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Review Article
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Calgranulin proteins are an important class of molecules involved in innate immunity. These members of the S100 class of the EF-
hand family of calcium-binding proteins have numerous cellular and antimicrobial functions. One protein in particular, S100A12
(also called EN-RAGE or calgranulin C), is highly abundant in neutrophils during acute inflammation and has been implicated in
immune regulation. Structure-function analyses reveal that S100A12 has the capacity to bind calcium, zinc, and copper, processes
that contribute to nutritional immunity against invading microbial pathogens. S100A12 is a ligand for the receptor for advanced
glycation end products (RAGE), toll-like receptor 4 (TLR4), and CD36, which promote cellular and immunological pathways to
alter inflammation. We conducted a scoping review of the existing literature to define what is known about the association of
S100A12 with digestive disease and health. Results suggest that S100A12 is implicated in gastroenteritis, necrotizing enterocolitis,
gastritis, gastric cancer, Crohn’s disease, irritable bowel syndrome, inflammatory bowel disease, and digestive tract cancers.
Together, these results reveal S100A12 is an important molecule broadly associated with the pathogenesis of digestive diseases.

1. Introduction

The human protein S100A12 (also named calgranulin C and
EN-RAGE) is primarily expressed and secreted by granulo-
cytes such as neutrophils [1, 2]. S100A12 belongs to the
S100 family of EF-hand calcium-binding proteins, which
participate in a wide variety of intracellular and extracellular
functions. There are over two dozen identified S100 family
proteins, and several have the capacity to form dimers,
participate in Ca2+ signaling, and regulate numerous cellular
processes including calcium homeostasis, energy metabo-
lism, and cell proliferation and differentiation [1, 2]. Some

S100 family proteins act as damage-associated molecular
patterns (DAMPs), which are molecules released by stressed
cells undergoing necrosis which act as endogenous signals to
promote a proinflammatory response, and interact with
pattern recognition receptors (PRRs) to modulate cellular
responses [3–11]. Additionally, some S100 proteins have
potent immunoregulatory and antimicrobial functions and
induce signal transduction and cell proliferation, making
them critical components of the innate immune system
[3–8]. Specifically, S100A12 has been shown to initiate
proinflammatory and antimicrobial responses in the gastro-
intestinal tract. In this scoping review, we provide insight
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into structure, function, and associations of S100A12 with
gastrointestinal health and disease.

1.1. S100A12 Association with Granulocytes. The S100A12
protein was first discovered as a calcium-binding protein iso-
lated from porcine granulocytes [12]. S100A12 is coex-
pressed with two other S100 proteins, S100A8 (Mrp8) and
S100A9 (Mrp14), the two subunits of the calprotectin hetero-
dimer, within granulocytes [8]. S100A12 and S100A8/A9
proteins are encoded on the same chromosome, appear to
be coregulated, and have functional and structural similari-
ties [8, 13]. Additionally, recent studies have revealed that
S100A12 interacts with S100A9 [14]. S100A12 is expressed
in neutrophils, macrophages, and lymphocytes and is
secreted by neutrophils as an innate immune response
against microorganisms and parasites [7, 15]. S100A12 is
constitutively expressed in neutrophils but is inducible in
other cell types including epithelial cells [16]. S100A12 lacks
signal peptides required for the canonical Golgi-mediated
secretion pathway, but secretion of S100A12 from neutro-
phils instead involves reactive oxygen species (ROS) and
potassium (K(+)) exchanges through the ATP-sensitive
K(+) channel [8].

1.2. S100A12 Structure. Analysis of crystal structures reveals
that S100A12 monomeric subunits have four α-helices in a
H1–H2–H2′–H3–H4 topology and two EF-hand motifs
(EF-1 and EF-2) connected by loop L2, the so-called “hinge”
region (see Figure 1). In the presence of calcium, these form
an “open” conformation between helices H3 and H4 [17,
18]. Furthermore, the C-terminal loop (His88-Glu92), which
adopts an orientation in contact with the hinge region and
helix H4, blocks the active sites in S100 proteins, at calcium
concentrations of 5μM. Interestingly, the crystal structures
of Zn2+ and Ca2+/Cu2+-bound S100A12 indicate that zinc
and copper share the same binding site on human
S100A12, and metal binding has the capacity to shift the C-
terminal loops of both apo- and Ca2+-loaded S100A12 and
extend the length of helix H4 from His88 to His90 [19, 20].
These data suggest that zinc/copper interactions lead to the
Ca2+-loaded S100A12 adopting a “completely open” struc-
ture with larger interhelical angles between helices H3 and
H4 for increased target recognition [21]. Crystal structures
also reveal that S100A12 exists in a dimer or hexamer form
in the presence of 200μMCaCl2 and that the addition of zinc
can induce hexamerization [22–26]. Also, S100A12 struc-
tural stability is increased with the addition of Zn2+ and
Ca2+ [22–24].

1.3. The Functions of S100A12. S100A12 has proinflamma-
tory activity and is considered to be a key player in inflamma-
tion [27–33]. S100A12 is a damage-associated molecular
pattern that alters immune function and leads to changes in
a variety of cellular processes [27–33]. It acts as a chemotactic
molecule and recruits both mast cells and monocytes to sites
of inflammation [27–29]. S100A12 signals through the
RAGE V receptor domain to induce cellular proliferation
and proinflammatory signaling [30–34]. S100A12 interacts
with membranes via specific lipid and ion-dependent inter-

actions, including interactions with lipids in solution as well
as interactions with lipid rafts from granulocytes [15, 31].
S100A12 binds more tightly to negatively charged lipids,
and in the presence of calcium and zinc ions, conformational
changes occur in S100A12 suggesting stabilization of charged
residues within the protein structure [15, 25]. This, in turn,
facilitates S100A12 interaction with membrane receptors,
indicating levels of these ions within subcellular compart-
ments could influence the translocation of S100A12 across
membranes, a pathway that has been implicated for other
members of this family such as S100A6 and S100A13 [23,
35, 36]. Once secreted, S100A12 exhibits cytokine-like
activities which include proinflammatory signaling through
several pathways (Figure 2) and antimicrobial activity [21,
23, 33, 34]. The majority of the antimicrobial activity of this
protein is largely attributed to its ability to bind and chelate
nutrient metals in a process known as “nutritional immu-
nity.” Supplementation with exogenous sources of nutrient
metals such as zinc can ablate the antimicrobial and anti-
virulence properties attributed to S100A12 [16, 37–39].
Additionally, S100A12 signals through the TLR4 pathway
(Figure 2) and activates monocytes [30, 40]. The activation
of TLR4 signaling by S100A12 leads to enhanced activation
and migration of human monocytes and cognate upregula-
tion of proinflammatory cytokines such as IL-1β, IL-6, and
IL-8 [41]. Interestingly, administration of a TLR4 blocker
significantly abrogated monocyte migration due to S100A12
activation, underscoring its importance in innate immune cell
activation [41].

S100A12 is also a ligand for the receptor for advanced
glycation end products (RAGE) on monocytes or epithelial
cells [29, 32, 42–44]. S100A12 promotes NF-κB activation
and downstream upregulation of proinflammatory cytokines
such as interleukin-1β, a cytokine that is implicated in
numerous gastrointestinal diseases [45, 46]. There is emerg-
ing evidence that S100A12 interacts with CacyBP/SIP and
S100A9 and also signals through the CD36 receptor
(Figure 2), a class B scavenger receptor on some epithelial
cells that acts as a fatty acid transporter [47, 48]. Interest-
ingly, CD36 expression is tightly regulated by both the RAGE
and TLR4 pathways; however, binding to CD36, RAGE, and
TLR4 may be cell type- and tissue-specific and not necessar-
ily overlapping signaling pathways induced by S100A12.
Together, S100A12 interaction with these pathways
conspires to increase proinflammatory immune signaling
and promote inflammation as a consequence of [49]. A better
understanding of these signaling axes and their role in
pathogenesis could lead to novel molecular targets for
chemotherapeutic interventions.

2. Methods

A scoping review of the literature was performed based on
methods described by Arksey and O’Malley [50]. The
central research question was “What is known from the
existing literature about the association between S100A12
and digestive diseases?” The inclusion criteria for papers
included English language and primary studies that evaluated
S100A12 expression or activity associated with digestive
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disease including gastroenteritis, colitis, irritable bowel
syndrome (IBS), inflammatory bowel disease (IBD), Crohn’s
disease, gastritis, or cancer.

Our search was conducted using PubMed with the search
phrase “S100A12/calgranulin C/EN-RAGE AND structure,

function, digestive disease, gastroenteritis, colitis, irritable
bowel syndrome (IBS), inflammatory bowel disease (IBD),
Crohn’s disease, gastritis, cancer” with the last search
performed on May 24, 2019. We identified additional studies
in the references of articles identified in our primary search.
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TLR4 CD36RAGE
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Gastric epithelia
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Figure 2: Conceptual diagram of the association of S100A12 in various digestive diseases and health. S100A12 (EN-RAGE or calgranulin C,
depicted in a dimer form) is produced by innate immune cells such as granulocytes and participates in the chemotaxis of innate immune cells.
It can exist as a dimer or oligomer and can bind divalent cations including zinc, copper, and calcium to promote “nutritional immunity”
against invading microbial pathogens. S100A12 interacts with cell surface membranes as well as RAGE, TLR4, and CD36 receptors to
promote proinflammatory signaling and disease progression. S100A12 also interacts with CacyBP/SIP and S100A9. S100A12 binding of
calcium and zinc enhances oligomerization and interactions with receptors such as RAGE.
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Figure 1: Model of S100A12 structure. (a) indicates PHYRE prediction of S100A12 secondary and tertiary structure. (b) indicates the primary
structure beginning with helix 1 at the N terminus (pictured above in orange), calcium-binding loop 1 (pictured in yellow-orange), helix 2
(pictured in yellow), helix 3 (pictured in green), calcium-binding loop 2 (pictured in turquoise), and helix 4 (pictured in blue). The metal-
binding residues which comprise the dimer interface are highlighted in red in the primary structure sequence. The two EF-hand motifs,
similar in structure to a thumb and forefinger, are pictured in orange/yellow and green/blue, respectively. Metal-binding residues are
highlighted in red.
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A further review of the abstracts of these articles was
performed to validate relevance and inclusion. Full articles
were reviewed from this pool, and articles were excluded if
the article was focused on other calgranulin proteins (such
as calprotectin) or if full inclusion criteria could not be satis-
fied. The resulting manuscripts which support a link between
S100A12 and specific gastrointestinal diseases are collated in
Table 1. Additional manuscripts were incorporated in the
process of peer review.

3. Results

3.1. S100A12 in Gastric Diseases. The expression of S100A12
has been examined in the setting of gastric cancer (GC).
Comparing noncancerous gastric mucosa and tumor tissue,
S100A12 was expressed in gastric epithelial cell lines and
stromal cells (i.e., monocytes, lymphocytes, and neutrophils)
in both conditions [51, 52]. The staining pattern showed
stronger signal in stromal cells on cases and controls, with
the nucleus and cytoplasm being clearly visible in stromal
lines while only the cytoplasm stained positive in epithelial
cells [51]. However, S100A12 expression was reduced in
gastric cancer epithelia when compared to noncancerous
gastric epithelial cells [52]. S100A12 mRNA analysis showed
a decrease in expression in GC tissues when compared to
noncancerous tissues. The authors detected a negative corre-
lation between S100A12 expression in tumor cells and GC
markers of severity, such as size, depth of invasion, TNM
stage, Lauren classification, and tumor cell differentiation.
Kaplan-Meier survival curves demonstrated an association
between reduced expression of S100A12 in GC and worse
survival outcomes. With these results, the authors suggest
that calgranulin C may serve as a novel prognostic marker
for detecting aggressive GC. Further research is needed to
explore whether S100A12 has protective roles in tumorigen-
esis and how those mechanisms may operate [51, 52].

H. pylori infection is the single biggest risk factor associ-
ated with gastric cancer, and gastritis is a critical process in
the precancerous signaling cascade [53, 54]. In order to
understand the association of S100A12 withH. pylori-associ-
ated gastritis, one study investigated gastric mucosa tissue
samples from 18 children and divided them in 3 groups: 6
children positive for H. pylori and gastritis (group 1), 6

children negative for both gastritis and H. pylori (group 2),
and 6 children negative for H. pylori but positive for gastritis
(group 3) [52]. Infection was determined through culture,
histological assessment, or both. Serial formalin-fixed,
paraffin-embedded sections of antral biopsies were stained
for S100 proteins A8, A9, and S100A12; results showed that
children have normal gastric mucosa (group 2) or were
negative for H. pylori, but had gastritis (group 3) and had
very few S100-positive cells. However, in group 1, researchers
found prominent S100A12 cellular staining of the lamina
propria, while the gastric epithelium was negative. Quantifi-
cation of these differences found significantly more
S100A12-positive cells in the gastric mucosa of H. pylori
+/gastritis+children when compared to group 2 and group
3 [52]. This study also reported a direct correlation between
S100A12-positive cells and gastritis scores, linking S100A12
expression to inflammation of gastric mucosa infected with
H. pylori [52].

In a related study, researchers investigated the role of
S100A12 in controlling growth and virulence of Helicobacter
pylori [37, 38]. Congruent with the research above, gastric
mucosa infected with H. pylori exhibited abundant
S100A12 when compared to noninfected tissue, localizing
primarily to polymorphonuclear cells in response to infec-
tion [37]. This research also showed that in the presence of
750μg/ml S100A12, H. pylori growth was repressed by 40%
and viability was decreased when compared to cultures with-
out S100A12 [37]. This antibacterial effect was dose-
dependent as at 1000μg/ml S100A12, H. pylori growth was
reduced by 51% and viability decreased compared to controls.
Adding exogenous zinc to S100A12-supplemented cultures
ameliorated these effects, indicating that zinc sequestration
is key to S100A12’s antibacterial activity [37, 38].

In addition to inhibiting H. pylori growth, S100A12 also
appeared to inhibit H. pylori-induced host IL-8 secretion,
which is dependent on the cag Type-4 Secretion System
(cag T4SS). When H. pylori strain 7.13 was exposed to
500μg/ml of purified S100A12, IL-8 expression was reduced
by 38% compared to the control (p = 0:047). Concomitantly,
when 50μM exogenous zinc was added, H. pylori elicited
robust IL-8 secretion from host cells. Moreover, the IL-8
signaling pathway was not affected by S100A12, since adding
TNF-α in the presence of S100A12 resulted in normal IL-8

Table 1: Digestive diseases and their association with S100A12.

Digestive disease Association with S100A12 References

Atrophic gastritis Elevated in gastritis samples compared to healthy controls [52, 53]

Gastric cancer Decreased in GC samples compared to noncancerous samples [51]

Necrotizing enterocolitis Elevated in NEC samples with respect to disease progression [45–50]

Colitis Elevated in colitis samples compared to healthy controls [55, 56]

Colon cancer Elevated serum S100A12 in CC patients vs. healthy controls [73]

Irritable bowel syndrome Elevated in flares [61, 62]

Inflammatory bowel disease Elevated in active disease [37, 59–71]

Crohn’s disease Elevated in Crohn’s samples vs. healthy controls [57, 58, 63–65]

Gastrointestinal surgical injury Elevated in injured patients [33]
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induction. Furthermore, S100A12 repressed cag T4SS-
dependent changes in cell morphology, namely, the “hum-
mingbird phenotype” of gastric cells. This scattered and
elongated cell form is elicited when H. pylori cytotoxin CagA
is translocated to host epithelial cells through the cag T4SS,
which induces cytoskeletal rearrangements that may facili-
tate gastric tumor metastasis. In uninfected AGS cells, less
than 2% demonstrated the hummingbird phenotype
compared to 36% of H. pylori-infected AGS cells. When the
bacterium was exposed to S100A12 prior to coculture with
AGS cells, the hummingbird phenotype was induced in only
11% (p = 0:009) of cells, and this phenotype was completely
reversed by the addition of exogenous zinc (50% humming-
bird phenotype; p = 0:047). Finally, the authors found that
S100A12 inhibits the biogenesis of the cag T4SS at the host-
pathogen interface. Approximately 80% of bacteria cultured
in medium without S100A12 had Cag pili present, with an
average of 5 pili per cell. Meanwhile, H. pylori exposed to
S100A12 formed <1 pilus per cell (p < 0:001) and fewer cells
were piliated (17%, p < 0:001). As expected, the addition of
exogenous zinc to culture reversed this phenotype [37, 38].

3.2. S100A12 in Colitis. A recent study found that humans
infected by Campylobacter jejuni have a 2-fold increase in
S100A12 in the feces when compared to uninfected controls
(p = 0:0291) [39]. Exploring this in a ferret model, one of the
few models used to validate Campylobacter jejuni infections
and interactions within a vertebrate host, S100A12, was
found to be increased in the feces of inoculated ferrets [39]
with fecal samples exhibiting a similar 2-fold increase over
control animals at 7 days postinfection (754:8 ± 110:8 pg/ml
versus 376:6 ± 175:6 pg/ml, p < 0:05). Interestingly, as the
concentrations of S100A12 peaked, the amount of viable C.
jejuni in feces declined substantially. The authors also found
that compared to uninfected ferrets, C. jejuni-infected ferrets
had elevated levels of IL-10 and TNF-α, by 3-fold and 2-fold
(p < 0:05), respectively, and populations of granulocytes and
macrophages trafficked to and peaked in colonic tissue early
in the infection course (day 3), followed by gradual resolution
at day seven. To explore the negative correlation between
S100A12 levels and viable C. jejuni in feces, the authors
treated C. jejuni cultures with S100A12, finding that bacterial
growth was significantly reduced compared to untreated
controls. Moreover, when S100A12-treated C. jejuni cultures
were supplemented with zinc, growth increased compared to
unsupplemented cultures (p < 0:01). This showed that
S100A12-dependent inhibition of C. jejuni occurs through
sequestration of zinc, similar to findings described in the
related Epsilonproteobacterium,H. pylori. Surprisingly, tran-
scriptome analysis of S100A12-treated C. jejuni cultures did
not find increased transcription of zinc transport systems
when compared to control cultures. RNAseq analysis
revealed 5 clusters of orthologous groups (COGS) that
exhibited significant transcript increases; energy production
and conversion genes represented the overwhelming
majority (p < 0:05). However, 4 COGS showed reduced gene
transcription in the treatment group, and more than 50% of
these genes were within groups responsible for translation
and ribosomal structure/biogenesis (p < 0:05) [39].

Another interesting study evaluated fecal S100A12 in the
setting of necrotizing enterocolitis (NEC) in Extremely Low
Birthweight (ELBW, <1000 g) infants and found that in the
5 days prior to NEC symptom onset, there was a steep 9.8-
fold rise in fecal median total bacterial CFU/g counts and a
21.6-fold rise in fecal median E. coli CFU/g counts, with p
< 0:05 and p < 0:001, respectively [55]. Moreover, the inves-
tigators found that fecal samples had a positive, albeit weak,
Pearson’s correlation between S100A12 and total bacterial
CFU/g feces (r2 = 0:40, p < 0:01) and E. coli CFU/g feces
(r2 = 0:40, p < 0:01) [55]. This suggests that S100A12 might
be used as a noninvasive biomarker to help predict NEC, a
significant cause of morbidity and mortality in ELBW infants
[55–58]. However, a significant limitation of this study was
the small number of patients enrolled (n = 68). A subsequent
study revealed that fecal S100A12 concentrations were
elevated concomitant with NEC disease progression and that
multiple pathogenic bacteria were associated with this
disease progression [55, 56]. Additional studies by Däbritz
and colleagues attempted to determine if longitudinal
measurements of fecal S100A12 could detect Very Low Birth
Weight (VLBW) infants at risk for intestinal distress apart
from NEC. Their results indicated that median levels of fecal
S100A12 were significantly higher in patients with intestinal
distress both before and at onset of disease compared with
unaffected reference infants. Median levels of fecal S100A12
declined steadily to baseline levels within 2 weeks of disease
onset. Their study concluded that the ideal cutoff value for
identifying patients with intestinal distress within 7 days
before disease onset was 60μg/kg (sensitivity 0.73; specificity
0.55) [59]. A companion study by the same group deter-
mined that gestational age and birth weight were significantly
lower in the patients with NEC compared with unaffected
reference infants and that fecal S100A12 levels were signifi-
cantly higher in patients with severe NEC at onset of disease.
This study also determined that S100A12 levels were signifi-
cantly higher at 4-10 days before onset of NEC compared
with unaffected reference infants (ideal cutoff value, 65μg/kg;
sensitivity, 0.76; specificity, 0.56), a result that was not seen
with the related protein, calprotectin [60]. Together, these
results indicate that S100A12 could be an important marker
of intestinal inflammation utilized to identify at risk popula-
tions for NEC. Further research is required to confirm and
expand these findings.

3.3. S100A12 in IBD (including Crohn’s and Ulcerative
Colitis) and IBS. Inflammatory bowel disease (IBD) and irri-
table bowel syndrome (IBS) are two distinct gastrointestinal
disorders. The former (IBD) is characterized by chronic
inflammation, ulcers, and lesions within the gastrointestinal
tract and includes disorders such as Crohn’s and ulcerative
colitis. The latter (IBS) is noninflammatory and is not associ-
ated with lesions or ulcers of the bowel and often involves the
colon [61]. S100A12 has been studied in the setting of IBD
and IBS and is gaining appreciation as a biomarker that could
be used to distinguish between these disorders [61, 62]. In
one article, authors used a previously described prospective,
randomized controlled trial cohort from the POCER study
to assess postoperative recurrence under endoscopic and
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fecal biomarker scrutiny. Ileocolonoscopy was done in 2/3 of
patients at 6 months and all patients at 18 months after ileo-
colonic resection. Remission was defined as Rutgeerts score
i0 or i1, and disease flare-ups were defined as scores between
i2 and i4. Stool samples were collected preoperatively and at
6, 12, and 18 months postoperatively from 174 patients at 17
hospitals in New Zealand and Australia, and levels of fecal
calprotectin (FC), fecal lactoferrin (FL), and fecal S100A12
(FS) were determined. S100A12 measurements for monitor-
ing response to treatment step-up did not reach statistical
significance, while the other biomarkers performed signifi-
cantly better [62].

Another study using capsule endoscopy (CE) and fecal
biomarkers in small-bowel CD compared FC, FL, and FS to
assess remission and predict relapse. The study included 43
patients from Australian academic hospitals between 18 and
70 years of age with small bowel involvement deemed in
remission by a CDAI score (<150). Patients underwent base-
line CE and were followed prospectively for 12 months, or
until a clinical flare. Baseline and endpoint fecal biomarkers
were assessed. Although a positive correlation existed between
Capsule Endoscopy Scoring Index (CESI, Lewis score) and
baseline fecal biomarkers, fecal calprotectin and fecal lactofer-
rin consistently performed better than fecal S100A12. Regard-
ing clinical flare detection, 14% [6] of patients had a relapse
during the 12-month follow-up period (CDAI > 220), at a
median of 7 months. Of these patients, 83% [5] had increased
fecal calprotectin and lactoferrin at baseline while only 50%
exhibited elevated S100A12 levels. Endpoint markers at
flare-up were available for 5 out of 6 relapsed patients and
showed that fecal calprotectin was increased in all 5, FL in 4
out of 5, and FS in only 2 out of 5 patients. Therefore, calpro-
tectin and lactoferrin seem to perform better as a biomarker to
track small bowel CD than S100A12 [63].

Studies converge in the potential use of calgranulin C as a
biomarker to differentiate between inflammatory bowel
disease (IBD) and inflammatory bowel syndrome (IBS)
[64–66]. Researchers in Germany found that fecal S100A12
rises in IBD when compared to IBS or healthy controls, with
no significant difference between CD and UC detected. Fecal
levels in IBD were 2:45 ± 1:15mg/kg compared with healthy
controls at 0:006 ± 0:03mg/kg (p < 0:001) or IBS patients
0:05 ± 0:11mg/kg (p < 0:001). S100A12 was found to be
more granulocyte-specific and did not rise in cases of viral
gastroenteritis but did rise with bacterial gastroenteritis.
Calprotectin, a more established biomarker for tracking gut
inflammation, increased in the setting of both viral and bac-
terial gastroenteritis; thus, the authors found fecal S100A12
to be more specific than S100A8/A9. Although the article
published excellent sensitivity and specificity for S100A12
to distinguish active IBD from inactive IBD, the study had
poor case-control matching and heterogeneous groups,
making comparisons difficult. Nonetheless, the authors
reported that S100A12 levels and histology inflammation
score correlated significantly in both UC and CD, but only
UC showed a significant correlation with the clinical CAI
score (r = 0:415, p < 0:05) [66].

Another article demonstrated S100A12’s ability to sig-
nificantly distinguish between active and inactive IBD vs.

IBS. In contrast, this article did not detect a significant
difference between S100A12 serum levels in active versus
inactive IBD (p = 0:546) [61]. A further study evaluating
fecal S100A12 and management of IBD also detected a
significant difference between IBD and IBS [61]. The
S100A12 median (IQR) for patients with IBD was 69.8μg/g
versus 0.7μg/g for IBS (p < 0:001). Levels forUC andCDwere
not statistically different (p = 0:246), demonstrating that fecal
S100A12 did not differentiate between forms of IBD, but using
a ROC curve cut-off value of 2.8μg/g, fecal S100A12 discrim-
inated between IBD and IBS, similar to fecal calprotectin and
previous S100A12 findings [66, 67]. This study also found that
fecal levels of S100A12 moderately correlated with the Mayo
UC severity score (r = 0:687; p = 0:001) but did not correlate
with the CD Harvey-Bradshaw disease index (r = 0:259; p
= 0:392). This suggests that fecal S100A12 levels mirror
disease severity scores in UC, but may not apply to CD.

Carefully designed, large, prospective studies on the
discriminative ability of S100A12 are scarce, and an absence
of test standardization plagues research in the field leading
to inconsistency and lack of reproducibility between research
groups. One study, however, attempted to overcome such
limitations by using the previously described CACATU (Cal-
protectin or Calgranulin C Test before Undergoing endos-
copy) cohort from the Netherlands and Belgium [65]. This
multicenter, delayed-type, cross-sectional diagnostic accu-
racy study recruited 354 children between 6 and 17 years of
age, from 16 secondary and 3 tertiary level hospitals. Baseline
characteristics were taken, and fecal samples were collected
for biomarker and pathogen assessment; a study algorithm
was followed to standardize the assignment of patients to
either endoscopy or clinical follow-up, with Bayesian correc-
tions performed to avoid differential verification bias. When
using common thresholds for calprotectin, S100A12 per-
formed significantly better in terms of specificity. When
ROC-based optimal cut-offs were set with S100A12 at
0.75μg/g and calprotectin at 400μg/g, both tests perform
equally well at predicting IBD and guiding endoscopy. Clini-
cally, however, the calprotectin test required a two-threshold
strategywhile S100A12 result interpretation wasmore binary,
making it more useful in triaging children with potential IBD
to endoscopy [65].

S100 proteins have also been examined for usefulness as
transcriptional blood biomarkers to determine mucosal heal-
ing. One study of 152 patients collected whole blood at the
time of endoscopy [68]. Gene transcripts that correlated with
inflammation at endoscopy were identified using RT-PCR
and then validated in an independent group of 111 UC
patients with active disease (n = 86) or in remission (n = 25
). The first group had 25 UC patients with active disease
(n = 17) and in remission (n = 8), versus 20 non-IBD con-
trols; this cohort had their blood analyzed using microarrays.
The second group, totaling 16 UC patients that received anti-
TNFα treatment (infliximab, adalimumab, and golimumab),
was followed for 14 weeks, with pretreatment/posttreatment
gene expression and mucosal healing scores analyzed for
correlation [62]. The authors found that 122 genes were
altered in the blood of active UC patients when compared
to remission and control patients, with 80% of them being
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upregulated. Overall, the changes were unimpressive, with
only 15 genes showing a greater than 2-fold change compared
to remission and control patients [68]. These genes were likely
neutrophil-derived,with genes includingCD177, haptoglobin
(HP), G-protein coupled receptor 84 (GPR84), hexokinase 3
(HK3), arginase 1 (ARG1), annexin A3 (ANXA3), and calgra-
nulin C (S100A12). The authors found that S100A12 tran-
scripts in the blood had a significant but weak Spearman’s
rank correlation (rho = 0:31; p < 0:01) and revealed that the
test could only detect differences between Mayo score 0 (no
inflammation) and Mayo score 3 (severe inflammation).
Other markers, like CD177 and haptoglobin, performed sig-
nificantly better. However, the authors found that S100A12
decreased after 14 weeks of anti-TNFα treatment and corre-
lated significantly with the Modified Score (MS; p = 0:009),
performing similar to other biomarkers analyzed [68].

In summary, these studies suggest that fecal S100A12
could be utilized in IBD as an indicator of mucosal healing
[69, 70] and a predictor of relapse [71–76]. A multicenter
comparison of predictive outcomes and response monitoring
suggest S100A12 could also be a predictive marker for severe
ulcerative colitis in [72]. However, additional longitudinal
studies with adequate statistical power to evaluate both adults
and children are needed in order to confirm or refute these
findings and dispel apparent inconsistencies in the outcomes.
However, from the studies cited above, it seems that fecal
S100A12 outperforms its serum measurements, probably
due to granulocyte infiltration into inflamed intestinal
mucosa and subsequent cellular debris sloughing off into
the lumen. Furthermore, the best use of S100A12 seems to
be in the scenario where providers need to triage, noninva-
sively, adults and children with IBD whom would require
endoscopy versus IBS patients whom do not need to be
scoped for a benign, functional disorder. In this scenario,
S100A12 performs slightly better than calprotectin, when
one considers the most frequently used cut-off values. This
increased specificity might be due to S100A12 being secreted
mostly by activated granulocytes, whereas calprotectin is
secreted by neutrophils, monocytes, and epithelial cells.
S100A12 does not discriminate between UC and CD and
weakly correlates to clinical and histological severity scores
in UC, but not in CD. This shows that S100A12 may not be
the best marker to predict relapse and monitor response to
treatment in IBD, with calprotectin still being superior in this
setting. Finally, research using transcriptional biomarkers
shows promise, although blood S100A12 underperformed
in comparison to others, like haptoglobin or CD177. Future
research will elucidate the feasibility of fecal S100A12 tran-
scriptional biomarkers and its usefulness compared to more
established, noninvasive markers [68]. In summary, the
above data indicate that the best clinical use of S100A12 is
in the differentiation between IBD and IBS, with fecal
S100A12 outperforming serum S100A12 measurements.

3.4. S100A12 in Colon Cancer. The strategy used for this
review found few articles that specifically pertain to
S100A12 and colon cancer (CC). A proteomic analysis
comparing malignant human colonic tissue to healthy con-
trol tissues or clinical controls (GI disorders other than CC)

using 2-D-LC-ESI-MS identified 484 upregulated proteins
in CC, including S100A12 [77]. Of these upregulated pro-
teins, 84.7% were found in both tumor and control samples,
while 10.7% and 4.6% were found exclusively in control and
cancer tissues, respectively. Furthermore, S100A12 serum
levels were markedly elevated in CC patients compared to
healthy (median 139ng/ml versus 39 ng/ml; p < 0:0001) and
clinical controls (139 ng/ml versus 80 ng/ml; p < 0:0001).
Most importantly, the authors compared the performance
of S100A12 with another established marker used to screen
for CC, namely, serum CEA. The relationship between sensi-
tivity and specificity of CEA and S100A12 to detect malig-
nancy was represented by ROC curves. The AUROC result
was 0.87 for S100A12 compared to 0.74 for CEA whenmalig-
nant samples were compared with healthy controls, and 0.66
versus 0.74 when comparing CC patients to clinical controls.
Therefore, although S100A12 performs better than CEA at
discriminating between colon cancer and healthy patients,
it is not able to detect differences when other gastrointestinal
disorders confound the results. In this instance, CEA main-
tains higher overall performance than S100A12, which may
be due to the elevation of S100A12 in the serum during other
inflammatory conditions, described above [77]. Further
research is needed to determine if fecal proteomics or tran-
scriptomics perform better than serum measurements when
colonic cancer is investigated, and the association of
S100A12 with colon cancer could be leveraged as a putative
biomarker for disease detection.

3.5. S100A12 as a Chemotherapeutic Target. The receptor for
advanced glycation end products (RAGE) and its ligands
have been described as a novel pathway connecting the
innate immune system with inflammatory responses.
S100A12 is one of the ligands that activates RAGE, produc-
ing downstream signaling that involves key mediators such
as NF-κB, MAP kinase, CD36, TLRs, and other molecules
[29, 30, 32, 34, 43, 45, 47, 48]. Because S100A12 is involved
in many different diseases, such as Juvenile Rheumatoid
Arthritis (JRA), asthma, Behçet’s, Kawasaki disease, and
IBD, it is natural that researchers would attempt to target this
interaction pharmacologically [42, 78–81]. As described
above, S100A12 participates in what has been called “nutri-
tional immunity” and theoretically could be used to diminish
the concentration of essential factors for bacterial growth in
the GI lumen (like zinc) [37–39]. This approach would have
to take into consideration the restoration effect noted in
many of the above studies, where zinc supplementation
causes a rebound in bacterial growth despite initial
S100A12-dependent inhibition of bacterial growth. This
effect is relevant in clinical settings, since many patients use
over the counter vitamins and supplements, often containing
zinc in their formulations. Another potential approach
would be to block RAGE through competitive inhibitors
[30]. Our search did not find any specific applications of this
strategy in digestive diseases, but a study using a chemically
induced asthma model in mice found that a RAGE antago-
nist peptide (RAP) successfully blunted airway reactivity,
inflammation, goblet cell metaplasia, and decreased Th2
cytokines [79]. As a result, this study suggests that there
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may be a value in examining this approach for a variety of
gastrointestinal diseases.

Lastly, our review encountered robust literature on the
association of S100A12 with atherosclerosis, a well-known
systemic inflammatory disease that may affect abdominal
arteries. In this context, patients present with either acute
or chronic mesenteric ischemia. Here, the connection
between intestinal ischemia, coronary artery disease (CAD),
plaque instability, and atherosclerosis cannot be overstated.
In the Rotterdam study, a prospective population-based
investigation of 839 participants without CAD being
followed for 10.6 years identified S100A12 elevation in the
highest tertile as having 2.6-fold higher risk of developing
CAD compared with participants in the lowest tertile (hazard
ratio, 2.59; 95% CI 1.52-4.40) [82]. Another study found that
in autopsied sudden cardiac death victims, S100A12 and
RAGE expression was enhanced in macrophages and smooth
muscle cells in ruptured coronary artery plaques, indicating a
potential role in plaque vulnerability [83]. Moreover, Q-
compound ABR-215757 (Paquinimod) was found to bind
in vitro with S100A12 and reduce atherosclerotic lesion
complexity in transgenic mice, demonstrating that direct
inhibition of S100A12 can be achieved without affecting
RAGE, a multiligand receptor [84]. Finally, “leaky gut” and
its chronic inflammation backdrop are increasingly recog-
nized as major factors in many gastrointestinal diseases.
Additionally, S100A12 has been exploited to block S100A9
binding to RAGE V domain, indicating S100A12 itself could
potentially be utilized as a chemotherapeutic substrate [85].
Hypothetically, one can imagine that blocking the S100A-
family proteins/RAGE interactions may reduce inflamma-
tion in the gut and in other organs and systems.

4. General Discussion

S100A12 is a multifunctional host protein that participates in
several biological pathways. It is constitutively expressed by
innate immune cells such as neutrophils and is inducibly
expressed by a variety of cell types including epithelial cells
[16]. S100A12 is secreted by granulocytes via ROS and potas-
sium homeostasis pathways during acute innate immune cell
responses [8] and subsequently induces a variety of antimi-
crobial and immunoregulatory phenotypes (see Figure 2).
S100A12 can bind a variety of inorganic ions including cal-
cium and transition metals such as zinc and copper [19–22].
This ion-binding activity influences both the quaternary
structure of S100A12 and also its activity [25, 26]. In the con-
text of infection, S100A12 metal binding is responsible for
starving invading pathogens of critical micronutrients
involved in cellular processes such as respiration, cell division,
and virulence factor deployment [37–39], thereby inhibiting
microbial growth, proliferation, and disease progression as
an innate immune strategy. In the context of immunoregula-
tion, S100A12 has several targets which promote interactions
that alter the host immune response. S100A12 binds to and
activates the RAGE receptor, which can lead to increased
NF-κB activation, proinflammatory signaling, and the initia-
tion of inflammation responses [9, 10, 28, 30, 32, 40, 43, 85].
S100A12 also binds to the TLR-4 receptor to promote proin-

flammatory cytokine secretion and inflammatory responses
[43, 44]. Additionally, S100A12 directly interacts with both
S100A9 [10] and CacyBP/SIP [48]. Because the former also
signals through the RAGE receptor pathway, this interaction
could potentially alter downstream RAGE signaling.
CacyBP/SIP is involved in ubiquitinylation and beta-catenin
degradation; thus, it is possible that S100A12 could influence
these activities through binding.

5. Conclusions

In conclusion, we report that elevated levels of S100A12 are
associated with gastroenteritis, necrotizing enterocolitis,
gastritis, gastric cancer, Crohn’s disease, irritable bowel
syndrome, inflammatory bowel disease, and digestive tract
cancers. Together, these results reveal S100A12 is an impor-
tant molecule broadly associated with the pathogenesis of
digestive diseases and that S100A12 could be a potential bio-
marker for early diagnosis or a target for chemotherapeutic
intervention.
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