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ABSTRACT 

Residual stresses in rigid pavements diminish a pavement's ability to sustain its designed 

load. When capacity is reduced by residual stress, a pavement is vulnerable to premature failure 

necessitating costly repairs or replacement. A test method for measuring residual stresses has 

already been developed for steel wherein a small hole is drilled adjacent to an affixed surface 

strain gage (ASTM E837 2008). Based on the geometry of the test procedure, the change in 

strain reading is correlated to a residual stress in the steel material. While rigid pavements are as 

detrimentally affected by the formation of residual stresses as steel, no similar testing method 

exists for concrete.  

Recent research conducted by the Federal Aviation Administration's (FAA’s) National 

Airport Pavement Test Facility (NAPTF) investigated the strain relaxation of cantilevered 

concrete beams when a blind-depth hole using core drilling is made in the vicinity of an affixed 

strain gage. Initial findings indicated that the testing procedure partially quantified the residual 

stresses. Research at the University of Illinois at Urbana-Champaign (UIUC) improved the 

testing procedure using cantilevered concrete beams by instead sawing a linear notch near one 

end of the strain gage and sawing two linear notches near both ends of the strain gage. Results 

for the doubly notched concrete beam proved to be a much improved method for measuring 

residual stresses when compared to the core-drilled test procedure.  

The current project further improved test procedures and completed additional lab and 

field testing on in-situ plain concrete pavements. The test procedure was altered in order to 

observe the strain relaxation in three directions while four saw cuts are made surrounding the 

strain rosette. When this area of concrete had been appropriately isolated from load-induced 

stresses, simple calculations determine the residual stress of the material. Three dimensional 

Finite Element Model (FEM) analyses of these tests further corroborates the findings suggesting 

that the residual stresses in plain concrete pavements can be reliably measured. 
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INTRODUCTION 

 Residual stresses exist in concrete pavements and structures due to material volume 

changes, temperature and moisture gradients, changes in support conditions and structural 

restraints.  Unlike stresses associated with live and dead loads, residual stresses are neglected by 

pavement and structural design procedures and are routinely unknown and overlooked.  Yet, in 

some circumstances, the magnitude of residual stress can rise to a significant fraction of strength, 

thus diminishing the ability for the concrete to sustain its design load.   

During initial construction of a rigid pavement, residual stresses may be built into the 

material. These residual stresses are characterized as existing in the bulk of the material without 

the application of an external load or external stress (James and Lu 1996). They can form as a 

result of a number of issues including differential drying across the profile of the pavement depth 

and constraining features of the geometry of the structure while the concrete is still in its plastic 

state. They can also form as a result of changing support and material conditions over the 

lifetime of the structure. Creep can partially alleviate these stresses over time; however, there is 

no method to quantify the magnitude of the residual stresses at any age of the pavement 

structure, particularly in its young life when the material is susceptible to early damage.  

The debilitating effect of the built-in stress diminishes the loading capacity of the 

pavement particularly if the stresses are tensile in nature as this will lead to premature cracking. 

Cracking in concrete pavements is detrimental to its long-term durability since deteriorating 

agents like excess water and dissolved gases will accelerate deterioration processes. 

Additionally, other distresses will manifest themselves as a result of the altered stress state. 

Blowups can occur more readily since the designed joint spacing is unsuitable for the calculated 

magnitude of expansion; transverse and diagonal cracking is also more likely to manifest itself 

because of the differential residual stresses across a pavement’s depth (Huang 2004).  

 While quantifying residual stresses is the principal concern of this thesis, other types of 

cyclical stresses induced in concrete pavements are notable. Heating and cooling due to cycling 

of the sun through a 24 hour period induces significant curling stresses in concrete pavements. 

There exist methods to estimate these stresses by measuring the temperature profile of the 

concrete pavement and combining them with closed-form solutions of the Westergaard equations 

(Mohamed and Hansen 1996). However, this does not account for permanent curling stresses as 

a result of moisture curling, particularly during initial set and hardening of the concrete material. 
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In any case, the stress-state of the concrete material can be measured with either embedded strain 

gages or surface strain gages.  

 Efforts to quantify the stress state in concrete pavements began many years ago using 

techniques known in the geotechnical field. A. M. Richards published a technique in 1979 

detailing the use of electrical strain gages to measure the strain relieved when a “corehole is 

overcorred” (Richards 1979). More recently, the FAA’s NAPTF experimented with a technique 

that has been standardized in another material – metal (E. H. Guo, et al. 2008). A standardized 

testing method exists for the determination of residual stresses in steel members by the hole-

drilling strain-gage method (ASTM E837 2008). This method entails affixing a strain gage onto 

the surface of a steel member and recording the strain relieved as a hole is drilled nearby. The 

stresses are then calculated based on the depth of the drilled hole (full-depth versus partial-depth) 

and whether the stresses in the material vary uniformly or non-uniformly across its depth. 

Researchers at the NAPTF applied this testing method to cantilever concrete beams to find that 

the residual stresses could be partially relieved (E. H. Guo, et al. 2008).  

 Confirmatory research was undertaken by researchers at UIUC to similarly find that the 

residual stresses could be partially quantified by the partial-depth hole-drilling method (Marks 

and Lange 2009). This testing was modified to improve the isolation of induced stresses by 

instead cutting linear notches at either side of the affixed strain gage. This drastically diminished 

the effect of the applied load and better characterized the residual stress of the material.  

 This revised testing procedure was thusly adopted for field testing to better understand 

the capacity of the testing method to adequately quantify residual stresses in concrete pavements. 

A rosette of strain gages was affixed in an area of interest along the surface of the concrete. 

Linear notches of varying depths surrounded the strain rosette in order to characterize the 

magnitude of relieved strain. This testing method was reiterated in several experiments to find 

that a minimum notch spacing-to-depth ratio can reliably relieve the majority of residual stresses.  

 Subsequent FEM analysis was performed to complement the experimental results and to 

determine the procedure’s viability. The FEM analysis, along with testing results, suggest that 

despite the variability in stress states, a common notch geometry can simply, adequately and 

reliably quantify the residual stress in plain concrete pavements. However, it is important to 

account for variability in the final results since it is a depiction of the stress state during the time 

of testing. Understanding the fluctuation of stress due to temperature and moisture 
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(environmental conditions) along with changing loading and support conditions over time should 

indicate trends of stress over time.  

 These considerations, along with the promising results described in detail in this thesis, 

suggest that this testing procedure can measure the residual stress in plain concrete pavements. 

As such, a draft standardized testing procedure is included in the appendix since it is hopeful that 

this method will advance in future years to widespread acceptance as a useful field test.   
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CHAPTER 1: RESIDUAL STRESS MEASUREMENT OVERVIEW 

1.1 Introduction 

The pursuit of quantifying stresses in concrete has spanned several decades as researchers 

have sought differing ways to approach the problem. At the core of every study is an attempt to 

improve the previous simplifications in order to more accurately predict the stress state of in-situ 

concrete. A short review of relevant studies conducted to better characterize stresses in concrete 

pavements is presented here. 

1.2 Historic Testing and Related Rigid Pavement Studies 

A closed-form solution for predicting stresses in rigid pavements was first developed by 

Westergaard, was later corrected by Ioannides and was further developed by Bradbury (Hiller 

and Roesler 2010). These solutions were originally constructed for slabs of infinite width and 

length with uniformly distributed loads acting on a circular area with radius a (Brink 2003). 

Situations in which circular or semi-circular loading areas applied as edge and corner loads were 

also developed. At a later point, these solutions were appended with correction factors for finite 

slab dimensions by Bradbury (Brink 2003). All of these solutions take into account various 

estimated parameters including a radius of relative stiffness – a value comprised of the systemic 

reaction from the rigid pavement layers and its underlying subgrade support (Brink 2003). These 

analytical solutions are highly idealized and cannot accurately predict the stress states of in-situ 

concrete pavements.  

Stresses that are separate from those idealized stressed induced by applied loads include 

thermal stresses and stresses due to moisture curling. Typically in analysis, stresses developed by 

temperature gradients are often simplified as behaving linearly across the depth of the pavement. 

This simplification is often used since the development of Westergaard’s solution for curling in 

rigid pavements promoted this, but a more thorough and exact characterization would instead use 

a uniform temperature stress coupled with an equivalent curling stress and a “non-linear self-

equilibrating stress” (Hiller and Roesler 2010). Experiments have been constructed that can 

better link these curling stresses with built-in residual stresses.  

Experiments driving towards quantifying built-in stresses caused by permanent thermal 

and moisture gradients, particularly of irreversible shrinkage caused by gradients during 

concrete’s plastic state and before hardening, by a field testing method have been investigated. 

One study investigated measuring the degree of moisture and temperature along the profile depth 
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of a freshly cast concrete pavement (Wells, Phillips and Vandenbossche 2006). That data was 

then compared to the subsequent cracking of sawn expansion joints. In addition, this data was 

compared to the slab deflection as it warped over time. A similar study used falling-weight 

deflectometers to characterize effective built-in temperature differences (Rao and Roesler 2005).  

Knowing these temperature differences in a pavement can lead to analytical solutions to predict 

the residual stress in the material (Mohamed and Hansen 1996).  

Understanding and quantifying built-in residual stresses is important in certain 

applications like airfield pavements. While aircraft size and weight has increased regularly in the 

past few decades, material capacity of concrete runways is maintained until major renovation 

occurs. Studies have investigated the effect of larger sized aircraft like the Airbus 380 and 

Boeing 747 on concrete pavements (Caliendo and Parisi 2010). While structural analysis may 

suggest that a concrete pavement is adequate for these aircraft loads, eventual loss of subgrade 

support since its casting can induce stresses in a slab which lead to unexpected cracking and 

failure. Earlier models have incorporated wheel loading and temperature gradients as separate 

entities to predict slab stresses and subsequently join their results through superposition; 

however, this is often times an inaccurate depiction of the concrete stress state (Caliendo and 

Parisi 2010).  

Later testing directly correlated strain relaxation due to joint formation in concrete 

pavements becoming the investigative foundation to pursue residual stress measurements in 

concrete systems. The distance of the strain measurement to the joint was found to vary in 

accordance with probable stress states of the material (Guo, Pecht and Ricalde 2010).  These 

stress states would become altered when preparatory spacing joints cracked and propagated 

through the material as a result of applied dynamic wheel loading. However, observations were 

made that the stress state up until this point was higher in magnitude and would significantly 

drop – or be relieved – upon the formation of the joint and subsequent crack. The researchers had 

concluded that the “pseudo-stress” was unaccountable based on a full scale analysis of their 

experiment and suggested that the discrepancy in their results were attributable to built-in tensile 

residual stresses (Guo, Pecht and Ricalde 2010). 

1.3 Testing on Concrete Beams by NAPTF and UIUC 

Those researchers who made a link between observed, discrepant stresses in concrete 

pavements performed other work that more rigorously quantified the phenomenon in 
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cantilevered concrete beams (E. H. Guo, et al. 2008). This work comprised casting rectangular 

concrete beams and subjecting them to cantilever end loads. Surface strain gages were mounted 

on the top surface as well as the underside of the concrete beams in order to characterize its 

response as loads were ramp-loaded. This construct allowed for classical mechanics equations 

for beams in bending to be utilized in order to determine the induced stresses. 

An existing ASTM standard exists which describes an accepted method to measure 

residual stresses in metal (ASTM E837 2008). This method involves affixing a surface strain 

gage onto a metal member’s web and to drill a small partial or full depth hole in the vicinity of 

the strain gage. The difference in strain is noted and because the geometry is well understood, an 

analytical solution using Kirsch’s equations can be applied. This solution predicts the stress state 

at a point beyond a hole in a planar surface subjected to constant stress. 

This testing procedure was thusly adapted in the researcher’s testing of the cantilevered 

concrete beams. The top surface of a cantilever is effectively in a planar stress state when loaded 

with an end load. The core-drill would be used to generate a partial-depth core in the vicinity of 

the affixed surface strain gage thus presumably altering the stress state in accordance with 

Kirsch’s assumptions. The calculated difference in measured strain could thusly reveal the 

residual stress in the concrete material. However, their method relied heavily on partial-depth 

core drills as opposed to full-depth core drils which only partially quantified the residual stress. 

Researchers at UIUC worked in conjunction with the researchers who had developed this 

novice method for measuring residual stress in cantilever concrete beams (Marks and Lange 

2009). A revision to the procedure was made which took advantage of the simple geometry of 

the cantilever concrete beam. Instead of core-drilling near the top surface, linear saw cuts would 

be made in order to achieve the same affect. This resulted in similar results wherein the residual 

stress was partially quantified. A second iteration was devised wherein linear saw cuts would be 

made on both sides of the surface strain gage. Those results proved a viable means to more fully 

diminish the effect of the applied end load. As a consequence of its classical geometry, the 

discrepancy between the strains induced by the applied load and the total strain relieved is 

characterized as strains caused by the relieving of residual stresses.  

1.4 Data Collection and Calculation 

Third-wired quarter bridge strain gages manufactured by Tokyo Sokki Kenkyujo Co., 

Ltd. were used throughout this project. These surface foil gages have a gauge length of 30 
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millimeters (1.18 inches) and a gauge factor of 2.13 ± 1 %. Their resistivity is 119.5 ± 0.5 ohms 

and they are operable in temperature ranges of -4
o
F to 140

o
F. 

The length of the gages was determined suitable by previous testing. Future testing and 

field testing should consider using sizeable strain gages of at least 20 millimeters in gauge length 

in order to ensure that underlying aggregates beneath the surface of the concrete do not 

significantly alter the expected strain results. While concrete is a heterogeneous material, its 

observations can become homogenous if the gauge length is smaller than the largest anticipated 

aggregate size used in the concrete mix.  

These strain gages were connected to Model P3 Strain Indicator and Recorder. This 

device sends a self-configured excitation voltage to the strain gage and measures voltage changes 

throughout recording. These voltage readings are converted to units of microstrain whose 

magnitudes are displayed on an LCD screen in real time. This data recording device was also 

used to measure the magnitude of load from a custom-built load cell. 

 A 30 kip-capacity aluminum metal load cell constructed at the NSEL was used to record 

the magnitudes of load applied with a bottlejack to several tested concrete slabs. This full bridge 

load cell had a signal output of 3.675 milliVolt for every 1 Volt of excitation. The top portion of 

the bottlejack piston was corrugated and this was found to damage the load cell during loading, 

so a small steel plate was situated between the load cell and the bottlejack.  

 The strain results were noted and, given their orientation, stresses could be calculated. 

These calculated stresses are valid only on the surface of the concrete on which the measurement 

was undertaken. Using the biaxial form of Hooke’s Law, the stresses can be computed: 

σx = E / (1 – υ
2
) * (εx + υεy)  (Eqn. 1.1) 

σy = E / (1 – υ
2
) * (εy + υεx)  (Eqn. 1.2) 

 In the above equations, the elastic modulus, E, was estimated at approximately 3,500 to 

5,000 psi depending on the concrete while the Poisson’s Ratio, υ, was estimated at 0.15. 
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CHAPTER 2: PROOF-OF-CONCEPT TESTING ON DISCARDED SLABS 

2.1 Introduction 

 UIUC conducted confirmatory testing on several instrumented, cantilevered concrete 

beams in a lab setting. The concrete beams material varied in materials, geometry and loading. 

Through this testing, a revised procedure was developed where linear notches were sawn on 

either side of an affixed surface strain gage. This revised method of sawing linear notches was 

adapted for proof-of-concept testing on discarded slabs available at ATREL in Rantoul, IL.  

These discarded slabs originated from a road test strip that had been subjected to millions 

of Equivalent Single Axle Loads (ESALs) in the span of weeks (Cervantes and Roesler 2009). 

Two plain concrete slabs measuring 6 feet x 6 feet x 6 inches had been lifted from this road test 

strip and tested to fracture. The four fragments of the slabs were suitable for additional testing, so 

they were collected and prepared for proof-of-concept testing for this project.  

The first slab tested was laid on a concrete floor and supported simply by wood wedged 

along its underside to prevent it from teetering. This first test identified whether saw cuts sawn 

around a strain rosette could indeed relieve appreciable material stress. The geometry of the cut 

was constructed to closely mirror the preliminary success of the concrete beam testing where 

parallel cuts perpendicular to the strain gage would be made. In a strain rosette, two 

perpendicular strain gages – along with a third gage set at 45 degrees from those two – 

necessitate four cuts forming a square. The size of this square was varied across numerous tests.  

 After a successful first test of the unprepared concrete slab, an industrial saw cutter was 

used to form the three remaining irregularly shaped slabs into 72 inch x 36 inch x 6 inch 

rectangular slabs. The underside of the slabs were uneven on account of having been cast on an 

aggregate base, so the slabs were flipped and a thin layer of Hydrocal plaster was applied in 

order to produce a smooth underside. These three prepared slabs were tested in a manner as to 

produce calculable stress magnitudes. Their setup was designed to be slabs in bending whose 

width was larger than that of the concrete beams previously tested. This would allow for 

appreciable strain relaxation along the material’s width that would not have been discernable in a 

thin-width beam. 

2.2 Procedure 

 Three strain gages of 30 millimeters length (1.18 inches) were affixed within a 2 inch x 2 

inch squared area in the middle of the top surface of the slab; this location was 36 inches along 
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the length and 18 inches along the width of the slab. A set of four linear notches measuring 10 

inches in length were made about this 2 inch x 2 inch squared area to produce an isolated square 

of material measuring 3 inches x 3 inches. The separation between the 2 inch x 2 inch squared 

area and the 3 inch x 3 inch square area was no more than 0.5 inches in either Cartesian 

direction.  

When the underside of the concrete slabs had been evened with an appropriate layer of 

Hydrocal plaster, they were flipped right-side up and positioned atop steel beams. This effort was 

undertaken in order to induce either compressive or tensile stresses along the top surface of the 

concrete slab. The steel beams were thusly positioned at either the extreme ends of the slab in 

order to cause compressive bending on the top side of the slab due to self-weight, or positioned 

along the interior of the slab in order to cause tensile stresses due to the slab bending in self-

weight along the top surface. 

The flanges of the steel beams measured 4 inches and were positioned such that the 

underside surface of the Hydrocal-prepared concrete slab was wholly supported across its width. 

This resulted in a 64 inch span along the length of the slab in the case of creating a compressive 

top surface. Given the geometry of the slab and its supports, a calculated compressive stress of 

43 psi was estimated at the center of the top surface of the slab due to self-weight. Alternatively, 

the 4 inch steel beams were positioned near the center in order to induce a top surface in tension. 

The steel beams were positioned 33 inches from the ends and created two cantilever sections 

measuring 31 inches in length and a center span measuring 2 inches in length. Given the 

geometry of the slab and its supports, a calculated tensile stress of 44 psi due to self-weight was 

expected.  The stresses were calculated using: 

σ = Mc / I (Eqn. 2.1) 

where I = bh
3
 / 12 (Eqn. 2.2) 

 In order to alternatively measure the effect of the increasing depth of the notches 

surrounding the strain rosette, two masses each weighing 220 pounds were positioned atop the 

concrete slab in a manner to complement the aforementioned state of stress. In the case of the 

concrete slab whose top surface is in compression, the masses were positioned approximately 4 

inches away from either side of the center. This induced an additional compressive stress of 

approximately 28.5 psi. For the case where the concrete slab was centrally supported resulting in 

the top surface being in tension, the masses were positioned along the extreme edges 
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approximately 2 inches from the edge of the slab. This resulted in the addition of 32 psi tension 

stress at the center of the slab.  

An initial set of four saw cuts was made at a depth of 0.5 inches in depth. These cuts 

were produced using a handheld circular saw with a 7.5 inch diameter masonry saw blade. After 

the strain readings stabilized, a second set of four cuts measuring 1.0 inch in depth were made. 

The strain readings were allowed to stabilize again thereafter a third set of cuts measuring 1.5 

inches in depth was made. All quadrilateral saw cutting sequences followed a similar procedure 

wherein the first two cuts were made in the transverse direction while the second two cuts were 

made in the longitudinal direction.  

 Additionally, edge loads of 220 pounds were positioned along the outer edges of the slab 

while it was centrally-supported in order to amplify the tensile stresses along the top concrete 

surface during testing. These loads were repeatedly applied and removed throughout testing in 

order to demonstrate the diminishing response of the centrally located strain rosette as the 

quadrilateral set of notches increased in depth. 

2.3 Results for Discarded Slabs 

The strain readings during testing are depicted in the figures at the end of this chapter. 

The final strain readings have been calculated for their maximum and minimum principal 

stresses. Whichever value is greater in magnitude is denoted as the residual stress. It is important 

to realize that the direction of relieved stress is opposite of the stress state of the material. A 

calculated tensile stress in the isolated concrete material suggests that the material had been in a 

compressive state. Similarly, a calculated compressive stress in the isolated material suggests 

that it had been in a tensile state. 

Preliminary strain results in the first tested slab reveal a trend in which there is 

appreciable change strain for increasing notch depths. As seen previously in cantilevered 

concrete beam tests, an abrupt fluctuation of the strain measurement is observed as the saw cut is 

made and is followed by a period of time where the strain stabilizes. Initial, shallow cuts seem to 

stabilize more quickly while later, deeper cuts require more time to stabilize. This behavior has 

been attributed to thermal cooling of the concrete material as a large amount of heat is generated 

from the passing saw blade (Marks and Lange 2009). This heat, in part, causes expansion which 

contracts upon cooling. The successive number of saw cuts resulted in an ultimate average depth 

of 2.0 inches and a calculated residual stress of 220 psi in compression.  
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The second test used masses at the ends of a centrally supported slab inducing a total 

tensile stress of 76 psi at the surface of the concrete material. When notched to a final depth of 

1.6 inches, the strain response signified a tensile stress of 88 psi. This tensile stress was 

calculated using a stiffness value of 5x10
6
 psi and a Poisson’s ratio of 0.15. While it is possible 

to alter the calculated stress value to more suitably match the experimental value by modifying 

the stiffness of the material, the similarity in order of magnitude suggests an appropriate stress 

value based on the geometry of the structure can be calculated.  

The third test was performed in compression where the total induced stress was 72 psi, 

but the longitudinal strain gage was damaged when the 220 lb masses were removed. Thus, the 

calculated residual stress before strain gage damage was through an average notch depth of 0.5 

inches of 190 psi in compression. This result is questionable, however, because initial strain 

values had not stabilized to zero suggesting that creep and other micro-cracking was occurring as 

the slab was situated over the rail beam supports. 

A second test in compression (fourth overall test) was conducted where no masses were 

used (in order to prevent strain gage damage). This left a calculated 43 psi in compression along 

the top surface of the material. The cutting of a 1.7 inch notch depth resulted in 370 psi tensile 

stresses. However, significant drifting of the 45 degree strain gage was noted, so an alternative 

calculation was made only considering the longitudinal and transverse stresses as denoted by the 

longitudinal and transverse strain gages. Using the biaxial form of Hooke’s Law, the longitudinal 

stress was calculated to be 75 psi in tension while the transverse stress was calculated to be 30 

psi in tension. 

This fourth test revealed an unexpected but alluring discrepancy: a surface loaded in 

compression had indicated tensile forces as its primary stress state. The longitudinal direction 

had been subjected to a compressive state of 43 psi suggesting that the residual stress, if 

unloaded would be 138 psi. The tensile stress in the transverse direction, largely unaffected by 

the self-weight bending of the material, measured 30 psi across the width of the concrete 

material. A tensile residual stress measuring on the order of 100 can be a significant detriment to 

premature cracking as upwards of 20 – 40% of the materials modulus of rupture is pre-loaded 

and built-in.   

 These initial proof of concept test results suggested that proceeding with this testing 

procedure on in-situ pavements would yield viable results. The application of a strain rosette 



 

12 
 

surrounded by four saw cuts had two clear advantages: the maximum and minimum principal 

stresses could be readily solved for regardless of saw cut geometry surrounding the strain rosette; 

and the directional stresses (longitudinal and transverse stresses) could be calculated if the cuts 

remained perpendicular to their direction. It was decided to proceed with this geometry because 

of its ease of use. 

However, it is evident that low-magnitude applied loads would be insufficient to induce 

quantifiable induced strains. The application of the end masses on centrally supported slabs and 

the application of interior masses on end-supported slabs generated minimal stress values. Future 

testing would need to incorporate applied loads similar to that of vehicular traffic. The testing 

facility at ATREL where these discarded slabs had been identified would offer additional testing 

opportunities.  

2.4 Figures and Graphs 

 

 
Figure 2.1 Slab flipped exposing its underside. Form fitted at its edges in preparation for Hydrocal plaster 
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Figure 2.2 Centrally supported concrete slab with 220 lb edge loads applied to produce tension along the top 

surface 

 

 
Figure 2.3 Close-up view of centrally supported slab, the 2 inch span and flange supports 
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Figure 2.4 Four saw notches surrounding a rosette of 30mm strain gages cut to a depth of 1.0 inch 

 

 
Figure 2.5 Strain readings as multiple sets progressive cuts are made around a rosette of 30mm strain gages 

for an unprepared concrete slab 
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Figure 2.6 Strain readings as cuts of 0.5 in, 1.0 in, and 1.5 in are made around a strain rosette on a concrete 

slab whose top surface is in tension 

 
Figure 2.7 Strain readings as cuts of 0.25 in, 0.5 in, 1.0 in and 1.5 in are made around a strain rosette on a 

concrete slab whose top surface is in compression. The longitudinal strain gage is damaged approximately 2 

hours into testing 
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Figure 2.8 Strain readings as cuts of 0.25 in, 0.5 in, 1.0 in and 1.5 in are made around a strain rosette on a 

concrete slab whose top surface is in compression. Significant and questionable strain drifting occurs in the 

45 degree strain gage 
  



 

17 
 

CHAPTER 3: RESIDUAL STRESS TESTING ON IN-SITU SLABS AT ATREL 

3.1 Introduction 

 The discarded slabs which had been prepared and tested in bending had come from a road 

strip which was still atop the original soil on which it was cast at the ATREL facility. This road 

strip had been subjected to millions of ESALs in the span of weeks in a previous experiment 

(Cervantes and Roesler 2009). While this testing had been completed, a large traffic simulator 

named the Accelerated Transportation Loading Assembly (ATLAS) remained in place. Along 

the underside of ATLAS is a wheel carriage with an attachment for either a truck tire or jet 

airplane tire. These tires could subject the concrete pavement to thousands of pounds of load 

while it moved along the road strip’s 100 foot length. The machine was designed to apply 

dynamic loads, but could potentially be used to induce static loads on an in-situ concrete slab. 

 The 12 foot width road strip was comprised of jointed plain concrete pavement which had 

areas of surface damage typified by cracking. Six slabs were identified for testing based on 

having little to no surface cracking. However, cracking within the material was not visible, nor 

was it investigated. However, choosing these slabs provided an opportunity to demonstrate the 

viability of the testing procedure on field testing. The concrete slabs measured 6 feet x 6 feet x 6 

inches and had been saw notched soon after casting.  

3.2 Procedure 

 The width of the road strip was 12 feet and was partitioned into two halves by a joint 

spaced 6 feet from either edge. Along the length of the road strip, joints were spaced regularly in 

6 foot intervals. This resulted in concrete slabs measuring 6 feet by 6 feet. In order to simplify 

future FEM analysis, an industrial concrete saw cutter was used to wholly separate the concrete 

slabs from one another to prevent aggregate bridging. The saw cut was lowered along existing 

joints and used to cut through the full 6 inch depth of the slabs. Thus each slab was separated 

from its three adjoining slabs. The fourth edge of the slab was always a free edge and required no 

saw cutting. 

 As a result each slab had a symmetric orientation where one edge was along the midline 

of the road strip while its opposite edge was along the free end. In order to produce a symmetric 

stress field and reduce the complexity of the slab loading, a 12 inch x 12 inch steel plate was 

positioned along the interior edge adjacent to the midline. This 1 inch thick steel plate was 

placed so that it could distribute the applied wheel load across a single square-foot area. 
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Figure 3.1 Plan view of 6 ft x 6 ft slab with square steel plate, P, and locations of affixed strain rosettes, 

triangles 

 

 Strain rosettes were placed in one of two locations: either 2 feet from the midline edge of 

the slab or 3 feet from the midline edge of the slab. The orientations of the strain gages were in 

the longitudinal, latitudinal and 45 degree directions. The symmetry of the loading presumed a 

saddle response in the slab upon loading – that is tensile bending in the longitudinal direction and 

compressive bending in the latitudinal direction. 

 The strain measurements were actively recorded throughout testing while wheel loads 

were applied and removed. A regiment was developed so that saw cutting could be performed 

safely in the vicinity of high wheel loads. The slab would be loaded, the load would be sustained 

and then the load would be removed. The strain magnitudes would be recorded during this initial 

loading for later calculation. After this loading sequence, four saw cuts would surround the strain 

rosette in a pre-determined geometry. The notch spacing of the saw cuts would be controlled and 

would be identical in both longitudinal and latitudinal directions. This action ensured that a 

squared area of material would always be isolated as opposed to other rectangular shapes. The 

depth of the four notches would vary in approximately 0.5 inch increments.  

 A circular saw fitted with a masonry blade was used to create the cuts in the material. The 

amount of saw blade exposed past the circular saw flush-guide was leveled to the surface of the 

concrete surface to be cut. Markings on the circular saw itself indicated approximate cutting 

depths, so the saw blade would be adjusted accordingly. However, a high precision measuring 

device – a caliper – was used to record the actual depth of the notch after the cut was made. The 

depths of the cuts were measured at three points along the length of each cut resulting in 12 

overall measurements. These 12 measurements were averaged together to ascertain the average 

notch depth of the four cuts.  
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 After a set of four cuts had been made and measured, sufficient time – approximately 40 

to 60 minutes – was allowed to pass in order for the strain readings to stabilize. Upon stabilizing, 

the wheel load would be re-applied. Approximately 20 to 30 seconds elapsed before this wheel 

load was removed. This effort was performed in order to determine the diminished effect of the 

strains induced by an applied wheel load. A second set of cuts of approximately 0.5 inches 

deeper depth were made along the same grooves made with the initial cuts. This process would 

be repeated until approximately a depth of 1.5 to 2.0 inches. At this point, two observations were 

typical: firstly, the change in magnitude of the strain being relieved would approach zero; 

secondly, the inducement of strain from the applied load would become negligible.  

 ATLAS was initially used to apply the wheel load, but several problems became apparent 

immediately. Instead of gradual load application inducing elastic behavior in the concrete 

material, the wheel load would be applied rapidly inducing unexpected strain results. The 

unlikely strain readings from the strain rosettes, particularly those spaced 2 feet from the midline 

edge, were likely as a result of sudden compaction of the underlying aggregate base support and 

other phenomenon. Additionally, the electric motor of ATLAS introduced pulsing peaks in the 

strain data measurements. This electrical motor was used to maintain the position of the wheel 

carriage during static loading. Turning off this electric motor while the hydraulic pumps were 

used to apply the static load proved problematic as well, as the carriage would shift unexpectedly 

during testing leading to erroneous results. 

As a consequence, the loading application was altered such that a 20 ton capacity 

bottlejack was situated between the steel plate and the wheel carriage. A 30 kip load cell was 

positioned between the bottlejack and the wheel carriage so that load magnitudes could be 

collected as the piston in the bottlejack was raised. The electrical motor and hydraulic pumps of 

the ATLAS device were turned off and no disruption to the data collection occurred thereafter.  

After this sequence was fine-tuned, saw-cutting tests were performed on six concrete 

slabs. Three tests were conducted where the strain rosette was situated 2 feet from the midline 

edge while another three tests were conducted where the strain rosette was situated 3 feet from 

the midline edge. The sequencing of the saw cuts were varied between these tests so that a better 

understanding of the relieving strain could be developed. 
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3.3 Results for ATREL Slabs 

 There are several key points to be made for the data presented at the end of this chapter. 

Firstly, the magnitude of strains induced in the longitudinal and latitudinal directions are as 

expected: tensile in the longitudinal direction and compressive in the latitudinal direction. 

Additionally, the magnitudes of the induced strains are comparable given their distance from the 

applied load are similar. For the two tests where the strain rosettes were spaced 2 feet from the 

applied load, the longitudinal strains measured 34 με and 24 με while the transverse strains 

measured -52 με and -50 με. For the two tests where the strain rosettes were spaced 3 feet from 

the applied load, the longitudinal strains measured 16 με and 12 με while the transverse strains 

measured -20 με and -22 με. This suggests that while there is discrepancy in the amount of 

damage to each slab as a result of the accelerated traffic simulation, their underlying support and 

materials are comparable yielding comparable results.  

 Figures 3.6 through 3.10 at the end of this chapter also depict the diminishing response of 

the applied load on the strain rosettes as the notches are made deeper. Initial loading, when no 

saw cuts have been made, have a linear slope indicating that the measured data is in the elastic 

regime. The slope of this line approaches zero as the saw cuts are deepened. The direction of the 

decrease coincides with the initial stress state: positive, tensile strains induced in the longitudinal 

direction reduce to zero slope while negative, compressive strains induced in the latitudinal 

direction increase to zero slope. Near the end of their respective experiments, the slope of zero 

denotes a limited strain response due to an applied load and is indicative that the square area has 

been suitably isolated from its surrounding applied and material stresses. 

 It is also interesting to note the magnitude of the strain measurements. In the previous 

experiment set-up where beams were subjected to bending, the magnitude of the strain relaxation 

is approximately the same as in this case, regardless of the induced strains by the applied load. 

This suggests that the material inherently contains a constrained amount of stress that is relieved. 

The calculated residual stresses for an estimated Young’s modulus of 4x10
6
 psi and Poisson’s 

ratio of 0.15 of the six test cases are tabulated below: 
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Table 3.1 Results for six field tests performed at ATREL 

Date ID Notch 

Spacing 

(in) 

Notch 

Depth 

(in) 

Notch 

D/S 

(in/in) 

E-W 

Strain 

(με) 

45
o
 

Strain 

(με) 

N-S 

Strain 

(με) 

Max 

Stress 

(psi) 

Min 

Stress 

(psi) 

Residual 

Stress 

(psi) 

20100603 2N 3 1.0 0.34 48 56 45 252.3 185.4 252 

20100607 2S 3 1.3 0.45 0 10 23 94.5 13.8 94 

20100609 3S 3 1.2 0.39 21 8 20 140.0 53.0 140 

20100610 4N 3 1.4 0.46 34 4 0 154.4 5.6 154 

20100630 1N 4 1.9 0.47 17 22 13 95.9 45.3 96 

20100714 5S 4 2.0 0.50 -24 -26 -13 -54.7 -119 -119 

 

 The calculated relieved stresses are largely in compression except for the concrete slab 

labeled 5S that, because of the negative sign in the direction of relieved stress, must have been in 

tension. However, it is interesting to note the similarity of the results, particularly of those tested 

within a week’s time. While these slabs were tested in the summer with severe thunderstorms 

moving through the region, several days of drying denoted by the separation in testing dates is 

seemingly adequate to quantify the material stresses themselves and discard significant moisture 

gradations.  

 The results were obtained for each test by deepening the notches with saw cuts until the 

effect of the applied load was no longer appreciable. This usually coincided with the point at 

which the strain relieved due to material relaxation was unaffected by deepening cuts. A data 

collection error occurred with Slab 5S, however, and is evident in Figures 3.20 and 3.21. After 

the second sequence of cuts and subsequent stabilization, the data collector malfunctioned 

resulting in the loss of data. That is why there is a large gap where there would normally have 

been additional data. However, the magnitude of the stabilized strain reading at the end of this 

second iteration had been recorded in field notes. Thus, testing was able to continue where the 

new strain readings were corrected for their magnitude. This is evident in the graphs where the 

strain in the longitudinal direction started at -5 με, the strain the latitudinal direction started at -

21 με and the strain in the 45 degree direction started at -14 με. 

  



 

22 
 

3.4 Figures and Graphs 

 
Figure 3.2 View of slabs, ATLAS wheel carriage, bottlejack, tarp to shade from sunlight and miscellaneous 

testing equipment 

 

 
Figure 3.3 Bottlejack using ATLAS wheel carriage as reaction frame, load cell and steel beam for flush 

surface 
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Figure 3.4 ATLAS tire used for static loading of in-situ pavement during initial configuration 

 

 
Figure 3.5 Strain rosettes spaced either 2 feet or 3 feet from applied load 
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Figure 3.6 Slab 2N loaded and unloaded after various cutting sequences 

 

 
Figure 3.7 Slab 2S loaded and unloaded after various cutting sequences. 
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Figure 3.8 Slab 3S loaded and unloaded after various cutting sequences 

 

 
Figure 3.9 Slab 4N loaded and unloaded after various cutting sequences 
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Figure 3.10 Principal strains for Slab 2N where the strain rosette is located 2 feet from applied load and 

isolated with notches spaced 3 inches apart 

 

 
Figure 3.11 Strain and load data for Slab 2N where the strain rosette is spaced 2 feet from applied load and is 

isolated with notches spaced 3 inches apart 
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Figure 3.12 Principal strains for Slab 2S where the strain rosette is spaced 2 feet from an applied load and 

isolated with notches spaced 3 inches apart 

 

 
Figure 3.13 Strain and load data for Slab 2S where the strain rosette is spaced 2 feet from applied load and 

isolated with notches spaced 3 inches apart 
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Figure 3.14 Principal strains for Slab 3S where the rosette is spaced 3 feet from an applied load and isolated 

with notches spaced 3 inches apart 

 

 
Figure 3.15 Strain and load data for Slab 3S where the strain rosette is spaced 3 feet from applied load and 

isolated with notches spaced 3 inches apart 
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Figure 3.16 Principal strains for Slab 4N where the rosette is spaced 3 feet from an applied load and isolated 

with notches spaced 3 inches apart 

 

 
Figure 3.17 Strain and load data for Slab 4N where the strain rosette is spaced 3 feet from applied load and 

isolated with notches spaced 3 inches apart 
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Figure 3.18 Principal strains for Slab 1N where the strain rosette is spaced 2 feet from an applied load and 

isolated with notches spaced 4 inches apart 

 

 
Figure 3.19 Strain and load data for Slab 1N where the strain rosette is spaced 2 feet from applied load and 

isolated with notches spaced 4 inches apart 
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Figure 3.20 Principal strains for Slab 5S where the strain rosette is spaced 3 feet from an applied load and 

isolated with notches spaced 4 inches apart 

 

 
Figure 3.21 Strain and load data for Slab 5S where the strain rosette is spaced 3 feet from applied load and 

isolated with notches spaced 4 inches apart  
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CHAPTER 4: RESIDUAL STRESS TESTING ON NAPTF SLAB 

4.1 Introduction 

 In addition to the availability of concrete slabs at ATREL, a 15 foot x 15 foot x 12 inch 

concrete slab cast at the FAA’s NAPTF was available for residual stress testing. This slab was 

situated in an enclosed environment where live wheel loads could be readily applied. The slab 

sits atop a granular base with an approximate stiffness value of 30,000 psi. Testing was 

conducted where the relieved strain for a single notch depth-to-spacing ratio of 0.40 was 

maintained. This ratio had been determined by previous experimental observation that the 

majority of residual stresses could be identified at this geometric ratio. 

Strain rosettes were affixed at six locations atop the surface of a plain concrete pavement 

located within the NAPTF on August 17
th

, 2010. The location of the six rosettes provided a 

testing matrix which included two midline responses from two center-edge loads, a center-edge 

response from a corner-edge load, a midline response from a corner-edge load and two in-situ 

responses. 

4.2 Procedure 

 The preparation of the surface and application of the strain rosettes was the same across 

all strain rosettes. A center-mark was drawn at six locations and a 2x2 inch square area centered 

about that center-mark was drawn. Efflorescence and other surface debris were removed by hand 

by using medium-coarse sandpaper (grit 60) and sanding the area contained within the 2x2 inch 

square. Moist cotton was used to absorb fine dust and other particulates from the smoothed 

surface. This was followed by the application of acid and base solutions to neutralize the surface 

of the concrete per the epoxy manufacturer’s recommendation. The moisture from the water, 

acid and base solutions was allowed to dry before a layer of epoxy was applied to the 2x2 inch 

square. This first layer of epoxy was thinned with the edge of a zip-tie and its primary purpose 

was to fill in divots and other small cavities along the surface of the concrete. After initially 

curing, a second layer of epoxy was applied whose purpose was to create as smooth and even a 

surface as possible for the application of strain foil gages. This second epoxy layer was treated 

with acid and base solutions to additionally neutralize the epoxy surface. 

Surface strain gages 30 millimeters in length (1.18 inches) were prepared by separating 

the sheathing holding the two individual lead wires together in order to allow for flexible 

mobility later during testing. The gages were placed along a smooth, glass surface where a 
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cellophane tape was affixed along the backing and the gage lifted back. A two-chemical 

activated glue solution was applied to the exposed underside of the strain gage. This cellophane 

tape backed strain gage was removed from the glass surface and affixed to the prepared epoxy 

surface. The rectangular dimensions of the strain gages were contained wholly within the 2x2 

inch squared area and overlap of gages (and lead-wires) was prevented. The gage was held in 

place with three fingers pressing down until the activated glue solution had adequately hardened. 

The cellophane tape was then carefully removed leaving the gage firmly affixed to the epoxy 

surface. This process was repeated 18 times as to produce six strain rosettes each containing a 

reference strain gage, a gage perpendicular to the reference strain gage and a gage at 45 degrees 

from the reference gage counter-clockwise to the reference strain gage. The orientation of the 

strain rosettes were all the same such that all reference strain gages were aligned in the East-

West direction, all perpendicular gages were aligned in the North-South direction and all gages 

set at 45 degrees were oriented in the Northeast-Southwest direction. 

The lead wires of the gages were aligned so that they split and double-backed towards 

either side of the strain gage. This was done so that the distance between the lead wires and the 

passing saw cut would be sufficient in ensuring no damage the strain gage during testing. To 

further protect these exposed lead wires and gages, an abundant layer of polyurethane was added 

atop the rosette. The six arrangements of epoxy-prepared and polyurethane-protected strain 

rosettes were allowed to cure overnight. 

4.3 Results for Unloaded Tests 

Test A1 comprised the testing of a rosette spaced 10 feet eastward and 5 feet southward 

from the Northwest corner of the slab. The spacing of the notches to be cut was 3 inches 

resulting in a 3x3 inch squared area centered about the previously drawn center-mark for the 2x2 

inch square. At this designed notch-spacing, the designed notch-depth to isolate the strain rosette 

from stresses was estimated at 1.2 inches.  

Alternatively, Test A2 comprised the testing of a rosette spaced 10 feet eastward and 10 

feet southward from the same Northwest corner of the slab. The spacing of the notches was 4 

inches which would result in a 4x4 inch squared area. This, too, was centered about the 

previously drawn center-mark for the 2x2 inch square. At a spacing of 4 inches, the approximate 

design depth in order to isolate the strain rosette from stresses was estimated at 1.6 inches.  
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Figure 4.1 Location of Strain Rosettes A1 and A2 

  

 Strain rosette A1 was isolated with notch depths averaging 1.3 inches. This resulted in an 

actual notch depth-to-spacing ratio of 0.42. The final strain readings and measured surface 

temperatures were: 

 
Table 4.1 Initial and Final Strain Readings for Test A1 

 E-W Strain (με) 45
o
 Strain (με) N-S Strain (με) Temp (

o
F) 

Initial 0 0 0 77.5 

Final -19 -14 -20 78 

 

 For an estimated E-Modulus of 5,000 ksi and Poisson’s ratio of 0.15, the approximate 

measured total stress is 140 psi in tension. The direction of this stress is 43 degrees counter-

clockwise from the reference gage. 

 Strain rosette A2 was surrounded with notches which measured an average depth of 1.4 

inches . This resulted in an actual notch depth-to-spacing ratio of 0.35. The final strain readings 

and measured surface temperatures were: 

 
Table 4.2 Initial and Final Strain Readings for Test A2 

 E-W Strain (με) 45
o
 Strain (με) N-S Strain (με) Temp (

o
F) 

Initial 0 0 0 77 

Final -195 -155 -59 81 

  

For an estimated E-Modulus of 5,000 ksi and Poisson’s ratio of 0.15, the approximate 

measured in-situ stress is 1,070 psi in tension. The direction of this stress is 12 degrees counter-

clockwise from the reference gage. 
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The magnitudes of the measured stresses between tests A1 and A2 vary approximately 

tenfold, and there is some cause for concern for the validity of test A2. The diamond saw blade 

suffered over-heating during the testing of A2 while the saw teeth showed visible signs of 

cracking. This slowed the rate of cutting and subsequently increased the amount of heat 

generated in this test. Measured temperature readings upwards of 200
o
F were observed along the 

surface of the concrete in the vicinity of the notching. The operating temperature of the strain 

gages used range from -4
o
F to 140

o
F. As a result of this excessive heating in the concrete, the 

strain gages themselves likely over-heated leading to erroneous strain measurements. 

Additionally, Figure 4.16 shows the raw strain data collected for Test A2. This reveals 

that after saw cutting, the strain measurements did not stabilize to expected values for this type 

of test. Personnel at the NAPTF noted that this value of tensile strain and calculated stress in the 

concrete exceeds the modulus of rupture meaning that cracks would have materialized before 

testing had begun. Cracking was not visible suggesting that this was not the case, further 

suggesting that test A2 is erroneous. The test was concluded when the strain readings had 

stabilized while the temperature had not fully returned to its original magnitude. 

While the calculated stress of 1,070 psi at A2 is questionable due to the excess time and 

heat generated during testing, there are some noteworthy observations worth highlighting. 

Firstly, the calculated stress state of Test D1 is 660 psi. The distance separating test A2 and D1 is 

no more than 2.5 feet. This suggests that there is a region in the concrete pavement which may 

have higher localized stresses than other areas. Additionally, a stress of 730 psi was calculated at 

the location of Test B2 suggesting that these high magnitudes of stresses can possibly and validly 

exist in the concrete. 

It should also be noted that the diamond-edge saw blade used was new and was not 

expected to suffer the damage it did during testing of A2. The saw blade had successfully 

notched 1.2 inches in the testing of A1, however could not successfully notch the 0.8 inch 

incremental cut performed at A2. Both technicians conducting the test, Castaneda and Gonzales, 

took turns operating the circular saw and noted that the concrete was “harder” than material that 

has been worked with before. This notion was later supported in that high-strength quartzite 

aggregates had in fact been used in the concrete mix. Lastly, the range of strains measured across 

the pavement surface suggests that there can be a gradient of built-in stresses existing in the 
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material. Localized areas of high and low stiffness caused by varying vibratory/compaction 

techniques may exist. 

4.4 Results for Corner-Edge Loaded Tests 

Test B1 comprised the testing of a rosette spaced 7.5 feet eastward and 2 inches 

southward from the Northwest corner of the slab. The spacing of the notches to be cut was 4 

inches resulting in a 4x4 inch squared area centered about the previously drawn center-mark for 

the 2x2 inch square. The location of this strain rosette used the North free edge of the slab 

necessitating only three notches. At this designed notch-spacing, the designed notch-depth to 

isolate the strain rosette from stresses was estimated at 1.6 inches.  

Test B2 comprised the testing of a rosette spaced 5 feet eastward and 33 inches 

southward from the Northwest corner of the slab. The spacing of the notches to be cut was 3 

inches resulting in a 3x3 inch squared area centered about the previously drawn center-mark for 

the 2x2 inch square. At this designed notch-spacing, the designed notch-depth to isolate the 

strain rosette from stresses was estimated at 1.2 inches.  

In both test scenarios, a load was designed to be placed along the West edge of the slab 

and loaded in increments before and after testing. The 52 inch diameter Michelin tires were 

positioned such that the center of the northern tire was 21.5 inches eastward while displaced 12 

inches southward. The southern tire was similarly positioned 21.5 inches eastward and 66 inches 

southward. When loaded, the tires remained entirely upon the top surface of the slab and did not 

contour around the slab edges. 

 

 

Figure 4.2 Location of Strain Rosettes B1, B2 and Wheel Loads 
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 Strain rosette B1 was isolated with notches of an average depth of 1.6 inches resulting in 

a notch depth-to-spacing ratio of 0.41. The final strain readings and surface temperatures were: 

 
Table 4.3 Initial and Final Strain Readings for Test B1 

 E-W Strain (με) 45
o
 Strain (με) N-S Strain (με) Temp (

o
F) 

Initial 0 0 0 78 

Final -139 -93 10 77.5 

 

 For an estimated E-Modulus of 5,000 ksi and Poisson’s ratio of 0.15, the approximate 

measured in-situ stress is 730 psi in tension. The direction of this stress is 10 degrees counter-

clockwise from the reference line. 

 Test B1 was the first location to be loaded before and after testing to ascertain the strain 

response due to incremented loads. This effort was performed in order to determine whether the 

stresses due to an applied load had been isolated sufficiently and whether the response varies 

linearly or elsewise. The total load applied was incremented from 10 kips to 20 kips, 40 kips, 60 

kips, 80 kips, 60 kips, 40 kips, 20 kips and lastly 10 kips. This was performed in a stepwise 

function and the magnitude of the strain responses compared before and after.  

 

 

Figure 4.3 Strain Response of B1 Due to Applied Load Before Notches 
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Figure 4.4 Strain Response of B1 Due to Applied Load After Notches 

 

Table 4.4 Percent Change of Diminished Strain 

Response of B1 Before and After Notches 

Test B1 % Change 

Load (kips) 

E-W 

Strain 

(με) 

45
o
 

Strain 

(με) 

N-S 

Strain 

(με) 

0 0% 0% 0% 

10 52% 48% 0% 

20 50% 48% 50% 

40 38% 34% 25% 

60  n/a n/a n/a 

80  n/a n/a n/a 

60 15% 14% 14% 

40 14% 12% 0% 

20 12% 9% 0% 

10 8% 5% 0% 

0 1% 5% 0% 

 

Table 4.5 Revised Percent Change of Diminished 

Strain Response of B1 Before and After Notches 

Test B1 % Change   

Load (kips) 

E-W 

Strain 

(με) 

45
o
 

Strain 

(με) 

N-S 

Strain 

(με) 

0 0% 0% 0% 

10 52% 48% 0% 

20 50% 48% 50% 

40 38% 34% 25% 

60  n/a n/a n/a 

80 n/a n/a n/a 

60 33% 35% 17% 

40 34% 29% 0% 

20 36% 29% 0% 

10 36% 24% 0% 

0 0% 0% 0% 
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 The initial loading sequence was unstable largely due to the fact that slab had not been 

previously loaded since its construction. Settling of the base along with other seating phenomenon likely 

occurred when this slab was loaded upwards of 80 kips. This makes comparison of the loading 

sequences before and after saw notching beyond the first load of 20 kips difficult as the strain value is 

not stabilized. The strain magnitudes particularly drift at loads of 40, 60 and 80 kips. However, the latter 

portion of the initial load where the load is incrementally lessened can be compared since its values are 

stable and presumably symmetric with the initial loading sequence. The magnitude change in this latter 

portion was used to revise the percent change of the three strain directions. The strain values of the latter 

portion are used as the point of comparison for the loading sequence after the notches are made. Doing 

so results in Table 4.5 where it appears that the strain response is limited to approximately one third of 

its original magnitude for a notch depth-to-spacing ratio of 0.40 along the edge of the slab. 

4.5 Results for Center-Edge Loaded Tests 

Test C1 comprised the testing of a rosette spaced 5 feet eastward and 7.5 feet southward from the 

Northwest corner of the slab. The spacing of the notches to be cut was 4 inches resulting in a 4x4 inch 

squared area centered about the previously drawn center-mark for the 2x2 inch square. At this designed 

notch-spacing, the designed notch-depth to isolate the strain rosette from stresses was estimated at 1.6 

inches.  

Test D1 comprised the testing of a rosette spaced 10 feet eastward and 7.5 feet southward from 

the Northwest corner of the slab. The spacing of the notches to be cut was 3 inches resulting in a 3x3 

inch squared area centered about the previously drawn center-mark for the 2x2 inch square. At this 

designed notch-spacing, the designed notch-depth to isolate the strain rosette from stresses was 

estimated at 1.2 inches.  

 Both locations were contrived in order to place a load along both the West and East edges of the 

slab and produce strain responses that, by symmetry, should be similar in magnitude. The 52 inch 

diameter tires were positioned such that the center of the northern tire was positioned 21.5 inches 

eastward and 63 inches southward while the southern tire was positioned 21.5 inches eastward and 117 

inches southward. When loaded, the tires remained entirely upon the top surface of the slab and did not 

wrap around the slab edges. 

 



 

40 
 

 

Figure 4.5 Location of C1 and Wheel Loads 

  

Figure 4.6 Location of D1 and Wheel Loads 

 Strain rosette C1 was notched to an average depth of 1.7 inches resulting in a notch depth-to-

spacing ratio of 0.41. The final strain readings and surface temperatures were: 

 
Table 4.6 Initial and Final Strain Readings for Test C1 

 E-W Strain (με) 45
o
 Strain (με) N-S Strain (με) Temp (

o
F) 

Initial 0 0 0 77.5 

Final -28 -35 -23 78 

 

 For an estimated E-Modulus of 5,000 ksi and Poisson’s ratio of 0.15, the approximate measured 

in-situ stress is 190 psi in tension. The direction of this stress is 37 degrees counter-clockwise from the 

reference line. 

 Strain rosette D1 was notched to an average depth of 1.2 inches resulting in a notch depth-to-

spacing ratio of 0.41. The final strain readings and temperatures were: 

 
Table 4.7 Initial and Final Strain Readings for Test D1 

 E-W Strain (με) 45
o
 Strain (με) N-S Strain (με) Temp (

o
F) 

Initial 0 0 0 78 

Final -111 -16 -14 80* 
*Temperature does not coincide with final strain measurements. Instead, it is the last measured temperature observed 10 minutes prior to the end of testing. 

 

 For an estimated E-Modulus of 5,000 ksi and Poisson’s ratio of 0.15, the approximate measured 

in-situ stress is 660 psi in tension. The direction of this stress is 22 degrees counter-clockwise from the 

reference line. 
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Figure 4.7 Strain Response of C1 Due to Applied Load Before Notches 

 

 
Figure 4.8 Strain Response of C1 Due to Applied Load After Notches 
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Table 4.8 Percent Change of Strain Response of C1 Before and After Notches 

Test C1 % Change 

Load (kips) 

E-W 

Strain 

(με) 

45
o
 

Strain 

(με) 

N-S 

Strain 

(με) 

0 0% 0% 0% 

10 -27% -14% -50% 

20 -21% -21% -20% 

40 -22% -23% -25% 

60 -24% -19% -20% 

80 -25% -21% -30% 

60 -26% -16% -30% 

40 -26% -24% -33% 

20 -30% -29% -33% 

10 -33% -40% -67% 

0 0% 0% 0% 

 

Test C1 occurs within the interior of the slab away from edges unlike Test B1 which is located at 

a free edge. At a notch depth to spacing ratio of 0.41, the strain response after loading is negative in 

value, as expected. This is indicative that progressive, deepening saw cuts would have resulted in strain 

magnitudes whose values are diminished from their original values. The reversal in the sign of the strain 

values indicates that over-relaxation of the material has occurred in a phenomenon nicknamed as a 

“pinching effect.” This effect has been observed in previous testing wherein the effect of the applied 

stress is not only diminished but reversed. This likely occurs because the confining stress of the material 

near the surface is more readily relieved than the induced stress from an applied load. Moreover, the 

newly formed notches act as flaws and intensify the induced stresses into radially-acting crack stresses. 

These crack stresses can act upwards into the isolated 3x3 inch squared area and reverse the observed 

strain measurements. As such additional saw cutting is needed to fully relieve the artificial applied 

stresses, but the observed pinching effect is an indication that the surface stresses have been 

appropriately isolated and the final strain response is of the total stress present in the material. When the 

strain response is plotted against the applied load, it becomes evident that the strain assumes non-linear 

behavior both before and after notching. 
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Figure 4.9 Strain Response of C1 Due to Applied Load Before Notches 

 

 

Figure 4.10 Strain Response of C1 Due to Applied Load After Notches 
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Figure 4.11 Strain Response of D1 Due to Applied Load Before Notches 

 

 

Figure 4.12 Strain Response of D1 Due to Applied Load After Notches 
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 Test D1 similarly occurs within the interior of the slab, and is done so symmetrically with Test 

C1 in order to draw a comparison and determine repeatability of the testing procedure. The magnitude of 

the calculated total stresses varies approximately threefold from 190 psi and 660 psi. Similarly the strain 

measurements during loading and unloading do not equal. The principal strain magnitudes of Test D1 by 

loading are approximately 30-60% larger than those of test C1. This behavior is unexpected since the 

concrete material and underlying granular base support are not expected to vary enough to yield these 

results. It is also possible that the latitudinal strain gage was faulty since its behavior during testing was 

unexpected. Its stabilization over time is starkly lower than previous tests. Because it was the latitudinal 

strain gage, alternative latitudinal and longitudinal strain calculations cannot be made. A plot of the 

strain response is attached at the end of this chapter. 

 While the magnitude of the strain readings due to the applied loads varies unexpectedly between 

the two tests, the magnitude of the stress isolated is similarly negated suggesting that the 3x3 inch 

squared area has been adequately isolated at a depth of 1.2 inches.  

 

 

Table 4.9 Percent Change of Strain Response of D1 Before and After Notches 

Test C1 % Change 

Load (kips) 

E-W 

Strain 

(με) 

45
o
 

Strain 

(με) 

N-S 

Strain 

(με) 

0 0% 0% 0% 

10 -20% -22% -25% 

20 -21% -31% -17% 

40 -21% -29% -11% 

60 -22% -29% -9% 

80 -24% -27% -9% 

60 -27% -29% -8% 

40 -29% -31% -9% 

20 -35% -42% 0% 

10 -47% -36% 0% 

0 0% 0% 0% 
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Figure 4.13 Strain Response of D1 Due to Applied Load Before Notches 

 

 

Figure 4.14 Strain Response of D1 Due to Applied Load After Notches 
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4.6 Figures and Graphs 

 
Figure 4.15 Strain Response of A1 During Testing 

 

 
Figure 4.16 Strain Response of A2 During Testing 
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Figure 4.17 Strain Response of B1 During Testing 

 

 
Figure 4.18 Strain Response of C1 During Testing 
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Figure 4.19 Strain Response of D1 During Testing 

 

 
Figure 4.20 Overview of six strain rosettes attached to 15' squared slab 
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Figure 4.21 Strain rosette A1 with 3 inch spacing 

 

 
Figure 4.22 Strain rosette A2 with 4 inch spacing 
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Figure 4.23 Strain rosette B1 with 4 inch spacing 

 

 
Figure 4.24 Strain rosette B2 with 3 inch spacing 
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Figure 4.25 Strain rosette C1 with 4 inch spacing 

 

 
Figure 4.26 Strain rosette D1 with 3 inch spacing 
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Figure 4.27 Testing of A1, typical testing layout 

 

 
Figure 4.28 Wheel loads positioned along center-edge for test C1 
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Figure 4.29 Wheel loads positioned along opposite center-edge for test D1 (2nd axle used) 

 

 
Figure 4.30 Strain rosette A1 after testing 
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Figure 4.31 Strain rosette A2 after testing 

 

 
Figure 4.32 Strain rosette B1 after testing 
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Figure 4.33 Strain rosette C1 after testing 

 

 
Figure 4.34 Strain rosette D1 after testing 
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Figure 4.35 Cardboard guides used to protect gages during saw passes 

 

 
Figure 4.36 Lowering the saw blade at one end of the guide line 
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Figure 4.37 Center of saw blade advanced 10 inches forward to the end of the guide line 

 

 
Figure 4.38 Revised notching geometry for test B1. Note the battery powered circular saw in use. 
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Figure 4.39 Wheel loads positioned at the corner-edge for test B1 

 

Figure 4.40 Depiction of direction of calculated maximum principal stress 
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CHAPTER 5: RESIDUAL STRESS TESTING ON MISCELLANEOUS CONCRETE 

5.1 Introduction 

 Additional field testing was carried out on miscellaneous concrete in varying conditions 

in an effort to ascertain a larger database of information. Under supervision of the author, testing 

was carried out over the summer of 2010 by Gustavo Gonzales-Justo, a visiting student from La 

Universidad de Málaga in Spain. This testing identified concrete used in typical locations such 

as pedestrian walkways and airport airfields. The notch spacing varied across tests from 3 inches, 

4 inches and 5 inches. Varying saw cut depths were made and the amount of relieved strain was 

observed. This testing by a second individual was also important in fine-tuning a testing 

procedure that can be used by persons unfamiliar with this testing method. 

5.2 Results for Additional Testing of ATREL and NSEL Concrete 

 Additional testing of available slabs at ATREL was performed where the notch 

geometries were varied. However, unlike previous active testing – that is testing which 

incorporated an applied load – only passive testing was performed. This passive testing is merely 

the observance of the relief of strain for deepening saw cuts. Testing is complete when the 

change in stabilized strain between two cutting sequences varied less than 1 με from its previous 

stabilized magnitude. 

 A concrete walkway between two buildings on the UIUC campus was identified as being 

available for testing, as well. This concrete walkway was jointed into 10 foot x 7 foot segments, 

many of which were free from surface damage. Each slab was immediately adjacent to the 

building leading to potentially high constraining stresses, however. Thus this site could lead to 

potentially interesting results. 

A variety of notching geometries was performed at these two locations and their results 

are summarized in the table below. These 8 tests were performed across three slabs and their 

locations are depicted in Figure 5.1. While each test was performed independent of the others, it 

was decided that Test NSEL #6 would re-test the previously tested strain rosette at Test NSEL #5 

by deepening the cut to a depth of 2.0 inches. Theoretically, this calculated residual stress is 

thusly in addition to the previously quantified stress found in NSEL #5. However, the 

superposition of this result is an approximation since daily temperatures and moisture conditions 

can induce moderate alterations to the stress state of concrete.  
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Table 5.1 Residual stress calculations for numerous tests with varying notch geometries 

Date Location ID Notch 

Spacing 

(in) 

Notch 

Depth 

(in) 

E-W 

Strain 

(με) 

45o 

Strain 

(με) 

N-S 

Strain 

(με) 

Max 

Stress 

(psi) 

Min 

Stress 

(psi) 

Residual 

Stress 

(psi) 

20100731 NSEL #1 5 0.5 30 39 28 171.4 101.5 171 

20100803 NSEL #2 5 1.0 8 42 21 166.5 -30.1 167 

20100803 NSEL #3 5 1.0 -1 6 -1 19.6 -29.1 -29 

20100804 NSEL #4 5 1.1 -7 0 -8 -9.1 -61.4 -61 

20100804 NSEL #5 5 1.1 -1 -4 -13 -9.6 -56.3 -56 

20100805 NSEL #6 5 2.2 -10 -11 -9 -39.2 -50.2 -50 

20100806 NSEL #7 3 2.1 5 3 -4 20.3 -15.6 20 

20100807 NSEL #8 3 2.2 -7 -14 -13 -29.7 -64.5 -64 

20100816 ATREL #1 4 1.9 -25 -1 15 47.4 -94.5 -94 

20100816 ATREL #2 4 1.8 -17 0 11 35.7 -63.9 -64 

 

 The corresponding graphs of the strain development are included at the end of this 

chapter. It is interesting to note the unclear variability for tests conducted with a notch spacing of 

5 inches. These tests, while moderately successful in identifying a stabilized strain value, do not 

offer confidence in having identified the residual stress. This is because the strain magnitudes 

tend to show continuous drifting and require longer times to stabilize. This is likely due to the 

need of the saw cut heat to dissipate through a larger volume of isolated material.  

Additionally, it is expected that deeper notches are needed in order to fully alleviate the 

stresses in a larger-sized isolated square based on experimental observations of a notch depth-to-

spacing ratio of 0.40. However, the increasing size of the square material also suggests that the 

relieved stress is a very local measurement of its underlying concrete. An alternate experiment 

making use of larger-sized strain gages may reveal altered results, but this is not a desirable 

option as increasing the notch spacing necessitates deepening the saw cuts.  

5.3 Results for Rantoul General Airport Test 

 A testing opportunity was made available at the Rantoul General Airport on a 

decommissioned taxiway. The plain concrete slab measured 40 feet by 12.5 feet and was situated 

in the interior of a taxiway that had been inoperable for a number of years. The surface of the 
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concrete was largely undamaged, yet was roughly grooved and weathered. Severe data 

fluctuations during testing hindered an appropriate analysis for this slab; however, lessons were 

learned in order to proceed with future field testing. 

 Firstly, heating due to direct sunlight will hinder results in two ways. Heating of concrete 

will cause thermal expansion while heating of the strain gages themselves will alter their 

resistivity and further affect the strain readings. Secondly, appropriate equipment must be used 

such that the testing procedure is continuous. Results from this test were incomplete since the 

fourth cut was unable to be complete due to a drained battery in the hand-held circular saw. 

However, the availability of strain gages normal and perpendicular to the available cuts allowed 

for an approximation of the residual stress in the longitudinal and latitudinal directions. Either 

interpretation, however, could not be made due to the extensive fluctuation in the strain gage 

measurements as evident in Figure 5.12.  

5.4 Results for O’Hare Airport Fuel Depot Test 

 An instrumented recycled aggregate concrete slab at the Chicago O’Hare airport was 

made available to be tested. This slab had been cast 2 months prior and was not expected to have 

suffered appreciable stress development. However, cracking had formed along an adjacent curb 

in a geometry suggesting that the slab had expanded beyond its designed limits and was pulling 

the concrete curb along with it. 

 The center of the 15 foot by 9 foot concrete slab was identified as a suitable area to test. 

Previous knowledge of the slab provided that there was no underlying steel reinforcement 

beneath the surface of the concrete which would have altered expected results. The site of testing 

also necessitated supervisory personnel, so it was desired that testing be performed as quickly as 

possible. As such, quick-setting epoxies were employed in order to rapidly adhere the strain 

rosette onto the concrete surface. Additionally, it was decided that a smaller notch-spacing of 3 

inches would be suitable considering its ability to release heat more rapidly due to its smaller 

volume. Lastly, modest wind and shade barriers were erected in order to diminish strain data 

fluctuations as they were observed in previous testing at the Rantoul General Airport.  

 Unlike the previous test conducted at the Rantoul General Airport, the results for this test 

were viable and a calculated residual stress was made other than for a damaged strain gage 

angled 45 degrees from the latitudinal and longitudinal strain gages. Assuming a stiffness of 

4,000 ksi in the material, the stabilized strain readings suggest a residual stress of 67 psi in 



 

63 
 

compression when saw cuts at a depth of 1.2 inches are made. Figure 5.13 shows that the use of 

modest wind and shade barriers (comprised of buckets and cardboard) can adequately maintain 

the integrity of the test results. These barriers were erected at the onset of surface preparation in 

order to ensure that no active cooling of the concrete material would occur during testing.  

5.5 Figures and Graphs 

 
Figure 5.1 Location of 8 NSEL testing locations along concrete walkway 

 

 

 
Figure 5.2 Strain development of NSEL #1 throughout testing 
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Figure 5.3 Strain development of NSEL #2 throughout testing 

 

 
Figure 5.4 Strain development of NSEL #3 throughout testing 
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Figure 5.5 Strain development of NSEL#4 throughout testing 

 

 
Figure 5.6 Strain development of NSEL #5 throughout testing 
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Figure 5.7 Strain development of NSEL #6 throughout testing 

 

 
Figure 5.8 Strain development of NSEL #7 throughout testing 
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Figure 5.9 Strain development of NSEL #8 throughout testing 

 

 
Figure 5.10 Strain development of ATREL #1 throughout testing 
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Figure 5.11 Strain development of ATREL #2 throughout testing 

 

 
Figure 5.12 Erratic strain development throughout Rantoul Airport Testing 
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Figure 5.13 Strain development for ORD Fuel Depot test 

 

 
Figure 5.14 View of NSEL #1 
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Figure 5.15 View of NSEL #2 (below) and NSEL #3 (above) 

 

 
Figure 5.16 View of NSEL #2 (left) and NSEL #3 (right) 
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Figure 5.17 View of NSEL #4 (left) 

 

 
Figure 5.18 View of NSEL #5 (with strain gages) 
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Figure 5.19 View of NSEL #6 (lower left) 

 

 
Figure 5.20 View of NSEL #7 
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Figure 5.21 View NSEL #8 before testing (lower center) 

 

 
Figure 5.22 View of Rantoul Airport slab to be tested 
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Figure 5.23 Testing at ORD Fuel Depot with bucket providing shade to testing location. 
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CHAPTER 6: FINITE ELEMENT MODELING 

6.1 Introduction 

 The simple geometry pursued during testing lent itself to eventual FEM analysis. Two 

major analyses were performed: one for the slabs tested at ATREL with an applied load and 

another for the multiple tests performed at the NAPTF. The results from these analyses could be 

used to compare the experimental results and the theoretical results to provide credence for the 

testing procedure as a viable testing method. Patran 2008 was used to construct the slab models 

while ABAQUS was used as a processor.  

6.2 Modeling of ATREL Slabs 

 The slabs at ATREL were modeled in Patran as Hex8 elements with 0.5 inch element 

lengths. A total static load of 20.28 kips was applied as discrete point loads of 30 lbs across 676 

nodes at the center edge of the modeled slab in a geometry in accordance with past testing. The 

stiffness of the concrete material was estimated at 4.5x10
6
 psi with a Poisson’s ratio of 0.15 and 

a density of 0.0833 pci. The Winkler foundation was modeled as grounded non-linear springs 

with a stiffness of 10.7 lb/in in compression and 0 lb/in in tension. This support allows for the 

modeled slab to undergo vertical lift-off as is typical in most pavement systems. 

The width of the notches was established at 0.15 inches and used to construct the isolated 

square area of material. This square area was modeled in two locations: centered 2 feet from the 

edge of the slab with the load and 3 feet from the edge of the slab with the load. At either of 

these locations, four notch geometries were modeled: 2 inch spacing, 3 inch spacing, 4 inch 

spacing and 5 inch spacing. Each of these notch geometries was deepened in its material in 0.5 

inch increments to an ultimate depth of 2.0 inches (or 2.5 inches in the case of the isolated square 

material with notches spaced 5.0 inches apart).  

 Elements contained within the surface of the isolated square area were flagged in Patran 

and later extracted from the ABAQUS processed results file. These elements contained 

calculated stress and stain values in both the longitudinal and latitudinal directions. These 

modeled results could be graphed in order to ascertain behavior for deepening saw cuts around 

material. Their graphical results are depicted at the end of this chapter. 

 Figures 6.3 through 6.8 depict the magnitudes of the Von Mises stresses in the modeled 

ATREL slabs where the strain rosette is located 2 feet from the midline edge and the isolated 

square area measures 3x3 inches. The stress of each model element is plotted against the notch 
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depth-to-spacing ratio in the ensuing graphs. Larger sized isolated squares like those with 

dimensions of 5 inches by 5 inches contain 100 elements along the top surface since the element 

lengths are 0.5 inches long. Isolated squares of 4 inches by 4 inches contain 64 elements, 3 

inches by 3 inches contain 36 elements and 2 inch by 2 inch contains 16 elements.  

The stresses of these model elements are defined in two directions: S11 and S33. These 

directions coincide with the latitudinal and longitudinal stresses, respectively, during testing. 

Their magnitudes can vary by differing the stiffness of either the subgrade support or the 

stiffness of the material used as inputs in the analysis. The stress magnitude for each model 

element is plotted against the notch depth-to-spacing geometry. A third-order polynomial best-fit 

line is calculated for these modeled data points. 

Superimposing the experimental stress values obtained from test results and comparing 

them with the best-fit lines of modeled stresses results in Figures 6.9 and 6.10. While the 

experimental stress values do not necessarily coincide with the modeled curves, they do trend in 

the same direction. This suggests that the underlying modeled Winkler foundation is too elastic 

and allows for excess bending and flexure. However, an iterative process can be undertaken to 

modify the modeled stress values to better coincide with the experimental stress values. 

Proceeding with this process can lead to the back-calculation of the stiffness of the subgrade 

support. This effort is unnecessary, however, since Figures 6.11 through 6.14 reveal interesting 

behavior. 

While the Von Mises stress magnitudes differ significantly between the strain rosettes 

located 2 feet from the slab edge and 3 feet from the slab edge, the percent of applied stress 

relieved is remarkably similar. This suggests that regardless of the stress state of a concrete 

pavement or structure, the magnitude of stress can be assuredly relieved if an appropriate saw cut 

depth is reached. As a consequence, calculations for the residual stress are not affected if the 

stiffness of the underlying subgrade is unknown. 

Based on this observation, an additional model was created where the notch spacing was 

2 inches. While no experimental test was performed with this geometry, it allowed for the 

formation of Figure 6.18. This graph was devised by extracting from each notch spacing graph 

the minimum notch depth-to-spacing ratio required to relieve 100% of the applied stress. Thusly, 

a seemingly non-linear relationship was devised which suggests the minimum notch depth-to-
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spacing ratio given a notch spacing. The graph also depicts the minimum depth required to 

achieve that same ratio. 

It is interesting to note however that these minimum notch depth-to-spacing ratios do not 

coincide with the experimentally determined notch depth-to-spacing ratio of 0.40. Figure 6.17 

shows the longitudinal and latitudinal calculated stresses from an applied load from strain 

rosettes spaced either 2 feet or 3 feet from the slab edge. A third-order polynomial fit function 

reveals that the minimum notch depth-to-spacing ratio is approximately 0.33 to 0.36. 

6.3 Modeling of NAPTF Slab 

 An FEM analysis was created in PATRAN and processed through ABAQUS to 

characterize the behavior of the loaded concrete slab located at the NAPTF. In Figure 6.19, two 

wheel loads, demonstrated by P, are positioned along the top-left edge. The 40,000 pound-force 

individual wheel loads are distributed along an approximate area of 170 in
2
 inducing an 

approximate strain magnitude of 77x10
-6

 in the EW-direction (Z-axis) and -10.8x10
-6

 in the NS-

direction (X axis) in the vicinity of the notch location. This differs from the experimental strain 

observations significantly (magnitudes upwards of 350% and 35%, respectively).  

The FEM analysis was moderately fine-tuned; it uses an approximate E-modulus of 4,500 

ksi, a density of 144 pcf and a Winkler spring foundation with nodal grounded spring supports 

spaced 1.0 in apart with a stiffness coefficient of 10.7 lb/in acting solely in compression. An 

iterative process was performed with the spring stiffness in order to achieve a result that is 

similar in magnitude to the experimental results. Stiffening the Winkler foundation support can 

decrease the magnitude of the modeled strain magnitudes, but doing so would veer away from 

the experimental results. The more important observation will be the percentage of the nominal 

stress alleviated when saw cuts are included. 

 It should be noted that the modeled strain value (Z-axis) is in the same direction of the 

strain channel that seemingly recorded permanent creep-like deformations (see Figure 4.3). If the 

latter portion of Figure 4.3 were isolated, then the modeled strain value deviates from the 

experimental strain value by approximately 94%, instead. 

 A similar FEM analysis was performed for a concrete slab with wheel loads positioned 

about the center-edge of the concrete slab. The strain magnitudes in the EW-direction (Z-axis) 

and NS-direction (X-axis) were 44.4x10
-6

 and -34.8x10
-6

, respectively. This differed from the 

experimental results by approximately 1% and 440%, respectively, in Test C1 and 120% and 
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420%, respectively, in Test D1. Similarly, an iterative process needs to be considered in order to 

more closely match the experimental results with the theoretical results. However, the 

discrepancy between the experimental, symmetrical tests of C1 and D1 suggests that an exact 

model will be unable to capture subtle variations in the material and the support. The same 

Winkler support and material properties were used. 

6.4 Figures and Graphs 

 

Figure 6.1 Isometric view of 6 foot x 6 foot x 6in modeled slab with spring supports and distributed loading 
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Figure 6.2a Von Mises stress distribution of slab 

with isolated 3x3 inch squared area located 2 feet 

from the slab edge cut to 0.0 inch depth. 

 

Figure 6.2b Von Mises stress distribution of slab 

with isolated 3x3 inch squared area located 2 feet 

from the slab edge cut to 0.5 inch depth. 

 

Figure 6.2c Von Mises stress distribution of slab 

with isolated 3x3 inch squared area located 2 feet 

from the slab edge cut to 1.0 inch depth. 

 

Figure 6.2d Von Mises stress distribution of slab 

with isolated 3x3 inch squared area located 2 feet 

from the slab edge cut to 1.5 inch depth. 

 

Figure 6.2e Von Mises stress distribution of slab 

with isolated 3x3 inch squared area located 2 feet 

from the slab edge cut to 2.0 inch depth. 

 

Figure 6.2f Von Mises stress distribution of slab 

with isolated 3x3 inch squared area located 2 feet 

from the slab edge cut to 2.5 inch depth. 
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Figure 6.3 Longitudinal and latitudinal Von Mises stress magnitudes for isolated square 2 feet from edge of 

slab with notch spacing of 2 inches 

 

 
Figure 6.4 Longitudinal and latitudinal Von Mises stress magnitudes for isolated square 2 feet from edge of 

slab with notch spacing of 3 inches 
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Figure 6.5 Longitudinal and latitudinal Von Mises stress magnitudes for isolated square 2 feet from edge of 

slab with notch spacing of 4 inches 

 

 
Figure 6.6 Longitudinal and latitudinal Von Mises stress magnitudes for isolated square 2 feet from edge of 

slab with notch spacing of 5 inches 
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Figure 6.7 Longitudinal and latitudinal Von Mises stress magnitudes for isolated square 3 feet from edge of 

slab with notch spacing of 3 inches 

 

 
Figure 6.8 Longitudinal and latitudinal Von Mises stress magnitudes for isolated square 3 feet from edge of 

slab with notch spacing of43 inches 
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Figure 6.9 Comparison of experimental calculated stresses with modeled trend line for isolated square 2 feet 

from slab edge and with notch spacings of 3 inches 

 

 
Figure 6.10 Comparison of experimental calculated stresses with modeled trend line for isolated square 3 feet 

from slab edge and with notch spacings of 3 inches 
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Figure 6.11 Percent of modeled applied stress relieved by increasing notch depth-to-spacing ratio 

 

 
Figure 6.12 Percent of modeled applied stress relieved by increasing notch depth-to-spacing ratio 
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Figure 6.13 Percent of modeled applied stress relieved by increasing notch depth-to-spacing ratio 

 

 
Figure 6.14 Percent of modeled applied stress relieved by increasing notch depth-to-spacing ratio 
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Figure 6.15 Percent of modeled applied stress relieved by increasing notch depth-to-spacing ratio 

 

 
Figure 6.16 Percent of modeled applied stress relieved by increasing notch depth-to-spacing ratio 
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Figure 6.17 Percent of experimental applied stress relieved by increasing notch depth-to-spacing ratio 

 

 
Figure 6.18 Minimum required notch depth-to-spacing ratio or notch depth to relieve 100% of applied stress 
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Figure 6.19 Isometric view of 15 foot x 15 foot x 12in modeled slab with spring supports and distributed 

loading 

 

 
Figure 6.20 Distribution of Von Mises stresses in FEA Model of 15ft x 15ft x 12in Slab atop Winkler spring 

foundation with wheel loads positioned at center-edge-corner 
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Figure 6.21 Distribution of Von Mises stresses in FEA Model of 15ft x 15ft x 12in Slab atop Winkler spring 

foundation with wheel loads positioned at center-edge  

Approximate 
Location of Notch 

P 
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CHAPTER 7: DISCUSSION AND CONCLUSIONS 

7.1 Introduction 

 The results obtained from experimental testing as well as those attained from FEA 

modeling offer insight into the validity of this testing procedure as a viable method for 

measuring the residual stress in plain concrete. Several observations and remarks are noted in the 

following sections for the experimental tests performed on the discarded slabs used for proof-of-

concept testing, in-situ slabs at ATREL and the NAPTF slab. 

7.2 Remarks for Discarded Slabs 

 The discarded slabs tested at ATREL were tested in an indoor, controlled environment. 

The results from these four experiments suggest that the testing procedure can be appropriately 

considered in larger-sized concrete slabs as well as beams.  What these results more importantly 

demonstrate is that appreciable material stresses are present in concrete slabs without an applied 

load.  

 It is also important to realize that the geometry of the saw cuts can be modified, if 

needed. Their squared shape was maintained in order to calculate both principal stresses as well 

as stresses in the latitudinal and longitudinal directions. However, if the latter is not desired, then 

triangular or pentagonal cuts may be made. It is important to emphasize again that these cuts can 

be made granted that their application is a dry-cut. Previous testing using core-rings and cooling 

water demonstrate that the addition of water generates eventual drifting of the strain readings. 

This is likely due to the absorptive nature of the concrete material as it expands and relays that 

expansion through altered strain results. This problem occurs, naturally, because the cooling 

water seemingly introduces a moisture gradient into the tested material. 

 It is also important to realize that closely spaced notching can better alleviate material 

stresses than distantly spaced notching. This is potentially due to the ineffectiveness of distant 

saw cuts to alter the stress state of the immediate bulk material that the strain rosette directly 

measures. As such, a prescriptive methodology can be pursued for alternative notching 

geometries wherein an initial notch depth-to-spacing ratio of 0.40 is created and, after strain 

stabilization is achieved, can be followed by deepening the saw cuts by an additional 0.5 inches. 

If the change in stabilized strain between this second set of cuts differs from the first set of cuts, 

it is indicative that the full isolation from residual stresses has not been achieved. This 

necessitates additional cutting of the material. However, if the difference in stabilized strains is 
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within 5% of the previous set of stabilized strains, then the results demonstrate that the residual 

stresses have been appropriately identified.  

7.3 Remarks for ATREL Slabs 

 The in-situ slabs tested at ATREL in an outdoor environment were tested with careful 

consideration to their environment which must be considered in any future application of this 

test.  Their testing was performed during the early summer months were regular thunderstorms 

and high humidity rolled through the area. The addition of moisture and heat definitely affected 

the results of the pavement slabs in a manner to produce biased results. However, these results 

must be considered with respect to two items. 

 The first item to consider is that these slabs were tested in environments that typical 

concrete pavements are subjected to. As such, inducement of stresses due to thermal and 

moisture gradients are expected and validly affect the final strain measurements. However, great 

care must be taken, as it was during these tests, to ensure that either gradient is not actively 

affecting the test results during testing. In order to ensure this, the concrete pavement must be 

sufficiently dry so that active drying is not actively occurring in the span of the approximately 90 

minute testing. Additionally, it is important that shading of the immediate testing site be 

considered. The shading of the immediate vicinity to be tested should be done at least an hour 

before testing so that it may cool from its temperature as a result of direct sunlight, but maintain 

an equilibrium temperature during testing.  

 While shading is not typical in most concrete pavements, the subjection of direct sunlight 

onto the strain gages will significantly alter their strain results. It is important, and potentially the 

driving goal, to measure the stresses induced by thermal effects. In order to do so, this must be 

done so that the ambient temperature during testing is stable so that an appreciable measurement 

can be made. If necessary, a secondary test can be performed such that the stresses can be 

determined at an altered ambient temperature environment. 

7.4 Remarks for NAPTF Slab 

The notch testing procedure for isolating the stresses continues to show promise as a 

viable technique for measuring the stress in a plain concrete pavement. However, lessons were 

learned in these five tests conducted at the NAPTF.  

Test A2 reveals the potential limits in which this test can be performed on high-strength 

concretes. Excessive heating caused by high-strength materials suggests that due to the 
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equipment used, there may be a limitation of the test to measure concretes of a high stiffness or 

strength. One immediate remedy that can be performed in order to protect the saw blade from 

premature damage is to perform the notching in sequences such that the material being removed 

by notching is a fraction of the total material to be removed.  

Test B1 also importantly demonstrates that the geometries of the notches cannot be 

ignored; all previous testing has been conducted along the interior of concrete slabs while test B1 

has been the first to be performed along a free edge. In some instances, such as loss of subgrade 

support, the stresses at these edges will be of highest concern and it may be of interest to 

measure their total stress. However, the notch depth-to-spacing ratio of 0.40 shows to be an 

inadequate geometric configuration to fully isolate the stress observed by the strain rosette (as 

demonstrated in Figure 4). This brings to light that this testing procedure cannot be applied 

blindly to any plain concrete pavement without careful consideration for that slab’s geometry 

and location of testing.  

Tests C1 and D1 have the most interesting results since they were designed to be 

symmetric and identical testing situations. While the difference in the measured stress can be 

expected, the difference in response due to an applied is not. While there can be small 

discrepancies of the E-modulus and subgrade support resulting in dissimilar results, it is unclear 

whether these factors can range widely enough to produce the strain responses as depicted in 

these tests. However, these two tests, along with test A1, demonstrate that there is a correlation 

between the notch depth-to-spacing ratio and the isolation of the applied loads (to an extent) and 

the stresses can be achieved. 

There remain at the NAPTF two strain rosettes, B1 and B2, which can be tested further. 

Strain rosette B1 proved to have been notched at an insufficient depth to fully isolate the stresses. 

To more fully comprehend its behavior, a follow-up test can be performed wherein the slab is 

similarly loaded along its corner edge and the strain response observed. Subsequently, the notch 

depths can be cut an additional 0.5 inches in depth resulting in a notch depth-to-spacing of 

approximately 0.53. The loading sequence can be applied thereafter and its observations noted. If 

the response of the strain rosette reverses direction (in this case, if a compressive, pinching effect 

is observed) it can be deduced that the stresses have been nearly fully isolated. Otherwise, if the 

change in strain from the previous testing is markedly similar before testing, it can be concluded 
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that the stresses had been already isolated beforehand. This however, is likely not the case for the 

already tested B1.  

Test B2 is wholly available to be tested in any configuration as desired, although it would 

be interesting if another symmetrical case (say a fictitious strain rosette, B3, affixed 10 feet 

eastwards and 33 inches southward from the Northwest corner) were also performed. In this 

manner, another testing sequence similar to tests C1 and D1 can be performed to better 

understand the behavior of the slab and the results depicted in C1 and D1. 

Suggestions from several persons who are closely following this project have voiced their 

favorability for limiting the minimum required depth of the notch to isolate stresses. Future 

testing should be planned which incorporate gages of smaller length so that a smaller square area 

can be isolated for. As such the notch depth-to-spacing ratio will be tested against these smaller 

dimensions and can potentially reduce the minimum required depth to successfully isolate the 

stresses from the strain rosette. However, caution should be undertaken since concrete is a 

material heterogeneous material. Using smaller length strain gages can result in erroneous strain 

data if it is affixed immediately above an unseen aggregate. It is recommended that an 

appropriate sized strain gage be used to better depict the behavior of the composite material.  

7.5 Conclusions 

 While the bulk of testing for this thesis was performed on pavements, it is strongly 

believed that this testing procedure is generally applicable to concrete structures. This is because 

of the nature of the test and the observed FEM results. Despite the stress state or loading of a 

concrete structure, the percent of stress relieved at an internal location of the concrete surface 

should be remarkably similar to those found in these results. The determination of the total stress 

in the concrete structure can be compared with its computed stress and a residual stress can be 

found. 

 It is important to note the limitations of this proposed testing procedure once more. Its 

direct measurement is that of surface strains which can be computed into surface stresses. While 

induced stresses from applied loads may act in classical bending, shear or axial manners, the 

residual stresses may act in a non-linear fashion. This, again, is due to the nature of the 

development of the stresses where they are a result of differential drying and improper 

compaction in the plastic state of the freshly cast concrete. 
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 Moreover, a given residual stress test result is an indication of the stress state at the time 

of testing, and the state of residual stress in known to change with time. This is because the 

measurement captures the stresses induced by non-changing thermal and moisture gradients at 

the time of testing. These stresses freely change over time as concrete undergoes daily thermal 

cycling and seasonal wetting and drying. Thus, it is prudent to consider repeated testing over 

time in order to better characterize the true effect of external gradients acting upon the plain 

concrete structure and to better understand its residual stress state. 
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APPENDIX: DRAFT ASTM PROCEDURE DOCUMENT 

Introduction 

 This test method directly measures the total stresses at the surface of a plain concrete 

pavement and indirectly measures the residual stresses. A rectangular strain rosette is affixed 

atop the surface and the change in strain is observed when four symmetrical, quadrilateral cuts 

are sawn around it. The residual stress is subsequently calculated using a series of equations. 

 

1. Scope 

1.1 Residual Stress Determination 

1.1.1 This test method measures residual stress at a point on a concrete surface.  

The method involves mounting strain gages and saw-cutting around them to 

relieve the stress.  The stresses may remain approximately constant with depth 

(“uniform” stresses) but are more likely to vary with depth (“non-uniform” 

stresses). The depth of the notches cannot exceed the thickness of the concrete 

material.  Uniform and non-uniform stress measurements are specified for 

these thick concrete materials. 

1.2 Stress Measurement Range 

1.2.1 This test method identifies in-plane stresses at the surface of a concrete 

material. It is a localized measurement that is dependent upon the temperature, 

moisture, location and time of day during testing. As such, the result is a 

measure of the total stresses on a pavement surface and cannot alone quantify 

the stresses due to material effects (residual stresses) or applied loads. 

However, if the environmental conditions are controlled appropriately, then a 

clear inference can be drawn for the residual stress. 

1.3 Damage and Repair 

1.3.1 This test method requires partial-depth notches to be cut in the concrete. The 

damage is local and should not be detrimental to the load carried by the 

concrete structure (assuming a sufficiently large thickness). Precautions must 

be taken to ensure that the structural capacity of the concrete is not 

compromised. The notches can be filled with concrete repair material after the 

testing procedure in order to restore its appearance to a satisfactory condition. 

2. Referenced Documents 

2.1 ASTM Standards 

C469 Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in 

Compression 

C873 Standard Test Method for Compressive Strength of Concrete Cylinders Cast in Place in 

Cylindrical Molds 

E837 Standard Test Method for Determining Residual Stresses by the Hold-Drilling Strain-Gage 

Method 
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3. Materials Required 

3.1 Equipment 

3.1.1 Surface strain gages of sufficient length for concrete (approximately 20 mm in 

length or at least sufficiently larger than the largest aggregate contained within 

the concrete). It is preferable to use (at minimum) 3-wire temperature 

compensating gages for exact measurements. 

3.1.2 Suitable epoxies and polyurethanes are needed to secure the surface strain 

gages in place. It is preferable to use quick-curing epoxies so that testing times 

can be shortened.  

3.1.3 Data-logging device suitable for up to three strain channel readings and 

capable of displaying the real-time strain value. It is preferable if the data-

logger can record the data at a 1 Hz frequency and it is desired to have a 

resolution of ±1x10
-6

. 

3.1.4 Circular saw capable of notching up to desired depth and fitted with suitable 

masonry blade (diamond-edge blade is preferable). 

4. Summary of Test Method 

4.1 Concrete Pavement Surface 

4.1.1 Identify a point of interest on the surface of the concrete.  The surface should 

be a smooth, flat area appropriate for testing based on pavement conditions 

and availability of pavement depth for saw notches to be made. Locations near 

edges, joints, large cracks or other irregularities should be avoided as the 

stresses in these areas may not be representative of the pavement as a whole. 

The concrete should be sufficiently dry in order to mitigate volumetric 

changes due to moisture gradients. The immediate area of testing should be 

adequately shaded from direct sunlight before the start of testing so that the 

strain readings are not affected by either volumetric changes in the concrete or 

by heating of the strain gage itself. The temperature of this area of concrete 

should be stable before the start of testing (neither heating nor cooling due to 

sunlight or shade). 

4.2 Strain Gage Rosette 

4.2.1 A strain gage rosette with three or more elements should be securely adhered 

to the prepared surface of the concrete pavement nearest to the center of the 

area to be isolated. They should be affixed per the strain gage manufacturer’s 

recommendations. A suggested orientation for the strain gages is shown in 

Figure A.1. 
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Figure A.1 Rectangular Strain Rosette 

 

4.3 Circular Masonry Saw 

4.3.1 An adjustable, circular saw fitted with a diamond-edge blade is used to notch 

around the strain rosette. The residual stresses in the material are effectively 

isolated when the depth of the notch is in accordance with the geometric 

spacing outlined in Table A.1. Heat is generated when cutting the notches, so 

a cooling period is required before noting final strain gage readings. Cooling 

water cannot be used because wetting the concrete will affect the strain 

reading significantly. Thus a circular saw that can dry-cut is necessary. 

4.4 Residual Stress Calculation 

4.4.1 The residual stresses originally existing in the concrete material are calculated 

from the change in strain when the saw notches are cut. These raw 

measurements are transformed into principal strains and stresses using the bi-

axial form of Hooke’s Law, the elastic modulus of the concrete and Poisson’s 

ratio. The residual stresses in a concrete material can be either uniform or non-

uniform in nature with respect to depth. 

5. Significance and Use 

5.1 Summary 

5.1.1 Residual stresses are present in almost all materials. Residual stress in 

concrete can arise from temperature gradients, moisture gradients, or any 

other volume change, particularly when the concrete material is structurally 

restrained.  In plain concrete pavements, the presence of residual stress can 

reduce the load capacity or cause premature failures such as faulting or blow-

outs.  

6. Concrete Surface Preparation 

6.1 Requirements 

6.1.1 The concrete surface should be prepared in accordance to the manufacturer’s 

recommendations to properly affix surface strain gages. This process usually 

comprises the hand-sanding of efflorescence and other debris from the surface 

followed by an application of a thin epoxy layer. Grinding is not 
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recommended as this will cause an excess amount of damage along the 

surface of the concrete. 

7. Strain Gages and Instrumentation 

7.1 Rosette Geometry 

7.1.1 Selected strain gages and strain rosettes should be of an appropriate size for 

measuring strain in concrete (usually on the order of magnitude of 20 mm to 

30 mm in length). This size varies based on the maximum sized aggregate 

contained in the concrete. The gages should be affixed in each of three 

directions: (1) a reference direction, (2) 45
o
 from the reference direction and 

(3) perpendicular to the reference direction (refer to Figure 1). Because of the 

heat generated during a saw cut, the strain measurement will increase and 

must be monitored during testing in order to determine when the specimen has 

sufficiently cooled and the reading has stabilized. It is also important to note 

whether the measured surface temperature of the concrete exceeds the 

operable temperature of the strain gage during testing as this invalidates the 

test results. Depending on the geometry of the cuts and other factors that 

influence cooling rate, this stabilization period may be longer than 40 minutes. 

7.1.2 The instrumentation for the recording of strains shall have a strain resolution 

of ±1x10
-6

 while the stability and repeatability of the measurement shall be at 

least ±1x10
-6

. It is strongly recommended that the lead wires be as short in 

length as practical and a three-wire temperature-compensating circuit be 

employed. 

8. Procedure 

8.1 Notching Equipment and Use 

8.1.1 A machine capable of sawing notches in a concrete surface without causing 

extensive damage to its surroundings, usually a circular saw, is required. The 

depth of the saw must be adjustable so that the desired depth of cut can be 

readily achieved. Guides that can ensure straight and accurately sawn notches 

are strongly recommended if the underside of the circular saw does not pass 

over the strain gage rosette. However, if the underside of the circular saw’s 

guard passes over the strain rosette, guides must be used to protect the strain 

rosette and ensure uninterrupted data collection and undamaged strain gages 

as shown in Figure A.2. 
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Figure A.2 Temporary guide protects the gages from the abrasive underside of the circular 

saw 

 

8.1.2 The circular saw blade must be suitable for dry cuts because the use of cooling 

water is prohibited. A diamond edge blade is encouraged so that the notch can 

be sawn in a single pass. Multiple passes, if necessary, can be made to reach 

the desired depth, but note that the strain stabilization time will be lengthened 

as additional heat is introduced into the material. 

8.1.3 An infrared thermometer, or other appropriate tool, should be employed to 

measure the temperature of the concrete surface during testing. These 

temperature values should be recorded in the Data Sheet along with the strain 

measurements. 

8.2 Load Application (Optional) 

8.2.1 A load may be applied and removed in the vicinity of the strain rosette to 

induce an amplified strain response. This response can be used to ensure 

whether the location of the strain rosette has been appropriately isolated from 

induced stresses. The magnitude of the required load varies and should be 

considered thoughtfully as to ensure the continual operation of the structure. 

For plain concrete pavements, a load of approximately 18,000 lbf (an 

equivalent single-axle load) should be considered for a pavement thickness of 

8 inches or more. Depending on the environment of the testing procedure, one 

of two methods should be employed to ensure a reliable, safe procedure: 

8.2.1.1 The load can be applied throughout testing. Load the pavement in a 

controlled manner such that the response by the strain rosette is linear 

elastic. This can be achieved with loading rates of approximately less than 

1000 lbf per minute and at a distance from the strain rosette of several 

feet. Ensure that no other load is applied (such as a vehicle load or other 

heavy equipment) as this will alter the expected strain response if later 

modeled via FEM analysis. If the strain rosette response due to the applied 

load is immediate and stable, then proceed with the saw notching 

procedure as detailed in the following section. If the strain response due to 
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the applied load is unstable, consider removing the load and re-applying at 

a reduced rate or diminishing the magnitude of the load until a stable 

strain response is achieved. Once stabilized, proceed with the testing 

procedure as described in the following section. Before testing is 

concluded, remove the load and record the strain rosette response of the 

unloaded pavement. It is recommended that this load be once more applied 

and removed at the end of testing, as these strain values should 

demonstrate the isolation of the strain rosette. 

8.2.1.2 The load can be applied and removed before testing and re-applied after 

testing. If the testing environment hinders the safe notching procedure to 

be performed while the pavement is loaded, then the loading can be 

applied and removed before the notching procedure occurs. Before the 

termination of data recording, a second loading and unloading sequence 

should be performed. 

8.2.2 After saw cutting, the response of the strain rosette will be significantly 

reduced in magnitude from the response measured before saw cutting. The 

reduced response demonstrates that the strain rosette is properly isolated from 

the applied load. If the response after saw cutting is less than approximately 

15% of the original response for the same applied load, then the majority of 

the stresses related to the applied load has been relieved. Accordingly, the 

difference in strain readings without the applied load represents the total stress 

present in the slab prior to the saw cut. If the response after saw cutting is 

more than 15% of the original response for the same applied load, consider 

deepening the depth of the saw cut by another 0.5 inches in order to isolate the 

applied stresses. Alternatively if the strain response due to an applied load is 

reversed (e.g., tensile strains are transformed into compressive strains), then 

the applied stresses have been appropriately isolated and no further testing is 

required. 

8.3 Notching Procedure 

8.3.1 Identify a 2x2 inch squared area onto which the surface strain gages can be 

applied. This area should be free of irregularities and prepared in accordance 

with the strain gage manufacturer’s recommendation. This typically involves 

the sanding of efflorescence and other debris and the application of thin epoxy 

layers.  Secure the strain rosette in a manner to ensure viable and continuous 

data readings within this 2x2 in square area. The strain gages should be placed 

as near the center-mark of the square area as possible. However, the outer 

boundary of the strain gage in any direction should not violate the 2x2 in 

square area. 

8.3.2 Refer to Table A.1 to select a recommended Notch Separation distance. The 

distance selected should be drawn as a square that is symmetric with the 2x2 
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in square and that shares the same center-mark. The markings of the outer 

square should ensure a minimum ½ in separation of the strain gages from a 

notch at all times. If necessary, separate the lead wires to gain more flexibility 

in repositioning them out of the path of each saw pass. Extend the 4 edges of 

the outer square as necessary to produce lines of length 10 in resulting in 

geometry similar to a hash-mark, #, as shown in Figure A.3. 

 

 
Figure A.3 Dimensions of notches around strain rosette after saw cutting 

 

8.3.3 Ensure that the data-logger has been properly calibrated before testing. Begin 

strain measuring and recording. Allow for the excitation voltage to heat the 

strain gages for some time before beginning testing. These initial values are 

considered the “zero state” and serve as the point of reference for necessary 

calculations. 

8.3.4 If guides are being employed, calibrate the depth of the saw blade with respect 

to the height of the guide in order to ensure that the appropriate notch depth is 

attained. Refer to Table A.1 for the minimum design depth which must 

coincide with the designed notch spacing. The two guides should be placed so 

that one fully covers the strain rosette and the other provides the saw guards a 

flush surface along its path. Most circular saws are constructed in a manner 

where the weight of the motor lays to one side of the saw blade. It is 

preferable to orient the saw pass in a manner so that the weight of the circular 

saw rests atop the guide that is away from the strain rosette. 

8.3.5 When cutting, bring the circular saw to full speed and lower the center of the 

saw blade at one end of a 10 in line. When the circular saw guards are flush 

with the guides, proceed to move the saw forward along the line at an 

appropriate pace. Take precaution to not slide the guides against the strain 

rosette as this can potentially damage the gages and lead to erroneous results.  

When the center of the saw blade reaches the end of the 10 in line, safely lift 
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the circular saw up from the notch and thereafter switch the blade off. Per the 

saw blade manufacturer’s recommendation, allow time for the saw blade to 

cool before proceeding with the second cut, usually 2 minutes. If the saw 

blade overheats or the circular saw is overworked, it is possible to decrease 

the depth of the cut to an intermediary one. This modification should be noted 

in the final report. 

8.3.6 It is recommended that the second cut be made parallel to the first cut. It is 

also recommended that the direction of the cut be reversed as to prevent 

excess force from the circular saw from pressing on the strain rosette. Adjust 

the strain gage lead wires as necessary in order to protect them from damage 

and move the guides as necessary over the second 10 in line. Repeat the 

procedure for notching the 10 in line. After the saw blade cools, proceed with 

the third and fourth cuts in the same manner. Upon completing the fourth cut, 

measure the average depth of the notches and their parallel separation to 

include in the final report. Allow for the strain readings to stabilize before 

terminating the testing procedure. When the change in strain is less than  

1x10
-6

 in 10 minutes for all three gages, the strain has recovered sufficiently 

and data collection can end. 

 

Table A.1 

Notch Separation, in 3.0 3.5 4.0 

Recommended Minimum Notch Depth, in 1.2 1.4 1.6 

 

8.3.7 It may be necessary to conduct a second set of 4 cuts along the same notches 

in order to ensure that the total stresses have been adequately isolated at the 

location of the strain rosette. This can be determined either by evaluating 

whether the effect of the strain rosette by the optional induced load has been 

diminished to within 15% of its original magnitudes, if an increase in depth of 

the notch by another 0.5 in produces a relaxed strain response within 5% of 

the previous strain response or if the desired notch depth was reached. If any 

of the aforementioned cases are met, testing may be concluded. Otherwise, 

consider an additional increase of depth of 0.5 in. 

8.4 Repair of Surface Damage 

8.4.1 Remove and collect the strain gages from the concrete surface and sand away 

thin epoxy layers as necessary. Excess dust and debris should be brushed or 

washed away and discarded as non-hazardous waste material. The notches can 

be filled with an appropriate cement based repair material as directed by the 

manufacturer’s recommendation. 
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9. Computation of Stresses 

9.1 Poisson’s Ratio and Elastic Modulus 

9.1.1 The Poisson’s Ratio, ν, is needed in order to calculate the principal stresses 

from the principal strains; however, this value can be estimated as 0.15 for 

plain concrete. The modulus of elasticity for the concrete pavement is required 

to determine the stresses from the strain data. This stiffness, E, can be 

obtained with the following experimental methods: 

9.1.1.1 Direct testing of the pavement using sample cores and subsequent 

laboratory testing. Refer to ASTM C469. 

9.1.1.2 If the geometry of the structure is well understood, a load can be applied 

to the concrete and its strain measured at a known point. This response can 

be calculated to a stiffness value given the material’s response is linear 

elastic. 

9.1.1.3 Modulus estimation based on the strength or materials in the pavement. 

Refer to ASTM C873. 

9.1.1.4 A Portable Seismic Property Analyzer (PSPA) or other non-destructive 

tests can be employed to determine the modulus of the material 

9.2 Stress Calculations 

9.2.1 Plot graphs of strains ε1, ε2 and ε3 versus the average depth of the notches and 

confirm that the data follow generally smooth trends. Expected trends are 

typified in Figure A.4 where there is an immediate drop in strain readings due 

to the passing saw cut followed by an extended period in which the strains 

will rebound (or over-rebound) before stabilizing to a value. Investigate 

substantial irregularities and obvious outliers. If necessary, repeat the test 

(either at further depths or in an alternate location). Additionally if a load 

application was performed, ensure that the strain response at the end of testing 

is appropriately isolated (i.e. no response is observed). Note that the stabilized 

strain value will not necessarily coincide with the point at which the applied 

load is first isolated. 
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Figure A.4 Typical strain rosette response for quadrilateral cuts isolating 

 

9.2.2 For the set of ε1, ε2 and ε3 measurements of interest, calculate the 

corresponding principal strains P and Q along with orientation θ per Hooke’s 

Law as given below: 

εP, Q = ½ (ε1 + ε3) ± (½ )
0.5

 [(ε1 – ε2)
2
 + (ε2 – ε3)

2
]
0.5

 

θ = ½ tan
-1

 [(ε1 - 2ε2 + ε3) / (ε1 - ε3)]*180/ᴨ 

 
Figure A.5 Depiction of angle theta from reference axis to principal axis 

 

9.2.3 Where ε1 and ε3 are separated by 90
o
 and ε2 lays either 45

o
 or 225

o
 from the 

reference strain measurements. θ is the angle from the principal axis to the 

reference axis implying that negative values of θ serve as the angle from the 

reference axis to the principal axis, counter-clockwise, as depicted in Figure 

A.5 above. The principal strains of εP and εQ can be used in the biaxial form of 

Hooke’s law to find σP and σQ as follows: 

 



 

106 
 

σP = [E/(1-ν
2
)]( εP + νεQ) 

σQ = [E/(1-ν
2
)]( εQ + νεP) 

9.2.4 If the equations are combined, the principal stresses can be solved directly 

using: 

σP, Q = ½ E [(ε1 + ε3)/( 1-ν) ± [2
0.5

/(1+ν)][(ε1 – ε2)
2
 + (ε2 – ε3)

2
]
0.5

] 

9.2.5 The residual stress is considered to be the maximum principal stress as 

calculated if all other parameters (moisture, thermal and induced load) have 

been accounted for elsewhere. This value does not necessarily coincide with 

the induced stresses by any applied load, so it is necessary subtract any 

applied stresses in order to ascertain the residual stress value that is not 

attributable to load, moisture or thermal gradients. 

10. Items to Report 

10.1 Test Description 

10.1.1 Description of the concrete pavement including its geometry, 

10.1.2 Location of strain gage rosettes, 

10.1.3 Model and type of rosettes used, 

10.1.4 Rosette geometry, and 

10.1.5 Equipment used to saw the notches. 

10.2 Strain Measurements and Stress Calculations 

10.2.1 Plot of maximum, principal strain versus depth for each rosette at 10 min 

intervals 

10.2.2 Tabulation of strains ε1, ε2 and ε3 for each rosette before and after notching, 

10.2.3 Tabulation of calculated principal stresses for each rosette, 

10.2.4 Tabulation of residual stresses after subtraction of applied stresses. 

11. Precision and Bias 

11.1 Experimental Technique 

11.1.1 Strain values should be reported based on the noise levels of the data. The 

typical precision is usually about ±2x10
-6

.  

11.1.2 Additionally, the strain reading will experience smooth trends of heating and 

cooling which will lead to parabolic and decaying behaviors. This is 

acceptable as long as the strain reading ultimately stabilizes in the span of 

approximately 60min. If the strain reading has not stabilized, it is possible that 

excessive heating (due to direct sunlight, e.g.), moisture or other micro-creep 

mechanisms have evolved and as such, the test results must be discarded. 

11.1.3 It is important to realize that this testing method captures the stress state of the 

concrete in a specific instance of time. The sole measurement of a single test 

cannot wholly capture the changing stress states induced in the concrete due to 

seasonal variations (leading to curling) and eventual stress relaxation over 

time. Numerous tests should be run over a span of time in order to better 

characterize the concrete’s residual stress state. 
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Name of Test Conductor: _____________________________________________   Date: ___ / ___ / ___ 
Sample Specimen Number: ____________   Description: _______________________________________ 
Location: ___________________________   Testing Conditions: _________________________________ 
 
 

Strain Rosette Configuration 
Gage Type: _________________ 
Gage Length: _______________  
Gage Factor: ___________±____% 
Gage Resistance: ________±____Ω 
Temp. Compensation: _________ 
Lead Wires: _________________ 
 

Notching Configuration 
Notch Spacing (in): _____ (S) 
Design Depth (in): _____ (D)  

1
st

 Pass: _____ in. 
2

nd
 Pass: _____ in. 

Designed Notch Depth-to-Spacing: 
 D / S = _____________ 

 
Description of Machine Used: 
_____________________________________________ 
_____________________________________________ . 
 

Average of Notch Depths  
Side 1: Side 2: Side 3: Side 4: 

_____ _____ _____ _____ 
_____ _____ _____ _____ 
_____ _____ _____ _____ 
 
Average Depth (in): _______ (D’) 
Actual Notch Depth-to-Spacing: 
 D’ / S = ____________ 
 

Data Collection 
 Calibrate the data-logger and view (or record) data as the 
notches are made. Use an infrared thermometer to collect the 
average temperature of the concrete surface in the immediate area 
of testing. Note the strain readings and average temperatures at 
600 ± 100 second increments. Testing is concluded when the 
change in strain for all three gages is no more than 1x10

-6
. 

 

Time (sec) Strain 1 (µε) Strain 2 (µε) Strain 3 (µε) Temp (oF) 

0 0 0 0  

600     

1200     

1800     

2400     

3000     

3600     

4200     

4800     

5400     

Other:     
 

Depiction of Location of Strain Rosette 
Description of Plain Concrete Section: ______________________ 
_____________________________________________________. 
Drawing: 
 
 
 

 
 
 
 
 
Computation of Total Stresses 

Select ε1, ε2 and ε3 as the final, stabilized strain readings 
at the conclusion of testing. 

ε1 = ____   ε2 = ____   ε3 = ____ 
 

Principal Stresses:  
A = ε1 – ε2 =__________  D = A

2
 + B

2
 = __________ 

B = ε2 – ε3 = __________  F = D
0.5

 =  ____________  
C = ε1 + ε3 = __________ G = 0.707*F = _________  

H = 0.5*C = ___________  
P = H + G = ___________ 
Q = H – G = ___________ 
 

Young’s Modulus = E = __________ ksi 
Poisson’s Ratio = ν = ____________ (0.15 to 0.25) 
 

J = E / (1 – ν
2
) = ________ 

K = P + ν*Q = __________ x 10
-6 

L = Q + ν*P = __________ x 10
-6

 
 

Maximum Principal Stress = J * K = ______________ 
Minimum Principal Stress = J * L = _______________ 
 

The greater of the two values above is the largest total 
stress acting upon the plain concrete section and is the reported 
stress. 

Reported In-Situ Stress: ______________________ psi.

 
Figure 4 Graph of Stabilizing Strain Readings 
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Approximate Relief of Strain Throughout Testing 

Figure 1 Rectangular Strain Rosette 

Figure 2 Sequence of Notches 

Figure 3 Depth Measurements 


