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A B S T R A C T

Post-stroke neural damage is a serious health concern which does not yet have an effective treatment. We have
shown previously that Shuxuening injection (SXNI), a Ginkgo biloba extract-based natural medicine, protects
brain after an acute ischemic stroke, but its efficacy for post-stroke recovery is not known. This study was to
investigate whether SXNI can improve the prognosis of stroke at a subacute phase. Mice with cerebral ischemia-
reperfusion injury (CIRI) were established by middle cerebral artery occlusion (MCAO), and drugs or saline were
injected by the tail vein every 12 h after reperfusion. The therapeutic effect of SXNI was evaluated by survival
rate, modified neurologic severity scores (mNSS), open-field test, locomotive gait patterns, cerebral infarction
volume, brain edema and histopathological changes. Subsequently, a combined method of RNA-seq and
Ingenuity® Pathway Analysis (IPA) was performed to identify key targets and pathways of SXNI facilitating the
prognosis of stroke in mouse brain. The results of the transcriptome analysis were verified by real time reverse
transcription-polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), western blot
(WB) and immunohistochemistry (IHC). The experimental results showed that in the new subacute stroke model,
SXNI markedly improves the survival rate, neurological and motor functions and histopathological changes, and
significantly reduces cerebral infarction and edema volume. RNA-seq analysis of subacute stroke mice with or
without SXNI (3 mL/kg) indicated 963 differentially expressed genes (DEGs) with a fold change ≥ 1.5 and a P-
value≤ 0.01. IPA analysis of DEGs showed that granulocyte adhesion and diapedesis ranked first in the pathway
ranking, and the most critical gene regulated by SXNI was G-csf. Simultaneously, RT-PCR, ELISA, WB and IHC
results demonstrated that SXNI not only obviously reduced the mRNA expression levels of key genes G-csf, Sele
and Mac-1 in this pathway, but also significantly decreased the protein expression levels of G-CSF in serum and
E-selectin and MAC-1 in brain tissues. In summary, our research suggested that SXNI can exert a remarkable
neurofunctional therapeutic effect on stroke mice via down-regulating G-CSF to inhibit granulocyte adhesion
and diapedesis. This study provides experimental evidence that SXNI may fulfill the need for stroke medicine
targeting specifically at the recovery stage.
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1. Introduction

Stroke is a brain disease with high mortality and disability [1,2],
with ischemic stroke accounting for 87 % of all strokes [3]. Ischemic
stroke is due to insufficient cerebral perfusion or blockage of blood
vessels in the form of arterial embolism or thrombosis [4]. Currently,
there are two main methods to treat ischemic stroke in clinic. One is
intravenous thrombolysis by recombinant tissue-type plasminogen ac-
tivator (tPA), but it has potential risk of hemorrhagic transformation
[5,6] and with a narrow treatment window [7,8] that about 95 % of
patients cannot receive treatment in time [9], resulting in residual
neurological deficits [10]. Endovascular thrombectomy to restore cer-
ebral blood flow is an alternative method for ischemic stroke patients
[11,12]. However, the recovery of cerebral blood flow always causes
reperfusion injury, exacerbates cerebral edema or hemorrhagic trans-
formation [12–14] and increases the area of cerebral infarction [15],
and gradually causes cognitive and motor dysfunction [16,17]. Thus,
the development of more effective treatment for cerebral ischemia-re-
perfusion injury in stroke will help stroke patients with chronic dis-
ability [18].

Numerous animal experiments have shown that neuroprotective
agents are effective against ischemic stroke, but failed in clinical
transformation [19,20], which is largely related to the animal model
designed [21]. Choosing the appropriate animal models is critical to
transforming preclinical drugs into clinically useful anti-stroke drugs
[22,23]. The intraluminal suture middle cerebral artery occlusion
(MCAO) model is one of the most widely used animal models [21] and
the closest to simulate human ischemic stroke [24,25]. In addition,
clinical studies of stroke patients often use long-term (usually greater
than 90 days) mortality and functional impairment as evaluation in-
dicators, which better reflects the continued benefits of drugs in long-
term survival [26]. However, our previous studies were limited to the
protective effect on acute stroke mice (24 h), and ignored the longer-
term treatment effects such as the subacute phase and the recovery
phase [27,28]. Therefore, in this study, we set the experimental cycle to
one week after stroke (subacute phase).

Ginkgo biloba extract (GBE) is a kind of product which is enriched
with the active ingredients extracted from the leaves of Ginkgo biloba
by using appropriate solvents. Its main pharmacological active in-
gredients include terpene trilactons (TTLs) and flavonols [29]. Gink-
golide A, ginkgolide B, ginkgolide C, ginkgolide J, and bilobalide are
among the identified TTLs whereas kaempferol, quercetin, and iso-
rhamnetin are among the identified flavonoids [30,31]. It is reported
that Ginkgo biloba extract can treat neurodegenerative diseases [32],
such as ischemic stroke [33,34], memory loss [35,36], epilepsy [37,38]
and Alzheimer's disease [39–41]. It can also improve cognitive and
neurological dysfunction after stroke [42,43]. Shuxuening Injection
(SXNI) is a GBE approved by the Sino Food and Drug Administration
[44]. We have previously shown that SXNI has a protective effect in
mice with acute cerebral ischemia-reperfusion injury (CIRI) [27,28]. As
mentioned in the previous paragraph, this time we administered SXNI
to mice for 7 consecutive days to explore whether it could have a
beneficial effect in the subacute phase of ischemic stroke. The use of
minocycline has been shown to have a neuroprotective effect on is-
chemic stroke in stroke animals and clinical trials. Its mechanism of
action may be related to anti-inflammatory [45–47], so we chose it as a
positive drug.

Involvement of immune cells and inflammation in brain injury and
recovery has been increasingly recognized as the frontier of neu-
roscience [48,49]. Granulocytes, a subgroup of leukocyte, are char-
acterized by the presence of granules in their cytoplasm. There are four
types of granulocytes, including neutrophils, basophils, eosinophils and
mast cells [50]. The adhesion and diapedesis of granulocytes to en-
dothelial cells (ECs) is an exceedingly essential pathway following brain
injury, which is related to immunity/inflammation. It is reported to
promote granulocyte, predominantly neutrophils, migration through

the endothelium into the cerebral parenchyma, thereby causing neu-
roinflammation in cerebrovascular diseases such as stroke [51], ather-
osclerosis [52], and septic encephalopathy [53]. However, the classic
cascade of leukocyte recruitment includes capture, rolling, adhesion,
crawling, and transmigration, eventually crossing the blood-brain bar-
rier into inflamed tissue [54,55]. Meanwhile, endothelial cells and
immune cells produce a large number of granulocyte colony-stimu-
lating factors (G-CSF/CSF-3) at the site of vascular injury [56–58],
which are the main regulators of neutrophils [59–61]. Although G-CSF
has been widely used in the treatment of chemotherapy-induced neu-
tropenia [62], it has also been reported to aggravate the occurrence of
various types of inflammation [63–66], which may be related to the
induction of high expression of MAC-1 (CD11b/CD18) protein, E-se-
lectin (CD62e) and its ligands, and to promote the migration of neu-
trophils to the site of inflammation [62,67–71]. Therefore, it is of sci-
entific significance to study the role of G-CSF and granulocyte adhesion
and inflammatory diapedesis in the treatment of stroke.

Consequently, the present study aimed to establish a subacute
model of CIRI mimicking the immediate recovery phase of clinical
stroke and investigate the therapeutic effect of SXNI on the neurological
function of subacute stroke mice and its potential key mechanism. Our
research shows that SXNI can exert neurotherapeutic effects on sub-
acute stroke mice via inhibiting G-CSF-mediated the granulocyte ad-
hesion and diapedesis pathway.

2. Materials and methods

2.1. Animals

A total of 110 male C57BL/6 J mice, weighing 22−25 g for 8 weeks,
were purchased from Beijing Vital River Laboratory Animal Technology
Co., Ltd. (Beijing, China, Certificate no.: SCXK Jing 2017−0005) and
caged at a fixed humidity (40 %±5%) and temperature (22℃±2℃),
under 12 h light/12 h dark cycle, with free access to water and rat/
mouse full nutrition jelly (J10001, Ready Biotechnology Co., Ltd,
Shenzhen, China). This study was conducted in accordance with the
recommendations by the Ministry of Science and Technology of China
and the protocol for animal study was approved by the Laboratory
Animal Ethics Committee of Tianjin University of TCM (Permit
Number: TCM-LAEC2014004) and Tianjin International Joint Academy
of Biotechnology and Medicine, China (Permit Number: JU20160024).

2.2. Establishment of cerebral ischemia-reperfusion (I/R) injury model and
drug administration

After anesthetizing the mouse by inhalation with 2% isoflurane and
placing them in a small animal respirator (RWD, Inc., China) filled with
1.5 % isoflurane, the left common carotid artery (CCA), left external
carotid artery (ECA), left internal carotid artery (ICA) and left pter-
ygopalatine (PPA) of the mouse were isolated for full exposure. Then,
the CCA and ECA were tied with 6−0 medical suture respectively, and
the distal end of ECA was burned by a monopolar electrical cautery
later. The ICA was clamped with arterial hemostatic clip, and a small
hole was cut in ECA to insert a silicone-coated 4−0 nylon monofila-
ment (Jialing Biotechnology Co., Ltd., Guangzhou, China) to block the
origin of the left middle cerebral artery (MCA), resulting in a decline of
local cortical blood flow in the left MCA territory to approximately 20
% of the baseline. After 30 min the nylon monofilament was pulled out
for blood flow reperfusion. In the sham group, only left CCA, ECA, ICA
and PPA were separated and exposed, but no nylon monofilament was
inserted. 110 mice were then randomly assigned to 6 groups (10 in
sham group and 20 in other groups), including sham (saline), vehicle
(I/R + saline), minocycline (I/R + minocycline, 15 mg/kg, M9190,
Solarbio, Beijing, China, dissolved in saline and sterile-filtered through
0.22 μm) and the SXNI (drug approval number: Z13020795; batch
number: 181108C1, Shineway Pharmaceutical Group Ltd, Hebei,
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China) low (I/R + dose, 1.5 mL/kg), middle (I/R + dose, 3 mL/kg) and
high (I/R + dose, 6 mL/kg). The drugs were administered from the tail
vein immediately after I/R and every 12 h thereafter. The mice were
killed by cervical dislocation and the brains were taken and rinsed in
0.9 % saline on the 7th day.

2.3. Evaluation of functional deficit

2.3.1. Neurological deficit score
As shown in previous researches [72,73], neurological deficit scores

of mice were recorded on days 1, 4, and 7 after I/R based on the
modified Neurological Severity Score (mNSS), including raising the
mouse by the tail, walking on the floor, beam balance tests and reflexes
absence. The score ranges from 0 to 14, and it was positively correlated
with the severity of ischemia-reperfusion injury. Detailed scores can be
found in the supplementary file Table S1.

2.3.2. Open-field test
On the 5th day after I/R, the mice were placed in an open field of 40

cm × 40 cm, with a high-speed camera hanging on the upper part. To
eliminate odors, the bottom plate was wiped with 75 % alcohol before
each animal was tested. Recording time was set to 30 min and the ANY-
maze Behavioural Tracking Software (Stoelting Co. United States) was
used to evaluate the parameters of total distance and average speed
[74,75].

2.3.3. Locomotive gait analysis
As mentioned earlier [76,77], automatic quantitative gait analysis

was implemented via using Catwalk system (Noldus Information
Technology, Wageningen, Netherlands) on the 7th day after I/R. The
top of the Catwalk system was covered with a ceiling with a light
source. There are two black baffles in the middle to form a runway. The
bottom of the system was a 1.5-meter glass floor with a high-speed
camera under it. The mice were trained on the runway for two con-
secutive days before I/R to familiarize them with the runway. Utilizing
Catwalk XT Version 9.1 software (Noldus Information Technology,
Wageningen, Netherlands), the recovery of locomotive function after on
the 7th day after I/R was evaluated by the base of support, max contact
area, print area, swing speeds and stride length [78].

2.4. Measurement of cerebral infarction volume

The brain of the euthanized mouse was removed and rinsed in 0.9 %
saline. 5 coronal sections were cut at 2 mm intervals in the brain mold,
which were then transferred to 2 % 2, 3, 5-Triphenyl-2H-tetrazolium
chloride solution (TTC, G3004, Solarbio, Beijing, China) solution and
placed in a 37 ℃ incubator for 15 min [79]. The areas of the con-
tralateral hemisphere (Ci), ipsilateral hemisphere (Ii), and ipsilateral
non-ischemic region (Ni) were determined using the Image J software
(National Institutes of Health, Bethesda, MD, United States), and the
infarct volume (%) was calculated via the following formula [80]:

=
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

−( )( )
Infarct volume

Σi Ci

ΣiCi2
* 100%

Ii Ni
Ii

2.5. Analysis of brain edema

After anesthetizing the mouse with 2 % isoflurane inhalation, the CT
contrast agent (Iohexol Injection, 15 mL/kg, H20000595, General
Electric Pharmaceutical Co., Ltd. Shanghai, China) was injected via the
tail vein. Then used the μCT small animal imager (Quantum FX;
PerkinElmer, United States) to perform a 360-degree scan of the brain
under the following parameters: voltage 90 kV, current 180 μA, field of
vision 20 mm, scanning technology 4.5 min. Finally, the offset distance

of the midline was quantified via utilizing ImageJ software (National
Institutes of Health, Bethesda, MD, United States) [81]. The longer the
offset distance, the more severe the brain edema.

2.6. Hematoxylin and eosin staining (H&E)

As previously described [28], brain tissue of mice was fixed in 4%
paraformaldehyde solution for at least 48 h. The brain slices were de-
hydrated in an automatic dehydrator (Excelsior, Thermo., Ltd., United
States) for about 16 h, and then removed and embedded in paraffin.
The paraffin blocks were manually cut (Gemini, Thermo., Ltd., United
States) into 5 μm sheets, which were attached to a glass slide and dried,
and followed stained via using automatic staining machine (ClearVue,
Thermo., Ltd., United States). The slides were sealed by an automatic
sealing machine (ClearVue, Thermo, Ltd., USA), which were later
photographed with an optical microscope (Vectra 3, PerkinElmer,
United States) and pathologically analyzed.

2.7. Ribonucleic acid sequencing (RNA-Seq) and data analysis

Total RNA was extracted from brain tissue and tested for purity and
integrity. The library of transcriptome sequencing was then generated
using NEBNext® UltraTM RNA Library Prep Kit for Illumina® (NEB,
USA), and the library quality was detected with Qubit2.0 Fluorometer
and Agilent 2100 bioanalyzer. In addition, the library preparations
were sequenced on an Illumina Novaseq platform. After obtaining clean
data (clean reads) by deleting the reads containing adapter, reads
containing ploy-N, and low-quality reads in the original data, these
clean reads were compared to the Mus musculus genome utilizing the
HISAT2 alignment software (The Johns Hopkins University, Baltimore,
Maryland, United States). The quantification of gene expression level
was then quantified using FPKM. Differential expression analysis of
mice from the vehicle and SXNI middle groups was performed utilizing
the DESeq2 R package (1.16.1). log2FoldChange ≥ 1.5 and P-value ≤
0.01 were set as the threshold of significant difference expression.

2.8. Core analysis of differentially expressed genes (DEGs)

The core analysis of DEGs obtained by RNA-Seq was carried out by
Ingenuity® Pathway Analysis (IPA). The DEGs with fold change ≥ 1.5,
P-value ≤ 0.01 and fold change ≥ 10, P-value ≤ 0.01 were entered
into Ingenuity's Knowledge Base and then core analysis was performed
respectively. In addition, the following settings were made during data
analysis: Ingenuity Knowledge Base was used as a reference set; en-
dogenous chemicals were not included; direct and indirect relation-
ships. Significance was measured by the number of molecules mapped
to the pathway dataset divided by the total number of genes in the
pathway and P-value of Fisher's exact test.

2.9. RNA extraction and RT-PCR assay

According to the manufacturer's protocols, total RNA samples were
extracted from the affected side of brain tissue with EasyPure® RNA Kit
(ER101, TransGen Biotech, Beijing, China), and then transcribed into
cDNA with the Transcriptor First Strand cDNA Synthesis Kit
(04897030001, Roche, Mannheim, Germany). The cDNA was mixed
with Bestar™ qPCR MasterMix (2043, DBI Bioscience, Shanghai, China)
and primers in PCR® Strip Tubes (Corning, New York, USA), and they
were transferred to real-time PCR system (LightCycler®480, Roche,
Germany). The mRNA expression levels of each sample were detected.
The primers used in this experiment include G-csf, Tnf, Il1b, Il6, Ccl2,
Ccr2, Cxcr2, Cxcl2, Cxcl10, Sele, Selp, Esl-1, Psgl-1, Itgam (Mac-1), Itgal
(Lfa-1), Icam-1and Icam-2. Their relative mRNA levels were determined
using glyceraldehyde-3-phosphate dehydrogenase (Gapdh) as a stan-
dard. All the above primers were synthesized by Sangon Biotech
(Shanghai, China) and shown in Table 1.
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2.10. Enzyme-linked immunosorbent assay (ELISA)

On the 7th day after I/R, the plasma of mice was collected, and its
upper serum was separated by centrifugation at 1000 r/min for 15 min.
According to the protocol of the manufacturer of Mouse G-CSF ELISA
Kit (SEKM-0040, Solarbio, Beijing, China), the OD value of each sample
at a wavelength of 450 nm was measured by Tecan SPARK microplate
reader (Tecan, Groedig, Austria). The OD value was substituted into the
standard curve to obtain the G-CSF protein concentration in the serum.

2.11. Western blotting (WB)

The brain tissue was treated with RIPA buffer (Solarbio, Beijing,
China), and the supernatant was centrifuged at 13,000 r/ min and 4℃
for 10 min. Then the total protein concentration of the supernatant was
measured with BCA Protein Assay Kit (PC0020, TransGen Biotech,
Beijing, China). The SDS-PAGE protein loading buffer (P0015 L,
Beyotime Biotechnology, Shanghai, China) was added to the super-
natant, and the protein was deformed by heating in a metal bath at 95℃
for 10 min. The protein samples were separated by SDS-polyacrylamide
gel electrophoresis and transferred to the PVDF membrane. The total
protein on PVDF membrane was sealed with 5% skimmed milk. The
primary antibody (Rabbit anti-E-Selectin, 1:2000, bs-1273R, Bioss Inc.,
Beijing, China and GAPDH, 1:4000, 14C10, Cell Signaling Technology,
Beverly, MA) was added dropwise to the PVDF membrane and trans-
ferred to a 4 °C refrigerator for 8 h. After washing it with TBS-T, the
secondary antibody (Goat anti-Rabbit lgG, 1:4000, ZB-2301, ZSbio,
Beijing, China) was added dropwise to the PVDF membrane and in-
cubated at room temperature for 2 h, and then washed with TBS-T
again. Finally, the EasySee Western Blot Kit (DW101-02, TransGen
Biotech, Beijing, China) was used to react with the PVDF membrane for
1 min under darkness, and the bands were obtained by the gel imaging
system. The protein expression of E-selectin was analyzed via using
ImageJ analysis software (National Institutes of Health, Bethesda, MD,
USA) and standardized to GAPDH.

2.12. Immunohistochemistry (IHC)

The paraffin sections of brain tissue were baked in an oven at 60℃
for 1 h to melt the paraffin, then dewaxed in xylene and rehydrated.
After inhibiting endogenous peroxidase activity with 3% H2O2, the
tissue sections were heated in 0.01 M sodium citrate buffer (pH 6.0) and
allowed to cool to normal temperature. Non-specific binding sites were
blocked with blocking buffer (10 % bovine serum) for 1 h at 37 °C. The
sections were incubated with Rabbit Anti-MAC-1(CD11b/CD18)

antibody (bs-1014R, Bioss Inc., Beijing, China) diluted in blocking
buffer (1: 300) for 2 h at 37 °C and washed twice with PBS-T (0.01 M
PBS pH 7.4: KH2PO4 0.02 %, N2HPO4 0.29 %, KCl 0.02 %, 0.8 % NaCl,
0.05 % BSA, Tween-20 0.05 %, 0.0015) for 5 min each. Then, the
biotin-conjugated goat anti-rabbit IgG (ZB-2010, ZSbio, Beijing, China)
diluted in blocking buffer (1: 200) was added dropwise and incubated
at 37 °C for 40 min, and the sections were washed in PBS-T twice, for 5
min each time again. DAB kit (AR1022, Boster Bio., Wuhan, China) was
used for color development, followed by counter staining with hema-
toxylin and differentiation with 1% hydrochloric acid alcohol. Finally,
seal the sections with neutral gum after dehydration. The expression of
MAC-1 was detected by optical microscope (Vectra 3, PerkinElmer,
United States) and quantified by calculating its integrated optical
density value and positive cells using ImagePro Plus software (National
Institutes of Health, Bethesda, MD, United States).

A graphical abstract of all the above experiments can be found in
the supplementary file Fig. S1.

2.13. Statistical analysis

All data was expressed as mean± SEM or mean± SD. Statistical
analysis was carried out using Student’s two-tailed t-test for comparison
between two groups and One-way analysis of variance (ANOVA) for
three or more groups by SPSS 22.0. Value of P<0.05 was considered
statistically significant.

3. Results

3.1. Effects of SXNI on survival rate, neurological deficit and exercise
ability in subacute stroke mice

High mortality was one of the main characteristics of ischemic
stroke. By recording the survival of the mice within 7 days after
ischemia-reperfusion, we found that compared with the sham group,
the mice in vehicle group had a higher mortality rate. However, the
treatment with minocycline and 3 doses of SXNI reduced mortality
compared to the vehicle group (Fig. 1A). mNSS was an important in-
dicator to evaluate the severity of neurological damage after stroke. The
mNSS score of mice on the 1 st, 4th and 7th day after stroke showed
there were obvious neurological disorders in vehicle group and each
administration group compared with sham group on the 1 st day, but on
the 4th and 7th day, minocycline, middle doses of SXNI (3 mL/kg) and
high doses of SXNI (6 mL/kg) could significantly reduce neurological
deficit scores of subacute stroke mice compared with vehicle group
(Fig. 1B). In addition, the open field test on the 5th day after stroke
found that exercise speed and distance of the vehicle group mice were
remarkedly declined compared with those in sham group (Fig. 1C, D).
However, compared with the vehicle group, the exercise speed and
distance of mice were significantly increased in the minocycline, SXNI
middle (3 mL/kg) and SXNI high (6 mL/kg) groups (Fig. 1C, D).

3.2. Effect of SXNI on locomotive gait in subacute stroke mice

Another pathological feature after stroke was gait dysfunction,
especially on the contralateral limb. The catwalk parameters were
shown in Fig. 2A. The middle doses SXNI (3 mL/kg) could significantly
improve the decrease of base of support (BOS) in the front paws and
hind paws caused by I/R. Compared with sham group, the max contact
area, print area, stride length and swing speed of the right front, right
hind and left hind of vehicle group mice were obviously reduced, while
minocycline and the middle doses SXNI (3 mL/kg) could remarkedly
ameliorate the max contact area, print area and stride length compared
with vehicle group (Fig. 2C–F). In addition, the high doses SXNI (6 mL/
kg) also significantly increased max contact area and stride length in
the right hind and left hind of subacute stroke mice, while the low doses
SXNI (1.5 mL/kg) only increased stride length in the left hind compared

Table 1
Primer sequences.

Gene Forward Primer (5′–3′) Reverse Primer (5′–3′)

G-csf ATGGCTCAACTTTCTGCCCAG CTGACAGTGACCAGGGGAAC
Tnf CCCTCACACTCAGATCATCTTCT GCTACGACGTGGGCTACAG
Il1b GCAACTGTTCCTGAACTCAACT ATCTTTTGGGGTCCGTCAACT
Il6 TAGTCCTTCCTACCCCAATTTCC TTGGTCCTTAGCCACTCCTTC
Ccl2 TTAAAAACCTGGATCGGAACCAA GCATTAGCTTCAGATTTACGGGT
Ccr2 ATCCACGGCATACTATCAACATC CAAGGCTCACCATCATCGTAG
Cxcr2 ATGCCCTCTATTCTGCCAGAT GTGCTCCGGTTGTATAAGATGAC
Cxcl2 CCAACCACCAGGCTACAGG GCGTCACACTCAAGCTCTG
Cxcl10 CCAAGTGCTGCCGTCATTTTC GGCTCGCAGGGATGATTTCAA
Sele ATGCCTCGCGCTTTCTCTC GTAGTCCCGCTGACAGTATGC
Selp CATCTGGTTCAGTGCTTTGATCT ACCCGTGAGTTATTCCATGAGT
Psgl-1 GTCTGTCCCGTCACTGGATAC TTCTCTCTTACCGGGTTACCA
Esl-1 CAAGATGACGGCCATCATTTTCA TTCCCCAAGACGAATGCTGC
Mac-1 ATGGACGCTGATGGCAATACC TCCCCATTCACGTCTCCCA
Lfa-1 CCAGACTTTTGCTACTGGGAC GCTTGTTCGGCAGTGATAGAG
Icam-1 GTGATGCTCAGGTATCCATCCA CACAGTTCTCAAAGCACAGCG
Icam-2 TGGTCCGAGAAGCAGATAGTAG GAGGCTGGTACACCCTGATG
Gapdh TGGTGAAGCAGGCATCTGAG TGCTGTTGAAGTCGCAGGAG
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Fig. 1. SXNI improved survival rate, neuro-
logical deficit score and locomotor function
in subacute stroke mice. Within 7 days after
stroke, the survival of each group of mice was
recorded, and neurological and motor function
tests were performed. (A) Survival curve of
mice in each group within 7 days after stroke
(n = 10∼20). (B) Modified neurologic severity
scores on post-stroke day 1, 4 and 7 (n = 10).
The locomotor function of each group of mice
was evaluated on the 5th day after the stroke.
(C) The motor distance and (D) average speed
of mice were calculated via using open field
locomotion chambers (n = 8). Data were ex-
pressed as mean±SEM. ###P<0.001 vs.
Sham group, *P<0.05, **P<0.01
***P< 0.001 vs. Vehicle group.

Fig. 2. SXNI ameliorated motor gait in subacute stroke mice. 7 days after stroke, the locomotive gait of the mice was tested using the Catwalk system. (A)
Graphical representation of selected gait parameters. (B) Quantification of BOS in front and hind paws, and quantification of (C) maximum contact area, (D) print
area, (E) stride length and (F) swing speed of four paws in mice (n = 6). RF: right front; RH: right hind; LF: left front; LH: left hind. Data were expressed as
mean± SEM. #P<0.05, ##P< 0.01, ###P< 0.001 vs. Sham group, *P< 0.05, **P< 0.01 vs. Vehicle group.
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with vehicle group.

3.3. The effects of SXNI on brain damage in subacute stroke mice

By quantifying the infarct volume in TTC-stained brain sections and
indirectly calculating the severity of brain edema in micro-CT imaging,
the severity of brain injury in mice on the 7th day after stroke was
estimated. Compared with the sham group, the cerebral infarction area
(Fig. 3A, B) and middle offset distance (Fig. 3C, D) were significantly
increased in the vehicle group mice. SXNI and minocycline treatment
obviously reduced the area of cerebral infarction (Fig. 3A, B) and the
degree of edema (Fig. 3C, D) compared with the vehicle group. Si-
multaneously, the histopathological examination of brain tissue from
the vehicle group revealed extensive structural abnormalities, including
increased necrosis, fusion areas, and infiltration of inflammatory cells,
which were indicated by yellow arrows (Fig. 4). In contrast, after ad-
ministration with SXNI and minocycline, the damaged histological
features and brain structure were remarkedly improved (Fig. 4).
Therefore, SXNI could significantly improve the brain damage of mice
after stroke via reducing the area of cerebral infarction, cerebral edema
and pathological changes of brain tissue.

3.4. Transcriptome identification of DEGs between vehicle group and SXNI
group

In order to identify SXNI gene targets in brain tissue, high-
throughput sequencing analysis was performed on the brain tissue of I/
R mice with or without SXNI (3 mL/kg) treatment. Transcriptome re-
sults showed that there were 28,258 expressed genes in the SXNI
treatment group mice and 27,463 expressed genes in the vehicle group
mice. In total, 963 DEGs with Fold-Change values greater than or equal

to 1.5 and P-values less than or equal to 0.01 were selected, including
495 up-regulated genes and 468 down-regulated genes (Fig. 5A). Their
detailed information was listed in Supplementary Table S2. In addition,
Fig. 5B showed the overall gene expression profile of a hierarchical
cluster of the above 963 DEGs.

3.5. Key pathways and targets of SXNI in the treatment of subacute stroke
mice

The core analysis of DEGs obtained by high-throughput sequencing
analysis was carried out via using IPA. In order to increase the accuracy
of the analysis results, the thresholds of DEGs were set to FC≥ 1.5, P≤
0.01 and FC ≥ 10, P ≤ 0.01 respectively, and the selected DEGs were
imported into Ingenuity's Knowledge Base to determine the primary
pathway regulated by SXNI. The classic pathways were ranked based on
the -log (p-value) score, and the top 20 was listed (Fig. 6A). Notably,
granulocyte adhesion and diapedesis pathway ranked first in the above
two rankings (Fig. 6A). Therefore, it was regarded as the most critical
pathway regulated by SXNI in the treatment of subacute-stroke mice.
However, DEGs with FC ≥ 1.5 and P ≤ 0.01 were analyzed in further
core analysis. According to the -log(p-value) score, the top 5 biological
functions are displayed in a decending order: immune response, in-
flammation, angiogenesis, vasculogenesis and apoptosis (Fig. 6B, C).
Meanwhile, the protein-protein interaction (PPI) and upstream reg-
ulators (UR) analysis results of DEGs with FC ≥ 1.5 and P ≤ 0.01
indicate that there are 26 overlapping genes (Fig. 6D–F). Through lit-
erature review, 13 genes related to stroke, including G-csf, Ngp, S100a9,
Cxcl2, Saa1, S100a8, Lcn2, Ilb, Il6, Cxcr2, Nos2, Mmp8 and Ccl2, were
selected as potential major targets of SXNI (Fig. 6G). Among them, the
fold change of G-csf was down by 1957-fold, which was an striking
change. In summary, the most critical pathway and target of SXNI by

Fig. 3. SXNI reduced cerebral infarct size, brain edema in subacute stroke mice. On post-stroke day 7, the brain tissue of mice was stained with TTC and H&E,
and imaged by micro-CT. (A) Representative images of TTC staining in different groups. White area indicates ischemic infarction area. (B) Quantification of infarct
volume after different treatment (n = 6 in each group). (C) Representative micro-CT images in each group. Brain midline offset distance positively correlated with
the severity of cerebral edema. (D) Quantitation of the offset distance of midline after different treatment (n = 6 in each group). Data were expressed as mean±SD.
###P<0.001 vs. Sham group, *P< 0.05, **P< 0.01, ***P<0.001 vs. Vehicle group.
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transcriptome analysis appear to be granulocyte adhesion and diaped-
esis pathway and G-CSF, respectively, which are validated experimen-
tally next.

3.6. Verification of important DEGs at the mRNA level in the granulocyte
adhesion and diapedesis pathway

It was found from Fig. 6F that most of the important DEGs were
cytokines, such as G-csf, Tnf, interleukins (including Il1a, Il1b, Il6),

Fig. 4. SXNI reduced histopathological changes in subacute stroke mice. On post-stroke day 7, the brain tissue of mice was stained with H&E. Representative
images of histopathological changes, including structural disorders and inflammatory cell infiltration indicated by yellow arrows. (4×, 40× magnification and detail
view, n = 4 in each group).
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chemokine (including Ccl2, Ccr2, Cxcr2, Cxcl2 and Cxcl10), among
which the fold change of G-csf was the largest in transcriptome analysis.
RT-PCR was used to verify the accuracy of the transcriptome results.
The results of RT-PCR were consistent with those of transcriptome, that
is, SXNI can significantly down-regulate G-csf, Tnf, Il1b, Il6, Ccl2,
Ccr2,Cxcr2, Cxcl2 and Cxcl10 (Fig. 7B), which proved that the tran-
scriptome data had high reliability and biological repeatability. Besides,
RT-PCR results of genes closely related to the granulocyte and dia-
pedesis pathway showed that the expression levels of Sele (E-selectin),
Selp (P-selectin), Mac-1, Laf-1, Esl-1, Psgl-1, Icam-1 and Icam-2 were also
significantly decreased after SXNI administration compared with the
vehicle group mice (Fig. 7C).

3.7. Effect of SXNI on the expression levels of G-CSF, E-selectin and MAC-1
proteins in subacute stroke mice

Significant targets in the granulocyte adhesion and diapedesis
pathway were verified at the protein level. The ELISA experiment
showed that compared with the sham group, the G-CSF protein level in
serum was remarkedly increased in the mice of vehicle group. The
middle (3 mL/kg) and high (6 mL/kg) doses of SXNI were able to ob-
viously down-regulate the abnormally elevated G-CSF after stroke
(Fig. 8A). WB experiments indicated E-selectin was significantly in-
creased in the brain tissue of mice in the vehicle group, while different
doses of SXNI could substantially reduce the expression of E-selectin
(Fig. 8B, C). In addition, IHC experiments demonstrated that SXNI can
reverse the abnormal elevation of MAC-1 protein in brain tissue caused
by stroke (Fig. 8D–F). Interestingly, treatment with minocycline did not
play a role in the expression of G-CSF, E-selectin, and MAC-1 in com-
parison to vehicle (Fig. 8A, C, E, F), suggesting that minocycline may
not play a role in neurofunctional recovery via down-regulating the
expression of these proteins or inhibiting granulocyte adhesion and
diapedesis pathway.

4. Discussion

Despite of intensive efforts worldwide, the development of medicine
for post-stroke recovery has been disappointing. The failure of stroke

recovery drugs in clinical translation is related to many factors, in-
cluding dose response, therapeutic window, outcome measures, phy-
siological monitoring, multiple species [23]. Unlike acute stroke, re-
storing post-stroke behavioral activity dependents in part on
neurological recovery [82]. Therefore, selecting appropriate animal
stroke models and behavioral evaluation indicators can better simulate
the occurrence and development of human stroke, and align preclinical
to clinical stroke recovery studies, thereby maximizing the efficiency of
clinical translation of anti-stroke drugs [83]. Our current study at-
tempts to fillin this need by creating a mouse model mimicing the
clinical subacute phase of stroke by milder ischemia and extended re-
perfusion. With this model, we were able to better evaluate the behavial
deficiency and improvement after drug treatment, as well as to better
examine the molecular events distinguishing those occurring at the
acute phase of stroke.

In previous studies, we have shown that SXNI plays a protective role
in acute CIRI mice through the atherosclerosis signal and inflammatory
response mediated by Tnfrsf12a [27]. Besides, the main components of
SXNI, ginkgo flavonol glycosides or ginkgolides act differently in cer-
ebral vs myocardial I/R injury. In particular, the latter preferentially
reduces CIRI via regulation of TWEAK-Fn14 signaling pathway [28].
However, these studies were carried out during the acute ischemic
stroke, which was difficult to reflect the beneficial role of SXNI in the
longer recovery period. Using the newly established post-stroke re-
covery model in this study that extended the administration time to 7
days after stroke, we are able to investigate whether SXNI can play a
role in facilitating neurofunctional recovery in subacute stroke, so as to
find anti-stroke drugs that can be used clinically.

Since it was well known that stroke has the characteristics of eating
difficulties [84,85] and high mortality [86], we recorded the changes in
body weight and survival of mice within 7 days after stroke, and found
that the middle doses of SXNI (3 mL/kg) can significantly improved
weight changes (Fig. S2) and survival (Fig. 1A) of mice after stroke. In
addition, since stroke often lead to hemiplegia, limb flexion, and motor
dysfunction, we used different behavioral evaluation methods, in-
cluding mNSS [73,87], open-field test [88,89], and Catwalk [90,91], to
assess neuromotor function of subacute stroke mice. Significantly, both
mNSS and open-field test results indicated that SXNI at 3 mL/kg and 6

Fig. 5. Differentially expressed genes
(DEGs) of SXNI group and vehicle group
mice. The distribution of DEGs (fold change ≥
1.5 and p-Value ≤ 0.01) was visually pre-
sented by the volcanic map. (A) Distribution of
DEGs between SXNI (3 mL/kg) and the vehicle
group mice. The abscissa represents the fold
change in the two groups, and the ordinate
represents the significance level of gene ex-
pression between the two groups. Red dots
indicate up-regulated genes, while green dots
indicate down-regulated genes (n = 3). (B)
Hierarchical cluster analysis between samples
from the SXNI (3 mL/kg) group and the vehicle
group.
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mL/kg can obviously ameliorate the neurological function and motor
capacity of subacute stroke mice (Fig. 1B–D). Gait analysis showed that
SXNI can reverse limb dyskinesia caused by stroke to varying degrees,
including BOS, maximum contact area, print area, stride length and
swing speed, among which the hind limb and the contralateral limb of
mice were more affected, which was consistent with the results of other
studies [92]. On the 7th day after stroke, TTC staining results of the
brain tissue of mice displayed that all three doses of SXNI can reverse
their brain damage, and traces of recovery can be clearly seen (Fig. 3A,
B). The results was consistent with that of Micro-CT (Fig. 3C, D), that

SXNI can remarkedly reduce cerebral infarction and cerebral edema
volume in subacute stroke mice. H & E staining of pathological sections
showed that SXNI could significantly improve the structural disorder
and inflammatory cell infiltration of brain tissue caused by stroke
(Fig. 4).

We selected the effective dose of SXNI (3 mL/kg) for RNA-Seq,
aiming to explore the main ways in which SXNI can help subacute
stroke recovery. The DEGs of stroke mice in the vehicle group and SXNI
group (3 mL/kg) was obtained by RNA-Seq, and DEGs with fold change
≥1.5 and p values ≤ 0.01 (Supplementary Table S2) were analyzed by

Fig. 6. SXNI-regulated critical pathways and targets in subacute stroke mice. (A) There were 963 DEGs with FC ≥ 1.5 and p<0.01, and 214 DEGs with FC ≥
10 and P<0.01. Core analysis revealed the top 20 pathways of the above DEGs. According to the -log(p-value) score, the granulocyte adhesion and diapedesis
pathway was number one in both rankings. (B) The top 5 biological functions were displayed based on -log (p-value), and (C) a Venn Diagram. (D) The PPI analysis
revealed 63 important DEGs, (E) while the UR analysis pointed out 48 important DEGs. (F) Key genes in both PPI and UR and key genes with FC≥ 1.5 and P ≤ 0.01.
(G) 13 important targets that may be related to stroke and their fold changes (3 mL/kg of SXNI vs Vehicle).
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IPA. As can be seen from Fig. 6A and B, the most relevant pathway was
granulocyte adhesion and diapedesis and the most relevant functions
were immune response and inflammatory response As we all know, the
granulocyte adhesion and diapedesis pathway plays an important role
in immune and inflammatory responses [93,94], which are mainly re-
lated to inflammatory mediators and cell adhesion molecules [94,95].
In order to verify the accuracy of the analysis results, we selected 9
representative mediators of granulocyte migration such as G-csf, Tnf,
Il1b, 116, Ccl2, Ccr2, Cxcr2, Cxcl2 and Cxcl10, and 8 important gran-
ulocyte adhesion molecules such as Sele, Selp, Esl-1, Psgl-1,Mac-1, Lfa-1,
Icam-1 and Icam-2 for RT-PCR verification. The verification results were
consistent with the RNA-Seq results, which showed that the RNA-Seq
results have higher accuracy and repeatability.

Under normal circumstances, granulocytes circulate in the blood
along the direction of blood flow. When receiving inflammatory signals
such as G-CSF, TNF, IL1, IL6 caused by stroke, granulocytes will adhere
to ECs and eventually infiltrate the brain, aggravating the development
of inflammation. Specifically, on the one hand, inflammatory mediators
(such as G-CSF, TNF, IL1) activate ECs to secrete E-selectin and P-

selectin [96,97]. The E-selectin and P-selectin bind to their respective
ligands, PSGL1 and ESL1, on the granulocytes, resulting in capture and
rolling [98,99]. On the other hand, activated ECs release chemokines
through transcytosis [100–102], and chemokines interact with GPCRs
to activate MAC-1 and LFA-1 on granulocytes [103,104]. Both MAC-1
and LFA-1 can interact with ICAM-1 and ICAM-2 on ECs [105–107],
allowing granulocytes to adhere to ECs and crawl along the direction of
blood flow until paracellular or transcellular transmigration [108].
Eventually cross the blood-brain barrier to the cerebral infarcted area
(Fig. 7A). Some studies had reported that overexpression of endogenous
G-CSF may exacerbate the occurrence and development of inflamma-
tion in stroke mice, which may be achieved by stimulating the secretion
of water-soluble E-selectin and MAC-1 [109,110]. Therefore, we mea-
sured G-CSF in mouse serum and E-selectin and MAC-1 in brain tissue
on the 7th day after stroke. The results indicated that G-CSF, E-selectin
and MAC-1 were significantly expressed in mice after stroke, while
SXNI could inhibit their expression (Fig. 8). Remarkedly, the SXNI-in-
duced change of G-csf in the granulocyte adhesion and diapedesis
pathway by RNA-Seq reached more than 1000-fold, but the RT-PCR

Fig. 7. Validation of genes regulated by SXNI related to granulocyte adhesion and diapedesis. (A) Schematic diagram of the granulocyte adhesion and
diapedesis pathway involved in immune/inflammatory response in brain after stroke, including related pro-inflammatory factor-mediated capture, rolling, adhesion,
crawling and transmigration. (B) The immune/inflammatory mediators with obvious changes in both transcriptome and IPA analysis were verified by RT-PCR,
including G-csf, Tnf, Il1b, Il6, Ccl2, Ccr2, Cxcr2, Cxcl2 and Cxcl10 (n = 5). (C) RT-PCR experiments were also performed to detect the mRNA expression of granulocyte
adhesion molecules, including Sele, Selp, Mac-1, Lfa-1, Psgl-1, Esl-1, Icam-1 and Icam-2, with red and green DEGs from transcriptome (n = 5). Data were expressed as
mean± SEM. *P< 0.05, **P< 0.01, ***P<0.001 vs. Vehicle group.
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validation showed only about 4-fold change (Fig. 6G vs. Fig. 7B),
whereas the difference in the expression of G-CSF protein detected in
the serum of mice in the SXNI and vehicle groups was even less
(Fig. 8A). These apparent disparity may be attributed to the methodo-
logical sensitivity as well as selective expression of genes in different
cells and tissues [111]. In addition, although exogenous G-CSF has been
reported to have a neuroprotective effect on stroke mice, no significant
effect has been achieved in clinical trials and meta-analyses [112,113].
From the above, G-CSF may play a dual role in the immune/in-
flammatory response [114,115].

Although our experiments showed that SXNI can inhibit granulocyte
adhesion and diapedesis via down-regulating the expression of G-CSF,
E-selectin and MAC-1, thereby improving brain damage and restoring
neuromotor functions in subacute stroke mice, there are still some
limitations to the work. For example, (1) To avoid the effect of estro-
gens on brain protection, only male mice were selected in this study. (2)
the effect on granulocyte migration has not been functionally verified;
(3) whether our model of “post-stroke recovery” corresponds to the
human clinical case needs confirmation; (4) except for the acute and
subacute of stroke, other longer period models for stroke recovery are
being established. The common and differential mechanisms of SXNI in
different stages of protection and treatment of stroke will also be fur-
ther explored. In summary, our study showed that SXNI, an effective

ginkgo biloba extract, can contribute to improve brain damage and
restore neuromotor function in subacute stroke mice.

5. Conclusion

Our research first indicate that SXNI can improve the brain damage
and neurological recovery of stroke mice via inhibiting the expression
of G-CSF, E-selectin and MAC-1 proteins, which may be related to
down-regulation of granulocyte adhesion and diapedesis pathway. In
addition, the high expression of inflammatory mediators and adhesion
molecules associated with this pathway can also be significantly down-
regulated by SXNI Overall, this study mode some contributions to
treating neurological recovery of subacute stroke, and provided ex-
perimental basis for clinical application of SXNI.
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