NUM (number), PART (particle), PRON (pronoun), PROPN (proper

noun), PUNCT (punctuation), SCONJ (subordinating conjunction), SYM (symbol), VERB (verb)

and X (a placeholder for all other tags). We use Stanza to tag the source-side text except in the

case of Arabic, for which we apply MADAMIRA, for performance gain, after converting the output

PTB tags into their universal cognates. However, since MADAMIRA was not designed to follow

4http://www.statmt.org/moses/giza/GIZA++.html
5https://github.com/clab/fast_align
6https://universaldependencies.org/u/pos
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the UD guidelines, we manually correct the mapped Arabic analyses of the most frequent 2,500

POS-lemma pairs by selecting the most likely analysis for each pair.

POS Projection using Token and Type Constraints. In order to project the POS tags from the

source side onto the target one, we use token and type constraints based on the mapping induced by

the word-level alignments. The idea of using both token and type constraints was first introduced by

Täckström et al. (2013). Type constraints define the set of POS tags a word type can receive. In a

semi-supervised learning setup, type constraints can be obtained from an annotated corpus (Banko

and Moore, 2004) or from a resource that serves as a POS lookup, such as the Wiktionary 7 (Li et

al., 2012; Täckström et al., 2013). For the extraction of type constraints in an unsupervised fashion,

we follow the approach proposed by Buys and Botha (2016), where we define a tag distribution

for each word type on the target side by accumulating the counts of the different POS tags of the

source-side tokens that align with the target-side tokens of that word type. The POS tags whose

probabilities are equal to or greater than some threshold β then constitute the type constraints of the

underlying word type. As for token constraints, each aligned token on the target side gets assigned

the POS tag of its corresponding source-side token.

We combine the token and type constraints in a slightly different way from those by Täckström

et al. (2013) and Buys and Botha (2016). If a token is not aligned or its token constraint does

not exist in the underlying type constraints, the token becomes unconstrained (i.e., receives a null

tag). Otherwise, the token constraint is applied. Those applied token constraints then represent the

projected tags. Moreover, in contrast to the previous work, we do not use type constraints to impose

restrictions while training the POS model as they restrict the performance of our neural architecture.

Referring to the English-Persian example in Figure 4.3, the English text is tagged for POS, and

the tags are projected onto the Persian side as token constraints across the bidirectional alignments,

where the Persian word گرفتند receives a null assignment as it is not part of a valid alignment

(Figure 4.3c). Next, the type constraints are calculated for each word type across the whole Persian

corpus (Figure 4.3d). The type constraints of low probabilities are then removed prior to coupling

7https://wiktionary.org
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the token and type constraints. This results in the removal of the VERB assignment for the Persian

word آرام as it is not part of the refined type constraints (Figure 4.3e).

Selection of Training Instances. In a typical supervised-learning setup, adding more training

instances helps improve the performance of the system until saturation takes place. On the contrary,

adding more training instances that are induced in an unsupervised manner may introduce noise

that restricts the quality of the learned model. Accordingly, prior to training a POS model using the

projected tags, we score the target sentences based on their “annotation" quality and exclude the

ones whose scores are below some threshold γ. We define sentence score as the harmonic mean of

its density Sd and alignment confidence Sa, where Sd is the percentage of tokens with projected

tags, and Sa is the average alignment probability of those tokens.

Score(S) =
2(Sd·Sa)
(Sd+Sa)

Filtering out sentences of low density and alignment confidence is crucial for training the model.

While choosing the sentences with top alignment scores has proved successful in previous research

(Duong et al., 2013), we add the density factor as our neural architecture benefits from longer

contiguous labeled sequences.

Referring to the English-Persian example in Figure 4.3, the score of the Persian verse is

calculated as the harmonic mean of its density and alignment confidence as follows:

Sd =
No. of assigned tokens = 5

No. of all tokens = 7 = 0.714

Sa =
Sum of alignment probabilities

No. of assigned tokens = 0.42+0.89+0.35+0.29+0.93
5 = 0.576

Score(S) =
2(Sd·Sa)
(Sd+Sa)

= 2·0.714·0.576
0.714+0.576 = 0.638

4.2.2 Neural Part-of-Speech Tagging

The architecture of our POS tagger is a bidirectional long short-term memory (BiLSTM) neural

network (Hochreiter and Schmidhuber, 1997). BiLSTMs have been widely used for POS tagging
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(Huang et al., 2015; Wang et al., 2015; Plank et al., 2016; Ma and Hovy, 2016; Cotterell and

Heigold, 2017) and other sequence-labeling tasks, such as named-entity recognition (Lample et al.,

2016). The input to our BiLSTM model is labeled sentences, where the labels are automatically

generated through alignment and projection (Section 4.2.1), while the word representation is the

concatenation of four types of embeddings: pre-trained (PT) transformer-based contextualized word

embeddings; 2) randomly initialized (RI) word embeddings; 3) affix embeddings of 1, 2, 3, and 4

characters; and 4) word-cluster embeddings. Figure 4.4 shows the complete structure of our neural

architecture.

PT Word Embeddings 1

RI Word Embeddings 1

Affix Embeddings 1

Word-Cluster Embeddings 1

PT Word Embeddings 2

RI Word Embeddings 2

Affix Embeddings 2

Word-Cluster Embeddings 2

PT Word Embeddings 3

RI Word Embeddings 3

Affix Embeddings 3

Word-Cluster Embeddings 3

PT Word Embeddings n

RI Word Embeddings n

Affix Embeddings n

Word-Cluster Embeddings n

h1

h1

h1

Custom Softmax Activation

h2

h2

h2

h3

h3

h3

hn

hn

hn

BiLSTM
Encoding 

Layer
Forward Layer

Backward Layer

    

Word1 Word2 Word3 Wordn

POS1 POS2 POS3 POSn

Figure 4.4: The architecture of our BiLSTM neural-network model for POS Tagging. The input
annotations are generated through alignment and projection in a fully unsupervised manner. The
input layer is composed of the concatenation of four types of embeddings: 1) pre-trained (PT)
transformer-based contextualized word embeddings; 2) randomly initialized (RI) word embeddings;
3) affix embeddings of 1, 2, 3, and 4 characters; and 4) word-cluster embeddings. The model
is based on a BiLSTM encoding layer and uses a custom softmax activation that handles null
assignments.
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Word Embeddings. We use two types of word-embedding features: pre-trained (PT)) transformer-

based contextualized embeddings and randomly initialized (RI) embeddings. For the pre-trained

transformer-based contextualized word embeddings, we use the final layer of the multilingual

XLM-RoBERTa transformer-based language model (XLM-R) (Conneau et al., 2019).

XLM-R is a multilingual transformer-based language model that is pre-trained on texts of 100

languages, and its performance is competitive with strong monolingual models when tested for a

variety of NLP tasks. However, when applying our neural architecture for a test language that is not

represented in the XLM-R model, one can consider training a custom monolingual transformer-based

language model 8 given the availability of monolingual texts and suitable computational resources

(computing power and training time), and thus our architecture is not limited to the languages

available in the XLM-R model.

It is noteworthy to mention that we obtain better results when using the XLM-R embeddings

as embedding features as opposed to performing fine-tuning, where the latter is more suitable for

sentence-level predictions. Additionally, we examined the use of the multilingual BERT model

(mBERT) (Devlin et al., 2019) instead of XLM-R, but this resulted in an average decrease of 0.5%

in POS accuracy. We also experimented with the addition of a Conditional-Random-Fields (CRF)

layer, but it did not improve the model, which is in line with previous research on POS tagging (Yang

et al., 2018; Plank and Agić, 2018). Finally, we use the average of the embedding vectors of the

first and last sub-tokens of each word to represent its pre-trained transformer-based contextualized

embeddings. This gives us better empirical results than using the embeddings of only the first token

or the longest one.

The randomly initialized embeddings are based on the target side of the parallel text and are

learned as part of training the model. Coupling both the pre-trained embeddings and the randomly

initialized ones is essential when the domain of the training data is different from the one of the

pre-trained embeddings, which is the case in our learning setup, where we use the Bible text for

training, while the XLM-R model is trained on texts from Wikipedia 9 and the CommonCrawl corpus

8https://github.com/facebookresearch/XLM
9https://wikipedia.org
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(See Conneau et al. (2019) for more details).

Affix Embeddings. The use of affix information has proved effective in POS tagging (Ratnaparkhi,

1996; Martins and Kreutzer, 2017). We therefore use randomly initialized prefix and suffix n-gram

character embeddings, where n is in {1, 2, 3, 4}. Our experiments show that affix embeddings are

more efficient for POS tagging than character embeddings across the entire words.

Word-Cluster Embeddings The use of word clusters for POS tagging was first proposed by

Kupiec (1992), where they classified the words into 400 distinct ambiguity classes for supervised

POS tagging. Word clustering has then proved efficient for unsupervised POS tagging (Täckström

et al., 2013; Buys and Botha, 2016). In this thesis, we follow Owoputi et al. (2012) by utilizing

hierarchical Brown clustering (Brown et al., 1992), which is an HMM-based clustering of a binary

merging criterion based on the logarithmic probability of a context under a class-based language

model, where the objective is to reduce the loss in the average mutual information (AMI).

The output of hierarchical Brown clustering is a binary tree of n leaf nodes that represent n

word clusters, where each word in the vocabulary belongs to a single leaf cluster. Leaf clusters are

recursively grouped into parent ones (interior nodes) until a super cluster of the entire vocabulary is

reached (the root).

We produce hierarchical Brown clusters for each target language by applying Percy Liang’s

implementation of Brown clustering 10 (Liang, 2005) on a monolingual text that is the combination

of the Wikipedia and Bible texts of the language. The text is white-space tokenized using the

approach described in Section 4.2.1, while the download and clean-up of Wikipedia dumps are

handled using the Fairseq library 11.

For each word, we concatenate the main cluster (the binary representation of the corresponding

leaf node) with all of its ancestors (the prefixes of the binary representation) to generate the

embedding vector that represents the clustering information of the word. This allows us to use the

10https://github.com/percyliang/brown-cluster
11https://github.com/pytorch/fairseq
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hierarchical clustering information and avoid the commitment to a specific granularity level, where

high-level clusters may be insufficient, while the lower ones may represent over-clustering.
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� �

� � � �

� � � � � � � �

�KN@ �HQOPAN��I>A@@EJC
=HHEC=PKN ¢»£���¢»»£���¢»»»£�Ó�¢»»»»»»£
I=J=PAA ¢¼£���¢¼»£���¢¼»»£�Ó�¢¼¼»¼»»£
>QEH@EJC ¢»£���¢»¼£���¢»¼»£�Ó�¢»»¼»¼»£
OPNQ?PQNA ¢¼£���¢¼¼£���¢¼¼»£�Ó�¢¼¼¼¼¼»£
L=NOAHU ¢»£���¢»»£���¢»»¼£�Ó�¢»»»»»¼£
?EH=JPNK ¢¼£���¢¼»£���¢¼»¼£�Ó�¢¼¼»¼»¼£
RADE?HA ¢»£���¢»¼£���¢»¼¼£�Ó�¢»»¼»¼¼£
?=NNE=CA ¢¼£���¢¼¼£���¢¼¼¼£�Ó�¢¼¼¼¼¼¼£

Figure 4.5: An example of a Brown-cluster hierarchy. The word-cluster embeddings are the
concatenation of the main leaf clusters with all of their ancestors.

Figure 4.5 shows an example of a Brown-cluster hierarchy of depth two and its corresponding

word-cluster embeddings. In our experiments, we use a hierarchy of depth six; that is 128 leaf

clusters that represent the whole vocabulary of the underlying language.

Custom Softmax Activation. We use softmax activation on top of the BiLSTM encoding layer

for the computation of the output class. However, since some words receive null assignments

as a result of missing and rejected alignments and non-overlapping token and type constraints

(Section 4.2.1), we set the value of the output neuron corresponding to the null tag to −∞ so that

it does not contribute to the calculation of the softmax probabilities and prohibit the model from

decoding null values. Moreover, we mask those words of null assignments for the calculation of

network loss.
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4.3 Languages and Data

We conduct our cross-lingual POS-tagging experiments on six high-source languages and 14

simulated low-resource target ones of diverse typologies. This gives a total of 84 target-source

language pairs.

The source languages are chosen to be widely-spoken ones. This is because in a low-resource

scenario, available parallel texts are highly likely to include one of them, which is usually the case

when translating religious books, movie scripts and user manuals. These languages are English

(Indo-European (IE), Germanic), Spanish (IE, Romance), French (IE, Romance), German (IE,

Germanic), Russian (IE, Slavic) and Arabic (Afro-Asiatic, Semitic).

We choose 14 simulated low-resource target languages that belong to different language fami-

lies/genuses and typologies. While some of the target languages are high-resource, we use them

in a simulated low-resource setup, where the POS tagging is performed in a fully unsupervised

fashion. The target languages are Afrikaans (IE, Germanic), Amharic (Afro-Asiatic, Semitic),

Basque (language isolate), Bulgarian (IE, Slavic), Finnish (Uralic, Finnic), Georgian (Kartvelian),

Hindi (IE, Hindi), Indonesian (Austronesian, Malayo-Sumbawan), Kazakh (Turkic, Northwestern),

Lithuanian (IE, Baltic), Persian (IE, Iranian), Portuguese (IE, Romance), Telugu (Dravidian, South

Central) and Turkish (Turkic, Southwestern).

We use the multilingual parallel Bible corpus 12 by Christodouloupoulos and Steedman (2014)

as the source of parallel data for all the languages except Georgian and Kazakh 13. The Bible text is

available in full for our source and target languages except Basque, Georgian and Kazakh, in which

only the New Testament is available. The limited text available in Basque and its being a language

isolate make it an ideal case of cross-lingual learning in a low-resource scenario.

Table 4.1 lists the average number of parallel sentences per target language, across the source

languages, (the second column) and the corresponding average number of training sentences

after applying the sentence-selection mechanism described in Section 4.2.1 (the third column).

12http://christos-c.com/Bible
13We collected the biblical texts for Georgian and Kazakh from https://github.com/cysouw/MissingBibleVerses.

86



Target Language Parallel sentences Training sentences

Afrikaans 31,044 23,784
Amharic 30,521 10,045

Basque 7,949 7,225
Bulgarian 31,045 21,600

Finnish 31,000 23,998
Georgian 7,954 7,794

Hindi 31,015 16,105
Indonesian 29,594 9,570

Kazakh 5,873 4,330
Lithuanian 31,083 25,653

Persian 30,965 17,517
Portuguese 31,069 26,751

Telugu 31,085 10,144
Turkish 30,188 16,029

Average 25,742 15,753

Table 4.1: The average number of alignment and training sentences per target language, across the
source languages, when using the Bible as the source of parallel data

Indonesian, Telugu and Amharic experience the maximum loss in the number of sentences selected

as training instances with relative reductions of 67.7%, 67.4% and 67.1%, respectively, while the

average relative reduction across the target languages is 38.8%. It is worth noting that we run the

approach on verses as opposed to sentences, which are not equivalent in the rare cases in which a

verse contains multiple sentences or a sentence spans multiple verses.

For testing, we use the test datasets of the Universal-Dependencies (UD) project, UD-v2.5

(Zeman et al., 2017) to evaluate our tagging models in terms of POS accuracy. The corpora are

Afrikaans-AfriBooms, Amharic-ATT, Basque-BDT, Bulgarian-BTB, Finnish-TDT, Hindi-HDTB,

Indonesian-GSD, Kazakh-KTB, Lithuanian-ALKSNIS, Persian-Seraji, Portuguese-Bosque, Telugu-

MTG and Turkish-IMST. We also report our results on older versions of the UD project in order

to compare to the state-of-the-art systems, when needed. One exception is Georgian, for which

we developed a small POS-labeled dataset of 100 sentences 14, following the UD-tagging schema,

as it is not part of the UD. The sentences are taken from the Modern Georgian and Political texts

14https://github.com/rnd2110/unsupervised-cross-lingual-POS-tagging/blob/main/data/KAT-eval.txt
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sub-corpora of the Georgian National Corpus 15, and they are hand-tagged and carefully revised by

a linguist who specializes in and speaks Georgian as a second language.

Finally, we evaluate our approach for cross-lingual POS tagging via annotation projection versus

zero-shot model transfer on Japanese as a case study, where we use the Japanese test set from the

CoNLL-2017 shared task (Zeman et al., 2017) for evaluation.

4.4 Evaluation and Analysis

4.4.1 Experimental Settings

The alignment and projection thresholds as well as the hyperparameters of the neural model are

manually tuned on Bulgarian, Basque, Finnish and Indonesian when projecting from English using

the UD development sets. Table 4.2 lists the search ranges and the final selected values for the

alignment and projection thresholds, while Table 4.3 reports on the tuning of the hyperparameters

of the neural architecture.

Threshold Search Domain Selected Value

Alignment Threshold α 0.1, 0.2, 0.3 0.1
POS-Type Distribution Threshold β 0.1, 0.2, 0.3, 0.4, 0.5 0.3

Sentence-Selection Threshold γ 0.3, 0.4, 0.5, 0.6, 0.7 0.5

Table 4.2: The tuning of the alignment and projection thresholds

Parameter Search Domain Selected Value

LSTM Embedding Size 64, 128, 256 128
Randomly-Initialized Embedding Size 64, 128 64

Learning Rate 0.0001 to 0.0005 (steps of 0.00005) 0.0001
Learning-Decay Rate 0, 0.05, 0.1 0.1

Optimizer SGD, Adam Adam
Regularization L2, Dropout L2 and Dropout
Dropout Rate 0, 0.5, 0.6, 0.7, 0.8 0.7

Number of Epochs 1 to 20 (steps of 1) 12

Table 4.3: The tuning of the neural hyperparameters

15http://gnc.gov.ge
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We set the alignment threshold α to 0.1 and the threshold γ for the selection of training instances

to 0.5. In addition, the POS-type distribution threshold β is set to 0.3, which has proved effective by

Banko and Moore (2004) and Buys and Botha (2016).

Our BiLSTM networks are one-layer deep with 128 nodes, while the size of all the randomly

initialized word and affix embeddings is 64. We use Adam for optimization (Kingma and Ba,

2014) with a learning rate of 0.0001 and a learning decay rate of 0.1 at each epoch for a total of 12

epochs. To avoid overfitting, we apply L2 regularization and two dropout layers, before and after

the BiLSTM encoder, with a dropout rate of 0.7. We also use a cross-entropy loss to assess the

performance of the model after each epoch.

Finally, we run the training processes for each target-source language pair for three times and

report the average POS accuracy over the three runs.

4.4.2 Overall System Performance

Table 4.4 reports the accuracy of our POS taggers for all the 84 language pairs and the average

performance per source and target language. The last column reports the upper-bound supervised

performance using Stanza. However, the supervised performance is unavailable for Amharic and

Georgian due to the unavailability of UD training data and for Kazakh due to the insufficient UD

training data.

The overall approach achieves an average POS accuracy of 75.5% across all the language pairs.

However, there is a noticeable variance in the performance of the different taggers. One main aspect

is that languages that belong to the same family transfer best across each other. For instance, English

and German yield the best results for Afrikaans (IE, Germanic), while Spanish and Portuguese are

the best performing language pair (IE, Romance), and Russian is the best source for Bulgarian (IE,

Slavic). One exception is the case of transferring from Arabic to Amharic (Afro-Asiatic, Semitic).

One possible reason is that the Arabic analyzer does not follow the UD guidelines (Section 4.2.1),

along with the morphological complexity of Arabic, which also affects the performance of all the

taggers that use Arabic as the source.
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Target
Language

Source for Unsupervised Learning Supervised
(upper
Bound)English Spanish French German Russian Arabic Average

Afrikaans 86.9 83.1 83.9 84.1 76.4 66.1 80.1 97.9
Amharic 75.3 74.6 73.9 75.2 73.3 74.4 74.4 NA

Basque 67.3 64.6 65.8 66.7 61.7 55.6 63.6 96.2
Bulgarian 85.6 83.2 83.7 80.7 87.2 73.4 82.3 98.5

Finnish 82.8 80.9 80.0 82.0 78.6 67.7 78.7 97.1
Georgian 82.8 80.1 80.2 82.5 83.1 71.2 80.0 NA

Hindi 73.9 72.3 72.6 60.9 66.9 60.1 67.8 97.6
Indonesian 84.1 83.5 82.9 81.2 82.4 73.7 81.3 93.7

Kazakh 73.6 64.7 67.3 68.9 62.1 63.6 66.7 NA
Lithuanian 80.9 78.2 79.0 78.7 83.3 69.8 78.3 93.5

Persian 77.2 78.1 76.1 76.5 78.1 71.2 76.2 81.1
Portuguese 86.1 88.7 86.6 81.2 79.5 70.8 82.2 92.3

Telugu 80.0 72.3 73.7 75.6 72.7 64.0 73.1 93.8
Turkish 74.3 72.7 74.7 72.8 72.0 67.8 72.4 94.7

Average 79.3 76.9 77.2 76.2 75.5 67.8 75.5 94.2

Table 4.4: The POS-tagging performance (accuracy) when using the Bible as the source of parallel
data. The best results per target language and per source language on average, across the target
languages, is in bold. The last column reports the upper-bound supervised performance using
Stanza.

Since English is the most vital language, where its morphological annotation guidelines were

the basis for those of other languages, transferring from English yields the best performance for

eight target languages, namely Afrikaans, Amharic, Basque, Finnish, Hindi, Indonesian, Kazakh

and Telugu. English also gives the best performance on average with an average relative error

reduction of 9.2% over French, the second best on-average performing source language. However,

while French only yields the best performance for Turkish, Russian is the best source language for

four target languages, namely Bulgarian, Georgian, Lithuanian and Persian. On the other hand,

Arabic is the lowest performing source language due to its morphological complexity that involves

inflection, fusion and affixation, along with the nature of the analyzer, where it does not follow the

UD guidelines. On the other hand, the performance of the target languages is mainly impacted by
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the four factors described below.

• Morphological Complexity: The best on-average performing target languages are those with

the least agglutinative/synthetic nature, compared to the others, namely Bulgarian, Portuguese,

Indonesian and Afrikaans, while the remaining 10 target languages involve rich affixation

with high ratios of word types to word tokens, which in turn impacts both alignment and

projection. This encourages the use of the stem or morphemes as the core unit of abstraction

when processing morphologically complex languages (Section 6.2).

• Similarity to Source: Since five of the six source languages belong to the Indo-European

(IE) language family, the IE target languages, such as Bulgarian, Portuguese and Afrikaans,

are among the best performing target languages. In contrast, Basque is a language isolate and

experiences the lowest on-average performance.

• Literary Tradition: Languages with a strong literary tradition that have the Bible introduced

in early ages tend to perform relatively well. In those languages, the gap between the nature

of the biblical text and that of modern texts is relatively small, which allows the POS models

that are trained on the biblical text to better recognize the text in the evaluation sets. An ideal

example is Georgian, a language that has a strong literary tradition and has the Bible translated

into as early as the fifth century. In contrast, Persian, Amharic, Telugu, Turkish and Hindi

are all languages that did not have the Bible translated into before the 17th century. The five

languages rank eighth to 12th, respectively, in terms of their on-average POS performance.

• Availability of Data: Kazakh and Basque are the two lowest on-average performing lan-

guages, in which we only rely on the New Testament as the source of parallel data for

alignment and projection. However, Georgian, where we rely on the New Testament, ranks

fifth due to its relatively simpler morphology and strong literary tradition.
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4.4.3 Performance on Open-Class Tags

Table 4.5 reports the average precision, recall and F1-score for nouns, verbs and adjectives per

target language, across the source languages. For complete results per target-source language pair,

see Table 2.1 in Appendix B.

Target
Language

Noun Verb Adjective

Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

Afrikaans 84.0 91.3 87.1 67.4 91.1 76.9 80.7 72.3 75.7
Amharic 68.3 78.5 72.9 82.7 71.1 76.3 31.0 22.7 25.6

Basque 58.7 77.6 66.7 50.0 77.6 60.2 30.0 10.3 14.6
Bulgarian 84.6 95.8 89.7 80.7 88.7 84.3 79.1 50.1 60.4

Finnish 77.2 88.0 82.0 69.9 82.1 75.2 66.8 48.9 55.3
Georgian 75.4 88.1 80.8 69.7 95.5 80.5 83.9 55.0 64.9

Hindi 65.3 86.6 74.2 50.4 79.3 60.9 59.0 46.8 51.8
Indonesian 72.5 90.0 80.1 84.1 85.3 84.5 58.3 46.3 51.4

Kazakh 65.6 73.8 68.5 47.5 87.1 60.7 31.3 4.9 7.9
Lithuanian 79.1 93.1 85.2 84.6 83.0 83.6 51.9 45.2 46.8

Persian 86.9 83.9 85.3 40.9 74.6 52.6 81.1 42.9 55.8
Portuguese 83.4 94.2 88.2 83.1 90.0 86.3 69.1 60.8 63.8

Telugu 72.1 60.5 65.7 69.8 92.3 79.3 27.4 14.4 16.4
Turkish 70.9 79.0 74.4 75.5 85.1 79.9 71.3 24.3 35.5

Average 74.6 84.3 78.6 68.3 84.5 74.4 58.6 38.9 44.7

Table 4.5: The average precision, recall and F1-score for nouns, verbs and adjectives per target
language, across the source languages, when using the Bible as the source of parallel data. The best
result per POS tag and evaluation metric is in bold.

The best F1-scores for nouns, verbs and adjectives are achieved in Bulgarian (89.7%), Portuguese

(86.3%) and Afrikaans (75.7%), respectively. In fact, the F1-scores for nouns are higher than those

for verbs and adjectives on average and in ten target languages, where they exceed 85.0% in

Afrikaans, Bulgarian, Lithuanian, Persian and Portuguese, while the F1-scores for verbs are higher

than those for nouns and adjectives in Amharic, Indonesian, Telugu and Turkish. On the contrary,

the F1-scores for adjectives are lower than those for nouns and verbs on average and across all the

target languages. The only exception is Persian, in which the F1-score for verbs is the lowest.

The average recall exceeds the average precision for nouns and verbs by absolute 9.7% and
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16.2%, respectively. In the case of nouns, the recall in the Indo-European languages is relatively

high, reaching the peak in Bulgarian (95.8%) and scores above 93.0% in Portuguese and Lithuanian.

In the case of verbs, the highest recalls are achieved in Georgian (95.5%) and Telugu (92.3%), two

non-Indo-European languages. On the contrary, the average recall for adjectives is absolute 19.7%

below the average precision, where both are surpassed by those for nouns and verbs.

Target
Language

Best Source Language

Noun Verb Adjective

Afrikaans German German German
Amharic Arabic German English

Basque English English English
Bulgarian Russian French Russian

Finnish English German English
Georgian German German German

Hindi French French German
Indonesian English English English

Kazakh English English English
Lithuanian Russian Russian Russian

Persian Spanish Arabic Spanish
Portuguese Spanish French Spanish

Telugu English English English
Turkish English French English

Table 4.6: The best source language for the detection of nouns, verbs and adjectives per target
language when using the Bible as the source of parallel data

Table 4.6 lists the best source language for the detection of nouns, verbs and adjectives per target

language. In seven target languages, the three tags are best detected by the same source language,

while in four target languages, the best source language for the detection of the nominal tags (nouns

and adjectives) differs from the best source language for the detection of verbs. On another hand,

Amharic is the only target language in which the three tags are best detected by three different

source languages, where Arabic is the best source for nouns. Arabic is also the best source language

for tagging verbs in Persian. However, while German yields the best performance on the three tags

in both Afrikaans and Georgian, it does not result in the best overall performance in either language

(Table 4.4) as it is less efficient at the projection of closed-class tags. As seen, different source
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languages can be efficient at learning different sets of tags. This encourages developing models that

utilize multiple source languages and learn when to trust a source for a specific tag (Section 5.2.1).

Target
Language

Noun Verb Adjective

Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

English 78.8 85.5 81.7 74.7 80.6 76.9 62.0 48.8 52.9
Spanish 77.9 81.7 79.5 67.7 85.7 74.4 64.4 42.7 48.8
French 76.5 83.9 79.9 68.2 86.5 75.6 61.2 38.6 45.9

German 76.4 84.6 80.0 74.0 82.5 77.2 58.2 40.5 46.3
Russian 76.5 81.1 78.4 61.7 90.6 71.9 54.6 40.8 44.9
Arabic 61.2 89.0 72.1 63.6 81.1 70.3 51.4 22.0 29.4

Average 74.6 84.3 78.6 68.3 84.5 74.4 58.6 38.9 44.7

Table 4.7: The average precision, recall and F1-score for nouns, verbs and adjectives per source
language, across the target languages, when using the Bible as the source of parallel data. The best
result per POS tag and evaluation metric is in bold.

Table 4.7 reports the precision, recall and F1-score for nouns, verbs and adjectives per source

language, across the target languages. Projecting from English achieves the best average F1-scores

for nouns and adjectives (81.7% and 52.9%, respectively), while projecting from German achieves

the best average F1-score for verbs (77.2%). Projecting from German is also effective for nouns and

adjectives, ranking second and third, respectively, which indicates that German is an efficient source

for open-class tags, achieving the second best overall performance next to English. In contrast,

projecting from Arabic yields the lowest F1-scores for the three tags.

4.4.4 Ablation Setups

We examine two ablation setups:

• No_XLM: In this setup, the transformer-based contextualized word embeddings, XLM-R,

are excluded. This setup emulates a situation in which the target language is not represented

in the XLM-R model (nor any equivalent multilingual model) along with the lack of the

computational resources needed to train an equivalent monolingual model.
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• No_MONO: In this setup, both the transformer-based contextualized word embeddings,

XLM-R, and the word-cluster embeddings are excluded. This setup emulates a situation in

which the accessible monolingual data in the target language is not sufficient to learn rich

representations of the language.

Figure 4.6: The average drop in POS accuracy per target language, across the source languages, in
the No_XLM (dark gray) and No_Mono (light gray) ablation setups when using the Bible as the
source of parallel data

We evaluate the No_XLM and No_Mono setups on the 84 language pairs using a doubled
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learning rate (from 0.0001 to 0.0002) as the complexity decreases, and we report the average drop

in POS accuracy per target language, across the source languages, in Figure 4.6.

The average POS accuracy across all the target languages decreases by absolute 2.2% and

5.2% in the No_XLM and No_Mono setups, respectively. The impact of eliminating the XLM-R

embeddings is mostly noticeable in Basque, Telugu and Amharic, where they experience the highest

performance drop of more than 3.0%. On the contrary, the performance for Afrikaans remains

unchanged as it is under-represented in the multilingual representations. On the other hand, the

ablation of the monolingual models affects Finnish, Hindi and Georgian the most, causing absolute

reductions in POS accuracy of at least 7.0% in the No_Mono setup. In addition, the use of Brown

clusters benefits Georgian and Hindi the most, yielding an absolute performance increase of 5.4%.

The performance drop in the No_Mono setup highlights the importance of monolingual data,

which is key to the competitive performance of our POS taggers when compared to other state-of-

the-art systems (Section 4.4.5). However, the on-average performance of the system in the absence

of only the XLM-R embeddings drops by only 2.2%, which provides a relatively good compromise

when one lacks adequate computational resources to train such rich representations.

4.4.5 Comparison to State-of-the-Art

Next, we show that our system outperforms the state-of-the-art unsupervised and semi-supervised

cross-lingual POS taggers, where the refinement of the annotations and the rich word representation

in the neural architecture are more efficient than using larger and/or domain-appropriate parallel

data or some labeled data.

We first compare our approach to the state-of-the-art unsupervised system by Buys and Botha

(2016), denoted by BUYS. BUYS performs fully unsupervised cross-lingual POS tagging using a

neural model that is based on Wsabie (Weston et al., 2011), a shallow neural network that focuses

on optimizing precision at the top of a ranked list of tags. In BUYS, the tags are learned through

alignment and projection, where each token is assigned either a tag that represents the token

constraint or a ranked list of tags that represents the type constraints when the token constraint
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is missing due to a null alignment. In contrast, we use type constraints to eliminate those token

constraints of low probabilities across the target side, and we do not use type constraints to impose

restrictions in our neural model. Another main difference is that BUYS relies on large parallel data,

Europarl 16 (Koehn, 2005), whose domain is similar to that of the UD test sets as the source for

alignment and projection. This makes the system not ideal for truly low-resource scenarios, as

opposed to our low-resource setup using the Bible.

We evaluate the performance of our system versus BUYS on the shared target-source language

pairs, namely {Bulgarian, English}, {Finnish, English}, {Portuguese, English} and {Portuguese,

Spanish}, and we report the results on the test sets of UD-v1.2 (as in the evaluation by Buys and

Botha (2016)) in Table 4.8. Despite the use of smaller and out-of-domain parallel data, our approach

outperforms BUYS on all the language pairs with an average relative error reduction of 8.5%

Target Source BUYS Our System

Bulgarian English 81.8 83.3
Finnish English 77.1 80.4

Portuguese English 84.3 84.6
Portuguese Spanish 88.0 89.1

Table 4.8: Comparison to BUYS, an unsupervised system for cross-lingual POS tagging, in terms of
POS accuracy. The best result per language pair is in bold.

Next, we compare our approach to the state-of-the-art semi-supervised system by Cotterell

and Heigold (2017), denoted by CTRL. CTRL is a character-level RNN tagger that jointly learns

the morphological tags of a high-resource language and the target one. It has two experimental

setups that utilize 100 and 1,000 manually annotated target tokens, denoted by D100 and D1000,

respectively.

We evaluate the performance of our system versus CTRL on the two shared target-source

language pairs, namely {Bulgarian, Russian} and {Portuguese, Spanish}, and we report the results

using the test sets of UD-v2.0 (as in the evaluation by Cotterell and Heigold (2017)) in Table 4.9.

Despite the use of no manually labeled data, our approach outperforms the D100 and D1000 setups

16http://statmt.org/europarl
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except the D1000 setup with the {Portuguese, Spanish} language pair, where the performance of

our system is only 0.2% behind that of CTRL. In addition, our approach achieves average relative

error reductions of 48.5% and 19.0% over the D100 and D1000 setups, respectively.

Target Source CTRL D100 CTRL D1000 Our System

Bulgarian Russian 68.8 83.1 87.2
Portuguese Spanish 81.8 88.9 88.7

Table 4.9: Comparison to CTRL, a semi-supervised system for POS tagging, in terms of POS
accuracy. The best result per language pair is in bold.

4.5 Annotation Projection vs. Supervised Learning

Next, we compare the best annotation-projection performance of each target language to the

corresponding upper-bound supervised performance by Stanza in Table 4.4. On average and in

eight target languages (out of the eleven languages for which the supervised performance is known),

namely Afrikaans, Bulgarian, Finnish, Indonesian, Lithuanian, Persian, Portuguese and Telugu, the

unsupervised taggers successfully predict at least as many as 85.0% of the correct decisions made

by their corresponding supervised ones, where the percentage exceeds 95.0% in the cases of Persian

and Portuguese.

For a given language for which a POS tagger is needed, one should consider the unsupervised

path before taking the decision to build a supervised tagger, especially with the cost and time

associated with labeling data for POS, which might not be even possible for some low-resource

languages. The impact of the small performance gaps between the unsupervised and supervised

approaches in some languages might be tolerable when utilizing the POS tags within a downstream

task. Moreover, the performance of the unsupervised taggers might be adequate for the tags of

interest.

One relevant question is “How many labeled words are needed in order to build a supervised

POS tagger that approximates the performance of the unsupervised one?” To answer this question,

we use the UD-v2.5 training sets to train supervised taggers of different word-based sizes that are
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divisible by 100 in order to find the size of the training data needed to obtain the performance of the

annotation-projection approach. We do this for each target language for which the training data is

available and adequate, and we report the results in Table 4.10 with respect to the best unsupervised

performance in Table 4.4.

Language Annotation Size POS Accuracy %

Afrikaans 4,100 86.9
Basque 1,200 67.3

Bulgarian 2,400 87.2
Finnish 5,200 82.8

Hindi 1,900 73.9
Indonesian 2,900 84.1
Lithuanian 6,600 83.3

Persian 2,000 78.1
Portuguese 6,900 88.7

Telugu 1,200 80.0
Turkish 2,600 74.7

Average 3,364 80.6

Table 4.10: The training size (in words) of the supervised tagger that approximates the performance
of the best unsupervised setup per target language

On average, it is needed to annotate 3,364 words in order to develop a supervised tagger that

yields the unsupervised performance, where the training sizes range from 1,200 words, in Basque

and Telugu, to 6,900 words, in Portuguese. That is, one can avoid the cost and time needed to label

6,900 words for POS in Portuguese, for instance, when the equivalent unsupervised performance is

sufficient.

4.6 Annotation Projection vs. Zero-Shot Model Transfer

One approach to zero-shot cross-lingual POS tagging is to apply a tagging model that was trained for

a related language on the target one. Pires et al. (2019) widely investigate zero-shot model transfer

for POS tagging and named-entity recognition by fine-tuning the multilingual BERT language model

(mBERT) on some language and applying the fine-tuned model on another. While the approach

does not require parallel data between the source and target sides, the pre-trained models do not
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generalize well across languages of different typologies.

We compare our annotation-projection approach to the state-of-the-art zero-shot model-transfer

approach by Pires et al. (2019), denoted by PIRES, for English and Japanese — different language

families and typologies. We again use the Bible from the multilingual parallel Bible corpus by

Christodouloupoulos and Steedman (2014) as the source of parallel data for alignment and projection.

However, we utilize mBERT instead of XLM-R and train our model for only three epochs in order to

replicate the experimental settings by Pires et al. (2019) 17. As shown in Table 4.11, our approach

outperforms zero-shot model transfer with a relative error reduction of 31.6% when evaluated on

the Japanese test set from the CoNLL-2017 shared task (Zeman et al., 2017). This result indicates

that annotation projection might be less sensitive to the relatedness between the source and target

languages than zero-shot model transfer, which is in line with the results in Table 4.4, and thus can

better generalize across a variety of languages of different typologies.

Target Source PIRES Our System

Japanese English 49.4 65.4

Table 4.11: Comparison to PIRES, an approach for zero-shot model transfer via fine-tuning, in
terms of POS accuracy

In order to confirm the conclusion above, we study the POS-tagging performance across

language pairs of similar and different typological features, where we consider two types of features:

1) Subject-Verb-Object order (SVO vs. SOV); and 2) Adjective-Noun order (AN vs. NA). For

the classification of our source and target languages= based on the WALS database 18 (Dryer and

Haspelmath, 2013). See Table 4.12.

Tables 4.13 and 4.14 report the macro-average POS accuracies when transferring across language

pairs with respect to their Subject-Object-Verb order and Adjective-Noun order, respectively, where

we compare annotation projection to zero-shot model transfer (PIRES) 19. The last column indicates
17We assume that white-space tokenization is accessible for Japanese, and so do Pires et al. (2019). We use Stanza to

obtain the white-space tokenized text.
18https://wals.info
19Strictly speaking, the numbers are not comparable as the languages are different. However, they provide insights
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Language
Subject-Verb-Object Adjective-Noun

Order Order

Afrikaans SVO/VSO AN
Amharic SOV AN

Arabic VSO NA
Basque SOV NA

Bulgarian SVO AN
English SVO AN
Finnish SVO AN
French SVO NA

Georgian SOV AN
German SOV/SVO AN

Hindi SOV AN
Indonesian SVO NA

Kazakh SOV AN
Lithuanian SVO AN

Persian SOV NA
Portuguese SVO NA

Russian SVO AN
Spanish SVO NA
Telugu SOV AN

Turkish SOV AN

Table 4.12: The Subject-Verb-Object order and Adjective-Noun order of our source and target
languages

the impact of typological similarity, which is calculated as the relative error reduction due to

transferring across languages of similar typological features as compared to transferring across

languages of different typological features, e.g., the error reduction of transferring from an SOV

language to an SOV one, {SOV, SOV}, as compared to transferring from an SOV language to an

SVO one, {SOV, SVO}.

In PIRES, the best performance is always achieved when transferring across languages of similar

typological features, {SVO, SVO}, {SOV, SOV}, {AN, AN} and {NA, NA}, which is not the case

in our approach, where the performance of transferring from SVO languages is comparable to that of

SOV sources, while AN and NA sources result in similar performance patterns regardless of the type

of the target. Moreover, the impact of typological similarity in PIRES is consistently higher than

on how the two approaches perform across typologically diverse languages.
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PIRES SVO SOV Impact of Typological Similarity

SVO 81.6 66.5 45.1
SOV 64.0 64.2 0.6

Our System SVO SOV Impact of Typological Similarity

SVO 82.5 72.9 35.4
SOV 81.3 72.4 -47.6

Table 4.13: The macro-average POS accuracies when transferring across SVO and SOV languages.
Rows = sources, columns = targets. Impact of Typological Similarity refers to the relative error
reduction due to transferring across languages of similar typological features.

PIRES AN NA Impact of Typological Similarity

AN 73.3 70.9 8.2
NA 75.1 79.6 18.1

Our System AN NA Impact of Typological Similarity

AN 77.1 76.8 1.3
NA 73.6 74.8 4.5

Table 4.14: The macro-average POS accuracies when transferring across AN and NA languages.
Rows = sources, columns = targets. Impact of Typological Similarity refers to the relative error
reduction due to transferring across languages of similar typological features.

the one in our approach across all the compared pairs. This means that annotation projection has a

better ability to transfer across languages of diverse typologies than zero-shot model transfer. This

can be explained since in the annotation-projection approach, the characteristics of the source only

contribute to the alignment and projection phases, while training the POS model is fully conducted

in the target space after eliminating low-quality projections. On the contrary, training the model

in the zero-short model-transfer approach is fully performed in the source space, making it more

difficult to generalize well across unrelated languages.

4.7 Conclusion

In this chapter, we focused on fully unsupervised cross-lingual POS tagging via annotation projection

in truly low-resource scenarios, where we use the Bible as the source of parallel data for alignment
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and projection as it is available for a large number of languages and meets our low-resource

assumptions: small in size and out-of-domain with respect to the evaluation sets.

In order to overcome the annotation-projection challenges that arise from bad translation,

erroneous alignments and translation phenomena that affect the quality of word-alignment models,

we standardized the process of POS tagging via annotation projection by exploiting and expanding

the best practices in the literature as we aim at producing reliable annotations towards efficient POS

models. In addition, we designed a powerful BiLSTM neural architecture that uses transformer-

based contextualized word embeddings and combines word embeddings, affix embeddings and

word-cluster embeddings, along with special handling for null assignments due to missing and

rejected alignments and non-overlapping token and type constraints.

We evaluated our approach on six source languages and 14 typologically diverse target languages,

for a total of 84 target-source language pairs. Our system achieves an average POS accuracy of

75.5% across all the language pairs, where languages that belong to the same family/genus transfer

best across each other. We also demonstrated the efficiency of our approach in the tagging of

open-class words, where the average F1-scores for detecting nouns and verbs are 78.6% and 74.4%,

respectively.

We showed that our approach outperforms the state-of-the-art unsupervised system by Buys

and Botha (2016) despite the use of smaller and out-of-domain parallel data, achieving an average

relative error reduction of 8.5%. Our approach also outperforms the state-of-the-art semi-supervised

system by Cotterell and Heigold (2017) despite the absence of manually labeled data, achieving an

average error reduction of 19.0%.

We conducted ablation setups in which we 1) eliminate the use of transformer-based contextual-

ized word embeddings; and 2) assume limited access to monolingual data, i.e., eliminate both the

transformer-based contextualized word embeddings and the word-cluster embeddings. In the two

ablation setups, our system still performs relatively well with average performance drops of only

2.2% and 5.2%, respectively.

We also demonstrated that unsupervised cross-lingual learning via annotation projection might
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be an alternative to supervised learning, where in eight target languages, our unsupervised taggers

successfully predict at least as many as 85.0% of the correct decisions made by their corresponding

supervised ones. We also showed that it is required to annotate 3,364 words, on average, in order to

build supervised taggers that are comparable to the unsupervised ones.

Finally, we showed that annotation projection transfers better than zero-shot model transfer

across languages of diverse typologies and thus is less sensitive to typological dissimilarities. Our

approach results in a relative error reduction of 31.6% over zero-shot model transfer in a case study

for transferring from English to Japanese.
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Chapter 5

Unsupervised Multi-Source Cross-Lingual Part-of-Speech Tagging

5.1 Overview

The availability of parallel corpora that involve multiple languages encourages the use of multiple

source languages for cross-lingual POS tagging via annotation projection (Agić et al., 2015; Agić

et al., 2016; Plank and Agić, 2018). Examples of such parallel corpora include, but are not

limited to, the Bible (Mayer and Cysouw, 2014) (484 languages of complete Bible translations

and 2,551 languages of partial translations), the Watchtower Corpus (WTC) 1 (137 languages),

the Book of Mormon (∼ 100 languages), Harry Potter (and the Philosopher’s Stone) (Rowling,

1997) (73 languages), Dianetic: The Modern Science of Mental Health (Hubbard and Sherr, 2007)

(64 languages), Europarl 2 (Koehn, 2005) (21 languages), Hansards 3 and the ODS UN dataset 4.

Translations that involve multiple languages can also be available in other materials such as movie

scripts, medical prescriptions and user manuals. However, we choose the Bible as the source of

parallel data for alignment and projection as it meets our low-resource assumptions: small in size

and out-of-domain with respect to the evaluation sets.

Our contribution is twofold:

• We investigate the use of multiple source languages to induce the tags on the target side. We

introduce two multi-source approaches: 1) multi-source projection, where we combine the

tags projected from multiple source languages onto the target side prior to training the POS

model (Section 5.2.1); and 2) multi-source decoding, where we combine the tags produced by

1https://www.jw.org/en/online-help/watchtower-library
2http://statmt.org/europarl
3https://catalog.ldc.upenn.edu
4https://documents.un.org/prod/ods.nsf/home.xsp
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multiple single-source models to tag a given text in the target language (Section 5.2.2). Our

multi-source setups are based on either weighted maximum voting or Bayesian inference that

constructs confusion matrices to learn what sources to rely on for specific sets of tags. We

also conduct weighted Bayesian inference, in which we combine both mechanisms in hybrid

setups. This makes a total of eight multi-source setups.

• We conduct extensive evaluation and analysis on the 14 target languages we used for evaluat-

ing our single-source setups (Sections 5.3 and 5.4).

We show improvements over the single-source setups on average and in 10 target languages. In

addition, we demonstrate significant improvements over previous work that relies on multi-source

setups, both unsupervised and semi-supervised. We also study ablation setups and show that our

multi-source approaches can compensate for some of the performance drop due to the lack of

adequate computational resources and/or monolingual data (Section 5.4).

Finally, we show that our multi-source setups are able to predict at least as many as 90.0% of

the correct decisions made by the corresponding supervised taggers in four target languages. In

addition, we show that more annotations are needed to build equivalent supervised taggers than in

the case of using single-source setups (Section 5.5).

This chapter contains our work on the multi-source approaches for unsupervised cross-lingual

POS tagging for truly low-resource scenarios (Eskander et al., 2020b) and extends it by providing

additional multi-source setups, where we define different types of weights for weighted maximum

voting and introduce Bayesian inference to understand the reliability of each source with respect to

the POS tags. We also expand our evaluation and analysis to better understand the behavior of the

multi-source approaches.

5.2 Methods

We divide our multi-source approaches into two groups:
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1. Multi-Source Projection: In this approach, we combine projected tags that correspond to

multiple source languages after coupling the token and type constraints and prior to training

the POS model (Section 5.2.1).

2. Multi-Source Decoding: In this approach, we combine the tagging outputs of multiple

single-source models applied on some text in the target language (Section 5.2.2).

5.2.1 Multi-Source Projection

As detailed in Section 4.2.1, POS tagging via annotation projection relies on parallel data between

a source language and the target one, where the source gets tagged using an accessible tagger,

and the tags are projected from the source onto the target across word-level alignments. The

projected tags then form token constraints, while the tag distribution of each target word type

defines type constraints. The type constraints of low probabilities are then filtered out, while those

token constraints that do not match the corresponding type constraints are rejected. The qualifying

token constraints then form the annotations needed to train a POS model for the target language.

In this approach, inspired by the work by Agić et al. (2015) and Agić et al. (2016), we rely on

projecting the annotations from multiple source languages by utilizing parallel corpora that involve

more than two languages, including the target one, to derive multiple POS assignments on the target

side. First, both alignment and projection, along with coupling token and type constraints, are

conducted between each source language and the target one, separately. This results in multiple

POS assignments on the target side, where a token might receive one or more POS tags (including

null). We then apply a voting mechanism to select the most likely correct POS tag for each token.

Finally, we select the high-scoring sentences as training instances to build the POS model. The

process of multi-source projection is illustrated in Figure 5.1.

We develop three voting mechanisms for the selection of the final POS assignment: 1) weighted

maximum voting (Section 5.2.1.1); 2) Bayesian inference (Section 5.2.1.2); and 3) Weighted

Bayesian inference (Section 5.2.1.3). We describe the three mechanisms below.
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Figure 5.1: The pipeline of multi-source projection (assuming four source languages)

5.2.1.1 Weighted Maximum Voting

For each target token, we assign the projected tag that receives the maximum voting across the

source languages weighted by the alignment probability that corresponds to the underlying {token,

source language} pair. We denote this voting setup by MPwmv.

Let the POS assignment of a specific {token, source language} pair be yij, where i ∈ [1, N ]

indexes a token, and j ∈ [1, H] indexes a source language. And let the alignment probability that

results in the POS assignment yij be wij. The final POS assignment of token i, ŷi, is then defined as:

ŷi = argmax y
∑

j, yij=ywij

5.2.1.2 Bayesian Inference

As discussed in Section 4.4.3, different source languages can be efficient at learning different sets of

POS tags. Accordingly, one way to improve multi-source voting is to learn when to trust a tagging

source for a specific tag. The idea is that good sources tend to have identical predictions across
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the corpus, while less reliable ones have divergent predictions. This can be modeled as confusion

matrices, one per source, where an unsupervised generative model can learn a proper distribution

for the selection of the best source(s) per tag.

We exploit the Bayesian-inference method proposed by Rahimi et al. (2019) for the prediction

of named-entity labels based on the outcomes of several named-entity recognition models. We

apply the same method for the selection of POS tags given the projection outcomes of multiple

source languages, which is a simpler task as aggregated projected labels of named entities might

result in invalid schemes, which motivates projecting the labels at the entity level (multiple-token

processing). The algorithm is based on a fully unsupervised probabilistic graphical model that is

inspired by Kim and Ghahramani (2012). We denote this voting setup by MPbys.

Let the POS assignment of a specific {token, source language} pair be yij, where i ∈ [1, N ]

indexes a token, and j ∈ [1, H] indexes a source language. The generative model assumes a tag

assignment zi ∈ [1, K] that is corrupted by the assignment of each source language, yij. The

corruption process is described as follows:

P (yij = l|zi = k, V (j)) = V kl
(j)

where V (j) ∈ Rk k is the confusion matrix that corresponds to source language j. The confusion

matrices are drawn from independent Dirichlet priors, with a parameter α = 1, and the tags are

controlled by a Dirichlet prior π that is drawn from an uninformative Dirichlet distribution, where

all the parameters are set to values of one.

When multiple source languages result in identical assignments, k, for some token, this can be

explained by assigning zi = k and assigning high weights to V k k
(j) in the corresponding confusion

matrices. The other less reliable source languages will result in divergent assignments that are likely

to be in disagreement or biased towards some other tag, where the model uses the off-diagonal

elements to explain such assignments. By aggregating over all the tokens, the model can then

differentiate between the reliable source languages (those with high V k k
(j) values) and the less

reliable ones (those with high V k l
(j) values, where k 6= l) for each tag, i.e., the reliability of a

source language is calculated with respect to a specific tag.
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Figure 5.2: A confusion matrix for the projection from English to Finnish

Figure 5.2 visualizes the confusion matrix when projecting from English to Finnish using the

Bible as the source of parallel data. The diagonal cells in dark blue refer to reliable assignments

when projecting from English, which are those that are mostly in agreement with the assignments

of other sources. For example, the NUM, PROPN and PUNCT assignments are the most reliable,

followed by those of INTERJ, NOUN and PRON. On the other hand, the DET, SYM and X

assignments are the least reliable (the lightest shade on the diagonal), where the off-diagonal cell

DET-PRON in relatively dark blue indicates that DET is likely to be confused with PRON, while the

off-diagonal cell X-DET in relatively dark blue indicates that X is likely to be confused with DET.

Mean-field variational (Jordan, 1998) is used for inference, in which a fully variational distri-

bution q(Z, V, π) = q(Z)q(V )q(π) is learned to optimize the evidence lower bound (ELBO). The

inference is initialized as the number of votes per POS tag each token receives, which results in a

bias towards maximum voting. An iterative learning process with the update rules below then takes
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place until convergence.

Eq logπk = ψ(β +
∑

iq(zi = k)− ψ(Kβ +N)

EqlogV kl
(j) = ψ(α +

∑
iq(zi = k))− ψ(Kα +

∑
iq(zi = k))

q(zi = k) ∝ exp{Eq logπk +
∑

jEqlogV kyij
(j)}

where ψ is defined as the logarithmic derivative of the gamma function, digamma.

The final POS assignment of each token is then calculated based on q(Z) using the maximum-a-

posteriori tag as follows:

ẑi = argmax zq(zi = z)

5.2.1.3 Weighted Bayesian Inference

We combine the Bayesian-inference setup MPbys with the weighted maximum-voting setup MPwmv,

described in Section 5.2.1.1, in one hybrid setup, denoted by MPwbys.

Let the alignment probability that results in the POS assignment yij be wij. We define the

inference as a fully variational distribution q(Z, V,W, π). The inference is initialized as the weighted

number of votes per POS tag each token receives, where we sum the probabilities of the alignments

resulting in the corresponding {token, tag} pair across the source languages, wiz =
∑

j,yij = zwij.

The final POS assignment of each token is then calculated using the weighted maximum-a-

posteriori tag as follows:

ẑi = argmax zq(zi = z) · wiz

5.2.1.4 Example of Multi-Source Projection

Table 5.1 shows two examples of single-source and multi-source projection for Finnish (upper

part) and Portuguese (lower part) when using the Bible as the source of parallel data. The example

corresponds to verse JOH 10:42 in the Bible.
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Source Language /
Multi-Source Setup

Finnish Verse JOH 10:42

Ja monet siellä uskoivat häneen .
(And) (many) (there) (believed) (in him) (.)

CCONJ ADJ ADV VERB PRON PUNCT

English _ ADJ ADV VERB _ PUNCT
Spanish CCONJ PRON ADV VERB _ PUNCT
French CCONJ _ _ VERB _ PUNCT

German CCONJ PRON _ VERB _ PUNCT
Russian CCONJ NUM ADV VERB PRON PUNCT
Arabic _ _ ADV VERB _ PUNCT
MPwmv CCONJ PRON ADV VERB PRON PUNCT
MPbys CCONJ ADJ ADV VERB PRON PUNCT

MPwbys CCONJ PRON ADV VERB PRON PUNCT

Source Language /
Multi-Source Setup

Portuguese Verse JOH 10:42

E muitos ali creram nele .
(And) (many) (there) (believed) (in him) (.)

CCONJ ADJ ADV VERB PRON PUNCT

English _ ADJ ADV VERB PRON PUNCT
Spanish CCONJ PRON ADV VERB PRON PUNCT
French CCONJ _ _ VERB PRON PUNCT

German CCONJ PRON _ VERB _ PUNCT
Russian CCONJ NUM ADV VERB PRON PUNCT
Arabic _ _ ADV VERB _ PUNCT
MPwmv CCONJ PRON ADV VERB PRON PUNCT
MPbys CCONJ ADJ ADV VERB PRON PUNCT

MPwbys CCONJ ADJ ADV VERB PRON PUNCT

Table 5.1: Examples of single-source and multi-source projection for Finnish (upper part) and
Portuguese (lower part). The alignment models are trained on the Bible.

None of the single-source assignments is fully correct. On the other hand, the weighted

maximum-voting setup MPwmv assigns PRON to the word monet in Finnish and the corresponding

word muitos in Portuguese, where it follows the projection from Spanish and German, while the

correct assignment is the one projected from English, ADJ. However, the Bayesian-inference setup

MPbys is able to select the ADJ assignment instead as it learns to trust English more for the projection

of Adjectives, which in turn results in the overall correct POS assignment of the verse. On the

other hand, the hybrid weighted Bayesian-inference setup MPwbys is biased towards the selection of

MPwmv in the case of Finnish (PRON), while it follows MPbys and produces the correct assignment
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(ADJ) in the case of Portuguese, where English is a a more reliable source for adjectives.

5.2.2 Multi-Source Decoding

Since we develop multiple POS models that correspond to different source languages, we can

exploit a classifier ensemble that votes among the outputs of the different models on the token level.

The main difference between this approach and multi-source projection (Section 5.2.1) is that the

voting takes place as part of the decoding process after applying the models on some given text in

the target language, as opposed to voting among the projected tags prior to training the models. The

process is illustrated in Figure 5.3.

7DUJHW�7H[W

'HFRGH

'HFRGH

326�0RGHO��
�EDVHG�RQ�6RXUFH���

326�0RGHO��
�EDVHG�RQ�6RXUFH���

7DJJHG�7H[W��7DJJHG�7H[W��

326�0RGHO��
�EDVHG�RQ�6RXUFH���

'HFRGH

'HFRGH

326�0RGHO��
�EDVHG�RQ�6RXUFH���

7DJJHG�7H[W��7DJJHG�7H[W��

0XOWL�6RXUFH�'HFRGLQJ

0XOWL�6RXUFH�326�$VVLJQPHQW

Figure 5.3: The pipeline of multi-source decoding (assuming four source languages)

We again develop three voting mechanisms for the selection of the final POS assignment, similar

to the mechanisms described in Section 5.2.2: 1) weighted maximum voting (Section 5.2.2.1); 2)

Bayesian inference (Section 5.2.2.2); and 3) Weighted Bayesian inference (Section 5.2.2.3). We

illustrate the three mechanisms below.
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5.2.2.1 Weighted Maximum Voting

We combine the tagging outputs of multiple POS models through weighted maximum voting that

is similar to the MPwmv setup, described in Section 5.2.1.1. Let the POS assignment of a specific

{token, model} pair be yij, where i ∈ [1, N ] indexes a token, and j ∈ [1, H] indexes a model, and

let the weight of a POS assignment yij be wij. The final assignment of token i, ŷi, is then defined as:

ŷi = argmax y
∑

j, yij=ywij

We next define the weight using two different techniques:

• Alignment-Based Similarity: We define the weight of a POS assignment yij as a constant

value per model using a softmax function whose input vector is the average sentence-level

alignment probabilities when aligning the source languages (that correspond to the POS

models) to the target language prior to projecting the annotations and training the models.

This weight measures the alignment-based similarity between the source language that is

used for the cross-lingual learning of the underlying model and the target language on which

the model is applied. In this case, we denote the voting setup by MDwmv_a.

• Decoding Probability: We define the weight of a POS assignment yij as the softmax proba-

bility when decoding the POS tags in the final output layer of the neural models. In this case,

we denote the voting setup by MDwmv_d.

5.2.2.2 Bayesian Inference

We apply the Bayesian-inference setup MPbys, described in Section 5.2.1.2. The main difference is

that instead of measuring the reliability of each source language for the assignment of each POS

tag before training the POS model, we measure the reliability of each single-source model for the

assignment of each POS tag for a given text at the decoding time. We denote this setup by MDbys.
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5.2.2.3 Weighted Bayesian Inference

Similar to the weighted Bayesian-Inference setup MPbys, described in Section 5.2.1.2, we integrate

weighted maximum voting within the MDbys setup at both the initialization and inference steps. We

implement two setups that use the two types of weights described in Section 5.2.2.1: 1) MDwbys_a, in

which we define the weight as the alignment-based similarity; and 2) MDwbys_d, in which we define

the weight as the decoding probability.

5.2.2.4 Example of Multi-Source Decoding

Table 5.2 shows a decoding example of a Basque sentence using both single-source models and

multi-source decoding. The Bayesian-inference setups are able to yield the correct POS assignment

of the sentence, where they trust the PRON and AUX assignments of the French and German models

and thus tag the words Zuk and duzu as PRON and AUX, respectively, despite the weighted majority

voting of VERB for both words.

Source Language /
Multi-Source Setup

Basque Sentence

Zuk hartzen duzu tratamendua ?
(you) (take) (do) (treatment) (?)

PRON VERB AUX NOUN PUNCT

English PROPN VERB PRON NOUN PUNCT
Spanish VERB VERB VERB NOUN PUNCT
French PRON VERB AUX NOUN PUNCT

German PRON VERB AUX NOUN PUNCT
Russian VERB VERB VERB NOUN PUNCT
Arabic VERB VERB VERB NOUN PUNCT

MDwmv_a VERB VERB VERB NOUN PUNCT
MDwmv_d VERB VERB VERB NOUN PUNCT

MDwbys PRON VERB AUX NOUN PUNCT
MDwbys_a PRON VERB AUX NOUN PUNCT
MDwbys_d PRON VERB AUX NOUN PUNCT

Table 5.2: A decoding example of a Basque sentence using single-source models and multi-source
decoding
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5.3 Languages and Data

We use the same languages and datasets as in our work on single-source cross-lingual POS tagging

in Section 4.3. One main advantage is that multi-source projection increases the number of training

instances. This is because multi-source projection produces null assignments that are only the

overlapping ones across those of the individual sources. This leads to more dense sentences of

higher scores, where the score of a sentence is defined as the harmonic mean of its density and

alignment confidence (Section 4.2.1). As a result, the number of qualifying training instances

increases.

Target
Language

Average No. of Training Instances
Relative Increase %

Single-Source Multi-Source

Afrikaans 23,784 30,877 29.8
Amharic 10,045 26,561 164.4

Basque 7,225 7,944 9.9
Bulgarian 21,600 30,407 40.8

Finnish 23,998 30,922 28.8
Georgian 7,794 7,955 2.1

Hindi 16,105 30,915 92.0
Indonesian 9,570 28,932 202.3

Kazakh 4,330 5,870 35.6
Lithuanian 25,653 31,097 21.2

Persian 17,517 30,869 76.2
Portuguese 26,751 31,076 16.2

Telugu 10,144 30,027 196.0
Turkish 16,029 30,122 87.9

Average 15,753 25,255 60.3

Table 5.3: The average number of training instances per target language, across the source languages,
in the single-source setups and the multi-source projection setups when using the Bible as the source
of parallel data

Table 5.3 reports the average number of training instances per target language, across the

source languages, in the single-source setups and the multi-source projection setups. On average,

multi-source projection results in a relative increase of 60.3% in the number of training instances,

where Indonesian, Telugu and Amharic witness the highest relative increases of 202.3%, 196.0%
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and 164.4%, respectively, while Georgian experiences the lowest relative increase of only 2.1%.

As the number of training instances increases, more words are seen in the training phase, and

thus the percentage of out-of-vocabulary words (OOVs) decreases, which in turn improves the

overall performance of the POS model.

Table 5.4 reports the average percentage of OOVs per target language, across the source lan-

guages, in the single-source setups and the multi-source projection setups. On average, multi-source

projection results in a relative decrease of 7.0% in the percentage of OOVs, where Amharic, Turkish

and Indonesian witness the highest relative decreases of 14.9%, 13.8% and 12.2%, respectively,

while Basque experiences the lowest relative decrease of only 0.2%.

Target
Language

Average Percentage of OOVs %
Relative Decrease %

Single-Source Multi-Source

Afrikaans 23.3 21.6 7.1
Amharic 56.8 48.4 14.9

Basque 64.1 64.0 0.2
Bulgarian 31.6 29.4 6.9

Finnish 42.7 41.2 3.5
Georgian 38.8 38.6 0.3

Hindi 32.9 29.9 9.2
Indonesian 32.6 28.6 12.2

Kazakh 39.6 37.5 5.3
Lithuanian 36.3 34.8 4.2

Persian 33.8 31.0 8.1
Portuguese 31.0 30.1 3.2

Telugu 43.6 39.8 8.6
Turkish 34.1 29.4 13.8

Average 38.7 36.0 7.0

Table 5.4: The average percentage of out-of-vocabulary words (OOVs) per target language, across
the source languages, in the single-source setups and the multi-source projection setups when using
the Bible as the source of parallel data

5.4 Evaluation and Analysis

We use the same experimental settings we apply in our work on single-source cross-lingual POS

tagging in Section 4.4.1, where we run the training processes for each experimental target-setup
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pair for three times and report the average POS accuracy over the three runs.

5.4.1 Overall System Performance

Table 5.5 reports the accuracy of our POS taggers in the multi-source setups, compared to the

best single-source setup (from Table 4.4), the average performance per multi-source setup and the

average multi-source performance per target language. The last column reports the upper-bound

supervised performance using Stanza (from Table 4.4).

Target
Language

Single
Source
(Best)

Multi-Source Setup Supervised
(Upper
Bound)MPwmv MPbys MPwbys MDwmv_a MDwmv_d MDbys MDwbys_a MDwbys_d Ave.

Afrikaans 86.9 89.1 87.1 87.3 83.3 86.3 86.1 86.1 86.1 86.5 97.9
Amharic 75.3 79.7 78.4 77.4 77.6 77.3 75.8 76.5 75.9 77.3 NA

Basque 67.3 67.1 66.1 66.0 66.4 66.7 68.6 68.4 68.4 67.2 96.2
Bulgarian 87.2 88.1 87.8 87.9 86.9 87.4 87.8 87.7 87.8 87.7 98.5

Finnish 82.8 83.5 83.6 83.0 82.1 83.0 83.1 83.1 83.1 83.1 97.1
Georgian 83.1 84.3 83.2 82.8 83.6 84.1 84.3 84.2 84.2 83.8 NA

Hindi 73.9 72.2 72.2 72.2 74.1 73.4 74.0 73.9 73.9 73.2 97.6
Indonesian 84.1 82.9 83.5 83.5 84.2 84.9 84.7 84.6 84.7 84.1 93.7

Kazakh 73.6 70.3 67.4 68.4 69.7 69.4 70.7 70.7 70.7 69.7 NA
Lithuanian 83.3 82.9 82.5 82.0 81.5 81.6 82.0 81.9 81.9 82.0 93.5

Persian 78.1 77.3 76.3 77.0 79.0 79.0 80.1 80.2 80.1 78.6 81.1
Portuguese 88.7 87.8 87.4 88.1 88.6 88.2 88.0 88.1 88.1 88.0 92.3

Telugu 80.0 76.4 74.4 73.8 75.4 75.9 75.6 75.8 75.9 75.4 93.8
Turkish 74.7 74.9 73.1 72.5 74.9 75.2 75.1 75.2 75.2 74.5 94.7

Average 79.3 79.7 78.8 78.7 79.1 79.5 79.7 79.7 79.7 79.4 94.2

Table 5.5: The POS-tagging performance (accuracy) of the multi-source setups and the best single-
source setup (from Table 4.4) when using the Bible as the source of parallel data. The best results
per target language and on average, across the multi-source setups, are in bold. Improvement in the
multi-source setups that are not statistically significant for p-value < 0.01 are underlined. The last
column reports the upper-bound supervised performance using Stanza.

The multi-source approaches achieve the best on-average performance, across the target lan-

guages, and yield the best tagging performance for all the target languages except Kazakh, Lithua-

nian, Portuguese and Telugu. When comparing the best multi-source setup to the best single-source
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setup, Amharic and Afrikaans benefit the most through the application of MPwmv with relative error

reductions of 17.7% and 17.1%, respectively, followed by Persian, which receives a relative error

reduction of 9.2% by the application of MDwbys_a. In addition, Amharic is the only target language

where all the multi-source setups outperform the best single-source performance.

The improvement by multi-source projection is due to the significant increase in the number of

training instances (Table 5.3) and the significant decrease in the percentage of OOVs (Table 5.4),

along with the improved quality of the projected tags. On the other hand, the improvement by

multi-source decoding is due to combining the outputs of different models that excel at tagging

different sets of tags, where the models are based on different training sets learned through different

source languages.

The best on-average multi-source performance is given by four multi-source setups, namely

MPwmv, MDbys, MDwbys_a and MDwbys_d, achieving an average POS accuracy of 79.7%, across the

target languages. However, MPwmv is the only multi-source setup that achieves the best performance

for three target languages, namely Afrikaans, Amharic and Georgian. Accordingly, we consider

MPwmv our best performing multi-source projection setup. As for multi-source decoding, both MDbys

and MDwbys_a yield the best performance for two target languages. However, we consider MDbys a

superior model due to its simplicity, and thus it becomes our best performing multi-source decoding

setup. On the contrary, MPwbys and MDwbys_d do not result in the best performance for any target

language.

In multi-source projection, weighted maximum voting outperforms Bayesian inference except

in the cases of Finnish, Indonesian and Portuguese. On the contrary, in multi-source decoding,

Bayesian inference outperforms weighted maximum voting except in the cases of Afrikaans,

Amharic, Indonesian and Portuguese. On another hand, the use of the decoding probability

outperforms the use of the alignment-based similarity in the weighted maximum-voting setups,

while the two weights result in the same on-average performance when coupled with Bayesian

inference.

Finally, all the improvements due to the application of the multi-source setups, compared to the
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best single-source performance, are statistically significant for p-value < 0.01 except in the few

underlined cases in Table 4.5.

5.4.2 Performance on Open-Class Tags

Tables 5.6 and 5.7 report the precision, recall and F1-score for nouns, verbs and adjectives per target

language in the best multi-source projection setup MPwmv and the best multi-source decoding setup

MDbys, respectively.

Target
Language

Noun Verb Adjective

Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

Afrikaans 89.6 91.7 90.7 77.9 92.0 84.4 85.5 79.5 82.4
Amharic 74.1 83.7 78.6 81.8 81.9 81.8 48.8 37.6 42.5

Basque 62.1 78.7 69.4 51.9 76.0 61.7 36.7 17.7 23.8
Bulgarian 88.4 96.4 92.2 86.7 89.8 88.2 85.1 58.7 69.4

Finnish 80.4 90.3 85.0 75.3 84.4 79.6 75.3 54.3 63.1
Georgian 79.1 90.6 84.5 73.9 95.5 83.3 87.7 62.8 73.1

Hindi 66.7 85.1 74.8 53.1 76.9 62.8 55.4 51.5 53.4
Indonesian 71.8 90.6 80.1 85.6 82.8 84.2 64.0 51.5 57.0

Kazakh 69.6 75.5 72.5 49.4 89.5 63.6 67.4 8.2 14.6
Lithuanian 84.4 93.8 88.9 84.8 87.5 86.1 61.7 53.7 57.4

Persian 87.6 83.3 85.4 38.5 66.5 48.8 82.9 38.4 52.5
Portuguese 89.3 94.9 92.0 87.0 91.0 89.0 78.0 74.9 76.4

Telugu 77.0 57.5 65.8 68.1 93.8 78.9 22.9 26.7 24.4
Turkish 76.5 78.8 77.6 74.6 87.5 80.6 77.7 33.7 47.0

Average 78.3 85.1 81.2 70.6 85.4 76.6 66.4 46.4 52.7

Table 5.6: The precision, recall and F1-score for nouns, verbs and adjectives per target language in
the best multi-source projection setup when using the Bible as the source of parallel data. The best
result per POS tag and evaluation metric is in bold.

The average F1-scores for nouns, verbs and adjectives in the MPwmv setup are higher than those

in the single-source setups by absolute 2.6%, 2.3% and 7.9%, respectively, while the average F1-

scores for nouns, verbs and adjectives in the MDbys setup are higher than those in the single-source

setups by absolute 3.0%, 3.2% and 6.3%. However, the multi-source and single-source setups yield

similar patterns. Two exceptions are that in the MDbys setup, adjectives have a higher F1-score than

verbs in Afrikaans, while verbs have a higher F1-score than nouns in Georgian.
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Target
Language

Noun Verb Adjective

Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

Afrikaans 91.3 91.5 91.4 72.9 91.3 81.1 85.7 80.9 83.2
Amharic 70.6 78.6 74.4 85.1 72.4 78.2 34.5 25.6 29.4

Basque 63.0 77.7 69.6 54.2 75.3 63.0 36.2 18.3 24.3
Bulgarian 90.9 96.2 93.5 86.0 88.8 87.4 85.6 62.6 72.3

Finnish 82.3 87.8 85.0 75.5 84.4 79.7 68.4 58.0 62.7
Georgian 79.2 88.0 83.3 75.0 97.6 84.8 85.7 64.1 73.3

Hindi 71.0 84.9 77.3 57.3 76.8 65.6 58.5 53.4 55.8
Indonesian 76.7 89.4 82.6 88.7 85.8 87.2 62.3 53.2 57.3

Kazakh 68.1 79.7 73.4 51.6 88.8 65.3 70.4 6.2 11.4
Lithuanian 85.7 92.4 88.9 86.6 83.9 85.2 56.7 62.8 59.6

Persian 89.1 83.5 86.2 42.9 73.7 54.2 83.8 47.5 60.7
Portuguese 90.7 93.8 92.2 87.2 91.2 89.2 75.4 76.5 75.9

Telugu 73.4 62.4 67.4 72.8 94.8 82.4 0.0 0.0 0.0
Turkish 77.5 77.8 77.6 78.0 86.9 82.2 79.3 34.0 47.6

Average 79.2 84.5 81.6 72.4 85.1 77.5 63.0 45.9 51.0

Table 5.7: The precision, recall and F1-score for nouns, verbs and adjectives per target language in
the best multi-source decoding setup when using the Bible as the source of parallel data. The best
result per POS tag and evaluation metric is in bold.

5.4.3 Ablation Setups

We examine the No_XLM and No_Mono ablation setups, described in Section 5.4.3, when applying

the best multi-source projection setup MPwmv and the best multi-source decoding setup MDbys. We

report the drop in POS accuracy per target language for MPwmv and MDbys in Figures 5.4 and 5.5,

respectively.

In the No_XLM setup, the average POS accuracy across all the target languages decreases by

1.8% and 1.4% when applying multi-source projection and multi-source decoding, respectively, as

opposed to an average drop of 2.2% when relying on a single source language. Similarly, in the

No_Mono setup, the average POS accuracy across all the target languages decreases by 4.4% when

applying either multi-source projection or multi-source decoding, as opposed to an average drop of

5.4% in the single-source setups. This means that the multi-source approaches compensate for some

of the performance drop due to the lack of adequate computational resources and/or monolingual
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Figure 5.4: The drop in POS accuracy per target language in the best multi-source projection setup
when applying the No_XLM (dark gray) and No_Mono (light gray) ablation setups

data. For example, with the elimination of the XLM-R model, Amharic experiences a performance

drop of only 1.6% in the MPwmv setup, as opposed to 3.6% when relying on a single source language.

Another example is Indonesian with the ablation of the monolingual models, where it witnesses a

performance drop of only 2.1% in the MDbys setup, as opposed to 5.1% in the single-source setups.

One interesting phenomena is that Hindi, Indonesian and Persian experience performance

increases of 1.4%, 0.7% and 0.3%, respectively, when coupling the No_XLM and MDbys setups
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Figure 5.5: The drop in POS accuracy per target language in the best multi-source decoding setup
when applying the No_XLM (dark gray) and No_Mono (light gray) ablation setups

as compared to the average performance of the regular single-source setups. One explanation is

that the elimination of the multilingual XLM-R model helps Bayesian-inference compute confusion

matrices that better learn which single-source models to trust for specific tags.
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5.4.4 Comparison to State-of-the-Art

Next, we show that our multi-source approaches outperform the state-of-the-art unsupervised and

semi-supervised cross-lingual POS taggers that rely on a large number of source languages to learn

from.

We first compare our best multi-source projection setup MPwmv and our best multi-source

decoding setup MDbys to the unsupervised multi-source system by Agić et al. (2016), denoted by

AGIC. AGIC is a multi-source annotation-projection system that is the basis of our MPwmv setup. It

utilizes the Watchtower Corpus (WTC) for alignment and projection, which is a better source of

parallel data than the Bible as it includes texts that are closer to contemporary language and more

reliable alignments. The emission and transition probabilities are calculated based on the projected

tags and are used to train a TnT POS tagger (Brants, 2000). In addition to the source of parallel

data and the architecture of the POS model, a main difference between our system and AGIC is

that AGIC relies on 23 source languages to learn from, as opposed to the use of only six source

languages in our multi-source approaches.

We evaluate the performance of our system versus AGIC on the shared target languages, namely

Bulgarian, Finnish, Hindi, Indonesian, Persian and Portuguese, and we report the results on the

development sets of UD-v1.2 (as in the evaluation by Agić et al. (2016)) in Table 5.8. Despite the

use of fewer source languages and a less suitable source of parallel data, our approach outperforms

AGIC on all the target languages with average relative error reductions of 51.5% and 52.0% in the

MPwmv and MDbys setups, respectively.

Target Source AGIC MPwmv MDbys

Bulgarian Multi-source 70.0 85.9 84.4
Finnish Multi-source 69.6 80.9 80.6
Hindi Multi-source 50.5 71.2 73.0

Indonesian Multi-source 75.5 83.4 84.7
Persian Multi-source 33.7 75.0 77.7

Portuguese Multi-source 84.2 88.4 87.2

Table 5.8: Comparison to AGIC, an unsupervised multi-source system for cross-lingual POS tagging,
in terms of POS accuracy. The best result per target language is in bold.
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Next, we compare our approach to the state-of-the-art multi-source semi-supervised system by

Plank and Agić (2018), denoted by DsDs. DsDs follows the annotation-projection approach by Agić

et al. (2016), where it replaces the TnT tagger by a BiLSTM one. The main difference between our

system and DsDs is that DsDs utilizes the Polyglot embeddings (Al-Rfou’ et al., 2013) and lexical

information from the Wiktionary in order to control the projection process in a semi-supervised

fashion.

We evaluate our system versus DsDs on the shared target languages, namely Basque, Bulgarian,

Finnish, Hindi, Persian, and Portuguese, using the test set of UD-v2.1 for Basque and the devel-

opment sets of UD-v2.1 for the other languages (as in the evaluation by Plank and Agić (2018)),

and we report the performance based on the 12 universal POS tags of Petrov et al. (2012), namely

ADJ (adjective), ADP (adposition), ADV (adverb), CONJ (conjunction), DET (determiner), NOUN

(noun), NUM (number), PART (particle), PRON (pronoun), PUNCT (punctuation), VERB (verb)

and X (a placeholder for all other tags) in Table 5.9. Despite the use of fewer source languages, a

less suitable source of parallel data and a fully unsupervised approach that does not make use of

external language-dependent resources, our approach outperforms DsDs on all the target languages

except Bulgarian and Portuguese with average relative error reductions of 25.4% and 24.8% in the

MPwmv and MDbys setups, respectively.

Target Source DsDs MPwmv MDbys

Basque Multi-source 62.7 75.8 76.9
Bulgarian Multi-source 89.7 89.4 89.0
Finnish Multi-source 82.4 85.8 85.3
Hindi Multi-source 66.2 82.8 83.7

Persian Multi-source 43.8 78.8 81.8
Portuguese Multi-source 92.2 91.4 90.7

Table 5.9: Comparison to DsDs, a multi-source semi-supervised system for cross-lingual POS
tagging, in terms of POS accuracy. The best result per target language is in bold.

125



5.5 Annotation Projection vs. Supervised Learning

The comparison of the performance of the best multi-source setup of each target language to the

corresponding upper-bound supervised performance by Stanza (from Table 5.5) shows that in

four target languages, namely Afrikaans, Indonesian, Persian and Portuguese, the unsupervised

multi-source taggers successfully predict at least as many as 90.0% of the correct decisions made

by their corresponding supervised ones, where the percentage reaches 98.8% in the case of Persian.

Language Annotation Size POS Accuracy %

Afrikaans 5,700 89.1
Basque 1,300 68.6

Bulgarian 2,500 88.1
Finnish 5,800 83.6

Hindi 1,900 74.1
Indonesian 2,900 84.9
Lithuanian 6,600 83.3

Persian 2,500 80.2
Portuguese 6,900 88.7

Telugu 1,200 80.0
Turkish 2,600 75.2

Average 3,627 81.4

Table 5.10: The training size (in words) of the supervised tagger that approximates the performance
of the best unsupervised single-source/multi-source setup per target language

Now, we get back to the question of “How many labeled words are needed in order to build a

supervised POS tagger that approximates the performance of the unsupervised one?”, discussed in

Section 4.5. The use of the multi-source approaches boosts the performance in 10 target languages,

and thus more labeled data is needed to train comparable supervised taggers. We follow the

procedure discussed in Section 4.5 to compute the sizes of the training datasets needed to build

supervised POS taggers that approximate the performance of the best unsupervised cross-lingual

setup, either single-source or multi-source. The results are reported in Table 5.10. As seen, it is

needed to annotate 3,364 words on average in order to develop a supervised tagger that yields the

unsupervised performance, ranging from 1,200 words, in Telugu, to 6,900 words, in Portuguese.
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5.6 Conclusion

In this chapter, we performed unsupervised multi-source cross-lingual POS tagging via annotation

projection, where we utilize parallel data involving multiple source languages. We again used the

Bible as the source of parallel data for alignment and projection in order to preserve our low-resource

settings. We introduced two multi-source approaches: 1) multi-source projection, where we project

the POS tags from multiple source languages before training the POS model; and 2) multi-source

decoding, where we combine the outputs of different single-source POS models to tag a given text

in the target language.

In order to vote among different POS tag assignments, we used two main mechanisms, weighted

maximum voting and Bayesian inference. The Bayesian-inference mechanism relies on constructing

confusion matrices that learn which sources to rely on for specific sets of tags. We also developed

hybrid setups that perform weighted Bayesian inference. In the case of multi-source projection, we

use the alignment probabilities of the underlying language pair to represent the weight, while in the

case of multi-source decoding, the weights can either represent the alignment probabilities or the

decoding probabilities induced by the tagging models. The different settings give a total of eight

multi-source setups.

We evaluated the multi-source approaches on the 14 target languages on which we evaluated

our single-source setups. Our multi-source approaches give the best performance on average and in

ten target languages and improve the tagging of open-class words (nouns, verbs and adjectives).

The biggest performance grains are experienced in the cases of Amharic and Afrikaans, where

multi-source projection yields relative error reductions of 17.7% and 17.1%, respectively.

We showed that our multi-source approaches outperform the unsupervised system by Agić et al.

(2016) despite the use of fewer source languages and a less suitable source of parallel data, achieving

an average relative error reduction of 51.5%. Our approaches also outperform the state-of-the-art

semi-supervised system by Plank and Agić (2018) despite the use of fewer source languages, a less

suitable source of parallel data and a fully unsupervised approach that does not make use of external
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language-dependent resources, achieving an average relative error reduction of 24.8%.

We conducted our ablation setups in which we 1) eliminate the use of the transformer-based

contextualized word embeddings; and 2) assume limited access to monolingual data, i.e., eliminate

both the transformer-based contextualized word embeddings and the word-cluster embeddings. In

the two ablation setups, our multi-source approaches reduce the drop in POS accuracy as compared

to the single-source setups to only 1.8% and 4.4%, respectively.

We showed that the application of our multi-source setups makes the performance of our taggers

relatively closer to the performance of supervised learning, where in four target languages, our

taggers can predict at least as many as 90.0% of the correct decisions made by the corresponding

supervised ones. Additionally, it is needed to annotate an average of 3,627 words in order to build

supervised taggers that approximate the performance of the unsupervised ones.
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Chapter 6

Unsupervised Stem-Based Cross-Lingual Part-of-Speech Tagging

6.1 Overview

In cross-lingual POS tagging via annotation projection, the word structure in the source and target

languages impacts the quality of the word-level alignments and the projected tags, which affects

the overall performance of the ultimate POS model. This becomes problematic for languages with

rich word structures where affixation is common. Work on these languages suffers from sparse

alignment models that often fail to align words corresponding to the same citation form in the source

and the target, where there is no one-to-one correspondence between word structures across parallel

texts due to rich paradigms and translation inconsistencies.

Sparse alignment hinders the ability of a system to project the tags properly and results in null

assignments on the target side. These null assignments impact the POS model, either by introducing

non-continuous labeled sequences or by decreasing the number of qualifying training examples.

Adding to these practical issues, the concept of word as a unit of structure has long been questioned

in language sciences (Marantz, 2001). We therefore hypothesize that using the stem as the core

unit of abstraction would result in better POS models for low-resource morphologically complex

languages.

Our contribution is fivefold:

• We present an approach for unsupervised stem-based cross-lingual POS tagging for low-

resource morphologically complex languages, where we use the stem as the core unit of

abstraction for alignment and projection. To our knowledge, this is the first work that

exploits the stem in cross-lingual and/or unsupervised POS tagging. In order to adopt a fully

unsupervised approach, we use our morphological segmentation framework MorphAGram to
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derive the stems on the target side. We also use the Bible as the source of parallel data for

alignment and projection in order to preserve our low-resource settings (Section 6.2).

• We examine the use of the morphemes as the core unit of abstraction for alignment and

projection, which allows for abstracting away from how the morphemes are combined in the

source and target languages (e.g., whether they are free-standing or not). We use Arabic as

the source language in our morpheme-based experiments, where we again use MorphAGram

to derive the morphemes on the target side (Section 6.2.2).

• We examine the use of linguistic priors in morphological segmentation as a strategy for

achieving better POS tagging. We use Georgian as a case study (Section 6.2.4).

• We examine the use of segmentation information (affixes and stems) as learning features in

our neural architecture (Section 6.2.5).

• We conduct extensive evaluation and analysis using eight morphologically complex target

languages out of the 14 languages we evaluate our word-based approach on (Sections 4.3 and

5.3), namely Amharic, Basque, Finnish, Georgian, Indonesian, Kazakh, Telugu and Turkish,

along with the same set of source languages. We evaluate our stem-based models in both the

single-source and multi-source setups (Sections 6.3 and 6.4).

We show that the stem-based approach outperforms the word-based one in 43 language pairs

out of the 48 pairs we experiment with, achieving average relative error reductions up to 21.4%

in the case of Kazakh. We also show that the stem-based approach outperforms the word-based

one that operates on three-times more data in about two thirds of the pairs we experiment with. In

addition, we illustrate that the multi-source setups also benefit from the stem-based approach despite

the relatively high word-based multi-source baseline, where the use of the stem for alignment and

projection yields improvements in 57 multi-source pairs out of 64. As for the morpheme-based

approach, we experiment with Arabic as the source language and report improvements for all the

target languages except Amharic. Additionally, we illustrate that the use of linguistic priors in
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the form of affixes compiled by an expert in the underlying language, where the segmentation is

performed in a semi-supervised manner, improves the performance for Georgian, as a case study.

Finally, we show that the stem-based approach noticeably improves the detection of open-class tags

(nouns, verbs and adjectives) in both the single-source and multi-source setups (Section 6.4).

6.2 Methods

While our word-based architecture for cross-lingual POS tagging via annotation projection yields

the state-of-the-art results for unsupervised POS tagging when evaluated on 14 languages of diverse

typologies, the complexity of word structure in the source and target languages has a direct impact

on the quality of the alignment and projection phases.

6.2.1 Challenges with Word-Based Alignment and Projection

Rich word structure with excessive affixation increases the ratio of word types to word tokens, which

in turn results in sparse alignment models and incomplete projections that form null assignments

on the target side. Null assignments either introduce missing information for the learning of the

POS model or result in scores that are too low for the underlying sentences to qualify as training

instances, which negatively impacts the overall quality of the POS model.

An example is shown in Figure 6.1a, where Arabic and Amharic are the source and target

languages, respectively. The example corresponds to verse MAT 15:35 in the Bible, “He commanded

the multitude to sit down on the ground”, where the word-alignment models are trained on the New

Testament. As shown, two Arabic-Amharic word pairs are not aligned and produce null assignments,

which is the result of sparse word-alignment models that are unable to align words that correspond

to the same citation form properly. This happens because a single citation form might have an

extensive paradigm in either language, which, along with translation inconsistencies, leads to the

loss of a one-to-one correspondence between word structures across parallel texts.

Table 6.1 shows examples of paired inflected forms that correspond to the same citation forms

in Arabic and Amharic but receive different types of affixation, which in turn leads to the unaligned

131



νέϷ΍������� ϰϠϋ������ ΍ϮΌϜΘϳ������� ϥ΃�������
 ωϮϤΠϟ΍�������

�Ê\ ������� [ á0������� �Ú������ ��ÞC�Ĉ������� �ÅÅ�������

ήϣ΄ϓ�������

O?KNAÓ»�ÃÃ

O?KNAÓ¼�»»
O?KNAÓ»�¿¾

PDA�CNKQJ@ KJ PDAU�OEP�@KSJ PD=P PDA�LAKLHA PDAJ�DA�?KII=J@A@

=J@�PDA�LAKLHA KJ�PDA�CNKQJ@ KJ OK�PK�OEP�@KSJ DA�?KII=J@A@

(a) Word-based alignment and projection

νέϷ΍�ĺ�νέ΃������� ϰϠϋ�ĺ�ϰϠϋ������ ΍ϮΌϜΘϳ�ĺ�ΊϜΗ������� ϥ΃�ĺ�ϥ΃�������
 ωϮϤΠϟ΍�ĺ�ωϮϤΟ�������

�Ê\ �ĺ��Ê\������� [ á0�ĺ� á0������� �Ú�ĺ��Ú������ ��ÞC�Ĉ�ĺ�C�Ĉ������� �ÅÅ�ĺ�ÅÅ�������

ήϣ΄ϓ�ĺ�ήϣ΃�������

O?KNAÓ»�¿
Ã

O?KNAÓ»�ÃÄ

O?KNAÓ»�Ä»
O?KNAÓ»�¾»

O?KNAÓ»�Â½

(b) Stem-based alignment and projection

ϝ΍������ ϰϠϋ������ ϱ����H­�NABΊϜΗ�������΍ϭ����H­�QBB ϥ΃�������
 ωϮϤΟ������� ϝ΍������ ήϣ΃������� ϑ�������


�Ê\�������  á0������� �Ú������ ��Þ������� ÅÅ������� �������
 [������� C�Ĉ������� ��������

O?KNAÓ»�¿
¾

O?KNAÓ»�À½

O?KNAÓ»�
¾Á

O?KNAÓ»�½»

O?KNAÓ»�ÂÂ
O?KNAÓ»�ÃÃ

νέ΃�������

(c) Morpheme-based alignment and projection

Figure 6.1: An example of alignment and projection from Arabic onto Amharic. The alignment
models are trained on the New Testament. Arabic reads right to left.

Table 6.1: Paired inflected forms that correspond to the same citation form across Arabic and
Amharic parallel verses in the New Testament

132



pairs in Figure 6.1a.

We next show that using the stem as the core unit of abstraction for alignment and projection

improves POS tagging (Section 6.2.2). In addition, we examine the use of the morphemes instead of

the stem as the abstraction unit when the source and target languages are morphologically complex

(Section 6.2.3). Moreover, we examine the use of linguistic priors towards better segmentation and

tagging models (Section 6.2.4). Finally, we exploit the segmentation output as learning features in

our neural architecture (Section 6.2.5).

6.2.2 Stem-Based Alignment and Projection

Using the stem instead of the word as the core unit of abstraction is more productive; the stem is

usually shared by all the members of a paradigm, which allows to minimize misalignment.

Figure 6.1b shows that stemming the Arabic and Amharic texts results in complete one-to-

one alignments and projections, which in turn eliminates the null assignments resulting from the

word-level approach and assigns each word on the Amharic side a valid POS assignment.

Figure 6.2 illustrates our overall pipeline of the stem-based approach. First, we conduct

stemming for the source and target texts, and then we train stem-based alignment models between

the two sides. Next, we assign the stems of the source side the POS tags of their corresponding

words, which are then projected onto the target stems using the bidirectional stem-based alignments.

We then apply the token and type constraints on the labeled stems on the target side. However, since

we train the ultimate POS model on the word level, we replace each target stem by its corresponding

word and assign the word the stem-based POS tag. The rest of the pipeline for sentence selection

and training the POS model is the same as in the word-based architecture described in Section 4.2.

We assume that the source language is a high-resource one for which an off-the-shelf stemmer

is accessible, where we use the Snowball Stemmer (Porter, 2001) as part of NLTK 1 (Bird and

Loper, 2004) for the stemming of English, Spanish, French, German and Russian, while we use

MADAMIRA for Arabic, for performance gain. On the other hand, we apply our morphological-

1https://www.nltk.org
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7UDLQ�$OLJQPHQW�0RGHOV

6WHP�/HYHO�$OLJQPHQWV

3URMHFW�7DJV

6RXUFH�7H[W 7DUJHW�7H[W

7DJJHG�6RXUFH�7H[W

7DJ�IRU�326
�XVLQJ�RII�WKH�VKHOI�7DJJHU�

7DJJHG�6WHPPHG�7DUJHW�7H[W

$SSO\�7RNHQ�	�7\SH�&RQVWUDLQWV

6FRUH�	�6HOHFW�7UDLQLQJ�([DPSOHV

7UDLQLQJ�'DWD

7UDLQ�326�0RGHO

'R�6WHPPLQJ
�XVLQJ�RII�WKH�VKHOI�6WHPPHU� 7UDLQ�6HJPHQWDWLRQ�0RGHO

6WHPPHG�7DUJHW�7H[W6WHPPHG�6RXUFH�7H[W

7DJJHG�7DUJHW�7H[W

7DJJHG�6WHPPHG�6RXUFH�7H[W

326�0RGHO

7RNHQL]H��ZKLWH�VSDFHV�

7RNHQL]HG�7DUJHW�7H[W

7RNHQL]H��ZKLWH�VSDFHV�

7RNHQL]HG�6RXUFH�7H[W

Figure 6.2: The overall pipeline of unsupervised word-based cross-lingual POS tagging via annota-
tion projection

segmentation framework MorphAGram on the target side of the parallel text in a fully unsupervised

manner. We run MorphAGram in the cascaded setting (Section 3.3) using two rounds of learning.

In the first round, we train a segmentation model using the language-independent high-precision

grammar PrStSu2b+Co+SM to obtain a list of affixes. We then seed these affixes into the best

performing language-independent grammar PrStSu+SM for the second round of learning. As

discussed in Section 3.3, both PrStSu2b+Co+SM and PrStSu+SM model the word as a sequence of
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prefixes, a stem and suffixes, where the prefixes and suffixes are recursively defined in order to model

multiple consecutive affixes, which is suitable to process morphologically complex languages.

6.2.3 Morpheme-Based Alignment and Projection

Next, we examine the use of morpheme-level alignment and projection, similar to the stem-based

approach in Section 6.2.2. This approach abstracts away from whether the morphemes in the source

and target languages are free-standing or not. We hypothesize that morpheme-based alignment and

projection would help when both the source and target languages are morphologically complex, and

therefore we examine this approach using Arabic as the source.

Figure 6.1c shows that conducting both alignment and projection on the morpheme level for

Arabic and Amharic results in a complete POS assignment on the Amharic side as at least one

morpheme from each word receives a POS tag, where every sequence of consecutive morphemes in

the same color corresponds to one word.

The pipeline of the morpheme-based approach is similar to the one of the stem-based approach

depicted in Figure 6.2. On the source side, each morpheme receives a separate POS tag using an

off-the-shelf POS tagger, where we use MADAMIRA to obtain the morphemes for Arabic, while we

obtain the target morphemes in inflected forms (morphs) using MorphAGram 2 by applying the same

cascaded setting we use in the stem-based approach. We then project the POS tags from the source

morphemes onto the target ones through bidirectional morpheme-level alignments that are induced

by morpheme-level alignment models trained in the morpheme space. Upon applying the token

and type constraints, since we train the POS model on the word level, we replace each sequence of

morphemes that corresponds to one word on the target side by its corresponding word and assign

that word the POS tag of the representative morpheme. We define the representative morpheme

either as the morpheme whose POS tag ranks the highest among those of the other morph 3 (RANK)

or as the stem morpheme (STEM). For instance, the first Amharic word in Figure 6.1c receives the

2While the use of morphemes is more appealing than morphs towards less sparse models, we use morphs on the
target side as the extraction of morphemes is not plausible in a fully unsupervised manner using MorphAGram.

3We use the default ranking of POS tags defined at https://github.com/coastalcph/ud-conversion-tools. That is
VERB, NOUN, PROPN, PRON, ADJ, NUM, ADV, INTJ, AUX, ADP, DET, PART, CONJ, SCONJ, X and PUNCT.
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NOUN tag either because NOUN supersedes CCONJ (RANK) or because NOUN is assigned to the

stem morpheme (STEM).

6.2.4 Stem-Based Approach with Linguistic Priors

We hypothesize that better detection of stems in the stem-based approach would yield more robust

alignment and projection, which in turn results in a better POS model. Accordingly, instead of

conducting morphological segmentation on the target side in a fully unsupervised manner, we

incorporate linguistic priors in the form of linguist-provided affixes as detailed in Section 3.3.4. In

this setup, a list of affix morphemes is compiled manually by an expert in the target language and

seeded into the PrStSu+SM grammar prior to training the segmentation model.

6.2.5 Segmentation Information as Learning Features

Next, we examine the use of segmentation features within our neural architecture. We use the

unsupervised morphological-segmentation model that is trained on the target side of the parallel text

to produce stem, complex-prefix and complex-suffix features for each target word. For training, we

use these features as randomly initialized embeddings that we concatenate with the existing word,

affix and words-cluster embeddings to represent the input words in our BiLSTM neural architecture

(Section 4.2.2), while for decoding, we apply our segmentation model on the input text to construct

word representations in a similar fashion.

6.3 Languages and Data

We select eight morphologically complex target languages out of the 14 languages on which we

evaluate our word-based approach (Sections 4.3 and 5.3): six morphologically complex languages

that are largely agglutinative, namely Basque, Finnish, Georgian, Kazakh, Telugu, and Turkish,

morphologically rich Amharic, where many morphological alterations rely on consonantal roots, and

less morphologically rich Indonesian. On the other side, we use the same set of source languages.

This makes a total of 48 language pairs. In addition, we experiment with the eight multi-source
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setups presented in Section 5.2.

We choose to use the New Testament instead of the entire Bible as the source of parallel data for

alignment and projection in the stem-based approach. This is in order to demonstrate the efficiency

of stem-based alignment and projection, where the use of the stem compensates for the lack of

adequate parallel data. We however use the same evaluation datasets as before.

The stem-based approach results in less-sparse alignment models, allowing for more POS

projections from the source onto the target, and thus the number of null assignments decreases.

This leads to more dense sentences of higher scores, where the score of a sentence is defined as the

harmonic mean of its density and alignment confidence (Section 4.2.1). As a result, the number of

qualifying training instances increases.

Table 6.2 reports the average number of training instances per target language, across the source

languages, in the word-based and stem-based approaches. On average, the stem-based approach

results in a relative increase of 16.4% in the number of training instances, where Amharic witnesses

the highest relative increase of 132.6%, while Georgian experiences the lowest relative increase of

only 1.9%.

Target
Language

Average No. of Training Instances
Relative Increase %

Word-Based Stem-Based

Amharic 2,605 6,060 132.6
Basque 7,225 7,505 3.9
Finnish 7,125 7,518 5.5

Georgian 7,794 7,942 1.9
Indonesian 5,286 5,914 11.9

Kazakh 4,330 5,268 21.7
Telugu 4,719 5,382 14.1

Turkish 6,280 7,196 14.6

Average 5,670 6,598 16.4

Table 6.2: The average number of training instances per target language, across the source languages,
in the word-based and stem-based approaches when using the New Testament as the source of
parallel data

As the number of training instances increases, more words are seen in the training phase, and
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thus the percentage of out-of-vocabulary words (OOVs) decreases, which in turn improves the

overall performance of the POS model.

Table 6.3 reports the average percentage of OOVs per target language, across the source

languages, in the word-based and stem-based approaches. On average, the stem-based approach

results in a relative decrease of 2.6% in the percentage of OOVs, where Amharic witnesses the

highest relative decrease of 9.2%, while Basque experiences the lowest relative decrease of only

0.1%.

Target
Language

Average Percentage of OOVs %
Relative Decrease %

Word-Based Stem-Based

Amharic 66.6 60.5 9.2
Basque 64.1 64.1 0.1
Finnish 47.0 46.7 0.7

Georgian 35.2 34.6 1.6
Indonesian 38.8 38.6 0.3

Kazakh 39.6 38.2 3.5
Telugu 46.2 45.9 0.7

Turkish 38.2 37.2 2.7

Average 47.0 45.7 2.6

Table 6.3: The average percentage of out-of-vocabulary words (OOVs) per target language, across
the source languages, in the word-based and stem-based approaches when using the New Testament
as the source of parallel data

Finally, we evaluate the morpheme-based approach when projecting from Arabic as it is the

most morphologically complex source language, while we examine the use of linguistic priors

within the stem-based approach using Georgian as a case study.

6.4 Evaluation and Analysis

We use the same experimental settings we apply in our work on word-based cross-lingual POS

tagging in Section 4.4.1, where we run the training processes for each experimental pair for three

times and report the average POS accuracy over the three runs.
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6.4.1 Performance of Single-Source Stem-Based Setups

Table 6.4 reports the accuracy of our POS taggers in the single-source stem-based setups, compared

to the single-source word-based setups, and the average relative error reductions due to the use of

the stem-based approach per target language, across the source languages, and per source language,

across the target languages.

Target
Language Approach Source for Unsupervised Learning Ave. Relative

Error
Reduction %English Spanish French German Russian Arabic

Amharic
Word-based 75.9 74.9 75.5 76.4 72.1 72.6
Stem-based 79.6* 77.5 77.7 77.8 76.2 74.5 10.5

Basque
Word-based 67.3 64.6 65.8 66.7 61.7 55.6
Stem-based 69.1 70.4* 70.5 69.6 65.2 60.8 10.9

Finnish
Word-based 81.0 78.8 77.4 79.8 77.8 66.1
Stem-based 81.9 80.1 80.9* 82.3 79.0 70.3 9.4

Georgian
Word-based 82.8 80.1 80.2 82.5 83.1 71.2
Stem-based 82.0 80.4 81.0 82.2 83.4 79.0* 4.6

Indonesian
Word-based 82.3 81.6 81.0 77.1 76.8 69.8
Stem-based 82.5 81.0 80.1 77.3 81.2* 72.3 3.5

Kazakh
Word-based 73.6 64.7 67.3 68.9 62.1 63.6
Stem-based 76.4 74.8 75.5 73.2 73.6* 70.8 21.4

Telugu
Word-based 76.7 68.4 67.9 70.4 63.5 59.5
Stem-based 78.6 72.7 72.2 71.9 69.6 66.8 12.4

Turkish
Word-based 73.9 70.1 70.5 69.2 66.2 64.7
Stem-based 73.7 73.1 73.0 71.9 77.6* 71.9 13.4

Ave. Error Reduction % 5.0 10.4 10.5 6.8 16.3 15.6

Table 6.4: The POS-tagging performance (accuracy) of the single-source word-based and stem-
based setups when using the New Testament as the source of parallel data. The best result per
target-source language pair is in bold. The highest relative error reduction in the stem-based
approach per target language is marked by *. The improvements in the stem-based setups that are
not statistically significant for p-value < 0.01 are underlined. The last column and row report the
stem-based average relative error reductions per target language and source language, respectively.

The single-source stem-based approach outperforms the single-source word-based one in 43
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language pairs, where only five language pairs benefit more from word-based alignment and

projection, namely {Georgian, English}, {Georgian, German}, {Indonesian, Spanish}, {Indonesian,

French} and {Turkish, English}, where Georgian and Indonesian stand out in our language sample

as the least complex in terms of morphology.

Comparing to the single-source word-based approach, the biggest improvements in the single-

source stem-based approach are achieved in the cases of the {Turkish, Russian}, {Kazakh, Russian},

{Kazakh, Spanish} and {Georgian, Arabic} language pairs with average relative error reductions

of 33.8%, 30.2%, 28.6% and 27.2%, respectively. When averaging across the source languages,

Kazakh and Turkish experience the highest average relative error reductions of 21.4% and 13.4%,

respectively, while the least morphologically complex Indonesian benefits from the stem-based

approach the least with an average relative error reduction of only 3.5%. On the other hand, when

averaging across the target languages, Russian and Arabic yield the highest average relative error

reductions of 16.3% and 15.6%, respectively, which is in line with the fact that Arabic and Russian

are more morphologically complex than the other source languages.

Comparing to applying the single-source word-based approach on the entire Bible (in Table 4.4),

the single-source stem-based approach that relies on the New Testament, that is one fourth the

amount of data, achieves better results in about two thirds of the language pairs (31 out of 48) and

on average with an average absolute performance increase of 1.7% that goes up to 11.5% in the

{Kazakh, Russian} language pair. This means the use of the stem as the core unit of abstraction

compensates for the lack of adequate parallel data to learn from as it produces less-sparse alignment

models and increases the number of projected tags and training instances. For the absolute increases

in all the language pairs, see Figure 6.3.

Finally, all the improvements due to the use of the single-source stem-based approach as

compared to the single-source word-based approach are statistically significant for p-value < 0.01

except for the {Indonesian, English}, {Indonesian, German} and {Kazakh, Spanish} language pairs.

It is also noticed that for some target languages, the best source language in the word-based approach

differs from the best source language in the stem-based approach. For instance, while English is
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Figure 6.3: The absolute performance increases (accuracy) when applying the single-source stem-
based approach using the New Testament as the source of parallel data as compared to the single-
source word-based approach using the entire Bible as the source of parallel data

the best source language for Basque, Finnish and Turkish in the word-based approach, exploiting

the stem gives the best performance for the three languages when projecting from Spanish/French,

German and Russian, respectively.

6.4.2 Performance of Multi-source Stem-Based Setups

Table 6.5 reports the accuracy of our POS taggers in the multi-source stem-based setups, compared

to the multi-source word-based setups, and the average relative error reductions due to the use of

the stem-based approach per target language, across the multi-source setups, and per multi-source

setup, across the target languages.

The multi-source stem-based approach outperforms the multi-source word-based one in 57

multi-source pairs out of 64. This is mainly because the least morphologically complex Indonesian

does not benefit from the multi-source stem-based approach except when applying the MPwmv_a

setup.
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Target
Language

Approach Multi-Source Setup Ave. Relative
Error

Reduction %MPwmv MPbys MPwbys MDwmv_a MDwmv_d MDbys MDwbys_a MDwbys_d

Amharic
Word-Based 78.0 74.8 74.9 76.6 77.1 76.3 76.4 76.4
Stem-Based 79.6 80.4 80.8* 78.6 79.1 79.2 79.2 79.2 13.3

Basque
Word-Based 67.1 66.1 66.0 66.4 66.7 68.6 68.4 68.4
Stem-Based 71.4 71.7 71.7* 71.0 72.0 71.9 72.3 71.8 7.0

Finnish
Word-Based 81.7 82.0 81.9 81.0 81.1 81.5 81.4 81.4
Stem-Based 82.9 82.7 82.5 82.4 82.7 83.2* 83.0 83.0 13.7

Georgian
Word-Based 84.3 83.2 82.8 83.6 84.1 84.3 84.2 84.2
Stem-Based 84.7 84.5 84.2* 84.3 84.3 84.5 84.4 84.5 3.7

Indonesian
Word-Based 81.7 81.1 81.2 80.9 82.3 82.2 82.2 82.3
Stem-Based 81.0 81.0 80.9 81.4* 81.9 82.0 82.0 82.0 -1.2

Kazakh
Word-Based 70.3 67.4 68.4 69.7 69.4 70.7 70.7 70.7
Stem-Based 76.7 76.8* 76.9 75.3 75.8 76.7 76.6 76.6 22.3

Telugu
Word-Based 71.3 70.3 69.3 68.6 69.9 71.1 71.3 71.0
Stem-Based 73.8 71.7 70.8 72.9* 73.6 73.4 73.4 73.4 8.5

Turkish
Word-Based 73.3 70.9 71.7 71.0 72.3 73.2 73.1 73.2
Stem-Based 73.6 73.6 73.7 75.4* 75.2 74.4 74.4 74.3 7.0

Ave. Error Reduction % 7.1 11.6 11.1 10.6 9.6 8.1 8.2 8.0

Table 6.5: The POS-tagging performance (accuracy) of the multi-source word-based and stem-based
setups when using the New Testament as the source of parallel data. The best result per {target
and multi-source setup} pair is in bold. The highest relative error reduction in the stem-based
approach per target language is marked by *. The improvements in the stem-based setups that are
not statistically significant for p-value < 0.01 are underlined. The last column and row report the
stem-based average relative error reductions per target language and multi-source setup, respectively.

Comparing to the multi-source word-based approach, the biggest improvements in the multi-

source stem-based approach are achieved in the cases of Kazakh and Amharic in the MPbys and

MPwbys setups with relative error reductions of 28.9% and 27.0%, respectively, for Kazakh and

22.3% and 23.5%, respectively, for Amharic. When averaging across the multi-source setups,

Kazakh and Finnish experience the highest average relative error reductions of 22.3% and 13.7%,

respectively, while the performance for the least morphologically complex Indonesian witnesses an

average relative drop of 1.2%. On the other hand, when averaging across the target languages, the
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MPbysand MPwbys setups yield the highest average relative error reductions of 11.6% and 11.1%,

respectively, which means that the stem-based approach is more efficient for multi-source projection

than multi-source decoding.

Comparing to applying the multi-source word-based approach on the entire Bible (in Table 5.5),

the multi-source stem-based approach that relies on the New Testament, that is one fourth the

amount of data, achieves better results in about three fifths of the pairs (37 out of 64) and on average

with an average absolute performance increase of 1.1% that goes up to 9.4% in the {Kazakh, MPbys}

pair, which is in line with the patterns seen in the single-source setup.

Finally, all the improvements due to the use of the multi-source stem-based approach as

compared to the multi-source word-based approach are statistically significant for p-value < 0.01

except for the {Georgian, MDbys} and {Telugu, MPbys} pairs.

6.4.3 Performance of Morpheme-Based Setups

Next, we evaluate the morpheme-based approach when projecting from Arabic, our source language

of the richest morphology, using the RANK and STEM mechanisms for the selection of the represen-

tative morphemes. We compare the results to those of the word-based and stem-based approaches

and report them in Table 6.6.

The morpheme-based approach results in more dense training instances as both alignment and

projection are performed in a more fine-grained level than those in the word-based and stem-based

approaches. It therefore yields the best performance for all the target languages when projecting

from Arabic except Amharic, where Telugu benefits the most with relative error reductions of 23.9%

and 15.3% over the stem-based approach using the RANK and STEM mechanisms, respectively. The

difference in the performance of the RANK and STEM mechanisms is only statistically significant

for p-value < 0.01 in Amharic and Basque, where the STEM mechanism yields better performance,

and in Telugu, where the RANK mechanism gives a better result4. However, all the improvements in

the morpheme-based approach as opposed to the stem-based one are statistically significant.

4The quality of morphological segmentation affects the detection of stems and thus affects the quality of the STEM
mechanism.
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Target
Language

Approach

Word-Based Stem-Based
Morpheme-Based Morpheme-Based

(RANK) (STEM)

Amharic 72.6 74.5 72.5 73.6
Basque 55.6 60.8 61.9 62.2
Finnish 66.1 70.3 73.8 74.2

Georgian 71.2 79.0 80.5 80.0
Indonesian 69.8 72.3 75.5 75.6

Kazakh 63.6 70.8 71.8 71.9
Telugu 59.5 66.8 74.7 71.8

Turkish 64.7 71.9 73.2 73.4

Table 6.6: The POS-tagging performance (accuracy) of the word-based, stem-based and morpheme-
based approaches when projecting from Arabic using the New Testament as the source of parallel
data. The best result per target language is in bold. The improvements in the morpheme-based
setups that are not statistically significant for p-value < 0.01 are underlined.

6.4.4 Performance of Using Linguistic Priors

Next, we evaluate the use of linguistic priors in the stem-based approach, where we compile a

list of linguist-provided affixes of Georgian, as a case study, and seed them into the PrStSu+SM

grammar. We use the same list of affixes we experiment with in Section 3.3.2 and report the results

in Tables 6.7 and 6.8 for the single-source and multi-source setups, respectively.

Target
Language

Approach Source for Unsupervised Learning

English Spanish French German Russian Arabic

Georgian
Word-based 82.8 80.1 80.2 82.5 83.1 71.2
Stem-based 82.0 80.4 81.0 82.2 83.4 79.0

LP Stem-based 82.9 80.8 82.2 82.4 83.9 77.4

Table 6.7: The POS-tagging performance (accuracy) of the single-source word-based and stem-
based (with and without linguistic priors (LP)) setups when using the New Testament as the source
of parallel data. The best result per source language is in bold. The improvements in the LP
stem-based setups that are not statistically significant for p-value < 0.01 as compared to the regular
stem-based setups are underlined.

The use of linguistic-priors improves the single-source stem-based approach when projecting

from all the source languages except Arabic. The linguistic priors result in an average relative error

reduction of 1.7% that goes up to 6.3% when projecting from French.
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Target
Language

Approach Multi-Source Setup

MPwmv MPbys MPwbys MDwmv_a MDwmv_d MDbys MDwbys_a MDwbys_d

Georgian
Word-Based 84.3 83.2 82.8 83.6 84.1 84.3 84.2 84.2
Stem-Based 84.7 84.5 84.2 84.3 84.3 84.5 84.4 84.5

LP Stem-based 85.1 84.9 84.8 85.3 85.3 85.4 85.4 85.4

Table 6.8: The POS-tagging performance (accuracy) of the multi-source word-based and stem-based
(with and without linguistic priors (LP)) setups when using the New Testament as the source of
parallel data. The best result per multi-source setup is in bold. The improvements in the LP
stem-based setups that are not statistically significant for p-value < 0.01 as compared to the regular
stem-based setups are underlined.

The improvements due to the use of linguistic priors in the single-source stem-based approach

are statistically significant for p-value < 0.01 when only projecting from English and French. This

suggests that the robust approach for selecting high-quality alignments, projections and training

instances limits the effect of developing a segmentation model of a relatively better quality.

The lack of improvement in the case of Arabic can be explained by over-segmentation that

produces an incorrect POS tag for the conjunction da (and). The characters da also correspond to

a verbal prefix that is manually seeded as a prior. This seeding causes erroneous projections labeling

da as a verb or an adverb when projecting from Arabic.

In the multi-source setups, the use of linguistic priors consistently improves the performance,

achieving an average relative error reduction of 4.6% that goes up to 6.3% in the MDwmv_d setup,

where the improvements in multi-source decoding are consistently higher than those in multi-source

projection. Finally, all the improvements are statistically significant for p-value < 0.01 except in

the MPwmv setup.

6.4.5 Performance of Using Segmentation Features

Next, we evaluate the use of the segmentation output (stems and affixes) as learning features in

our neural architecture. Overall, the majority of the improvements due to the use of these features

are not statistically significant since such features are surpassed by the prefix and suffix n-gram
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character-based features, where n is in {1, 2, 3, 4} 5. We report below the statistically significant

improvements for p-value < 0.01. For the complete results in the single-source and multi-source

setups, see Tables 2.5 and 2.6, respectively, in Appendix B.

In the single-source stem-based approach, the use of stems as features only yields statisti-

cally significant improvements for four target-source language pairs, namely {Amharic, English},

{Basque, Russian}, {Finnish, Arabic} and {Georgian, French}, where the {Amharic, English}

language pair experiences the highest absolute performance increase of only 0.6%. On the other

hand, coupling stems with complex prefixes and suffixes as features only results in statistically

significant improvements for five target-source language pairs, namely {Basque, Arabic}, {Basque,

Russian}, {Finnish, Arabic}, {Finnish, French} and {Kazakh, English}, where the {Basque, Arabic}

language pair experiences the highest absolute performance increase of 1.2%

In the multi-source stem-based approach, the use of segmentation features is more beneficial

than in the single-source stem-based approach, where the use of stems as features yields statistically

significant improvements for seven experimental pairs, namely {Amahric, MPbys}, {Amahric,

MDwbys_d}, {Basque, MPbys}, {Basque, MDbys}, {Basque, MDwbys_d}, {Finnish, MDwmv_a} and

{Kazakh, MPbys}, where projecting onto Basque in the MDwbys_d setup experiences the best absolute

performance gain of 0.9%. On the other hand, coupling stems with complex prefixes and suffixes as

features yields statistically significant improvements for ten experimental pairs, namely {Basque,

MPwbys}, {Finnish, MDwmv_a}, {Finnish, MDwmv_d}, {Kazakh, MPbys}, {Kazakh, MDbys}, {Kazakh,

MDwbys_a}, {Kazakh, MDwbys_d}, {Telugu, MDwmv_a}, {Telugu, MDwmv_d} and {Turkish, MPwmv},

where the {Telugu, MDwmv_a} pair experiences the highest absolute performance increase of 0.7%.

6.4.6 Performance on Open-Class Tags

Table 6.9 reports the average precision, recall and F1-score for nouns, verbs and adjectives per target

language, across the source languages, in the single-source word-based and stem-based approaches.

For complete results per target-source language pair, see Table 2.4 in Appendix B.

5We examined the use of n-gram affixes versus affixes generated through segmentation. The former consistently
results in better performance.
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Target
Language Approach

Noun Verb Adjective

Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

Amharic
Word-Based 67.2 81.5 73.5 75.2 79.0 76.6 21.0 6.1 8.1
Stem-Based 69.6 88.3 77.8 82.9 76.9 79.7 48.4 25.3 32.2

Basque
Word-Based 58.7 77.6 66.7 50.0 77.6 60.2 30.0 10.3 14.6
Stem-Based 59.7 84.1 69.7 70.6 69.0 69.4 36.6 21.9 27.1

Finnish
Word-Based 72.1 87.1 78.4 67.9 82.5 74.1 70.3 32.6 43.2
Stem-Based 74.7 89.6 81.2 75.8 81.5 78.4 64.1 44.6 52.2

Georgian
Word-Based 75.4 88.1 80.8 69.7 95.5 80.5 83.9 55.0 64.9
Stem-Based 76.7 89.2 82.4 77.6 95.0 85.4 85.4 58.0 69.0

Indonesian
Word-Based 67.2 90.3 76.7 79.8 87.3 83.1 48.0 26.1 33.0
Stem-Based 68.1 91.2 77.8 84.2 82.9 83.4 59.4 36.4 44.9

Kazakh
Word-Based 65.6 73.8 68.5 47.5 87.1 60.7 31.3 4.9 7.9
Stem-Based 69.6 88.6 77.9 67.4 80.6 73.3 67.7 18.9 29.2

Telugu
Word-Based 61.2 47.1 53.0 54.7 96.9 69.6 1.9 2.2 2.0
Stem-Based 64.0 60.0 61.2 65.9 93.1 76.8 0.7 1.1 0.9

Turkish
Word-Based 68.3 73.7 70.2 64.4 89.2 74.4 67.3 15.0 22.8
Stem-Based 73.6 83.6 78.2 80.7 80.2 80.3 73.3 26.6 38.9

Table 6.9: The average precision, recall and F1-score for nouns, verbs and adjectives per target
language, across the source languages, in the single-source word-based and stem-based approaches.
The best result per target language and POS tag for each evaluation metric is in bold.

In the case of nouns, the stem-based approach improves precision, recall and F1-score consis-

tently for all the languages with an average relative increase in F1-score of 15.7%. This increases

to 19.9% in the case of verbs, where the precision and F1-score in the stem-based approach are

consistently higher than those in the word-based approach, while the recall in the word-based

approach is consistently higher than the one in the stem-based approach. Similarly, in the case of

adjectives, the stem-based approach results in an average relative increase in F1-score of 16.1%.

Tables 6.10 and 6.11 report the precision, recall and F1-score for nouns, verbs and adjectives per

target language in the best multi-source projection setup MPwmv and the best multi-source decoding

setup MDbys, respectively, in the multi-source word-based and stem-based approaches.

The performance of the multi-source setups has a similar pattern to that of the single-source

setup, where the stem-based approach outperforms the word-based one but with relatively smaller
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Target
Language Approach

Noun Verb Adjective

Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

Amharic
Word-Based 74.1 77.9 75.9 73.4 87.8 80.0 55.2 29.3 38.3
Stem-Based 73.2 88.2 80.0 82.7 80.7 81.7 46.4 35.1 39.8

Basque
Word-Based 62.1 78.7 69.4 51.9 76.0 61.7 36.7 17.7 23.8
Stem-Based 62.8 83.6 71.7 72.9 70.6 71.7 39.1 24.0 29.6

Finnish
Word-Based 76.5 88.2 81.9 71.9 85.1 78.0 80.4 42.0 55.2
Stem-Based 78.6 89.3 83.6 78.8 83.4 81.0 67.8 52.4 59.1

Georgian
Word-Based 79.1 90.6 84.5 73.9 95.5 83.3 87.7 62.8 73.1
Stem-Based 79.1 90.4 84.4 77.4 96.9 86.1 84.3 59.9 70.0

Indonesian
Word-Based 69.8 90.2 78.7 85.3 84.5 84.9 66.8 42.5 51.9
Stem-Based 69.8 90.8 78.9 86.2 82.1 84.1 63.8 40.6 49.6

Kazakh
Word-Based 69.6 75.5 72.5 49.4 89.5 63.6 67.4 8.2 14.6
Stem-Based 73.1 88.5 80.0 69.7 81.1 75.0 71.1 22.2 33.8

Telugu
Word-Based 70.6 46.4 56.0 53.7 97.3 69.2 0.0 0.0 0.0
Stem-Based 70.1 62.6 66.1 64.3 91.7 75.6 0.0 0.0 0.0

Turkish
Word-Based 77.1 73.2 75.1 66.2 91.5 76.8 82.5 31.2 45.3
Stem-Based 76.6 82.7 79.6 80.0 77.7 78.9 80.5 29.3 43.0

Table 6.10: The precision, recall and F1-score for nouns, verbs and adjectives per target language in
the best multi-source projection setup, both word-based and stem-based. The best result per target
language and POS tag for each evaluation metric is in bold.

gaps. Considering the 72 evaluation points (8 target languages, 3 POS tags and 3 evaluation metrics),

MPwmv results in the same behavior (in terms of whether the stem-based approach outperforms the

word-based one) as that of the single-source setup in 53 evaluation points. This number increases to

65 in the case of MDbys. However, the majority of the differences between the single-source setup

and the multi-source ones occur in the case of adjectives.

In the case of MPwmv, the average relative increases in F1-score for nouns, verbs and adjectives

in the stem-based approach are 12.8%, 15.0% and 2.6%, respectively, while in the case of MDbys,

the average relative increases in F1-score for nouns, verbs and adjectives are 11.7%, 15.2% and

11.4%, respectively. This means that in the multi-source setups, verbs benefit the most from the

stem-based approach, followed by nouns and adjectives, in order, while in the single-source setup,

adjectives benefit more than nouns from the stem-based approach.
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Target
Language Approach

Noun Verb Adjective

Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

Amharic
Word-Based 67.6 84.7 75.2 79.7 77.2 78.4 52.1 6.9 12.2
Stem-Based 71.1 88.6 78.9 84.5 78.4 81.3 55.7 26.7 36.0

Basque
Word-Based 63.0 77.7 69.6 54.2 75.3 63.0 36.2 18.3 24.3
Stem-Based 62.8 83.4 71.7 76.3 68.2 72.0 38.1 24.9 30.1

Finnish
Word-Based 78.1 86.3 82.0 72.6 84.6 78.2 68.4 47.0 55.7
Stem-Based 80.4 88.6 84.3 80.0 83.0 81.5 64.9 58.3 61.4

Georgian
Word-Based 79.2 88.0 83.3 75.0 97.6 84.8 85.7 64.1 73.3
Stem-Based 80.2 89.4 84.6 77.1 96.7 85.8 89.6 62.5 73.6

Indonesian
Word-Based 72.3 89.6 80.0 84.9 86.3 85.6 64.8 40.9 50.1
Stem-Based 71.4 90.9 80.0 88.0 85.2 86.6 68.5 40.8 51.1

Kazakh
Word-Based 68.1 79.7 73.4 51.6 88.8 65.3 70.4 6.2 11.4
Stem-Based 72.9 88.5 79.9 71.3 80.2 75.5 70.9 23.7 35.5

Telugu
Word-Based 63.3 55.4 59.1 57.3 98.3 72.4 0.0 0.0 0.0
Stem-Based 68.2 60.2 64.0 64.5 94.2 76.5 0.0 0.0 0.0

Turkish
Word-Based 75.8 75.9 75.9 69.7 89.6 78.4 84.1 25.7 39.4
Stem-Based 77.2 82.3 79.6 81.8 79.7 80.7 81.1 28.7 42.3

Table 6.11: The precision, recall and F1-score for nouns, verbs and adjectives per target language in
the best multi-source decoding setup, both word-based and stem-based. The best result per target
language and POS tag for each evaluation metric is in bold.

6.5 Conclusion

In this chapter, we performed unsupervised stem-based POS tagging via annotation projection,

where the stem is used instead of the word as the core unit of abstraction. This is useful for

low-resource languages with rich affixation, where word-level alignment models are sparse due to

rich paradigms and translation inconsistencies that hinder the ability of the alignment models to

relate words that belong to the same citation form across parallel texts.

In addition to the stem-based approach, we examined morpheme-based alignment and projection

for the cases where both the source and target languages are morphologically complex. Moreover,

we experimented with the use of linguistic priors to perform semi-supervised morphological

segmentation towards better segmentation and tagging models. Finally, we examined the use of the
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generated stems and affixes as learning features in our neural architecture for POS tagging.

We showed the efficiency of the stem-based approach, where it increases the number of training

instances and decreases the percentage of OVVs for all the target languages. When evaluated on 48

language pairs of diverse typologies, the stem-based approach outperforms the word-based one in 43

pairs with an average relative error reduction up to 21.4% in the case of Kazakh. We also illustrated

that the stem-based approach outperforms the word-based one that operates on three-times more

data in about two thirds of the experimental language pairs and thus compensates for the lack of

sufficient parallel data. Moreover, we showed that the stem-based approach yields improvements

when coupled with multi-source projection and decoding.

When using Arabic as the source language, the morpheme-based approach results in further

improvements for all the target languages except Amharic, where Telugu benefits the most. On

another hand, using Georgian as a case study, we showed that improving segmentation quality

through the use of linguistic priors, in the form of linguist-provided affixes, results in improved

POS-tagging models. However, the improvements are not statistically significant for the majority of

the experimental language pairs as the improved quality of the generated stems is dominated by

the ability of the pipeline to produce high-quality alignments, projections and training instances.

In addition, we showed that the use of the generated stems and affixes as learning features in our

neural architecture does not yield noticeable improvements since such features are surpassed by the

prefix and suffix n-gram character-based features.

Finally, we illustrated that the stem-based approach improves the tagging of open-class words in

both the single-source and multi-source setups.
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Chapter 7

Conclusion and Future Directions

“Look at a day when you are supremely satisfied at the end. It’s not a day when

you lounge around doing nothing, it’s when you’ve had everything to do and

you’ve done it. ” — Margaret Thatcher

7.1 Summary of Contributions

In this thesis, we have proposed several contributions and accompanying findings in two morphology

tasks: unsupervised morphological segmentation and unsupervised cross-lingual part-of-speech

(POS) tagging. Our empirical results show significant improvements over previously state-of-the-art

systems, moving towards reducing the gaps to the corresponding supervised models.

7.1.1 Two Morphology Systems

We introduced an unsupervised and minimally supervised morphological-segmentation framework,

MorphAGram, that is based on Adaptor Grammars (AGs) and allows for the inclusion of linguistic

priors (Section 7.1.2). In MorphAGram, we defined several language-independent grammars of

different characteristics. In addition, we introduced a fully unsupervised learning setting that relies

on self-training through two rounds of learning in order to approximate the effect of utilizing scholar

knowledge. Moreover, since there is no single grammar that works best across all languages, we

developed an approach to automatically select a nearly optimal configuration for unseen languages.

We also introduced an end-to-end approach for unsupervised cross-lingual POS tagging via
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annotation projection in truly low-resource scenarios, where we do not assume access to large or

domain-specific parallel data. Our approach exploits and expands the best practices in the literature

in order to produce high-quality projected annotations towards highly efficient POS models. As

part of our approach, we developed a rich neural architecture that combines non-contextualized and

transformer-based contextualized word embeddings along with affix embeddings and word-cluster

embeddings.

We finally combined our work on unsupervised morphological segmentation and unsupervised

cross-lingual POS tagging by introducing an approach for unsupervised stem-based cross-lingual

POS tagging via annotation projection, where the stem is the core unit of abstraction for alignment

and projection, which is beneficial to low-resource languages of rich morphology. Moreover, we

examined morpheme-based alignment and projection and the use of segmentation information

(stems and affixes) as learning features in our neural architecture.

7.1.2 Incorporation of Linguistic Priors

In addition to the fully unsupervised language-independent settings, MorphAGram can benefit

from scholar knowledge in the form of affixes seeded into the grammars, where it handles two

different cases where the scholar knowledge is either generated from grammar references as weak

linguistic priors or compiled by an expert in the underlying language as strong linguistic priors. In

addition, we introduced another method for the incorporation of linguistic priors in the form of a

grammar definition through the design of a language-specific grammar. We also examined the use

of linguistic priors towards better POS models in stem-based cross-lingual POS tagging.

7.1.3 Multilingual and Multi-Source Learning

In the case of unsupervised morphological segmentation, we examined multilingual setups in which

we combine the lexicons of multiple related languages within low-resource setups. On another hand,

we introduced eight multi-source cross-lingual POS-tagging setups that make use of multiple source

languages, as parallel data might be available between the target language and multiple source ones,
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either in the projection phase or at decoding. Our multi-source approaches are based on weighted

maximum voting and Bayesian inference, in addition to hybrid setups in which we combine the two

mechanisms.

7.1.4 Evaluation and Analysis

We conducted comprehensive evaluation and analysis for our frameworks. We evaluated our

morphological-segmentation framework MorphAGram on 13 languages of diverse typologies:

analytic (English), fusional (German and Arabic) agglutinative (Turkish, Finnish, Estonian, Zulu

and Japanese) and synthetic/polysynthetic (Georgian, Mexicanero, Nahuatl (Mexicano), Wixarika

(Huichol) and Mayo (Yorem Nokki)). We showed that our fully unsupervised system achieves

an average F1-score of 75.4%, using the BPR metric, and outperforms both Morfessor (Creutz

and Lagus, 2007; Grönroos et al., 2014) and MorphoChain (Narasimhan et al., 2014), two state-

of-the-art baselines, with average relative error reductions of 22.8% and 40.7%, respectively. We

also illustrated the benefits of incorporating linguistic priors by achieving noticeable relative error

reductions for Japanese, Georgian and Arabic, as case studies. We also showed performance gains

for Estonian upon combining small Finnish and Estonian lexicons. In addition, we analyzed the

morphological characteristics, the performance across datasets of various sizes and the segmentation

output for each experimental language.

We evaluated our POS-tagging framework on six source languages, namely English, Spanish,

French, German, Russian and Arabic, and 14 target languages of diverse typologies, namely

Afrikaans, Amharic, Basque, Bulgarian, Finnish, Georgian, Hindi, Indonesian, Kazakh, Lithuanian,

Persian, Portuguese, Telugu and Turkish, for a total of 84 language pairs. Our system achieves an

average POS accuracy of 75.5% across all the language pairs, where we get the best results when

transferring across related languages.

We also showed that the multi-source setups outperform the single-source one on average and

in 10 target languages. We also illustrated the efficiency of the stem-based approach, where it

outperforms the word-based approach in 43 language pairs out of 48 experimental ones with an
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average relative error reduction up to 21.4% in the case of Kazakh. Moreover, the stem-based

approach outperforms the word-based one that operates on three-times more data in about two

thirds of the experimental language pairs and thus compensates for the lack of sufficient parallel

data. The stem-based approach also yields further improvements when coupled with multi-source

projection and decoding. We also showed improvements using morpheme-based alignment and

projection using Arabic as the source language and improvements using linguistic priors for stem-

based alignment and projection using Georgian as the target language. We moreover illustrated the

efficiency of our approaches at analyzing open-class words.

In addition, we showed significant improvements over two state-of-the-art unsupervised systems

by Buys and Botha (2016) and Agić et al. (2016) and two state-of-the-art semi-supervised systems

by Cotterell and Heigold (2017) and Plank et al. (2016) despite the fact that the systems we compare

to use either large and/or domain-specific parallel data, several source languages, some labeled data

or language resources.

In addition, we analyzed two ablation setups that prove the efficiency of our approaches

when lacking large monolingual data and/or rich computational resources. We also demonstrated

that unsupervised cross-lingual POS tagging via annotation projection might be an alternative to

supervised learning, where it predicts at least as many as 85.0% of the correct decisions made by

the state-of-the-art supervised system Stanza (Qi et al., 2020) in eight target languages. Finally,

we illustrated that annotation projection is less sensitive to the relatedness between the source and

target languages when compared to zero-shot model transfer (Pires et al., 2019).

7.1.5 New Language Resources

As part of our evaluation, we developed two gold-standard morphological-segmentation datasets for

Japanese and Georgian, each containing 1,000 words and their gold segmentation, where a word

might receive more than one possible analysis. In addition, the Georgian dataset contains the main

POS category of each word. We also developed a gold-standard POS-labeled dataset for Georgian

of 1,000 sentences, where the tags follow the Universal-Dependencies tagging scheme.
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7.2 Future Directions

In this section, we discuss possible research directions that would further enhance unsupervised

morphological segmentation and unsupervised cross-lingual POS tagging and their downstream

applications.

7.2.1 Introducing PSRCGs into MorphAGram

The current PCFGs are not able to handle several morphological phenomena such as infixation,

circumfixation and root-templatic derivation. This was the motivation for Botha and Blunsom () to

extended AGs by replacing PCFGs by PSRCGs (probabilistic simple-range concatenating grammars)

for the processing of Arabic and Hebrew, two morphologically complex languages of templatic

morphology. In a PSRCG, nonterminals accept arguments (variables), where a nonterminal becomes

instantiated when the variables are bound to ranges through substitution. We hypothesize that the

introduction of PSRCGs into our morphological-segmentation framework MorphAGram would be

beneficial to better model languages of complex morphological phenomena, while exploiting the

capabilities of MorphAGram, which include, but are not limited to, accessing several language-

independent grammars within different learning settings, the automatic handling of unseen languages

and the incorporation of linguistic priors.

7.2.2 Linguistic Priors for Multilingual Morphological Segmentation

We showed that the incorporation of linguistic priors, either in the form of a grammar definition,

in the case of Japanese, or linguist-provided affixes, in the case of Georgian and Arabic, improves

the performance of morphological segmentation by noticeable relative BPR error reductions of

4.2%, 33.2% and 32.9% for Japanese, Georgian and Arabic, respectively (Sections 3.3.4 and 3.5.5).

On another hand, we demonstrated that multilingual training, in which we combine the lexicons

of multiple related languages, helps in some of the low-resource setups, where combining small

Finnish and Estonian lexicons of 500 and 1,000 words improves the morphological-segmentation
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performance for Estonian by relative BPR error reductions of 2.5% and 4.5% (Sections 3.3.5 and

3.5.6), respectively. Accordingly, we hypothesize that coupling linguistic priors with multilingual

learning would help the sampler better derive a segmentation model that generalizes well across the

underlying languages, especially in low-resource learning setups. This can be achieved either by

tailoring a grammar that models the linguistic characteristics of a specific language family or genus

in which the languages share the main aspects of word structure or by seeding linguist-provided

affixes that are common across a group of related languages of highly overlapping sets of affixes.

7.2.3 Morphologically Driven Tokenization in Neural-Based NLP Tasks

Subword-based tokenization has become a popular choice in several neural-based NLP tasks, such

as neural machine translation (Artetxe et al., ; Bawden et al., 2019) and building transformer-based

language models, e.g., BERT (Devlin et al., 2019), XLNet (Yang et al., 2019), RoBERTa (Conneau et

al., 2019), GPT-2 (Radford et al., 2019), GPT-3 (Brown et al., 2020), ALBERT (Lan et al., 2020) and

ELECTRA (Clark et al., 2020). There are currently three widely used subword-based tokenization

methods.

• WordPiece (Yonghui et al., 2016): In WordPiece, the vocabulary is first initialized with the

characters in the underlying language(s), and then the most frequent character sequences are

iteratively added to the vocabulary. WordPiece is used in BERT, ALBERT and ELECTRA.

• BPE (byte-pair encoding) (Gage, 1994; Sennrich et al., 2016): BPE relies on data compression

in which the most frequent pair of consecutive bytes in the data is replaced by a newly

introduced byte, and then the process repeats iteratively for a preset number of iterations.

BPE is used in GPT-2 and GPT-3.

• SentencePiece (Kudo and Richardson, 2018): SentencePiece relies on BPE, coupled with the

word-based unigram tokenization method proposed by (Kudo, 2018). SentencePiece is used

in RoBERTa and XLNet.
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One path to investigate is the use of morphologically motivated tokenization in the recent

neural-based NLP tasks, such as neural machine translation and building transformer-based lan-

guage models. The high cost of morphological segmentation has motivated the use of cheaper

non-linguistically driven tokenization schemes that rely on relatively simple statistical methods, es-

pecially with the need to obtain expensive labeled data in order to produce high-quality morphemes,

which is not appropriate for processing low-resource languages and for developing multilingual

models, such as mBERT and XLM-R. However, the recent advances in unsupervised morphological

segmentation, currently led by our state-of-the-art morphological-segmentation framework Mor-

phAGram, opens the door to harnessing morphologically motivated tokenization in several neural

applications. Pan et al. (2020) showed promising results, where the use of the stems and suffixes as

the core unit of abstraction in neural machine translation outperforms BPE, while the best results

are obtained by using BPE on top of the stems and suffixes.

7.2.4 The Role of Morphological Typology in Cross-Lingual Learning

As demonstrated in Section 4.4.2, languages that belong to the same family transfer best across

each other. For instance, English and German are the best sources for Afrikaans (IE, Germanic),

while Spanish transfers best to Portuguese (IE, Romance), and Russian yields the best performance

for Bulgarian (IE, Slavic). This indicates that the selection of the source language is crucial for the

processing of the language of interest, where the typological similarities between the source and the

target have a direct impact on the performance of the ultimate POS model.

On the alignment side, one main aspect is that word-level alignment models tend to learn

better across languages of similar word order, such as Subject-Verb-Object order and Adjective-

Noun order. On the projection side, transferring POS suffers across languages of different POS

assumptions. For instance, it’s argued that Korean does not technically contain adjectives but rather

expresses properties of nouns via stative verbs (Kim, 2002). As a result, transferring from English,

for instance, to Korean would result in undesirable adjectival tags. This problem is more obvious

when transferring other morphosyntactic features such as gender and case, where transferring
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from English to Arabic, for instance, would fail to assign gender labels to the adjectives in Arabic

and leave case endings unrecognized. Therefore, failing to select a source language that adopts

morphological assumptions that are similar to those of the target language would weaken the quality

of annotation projection.

We believe that developing disciplined guidelines for the selection of an appropriate source

language to transfer from should enhance cross-lingual learning. This can be achieved by studying

what typological features are highly significant for the alignment and projection phases with respect

to the underlying task. Furthermore, the research in that direction would further motivate the

unsupervised learning of typological features for the processing of low-resource languages whose

description is inadequate or lacking.

158



Bibliography
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Appendix A: Unsupervised Morphological Segmentation

Tables 1.1 and 1.2 report the performance of our MorphAGram framework using the BPR

and EMMA-2 metrics, respectively, for the test languages, namely Japanese, Georgian, Arabic,

Mexicanero, Nahuatl, Wixarika and Mayo, using the nine grammars defined in Section 3.3.4.2.

Language Grammar
Standard Setting Cascaded Setting Scholar-Seeded Setting

Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

Japanese

Morph+SM 86.5 62.8 72.7 86.7 62.8 72.8 87.3 63.2 73.3
Simple 80.7 74.8 77.6 80.8 74.9 77.7 80.9 75.0 77.8

Simple+SM 83.0 72.9 77.6 83.1 72.7 77.5 83.0 72.7 77.5
PrStSu 77.9 81.5 79.7 78.2 81.2 79.6 79.3 80.7 80.0

PrStSu+SM 81.7 77.9 79.8 81.5 78.2 79.8 82.3 77.6 79.9
PrStSu+Co+SM 95.3 40.0 56.3 94.3 44.4 60.4 95.6 39.7 56.1
PrStSu2a+SM 79.4 79.1 79.2 78.8 80.0 79.4 79.8 80.3 80.0
PrStSu2b+SM 75.7 78.6 77.1 75.7 79.0 77.3 75.4 78.7 77.0

PrStSu2b+Co+SM 99.8 23.3 37.8 99.7 24.7 39.6 99.7 25.3 40.3

Georgian

Morph+SM 85.6 52.8 65.3 85.5 52.3 64.9 85.6 52.3 64.9
Simple 75.2 63.9 69.1 75.4 64.1 69.3 75.6 64.3 69.5

Simple+SM 81.6 60.9 69.7 81.4 60.6 69.5 81.9 61.1 70.0
PrStSu 67.3 70.0 68.6 77.0 75.4 76.2 79.6 72.5 75.9

PrStSu+SM 82.0 69.1 75.0 82.9 71.7 76.9 84.3 67.9 75.2
PrStSu+Co+SM 87.7 50.4 64.0 87.9 50.1 63.9 88.0 51.1 64.7
PrStSu2a+SM 78.0 70.3 74.0 81.8 64.2 72.0 83.0 62.0 71.0
PrStSu2b+SM 71.7 68.5 70.1 72.3 69.7 71.0 72.7 69.2 70.9

PrStSu2b+Co+SM 99.8 13.1 23.2 99.9 13.2 23.3 99.7 13.4 23.6

Arabic

Morph+SM 85.9 66.6 75.0 86.0 66.3 74.9 86.3 67.2 75.6
Simple 64.2 75.6 69.4 63.9 75.2 69.1 64.6 75.7 69.7

Simple+SM 76.7 82.0 79.3 76.0 81.8 78.8 76.4 82.1 79.1
PrStSu 65.3 86.4 74.4 68.5 85.3 76.0 68.3 86.0 76.1

PrStSu+SM 77.5 88.2 82.5 76.3 86.4 81.1 76.8 88.9 82.4
PrStSu+Co+SM 87.7 63.9 73.9 87.4 64.9 74.5 87.5 64.7 74.3
PrStSu2a+SM 74.6 82.8 78.5 75.0 83.2 78.9 72.8 81.9 77.1
PrStSu2b+SM 77.4 82.9 80.0 77.5 82.8 80.1 75.1 81.9 78.4

PrStSu2b+Co+SM 99.9 19.9 33.2 100.0 19.6 32.8 99.9 19.6 32.8

173



Mexicanero

Morph+SM 81.3 72.1 76.4 81.1 72.6 76.6 81.3 72.5 76.6
Simple 69.0 69.0 69.0 71.0 71.4 71.2 70.5 69.2 69.8

Simple+SM 79.0 72.8 75.8 78.2 71.7 74.8 78.1 71.9 74.9
PrStSu 69.4 84.9 76.3 69.9 79.8 74.5 72.3 86.9 78.9

PrStSu+SM 77.9 81.0 79.4 77.3 77.5 77.4 82.9 82.1 82.5
PrStSu+Co+SM 84.0 67.0 74.5 79.3 71.4 75.1 82.2 70.1 75.6
PrStSu2a+SM 74.1 74.1 74.1 76.0 76.8 76.4 76.4 78.2 77.2
PrStSu2b+SM 77.1 72.4 74.7 78.9 77.2 78.0 80.4 76.6 78.4

PrStSu2b+Co+SM 100.0 45.8 62.9 99.2 45.9 62.7 99.8 46.0 62.9

Nahuatl

Morph+SM 66.6 65.1 65.8 65.6 66.7 66.1 67.5 66.4 66.9
Simple 50.6 61.8 55.6 50.4 62.1 55.6 50.9 62.6 56.2

Simple+SM 62.2 66.7 64.4 62.9 66.7 64.7 62.0 65.4 63.6
PrStSu 50.1 81.8 62.1 51.8 78.2 62.3 53.1 81.7 64.3

PrStSu+SM 60.8 74.6 67.0 62.9 71.8 67.0 63.3 76.1 69.1
PrStSu+Co+SM 71.0 60.3 65.2 67.1 60.6 63.6 69.8 63.7 66.6
PrStSu2a+SM 58.0 72.4 64.4 61.2 71.7 66.0 58.8 73.7 65.4
PrStSu2b+SM 59.3 70.0 64.1 61.5 70.8 65.8 62.4 70.9 66.4

PrStSu2b+Co+SM 99.8 33.8 50.5 98.0 34.0 50.5 99.7 34.0 50.7

Wixarika

Morph+SM 85.4 55.6 67.4 84.2 56.8 67.8 83.6 56.2 67.2
Simple 70.3 59.4 64.4 69.2 58.8 63.5 69.8 59.8 64.4

Simple+SM 81.5 58.3 68.0 81.0 57.3 67.1 82.3 58.3 68.2
PrStSu 66.2 84.6 74.3 70.7 79.9 75.0 67.1 85.0 75.0

PrStSu+SM 82.7 70.9 76.4 82.9 70.2 76.0 81.1 74.9 77.9
PrStSu+Co+SM 88.0 49.0 63.0 85.6 54.5 66.6 84.5 56.2 67.5
PrStSu2a+SM 74.4 67.2 70.6 78.1 70.8 74.3 75.4 75.0 75.2
PrStSu2b+SM 79.0 66.8 72.4 81.2 68.0 74.0 79.5 72.1 75.6

PrStSu2b+Co+SM 98.7 17.7 30.0 98.8 17.4 29.6 97.7 20.2 33.4

Mayo

Morph+SM 85.9 67.2 75.4 84.9 67.3 75.1 84.2 65.1 73.5
Simple 65.2 68.8 66.9 64.9 69.8 67.3 67.5 71.6 69.4

Simple+SM 80.0 70.4 74.8 77.1 71.3 74.1 79.1 73.3 76.1
PrStSu 59.8 87.8 71.1 62.8 87.4 73.0 63.8 88.0 74.0

PrStSu+SM 78.4 79.6 78.8 82.9 78.8 80.8 84.4 78.7 81.5
PrStSu+Co+SM 88.0 60.4 71.6 85.6 60.4 70.8 87.2 63.9 73.8
PrStSu2a+SM 80.0 75.8 77.8 81.7 74.4 77.9 82.0 75.0 78.4
PrStSu2b+SM 67.4 77.3 72.0 63.6 79.2 70.5 66.2 78.1 71.6

PrStSu2b+Co+SM 98.4 24.0 38.6 98.4 24.2 38.9 97.6 24.0 38.6

Table 1.1: The segmentation performance (BPR) of the different grammars on the test languages.
The best result per language-setting pair is in bold. The best language-independent result per
language is underlined.
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Language Grammar
Standard Setting Cascaded Setting Scholar-Seeded Setting

Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

Japanese

Morph+SM 95.8 70.5 81.2 95.6 70.2 81.0 95.9 70.6 81.3
Simple 92.0 78.0 84.4 92.2 78.5 84.8 92.1 78.5 84.8

Simple+SM 93.3 76.7 84.2 93.3 76.3 84.0 93.2 76.3 83.9
PrStSu 87.8 84.1 85.9 88.1 84.5 86.3 88.7 83.5 86.0

PrStSu+SM 91.0 81.9 86.2 91.0 82.4 86.5 91.5 81.4 86.1
PrStSu+Co+SM 99.2 56.8 72.2 98.7 60.3 74.8 99.3 56.9 72.4
PrStSu2a+SM 89.6 82.0 85.6 89.1 82.8 85.9 89.5 82.9 86.1
PrStSu2b+SM 87.9 81.0 84.3 88.3 80.9 84.5 88.1 80.6 84.1

PrStSu2b+Co+SM 99.9 47.7 64.5 100.0 49.2 65.9 100.0 49.7 66.4

Georgian

Morph+SM 92.5 54.1 68.3 92.5 53.4 67.7 92.7 53.6 67.9
Simple 87.2 60.1 71.2 86.7 60.3 71.1 86.9 60.5 71.3

Simple+SM 91.2 58.8 71.5 91.1 59.0 71.6 91.1 59.1 71.7
PrStSu 78.7 64.7 71.0 84.2 70.6 76.8 87.0 68.2 76.5

PrStSu+SM 88.4 65.9 75.5 88.8 67.8 76.9 90.0 64.8 75.3
PrStSu+Co+SM 93.3 53.1 67.7 93.5 52.7 67.4 93.5 53.5 68.0
PrStSu2a+SM 86.1 65.7 74.5 90.6 61.6 73.3 91.3 59.9 72.4
PrStSu2b+SM 82.1 63.7 71.7 82.3 64.7 72.4 82.7 64.1 72.2

PrStSu2b+Co+SM 99.9 32.2 48.7 99.9 32.2 48.7 99.9 32.3 48.9

Arabic

Morph+SM 94.3 75.6 83.9 94.1 75.5 83.8 94.3 75.8 84.0
Simple 88.0 80.3 84.0 88.1 80.2 84.0 87.9 80.3 83.9

Simple+SM 91.6 83.5 87.4 91.3 83.4 87.2 91.3 83.5 87.2
PrStSu 82.3 88.6 85.3 84.0 86.6 85.3 83.6 87.6 85.6

PrStSu+SM 88.1 88.7 88.4 88.1 86.8 87.4 87.5 89.4 88.4
PrStSu+Co+SM 94.9 74.3 83.3 95.0 74.7 83.7 94.9 74.5 83.5
PrStSu2a+SM 90.5 83.8 87.0 90.5 84.1 87.2 90.0 83.4 86.6
PrStSu2b+SM 91.6 83.9 87.6 91.7 83.8 87.5 91.0 83.5 87.1

PrStSu2b+Co+SM 100.0 50.8 67.4 100.0 50.8 67.3 100.0 50.8 67.4

Mexicanero

Morph+SM 93.7 83.1 88.0 93.0 83.3 87.9 93.1 83.2 87.9
Simple 93.2 82.5 87.5 92.4 82.4 87.1 93.2 82.3 87.4

Simple+SM 94.2 83.8 88.7 94.8 83.2 88.6 93.7 83.0 88.0
PrStSu 81.3 91.5 86.0 82.2 85.9 84.0 84.0 92.5 88.1

PrStSu+SM 91.2 89.0 90.1 90.1 85.5 87.7 92.3 90.7 91.5
PrStSu+Co+SM 94.8 80.0 86.8 92.7 83.8 88.0 93.5 82.2 87.5
PrStSu2a+SM 90.9 83.9 87.2 91.2 85.3 88.2 90.9 87.8 89.4
PrStSu2b+SM 92.7 83.4 87.8 92.2 85.1 88.5 92.3 85.6 88.8

PrStSu2b+Co+SM 100.0 73.2 84.5 99.8 73.2 84.5 99.8 73.2 84.5
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Nahuatl

Morph+SM 86.2 77.8 81.7 85.5 79.3 82.3 87.2 78.0 82.3
Simple 81.2 75.9 78.4 81.7 75.3 78.4 81.8 75.1 78.3

Simple+SM 87.5 77.6 82.2 87.1 76.5 81.5 87.5 77.5 82.2
PrStSu 63.6 87.6 73.7 65.6 84.9 74.0 66.4 87.9 75.6

PrStSu+SM 81.4 85.6 83.4 82.5 81.6 82.0 81.2 87.5 84.2
PrStSu+Co+SM 89.8 75.7 82.1 87.9 75.4 81.1 88.4 77.3 82.5
PrStSu2a+SM 78.7 82.3 80.4 82.4 81.4 81.9 79.3 82.2 80.7
PrStSu2b+SM 80.2 80.3 80.2 82.2 81.1 81.7 82.6 81.1 81.9

PrStSu2b+Co+SM 100.0 64.3 78.3 100.0 64.3 78.3 100.0 64.3 78.3

Wixarika

Morph+SM 92.3 60.3 72.9 89.8 60.7 72.4 90.8 60.9 72.9
Simple 85.9 63.7 73.1 85.4 63.3 72.7 85.5 63.2 72.7

Simple+SM 90.6 61.2 73.1 91.2 61.3 73.3 90.7 61.2 73.1
PrStSu 67.2 86.4 75.6 69.9 80.5 74.8 67.1 87.0 75.8

PrStSu+SM 85.9 75.7 80.4 85.8 73.1 78.9 84.7 79.5 82.0
PrStSu+Co+SM 94.8 55.1 69.7 92.4 58.9 71.9 91.2 61.1 73.1
PrStSu2a+SM 80.5 68.6 74.1 82.0 72.9 77.2 79.5 78.2 78.7
PrStSu2b+SM 85.4 68.2 75.8 85.4 69.8 76.8 83.4 75.0 79.0

PrStSu2b+Co+SM 100.0 42.9 60.0 100.0 42.5 59.7 99.6 43.8 60.9

Mayo

Morph+SM 94.2 80.5 86.8 92.8 79.8 85.9 93.5 79.4 85.8
Simple 85.7 80.2 82.9 86.2 80.2 83.1 86.5 81.0 83.7

Simple+SM 91.8 80.6 85.8 90.3 81.7 85.8 91.6 83.0 87.1
PrStSu 69.0 90.5 78.3 71.0 89.9 79.4 71.6 89.9 79.7

PrStSu+SM 88.5 87.7 88.1 89.5 87.5 88.5 91.8 88.2 89.9
PrStSu+Co+SM 95.8 77.5 85.7 94.4 76.4 84.5 95.2 78.7 86.1
PrStSu2a+SM 90.5 85.1 87.7 90.3 84.6 87.3 91.1 86.0 88.5
PrStSu2b+SM 81.8 83.8 82.8 78.3 85.1 81.5 81.0 85.8 83.3

PrStSu2b+Co+SM 100.0 60.9 75.7 100.0 60.5 75.4 100.0 60.5 75.4

Table 1.2: The segmentation performance (EMMA-2) of the different grammars on the test lan-
guages. The best result per language-setting pair is in bold. The best language-independent result
per language is underlined.
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Appendix B: Unsupervised Cross-Lingual Part-of-Speech Tagging

Table 2.1 reports the precision, recall and F1-score for nouns, verbs and adjectives per target-

source language pair using our word-based unsupervised cross-lingual POS-tagging system when

using the Bible as the source of parallel data and evaluating on the test sets of UD-v2.5. We use only

the New Testament in the cases of Basque, Georgian and Kazakh, and we use in-house annotations

for Georgian.

Target

Language

Source

Language

Noun Verb Adjective

Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

Afrikaans

English 90.8 90.9 90.9 78.5 91.7 84.6 77.3 77.4 77.4
Spanish 88.4 89.0 88.7 71.6 91.2 80.2 82.1 74.1 77.9
French 88.0 92.4 90.1 68.0 91.0 77.8 85.2 74.9 79.7

German 90.1 93.7 91.9 81.6 91.7 86.4 84.2 82.0 83.0
Russian 84.4 88.2 86.2 51.4 91.1 65.7 73.6 77.2 75.4
Arabic 62.4 93.8 74.8 53.3 89.7 66.8 81.8 48.1 60.6

Arabic

English 67.1 79.5 72.8 87.5 66.0 75.3 35.4 37.6 36.5
Spanish 71.1 72.9 72.0 80.0 73.3 76.5 29.5 22.7 25.6
French 68.0 73.4 70.6 80.5 72.8 76.4 39.8 23.9 29.8

German 69.2 81.5 74.8 86.7 69.2 77.0 36.5 18.7 24.7
Russian 67.7 76.6 71.8 77.3 75.6 76.4 14.6 6.3 8.8
Arabic 66.6 87.3 75.6 84.0 70.0 76.3 30.4 26.7 28.4

Basque

English 62.3 80.8 70.3 60.8 70.8 65.4 40.8 18.9 25.8
Spanish 60.5 74.6 66.8 47.3 79.5 59.3 41.4 14.0 20.9
French 63.2 76.0 69.0 49.2 77.6 60.2 28.4 16.7 21.0

German 60.7 78.6 68.5 57.8 74.8 65.2 47.3 11.0 17.8
Russian 56.9 74.2 64.4 40.4 85.1 54.8 2.3 0.1 0.2
Arabic 48.6 81.7 61.0 44.2 78.1 56.4 19.7 0.9 1.7

Bulgarian

English 88.6 95.7 92.0 86.7 86.3 86.5 80.0 55.0 65.2
Spanish 86.0 95.6 90.5 84.2 87.6 85.9 80.2 47.3 59.4
French 83.9 95.7 89.4 82.8 92.9 87.6 80.7 44.2 57.1

German 86.6 95.7 90.9 86.5 84.6 85.6 78.2 54.4 64.2
Russian 92.9 96.3 94.6 75.2 94.1 83.6 86.3 74.3 79.9
Arabic 69.3 95.9 80.4 68.9 87.0 76.9 69.5 25.2 36.9
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Finnish

English 81.1 89.2 85.0 80.1 81.1 80.6 68.5 59.9 63.9
Spanish 80.0 85.6 82.7 67.7 84.8 75.3 67.1 50.5 57.6
French 79.7 84.9 82.2 65.6 86.4 74.6 67.2 45.5 54.2

German 80.1 88.7 84.2 82.1 79.9 81.0 65.6 57.6 61.3
Russian 80.5 86.6 83.4 59.7 84.8 70.1 65.7 57.7 61.4
Arabic 62.1 92.7 74.4 64.4 75.4 69.4 66.7 22.2 33.3

Georgian

English 80.9 86.8 83.7 73.8 95.8 83.4 87.5 61.7 72.4
Spanish 79.5 82.8 81.1 67.4 95.5 79.0 83.2 64.3 72.5
French 77.9 86.0 81.8 66.0 97.2 78.6 80.4 56.8 66.6

German 78.7 89.7 83.9 76.8 94.1 84.6 86.7 64.6 74.0
Russian 78.7 88.3 83.2 72.9 97.6 83.4 82.6 61.5 70.5
Arabic 56.6 94.7 70.8 61.6 92.7 74.0 82.8 21.1 33.6

Hindi

English 69.6 86.0 76.9 55.4 70.1 61.9 55.8 53.3 54.5
Spanish 67.2 88.7 76.5 50.6 82.2 62.7 55.9 47.2 51.2
French 68.3 88.3 77.0 57.9 80.3 67.3 58.7 48.0 52.8

German 68.7 84.7 75.8 53.5 76.7 63.1 60.4 51.6 55.6
Russian 66.7 82.7 73.9 36.2 92.6 52.0 59.1 48.1 53.0
Arabic 51.4 89.1 65.2 48.7 73.7 58.6 64.2 33.0 43.5

Indonesian

English 77.9 90.4 83.7 89.3 84.9 87.0 60.4 56.4 58.3
Spanish 77.6 87.8 82.4 86.3 81.9 84.1 61.1 52.3 56.4
French 72.2 90.3 80.3 83.0 89.5 86.1 61.8 39.7 48.3

German 73.5 88.2 80.2 88.8 83.0 85.8 60.4 50.7 55.1
Russian 74.1 90.5 81.5 77.1 90.3 83.2 55.5 37.9 45.0
Arabic 59.6 92.7 72.5 80.0 82.2 81.1 50.8 40.9 45.3

Kazakh

English 70.1 85.3 77.0 61.0 82.7 70.2 62.8 19.2 29.4
Spanish 69.3 60.5 64.6 39.3 93.4 55.3 69.4 3.3 6.3
French 66.0 73.5 69.5 47.0 90.2 61.8 55.7 6.6 11.8

German 65.9 79.1 71.9 51.3 88.0 64.8 0.0 0.0 0.0
Russian 68.9 56.2 61.9 36.2 94.2 52.3 0.0 0.0 0.0
Arabic 53.4 87.9 66.5 50.1 74.1 59.7 0.0 0.0 0.0

Lithuanian

English 83.1 93.4 88.0 89.6 79.5 84.2 53.0 56.5 54.7
Spanish 81.2 92.4 86.5 81.8 85.8 83.7 55.4 42.9 48.3
French 80.9 92.9 86.5 82.3 89.3 85.7 53.6 43.0 47.7

German 81.3 93.4 87.0 88.3 78.1 82.9 54.1 58.2 56.1
Russian 86.5 91.0 88.7 83.0 89.8 86.3 56.7 60.7 58.6
Arabic 61.4 95.3 74.7 82.3 75.5 78.8 38.5 9.6 15.4
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Persian

English 88.1 82.7 85.3 36.5 59.2 45.2 81.8 45.4 58.4
Spanish 88.9 83.7 86.2 43.6 76.4 55.5 82.7 47.7 60.5
French 87.5 84.5 86.0 40.3 72.1 51.7 81.5 38.1 51.8

German 86.4 82.9 84.6 41.8 66.2 51.2 83.6 37.0 51.3
Russian 89.8 80.5 84.9 39.9 93.0 55.9 73.2 51.1 60.2
Arabic 81.1 89.0 84.9 43.2 80.7 56.2 83.7 38.1 52.4

Portuguese

English 88.7 92.1 90.4 84.9 89.8 87.3 66.1 66.5 66.3
Spanish 91.1 94.9 93.0 90.3 86.0 88.1 73.6 83.6 78.3
French 87.0 94.9 90.8 85.7 93.8 89.6 74.9 67.8 71.2

German 82.4 94.2 87.9 86.6 88.9 87.7 67.8 46.7 55.3
Russian 84.9 92.3 88.4 76.4 95.5 84.9 72.4 67.8 70.0
Arabic 66.1 96.6 78.5 74.6 86.2 80.0 59.6 32.3 41.9

Telugu

English 79.9 63.2 70.5 80.9 90.9 85.6 25.3 40.0 30.9
Spanish 73.9 59.8 66.1 65.7 95.7 77.9 44.4 20.0 27.4
French 74.3 61.8 67.4 68.6 89.6 77.7 11.1 6.7 8.3

German 71.7 56.1 63.0 75.3 92.8 83.1 16.7 6.7 9.5
Russian 70.4 58.9 64.1 68.9 94.4 79.7 66.7 13.3 22.2
Arabic 62.4 63.2 62.8 59.2 90.7 71.6 0.0 0.0 0.0

Turkish

English 75.5 80.7 78.0 80.4 79.6 80.0 72.9 35.2 47.5
Spanish 75.5 76.0 75.7 72.0 86.0 78.3 75.1 27.8 40.6
French 74.4 80.4 77.3 77.5 88.8 82.8 78.1 29.3 42.6

German 74.6 77.7 76.1 78.4 86.9 82.4 73.7 28.0 40.6
Russian 69.1 73.6 71.3 68.5 89.7 77.7 55.9 15.3 23.6
Arabic 56.1 85.8 67.9 76.3 79.8 78.0 72.2 10.4 18.2

Table 2.1: The precision, recall and F1-score for nouns, verbs and adjectives per language pair when
using the Bible as the source of parallel data. The best F1-score per target language and POS tag is
in bold.

Tables 2.2 and 2.3 report the POS accuracy per target-source language pair and the average

performance per source and target language using our word-based unsupervised cross-lingual

POS-tagging system in the No_MONO and No_XLM ablation setups, respectively, when using the

Bible as the source of parallel data and evaluating on the test sets of UD-v2.5. We use only the

New Testament in the cases of Basque, Georgian and Kazakh, and we use in-house annotations for

Georgian.
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Target
Language

Source for Unsupervised Learning

English Spanish French German Russian Arabic Average

Afrikaans 83.5 79.4 80.3 80.7 73.6 64.2 77.0
Amharic 70.8 70.8 69.8 70.5 65.1 68.8 69.3

Basque 61.2 57.8 57.8 61.2 57.4 49.2 57.4
Bulgarian 81.7 79.2 79.6 76.5 81.2 66.9 77.5

Finnish 76.6 73.6 74.0 75.4 71.0 59.6 71.7
Georgian 75.6 73.6 71.7 75.0 73.3 64.7 72.3

Hindi 68.1 65.3 65.4 54.6 59.7 49.8 60.5
Indonesian 80.5 79.5 79.1 77.2 75.0 65.8 76.2

Kazakh 67.9 61.3 62.2 64.9 58.5 59.2 62.3
Lithuanian 77.3 74.3 75.0 74.9 78.8 65.4 74.3

Persian 74.2 73.8 71.6 74.7 72.3 68.1 72.5
Portuguese 83.2 85.9 84.0 78.7 75.4 64.5 78.6

Telugu 75.0 68.4 69.1 73.0 67.3 59.4 68.7
Turkish 69.0 67.0 69.2 66.2 64.7 59.8 66.0

Average 74.6 72.1 72.1 71.7 69.5 61.8 70.3

Table 2.2: The average POS-tagging performance (accuracy) in the No_MONO ablation setup when
using the Bible as the source of parallel data. The best results per target and per source language are
in bold.

Target
Language

Source for Unsupervised Learning

English Spanish French German Russian Arabic Average

Afrikaans 86.4 82.2 83.3 83.6 77.4 67.8 80.1
Amharic 71.4 71.4 71.0 71.1 68.3 72.1 70.9

Basque 64.0 61.7 61.5 63.5 59.9 52.5 60.5
Bulgarian 84.5 82.1 82.0 79.0 84.9 70.0 80.4

Finnish 81.0 78.1 78.1 79.8 75.7 64.5 76.2
Georgian 80.8 76.9 76.9 80.9 80.8 69.9 77.7

Hindi 73.2 70.2 71.7 61.1 65.3 54.0 65.9
Indonesian 82.2 82.1 81.1 79.3 78.8 68.7 78.7

Kazakh 70.4 61.0 64.9 67.2 63.3 60.4 64.5
Lithuanian 80.4 77.7 78.1 78.0 82.4 68.2 77.5

Persian 74.7 74.7 73.0 75.3 75.9 68.0 73.6
Portuguese 85.5 88.0 86.4 80.7 78.0 67.6 81.0

Telugu 75.6 67.5 71.3 72.5 69.6 62.1 69.8
Turkish 72.0 70.6 72.5 70.4 69.4 64.9 70.0

Average 77.3 74.6 75.1 74.5 73.5 65.0 73.3

Table 2.3: The average POS-tagging performance (accuracy) in the No_XLM ablation setup when
using the Bible as the source of parallel data. The best results per target and per source language are
in bold.
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Table 2.4 reports the precision, recall and F1-score for nouns, verbs and adjectives per target-

source language pair using our single-source word-based and stem-based unsupervised cross-lingual

POS-tagging systems when using the New Testament as the source of parallel data and evaluating

on the test sets of UD-v2.5. We use in-house annotations for Georgian.

Target

Language

Source

Language

Noun Verb Adjective

Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

Amharic

English
Word-Based 64.4 86.6 73.8 84.1 70.9 77.0 49.4 28.4 36.1
Stem-Based 72.5 85.6 78.5 84.0 81.0 82.5 48.7 34.5 40.4

Spanish
Word-Based 68.4 78.0 72.9 73.2 79.2 76.0 9.4 0.9 1.6
Stem-Based 69.2 87.8 77.4 83.9 74.4 78.9 43.0 21.3 28.4

French
Word-Based 68.9 79.5 73.8 74.1 81.4 77.5 50.0 0.6 1.1
Stem-Based 68.6 89.2 77.5 84.5 75.5 79.7 49.5 22.4 30.6

German
Word-Based 69.0 83.0 75.4 78.6 80.8 79.7 0.0 0.0 0.0
Stem-Based 69.1 89.5 78.0 85.1 76.3 80.4 73.2 20.4 31.9

Russian
Word-Based 69.9 72.0 70.9 64.0 89.1 74.5 0.0 0.0 0.0
Stem-Based 70.8 87.8 78.4 77.1 80.6 78.8 40.6 22.7 29.1

Arabic
Word-Based 62.8 90.0 74.0 77.0 72.5 74.6 17.0 6.9 9.8
Stem-Based 67.4 89.8 77.0 82.9 73.8 78.0 35.6 30.7 33.0

Basque

English
Word-Based 62.3 80.8 70.3 60.8 70.8 65.4 40.8 18.9 25.8
Stem-Based 63.9 81.7 71.7 76.3 67.8 71.8 41.3 24.9 31.0

Spanish
Word-Based 60.5 74.6 66.8 47.3 79.5 59.3 41.4 14.0 20.9
Stem-Based 60.8 83.9 70.5 75.8 67.3 71.3 36.0 24.6 29.1

French
Word-Based 63.2 76.0 69.0 49.2 77.6 60.2 28.4 16.7 21.0
Stem-Based 62.2 84.3 71.6 73.6 68.7 71.1 34.1 25.4 29.0

German
Word-Based 60.7 78.6 68.5 57.8 74.8 65.2 47.3 11.0 17.8
Stem-Based 60.8 81.9 69.8 76.8 66.8 71.5 43.1 17.3 24.7

Russian
Word-Based 56.9 74.2 64.4 40.4 85.1 54.8 2.3 0.1 0.2
Stem-Based 58.9 83.6 69.1 54.9 76.7 64.0 33.0 19.5 24.4

Arabic
Word-Based 48.6 81.7 61.0 44.2 78.1 56.4 19.7 0.9 1.7
Stem-Based 51.6 89.1 65.4 66.4 66.5 66.4 32.1 19.7 24.4
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Finnish

English
Word-Based 76.0 88.0 81.6 77.7 80.8 79.2 69.2 44.7 54.3
Stem-Based 80.2 87.0 83.4 77.0 83.8 80.3 62.8 54.1 58.1

Spanish
Word-Based 75.5 83.5 79.3 63.0 85.9 72.7 74.6 31.6 44.3
Stem-Based 75.0 89.4 81.6 80.4 78.8 79.6 59.9 40.7 48.3

French
Word-Based 76.4 80.8 78.6 58.4 88.3 70.3 71.9 30.7 43.0
Stem-Based 75.3 89.4 81.8 75.6 82.5 78.9 64.7 43.3 51.9

German
Word-Based 73.7 88.3 80.4 79.8 81.1 80.4 73.4 31.3 43.9
Stem-Based 76.9 89.7 82.8 82.7 81.6 82.1 69.6 45.9 55.3

Russian
Word-Based 75.8 88.2 81.5 60.1 85.2 70.5 69.1 47.5 56.3
Stem-Based 78.8 88.4 83.3 62.7 84.6 72.0 66.5 54.2 59.7

Arabic
Word-Based 55.1 93.8 69.4 68.6 74.0 71.2 63.5 10.1 17.4
Stem-Based 61.9 93.7 74.5 76.6 78.0 77.3 61.4 29.7 39.9

Georgian

English
Word-Based 80.9 86.8 83.7 73.8 95.8 83.4 87.5 61.7 72.4
Stem-Based 79.6 86.0 82.7 74.7 95.8 84.0 90.5 56.0 69.1

Spanish
Word-Based 79.5 82.8 81.1 67.4 95.5 79.0 83.2 64.3 72.5
Stem-Based 76.6 89.1 82.4 77.3 92.7 84.3 89.2 58.1 70.3

French
Word-Based 77.9 86.0 81.8 66.0 97.2 78.6 80.4 56.8 66.6
Stem-Based 76.4 89.5 82.5 77.3 96.2 85.7 82.3 58.1 68.1

German
Word-Based 78.7 89.7 83.9 76.8 94.1 84.6 86.7 64.6 74.0
Stem-Based 79.6 89.0 84.0 76.6 94.9 84.8 89.4 61.2 72.6

Russian
Word-Based 78.7 88.3 83.2 72.9 97.6 83.4 82.6 61.5 70.5
Stem-Based 80.7 88.5 84.4 76.1 97.2 85.4 82.7 63.0 71.5

Arabic
Word-Based 56.6 94.7 70.8 61.6 92.7 74.0 82.8 21.1 33.6
Stem-Based 67.4 93.1 78.2 83.4 93.2 88.0 78.6 51.8 62.4

Indonesian

English
Word-Based 76.1 90.6 82.7 88.9 85.5 87.2 53.2 44.0 48.1
Stem-Based 75.7 89.8 82.1 87.0 86.1 86.5 54.3 44.0 48.6

Spanish
Word-Based 73.3 89.0 80.4 82.6 88.5 85.5 49.3 31.6 38.5
Stem-Based 71.6 90.2 79.8 86.9 82.9 84.9 55.1 33.0 41.3

French
Word-Based 68.0 89.6 77.3 77.4 90.7 83.5 60.4 29.6 39.7
Stem-Based 66.5 91.5 77.0 83.3 85.8 84.5 56.4 29.7 38.8

German
Word-Based 65.5 90.3 75.9 87.5 82.6 84.9 50.5 17.3 25.8
Stem-Based 66.4 90.6 76.6 88.4 79.2 83.5 71.9 36.5 48.5

Russian
Word-Based 67.7 88.8 76.8 68.2 92.6 78.6 27.0 15.3 19.1
Stem-Based 71.7 91.1 80.3 76.1 86.9 81.1 66.4 41.0 50.7

Arabic
Word-Based 52.6 93.6 67.4 74.3 84.0 78.8 47.9 18.8 27.0
Stem-Based 56.9 94.1 70.9 83.7 76.5 79.9 52.5 34.2 41.4
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Kazakh

English
Word-Based 70.1 85.3 77.0 61.0 82.7 70.2 62.8 19.2 29.4
Stem-Based 74.1 87.1 80.1 71.9 79.9 75.7 66.9 24.5 35.8

Spanish
Word-Based 69.3 60.5 64.6 39.3 93.4 55.3 69.4 3.3 6.3
Stem-Based 71.6 88.0 78.9 66.0 79.8 72.2 67.9 19.3 30.1

French
Word-Based 66.0 73.5 69.5 47.0 90.2 61.8 55.7 6.6 11.8
Stem-Based 69.4 90.8 78.7 68.6 82.5 74.9 69.9 23.5 35.2

German
Word-Based 65.9 79.1 71.9 51.3 88.0 64.8 0.0 0.0 0.0
Stem-Based 69.7 89.6 78.4 68.2 77.9 72.7 71.8 17.6 28.3

Russian
Word-Based 68.9 56.2 61.9 36.2 94.2 52.3 0.0 0.0 0.0
Stem-Based 71.4 84.5 77.4 61.5 87.1 72.1 68.8 17.0 27.2

Arabic
Word-Based 53.4 87.9 66.5 50.1 74.1 59.7 0.0 0.0 0.0
Stem-Based 61.6 91.8 73.7 68.1 76.5 72.0 60.9 11.2 18.8

Telugu

English
Word-Based 70.1 61.0 65.2 68.7 94.8 79.7 11.1 13.3 12.1
Stem-Based 69.4 64.3 66.7 75.3 91.7 82.7 4.2 6.7 5.1

Spanish
Word-Based 68.4 47.4 56.0 54.0 98.6 69.8 0.0 0.0 0.0
Stem-Based 65.7 57.9 61.5 64.5 95.0 76.8 0.0 0.0 0.0

French
Word-Based 63.5 46.8 53.8 53.9 99.2 69.8 0.0 0.0 0.0
Stem-Based 67.4 61.6 64.4 62.4 91.5 74.2 0.0 0.0 0.0

German
Word-Based 68.3 50.9 58.3 55.8 93.4 69.9 0.0 0.0 0.0
Stem-Based 68.2 53.0 59.6 60.7 95.0 74.0 0.0 0.0 0.0

Russian
Word-Based 50.0 31.6 38.7 47.5 98.8 64.2 0.0 0.0 0.0
Stem-Based 61.9 48.9 54.5 58.3 97.3 72.9 0.0 0.0 0.0

Arabic
Word-Based 46.7 45.2 45.9 48.3 96.9 64.5 0.0 0.0 0.0
Stem-Based 51.4 74.3 60.7 74.3 88.0 80.5 0.0 0.0 0.0

Turkish

English
Word-Based 75.4 78.5 76.9 74.7 84.3 79.2 71.5 32.0 44.2
Stem-Based 76.6 81.7 79.1 80.9 80.9 80.9 68.9 29.0 40.8

Spanish
Word-Based 75.4 68.1 71.5 61.9 92.3 74.1 79.9 20.1 32.1
Stem-Based 75.3 82.9 78.9 82.3 76.9 79.4 71.2 26.8 38.9

French
Word-Based 75.2 66.5 70.6 60.1 93.5 73.1 80.8 26.0 39.4
Stem-Based 74.7 85.5 79.7 82.7 75.7 79.0 81.6 28.2 41.9

German
Word-Based 69.0 76.4 72.5 68.1 88.1 76.8 79.4 10.2 18.0
Stem-Based 73.8 83.1 78.2 79.8 79.7 79.7 82.5 25.5 39.0

Russian
Word-Based 62.5 67.3 64.8 53.5 94.0 68.2 53.6 1.2 2.3
Stem-Based 74.7 80.9 77.7 76.5 88.5 82.1 77.7 28.9 42.1

Arabic
Word-Based 52.5 85.2 65.0 68.2 82.8 74.8 38.6 0.4 0.8
Stem-Based 66.6 87.3 75.6 82.2 79.7 80.9 57.6 20.9 30.7

Table 2.4: The precision, recall and F1-score for nouns, verbs and adjectives per language pair in
the single-source word-based and stem-based approaches when using the New Testament as the
source of parallel data. The best F1-score per language pair for each evaluation metric is in bold.
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Tables 2.5 and 2.6 report the POS accuracy when using the stems and affixes as learning

features in our stem-based unsupervised cross-lingual POS-tagging system in the single-source and

multi-source setups, respectively, when using the New Testament as the source of parallel data and

evaluating on the test sets of UD-v2.5. We use in-house annotations for Georgian.

Target
Language

Segmentation
Features

Source for Unsupervised Learning
English Spanish French German Russian Arabic

Amharic
None 79.6 77.5 77.7 77.8 76.2 74.5
Stem 80.2 77.5 78.0 77.6 76.6 74.6

Stem+Affixes 79.8 77.7 77.8 77.8 76.5 74.7

Basque
None 69.1 70.4 70.5 69.6 65.2 60.8
Stem 68.7 70.5 70.5 69.3 65.6 60.3

Stem+Affixes 69.0 70.6 70.8 69.1 65.3 62.0

Finnish
None 81.9 80.1 80.9 82.3 79.0 70.3
Stem 81.9 80.4 80.9 82.4 79.1 70.5

Stem+Affixes 81.8 80.1 81.2 82.4 78.9 70.6

Georgian
None 82.0 80.4 81.0 82.2 83.4 79.0
Stem 82.1 80.5 81.3 82.1 83.3 78.7

Stem+Affixes 81.5 80.3 80.9 81.7 83.1 78.8

Indonesian
None 82.5 81.0 80.1 77.3 81.2 72.3
Stem 82.5 80.8 79.9 77.6 81.3 71.7

Stem+Affixes 82.5 80.9 80.0 77.3 81.0 72.0

Kazakh
None 76.4 74.8 75.5 73.2 73.6 70.8
Stem 76.3 74.8 75.7 72.8 73.6 70.7

Stem+Affixes 76.6 75.2 75.8 73.1 73.6 70.8

Telugu
None 78.6 72.7 72.2 71.9 69.6 66.8
Stem 77.9 71.5 72.7 71.9 69.6 66.7

Stem+Affixes 78.4 72.4 72.7 71.4 68.7 67.1

Turkish
None 73.7 73.1 73.0 71.9 77.6 71.9
Stem 73.5 73.0 73.1 71.5 77.6 71.7

Stem+Affixes 73.6 73.0 73.1 71.8 77.6 71.7

Table 2.5: The POS-tagging performance (accuracy) of the single-source stem-based setup with the
use of different segmentation features when using the New Testament as the source of parallel data.
The best result per target-source language pair is in bold. The improvements that are due to the use
of segmentation features that are statistically significant for p-value < 0.01 are underlined.
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Target
Language

Segmentation
Features

Multi-source Setup
MPwmv MPbys MPwbys MDwmv_a MDwmv_d MDbys MDwbys_a MDwbys_d

Amharic
None 79.6 80.4 80.8 78.6 79.1 79.2 79.2 79.2
Stem 79.7 80.8 80.7 78.7 79.2 79.5 79.5 79.7

Stem+Affixes 79.4 80.2 80.4 78.7 79.1 79.2 79.3 79.3

Basque
None 71.4 71.7 71.7 71.0 72.0 71.9 72.3 71.8
Stem 71.6 71.9 71.9 70.9 72.1 72.6 72.6 72.6

Stem+Affixes 71.8 72.1 72.0 70.9 72.0 71.8 71.8 71.6

Finnish
None 82.9 82.7 82.5 82.4 82.7 83.2 83.0 83.0
Stem 82.7 82.6 82.2 82.7 82.8 83.1 83.0 83.0

Stem+Affixes 82.9 82.7 82.4 82.7 82.9 83.2 83.2 83.2

Georgian
None 84.7 84.5 84.2 84.3 84.3 84.5 84.4 84.5
Stem 85.0 84.1 83.9 84.4 84.5 84.3 84.2 84.3

Stem+Affixes 84.3 84.2 84.2 83.7 83.8 84.2 84.1 84.1

Indonesian
None 81.0 81.0 80.9 81.4 81.9 82.0 82.0 82.0
Stem 80.9 80.8 80.9 81.1 81.5 81.8 81.8 81.9

Stem+Affixes 80.6 81.1 80.9 81.0 81.6 82.0 82.1 82.1

Kazakh
None 76.7 76.8 76.9 75.3 75.8 76.7 76.6 76.6
Stem 76.5 77.0 76.8 75.4 76.0 76.8 76.7 76.7

Stem+Affixes 76.8 77.3 77.0 75.3 76.0 76.9 76.8 76.8

Telugu
None 73.8 71.7 70.8 72.9 73.6 73.4 73.4 73.4
Stem 73.1 71.7 70.8 73.1 73.8 73.3 73.6 73.6

Stem+Affixes 73.7 72.1 70.7 73.6 74.0 73.3 73.6 73.5

Turkish
None 73.6 73.6 73.7 75.4 75.2 74.4 74.4 74.3
Stem 73.7 73.7 73.7 75.1 75.1 74.1 74.3 74.1

Stem+Affixes 73.9 73.8 74.0 75.3 75.1 74.3 74.4 74.4

Table 2.6: The POS-tagging performance (accuracy) of the multi-source stem-based setups with the
use of different segmentation features when using the New Testament as the source of parallel data.
The best result per {target and multi-source setup} pair is in bold. The improvements that are due to
the use of segmentation features that are statistically significant for p-value < 0.01 are underlined.
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