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ABSTRACT 

Hardware Acceleration in Image Stitching: GPU vs FPGA 

Image stitching is a process where two or more images with an overlapping field 

of view are combined. This process is commonly used to increase the field of view or 

image quality of a system. While this process is not particularly difficult for modern 

personal computers, hardware acceleration is often required to achieve real-time 

performance in low-power image stitching solutions. In this thesis, two separate hardware 

accelerated image stitching solutions are developed and compared. One solution is 

accelerated using a Xilinx Zynq UltraScale+ ZU3EG FPGA and the other solution is 

accelerated using an Nvidia RTX 2070 Super GPU. The image stitching solutions 

implemented in this paper increase the system’s field of view and involve the end-to-end 

process of feature detection, image registration, and image mixing. The latency, resource 

utilization, and power consumption for the accelerated portions of each system are 

compared and each systems tradeoffs and use cases are considered. 

AUGUST 2021 
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CHAPTER 1 

 
INTRODUCTION 

Two hardware accelerated implementations of an image stitching algorithm are 

developed and compared in this thesis. The image stitching algorithm is composed of 

three main components: feature detection and description, feature matching, and image 

registration. The feature detection and description portion of the algorithm finds 

sufficiently unique points in an image in a repeatable manner and describes them in a 

robust and repeatable way. The feature matching portion of the algorithm matches 

features from one image to similar features in a second image. The image registration 

process converts the two separate images to a common coordinate system. These three 

steps make up the core of the hardware accelerated image stitching algorithm used in the 

image stitching solutions developed. 

Looking at the two hardware accelerated image stitching solutions, the latency, 

resource utilization, and power consumption are analyzed and compared for the 

accelerated portions of the image stitching process mentioned above. Using the results of 

these individual comparisons, the full systems are compared and their tradeoffs 

discussed. 

1.1 Problem Statement 

Due to the computational complexity of the image stitching process, power 

consumption can be high to achieve real-time performance in an image stitching solution. 

While power is not a concern for all designs, low power solutions are often required for 

embedded or edge computing solutions. In the past, computationally complex image 
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processing has been performed using graphical processing units (GPUs), but due to 

advances in field programmable gate array (FPGA) technology these tasks have become 

more viable with lower power consumption FPGA devices. The goal of this thesis is to 

use two common methods of hardware acceleration, FPGAs and GPUs, to develop image 

stitching solutions used to increase the field of view of a system and then compare them. 

1.2 Scope 

In this thesis, two hardware accelerated image stitching solutions are implemented 

and their performance compared. The two methods of hardware acceleration being 

compared are field programmable gate arrays (FPGAs) and graphical processing units 

(GPUs). The speeded up robust features (SURF) algorithm [1] is used for the feature 

detection and description portions of the image stitching process. An exhaustive 

comparison of two linked lists is used to perform feature point matching. Random sample 

consensus (RANSAC) is used for matched point selection to calculate the homography 

matrix for the image registration process. Image mixing is performed using the nearest 

neighbor method. 

While the image stitching algorithms and methodology were kept as similar as 

possible between the two hardware acceleration methods, design decisions specific to 

each implementation are noted where they occur. Differences in the algorithms or 

methodology are only present where hardware limitations prevent the use of the original 

algorithm or methodology. 

The factors to be compared are latency, resource utilization, and power 

consumption. Latency will be measured from the time the first pixel enters the feature 

detection portion of the system to the time the first possible feature point location can be 
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output from the feature detection portion of the system and will be measured in clock 

cycles. Resource utilization will look at the amount of resources required for the 

hardware accelerated portion of each implementation and will be measured in percentage 

of total resources utilized. The effects of the percentage of total resource utilization on 

each type of hardware will also be discussed. Power consumption will be measured for 

each solution in watts. 

This thesis only covers the portions of the image processing pipeline that are 

necessary for hardware acceleration of the image stitching algorithm. Implementation 

details specific to the image processing pipelines for each implementation such as image 

encoding or decoding, pixel value preprocessing functions such as gamma correction or 

pixel debayering, camera initialization values and processes, DMA component specifics, 

and output components such as DisplayPort encoding or windowing systems used will be 

excluded from description and analysis in this paper to retain a focus on the accelerated 

image stitching algorithm performance in both systems. 

1.3 Layout of Thesis 

The next section of this thesis will cover the literature and background material 

used as a basis for the implementation of the systems. A quick introduction to FPGAs, 

GPUs, and the image processing algorithms used in this thesis will be covered at a 

theoretical level in this section. By the end of this section, the reader will have all the 

knowledge necessary to understand this thesis on an abstract theoretical level. 

The third section will cover the implementation details and design decisions made 

for each form of hardware acceleration used in this paper. This section will include 

deeper explanations of the algorithms used to implement the theory discussed in the 
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previous section as well as implementation details for each form of hardware 

acceleration. Diagrams will be used to help visualize the high-level organization of the 

systems on both forms of hardware acceleration. Additionally, the methods used for 

measuring the performance metrics on each form of hardware acceleration will be 

covered in this section. 

The fourth section will cover the results of the tests performed as well as general 

comments on the performance of each system. The effects of the differences in the 

implementation specific design decisions will be considered and different use cases will 

be discussed in this section. 

The final section will discuss potential improvements for future versions of each 

of the systems and include a discussion of the future of the technologies used in these 

implementations. With a general understanding of what is included in this thesis, we can 

now start reviewing the technologies and theory behind the algorithm used for both 

implementations. 
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CHAPTER 2 

 
LITERATURE REVIEW 

2.1 Field Programmable Gate Arrays  

Field programmable gate arrays (FPGAs) are a type of integrated circuit in which 

the physical circuitry can be modified using a hardware description language (HDL) such 

as VHDL or Verilog. The first FPGAs available for purchase were produced by Xilinx in 

1984 [2] and were sold as a great solution for achieving near application specific 

integrated circuit (ASIC) performance while retaining the programmability of software. 

Depending on the requirements of the system, FPGA implementations are commonly 

targeted to increase the speed or reduce the power consumption of the device.  

On a high level, the basic architecture of an FPGA involves the connection of 

input and output pins to functional cores using programmable routing lines. There are a 

variety of functional components that are available depending on the specific FPGA 

being considered, but only the most common will be discussed and considered in this 

paper. A graphical representation of the high-level architecture of an FPGA can be seen 

in Figure 1 below [3]. 
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Figure 1. FPGA Architecture 

 

While the names used to reference the pieces inside an FPGA differ between 

manufacturers, three main components are common in nearly all modern FPGAs. The 

three main components common to nearly all modern FPGAs are the memory, logic, and 

math components. The memory available to an FPGA generally includes on-chip 

memory, such as block ram (BRAM), look-up tables (LUTs), and registers. Depending 

on the system, an FPGA can also be given access to off-chip memory such as DDR or 

SRAM modules. The logic performed on an FPGA uses LUTs and flip-flops to 

implement any arbitrary logical function that can be defined in HDL. Due to the necessity 

of floating-point mathematic operations in many modern systems, most modern FPGAs 

also include floating-point specific algebra blocks. The floating-point algebra blocks 

available on Xilinx devices are called digital signal processing (DSP) slices and are 
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named DSP slices due to how common floating-point operations are in digital signal 

processing applications. Modern FPGAs also often include peripherals such as serializer-

deserializers (SERDES) for high-speed communication and DDR that can be used on 

device specific pins. While these three types of modules can generally be found on any 

modern microcontroller, the big advantage an FPGA provides is the ability to 

electronically connect these blocks together using HDL into an extremely low latency 

and time-efficient system. 

The ability to electronically connect these blocks together in an arbitrary manner 

as defined by HDL provides the programmability aspect of FPGAs while providing near 

ASIC performance. Complex operations can be broken up into many clock cycles to 

achieve higher clock frequencies and throughput. This is design technique known as 

pipelining. Additionally, the number of clock cycles necessary to perform certain logical 

and mathematical operations can be reduced using custom logic, but may result in a 

lower clock speed for the system. The FPGA also provides cheap and easy parallelization 

of custom logic operations. Each operational pipeline can be duplicated as many times as 

the FPGA’s resources allow and can all simultaneously access data in a single clock cycle 

without affecting the performance of the other pipelines if a common data source is used. 

The areas that FPGAs can excel in are power consumption, latency, and 

parallelization. It is worth noting that FPGAs work best on streams of data. The main 

disadvantage of using an FPGA is the level of expertise required to include one in a 

system and the relatively low number of qualified and available engineers. 
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2.2 Graphical Processing Units  

Graphical processing units (GPUs) are a type of integrated circuit designed 

specifically for accelerating common graphical operations. While different algorithms 

and hardware were used to accelerate graphical operations prior to GPUs, the first official 

GPU was produced for sale by Nvidia in 1999 [4]. The first GPUs were sold as a device 

capable of offloading graphical processing from the CPU and accelerating operations 

common to computer graphics.  

One of the main types of operations GPUs excel at performing is the floating-

point algebraic operation, particularly when performed on large sets of data. As such, 

GPUs tend to provide a large amount of high-speed memory resources with many smaller 

distributed GPU-specific floating point and logical operation processing cores. A high-

level graphical representation of the architecture of a modern Nvidia GPU can be found 

in Figure 2 below [5]. 

 
Figure 2. GPU Architecture 

 

The large memory space is commonly used for image or video frame buffers for 

the frames being rendered or otherwise manipulated prior to rendering when used for 
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image processing. GPUs are built around the concept of single-instruction, multiple data 

(SIMD) hardware acceleration. In order to utilize this form of acceleration, latency is 

introduced when initializing the memory space or transferring data between the host and 

the GPU device. While latency is introduced when transferring data or initializing 

memory, performing mathematical and logical operations on the data in the memory 

space is highly accelerated. 

One of the big disadvantages of GPUs is that the actual integrated circuit chips are 

not as readily available as FPGAs for hardware engineers to get their hands on. Without 

the ability to buy the individual chips, full personal computer systems generally need to 

be built to utilize the hardware acceleration that can be gained using the GPU. This 

increases the cost, reduces the customizability, and increases the power consumption of 

the system. With that being said, GPUs are relatively easy to obtain with PCI-E 

connectivity for applications where power is not a central concern.  

GPUs are extremely good at applying a series of instructions to an exceptionally 

large data set in parallel. This advantage makes GPUs very well suited for large linear 

algebra operations. Another advantage of GPUs is the accessibility of libraries that 

provide a relatively easy to use programming interface. While there is a slight learning 

curve for using these libraries and understanding their design principles, learning to write 

a program to be accelerated using a GPU is much more accessible to a programmer than 

learning to write HDL for an FPGA.  
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2.3 Image Stitching 

Image stitching is the process of merging together two or more images to create a 

single image that combines the overlapping field of view of all images to increase the 

field of view or image quality of a system. In this case, two or more images are being 

stitched together to create an image mosaic using multiple image sources. The three main 

steps involved in the image stitching process are feature detection, image registration, and 

image mixing. Feature detection is the process of finding unique points in an image and 

describing them in a robust and repeatable manner. Image registration is the process of 

using the feature points from the feature detection process to map two images to a 

common coordinate system. Image mixing is the process of combining the two or more 

images mapped to a common coordinate system in the image registration step into a 

single output image or video. An example of the steps involved in stitching together two 

images can be seen in the figures below. 

 
Figure 3. SURF Feature Point Detection 
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Figure 4. Image Registration (Feature Point Matching) 

 

 
Figure 5. Stitched Image Output Example 

2.4 Feature Detection 

Feature detection is the process of finding unique points in an image and 

describing them in a robust and repeatable manner. This means that the performance of a 

feature detection algorithm can be determined and compared by how likely it is to find 

the same point in multiple images regardless of differences in lighting, rotation, 

translation, scale, or other forms of optical noise or transformations. The more likely an 

algorithm is to find and describe the same location in two or more perspectives of the 
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same scene with a similar, or the same, feature description, the better the performance of 

the algorithm.  

There are a variety of feature detection algorithms available in the field of 

computer vision and each has their own tradeoffs. For this project, the Speeded Up 

Robust Features (SURF) algorithm was used because it is known for having a good 

balance between performance and speed of execution. Originally, the Scale-Invariant 

Feature Transform (SIFT) algorithm [6] was planned to be used, but resource issues arose 

during development of the FPGA accelerated solution.  

During development of the FPGA accelerated portion of the thesis, floating point 

resource availability required the switching of the algorithm to a less resource hungry 

algorithm. With performance comparable to SIFT and a significant reduction in resource 

usage, SURF was an obvious replacement candidate. In order to understand how SURF 

functions and where it came from, a quick look at Harris Corner Detectors and the SIFT 

algorithm is appropriate. 

2.4.1 Harris-Stephens Corner Detectors 

The Harris-Stephens Corner Detector [7] was one of the first feature detection 

algorithms used in computer vision. This algorithm starts from the basic idea that the 

autocorrelation function applied to a region can be used to determine if a pixel is 

sufficiently different than neighboring pixels. The algorithm works by using the partial 

derivatives of the autocorrelation function to find pixel locations with high x and y partial 

derivatives indicating a locally unique point. This algorithm is rotation and translation 

invariant, but only includes the feature point detection process. Although no feature point 

description is associated with this algorithm, it is possible to use the SIFT or SURF 
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feature description algorithms with the Harris Corner Detector algorithm. A deeper 

explanation of this algorithm can be found in Appendix B. 

While the Harris-Stephens Corner Detection algorithm provided a strong method 

for finding useful features in an image, it was not scale-invariant which is a significant 

issue for many modern applications of image processing. To achieve scale invariance, 

one of the best performing modern feature detection algorithms incorporates the concept 

of scale-space filtering and is called the SIFT algorithm. 

2.4.2 Scale-Invariant Feature Transform (SIFT) 

SIFT is one of the best performing feature detection algorithms currently 

available but requires a significant amount of processing to be performed. SIFT, like 

SURF, can be broken down into two main components: feature detection and feature 

description. Feature detection is the process of finding distinct points in one or more 

images with high repeatability. Feature description is the process of describing the 

detected feature points in a way that they can be matched to other feature points that have 

similar regional or local pixel values. As an example, describing a point on a car tire 

using the SIFT feature point description process should be described similarly to, or the 

same as, other descriptions of the same location on a car tire in other pictures containing 

car tires regardless of lighting, rotation, blur, scale, etc. 

While there are many factors to be considered in these algorithms, the most 

commonly considered transforms are scale, rotation, and translation invariance. When 

running multiple images through the feature detection portion of the algorithm, the same 

points should be found in each image regardless of how the image is rotated, shifted, or 

how far away the image is taken from any point of interest. Additionally, feature points 



 

 26 

detected in regions of overlapping fields of view should be described similarly in all 

involved images. While rotation and translation invariance has been achieved in previous 

feature detection algorithms, achieving scale-invariance in the SIFT algorithm is 

accomplished using scale-space. 

Scale-Space 

The concept of scale-space is used to achieve scale-invariance in the SIFT 

algorithm. Scale-space was originally discussed by Andrew Witkin in 1983 [8]. The 

scale-space representation of an image can be used to detect objects or features in a scale-

invariant manner. The method approximates how human biological vision works to 

recognize images at various distances or scales. A scale-space set of images is built by 

creating a set of images with a gaussian blur applied of up to σ=2. This set of 

successively blurred images is known as an octave. The next octave is created by 

subsampling the image blurred to an effective σ=2 value down to a scale of half and thus 

reducing the loss of information during subsampling to an optimal level. A visualization 

of the gaussian blur image pyramid used in scale-space can be seen in Figure 6 below [9]. 
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Figure 6. Scale-Space Example 

 
This concept can be used for any number of octaves and filtered levels within the 

octaves that the algorithm designer desires. The gaussian blur filters being applied to each 

octave can be either applied iteratively or in parallel to result in an overall gaussian blur 

level that reduces loss of information between octaves due to subsampling to an optimal 

level. 

Feature Detection 

SIFT accomplishes scale invariance by using a gaussian filtered image pyramid, 

otherwise known as scale-space. After the image is filtered for all filtered levels of the 

selected octaves, a difference of gaussian (DoG) calculation is made between adjacent 

filter levels within the same octave and a non-extrema suppression filter is used to select 

distinct points from the DoG images. The non-extrema value suppression filter compares 

the DoG values at one gaussian filter level with the DoG values associated with the 

neighboring DoG values immediately above and below in the scale-space image pyramid. 

The SIFT image pyramid can be seen graphically in Figure 7 below [10]. The difference 



 

 28 

of gaussian is used as a blob detection technique and approximates the Laplacian of the 

gaussian.  

 
Figure 7. SIFT Scale-Space Implementation 

 

The non-extrema suppression looks for both local maxima and local minima. The 

only pixels compared are the eight pixels on the current DoG level immediately 

surrounding the current pixel location in question, the 3x3 DoG area directly above, and 

the 3x3 DoG area directly below. This results in a 3x3x3 cube determining if the middle 

pixel value is the local extrema. This can be seen visually in Figure 8 below [10]. This 

same principle is applied for all desired image scales and octaves with two exceptions per 

octave. The two DoG layers excluded per octave are the first and last DoG layer in each 

octave due to the lack of both an upper and lower DoG for comparison. After the feature 

points have been detected and their scale and location recorded, the feature points are 

then described. 
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Figure 8. Non-Maximal Value Suppression 

Feature Description 

 The SIFT algorithm includes the definition of a 128-value feature point 

descriptor. The feature point’s location, scale, and orientation must first be adjusted to be 

as accurate as possible prior to classification. The interpolated location of the feature 

point is found using a method for fitting a 3D quadratic function to the feature point and 

its surrounding sample points [6]. Once the exact location of the feature point is found, 

the dominant orientation must be calculated. 

The dominant orientation of the feature point is found using the magnitude m(x,y) 

and orientation 𝜃(x,y) of the points local to the feature point. The magnitudes of these 

local points are separated by angle into a 36-bin histogram with each bin representing a 

ten-degree angle of the full 360 degrees possible. The magnitudes in each bin are then 

summed to calculate the final bin values. The scale of the feature point is used to 

determine which Gaussian filtered image, L, to use for these calculations. The formulas 

used for the magnitude and orientation calculations can be found below. 

𝑚 𝑥,𝑦 𝐿 𝑥 1,𝑦 𝐿 𝑥 1,𝑦 𝐿 𝑥,𝑦 1 𝐿 𝑥,𝑦 1    (Eq. 2.4.2.1) 
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𝜃 𝑥,𝑦 tan , ,

, ,
                           (Eq. 2.4.2.2) 

The directional bins associated with the largest summed magnitude and the 

summed magnitudes of the two neighboring directional bins are used as three points to fit 

a parabola against to determine a more accurate peak orientation. If no dominant 

orientation can be found due to multiple equal maximum valued directional bins, feature 

points will be created using the same location and scale, but with each of the different 

maximum valued orientations found. Once the dominant orientation for the feature point 

is determined, the descriptor can be calculated 

To be used as a SIFT feature point descriptor, a 4x4 matrix of eight-orientation 

histograms are used to describe a feature point. The 4x4 matrix is created using the 

location, scale, and dominant orientation from the previous step and using the gradient 

values of the points local to the feature point. Each histogram represents a 4x4 sample 

subregion where the sample spacing is determined using the scale of the feature point. 

The histogram is the summation of magnitudes with orientation values nearest to one of 

the eight orientations, or nearest 45 degrees, used to describe the region. A scaled down 

graphical example of what the conversion to a matrix of histograms from a local 

subsampled region looks like in practice can be seen in Figure 9 below [10].  
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Figure 9. SIFT Feature Point Descriptor 

 

While the figure above uses only a 2x2 array of eight-orientation histograms, the 

actual algorithm uses a 4x4 array of eight-orientation histograms for the regions 

surrounding the feature point resulting in a 128-value feature point descriptor. The 

subregions used to generate the 4x4 array of eight orientation histograms have a 

dimension of 4x4 sample locations resulting in a total sample region of 16x16 samples 

surrounding the feature point. All sample points in the 16x16 sample region have their 

gradient magnitudes binned by orientation, summed with similarly oriented samples in 

the same subregion, and simplified down to the 4x4 feature point descriptor array. A 

gaussian filter is applied to the 16x16 full sample region prior to calculating the 

histogram for all regions. Additionally, the descriptors are normalized to reduce the effect 

of low contrast regions on the descriptor. 

2.4.3 Speeded Up Robust Features (SURF) 

The SURF algorithm functions very similarly to the SIFT algorithm but uses 

several approximations and a few tricks. The core speed-up provided by SURF is gained 
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through the use of box filters instead of exact gaussian filters. These box filters 

approximate the gaussian filters used in SIFT, but do not result in a significant feature 

detection performance hit. Even though there is not a significant detection performance 

disadvantage to using SURF, the box filters allow calculation of a pixel’s filtered value 

using significantly fewer calculations. However, in order to use box filters, an integral 

image must be created first. 

Integral Image 

The integral image is used in the SURF algorithm as an intermediary step that 

greatly increases the performance of the SURF algorithm in later steps. The value of 

every pixel in an integral image is the sum of the current pixel’s intensity and all pixel 

intensities above and to the left of the current pixel. To demonstrate this visually, an 

example of a 3x3 block of pixel values can be seen in the figure below. The left side 3x3 

block represents the pixel values at each location and the right side 3x3 block represents 

the integral image values. 

  
Figure 10. Integral Image Calculation Example 
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An important aspect of creating an integral image is the use of an appropriate 

number of bits to prevent overflow from occurring during the integral image calculation 

process. Equation 2.4.3.2 can be used where N represents the number of bits required to 

store each integral image value, n represents the number of bits used to store each 

normalized pixel’s intensity value, and M represents the total number of values to be 

summed (the number of pixels in an image). 

𝑁 𝑛 ⌈log 𝑀 ⌉                                      (Eq. 2.4.3.1) 

Once the integral image has been calculated, the SURF algorithm uses the integral 

image for the filtering process. 

Box Filters 

Box filters are used by the SURF algorithm as an approximation to first and 

second order gaussian filters once an integral image has been calculated. Box filters 

provide a speed up by allowing the application of filters to be performed with 

significantly fewer calculations than a typical gaussian filter. While gaussian filters need 

to apply a different floating point multiplier to all pixels, box filters only need to use the 

integral image values of a filter’s corner locations and don’t require any floating point 

arithmetic. 

As a comparison of what the integral image will compute versus what the 

gaussian filters will compute, figures have been included below [10]. In Figure 11, the 

box filter only requires reading 6 pixel values and performing 7 integer arithmetic 

operations. In Figure 12, the box filter only requires reading 8 pixel values and 8 integer 

arithmetic operations. In Figure 13, the box filter only requires reading 9 pixel values and 

performing 12 integer arithmetic operations. 
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Figure 11. First Order Gaussian Box Filter Comparison (Dx) 

 

 
Figure 12. Second Order Gaussian Box Filter Comparison (Dyy) 

 

 
Figure 13. Second Order Gaussian Box Filter Comparison (Dxy) 

 
Due to the use of box filters, the down sampling and filtering used in SIFT is not 

required to apply the filters to different scales of the image. Instead of down sampling 

and filtering, the size of the box filters being applied is changed using a filter width value. 

Only needing to change the filter width value allows the application of filters at various 

scale-space levels to be applied in parallel on the same base image. This greatly reduces 

the processing and memory resources required for this algorithm. 
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Feature Detection 

For feature detection in SURF, three box filters are used on the integral image to 

approximate second order gaussians and two box filters are used on the integral image to 

approximate first order gaussians. The dimensions of the filters vary based on the filter 

width parameter L chosen. Examples of the box filters used in the SURF algorithm can 

be seen in the figures below. 

 
Figure 14. Dxx Box Filter 
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Figure 15. Dyy Box Filter 

 

 
Figure 16. Dxy Box Filter 
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Figure 17. Dx Box Filter 

 
 

 
Figure 18. Dy Box Filter 
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Assuming the letters A through H act as variables to represent the values of the 

integral image at the location specified in the figures above for Dxx, Dyy, Dx, and Dy, the 

value of the filters can be found using the equations below. 

𝐷 𝐴 𝐵 𝐶 𝐷 3 ∗ 𝐸 𝐹 𝐺 𝐻              (Eq. 2.4.3.2) 

𝐷 𝐴 𝐵 𝐶 𝐷 3 ∗ 𝐸 𝐹 𝐺 𝐻              (Eq. 2.4.3.3) 

𝐷 𝐴 𝐵 𝐶 𝐷 𝐸 𝐹 𝐺 𝐻              (Eq. 2.4.3.4) 

𝐷 𝐴 𝐵 𝐶 𝐷 𝐸 𝐹 𝐺 𝐻              (Eq. 2.4.3.5) 

The second order box filters are used to calculate the Determinant of Hessian for a 

specified filter width L and applied to the integral image using equation 2.4.3.6 below. In 

this equation the box filters for a specified filter width L for the integral image u are 

represented as 𝐷 𝑢 , 𝐷 𝑢 , and 𝐷 𝑢 . The coefficient ω is specific to the filter 

length L and can be calculated using eq. 2.4.3.7. 

𝐷𝑜𝐻 𝑢 ≔ 𝐷 𝑢 ∗ 𝐷 𝑢 ω ∗ 𝐷 𝑢           (Eq. 2.4.3.6) 
 

ω                                               (Eq. 2.4.3.7) 

Prior to calculating the final SURF filtered value, the values of the box filters 

must be scale-normalized. Scale-normalization is performed by multiplying the box filter 

values by constants specific to the filter width. Equation 2.4.3.8 is the constant used for 

the Dxx and Dyy filtered values. Equation 2.4.3.9 is the constant value used for the Dxy 

values. 

6𝐿 2𝐿 1                                         (Eq. 2.4.3.8) 

4L                                               (Eq. 2.4.3.9) 

  After the filtered pixel values have been calculated, non-maximal value 

suppression (NMS) is performed. NMS in SURF, similar to SIFT, is performed on all 



 

 39 

filtered pixel values within an octave excluding the first and last filters in the octave. The 

first and last filters within an octave are excluded because they do not have filters both 

above and below them for filtered value comparison. The NMS process also uses a 

minimum value threshold to ensure that noise in low contrast regions is not selected for 

feature points. Once NMS has been performed, scale-space interpolation is performed to 

find the exact location and scale at which the feature point should be located. 

Scale-space interpolation is used to find the exact location and scale at which the 

feature point should be located. This process also drops points that are not likely to be a 

good fit as a feature point. Once this process is complete, the scales and locations of 

feature points found can be considered continuous values. After the list of feature points 

has been found, the feature points must be described. 

Feature Description 

After a feature point has been found to be sufficiently unique, it must be 

described. The description process works in two steps. First, the dominant orientation of 

the feature point is found using box filters for first order gaussian derivative 

approximations. Once the dominant orientation is found, a 64-value descriptor is 

calculated by separating the region surrounding the point into sixteen five-by-five 

subsections. Four values are calculated for each of the sixteen subsections resulting in the 

64-value descriptor. 

In order to achieve scale-invariance, a scale factor 𝜎  is used to determine the 

spacing between samples used for the feature point description process. The equation for 

the scale factor can be seen in equation 2.4.3.10 where o is the zero-based octave, i is the 

zero-based filter level within the octave, and L is the filter width parameter.  
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𝜎 . 2 ∗ 𝑖 1 0.4𝐿                     (Eq. 2.4.3.10) 

The first step in the feature description portion of SURF is determining the 

dominant orientation of the feature point. The dominant orientation of the feature point is 

found by binning the magnitudes calculated using the first order gaussian approximation 

box filters on the integral image based on their orientation. The magnitudes of each 

sample point are weighted using the distance the sample point is from the feature point 

using a gaussian function and only values within a 6𝜎  radius from the feature point’s 

location are considered. The range of orientation angles stored in each bin is determined 

by the algorithm designer. The weighted magnitudes stored in each bin are then summed 

to find the final value associated with each bin. This process can be better understood by 

examining how the process works for a single feature point.  

For a feature point k, each sample point within a 6𝜎  radius from the feature point 

at an iterative spacing of 𝜎 , the first order box filters are applied to the integral image. 

The x and y components found from the previous step are then multiplied by a gaussian 

weighting value calculated using a standard deviation of 2𝜎  and centered on the feature 

point. The values found at this point in the process can be represented by equation 

2.4.3.11 where Dx and Dy are the box filters approximating the first order Gaussian 

derivative in the x and y directions, respectively. u(x,y) is the integral image and G is the 

Gaussian function. The k subscript is used to represent values associated with the feature 

point being iterated through and is used for determining the appropriate Gaussian 

weighting value to apply to the sample point of interest. 

𝜙 𝑥, 𝑦 ≔
𝐷
𝐷 ∘ 𝑢 𝑥,𝑦 • 𝐺 ,                 (Eq. 2.4.3.11) 
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 After calculating and weighting the x and y components for each point within the 

radius of interest, the magnitudes and directions for each point in the 6𝜎  radius region 

are found using equations 2.4.3.12 and 2.4.3.13 below. 

𝑚 𝑥,𝑦 𝑥 𝑦                            (Eq. 2.4.3.12) 

ϕ 𝑥,𝑦 tan                            (Eq. 2.4.3.13) 

Unlike the one stage of histograms used in SIFT for determining dominant 

orientation, the SURF algorithm uses a second binning step. The second binning step 

sweeps the angles between 0 and 2π at intervals decided on by the algorithm implementer 

and associates each possible dominant orientation angle with a second stage bin. The 

second bins store the sum of magnitude values of first stage bins that represent an angle 

within the range  of the angle associated with the second stage bin being calculated. 

The second stage bin with the greatest magnitude is chosen as the dominant orientation. 

Without the first stage of binning, calculating the summed magnitude associated 

with any angle  would require examining every sample’s orientation for every angle 

considered for dominant orientation. The two-stage binning process reduces the number 

of algebraic steps associated with calculating the total magnitude within a range of 

angles. After the dominant orientation has been determined, the 16x4 SURF descriptor 

vector can be computed. 

 Unlike SIFT, SURF does not use histograms for the feature point descriptor 

vector. The region surrounding a feature point is sampled as a 20σkx20σk region which is 

divided into 4σkx4σk subregions, each containing 25 samples, and oriented to the 

previously found dominant orientation of the feature point as shown in Figure 19 below 

[10]. 
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Figure 19. SURF Descriptor Local Region 

 
The gradient components are computed by applying the first order box filters to 

each of the points in the 20σkx20σk region using the integral image with a sample spacing 

of σk. The results are then rotated using a rotation matrix to correct the results to the 

dominant orientation of the feature point. The rotation matrix and the differential 

equations to be applied to the region can be found below. 

𝑅∝
cos ∝ sin ∝
sin ∝ cos ∝

                                         (Eq. 2.4.3.14) 

𝑑 𝑢, 𝑣
𝑑 𝑢, 𝑣 ≔ 𝑅 Ɵ

𝐷

𝐷
𝑢 𝑥, 𝑦 ∗ 𝐺

.
,

.
                    (Eq. 2.4.3.15) 

Once all the differential function values have been calculated for the full 

20σkx20σk region of interest, four values must be calculated for each of the 16 

subregions. The four calculated values for each subregion are the sum of the first order 

filters as applied to each of the points in the subregion and the sum of the absolute values 
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of the first order box filters applied to the subregions. The four values are combined into 

a vector for each subregion and ultimately combined to form a 64-value descriptor for the 

feature point. An example subregion descriptor vector can be found in the equation below 

for the subregion (i,j) within the group of 4σkx4σk subregions of interest. 

𝜇 𝑖, 𝑗

⎝

⎜
⎛

∑ 𝑑 𝑢, 𝑣, ∈ ,

∑ 𝑑 𝑢, 𝑣, ∈ ,

∑ |𝑑 𝑢, 𝑣 |, ∈ ,

∑ 𝑑 𝑢, 𝑣, ∈ , ⎠

⎟
⎞

                               (Eq. 2.4.3.16) 

The full SURF feature point descriptor is created by concatenating all subregion 

descriptor vectors. The full SURF feature point descriptor is then normalized using l2 

normalization. This step makes the SURF feature point descriptor less susceptible to 

linear contrast changes. 

2.5 Image Registration [Homography] 

A homography matrix is a matrix which converts the points in two images 

containing an overlapping field of view to a common coordinate system. The algorithm 

for calculating the homography matrix requires at least four pairs of matched feature 

points to be calculated. The matched points are coordinates in two images that correspond 

to the same physical location in the scene shared by both images. One of the core 

requirements of homography is that the four selected points must be located on a single 

plane within the scene. 

The issue with homography is that while it maps a common plane from one image 

to a similar plane in another image, it does not consider the depth of other objects in the 

scene. This can result in distortion of objects in the scene which are closer or further 

away than the plane formed by the four matched pairs being used to calculate the 
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homography matrix. A better stitching operation can be performed using the extrinsic 

camera parameters for the image sensors as well as knowledge of the depths of all objects 

in the scene but requires more processing to be performed and knowledge which is not 

always known prior to image processing. 

Homography Calculation 

The homography matrix calculation starts with a matrix using the coordinates of 

one of the four matched pairs of feature points. In this matrix, the row and column 

locations of the first feature point of the matched pair are xi, yi while the row and column 

locations of the second feature point in the matched pair are 𝑥 , 𝑦 . Using these 

coordinates, a matrix can be constructed to represent the matched pair as seen in Eq. 2.5.1 

below. 

𝐴
𝑥 𝑦 1 0 0 0 𝑥 𝑥 𝑦 𝑥 𝑥

0 0 0 𝑥 𝑦 1 𝑥 𝑦 𝑦 𝑦 𝑦
           (Eq. 2.5.1) 

With four sets of matched feature points, the vectors are row appended to each 

other to get an 8x9 matrix as seen in the figure below. 

𝐴

⎣
⎢
⎢
⎢
⎡
𝐴
𝐴
𝐴
𝐴 ⎦

⎥
⎥
⎥
⎤
                                                       (Eq. 2.5.2) 

When looking at this matrix as a set of equations, the set of equations is 

underdetermined by one equation. The homography matrix however only has eight 

degrees of freedom with the ninth value only representing a scaling factor. It is worth 

noting that while the scaling value is generally not zero, in special cases it can be zero. 

Using the full matrix containing all the matched pairs, the homography matrix used to 
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convert the two images to a common coordinate system can be found. The homography 

matrix is computed using the matrix above in one of two ways, the assumption method or 

the singular value decomposition (SVD) method. 

2.5.1 Assumption Method 

The assumption method appends a ninth row to the matrix above with all zeros 

except the last column which contains a value of one. This effectively sets the variable 

associated with the ninth column, which represents a scaling factor, to one in the system 

of equations. Forcing the matrix to be critically constrained makes solving for the 

variables a trivial operation. Converting the new matrix to upper triangular form and 

using reverse substitution, all the variable values which correspond to the values of the 

homography matrix can be found. 

The advantage of using the assumption method is that it requires less 

computations and is computationally simpler. These are important factors to keep in mind 

when working in a resource constrained environment like an FPGA or embedded 

environment. 

The disadvantage of the assumption method is that it is incapable of handling 

transformations that result in a scale value of zero. A common example of this would be 

when only rotation is involved in the transformation. In this case, the resulting 

homography matrix would not accurately model the transformation necessary to find a 

common coordinate system between the two images. 
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2.5.2 SVD Method 

The singular value decomposition (SVD) method uses SVD to find the 

homography matrix. SVD must be used because the eigenvector associated with the 

smallest eigenvalue of the system of equations represents the homography matrix with 

the lowest error that can be used to fulfill the system of equations. The smallest 

eigenvalue in this case is the eigenvalue closest to zero, not the most negative value. SVD 

must be used because the matrix is non-square. 

The advantage of the SVD method is that it will always return the best 

approximation of the homography matrix no matter what the transformation involves. 

This means that a homography matrix can always be calculated and works for all cases. 

The disadvantage of the SVD method is that it requires more computations and is 

more computationally complex. This method is best to be used when compute resources 

are not constrained or are plentiful. 

2.6 Mixing/Blending 

There are a variety of image mixing algorithms available with the end goal of 

determining the output value of each pixel. Generally speaking, there are two main 

methods of combining the pixel values of two or more images: blending and nearest 

neighbor selection. 

The first method involves the blending together of pixels using weighted values 

based on how far each pixel is from the location of the pixel being determined. After 

applying a transformation matrix like a homography matrix, the coordinate locations of 

pixels in an image do not necessarily line up with exact integer locations ( (1,0), (1,1), 

(1,2), etc.) so the output pixel values at each location use neighboring pixels from both 
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images to determine an appropriate output pixel value. Due to the necessity of calculating 

the distance from the nearby transformed pixel locations to the current pixel value being 

calculated, this method requires more arithmetic operations to be performed (resulting in 

a higher run time), but generally results in a more accurate combination of the images. 

The second method, called the nearest neighbor method, simply selects the pixel 

value of the pixel in the image with a location nearest to the output pixel being 

determined. This method only uses the nearest pixel if it is within a reasonable distance 

of the output pixel value being determined. The nearest neighbor method runs much 

quicker because it does not have the additional step of weighting pixel values based on 

their distance from the pixel value being calculated. This method generally results in a 

sufficient quality output frame and has a greatly reduced runtime when compared to the 

blending method. 

Now that the theory and basic pipeline architecture have been covered, the 

implementation can be considered. While the two forms of hardware acceleration differ 

greatly, the implementations are kept as similar as possible to the algorithm outlined 

above. The development environments and libraries used for each implementation will 

also be presented. Finally, any differences that exist between the implementations and 

their effects on the performance of each system will be discussed. 
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CHAPTER 3 

 
 IMPLEMENTATION 

3.1 Development Environments 

Before diving into the implementation, it is important to consider the development 

environments used for each implementation. The development environments used can 

significantly influence the performance and quality of builds for each type of hardware 

acceleration. Because of these effects, a description of the development environments 

used for each implementation, and the hardware they were implemented on, has been 

included in this section.  

3.1.1 FPGA 

The most significant piece of the FPGA build environment is the version of 

integrated development environment (IDE) used. FPGAs generally require the use of 

vendor-specific IDEs to utilize their FPGAs and the version of IDE used, depending on 

the vendor, can greatly affect builds. For this project, the Digilent Genesys ZU-3EG 

development board was used for implementation. The development board uses a Xilinx 

FPGA so the Xilinx IDE, Vivado, was required to be used. For this project, Vivado 

2019.1 was used due to licensing requirements for IP that was planned to be used for this 

thesis. The IP that was expected to be used was removed late in the development process, 

but the use of Vivado 2019.1 continued throughout the remainder of the thesis. 
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3.1.2 GPU 

For GPU acceleration of the algorithm, the IDE tends to be much less important 

than the build tools and libraries used. For general development and build automation, 

Visual Studio 2019 was used with CMake 3.18.4. OpenCV version 4.5.0-76 was used for 

image storage and image operations performed on the host computer. OpenCV was 

chosen because it provides a quick means of retrieving, modifying, and displaying or 

saving images.  

The GPU accelerated implementation used an Nvidia 2070 Super. Nvidia was 

chosen as the vendor to be used because of the well documented CUDA library available 

at the time of development. The version of the CUDA compiler, known as nvcc, and its 

associated library are probably the most significant aspects of the GPU development 

environment. nvcc version 11.1.74 was used for the GPU compiler. Now that a general 

description of the development environment has been provided, the general design 

decisions made for the implementations can be considered. 

3.2 General Design Decisions 

In order to reduce the duplication of documentation and descriptions of portions 

of each implementation that are shared between the projects, a general design decision 

section has been included. In this section, constants that are used in both implementations 

as well as concepts that are applied similarly or the same between the projects are 

introduced and covered. This reduces duplication of information in the document and 

provides a central location for parameter specifics for both implementations. This section 

will start with the image preprocessing portion of the implementations and work all the 

way through to the image mixing portion of the pipeline. 
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3.2.1 Image Preprocessing 

Prior to running the image through the feature detection portion of the image 

processing pipeline, the image must first be preprocessed. First, all pixels must be 

converted from the three value RGB colored pixel representation associated with each 

pixel to a single pixel intensity value associated with each pixel. For both 

implementations, an 8-bit average of the three color components was used to calculate the 

pixel intensity value. 

The pixel intensity values can be normalized throughout the entire image to 

reduce the effects of low contrast images on feature detection. The normalization process 

involves finding the maximum and minimum pixel intensity values in an image and 

scaling all pixel intensity values in the image to reflect the maximum possible range. The 

normalization process was not performed for either of the acceleration methods because it 

requires the system to know all pixel intensity values in a system prior to normalization. 

This cannot be assumed for both implementations.  

Methods for approximating the maximum and minimum pixel intensity values for 

a frame were considered, but the image stitching pipeline worked sufficiently well 

without the normalization step so normalization was not implemented. The equation used 

for normalization is included below as equation 3.2.1.1 where 𝑛 is the number of bits 

used to store each pixel intensity value, 𝑖  is the minimum pixel intensity value in the 

image, 𝑖  is the maximum pixel intensity value in the image, 𝑖 is the pixel intensity 

value being normalized, and I is the normalized pixel intensity value. 

𝐼 2 1 ∗ 𝑖 𝑖 / 𝑖 𝑖                         (Eq. 3.2.1.1) 
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An integral image can be calculated directly from the pixel intensity image, but 

performing the SURF filtering process on the integral image calculated directly from the 

pixel intensity image results in an unusable region of filtered values around the border of 

the image. This can be solved by either padding the integral image out or excluding the 

unusable region from the feature detection process. Both methods were tested and a 

significant difference was not observed in the performance of the algorithm using either 

of the two methods. The exclusion region method was chosen and implemented on both 

forms of acceleration due to ease of implementation. 

3.2.2 SURF Parameters 

The portion of the image stitching pipeline that was accelerated for both 

implementations was the SURF feature detection algorithm. The SURF implementation 

used in this thesis uses three octaves with three filter widths per octave. The filter width 

values L and the coefficient values ω used in the filter calculations for both 

implementations can be found in the table below. The filter width value L is used to 

determine the dimensions of the box filters used in the calculation of the SURF filtered 

values. The ω value functions as a coefficient within the SURF filtered value calculation. 

The organization of octaves, filters, and their corresponding ω coefficient can be found 

summarized in Table 1 below.  
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Table 1. SURF Implementation Parameters 
 
Octave L ω(L) 

1 3 0.9129 

1 5 0.9487 

1 7 0.9646 

2 5 0.9487 

2 9 0.9718 

2 13 0.9806 

3 9 0.9718 

3 17 09852 

3 25 0.9900 

 

Following SURF filtering, non-maximal value suppression is performed. For non-

maximal value suppression, each pixel is compared with its 26 neighboring pixels in 

addition to a minimum hessian threshold value. A hessian threshold of 1000.0 was used 

for both implementations. Sample spacings of 1, 2, and 4 were used for octaves 1, 2, and 

3 respectively when performing NMS. Once NMS has been performed, the remainder of 

both pipelines is performed in software without hardware acceleration. 

Dominant Orientation Parameters 

When determining the dominant orientation of the feature point for feature point 

description, a two-step process was used. First, the Dx and Dy values for all points within 

a 6σk radius were calculated at an interval of σk. The Dx and Dy values were used to 

calculate a magnitude and orientation associated with each sample point. The magnitude 
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values were multiplied by a gaussian filter function reducing the effects of values further 

away from the point of interest prior to first stage binning. The magnitude associated with 

each point was then grouped into 20 different equal range angular regions based on 

orientation. The values stored in the bins were summed which resulted in 20 angular 

region bins which stored the sum of all magnitudes whose dominant orientation 

corresponded to that angular region. 

After all the magnitudes of the points within the 6σk radius were categorized into 

their associated angular region bins, these bins were used to find the dominant 

orientation. To find the dominant orientation, 20 different angles were considered. For 

each angle being considered, all bins whose range of angles were within  of the 

current orientation being examined were summed. Once all 20 different orientations had 

summed the angular region bins whose regions fell within the   range of angles, the 

orientation with the highest summed bin value was selected as the dominant orientation. 

Feature Description 

The remainder of the feature description process is performed using relatively 

similar code for both systems. Once the row-column location, scale, and dominant 

orientation for each feature point was found and stored, the feature point is described 

using the feature point description process described in section 2.4.3. Other than the 

number of bins used in the dominant orientation calculation, the feature point description 

process has no parameters specific to either implementation to be described and an in-

depth explanation of its functionality has been excluded from this section as such. 
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3.2.3 Matching Parameters 

Matching is performed using a brute force method of matching one list of feature 

points to another. The error is calculated between each point on one list and all points on 

the second list. The lowest two errors are tracked for each feature point so that relative 

error matching can be performed. If the lowest error is lower than the second lowest error 

multiplied by a relative coefficient less than one, the point is treated as a match. The 

relative matching value of 0.15 was found to work well during testing and used for both 

implementations. 

3.2.4 Homography Parameters 

Homography is calculated using four sets of matched feature locations and the 

assumption method. This means that an 8x9 matrix is constructed using the four sets of 

matched feature locations and a ninth row is appended with all zeros and a final column 

value of one. This matrix is solved by converting it to an upper triangular matrix and 

using substitution to solve for the homography matrix values. The resulting homography 

matrix is then normalized using the scale value in the homography matrix. The scale 

value in the homography matrix is the value in the last row and column of the matrix. 

Once a homography matrix is found, it is applied to the location of all feature 

point matches from the secondary image used in the homography calculation. Error is 

calculated using the sum of the Euclidean distances between primary image locations and 

transformed secondary image locations for all matched feature points. Assuming more 

than four matched pairs of feature points were found, the homography calculation is 

performed using four randomly selected matched feature point pairs, applied to the 

secondary image feature point locations, and the error is calculated. The homography 
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matrix with the lowest error is then accepted as the best homography matrix. The 

repetition of these calculations and the selection of the homography matrix with the 

lowest associated error is how RANSAC was implemented with 2000 iterations. Once an 

appropriate homography matrix has been found, image mixing can be performed. 

3.2.5 Image Mixing 

To perform image mixing, the primary image was centered within the output 

frame and the secondary image was transformed using the best homography matrix 

found. The nearest neighbor method of image mixing is used so the pixel values of the 

image centered in the output frame always take precedence in the output frame. The pixel 

values associated with the transformed image then fill in the output frame outside of the 

non-transformed image. Both implementations use OpenCV to apply the homography 

matrix to the secondary image, mix the two images together, and output the mixed image 

to a new window.  

3.3 FPGA Design 

For the FPGA accelerated portion of the thesis, acceleration was used for image 

preprocessing and the feature detection portion of the pipeline. The choice to accelerate 

only this portion of the pipeline is mainly due to the large resource utilization required for 

parallelizing the application of all the different SURF filters being applied to a common 

set of data. Once the feature point locations have been found, they are passed with the 

calculated integral image to the systems DDR memory via DMA. The remainder of the 

processing performed by the image stitching pipeline is performed using the FPGA’s 
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integrated hardcore ARM processing subsystem. A high-level architecture of the FPGA 

feature detection portion of the pipeline can be seen in the figure below. 

 
Figure 20. FPGA Feature Detection High-Level Architecture 

 
Once the processor receives the feature point locations and their associated filter 

widths along with the integral image, feature point description can occur. Feature points 

are appended to a linked list and the feature points found in the exclusionary region 

around the border of the image are discarded. The number of linked lists for the feature 

points retained during processing is equal to the number of image sources used. Once all 
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the feature points have been described for at least two input images, the feature point lists 

are supplied to the feature matching code. 

Feature matching is performed using a brute force comparison of all points 

between the two linked lists of feature points using a relative matching criterion. The 

brute force comparison process tracks the two lowest feature point description errors 

using two variables. When the two lowest errors fulfill the relative matching criteria after 

iterating through all possible matches, the feature point associated with the lowest error 

and the feature point being considered are considered a match. A match is indicated using 

a nonzero pointer value stored in the linked list struct associated with each feature point. 

Once all feature point matches have been found, the homography calculation is 

performed using RANSAC.  

After the homography matrix is found, it is supplied to the host computer via a 

UART serial communication link. The mixing of the two images is then performed on the 

host computer using OpenCV and displayed to the user in a new window. 

3.3.1 Feature Detection Subsystem 

The accelerated feature detection portion of the FPGA image stitching pipeline 

can be broken down into three steps: integral image calculation, filtering, and non-

maximal value suppression. The integral image calculation takes in the image intensity 

value associated with each pixel and outputs the associated integral image value for that 

pixel. The filtering portion takes as input the integral image values and outputs SURF 

filtered values. The non-maximal value suppression portion takes as input the SURF 

filtered values and outputs a signal that goes high when a local maximum value is found. 
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These three steps make up the hardware accelerated portion of the FPGA image stitching 

pipeline. 

For the integral image calculation to work on the stream of pixel intensity values, 

the pixel intensity of the location being calculated and the integral image values of the 

pixels to the left, above, and diagonally above and to the left are required. A single row 

buffer is used to store the integral image values from the row above the current row with 

two shift registers to store the integral image values directly above and diagonally above 

and to the left. These input values are used by the image integrator block to calculate and 

output the integral image values to the partial frame buffer. 

The SURF filtering portion of the pipeline uses the partial frame buffer to 

calculate SURF filtered values. The partial frame buffer provides an area of 75 by 75 

integrated image pixels. The partial frame buffer values are used by the SURF second 

order partial derivative box filters. There are seven unique SURF filter widths used to 

constitute the nine filters split between the three SURF octaves. The outputs of the filters 

are then used to calculate the SURF filtered pixel value in the SURF pixel calculation 

block. There is one SURF pixel calculation block per unique filter width.  

The outputs from the SURF pixel calculation blocks are put into shift registers, 

grouped by octave, and used for non-maximal value suppression. The NMS block 

compares the values supplied to it and outputs a high value signal when a maximum 

value has been found and low value signal otherwise. Using the output signal from the 

NMS block, the detected feature point’s pixel location is then found using the maxima 

point selection to pixel coordinates block. The feature point location and filter octave are 

formatted into a 32-bit value and supplied to the CPU over DMA. A figure showing the 
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high-level architecture of the FPGA accelerated implementation with hardware-specific 

resources and details can be seen below. 

 

 
Figure 21. FPGA – SURF Feature Detection Subsystem 

Integral Image 

When calculating the integral image, we do not need to iterate through all pixels 

above and to the left of the current pixel to calculate the current pixel’s integral image 

value. The current pixel’s integral image value can be calculated by adding together the 

pixel intensity of the current pixel and the integral image pixel values directly above, 

directly to the left, and diagonally above and to the left of the current pixel. The integral 

image pixel value diagonally above and to the left needs to be subtracted because that 

area is double counted between the integral image pixels directly above and directly to 

the left. This method allows the integral image pixel values to be calculated using a 

stream of pixel intensity values. The equation for an integral image’s value at any 
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location (x,y) can be found using equation 3.3.1.1 where I represents the integral image 

and i represents the pixel intensity image. 

𝐼 𝑥,𝑦 𝑖 𝑥,𝑦 𝐼 𝑥 1,𝑦 𝐼 𝑥, 𝑦 1 𝐼 𝑥 1,𝑦 1        (Eq. 3.3.1.1) 

Now that the math and approach have been presented, the code used to implement 

the integral image calculation on the FPGA can be considered. An enable signal was used 

to allow enabling and disabling the calculation process when non-valid pixels are 

supplied to the component. The code performs unsigned addition and subtraction based 

on the location of the pixel. The four cases for a pixel location are first row, first column, 

first row and first column, or any other location. The row and column for the pixel 

location being considered are tracked using unsigned registers row_r and col_r. The 

location registers are updated for every valid pixel supplied to the integral image 

calculation component. The code for the process used to implement the integral image 

calculation can be seen in the figure below. 
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Figure 22. Integral Image Calculation Code 

Filtering 

Filtering for the SURF feature detection algorithm is performed on the FPGA 

using a 75x75 pixel frame buffer region. Filtering is always performed for the pixel at 

row 37, column 37 within the frame buffer simultaneously for all unique filter widths. 

This allows a single pixel location counter to be used for all filtered values when 

converting from a positive non-maximal value suppression result to a row-column pixel 
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location. The Dxx, Dyy, and Dxy filter values are calculated using signed arithmetic in 

HDL. The Dxx, Dyy, and Dxy filter values are then converted to floating point values and 

supplied to a component which utilizes the DSP resources on the FPGA to perform 

floating point arithmetic implementing equation 2.4.3.6 to calculate the SURF filtered 

value. None of the pieces in the filtering algorithm are blocking, but rather are pipelined 

and introduce a fixed latency of 37 clock cycles from integral image pixel input to SURF 

filtered value output. 

The Dxx, Dyy, and Dxy filters are applied in a two-step process. First, the integral 

values for all subregions of the filter being applied are calculated using a function. 

Second, the subregion integral values are added or subtracted as appropriate for the filter 

being applied and supplied to the filter output port. Example code for the Dyy filter 

calculation processes and the integral image region calculation function can be seen in 

the figures below. 

 

 
Figure 23. Integral Image Value Calculation Function 
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Figure 24. Dyy Filter Value Calculation Processes 

 

Once the Dxx, Dyy, and Dxy filter values have been calculated, those values are 

converted to 32-bit floating point values using a function. The function used for 

converting 32-bit signed values to 32-bit floating-point values can be seen in the figure 

below. 
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Figure 25. Signed to Floating Point Standard Logic Vector Conversion Function 

 
 Once the Dxx, Dyy, and Dxy filter values have been converted to 32-bit floating 

point values, the floating-point values can be supplied to the SURF filtered value 

calculation block. The SURF filtered value calculation block utilizes the FPGAs DSP 

resources to perform the floating-point algebra required to calculate the SURF filtered 
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value. The constants used are dependent on the filter width and are summarized in the 

table below. Due to how lengthy the code is for declaring and connecting these blocks 

together, a block diagram representation of how these DSP blocks are organized can be 

seen in the figure below.  

Table 2. FPGA SURF Filter Constants 
Filter 

Width 

Constant #1 [Hex] Constant #1 

[Decimal] 

Constant #2 [Hex] Constant #2 

[Decimal] 

3 0x3e2aaaab 1/6 0x3dc511a3 
0.9129

√90
 

5 0x3dcccccd 1/10 0x3d6c7b90 
0.9487

√270
 

7 0x3d924925 1/14 0x3d28ea8c 
0.9636

√546
 

9 0x3d638e39 1/18 0x3d036117 
0.9718

√918
 

13 0x3d1d89d9 1/26 0x3cb5e8e5 
0.9806

√1950
 

17 0x3cf0f0f1 1/34 0x3c8b1b82 
0.9852

√3366
 

25 0x3ca3d70a 1/50 0x3c3d2fa6 
0.9899

√7350
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Figure 26. SURF Filtered Value Calculation Blocks 

Non-maximal Value Suppression (NMS) 

The NMS portion of the pipeline is passed the SURF filtered values found in the 

SURF filtering step and uses a 9x9 buffer region of SURF filtered values. The 9x9 

buffered region uses the value found at row 5, column 5 as the center of the NMS 

calculation. The 9x9 buffered region is required for the different sample spacings used for 

different filter octaves. 

There are three NMS components used in the design which represent the three 

filter octaves used in the algorithm. When a local maximum is found in a filter octave 

that is above the minimum hessian threshold, the output signal takes on a high value. The 

three maximum value output lines from the three NMS components are combined into a 

three-bit NMS active bus. Row and column counters are used to track the location of the 

current NMS output’s corresponding pixel location. When the NMS active bus does not 
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equal zero, the row-column location of the pixel and the NMS bus are combined into a 

32-bit value and sent to memory via DMA. 

For the 32-bit floating-point value comparison, a function was written to reduce 

the latency of the process. While the difference of the two numbers that are being 

compared could be computed using DSP resources on the FPGA, the 27 comparisons 

needing to be performed for each of the 3 octaves would have required more DSP 

resources than were available. The function used for floating point comparisons and the 

first octave’s NMS code utilizing it can be seen in the figures below. 

 
Figure 27. NMS Calculation and Output Assignment 
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Figure 28. Floating Point Comparison Function 
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3.3.2 Feature Description 

The features are first converted from the format which DMA used to store the 

points in memory to the feature point structure used in software. The format used to store 

the points in memory by DMA can be seen in the figure below. Bits 31 through 29 

represent a bitmask whose values are high when a positive NMS value has been detected 

in their octave, otherwise they are zero. The remainder of the 32-bits are used to store the 

feature point’s row and column pixel location as unsigned integers. 

 
Figure 29. FPGA 32-bit Feature Point Row, Column, and Octave Encoding 

 

The DMA peripheral system used by the FPGA’s processing system tracks the 

number of bytes that have been transferred in the last DMA transaction. Using the 

number of bytes transferred in the last DMA transaction allows the software to determine 

how many feature points were detected once the feature detection process has completed. 

Once the feature detection process is complete and the number of feature points detected 

is known, the feature description process can begin. 

 A single feature point description requires, at a bare minimum, 64 floating-point 

values which equates to roughly 1 Mb of data per 4000 points. In addition to the 64 

floating-point values, metadata used for the matching and homography calculation 

processes are stored with each feature point, increasing the amount of memory required 

for each described feature point. With the images tested generally finding over 4000 

feature points, the memory requirements can add up quickly. With memory resources 

available to the FPGA being relatively small, a linked list is used to store described 

feature points so that the system is not required to attempt to allocate large portions of 
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contiguous memory when using malloc. Once space has been allocated for all feature 

points and they have been initialized with the appropriate data, the process of performing 

scale-space interpolation is skipped and the dominant orientation is found. 

The FPGA version does not use scale-space interpolation, but rather performs 

filtering on every pixel that is encountered allowing detection of feature points that would 

normally be located between sample locations for any octaves greater than one. While 

this does not allow the exact peak of a feature point to be found when it exists between 

filter levels, this technique was found to work sufficiently well for most cases. 

Additionally, scale-space interpolation was not used in the FPGA version because it 

requires the use of SURF filtered values which are not saved to memory by the feature 

detection hardware. 

Dominant orientation and feature point description use largely identical code to 

that which is used by the GPU solution. Any parameters used in the dominant orientation 

and feature point description portions of the algorithm can be found in section 3.2.2 

above. 

3.4 GPU Design 

For the GPU design, the CUDA library was used for accelerating the algorithm on 

an Nvidia graphics card and OpenCV was used to read the input images and output the 

stitched image. The program was written in C++ with most of the code being C 

compliant. The SURF algorithm, feature point matching algorithm, and homography 

calculation algorithm were written from scratch originally as a proof-of-concept 

implementation to be executed on a CPU. Writing these algorithms from scratch also 

allowed for easier porting to the GPU-based hardware acceleration. Additionally, some of 
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the code written for the proof-of-concept CPU version of the program was used in the 

FPGA implementation. 

The portion of the pipeline that was accelerated on the graphics card was the 

feature detection portion of the pipeline. This includes the integral image calculation, 

SURF image filtering, and non-maximal value suppression. The NMS image the GPU 

calculates is a mask image which gets converted to a list of feature points on the host 

computer so that it can be used by the remainder of the image stitching pipeline. A 

graphical representation of the high-level architecture of the GPU implementation can be 

seen in the figure below. 
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Figure 30. GPU SURF Algorithm Dataflow Diagram 

3.4.1 SURF Feature Detection 

For image preprocessing, grayscale conversion is performed on the host computer 

to keep implementations consist between the two systems. The grayscale image is then 

transferred to the GPU from the host computer. Once the grayscale image is stored in 

shared memory on the GPU, the integral image calculation can be performed. 
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Integral Image 

The integral image calculation, when implemented similarly to the FPGA, is 

particularly slow on the GPU due to the dependence on calculated integral image values 

surrounding the pixel of interest. Additionally, profiling the GPU version of the algorithm 

is particularly difficult as the number of calls to the integral image kernel is relatively 

high. The number of calls to the integral image calculation kernel for the GPU version of 

the algorithm is equal to the number of rows or number of columns in the image, 

whichever is greater. Additionally, the logic for determining which integral image values 

can be calculated, based on which values were previously calculated, is rather difficult. 

For these reasons, the straightforward approach of summing all appropriate pixel 

intensity values for the current integral image value was chosen.  

The integral image portion of the pipeline functions by allocating a thread for 

every pixel in the image. Each thread then sums all of the pixel intensity values above 

and to the left of the current pixel as well as the pixel intensity value of the current pixel.  

The integral image kernel uses the pixel intensity image stored in shared memory for the 

calculation. The kernel is supplied a pointer to the pixel intensity image shared memory, 

a pointer to allocated shared memory for the output values, the number of rows in the 

image, and the number of columns in the image. The code for the integral image 

calculation kernel implemented for the GPU can be seen in the figure below. 
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Figure 31. GPU Integral Image Calculation Kernel 

Filtering 

Considering hardware acceleration of the SURF algorithm, an obvious candidate 

for acceleration is the calculation of the SURF filtered values for all pixels. The filtered 

values (Dxx, Dyy, and Dxy) are calculated for all pixels in the image and only rely on the 

integral image for their calculation. This means that once the integral image is calculated 

and present in the device’s memory, all three filter values can be calculated in parallel for 

all pixels simultaneously assuming the hardware resources are available. Once the three 

filter values have been calculated for all pixels in the image, the final filtered value can 

be calculated for all pixels in the image in parallel as well. 
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For each of the second order filters being applied, the kernels are supplied a 

pointer to shared memory for the output values, a pointer to shared memory for the 

integral image, and the filter width of the filter being applied. The row and column 

location are calculated using the thread and threadblock ids supplied to every kernel 

created on the GPU. The Dxx box filter kernel has been provided as an example in the 

figure below.  

 
Figure 32. GPU Accelerated Dxx Filter Kernel 

  

Once the Dxx, Dyy, and Dxy filtered values have been calculated, the final SURF 

filtered value can be calculated. The SURF filtered value kernel is supplied a pointer to 

shared memory on the device for the output value; pointers to the shared memory for the 

Dxx, Dxy, and Dyy filtered values; the filter width of the filter being applied; and the ω 

coefficient used for calculating the SURF filter value. The kernel finds the row and 

column location of the SURF filtered pixel being calculated using the kernel’s thread and 
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threadblock ids. The code for the kernel used to perform the SURF filtered value 

calculation on the GPU has been included in the figure below. 

 
Figure 33. GPU SURF Filter Value Kernel 

Non-maximal Value Suppression (NMS) 

The non-maximal value suppression process references the appropriate SURF 

filtered value images calculated in the previous step and stored in shared GPU memory. 

Using those SURF filtered value images, NMS is performed, and an output image is 

created where non-zero values are used to represent local maximums. 

The non-maximal value suppression kernel is supplied a pointer to shared 

memory for the NMS mask output values; pointers to shared memory for the SURF 

filtered values for the current filter width, the filter width immediately above the current 

octave, and the filter width immediately below the current octave; the sample spacing of 
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the current octave; and the minimum hessian threshold. The output pixel offset is 

calculated using the kernels thread and threadblock ids. The code used for the NMS mask 

calculation kernel is included in the figure below. 
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Figure 34. GPU NMS Comparison Kernel 
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After non-maximal value suppression is performed and an NMS mask image is 

found, the NMS mask image is transferred back to the host machine. Once the NMS 

mask image is transferred back to the host machine, the NMS mask image is used to 

generate a linked list of feature points. Scale-space interpolation is performed prior to 

appending each feature point to the linked list. After the linked list of feature points has 

been generated, the linked list is converted to a vector to make feature point accesses and 

modifications faster for the remainder of the pipeline. Additionally, it would allow the 

feature point list to be transferred to the GPU as a block of memory if any of the 

remaining steps utilized hardware acceleration. 

 

3.4.2 Feature Description 

The description portion of the algorithm is performed on the host machine’s CPU. 

The code used for feature point description is nearly identical on both the FPGA and 

GPU implementations. The GPU version includes scale-space interpolation because it 

performs NMS at sample intervals specific to the filters being used as specified in the 

original SURF paper [1]. Other than the addition of scale-space filtering, the only other 

difference between the two implementations is the modification of function calls to use 

the vectorized list of feature points. Once the feature points have been described, feature 

point matching can be performed. Feature point matching and homography calculation 

are performed using identical code on both implementations. 

Now that a more in-depth view of both implementations has been presented, we 

can look at how the implementations perform when tested. In the next chapter, we will be 

presenting the results of the tests and comparing the performance of both 
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implementations. Once the performance of both systems has been considered, potential 

use cases and design improvements will be presented.  
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CHAPTER 4 

RESULTS & DISCUSSION 

4.1 Tests 

After both systems had been implemented, their performance was compared. The 

systems were compared based on latency, power consumption, and resource utilization. 

Additionally, the effects of increasing the input image resolution on the latency and 

resource utilization of both systems was considered. Finally, a summary comparison of 

both systems was included. 

4.1.1 Latency 

The latency for both systems was measured for the hardware accelerated portion 

of the pipeline and is measured in clock cycles. For this test, the number of clock cycles 

are measured between the first valid intensity image pixel entering the system and the 

first potential feature point location being output from the system. On the FPGA these are 

the clock cycles between the first pixel intensity value entering the FPGA fabric over 

DMA and the first possible pixel location being sent back to the FPGA processing system 

over DMA. On the GPU, these are the clock cycles between the beginning of the integral 

image calculation and the beginning of the DMA transfer of the NMS image mask back 

to the host from the device. Additionally, how latency is affected when increasing the 

resolution of input images for both systems is considered. 

One issue encountered when determining a fair comparison of latency values was 

the issue of different image communication links. The FPGA uses DMA to supply the 

image to the FPGA fabric while the GPU uses a PCI-e connection. While the number of 
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clock cycles can be used to eliminate a dependence on the clock frequencies used for 

each implementation, they are still not equivalent methods of transmitting the image to 

the system.  

With that being said, the FPGA begins processing pixels as soon as they are 

received. This leads to the FPGA outputting its first feature location before the full image 

has been sent through the system. The GPU system, on the other hand, must receive the 

full image prior to processing the image to find feature points. Due to this requirement, 

the size of the image will affect the latency of the GPU calculations. To equalize this out, 

the latency for the GPU implementation will be measured between the intensity image 

being present in memory and the feature point NMS mask calculation being completed. 

4.1.2 Power 

The maximum and minimum power consumption during runtime of both 

implementations is estimated using device specific tools. While these values are not exact 

for a final implementation, they provide a good baseline for what the power consumption 

of the part would be in system designed around this algorithm. 

4.1.3 Resources 

The memory resource utilization and the effects of increasing the image 

resolution for both systems are compared. Due to the differences in types of resources 

available on the FPGA and GPU, memory was chosen as a common type of resource 

shared between both systems that could be readily compared. For resource comparisons, 

memory usage for the integral image, filtering, and non-maximal value suppression 

portions of the pipeline are presented and considered. Additionally, the memory 
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resources used for each implementation are compared to the total memory resources 

available on each device.  

4.2 Test Methods 

Before diving into the results, the test and analysis methods used in this chapter 

need to be outlined. The three factors tested and compared are latency, power 

consumption, and resource usage. Latency is measured in clock cycles and broken down 

into the integral image, filter calculation, and non-maximal value suppression portions of 

the pipeline. Power is measured in Watts and the maximum and minimum power 

consumption of each device is estimated. The memory resource usage in each 

implementation is estimated and broken down into the same three subsections as the 

latency tests. The methods used to test and analyze these factors are presented in the 

following sections. 

4.2.1 FPGA 

Latency  

To measure the latency on the FPGA, the Xilinx Vivado simulation tool was used. 

Pixel data was generated using a testbench and supplied to the SURF feature detection 

component in HDL. Using the simulation tool, the latency was found for the full SURF 

feature detection pipeline as well as the breakdown of latencies being introduced based 

on subsection. The three subsections examined are the integral image, filtered value 

calculation, and non-maximal value suppression portions of the feature detection 

algorithm. 
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Power 

Power consumption on the FPGA was estimated using Vivado’s power estimation 

tool. Measuring the power consumption at the power supply was considered, but the 

board used for this thesis is a development board designed to demonstrate a variety of 

features that are not utilized in this thesis. This would have resulted in a grossly 

inaccurate power consumption measurement that would not be accurate for real world 

comparisons. For this reason, the Vivado power estimation tool was chosen for FPGA 

power estimations. 

Resources 

The major memory resource consumers within the integral image calculation, 

filtering, and non-maximal value suppression portions of the pipeline on the FPGA are 

presented. The two main resources being considered are 32-bit registers and BRAMs 

used to perform the operations. The number of these resources required and how they 

scale are considered and compared to the GPU implementation. 

4.2.2 GPU 

Latency 

Measuring the latency on the GPU version was done using Nvidia’s profiling 

software. Two different profiling tools were used to better understand the latency 

breakdown of the GPU implementation. Nvidia Nsight Systems was used for the timeline 

functionality that provides the ability to see the order, latency, and number of kernel 

function calls at a high level. The Nvidia Nsight Compute tool was used to gain a more 

granular view of latency values for each of the three subsections being examined. The 
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latencies introduced between different kernels being executed were not included in the 

GPU latencies, only latencies incurred during the running of the kernels. 

Due to the use of complex compilation tools and a scheduler for runtime, 

measuring latencies on the GPU is not as straightforward as measuring latencies on the 

FPGA. For functions that are called multiple times and should have relatively similar 

runtimes, the average is taken for all calls of that function as the expected latency. For 

kernels running in the pipeline which could operate in parallel, assuming the resources 

were available on the device, the longest average latency is used to represent that portion 

of the pipeline. For the NMS portion of the pipeline, the longest latency associated with 

any of the NMS kernel calls is used to represent that portion of the pipeline. 

Power 

Power consumption on the GPU was estimated using Nvidia’s system 

management interface (SMI) tool. Two commands were used to estimate the power 

consumption of the GPU while the algorithm was running. The first command, nvidia-

smi dmon -s p, provides a rough estimate of the power consumption at one second 

intervals. The second command, nvidia-smi --query-gpu=power.draw --format=csv --

loop-ms=10, samples at a rate of 100 samples per second and was used for a more 

granular view of power consumption during program runtime. As an absolute maximum 

value, the total power allowed to be pulled by a PCI-e connected device could be used. 

However, using the maximum power draw allowed by the appropriate PCI-e specification 

would not necessarily be representative of the system in a real world implementation and 

therefore will not be used. 
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Resources 

The major memory resources used by the integral image calculation, filtering, and 

non-maximal value suppression portions of the SURF feature detection pipeline are 

presented for the GPU implementation. The main memory resource considered is the 

amount of shared memory space on the GPU that is required for the frame buffers used 

by each portion of the pipeline. Due to the impact of the resolution of the image on the 

amount of shared memory utilized by the algorithm, only the number of full resolution 

frame buffers will be presented. The number of frame buffers required, and the effect 

they have on scaling, is considered and compared to the FPGA implementation. 

4.3 Results 

4.3.1 Latency 

FPGA 

The latency introduced during the feature detection process can be broken down 

into the integral image value calculation, the SURF filtering process, and the non-

maximal value suppression process. The total amount of clock cycles introduced 

throughout the SURF feature detection process is 52,596 clock cycles. The latencies 

introduced by each section of the SURF feature detection algorithm will be expanded on 

in the sections below. 

A comparison of the FPGA’s SURF feature detection implementation to previous 

implementations can be seen in the expanded table below [11]. 
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Table 3. FPGA SURF Implementation Comparisons 
SURF 

Version 

Clock 

(MHz) 

Resolution FPS Scales Software/

Hardware 

Descriptor 

Švab 100 1024x768 ~10 8 S+H No  

Schaeferling 100 640x480 ~2 8 S+H Yes 

Bouris 200 640x480 56 ? H Yes 

Fischer 125 640x480 406 1 H Yes 

Sledevič 25 640x480 60 6 H Yes 

Edgcombe 100 640x480 325 9 H No 

Integral Image 

 On the FPGA, the integral image calculation only introduces a short latency. Due 

to input and output value buffering, the integral image component only introduces a 

latency of 2 clock cycles between being supplied a valid pixel intensity value and 

outputting the appropriate integral image value to the SURF filtering subsystem. 

Additionally, there exists a latency between valid pixel intensity values and valid integral 

image values output to the DMA of 7 clock cycles. The additional clock cycles added 

between intensity value input and integral value output to DMA are due to the logic 

required to format the integral image values into the AXIS stream format required for the 

DMA connection. 

SURF Filtering 

The SURF filtering portion of the pipeline introduces latency for both the 

calculation process and partial frame buffer. The partial frame buffer used in the SURF 
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filtering process is a 75x75 pixel region. The latency introduced by filling this partial 

frame buffer is 47,435 clock cycles when using an image resolution of 640x480. The 

latency introduced due to filling a partial frame buffer can be calculated using equation 

4.2.1.1 below where icols is the number of columns in the image, nrows is the number of 

rows in the partial frame buffer, ncols is the number of columns in the partial frame buffer, 

and L is the latency. Once the partial frame buffer has been filled with valid integral 

image values, the second order derivatives can be applied. 

𝐿 𝑛 1 ∗ 𝑖 𝑛                               (Eq. 4.2.1.1) 

When applying the second order derivatives to the pixels, a latency of 3 clock 

cycles is introduced. Breaking down the clock cycles used for the second order 

derivatives: 1 clock cycle is used in the calculation of the subregion integrals, 1 clock 

cycle is used to sum the subregions according to the filter being applied, and 1 clock 

cycle is used to buffer the output of the second order derivatives. To further examine this 

breakdown, the code can be seen in the source code provided in section 3.3.1. Once the 

second order derivatives have been applied, the SURF filtered values can be calculated. 

Once the second order derivatives have been calculated, the output values are 

converted to a 32-bit floating point representation so that they work with the FPGAs DSP 

resources. The conversion from signed 32-bit integer to 32-bit floating point format adds 

1 clock cycle of latency. Once the values have been converted to a 32-bit floating point 

format, the values are passed through the DSP resources. The DSP resources are 

configured into a three-stage pipeline with two stages of multiplication and one stage of 

subtraction. The multiplication stages each introduce 8 clock cycles and the subtraction 

stage introduces 8 clock cycles as well. This results in the SURF filtered value 



 

 89 

calculation introducing 24 clock cycles to the system. A summary of these latencies can 

be seen in the table below. 

Table 4. FPGA SURF Filtering Latencies 

 

Non-maximal Value Suppression 

The NMS process introduces a significant latency for filling the 9x9 partial frame 

buffer with SURF filtered values, but the NMS calculation itself does not. Filling the 9x9 

partial frame buffer with SURF filtered values adds a latency of 5129 clock cycles when 

using a 640x480 image resolution. The latency introduced when filling the partial frame 

buffer is calculated using equation 4.2.1.1 above. The NMS calculation and output only 

introduce 2 clock cycles of latency, one for comparison of all values and one for 

buffering the output. A table below is included to summarize the latencies introduced in 

the FPGA NMS calculation process. 

Table 5. FPGA NMS Latencies 

 

GPU 

The latency introduced on the GPU during the feature detection process is broken 

down into integral image value calculation, SURF filtering, and non-maximal value 

suppression. There are a few notes that should be considered prior to presenting the GPU 
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latency results. First, the preloading of the image into GPU accessible memory is not 

included in the latency measurements. This latency will scale with resolution and is a 

prerequisite to running the algorithm. Second, the time between kernel calls is not 

included in the GPU latencies being compared. The time between kernel calls should not 

be dependent on resolution but can add a significant number of latency clock cycles. 

Finally, the clock frequencies used on GPUs tend to be much higher than those used on 

FPGAs (sometimes an order of magnitude higher) so the realized latency in seconds may 

be lower for the GPU depending on the clock rates used for both systems. The total 

number of clock cycles of latency introduced by the GPU was measured to be 583,748. 

The breakdown of this number can be seen in the sections below. 

Integral Image 

The integral image calculation step introduces a latency of 338,967 clock cycles. 

This number is such a significant portion of the latency introduced by the feature 

detection process because a thread is used for each of the pixels in the image. Each thread 

is responsible for adding all pixel intensity values above and to the left of the integral 

image pixel value being calculated. In addition to the number of threads and threadblocks 

required for this function being a limiting factor on the device, the number of additions is 

also significant. Luckily, the integral image calculation is only required to be performed 

once. 

SURF Filtering 

The SURF filtering on the GPU can be broken down into two steps. The first step 

being the application of the second order derivatives to the image and the second step 
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being the SURF filtered value calculation. The first filtering step was found to introduce 

a latency of 23,355 clock cycles. When profiling, the second order derivatives were 

applied sequentially and grouped by octave, but assuming that the resources were 

available these operations could potentially be applied in parallel. For this reason, a best-

case estimation is made with the assumption that a more powerful GPU may be able to 

apply all the filters in parallel. 

The second step is the calculation of the SURF FPGA filtered values. This step 

was found to introduce a latency of 142,146 clock cycles. Like the first step, the second 

step could be applied for all filter widths in parallel assuming the GPU resources were 

available. For this reason, the latency for the second step will be assumed to be the 

average of all calls to this function during profiling. A summary of the latencies for both 

steps can be found in the table below. 

Table 6. GPU Filtering Latencies 

 

Non-maximal Value Suppression 

For the NMS portion of the GPU pipeline, the longest latency in clock cycles was 

used to describe the latency it introduced. Due to the use of octave-based sample spacing 

for NMS, the first octave samples the most points and the last octave samples the least. 

The longest latency, found when running the first octave, was found to introduce a 

latency of 79,280 clock cycles to the pipeline. A table showing the latencies introduced 

when running the function for each of the octaves can be found below. 
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Table 7. GPU NMS Latencies 

 

4.3.2 Power 

A rough power estimation is performed for both implementations to estimate the 

power consumption of the devices while the algorithm is being run. The power estimation 

values are exactly that, estimations. These values are not necessarily meant to be true for 

all devices or all implementations. The estimated values are meant to provide a rough 

baseline for power consumption when using these devices, with the implementation 

discussed in this paper, in a larger system. 

FPGA 

The high-level power estimation for the FPGA found the device to have a low 

power consumption compared to the GPU. 3.264 W was the maximum estimated power 

consumption, and 0.325 W was the minimum estimated power consumption for the 

FPGA. This power consumption can be broken down into the static power consumption 

and the dynamic power consumption. The static power consumption is the amount of 

power consumed regardless of the operations that are occurring on the FPGA. The 

dynamic power consumption is the amount of power that can be consumed depending on 

the activity on the FPGA. The static power consumption was estimated to be 0.325 W 

and the dynamic power consumption was estimated to be 2.939 W. The power 

consumption summary provided by the Vivado power estimation tool can be seen in the 

figure below. 
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Figure 35. FPGA Power Estimates 

GPU 

The power consumption measurements showed slightly higher power was 

required for the GPU implementation. Using the rough measurement command, the 

baseline power when idling the PC was found to be around 14 Watts. Using this same 

command while the accelerated program was running resulted in the GPU consuming 

around 36 Watts. This value was measured at an interval of 1 sample per second and the 

results can be seen in the figure below. 
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Figure 36. Power Usage With GPU Accelerated Program Running 
 

Performing these power consumption measurements with more precise readings 

only solidified the previously measured values. The second power measurement 

performed on the GPU found a peak power consumption of 36.74 W while the baseline 

power consumption was found to be 12.61 W. 

4.3.3 Resources 

Memory resources were chosen as a common resource shared between the two 

forms of hardware acceleration which could be easily estimated based on the major 
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contributing factors found in each implementation. In the following sections, the memory 

resources will be broken down into the integral image, SURF filtering, and non-maximal 

value suppression portions of the pipeline and their resource usage compared. The 

comparisons also consider the relative availability of the resources used by each 

implementation when discussing their differences. 

FPGA 

The total resource utilization table supplied by Vivado has been included in the 

figures below. With that being said, the analysis of memory resource utilization in this 

section will focus on the major contributing aspects of each portion of the pipeline being 

considered. Additional resources are required for each portion of the pipeline, but have 

been deemed insignificant due to their low contribution to total memory resource 

utilization and the lack of impact on image resolution scaling. 

 
Figure 37. Post-synthesis resource utilization 
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Figure 38. Post-implementation resource utilization 

Integral Image 

The core contributing factor in the integral image calculation is the row buffer 

FIFO. FIFOs are implemented as logic surrounding BRAM resources that handle the 

write and read addresses as well as other control signals required to utilize BRAM 

resources as a FIFO. The row buffer requires as many BRAMs as are necessary to store a 

single row of the original resolution image. The BRAM used for the FIFO is the only 

significant memory resource used in the integral image calculation.  

Filtering 

For the filtering portion of the FPGA, the main usage of resources is the 75x75 

partial frame buffer. The partial frame buffer consists of a 75x75 matrix of 32-bit 

registers, for a total of 5625 32-bit registers. Additionally, 74 FIFOs are required to be 

used as row buffers. The number of BRAMs required for these row buffers is dependent 

on the number of columns in the original image resolution. With that being said, the 

75x75 region is required to be a square region with dimensions equal to three times the 

largest filter width used in the algorithm. Unless the filter widths used in the algorithm 

change, the memory resources used in the filtering portion of the FPGA pipeline will 

only scale with the number of columns in the original image resolution. 
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NMS 

For the NMS portion of the pipeline, the only significant memory resource is the 

9x9 partial frame buffer.  The 9x9 partial frame buffer uses 81 32-bit registers and 8 

FIFOs acting as row buffers. Similar to the filtering portion of the pipeline in the previous 

step, the memory resources used in the NMS portion of the pipeline only scale with 

respect to the number of columns in the original image resolution. The only other factor 

that would change the memory resources required by this portion of the pipeline would 

be the number of octaves used in the algorithm. With three octaves, sample spacings of 

1,2, and 4 are used. Adding another octave would require a greater sample spacing and 

increase the amount of resources required for this portion of the pipeline. Now that we 

have considered the high-level memory resources utilized by the FPGA implementation, 

the memory resources used by the GPU implementation can be considered. 

GPU 

For the GPU implementation, the main memory resource to be consumed is the 

shared memory available on the device. GPUs commonly have a significant amount of 

shared memory, often in the gigabytes of space, and can store many frames depending on 

the resolution of the frames being processed. The number of frames required for each 

processing step is what will be considered when analyzing memory resource 

consumption on the GPU. While other memory resources are available on the GPU, their 

utilization does not have a significant effect on the execution of the SURF 

implementation developed in this paper. Also, these other forms of memory are not 

significantly impacted by image resolution scaling. 
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At a minimum, the GPU implementation being run in parallel to reduce the 

latency of the system requires 22 full resolution frame buffers worth of space available 

during the filtering process. This number can be reduced at the expense of added latency, 

i.e., if the filters were applied sequentially or if intermediate frames were transferred to a 

different storage location. 

Integral Image 

For the integral image portion of the GPU pipeline, a single full resolution frame 

buffer is required in shared memory in addition to the original intensity image frame 

buffer that is supplied. The intensity image frame buffer is referenced by all threads of 

this kernel to calculate the integral image values output to the integral image frame 

buffer. Since only a single frame buffer is used, the amount of memory consumed will 

scale directly with the number of pixels in the original image resolution. 

Filtering 

For the filtering portion of the pipeline, four full resolution frame buffers are used 

per filter width. For this implementation, three of the frame buffers are used to store the 

results of the Dxx, Dyy, and Dxy filtered values and the fourth frame buffer is used to store 

the SURF filtered values. If optimized, this portion of the pipeline can be performed with 

only three full resolution frame buffers per filter width if one of the frame buffers is 

reused to store SURF filtered values. This results in the total number of frame buffers 

required ranging from 21 to 36 frame buffers depending on whether only unique filter 

widths are processed and whether or not the fourth frame buffer reuses one of the first 

stage frame buffers. Using the best-case analysis, this section’s memory resource usage 



 

 99 

will scale at a rate of 21 times the area introduced by increasing the resolution of the 

original image. 

NMS 

The NMS portion of the pipeline only adds a single new full resolution frame 

buffer per octave. This process results in a total of three full resolution frame buffers for 

the three octaves used in this algorithm. The number of NMS frame buffers could be 

reduced to a single full resolution frame buffer that uses a bitmask for each pixel to 

represent maximal values being found at each octave. However, this would either reduce 

the ability to safely run this process in parallel for all octaves due to potential write 

conflicts or increase the latency due to sequential execution. Additionally, the NMS 

frame buffers could be reduced in size to eliminate the exclusionary region around the 

border of the image, but this would only result in the elimination of a constant area region 

which would not affect the extra memory resources required when scaling the resolution 

of the images being processed. Using the best-case analysis, the NMS portion of the GPU 

pipeline scales with 3 times the number of new pixels required for the new resolution. 

 4.4 Summary 

4.4.1 Latency 

After performing the latency tests, the FPGA implementation was found to 

perform better with respect to latency times than the GPU implementation. Not only does 

the FPGA implementation have a lower pixel input to feature point location output high-

level latency, the FPGA implementation was also found to perform better for all of the 

examined subsections of the pipeline. Additionally, the FPGA implementation handles 
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resolution scaling as good or better than the GPU for all examined subsections. These 

results were expected, it is common for FPGAs to be used for operations that require or 

desire low latency such as in networking applications. 

4.4.2 Power 

Comparing the two implementations, the FPGA was found to consume 

significantly less power than the GPU while running the algorithm and while in an idle 

state. Part of this difference can be attributed to the necessity of the GPU to accelerate 

other code for the computer system to which it is attached. If we subtract the baseline 

power consumed by the GPU however, the GPU is still consuming roughly 8 times more 

power than the FPGA when actively executing the algorithm. 

4.4.3 Resources 

When comparing the results for the memory resource usage, the amount of 

memory resources required for both implementations is comparable relative to the total 

available memory resources. However, the GPU performed as good or better than the 

FPGA when resolution scaling was considered for all examined subsections. While the 

amount of memory stored in bytes is greater on the GPU, the amount of storage is also 

significantly greater on the GPU. A summary of the test results can be seen in the table 

below. 
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Table 8. Summary of Test Results 
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CHAPTER 5 

FUTURE WORK 

5.1 Potential Design Improvements 

Regarding the work performed for the FPGA portion of this thesis, a great deal of 

completed work has been left out of the finished solution. The completed work during the 

development of this thesis included a full multi-image sensor input to display port output 

image processing pipeline. The image processing pipeline was originally implemented to 

receive images from two image sensors simultaneously and output the mixed image result 

to a monitor using a DisplayPort connection. This involved an AXIS switch for selecting 

the desired image stream, an image gate to allow only a single frame through the SURF 

feature detection logic at a time, image sensor configuration and initialization code for 

two OV5640 image sensors, DisplayPort output logic, and a custom DMA block to mix 

the two images using an arbitrary homography matrix. Additionally, HDL was written to 

accelerate the homography calculation portion of the image stitching process.  

However, these pieces were excluded from the final implementation due to the 

difficulty of pulling together the SURF feature detection fabric and the rest of the image 

processing pipeline. Instead, the finished project used DMA to supply images to the 

fabric and to receive the feature point locations.  

 In future work, it would be beneficial to combine these features together to 

produce a low power image stitching product that could be used in edge computing 

applications. A single chip end-to-end real-time image stitching solution could be used 

for dynamic initialization of a multiple image sensor system or in the dynamic 

combination of image streams moving independently from each other.  
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CHAPTER 6 

CONCLUSION 

6.1 Summary of Work 

In this project, two implementations of an image stitching pipeline were 

developed on two different forms of hardware acceleration. The two forms of hardware 

acceleration used were an FPGA and a GPU. The development of the GPU version of the 

pipeline took roughly 6 weeks while the FPGA implementation took closer to 6 months. 

This difference was largely due to my lack of experience developing large systems on an 

FPGA prior to this project. Once both implementations had been developed, the 

implementations were compared based on latency, power consumption, and memory 

resource usage. 

6.2 Summary of Results 

The tests were performed on only the accelerated portion of the image stitching 

pipeline. The tests showed that the FPGA had lower latency, the GPU had lower relative 

memory resource consumption, and the FPGA had lower power consumption. The GPU 

handles resolution scaling as good or better than the FPGA with regards to memory 

resource consumption. The FPGA handles resolution scaling as good or better than the 

GPU with regards to latency. If the project in this thesis were to be implemented and 

required large resolutions that may need to be increased later in the project, a GPU would 

likely be a better choice. If power and latency were important and the resolution could be 

constrained, an FPGA would likely be the better choice. 
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APPENDIX A: FIGURES 

 
Figure 39. FPGA Top Level Block Diagram (Full) 
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Figure 40. FPGA Top Level Block Diagram (Left) 
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Figure 41. FPGA Top Level Block Diagram (Right) 

 
Table 9. GPU Dxx Filtering Latencies 
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Table 10. GPU Dyy Filtering Latencies 

 
 

Table 11. GPU Dxy Filtering Latencies 

 
 

Table 12. GPU SURF Filtering Latencies 
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Figure 42. Nvprof Profiling of GPU Accel 
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