
1.  Introduction
Extreme heat can have devastating impacts on built and natural environments including crop losses, wild-
fire risk, infrastructure damage, and wildlife mortality (e.g., Kornhuber et al., 2020; McEvoy et al., 2012; van 
der Velde et al., 2010; Webb et al., 2010), and can impact human-health (Hoegh-Guldberg et al., 2018; Xu 
et al., 2016). The world has become increasingly exposed to heat due to climate change (IPCC, 2013; Meehl 
& Tebaldi, 2004; Perkins-Kirkpatrick & Lewis, 2020). Recent research has largely characterized extreme heat 
using temperature alone (e.g., Perkins et al., 2012; Perkins-Kirkpatrick & Lewis, 2020; Russo et al., 2014). 
However, humidity exacerbates extreme heat impacts, particularly on human-health and labor-productivi-
ty. While literature on observed and projected humid-heat has emerged recently (e.g., Buzan & Huber, 2020; 
Raymond et al., 2020), a comprehensive assessment of their societally relevant characteristics and observed 
changes at high spatial and temporal resolution is lacking.

Abstract  Extreme heat research has largely focused on dry-heat, while humid-heat that poses 
a substantial threat to human-health remains relatively understudied. Using hourly high-resolution 
ERA5 reanalysis and HadISD station data, we provide the first spatially comprehensive, global-scale 
characterization of the magnitude, seasonal timing, and frequency of dry- and wet-bulb temperature 
extremes and their trends. While the peak dry- and humid-heat extreme occurrences often coincide, their 
timing differs in climatologically wet regions. Since 1979, dry- and humid-heat extremes have become 
more frequent over most land regions, with the greatest increases in the tropics and Arctic. Humid-heat 
extremes have increased disproportionately over populated regions (∼5.0 days per-person per-decade) 
relative to global land-areas (∼3.6 days per-unit-land-area per-decade) and population exposure to humid-
heat has increased at a faster rate than to dry-heat. Our study highlights the need for a multivariate 
approach to understand and mitigate future harm from heat stress in a warming world.

Plain Language Summary  Combined high temperature and humidity can be more 
dangerous to humans and wildlife relative to high temperature alone. There are known physiological 
limits to humid-heat and adverse impacts on human-health and performance can be felt well below those 
limits. Thus, it is important we understand their climatological characteristics and recent changes. Prior 
research on heat extremes has largely focused on dry-heat. Using two high-spatial resolution datasets, 
we provide a global-scale characterization of the magnitude, seasonal timing, and frequency of dry- and 
humid-heat extremes and their historical trends. While dry- and humid-heat extremes occur at the same 
time of the year in most regions, their timing differs by multiple months in tropical regions with high 
rainfall. Over the past four decades, dry- and humid-heat extremes have become more frequent over most 
land regions, with the greatest increases in the tropics and Arctic. Since 1979, each person, on average, 
has experienced an increase of approximately five additional extreme humid-heat days per-decade. 
These increases are concentrated over densely populated regions in the tropics and sub-tropics, where 
humid-heat levels are already high. Our results emphasize the increasing risk from dangerous heat stress, 
particularly in vulnerable regions of the world.
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Humid-heat is the combined effect of temperature and humidity, commonly measured by wet-bulb temper-
ature (Buzan et al., 2015). Humid-heat is particularly important when considering human-health and per-
formance. Prolonged exposure above a wet-bulb temperature of 35°C is theoretically unsustainable (Hanna 
& Tait, 2015; Sherwood & Huber, 2010) and can result in heat-related mortality and illnesses. However, loss 
of labor-productivity and severe physiological impacts, including mortality, can occur at lower temperatures 
(Dunne et al., 2013; Leon & Bouchama, 2015). Raymond et al. (2020) showed that wet-bulb temperatures 
exceeding 35°C have already occurred and extreme wet-bulb temperatures have doubled in frequency, and 
Coffel et al. (2018) find that more frequent wet-bulb extremes are projected in several densely populated, 
vulnerable regions with continued warming.

Recent studies investigated spatiotemporal patterns and causes of changes in historical wet-bulb extremes 
over India (Mishra et al., 2020), Pakistan (Monteiro & Caballero, 2019), the USA (Raymond et al., 2017), 
and other climatologically hot and humid regions (Krakauer et al., 2020). However, the magnitude, seasonal 
timing, and frequency of humid-heat extremes, their spatial patterns, and societal exposure have not been 
quantified globally. Understanding spatiotemporal patterns and changes in humid-heat characteristics rela-
tive to dry-heat can reveal regions that face mounting human and ecosystem risks from extreme humid-heat 
which temperature-based metrics alone do not capture.

Using daily maximum temperatures from HadISD station data and high-resolution ERA5 reanalysis, we 
build a global climatology of the magnitude and seasonal timing of dry- and humid-heat extremes and 
examine how their characteristics have changed from 1979 to 2019. We also examine how their trends have 
contributed to changes in land-area and population exposure to both extremes. Our key aims include: (a) 
comparing global patterns of dry- and humid-heat extreme characteristics, (b) identifying differences in 
seasonal timing, and (c) illuminating consistencies and differences in recent trends. While our analyses are 
performed at the global-scale, our discussion focusses on regions with the hottest temperatures, strongest 
trends, strongest contrasts between dry- and humid-heat, or regions with high-population densities.

2.  Data
We examine dry- and humid-heat (1979–2019) using ERA5 gridded hourly reanalysis (0.25° x 0.25°) (Coper-
nicus Climate Change Service (C3S), 2017; Hersbach et al., 2019) and sub-daily HadISD observational sta-
tion data version 3.1.1.202004p (Willett et al., 2014). While station data spatial coverage is incomplete, par-
ticularly in vulnerable global regions, ERA5 provides a spatially complete, physically consistent data set to 
study global patterns and recent trends. We use ERA5 dry-bulb temperature (DBT), dew-point temperature, 
and surface pressure, and HadISD DBT, specific humidity, elevation, and mean sea level pressure to calcu-
late wet-bulb temperature (WBT). We use daily maximum temperatures instead of daily means to capture 
the most extreme values and because there are smaller differences between HadISD and ERA5 data in the 
daily maximum relative to the daily means (see Section S1 for HadISD station selection and bias control).

NASA Socioeconomic Data and Applications Center (SEDAC) gridded population and land-area are used to 
analyze changes in extreme heat exposure (CIESIN, 2018a, 2018b, 2018c). While population changes have 
affected global-population exposure to extremes, we use fixed, 2010 global-population and land-surface data 
to isolate climate change effects.

3.  Methods
3.1.  Wet-Bulb Temperature Definition

While other variables might characterize heat stress better, such as wet-bulb globe temperature which con-
siders wind and solar radiation, these data are often limited in availability and quality, thus we use WBT. We 
use the Davies-Jones method (Davies-Jones, 2008) to calculate WBT (see Section S2 for the calculations) and 
the Buzan et al. (2015) implementation using the Kopp (2020) Matlab code. This method minimizes error at 
high-temperatures (Coffel et al., 2018, 2019; Raymond et al., 2020; Sherwood & Huber, 2010).
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3.2.  Extreme Heat Definitions and Metrics

The extreme heat threshold (magnitude) is the local 95th percentile over the 1981–2010 baseline. This defi-
nition identifies two extreme heat types: dry-heat, calculated using daily maximum DBT, and humid-heat, 
calculated using daily maximum WBT. We calculate these thresholds over the entire year instead of just 
summer to ensure consistency across the equator and for regions with weaker seasonal temperature and 
humidity cycles, such as the tropics, where extreme heat can occur year-round. Spatial trends are analyzed 
using the summer-centric year (Northern-Hemisphere: January–December, Southern-Hemisphere: July–
June) rather than the calendar year to ensure that typical summer seasons in the Southern-Hemisphere 
extra-tropics are not split.

We define extreme dry- (humid-) heat days as any day exceeding the 95th percentile DBT (WBT) threshold. 
Extreme heat frequency is defined as the number of days above the corresponding dry- and humid-heat 
threshold, and intensity is the mean temperature on all extreme heat days. We calculate linear trends over 
1979–2019 and estimate significance using the Mann-Kendall test. To characterize seasonal timing of ex-
treme heat we find the month with the most heat days over 1979 to 2019 (peak-heat-month) and examine 
the temporal difference between the peak-heat-months for dry- and humid-heat. Lastly, we calculate the 
total number of months that experience at least five extreme heat days in the entire record as a seasonality 
measure. If this metric is high, heat events are not constrained to a particular time of year and seasonality is 
low, such as in the tropics. Conversely, if this metric is low, there is a strong seasonal cycle in temperatures 
and heat events are constrained to a particular time of year, such as at high-latitudes. While there are addi-
tional timing metrics for characterizing extreme heat impacts, the lack of a well-defined hot season in many 
tropical areas makes it challenging to define other globally consistent metrics for examining their global 
climatology. Measures of extreme heat timing tailored to a region's seasonality and vulnerabilities (e.g., 
timing of labor-intensive agricultural activities) are needed to more accurately assess regional and sectoral 
risks. Finally, we compare trends in annual 99th and 50th percentiles of daily maximum temperatures to 
determine whether extremes are changing at a different rate than the mean.

3.3.  Population and Land Exposure

We examine extreme heat exposure using: (a) average number of heat extremes per-person or per-unit-land-
area (Equations 1 and 2, respectively), and (b) total number of people or land-area simultaneously exposed 
to extreme heat per-day (Equations 3 and 4, respectively). These metrics are calculated as follows:
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where hdppi is population-weighted heat days for year i, ndaysx,y,i is number of heat days for latitude y, 
longitude x, and year i, populationx,y is population for the grid cell with latitude y, and longitude x, and total 
population is the total global-population.
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where hdpkmi is area-weighted heat days for year i (km2), areax,y is square-kilometres of land in each grid 
cell, and total area is the total global land-area (excluding permanent ice and water).
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where ppdmean,i is annual average number of people simultaneously exposed to extreme heat per-day for 
year i, total days is number of days in year i.
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where kmpdmean,i is average area simultaneously exposed to extreme heat per-day for year i.

Similar methods to Equations  3 and  4 are used to calculate maximum number of people (ppdmax,i) and 
land-area (kmpdmax,i) exposed to extreme dry- and humid-heat annually.
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4.  Results and Discussion
4.1.  Extreme Heat Magnitude

The greatest differences between the spatial pattern of dry- and humid-heat magnitudes are associated with 
moisture availability differences (Figure 1). DBT extremes are hottest in the subtropics and desert regions, 
such as northern Africa, the Middle East, northwest South Asia, and Australia. In contrast, WBT extremes 
mainly peak in the tropics and subtropics; these locations correspond to humid, monsoonal areas, including 
South and Southeast Asia, the coastal Persian Gulf, and the western Amazon Basin (Matthews, 2018). Due 
to the high heat capacity of water, extreme DBT thresholds over the ocean are much cooler than those over 
nearby land regions, where there is limited moisture supply for evaporative cooling and consequently more 
sensible heating (Figure 1a). Conversely, this land-ocean contrast is less noticeable for WBT in the low-lat-
itudes, particularly around South and Southeast Asia (Figure 1c). The lower land-ocean contrast for WBT 
in these regions where the environment is in convective quasi-equilibrium could be associated with their 
proximity to the warmest sea-surface temperatures in the Indo-Pacific Warm Pool, weak free tropospheric 
temperature gradient, and moisture advection from the ocean to land-areas via the regional monsoonal 
circulations.

While there are known underestimation biases due to spatiotemporal averaging for WBT extremes in the 
older-generation reanalyzes—ERA-Interim (Dee et al., 2011; Raymond et al., 2020)—the spatial pattern of 
extreme heat magnitudes are largely consistent for ERA5 and HadISD (Figure 1), illustrating the suitability 
of ERA5 for analyzing the global-scale patterns of temperature extremes. Biases are likely to be largest over 

Figure 1.  Extreme heat magnitude. Baseline (1981–2010) 95th percentile magnitude of (a and b) dry-bulb and (c and d) wet-bulb temperatures from ERA5 (left) 
and HadISD (right). To emphasize high values and their gradients in the hottest regions for each metric, we use different non-linear color scales for dry- and 
wet-bulb temperatures.
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landscapes with complex topography, land-sea contrasts, and low station-density, however ERA5's higher 
resolution should result in smaller biases than for ERA-Interim.

4.2.  Extreme Heat Seasonal Timing

The seasonal timing of extreme heat events also shapes their impacts. For example, timing affects vegeta-
tion productivity (Butler & Huybers, 2015; Sun et al., 2018; Wang et al., 2016) and worker health impacts 
can be exacerbated if extreme heat coincides with outdoor labor activity, such as field preparation, sowing, 
and crop harvesting (De Lima et al., 2021; Spector et al., 2016; Tigchelaar et al., 2020). In the mid-to high-lat-
itudes, there is a strong seasonal cycle where heat extremes occur most frequently during JJA (DJF) in the 
Northern (Southern) Hemisphere (Figures 2a–2d and S3), and extreme dry- and humid-heat days generally 

Figure 2.  Seasonal timing of heat extremes. Month with the highest frequency of days with extreme (a and b) dry-bulb and (c and d) wet-bulb temperatures for 
ERA5 (left) and HadISD (right). (e and f) the difference between the peak month of humid-heat (c and d) and dry-heat extremes (a and b). Positive (negative) 
values, with pink (green) coloring, show where the peak wet-bulb month occurs after (before) that for dry-bulb.
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occur during the same month (Figures 2e and 2f). Extreme heat frequency peaks earlier in the warm sea-
son over land than ocean due to the high heat capacity of water and resulting thermal inertia (Figures 2a 
and 2c). Conversely, the seasonality of extremes is weak across the tropics, where they can occur year-round 
(Figure S3), and the timing of peak dry- and humid-heat differ by multiple months (Figures 2e and 2f).

The largest differences in seasonal timing of dry- and humid-heat correspond to monsoonal or high annu-
al rainfall regions across the low-latitudes (Wang & Ding, 2008; Zhang & Wang, 2008) with similar solar 
forcing throughout the year. In areas affected by the North African and North American monsoons, most 
dry-heat extremes tend to occur in May or June, whereas most humid-heat extremes occur in August (Fig-
ures 2a and 2c). Some monsoonal regions such as South Asia, experience the most humid-heat events in 
May before the typical monsoon season (June–September) or early in the monsoon season. The occurrence 
of humid-heat during the planting and early growing season (e.g., NFSM, n.d.), which is typically labor-in-
tensive, puts agricultural workers at heightened risk of heat-related illnesses and can reduce work perfor-
mance (Koteswara Rao et al., 2020).

4.3.  Trends in Extreme Heat Frequency

Most of Europe, northern South America, Africa, the Arabian Peninsula, the Maritime Continent, and parts 
of the Pacific and Atlantic Oceans have significant positive trends in dry- and humid-heat frequencies (Fig-
ures 3a–3d). The strongest trends are in the tropics, where historical temperature variability is low, and in 
parts of the Arctic that have recently undergone substantial sea ice-loss (Screen et al., 2013). Several regions 
that experience positive trends in humid-heat frequency (Figure 3c) correspond to areas where the 95th 
percentile already exceeds dangerous WBTs (≥27°C; Krakauer et al., 2020), such as northern India, parts of 
Southeast Asia, and northern Bolivia/western Brazil (Figure 1c). Extreme heat frequency has increased by 
up to 35 additional dry-heat days and 28 humid-heat days per-decade for ERA5 (Figures 3a and 3c). HadISD 
shows a similar pattern of trends although with larger magnitudes in some regions (Figures 3b and 3d).

Dry- and humid-heat frequency trends are consistent in sign and significance over most regions (Figures 3e 
and 3f). Further, positive extreme heat frequency trends are associated with increases in mean intensity 
(Figures S4a and S4b) and an expansion of the number of months and the number of pentads with extreme 
heat occurrences (Figures S4c–S4f). While extreme heat frequency trends for ERA5 and HadISD differ by 
an average of 3.0 (3.7) days per-decade for dry-heat (humid-heat; Section S1), the spatial pattern of trends 
compares well over most land regions, with the greatest differences occurring over the tropics (e.g., Indone-
sia) and mountainous regions (e.g., the Andes; Figures S2a and S2b).

While dry- and humid-heat frequency trends are largely consistent, a few regions show divergent trends 
(Figures 3e and 3f). For example, humid-heat frequency trends are strongest over highly populous regions 
in South and Southeast Asia where changes in dry-heat frequency are small or non-significant. Since a 
large fraction of land-area in these regions is croplands (Ramankutty et al., 2010), and the timing of high 
irrigation rates over India coincide with the warmest temperatures, increasing irrigation intensity could be 
increasing humidity and consequently extreme humid-heat (e.g., Krakauer et al., 2020; Mishra et al., 2020) 
while cooling the land-surface via increased latent-heat fluxes (Singh et al., 2018). Increased humid-heat 
frequency over India also corresponds to areas with recent increases in annual rainfall and surface specific 
humidity (Hartmann et al., 2013). Contrastingly, significant increases in dry-heat days but not humid-heat 
days over eastern China (Figures 3a and 3c), where rainfall and surface specific humidity have declined 
(Hartmann et  al.,  2013), indicates that humidity changes are likely influencing the diverging trends in 
dry- and humid-heat extremes. The contributions of factors including land-use/land-cover change, aero-
sol-related cooling, and precipitation changes (Myhre et al., 2013) to diverging dry- and humid-heat trends 
are yet to be evaluated.

4.4.  Extreme Heat Exposure

Changing extreme heat frequencies contributed to significant increases in the mean exposure of the glob-
al-population and land-surface to locally defined heat extremes (Figures 3g, 3h, and S5). Comparing popula-
tion-weighted and area-weighted extreme heat frequency trends highlights differences in the areas affected 
by these extremes (Figures 3g and 3h). Mean humid-heat exposure increased by ∼3.6 days per-unit-land-area 
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Figure 3.



Geophysical Research Letters

ROGERS ET AL.

10.1029/2021GL094183

8 of 13

per-decade, but by ∼5.0 days per-person per-decade, illustrating that humid-heat frequency trends dispro-
portionately affected populated regions (Figure 3h). Conversely, mean dry-heat day trends are of similar 
magnitude per-person and per-unit-land-area (∼4.0 and ∼4.3 additional days per-decade, respectively), thus 
dry-heat has a more uniform imprint across the world (Figure 3g). Further, the daily maximum number of 
people simultaneously affected by humid-heat (average annual maximum of ∼2.0 billion people between 
1979 and 2019) is higher than that for dry-heat (∼1.5 billion people; Figure S5c). A similar pattern is found 
for land-area (Figure S5d).

While both dry- and humid-heat have become more frequent and affected more people and land (Fig-
ures S5a and S5b), the global-population has become increasingly exposed to humid-heat at a faster rate 
than to dry-heat (Figures S5a and S5c), driven by high humid-heat frequency trends over highly populated 
regions, including parts of Asia (Figures 3c and 3d). The stronger overall land exposure trends for dry-heat 
(∼4.3 days per-decade) compared to humid-heat (∼3.6 days per-decade) further suggests that humid-heat 
predominantly affected populated regions (Figures S5b and S5d), consistent with recent theoretical (Mat-
thews, 2018) and modeling (Coffel et al., 2018) work. Since we do not consider population change, and 
populations have predominantly increased in regions with increasing humid-heat frequency (e.g., India), 
our findings likely constitute conservative estimates of population exposure changes. These findings high-
light the importance of considering humidity when assessing the increasing risks of extreme heat on hu-
man-health in a changing climate.

The 1997–1998, 2009–2010, and 2015–2016 El Niños are associated with the highest annual-average land 
exposure to humid-heat (Figures 3h and S5b; NOAA, 2021). Land exposure for dry-heat, and population 
exposure for both extremes, are also high for these years (Figures 3g, 3h, S5a, and S5b), but lower than for 
humid-heat population exposure (Figures S5a and S5f), suggesting that El Niños might disproportionately 
exacerbate WBT in densely populated areas. However, the long-term humid-heat trend is not solely driven 
by these events (Figure S6b). Similar, albeit weaker annual trends result when 1997–98, 2009–2010, and 
2015–2016 are removed—decrease from 0.40 to 0.36 for dry-heat days per-person, and 0.50 to 0.43 for hu-
mid-heat days per-person (Figures 3g, 3h, and S6)—further supporting our finding that population expo-
sure to humid-heat has the strongest trend (Figures 3g, 3h, and S6). Further, while the differences between 
population and land-area exposure to humid-heat are most positive (negative) during El Niños (La Niñas) 
from 1979 to 2011 (Figure 3h), these differences are positive every year since 2012, even during the weak 
La Niñas in 2016–2017 and 2017–2018. Although there is no noticeable trend in the difference between 
per-person and per-unit-land-area exposure to humid-heat prior to 2010 (Figure 3h), we find an indication 
of an emerging positive trend in the past decade where this difference is consistently positive and has its 
highest magnitude in recent years.

A composite of the spatial patterns of heat day frequencies during the 1997–1998, 2009–2010, and 2015–
2016 El Niños (Figures S7a–S7f) indicates a higher frequency of dry-heat over northern South America, 
Africa, Europe, and the Maritime Continent (Figure S7g), and extreme humid-heat over northern South 
America, Africa, the Middle East, India, and Southeast Asia (Figure S7h). The higher-population exposure 
to humid-heat relative to dry-heat is due to higher humid-heat day frequencies over densely populated 
regions, such as India, Bangladesh, and Nigeria (all three years), and additionally Southeast China (1998, 
2016), and Southeast Asia (2010, 2016; Figures S8a–S8d). The composite of all historical strong and very 
strong El Niño events since 1979 shows a much weaker pattern (Figures S7i, S7j, and S8e) likely because 
every El Niño is distinct and has different spatial features and varying regional impacts (e.g., Johnson & 
Kosaka, 2016; van Rensch et al., 2019). Further, El Niños in the past decade act on a warmer background cli-
mate than previous events, making it challenging to identify consistent regional signals of El Niños over the 

Figure 3.  Extreme heat frequency and exposure trends. Trends in the number of extreme (a and b) dry- and (c and d) humid-heat days per-decade for ERA5 (left) 
and HadISD (right). Stippling indicates trends that are not significant. (e and f) Level of consistency between trends in dry- and humid-heat extremes. (g and h) 
the number of extreme heat days per-person (purple “+” markers) and per-unit-land-area (km2, green “×” markers) for dry- and humid-heat (left y-axis). Dashed 
(dotted) lines show linear trends that are significant (not significant). m indicates trend magnitude. Gray lines with “∙” markers show differences between heat 
days per-person and heat days per-unit-land-area (right y-axis). Dash-dot lines show 5-year moving average for these differences. Colored bars show El Niño 
strength, determined using the Oceanic Niño Index (ONI, NOAA, 2021); very strong El Niño (red, ONI > 2), moderate-to-strong El Niño (dark pink, 1 < ONI 
< 2), weak El Niño (light pink, 0.5 < ONI < 1), weak La Niña (light blue, −1 < ONI < −0.5), and moderate-to-strong La Niña (dark blue, ONI < −1). Black 
horizontal line shows where right y-axis equals zero. Trend significance in this figure is determined using the Mann-Kendall test (Fatichi, 2020) at the 95% 
confidence level.
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limited historical record (Figures S7 and S8). Therefore, while El Niños are known to affect DBT (Arblaster 
& Alexander, 2012) and WBT (Raymond et al., 2020), diagnosing the regional teleconnections of El Niño 
on humid-heat requires large-ensemble simulations to examine the influence of different El Niño flavors 
and warming on the teleconnections. Our findings demonstrate the need to more thoroughly examine the 
relationship between the spatial patterns of extreme heat with ENSO and other climate modes.

4.5.  Changing Temperature Distributions

In some regions, climate change is altering the shape of temperature distributions beyond a simple shift in 
the mean. Stronger changes in the tails of the distribution compared to the mean have different implica-
tions for human and ecosystem health. Here, we compare trends in the median and 99th percentile (Fig-
ure S9) to determine whether (a) temperature distributions are changing shape, and (b) the hottest extremes 
are getting hotter. ERA5 and HadISD trends are largely consistent, except over western Russia (Figures S9 
and S10).

Many regions show stronger median DBT trends relative to the 99th percentile including the Arctic, east-
ern North America, Asia, northern Africa, and northern Australia (Figures S9a, S9c, and S9e). However, 
over land-areas such as South America, western North America, Europe, and southeastern Australia, the 
99th percentile DBT has increased more than the median. In addition to the creeping changes associated 
with mean warming, such larger changes in heat extremes could be driven by diverse drivers including 
increases in atmospheric blocking (e.g., Horton et al., 2015; Sousa et al., 2018), and increased soil moisture 
deficits (Donat et al., 2017; Hirschi et al., 2011). Differences between the 99th percentile and median trends 
likely reflect the influence of different drivers in different seasons. For example, greater trends in the 99th 
percentile of DBT off eastern Canada and the Barents and Kara Seas are associated with regions experi-
encing summer sea-ice loss (Screen et al., 2013), whereas mean DBTs during winter, spring, and autumn 
over the majority of the Arctic (65°–90°N) have increased at a greater rate than for summer (Johannessen 
et al., 2016; Figure S9).

The 99th percentile of WBT tends to increase at a similar or weaker rate than the median over much of the 
global land-area (Figures S9b, S9d, and S9f). Several regions show significant positive trends in the median 
WBT (Figure S9d) without corresponding significant changes in the 99th percentile (Figure S9b), including 
much of Asia. Conversely, parts of Africa, the Americas, and the Middle East, show stronger 99th percentile 
trends compared to the median. Compared to dry-heat, more regions show negative or non-significant hu-
mid-heat trends (Figures S9a–S9d), suggesting relative drying not cooling is responsible for these changes. 
These findings are consistent with the expectation of WBT increasing slower than DBT with warming–
approximately 0.9°C of WBT per 1.0°C of DBT–with constant relative humidity (Buzan & Huber, 2020). 
With global warming, relative humidity is expected to decrease (Buzan & Huber, 2020; Byrne & O'Gor-
man, 2013, 2018), which might further reduce the rate of increase of WBT relative to DBT.

5.  Conclusions and Implications
We characterize and compare dry- and humid-heat extremes on a global-scale using ERA5 reanalysis and 
HadISD station data and assess changes in exposure. While extreme DBT alone has implications for hu-
man-health, infrastructure damage, and crop loss, WBT more closely captures the effect of climate on hu-
man-health. We identify a greater increase in population exposure to humid-heat as compared to dry-heat, 
emphasizing the importance of understanding humidity changes in a warming world. We show that most 
of Europe, northern South America, Africa, the Arabian Peninsula, the Maritime Continent, and North-
ern-Hemisphere oceans (representing ∼27% of global area) have experienced statistically significant in-
creases in both dry- and humid-heat extremes. Several regions also experience divergent trends in these 
extremes. For instance, most of South Asia experiences increases in humid-heat extremes despite non-sig-
nificant changes in dry-heat.

Our research builds on previous studies that identified humid-heat as a risk to human-health (e.g., Ray-
mond et al.,  2020; Sherwood & Huber, 2010). We link together existing threads of humid-heat research 
by showing that the newly available high-resolution ERA5 reanalysis compares well in regions with high 
station density and low topographic complexity. Our study extends this research to provide information on 
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changes in dry- and humid-heat extremes for understudied regions of Africa and South America, where 
reliable station data are limited. We also provide novel findings quantifying the seasonal timing of extremes, 
including identifying a difference of several months between dry- and humid-heat in monsoonal and trop-
ical regions, which is not observed in the extra-tropics. Further, we show that strong increases in extreme 
heat frequency are accompanied by an expansion of the number of months during which they occur.

While we examine extreme heat trends on a global-scale, understanding the influence of urban develop-
ment on observed trends could provide additional insights. Previous research has examined the urban heat 
island effect during extreme dry-heat in temperate cities (e.g., Li & Bou-Zeid,  2013; Rogers et  al.,  2019; 
Scott et al., 2018), but there is limited research examining the effect of heat extremes in tropical cities (e.g., 
Chew et al., 2021). We also highlight limits to adaptation. With rising WBTs, including over areas already 
approaching the survivability limit (35°C), manual, labor-intensive outdoor work such as agricultural ac-
tivities, construction, and pulled- or cycle-powered rickshaw transport could effectively become infeasible 
during the hot parts of the day for much of the year.

Given the higher-population exposure to humid-heat and its projected increases, particularly in vulnerable 
areas, our findings emphasize the need to better understand societal impacts (Coffel et al., 2018; Raymond 
et al., 2020) by considering the timing of location-specific human activities, demographics, and socio-eco-
nomic factors that enhance vulnerability to heat stress, as well as incorporating additional physical factors 
such as solar radiation and wind. This understanding is of heightened importance to communities with one 
or more of the following risk factors: (a) vulnerable workers directly exposed to extreme heat (such as farm 
workers or urban outdoor laborers), (b) limited access to air conditioning, electricity, community cooling 
centers, health and emergency medical services, (c) inadequate extreme-heat warning systems, (d) people 
without housing, and (e) older-populations and those with certain health conditions. While it is imperative 
that we reduce global carbon emissions to avoid the worst impacts of climate change, addressing the above 
socio-economic factors and infrastructure issues (e.g., Fouillet et al., 2008) through policy, adaptation meas-
ures, or financial aid can help reduce the impacts of committed climate change.
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