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Abstract 

Understanding the Association of Breastfeeding and  

Food Insecurity on Brain Function in Early Childhood  

 
Deeana Sehr Ijaz 

 

Introduction: The present study aims to understand how the absence of food security and 

breastfeeding in children at one year of age, which can be considered as adverse childhood 

experiences, may be associated with brain function as measured by the relative and absolute 

power spectral density of four frequency bands of brain waves (theta, alpha, beta, and gamma) 

among a sample of infants from low-socioeconomic (SES) backgrounds at age 12 months old.  

Methods: A cross-sectional survey was used by the parent study, Baby’s First Years (BFY), 

to collect quantitative data to understand the associations between breastfeeding, food 

insecurity, and brain function in a sample of 243 low-SES mothers and their infants at age 12 

months old. Breastfeeding was measured as ever breastfed, to understand if a mother had ever 

initiated breastfeeding of their infant, and breastfeeding duration, measured in months. 

Household food insecurity (HFI) was measured using the U.S. Household Food Security 

Survey Module Short Form devised by the USDA. Electroencephalography (EEG) data was 

collected to assess brain function.  

Data Analysis: Data was analyzed to determine associations between being ever breastfed, 

breastfeeding duration, and the presence of HFI and EEG measured relative and absolute theta, 

alpha, beta, and gamma power in infants at 12 months of age using multiple linear regression 

(MLR) models based on ordinary least squares (OLS).  

Results: 77% (n=187) of mothers reported breastfeeding their child at least one time. The mean 

breastfeeding duration (including the mothers that never breastfed) was 3.6 months (SD=4.12). 



  
 

27.6% (n=67) of mothers were found to be food insecure. Ever breastfeeding an infant during 

the first year of life was found to be associated with higher absolute theta power (p<0.05), and 

higher relative and absolute alpha power (p<0.01). Breastfeeding duration was not found to be 

associated with relative and absolute theta, alpha, beta or gamma power. Finally, the presence 

of food insecurity was not found to be associated with relative and absolute theta, alpha, beta 

or gamma power.  

Discussion: Differences in brain function may be adaptive for children experiencing adversity 

because of their lower SES, amongst other factors (Ellis et al., 2020). Ever breastfeeding an 

infant was associated with higher absolute theta power, which was an unexpected finding. 

However, relative theta power was not associated with ever breastfeeding, and therefore this 

finding must cautiously be interpreted. Ever breastfeeding an infant was associated with higher 

relative and absolute alpha power. It is possible that the increases in relative and absolute alpha 

power within the sample of infants who were ever breastfed are in part due to the emotional 

connection that breastfeeding elicits and the characteristics of mothers that decide to initiate 

breastfeeding as compared to those that do not initiate breastfeeding. This research 

demonstrates significant associations between ever breastfeeding an infant with brain function 

in a population of infants from diverse, low SES backgrounds. In contextualizing these changes 

in brain function as plausible adaptations that infants are developing due to their experiences, 

an opportunity exists to further explore these associations with brain function to understand the 

skills that low SES infants are developing during the first year of life. 
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Chapter 1: Introduction 

Early feeding behaviors and circumstances predict subsequent feeding behaviors in 

childhood. For example, both duration of breastfeeding and the presence of food insecurity can 

serve as predictors of nutrition in early childhood (Hanson & Connor, 2014; Perrine et al., 

2014; Soldateli et al., 2016). While breastfeeding and household food insecurity have been 

linked with children’s cognitive development, the extent to which these behaviors and 

circumstances relate to children’s brain development in the first year of a child’s life is less 

explored and understood. An opportunity exists to understand the connections between 

breastfeeding, food insecurity, and brain development in early childhood.   

 1.1 Purpose of this Study 

The overall purpose of the present study is to examine the relationship between 

nutritional status and brain function in early childhood. More specifically, the purpose is to 

determine the extent to which being breastfed, duration of breastfeeding, and household food 

insecurity may be associated with brain function, as measured by electroencephalography 

(EEG), among infants at 12 months of age participating in a large NIH-funded study, Baby 

First Years. This chapter presents the rationale, background, methodology, research problem, 

aims, objectives, and limitations of the study. 

1.2 Rationale for this Study 

Theoretical and practical reasons drive the need for more research on the relationships 

between the brain function and nutritional status of infants. The theoretical framework is 

underpinned by the hypothetical model outlined by the flow diagram in Figure 1. 
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Figure 1 Theoretical model positing that nutritional status is a predictor of infant 
brain development and function (Prado & Dewey, 2014) 

This model illustrates the hypothesis that nutritional status has an impact on the 

development and functioning of the infant brain, which, in turn has an impact on the motor, 

cognitive, and social emotional development of the infant. Moreover, the direct relationship 

between nutritional status and infant brain development and function may be mediated 

indirectly by at least two pathways. The first pathway develops via caregiver behavior (e.g., 

the maternal provision of the physical and psychological needs of the infant) and the second 

pathway develops via interaction with the environment (e.g., the infants’ experiences of visual, 

auditory, tactile, and other forms of sensory stimulation). This model predicts that high risk 

infants experiencing poor nutrition, sub-optimal caregiver behavior, and poor environmental 

stimulation will ultimately perform at lower levels in terms of motor, cognitive, social, and 

emotional development. In contrast, infants experiencing optimal nutrition, caregiver behavior, 

and environmental stimulation will ultimately perform at higher levels in terms of motor, 

cognitive, social, and emotional development.  

Empirical evidence is currently available in literature reviews and meta-analyses to 

support the model depicted in Figure 1. Chatterjee and Saumitra (2016) concluded that 
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malnutrition during the first two years of life is a major risk factor for poor neurodevelopment, 

leading to motor, cognitive and speech delay, as well as behavioral problems and learning 

disabilities. Schwarzenburg et al. (2018) concluded that nutritional status in the first two years 

of life is a crucial factor in a child’s neurodevelopment associated with lifelong mental and 

physical health.  Georgieff et al. (2020) concluded that a better understanding of the impact of 

nutrition will have a significant impact on improving the neurodevelopment and brain function 

of infants. 

The practical reasons are that more research to improve understanding of the impact of 

nutrition on infant brain function will have significant implications for public health and social 

change.  About 219 million children, representing about 1% of the 2.2 billion children in the 

world, experience sub-optimal neural, cognitive, language, and motor development, associated 

with malnutrition (Sudfeld et al., 2015). About 6.5% of U.S. households with children 

experience food insecurity, (United States Department of Agriculture, 2019) a risk factor for 

malnutrition with possible long-term consequences for the education, job potential, mental and 

physical health of the adult U.S. population (Dauncey, 2009; Wachs et al., 2014; Cusick & 

Georgieff, 2016). Morris et al. (2008) predicted that the correction of nutritional deficits 

associated with neurological deficiencies during early childhood may increase the average 

intelligence quotient of the adult population by 10 points. Prioritizing the provision of optimal 

nutrition will ensure that infants have an early foundation for optimal neurodevelopment and 

subsequent long-term health and well-being (Shwarzenberg et al., 2018). 

1.3 Background 

 The rate of development of the human brain does not remain constant over an 

individual’s lifetime. Much of the human brain’s ultimate structure, capacity, and function is 

determined during a critical period in the first 1000 days of life (i.e., between conception and 

about two years old) when the foundations of good physical and mental health are established 
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(Cusick & Georgieff, 2016).  This critical period is characterized by a high level of phenotypic 

plasticity, when exogenous factors, including nutrition, medications, pollutants, and 

environmental interaction, have long-term effects on brain development (Cusick & Georgieff, 

2016; Georgieff, Brunette, & Tran, 2015; Fox, Levitt, & Nelson, 2001; Wachs et al., 2014). 

Early experiences of adversity during this critical period, (e.g., poverty, malnourishment, 

maltreatment, and exposure to toxic chemicals) may have detrimental effects on brain structure 

and function related to the physical, social, cognitive, and emotional development of infants, 

children, and adults (De Oliveira et al., 2020; Child Welfare Information Gateway, 2015; 

Mackes et al., 2020). 

 Due to recent advances in EEG, neuroscientists have developed a better understanding 

of the sensitivity of infant brain function to adverse early experiences (Michel et al., 2015; 

Pavlakis et al., 2015; Saby & Marshall, 2012); however, many questions remain to be answered 

regarding how and why specific patterns of infant brain activity are directly or indirectly related 

to specific early periods of adversity (Braithwaite et al., 2020; Brito et al., 2020; Jones et al., 

2020). 

1.4 The Development of the Human Brain 

The human brain begins to develop prenatally as the neural plate folds inwards to form 

the neural tube, which is the starting point of the spinal cord and brain.  During gestation, 

neurodevelopment includes the forming of neurons, glial cells, axons, dendrites, and ultimately 

synapse connections between neurons that allows for signaling between cells (Couperus & 

Nelson, 2006).  Johnson (2003) describes how the first year after birth is characterized by rapid 

rates of cell division and differentiation in the brain (e.g., the proliferation of neurons, axons 

and dendrites, and the development of the hippocampus, visual and auditory cortices, language 

processing areas, and prefrontal cortex) as well as connectedness (i.e., myelination, and 

synaptogenesis) which form the basis of normal perception and cognition  
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Prado and Dewey (2014) define five key neurodevelopmental processes of 

consequence during gestation and early childhood that directly impact brain structure and 

function. All of these developmental processes are directly correlated with nutrient needs 

during gestation and early childhood as seen in either or both human and animal models. The 

five processes are neuron proliferation; axon and dendrite growth; synapse formation; pruning, 

and function; myelination, and apoptosis.  Neuron proliferation is the creation of new neurons 

through cell division, which begins at seven weeks gestation and continues until five months 

postpartum but occurs subsequently at a much lower frequency. Axons and dendrites are the 

connectors to neuron cell bodies from other cell bodies. The growth of axons and dendrites 

starts at 15 weeks into gestation and continues after birth, up until two years of age.  Synapses 

are the connections that form between axons and dendrites and neurons. The process of synapse 

formation begins around week 23 of gestation and continues through the first year of life. 

Pruning of synapse connections begins after two years of age and continues into adolescence 

following an overproduction of synapses in the first two years of life.  Myelin is a fatty 

substance that covers the axons of neurons and helps facilitate speedy cell signaling in the form 

of nerve impulses. Myelination of axons begins at the time of axon proliferation (as early as 14 

weeks gestation) and continues until adulthood; however, the most significant amount of 

myelination occurs during gestation through two years of age. Apoptosis, otherwise known as 

programmed cell death, is critical to proper development as more than half of the cells that are 

produced in the brain die off. This process begins during gestation and continues through 

adolescence. 

1.5 Electroencephalography 

EEG is the ideal methodology with which to examine brain function and development 

in early childhood, because the measurements are relatively inexpensive and simple to perform 

non-invasively using an array of electrodes placed on the scalp to record brain activity 
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(Pavlakis et al., 2015). EEG measures brain activity in terms of the rhythmic patterns of 

electrical voltages associated with groups of neurons communicating with each other via 

synchronized oscillatory activity (Buzsáki, 2006). Analysis of fluctuations in the power or 

amplitude of brain waves reflects a spectrum of frequency bands, ranging along a continuum 

from slow and simple Delta waves to fast and complex Gamma waves. The power of a brain 

wave is measured in terms of voltage, between the peaks of the waveforms. EEG serves as a 

tool for neurological, cognitive, and behavioral research (Buzsáki, 2006) and for the diagnostic 

assessment of brain dysfunction (Britton et al., 2016).  Figure 2 depicts the five bandwidths of 

human brain waves (delta, theta, alpha, beta, and gamma) measured in Hz (cycles per second) 

which play a major role in brain function.  

Figure 2 The five bands of human brain waves (delta, theta, alpha, beta, and 
gamma). Adapted from Ahbang, Suresh, & Mehrotra (2016, p. 19). 

Bandwidth   Normal 
frequency 
range in 
adults 

                           Typical electroencephalograph  

Delta (δ) 0.5–4 Hz 

  
Theta (θ) 4–7 Hz 

 

Alpha (α) 8–12 Hz 

 

Beta (β) 12–30 Hz 
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Bandwidth   Normal 
frequency 
range in 
adults 

                           Typical electroencephalograph  

Gamma 
(γ) 

30-100 Hz 

 

 

Delta waves with high amplitude arise in the thalamus and are produced during a state 

of deep dreamless sleep. Between birth and two years old, the human brain functions mainly 

by means of this slowest of brain-wave cycles (Saby & Marshall, 2010).  Delta waves dominate 

the brain function of infants at birth, explaining why newborn babies do not remain awake for 

long.  At age one, when an infant is awake more often, Delta waves are less predominant (St. 

Louis & Frey, 2016). For this reason, delta waves will not be examined in this study.  

Theta waves reflect activity from the limbic system and hippocampal regions of the 

brain; however, the scalp distribution of theta rhythm in infants depends on age, reflecting the 

engagement of different brain networks during growth (Orekhova et al., 2006).  A prominent 

buildup of theta waves develops during periods of light dreamless sleep and drowsiness in 

infants between 6-12 months old (St. Louis & Frey, 2016). At age one, the infants’ brain spends 

much of its time producing theta brainwave cycles, but theta activity subsequently declines 

during childhood (Perone et al., 2018). The modulation of theta activity in infants is associated 

with the development of cognitive skills (Jones et al., 2010) and the regulation of responses 

(Michel et al., 2015). Braithwaite et al. (2020) found that differences in frontal theta power in 

six-month old infants, related to different interactions with caregivers, significantly predicted 

differences in non-verbal cognitive ability. Adversity in early childhood has been linked to 

increased theta power (Marshall et al., 2004, Troller-Renfree et al, 2020).  
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Alpha waves are predominantly recorded from the occipital lobes during wakeful 

relaxation, when the eyes are closed, and the brain is not processing a lot of information (Saby 

& Marshall, 2010).  The highest levels of alpha power are associated with an elevated state of 

anxiety (Dadashi et al., 2016).  By two months, a precursor of the alpha wave (3-4-Hz) has 

established, increasing to 4 -5 Hz at six months, reaching 5-7 Hz at age 12 months, and finally 

stabilizing within the normal adult alpha frequency range (8 -12 Hz) by three years (St. Louis 

& Frey, 2016). Adversity in early childhood has been linked to reduced alpha power (Marshall 

et al., 2004, Troller-Renfree et al, 2020). 

High speed beta waves are produced in the frontal and parietal regions of the brain 

when a child is conscious, awake, alert, focused, listening, and thinking (Saby & Marshall, 

2010). Typical beta activity in the 12-14 Hz range typically emerges between the ages of one 

and two years (St. Louis & Frey, 2016). A high level of beta power in children reflects cognitive 

development outcomes (Perone et al., 2018).  

Gamma are the fastest and most complex brain waves produced in every part of the 

brain during periods of concentration, information processing, learning, and problem solving 

(Saby & Marshall, 2010). High gamma activity in children is positively associated with 

cognitive developmental outcomes. Children with learning difficulties may have lower-power 

gamma waves (St. Louis & Frey, 2016).  Better memory skill is associated with well-regulated 

and efficient gamma activity (Perone et al., 2018). Adversity in early childhood has been linked 

to lower frontal gamma power (Tomalski et al., 2013). 

1.6 Statement of the Problem  

Among the numerous factors that influence the development, structure, and function of 

an infant’s brain during the first two years of life, three stand out as generating the most 

profound long-term problems:  toxic stress, infant-caregiver attachment, and nutrition (Cusick 

& Georgieff, 2016). Toxic stress is defined as prolonged activation of the physiological 
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responses of the body to severe adversity, associated with a lack of nurturance, including poor 

nutrition and physical abuse. Toxic stress during childhood results in derangement of the neuro-

endocrine-immune response system, prolonged cortisol activation, and a risk of changes to 

brain structure and function, resulting in mood disorders, behavioral dysregulation, and 

psychosis (Franke, 2014; Dowd, 2017). 

 Infant-caregiver attachment is the deep emotional connection that an infant develops 

with his or her primary caregiver, usually the mother. The quality of this attachment is 

associated with specific patterns and intensity levels of stimulating an infant's sensory system, 

which directly or indirectly have an impact on brain development, and subsequently contribute 

to emotionality, cognition, and mental health (Sullivan et al., 2011). Breastfeeding improves 

the quality of maternal-infant attachment through the production of prolactin and oxytocin 

associated with lower levels of maternal and infant stress, and enhanced emotional bonding 

(Liu et al., 2014).  

This study focuses on addressing the problem of how nutritional factors, in particular 

breastfeeding and food insecurity, are related to the functioning of an infant’s brain during the 

first year of life, as observed by EEG.  The main reason for focusing on this topic is that more 

research effort needs to be directed toward achieving a better understanding of the adverse 

effects of poor nutrition on the neurodevelopment of vulnerable children (De Oliveira et al., 

2020; Mackes et al., 2020). An improved understanding of how breastfeeding and food 

insecurity are related to the functioning of an infants’ brain will ensure that public health 

policies and interventions designed to improve the nutrition-related brain development of 

infants are underpinned by objective research-based evidence (Shwarzenberg et al., 2018). 

The Dietary Reference Intakes (DRIs) developed by the Institute of Medicine (2007) 

are not underpinned directly by a public health policy that aims to develop healthy brain 

structure and function in infants. The DRIs for infants are based on the results of evidence-
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based research describing the nutrient content of foods consumed by healthy infants with 

normal growth patterns, including the nutrient content of breast milk. The DRIs for vitamins, 

minerals, protein, and energy are set at levels that are high enough to satisfy the average 

nutrient requirements of most healthy infants. It is impossible to define exact DRIs that 

promote healthy brain development in all infants, because each infant is unique. Infants differ 

in the amount of nutrients they need, depending on gender, age, body composition, growth 

rates, physical activity, and many other factors. Infants with medical problems or special needs 

have different DRIs than healthy infants (Butt et al., 2010). 

The DRIs are not designed to promote critically important prenatal development 

processes in the brain that are dependent on key micronutrients including folic acid, vitamin 

A, and copper (Couperus & Nelson, 2006). The DRIs were not based on research concluding 

that the normal development of the postnatal brain may be impacted by deficiencies in protein, 

long-chain polyunsaturated fatty acids, iron, zinc, iodine, thyroid hormones, and B-vitamins 

(Innis, 2008; 2014; Prado & Dewey, 2014; Cusick & Georgieff, 2016). 

The DRIs take into account that breast milk and formula milk both provide hydration, 

energy, and nutrients, but they do not take into account the advantage that breast milk naturally 

contains more of the antibodies, hormones, vitamins, minerals, long-chain fatty acids, and 

enzymes required by a healthy infant; consequently, breast milk is recommended as the best 

nutrition for infants (American Academy of Pediatrics, 2012). Several studies have described 

behavioral and cognitive differences between breast-fed vs. formula-fed infants that may be 

associated with differences in early brain development.  For example, breast-fed infants process 

speech differently from bottle-fed infants (Ferguson & Molfese, 2007; Pivik et al., 2011); the 

duration of breastfeeding is associated with differences in infants’ responses to emotional body 

expressions (Krol et al., 2014); breastfed infants develop improved cognitive abilities 

compared to formula-fed infants (Deoni et al., 2018; Huang et al., 2014; Mackes et al., 2016; 
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Horta et al., 2015; Luby et al, 2016; Nyardi et al., 2013) and breastfeeding protects against 

children internalizing behavior problems (Liu et al., 2014). 

The 2020-2025 Dietary Guidelines for Americans released by the USDA recommend 

that for the first six months of life, infants should be fed exclusively human breast milk and at 

six months of age, infants should be introduced to complimentary, nutrient dense foods 

(USDA, 2020). These guidelines suggest continuing to feed infants human milk through at 

least the first year of life, and longer if desired. When human milk is unavailable, they suggest 

feeding infants iron-fortified infant formula. Finally, they suggest that when infants wean from 

human milk or infant formula, to transition to a healthy dietary pattern.  

In contrast, little is known about how and why breastfeeding has an impact on the 

structure and function of the infant brain.  Only a few researchers have examined the effects of 

nutrition and associated factors on the EEG spectrum of infants. Various types of early 

adversity, including lower socioeconomic status (Tomalski et al., 2013), maternal stress 

(Troller-Renfree et al., 2020), and institutionalization (Marshall et al., 2004) may be associated 

with differences in the power of different EEG wavebands. Adversity during early childhood 

has been linked to lower frontal gamma power (Tomalski et al., 2013), increased theta power 

(Marshall et al., 2004, Troller-Renfree et al, 2020) and reduced alpha power (Marshall et al., 

2004, Troller-Renfree et al, 2020). Braithwaite et al. (2020) found that differences in frontal 

theta power in six-month old infants, related to different interactions with caregivers, 

significantly predicted differences in non-verbal cognitive ability. 

Taboado-Crispi (2018) observed the resting brain EEG spectra of two groups of 

children between the ages of five and eleven in Barbados sitting in a comfortable armchair, 

with closed eyes, but not sleeping. Reduced alpha and beta power and increased theta power 

were observed in the EGG spectra of one group of infants who were diagnosed with protein-

energy malnutrition (PEM) compared with that of a matched healthy control group. The PEM 
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group also contained a higher percentage of EEG abnormalities compared to controls, 

including frequency of rhythmic background activity, focal abnormality, paroxysmal activity, 

diffuse slow wave activity, and presence of sharp waves.  This study highlighted that EEG 

technology is a convenient source of measurable and affordable data for assessing the 

relationships between brain function and nutritional status in early childhood. The implications 

are that more research is warranted to examine how feeding on breastmilk vs. formula-milk 

may have an impact on the functioning of the infant brain based on analysis of EEG spectra. 

  It is possible that the characteristics of the primary caregivers (specifically the 

mothers) who make the decision to breast-feed or bottle-feed may indirectly shape the neural 

activity patterns of their infants.  Monk et al. (2013) suggested that poor maternal nutrition is 

a risk factor that may influence infant neurocognitive development. The quality of the mother’s 

diet is a confounding factor because both maternal diet and human milk composition are jointly 

linked to the neurological development of infants (Innis, 2014). 

The poor quality of the diet of mothers is encompassed within the term household food 

insecurity (HFI) defined as “the lack of physical, social, and economic access to sufficient, 

safe, and nutritious food to meet the dietary needs and food preferences for an active and 

healthy life” (Food and Agriculture Organization, 2013, p.1). HFI can be categorized as mild, 

moderate, or severe, but the longer the exposure to severe HFI the greater the probability that 

childhood development will be negatively impacted (De Oliveira et al., 2020). 

HFI is a stressor which has been found to have significant adverse effects during 

childhood on the development of academic and social skills, (Hobbs & King, 2018; Johnson & 

Markowitz, 2018); verbal communication skills (Saha et al., 2010); and motor skills, including 

control and coordination of fine movement (Milner et al., 2018). A meta‐analysis concluded 

that HFI was most closely associated with abnormal development of vocabulary and math 
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skills, and marginally associated with abnormal development of reading skills motor 

development (De Oliveira et al., 2020). 

HFI is not only a low-income country problem, but also a common condition in the 

United States, where household food insecurity affected 13.6 percent of households with 

children in 2019 (Coleman-Jensen et al., 2020). Historically the rates of food insecurity for 

U.S. households with children were greatest for single parents as well as African American and 

Hispanic households with below-poverty income levels (Nord et al., 2011). More recently, the 

United States Department of Agriculture (2019) reported that in about 0.6% of households with 

children in the USA, one or more children experienced severe sub-optimal food intake at some 

time during 2019. At this time, data regarding the impact of the COVID-19 pandemic on food 

insecurity in the United States has not been released or analyzed by the USDA. 

1.7 Aims and Objectives 

In the light of the problem described above, the overall aim of this quantitative study is 

to determine the extent to which being breastfed, duration of breastfeeding, and household food 

insecurity may be predictors of the relative and absolute power spectral density of four 

frequency bands of brain waves (theta, alpha, beta, and gamma) as measured by 

electroencephalography (EEG) among a sample of infants at age 12 months old. The specific 

objectives are as follows: 

1: To understand the relationship between breastfeeding and brain function in infants 

at 12 months of age.  

1.1: To understand how relative and absolute theta, alpha, beta, and gamma waves, as 

measured by EEG, among infants at age 12 months, are related to whether or not the infants 

have ever been breastfed.   
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1.2: To understand how relative and absolute theta, alpha, beta, and gamma, as 

measured by EEG, among infants at age 12 months, are related to the mother’s duration of 

breastfeeding.  

 2: To understand how relative and absolute theta, alpha, beta, and gamma, as measured 

by EEG, among infants at age 12 months, are related to household food insecurity. 

The research questions and hypotheses linked to these objectives are presented in 

Chapter 2.  

1.8 Parent Study: Baby’s First Years 

Baby’s First Years (BFY) is an ongoing randomized clinical trial funded by the 

National Institute of Health (NIH) (R01HD087384-01) and overseen by primary investigators 

Dr. Katherine Magnuson, PhD and Dr. Kimberly Noble, MD, PhD and supported by a 

consortium of more than two dozen foundations. BFY is designed to fill a gap in scientific 

knowledge to understand the impact economic input can have on early childhood development 

(National Library of Medicine, NCT03593356). One thousand mothers of infants living below 

the federal poverty line were recruited across four metropolitan areas in the United States 

shortly after giving birth. Mothers and their infants were randomized to receive a monthly 

unconditional cash gift of either $333 (high-cash gift group) or $20 (low-cash gift group) for 

the first several years of their child’s life. Researchers will evaluate the impact of added income 

on the children’s cognitive, behavioral, and brain development annually for the first several 

years of life. This study is the first of its kind in that it will be able to demonstrate the causal 

impacts of unconditional cash gifts on childhood development among low-income families, 

research that can have a profound impact on policy and practice in the United States. The 

present study is utilizing data collected for the BFY study within the low-cash gift (control) 

group only. 
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1.9 Scope and Limitations 

The dependent variables in this study are restricted to child brain function, defined as 

relative and absolute theta, alpha, beta, and gamma. The independent variables are restricted 

to the duration of breastfeeding (months); whether the infant has ever been breastfed (yes or 

no), and the level of food insecurity. Food insecurity is based on the five questions of the six-

item U.S. Household Food Security Survey (FSS) Module Short Form, which was included in 

the Baby’s First Years (BFY) Age 1 Survey. The BFY instrument also collected information 

about other variables which will be used as covariates in the present study, including maternal 

age, ethnicity/race, mental and physical health, education, substance use (i.e., smoking and 

drinking behaviors), and economic stress of the mothers. An additional covariate used in this 

study is epoch count, which represents segments for analysis within theta, alpha, beta, and 

gamma waves as measured by EEG.  

The scope of this study is restricted to a retrospective analysis of data collected for the 

parent study, BFY, for 243 infants at age one year (who provide the EEG data) and their 

mothers (who provide the breastfeeding and household food insecurity data). As explained 

earlier, only infants which were randomized into the low-cash gift group are used. This sample 

consisted of mothers who gave birth in 12 different hospitals in four different states (NY, LA, 

NE, MN). External validity is compromised to the extent that this sample is not a nationally 

representative sample. This is described further in later chapters as the sample is introduced 

and described. 

 The main threat to the internal validity of this study is a Type IV error, meaning that 

the choice of statistical methods to achieve the aims and objectives is incorrect (Tabachnick & 

Fidell, 2013). Describing the bivariate associations or correlations between brain function, 

breastfeeding, and household food insecurity are not appropriate statistical methods.  In 

statistical terms, an association implies simply that the distributions of two categorical 
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variables are related in such a way that the observed distributions are probably not caused by 

coincidence, with no indication of the strength or direction of the relationship (Agresti, 2013). 

Correlation analysis simply estimates the extent to which the statistical relationship between 

two quantitative variables is monotonic or non-monotonic, linear or non-linear, positive or 

negative, weak or strong, without assuming causation or taking into account the confounding 

effects of covariates (Ward, 2013; Hung et al.,2017). 

We minimize this potential threat by constructing multivariate statistical models that 

facilitate the prediction of the average value of a dependent variable for any given fixed value 

of an independent/explanatory variable, after controlling for the confounding effects of other 

independent/explanatory variables and covariates. The main limitation of predictive models 

based on a multivariate statistical analysis of cross-sectional data is that prediction does not 

necessarily imply causation. The analysis of causal relationships requires an experimental 

design in which the independent variables are antecedents that can be manipulated in order to 

determine their subsequent effects on the dependent variables (Pearl, 2009). However, for 

ethical and logistical reasons, it is impossible to conduct an experiment to determine the effects 

of manipulating the breastfeeding behavior and household food insecurity of groups of mothers 

on the brain functions of their infants. 

The inability to prove causal relationships is not a severe limitation, because an 

empirical model based on reliably measured variables that accurately and precisely predicts a 

realistic outcome offers a working hypothesis to underpin future research that may ultimately 

identify causal relationships (Collier, Sekhon, & Stark, 2010). This study is therefore only a 

starting point in the research to ultimately determine the extent to which breastfeeding and 

household food insecurity are the root causes of differences in the brain function of infants at 

age 12 months, as measured by the spectrum of theta, alpha, beta, and gamma waves, using 

EEG. 
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Chapter 2: Literature Review 

This chapter will review the relevant literature related to factors associated with infant 

brain function, specifically breastfeeding and food insecurity. 

2.1 Understanding Nutritional Impacts on Early Childhood Feeding 

Breastfeeding is widely acknowledged as the most natural and beneficial method for 

feeding infants because of its association with numerous health benefits for both mother and 

baby. The World Health Organization recommends that infants worldwide be exclusively 

breastfed until six months of age to allow for normal growth and then continue as a form of 

complementary feeding until they reach at least two years old (WHO, 2020). The demonstrated 

health benefits related to breastfeeding are associated with the combined action of the 

nutritional aspects and bioactive components found in human milk. Human breast milk 

contains proteins, lipids, vitamins, minerals, enzymes, hormones, cytokines, and more, that 

offer countless advantages over infant milk formulas as they are key micronutrients essential 

to increase immune responses, decrease inflammation, and promote central nervous system 

development. 

The first 12 months of life is one of the most important times for growth and nutrition. 

There is increasing evidence that early brain development has a long-term influence on 

childhood and adult health outcomes, intelligence, and aptitude. Recent research has 

highlighted the importance of breastfeeding as one of the more important elements of health 

programming (Laouar, 2020). The Centers of Disease Control and Prevention (CDC, 2020), 

World Health Organization (WHO, 2020), American Academy of Pediatrics (AAP, 2012), and 

United Nations International Children’s Emergency Fund (UNICEF) promote breastfeeding as 
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a key strategy for improving infant health by implementing policies and promulgating 

recommendations to meet the Healthy People 2030 Breastfeeding Objectives (Haskins, 2017). 

According to the CDC, nearly all infants receive some human breast milk. However, 

the majority are not exclusively breastfeeding or continue to breastfeed as recommended for 

the first six months. Only one in four children born in the United States meet these parameters. 

It has also been found that breastfeeding is less common among women that are considered 

minorities and those that are qualified to receive benefits through the Special Supplemental 

Nutrition Program for Women, Infants, and Children program (WIC). The National 

Immunization Survey (CDC, 2020) data shows that infants born to non-Hispanic Black women 

(73.7%) are least likely to ever breastfeed when compared with Hispanic infants (84.1%) and 

Asian infants (90%). In addition, infants eligible for and receiving WIC benefits are less likely 

to ever be breastfed (77.0%). 

Food security within the US continues to be a problem for families with children as 

well. The United States Department of Agriculture (USDA) reported that over 13.7 million 

U.S. households were food insecure. Among these households, over 7.2 million included at 

least one child, with rates appearing even higher among Hispanic and Black non-Hispanic 

households and those that met the Federal poverty guidelines (USDA, 2019). Children living 

in households with lower-than-average incomes and impoverished neighborhoods are at risk 

of higher incidence of food insecurity despite state and federal food assistance programs to the 

extent that it is considered a major health crisis (Morrissey et al., 2016; Gundersen & Ziliak, 

2018). 

How does breastfeeding enhance early brain physiology and cognition, and food 

insecurity potentially impede normal growth and development? A literature review of 17 

studies examining the link between breastfeeding and intelligence tests showed that in a 

random-effects model, breastfed subjects had a higher IQ than non-breast-fed subjects [mean 
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difference: 3.44 points (95% confidence interval: 2.30; 4.58)] (Horta et al., 2015). Furthermore, 

a longitudinal study found that infants who were exclusively breastfed until 4 months of age 

followed by mixed breastfeeding thereafter had significantly higher mean scores for cognition 

at 12 months, demonstrating that the associations between breastfeeding and cognition may be 

seen very early in childhood (Choi et al., 2018). Food insecurity and poorer quality diets among 

younger children have also been associated with decreased academic performance and 

cognitive development in childhood and adolescence (Jyoti et al., 2005; El Din et al., 2019; 

Landry et al., 2019). 

When examining the infant’s brain, we find that an average neonate’s brain at birth is 

about one quarter the size of an average adult brain. However, during the first year of life, it 

doubles in size (Holland et al., 2014). Numerous MRI studies have demonstrated that 

neurocognitive development can be positively correlated with infant breastfeeding, including 

both exclusivity and duration (Schipper et al., 2020; Pang et al., 2020). Various studies attribute 

these findings to the composition of human milk such as lipid quality, carotenoids, 

oligosaccharides, and gut microbiome influences, and how they differ when compared to infant 

milk formulas (Hernell et al., 2016; Zielinska & Kolożyn-Krajewska, 2018; Goehring et al., 

2016; Cowan et al., 2020). Compared to the body of literature describing the cognitive 

development impacts of breastfeeding in childhood and adolescence, far less literature has 

examined the impacts of breastfeeding on brain development in early childhood. One study 

found increased overall myelination in children who were exclusively breastfed for three 

months, as measured by MRI beginning at three months of age, as well as increased cognitive 

abilities compared to children who were formula-fed (Deoni et al., 2018). Indeed, differences 

in brain morphology were found to persist until eight years of age. Notably, to our knowledge, 

there is no literature linking breastfeeding duration to early childhood brain function, as 

opposed to structure. 
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Other studies have examined the risk of children exposed to adverse life events in the 

first years of life. This research has revealed that these children are at a higher risk for neural, 

behavioral, and psychological conditions (Nelson & Gabard-Durnam, 2020). The studies 

comparing EEG findings found specifically that early adversity was associated with lower 

frontal gamma power (Tomalski et al., 2013), increased theta power, and reduced alpha power 

(Marshall et al., 2004, Hassan et al., 2020). Data suggests that the links between early adversity 

and brain plasticity during this critical postnatal period (up to 12 months) may in part be 

accounted for by differences in breastfeeding, food insecurity, and inadequate nutrition (St. 

John et al., 2017; Inguaggiato et al., 2017, Lauritzen et al., 2016). 

The current study evaluates duration and frequency of breastfeeding, level of food 

insecurity (as measured by the USDA Short Form of the Food Security), and resting brain 

function as theta, alpha, beta, and gamma waves (as measured by EEG at 12 months) to 

determine if increased duration and frequency of breastfeeding are associated with early brain 

development and cognition. Conversely, high food insecurity among infants was evaluated to 

establish any negative correlations. Study participants are a sub-group from the Baby’s First 

Years (NLM, NCT03593356). The results of this study could provide evidence for further 

research, through an understanding of the impact of breastfeeding and food security on early 

childhood brain development. Currently, there is little literature that examines the relationship 

between breastfeeding, food insecurity and brain function. 

2.2 Nutritional Impact During Gestation 

Fetal brain development informs neurological development throughout the human 

lifespan. A maternal diet that meets all nutritional needs is essential during gestation, a time of 

rapid brain development. Fetal brain development depends upon maternal nutrition to support 

the integrity of neural stem cell proliferation and differentiation, as well as the normal process 
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of fetal neural tube closure throughout gestation, leading to subsequent lifelong functions 

(Zeisel et al., 2018).  

Prior to a discussion of the potential role breastfeeding and food insecurity may play in 

infant brain development and function, it is important to understand how specific nutrients and 

breastfeeding may impact gestational brain development. Key components to nutritional 

impact during gestation include a mother’s healthy diet and recommended supplementation 

during pregnancy.  The section that follows will discuss the nutritional benefits of breastfeeding 

on infant health outcomes. 

There are a number of consensus nutritional recommendations for pregnant mothers to 

follow in order to maximize their health and the health of their child. The Academy of Nutrition 

and Dietetics recommends mothers take 400 mcg folic acid per day as well as a prenatal 

vitamin. Additionally, they should increase their caloric food intake by 300 calories by 

ingesting a healthy mix of fruits, vegetables, protein and whole grains. Finally, mothers-to-be 

should avoid alcohol and cigarettes (Klemm, 2019). 

2.2.1 Folic Acid 

Folic acid intake during pregnancy is critical for sufficient placental and fetal 

development. This B vitamin is an essential component in the prenatal diet as it supports early 

neural tube development. The CDC recommends that women of childbearing age get 400 mcg 

of folic acid each day to prevent potential birth defects such as anencephaly and spina bifida. 

If a woman is planning to conceive; it is recommended that she consume 4,000 mcg of folic 

acid each day for at least one month before conception and then throughout the first three 

months of pregnancy (Wong et al., 2019). Research has found that supplementation of daily 

recommended folic acid incorporated into a woman’s prenatal care regimen can significantly 

reduce preterm birth (Liu et al., 2016; Zheng et al., 2016) and improve neurodevelopment in 

both premature and normal gestation infants (Benton, 2010; Deoni et al., 2018). 
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2.2.2 Choline 

As with folic acid, the nutrient choline (a precursor to acetylcholine) is necessary for 

early neural tube development and closure but is also essential for neurogenesis in the fetal 

hippocampus during later gestation and is essential for stem cell proliferation and 

transmembrane signaling during neurogenesis (Prado & Dewey, 2014). According to research 

findings by Zeisel et al., (2018) choline has also been found to be associated with enhanced 

memory performance, as late maternal (third trimester) levels have shown a correlation to 

improved infant information processing speed (Caudill et al. 2175). It has also been shown to 

act as a neuroprotective agent suggesting its role in dysregulating certain diseases, improved 

memory, and influencing mental health throughout life (Bekdash, 2019). Numerous animal 

studies have demonstrated the effects of choline on inflammatory and immune responses 

(Garcia et al., 2018; Richard et al., 2017; Lewis et al., 2017). Dellschaft and colleagues (2018) 

found that supplementation of maternal choline improved the ability of immune cells in their 

pups to respond ex vivo to mitogens and that higher levels further improved T cell proliferation. 

2.2.3 Vitamin B12 

Vitamin B12 has been shown to play an important role in brain development, as 

insufficient intake during pregnancy (especially among vegan mothers) is associated with 

involuntary muscle movements (Avci et al., 2003), cerebral atrophy (Casella et al., 2005), 

demyelination of nerve cells (Dror & Allen, 2008) poorer cognitive performance (Veena et al., 

2010). Dror and Allen (2008) discovered that prenatal vitamin B12 deficiency leads to delayed 

myelination or demyelination by alterations in the synthesis of cytokines, growth factors, and 

oxidative metabolites. Other studies have demonstrated that prenatal vitamin B12 deficiency 

caused increases in both plasma total plasma homocysteine (tHcy) and methylmalonic acid 

(MMA) in older children. These markers indicate poorer status among children and were 
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associated with a decrease in developmental neuropsychological assessments (Kvestad et al., 

2017; Coban et al., 2018).  

2.2.4 Vitamin B6 

Vitamin B6 plays vital a role in infant brain development and when a maternal 

deficiency is present it impacts neurotransmitter metabolism and signaling pathways related to 

gamma‐aminobutyric acid (GABA), serotonin, dopamine, and glutamate (Almeida et al., 

2016). Animal models have shown a correlation between gestational vitamin B6 deficiency 

and under-connectivity between cerebral cortical association areas. Research by Fernandez et 

al. (2019) suggests that this is potentially the root cause of some cognitive 

deficits in neurodevelopmental disorders. Prado and Dewey (2014) determined through a 

meta-analysis, that prenatal and early postnatal B6 intake resulted in reduced myelination, and 

dendrite branching in the cerebellum and neocortex. During pregnancy, the DNA methylation 

framework is being created in the fetal epigenome; therefore, B6 intake could modify DNA 

methylation and consequently increase the risk of neurological conditions in children. 

However, in humans, it is not well understood how these fundamental mechanisms control 

neurological changes. One study by Miyake et al. (2020) found higher maternal B6 intake was 

inversely related to childhood hyperactivity and low prosocial behaviors, potentially 

suggesting that childhood behavioral disorders could be reduced with gestational B6 

supplementation. 

2.2.5 Zinc 

Zinc is vital for the normal development and function of cells that regulate the immune 

system and immune response. Many researchers considered zinc the “gatekeeper of immune 

function” (Wessels et al., 2017). As with adult zinc deficiency, neonates born to mothers 

deficient in this mineral will display lower birth weights than other babies born at full term 

(Daniali et al., 2020; Brion et al., 2020). A recent animal study by QS Medeiros et al. (2019) 
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showed how zinc-deficient mice infected with S. flexneri experienced weight loss, diarrhea, 

and metabolic changes as a result of inflammatory cell infiltration, epithelial disruption, and 

increased cytokine production. However, when administered a zinc supplementation, these 

mice showed reduced intestinal inflammation and stool shedding as well as observed weight 

gain. Thus, demonstrating a direct correlation between zinc, immunity, and the gut 

microbiome.  

Other studies have focused on maternal zinc deficiency and neurological development 

among infants and young children. Li and colleagues (2018) determined that zinc deficiency 

was causally related to neural tube defects (closing) and excessive apoptosis when mice 

embryos were cultured with the zinc chelator TPEN. These researchers found that within two 

hours of this process, p53 protein levels in the neural tissue and primary neuroepithelial cells 

increased. This suggests that increases in p53 protein levels cause neural tube defect and 

extreme apoptosis and is consistent with findings of current studies that confirm the role of p53 

as a regulator of responses to cellular stress and initiator of apoptosis (Felix et al., 2017; Vitillo 

et al., 2016). 

Human studies are limited related to the direct measurement of zinc deficiency and 

human neurological development. However, as mentioned, animal studies have demonstrated 

that zinc deficiency can negatively affect cognitive development (memory and learning 

capacity) by interfering with normal protein function and neural tube development. Many of 

the current studies related to human zinc deficiency have focused on postnatal observations. 

Studies by Bhatnagar et al. (2001) and Black et al. (2003) found that zinc deficiency during 

pregnancy and lactation led to decreased focused attention and worse motor functions in 

neonates. Overexpression of zinc transporter proteins such as SLC39s/ZIPs and SLC30s/ZnTs 

(Baltaci et al., 2018; Thingholm et al., 2020) is associated with downregulation of the 
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autonomic nervous system regulation, as well as cerebellar and hippocampal development 

(Georgieff  et al., 2018). 

2.2.6 Iron 

Iron is essential to oxygen transport when it binds to hemoglobin and is essential to the 

survival of all organs of the human body, including the brain (Berg et al., 2002). The 

underproduction of hemoglobin due to iron deficiency is referred to as iron deficiency anemia 

(IDA) and is a known risk factor for both short- and long-term cognitive impairment. IDA 

during pregnancy has been linked to negative maternal-fetal outcomes. Mothers experiencing 

IDA are more susceptible to infection, reduced working and intellectual capacity, and 

postpartum depression (de Costa et al., 2016). Neonates born to IDA mothers are at high risk 

of being delivered preterm and small for gestational age. Despite supplementation, intrapartum 

IDA has been associated with poor mental and motor development that continues into later 

childhood, resulting in poor cognition and school achievement (Santos et al., 2018). Various 

studies indicate that IDA causes neurodevelopmental delays by altering epigenetic regulation 

(DNA methylation) of the serotonin transporter gene (SLC6A4) (Georgieff et al., 2017; Prado 

& Dewey, 2014; Fumagalli et al., 2018), displayed by decreased later life myelination 

subcortical white matter and the fimbria of the hippocampus in animal studies (Hu et al., 2016, 

Lien et al., 2018). 

2.2.7 Iodine 

Iodine is a mineral that is essential for hormone production (thyroxine-T4 and 

triiodothyronine-T3) by the thyroid gland. Thyroid hormones regulate essential biochemical 

reactions that include protein synthesis and enzymatic activity. They are also essential for 

appropriate brain and skeletal development in the fetus and infant. A study by Miranda and 

Sousa (2018) reinforces that maternal serum free T4 levels during the first trimester primarily 

determine infant psychomotor development and can be influenced by iodine intake, 
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socioeconomic status, and BMI (Laurberg et al., 2016). This hormone is delivered to the brain 

chiefly through cerebral circulation via the blood-brain barrier (80%) and a much smaller 

portion is transported through the choroid plexus (Bernal, 2005). The first half of pregnancy 

appears to be the most critical period of pregnancy with high iodine requirements. Therefore, 

it is suggested that all women are screened for IDA as part of the first prenatal examination, 

and maternal vitamins supplemented with iodine be prescribed (Cusick et al., 2016; Benton, 

2010; Prado & Dewey, 2014). 

2.3 Nutrition After Birth 

 This section will discuss the physiology of lactation as well as the composition of 

breastmilk.  

2.3.1 Physiology of Lactation 

 Lactogenesis is the process through which mammary glands develop the ability to 

secrete milk. A non-lactating female breast volume is primarily composed of collagen and 

adipose tissues, with a small portion containing mammary glands. During pregnancy, these 

mammary glands begin to produce total protein, lactose, and immunoglobulin, whereas sodium 

and chloride concentrations decrease in the glandular fluid (Wambach & Spencer, 2019).  

 During the last month of pregnancy, the alveoli begin to fill with colostrum that 

contains high levels of protein and immunoglobulins but less glucose and fat than mature breast 

milk (Munblit et al., 2016). Only a small amount (3 ounces per 24 hours) of colostrum is 

secreted during the first 48 to72 postpartum hours but it supplies ample nutrition for the 

newborn during these first few days (Lamb et al., 2020).  

 Prolactin produced by the pituitary gland is principally responsible for the 

establishment and maintenance of breast milk. This polypeptide hormone is structurally similar 

to growth hormone and placental lactogen, which appear to have cytokine functions (Al-

Chalabi & Alsalman, 2019). By the second month of pregnancy, circulating prolactin levels 
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begin to increase, ultimately reaching about 10 to 20 times non-pregnant concentrations. This 

level of prolactin is maintained throughout the third trimester of pregnancy and is elevated 

enough to initiate milk production. However, high levels of circulating estrogen, progesterone, 

and other placental hormones inhibit prolactin-mediated milk production at this point until 

delivery of the fetus and placenta. Once the placenta is delivered, circulating progesterone 

levels drop and initiate the production of milk (Napso et al., 2018). 

 The second stage of lactogenesis occurs shortly after childbirth (Kim Y, 2020). The 

baseline prolactin levels fall sharply but are reestablished for one hour during each feeding to 

promote the production of additional milk for the next feeding. Progesterone and estrogen also 

increase slightly during these one-hour spikes in prolactin. Within the female postpartum 

breast, the mammary glands respond to the suckling of the infant. When the infant feeds at the 

breast, sensory nerves within the areola initiate a neuroendocrine response resulting in milk 

secretion from lactocytes lining the alveoli. The posterior pituitary also releases oxytocin upon 

breast stimulation, which causes the contractile myoepithelial cells in the alveoli to squeeze 

milk into the lactiferous ducts (Augustine et al., 2017).  

 Upon stimulation, the breastmilk flows from lactiferous ducts into the lactiferous 

sinuses. These sinuses (approximately 12–20 arranged around the nipple) are connected to 

about 4 to 18 openings in the nipple that are referred to as nipple pores. When a baby feeds 

from the breast, the Montgomery glands within the areola also secrete oil to cleanse the nipple 

opening and help prevent cracking or chapping of the nipple. By about the third postpartum 

day, colostrum changes to transitional milk, which is followed by mature milk at approximately 

ten days postpartum. At this point in breastfeeding, it takes less than one minute from the time 

an infant begins to feed until milk is flowing. This “let down reflex” is accomplished when 

oxytocin is released. In addition to prolactin and oxytocin, growth hormone, cortisol, 

parathyroid hormone, and insulin contribute to lactation, in part by facilitating the transport of 
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maternal amino acids, fatty acids, glucose, and calcium to breast milk (Mazzocchi et al., 2019, 

Fields et al., 2017).  

  The control of milk production is quite efficient. The volume of production remains 

astonishingly constant at about 800 mL/d but may adjust accordingly to the requirements of 

the infant by feedback inhibitor of lactation and can directly correlate to the degree of breast 

(milk) fullness (Żelaźniewicz & Pawłowski, 2019). Breastmilk production is also related to the 

mother’s state of well-being. Diet, stress, and fatigue can adversely affect breastmilk supply. 

This decrease in milk production is directly affected by higher levels of dopamine and 

norepinephrine, which inhibit the production of prolactin (Lee & Kelleher, 2016). Increased 

stress has also been shown to increase circulating levels of glucocorticoids like cortisol within 

the body, leading to fatigue, weight gain, mood swings, and more (Kominiarek et al., 2018; 

Caparros-Gonzalez et al., 2019). Among women that are breastfeeding, these higher levels of 

cortisol are passed through the milk to the child and can result in changed behavioral, cognitive, 

and physiological outcomes (Pundir et al., 2019; Lester et al., 2018, Pundir et al., 2017) 

2.3.2 Breast Milk Composition 

Evaluation of human breast milk has shown that this type of milk consists of 87% water, 

7% carbohydrates (including 1 to 2.4% oligosaccharides), 4% lipids, and 1% proteins (Mosca, 

2017; Boquien, 2018). This unique composition of nutrients and bioactive substances that are 

produced uniquely by each woman, changes accordingly to meet the needs of her infant. As an 

individual-specific biofluid, human milk provides not only nutrition but also offers immune 

protection against potential pathogens (lactoferrin, lysozyme, immunoglobulin A) and inhibits 

inflammation (cytokine IL-10 and TGF-β) while the infant’s systems develop (Andreas et al., 

2015; Palmeira & Carneiro-Sampaio, 2016). The actual composition of a mother’s milk can be 

influenced by maternal diet and medical history, as well as the frequency and duration of 

breastfeeding. Primary protein and lactose levels remain consistent until about six to seven 
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months, and then gradually decline to lower, but stable levels (Verd et al., 2018), while lipid 

levels (including over 200 fatty acids) are extremely sensitive to maternal nutritional intake 

(Innis, 2014). 

The 1% of breastmilk that contains proteins includes more than 1000 different types 

that are responsible for infant growth and neurodevelopment (Beck et al., 2015; Boquien, 

2018). These proteins can be separated into two different classes known as casein and whey. 

Casein proteins are larger and curdle in the stomach making them more difficult to digest, while 

whey remains in liquid form. Therefore, in early lactation the ratio of whey to caseins is 80/20, 

making breastmilk more easily digestible. During later lactation, this ratio decreases to 

approximately 50/50 (Martin et al., 2016; Lönnerdal, 2016). Infant milk formulas tend to have 

significantly higher ratios of caseins, thus, making them more difficult for young infants to 

digest. The most abundant free amino acid in human milk is glutamine. This amino acid is 

nearly twenty times greater in later lactation and lowest during the production of colostrum 

(Martin et al., 2016, Masum et al., 2020, Lönnerdal, 2016). Glutamine is vital for supplying 

ketoglutaric acid for the Krebs cycle, potentially serving as a neurotransmitter in the infant 

brain (Agostoni et al., 2000; Zhang, Z. et al., 2013). 

Breast milk lipids are the second most important macronutrients and have been 

extensively studied. Human milk is rich in linoleic acid and α-linolenic acid which act as 

precursors of long-chain polyunsaturated fatty acids such as n-6 (such as arachidonic acid) and 

n-3 (such as eicosapentaenoic and docosahexaenoic acids), which make up the largest 

proportions within the milk. Breast milk is the only source of these precursors for babies that 

are exclusively fed, as they are not synthesized by the body (Innis, 2014). These fatty acids are 

essential for brain development in infants. Research has shown that docosahexaenoic acid 

(DHA) and arachidonic acid (AA) in particular are important for normal brain functions 

(Braarud et al., 2018; Martin et al., 2016; Lauritzen et al., 2016), the development of visual and 



  
 

 31 

neural tissues (Destaillats et al., 2018), and subsequently motor and cognitive development 

(Boquien, 2018; Innis, 2014; Zielinska & Kolożyn-Krajewska, 2018; Schipper et al., 2020). 

Study findings by Braarud (2018) suggest that DHA can be associated with infant problem-

solving at 12 months, while other research suggests that higher DHA concentrations during 

pregnancy and infancy could improve neurodevelopment and potentially prevent autism and 

behavior disorders (Cardoso et al., 2018). However, all research and reviews recommend that 

additional studies are necessary to determine direct causality (Lien et al., 2018). 

When lipid droplets are secreted by human mammary glands, the glands enclose the 

droplets resulting in what is known as a milk fat globule membrane (MFGM). The composition 

of these membranes consists of complex polar lipids such as phospholipids, gangliosides, 

sphingomyelin, and cholesterol (Claumarchirant et al., 2016). Phospholipids are primarily 

located in the outer bilayer of the MFGM, while cholesterol and sphingomyelin are largely 

collected in the lipid rafts (Bhinder et al., 2017). The most important phospholipids in the 

MFGM include phosphatidylethanolamine, phosphatidylcholine, phosphatidylserine, 

phosphatidylinositol, and sphingomyelin (Moukarzel et al., 2018). Although MFGMs represent 

a small percentage of the total lipid content of breast milk, the natural presence of MFGM in 

human milk could be a factor in observed differences in neurocognitive development when 

comparing breastfed and formula-fed infants (Schipper et al., 2020). Recent studies of infants 

fed MFGM milk supplementation (dietary ganglioside) have shown improved neurobehavioral 

development in preterm babies (Tanaka et al., 2013) and improved cognitive function at six 

months in healthy term infants (Gurnida et al., 2012). 

Carbohydrates in breast milk include oligosaccharides and disaccharide lactose as the 

main components, as well as glycoconjugates. Oligosaccharides (more than 100 different 

compounds) are present in large quantities and are extremely varied in their biochemical 

compositions. Lactose signifies an important source of galactose which is vital in promoting 
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central nervous system development (Mosca & Gianni, 2017). These oligosaccharides 

contained within human breast milk serve as prebiotics and enhance the growth of beneficial 

bacteria (Bifidobacteria and Bacteroides). Furthermore, they regulate numerous infant immune 

functions (Donovan & Comstock, 2016; Garwolińska et al., 2018, Palmeira & Carneiro-

Sampaio, 2016). 

Breast milk’s unique chemical composition is crucial for supporting neurological 

development as well as the development of a host of other systems in babies. Breast milk’s mix 

of water, protein, fats and carbohydrates each spur early childhood development and deserve 

additional study.  

2.4 Malnutrition, Brain Growth, and Development in Early Childhood 

There is clear evidence that a proper nutritional profile is crucial for seeding a child’s 

neurological development. Mothers must maintain a robust diet during pregnancy to encourage 

appropriate neurological and hormonal development. Moreover, it’s crucial that mothers 

receive proper screening to reduce the potential for malnourishment. After birth, breastfeeding 

continues to be an essential pathway for mothers to offer nutrition to their baby in order to 

encourage brain development. 

The importance of lifestyle choices and dietary habits during pre-conception, 

pregnancy. and breastfeeding, for both the health of the mother and the child, is widely 

supported by scientific research and published literature. Maternal nutrition (including a varied 

and well-balanced diet) from pre-conception on, is one of the most important determinants of 

pregnancy and neonatal outcomes (King, 2016). Current research suggests that reduced intake 

or lack of specific nutrients (malnutrition) during pregnancy influences the length of gestation, 

proper placental and fetal growth, neonatal birth weight, and infant development and 

intelligence (Dhobale et al., 2017, Morrison & Regnault, 2016; Castrogiovanni & Imbesi, 

2017). The impact of malnutrition depends on several factors, including the timing of nutrient 
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deprivation, the degree of nutrient deficiency, and the potential for recovery. The following 

section will outline some of the brain growth and developmental changes that can occur in the 

first 1000 days of life (conception to two-years of age) as a result of malnutrition. Human 

gestation can be divided into two different phases. The first phase (embryonic) begins at 

conception and continues for eight weeks and includes the establishment of the brain, spinal 

cord, and peripheral nervous system. The second phase (fetal) continues until birth. It is during 

this second phase where significant growth and development of the neocortex occurs. The 

second phase is also marked by vast neurogenesis, neuronal migration, formation of axons and 

dendrite branching (arborization), and synaptogenesis which continues until the baby is about 

two years old. 

2.4.1 Timing of Nutrient Deprivation 

In early brain development of the fetus, newly created neurons morphologically change 

and migrate from the germ layer to create new connections with other cells. The migration of 

neurons begins at about 7 weeks gestation and continues into approximately 4-5 months of 

infancy. This process is vital for the creation of a proper neuronal network, and any 

disturbances in this development can result in dysfunctional activity of the brain. There are two 

known major modes of migration with the cerebral cortex, radial migration, and tangential 

migration (Guerrini & Parrini, 2010). Prenatal exposure to a host of environmental stressor 

such as alcohol, drugs, and inflammation can disrupt the migration of neurons and cause 

disorders, as substances that are ingested, inhaled, or created by a woman’s body may cross 

the placenta and lead to unfavorable changes to fetal development (Hwang et al., 2019).  

Current scientific evidence suggests that nutrient reduction, deprivation, or imbalance 

before blastocyte implantation (approximately 6 to 7 days after fertilization) may result in 

genetic variations in fetal programming such as somatic hypoevolutism at birth (Musumeci et 

al., 2017; Huang Y et al., 2018), and metabolic (Marciniak et al., 2017; Saad et al., 2016) or 
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endocrine (Andersen et al., 2017; Jones et al., 2017) dysfunctions in postnatal life. In addition, 

maternal malnutrition can cause decreased efficacy in the maternal and fetal immune system. 

This can occur even before conception as maternal malnutrition transfers epigenetic 

modifications to the fetus (Castrogiovanni et al., 2017; Bourke et al., 2016).  

At approximately 15 weeks gestation, fetal axonal and dendrite growth expands, and 

dendrites begin to develop branching projections that connect cell to cell. Additional 

development of these neuronal connections in specific areas of the brain continues until about 

32-week gestation (Aneesh & Ghugre, 2019).  The majority of the studies related to this area 

of brain development have been conducted with animal subjects. Fauzi (2018) and colleagues 

conducted research on brain development in rabbit offspring that were deprived of nutrition 

(50%) during gestation. From previous studies (Ichim et al., 2012, Vieau et al., 2011) these 

researchers built on the knowledge that central nervous system development requires numerous 

factors, including growth factors like neurotrophic proteins. Proteins like NGF, BDNF, NT-3 

and NT-4, display critical functions related to growth of neuronal cells, specifically in 

regulating the developmental capacity of neuron cells (Fauzi et al., 2018). This study by Fauzi 

sought to replicate the results of intrauterine growth restriction (IUGR) seen when a human 

fetus is subjected to nutritional deficits. The findings of this research showed that a 50% 

nutritional restriction demonstrated a decrease in dendritic density in the cerebrum and 

cerebellum of newborn rabbits’ brains during pregnancy indicating reduced neural plasticity.  

Synaptic formation also begins during gestation (around week 23) and continues 

throughout life. However, research shows that synaptic density peaks at different times in 

various areas of the brain. (visual cortex- 4 and 12 months postpartum, prefrontal cortex ≥ 15 

months postpartum). Synaptic pruning occurs when this peak is followed by decreases in 

synaptic density. This begins within the first year of birth and continues through adolescence, 

while synapse overproduction is finalized in the second year of life (Tierney & Nelson, 2009). 
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Gestational malnutrition can diminish the likelihood of synaptic maturity (Morgan et al., 2020). 

The effects of gestational malnutrition and synaptic plasticity have been demonstrated in a 

recent study conducted by DeCapo et al. These researchers focus on the deficit of maternal 

consumption of protein, carbohydrates, and fats and how this negatively influences offspring 

outcomes in rodent and large animal models. Their study highlighted that maternal diet as well 

her metabolic state (e.g. obesity and diabetes) can influence neurodevelopment. Their extensive 

literature review showed a direct correlation between ω-6/ω-3 ratios that are vital to proper 

brain development and that even slight dietary variations in fatty acids can markedly affect 

cerebral lipid composition and essential neural function. It was also noted that excessive 

maternal intake of specific ploy-unsaturated fatty acids (PUFA) is related to diminished 

hippocampal neurogenesis and required synaptic transmission (125). 

2.4.2 Degree of Nutrient Deficiency 

Mounting scientific and clinical evidence suggests that the fetal environment is crucial 

to adequate brain development and determines cognitive trajectory beyond childhood. An 

atypical fetal environment can be the product of factors that should either be absent during 

critical developmental periods (malnutrition) or when abnormalities or substances (hormone 

imbalance, lifestyle choices, teratogen exposure) are present that detrimentally affect fetal 

brain development (Georgieff et al., 2018). When observing required maternal nutrient intake, 

there is a threshold at which deficiency results in impairment for the fetus. The significance of 

impairment is related to the level of nutrient deficit and when this deficit occurs. Mild to 

moderate malnutrition exposure tends to spare adverse neurodevelopment, while moderate to 

severe malnutrition causes fetal growth restriction of the brain and compromises anticipated 

development and future cognitive abilities (Miller et al., 2016).  
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2.4.3 Potential for Recovery 

Fetal and infant neurodevelopmental recovery depends on the timing of the insult and 

experiences beyond that point in time that allow the brain to undertake remodeling (myelin 

development, vascular remodeling, and synaptic development and pruning) which determines 

a child’s learning and memory abilities. Fortunately, the infant brain displays neuroplasticity 

that can aid in recovery (Kolb & Gibb, 2011) and allows for the generation of new neurons and 

glia, as well as establishing new synaptic pathways (Pierre et al., 2017). Additionally, early 

childhood exposure to enhanced sensory, linguistic, and social interactions has been shown to 

facilitate recovery (Pineda et al., 2019; Moore et al., 2015).  

The exposure-dependent factors that facilitate plastic changes and modify brain activity 

and responses later in life is referred to as metaplasticity (Kolb & Gibb, 2011; Farashahi et al., 

2017). The most significant changes in brain function that affect cognitive processing seem to 

consistently involve the hippocampus and the cerebellum and prove to be permanently altered 

(Desky et al., 2019). However, studies have also demonstrated that specific psychosocial 

factors (maternal education, socioeconomic status, breastfed vs formula feeding, and mother-

child interactions), can directly influence early childhood cognitive development including 

reasoning, attention, visuospatial functions, verbal fluency, and intelligence attainment when 

compared to children of equal age and siblings that were adequately nourished. (Islam et al., 

2017; Wade et al., 2018; de Souza et al., 2011; Nassar et al., 2012). The rate of recovery has 

also been demonstrated to be slower in the prefrontal cortex and the parietal lobe maintain a 

slower rate of improvement even when proper nutrition is provided. It appears to 

predominantly affect visual and executive functions (parietal and frontal) and the language 

areas (temporal) of the brain (Barra et al., 2019). 
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2.5 Association between Maternal Health Status, Diet, and Early Childhood 

Intelligence 

A mother’s health and diet may be associated with early childhood intelligence. 

Intelligence, not an innate and immutable factor, is often described using assessments that yield 

numeric scores. There are several risk factors within a mother that can be associated with 

reduced scores on tests of early childhood cognitive abilities, including obesity, malnutrition 

and gestational inflammation. Breastfeeding interacts with each of these dimensions in unique 

ways, and it is crucial for researchers to study each of these factors when considering ways to 

improve maternal health and bolster early childhood intelligence. 

Neurodevelopment among infants and young children includes multiple behavioral 

areas such as sensory, mental, motor, and socioemotional. It is imperative to recognize that 

these behaviors are a direct manifestation of brain activity. Therefore, recognizing normal 

infant brain development and how nutrition and inflammation play a role in influencing this 

development and function are critical for evaluating future cognition and academic 

performance. A child’s brain is particularly susceptible to early life exposures (positive and 

negative) and because of this plasticity, specific attention must be dedicated to the factors that 

support proper brain development. Studies have shown that a child’s brain demonstrates the 

potential for recovery from these early exposures, but the majority of the evidence suggests 

vulnerability outweighs plasticity and normal development through sources such as proper 

nutrition is significantly more effective than attempting to reestablish the neurodevelopmental 

trajectory following specific deficiencies. 

The brain is composed of discrete regions such as the cerebellum, hippocampus, cortex, 

and striatum, and processes such as myelination and neurotransmitters release and reuptake. 

All of these demonstrate various developmental trajectories that begin, peak, and end at 

different times. When exposed to nutritional deficits, vulnerability and the region’s 
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requirements for specific nutrients will depend on the timing of the event. This principally 

occurs from the time of conception, throughout childhood, and to the end of brain development. 

The process of brain development is especially vulnerable during times of rapid brain growth 

and differentiation that is witnessed during infancy and early childhood and include regions 

such as the auditory, visual, and motor cortices, the limbic system including the hippocampus 

(memory), and the cerebellum including the frontal cortex that is responsible for later functions 

such as high-level thinking, working memory, and executive function. This particular area of 

the cerebellum displays differentiation in early infancy and continues through young 

adulthood, thus it is highly vulnerable beginning in early infancy.  

Brain-wide, highly metabolic processes evolve rapidly during infancy and include 

myelination, synaptogenesis, and the dopamine neurotransmitter system. Nutrients that support 

this metabolic process include protein, glucose, iron, selenium, zinc, and iodine. The 

integration of the nutrients occurs through signaling cascades and can influence the rate of 

protein synthesis and actin polymerization in neurons, which are associated with neuronal 

functional capability and dendritic complexity. Therefore, any nutritional deficiencies can 

demonstrate profound negative consequences in the young brain. 

2.5.1 Obesity 

It is well documented that adequate maternal weight gain during pregnancy is a 

contributing factor to positive fetal outcomes. However, it has also been found that pre-

pregnancy body mass index (BMI) and excessive gestational weight gain can inversely be 

associated with infant cognition and childhood intelligence assessment. A study by Huang and 

associates (2014) discovered that maternal obesity (BMI ≥ 30kg/m2) was independently 

associated with a 1.3 to 3.6-fold increase for the risk of infant cognitive impairment and 

childhood intellectual disabilities and that excessive gestational weight gain among these 

women accelerated this association. The results of this research also support previous findings 
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from other studies by Tanda et al. (2013) and Noble & Kanoski et al (2016) that suggest that 

fetal exposure to obesogenic diets are associated with neurodevelopmental changes 

(particularly hippocampal-dependent memory) that persist beyond weaning and introduction 

of a healthy diet.  

Berger and colleagues found that breastfeeding frequency and maternal weight 

(obesity) had a particular bearing on infant cognition (learning and memory) when measuring 

2’-fucosyllactose (2’FL) levels at 24 months of age (2020). Fifty mother-infant pairs were 

recruited for this study based on pre-pregnancy BMI values. As a requirement of the study, the 

mother-infant pairs attended three visits. At 1-month, historical health-related information 

(maternal age, infant sex, and infant birth weight) was collected, mothers and infants were 

weighed, breast milk was collected and analyzed, and questionnaires related to breastfeeding 

frequency were completed. At 6 months, mothers completed the same questionnaires, breast 

milk was collected and analyzed, and the mothers and infants were weighed. At 24 months, 

maternal and infant weight was measured, and the Bayley Scales of Infant Development (Third 

Edition, Bayley-III) was administered to evaluate the developmental functioning of cognitive, 

language, and motor skills.  

The percentages of mothers participating in this study were categorized into three 

groups: normal weight (34%), overweight (36%), and obese (30.0%) and were based on their 

pre-pregnancy BMI values. It was found that infant weights at 1, 6, and 24 months were not 

different between the groups (pre-pregnancy BMI) but changes in individual oligosaccharides 

were observed in that DSLNT (disialyl-LNT), LNH (lacto-N-hexaose), and FLNH (fucosyl-

LNH) levels decreased between 1 and 6 months while 2’FL and LSTb (sialyl-LNT b) were 

similar between 1 month and 6 months. It was also determined that maternal pre-pregnancy 

BMI was an independent predictor of infant cognitive development, as it predicted lower infant 

cognitive development scores, but was not associated with breast milk feeding frequency at 1 
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and 6 months, or any of the nineteen measured oligosaccharides, including 2’FL levels 

measured at 1 and 6 months. These findings support previous studies that have observed that 

women with higher pre-pregnancy weights (BMI ≥ 25 kg/m2) were more likely to have a child 

with lower intelligence test scores at 4 to 14 years of age (Adane et al., 2016; Van Lieshout et 

al., 2011; Casas et al., 2017). 

Increased maternal BMI can influence the presence of fatty acid content in colostrum 

and circulating hormone levels in breastmilk. Research conducted by de la Garza Puentes et al 

(2019) found that breastfeeding women that were obese (BMI > 30) presented with elevated 

colostrum saturated fatty acids and n6 to n3 ratios, as well as decreased levels of DHA, AHA, 

and MUFA that influenced excessive infant weight gain and decreased cognition when 

measured at 6 month and 18 months, respectively. It is thought that certain adverse 

neurodevelopmental effects can also be attributed to impairment of the brain-derived 

neurotrophic factor (BDNF) gene that regulates canonical nerve growth factor in the brain and 

is primarily responsible for the regulation of neurogenesis (Edlow, 2017; Noble & Kanoski, 

2016). Studies such as one conducted by Prince et al. (2017) have demonstrated maternal 

obesity alters the level of brain derived BDNF signaling in the placenta causing decreased 

placental BDNF protein levels. Other studies have linked decreased BDNF levels to juvenile 

deficits in memory and spatial learning that have continued into adulthood (Tozuka et al. 242) 

when examining rodent offspring. 

2.5.2 Inflammation 

Obesity in the non-pregnant female can result in complications related to the 

dysregulation of inflammatory and immune responses. Pregnancy stimulates inflammation and 

causes changes within the immune system. The combination of elevated maternal BMI, 

pregnancy, and these inflammatory and immune changes can cause multiple fetal 

complications throughout the pregnancy and beyond (Schmatz et al., 2010). Studies conducted 



  
 

 41 

by Edlow (2017) and Sanders et al. (2014) have shown a direct correlation between elevated 

maternal BMI, pro-inflammatory cytokine concentration levels, and activation of pro-

inflammatory placental pathways. The presence of placental inflammation can result in fetal 

growth restriction (FGR) from placental dysfunction, resulting in small for gestational age 

infants (Sharps et al., 2020). These observed changes in placental function have been 

designated as risk factors for poor neurodevelopment. The placenta acts as both a barrier to 

maternally derived bioactive substances (cortisol) critical for fetal neurodevelopment, and as a 

source of neuroactive steroids and neurotrophins that are vital to regulating neurogenesis and 

apoptosis (Mestan et al., 2009). 

Animal studies have shown that exposure to gestational inflammation increases 

cytokine expression in the placenta and the fetal membranes, resulting in impairments in axonal 

processes, enhanced microglial and astrocyte activation, and macrophage infiltration in the 

fetal brain (Offenbacher et al., 2005). The increase in pro-inflammatory cytokines can directly 

affect the fetal brain, as well as increase the permeability of the fetal blood-brain barrier, 

allowing for increased leukocyte infiltration into the neural compartment (Ghiani et al., 2011). 

Other animal models have shown that prenatal inflammation exposure results in numerous 

cognitive deficits, including spatial learning, working memory, and cued associative learning 

in rodents (Hodyl et al., 2017).  

Numerous nutrients contained in human breast milk and certain milk-based infant 

formulas (oligosaccharides, fatty acids, proteins, and hormones) can have a direct effect on 

infant brain development and neurodevelopmental trajectories. These levels of these 

components at specific periods of development can have varied effects on current performance 

(Goehring et al., 2016; Asgarshirazi et al., 2017) and future health (Vieira Borba et al., 2018, 

Anderson et al., 2016), and cognitive abilities (Hansen-Pupp et al., 2011, Berger et al., 2020).   
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Research designed by Goehring and associates (2016) was conducted as a randomized, 

double-blind study at 28 sites in the United States to evaluate biomarkers of immune function 

in 317 exclusively formula-fed infants that were enrolled at 5 days old and followed until four 

months old. These infants were randomly assigned to three groups that were fed slightly 

different variations of infant formula, all of which contained 2.4 g total oligosaccharides/L. 

The control group contained galactooligosaccharides (GOS) only and the experimental 

formulas included GOS + 0.2 or 1.0 g 2’-FL/L. The data from these groups were compared to 

a group of breastfed infants (n=107) of the same age range.  

In this study, lacto-N-fucopentaose II (LNF-II), a major human milk oligosaccharide, 

was assessed as a representation of the total concentrations of oligosaccharides present in 

human milk. This marker was chosen as elevated levels of LNF-II in maternal milk (2 weeks 

postpartum) were linked to fewer respiratory problems in infants by the age of 6 and 12 weeks. 

The use of 2’-FL was chosen because it is one of the most abundant components in breast milk 

(Bode 383S) and at the time of this study was not included in infant formula. These researchers 

believed that 2’-FL could play a key role in breast milk’s protective effects, so to test this 

hypothesis, they evaluated the infants fed the various formulas containing 2’-FL. They focused 

the majority of the study on differences between the breastfed and control (formula-fed) 

groups. At six week of age, blood samples were drawn from each study participant to determine 

plasma cytokine concentrations (IL-1α, IL-1β, IFN-γ, IL-6, IL-1ra [anti-inflammatory], and 

TNF-α).  

Results from these laboratory studies revealed that circulating plasma concentrations 

of inflammatory cytokines IL-1a, IL-1b, IL-6, and TNF-a and anti-inflammatory IL-1ra were 

significantly elevated in the control formula-fed group compared to those in the breastfed 

group, while the other two formula groups had results equal to the breastfed group. Among all 

groups, there were no significant differences in plasma cytokines IFN-a2, IFN-g, IL-10, IP-10, 
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or RANTES. The control formula-fed group had significantly lower levels of circulating T 

lymphocytes than those in the breastfed group. Measured phytohemagglutinin-activated 

PBMCs, did not display significant differences between the control formula-fed and breastfed 

groups (percentage distribution of cells in the G0/1, S, and G2/M phases or in the mean 

proliferative indexes).  

From this information, it was determined that infants fed formulas that were fortified 

with 2’-FL displayed cytokine levels that were between those found with the breastfed and 

control formula-fed infants yet were closer to those exhibited in breastfed participants. It was 

found that greater doses of 2’-FL (1 g/L) in experimental infant formula were not shown to 

have a greater effect on cytokine levels than the lower dose of 2’-FL (0.2 g/L) when compared 

to breastfed infants. However, they did discover that fortifying infant formula with 2’-FL 

helped modify innate and adaptive immune profiles to levels closer to the breastfed reference 

group. 

2.5.3 Immunity and Gut Microbiome 

Numerous studies have shown that initial gut bacterial colonization is partially 

established through the infant’s diet. Full gut colonization allows for a symbiotic relationship 

between colonizing bacteria and lymphoid and epithelial tissues (Walker, 2013). The resulting 

innate and adaptive immunologic relationship collectively defends the body against harmful 

pathogens (Cowan et al., 2020; Carlson et al., 2018; Parsons et al., 2020). In the mature 

intestine, this is an important component of immune response when exposed to benign bacteria 

and harmful antigens (Brennan et al., 2019). Surprisingly, the process of complete gut 

colonization can be achieved during early infancy and breastfeeding can contribute 

significantly to this accomplishment (Cerdo et al., 2019; Guaraldi & Guglielmo, 2012). Human 

breast milk offers a constant source of probiotics that promote infant gut microbiota 

development. The major genus is Bifidobacterium, which impedes the establishment of 
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Enterobacteria and fungi, and Lactobacillus, which promotes lactose fermentation, by 

producing an acidic environment to suppress pathogenic microorganism growth (Aloisio et al., 

2018; Ward et al., 2017; La Doare et al., 2018). 

Additional studies have established a microbiome-gut-brain axis and that this 

ecosystem of microorganisms is recognized as a regulator of brain and behavior (Cowan et al., 

2020). Specific periods in which a change in the microbiota coincide with instances of rapid 

development within other systems, particularly the brain. It has been well established that 

critical periods in infant growth that exhibit heightened neuroplasticity and the brain’s 

responsiveness to specific environmental influences (La Doare et al., 2018; Guaraldi & 

Guglielmo, 2012; Brennan et al., 2019). Studies examining the ongoing communication 

between the gut, the brain, the HPA axis, suggest that numerous postnatal factors can influence 

infant gut microbiome and correlate with cognitive development. Some studies suggest 

evidence that these bodily systems influence one another and theorize potential (physical and 

mental) health implications with initial disruptions in these systems during infancy (Brennan 

et al., 2019; Clarke et al., 2014). 

Other studies connect the health of the infant gut microbiome as a direct causality of 

inflammation and that the postnatal period is vital for immune system maturation of infants 

(Anderson et al., 2016, Groer et al., 2014). Breastfeeding influences the infant’s immune 

system as compounds within the milk provide a healthy gut microbiota colonization. The 

advantage of breastfeeding is that it can directly influence immune homeostasis by providing 

antimicrobial factors that protect against pathogen invasion and provide protective bacteria 

leading to optimal gut function (Yatsunenko et al., 2012). The result is that breastfeeding can 

improve antigen transference and provide epithelial inflammatory response factors (TGF-β, 

sCD14). Breast milk also stimulates proper antigen-specific long-term immune responses 

(Krebs et al., 2017; Goehring et al., 2016). A study by Asgarshirazi (2017) has shown that gut 
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microbiota plays an important role in the development of immunologic functions of the infants 

and breastfeeding provides a great advantage over milk formulas. Another study by De Palma 

(2012) confirmed these findings by demonstrating that specific bacterial colonization patterns 

during the first 4 months of infancy can influence the risk of developing celiac disease in later 

life and that breastfeeding could have a protective role in this disorder. A final study of interest 

is a large prospective observational study conducted by Jiang and colleagues (2014) to directly 

measure the association of biomarkers of inflammation (6 months) on motor and cognitive 

function (12 and 24 months). Within their study cohort, fever and inflammation showed a 

strong correlation with substantially lower scores on cognitive, language, and motor skills tests. 

2.6 Breastfeeding Attachment and Infant Cognition 

Breastfeeding has been found to be associated with enhanced maternal sensitivity and 

greater attachment between the mother and her child (Tharner et al., 2012). Research findings 

have shown that mothers who breastfeed tend to touch their infants more, are more responsive 

to feeding needs, and display more eye-to-eye contact with infants during feeding (Pearson et 

al., 2011; Jansen et al., 2008). The prospective longitudinal study by Tharner et al. (2012) 

observed 675 mother–infant pairs, to determine if increased duration of exclusive breastfeeding 

correlated with attachment quality and disorganization (assessed with Strange Situation 

Procedure), and maternal sensitivity (assessed using Ainsworth’s sensitivity scales) among 14-

month-old infants. The findings of this study showed that a longer duration of exclusive 

breastfeeding was related to more maternal sensitive responsiveness, greater attachment 

security, and less attachment disorganization. 

Brain imaging offers evidence for the positive influence of breastfeeding on the 

mother–infant connection. Functional MRI studies have discovered that mothers who 

exclusively breastfeed displayed superior brain activation in various limbic brain regions when 

they heard their infant’s cry (Musser et al., 2012). This suggests larger engagement of 
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emotional brain systems within mothers that breastfeed when compared to those that feed their 

infants by bottle (Kim et al., 2011). This is additionally supported by a study conducted by 

Britton and colleagues. Their research data displayed that increased maternal sensitivity when 

the infant reached 3 months could substantially predict the duration of breastfeeding for the 

first year.  

A study conducted by Krol and colleagues (2015) looked at the differences in how the 

duration of exclusively breastfed (EBF) infants reacted to displayed images of fearful and 

happy body expressions. Each 8-month-old infant was shown these images (6 of each) in a 

random, non-repeating order while brain responses were measured by electro-cortical 

responses to body expressions to determine neural processing of emotional signals. The study 

cohorts were divided in two groups based on duration of exclusive breastfeeding (low 

EBF: M = 102.66, high EBF: M = 198.43 days). The results of the EEG records showed that 

the infants within the high EBF group exhibited more significant attention allocation to 

displayed happy stimuli whereas the low EBF infants showed a more significant allocation of 

attention to displayed fearful stimuli. These findings suggest that the duration of exclusive 

breastfeeding positively correlates to differences in the neural processing of displayed 

emotional body images in 8-month-old infants. Additionally, animal models show similar 

results. Research by Liu et al. has demonstrated that breastfed primates developed greater white 

matter when compared to those that had been bottle-fed and raised in a nursery setting. Thus, 

different feeding methods may elicit different developmental progress (Liu Z et al., 2019).  

2.7 Breastfed vs Formula-Fed and Infant Cognition 

There are numerous reasons why a woman or parents may or may not choose to 

breastfeed. The current literature shows that these reasons may be related to maternal age, 

education, or health (Ogbo et al., 2017), socioeconomic status (Gonzalez et al., 2018), marital 

status, culture, ethnicity (McKinney et al., 2016), family history, and family or significant 
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other’s support (Donath & Amir, 2013). The following explores some of the reasons that 

influence a mother’s choice to breastfeed, as well as factors that may affect duration. 

Parents effectively have three options to feed newborns: breast milk, formula or a 

combination of the two. However, for new parents, breastfeeding may be impossible due to the 

need to return to work. Despite the health benefits, literature available, and encouragement by 

medical professionals, breastfeeding initiation rates in the United States remain lower than 

desired. According to statistics from 2017, the CDC estimates that of those infants born in the 

US during that year, 84% were started on breast milk but only 58% were still breastfeeding at 

6 months. Even more concerning is that nearly 20% of these infants were given supplemental 

formula within the first two days of life (Smith et al., 2006).  

To be successful in breastfeeding, initiation should begin within the 24 hours of birth. 

The process of putting the newborn to the breast stimulates the production of hormones that in 

turn stimulates milk production. However, the choice to breastfeed starts much sooner than that 

for most women. Research has shown that most women and their partners make this decision 

before conception or during the first trimester of the pregnancy. The results of many self-

reported studies show that for most women, this choice has been influenced by the known 

benefits of breastfeeding, its naturalness, and the emotional bonding with the infant that comes 

from this type of intimate contact and nurturing (Chabrol et al., 2004; Briggs et al., 2020). In 

studies by Arora et al. (2000), Hunegnaw et al. (2018), and Maharlouei et al. (2018) women 

reported that they chose not to breastfed because of quality of support (spouse, family, medical 

staff), the mother’s perception of the father’s views on breastfeeding, uncertainty of the quality 

or quantity of milk, previous failure with breastfeeding, and a need to return to work. Other 

women state that they may have been encouraged to initiate breastfeeding or extend the 

duration if more information was available or provided to them, and if they had more support 

(Bresnahan et al., 2020; Demontigny et al., 2018). Recent clinical research by Gray et al. (2020) 
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showed that study participants who had early feeding assistance by a trained lactation 

consultant before the administration of any infant formula were more likely to experience 

successful exclusive breastfeeding (80%) than those women who had a feeding assisted by a 

non-lactation nurse (40%).  

However, women who fear that they will not be able to successfully breastfeed may 

deeply internalize fear and anxiety of failure. If a new mother fails to meet breastfeeding 

recommendations, they may feel inadequate, increasing their risk for depression (Borra et al., 

2015). 

Maternal health is always of great concern when choosing a method of feeding a 

newborn. Many of the concerns can be related to pre-existing conditions (Kaul et al., 2019) 

that would make breastfeeding unadvisable and can be both physical and mental in nature. Pre-

existing medical conditions can cause a woman to produce not enough milk or none entirely 

(breast reduction or mastectomy). While other women who are diagnosed with metabolic 

disorders such as diabetes may have difficulty producing breast milk (Anderson, 2018). 

Medication that a woman may have withdrawn during pregnancy because of its potential or 

known adverse effects during pregnancy, should be resumed upon delivery to reduce health 

risks to the mother. Therefore, once resuming these medications, she would be advised not to 

breastfeed (Kronenfeld et al., 2018). Currently, many medications are not suggested to be used 

during pregnancy and lactation, simply because not enough is known about the potential 

teratogenicity to the fetus (Talabi et al., 2020). 

Communicable diseases and substance use/abuse are of concern as well when 

considering breastfeeding. As part of the global efforts to eradicate new HIV infections in 

children, mothers living with HIV are advised to choose formula-feeding over breastfeeding 

(Ajibola et al., 2018, Dong et al., 2020). However, there remain concerns for mothers who 

cannot obtain or afford commercially infant formulas, adequate supplies of clean drinking 
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water, and do not have free and universal access to antiretroviral therapy (Alverenga et al., 

2019). However, women living in developed countries are see far greater benefits for 

combination therapies, living longer with the infection, and emerging views among patients 

and providers may be changing (Etowa et al., 2020, Tuthill et al., 2019). For other women and 

parents, the preference to formula-feed their infant is made based on lifestyle choices. Those 

who use tobacco may choose to formula-feed their child as a precaution to minimize exposure 

to tobacco smoke or vapor (Miranda et al., 2020). For mothers who are currently using illicit 

drugs or are receiving medication-assisted treatment for drug abuse (opioids, heroin), current 

guidelines suggest that they abstain from any breastfeeding (Cleveland, 2016).   

Numerous studies throughout the last decades have demonstrated the health benefits of 

exclusive breastfeeding (Allen & Hector, 2005; Cushing et al., 1998; Salone et al., 2013; 

Belfield & Kelly, 2012). More recent studies have shown the importance of the nutritional 

components contained within breast milk that cannot be duplicated even with modern versions 

of infant formulas. This nutritional content is particularly important when comparing the 

cognitive development of those infants exclusively fed formula to those that are exclusively 

fed breast milk (Toro-Campos et al., 2020) These findings point to the importance of 

breastfeeding within the first six months of an infant’s life and how it can determine future 

intelligence (Horta et al., 2015; Huang et al., 2018; Sabri et al., 2020; Quigley et al., 2012, 

Bernard et al., 2013).  

Despite these known benefits, the number of mothers that choose exclusive 

breastfeeding for the recommended first six months remains low worldwide (WHO, 2020). 

Lenehan et al. (2020) explored the effects of short‐term breastfeeding (2 months) on long‐term 

intelligence scores (5 years old). This study compared the results of two separate groups that 

included 1) only children who had been predominantly breastfed at 2 months (n = 288) and 2) 

children who had never been breastfed at 2 months (n = 254) and was determined through a 
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questionnaire administered to mothers at 2 months post-enrollment. The neurodevelopmental 

assessment of these participants was conducted at 4.8 to 5.5 years of age by using the Kaufman 

Brief Intelligence Test II (KBIT‐II).   

Analysis of the data showed that KBIT‐II composite cognitive scores of breastfed 

infants were significantly higher (2.47 points higher) at 5 years of age. Similar findings were 

also evident in the KBIT‐II verbal (1.88 points higher) and non‐verbal (1.68 points higher) 

scores. From these results, these researchers determined that predominantly breastfed infants 

have a greater advantage of achieving cognitive scores, even when breastfed for a short 

duration in early infancy. These findings confirm the results that were also discovered by Pang 

and colleagues (2020). These researchers also evaluated two child cohorts that included 

children that were either breastfed (n=73) or formula-fed (n=296). However, they conducted 

neurodevelopmental assessments between 6 and 54 months using the Bayley Scales of Infant 

and Toddler Development (Third Edition) at 2 years of age, and the Kaufman Brief Intelligence 

Test (Second Edition) at 4.5 years. The results of these assessments were similar to those found 

in the research conducted by Lenehan, showing that were exclusively fed breast milk (directly 

from the breast) scored higher on several memory tasks when compared to bottle-fed breast 

milk participants, that included deferred imitation tasks at 6 months and relational binding tasks 

at 6 and 54 months. 

Bellando et al. (2020) compared the effects of infant feeding (breast or formula) on 

childhood cognition and language skills. This longitudinal study of infants from ages 3 to 60 

months that were either breastfed (n=174), milk-based formula-fed (n=169), or soy protein-

based formula-fed (n=161). These study participants were followed for six years in which all 

formula-fed children remained on the same formula for a minimum of 12 months and all 

breastfeeding mothers were encouraged to continue until the child reached one year of age. 

Mothers who changed their child’s feeding method were removed from the study. By year five, 
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341 participants remained in the study. Parents selected the method of feeding their child, so it 

was not a randomized control trial. Several methods were used to determine cognitive 

development and language skills including the Wechsler Abbreviated Scale of Intelligence 

(WASI), the Preschool Language Scale-3 (PLS-3), the Bayley Scales of Infant Development—

2nd Edition (BSID-2), and the Reynolds Intellectual Assessment Scales (RIAS).  

The data from this study showed that the Mental Development Index scores from the 

BSID-2 were within the average range and did not differ significantly between the three 

different feeding type groups. However, significant differences were observed with the 

Psychomotor Development Index (PDI) scores between the three different feeding groups at 

three months of age. The breastfed and milk formula-fed infants displayed higher scores than 

soy formula-fed infants. There were significant variations in the Composite Intelligence Index 

(CIX) of the Reynolds Intellectual Assessment Scale (RIAS) between the three feeding groups 

at 48 months. The results of these evaluations showed that the breastfed children had higher 

scores than children in either of the formula-fed groups, with no difference detected between 

these two cohorts. A significant difference was discovered with the Verbal Intelligence Index 

(VIX) at 48 and 60 months, with breastfed children displaying the highest scores, but no 

differences in the Nonverbal Intelligence Index (NIX) between feeding groups at 48 or 60 

months were detected. At ages 36 and 48 months the breastfed children had significantly higher 

total scores on the Preschool Language Scale-3 (PLS-3) than children that were fed formula.  

In addition, variations were discovered in auditory comprehension and expressive 

communication at later ages (24, 36, 48, and 60 months), with breastfed children scoring 

significantly higher than any of those participants that were formula-fed. The summary of the 

results showed that all children within the three groups scored within normal limits for all 

assessments. Breastfed children performed higher on most of the tests, but this information 

does not indicate that formula feeding is clinically detrimental with respect to cognitive 
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function and language development skills because of the relatively small magnitude of the 

difference. Additionally, as a correlational study, there are undoubtedly potential confounders 

that were not measured in this study. These findings support the earlier finding of Choi et al. 

(2018) in that examinations at 6 and 12 months provided information supporting exclusive 

breastfeeding up to 4 months of age may enhance the effects of infant development within their 

first year of life. 

While there are significant challenges to breastfeeding ranging from socio-economic 

and epidemiological to cultural and emotional, it is a crucial method of promoting early 

childhood brain development. Formula-fed children consistently perform somewhat worse on 

most cognitive tests. While the magnitude of these differences may vary somewhat study by 

study, there is clear and pervasive evidence that breastfeeding improves cognitive development 

for infants. 

2.8 EEG Findings 

Research related to identifying early neural predictors of cognitive function in infancy 

could allow for future mapping of the neuro developmental pathways that emphasize individual 

differences in learning ability, education performance, and IQ. Individual differences in 

cognitive function during childhood can forecast long-term outcomes, particularly those 

associated with cognitive delays related to developmental risk factors such as preterm birth, 

small for gestational age, and poor nutrition (Jones et al., 2020, Pivik et al., 2011). Some studies 

have used EEG as a measurement of brain function to determine if there is any difference in 

infant neurodevelopment between those subjects that were exclusively breastfed and those that 

were fed formula. The use of event-related potential waveforms is particularly beneficial when 

studying infants, as they provide a non-invasive means for recording brain processes that 

cannot be discovered by the use of behavioral assessment alone. 
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EEG signals can be decomposed into oscillations occurring in different frequency 

bands. While there is no literature to describe differences in neural development concerning 

nutrition, several studies have suggested that various types of early adversity, including lower 

socioeconomic status (SES), (Tomalski et al., 2013), maternal stress (Troller-Renfree et al., 

2020), and early institutionalization (Marshall et al., 2004) may be associated with differences 

in infant EEG signals. Specifically, early adversity has been related to lower frontal gamma 

power (Tomalski), increased theta power (Marshall, Troller-Renfree), and reduced alpha power 

(Marshall, Troller-Renfree). One possibility is that the links between early adversity and brain 

function may in part be accounted for by differences in breastfeeding, food insecurity, and 

nutrition. 

2.8.1 EEG: Breastfeeding and Formula Feeding 

As mentioned previously, human milk contains polyunsaturated fatty acids (PUFAs) that have 

been identified for their nutritional benefits and potential long-term brain and cognitive 

development benefits among infants. A study conducted by Ferguson et al. (2007), investigated 

the impact of breast-feeding when compared to a PUFA-enriched milk formula among infant 

subjects tested at 6 months of age. These researchers utilized event-related potential (ERP) 

waveforms and a variety of behaviors to evaluate the two groups (breastfed vs formula fed). 

ERP waveforms are measured using the same methodology as EEG, the difference being that 

ERPs are the waveforms that are measured following a particular stimulating event. Resting 

EEG, in contrast, are the waveforms measured when the subject is in a resting state and there 

is no stimulating event. Upon evaluation of their findings, Ferguson and colleagues determined 

that regardless of the presence of PUFA-enriched feedings among the two groups, a review of 

the ERP waveforms detected noticeable differences in the ERP recordings. After controlling 

for several factors between the two groups, it was found that only the ERPs recorded from the 

breastfed group varied throughout their recorded periods (700 msec) and were demonstrated 
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over both left and right hemispheres and all infants generated responses to stimuli across all 

electrode regions (frontal, temporal, posterior-temporal, central, parietal, and occipital). 

Formula-fed infants demonstrated changes in just the left hemisphere electrode sites and were 

limited to more posterior regions (temporal, parietal, and occipital). The differences detected 

in this study within brain responses in the breastfed group could indicate an advantage for 

infants who are breastfed with respect to linguistic and cognitive development in childhood.  

Pivik and colleagues (2011) used a similar approach to Ferguson in that they observed 

event-related potential (ERP) responses to speech sounds among six-month-old infants who 

were fed breast milk, a milk-based formula, or a soy formula. These researchers analyzed infant 

ERP responses (waveforms) to speech stimuli to address the question as to whether diet-related 

differences in ERP measures of speech stimuli discrimination and processing were observed 

when infant intake was limited to exclusive breast milk, milk formula, or soy formula feedings. 

They found that significant group differences were present. There was a general absence of 

differences between formula-fed groups, and all groups demonstrated significantly greater 

response amplitudes to the infrequent syllables across all EEG sites at 3 months and frontally 

at 6 months. However, differences remained significant at temporal sites at six months only 

among those breastfed infants. 

Jing et al. (2010) found similar findings when examining infants that were divided into 

similar cohorts. They observed differences in the development of brain electrical activity 

during infancy when comparing infants who are exclusively breastfed with those who were fed 

either a milk-based or soy-based formula (no significant difference between milk and soy). 

They determined that the observed variations in EEG activity reflected diet-related influences 

on brain structure development and function that could potentially elicit different 

neurodevelopmental trajectories, as well as cognitive and brain function development.  
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Cantiani et al. (2019) and Jones et al. (2020) chose to research macroscopic brain 

oscillations on EEG recordings of infants. Cantiani chose EEG oscillations, as research has 

previously demonstrated that neural oscillations at rest in the gamma frequency band (25–45 

Hz) are correlated with neurodevelopmental pathways and potentially determine differences in 

future intellect (Cantiani et al., 2019). One key area of neuroscientific research shows that 

neurons within the human brain produce intricate displays of oscillatory activity characterized 

as rhythmic, periodic shifts from high to low states of excitability. At the point of neural 

ensembles, macroscopic oscillations can be observed on an EEG as a result of copious 

synchronized neuronal activity. This activity has been theorized to contribute to the growth and 

development of cortical networks.  

By the time a child reaches the age of two, they typically possess the ability to speak 

between 150-250 words, can understand many more, and are starting to form rough statements 

and sentences. These early language milestones are predominantly inhibited by brain 

development and potentially by exposures related to childhood situations (environment, 

nutrition, and health) (Rudolph & Leonard, 2016; Flensborg-Madsen et al., 2019). Cantiani 

and colleagues (2019) looked specifically at high-frequency neuronal oscillations in the gamma 

frequency range (> 25 Hz). Research has shown that gamma range oscillations correlate to the 

establishment of specific synchronization of distributed neural responses (Uhlhaas et al., 2010), 

and gamma power could represent synchronization throughout extensive cortical regions. 

Neural resources accountable for language are dispersed throughout the brain. Therefore, the 

coordination of gamma frequency oscillations in distinct brain regions could be critical for 

language achievement (Veit et al., 2017). 

When reactions to specific stimuli elicit expanded power within the gamma frequency 

range, the response has been associated with different cognitive processes such as memory, 

attention, perceptual learning, object recognition, and language skills (Ou & Law, 2018; Ortiz-
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Mantilla et al., 2016; Houweling et al., 2020). Increased gamma frequency synchronization of 

neural ensembles has also been determined to be essential for higher cognitive processes and 

perception during early childhood development (Gupta et al., 2020). The study by Cantiani 

(2019) aimed to discover (hypothesis 1) if an interrelation exists between brain growth and 

development features such as gamma frequency oscillatory activity, Structural Equation 

Modeling (SEM), and language acquisition, by comparing gamma power in infants (6 months) 

and specific language outcomes in the same children at 24 months. They also investigated 

whether (hypothesis 2) SES during zero to six months had an effect on gamma power at 6 

months and if (hypothesis 3) gamma power changed the SES findings of language outcomes. 

The researchers stated that they believed that this was the only known study designed to 

explicitly examine the hypothesized direction of association connections between oscillatory 

gamma power at 6 months and language outcome at 24 months, and SES using a specified 

framework. 

Eighty-four infants born to parents holding positions from unskilled workers to white-

collar professionals were recruited for this study. Parents were asked to complete the supplied 

Language Development Survey (Rescorla et al., 2016) by identifying each word on the 

checklist that their child spontaneously uttered. Four-minute baseline EEG recordings were 

gathered by using a 60 scalp electrode net while a study assistant blew bubbles to gain the 

infants' attention. All baseline EEGs were collected when study participants were six months 

old (± 15 days). The parental SES was collected for both parents when the children were six 

months old and ranged from 10 to 90.  The SES scores of 10 corresponded to unskilled workers, 

50 corresponded to sales workers, and 90 corresponded to professional positions. Scores ≤ 60 

were determined to be low to middle income, while scores ≥ 61 were considered to be in a 

high-income range. Expressive language was once again determined by using the same parent-

completed Language Development Survey at 24 months of age.  
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The data from this study concluded that an interrelation exists between brain growth 

and development features such as gamma frequency oscillatory activity, Structural Equation 

Modeling (SEM), and language acquisition. The data also supported previous research that 

showed gamma oscillator activity related to neural processes supports the growth of the brain 

and cognitive development and are essential for ideal linguistic development. However, 

researchers did note some variation in findings that included evaluation of infants at six months 

instead of using older (16–36 months) or younger (< four days), showing that later language 

development is associated with gamma power and that the cohort age (6 months) correlation 

with later language outcomes seems to related central and parietal regions exclusively. They 

also discovered left-lateralized relationships between gamma power at 6 months and language 

outcome. Therefore, these findings were expected based on the knowledge that language is 

connected to specialized brain systems found in the left cerebral hemisphere. Any disturbances 

in this lateralization would result in language impairments.  

Hypothesis 2 (SES during zero to six months affected gamma power at 6 months) was 

confirmed; additionally, parental SES was associated with significant differences in the frontal, 

parietal, and central brain regions. These findings repeat and support previous studies related 

to this question. However, Cantiani and colleagues (2019) found that their SES data 

distribution was slightly skewed toward the professional end, or higher income level. The final 

hypothesis (gamma power was related to SES findings of language outcomes) looked for a 

potential link between SES and behavioral outcomes in language acquisition during infancy. 

Their data revealed that there was a significant, though indirect, effect between SES and MLU 

score related to left central gamma power. This finding suggests that SES was linked to more 

positive gamma power at six months of age and that this correlation affected the use and 

arrangement of words at twenty-four months. However, these researchers did recognize that 
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their study did have one specific limitation. They chose to use language outcomes that had been 

assessed solely by parental reporting methods.  

Jones and colleagues (2020) also researched macroscopic brain oscillations on EEG 

recordings of infants. This study was designed to distinguish early neural predictors of 

cognition in infant study subjects to determine the neurodevelopmental pathways that 

emphasize intellectual differences among young children. These researchers identified a need 

to progress beyond observation behavioral studies and advance newly-available infant-friendly 

methods to directly measure infant brain activity. Therefore, they chose to measure the brain 

activity of 106 twelve-month-old infants that were grouped into three distinct cohorts to 

analyze dynamic changes in theta power (3–6 Hz) measured by EEG (128-channel Geodesic 

sensor nets) data recordings when study participants were exposed to an “ecologically valid 

stimuli”.  

Within the three cohorts, the first (cohort 1) consisted of a large cross-sectional group 

of typically developing 12-month-old infants. The data gathered from this group were analyzed 

to determine that the dynamic semi-naturalistic video viewed by these infants produced 

measurable increases in theta power. It was also verified that changes observed in theta power 

with the first presentation could predict observations with repeated viewing of the same 

stimulus, thus demonstrating an association with infant learning and memory. A smaller subset 

of this cohort was further evaluated by observing for potential theta power changes related to 

concurrent cognitive skills. These infants were shown videos specifically containing women 

talking and toys moving. After viewing once, they were exposed to a 10-minute video of 

separate static stimuli and then shown the initial video a second time. It was observed that these 

video stimuli produced gradual increases in frontal theta and determined that with repeated 

exposure to the same stimuli these theta changes could be predicted.  



  
 

 59 

The second and third cohorts included 12-month-old infants at low or high familial risk 

for autism that was independently studied and followed longitudinally. Cohort 2 was evaluated 

at 12 and 24 months, while cohort three was evaluated through 7 years of age. In the third 

cohort, Jones and colleagues investigated whether dynamic changes in frontal theta power 

could predict later intelligence when these children underwent subsequent cognitive 

assessment (Mullen Scales of Early Learning, Mullen 1) at 2, 3, and 7 years of age to determine 

an increased risk for cognitive delay by administering the Wechsler Abbreviated Intelligence 

Scale (WASI).  

The infants were evaluated for change in theta power while watching two sets of videos. 

Each set consisted of two one-minute videos that were repeated twice during each session. One 

video was socially oriented, and the other was considered non-social. The primary outcome 

consisted of the percentage of change in theta power demonstrated between the first and second 

halves of the first presentation of each video “frontal theta during second half-frontal theta 

during first half/frontal theta during first half”. This process was designed to account for the 

possibility that the second presentation would be skewed by familiarity. They then observed 

EEG findings for associations with current cognitive skills by examining the percentage of 

change in posterior theta power, scalp high alpha power, and the proportion of clean attended 

segments (a substitute for a behavioral measure of focused attention). This information can 

offer evidence of whether similar outcomes could be gathered from the exclusive measuring of 

behavior as seen in other recent studies by Braithwaite et al. (2020) and Begus et al. (2020).  

The results of this study led Jones and colleagues to determine that when infants viewed 

selected videos, it stimulated an increase in theta power that can predict ensuing changes in 

EEG responses when that specific video is repeatedly viewed by the infant. EEG and cognitive 

data from participants in cohort 2 showed that frontal theta change in 12-month-old high-risk 

infants correlated with greater nonverbal and verbal skills at 24 months, while larger changes 
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in frontal theta for cohort 3 was related to higher nonverbal cognitive skills at 36 months 

throughout this group (regardless of risk). However, nonverbal cognitive skills were not related 

to change in posterior theta power, clean attended segments, and were weakly associated with 

scalp alpha power at 3 and 7 years of age. When seven years old, this same cohort was evaluated 

for IQ. Researchers discovered a substantial overall connection between 12-month frontal theta 

and 7-year IQ scores that did not vary significantly by risk group (low or high), but WASI total 

scores were not correlated with observed changes in posterior theta power, scalp alpha power, 

and clean attended segments. In three separate cohorts, they demonstrated that individual 

differences in frontal theta percentages during the viewing of these videos were associated with 

variations in nonverbal and verbal cognitive skills at 12 months, and again at 2, 3, and 7 years 

of age. These results illustrate that among 12-month-old infants, task-dependent changes of 

frontal theta power is strongly correlated with individual differences in present and later 

cognitive development. Their study represents a breakthrough approach to identify a predictive 

biomarker for childhood intelligence. 

 Additional research conducted by Krol and colleagues (2015) used a similar approach 

to invoke brain changes among infants, but included the variable of duration that the child was 

exclusively breastfed at the time of the study to determine if exclusive breastfeeding 

demonstrates a promotion of healthy brain development and cognition, as measured by EEG 

recordings. Oxytocin (released with infant suckling) is one component of breast milk that has 

been shown to elicit numerous social processes and behaviors related to relationship and infant-

mother bonding (UvnäsMoberg et al., 2020; Newton et al., 2018). Additional research using 

oxytocin-containing nasal spray has demonstrated effects (yet not completely understood) on 

the assessment of positive emotional expressions by adult study subjects (Pavarini et al., 2019; 

Hovey et al., 2020).  
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 Relying on these previous study results in adults, these researchers displayed different 

static images to 8-month-old infants. These static images consisted of black and white pictures 

of happy and fearful body expressions to determine if infant brain activity corresponded to 

positive and negative content, as infants by this age have typically developed an ability to 

distinguish and differentiate between another person’s positive and negative emotional 

expressions (e.g. smile vs frown or fearful) (Matsunaga et al., 2020). The 28 infant participants 

were shown these pictures after an alert tone to gather attention to the image. Alerting sounds 

were varied throughout the session and abstract screensavers were displayed between desired 

images. The images were shown in a randomized order (upright and inverted) without the same 

image or position being displayed back-to-back, while EEG responses were recorded as with 

similar research studies (Missana et al., 2014) during a time window of 700–800 ms (27 

electrode elastic cap) to measure the negative central component in their event-related brain 

potential.  

The data from this study by Krol et al. (2015) showed that of the 28 infant participants, 

14 were breastfed at least one time per day (equal to a meal). The analysis of EEG recordings 

(averaged right frontocentral (F4 and C4) late negative central component) produced a highly 

significant emotion (high exclusive breastfeeding) when images were displayed in the upright 

position. Additional analyses showed that the low exclusive breastfed group infants (M = 

102.66 days) displayed higher (more negative) late Nc responses to fearful body images when 

compared to happy images, suggesting a more significant allocation of attention to displayed 

fearful stimuli.  

In contrast, high exclusively breastfed infants (M = 198.43 days) exhibited more 

significant late Nc responses to happy body images and greater positive late Nc responses to 

fearful images, exhibiting more significant attention allocated to displayed happy stimuli. 

Upon further assessment of these interactions, it was revealed that group differences (low vs 
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high) in emotional processing were seen specifically by late Nc responses to happiness, as no 

group averages differed significantly when explored for fear. Ultimately, the study revealed 

that the duration of exclusive breastfeeding positively correlates to differences in the neural 

processing of displayed emotional body images in 8-month-old infants. 

Table 1 Literature Review Matrix of EEG and Breastfeeding vs. Formula Feeding 
Studies 

Author, 
Date and 
Study 
Design  

Aims Subjects Methodology and Exposure Results and Conclusion 

Jing et al., 
2010 
 
Cohort 
study 
  

Compare 
effects of 
infant diets on 
development 
of brain 
electrical 
activity 
during 
infancy. 

40 full-term 
infants either 
breastfed 
(BF) or fed 
milk formula 
(MF) or soy 
formula (SF) 
through the 
first 6 
months 

Scalp EEG signals (124 
sites) recorded from the 
same infants during quiet 
wakefulness (resting) at 3, 
6, 9, and 12 months. 
 
Exposure: BF, MF, and SF 

Significant diet-related differences were 
present across frequency bands and 
included effects that were time- [peaks in 
0.1–3 Hz at 6 (MF,SF) and 9 months (BF); 
3–6 Hz at 6 months (MF, SFNBF); 
increases in 6–9 Hz from 3 to 6 months 
(MFNBF) and from 6 to 9 months 
(MFNSF)] and gender-related (9–12 Hz and 
12–30 Hz: at 9 months BFNMF, SF boys, 
and MFNSF girls). 
 
The development of brain electrical activity 
during infancy differs between those who 
are BF compared with those MF or SF but 
is generally similar for FF groups. These 
variations in EEG activity reflect diet-
related influences on the development of 
brain structure and function that could put 
infants on different neurodevelopmental 
trajectories along which cognitive and brain 
function development. 

Krol et 
al., 2014 
 
Cohort 
study 
  

Examined 
whether and 
how duration 
of EBF 
impacts 
neural 
processing of 
emotional 
signals by 
measuring 
electro-
cortical 
responses to 
body 
expressions. 

28 infants, 8 
months old 

Different static images 
displayed in random order 
consisting of black and 
white pictures of happy (6) 
and fearful (6) body 
expressions and were 
shown. Abstract 
screensavers were 
displayed between desired 
images, while EEG 
responses were recorded 
during a time window of 
700–800 ms to measure 
negative central component 
in event-related brain 
potential.  
 
Exposure: EBF 

Infants with high EBF experience show a 
significantly greater neural sensitivity to 
happy body expressions than those with low 
EBF experience. Analyses showed neural 
bias toward happiness or fearfulness differs 
as a function of the duration of EBF. 
Longer BF duration is associated with a 
happy bias, and shorter BF duration is 
associated with a fear bias. 
Findings suggest that breastfeeding 
experience can shape the way in which 
infants respond to emotional signals. 

Pivik et 
al., 2011 
 
Longitudi
nal study 
  

Study brain 
responses 
(ERPs) to 
speech 
sounds for 
infants who 
were either 
BF or 
formula-fed 

351 infants Infants were grouped 
according to method of 
feeding: BF (n=75), MF 
(n=88), and SF (n=76). 
Data was gathered at study 
visits 3 and 6 months for 
responses of ERPs to 
speech sounds (two 
syllables presented in an 

Two syllables presented in an oddball 
paradigm elicited a late positive wave 
(P350) from temporal and frontal brain 
regions involved in language processes. All 
groups showed significantly greater 
response amplitudes to the infrequent 
syllable across sites at 3 months and 
frontally at 6 months, but 
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(MF or SF) 
during the 
first 6 months 
of life. 

oddball paradigm). ERP 
responses were determined 
from EEG activity 
(bandpass 0.1–100 Hz, 
sampling rate 250 Hz) 
using 124 channel electrode 
nets.  
 
Exposure: BF, MF, and SF 

significant discrimination at temporal sites 
was only observed at 6 months in BF 
infants. Decreases in response amplitudes 
from 3 to 6 months were greater for the 
frequently presented syllable, most 
prominent in BF infants, and greater in 
females than 
males. 
 
Results indicate greater syllable 
discrimination in BF than FF infants. 
Feeding method and background factor 
differences between BF & FF infants may 
also contribute to observed differences.  

 

2.9 MRI Findings 

 MRI’s are another effective tool for measuring brain growth and structural development 

among infants. They can be used to measure both grey and white matter growth in terms of 

volume as well as location. They can also be used to measure other predictors of white and 

grey matter development. MRIs are a key methodology utilized to better understand the impact 

of breastfeeding on infant brain development. 

The benefits of breast milk for infant brain function have been displayed by MRI study 

findings among infants and beyond with lasting effects among school-aged children. Many of 

the current studies are related to the evaluation of gray matter or white matter development, 

while few look at either or both among infants. Identified research by Luby et al. (2016) and 

Ou et al. (2018) chose to investigate the impact of breastfeeding versus formula feeding on 

structural brain development (gray matter) and cognition among infants and young children.  

 Luby and colleagues conducted a longitudinal study to determine how breastfeeding 

may influence intelligence through evaluation of the whole brain and subcortical brain volume 

(as separate mediators). As part of their research, they identified a gap in the current literature 

and established a study outcome to address this gap by testing the hypothesis that “the 

relationship between breastfeeding and IQ would be mediated by the effect of breastfeeding on 

structural brain development and, in turn, the effect of brain on IQ. Within this study, 211 child 

participants (ages 3 to 6 years old) were recruited for evaluation by MRI scanning during three 
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sessions throughout 16 years (2008 to 2014). These sessions were conducted to determine 

subcortical gray volume across the three scans to test for any effects on long-term volumetric 

brain structure related to breastfeeding. Of these participants, the final sample included findings 

related to 148 children who had data that were complete and high quality in all of the variables 

of concern.  

 The MRI scans were conducted, and structural images were obtained as part of a longer 

session and encompassed the gathering of functional connectivity and task-based data. During 

these scans, cerebral white matter volume and total cortical and subcortical gray matter 

volumes were acquired, while whole brain volume was determined as the sum of all three of 

these measures. In addition to the MRI scans, the child participants were evaluated for 

intelligence. The Kaufman Brief Intelligence Test (KBIT) or the Wechsler Abbreviated Scale 

of Intelligence (WASI) was used for assessing verbal and nonverbal intelligence during school 

age. Children 10 to 15 years old were evaluated by using the KBIT and children 8 to 11 years 

old were evaluated by using the WASI.  

 From the data gathered these researchers aimed to gain information related to two 

hypotheses including 1) “breastfed children would have significantly higher IQ scores 

compared with non-breastfed children” and 2) “breastfed children would have significantly 

larger whole brain volumes (WBV) compared with non-breastfed [children].” The findings 

from this study showed that cortical white matter volume results indicated that children that 

were breastfed did not display large WMV and therefore, it was determined not to be a 

significant predictor of a child’s white matter volume. When measuring total grey volume, 

breastfed child participants had more significant total gray matter volume than did non-

breastfed participants, as displayed by a substantial and additional percentage of the variance 

in total gray matter volume.  
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 When calculating whole brain volume, the child’s sex and age were significant 

predictors of WBV and that breastfeeding was associated with greater WBV as well. These 

researchers also found that subcortical gray matter volume (SGMV) was the most significant 

finding when evaluating the effects in WBV and total gray matter volume and that SGMV 

facilitated the correlation between breastfeeding and higher intelligence scores. The final 

determination of this study was that the data demonstrated an indirect association between 

breastfeeding and IQ through the expansion of gray matter volume, particularly the subcortical 

gray matter even when controlling for maternal education and the child’s age and sex. 

 A smaller study (42 eight-year-old children) was conducted by Ou et al. (2016) to 

determine whether being breastfed or receiving cow’s milk formula feeding has an influence 

on the development of grey matter structures. The breastfed participants were fed breast milk 

exclusively for a minimum of 8 months (average, 12.6 months), and milk formula-fed 

participants received the same type of cow’s milk formula for at least 8 months after birth. All 

child participants underwent one MRI examination that included a structural scan and an fMRI 

study. These same participants were administered the Reynolds Intellectual Assessment Scales 

(RIAS) test, to measure verbal, nonverbal, and composite IQ, and the Clinical Evaluation of 

Language Fundamentals (CELF-4) test, to measure expressive, receptive, and overall language 

skills. 

 In contrast to the research findings by Luby et al. and Zhang, Y et al., Ou found no 

difference in total brain gray matter volume when comparing MRI findings of the breastfed 

(n=22) and cow’s milk formula (n=20) groups. However, MRI scans revealed that breastfed 

participants had greater regional gray matter volume in multiple brain regions, explicitly in the 

left and right parietal and left temporal lobes, and one region in the left superior parietal lobe 

and one region in the left inferior temporal lobe displayed significantly greater gray matter 

volume than those participants that were predominantly milk-based formula-fed (716).  
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 When assessed by fMRI showed that breastfed participants displayed significantly 

more widespread activation than milk-based formula-fed participants. Significant findings 

were observed in the right frontal and left and right temporal lobes when evaluating perception 

tasks and in the left temporal/occipital lobes when evaluating language tasks. Though these 

findings are different from those seen with Luby et al. and Knickmeyer et al. (2008), they 

support earlier findings from a study by Wilke et al. (2003) and are supported by more recent 

findings by Zhang et al., in that whole-brain gray matter volume was directly related to the age 

of their participants (older vs younger children), yet gray matter volume in several distinct 

brain areas (deep grey matter structures) was decidedly related to cognitive functions (Wilke 

et al., 2003; Zhang et al., 2019). This information is also conveyed by Ou in that diet 

(breastfeeding vs formula feeding) may influence brain maturation, showing a greater effect 

on deep gray matter during infancy, as these areas of the brain develop earlier than cortical 

regions that develop more during later childhood (Ou et al., 2016; Aubert-Broche et al., 2013, 

Makropoulos et al., 2016; Mills et al., 2016). 

 Other major studies are related to the research of white matter development during early 

childhood. In contrast to grey matter volume development that occurs predominantly during 

infancy and then decreases during childhood and adolescence, white matter volume increases 

can be observed across infancy, early childhood, and adolescence (Aubert-Broche et al., 2013, 

Makropoulos et al., 2016; Mills et al., 2016). Two identified studies used MRI scans to 

determine if breastfed children display a higher level of cognitive skills as a result of early 

nutrition (breastmilk) that impacts early trajectories of myelination and differences in white 

matter tracts.  

 Deoni et al. (2018) focused on the nutritional needs of the infant, particularly how 

specific micro- and macro-nutrients, long-chain polyunsaturated fatty acids (DHA and ARA) 

(Braarud et al., 2018; Martin et al., 2016; Lauritzen et al., 2016), phospholipids 
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(phosphatidylcholine and sphingomyelin), neurotrophic factors (Kim et al., 2020), and 

hormones (Kinney & Volpe, 2018) contained within breastmilk are essential for myelination. 

Though many milk-based infant formulas attempt to replicate these needs, they cannot provide 

the different compositions of human milk from colostrum through mature milk. These 

researchers believe that the differences in the nutritional composition of breast milk and infant 

formula could explain some observed disparities in cognitive function between breastfed and 

formula-fed infants.  

 Participants included in this study were chosen from a large and ongoing longitudinal 

study known as the Brown University Assessment of Myelination and Behavior Across 

Maturation (BAMBAM) study (Deoni et al., 2012) that includes more than 500 children that 

are between 0 and 5 years of age. The children in this study were grouped according to how 

they were fed. Researchers split participants into two groups; the first were exclusively 

formula-fed (n=88) and the second were exclusively (at least 90 days) breastfed (n=62). The 

formula-fed infants were then divided into three groups based on the specific formula that was 

used (group 1= 21, group 2=28, group 3=39).  

 MRI scans were obtained throughout this study and included a total of 231 scans with 

breastfed children and 221 with formula-fed children. Along with MR imaging, general 

cognitive ability and skills were assessed using the Mullen Scales of Early Learning (Mullen 

1) in each child that was under 5 years and 8 months of age (within 7 days of scanning) and for 

older children, the Wechsler Intelligence Scale for Children, 5th Edition (WISC-V) was used. 

To detect specific nutritional values of the identified (groups 1-3) formulas, each was analyzed 

for their content of phospholipids (Phosphatidylinositol, Phosphatidylethanolamine, 

Phosphatidylcholine, Phosphatidylserine, and Sphingomyelin), Alpha-lactalbumin, Beta-

lactoglobulin, ARA, DHA, folic acid, phosphorus, calcium, sodium, copper, potassium, 

magnesium, and vitamin B12.   
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 Throughout this study, researchers found differential patterns of development in all 

investigated brain regions. However, breastfed participants qualitatively displayed sustained, 

rapid development between 500 and 750 days of age and an overall increase in myelin by age 

two, that persisted throughout their childhood. The formula-fed participants showed increased 

myelin before age one, but a slower initial rate of development between ages 1 and 2 and did 

not reach the same extent of myelin development as the breastfed participants.  

 The data displayed significant differences throughout most brain regions examined 

(parietal and cerebellar white matter, splenium of the corpus callosum) and in nearly all 

Gompertz model parameters (frontal, temporal, and occipital white matter, and the body and 

genu of the corpus callosum). These researchers noted that the child participants who received 

formula compositions with higher levels of DHA, ARA, choline, and sphingolipids (formulas 

#2 and #3) indicated higher levels of myelin development. Children fed formula #1 (lowest 

concentration of DHA, ARA, and sphingomyelin, but the highest concentration of iron and 

vitamin B12) exhibited slower and reduced myelin development. The analyses of this study 

focused on the importance of known neuro-associated nutrients. Though some infant formulas 

come closer than others, none contain the necessary nutrients to achieve the myelin trajectory 

of those infants that are breastfed.  

 The findings of this study are important, in that, previous studies (Dean et al., 2015) 

related to the relationships between myelin water fraction maturation and cognitive 

development demonstrate a strong correlation between changes in myelin water fraction and 

measurements of gross motor skills, visual reception, and receptive language, while the 

connection between myelin water fraction and fine motor skills and expressive language were 

found to evolve.  

 An additional study by Bauer and colleagues (2020) used diffusion tensor imaging to 

evaluate the major white matter tracts and volumetric measurements of the corpus callosum in 
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4 to 8-year-old children. The focus of this study was to determine 1) if breastfeeding duration 

is positively associated with total white matter and fractional anisotropy scores, and volumes 

of specific subsections of the corpus callosum and 2) if feeding methods (breast or formula-

fed) influence longitudinally running tracts that link the temporal and parietal areas to the 

frontal lobe demonstrate substantial changes in fractional anisotropy and volume(s).  

 Sixteen children were ultimately selected for corpus callosum analysis. Before any MRI 

scans, children were categorized into three groups based on the primary form of feeding, 

exclusively breastfed (n=7, mean duration=9.9 months), exclusively formula-fed (n=2), or both 

breast and formula-fed (n=7). The data from these MR images showed that breastfeeding 

duration did not demonstrate a significant correlation with total corpus callosum volume or any 

sub-sections (anterior, anterior-central, central, posterior-central, posterior). The scans also 

demonstrated that there was no significant difference in total corpus callosum volume when 

comparing the type of primary feeding methods. There was no demonstrated correlation 

between breastfeeding and total white matter volume or grey matter volume, and no significant 

difference was seen when compared to scans of those children that were exclusively formula-

fed.  

 However, breastfeeding duration had a positive correlation with both and weighted 

fractional anisotropy scores in the left angular bundle and significantly higher center fractional 

anisotropy scores for the left superior longitudinal fasciculus. Although neither of the study 

hypotheses was supported, these researchers found that their results suggest a highly specific, 

left-lateralized association that is related to infant feeding methods. The results did support and 

expand on some of the findings of Deoni and colleagues in that they found the left superior 

longitudinal fasciculus (specifically the temporal portion) results but also discovered 

differences in this tract (using water fraction measures) when comparing a younger cohort of 

children who were exclusively breastfed compared to those participants that received any 
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formula-feeding and in previous studies that have been associated with higher neurocognitive 

performances (Can et al., 2013; Lebel et al.; 2018, Qiu et al., 2015; Krogsrud et al.; 2016, Genc 

et al., 2017; O'Muircheartaigh et al., 2014; Liu et al., 2016).   

The existing literature is mixed on whether breastfeeding promotes grey matter 

development in terms of volume. However, there is strong evidence that breastfeeding changes 

the locations where grey matter is clustered; these breastfed formations are associated with 

more mature neurological development. White matter and other predictors of white matter 

growth have been positively associated with breastfeeding. Additionally, small, highly 

specialized parts of the brain may be supported by breastfeeding. More research using MRIs 

is needed to develop a better consensus around the relationship between breastfeeding and grey 

and white matter development.  

Table 2 Literature Review Matrix of MRI and Breastfeeding vs. Formula Feeding 
Studies 

Author, Date, 
and 
Study Design  

Aims Subjects Methodology and Exposure Results and Conclusion 

Deoni et al., 
2018 
 
Longitudinal 
study 

To address how 
differences in the 
nutritional 
composition of 
breast milk and 
infant formula 
could explain 
observed 
disparities in 
cognitive 
function between 
these two types 
(feeding) of 
infants.   

150 children  Children were grouped 
according to whether they 
were      exclusively given 
infant formula-fed (EFF) 
(n=88) or exclusively (at 
least 90 days) breastfed 
(EBF) (n=62). The ff infants 
were then divided into three 
groups based on the specific 
formula that was used (group 
1= 21, group 2=28, group 
3=39). Mri scans were 
obtained, children      are 
scanned and cognitive 
assessments at 6-month 
increments from time of 
recruitment until 2 years of 
age, and yearly thereafter. 
The mullen scales of early 
learning (mullen 1) in 
children under 5 years and 8 
months  and the wechsler 
intelligence scale for 
children, 5th edition (wisc-v) 
with older children.  
 
Exposure: EBF, EFF 

Results reveal significantly greater 
overall myelination in breastfed 
children 
accompanied by increased general, 
verbal, and non-verbal cognitive 
abilities compared to children who 
were exclusively formula-fed. 
These differences were found to 
persist into childhood even with 
groups matched for important 
socioeconomic and demographic 
factors. They also find significant 
developmental differences 
depending 
on formula composition received 
and that, in particular, long-chain 
fatty acids, iron, choline, 
sphingomyelin and 
folic acid are significantly 
associated with early myelination 
trajectories. 
 
These results add to the consensus 
that prolonged and exclusive 
breastfeeding plays an important 
role in early neurodevelopment and 
childhood cognitive outcomes. 

Isaac, et al., 
2010 
 

Investigate 
whether breast 
milk mediates 

50 
Adolescents 

Data was gathered from a 
randomized feeding trial to 
calculate the percentage      

In the total group, %EBM 
correlated significantly with verbal 
intelligence quotient (VIQ); in 
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Retrospective 
cohort study 

cognitive effects 
by affecting brain 
growth. 

of expressed maternal breast 
milk (%EBM) in the infant 
diet of 50 adolescents. MRI 
scans were obtained (mean 
age  15 y 9 mo), allowing 
volumes 
of total brain (TBV) and 
white and gray matter 
(WMV, GMV) to be 
calculated. 
 
Exposure: EBM  

boys, with all IQ scores, TBV and 
WMV. VIQ was, in turn, 
correlated with WMV and, in boys 
only, additionally with TBV. No 
significant relationships were seen 
in girls or with gray matter. 
 
These data support the hypothesis 
that breast milk promotes brain 
development, particularly white 
matter growth. The selective effect 
in males accords with animal and 
human evidence regarding gender 
effects of early diet. 

Kafouri et al., 
2012 
 
Retrospective 
cohort study 

Evaluate 
association 
between duration 
of EBF and 
structure of 
cortical regions 
implicated in 
general 
intelligence. 

571 
adolescents 
aged 12–18 
years 

Hierarchical linear 
modelling was used to assess 
whether breastfeeding (BF) 
was considered an important 
predictor of cortical 
thickness when other 
predictors are considered. 
Target cortical regions were 
identified using a meta-
analysis of functional 
neuroimaging studies of 
cognitive abilities relevant 
for general intelligence. 
 
Exposure: BF 

Data showed duration of EBF was 
associated with cortical thickness 
in the superior and inferior parietal 
lobules, and this study replicated 
the association between BF and 
general intelligence. 
 
This study showed that BF is 
associated with variations 
in the thickness of the parietal 
cortex in a community-based 
sample of adolescents and 
replicated previous findings that 
displayed an association of 
breastfeeding duration with full 
scale and performance IQ. 

Bauer et al., 
2020 
 
Retrospective 
cohort study 

Determine if BF 
duration is 
positively 
associated with 
total white matter 
(TWM) and 
fractional 
anisotropy scores 
(FAS), and 
volumes of 
specific sub-
sections of the 
corpus callosum 
and if feeding 
methods 
influence 
longitudinally 
running tracts 
that link the 
temporal and 
parietal areas to 
the frontal lobe 
demonstrate 
substantial 
changes in FAS 
and volume(s) 

16 4 to 8-
year-olds 

This study used diffusion 
tensor imaging to evaluate 
the major white matter tracts 
and volumetric 
measurements of the corpus 
callosum. Before any MRI 
scans, children were 
categorized into three groups 
based on the primary form of 
feeding, exclusively 
breastfed (n=7, mean 
duration=9.9 months), 
exclusively formula-fed (FF) 
(n=2), or both breast and 
formula-fed (n=7).  
 
Exposure: EBF, EFF, both 
BF and FF 

Data MR images showed that BF 
duration did not demonstrate a 
significant correlation with total 
corpus callosum volume (CCV) or 
any sub-sections (anterior, 
anterior-central, central, posterior-
central, posterior). Scans also 
demonstrated that the was no 
significant difference in total CCV 
when comparing primary feeding 
methods. There was no 
demonstrated correlation between 
BF and TWM volume or GM 
volume, and no significant 
difference was seen when 
compared to scans of those 
children that were EFF. BF 
duration had a positive correlation 
with both and weighted FAS in the 
left angular bundle and 
significantly higher center FAS for 
the left superior longitudinal 
fasciculus. Neither of the study 
hypotheses was supported. 
 
Results suggest a highly specific, 
left-lateralized association that is 
related to infant feeding methods. 
The results support and expand 
findings of other studies that they 
found the left superior longitudinal 
fasciculus (specifically the 
temporal portion) results but also 
discovered differences in this tract 
(using water fraction measures) 
when comparing a younger cohort 
of children who were EBF 
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compared to those participants that 
received any FF and in previous 
studies that have been associated 
with higher neurocognitive 
performances. 

Ou et al., 
2016 
 
Cohort study 

Evaluate brain 
gray matter (GM) 
structure and 
function in 
children who 
were 
predominantly 
BF or cow’s milk 
FF as infants. 

42 healthy 8-
year-old 
children 

Forty-two healthy children 
(BF: n= 22, FF: n=20) were 
studied by using structural 
MR imaging (3D T1-
weighted imaging) and 
blood oxygen level–
dependent fMRI (while 
performing tasks involving 
visual perception and 
language functions). 
Children were administered 
standardized tests evaluating 
intelligence (Reynolds 
Intellectual Assessment 
Scales) and language skills 
(Clinical Evaluation of 
Language Fundamentals). 
 
Exposure: BF, FF 

Total brain GMV did not differ 
between BF & FF groups. 
However, BF children had 
significantly higher regional GMV 
measured by voxel-based 
morphometry in the left 
inferior temporal lobe and left 
superior parietal lobe compared 
with FF children. BF children 
showed significantly more brain 
activation in the right frontal and 
left/right temporal lobes on fMRI 
when processing the perception 
task and in the left 
temporal/occipital lobe when 
processing the visual language task 
than FF children. The imaging 
findings were 
associated with significantly better 
performance for BF than FF 
children on both tasks. 
 
Findings indicate greater regional 
grey matter development and better 
regional grey matter function in BF 
than FF children at 8 years of age 
and suggested that infant diets may 
have long-term influences on brain 
development 
in children. 

 

The above-described literature demonstrates the positive impacts of breastfeeding on 

brain development in early childhood as measured by EEG and MRI, specifically when 

compared to formula feeding. The present study is unique in that the large sample size is 

derived from four large metropolitan areas and all participants have incomes below the federal 

poverty line. Based on the literature above describing the impact of low-SES factors and brain 

development in early childhood, one possibility exists that the links between early adversity 

and brain function may in part be accounted for by differences in breastfeeding approach. 

Finally, the current study will be the only one of its kind to evaluate the impact of breastfeeding 

on four frequency bands of brain waves (theta, alpha, beta, and gamma) as measured by 

electroencephalography (EEG).  
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2.10 Neuroplasticity, Socioeconomic Disparities, and Adaptive Brain Function 

 The socioeconomic status (SES) of a child is shaped by a variety of factors, including 

family income, parental occupation, and education. This chapter has previously discussed the 

patterns of associations between being from a lower SES as a child and outcomes including 

brain function and structure (Noble & Giebler, 2020). This section will review literature that 

suggests that the differences seen in brain function associated with SES can be considered 

adaptive rather than deficits due to our understanding of how neuroplasticity is influenced by 

experience. New research suggests that the adaptations in brain function in children who have 

had adverse experiences may in fact be contextually appropriate adaptations. These adaptations 

could be phenotypically perceived as “skills” that may support a child who is experiencing 

adversity (Ellis et al., 2020). This framing of differences in brain function as adaptations allows 

us to recognize the resiliency of a child’s brain to overcome adversity and develop the skills 

necessary to thrive within their environment. This area of study offers an alternative 

perspective to the way in which differences in brain function are perceived with respect to 

behavior, achievement, and other characteristics.  

 For example, in a study which measured ERPs while children were asked to selectively 

pay attention to a story being played in one ear while ignoring another story being played in 

the other ear found that children from low SES backgrounds demonstrated less evidence of 

neural supersession irrelevant to the audio stimuli when compared to their peers from higher 

SES backgrounds (Stevens et al., 2009). In the deficit framework, it could be perceived that 

the children from higher SES backgrounds had an advantage of skill over their peers, while the 

adaptive framework allows us to consider that the children from lower SES backgrounds may 

have developed this skill as a mechanism of vigilance that is more supportive of their real-life 

experiences. Similarly, another study has demonstrated that children with a history of physical 

abuse are more capable at detecting cues of anger (Shackman et al., 2007). This adaptation 
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though comes at the expense of poorer attentional control and increased brain activity in the 

presence of anger. The adaptive framework allows for the consideration that these children, 

who may suffer with respect to their attention in an academic setting, which could result in 

lower academic performance, have adapted in order to have the skills to navigate the realities 

of their environment which prioritizes safety over educational experience. Finally, the ability 

to understand differences in brain function as adaptations rather than deficits allows scientists 

to prioritize the identification of adaptive brain function that may allow children to improve 

their academic experiences. For example, children from low SES backgrounds are more likely 

to prefer spatial problem-solving skills over verbal strategies in arithmetic, in contrast with 

their peers from higher SES backgrounds (Demir et al., 2015). Additional research has 

similarly found differences in brain connectivity and structure with respect to SES and other 

aspects of a child’s environment, in relation to cognitive performance (Ellwood-Lowe et al., 

2020; Leonard et al., 2019). This body of literature offers an opportunity for future exploration 

to consider how children from different backgrounds with adaptive differences in brain 

function can be better served with respect to alternative teaching strategies and curricula (Ellis 

et al., 2020). 

2.11 Household Food Insecurity 

Household food insecurity is a crisis impacting millions of Americans; it 

disproportionately affects Black and Hispanic households as well as families living below the 

poverty line. Low educational attainment, being a renter or an immigrant are all additional risk 

factors for food insecurity. There are, however, a number of government programs, notably the 

Supplemental Nutrition Assistance Program (SNAP) and the Special Supplemental Nutrition 

Program for Women, Infants, and Children (WIC), which help alleviate food insecurity for 

families. 



  
 

 75 

The United States Department of Agriculture (USDA) utilizes the description of food 

insecurity as defined by Anderson 1990 ─ “Food insecurity is the limited or uncertain 

availability of nutritionally adequate and safe foods or limited or uncertain ability to acquire 

acceptable foods in socially acceptable ways.” The USDA Short Form (U.S. Household Food 

Security Survey Module 2) uses six items to determine household food security and is scored 

according to a set scale that allows for consistent responses. According to the current USDA 

statistics (2019), over 35 million people are living in food-insecure households. Among these 

households, over 5 million included at least one child, with rates appearing even higher among 

Hispanic and Black non-Hispanic households and those that met the Federal poverty guidelines 

(USDA, 2019). These at-risk children are of concern, as reduced access to adequate, nutritious 

food sources has been shown to increase a child’s risk of delayed or decreased cognitive 

development and lower academic performance (Landry et al., 2019; Fram et al., 2015; Koleilat 

et al., 2016; Hanson & Connor, 2014).  

2.11.1 Identifying Potential Risk Factors 

Hunger and undernutrition can arise as a result of food insecurity, depending on the 

severity and duration. Food insecurity may also cause the onset or exacerbate other 

conditions such as emotional stress, which is important to consider as socio-emotional 

functioning develops within the first years of life. A study conducted by Leitz (2018) 

identified specific factors that contribute to food insecurity in the United States. It was stated 

by Leitz, that it is well known that the majority of food-insecure households are associated 

with low income, poor      education, unemployment, or disability among young single 

parents who predominantly live in urban areas, specifically among ethnic minorities with a 

greater number of children living in the household. Other      research suggests      that      

households that are comprised of non-citizens, as well as renters     , are also prone to food 

insecurity (Bartfeld & Men, 2017).  



  
 

 76 

Additional studies are concerned with how food insecurity can affect infant nutritional 

needs and neurological development at a vulnerable age, as high food insecurity is associated 

with poorer diet quality and quantity, which may result in malnutrition which in turn has been 

associated with impaired brain development leading to cognitive deficits and poor academic 

achievement. However, according to a review conducted by Hanson and Conner (2014), their 

primary conclusions were that food insecurity is not consistently linked to poor diet quality in 

children but showed less fruit consumption, the amount of sugar consumption showed no 

association with food insecurity, and food insecurity among adults consisted of fewer 

vegetables, fruit, and dairy items that individuals reported as food secure, with lower intake 

of vitamin A and B6, calcium, magnesium, and zinc.  

2.11.2 Factors Impacting Food Insecurity  

Several risk groups are associated with food insecurity. From literature, we find that 

younger people, certain minorities (African American or Hispanic), income marital status 

(single mothers), and educational attainment (low levels) increase an individual’s or family’s 

risk of food insecurity (Bartfeld & Men, 2017).  Health status has been shown to directly affect 

food insecurity. According to Coleman-Jensen and Nord (2009), poor mental health, disability, 

and chronic physical health conditions not only increase the likelihood of being food-insecure 

but are also associated with more severe levels of food insecurity among households 

experiencing food hardship. In addition, research by Palar et al. (2016) identifies data showing 

that drug abuse, specifically injection drug use, and food insecurity are exceedingly prevalent 

among individuals living in the United States with HIV-hepatitis C virus co-infection (5). 

Several federal programs are available to individuals and families that are experiencing 

food insecurity. SNAP is the largest nutrition program in the U.S., is strongly associated with 

improved food security and positive health outcomes from the prenatal period through early 

childhood and into adulthood. A study by Ratcliffe et al. (2011) found that 15% of all U.S. 
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households and 40% of near-poor households were food insecure in 2009. Results suggest that 

receipt of SNAP benefits reduce the likelihood of being food insecure by roughly 30% and 

reduce the likelihood of being very food insecure by 20%. Other studies over the past ten years 

have shown that household food insecurity doubled among families with recently arriving 

immigrant mothers and their US-born children and child food insecurity remained these 

families remains alarmingly high (Lessa & Rocha, 2012; McClain et al., 2019), potentially due 

to fear of deportation (Bovell-Ammon et al., 2019). A study by Ettinger de Cuba and colleagues 

(2019) shows that among groups whose SNAP benefits were reduced or eliminated, the odds 

that these children and households experience food insecurity was significantly increased when 

compared to other groups with consistent SNAP participation. Reduction in benefits is 

associated with greater odds of fair or poor caregiver (1.43 times higher) and child health (1.22 

times higher) (Ettinger de Cuba et al., 2019). These findings support a correlation between 

socioeconomic status, food insecurity, and cognitive development from the prenatal period 

through adulthood, suggesting that increasing nutrition increases health, food security, and 

cognitive development.  

Another federal program is WIC, this assistance program is part of the Food and 

Nutrition Service of the United States Department of Agriculture and was created to promote 

proper healthcare and nutrition among low-income pregnant women, breastfeeding women, 

and children under the age of five. According to the CDC (2020), WIC counselors are trained 

to encourage breastfeeding among women that are currently pregnant and seeking help through 

this program. It has also been shown that a large disparity exists among women that are 

considered minorities and those that are qualified to receive benefits through the WIC program. 

These disparities are critical to minority populations within the United States as the National 

Immunization Survey (CDC, 2020) data shows that infants born to non-Hispanic Black women 

(73.7%) are less likely to ever breastfeed when compared with Hispanic infants (84.1%) and 
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Asian infants (90%). Unfortunately, data also shows that infants currently eligible for and 

receiving WIC benefits are less likely to ever be breastfed (77.0%). 

2.12 Association between Food Insecurity and Breastfeeding 

Research has shown that giving women access to educational sources and support helps 

promote the likelihood and duration of breastfeeding. However, providing formula through 

programs like WIC does not improve breastfeeding initiation (CDC, 2020). Education and 

maternal confidence in the ability to provide sufficient breastmilk are important factors 

regarding maternal choices related to breastmilk versus formula (Wallenborn et al., 2017). 

Recent studies have found no association between breastfeeding duration and household food 

insecurity, regardless of family income (Wong et al., 2019). However, research by Melchior et 

al. (2009) found that food insecurity among families with young children tends to be more 

frequent when the mother of the household experiences a mental health condition. These 

findings have been additionally supported by more recent research findings (Wu et al., 2018; 

Johnson et al., 2018). In addition, food insecurity predicted elevated rates of behavioral 

problems among children as maternal mental health issues can lead to less responsive 

caregiving and fewer early childhood stimulation opportunities in the home (Shankar et al., 

2017; Fram et al., 2015). 

2.13 Household Food Insecurity and Infant Nutrition 

A study by Landry et al. (2019) emphasizes that household food insecurity (HFI) is 

adversely related to both the physical and mental wellbeing of children of any age. These 

researchers examined a specific relationship between self-reported HFI and dietary quality 

within low-income households with children. However, unlike other studies, this study chose 

to have the children (n=598, mean age of 9.2 years old, 64% Hispanic, and 55% female) living 

in these low-income households complete a self-reported questionnaire that included a 

modified version of the 5-item Child Food Security Assessment (CFSA). The data collected 
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from this questionnaire showed that when assessing dietary quality (Health Eating Index-

2015), children experiencing food insecurity had less access to greens and beans, seafood and 

plant protein, and more access to added sugar when compared to children living in houses that 

are determined t be food secure. Similar study findings have been reported by other researchers 

in the past and have been outlined by authors such as Hanson and Conner (2014). However, 

many of these studies utilized questionnaires and interview answers that were provided by the 

parents, guardians, or others related to these at-risk children (Koleilat & Whaley, 2016; Fram 

et al., 2015). 

2.14 Household Food Insecurity and Infant Cognitive Development  

There has been an abundance of systematic reviews and meta-analyses in the past few 

years related to the subject of food insecurity and infant cognitive development. de Oliveira et 

al. (2020) conducted a systematic review and meta-analysis to investigate the association 

between household food insecurity and early cognitive development among children under 5 

years old. The research studies in this literature review were conducted in various countries 

(both high and low income) and showed that household food insecurity was associated with 

developmental risk (cognitive/vocabulary and cognitive/math) and was specifically associated 

with poor early cognitive development in children under the age of five. Household food 

insecurity was also identified as marginally correlated with cognitive/school readiness and 

reading, and motor development, as demonstrated by poor math and vocabulary skills even 

when studies were conducted in countries considered to be high and low to middle income. 

These findings are consistent with previous reviews focusing on food insecurity and cognitive 

development of children that are considered at risk (Shankar et al., 2017, Marshall et al., 2004; 

Tomalski et al., 2013). 

A review conducted by Noble & Geibler (2020) looked at recently published literature 

directly correlating socioeconomic inequality with brain structure and function among young 
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children. In addition, they reviewed recent research assessing specific experiential mechanisms 

that may be responsible for such connections including home language, environment, and 

family stressors. The same variables have been identified as adversities by others (Nelson & 

Gabard-Durnam, 2020). Some results of this review included findings such as an association 

between socioeconomic disadvantages and increased psychopathology and poorer 

neurocognitive performance in younger children as demonstrated by reduced overall gray 

matter volume and gray matter density. They concluded that research related to the mechanisms 

connecting socioeconomic disparities to neurodevelopmental outcomes are favorable for future 

identification of preventive and interventional actions. 

One of the most recent studies related to this topic has investigated the potential risk 

factors of food insecurity among young children and how these factors can influence how a 

child’s brain develops and they mature. In a study by El Din and associates (2019), 655 infants 

ranging from 3 to 24 months of age were assessed to determine if external factors such as low 

income increased a child’s risk of having a below-average cognitive composite score. A study-

specific questionnaire was designed for the assessment of socio-demographics then infant and 

maternal dietary practices were evaluated at physical examinations. Cognitive development 

was assessed through the Bayley Scales of Infant and Toddler Development (Bayley-III) and 

was administered consistent with the infant’s age-specific start point. The results from this 

investigation showed that the risk of having lower cognitive composite scores was substantially 

correlated with the infant’s paternal income. Infants belonging to lower to middle-income 

families demonstrated a risk that was 1.64 times higher than those in upper to middle-income 

families. Thus, demonstrating that lower income was a significant risk factor for food 

insecurity and can influence childhood cognitive development.  
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2.15 Household Food Insecurity and Childhood Academic Performance  

Food insecurity not only demonstrates adverse changes in early cognitive development 

but continues to display ongoing effects throughout school-aged children. Research related to 

the topic of academic performance has shown that food insecurity during critical years of 

neurocognitive development can have a lasting effect even when children are no longer 

experiencing food insecurity later in life. Alaimo et al. (2001) investigated the associations 

between food insufficiency and cognitive and academic outcomes among two cohorts of 

children ages 6 to 11 (n=3286) and 12 to 16 years (n=2063). The data for this assessment was 

collected from the Third National Health and Nutrition Examination Survey (NHANES III). 

The children were determined as food-insufficient if the family member responding to the 

survey reported that “his or her family sometimes or often did not get enough food to eat.” 

Cognitive functioning of the children was assessed using 2 subtests of the Wechsler 

Intelligence Scale      for Children–Revised (WISC–R) (Block Design and Digit Span), while 

academic performance assessed by using the reading and arithmetic      subtests of the Wide 

Range Achievement Test-Revised (WRAT–R)     .  

The results of this investigation provided evidence that there is an association between 

food insufficiency and academic performance in school-aged children. They found that in both 

age cohorts that WRAT and WISC scores were approximately 1.3 to 2.5 points lower and that 

these children were more than twice as likely to have repeated a grade (40% of food-insufficient 

teenagers) and missed nearly twice as many days of school when compared to food-sufficient 

children. This information supports previous findings from research conducted by Jyoti and 

colleagues (2005). This earlier study also found that among their prospective sample of 

approximately 21,000 children that were enrolled in kindergarten and followed through third 

grade,      food insecurity      was a significant predictor of poor developmental trajectories and 

that evidence of self-reported food insecurity is linked to specific developmental consequences. 
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As described in this section, it is known that food insecurity is negatively linked to 

academic performance and cognitive development in adolescents (Alaimo et al., 2001; de 

Oliveira et al., 2020; Jyoti et al., 2005). Self-reported-food insecurity has also been shown to 

be significantly associated with poorer quality diets in adolescents (Landry et al., 2019). Poor 

feeding behaviors have been shown to be negatively associated with cognition, memory, and 

attention in adolescents (Reichelt, 2016). This evidence suggests that food insecurity is 

negatively associated with both cognition and diet quality in adolescents, but the literature stops 

short of      measuring the impacts of food insecurity on brain development in early childhood. 

The current study aims to fill this gap by evaluating the impact of breastfeeding on four 

frequency bands of brain waves (theta, alpha, beta, and gamma) as measured by 

electroencephalography (EEG).  

  



  
 

 83 

 

 

Chapter 3: Methods 

3.1 Introduction  

The overall purpose of this study is to examine the relationships between brain function 

and nutritional status in early childhood. More specifically, we aim to determine the extent to 

which being breastfed, duration of breastfeeding, and household food insecurity may be 

associated with the relative and absolute power spectral density of four frequency bands of 

brain waves (theta, alpha, beta, and gamma) as measured by electroencephalography (EEG) 

among 243 mothers and their infants at age 12 months old participating in the control group of 

the Baby’s First Years study. This chapter presents the research questions and hypotheses, and 

describes and justifies the study design, target population, instrumentation, and procedures 

used to collect and retrospectively analyze the cross-sectional survey data. 

3.2 Research Questions and Hypotheses 

Little information is available regarding the extent to which breastfeeding, and 

household food insecurity is associated with increases or decreases in brain function. Whether 

the relative and absolute power spectral densities of the theta, alpha, beta, and gamma waves 

are associated with breastfeeding and household food insecurity is currently unknown. 

Research Question 1: To what extent is breastfeeding related to the brain function of 

infants at 12 months of age?  

Hypothesis 1.1: Whether an infant has ever been breastfed is associated with the 

relative and absolute power spectral densities of theta (decreased), alpha (increased), beta 

(increased), and gamma (increased) waves, as measured by EEG, among infants at age 12 

months, after controlling for covariates.  
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Hypothesis 1.2: A mothers’ duration of breastfeeding is associated with the relative 

and absolute power spectral densities of theta (decreased), alpha (increased), beta (increased), 

and gamma (increased) waves, as measured by EEG, among infants at age 12 months, after 

controlling for covariates. 

Research Question 2: To what extent is household food insecurity related to the brain 

function of infants at 12 months of age? 

Hypothesis 2:  Household food insecurity is associated with the relative and absolute 

power spectral densities of theta (increased), alpha (decreased), beta (decreased), and gamma 

(decreased) waves, as measured by EEG, among infants at age 12 months, after controlling for 

covariates. 

3.3 Study Design 

The study design is defined as non-experimental, or observational, because the extent 

to which breastfeeding, and household food insecurity are related to the brain function of 

infants at age 12 months was investigated without intervention or manipulation of the 

participants by the researcher. A cross-sectional survey is used to collect quantitative data to 

understand the relationships between breastfeeding, food insecurity, and brain function in a 

sample of 243 mothers and their infants at age 12 months old. The current study is also defined 

as analytical/inferential because it involves multivariate statistical analysis of secondary data 

to examine the relationships between more than two naturally occurring variables collected in 

a cross-sectional survey (Hair et al., 2010; Tabachnick & Fidell, 2013). 

The limitation of an observational study design is that cross-sectional survey data 

cannot establish causal relationships between naturally occurring variables, because there is no 

causation without manipulation (Bollen & Pearl, 2013; Collier et al, 2010; Taq, 2011). Per 

Hung et al., “there must be a convincing body of evidence to take the next step on the path to 

inferring that one variable causes the other” (Hung et al., 2017, p. 904). Therefore, using an 



  
 

 85 

observational study design, it is not possible for the researcher to prove definitively if nutrition 

(specifically breastfeeding and food insecurity) has a direct or indirect effect on brain 

development in early childhood. 

Observational studies do not involve the random allocation of participants into control 

vs. experimental groups, nor do they evaluate the effects on specified outcomes of 

manipulating one or more potential causal factors (Concato et al., 2000; Guyatt et al., 2008). 

Nevertheless, observational research designs involving the inferential analysis of relationships 

between naturally occurring variables are relevant in behavioral nutrition research. An 

observational design was the only practicable method of studying the impact of nutrition on 

brain development because an experimental design was not feasible for ethical and logistical 

reasons (i.e., it was unethical and practically impossible to experimentally investigate the 

outcomes on brain development of manipulating the nutrition of the participants). Furthermore, 

observational designs often help to generate significant evidence to support the testing of 

hypotheses using experimental designs, leading ultimately to the establishment of causal 

relationships (Mann, 2003; Thompson et al., 2005). 

3.4 Target Population  

3.4.1 Baby’s First Years: Sampling and Data Collection  

The sampling and data collection procedures were performed by investigators 

participating in the BFY study. This study is a large, multi-center, NIH-funded randomized 

clinical trial (NLM, NCT03593356). The purpose of the BFY project was to fill gaps in 

scientific knowledge about the role of economic resources in early childhood development. 

The sampling procedure is outlined in Figure 3 using a Consort diagram.  
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. 

Figure 3 Consort diagram  

In the BFY Parent study, a total of 13,482 mothers were assessed for eligibility shortly after 

giving birth at 12 hospitals across four metropolitan areas with a baseline interview using the 

following criteria: (1) of legal age for informed consent (age 18 or older in NY, MN and LA; 

19 or older in NE owing to its higher age of consent); (2) household income below the federal 

poverty threshold in the calendar year prior to the interview, counting the newborn; (3) infant 

not requiring admittance to the intensive care unit; (4) residence in the state of recruitment; (5) 

mother reports that she is not likely to move to a different state or country in the next 12 months; 



  
 

 87 

(6) infant is discharged in the custody of the mother; (7) mother is English or Spanish speaking. 

A total of 1051 mothers were recruited between May 2018 and June 2019, meaning that they 

were judged to be eligible based on the information provided in the baseline screening 

interview, and they consented to participate. 

The mothers were randomly assigned following recruitment to two groups which were 

well-balanced in terms of their baseline characteristics. A sample of 1,003 mothers and infants 

were assigned at random within each metropolitan area into either an experimental group or a 

control group. The division of the sample was 40/60, stratified by the four sites, as opposed to 

50/50 in order to reduce total study costs. The sample was distributed by site as follows: 121 

mother-infant pairs in MN; 295 in LA, 295 in NE and 289 in NY. The high-cash gift group 

(400 or 40% of 1000 mothers) were allocated to receive unconditional cash gifts of $333 per 

month for 40 months. The low-cash gift group (600, or 60% of 1000 mothers) were allocated 

to receive a nominal gift of $20 per month for 40 months. Because this money was given in the 

form of a gift, it was not considered to be taxable income. The Baby’s First Years research 

team advocated for legislation within each of the four states in order to ensure that study 

participants would not lose access to social services as a result of their increase in income from 

the cash gift. The sample for the current study includes 243 mothers and infants in the control 

group only. Data collection began in July 2019 and is currently ongoing as of August 2021. 

In order to understand the longitudinal effects of economic resources in early childhood 

cognitive and behavioral development, the differences between the high-cash and low-cash gift 

groups are assessed when the infants are one, two, three, and four years old. The five data 

collection points are referred to as: “Baseline”, “Age 1”, “Age 2” “Age 3, and “Age 4.” The 

data collection point used in the current study is “Age 1”. No data from the baseline, Age 2, 

Age 3, or Age 4 collection points are used in this study.  
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The parent study collected data related to brain development, child cognition, language, 

memory, self-regulation, and socio-emotional development. For the current study, only data 

related to food security, breastfeeding, and brain development, were used to answer the study 

aims. Figure 4 visually depicts the parent study’s data collection timeline and highlights the 

time period during which (July 2019 – June 2020) survey data and EEG data was intended to 

be collected. EEG data and survey data were collected during in person visits with trained 

researchers up until March 2020 when the first lockdown of the COVID-19 pandemic began 

in New York. Thus, data for this study was collected in advance of that lockdown in March 

2020. A total of 605 mother and infant pairs completed pre-pandemic age-one visits, a total of 

577 mothers consented to EEG data collection (95% consent rate). A total of 142 infants did 

not contribute a usable EEG recording for reasons including excessive artifact during recording 

(N=52), poor cap fit (N=9), infant fussiness (N=62), technical problems (N=16), and 

interviewer error (N=3). Ultimately, 435 infants provided usable data for analysis (75% of 

participants who consented to EEG collection).  

 

 

 

Source: https://www.babysfirstyears.com/data-collection-1 

Figure 4 BFY Study Timeline and Current Study Data Collection   

Current study 
data collected 
pre-Covid-19  
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3.5 Current Study: Association of Breastfeeding and Food Insecurity on Brain 

Function in Early Childhood  

3.5.1 Ever Breastfeeding and Breastfeeding Duration 

This study focuses on two constructs as independent variables: maternal breastfeeding 

behaviors and household food insecurity. The Baby’s First Years (BFY) Age 1 Survey includes 

the items in Table 3 as measurements of whether the infants have been breastfed (yes or no) 

and the duration of breastfeeding (months) as measured at age 1. The reliability of the self-

reported answers about infant feeding is reported to be moderately high among mothers of 

infants up to 35 months old. In a convenience sample of 41 mothers (35 non-Hispanic white 

mothers, 5 Hispanic white mothers, and 1 Black) of infants between the ages of 19 and 35 

months were interviewed and surveyed between 2012 and 2014. A weighted Cohen’s κ for 

breastfeeding duration at 12 months was 0.76 (95% CI: 0.58, 0.95) within this sample. It was 

found that the questions about the timing of breastfeeding were accurate to within about one 

month (O’Sullivan et al., 2017).  

Table 3 Measurement of Breastfeeding 

Variable Question Measures 
Ever breastfed Did you ever breastfeed? 0 = No 

1 = Yes 

Duration of 
breastfeeding 

In what month(s) did you breastfeed 
[CHILDNAME]? 

Time (Months) 
  

 

3.5.2 Household Food Insecurity 

Household food insecurity is measured with five of the six questions included on U.S. 

Household Food Security Survey (FSS) Module Short Form devised by the USDA (available 

at https://www.ers.usda.gov/media/8282/short2012.pdf). This abbreviated question set is a 

subset of a larger 18-item survey also administered by the USDA. A limitation of this shorter 
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tool is that it is not sensitive to severe ranges of both adult and child food insecurity where 

greater adult and child hunger occur (USDA, Guide 2000).  

The parent study, Baby’s First Years, inadvertently eliminated the following question: 

“In the last 12 months, were you ever hungry but didn't eat because there wasn't enough money 

for food?”. Table 4 displays the questions used in this instrument to elicit information regarding 

five aspects of food security. With respect to food insecurity, a clear limitation of this study is 

the inability to detect very low food insecurity, as defined as the USDA, due to the elimination 

of one of the six items of this tool.  

Table 4 U.S. Household Food Security Survey (FSS) Module Short Form 

Question Response 

The food that we bought just didn’t last, and we didn’t have money to 
get more. 

Often true= 1 
Sometimes true=1 
Never true=0 

I/we couldn’t afford to eat balanced meals. Often true= 1 
Sometimes true=1 
Never true=0 

In the last 12 months, did you ever eat less than you felt you should 
because there wasn't enough money for food? 

Yes =1 
No =0 

In the last 12 months, did you or other adults in your household ever 
cut the size of your meals or skip meals because there wasn't enough 
money for food? 

Yes =1 
No =0 

If they responded “Yes” to the previous question, then they were also 
asked: “How often did this happen.” If they answer “No” to the 
previous question, then this question was skipped. 

Almost every month =1 
Some months but not every 
month =1  
Only 1 or 2 months =0 

Note: Parent study utilized a modified version where one question was omitted.  
 

In advance of these questions, the interviewer qualified the questions by indicating, “For these 

statements, please tell me whether the statement was often true, sometimes true, or never true 

for you or your household in the last 12 months—that is, since last [current month].”  This tool 

is designed to allow researchers to assign food security status to households. For questions with 

the responses of “often true,” “sometimes true,” or “never true,” “often true” and “sometimes 

true” were assigned the value of 1 as an affirmative response and “never true” the value of 0. 
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For questions with a “yes” or “no” answer choice, “yes” was coded as a 1 as an affirmative 

response and “no” as a 0. Finally, “almost every month” and “some months but not every 

month” were coded as an affirmative response with a value of 1 and “only 1 or 2 months” was 

coded as a 0. Participants could receive a raw score between a 0 and a 5. For the purpose of 

this dissertation, food security status was dichotomized where scores of 0-1 were given a 0 

(food secure) and scores of 2-5 were coded as 1 (food insecure). Table 5 illustrates food security 

status designation.  

  Table 5 Food security status for households 

Food security status Raw score 

Food secure  0-1 

Food insecure 2-5 
Note: Adapted from USDA, Guide 2000  

 The dichotomization of the HFI variable was done due to the accidental elimination of 

one question from the U.S. Household FSS Module short form in age 1 data collection by the 

parent study, Baby’s First Years. Figure 5, from the USDA Economic Research Service (ERS) 

(2019) illustrates the percentage of households reporting each indicator of food insecurity by 

food security status.  

 
Figure 5 Percentage of household reporting each indicator of food insecurity, by 

food security status, 2019 (Coleman-Jensen et al., 2019) 
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This figure illustrates that no food secure households in 2019 affirmed that “In the last 12 

months, were you ever hungry but didn't eat because there wasn't enough money for food?”. 

Therefore, the omission of this question only limits the ability to discern a distinction between 

those with low food security and very low food security, which are scored as 2-4 affirmations 

and 5-6 affirmations to the U.S. Household FSS Module Short Form, respectively. For this 

reason, the HFI variable was dichotomized to allow for the detection of any level of food 

insecurity.  

Cronbach’s alpha for the five-item version of this instrument was 0.84 for the sample 

used in this dissertation. This internal consistency measure of reliability is greater than the 

minimally recommended value of 0.70 for Cronbach’s alpha.  

The six-item U.S. Household FSS module has been validated as a food insecurity 

screener by Blumberg et al., 1999, where the shorter module was found to correctly classify 

food insecurity 97.7% of 44,647 households participating in the 1995 Current Population 

Survey’s food security module whose food security was measured using an 18-item scale. In 

addition, a study conducted in the Caribbean within a diverse population of Black and Asian 

participants validated the six-item U.S. Household Food Security Survey (FSS) Module Short 

Form in a sample of 531 participants in 286 households (Gulliford et al., 2004). The test-retest 

correlation coefficients were adequate (Spearman’s rho = 0.52 to 0.79) and the internal 

consistency reliability was excellent (Cronbach's alpha = 0.87). This instrument is also reported 

to identify food insecure households with a high level of sensitivity (i.e., an accurate true 

positive rate) and with a high level of specificity (i.e., an accurate true negative rate). Total 

scores for food security were associated with race/ethnicity and socioeconomic status of the 

respondents as expected, providing some predictive validity evidence. Moreover, food security 

was associated with reduced consumption of green vegetables after controlling for income and 

education.  
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3.5.3 Covariates  

 The BFY Age 1 Survey Instrument also includes items to measure the covariates. For 

each covariate of interest, Table 6 defines the underlying question used to operationalize each 

variable as well as the level and scale of measurement. 

Table 6 Covariates 

Variable Item description Level Scale 
Maternal Race/ 
Ethnicity 

Measurement of maternal race is based on a series of 
questions and coded into a single variable.  
 

Nominal 
 
 

1 = Hispanic 
2 = White 
3 = Black 
4 = Other 
5 = Multiracial 

Maternal age Provides the respondent’s age based on their birthdate. Ratio Time (Years) 

Maternal 
mental health 

A dichotomous measure of depression based on the 
PHQ-8 inventory. 

Interval  1 = Depressed 
0 = Not depressed 

Maternal 
physical health 

Overall, how would you describe your health? Ordinal* 1 = Excellent 
2 = Very good  
3 = Good  
4 = Fair 
5 = Poor 

Maternal 
education 

What is your highest achieved education level?  
 
 

Ratio Mother’s number of years 
of completed education. 

Maternal 
substance use - 
smoking 

Since your one-year old child was born, how often did 
you smoke cigarettes, e-cigarettes or a tobacco vape 
pen? 

Ordinal* 1= Every day 
2 = Several times a week 
3 = Several times a month 
4 = Less than once a month 
5 = Never in the last year 

Maternal 
substance use-
alcohol 

Since your one-year old child was born, how often did 
you drink alcohol? 

Ordinal* 1 = Every day 
2 = Several times a week 
3 = Several times a month 
4 = Less than once a month 
5 = Never in the last year 

Index of 
Economic 
Stress 

How often do you worry about being able to meet your 
monthly living expenses? 

Ordinal* 1 = All the time 
2 = Very frequently 
3 = Occasionally 
4 = Rarely 
5 = Very rarely 
6 = Never 

Services 
Support 

Please tell me after each one if you receive it or not: 
  -SNAPa                                     -Cash assistance 
  -Early Head Start                      -Head Start  
  -State Unemployment               -Medicaid  
  -Housing assistance                  -WICb 
  -LIHEAP/heat/AC assistancec   -Other 
  -None                         

Nominal Responses were saved on 
binary scale (1 = Yes; 0 = 
No)  for each service. 

Epoch Count The number of segments of data within each brain wave.  Ratio Measured by EEG 
a Supplemental Nutrition Assistance Program 
b Women, Infants, & Children 
c Low Income Home Energy Assistance Program 
Note: An asterisk (*) indicates variables that were dichotomized in the present study, as indicated in the text. 
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In all cases, the ordinal variables were transformed to binary variables as follows. A 

mother’s reported substance use of both alcohol (“Never in the last year” vs. those that did), 

smoking habits (“Never in the last year” vs. those that did) and physical health (“Poor” and 

“Fair” vs “Good,” “Very Good” and “Excellent”) were dichotomized. Financial stress was also 

dichotomized from its original ordinal coding (mothers who reported being in the never, very 

rarely, and rarely categories were coded as 0, where any financial stress was coded as a 1). 

Specifically, the covariates are the following variables: maternal race/ethnicity, age, 

mental health, physical health, education, substance use (i.e., behaviors of using either alcohol 

or cigarettes), an index of economic stress, services support, and epoch count. Most of these 

are measured on a nominal or ordinal scale. The only interval scale variable is for mental health, 

which is measured with items extracted from the Patient Health Questionnaire and a cutoff 

score of 10 was used (PHQ-8; Kroenke & Spitzer, 2002). Within the subgroup of 243 mothers, 

the PHQ-8 shows good reliability with a Cronbach’s alpha of 0.82. This estimate is similar to 

Shin et al. (2019), who reported a Cronbach’s alpha of 0.89 for the PHQ-8. Shin et al. (2019) 

also report evidence about convergent validity for the PHQ-8. As expected, the PHQ-8 is 

strongly correlated with the Hamilton depression rating scale (Spearman correlation= 0.62).  

The BFY instrument also includes items extracted from the Global Health Tool (Idler 

& Beryamini, 1997) to measure maternal physical health of the mothers, and items extracted 

from the instrument devised by Kling, Liebman and Katz (2007) to measure maternal substance 

abuse, specifically alcohol and smoking cigarettes. The investigators also collected state and 

local administration data regarding parental employment, current utilization of public benefits 

such as Medicaid and Supplemental Nutrition Assistance Programs (SNAP), and any 

involvement in child protective services. Finally, epoch count was also included as a covariate, 

which is the number of segments the EEG data was spliced into for analysis. A higher epoch 

count indicates more data for analysis purposes. This range is variable depending on the length 
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of data initially available for analysis and cleaning, which is dependent upon the real-life 

conditions of an infant tolerating an EEG cap for a period of around 5 minutes. Within 

developmental EEG data collection, these segments are often between 1-2 seconds long as 

infant EEG data often contains “noise” resulting from movement, eye blinks, or other sources. 

3.5.4 EEG 

 The sampling and data collection procedures for EEG were performed by investigators 

participating in “The Baby’s First Years” (BFY) study. EEG data was collected in order to 

assess functional brain activity of a sample of 243 infants at age one year old using a mobile, 

in-home EEG system across all four sites. This system was previously evaluated for utility, 

cultural appropriateness and feasibility (Troller-Renfree et al., 2021). Interviewers were trained 

using the findings of this pilot to collect EEG data in-home. EEG was recorded using a 20-

channel Neuroelectrics cap with an Enobio 20 amplifier (Neuroelectrics, Barcelona, Spain). 

The sampling rate was 500 Hz and a DRL/CMS reference configuration placed near the 

mastoid bone was used for reference. Following the placing of the Neuroelectrics cap, infants 

were seated on their mother’s laps in a dim room in front of a soundless video of infant toys. 

EEG data was collected for approximately five minutes per infant and up to seven minutes in 

order to ensure approximately five minutes of EEG data without infant movement or fussing. 

For the parent study, Baby’s First Years, there were 577 mothers who consented to 

EEG data collection out of the 605 participants who were able to complete their age 1 visits 

before the pandemic and COVID-19 lockdowns were enforced, which halted in-person data 

collection for the remaining 395 mother and infants within both the treatment and control 

group. Of the 577 infants who participated in EEG data collections, 142 infants did not 

contribute usable data due to technical problems, infant fussiness, and interview error. 435 

infants did contribute usable data for analysis. Of these 435 infants, 251 infants were of the 

control group from which the sample for this study is derived.   
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EEG data was cleaned and prepared for analysis by researchers at Teachers College, 

Columbia University. EEG data was prepared for analysis using the EEGLAB toolbox, the 

miniMADE pipeline, and MATLAB scripts that allows for processing of the data to ultimately 

derive relative and absolute power (Debnath et al., 2020; Delorme & Makeig, 2004; The 

MathWorks). This researcher did not participate in the preparation of EEG data for analysis, 

but an explanation of the process follows (Troller-Renfree et al., 2020). Data were high-pass 

filtered at 0.3 Hz and low-pass filtered at 50 Hz. Data were segmented into epochs of 1 s with 

50% overlap between epochs. In developmental research, it is important to review EEG data 

to remove ocular artifacts from eye movement and other generic noise in order to have a 

cleaned dataset for analysis (Debnath et al., 2019). Data was then cleaned to ensure that 

artifacts outside of brain function activity were removed from analysis. Ocular artifacts were 

identified and removed by applying a voltage threshold rejection (+/- 250 μV) to four frontal 

channels (FP1, FP2) and if both frontal electrodes exceeded the voltage threshold of +/- 250 

μV in an epoch, that epoch was removed from further processing and analysis. Additional 

artifacts were identified in epochs using three criteria: a voltage threshold as described above 

(+/- 250 μV), a flat channel threshold where the range of activity was less than 1 μV for at least 

50% of that epoch, and a jump channel threshold which was identified as a >50 μV increase 

from sample to sample. Data were then re-referenced to an average of T7 and T8 

(corresponding to electrodes above the temples) in order to express voltage at the EEG scalp 

channels with respect to a new reference. Epochs that contained fewer than 16 artifact-free 

electrodes and participants who had less than 20 artifact-free epochs were excluded from 

analysis. Finally, a Fast Fourier Transformation (FFT) with a 1-second Hanning window was 

applied to the epoched data. The FFT is used to estimate the averaged power spectral density, 

which is a single number summarizing the contribution of a given frequency band to the relative 

and absolute power of the signal, expressed in μV2/Hz (Vallat, 2018, Tomalski et al., 2013). 



  
 

 97 

Absolute power spectral densities were computed as interval level measures of four frequency 

bands: theta (3-5Hz), alpha (6-9 Hz), beta (13-19 Hz) and two gamma frequency ranges (21-

30 Hz, 31-45 Hz). Average absolute power is computed for each hemisphere across electrodes 

in five electrode groups as is visually defined below in Figure 6. Each frequency band is then 

averaged across all included electrodes, a process which creates whole-brain measurements of 

theta, alpha, beta, low-gamma, and high-gamma power. Finally, whole-brain relative power is 

calculated by dividing absolute power of a single frequency band, such as alpha, by the total 

absolute power of all the frequency bands (theta, alpha, beta, low-gamma, and high-gamma 

power). Developmental literature frequently utilizes relative power as a measurement of brain 

function and as such relative power values are used in this dissertation (Vanderwert et al., 

2016). Power is reflective of the number of neurons firing synchronously within a given 

frequency band (i.e. 3-5 Hz for theta) (Perone et al., 2018). EEG analysis code can be found at 

https://github.com/ChildDevLab. 

 

Figure 6 Electrode Groupings by Region (Troller-Renfree, et al., 2020)   

The reliability and validity of quantitative EEG involving the measurement of power 

spectral densities of brain waves was assessed by Thatcher in a review of hundreds of peer-

reviewed articles (2010). The results of a literature review indicated that quantitative EEG 
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exhibits high levels of split-half and test–retest reliability (90%) over many days and weeks in 

adolescent and adult EEG studies, since older subjects are needed in order to correlate findings 

with other neuropsychological tests.  Quantitative EEG also exhibits high levels of predictive 

validity, indicated by replicable correlations with other neurological measures and accurate 

predictions of outcomes on other neuropsychological tests. The content validity of quantitative 

EEG has been established by correlations with independent measures such as MRI and 

neuropsychological tests related to various clinical disorders. In contrast, non-quantitative or 

qualitative EEG, based on simple visual examinations of the EEG signal traces has almost zero 

predictive validity and a very low level of interrater agreement.  

3.6 Data Analysis Plan 

 The cross-sectional data from this study is being analyzed to determine if there are 

associations between breastfeeding and EEG measured theta, alpha, beta, and gamma relative 

and absolute power, and if there are associations between food insecurity and EEG measured 

theta, alpha, beta, and gamma relative and absolute power in one year-old children. 

Figure 7 illustrates details about the final sample used in this dissertation. Of the 486 

cases for which data was retrieved, 16 cases were missing values for all DV measures. Of these 

470 cases, 200 subjects were discarded since they participated in the treatment group - leaving 

270 cases in total. Nineteen cases with fewer than 20 artifact-free epochs were then dropped, 

leading to 251 cases. Finally, since missingness in the independent variables and covariates 

was limited, listwise deletion was used as a missing data strategy. Complete case analysis led 

to only 3.2% (n=8) of the observations not being used in the final model (See Figure 7 to see 

which variables had missing data). 243 mother and infant pairs were included in the regression 

models for relative and absolute theta, alpha, beta, and gamma power at the end of chapter 4.  
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Figure 7: Flow chart illustrating the sample used in this study 

Multiple linear regression (MLR) models based on ordinary least squares (OLS) 

estimation are used to test the research hypotheses. The rationale for using MLR is that this 

modeling method has for many years been widely applied in medical research (Cleophas & 

Linderman, 2018). MLR is commonly used to facilitate the prediction of interval level 

dependent variables, which are usually clinical, biochemical, or physiological outcomes (e.g., 

the four frequency bands of the EEG signal used to measure Child Brain Function) based on 

the values of two more independent variables measured at the interval, binary, nominal, or 

ordinal level which are usually the hypothesized causes of the outcomes (e.g. Duration of 

Breastfeeding, Ever Breastfed, and Household Food Insecurity). 
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 MLR is underpinned by a generalized predictive model defined by the equation: 

𝒀𝒊 = 𝜷𝟎 + 𝜷𝟏𝑿𝟏 +	⋯+ 𝜷𝒌𝑿𝒌 + 𝜺𝒊 

Where 𝑌% is the observed value of the dependent variable for person i; 𝛽& is a constant 

or baseline value; and 𝛽', 𝛽(...𝛽) are the partial regression (β) coefficients for k independent 

(X) variables (Rawlings et al, 2013). The standard assumptions of a MLR model are assessed. 

Namely, these assumptions are: (a) the residuals (i.e., the differences between the predicted 

and measured values of the dependent variable) should be normally distributed and not skewed; 

(b) the mean of the residual distribution should be around zero (c) multicollinearity is not 

extreme (i.e., the independent variables should not relate to each other); and (d) there must be 

homoskedasticity (i.e., the error variance must be equal across the independent variables and 

the covariates). If these strict assumptions are violated, then the results of MLR are misleading, 

and another method of testing the hypotheses is necessary (Rawlings et al, 2013).  

Multicollinearity is assessed via a correlation matrix as seen in Table 7 (note: there is a 

complete correlation matrix which includes all independent variables and covariates in the 

Appendix).  

Table 7  Correlation table for selected numeric predictor variables 

  1 2 3 4 5 6 7 8 9 10 
1. Ever BF 1.00          
2. BF duration 0.48 1.00         
3. HFI 0.03 0.04 1.00        
4. Age -0.01 0.05 -0.04 1.00       
5. Depression  -0.13 -0.07 0.39 -0.05 1.00      
6. Physical Health 0.01 -0.04 -0.25 -0.06 -0.34 1.00     
7. Education 0.11 0.03 -0.11 0.03 0.05 0.14 1.00    
8. Smoking status -0.26 -0.15 0.08 0.09 0.21 -0.17 0.00 1.00   
9. Alcohol status -0.08 -0.13 0.03 -0.05 0.07 0.02 0.05 0.19 1.00  
10. Financial hardship -0.04 -0.02 0.36 -0.04 0.24 -0.09 0.01 0.12 0.07 1.00 

Note: All ordinal variables were dichotomized as described above. Bolded numbers indicated correlations greater 
than 0.30 in absolute value.  
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Multicollinearity is only a problem if the bivariate correlation coefficients between pairs of 

independent variables are > 0.8 (Yoo et al., 2014). Since this assumption can be checked prior 

to fitting the regression models, a correlation table with all the independent variables and 

selected covariates is shown (note that even among the covariates not shown, like maternal 

race, collinearity is not a problem). As the correlation matrix shows, there is clearly not a 

collinearity problem in the data. The highest correlations are for ever breastfed and 

breastfeeding duration (r=0.48), HFI and maternal depression (r=0.39) and HFI and financial 

hardship (r=0.37). Food insecurity (HFI) is associated with both increased levels of maternal 

depression (PHQ8) and experiencing financial difficulties.  

Note the high correlation between ever breastfed and breastfeeding duration is sensible 

since they are merely different operationalization of a similar construct. Given the importance 

of these two variables in the current research, adding both variables to the same regression 

model is avoided since their large correlation would introduce a moderate degree of 

multicollinearity. Since multicollinearity undermines statistical power, it is better to estimate 

separate models for each operationalization of breastfeeding behaviors. The remaining 

assumptions are assessed as each model was estimated. Residual normality is checked visually 

with a QQ plot, while the homoskedasticity assumption is assessed with partial residual plots. 

The assumptions only violated for the models which had (both relative and absolute) gamma 

power as a DV. 

Specifically, the error distribution had significant skew and was not normally 

distributed. There was an additional problem that the homoscedasticity assumption was 

violated. Partial residual plots showed that the error variance correlated with predicted values 

of Y. Although OLS estimators are still unbiased in the presence of heteroscedasticity, the 

standard errors of the regression coefficients can become both biased and inconsistent (Midi, 

Rana & Imon, 2009). A direct consequence of this bias in the standard errors is that the t-
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statistic itself (which is beta divided by the standard error) is itself biased – becoming either 

too liberal or too conservative in making statistical significance decisions depending on the 

context. A common solution to a violation of the homoscedastic assumption is using robust 

standard errors (Midi, Rana & Imon, 2009). Robust regression also helps overcome violations 

of the normality assumptions. Robust regression was therefore used for the set of models 

estimated for Gama. Specifically, Huber-white standard errors, which are also called 

heteroscedastic-consistent standard errors, were used for the subset of models where Gama was 

specified as the DV. The lack of violation for all other models based on the other DVs is not a 

surprise. Histograms of all DV measures were approximately normal in shape (see below in 

chapter 4). When the DV is normally distributed, the standard assumptions of OLS regression 

are typically not problematic. That was the case here. Other than the models with gamma as a 

DV, the QQ-plots showed the sample quantiles followed the theoretical quantiles along the 45-

degree diagonal in the test for normality. The residual distribution was also revealed to have 

relatively constant variance across all the predicted values of Y.  

3.7 Power Analysis 

 Power analysis was conducted with G*Power software (Faul et al., 2009) using the 

following assumed parameters: Small effect size (R2 = .10); conventional level of statistical 

significance (α = .05); a high level of statistical power (1 - β = .80); with a maximum of eleven 

predictors. The recommended total sample size = 179. As Faul et al. (2009) observe, this 

sample size recommendation applies to testing both main and interaction effects. In 

comparison, the expected sample size is 243 infants at age one year (and their mothers). The 

expected sample size is therefore large enough to provide a high level of statistical power to 

test the hypotheses across all four brain waves effectively using the proposed data analysis 

plan. 
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Chapter 4: Results 

 This chapter starts by describing the study’s sample of 243 mothers. Descriptive 

statistics are introduced showing the frequency distributions (counts and percentages) for 

categorical variables and quantitative (mean, standard deviation (SD), minimum and 

maximum) information for numeric variables. Tables 8 through 12 show descriptive 

information for all categorical and numeric variables. After describing the sample’s 

characteristics, descriptive information for the four dependent variables is presented in Table 

13. These univariate descriptive statistics are followed by exploratory bivariate descriptive 

procedures (e.g., procedures which compare two variables, like comparing ever breastfed and 

relative alpha power). This chapter concludes with reporting all relevant multiple linear 

regression output. The missing data strategy employed in this dissertation is listwise deletion 

given the small missingness percentage across all variables. This led to a final sample size of 

243 being used in the regression analyses. All data included in this chapter was collected during 

the age 1 survey visits for the parent study, Baby’s First Years.  

4.1 Sample characteristics 

Inclusion criteria for the BFY study were that the women were at least 18 years old, 

their infants were born without complications, they were residents of the state of recruitment 

and were not likely to move in the next 12 months, their infants were discharged into their 

custody, and that that they were either English or Spanish speaking. Table 8 highlights 

characteristics of the 243 mothers within this study.  
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Table 8 Characteristics of Mothers (n=243) 

Characteristic Category 
Frequency   

 Count Percentage Mean SD 
Maternal Age -- -- -- 26.99 6.08 
Maternal Education -- -- -- 11.97 3.03 
Maternal Race/ 
Ethnicity 

White 34 14.0 -- -- 
Black/African 
American 

88 36.2 -- -- 

Hispanic,  
Latina,  
Spanish 

99 40.7 -- -- 

Other 10 4.1 -- -- 
Multiracial 12 4.9 -- -- 

Maternal mental health Depressed (10 < PHQ8) 32 13.2 -- -- 
Not depressed (10 > 
PHQ8) 

211 86.8 -- -- 

Maternal 
physical health 

Excellent 58 23.8 -- -- 
Very good  47 19.3 -- -- 
Good 87 35.8 -- -- 
Fair 43 17.7 -- -- 
Poor 8 3.3 -- -- 

Maternal substance use 
- smoking 

Every day 24 9.8 -- -- 
Several times a week 16 6.6 -- -- 
Several times a month 9 3.7 -- -- 
Less than once a month 4 1.7 -- -- 
Never in the last year 190 78.2 -- -- 

Maternal substance 
use-alcohol 

Every day 1 0.4 -- -- 
Several times a week 0 0.0 -- -- 
Several times a month 18 7.4 -- -- 
Less than once a month 80 32.9 -- -- 
Never in the last year 144 59.3 -- -- 

Index of Economic 
Stress 

All the time 58 23.8 -- -- 
Very frequently 41 16.9 -- -- 
Occasionally 58 23.9 -- -- 
Rarely 37 15.2 -- -- 
Very rarely 21 8.6 -- -- 
Never 28 11.5 -- -- 

Site Louisiana 66 27.2% -- -- 
Minnesota 34 14.0% -- -- 
Nebraska 73 30.0% -- -- 
New York 70 28.8% -- -- 

Count of Support 
Service Received 

-- -- -- 2.97 1.62 

 

By design, the principal investigators who collected the BFY data sampled women 

living below the poverty line. The background of mothers in the sample of 243 mothers is 

consistent with this intent. For example, Table 8 shows that mothers completed 12.0 years of 

education (SD=3.1) on average, which is equal to the 12 years it would take most to complete 
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high school without attending any post-secondary education. Many mothers also reported 

worrying about financial stress. Approximately one-fourth (23.8%) of the sample reported 

worrying “All the time” about their financial wellbeing. The average age of mothers included 

in the sample for this study was 26.9 years (SD=6.08) and most of the mothers were self-

described as either Black (n=88, 36.2%) or Hispanic (n=99, 40.7%), while approximately 

14.0% identified as White and the rest were either other (4.1%) or multiracial (4.9%). The 

participants are evenly distributed across three states (LA, MN, NY), with relatively fewer 

mothers living in MN (only 14.0%). Another background variable that correlates with 

socioeconomic status is the reported count of federal programs (e.g., Head Start, Medicaid, or 

WIC, full list of government programs that were asked about described in chapter three and 

shown in Table 9) that a mother reported receiving or participating in. On average, mothers 

reported participating in 2.97 of the federal programs asked about, with substantial variation 

(SD=1.62). Table 9 describes in further detail maternal participation in social services. 

Table 9 Maternal participation in selected social services (n=243) 

Social service 
Frequency 

N Percentage 
SNAPa 160 65.8% 
Free or reduced childcare 49 20.2% 
Early Head Start 20 8.2% 
Head Start 15 6.2% 
WICb 173 71.2% 
Unemployment insurance 1 0.4% 
Cash assistance 35 14.4% 
Medicaid 172 70.8% 
Housing assistance 61 25.1% 
LIHEAP 

c 27 11.1% 
Other 9 3.7% 
None 14 5.8% 
a Supplement Nutrition Assistance Program    
b Women, Infants, & Children    
c Low Income Home Energy Assistance Program 

 

Table 9 shows maternal participation in various social surveys that the BFY survey 

asked about. Most mothers (94.2%) participated in at least one social service provided by the 

government. Specifically, most mothers reported participating in SNAP (65.8%), WIC (71.2%) 
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and Medicaid (70.8%). A minority reported benefiting from free or reduced childcare (20.2%) 

or receiving cash (14.4%) or housing assistance (25.1%). Only a small proportion of mothers 

indicated their child participated in Early Head Start (8.2%) or Head Start (6.2%).  

Information about maternal physical and mental health was also collected. 

Approximately 13.2% of the mothers were rated as depressed based on a cutoff score of 10 for 

the PHQ-8 inventory (as reported in the methods chapter, the PHQ-8 demonstrated internal 

consistency reliability). Maternal substance use was minimal for most mothers, with a clear 

majority reporting not smoking (78.2%) and 156 of 251 mothers (59.3%)  reporting that they 

had not drank alcohol within the past year. When asked to rate their physical health, most 

mothers reported being healthy – only eight (3.3%) and 43 (17.7%) rated their health as “Poor” 

and “Fair” respectively. The majority (78.9%) indicated their health was either “Good” 

(35.8%), “Very good” (19.3%), or “Excellent” (23.8%). 

4.2 Descriptive statistics: breastfeeding and household food insecurity 

Table 10 shows that 77.0% (n=187) of mothers reported breastfeeding their child at 

least one time. The mean breastfeeding duration (including the mothers that never breastfed) 

was 3.6 months (SD=4.1). As compared to the mean of 3.6 months, the variability here is 

notable in how large it is (SD=4.1).  

Table 10 Mother’s Breastfeeding Behaviors and Household Food Insecurity  

Characteristic 
 

Category 
 

Frequency   
 Count 
(n=243) 

Percentage Mean SD 

Breastfeed Ever breastfed 187 77.0 -- -- 
Not breastfed 56 23.0   

Duration of 
breastfeeding 
(months) 

   3.60 4.12 

HFIa Food insecurity 67 27.6   
 Food security 176 72.4   

a Household food insecurity 
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As expected, these two variables have a strong relationship, as seen in Table 11.  

Table 11 A crosstabulation of ever breastfed and 
breastfeeding duration 

Breastfeeding duration 
Ever breastfed 

(n=187) 
Never breastfed 

(n=56) 
0 months  12 56 
1 month 33 0 
2 months 26 0 
3 months 32 0 
4 months 14 0 
5 months 14 0 
6 months 9 0 
7 months 6 0 
8 months 9 0 
9 months 0 0 
10 months 4 0 
11 months 3 0 
12 months 7 0 
12+ months 18 0 

 

The two variables have a Pearson’s correlation of 0.48, and an interesting pattern 

emerges in Table 11 when cross tabulating these variables. Although 12 mothers reported 

breastfeeding their child at least one time, they never breastfed their child continuously for one 

entire month. Based on the review of literature described in chapter two, there is insufficient 

evidence to suggest that a time frame of breastfeeding for less than one month should affect 

brain development. 

The other key independent variable is household food insecurity (HFI), which was 

dichotomized as shown in Table 12. 27.6% (n=67) of the mothers were rated as experiencing 

food insecurity based on responses to an adapted version of the U.S. Household FSS Module 

Short Form. 
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Table 12 A crosstabulation of household food insecurity 
(HFI) status and the Household Food Security Survey Raw 

Score 

Raw Score 
Food security 

(n=176) 
Food insecure 

(n=67) 
0 133 0 
1 43 0 
2 0 19 
3 0 12 
4 0 16 
5 0 20 

Note: raw scores of 0 and 1 were defined as food secure and scores between 2-5 
were defined as food insecure. 

4.3 Descriptive statistics: infant EEG brain wave frequencies  

There are eight dependent variables in this dissertation, all of which relate to brain wave 

frequencies (relative and absolute power theta, alpha, beta and gamma). The scale of these 

variables is μV2/Hz (although relative power is a proportion as described in Chapter 3).  Table 

13 shows the scale of the relative power are typically very small numbers. 

Table  13 Descriptive statistics for infant EEG (n=243)  

Variables Mean SD Min Max 
Relative theta power  0.569 0.090 0.365 0.793 

Relative alpha power  0.268 0.036 0.155 0.367 

Relative beta power  0.104 0.041 0.022 0.219 

Relative gamma power  0.058 0.034 0.006 0.188 

Absolute theta power  1.472 0.297 0.457 2.169 

Absolute alpha power  0.797 0.264 0.153 1.454 

Absolute beta power  0.357 0.197 0.022 1.007 

Absolute gamma power  0.211 0.150 0.006 0.737 

Epoch Count 323.9 189.8 0.000 823 

Note: Absolute theta, alpha, beta and gamma power measured in µV2/Hz, 
relative theta, alpha, beta and gamma power are ratios.   
 



  
 

 109 

 

Figure 8 Histograms of relative theta, alpha, beta, and gamma power 

 

Figure 9 Histograms of absolute theta, alpha, beta, and gamma power (µV2/Hz) 

Relative power theta has a mean of 0.5769 (SD=0.090), relative power alpha has a mean 

of 0.268 (SD=0.0436), relative power beta has a mean of 0.104 (SD=0.041), and relative power 

gamma has a mean of 0.058 (SD=0.034). On the other hand, absolute theta power has a mean 

of 1.47 (SD=0.29), absolute alpha power has a mean of 0.80 (SD=0.26), absolute beta power 
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has a mean of 0.36 (SD=0.20), and relative gamma power has a mean of 0.21 (SD=0.15). As 

described in the methods chapter, a linear regression assumes that the error distribution is 

normal. When the underlying dependent variable is itself not normally distributed, this is 

usually taken to be an indicator that the error distribution will also not be normal. In this case, 

the positive skew for the gamma variable was problematic since the error distribution (in both 

relative and absolute power models) was heteroscedastic. This problem was solved by using 

robust regression.   

4.4 Bivariate descriptive statistics for brain waves and breastfeeding, food 

insecurity  

Table 14 shows a correlation matrix for the dependent variables and three independent 

variables. As we would expect, the relative and absolute measures are positively correlated – 

for example relative alpha power is positively associated with absolute alpha power. The same 

is true when comparing relative and absolute power for both gamma and beta frequencies. 

Interestingly, there is an exception to this pattern. Relative theta power has a strong negative 

correlation with all other types of brain wave frequencies – including absolute theta power. 

This paradox is explained by remembering that relative theta power is ultimately a proportion, 

where the numerator is absolute theta power, and the denominator is the sum of absolute theta, 

alpha, beta and gamma power. Proportions can decrease even as the numerator increases; this 

occurs when the increase in the denominator is large enough to offset the increase in the 

numerator. This pattern is happening here. Notice the positive correlation that absolute theta 

power has with the other absolute power measure (bolded in Table 14). As absolute theta power 

increases, so do all the other absolute measures. Focusing on relative theta power then, while 

its numerator increases as absolute power theta rises, it’s denominator (which is the sum of all 

absolute measures) increases even faster. This leads to the paradoxical finding that relative and 

absolute theta power are negative associated, and the relation is quite strong (r= -0.66). 
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In looking at the bivariate association between the dependent and independent variables 

(which ignores all other variables), ever breastfed has the strongest correlation with the four 

dependent variables – though its association is still weak in magnitude. For example, its highest 

correlation is with the frequency of relative alpha power (r= 0.23), followed closely by absolute 

theta power (r=0.21) and absolute alpha power (r=0.21). Breastfeeding duration has low 

bivariate associations with all four measures of brain wave frequencies, being under 0.10 in 

absolute value in every case. HFI has two correlations that rise above the 0.10 mark in absolute 

value: relative theta (r=0.12) and relative beta (r= -0.11).  

Table 14 Correlation table for dependent and independent variables  
  1 2 3 4 5 6 7 8 9 10 11 

1. Relative theta power 1.00                     

2. Absolute theta power -0.66 1.00          

3. Relative alpha power -0.60 0.70 1.00                 

4. Absolute alpha power -0.86 0.89 0.81 1.00        

5. Relative beta power -0.93 0.51 0.29 0.69 1.00             

6. Absolute beta power -0.91 0.59 0.31 0.76 0.97 1.00      

7. Relative gamma power -0.86 0.39 0.15 0.57 0.90 0.88 1.00         

8. Absolute gamma power -0.86 0.46 0.18 0.63 0.90 0.93 0.98 1.00    

9. Ever breastfed -0.11 0.21 0.23 0.21 0.03 0.07 0.00 0.03 1.00     

10. Breastfeeding duration -0.01 0.08 0.04 0.06 -0.01 0.01 0.00 0.01 0.48 1.00  

11. HFI 0.12 -0.02 -0.08 -0.06 -0.11 -0.09 -0.08 -0.07 0.03 0.04 1.00 
Note: Relative theta, alpha, beta and gamma are ratios and absolute theta, alpha, beta and gamma power is 
measured in µV2/Hz. “Rel.” and “Abs.” refer to “Relative” and “Absolute” respectively; “BF” refers to 
breastfeeding. 

 
 
 Tables 15 and 16 continue this bivariate look at the data through t-tests and find similar 

patterns. For example, Table 15 shows that absolute theta power and both relative and absolute 

alpha power are significantly related to ever breastfeeding. In all three cases, Cohen’s d is 

above 0.40, which Cohen placed in the moderate to large region. Breastfeeding behaviors were 

not significantly related to any other outcome measure.  
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Table 15 Independent t-tests ever breastfed and relative theta, alpha, gamma 
and beta power 

 Ever breastfed 
(n=187) 

 Not breastfed 
(n=56) 

  

Variable Mean (SD)  Mean (SD) Cohen’s d p-value 
Relative Theta power 0.56 (0.09)  0.59 (0.10) -0.26 .093 
Absolute Theta power 1.50 (0.29)  1.35 (0.28) 0.45 <.001 
Relative Alpha power 0.27 (0.04)  0.25 (0.04) 0.57 .004 
Absolute Alpha power 0.83 (0.27)  0.70 (0.24) 0.50 .001 
Relative Beta power 0.10 (0.04)  0.10 (0.04) 0.08 .615 
Absolute Beta power 0.36 (0.19)  0.33 (0.20) 0.16 .300 
Relative Gamma power 0.06 (0.03)  0.06 (0.04) -0.01 .973 
Absolute Gamma power 0.21 (0.15)  0.20 (0.15) 0.06 .691 
Note: Absolute theta, alpha, beta and gamma power measured in µV2/Hz, relative theta, alpha, beta and 
gamma power are ratios. The t-test assumes the outcome variables are normally distributed which is tenable 
for all variables except for gamma. 

 

Mirroring the weaker correlations that HFI had with the outcomes as compared to ever 

breastfeeding, Table 16 shows that HFI is not statistically associated with any of the outcome 

measures at the .05 level. HFI is marginally related to relative beta power (p = .087, Cohen’s 

d = -0.25) and relative theta power (p = .072, Cohen’s d = 0.26). 

Table 16 Independent t-tests HFI and relative and absolute theta, alpha, gamma and 
beta power 

 Food insecurity 
(n=67) 

 Food security 
(n=176) 

  

Variable Mean (SD)  Mean (SD) Cohen’s d p-value 
Relative Theta power 0.59 (0.09)  0.56 (0.09) 0.26 .072 
Absolute Theta power 1.46 (0.36)  1.47 (0.27) -0.05 .707 
Relative Alpha power 0.26 (0.04)  0.27 (0.04) -0.19 .199 
Absolute Alpha power 0.77 (0.30)  0.81 (0.25) -0.13 .360 
Relative Beta power 0.10 (0.04)  0.10 (0.04) -0.25 .087 
Absolute Beta power 0.33 (0.20)  0.37 (0.20) -0.19 .181 
Relative Gamma power 0.05 (0.03)  0.06 (0.04) -0.18 .207 
Absolute Gamma power 0.19 (0.14)  0.22 (0.15) -0.17 .250 
Note: Absolute theta, alpha, beta and gamma power measured in µV2/Hz, relative theta, alpha, beta and 
gamma power are ratios. The t-test assumes the outcome variables are normally distributed which is tenable 
for all variables except for gamma. 

 
Figures 10 through 15 visualize the bivariate associations between the dependent 

variables and independent variables. The conclusions reached in Tables 15 and 16 are 
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reinforced. Figures 10 and 11 show that ever breastfed has the strongest association with 

absolute theta (unexpected finding) and relative and absolute alpha power (expected finding).  

 

Figure 10 Boxplots of relative theta, alpha, beta, and gamma power split by whether an 
infant was ever breastfed or not 

 

Figure 11 Boxplots of absolute theta, alpha, beta, and gamma power (µV2/Hz) split by 
whether an infant was ever breastfed or not 
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Figures 12 and 13 show breastfeeding duration is generally unrelated to any of the brain 

wave frequency measures.  

 

Figure 12 Scatterplots of relative theta, alpha, beta, and gamma power and 
breastfeeding duration (months) 

 

Figure 13 Scatterplots of absolute theta, alpha, beta, and gamma power (µV2/Hz) 
and breastfeeding duration (months) 
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Household food insecurity is negatively associated with relative gamma power, while 

it is weakly positively related to relative theta power (Figures 14 and 15). 

 

Figure 14 Box plots of relative theta, alpha, beta, and gamma power and 
Household Food Insecurity (HFI) 

 

Figure 15 Box plots of absolute theta, alpha, beta, and gamma power (µV2/Hz) and 
Household Food Insecurity (HFI) 
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4.5 Additional bivariate exploration for the household food insecurity and 

breastfeeding  

 The bivariate relationship between the independent variables and covariates are 

explored here. First, the bivariate association between the IVs (ever breastfed and HFI) and 

participation in SNAP and WIC is explored. Secondly, the association between the IVs and the 

covariates used in the MLR models is assessed. To understand how the independent variables 

covary with participation in SNAP and WIC, a series of contingency tables are displayed 

below. These tables show the counts and column percentages (e.g., in Table 17, 78% of mothers 

who did not participate in SNAP reported breastfeeding their infants, while 76% of mothers 

who participated in SNAP breastfed their infants). Additionally, each table reports a chi-square 

test of association. The null hypothesis of the chi-square test is no association. A significant 

chi-square test therefore indicates a statistically significant association between the two 

categorical variables.   

Tables 17 through 19 shows that SNAP and WIC participation are generally unrelated 

with experiencing any food insecurity and breastfeeding behaviors.  

Table 17 Bivariate association of SNAP participation and 
ever breastfed 

 Did not     
Participate in SNAP 

Participated           
in SNAP 

Never breasted  18 (22%) 38 (24%) 
Ever breastfed  65 (78%) 122 (76%) 

Chi-square test: χ2(1) = 0.04, p=.840 
 

Table 18 Bivariate association of WIC participation and ever 
breastfed 

 Did not     
Participate in WIC 

Participated           
in WIC 

Never breasted  17 (39%) 39 (23%) 
Ever breastfed  53 (13%) 134 (77%) 

Chi-square test: χ2(1) = 0.02, p=.901 
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Table 19 Bivariate association of SNAP participation and 
food insecurity 

 Did not     
Participate in SNAP 

Participated           
in SNAP 

Food security  62 (75%) 114 (71%) 
Food insecurity   21 (25%) 46 (29%) 

Chi-square test: χ2(1) = 0.618, p=.675 
 

As seen in Table 20, there is an association between food insecurity and WIC 

participation which is significant at the .05 level (p=.031). The odds ratio is 2.22, meaning that 

the odds of participating in WIC are approximately twice as great for mothers who experienced 

food insecurity as compared to mothers who were rated as food secure. 

Table 20 Bivariate association of WIC participation and food 
insecurity 

 Did not     
Participate in WIC 

Participated           
in WIC 

Food security 58 (83%) 118 (68%) 
Food insecurity   12 (17%) 55 (32%) 

Chi-square test: χ2(1) = 4.65, p=.031 
 

The relationship of the IVs (ever breastfed and HFI) to the study outcomes is assessed 

for all demographic covariates used in the MLR models that follow. Each demographic variable 

is broken down by the binary IVs and reported in Table 21 (ever breastfed) and Table 22 (HFI). 

As was done for looking at the bivariate association between the IVs and SNAP and WIC 

participation, the IVs were cross tabulated with all categorical demographic variables (race, 

site, depression status, physical health status, maternal alcohol status, maternal cigarette status, 

and financial worry), displaying column percentages and presenting chi-square results to 

determine whether the two variables are significantly related. In a single case (maternal race) 

where the core chi-square assumption of having a minimum expected frequency of five for 

each cell was violated, Fisher’s Exact Test was used instead of the chi-square test. For numeric 

covariates (age, education, count of services), the mean and SD are shown for the two levels 
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of ever breastfed, while an independent samples t-test assuming equal variances was used to 

assess whether the two variables share a statistically significant relationship.  

Table 21 shows that ever breastfed was significantly associated with many of the 

covariates – which highlights the importance of favoring the MLR regression results that 

follow over the bivariate t-tests displayed in Table 15. 

Table 21 Covariates broken down by ever breastfed 

  
Ever breastfed 

(n=187)  
Never breastfed 

(n=56) 
p 
a 

Categorical variables Freqd (%)   Freqd (%)  
Maternal 
Race/Ethnicity 

White 23 (12.3%)  11 (19.6%) .003 
b 

Black/African American 58 (31.0%)  30 (53.6%)  
Hispanic, Latina, Spanish 86 (46.0%)  13 (23.2%)  
Other 9 (4.8%)  1 (1.8%)  
Multiracial 11 (5.9%)  1 (1.8%)  

Maternal mental 
health 

Depressed (10 < PHQ8) 20 (10.7%)   12 (21.4%) .063 
Not depressed (10 > PHQ8) 167 (89.3%)   44 (78.6%)   

Maternal physical 
health 

c 
Good 148 (79.1%)  44 (78.6%) .999 
Poor 39 (20.9%)  12 (21.4%)  

Maternal alcohol 
status 

Never in the last year 115 (61.5%)   29 (51.8%) .253 
Had drank in last year 72 (38.5%)   27 (48.2%)   

Maternal smoking 
status 

Never in the last year 157 (84.0%)  33 (58.9%) <.001 
Had smoked in last year 30 (16.0%)  23 (41.1%)  

Financial worry Little to no worry 68 (36.4%)   18 (32.1%) .674 
Moderate to high worry 119 (63.6%)   38 (67.9%)   

Site Louisiana 38 (20.3%)  28 (50.0%) < .001 
Minnesota 29 (15.5%)  5 (8.9%)  
Nebraska 57 (30.5%)  16 (28.6%)  
New York 63 (33.7%)   7 (12.5%)   

Numeric variables   Mean (SD)   Mean (SD)   
Maternal Age 26.8 (6.1)  27.0 (6.2) .833 
Maternal Education 12.2 (3.2)   11.4 (2.5) .098 
Count of Support Service Received 3.0 (1.6)   3.0 (1.8) .807 

a P-values are based on chi-square (except for maternal race) for categorical variables, and a two-sample 
t-test for numeric variables.  
b P-value is based on Fisher’s Exact test since an assumption for the chi-square test is violated (see text). 
c Physical health was dichotomized (“Poor” and “Fair” vs “Good,” “Very Good” and “Excellent”). 
d Frequency (%) reported as the percentage of categorical variable within each category.  
 
  

Regarding maternal race, mothers who reported breastfeeding their infants were more 

likely to be Hispanic – 46.0% of mothers who reported breastfeeding their infants were 
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Hispanic while only 23.2% of mothers who did not breastfeed their infants were Hispanic. This 

was by far the largest difference concerning the racial background of mothers who did or did 

not breastfeed their infants, leading to a statistically significant relationship between maternal 

race and breastfeeding behaviors (p=.003). Ever breastfed was also significantly related to 

maternal smoking status (p<.001) and site (p=<.001). Mothers who never breastfed their infants 

were more likely to report smoking at least once in the past year (41.1% vs 16.0% for mothers 

who had breastfed). When considering site, there was more balance in where the mothers lived 

among the subset of mothers who had reported breastfeeding their infants, ranging from 15.5% 

in Minnesota to 33.7% in New York. Their counterparts (the never breastfed mothers) came 

mostly from Louisiana (50%) and Nebraska (28.6%). Maternal depression was marginally 

significant at the 0.10 level (p=.063). Mothers who never breastfed their infants were more 

likely to be depressed (21.4% vs. 10.7% for mothers who breastfed). None of the remaining 

covariates (maternal physical health, alcohol status, financial stress, age, education, and count 

of federal support services participated in) exhibited a significant association with ever 

breastfed on the bivariate level.  

Table 22 illustrates that HFI was significantly related to many of the covariates – again 

highlighting the value of relying on MLR models to assess the extent of relationship between 

this IV and the outcomes rather than simple bivariate tests which ignore background factors. 

HFI was significantly related to three covariates (mental health, physical health, financial 

worry) at the .05 level, and was marginally related to four covariates at the 0.10 level (maternal 

race, site, education, and count of participation in social services). Mothers who experienced 

food insecurity were more likely to be depressed (p<.001), have lower self-reported physical 

health ratings (p<.001), experienced more financial stress (p<.001), completed almost one year 

less of education on average (p=.082) and reported using more governmental support services 

(p=.052).  



  
 

 120 

 

Table 22 Covariates broken down by household food insecurity (HFI) 

  
Food security 

(n=176)  
Food insecurity 

(n=67) 
p a 

Categorical variables Freqd (%)   Freqd (%)   
Maternal 
Race/Ethnicity 

White 26 (14.8%)  8 (11.9%) .060 b 

Black/African American 66 (37.5%)  22 (32.8%)  
Hispanic, Latina, Spanish 73 (41.5%)  26 (38.8%)  
Other 7 (4.0%)  3 (4.5%)  
Multiracial 4 (2.3%)  8 (11.9%)  

Maternal mental 
health 

Depressed (10 < PHQ8) 9 (5.1%)   23 (34.3%) <.001 
Not depressed ( 10 > PHQ8) 167 (94.9%)   44 (65.7%)   

Maternal physical 
health c 

Good 150 (85.2%)  42 (62.7%) <.001 
Poor 26 (14.8%)  25 (37.3%)  

Maternal alcohol 
status 

Never in the last year 106 (60.2%)   38 (56.7%) .725 
Had drank in last year 70 (39.8%)   29 (43.3%)   

Maternal smoking 
status 

Never in the last year 141 (80.1%)  49 (73.1%) .316 
Had smoked in last year 35 (19.9%)  18 (26.9%)  

Financial worry Little to no worry 81 (46.0%)   5 (7.5%) <.001 
Moderate to high worry 95 (54.0%)   62 (92.5%)   

Site Louisiana 53 (30.1%)  13 (19.4%) .076 
Minnesota 20 (11.4%)  14 (20.9%)  
Nebraska 56 (31.8%)  17 (25.4%)  
New York 47 (26.7%)   23 (34.3%)   

Numeric variables   Mean (SD)   Mean (SD)   
Maternal Age 27.1 (6.3)  26.4 (5.5) .491 
Maternal Education 12.2 (3.1)   11.4 (2.8) .082 
Count of Support Service Received 2.8 (1.6)   3.3 (1.5) .052 

a P-values are based on chi-square (except for maternal race) for categorical variables, and a two-sample 
t-test for numeric variables.  
b P-value is based on Fisher’s Exact test since an assumption for the chi-square test is violated (see text). 
c Physical health was dichotomized (“Poor” and “Fair” vs “Good,” “Very Good” and “Excellent”). 
d Frequency (%) reported as the percentage of categorical variable within each category. 
 
4.6 MLR Results Introduction 

As reviewed in the methods chapter, a series of multiple linear regression (MLR) 

models are used to answer the research questions. Given the scales of the DVs (relative alpha 

power, for example had a mean of 0.27 and ranged from 0.05 to 0.37), standardized regression 

coefficients are reported to make the results easier to interpret. The key regression assumptions 

were checked prior to interpreting model results. Chapter 3 reported on the extent of 
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multicollinearity among the predictor variables (independent variables and covariates). To 

briefly summarize, multicollinearity is not strong in the current study since most predictors had 

relative low correlations (often below 0.20 in magnitude). A MLR model also assumes the 

error distribution is normal and homoscedastic (i.e., constant variance). These assumptions 

were tenable in every MLR that was estimated – except for the models (both relative and 

absolute) where gamma power was specified as the dependent variable. In these models, the 

error distribution was both skewed (i.e., not normal) and heteroscedastic – breaking two linear 

regression assumptions. Robust regression was therefore used (Midi, Rana & Imon, 2009) (see 

Chapter 3 for more of a discussion about this decision). As described earlier, the missing data 

strategy employed here is listwise deletion given the small missingness percentage across all 

variables. This led to a final sample size of 243 being used in the regression analyses.  

The next four tables show MLR results for the outcomes of relative and absolute theta, 

alpha, beta, and gamma power. These models feature three key independent variables: ever 

breastfed (BF), breastfeeding duration (BFD), and household food insecurity (HFI). As 

discussed above, BF and BFD were separated out into two different sets of models to cope with 

the high level of collinearity between these two key variables (r=0.48). Results for each 

outcome variable are reported sequentially (theta, alpha, beta, then gamma).  

Note that many of the predictor variables were dichotomized in these regression 

models, which was explained above. A mother’s reported substance use of both alcohol (never 

used in past year vs those that did), smoking habits (those who never smoked in the past year 

vs those that did) and physical health (“Poor” and “Fair” vs “Good,” “Very Good” and 

“Excellent”) were dichotomized. Financial stress was also dichotomized from its original 

ordinal coding (mothers who reported being in the never, very rarely, and rarely categories 

were coded as 0, where any financial stress was coded as a 1). Maternal race and site are both 

nominal scaled variables; so a set of dummy variables were therefore used (being Hispanic and 
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from Nebraska were selected as the reference group since these groups had the largest sample 

size). Age (years), years of education, count of federal social services used, and epoch count 

were all inputted into the regression model as numeric predictor variables.  

For the purpose of contextualizing the findings described in the next four sections, a 

review of developmental EEG literature follows. Developmental EEG literature shows that 

early adversity in many forms, including lower socioeconomic status (Tomalski et al., 2013), 

maternal stress (Troller-Renfree et al., 2020), and institutionalization (Marshall et al., 2004) 

may be associated with differences in the power of different EEG wavebands. Adversity during 

early childhood has been linked to lower frontal gamma power (Tomalski et al., 2013), 

increased theta power (Marshall et al., 2004, Troller-Renfree et al, 2020) and reduced alpha 

power (Marshall et al., 2004, Troller-Renfree et al, 2020). The pattern of increased low-

frequency brain power (theta waves) and reduced high-frequency brain power (alpha, beta, and 

gamma waves) has been found to be associated with developmental delays, problems with 

learning and attention, and associations with vocabulary and working memory in adolescent 

children (Corning et al., 1986, Harmony et al., Maguire & Schneider, 2019, McLaughlin et al., 

2010). This evidence is suggestive brain function, as measured by EEG may have 

consequential effects on neurocognitive functioning in adolescence. However, it is important 

to consider that these differences in brain function that may be detected in early childhood, 

particularly from children from low SES backgrounds, can be attributed to adaptive 

neuroplasticity. Research has shown that children from disadvantaged backgrounds may 

exhibit differences in brain function which can be attributed to the need to prioritize different 

skills during traditional developmental milestones that allow a child to better adapt to their 

environment (Ellis et al., 2020). For interpretation purposes, Figure 1 illustrates the expected 

directionality of effect size on relative and absolute power theta, alpha, beta, and gamma for 

breastfed infants who are food secure.  
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Note: green arrow suggests the adaptive directionality of effect size on measurements 
of brain power as seen in literature. 

Figure 16 Theta, alpha, beta, and gamma brain waves with corresponding expected 
directionality for breastfed infants who are food secure 

4.6.1 MLR results for relative and absolute theta power  

Table 23 shows the MLR model output for the relative and absolute theta power 

outcome. Models 1 and 3 show a MLR with ever breastfed, HFI and the covariates as 

predictors, while Models 2 and 4 show a similar model but using breastfeeding duration rather 

than ever breastfed. The dependent variable for models 1 and 2 is relative power theta, while 

it is absolute theta power in Models 3 and 4. Regression tables for all other outcome measures 

(e.g., alpha, beta, and gamma power) are similarly organized.  
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Table 23 Relative and absolute theta power MLR results, effect size and 
standard errors reported 

 Relative power  Absolute power 
Variables Model 1 Model 2  Model 3 Model 4 
Ever breastfed -0.090       

(0.066)  
  0.152*       

(0.064)  
Duration of 
breastfeeding  

-0.002       
(0.062) 

 
 

 0.017       
(0.061) 

HFI  0.100       
(0.072) 

 0.092       
(0.072) 

  0.001       
(0.069) 

 0.012       
(0.070) 

Maternal race: White  0.135       
(0.078) 

 0.140       
(0.078) 

 -0.095       
(0.075) 

-0.105       
(0.076) 

Maternal race: Black  0.171       
(0.089) 

 0.181*       
(0.089) 

 -0.272**       
(0.086) 

-0.287**       
(0.087) 

Maternal race: Other -0.027       
(0.066) 

-0.030       
(0.067) 

 -0.122       
(0.064) 

-0.118       
(0.065) 

Maternal race: 
Multiracial 

 0.092       
(0.070) 

 0.091       
(0.070) 

 -0.148*       
(0.068) 

-0.146*       
(0.069) 

Maternal age  
 

-0.011       
(0.061) 

-0.006       
(0.062) 

 -0.013       
(0.060) 

-0.023       
(0.060) 

Maternal mental health  -0.082       
(0.070) 

-0.068       
(0.070) 

  0.008       
(0.068) 

-0.015       
(0.068) 

Maternal physical health -0.115       
(0.066) 

-0.112       
(0.066) 

  0.041       
(0.064) 

 0.036       
(0.065) 

Maternal Education   0.128       
(0.065) 

 0.115       
(0.065) 

 -0.075       
(0.063) 

-0.055       
(0.063) 

Maternal substance use, 
smoking  

-0.110       
(0.071) 

-0.093       
(0.071) 

  0.055       
(0.069) 

 0.028       
(0.070) 

Maternal substance use, 
alcohol 

-0.055       
(0.061) 

-0.050       
(0.062) 

 -0.052       
(0.059) 

-0.060       
(0.060) 

Financial hardship  0.099       
(0.066) 

 0.104       
(0.066) 

 -0.093       
(0.064) 

-0.101       
(0.065) 

Services count  0.149*       
(0.065) 

 0.151*       
(0.066) 

  0.000       
(0.063) 

-0.003       
(0.064) 

Site: LA  0.152       
(0.083) 

 0.168*       
(0.083) 

 -0.124       
(0.081) 

-0.150       
(0.081) 

Site: NY  0.238**       
(0.083) 

 0.234**       
(0.084) 

 -0.270***       
(0.080) 

-0.262**       
(0.082) 

Site: MN -0.076       
(0.070) 

-0.085       
(0.070) 

  0.095       
(0.068) 

 0.112       
(0.069) 

Epoch count  0.252***       
(0.061) 

 0.260***       
(0.061) 

 -0.346***       
(0.060) 

-0.360***       
(0.060) 

Intercept -0.090       
(0.066)  

  0.152*       
(0.064)  

Model fit (R2) 23.0% 22.4%  27.7% 25.9% 
Notes: * = p < .05; ** = p < .01, *** = p < .001, effect sizes reported, standard errors in parenthesis, 
reference group for HFI (household food insecurity) was food security, reference group for maternal 
race is Hispanic, reference group for site is NE. Relative theta, alpha, beta and gamma power are ratios 
and absolute theta, alpha, beta and gamma power measured in µV2/Hz. 

 

Ever breastfed (p=.173, Model 1), breastfeeding duration (p=.977, Model 1), and food 

insecurity (p=.163, Model 2) were not significantly associated with relative theta power. 
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Turning to absolute theta power, ever breastfed is the only significant independent variable, 

being positively related to absolute theta power (p=.017). The effect size of 0.152 suggests a 

weak to moderate relationship between ever breastfed and absolute theta power. Models which 

specified ever breastfed as the IV rather than breastfeeding duration had slightly higher R2 

statistics, suggesting that ever breastfed might be a more useful operationalization of 

breastfeeding behavior in this study.  

Some covariates had a significant association with relative and absolute theta power, 

though the pattern of significance differs to some extent when comparing the results for relative 

and absolute theta power. For example, the pairwise difference between Multiracial and 

Hispanic mothers was statistically significant with infants of Hispanic mothers having higher 

absolute theta power (p=.030, Model 3) – but this relation was not significant with relative 

theta power as the outcome. For absolute theta power, Black mothers had infants with 

significantly lower absolute theta power (p=.001, Model 3) as compared to infants of Hispanic 

mothers. This difference between infants of Black and Hispanic mothers was actually positive 

in the models with relative theta power as the outcome, a difference which was marginally 

significant in Model 1 (p=.084) at the 0.10 level and significant at the 0.05 level in Model 2 

(p=.044). This reversal in direction of effect can be seen for other variables in Table 23. When 

comparing Models 1 and 2 for relative theta power to Models 3 and 4 for absolute theta power, 

the correlations of many of the covariates are in the opposite direction. This reflects the strong 

negative correlation between relative and absolute theta power (r= -0.66, Table 14) reported 

earlier. The positive association of living in New York or Louisiana as compared to Nebraska 

for relative theta power reverses to a negative relationship when the outcome is absolute theta 

power – though the effects for Louisiana are only significant at the 0.05 level in Model 2 

(p=.022). In both cases, the magnitude of the association is similar, just in opposite directions 

depending on whether the dependent variable is relative or absolute theta power. A similar 
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pattern plays out for epoch count. Although epoch count is positively associated with relative 

theta power (p=.008), it is negatively associated with absolute theta power (p<.001). Again, 

these reversals are expected given the strong negative association (r= -0.66) between relative 

and absolute theta power, when relative theta power increases, absolute theta power decreases. 

The association of count of services and the outcomes provides an exception – although the 

number of services a mother reported participating in is associated with increases in relative 

theta power of their infants (p=.230), there was close to zero association between this covariate 

and absolute theta power. 
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4.6.2 MLR results for relative and absolute alpha power 

Table 24 shows the MLR output for the relative and absolute alpha power outcome. 

Table 24 Relative and absolute alpha power MLR model results, effect size 
and standard errors reported 

 Relative power  Absolute power 
Variables Model 1 Model 2  Model 3 Model 4 
Ever breastfed  0.229**       

(0.070)   
 0.170**       
(0.065)  

Duration of breastfeeding 
 

 0.019       
(0.067)   

 0.019       
(0.062) 

HFI -0.043       
(0.076) 

-0.025       
(0.077)  

-0.040       
(0.070) 

-0.027       
(0.072) 

Maternal race: White -0.089       
(0.082) 

-0.104       
(0.084)  

-0.128       
(0.077) 

-0.139       
(0.078) 

Maternal race: Black -0.190*       
(0.094) 

-0.214*       
(0.096)  

-0.222*       
(0.088) 

-0.239**       
(0.089) 

Maternal race: Other -0.095       
(0.070) 

-0.089       
(0.072)  

-0.085       
(0.065) 

-0.080       
(0.066) 

Maternal race: Multiracial -0.084       
(0.074) 

-0.081       
(0.076)  

-0.100       
(0.069) 

-0.097       
(0.070) 

Maternal age  
 

-0.046       
(0.065) 

-0.061       
(0.066)  

-0.005       
(0.061) 

-0.016       
(0.061) 

Maternal mental health  -0.014       
(0.074) 

-0.049       
(0.075)  

 0.065       
(0.069) 

 0.040       
(0.070) 

Maternal physical health  0.053       
(0.070) 

 0.046       
(0.071)  

 0.102       
(0.065) 

 0.096       
(0.066) 

Maternal Education  -0.066       
(0.069) 

-0.035       
(0.070)  

-0.119       
(0.064) 

-0.096       
(0.064) 

Maternal substance use, 
smoking  

 0.065       
(0.075) 

 0.023       
(0.077)  

 0.080       
(0.070) 

 0.050       
(0.071) 

Maternal substance use, 
alcohol 

-0.068       
(0.065) 

-0.081       
(0.066)  

-0.027       
(0.060) 

-0.036       
(0.061) 

Financial hardship -0.090       
(0.070) 

-0.103       
(0.071)  

-0.105       
(0.065) 

-0.114       
(0.066) 

Services count -0.041       
(0.069) 

-0.045       
(0.071)  

-0.101       
(0.064) 

-0.105       
(0.065) 

Site: LA  0.039       
(0.088) 

 0.000       
(0.090)  

-0.136       
(0.082) 

-0.165*       
(0.083) 

Site: NY -0.149       
(0.087) 

-0.137       
(0.090)  

-0.253**       
(0.081) 

-0.244**       
(0.083) 

Site: MN  0.124       
(0.074) 

 0.149       
(0.076)  

 0.073       
(0.069) 

 0.092       
(0.070) 

Epoch count -0.120       
(0.065) 

-0.104*       
(0.066)  

-0.309***       
(0.061) 

-0.323***       
(0.061) 

Intercept  0.000       
(0.062) 

 0.000       
(0.063)  

 0.000       
(0.058) 

 0.000       
(0.058) 

Model fit (R2) 14.0% 9.8%  25.3% 23.1% 
Notes: * = p < .05; ** = p < .01, *** = p < .001, effect sizes reported, standard errors in parenthesis, 
reference group for HFI was food security, reference group for maternal race is Hispanic, reference group 
for site is NY. Relative theta, alpha, beta and gamma power are ratios and absolute theta, alpha, beta and 
gamma power measured in µV2/Hz. 
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There was no main effect of HFI or breastfeeding duration on relative or absolute alpha 

power. But infants who were breastfed at least one time as reported by their mothers had a 

significant increase in both relative (p=.001 in Model 1) and absolute (p=.009) alpha power – 

higher alpha is associated with positive developmental outcomes. The effect size of ever 

breastfed (0.22 in Model 1 and 0.17 in Model 2) is similar in both models. As was the case in 

the models with theta power as the outcome, R2 is slightly higher (by approximately 4% and 

2% in the models for relative and absolute alpha power respectively) in models where ever 

breastfed rather than breastfeeding duration is the independent variable. 

 The difference between infants of Black and Hispanic mothers (p=.044, Model 1) and 

epoch count (p=.036, Model 2; p=.066, Model 1) significantly related to both relative and 

absolute alpha power. Hispanic mothers had infants with greater relative and absolute alpha 

power, while epoch count was negatively associated with both outcomes. The effect size of 

these two predictors were larger in the models with absolute alpha power as the dependent 

variable. Infants from Louisiana had lower absolute alpha power (p=.047, Model 4) as 

compared to Nebraska – but only in Model 4 where breastfeeding rather than ever breastfed 

was the IV. We see a similar pattern in infants from New York, which was associated with 

lower absolute alpha power (p=.002, Model 4) as compared to infants in Nebraska. 
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4.6.3 MLR results for relative and absolute beta power 

Table 25 shows the MLR model for the relative and absolute beta power outcome.  

Table 25 Relative and absolute beta power MLR model results, effect size 
and standard errors reported 

 Relative power  Absolute power 
Variables Model 1 Model 2  Model 3 Model 4 
Ever breastfed  0.002       

(0.066)   
 0.036       
(0.065)  

Duration of 
breastfeeding  

-0.014       
(0.062)   

-0.004       
(0.061) 

HFI -0.107       
(0.072) 

-0.106       
(0.072)  

-0.088       
(0.071) 

-0.084       
(0.071) 

Maternal race: White -0.115       
(0.078) 

-0.115       
(0.078)  

-0.119       
(0.077) 

-0.121       
(0.077) 

Maternal race: Black -0.126       
(0.089) 

-0.128       
(0.089)  

-0.130       
(0.088) 

-0.134       
(0.088) 

Maternal race: Other  0.083       
(0.066) 

 0.084       
(0.067)  

 0.034       
(0.065) 

 0.035       
(0.066) 

Maternal race: 
Multiracial 

-0.057       
(0.070) 

-0.058       
(0.070)  

-0.048       
(0.069) 

-0.047       
(0.069) 

Maternal age  
 

 0.022       
(0.062) 

 0.022       
(0.061)  

 0.024       
(0.061) 

 0.022       
(0.061) 

Maternal mental health   0.083       
(0.070) 

 0.081       
(0.070)  

 0.095       
(0.069) 

 0.089       
(0.069) 

Maternal physical health  0.115       
(0.066) 

 0.114       
(0.066)  

 0.148*       
(0.065) 

 0.146*       
(0.065) 

Maternal Education  -0.118       
(0.065) 

-0.117       
(0.065)  

-0.162*       
(0.064) 

-0.157*       
(0.064) 

Maternal substance use, 
smoking  

 0.115       
(0.071) 

 0.112       
(0.071)  

 0.120       
(0.070) 

 0.112       
(0.070) 

Maternal substance use, 
alcohol 

 0.088       
(0.061) 

 0.086       
(0.061)  

 0.055       
(0.060) 

 0.052       
(0.061) 

Financial hardship -0.081       
(0.066) 

-0.081       
(0.066)  

-0.073       
(0.065) 

-0.075       
(0.065) 

Services count -0.167*       
(0.065) 

-0.166*       
(0.065)  

-0.169**       
(0.064) 

-0.169**       
(0.065) 

Site: LA -0.213*       
(0.083) 

-0.215*       
(0.083)  

-0.231**       
(0.082) 

-0.238**       
(0.082) 

Site: NY -0.205*       
(0.083) 

-0.208*       
(0.083)  

-0.219**       
(0.081) 

-0.219**       
(0.082) 

Site: MN  0.049       
(0.070) 

 0.048       
(0.070)  

 0.016       
(0.069) 

 0.019       
(0.069) 

Epoch count -0.241***       
(0.062) 

-0.242***       
(0.061)  

-0.301***       
(0.061) 

-0.304***       
(0.060) 

Intercept  0.000       
(0.059) 

 0.000       
(0.059)  

 0.000       
(0.058) 

 0.000       
(0.058) 

Model fit (R2) 22.8% 22.8%  25.0% 24.9% 
Notes: * = p < .05; ** = p < .01, *** = p < .001, effect sizes reported, standard errors in parenthesis, 
reference group for HFI was food security, reference group for maternal race is Hispanic, reference group 
for site is NY. Relative theta, alpha, beta and gamma power are ratios and absolute theta, alpha, beta and 
gamma power measured in µV2/Hz. 
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The main effects for ever breastfeeding and breastfeeding duration were not statistically 

significant at the 0.05 level of significance – for either relative or absolute beta power. Since 

breastfeeding behavior is unrelated to beta power, the R2 are similar in magnitude regardless 

of which operationalization of breastfeeding behavior is used. HFI was also not significantly 

associated with either relative or absolute beta power.  

There is a very strong association between relative and absolute beta power (r=0.97). 

This strong linear dependence shades the pattern of findings across the covariates for each 

outcome. Three of the significant covariates (count of participation in governmental social 

services, differences in sites, and epoch count) were significant and of similar magnitude for 

both relative and absolute beta power. For example, participating in more governmental 

services was associated with lower relative and absolute beta power (p=.011, Model 1). Infants 

of mothers in Nebraska had significantly greater relative and absolute beta power as compared 

to infants in Louisiana (p=.011, Model 1) and New York (p=.013, Model 1). Epoch count 

showed a negative and moderately strong association with relative (p<.001, Model 1) and 

absolute (p<.001, Model 3) beta power, with effects that are slightly larger when absolute 

power was the outcome. Two variables were significant predictors for absolute, but not relative, 

beta power. Good maternal physical health (p=.024, Model 3) was associated with higher 

absolute beta power. Years of maternal education was negatively related to absolute power 

beta (p=.047, Model 3). The effects for education and good maternal physical health were 

similar in size though opposite in direction, being right around 0.15 SDs.  
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4.6.4 MLR results for relative and absolute gamma power 

Regression output for relative gamma power is shown in Table 26.  

Table 26 Relative and absolute gamma power MLR model results, effect size 
and standard errors reported 

 Relative power  Absolute power 
Variables Model 1 Model 2  Model 3 Model 4 
Ever breastfed -0.008       

(0.067)   
 0.020       
(0.067)  

Duration of breastfeeding 
 

 0.003       
(0.063)   

 0.005       
(0.063) 

HFI -0.087       
(0.073) 

-0.088       
(0.073)  

-0.083       
(0.073) 

-0.081       
(0.073) 

Maternal race: White -0.119       
(0.080) 

-0.118       
(0.080)  

-0.114       
(0.079) 

-0.116       
(0.079) 

Maternal race: Black -0.094       
(0.091) 

-0.092       
(0.091)  

-0.085       
(0.090) 

-0.087       
(0.090) 

Maternal race: Other  0.071       
(0.068) 

 0.070       
(0.068)  

 0.036       
(0.067) 

 0.036       
(0.067) 

Maternal race: Multiracial -0.084       
(0.072) 

-0.084       
(0.072)  

-0.060       
(0.071) 

-0.059       
(0.071) 

Maternal age  
 

 0.052       
(0.063) 

 0.052       
(0.063)  

 0.048       
(0.062) 

 0.047       
(0.062) 

Maternal mental health   0.128       
(0.072) 

 0.130       
(0.072)  

 0.128       
(0.071) 

 0.125       
(0.071) 

Maternal physical health  0.106       
(0.068) 

 0.107       
(0.068)  

 0.142*       
(0.067) 

 0.141*       
(0.067) 

Maternal Education  -0.121       
(0.067) 

-0.123       
(0.066)  

-0.162*       
(0.066) 

-0.160*       
(0.065) 

Maternal substance use, 
smoking  

 0.081       
(0.073) 

 0.083       
(0.073)  

 0.099       
(0.072) 

 0.096       
(0.072) 

Maternal substance use, 
alcohol 

 0.110       
(0.063) 

 0.110       
(0.063)  

 0.079       
(0.062) 

 0.078       
(0.062) 

Financial hardship -0.067       
(0.068) 

-0.067       
(0.067)  

-0.056       
(0.067) 

-0.057       
(0.067) 

Services count -0.145*       
(0.067) 

-0.145*       
(0.067)  

-0.158*       
(0.066) 

-0.159*       
(0.066) 

Site: LA -0.179*       
(0.085) 

-0.177*       
(0.085)  

-0.204*       
(0.085) 

-0.207*       
(0.084) 

Site: NY -0.216*       
(0.085) 

-0.216*       
(0.085)  

-0.219**       
(0.084) 

-0.218*       
(0.084) 

Site: MN  0.009       
(0.072) 

 0.008       
(0.072)  

-0.021       
(0.071) 

-0.019       
(0.071) 

Epoch count -0.240***       
(0.063) 

-0.240***       
(0.063)  

-0.280***       
(0.062) 

-0.282***       
(0.062) 

Intercept  0.000       
(0.060) 

 0.000       
(0.060)  

 0.000       
(0.059) 

 0.000       
(0.059) 

Model fit (R2) 19.1% 19.1%  20.8% 20.8% 
Notes: * = p < .05; ** = p < .01, *** = p < .001, effect sizes reported, standard errors in parenthesis, reference 
group for HFI was food security, reference group for maternal race is Hispanic, reference group for site is 
NY. Relative theta, alpha, beta and gamma power are ratios and absolute theta, alpha, beta and gamma power 
measured in µV2/Hz. 
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As noted above, the results in this table are based on robust standard errors since the 

regression assumption of normality and homoscedasticity were violated. The results below are 

almost an exact carbon copy of the results for relative and absolute beta power. This is the 

result of the strong relationship between beta and gamma power, with correlations around 0.90 

(Table 14). The main effects of the two breastfeeding variables were not statistically different 

from zero for either relative or absolute gamma power. The R2 was therefore similar in 

magnitude for both operationalizations of breastfeeding behavior. HFI was not found to be 

significantly associated with relative or absolute gamma power.  

Echoing the results for relative and absolute beta power, the pattern of significance for 

relative and absolute gamma power is similar for the predictor variables (the two outcomes 

have a correlation of 0.98). The number of federal services that a mother participated in 

significantly and negatively related to relative gamma power (p=.031, Model 1), such that a 1 

SD increase in the use of federal services led to a drop in relative gamma power by 

approximately 0.14. Epoch count (p<.001, Model 1) was negatively related to gamma brain 

wave activity for both the relative and absolute measures, with a moderate effect size around 

0.25 SDs. Infants in Nebraska had higher relative gamma power as compared to infants in New 

York (p=.011, Model 1) and Louisiana (p=.037, Model 1). All of these covariates (use of 

governmental services, epoch count, and differences across sites) are significant of similar 

magnitudes for both relative and absolute gamma power. Good maternal physical health is 

positively associated with absolute gamma power (p=.035, Model 3), while education related 

negatively with absolute gamma power (p=.014, Model 3). Mirroring the results for beta 

power, neither covariate was significantly related to relative gamma power. 
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4.7 Interpretation of Findings 

Unless otherwise noted, when evaluating the significance between the IVs and the DVs, 

the MLR results are used rather than the bivariate associations reported in Tables 15 and 16. 

The MLR are preferred since they adjust for key covariates, while the bivariate results do not. 

It is important to highlight the strong agreement between the bivariate t-tests and MLR results. 

Looking at the relation between ever breastfed and the outcomes, Table 15 shows that ever 

breastfed is significantly related to absolute theta, relative and absolute alpha. The MLR results 

agree – ever breastfed was only related to these three outcomes. For HFI, there was similarly 

high agreement between the bivariate and multivariate results. The bivariate tests showed HFI 

was not significantly associated with any outcome; a result which was replicated in the 

multivariate analyses.  

4.8 Summary of MLR: Significant Main Effects 

Table 27 summarizes MLR results.  

Table 27 Summary of effect size on household food insecurity, ever breastfed, and 
breastfeeding duration for relative and absolute theta, alpha, beta, and gamma power 

 Household Food Insecurity 
(HFI) 

Ever  
Breastfed 

Breastfeeding 
Duration 

 Models 1,3 Models 2,4 Models 1,3 Model 2,4 
Relative Theta Power  0.100  0.092 -0.090 -0.002 

Absolute Theta Power 0.001 0.012  0.152*  0.017 

Relative Alpha Power -0.043 -0.025  0.229**  0.019 

Absolute Alpha Power -0.040 -0.027  0.170**  0.019 

Relative Beta Power -0.107 -0.106  0.002 -0.014 

Absolute Beta Power -0.088 -0.084  0.036  0.004 

Relative Gamma Power -0.087 -0.088 -0.008  0.003 

Absolute Gamma Power -0.083 -0.081  0.020  0.005 

Notes: * = p < .05; ** = p < .01, *** = p < .001, effect sizes reported, bolded numbers indicate statistical 
significance, reference group for HFI was food security, relative theta, alpha, beta and gamma power are 
ratios and absolute theta, alpha, beta and gamma power measured in µV2/Hz, models 1 and 3 included ever 
breastfed as an IV and models 2 and 4 included breastfeeding duration as an IV.  
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This table defines the magnitude of effect size and statistical significance of that effect 

size of HFI, ever breastfeeding, and breastfeeding duration on relative and absolute theta, 

alpha, beta, and gamma power. Since there were two MLRs that were calculated for each 

breastfeeding outcome variable, one with ever breastfed and the other with breastfeeding 

duration, a pair for effect sizes is shown for HFI where relative measures from models 1 and 2 

and absolute measures from models 3 and 4 are reported in the table below.  

It is seen in this summary table that ever breastfeeding was found to be significantly 

associated with absolute theta power and relative (p<.01) and absolute alpha power (p<.001). 

Breastfeeding duration and HFI on the other hand were not significantly associated with any 

of the outcome measures.  

4.9 Summary of Additional Findings 

Table 28 illustrates a summary of covariate interactions seen across the MLR models.  

Table 28 Summary of significant covariate associations for relative and absolute 
theta, alpha, beta, and gamma power 

 Race- 
Black 

Race- 
multiracial 

Physical 
health 

Education Services 
count 

Epoch 
count 

Rel.Theta Power 
M1/M2 

--/  
0.181* 

-- --  -- 0.149* / 
0.151* 

0.252***/ 
0.260*** 

Abs. Theta Power 
M3/M4 

-0.272**/  
-0.287** 

-0.148*/  
-0.146* 

-- -- -- -0.346***/ 
-0.360*** 

Rel. Alpha Power 
M1/M2 

-0.190*/ 
-0.214*        

-- -- -- -- -- / 
-0.104* 

Abs.Alpha Power 
M3/M4 

-0.222*/  
-0.239** 

-- -- -- -- -0.309***/ 
-0.323*** 

Rel. Beta Power 
M1/M2 

-- -- -- -- -0.167*/ 
-0.166*                  

-0.241***/ 
-0.242*** 

Abs. Beta Power 
M3/M4 

-- -- 0.148*/ 
0.146* 

-0.162*/ 
-0.157* 

-0.169**/ 
-0.169**                  

-0.301***/ 
-0.304*** 

Rel. Gamma Power 
M1/M2 

-- -- -- -- -0.145*/ 
-0.145*                    

-0.240***/ 
-0.240*** 

Abs. Gamma Power 
M3/M4 

-- -- 0.142*/ 
0.141* 

-0.162*/ 
-0.160* 

-0.158*/     
-0.159*               

-0.280***/ 
-0.282*** 

Notes: * = p < .05; ** = p < .01, *** = p < .001, effect sizes reported, for relative power measurements values 
reported as model 1/model 2 and for absolute power measurements as model 3/model 4, models 1 and 3 include 
ever breastfeeding as an IV and models 2 and 4 include breastfeeding duration as an IV, reference group for 
maternal race is Hispanic, non-significant effect sizes not shown, rel. and abs. are short for relative and 
absolute, respectively. 
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Within each MLR model, ten covariates were included in order to control for confounders of 

breastfeeding and household food insecurity. These covariates included maternal 

race/ethnicity, maternal age, maternal mental health, maternal physical health, maternal 

education, maternal smoking and alcohol use, economic stress, use of social services, site, and 

epoch count. Patterns of significant associations between these confounders and brain function 

were detected, which are outlined in this section. Study site was significantly associated with 

several power outcomes, but due to the small sample sizes within these sites, this is not 

interpreted further within this section. Non-significant effect sizes are not shown in the table 

below.  

Maternal race was significantly associated with relative and absolute power of theta 

and alpha brain waves, and it was primarily the difference between infants of Black and 

Hispanic mothers that was significant. Increased maternal physical health was significantly 

associated with increased absolute beta and gamma power. Maternal education was found to 

be significantly associated with decreased absolute theta power and increased absolute gamma 

power. The participation in social services was found to be significantly associated with lower 

relative and absolute beta and gamma power, while it was positively related to relative theta 

power. Finally, epoch count was found to be significantly associated with increased relative 

theta while it was negatively associated with absolute theta, relative and absolute alpha, beta 

and gamma power.  
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Chapter 5: Discussion 

This chapter contextualizes the results of this dissertation in context with other relevant 

studies. This chapter also covers the limitations, strengths, and implications of this research.  

5.1 Purpose and Main Findings 

The current study aims to build additional understanding around the association of 

nutritional factors, in particular breastfeeding and food insecurity, with brain function during 

the first year of life, as observed by EEG.  The main reason for focusing on this topic is that 

more research effort needs to be directed toward achieving a better understanding of the effects 

of poor nutrition as an adverse childhood experience on the neurodevelopment of vulnerable 

children (De Oliveira et al., 2020; Mackes et al., 2020). An improved understanding of how 

breastfeeding and food insecurity are related to the functioning of an infants’ brain will 

encourage the design of public health policies and interventions to improve early childhood 

nutrition as a mechanism to affect brain development (Schwarzenberg et al., 2018). There is a 

growing body of literature that establishes patterns within the four brain waves of theta, alpha, 

beta, and gamma in early childhood development that suggests that increased low-frequency 

brain power (increased theta waves) and decreased high-frequency brain power (such as lower 

alpha, gamma, and beta waves) is associated with developmental outcomes such as poorer 

vocabulary and memory as well as problems with learning, developmental delays, and 

difficulties paying attention (Corning et al., 1986, Harmony et al., Maguire & Schneider, 2019, 

McLaughlin et al., 2010). As reviewed in Chapter 2, it is important to consider the framework 

that differences in brain function may be adaptive for children experiencing adversity as a result 

of their lower SES, amongst other factors. Research has shown significant association between 
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being from a lower SES as a child and outcomes including brain function and structure (Noble 

& Giebler, 2020). This body of literature highlights the finding that children from 

disadvantaged backgrounds and a lower SES may develop skills that are prioritized in 

supporting their experiences within their environment that are distinct from their higher SES 

peers (Ellis et al., 2020). For this reason, interpretations on differences in brain function within 

this chapter will be discussed as adaptive changes in brain function, rather than as deficits.  

This study aimed to examine the associations of breastfeeding and household food 

insecurity and infant brain development, specifically measured as relative and absolute theta, 

alpha, beta, and gamma power. At present, it is unknown how both breastfeeding and 

household food insecurity are related to brain function in infants. There is an opportunity to 

add to the literature by examining the association of these experiences with infant brain 

development as measured by relative and absolute theta, alpha, beta, and gamma power. 

Resting state EEG has been shown to be sensitive enough to detect individual differences and 

enrichment and deprivation experiences during brain development (Bell & Fox, 1992; Raine 

et al. 2001, Marshall et al., 2004). Whether the relative or absolute power spectral densities of 

theta, alpha, beta, and gamma will increase or decrease in association to the presence and 

duration of breastfeeding and the presence of household food insecurity was previously 

unknown.  

This dissertation examined the following research questions and through statistical 

analysis, presents the following results and discussion highlighted in four key takeaways which 

address these questions: 

RQ1: To what extent is breastfeeding related to the brain function of infants at 12 

months of age?  
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Key Takeaway #1: Ever breastfeeding an infant during the first year of life is 

associated with higher absolute theta power, an unexpected directionality and 

association.  

Key Takeaway #2: Ever breastfeeding an infant during the first year of life is 

associated with higher relative and absolute alpha power, an expected directionality and 

association. 

Key Takeaway #3: Breastfeeding duration was not associated with relative or absolute 

theta, alpha, beta or gamma power. 

RQ2: To what extent is household food insecurity related to the brain function of 

infants at 12 months of age? 

Key Takeaway #4: The presence of food insecurity was not associated was not 

associated with relative or absolute theta, alpha, beta or gamma power. 

Key Takeaway #1 

Ever breastfeeding an infant during the first year of life is associated with higher absolute 

theta power, an unexpected directionality and association.  

In this study, the decision of a mother to ever breastfeed was associated with higher 

absolute theta power (p<0.05). The effect size of 0.152 suggests a weak to moderate 

relationship between ever breastfed and absolute theta power, and is interpreted that for a 1-

SD increase in ever breastfeeding within this sample, there was a statistically significant 

increase of 0.152-SDs of absolute theta power.  

Theta waves reflect activity from the limbic system and hippocampal regions of the brain; 

however, the scalp distribution of theta rhythm in infants depends on age, reflecting the 

engagement of different brain networks during growth (Orekhova et al., 2006). At the age of 

one an infants’ brain spends much of its time producing theta brainwave cycles, which 

ultimately declines as an infant reaches childhood (Perone et al., 2018). The modulation of 
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theta activity in infants is associated with the development of cognitive skills (Jones et al., 

2010) and the regulation of responses (Michel et al., 2015). 

This is a surprising finding from this research, considering that increased theta power has 

been found to be associated with adverse experiences in childhood (Marshall et al., 2004, 

Troller-Renfree et al, 2020). Breastfeeding as a behavior has been found to be associated with 

enhanced maternal sensitivity and ensured attachment between the mother and her child 

(Tharner et al., 2012). Furthermore, research has shown that mothers who breastfeed their 

children tend to touch their infants more, are more responsive to feeding needs, and display 

more eye-to-eye contact with infants during feeding (Pearson et al., 2011; Jansen et al., 2008). 

This research suggests that breastfeeding can be considered a beneficial experience within early 

childhood, which would hypothetically improve the experienced adversity of children from 

disadvantaged backgrounds. One explanation for the unexpected directionality of absolute 

theta power, which is significantly higher for ever breastfed infants compared to never 

breastfed infants is that this difference in brain function could be attributed to a circumstantial 

adaptation, although it is important to consider that the entire sample of infants within this 

study came from lower SES backgrounds.  

An additional consideration is that the increase in absolute theta power could be in part 

modulated by differences in skull thickness or other factors that could impact the electrical 

impedance of the EEG cap. Absolute power measurements are measurements that are not 

standardized and therefore we must cautiously interpret findings within absolute power 

measurements due to the additional confounders that can be caused by the physiology of an 

infant, the data collection process, and the quality of data that was collected. Relative power 

measurements are ratios that allow researchers to standardize the magnitude of each brain 

wave’s power spectral density by dividing, for example, absolute power theta measured for a 

participant by the sum of absolute power theta, alpha, beta, and gamma for that same 
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participant. Finally, it was found that there was a strong inverse relationship between relative 

and absolute power theta (r=-0.66), a relationship that was not seen between other relative and 

absolute power brain wave pairs. This paradox can be explained by the fact that as absolute 

theta power goes up, so does absolute alpha, beta, and gamma power – the increases in these 

other three bands of brain wave frequencies more than offsets the increase in absolute theta 

power. For these reasons, the significant association of increased absolute theta power for 

infants who were ever breastfed (p<.05) should be cautiously interpreted since relative power 

theta was not found to be significantly associated with being ever breastfed. 

Key Takeaway #2 

Ever breastfeeding an infant during the first year of life is associated with higher relative 

and absolute alpha power.  

It was found that ever breastfeeding an infant was associated with higher relative and 

absolute power alpha (p<.01), the expected directionality of effect size. Ever breastfeeding an 

infant was not found to be associated with relative or absolute beta and gamma power or 

relative theta power. The effect size for relative and absolute alpha power was 0.229 and 0.170, 

respectively, which can be interpreted as for every 1-SD increase in ever breastfeeding within 

this sample there was a statistically significant increase in relative and absolute power by 0.229 

and 0.170 SDs, respectively. Increased alpha power is associated with positive developmental 

outcomes in childhood (Corning et al., 1986, Harmony et al., Maguire & Schneider, 2019, 

McLaughlin et al., 2010). The pattern of agreement of magnitude and directionality of relative 

and absolute alpha power provides additional evidence that when controlled for by the ten 

covariates in this study, ever breastfeeding an infant was significantly associated with an 

increase in alpha power within this sample of infants.  

Alpha waves reflect activity from the occipital lobes during wakeful relaxation, when 

the eyes are closed, and the brain is not processing a lot of information (Saby & Marshall, 
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2010).  The highest levels of alpha power are associated with an elevated state of anxiety 

(Dadashi et al., 2016).  By age two months, a precursor of the alpha wave (3-4-Hz) has 

established, increasing to 4 -5 Hz at age six months, reaching 5-7 Hz at age 12 months, and 

finally stabilizing within the normal adult alpha frequency range (8 -12 Hz) by age three years 

(St. Louis & Frey, 2016).  

A large breadth of research has described the differences in behavior and cognition 

between breast-fed vs. formula-fed infants measured during childhood that persist throughout 

adolescence. Breast-fed infants have been shown to process speech differently from bottle-fed 

infants (Ferguson & Molfese, 2007; Pivik et al., 2011). In addition, breastfed infants have been 

shown to exhibit improved cognitive abilities in childhood, compared to formula-fed infants 

(Deoni et al., 2018; Huang et al., 2014; Mackes et al., 2016; Horta et al., 2015; Luby et al, 

2016; Nyardi et al., 2013). 

Key Takeaway #3 

Breastfeeding duration was not associated with relative and absolute theta, alpha, 

beta or gamma power. 

While breastfeeding duration and ever breastfeeding were found to be correlated with 

each other as operationalizations of the same behavior (r=0.48), only ever breastfeeding was 

found to be associated with brain function, and particularly, higher relative and absolute alpha 

power. This finding is interesting in context with literature that describes the associations of 

breastfeeding and enhanced maternal sensitivity and attachment as breastfeeding, mothers 

touch their infants and maintain eye contact more, among other attachment behaviors (Pearson 

et al., 2011; Jansen et al., 2008). It is possible that the increases in relative and absolute alpha 

power within the sample of infants who were ever breastfed are in part due to the emotional 

connection that breastfeeding elicits. In addition, mothers who make the decision to breastfeed 

may represent a subset of the sample who were able to dedicate more time and attention to their 
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infants in the form of breastfeeding. As shown in Chapter 4, mothers who never breastfed their 

infants were more likely to be Hispanic (p=.003, 23.2% vs 46%) and to have smoked at least 

once in the past year (p<.001, 41.1% vs 16% for mothers who had breastfed). Maternal 

depression was marginally significant at the 0.10 level (p=.063). Mothers who never breastfed 

their infants were more likely to be depressed (21.4% vs. 10.7% for mothers who breastfed). 

The decision to breastfeed may also be associated with other positive maternal behaviors that 

can be supportive of infant brain development and function. Finally, given that most mothers 

who ever breastfed (93.5% of the 187 mothers who ever breastfed) breastfed beyond one 

month, it is also possible that the nutritional benefits derived by an infant in the first month of 

breastfeeding are superior to the benefits relate to brain development in extended breastfeeding 

beyond one month. This could be explained by the way in which breast milk, which is a living 

tissue, changes as an infant grows and begins as colostrum which develops in the alveoli during 

the last month of pregnancy and contains high levels of protein and immunoglobulins but less 

glucose and fat than mature breastmilk. Transitional milk develops three days following birth 

as colostrum stops and by 10 days postpartum, breastmilk develops into mature milk.  

Key Takeaway #4 

The presence of food insecurity was not associated was not associated with relative 

or absolute theta, alpha, beta or gamma power. 

This study utilized an adapted version of the U.S. Household FSS Module Short Form 

which was dichotomized to detect the presence of food insecurity in the households of 243 

mother and infant pairs. 67 mothers and infant pairs or 27.6% of study participants were 

classified to be living within food insecure households for their selection of 2 or more 

affirmative responses of the 5-item food insecurity questions they were asked. This means that 

close to one third of the mother and infant dyads in this study were experiencing food insecurity 

when this data was collected, even though mothers within this study participated on average in 
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2.97 social support services (SD=1.62), with 65.8% of mothers participating in SNAP (n=160) 

and 71.2% participating in WIC (n=173). The parent study, Baby’s First Year’s, recruited low-

income mothers in order to understand the impact of a monthly unconditional cash transfer on 

brain development in infants, so the presence of food insecurity in this population is not 

particularly surprising as low socioeconomic status can be considered a predictor of food 

insecurity (Coleman-Jensen, 2010).  

Food insecurity was not found to be associated with relative or absolute theta, alpha, 

beta or gamma power within the MLR models run in this study nor within the independent t-

tests (Table 16 in Chapter 4). The inadvertent elimination of one of the items of the U.S. 

Household FSS Module short form eliminated the ability to detect very low food insecurity 

within this sample, which in turn could have impacted the statistical detection of differences of 

brain function within this sample with respect to food security, low food insecurity, and very 

low food insecurity as the tool is designed to detect. The elimination of this question led to the 

dichotomization of participants into two categories, food secure and food insecure, which may 

have reduced the variance in this measure within this study’s sample.  

Household food insecurity is a complex variable because of its relationship to many 

other aspects of a family’s life including income, education, job status, nutrition, among many 

others. For infants and children, food insecurity can be considered as an adversity experienced 

in early childhood which could be impacting brain development in a variety of capacities 

including through nutrition, stress pathways, and other familial experiences that are associated 

with the presence of food insecurity. As seen in Table 20 in Chapter 4, there was an association 

detected between food insecurity and WIC participation which is significant at the .05 level 

(p=.031). The odds ratio of 2.22 means that the odds of participating in WIC are more than 

twice as great for mothers who experienced food insecurity as compared to mothers who were 

rated as food secure. In addition, household food insecurity was significantly related to three 
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out of ten demographic covariates. Mothers who experienced food insecurity were more likely 

to be depressed (p<.001), experience moderate to high financial worry (p<.001) and have lower 

self-reported physical health ratings (p<.001). While this study did not identify significant 

associations between food insecurity and brain function in early childhood, the aforementioned 

differences in demographic characteristics between food secure and food insecure mothers 

underscores the importance for further research to understand the associations between food 

insecurity and brain function in early childhood. 

5.2 Additional Findings 

 Table 28 in Chapter 4 illustrates a summary of covariate interactions seen across the 

MLR models and these patterns of association are expounded upon further in this section.  

Maternal race was significantly associated with relative and absolute power of several 

brain waves. The pairwise difference for Black and Hispanic mothers was statistically 

significant, where infants of Black mothers had, on average, higher relative theta power, lower 

absolute theta power and lower relative and absolute alpha power. Finally, the pairwise 

difference for multiracial and Hispanic mothers was statistically significant, where infants of 

multiracial mothers had, on average, lower absolute theta power. This finding demonstrates 

that racial differences in brain function persist in a sample of infants at age one year from lower 

SES backgrounds, a meaningful finding that corroborates knowledge that racial experiences in 

the United States are varied, and it is possible that these differences in race may be adaptations 

that are the result of adverse childhood experiences.  

Increased maternal physical health was significantly associated with increased absolute 

beta and gamma power. These patterns of association imply that better physical health of a 

mother is associated with the directionality seen with improved cognitive outcomes in other 

literature and not the directionality associated with experiences of adversity. Better physical 
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health of a mother may therefore improve the experiences of a child that allows for the 

detection of these changes in brain function.  

Maternal education was found to be significantly associated with increased relative 

theta power and decreased relative and absolute beta and gamma power. This pattern of 

association is inversed from the pattern seen with maternal physical health and is an unexpected 

outcome. One explanation for this outcome could be that the variability of education is low 

within this sample size, with an average of 11.97 years of education (SD=3.03), meaning that 

within 1-SD of the mean within this sample, mothers had between 8.94 and 15.00 years of 

education, which is up to middle school and one year shy of completing a bachelor’s degree.  

The participation in social services was found to be significantly associated with higher 

relative theta power and lower relative and absolute beta and gamma power. This is interpreted 

that as a mother’s participation in social services increases, relative theta power increases while 

relative and absolute beta and gamma power decrease significantly. This is an additionally 

perplexing finding as this is not the expected pattern of association if one was to consider the 

participation of social services to be advantageous for a child and mother’s environment and 

experiences. However, it may be that this variable is also proxy for the needs of a family that 

mirrors the stress a mother or family can face when needing additional resources in the form 

of social services to improve living conditions and/or experiences.  

Finally, epoch count was found to be significantly associated with increased relative 

theta, decreased absolute theta, and decreased relative and absolute alpha, beta, and gamma 

power. Epoch count can be considered as a proxy for the real-life environment of data 

collection with infants as study subjects. Epoch count is the number of segments the EEG data 

was spliced into for analysis. This range is variable depending on the length of data initially 

available for analysis and cleaning, which is dependent upon the real-life conditions of an 

infant tolerating an EEG cap for a period of around 5 minutes. Within developmental EEG data 
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collection, these segments are often between 1-2s long as infant EEG data often contains 

“noise” resulting from movement, eye blinks, or other sources. Within this study sample, 

infants had at minimum 20 artifact-free epochs for analysis purposes, which excluded 

participants with too few epochs who may not have cooperated well with data collection.  If 

we can consider that epoch count may be a proxy for the executive function abilities of an 

infant to remain calm during data collection, then the patterns of association are the expected 

directionalities of improved cognitive functioning. The only exception is for decreased absolute 

theta power, this reflects the strong negative correlation between relative and absolute theta 

power (r= -0.70) reported earlier. 

5.3 Limitations 

 There are several limitations to consider when contextualizing the results of this 

research study. First and foremost, as a cross-sectional study that derived all data through 

individual, single-session, visits around an infant’s first birthday, we are only able to 

understand associations between breastfeeding and food insecurity with respect to brain 

function. While cross-sectional research is not designed to define mechanisms of action or to 

confirm longitudinal impact of a behavior, there is value that is derivable through robust cross-

sectional research. The manipulation of a mother’s breastfeeding behaviors or the presence of 

food security for a household with an infant would be unethical. Beyond ethics, a cross-

sectional study as described in this dissertation does not require extensive funding. While the 

parent study, Baby’s First Years, was allocated more than $30M in funding, largely in part to 

cover the experimental unconditional cash transfers, the study described in this dissertation did 

not require additional funding to complete, rather it was a time investment that allowed for the 

completion of this work.  

 The COVID-19 pandemic influenced the ability for researchers to conduct in person 

data collection and therefore, the experience of the pandemic can be considered a limitation of 
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this study. Because of the pandemic, age 1 data collection was prematurely halted in March of 

2020 when New York City shutdown resulting in a much smaller sample size than the expected 

600 mother and infant dyads which was reduced to 243 mother and infant dyads.  

 With respect to food insecurity, a clear limitation of this study is the inability to detect 

very low food insecurity, as defined as the USDA. The U.S. Household FSS Module Short 

Form is a six-item questionnaire that is both validated and reliable for the detection of food 

security, low food insecurity, and very low food insecurity. The parent study, Baby’s First 

Years, inadvertently eliminated the following question: “In the last 12 months, were you ever 

hungry but didn't eat because there wasn't enough money for food?” from the age 1 survey and 

therefore only five of the six items of the tool were used for data collection. Therefore, the HFI 

variable was dichotomized due to the elimination of one question from the U.S. Household 

FSS Module short form in age 1 data collection by the parent study, Baby’s First Years. As 

was previously discussed in Chapter 3, a report by the USDA Economic Research Service 

(ERS) (2019) demonstrated that no food secure households had selected yes to the question 

about experiencing hunger. The omission of this question only limits the ability to discern a 

distinction between those with low food security and very low food security, which are scored 

as 2-4 affirmations and 5-6 affirmations to the U.S. Household FSS Module short form, 

respectively. For this reason, the HFI variable was dichotomized to allow for the detection of 

any level of food insecurity, but ultimately, this modification of the tool limited the ability to 

perceive significant differences in brain function within infants whose mothers may be 

experiencing very low food insecurity.  

Finally, it is important to recognize that this study was able to understand breastfeeding 

duration as measured in months, however, there was no data that was collected to understand 

if breastfeeding mothers were supplementing with formula and if they were supplementing 

with formula, to what degree they were doing so. It is plausible, given the way in which the 
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breastfeeding duration question was asked, that a mother could have been breastfeeding for 

comfort or infrequently, while supplementing with formula, and still affirm that they had been 

breastfeeding for a duration of 12 months, due to the non-specificity of the question. In 

addition, 71.2% of the moms participating in this study were receiving WIC benefits for the 

past one year, and one of the benefits that is provided by WIC is formula. Today, WIC provides 

formula based upon the breastfeeding status of an infant. For fully breastfed infants, a mother’s 

WIC benefit would include more food and milk items whereas a partially breastfed infant’s 

mother would receive some formula, and less food and milk products. Finally, a fully formula 

fed infant would receive more formula, almost enough to exclusively formula feed, and the 

mothers would receive less food and milk items due to this increase in formula. It is likely that 

some of the 173 mothers receiving WIC benefits within this study population would be using 

formula to supplement breastfeeding if they were breastfeeding their infants. It is important to 

note that there was no significant difference in WIC participation for moms who ever breastfed 

vs never breastfed. This may be attributed to the fact that even breastfeeding moms can receive 

WIC benefits as an advantageous social service for the benefit of their family, which is further 

supported by the high level of WIC participation within this sample. Ultimately, it may be that 

the specificity of the breastfeeding duration question was not able to detect differences in brain 

function in this sample due to the uncontrolled confounder of formula feeding.  

5.4 Strengths 

 It is because of the careful and purposeful research work executed by the Baby’s First 

Years research team that there are significant strengths of this research study. Sampling for the 

Baby’s First Years study was very carefully executed to ensure that mothers did not feel 

coerced into participating in the study. During recruitment, participants were offered their 

unconditional cash transfer without the requirement to participate in the study. Participants 

were recruited from four states (NY, NE, LA, and MN) shortly after giving birth within a 
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hospital. The study sample was ultimately selected following a very careful screening process 

that ensured that the mothers were low-income and diverse, amongst other characteristics. The 

sample of mothers ultimately included in this study were derived from the control group of the 

parent study, Baby’s First Years, which allowed for the detection of significant associations 

with respect to brain function without intervention.  

 Another strength of this study was the quality of EEG data collection. Researchers of 

the parent study conducted a pilot of the in-home EEG data collection process in advance of 

beginning the RCT funded by the NIH (Troller-Renfree et al., 2021). This pilot of over 400 

one year old infants from diverse backgrounds allowed researchers to advance their 

understanding of the feasibility of in-home EEG data collection with respect to equipment 

recommendations, data collection, and data analysis. This pilot demonstrated that the 

developed methodology for in-home EEG data collection yielded high quality data with good 

internal consistency reliability. In addition, the Baby’s First Years research team processed 

EEG data, which was retrieved for use and analysis in this dissertation. Because skilled 

researchers who had considerable experience processed the EEG data, there is an increased 

confidence in the quality of the data utilized in this study.   

 Independent variables, including breastfeeding duration, ever breastfed, and household 

food insecurity as well as many of the covariates included in this study were derived from 

validated and reliable survey tools that demonstrates the fidelity of each variable in measuring 

with it purports to measure. The reliability of the self-reported answers about infant feeding is 

reported to be moderately high among mothers of infants up to 35 months old. The six-item 

U.S. Household FSS module has been validated as a food insecurity screener by Blumberg et 

al., 1999, where the shorter module was found to correctly classify food insecurity 97.7% of 

44,647 households participating in the 1995 Current Population Survey’s food security module 

whose food security was measured using an 18-item scale. This instrument is also reported to 
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identify food insecure households with a high level of sensitivity (i.e., an accurate true positive 

rate) and with a high level of specificity (i.e., an accurate true negative rate) (Gulliford et al., 

2004). Within the subgroup of 243 mothers in this sample, the PHQ-8, a tool to measure 

depression, showed good reliability with a Cronbach’s alpha of 0.84. This estimate is like Shin 

et al. (2019), who reported a Cronbach’s alpha of 0.89 for the PHQ-8. Shin et al. (2019) also 

report evidence about convergent validity for the PHQ-8. As expected, the PHQ-8 is strongly 

correlated with the Hamilton depression rating scale (Spearman correlation= 0.62). The BFY 

instrument also includes items extracted from the Global Health Tool (Idler & Beryamini, 

1997) to measure maternal physical health of the mothers, and items extracted from the 

instrument devised by Kling, Liebman, Katz (2007) to measure maternal substance abuse, 

specifically alcohol and smoking cigarettes.  

 Finally, although the sample size for this study was reduced due to the pandemic, 

COVID-19, there was still sufficient statistical power for the inclusion of 10 covariates as well 

as independent variables in the MLR models, which allowed for the controlling of many 

confounders that are associated both with the presence of food insecurity as well as 

breastfeeding behaviors in mothers. As discussed in the additional findings section above, 

several of these covariates illustrate patterns of significance with respect to the relative and 

absolute power of theta, alpha, beta, and gamma. There are undoubtedly additional 

confounders, such as formula feeding, that were not included in these models, but the 10 

covariates that were included do allow for increased confidence in the significant associations 

detected and described in this chapter.  

5.5 Implications 

There are important implications of this research, especially in context with literature 

reviewed in this chapter. This research demonstrates the significant associations between ever 

breastfeeding an infant with brain function in a population of infants from diverse, low SES 
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backgrounds. In contextualizing these changes in brain function as plausible adaptations that 

infants are developing due to their experiences, an opportunity exists to further explore these 

associations with brain function to understand the skills that low SES infants are developing 

during the first year of life. While there is significant research that contextualizes breastfeeding 

as related to cognition and academic performance in childhood, it is not yet understood through 

which mechanisms of action these associations exist. It may be possible that ever breastfed 

infants, like those in this study, exhibit higher absolute theta power and higher relative and 

absolute alpha power as adaptive changes that are related to skill developments to cope with 

family experiences that could be related to the decision of a mother to initiate breastfeeding.  

The bivariate exploration of differences in demographics between food insecure and 

food secure mothers and mothers who ever breastfed or did not initiate breastfeeding illustrated 

that there are in fact characteristic differences that can contextualize the differences in 

environmental experiences infants are having within these groups. Mothers who experienced 

food insecurity were more likely to be depressed (p<.001), experience moderate to high 

financial worry (p<.001) and have lower self-reported physical health ratings (p<.001). 

Mothers who reported never breastfeeding their infants were more likely to be Hispanic (p<.01, 

23.2% vs 46%) and to have smoked at least once in the past year (p<.001, 41.1% vs 16% for 

mothers who had breastfed). 

There are future opportunities to continue to explore the relationship between 

breastfeeding, food insecurity, and brain function in early childhood. Given that breastfeeding 

duration was not found to be significantly associated with brain function within this study’s 

sample of infants, but ever breastfeeding an infant was, the question arises — what are the 

mechanisms of action by which breastfeeding is associated with brain function and 

development? Evidence illustrates that both the behavior of breastfeeding and attachment 

between a mother and a breastfeeding infant as well as the nutritional composition of 
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breastmilk can explain some differences in brain structure, but the understanding of how these 

two distinct factors of a breastfeeding relationship contribute together to brain development is 

not yet known and offers opportunity for future study. In addition, as household food insecurity 

was not found to be associated with brain function in this sample of infants, there are future 

opportunities to study infants from low-SES backgrounds to identify associations between 

household food insecurity and brain function that can leverage the entire six-item U.S. 

Household Food Security Survey (FSS) Module Short Form or other tools that are designed to 

detect childhood food insecurity more specifically.  

In addition to further research, there are policy implications from this research and other 

research like this. The illustration of changes of brain function in early childhood associated 

with ever breastfeeding an infant is powerful in context with important policy discussions that 

postulate opportunities to impact children long term through early interventions. Within the 

United States, programs such as WIC and SNAP already are designed to improve both food 

security, and in the context of WIC, encourage breastfeeding. Considering mothers within this 

study participated in an average of three social service programs but there was still a 28% rate 

of food insecurity in population, opportunity exists to pursue novel programming to better 

target food security in low-income families. We must reflect on further opportunities to 

improve services provided to mothers and infants from low-SES backgrounds in the United 

States to encourage healthier childhood development, inclusive of brain development, by 

mitigating circumstances that can create adverse childhood experiences. This is work that is 

being pioneered by the BFY study which is poised to demonstrate the impact of unconditional 

cash transfers on brain function in early childhood as an opportunity for intervention that can 

have a lasting impact on children. The Biden administration has already worked to implement 

programs that parallel the intervention of the BFY study through the Child Tax Credit, which 

in the span of one year will allocate $105 billion to families in the United States through 
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monthly $250-$300 payments for each child, a service that will reach 90% of America’s 74 

million children. In context with this policy in the wake of the pandemic, the BFY study is 

poised to study the associations of this additional payment to mothers of infants within both 

the treatment and control groups on brain function in early childhood. It is research like this, 

set upon the backdrop of innovative social policy, that can cause meaningful policy changes 

that may improve the experiences and development of America’s most vulnerable infants.  
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