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Summary 

The control and regulation of cellular metabolism is required to maintain the biosynthesis of building 

blocks and energy, but also to prevent the loss of energy and to be able to quickly adjust to changing 

conditions. Hence, the metabolic network and the flow of genetic information has multiple layers of 

regulation and information is transmitted between gene expression and metabolism. For this purpose, 

metabolites serve as key signals of the regulatory network to balance metabolism via the adjustment 

of protein levels and the activity of enzymes. Understanding these regulations and interplays of 

bacterial metabolism will enable us to improve the modelling and engineering of metabolic networks 

and ultimately to develop new antibiotics and production strains. The aim of this thesis is to 

investigate which regulatory mechanisms are used by the cell to respond to genetic perturbations. 

Moreover, we develop new methods to map protein-metabolite interactions and to prove their 

functionality in the cell.  

After introducing the fundamentals of metabolic network regulation, we investigate in chapter 1 how 

Escherichia coli (E. coli) reacts to genetic perturbations. We use a library of 7177 CRISPRi strains to 

perform a pooled fitness growth assay, demonstrating the buffering effects of metabolism. 

Additionally, measuring the metabolome and proteome of 30 arrayed CRISPRi strains enables us to 

elucidate three gene-specific buffering mechanisms. 

In chapter 2, we use our new insights about genetic perturbations of chapter 1 to develop a method 

for systematically mapping interactions between metabolites and transcriptional regulators. CRISPRi 

leads to a knockdown of a gene and therefore induces specific changes in the metabolome and 

proteome of the cell. We therefore combine the pooled CRISPRi library with a fluorescent reporter for 

transcription factor activity and extract cells, which show a response of the reporter to the changing 

conditions, via FACS from the pooled library. By analyzing proteome and metabolome data, we 

confirm previously reported and discover new interactions. 

With chapter 3, we provide a detailed protocol of how to work with CRISPRi libraries. We explain the 

design and construction of sgRNAs of arrayed as well as pooled CRISPRi strains and how to perform 

growth assays. Furthermore, we explain the execution and analysis of Illumina Next-generation 

sequencing of pooled libraries. We also explain the sorting of cells from pooled libraries via FACS.  

In chapter 4, we show how to find new interactions between metabolites and transcription factors by 

external perturbations. By switching a growing E. coli culture between growth and glucose limitation, 

we provoke strong changes of metabolite levels and transcript levels. Calculating the transcription 

factor activity from gene expression levels and correlating them with metabolite levels, enables us to 
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recover known interactions but also to discover new interactions, of which we prove five in in vitro 

binding assays.  

In chapter 5, we investigate the function of allosteric regulation of metabolic enzymes in amino acid 

pathways of E. coli. We constructed 7 mutants of allosteric enzymes to remove the allosteric feedback 

regulation. By metabolomics, proteomics and flux profiling analysis we show how allostery helps to 

adjust enzyme levels of the cell. Furthermore, using a metabolic model and the application of CRISPRi 

we show how well-adjusted enzyme levels make the cell more stable towards genetic perturbations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  Zusammenfassung 
 

10 
 

Zusammenfassung 

Die Kontrolle und Regulation des mikrobiellen Metabolismus wird benötigt für die Aufrechterhaltung 

der Biosynthese von Grundbausteinen und Energie, aber auch um den Verlust von Energie zu 

verhindern und um eine schnelle Anpassung im Falle von sich ändernden Bedingungen zu 

ermöglichen. Deshalb werden das metabolische Netzwerk und der Fluss genetischer Information 

durch mehrere Regulationsebenen reguliert und Informationen zwischen Genexpression und 

Metabolismus übermittelt. Zu diesem Zweck dienen Metabolite als Schlüsselsignale des 

regulatorischen Netzwerks, welche den Metabolismus balancieren indem sie zum einen Proteinlevel 

anpassen und zum anderen die Aktivität von Enzymen regulieren. Diese Regulationen und 

Wechselspiele zu verstehen, ermöglicht es, metabolische Modelle und Netzwerke zu verbessen und 

gezielt zu verändern. Außerdem bietet es die Chance zur Entwicklung neuer Antibiotika und 

verbesserter Produktionsstämme. Daher ist es Ziel dieser Arbeit zu untersuchen, welche 

regulatorischen Mechanismen der Zelle dazu dienen, genetischen Perturbationen entgegen zu wirken. 

Des Weiteren wird die Entwicklung neuer Methoden zur systematischen Kartierung von Protein-

Metabolit Interaktionen und die Aufklärung deren Funktion innerhalb der Zelle dargelegt.   

 Nachdem die Regulation von metabolischen Netzwerken in der Einleitung besprochen wird, 

beschreiben wir in Kapitel 1, wie Escherichia Coli (E. coli) auf genetische Perturbationen reagiert. Wir 

nutzen eine CRISPRi Stamm-Bibliothek mit 7177 Stämmen, um einen gepoolten Fitness-

/Wachstumsversuch durchzuführen, welcher die puffernden Effekte des Metabolismus aufzeigt. Des 

Weiteren messen wir das Metabolom und Proteom von 30 einzelnen CRISPRi Stämmen, was es uns 

ermöglicht drei genspezifische Mechanismen zur Kompensation von genetischen Perturbationen 

aufzuklären. 

In Kapitel 2 nutzen wir die gewonnen Erkenntnisse aus Kapitel 1 und entwickeln eine Methode um 

systematisch Interaktionen zwischen Metaboliten und transkriptionellen Regulatoren in E. coli zu 

finden. Da CRISPRi zu einer Inhibition der Transkription des Zielgens führt, induziert dies spezifische 

Änderungen im Metabolom als auch Proteom. Deshalb kombinieren wir die gepoolte CRISPRi Stamm-

Bibliothek mit einem fluoreszenten Reporter für Transkriptionsfaktor-Aktivität und extrahieren Zellen 

mittels Durchflusszytometrie, welche eine Reaktion des Reporters auf die sich ändernden 

Bedingungen zeigen. Durch die Messung des Proteoms und Metaboloms einiger dieser Stämme 

validieren wir bereits bekannte als auch neu gefundene Interaktionen. 

In Kapitel 3 stellen wir ein detailliertes Protokoll zum Arbeiten mit CRISPRi Stamm-Bibliotheken zur 

Verfügung. Wir erklären das Design und die Konstruktion von Plasmiden für kleine Guide-RNAs, 
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sowohl für einzelne als auch gepoolte CRISPRi Stämme und erklären die Durchführung von 

Wachstumsexperimenten. Außerdem beschreiben wir die Durchführung und Analyse von Illumina 

Next-generation sequencing von gepoolten Stamm-Bibliotheken. Darüber hinaus erklären wir 

detailliert, wie einzelne Zellen aus der gepoolten Zell-Bibliothek mittels Durchflusszytometrie isoliert 

werden können.  

In Kapitel 4 zeigen wir eine Methode zur systematischen Kartierung von Interaktionen zwischen 

Metaboliten und Transkriptionsfaktoren mittels externer Perturbationen. Durch den Wechsel von 

einer E. coli Kultur zwischen optimalen Wachstumsbedingungen und der Limitation von Glucose, 

erzeugen wir starke Änderungen von Metabolit-Leveln und Transkriptions-Leveln. Die Berechnung von 

Transkriptionsfaktor-Aktivitäten mittels Transkriptions-Leveln und die Korrelation dieser mit 

Metabolit-Leveln, ermöglicht die Validierung von bereits bekannten Interaktionen, als auch das Finden 

von neuen Interaktionen, von welchen fünf mittels in vitro Bindeassays bestätigt werden. 

 In Kapitel 5 untersuchen wir die Funktion von allosterischen Regulationen metabolischer Enzyme im 

Aminosäure Stoffwechsel von E. coli.  Wir konstruieren 7 Mutanten von allosterisch-regulierten 

Enzymen und entfernen dadurch den Regulationsmechanismus. Durch Metabolom-Analysen, 

Proteomstudien und der Messung des biosynthetischen Flusses in diesen Mutanten zeigen wir, wie 

Allosterie die Einstellung von Enzym-Leveln in der Zelle ermöglicht. Des Weiteren wenden wir ein 

metabolisches Modell an und stören den Stoffwechsel der Zellen mittels CRISPRi und zeigen damit, 

wie gut angepasste Enzym-Level Zellen robuster gegen genetische Perturbationen machen. 
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Introduction 

Metabolic Networks and how they are regulated 

The physiological and biochemical properties of a cell are determined by all the metabolic and physical 

processes that build the metabolic network. The flow of genetic information within such a biological 

system is explained in the central dogma of molecular biology (Crick, 1970). It describes the flow of 

genetic information from DNA to RNA and finally into protein. Once the information is packed into a 

protein, it cannot be transferred to another protein or back into DNA. This dogma applies only to 

information, which is the precise determination of a sequence, either in the shape of a base pair 

sequence in nucleic acids or the order of amino acids in a protein.  But how is this flow of information 

regulated to achieve optimal conditions of the cell’s metabolism? Moreover, how are large 

biochemical networks of bacterial metabolism controlled, where thousands of genes, enzymes and 

reactions must be coordinated? 

Since complete genomes of organisms can be sequenced, it is possible to reconstruct the full network 

of biochemical reactions in a cell. The latest genome-scale model of Escherichia coli K-12 MG1655 

includes 1515 open reading frames, 2719 metabolic reactions and 1192 metabolites (Monk et al., 

2017). Looking at those numbers, one could ask how the cell manages to carry out all reactions needed 

to synthesize building blocks and energy, while fine-tuning the enzyme levels to prevent the loss of 

energy and staying flexible in case of changing conditions. To understand these interplays, it is 

advantageous to focus on single metabolic reactions and pathways first, with the aim to understand 

how regulatory interactions guide these reactions (Figure 1).  

A metabolite is transformed into a product in a sequence of catalyzed reactions. These reactions are 

carried out by enzymes which are encoded in genes and are transcribed and translated. In summary, 

transcription, translation and the enzyme as a final product are suitable targets of regulation. The 

regulation of the transcription rate takes place by attenuation or the interaction between 

transcription factors and metabolites, which both lead to changes in gene expression. As transcription 

is known to be quite slow (1 min/gene [1 kilo bp]), the cell also needs other strategies to adapt rapidly 

to changing conditions (Shamir et al., 2016). Thus, metabolic control is also achieved by translational 

regulation and post-translational protein-modifications, such as acetylation, methylation and 

phosphorylation (Macek et al., 2019). These covalent modifications can be either reversible or 

irreversible, and usually different enzymes are responsible for the forward and reverse reactions 

(Martin, 2014).  Another mechanism to quickly adjust to new circumstances is allosteric enzyme 
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regulation, which modulates enzyme activities and therefore reaction rates and metabolic fluxes in 

seconds (Chubukov et al., 2014; Gerosa and Sauer, 2011; Link et al., 2013).  

 

Figure 1. Layers of regulation in metabolic networks. Scheme of an exemplary metabolic pathway in amino acid 
biosynthesis. This includes the transcriptional regulation via metabolite-transcription factor (TF) interaction as well as a 
negative feedback loop of the product metabolite on the first enzyme of the metabolic pathway, which regulates the reaction 
rate of the enzyme (modified after Donati et al., 2018). 

When looking at the metabolic pathway and all these levels of regulation, we can see that information 

is not only transferred in the form of nucleic acid or proteins, but metabolites also can serve as 

information carriers and inputs. They serve as signals for fluctuations in intracellular or extracellular 

conditions and lead to adaptation or maintenance of the metabolic system. Taking this into account, 

metabolites not only control metabolic pathways they are directly linked to but are also key signals 

for the whole metabolic network of a cell. Thus, the investigation of metabolites and their interactions 

with proteins, will help to understand the global regulation of large biochemical networks of 

metabolism. 

Metabolites as key signals in metabolism 

As technologies have developed enormously in the past decade, it is now possible to measure 

thousands of metabolites with high sensitivity (Johnson et al., 2016). This allowed the study of 
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metabolites not only as substrates and products of metabolism, but also their function as key signals 

and global regulators (Chubukov et al., 2014; Li and Snyder, 2011; Milanesi et al., 2020).  

Previously, researchers measured metabolite profiles of 4913 strains in yeast and approximately 3800 

E. coli strains, each strain having a different gene deletion (Fuhrer et al., 2017; Mülleder et al., 2016). 

They were able to not only precisely link metabolic changes to the deleted enzyme, but also uncovered 

novel gene-metabolite interactions. Based on their analysis, they could also predict the metabolism-

related function of 72 non- annotated genes. Thus, a gene deletion leads to very specific changes of 

metabolite profiles, meaning that the metabolome contains information about the status of the whole 

cell.   

Information carried by metabolites can be sensed and processed on different layers, but most of them 

are based on an interaction between the metabolite and a protein, the so-called protein-metabolite 

interactions (PMIs). As described earlier, these PMIs can be classified into i) enzyme catalysis, ii) 

allostery and iii) transcriptional regulation (Figure 2A). Allostery and transcriptional regulation will be 

described more specifically in the following section. 

Types of protein-metabolite interactions 

Allostery 

The binding of a ligand to the allosteric site of an enzyme induces a conformational change in the 

target protein, leading to a change in the activity of the protein, whether the function of the enzyme 

is catalytic (metabolic enzymes) or binding (receptors). This effect was first described by the Monod-

Wyman-Changeux Model (Monod et al., 1965), which defined the characteristics of allosteric 

regulation: i) the effector molecule must differ chemically from the substrate of the regulated 

reaction, ii) it binds to any other site of the enzyme other than the active one and iii) binding of the 

effector molecule leads to a conformational change of the protein. The term cooperativity describes 

the binding of ligands to proteins with multiple binding sites and therefore an interaction of binding 

processes (Ricard and Cornish-Bowden, 1987). The activity and function of proteins can be strongly 

influenced by allosteric binding of metabolites. An example of protein classes, that are modulated by 

the cells own metabolites, are metabolic enzymes (Gerosa and Sauer, 2011) , protein kinases (Li et al., 

2010) and transcription factors (Motlagh et al., 2014). 

The latest mechanistic model of the E. coli metabolism contains 295 allosteric interactions, showing 

that allosteric interactions are very common for enzymes (Khodayari and Maranas, 2016). The most 

prominent example of an allosterically regulated enzyme is the aspartate carbamoyltransferase 
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(ATCase). It catalyzes the first step of the pyrimidine biosynthesis, which is the committed step of the 

pathway, an irreversible reaction leading to a modification of the metabolite which after that step can 

only be used to synthesize the pathway’s final product. With increasing concentrations the end 

product CTP inhibits the enzyme, preventing the synthesis of unnecessary intermediates (Gerhart, 

2014). Consequently, this ensures that the pathway flux is not higher than actually needed and 

indicates that allosteric regulation functions as a valve controlling the fluxes of pathways. This could 

also be shown in a study, where E. coli was exposed to oxidative stress, upon which NADPH levels 

decreased. This led to an increasing activity of glucose-6-phosphate dehydrogenase, which is 

allosterically inhibited by NADPH, and therefore an increased flux through the pentose phosphate 

pathway (PPP), which refilled NADPH levels (Christodoulou et al., 2018).  

The amino acid metabolism of E. coli relies heavily on allosteric regulation, as 16 out of 20 pathways 

are regulated by allosteric feedback inhibition (Reznik et al., 2017). This means that the amino acid as 

an end-product inhibits the enzyme catalyzing the committed step in the pathway. Amino acid 

metabolism pathways are not only regulated by allostery, but also by transcriptional regulation and 

attenuation. However, there are still unanswered questions about the function of allosteric regulation 

in these pathways and it remains challenging to investigate this phenomenon at a systemic level (for 

further discussion of this topic see chapter 5 of this thesis). 

Transcriptional regulation 

The interaction between a metabolite and a transcription factor (TF) is a special form of allosteric 

regulation. Because of the non-catalytic nature of the TF, the change of the activity of the protein does 

not result in a change of flux in a certain pathway, but rather influences the binding activity of the TF 

to specific DNA sequences (promoter region). Upon the binding of the metabolite, the TF can bind or 

release the promoter region, which in turn blocks or promotes the binding of the RNA polymerase 

(Latchman, 1997). This leads to increased or decreased enzyme levels of the gene regulated by the TF, 

depending on the TF acting as repressor or activator. Therefore, transcriptional regulation affects how 

much enzyme is produced by the cell in a certain pathway. One of the best studied molecular systems 

is the lac promoter of E. coli (Jacob and Monod, 1961). E. coli uses glucose as the preferred carbon 

source, but if it is not available it can use other carbon sources like lactose. The lac operon encodes 

for a membrane protein, which acts as a transporter for lactose. It also encodes a β-Galactosidase, 

which catalyzes the cleavage of lactose into galactose and glucose. In the absence of lactose, the 

operon is repressed by the TF lacI, but an increase of allolactose, the intermediate product of lactose 

catabolism, leads to an allosteric inactivation of lacI, which then releases the promoter and the lac 

operon is expressed. Simultaneously, the cell signals low glucose levels with cAMP concentrations, 
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which increases upon the depletion of glucose (Notley-McRobb et al., 1997). cAMP binds to CRP, which 

is a global transcriptional regulator having a direct influence on transcription rates.  Thus, the cell 

senses the presence of lactose and the shortage of glucose and tightly controls the synthesis of 

proteins to process these carbon sources. The transcriptional regulation is, therefore, another layer 

of regulation aimed at preventing the extra burden of protein synthesis in lower energy conditions. 

This protein synthesis can lead to lower growth rates (Shachrai et al., 2010), and in this example, the 

induction of the lac operon without lactose leads to a 5% reduction of the growth rate (Novick and 

Weiner, 1957).  

Many TFs not only have one target promoter and cannot only bind to one specific promoter sequence, 

but instead influence the transcription of many genes in different metabolic pathways. They are 

organized in so called transcriptional regulatory networks (TRNs), which are clustered into basic units, 

motifs, modules and networks (Babu et al., 2004). Basic units describe the interaction between a 

transcription factor and the target gene binding site and are organized in network motifs, which cover 

specific patterns of interregulation and are the most dominant in a network. These motifs are 

clustered into modules which are transcriptional units and their interconnecting interactions are 

finally compiled into a regulatory network. One of the best known TRNs exists for E. coli, covering 220 

TFs, 3493 regulatory interactions and 4745 regulated genes (Santos-Zavaleta et al., 2019). High-

throughput methods like Selex or Chip-seq enabled genome-wide quantification of TF-DNA binding 

(Furey, 2012; Ishihama et al., 2016). For 211 of 220 TFs a target gene could be identified. The number 

of regulated genes varied by a large margin for individual TFs. CRP, for example, regulates 535 genes 

and AlaS only one. The regulons of only 9 TFs (CRP, FNR, IHF, FIS, H-NS, ArcA, FuR, NarL and Lrp) 

account for 46% of all known TF-mediated regulatory interactions in E. coli. A library of fluorescent 

transcriptional reporters was used to quantify the activity of promoters in the central carbon 

metabolism of E. coli in 26 different environmental conditions. It was shown that 70% of the variance 

in promoter activity could be explained by global transcriptional regulation (Kochanowski et al., 2017). 

Furthermore, the measurements of metabolites revealed that only 3 metabolites explained most of 

the transcriptional regulation. Even with these methods, only ~140 interactions between 220 TFs and 

2600 metabolites were found, so there is still a challenge to systematically identify functional 

regulatory protein-metabolite interactions on a large-scale, as many more interactions are expected 

(Madan Babu and Teichmann, 2003).  
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Figure 2. Types of protein-metabolite interactions. (A) Metabolites can be catalyzed by an enzyme or bind to special regions 
of metabolic enzymes (allostery). This leads to a conformational change, which results in the change of reaction rates of the 
enzyme. They can also bind transcription factors (TF) and therefore have an influence on gene expression (RNAP- RNA 
polymerase). (B) There are many methods available to investigate protein-DNA interactions and therefore many are known. 
The knowledge and availability of methods decrease when looking at protein-metabolite interactions, especially when it 
comes to functional protein-metabolite interactions, which were not only shown in in vitro assays but also had an impact on 
the organism in in vivo studies. 

Methods to identify protein-metabolite interactions 

To understand the regulation of metabolic networks, it is crucial not only to know which genes are 

targeted by TFs, but also to find the regulatory metabolite which carries the information about the 

status of the cell and binds to the respective protein. A well-established approach is to prove PMIs by 

in vitro binding assays, like isothermal titration calorimetry (ITC) or nuclear magnetic resonance 

spectroscopy (NMR) (He et al., 2015; Nikolaev et al., 2016). These methods all make use of changing 

properties of the protein upon the binding of a ligand. As it is only possible to test one protein against 

one metabolite, they only allow to prove binding events but do not support the screening for many 

metabolites at the same time. Hence, finding interacting metabolites, which are not directly linked to 

the pathway of the TFs target gene is almost impossible. Considering the numbers, there could be 

millions of functional PMIs, as we know that there are approximately one million protein molecules in 

a bacterial cell (Milo, 2013) and about 100-fold more metabolites (Bennett et al., 2009). Due to the 

instable nature of PMIs, only the development of multi-omics methods (proteomics, metabolomics) 

in the last decade enabled the invention of more systematic approaches. Consequently, it is now 

possible to measure at a larger scale and to test many proteins against one metabolite or the other 

way around. Metabolomics-based LC-MS enabled mapping PMIs by immobilizing proteins and 
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incubating them with a pool of metabolites. The protein-metabolite complexes were purified and the 

extracted metabolites were later on measured by untargeted metabolomics (Tagore et al., 2008; 

Vinayavekhin and Saghatelian, 2011). This combination of untargeted LC-MS and native MS was not 

only used to find potential interacting metabolites, but also applied to confirm new interactions (Qin 

et al., 2019). Furthermore, dynamically measuring metabolites and fluxes in E. coli during growth 

switches allowed a systematic identification of allosteric interactions that govern the switch between 

glycolysis and gluconeogenesis (Link et al., 2013). A chemo proteomic approach enabled the first 

systematic mapping of PMIs on a proteome-wide scale (Piazza et al., 2018). The researchers incubated 

whole cell-lysates with metabolites and performed a proteinase K and trypsin treatment. Hence, the 

proteomics measurements of the digested proteome showed different peptide patterns for proteins 

if the metabolite is bound to them. In summary, this method combined limited proteolysis (LiP) with 

MS in the presence of unmodified metabolites in a cell-like environment and enabled to identify a big 

network of known and previously unknown PMIs and binding sites to proteins. The authors claim that 

based on their data, about one quarter of the measured proteome interacted with at least one of the 

20 investigated metabolites, covering all known cellular processes, and indicating that the size and 

impact of PMIs is in fact larger than previously considered. However, the method might miss 

interactions due to low MS coverage because of the treatment of the cell-lysate, and it cannot 

distinguish between functional und unspecific binding events (Diether and Sauer, 2017; Kochanowski 

et al., 2015). Altogether, the development of mapping approaches is more advanced than the 

evaluation of functionality, as the binding of a metabolite to a protein is ultimately dependent on the 

conditions the cell is facing. However, the low affinity of PMIs and their transient nature still presents 

a challenge (Diether et al., 2019) (Figure 2B). Hence, no in vivo method exists that detects functional 

interactions in a high-throughput manner and their direct effects on cellular processes, like 

transcription. The current challenge still remains to differentiate between functional and unspecific 

metabolite-protein interactions and to detect them at a large-scale (see chapter 2 and 4 in this thesis). 

Utilization of a better understood protein-metabolite interaction network 

PMIs do not only occur inside of isolated, linear metabolic pathways, but regulatory metabolites can 

also be located in other metabolic branches and transcription factors can have hundreds of target 

genes. Therefore, the genetic manipulation of a metabolic pathway and its regulation in a production 

strain can have a tremendous impact on the overall function of the metabolic network, which most 

often influences the maximal productivity and the robustness towards perturbations (He et al., 2016). 

For instance, production strains often have transcriptional feedback regulation removed to improve 

production rates (Nielsen and Keasling, 2016; Park et al., 2018). Several arginine overproduction 
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strains were investigated regarding growth and production, and it could be shown that the deletion 

of the transcriptional regulator ArgR led to the highest production but also had the biggest impact on 

growth (Sander et al., 2019). Due to protein burden caused by protein overexpression, the strain 

suffered of a limitation in the pyrimidine nucleotide biosynthesis and was limited in growth. To avoid 

these burdens for the cell, the design of production strains is often reviewed by in silico approaches 

(Ko et al., 2020; Long et al., 2015). Hence, it is crucial to provide enough experimental data which can 

be used for setting up computational models, which cover the genome-wide metabolic network of the 

strain. Therefore, for future models it is very important to i) map all existing PMIs and to ii) investigate 

their functionality under certain conditions, as, for instance, different carbon sources. Due to the 

implementation of many high-throughput methods a lot of PMIs could be mapped, nevertheless, 

testing their functionality remains a big challenge. 

Besides of metabolic engineering of production strains, the development of new drugs is also a big 

field of application for PMIs. The discovery of new antibiotics is especially crucial, as many multi-

resistant bacterial pathogens have emerged due to the misuse of antibiotics in the clinical and 

agricultural environment (Stokes et al., 2019). Most of the known antibiotics target cell envelope 

synthesis, DNA replication, transcription and protein biosynthesis, resulting in perturbations of 

metabolic homeostasis of the cell (Zampieri et al., 2017). Hence, a better understanding of the 

regulation of metabolism could lead to the discovery of new targets for antibiotics treatment.  

CRISPR interference (CRISPRi) as a tool to investigate bacterial metabolism 

Short introduction to the world of CRISPR 

“Genome editing”, in other words, the ability to precisely change the base pair sequence of a DNA 

sequence at a predetermined location is not only crucial for studying the function of genes but also to 

uncover biological mechanisms. Insertion, modification or deletion of DNA sequences or even whole 

genes is the basis for studying effects of genetic modifications on the phenotype of a cell. 

Furthermore, it enables engineering of strains for biotechnology. Methods to modify the genomes of 

organisms have been available for many years. The discovery of restriction enzymes, which normally 

protect bacteria against phages, allowed the first manipulation of DNA in a test tube in the 1970s 

(Smith and Welcox, 1970) and was followed by many other discoveries and inventions. Recombinases 

enable altering the genome by homologous recombination (Capecchi, 1989; Olorunniji et al., 2016), 

while programmable nucleases (Chandrasegaran and Carroll, 2016), such as meganucleases and zinc 
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finger nucleases, induce targeted double-strand breaks. However, the efficiency of homologous 

recombination is heavily dependent on the organism and programmable nucleases require protein 

engineering expertise, as the method includes the development of DNA-binding proteins to bind to 

custom targets (Pickar-Oliver and Gersbach, 2019). Therefore, the discovery of CRISPR-Cas9 and its 

ability to bind and modify DNA sequences paved the way to a new era of genome editing. 

CRISPR (clustered regularly interspaced palindromic repeats) was first described in 1987 in the 

genome of E. coli (Ishino et al., 1987),  and its function remained unclear, even though it was later on 

identified in many different species across bacteria (40% of all species) and archaea (60%) (Makarova 

et al., 2011). The big mystery about the spacer sequences could only be solved when many phage 

genomes were sequenced at the time of the human genome project in the early twentieth century. 

Interestingly, the non-repeating spacers originated from viruses and other mobile genetic elements 

and were always located in the neighborhood of CRISPR associated (Cas) genes, which have nuclease 

and helicase domains (Jansen et al., 2002). Hence, it was assumed and finally shown that CRISPR serves 

bacteria as an adaptive defense system, using antisense RNAs as a memory and a guide to eliminate 

invaders (Brouns et al., 2008; Horvath and Barrangou, 2010; Makarova et al., 2006). CRISPR systems 

can be divided into 2 classes: class 1 systems use a complex of different proteins to degrade DNA, and 

class 2 systems are using one large Cas protein. Both classes are divided into 6 types (Wright et al., 

2016). The Cas9 protein belongs to the class 1, type II CRISPR systems and was found in Streptococcus 

pyogenes (Deltcheva et al., 2011). It is one of the simplest CRISPR systems and consists of an 

endonuclease with a four-component system, that includes two small RNA molecules guiding the 

protein to its target DNA sequence, the mature CRISPR RNA (crRNA) and a partially complementary 

trans-acting RNA (tracrRNA). Jennifer Doudna and Emanuelle Charpentier re-engineered it into a two-

component system and fused the two RNAs to a single guide RNA (sgRNA) (Jinek et al., 2012). 

Combined with the endonuclease Cas9, this artificial system can be programmed to target and cut any 

DNA sequence, making it a perfect tool for genome editing. This invention was so remarkable, as it 

could also be used for genome editing of human cells (Jinek et al., 2013; Mali et al., 2013), that Doudna 

and Charpentier were awarded the Nobel Prize in chemistry in 2020. Shortly after publishing the 

artificial system, CRISPR-Cas9 was modified to silence or activate genes and can therefore also be used 

as a programmable transcription factor (Bikard et al., 2013; Larson et al., 2013; Qi et al., 2013).  

The CRISPR interference system (CRISPRi) makes use of a catalytically inactive (dead) Cas9 protein 

(dCas9) and is repurposed for RNA-guided transcription regulation. The dCas9 protein binds to a 

sgRNA with a 20-25 bp long sequence, which is complementary to either the template or non-template 

strand of the DNA target sequence and next to the protospacer adjacent motif (PAM; sequence: NGG). 
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The sgRNA is fused to the dCas9 handle and a terminator sequence, and it guides the dCas9 to the 

target region (Figure 3A). As the dCas9 protein is lacking endonuclease activity, it will only bind to the 

target region and as a result hinder the RNA polymerase (RNAP) to transcribe the DNA sequence at 

varying degree, depending on the design of the sgRNA. A sgRNA targeting the promoter region will 

block the initiation of transcription and is independent of the DNA strand, while only sgRNAs binding 

the non-template DNA strand show a silencing effect and hinder transcription elongation. Moreover, 

the position of the guide RNA plays a huge role for repression efficiency, as guides being closer to the 

promoter region usually show a stronger effect than the ones targeting regions inside or at the end of 

the gene (Larson et al., 2013; Qi et al., 2013).  

 

 

Figure 3. Functional principle of CRISPRi and available systems. (A) The dCas9 protein binds to the dCas9 handle which is 
fused to a sgRNA. This guides the whole complex to a genomic region, in this case on the non-template strand (NT) and pairs 
with the region right next to the PAM site. Therefore, the dCas9 protein blocks the binding of the RNA- polymerase (RNAP) 
and with this the transcription of the encoded gene. (B) (Left to right) The original system based on two plasmids (Qi et al., 
2013), the system based on one plasmid expressing the sgRNA and the dCas9 enzyme (Beuter et al., 2018) and a system 
making use of a genomically integrated dCas9 (Lawson et al., 2017). (sgRNA- small guide RNA; AmpR- ampicillin resistance 
cassette; CmR- chloramphenicol resistance cassette; GentaR- gentamycin resistance cassette; KanR – kanamycin resistance 
cassette)  
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The original system consisted of one plasmid for the expression of the sgRNA while another plasmid 

is needed for the expression of dCas9 (Larson et al., 2013; Qi et al., 2013)(Figure 3B). As this is not 

practical when working for instance with an additional reporter plasmid, systems were generated that 

have the sgRNA and dCas9 protein encoded on one plasmid (Beuter et al., 2018; Kirtania et al., 2019). 

Often, the leakiness of promoters leads to plasmid instability and/or loss of the plasmid. As the 

expression of dCas9 could result in additional protein burden for the cell or the knockdown of an 

essential gene before induction (Huang et al., 2015), selective pressure will lead to an enrichment of 

cells that lose the plasmid. Hence, to prevent biases in growth before induction due to leaky 

expression from plasmid derived promoters, dCas9 was also genomically integrated and expressed 

from a regulated chromosomal promoter, which was optimized to prevent leaky expression (Lawson 

et al., 2017).  

Taking the previous studies into account, CRISPRi-induced gene silencing is a powerful and highly 

efficient method to block and repress transcription with up to 1000-fold repression (Qi et al., 2013). 

This in turn allows i) to change the regulation of metabolic pathways and to study ii) the function of 

essential genes.  

Application of CRISPRi in biotechnology 

For the design of production strains, the repression of genes for key enzymes in metabolism is often 

required to redirect metabolic fluxes from growth to the desired product or to balance the production 

for increased titers, yields and productivity. As described before, CRISPRi leads to a highly efficient 

repression of transcription and therefore can be used to study the effect of genes on production rates. 

It was already described for many organisms that CRISPRi can be applied to generate production 

strains for industry and especially in E. coli, many pathways were optimized by using CRISPRi 

(Schultenkämper et al., 2020). For example, the downregulation of the transcriptional regulator ArgR 

led to a 2-times higher growth rate of an arginine overproducing E. coli strain compared to  a deletion 

strain, while maintaining almost the same specific production (Sander et al., 2019). While CRISPRi is a 

powerful tool to directly influence a metabolic pathway and therefore the strain’s production capacity, 

it can also be used to identify genes of unknown function for their possible catalytic function, and 

therefore the possibility of using strains or their enzymes for the production of certain compounds 

(Lee et al., 2018). The CRISPRi system also can be used to uncouple production from growth via 

inducible dCas9 expression. This means that once the desired biomass for production is reached, the 

expression of dCas9 can be induced which results in a dynamic repression of the desired target genes 

and starts the production of the compound of interest (Zheng et al., 2019).  
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Hence, the application of CRISPRi in biotechnology has a big potential for metabolic engineering of 

production strains and processes, but also for the discovery of new biochemical products.  

CRISPRi library screenings 

From genotype to phenotype, how can we identify genes which contribute to specific biological 

phenotypes, and especially, how can we do this on a large-scale? Targeted genome regulation 

methods, such as zinc-finger or transcription activator like effector (TALE) proteins and RNA 

interference (RNAi) were broadly used in the past to investigate the functions of genes. As an example, 

RNAi, which perturbs genes on the mRNA level with complementary RNAs, is strongly limited by off-

target effects, low efficiency, toxicity, and it can only be used in organisms containing the needed 

enzyme machinery (Larson et al., 2013). Hence, the simpler design of CRISPRi and the ability to use it 

in a lot of organisms make it a more predictable and specific tool to test genes for their function.  

The screening of CRISPRi libraries can be carried out in an arrayed or a pooled format (Shalem et al., 

2015). While for an arrayed screen, all plasmids are cloned in separate wells, and all cells are 

transformed and measured in arrays, the pooled screen facilitates the whole workflow. Usually, 

oligonucleotides are synthesized and delivered as an oligo pool in one tube. Cloning techniques like 

Golden Gate and Gibson Assembly enable us to insert the pooled sgRNA sequences into the vector 

plasmid in one reaction (Engler et al., 2008; Gibson et al., 2009). Additionally, the transformation of 

the recipient strain and the screen readout are performed in a pooled fashion using methods like Next-

Generation sequencing (NGS) or Fluorescence-activated Cell Sorting (FACS). Furthermore, 

synthesizing large DNA oligonucleotide libraries is becoming cheaper every year, as well as DNA 

sequencing (Wetterstrand, 2020), which allows the usage of CRISPRi in large sgRNA libraries.  

Therefore, pooled screenings are usually less laborious and less expensive while arrayed screens allow 

us to directly measure single cellular phenotypes via fluorescence, image-analysis or metabolomics 

and proteomics. Nevertheless, in the case of pooled libraries, a lot of experimental strategies were 

established to filter out single strains based on their phenotype. For instance, single-molecule 

fluorescence time-lapse imaging of an E. coli CRISPRi library identified genotypes in situ after providing 

a detailed characterization of the phenotype (Lawson et al., 2017). This makes it possible to extend 

live cell microscopy to the scale of pooled libraries. Similarly, the combination of a CRISPRi library with 

a reporter plasmid for monitoring the growth rate of all strains allowed the selective enrichment of 

slow-growing cells via cell sorting (Beuter et al., 2018). Hence, the choice of format mostly depends 

on how many targets should be screened and how the strains with a desired phenotype should be 

further investigated.  
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A lot of pooled CRISPRi screenings have been carried out in the past years and were mostly used to 

investigate the function of genes.  For a library of 235 different CRISPR knockdowns, the position of 

the replication fork was monitored via live-cell microscopy for >500 cell cycles (Lawson et al., 2017). 

The subsequent genotyping made it possible to map each genetic perturbation to a specific phenotype 

and to determine the gene’s function in cell cycle control.  A more frequently used way to investigate 

CRISPRi libraries is the execution of pooled growth assays. The library is grown under certain growth 

conditions and the fitness of strains is calculated via the foldchange of the abundance of guides over 

time, which is measured via NGS. Bikard and colleagues created a library with 92000 sgRNAs targeting 

the whole E. coli genome (Cui et al., 2018).  This screen not only confirmed previously reported design 

rules and properties of such assays but also revealed off-target effects and sequence-specific toxicity 

effects (“bad-seed” effects) that have not been previously reported.  After removing all guides with 

these effects, they ended up with a library of 23000 sgRNAs, which they used to predict gene 

essentiality in a pooled fitness assay (Rousset et al., 2018). 78% of the genes previously annotated as 

essential by gene knockout studies (Baba et al., 2006) were identified, and some targets showed no 

tolerance to small reductions of their expression levels and could therefore be promising antibiotic 

targets.  In another study, the researches performed fitness assays with a library consisting of 60000 

sgRNAs targeting the whole E. coli genome (Wang et al., 2018) and showed similar results to the study 

mentioned before. Hence, it could be demonstrated how powerful CRISPRi is as a tool to map 

prokaryotic genetic networks precisely on a large-scale and that it is a good alternative to, for example, 

gene knockout libraries, which are not available for all organisms and often require expensive 

automation systems to investigate them.  

Since it was shown that pooled CRISPRi library screenings could be used to investigate the genetic 

network of E. coli, it was also applied to other bacterial species and studied under various growth 

conditions (Todor et al., 2021). Targeting 3400 conserved genes in 3 growth media and 18 different E. 

coli strains, the study showed big variations of gene essentiality between the strains and conditions 

and highlighted the impact of mobile genetic elements on the essentiality of core genes within a single 

species (Rousset et al., 2021). In a separate study, the screening of pathogens and microbiome strains 

revealed the functionality of the CRISPRi system while the strains are located in the host (Liu et al., 

2021; Qu et al., 2019; Shields et al., 2020). This could enable the identification of genes needed for 

commensalism and pathogenesis in in vivo screens, leading to new insights for targeted drug 

development and especially for the development of new antibiotics.  
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Objectives of this thesis 

Understanding metabolic networks requires not only to identify all components of metabolism, such 

as genes, proteins and metabolites, but also to understand their function and how all of these 

components are connected.  The regulation of metabolism is still a big mystery, as many regulatory 

mechanisms were investigated, but newer studies suggest a much higher number of interactions, 

especially between proteins and metabolites. Besides this, the functionality of many of those proven 

interactions remains a big question, as not many options exist to measure them in an in vivo context. 

Hence, in the following chapters of this thesis, we aim to understand i) which regulatory mechanisms 

are used by E. coli to react to genetic perturbations of metabolism via CRISPR interference and ii) how 

can we use this knowledge to find functional interactions between transcriptional regulators and 

metabolites.  

In the first chapter, we perform a genome-wide CRISPRi library screening in E. coli and investigate how 

metabolism reacts to decreasing enzyme levels. Furthermore, we characterize the metabolome and 

proteome of some of these strains and show which local regulatory mechanisms buffer decreases of 

specific enzymes. 

In the second chapter, we use the gained knowledge of chapter one to establish a method to screen 

for metabolite-transcription factor interactions in vivo on a large-scale. In CRISPRi strains, metabolite 

and protein levels changed remarkably specific. We combine CRISPRi with reporter plasmids to study 

the influence of the perturbation on transcription factor activity. This enables us to confirm known 

protein-metabolite interactions in an in vivo context and to reveal new interactions. 

In chapter three, we provide a protocol on how to generate and work with CRISPRi libraries. It includes 

the execution of fitness growth assays and the sorting of cells from the pooled library based on their 

phenotype. 

In chapter four, we use dynamic metabolite and transcriptome data of E. coli to identify known 

metabolite-transcription factor interactions. Furthermore, we predict and validate new interactions 

in central metabolism based on the dynamic data set.  

In chapter five, we investigate the relevance and function of allosteric feedback inhibition in vivo. We 

use metabolomics, proteomics and flux profiling to study the interaction between allosteric feedback 

inhibition and transcriptional regulation in 7 mutants with allosterically dysregulated amino acid 

pathways. Moreover, we use CRISPR interference to show how this interplay, resulting in enzyme 

overabundance, makes cells more robust against genetic perturbations.  
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Summary 

Enzymes maintain metabolism and their concentration affects cellular fitness: high enzyme 

levels are costly, and low enzyme-levels can limit metabolic flux. Here, we used CRISPR 

interference (CRISPRi) to study the consequences of decreasing E. coli enzymes below wild-

type levels. A pooled CRISPRi screen with 7177 strains demonstrates that metabolism buffers 

fitness defects for hours after induction of CRISPRi. We characterized the metabolome and 

proteome responses in 30 CRISPRi strains and elucidated 3 gene-specific buffering 

mechanisms: Ornithine buffered the knockdown of carbamoyl phosphate synthetase (CarAB) 

by increasing CarAB activity, S-adenosylmethionine buffered the knockdown of homocysteine 

transmethylase (MetE) by de-repressing expression of the methionine pathway, and 6-

phosphogluconate buffered the knockdown of 6-phosphogluconate dehydrogenase (Gnd) by 

activating a bypass. In total, this work demonstrates that CRISPRi screens can reveal global 
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sources of metabolic robustness and identify local regulatory mechanisms that buffer 

decreases of specific enzymes. A record of this paper’s Transparent Peer Review process is 

included in the Supplemental Information. 
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Introduction 

Enzymes catalyze biochemical reactions that maintain metabolism and cell growth. 

Correspondingly, expression levels of enzymes influence cellular metabolism and fitness. 

Growth of E. coli, for instance, is affected by the abundance of single enzymes (Dekel and 

Alon, 2005; Li et al., 2014), as well as by the total mass of catabolic enzymes (You et al., 2013). 

However, it is not clear to which extent the expression of each single enzyme in a cell 

influences metabolism and fitness. 

The consequences of perturbing enzyme-levels were investigated with knockout libraries of 

yeast and E. coli (Baba et al., 2006; Giaever et al., 2002). Studies with these libraries showed 

that the absence of a single enzyme has very precise and specific effects on metabolism 

(Fuhrer et al., 2017; Mülleder et al., 2016) and transcription (Kemmeren et al., 2014). 

However, knockouts are extreme cases and they are not feasible for key metabolic enzymes, 

which are essential for growth on single carbon sources like glucose. Moreover, knockouts 

are static and therefore they may reflect metabolic states that have already adapted at the 

level of gene expression (Hosseini and Wagner, 2018; Ishii et al., 2007) or by mutations 

(McCloskey et al., 2018a). Thus, it is difficult to learn about acute responses to perturbations 

of enzyme-levels using gene deletions. 

To understand the consequences of enzyme-level perturbations around wild-type levels, a 

series of studies measured enzyme expression in different environmental conditions 

(Buescher et al., 2012; Gerosa et al., 2015; Hackett et al., 2016). These studies showed that 

most enzymes have different expression levels in different conditions, and that the average 

enzyme mass of E. coli cells changes more than 2-fold across conditions (Schmidt et al., 2016). 

However, expression changes across conditions were mainly driven by global growth-

dependent regulation (Erickson et al., 2017), and delineating local regulation from these data 

has proven difficult (Gerosa et al., 2013; Keren et al., 2013). An approach to achieve more 

specific and localized changes of enzyme-levels is to delete regulatory proteins that control 

enzyme expression. For example, deleting protein kinases in yeast caused widespread and 

specific changes of enzyme levels (Zelezniak et al., 2018), and deletion of transcription factors 

in E. coli amino acid biosynthesis led to increases of only the enzymes that belong to the 

respective regulon (Sander et al., 2019). However, because deletion of regulators affects 
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expression of many enzymes simultaneously, it is still difficult to decipher which enzyme was 

responsible for certain metabolic phenotypes. 

Thus, it remains an open question how cellular metabolism responds to moderate changes of 

a single enzyme. Such changes can occur in nature due to expression noise (Metzger et al., 

2015; Newman et al., 2006) or mutations of genes that encode enzymes (Kacser and Burns, 

1981). Control theory suggests that moderate changes of an enzyme have only small and local 

effects on metabolism, which means that local changes should not propagate globally (Levine 

and Hwa, 2007; Mazat et al., 1996). This robustness of metabolism is somewhat expected, 

but mostly theoretical studies examined the mechanisms that enable metabolic robustness 

(Chandra et al., 2011; Grimbs et al., 2007). The few studies that measured robustness against 

changes of enzyme abundance focused on specific pathways (Fendt et al., 2010; Tanner et al., 

2018), but robustness was not measured at a metabolism-wide level. 

Recent developments of targeted genome modification methods have advanced our ability 

to perturb expression of single genes with high precision and high throughput. For example, 

synthetic promoter libraries in yeast mapped the precise relationship between the expression 

level of genes and cellular fitness (Keren et al., 2016). Many of the 80 target genes in this 

study encoded key metabolic enzymes and their expression level had little effects on fitness 

of yeast. Another method to modulate gene expression is CRISPR interference (CRISPRi), 

which represses transcription of a target gene with a complex of deactivated Cas9 (dCas9) 

and a single guide RNA (sgRNA) (Qi et al., 2013). Because CRISPRi is inducible, it permits time-

resolved studies (Camsund et al., 2020; Rishi et al., 2020) and functional analyses of genes 

that are essential and therefore not viable in knockout libraries (Peters et al., 2016; Rishi et 

al., 2020; Rousset et al., 2018). Many CRISPRi screens measured simple phenotypes like 

fitness and growth, but to our knowledge there is no comprehensive study that combined 

CRISPRi perturbations in metabolism with multi-omics analysis.  

Here, we combined a metabolism-wide CRISPRi screen with multi-omics analysis of 30 CRISPRi 

strains to investigate how E. coli metabolism responds to decreases of enzyme-levels. First, 

we measured competitive fitness of 7177 strains in a metabolism-wide CRISPRi library.  An 

inducible CRISPRi system enabled us to measure the time-delay between inducer addition 

and appearance of fitness defects. Only 7 CRISPRi strains responded within the first 4 h after 

induction of CRISPRi, while fitness defects of most strains appeared with a considerable time-
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delay (in average 7.8 h). This provided first evidence that E. coli metabolism is robust against 

decreasing enzymes below wild-type levels. The metabolome and proteome of 30 CRISPRi 

strains showed that changes in the metabolic network were local and specific. For example, 

target-enzymes were always among the most downregulated proteins (in average 5-fold). At 

the metabolome level, we observed strong concentration changes of substrate metabolites 

and allosteric effectors. We show for 3 CRISPRi strains that these changes contributed to 

buffering the knockdown: i) increases of ornithine buffered the CarAB knockdown by 

allosterically activating the enzyme, ii) S-adenosylmethionine triggered a compensatory 

upregulation of the methionine pathway in the MetE knockdown, and iii) 6-phosphogluconate 

was responsible for activation of the Entner-Doudoroff pathway in the Gnd knockdown. 

Overall, our results highlight the central role of regulatory metabolites in maintaining 

robustness against ever-changing concentrations of enzymes in a cell, which occur in nature 

due to stochastic effects like expression noise, cell division or fluctuating environments. 

Results 

An inducible CRISPRi system identifies rate-limiting enzymes 

For dynamic knockdowns of enzymes, we used a CRISPRi system that consisted of an aTc-

inducible dCas9 on the chromosome (Lawson et al., 2017), and a constitutively expressed 

single guide RNA (sgRNA) on a plasmid (Qi et al., 2013) (Figure 1A). To evaluate dynamics of 

gene interference with this CRISPRi system, we targeted a YPet reporter protein inserted in 

the E. coli genome (Lawson et al., 2017). These experiments showed an exponential decrease 

of the YPet content per cell, indicating a constant dilution of the YPet protein by growth 

(Figure 1B). The 1-hour delay between inducer addition and decrease of YPet is probably 

occurring due to the time of dCas9 expression and its target search (Jones et al., 2017). 

Moreover, YPet expression was only repressed in the presence of the dCas9 inducer aTc, 

showing tight control of the CRISPRi system (Figure 1B). Thus, CRISPRi allowed us to 

dynamically decrease the abundance of proteins starting from unrepressed (wild-type) levels. 

To further test the dynamics of the CRISPRi system, we targeted genes encoding enzymes in 

pyrimidine nucleotide biosynthesis. All pyrimidine enzymes are essential for growth of E. coli 

on glucose minimal medium. Therefore, knockdowns of pyrimidine genes should cause a 



  Chapter 1 
 

37 
 

growth defect when enzyme-levels reach a critical threshold. At this threshold the target-

enzyme limits biosynthesis of UMP, and eventually affects growth (Figure 1C). Expression of 

dCas9 was either induced by supplementing aTc at the start of the cultivation (induced 

cultures), or cells were grown without inducer (un-induced cultures). A control strain without 

target grew similar in induced and un-induced cultures, which means that dCas9 expression 

alone causes no growth burden (Figure 1D). Un-induced cultures of all pyrimidine 

knockdowns grew like the control, confirming that the CRISPRi system is tight. Induced 

cultures, in contrast, displayed a wide range of growth phenotypes: knockdown of the first 

two enzymes of the pathway (PyrB and PyrC) hardly affected growth, while the PyrE 

knockdown caused a strong growth defect. Knockdown of PyrF and PyrD impaired growth as 

well, but the effect appeared relatively late after induction of CRISPRi (around 5 hours).  

 

 

Figure 1. Dynamic knockdowns of enzymes with CRISPR interference  
(A) The CRISPR interference system consisted of an E. coli strain (YYdCas9) that has dCas9 integrated into the genome 
(Lawson et al., 2017), and a single guide RNA on a plasmid (Qi et al., 2013). dCas9 is under control of an aTc inducible Ptet 
promoter. The sgRNA is under control of a constitutive promoter. (B) Dynamic knockdown of YPet, which is integrated into 
the genome of the YYdCas9 strain. YPet fluorescence is shown for cells that express either a control sgRNA (black) or a sgRNA 
that targets YPet (orange). YPet fluorescence per OD is normalized to an un-induced culture with the control sgRNA. The 
YPet knockdown was induced at time = 0 h by supplementing 200 nM of aTc. Data are represented as mean, and the grey 
areas are ± SD (n = 3). (C) Knockdown of an enzyme impairs growth when its concentration reaches a critical level. The target-
enzyme is the enzyme, which is encoded by the gene that is repressed with CRISPRi. (D) Growth of cells expressing the control 
sgRNA, or sgRNAs targeting genes that encode enzymes in pyrimidine nucleotide biosynthesis. Expression of dCas9 was 
induced by supplementing 200 nM of aTc (blue) or dCas9 was not induced (black). Cells grew on minimal glucose medium in 
microtiter plates. Means of n = 3 cultures are shown.  
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In conclusion, CRISPRi allowed us to induce dynamic decreases of protein-levels (Figure 1B). 

The 5-hour delay between inducer addition and appearance of growth defects in the PyrF and 

PyrD knockdowns, suggests that the target-protein is diluted by growth until it reaches a 

critical level. In contrast, the early growth defect in the PyrE strain indicates that this enzyme 

is already expressed at a critical-level in the wild-type. This is consistent with previous reports 

about sub-optimal expression of PyrE in K12-derived E. coli, due to a frameshift mutation 

upstream of the pyrE gene (Jensen, 1993). The comparably weaker growth defects of the 

other pyrimidine knockdowns indicated that these enzymes do not operate at a critical level. 

However, an alternative explanation is that the sgRNAs for these targets are weaker or not 

functional. Therefore, we next targeted genes with several sgRNAs, and designed sgRNAs for 

all metabolism-related genes in E. coli. 

 

E. coli metabolism is robust against CRISPRi-knockdowns of enzymes  

The latest genome-scale model of E. coli metabolism, iML1515, includes 1515 genes (Monk 

et al., 2017) and we constructed sgRNAs that target these genes using array-synthesized 

oligonucleotides (Figure 2A). Per gene we designed 4 to 6 sgRNAs that target different loci on 

the coding strand. The resulting sgRNAs were cloned in a pooled approach and subsequently 

transformed into E. coli that carried dCas9 on the genome (Figure 1A). Sequencing of the 

CRISPRi library showed that 7177 unique sgRNAs were present in the library and they target 

1513 of the 1515 genes in the iML1515 model (Figure S1 and Table S1). We cultured the 

library for 13 h on glucose minimal medium without induction of dCas9, which hardly changed 

the composition of the library: the fold-change of single CRISPRi strains after 13 h was 

normally distributed around 1 and only 47 out 7177 strains (0.6%) showed a fold-change >2 

(Figure S1). The stable composition of the un-induced library confirms again tight control of 

the CRISPRi system. Subsequently, we induced dCas9 expression and followed the library 

composition by next generation sequencing for 14 h in intervals of 1 h (Figure 2A). Every two 

hours, the cultures were back-diluted into fresh medium, to avoid limitations of oxygen and 

nutrients. To assess reproducibility, we used two independent cultivations. Fitness-scores of 

single CRISPRi strains were quantified as fold-change of sgRNA counts, which were 

reproducible between the two independent cultivations (Figure S2).  
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Figure 2. Dynamic knockdowns of 1513 genes in the metabolic network of E. coli  
(A) A CRISPRi library targeting 1513 genes in the latest genome-scale reconstruction of E. coli metabolism (iML1515). Each 
gene was targeted with 4-6 sgRNAs, which are equally distributed on the coding strand. sgRNAs were cloned in a pooled 
approach on plasmid pgRNA-bacteria and YYdCas9 was transformed with the resulting plasmid library (see also Figure 1A). 
The library was induced with 200 nM aTc at time = 0 h, and cultured for 14 h in shaking flasks. The culture was back-diluted 
every 2 hours into fresh medium. Samples for next generation sequencing were collected every hour. See also Table S1. (B) 
K-means clustering of fold-changes of 7177 sgRNAs. Time-course data was clustered into k = 4 clusters. Box plots represent 
the distribution of sgRNAs in each cluster per time point. Orange dots in Cluster B indicate a control strain that expresses a 
sgRNA with no target. See also Table S2. (C) Examples of fitness-score dynamics of CRISPRi strains (ppc with low variability 
between 5 sgRNAs, and trpE with high variability between 5 sgRNAs). Sigmoidal curves were fitted to the time-course of each 
sgRNA. The response time was defined as the time point when the fold-change of a sgRNA was 0.5. Different colors are 
different sgRNAs. Full and dashed lines are fits to experiment 1 (squares) and experiment 2 (circles). (D) Response times in 
experiment 1 and experiment 2. Shown are 1182 sgRNA that had response times below 14 h (average of exp1 and exp2). 57 
sgRNAs that had more than 20% error are shown in red. See also Table S3. (E) Venn diagram showing the overlap between 
253 “metabolic bottleneck genes” (blue), genes that are essential on glucose minimal medium (red), and genes that encode 
enzymes with metabolic flux (green). (F) Response times of all 253 “metabolic bottleneck genes”. See also Table S4. Shown 
is the average response time of the 2 strongest sgRNAs of each gene. Genes are grouped into metabolic categories according 
to the definition in iML1515. The name of the most sensitive target is shown for each category. Red dots are genes with 
response times below 4 h. Orange dots are the 30 targets in Figure 3. See also Figure S1-S4. 
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To explore dynamic patterns of fitness-scores of the 7177 CRISPRi strains in the library, we 

performed k-means clustering with their individual time profiles (Figure 2B). Fitness-scores of 

45% of the CRISPRi strains were constant for 14 h (cluster A). Another 30% of the strains in 

cluster B showed a slight increase of fitness-scores. This cluster included a control strain that 

expressed a sgRNA with no target (orange line in Cluster B, Figure 2B). This shows that 

increasing fitness-scores are due to a relative enrichment of strains that have wild-type like 

growth. However, some strains had higher fitness-scores than the control strain suggesting 

that these knockdowns confer a competitive advantage over the wild-type. Knockdowns of 

18 genes resulted in fitness-scores >1.5 after 14 h (with at least two sgRNAs, Table S2), thus 

indicating that expression of these genes is not optimal on glucose minimal medium. Two of 

the sub-optimally expressed genes encoded enzymes that produce important secondary 

messengers in E. coli: cyclic-AMP (cyaA) and ppGpp (relA). This observation is consistent with 

a previous study that showed sub-optimal regulation by cyclic-AMP and ppGpp in E. coli 

(Towbin et al., 2017). We confirmed the fitness advantage of the relA strain in microtiter plate 

cultivations (Figure S3).  

The remaining 25% of sgRNAs in cluster C and D caused mild and strong fitness defects, 

respectively. The sigmoidal dynamics of fitness-scores in cluster D suggest that the CRISPRi 

strains in this cluster drop out from the library, presumably because the knockdown created 

a metabolic bottleneck. To identify at which time point the knockdowns created a metabolic 

bottleneck, we estimated a “response-time” for each CRISPRi strain by fitting a sigmoidal 

function to the time-course of the fitness-score (Figure 2C and Table S3). The response-time 

was defined as the time point when the knockdown caused a 50% reduction of fitness, and 

response times were reproducible between the two experiments (Figure 2D). In total, 253 

genes were targeted by at least 2 sgRNAs that caused response-times below 14 h, and we 

refer to these 253 targets as metabolic-bottleneck genes (Table S4). Most metabolic-

bottleneck genes had similar response times for the 4-6 sgRNAs: 70% had responses times 

that varied less than +/- 20% between different sgRNAs (Figure S4). The different sgRNAs bind 

at different positions of the target genes, and therefore they should have different repression 

efficiencies (Qi et al., 2013). Yet, the position hardly affected response times (Figure S4). This 

result indicates that repression efficiencies have smaller effects on response times than 

target-specific factors.  
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The majority of the metabolic-bottleneck genes (203 out of 253, 80%) are essential for growth 

on glucose medium (Figure 2E). According to simulations with the iML1515 model, 224 of the 

253 metabolic-bottleneck genes (88%) encode enzymes that carry metabolic flux with glucose 

as sole carbon source. Only 11 genes (4%) are neither essential nor encode enzymes with 

metabolic flux (Table S4). For 3 of the 11 genes, the fitness defect can be explained by polar 

effects, because an essential or flux-carrying gene is encoded downstream of the targeted 

gene and in the same operon. The remaining 8 genes may have previously unrecognized 

functions that have strong effects on cellular fitness. 

The average response time of the 252 bottleneck genes was 7.8 h, which is relatively late 

compared to the 7 most sensitive targets that had a response time below 4 h (red dots in 

Figure 2F). The 7 most sensitive targets were: the ilvE/ilvD operon, ppc, sucA, lpxC, cysD, pyrG 

and the nrdA/nrdB operon. A hypothesis is that these genes encode enzymes that are rate-

limiting steps and therefore they are expressed near critical levels. For example, 

ribonucleoside-diphosphate reductase (NrdAB) supplies deoxyribonucleotide triphosphates 

(dNTPs) for DNA replication, and previous work showed that NrdAB is rate-limiting for DNA 

synthesis (Gon et al., 2006). Similarly, PEP carboxylase (Ppc) supplies TCA-cycle precursors for 

biosynthesis of 10 out of the 20 amino acids (anapleurosis). Thus, near-critical Ppc levels may 

limit overall protein synthesis. This hypothesis is supported by the observation that 

overexpression of Ppc increases the growth rate of E. coli (Chao and Liao, 1993).  

In summary, only 7 out of 1513 metabolism-related genes had response times below 4 h. The 

majority of knockdowns, however, responded late to induction of CRISPRi (on average 7.8 

hours). This suggests that E. coli is robust against reducing the abundance of most metabolic 

enzymes, and that few enzymes are expressed near critical levels. Next, we wondered how 

strongly the abundance of target-enzymes decreased and which mechanisms buffered 

decreases of enzymes. 

 

CRISPRi enforces consistent decreases of target-enzymes and specific proteome responses 

To probe how strongly CRISPRi downregulated the target-enzymes, we measured the 

proteomes of 30 CRISPRi strains (Figure 3A and Table S5). The target-enzymes included one 

of the most sensitive targets in the pooled CRISPRi screen: PEP carboxylase (Ppc) that converts 
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PEP to oxaloacetate in E. coli. We also included PckA which catalyzes the reverse reaction and 

should have no relevance for growth on glucose. Other targets were distributed over the 

metabolic subsystems, like glycolysis (Pts, Pgi, PfkA, PfkB, FbaA, GapA, Eno, TpiA, PykA, PykF) 

and the oxidative pentose phosphate pathway (Zwf and Gnd). From the TCA cycle we selected 

the first step catalyzed by citrate synthase (GltA), as well as the succinate dehydrogenase 

complex (SdhABCD). Furthermore, 8 target-enzymes were in biosynthesis pathways of amino 

acids (AroA, IlvC, MetE, GdhA) and nucleotides (Adk, PyrF, PurB, PurC), or both (Prs and 

CarAB). The remaining targets were CysH in sulfur assimilation, GlmS in amino sugar 

biosynthesis and Dxs in the isoprenoid pathway. We cultured these strains in microtiter plates 

and measured their proteomes 4.5 h after dCas9 induction. At this time-point, growth 

phenotypes appeared in 10 out of 30 CRISPRi strains (Figure 3B and Figure S5). Each strain 

was cultured in triplicates with and without induction of dCas9, resulting in a total of 180 

proteome samples.  

The proteome data showed that all target-enzymes decreased to a similar extent (in average 

5.1-fold, Figure 3C and Figure S6). In 20 of 29 knockdowns the target-enzyme was the most 

downregulated protein among all 1506 measured proteins (Figure S7). Target-enzymes hardly 

decreased in un-induced cultures, showing that the CRISPRi system is tight and inducible 

(Figure 3C). We confirmed for the PfkA and MetE strain that target-enzymes were also 

downregulated at earlier time points (Figure S8), supporting our assumption that target-

enzymes decrease progressively after induction of CRISPRi (similar to the YPet knockdown, 

Figure 1B).  

Intuitively, stronger decreases of the target-enzyme should cause a stronger growth defect. 

However, there was no correlation between decreases of target-enzymes and reduction of 

growth (Figure S9). This indicates again that repression efficiencies have smaller effects on 

growth phenotypes than target-specific factors (e.g. overcapacities of the target-enzyme 

itself). However, we observed a correlation between reduction of growth and the number of 

significantly changed proteins (2-fold, p-test<0.05, Figure S9). This means that strains with a 

growth defect had stronger proteome changes, whereas the proteome was stable in strains 

without a growth defect. We then analyzed if these proteome changes were a global growth-

dependent response (Scott et al., 2010) or if proteome changes were specific. 
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Figure 3. Growth defects and abundances of target-enzymes in 30 CRISPRi strains 

Metabolic map showing the target-enzymes of 29 CRISPRi strains. The control strain expressed a sgRNA without a spacer 
sequence. Operon structures of the targets are shown in Figure S6. See also Table S5. (B) Growth curves of the 30 CRISPRi 
strains. See also Table S6. Un-induced cultures are shown in black. Induced cultures are shown in orange (200 nM aTc was 
supplemented at time = 0 h). Samples for proteomics were collected at the end of the cultivation (4.5 h). Growth curves 
show means of n = 3 cultures. Background colors indicate the reduction in growth rates at the time of sampling. Growth rates 
were estimated using linear regression with the last 4 time points of growth curves. Abbreviations of target-enzymes are 
described in Table S6. (C) The bar plot shows abundances of target-enzymes in cultures with inducer (blue) and without 
inducer (grey). Data is normalized to the average enzyme-level in un-induced cultures. The heatmap shows fold-changes of 
target-enzymes between induced and un-induced cultures. Data was calculated using the means of n = 3 samples per strain, 
error bars are propagated errors. See also Table S7. See also Figure S5-S11. 

 

Because the average similarity of proteome changes between pairs of CRISPRi strains was 

only 6% (Figure S10), we concluded that each knockdown caused specific proteome changes. 

For example, the proteome changes affected different metabolic subsystems (Figure S11), 
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and in some CRISPRi strains (Pts, AroA, MetE, CarAB, IlvC), enzymes in the same metabolic 

subsystem as the target-enzymes were upregulated (green dots in Figure S7).  

In summary, CRISPRi decreased the abundance of target-enzymes in average 5-fold (Figure 

3C). Decreases of target-enzymes hardly affected growth of 19 CRISPRi strains, while growth 

rates of 10 CRISPRi strains declined ~1 h before the sampling time-point (Figure 3B). Thus, E. 

coli metabolism tolerates substantial decreases of enzyme-levels and we next wondered 

which mechanisms enable this robustness. 

 

Substrates and allosteric effectors respond to CRISPRi-knockdowns of enzymes 

To understand how E. coli metabolism responded to the ~5-fold decrease of target-enzymes, 

we measured the metabolome of the 30 CRISPRi strains. Therefore, we collected samples for 

metabolomics at the same time point as proteomics samples (4.5 hours), and measured 119 

intracellular metabolites by liquid chromatography-tandem mass spectrometry (LC-MS/MS). 

Especially substrate metabolites responded strongly and specifically to knockdowns of 

enzymes (Figure 4). In 18 out of 29 knockdowns, the substrate increased more than 2-fold 

and was one of the most changing metabolites. Products, in contrast, were more stable than 

substrates (Figure 4, Figure S12). This observation is consistent with a study in yeast, which 

suggested that increases of substrates can maintain fluxes and global metabolite homeostasis 

(Fendt et al., 2010). 

In 4 strains allosteric effectors of the target enzyme responded most strongly to the 

knockdown (CarAB, GlmS, Ppc and Zwf, Figure 4). Ornithine, for example, is an allosteric 

activator of carbamoyl phosphate synthetase (CarAB) and ornithine increased 512-fold in the 

CarAB knockdown. Because ornithine levels in E. coli are 37-fold lower than the activation 

constant of CarAB (Bennett et al., 2009; Bueso et al., 1999), increases of ornithine should lead 

to a 92% higher activity of CarAB in vivo (Figure S13). Thus, allosteric activation of CarAB by 

ornithine could buffer the CarAB knockdown. Similarly, knockdown of Ppc decreased the 

concentration of aspartate (13-fold) and malate (16-fold), which are both allosteric inhibitors 

of Ppc. Absolute concentrations of malate and aspartate are above the respective inhibition 

constants of Ppc (Bennett et al., 2009; Gold and Smith, 1974). Therefore, decreases of 

aspartate and malate should relieve inhibition of Ppc, which increases its activity 4.1-fold in 
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the Ppc knockdown (Figure S13). In the GlmS and Zwf strain we observed a similar relieve 

from allosteric inhibition, because the respective reaction product glucoseamine-P and 

NADPH decreased. This is in line with previous work showing that decreases of NADPH release 

overcapacities of Zwf (Christodoulou et al., 2018) and that glucoseamine-P is a potent 

inhibitor of GlmS activity (Deng et al., 2006).  

 

 

Figure 4. Metabolome changes in 30 CRISPRi strains are local and specific 
(A) Intracellular concentration of 119 metabolites in the 30 CRISPRi strains. See also Table S8. Metabolite levels are shown 
as log2 fold-change between induced and un-induced cultures. Samples were collected after 4.5 hours cultivation in 12-well 
plates (see Figure 3C). Data are represented as mean (n = 2). Substrates of the target-enzymes are shown in orange, products 
in blue, allosteric inhibitors in magenta and allosteric activators are green. S-adenosylmethionine (sam) in the MetE strain is 
shown in black (related to Figure 6). Note that isomers were not separated: g6p and f6p is the total pool of hexose-
phosphates, r5p is the total pool of pentose- phosphates, dhap and gap is the total pool dhap/gap. Abbreviations of 
metabolites are described in Table S5. See also Figure S12. 

 

In conclusion, knockdowns of enzymes caused specific and localized metabolome changes: 22 

CRISPRi strains showed strong concentration changes of either the substrate metabolite or a 

known allosteric effector of the target-enzyme. In 4 CRISPRi strains (Dxs, GapA, Prs, IlvC) we 

could not directly link substrates or known effectors to the target-enzyme, although in the 

Dxs knockdown the product metabolite (1-deoxyxylulose-5-phosphate) decreased most 

strongly and might be an unknown regulator of the enzyme. Three other CRISPRi strains 

showed no metabolome changes, which was expected because the target-enzyme is not used 

on glucose (Pck) or a minor isoenzyme (PfkB and PykA). The local and specific metabolome 

changes in the CRISPRi strains are in line with previous work on enzyme-level perturbations 

(Fendt et al., 2010; Kacser and Burns, 1973), which proposed that local metabolome changes 
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buffer against global changes. Next, we sought to obtain further evidence for a buffering 

function of metabolite concentration changes in three CRISPRi strains (CarAB, MetE and Gnd). 

 

Ornithine buffers the CarAB knockdown 

Despite their potential to buffer knockdowns, allosteric effectors are probably not responding 

to CRISPRi because they are regulators, but rather because they are located up- or 

downstream of the target-enzyme. For example, ornithine increases in the CarAB knockdown 

most likely because ornithine carbamoyltransferase (ArgF and ArgI) is limited due to low levels 

of the CarAB product carbamoyl phosphate (Figure 5A). This also implies that allosteric 

activation of CarAB by ornithine cannot fully compensate the CarAB knockdown. 

Nevertheless, ornithine could have a buffering function that alleviates the consequences of 

the knockdown. To understand the regulatory role of ornithine in the CarAB knockdown, we 

developed a small metabolic model of CarAB and the arginine-pyrimidine branch point (Star 

Methods and Figure 5A). Kinetic parameters of the model were randomly sampled 1,000 

times from physiologically meaningful ranges based on in vitro parameters. With each of the 

1,000 parameter sets, we simulated the CarAB knockdown using two different models: the 

first model included allosteric activation of CarAB by ornithine (allosteric model), and the 

second model did not include this regulation (non-allosteric model). The allosteric model was 

more robust against the CarAB knockdown than the non-allosteric model (Figure 5B). 

Especially fluxes remained relatively constant in the allosteric model: 796 of the 1000 

simulations maintained 95% of the initial steady state flux. In contrast, flux in the non-

allosteric model decreased continuously to about 50% of the initial steady state. Moreover, 

concentrations of the end-products arginine and UTP/CTP were more stable in the allosteric 

model than in the non-allosteric model. These model results suggest that allosteric activation 

of CarAB by ornithine can minimize perturbations to metabolic flux and end-products in 

arginine and pyrimidine nucleotide biosynthesis. 
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Figure 5. Ornithine buffers the CarAB knockdown 
(A) Stoichiometry of the kinetic model of CarAB and the arginine-pyrimidine branch point. The dotted arrow indicates 
allosteric activation of CarAB by ornithine (orn). (B) Simulation results of the allosteric model and the non-allosteric model 
with 1000 parameter sets (thin lines). Thick lines are the average of 1000 simulations. Shown are the simulated reaction rate 
of r2 and metabolite dynamics of ornithine (orn, black), carbamoyl phosphate (cbp, purple), arginine (arg, blue) and utp/ctp 
(orange). CRISPRi was simulated by setting the expression rate of CarAB to zero at t=0 min. The insert shows the full range 
average ornithine levels in the non-allosteric model. (C) Measured concentration of ornithine (orn), arginine (arg), utp and 
ctp in the CarAB knockdown. Metabolite levels are normalized to the time point before induction. The culture was induced 
with aTc at t = 0 min. Small grey dots are measurements in n = 2 cultures and large colored dots are the mean. See also Figure 
S13. 

 

To confirm the model results we measured metabolites dynamically in the CarAB knockdown 

(Figure 5C). Consistent with the simulation results ornithine increased already 40 min after 

induction of the CarAB knockdown, while the end-products arginine, CTP and UTP remained 

relatively constant for at least 2 hours. The fast response of ornithine shows that the CarAB 

knockdown perturbs the arginine-pyrimidine branch point early after induction of CRISPRi. 

However, the perturbation did not propagate into the end-products of both pathways. Thus, 

the combination of a metabolic model and dynamic metabolite data provides additional 

evidence that ornithine has the potential to buffer the CarAB knockdown. 

 

S-adenosylmethionine causes a compensatory upregulation of the methionine pathway in 

the MetE knockdown  

Metabolome changes can also modulate gene expression through allosteric interactions 

between metabolites and transcription factors. For example, S-adenosylmethionine (SAM) is 

an allosteric activator of MetJ, which is a transcription factor that controls genes involved in 

methionine and SAM biosynthesis (Figure 6A). SAM was the most decreased metabolite in 

the MetE knockdown (Figure 4), and correspondingly all enzymes in the methionine 

biosynthesis pathway were upregulated in the MetE strain (except the target MetE, Figure 
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6B). Thus, we hypothesized that low levels of SAM de-activated the transcription factor MetJ, 

which in turn de-repressed expression of genes that encode enzymes in methionine and SAM 

biosynthesis. To confirm that MetJ responded to the MetE knockdown, we expressed GFP in 

the MetE strain using a MetJ regulated promoter (Zaslaver et al., 2006). Indeed, GFP 

expression increased with a 2-hour delay after induction of CRISPRi, showing that MetJ 

responded to the knockdown (Figure 6C). Thus, we concluded that low SAM levels caused a 

compensatory upregulation of the methionine pathway. This hypothesis is supported by SAM 

levels in all 30 CRISPRi strains: only two strains had low SAM levels (MetE and Ppc strain), and 

methionine biosynthesis enzymes increased only in those strains (Figure S14). 

Next, we wondered if the SAM-MetJ regulation buffered the MetE knockdown. Therefore, we 

supplemented SAM to the MetE strain, and expected that this prevents decreases of SAM and 

consequently the compensatory upregulation of the methionine pathway. The growth defect 

of the induced MetE strain was indeed stronger in the presence of SAM (Figure 6D), thus 

indicating that decreases of SAM buffered the knockdown. The stronger growth defect in the 

presence of SAM was not due to a general toxic effect, as the un-induced MetE strain was not 

influenced by SAM (Figure 6D).  

 

 

Figure 6. SAM buffers the MetE knockdown 
(A) Schematic of methionine and S-adenosylmethionine (SAM) biosynthesis and regulation by the transcription factor MetJ. 
(B) Abundance of enzymes in methionine and SAM biosynthesis in the MetE strain. See also Table S7. Enzyme levels are 
shown as log2 fold-change between induced and un-induced cultures (n = 3 cultures). (C) The MetE knockdown was 
transformed with a fluorescent reporter plasmid that expressed GFP from a MetJ regulated promoter (pUA66-metB-gfp). 
The fold-change of GFP/OD between induced and un-induced cultures is shown in green. The fold-change of OD is shown in 
black. (D) Growth of the induced MetE strain (full lines) and the un-induced MetE strain (dashed lines), with supplementation 
of 1 mM SAM (black) and without (orange). Lines in (C) and (D) are means of n=3 cultures, and shadows show the standard 
deviation. Induced cultures were supplemented with 200 nM aTc at t = 0 h. See also Figure S14. 
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In summary, proteome and metabolome data recovered the known allosteric interaction 

between SAM and the transcription factor MetJ. GFP-promoter fusions confirmed that this 

regulation is active in the MetE knockdown, and supplementing SAM supported the 

hypothesis that SAM buffered the MetE knockdown. Similar to the SAM-MetJ interaction, the 

metabolome/proteome data recovered interactions between arginine and ArgR (active in the 

CarAB strain), acetyl-serine and CysB (active in the MetE and CysH strains) and transcriptional 

attenuation by valine (active in the IlvC strain) (Figure S14). This highlights the potential of 

CRISPRi and multi-omics data to identify regulatory metabolite-protein interactions that are 

functional in vivo.  

 

6-phosphogluconate activates the Entner-Doudoroff pathway to bypass the Gnd 

knockdown  

Knockdown of 6-phosphogluconate dehydrogenase (Gnd) increased the concentration of 6-

phosphogluconate (6PG) (Figure 4), and upregulated enzymes in the Entner-Doudoroff (ED) 

pathway (Figure 7A and Figure 7B). Thus, we wondered if increases of 6PG are linked to 

upregulation of the ED pathway. Transcription of the ED pathway is regulated by two 

transcriptional repressors: KdgR and GntR. While KdgR controls only the two genes encoding 

the ED enzymes (Edd and Eda), GntR controls additional genes that are involved in gluconate 

uptake. One enzyme encoded by these genes (GntT) was also upregulated in the Gnd 

knockdown (Figure 7B), suggesting that GntR responded to the knockdown. The activity of 

GntR is allosterically inhibited by gluconate (Izu et al., 1997). Therefore, we assumed that 

accumulation of 6PG produced small amounts of gluconate, which inhibited GntR and de-

repressed transcription of edd and eda. Indeed, the intracellular concentration of gluconate 

increased in the Gnd knockdown (Figure 7C). The concentration of gluconate was 50 µM in 

the un-induced Gnd strain, which is close to wild-type levels (42 µM) (Bennett et al., 2009).  

Induction of the Gnd knockdown increased gluconate to 184 µM, which was probably 

sufficient to inhibit GntR and de-repress expression of edd and eda.  
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Figure 7. 6-phosphogluconate buffers the Gnd knockdown 
(A) Schematic of the Entner-Doudoroff pathway (two enzymes Edd and Eda), and the oxidative Pentose-Phosphate pathway. 
GntK is a kinase that phosphorylates gluconate. Intracellular gluconate can derive from dephosphorylation of 6-
phosphogluconate (6PG). (B) Fold-changes of the target-enzyme (Gnd), and fold-changes of all measured proteins that are 
regulated by the transcription factor GntR (Edd, Eda, GntT). Shown are induced (+) and un-induced (-) knockdowns of Gnd in 

the YYdCas9 strain (blue) and the YYdCas9-gntK strain (green). Samples were collected after 4.5 hours cultivation in 12-well 
plates. Data is normalized to the un-induced Gnd strain (n = 3 cultures). (C) Same as in (B) for intracellular metabolites (6PG: 
6-phosphogluconate). See also Table S9. 

 

Increases of gluconate in the Gnd knockdown suggests that gluconate acts as regulatory 

metabolite, which does not participate in metabolism but in regulation. We expected that we 

can alter this regulation by disrupting the interconversion between 6-phosphogluconate and 

gluconate. Therefore, we deleted gluconate kinase (gntK) in the Gnd knockdown, which led 

to even higher gluconate levels in the Gnd knockdown (246 µM un-induced, and 620 µM 

induced, Figure 7C). The higher gluconate levels increased also expression of ED enzymes 

(Figure 7C). The higher abundance of ED enzymes in turn, reduced 6PG levels in the 

gntK/Gnd knockdown, showing that the ED pathway is a bypass that enables overflow of 

excess 6PG. 

In summary, the Gnd knockdown revealed a bypass function of the ED pathway, which has 

been observed before in the Gnd knockout (Jiao et al., 2003; McCloskey et al., 2018b). Here 

we discovered that expression of the ED-bypass is regulated by 6PG, which is first converted 

into gluconate and then interacts with the transcription factor GntR.  
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Discussion 

Robustness is a fundamental feature of metabolism. A key requirement for metabolic 

robustness is that small changes in enzymes-levels have no global effects on overall 

metabolism. Otherwise, fluctuating enzyme-levels could decrease metabolic flux and 

eventually cellular fitness. Theories like Metabolic Control Analysis predicted that metabolism 

is insensitive to enzyme-level perturbations (Chandra et al., 2011; Grimbs et al., 2007; Kacser 

and Burns, 1973; Levine and Hwa, 2007), but have not measured this property at a system-

level. Studies that measured flux-enzyme-metabolite relationships at a system-level 

examined the impact of nutritional changes on metabolism of yeast (Hackett et al., 2016) and 

E. coli (Gerosa et al., 2015). But how changes of enzyme-levels affect metabolism is largely 

unexplored.  

In this study, we used CRISPRi to perturb the expression of single enzymes and found that 

metabolism buffers fitness defects during the initial phase after induction of CRISPRi. The 

opposite effect has been reported for CRISPRi-knockdowns in Bacillus subtilis (Peters et al., 

2016), where a constant knockdown (~3-fold) prolonged initial lag-phases, but did not affect 

growth during exponential phase. Here, we observed that growth defects appeared with a 

time-delay and only few strains in a metabolism-wide CRISPRi library responded within the 

first 3-4 h (ilvE/ilvD, ppc, sucA, lpxC, cysD pyrG, nrdA/nrdB). Earlier studies support the high 

sensitivity of these targets, e.g. NrdAB seems rate-limiting for DNA synthesis (Gon et al., 2006) 

and overexpression of Ppc increases growth of E. coli (Chao and Liao, 1993). The high 

sensitivity of the ilvE/ilvD operon is probably due to the frameshift mutation upstream of ilvG, 

which causes suboptimal expression of these genes (Parekh and Hatfield, 1997). LpxC 

catalyzes the first committed step in lipid A biosynthesis and the enzyme is a drug target for 

antimicrobials (Löppenberg et al., 2013). Sensitive targets in glycolysis were mostly located in 

lower glycolysis, while upper glycolysis enzymes (PfkA and Pgi) had longer response times 

(Table S2). This observation is in line with previous reports about a thermodynamic bottleneck 

in lower glycolysis of E. coli (Flamholz et al., 2013). 

Metabolome and proteome responses of 30 CRISPRi strains were local and specific, and 

together they indicated that metabolism buffers decreases of enzymes. This observation is 

supported by previous reports about overcapacities in metabolism, such as enzyme 
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overabundance (Davidi and Milo, 2017; O’Brien et al., 2016; Sander et al., 2019), reserve 

fluxes (Christodoulou et al., 2018) or overflow metabolism (Basan et al., 2015; Reaves et al., 

2013). It has been suggested that cells control these overcapacities through metabolites that 

interact with enzymes directly (Christodoulou et al., 2018) or metabolites that modulate gene 

expression (Sander et al. 2019, Basan 2015). Substrate metabolites, for instance, can 

modulate enzyme activity through Michaelis-Menten relationships, and thereby buffer 

enzyme-level perturbations (Fendt et al., 2010) or modulate metabolic flux (Hackett et al. 

2016). The strong increase of substrates in 18 knockdowns indicates that substrate-level 

regulation could be relevant in these strains. However, it remains open if these responses 

buffered lower enzyme levels, because in vivo kinetic parameters demonstrated that most of 

the enzymes are saturated (Bennett et al., 2009; Park et al., 2016). Yet, our three case studies 

(CarAB, MetE and Gnd) demonstrated that regulatory metabolites can contribute to buffering 

decreases of enzymes. Future studies could further probe the buffering capacity of 

metabolites by repressing the target gene at a lesser (or stronger) extent (Hawkins et al., 

2020), and measure if this leads to milder (or stronger) metabolome and proteome changes.  

In conclusion, our study shows that the metabolome responds specifically and locally to 

enzyme-level perturbations by CRISPRi, and that E. coli tolerates substantial decreases of 

enzymes. This supports the prevailing hypothesis that the abundance of single enzymes has 

little effects on metabolic flux and that local changes in metabolism do not propagate globally 

(Kacser and Burns, 1973). This mechanism may ensure a high constancy of metabolic flux 

despite expression noise (Newman et al., 2006; Taniguchi et al., 2010) or mutations that occur 

during the evolution of metabolic networks (McCloskey et al., 2018a).   
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Lead Contact 

Further information and requests for resources and reagents should be directed to and will be fulfilled 

by the Lead Contact, Hannes Link (hannes.link@synmikro.mpi-marburg.mpg.de). 

Materials Availability 

Plasmids and strains generated in this study are available on request from the Lead Contact, Hannes 

Link (hannes.link@synmikro.mpi-marburg.mpg.de). 

Data and Code Availability: 

Sequencing source data have been deposited at the European Nucleotide Archive (ENA) and are 

publicly available under the accession number: PRJEB40851. Proteome source data have been 

deposited at the PRIDE database and are publicly available under the accession numbers: PXD022070. 

Metabolome source data have been deposited at the Open Research Data Repository of the Max 

Planck Society (Edmond) and are publicly available at: 

https://edmond.mpdl.mpg.de/imeji/collection/u_8nsTTnbzAExmuZ.  Original code of the CarAB 

model is publicly available at the Github repository: https://github.com/nfarke/Donati_Kuntz_et_al. 

Scripts used to generate the figures presented in this paper are not provided in this paper but are 

available from the Lead Contact on request. Any additional information required to reproduce this 

work is available from the Lead Contact. 
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EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Strains and Culture 

E. coli YYdCas9 strain (Lawson et al., 2017) was the wild-type strain used in this study. NEB 5-alpha 

Competent E. coli (Cat#C2987) cells were used for cloning. All strains in this study derive from the 

YYdCas9 strain and are listed in the Key Resources Table.  

Construction of arrayed strains 

30 CRISPRi strains were created by transforming the YYdCas9 (Lawson et al., 2017) strain with pgRNA-

bacteria plasmids that harbor the respective sgRNA (Addgene #44251). The spacer of sgRNAs 

consisted of a gene specific 20-22 base-pair region, which pairs adjacent to an NGG PAM site. The 

spacers were designed to bind as close as possible to the start of the coding sequence (Supplementary 

Table 7). Addgene #44251 was used as a template to prepare all plasmids, which were cloned inhouse 

or provided by Doulix. All plasmids were validated by sequencing. For CRISPRi of YPet, the sgRNA 

targeted lacZ, the first gene of the operon that includes YPet (Lawson et al., 2017). The plasmid pUA66 

was used to measure promoter activity (Zaslaver et al., 2006). The ΔgntK mutant was constructed by 

P1 Phage transduction of YYdCas9 using the donor strain JW3400 (ΔgntK) from the KEIO collection 

(Baba et al., 2006). The resulting strain was cured from the kanamycin resistance gene included in the 

transduction cassette. The deletion of gntK was confirmed by sequencing. The final YYdCas9_ΔgntK 

strain was transformed with the pgRNA-gnd plasmid. 

Construction of the CRISPRi pooled library 

sgRNA guide sequences were designed with Matlab scripts by searching for 4 to 6 equally distributed 

NGG PAM sites on the coding strand of each gene in the iML1515 model (Monk et al., 2017). Adjacent 

to PAM sites, 20 nt regions were selected. 150 nt oligonucleotides were synthesized (Agilent 

Technologies). The 150 nt sequences contained the 20 nt sgRNA guide sequences and 65 nt flanking 

regions homologous to the pgRNA-bacteria backbone. Oligonucleotides were amplified with 15 cycles 

of PCR amplification. The pgRNA-bacteria backbone (containing the nontargeting spacer sequence 5’-

AACTTTCAGTTTAGCGGTCT-3’) was linearized by PCR and amplified oligonucleotides were inserted 

with Gibson assembly. The Gibson assembly product was purified and subsequently transformed into 

electrocompetent E. coli YYdCas9 cells. Plating on four Petri dishes with 15 cm diameter resulted in 

approximately 9.9 × 107 colonies. Colonies were washed from the plates, pooled and stored as glycerol 

stocks. 

 

 



  Chapter 1 
 

55 
 

Media 

Cultivations were performed with LB medium or M9 minimal medium with glucose as sole carbon 

source (5 g L-1). M9 medium was composed by (per liter): 7.52 g Na2HPO4 2 H2O, 5 g KH2PO4, 1.5 g 

(NH4)2SO4, 0.5 g NaCl. The following components were sterilized separately and then added (per liter 

of final medium): 1 mL 0.1 M CaCl2, 1 mL 1 M MgSO4, 0.6 mL 0.1 M FeCl3, 2 mL 1.4 mM thiamine-HCl 

and 10 mL trace salts solution. The trace salts solution contained (per liter): 180 mg ZnSO4 7 H2O, 120 

mg CuCl2 2 H2O, 120 mg MnSO4 H2O, 180 mg CoCl2 6 H2O. For strains transformed with pgRNA-bacteria 

plasmids, 100 μg mL-1 ampicillin (Amp) was added to the media. To induce expression of the dCas9 

protein in the YYdCas9 strain, aTc was added to a final concentration of 200 nM. In experiments with 

pUA66 plasmids 34 μg mL-1 kanamycin was added to the medium. 

 

METHOD DETAILS 

Cultivation conditions for OD and YPet-, GFP-fluorescence measurements 

Single colonies on LB+Amp agar plates were transferred into 5 mL LB+Amp liquid cultures. The LB pre-

cultures were used to inoculate a second pre-culture in M9 medium that was incubated overnight in 

13 mL culture tubes under shaking at 37°C. M9 pre-cultures were diluted in 150 L M9 medium (1:50) 

and incubated in 96-well plates. Every strain was cultured in triplicates with and without addition of 

aTc to the M9 main culture (aTc was not added to pre-cultures). For YPet fluorescence measurements, 

0.1 mM IPTG was added to pre-cultures and main cultures to induce YPet expression. Optical density 

(600 nm) and YPet fluorescence (excitation 510 nm, emission 540 nm) was measured every 5 min 

using a plate reader (BioTek, Synergy). For GFP measurements, GFP fluorescence (excitation 490 nm, 

emission 530 nm) was measured in 10 min intervals using a plate reader (Tecan, Spark).  

Cultivation conditions for metabolome and proteome sampling 

Single colonies were transferred into liquid 5 mL LB+Amp from fresh LB+Amp plates, and then re-

inoculated in M9 medium overnight in 13 mL culture tubes under shaking at 37 °C. For metabolomics 

and proteomics sampling, M9 pre-cultures were adjusted to a starting OD600 of 0.05 into 12-well 

plates, with 2 mL of medium in each well. Strains were cultivated in triplicates with or without aTc, 

added at the beginning of the culture. Optical density at 600nm was measured every 10 min using a 

plate reader (Tecan, Spark) for 4.5 h. Plates were then rapidly transferred to a thermostatically 

controlled hood at 37 °C and kept shaking during the sampling procedure. For dynamic metabolomics, 

M9 pre-cultures were adjusted to a starting OD600 of 0.05 in a beaker containing 50 mL of medium and 
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a magnetic stirrer. Beakers were incubated with 400 rpm magnetic stirring in a thermostatically 

controlled hood at 37 °C.  

Cultivation conditions of the pooled CRISPRi library 

A preculture of 50 mL LB+Amp was inoculated with 500 µL of the pooled CRISPRi strain library from a 

glycerol stock and incubated at 37 °C for 5 hours. From the LB culture a second preculture in M9 was 

inoculated with a dilution of 1:10000 and incubated for 13 hours. After 13 hours the M9 preculture 

was in exponential phase and it was used to inoculate two main cultures with an initial OD of 0.05 in 

shaking flasks containing 100 mL of M9 with 200 nM of aTc to induce expression of dCas9. Every hour, 

OD was measured and samples for sequencing were collected. Every 2 hours, the culture was back-

diluted to an OD of 0.05 with fresh and prewarmed M9 containing 200 nM of aTc. Samples were 

centrifuged to precipitate the cells and plasmids were extracted with the GeneJET Plasmid Miniprep 

Kit (ThermoFisher Scientific).   

Next Generation Sequencing and Data Analysis 

To generate the DNA fragments of target regions, which are compatible with Illumina sequencing, a 

two-step PCR approach was used. First, a 300 bp fragment including the sgRNA sequence and the 

flanking regions has been amplified using Q5 polymerase (New England Biolabs, USA) and specific 

oligonucleotides binding at the target region (NGS_F2_adapter and NGS_R2_adapter, Supplementary 

Table 6). As template, 150 ng of the purified samples were used in a 50 μL PCR reaction with the 

following settings: 98 °C for 30 s, 12 cycles of 98 °C for 10 s, 65 °C for 30 s and 72 °C for 15 s; final 

extension at 72 °C for 5 min. Afterwards, the PCR products were purified with a NucleoSpin Gel and 

PCR Clean-up Kit (Macherey-Nagel, Germany) and eluted in 20 µL water. In the second PCR, when 

different pairs of indexes (i5 and i7) were added to each amplicon, Phusion High- Fidelity DNA 

Polymerase (New England BioLabs, USA) was used with the following conditions: 98 °C for 30 s; 12 

cycles of 98 °C for 10 s, 55 °C for 30 s and 72 °C for 20 s; final extension at 72 °C for 5 min. 4 ng of 

template was used in a final volume of 20 µL. Cleanup of the PCR products was done with AMPure XP 

beads (Beckman Coulter). All samples were run on a Bioanalyzer with an Agilent High Sensitivity DNA 

Kit (Agilent, USA) to analyze their composition. Next, 100 ng of each sample was pooled and the 

concentration of the pooled samples was measured using the Qubit dsDNA HS Assay on a Qubit 2.0 

Fluorometer. The pooled samples were diluted, denatured and loaded on a MiniSeq High Output 

Cartridge following the manufacturer’s instructions. To guarantee sufficient sequence diversity, 50% 

PhiX was spiked into the samples. Single-end reads provided sequences, which were mapped to the 

sgRNAs in the CRISPRi library using a Matlab Script. Read counts were calculated with single-end 

sequencing reads that matched to sgRNA guide sequences in the CRISPRi reference library 



  Chapter 1 
 

57 
 

(Supplementary Table 1). Read counts per sgRNA (readsi) were normalized to the total number of 

read counts per sample (readstotal) to obtain frequencies of sgRNAs. Frequencies were normalized to 

the first time point (t = 0 h) to calculate fold-changes. 

Constraint-based modeling 

Genes that encode enzymes with metabolic flux during growth on glucose were determined with Flux 

Balance Analysis (FBA). The E. coli iML1515 metabolic model was downloaded from BiGG Models 

http://bigg.ucsd.edu/ (King et al., 2016) and FBA simulations were applied using COBRApy (Ebrahim 

et al., 2013) with parameters as described in Monk et al., 2017. 

Kinetic modelling of the CarAB knockdown 

The stoichiometry of the model is shown in Figure 5A. Mass balancing yields a system of ordinary 

differential equations (ODEs), F, that is a temporal function of the state variables x and the kinetic 

parameters p: 

𝐹(𝑥, 𝑝) =
𝑑𝑥

𝑑𝑡
=

{
 
 
 

 
 
 

𝑑𝑜𝑟𝑛

𝑑𝑡
= 𝑟1 − 𝑟3

        
𝑑𝑐𝑏𝑝

𝑑𝑡
= 𝑟2 − 𝑟3 − 𝑟4

        
𝑑𝑎𝑟𝑔

𝑑𝑡
= 𝑟3 − 𝛼1 ∙ 𝜇1

        
𝑑𝑢𝑡𝑝

𝑑𝑡
= 𝑟4 − 𝛼2 ∙ 𝜇2

𝑑𝑒2

𝑑𝑡
= −𝜇 ∙ 𝑒2

      (Equation 1) 

The six reactions (r1, r2, r3, r4, r5, r6) are described by the following kinetic equations: 

The influx into the arginine pathway r1 is constant: 

𝑟1 = kcat1
          (Equation 2) 

Allosteric activation of reaction r2 by ornithine follows a power-law function: 

𝑟2 = 𝑘𝑐𝑎𝑡,2 ∙  𝑒2 ∙  (
𝑜𝑟𝑛

𝑜𝑟𝑛𝑆𝑆
)𝐾2          (Equation 3) 

,where ornSS is the steady state ornithine concentration. 

Reaction r3 follows a non-ordered Bi-uni mechanism: 

𝑟3 = 𝑘𝑐𝑎𝑡,3 ∙  
1

(1 + 
𝐾𝑚𝑜𝑟𝑛∙𝐾𝑚𝑐𝑏𝑝

𝑜𝑟𝑛 ∙𝑐𝑏𝑝
 + 

𝐾𝑚𝑜𝑟𝑛
𝑜𝑟𝑛

 + 
𝐾𝑚𝑐𝑏𝑝

𝑐𝑏𝑝
 )

       (Equation 4) 

Reaction r4 follows simple Michaelis-Menten kinetics: 

𝑟4 = 𝑘𝑐𝑎𝑡,4  ∙  
𝑐𝑏𝑝

𝑐𝑏𝑝+𝐾4
          (Equation 5) 

The growth rate µ depends on r5 and r6, which follow Michaelis-Menten kinetics: 
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𝑟5 = 𝜇𝑚𝑎𝑥,1 ∙
𝑎𝑟𝑔

arg+ 𝐾𝜇1
         (Equation 6) 

𝑟6 = 𝜇𝑚𝑎𝑥,2 ∙
𝑢𝑡𝑝

utp+ 𝐾𝜇2
         (Equation 7) 

𝜇 = 𝑚𝑒𝑎𝑛(𝜇1, 𝜇2)         (Equation 8) 

In total, the model includes 14 kinetic parameters kcat1, kcat2, kcat3, kcat4, K2, Km,orn, Km,cbp, K4, Kµ1, Kµ2, 

µmax1, µmax2, α1 and α2. The ensemble modelling approach (Tran et al., 2008) was used to account for 

uncertainties in kinetic parameters. 

First, a steady flux distribution was calculated that is common for all subsequent parameter sets (r1 = 

0.958 mM min-1, r2 = 1.425 mM min-1, r3 = 0.958 mM min-1, r4 = 0.467 mM min-1, r5 = 0.958 mM min-1, 

r6 = 0.467 mM min-1). The flux distribution was estimated using flux balance analysis. Arginine and 

UTP efflux (r5 and r6) were calculated as the product of their biomass coefficients (α1 = 95.8 mM, α2 = 

46.7 mM) and the growth rate on glucose (µ = 0.01 min-1). 

Binding constants (K-values) and metabolite concentrations (Ornithine = 0.01 mM, UMP = 0.50 mM, 

Arginine = 0.138 mM) were obtained from literature and Cbp concentration was set to 1 mM. The 

concentration of e2 was set to 1 mM. The binding constants were sampled 1000 times from 10-fold 

intervals based on literature values (Km,orn = 0.32 mM (argF/I, Ecocyc), Km,cbp = 0.36 mM (argF/I, Ecocyc), 

K4 = 0.028 mM (Brenda ID: 696699), Kµ2 = 0.05 mM (pyrH, Ecocyc)). The power-law term K2 was 

sampled between 1 and 4 in the regulated model and was set to zero in the dysregulated model. Kµ1 

was fixed to 1×10-5 mM.  

With the ensemble modelling approach the system is initially set into a steady state. To test stability 

of the steady states, eigenvalues of the Jacobian matrix were calculated, and tested if all eigenvalues 

are negative (λ < -10-6). The procedure was repeated until 1000 stable steady states were achieved. 

The perturbation by CRISPRi was then simulated for all stable models by setting the expression rate of 

e2 to zero:  

𝑑𝑒2

𝑑𝑡
=  0 −  𝜇 ∙ 𝑒2         (Equation 9) 

Metabolomics measurements 

Cultivations were performed as described above. Culture aliquots were vacuum-filtered on a 0.45 μm 

pore size filter (HVLP02500, Merck Millipore). Filters were immediately transferred into a 40:40:20 (v-

%) acetonitrile/methanol/water extraction solution at -20 °C. Filters were incubated in the extraction 

solution for at least 30 minutes. Subsequently, metabolite extracts were centrifuged for 15 minutes 

at 13,000 rpm at -9 °C and the supernatant was stored at -80 °C until analysis. Metabolite extracts 

were mixed with a 13C-labeled internal standard in a 1:1 ratio. LC-MS/MS analysis was performed with 

https://www.brenda-enzymes.org/literature.php?e=2.1.3.2&r=696699
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an Agilent 6495 triple quadrupole mass spectrometer (Agilent Technologies) as described previously 

(Guder et al., 2017). An Agilent 1290 Infinity II UHPLC system (Agilent Technologies) was used for liquid 

chromatography. Temperature of the column oven was 30°C, and the injection volume was 3 μL. LC 

solvents in channel A were either water with 10 mM ammonium formate and 0.1% formic acid (v/v) 

(for acidic conditions), or water with 10 mM ammonium carbonate and 0.2% ammonium hydroxide 

(for basic conditions). LC solvents in channel B were either acetonitrile with 0.1% formic acid (v/v) (for 

acidic conditions) or acetonitrile without additive (for basic conditions). LC columns were an Acquity 

BEH Amide (30 x 2.1 mm, 1.7 μm) for acidic conditions, and an iHILIC-Fusion(P) (50 x 2.1 mm, 5 μm) 

for basic conditions. The gradient for basic and acidic conditions was: 0 min 90% B; 1.3 min 40 % B; 

1.5 min 40 % B; 1.7 min 90 % B; 2 min 90 % B. The ratio of 12C and 13C peak heights was used to quantify 

metabolites. 12C/13C ratios were normalized to OD at the time point of sampling. Absolute 

concentrations of gluconate were determined from 12C peak heights and an external calibration with 

an authentic standard. A specific cell volume of 2 μL mg-1 was used to calculate the cell volume. 

Proteomics sample preparation and measurement 

Cultivations were performed as described above. Culture aliquots were transferred into 2 mL reaction 

tubes and washed two times with PBS buffer (0.14 mM NaCl, 2.7 mM KCl, 1.5 KH2PO4, 8.1 Na2HPO4). 

Cell pellets were resuspended in 300 μL lysis buffer containing 100 mM ammonium bicarbonate, 0.5 

% sodium laroyl sarcosinate (SLS). Cells were lysed by 5 minutes incubation at 95 °C and ultra-

sonication for 10 seconds (Vial Tweeter, Hielscher). Cells were again incubated for 15 minutes with 5 

mM Tris(2-carboxyethyl)phosphine (TCEP) at 90°C followed by alkylation with 10 mM iodoacetamide 

for 15 minutes at 25 °C. To clear the cell lysate, samples were centrifuged for 10 minutes at 15,000 

rpm and the supernatant was transferred into a new tube. Protein samples were quantified using a 

BCA Protein Assay kit (Thermo Fisher Scientific). For each sample, 50 μg of proteins was aliquoted to 

new tubes, volumes were adjusted and cell lysates were digested with 1 μg trypsin (Promega) 

overnight at 30°C. SLS was removed by precipitation. Therefore, trifluoroacetic acid (TFA) was added 

to a final concentration of 1.5 % and incubated at room temperature for 10 minutes. After 

centrifugation (10 minutes at 10,000 rpm), the supernatant was used for C18 purification of peptides 

using Micro SpinColumns (Harvard Apparatus). The purified peptide solutions were dried and 

resuspended in 0.1 % TFA. The concentration of peptides in the samples was measured with a 

colorimetric peptide assay (Pierce™ Quantitative Colorimetric Peptide Assay, Thermo Fischer 

Scientific). Analysis of peptides was performed by with a Q-Exactive Plus mass spectrometer coupled 

to an Ultimate 3000 RSLC nano with a Prowflow upgrade and a nanospray flex ion source (Thermo 

Scientific). Peptide separation was performed on a reverse-phase HPLC column (75 μm x 42 cm) 

packed in-house with C18 resin (2.4 μm, Dr. Maisch GmbH, Germany). The following separating 
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gradient was used: 96 % solvent A (0.15% formic acid) and 4 % solvent B (99,85 % acetonitrile, 0.15 % 

formic acid) to 30 % solvent B over 60 minutes at a flow rate of 300 nL/min. The data acquisition mode 

was set to obtain one high resolution MS scan at a resolution of 70,000 full width at half maximum (at 

m/z 200) followed by MS/MS scans of the 10 most intense ions. To increase the efficiency of MS/MS 

attempts, the charged state screening modus was enabled to exclude unassigned and singly charged 

ions. The dynamic exclusion duration was set to 30 seconds. The ion accumulation time was set to 50 

ms for MS and 50 ms at 17,500 resolution for MS/MS. The automatic gain control was set to 3x106 for 

MS survey scans and 1x105 for MS/MS scans. Label-free quantification (LFQ) of the data was 

performed using Progenesis QIP (Waters), and for MS/MS searches of aligned peptide features 

MASCOT (v2.5, Matrix Science) was used. The following search parameters were used: full tryptic 

search with two missed cleavage sites, 10ppm MS1 and 0.02 Da fragment ion tolerance. 

Carbamidomethylation (C) as fixed, oxidation (M) and deamidation (N,Q) as variable modification. 

Progenesis outputs were further processed with SafeQuant. The data was further processed with 

custom MATLAB scripts. 

Quantification and Statistical Analysis 

Statistical analysis was performed using custom Matlab scripts. The number of replicates (n) of each 

experiment can be found in the respective figure caption. In growth assays, n represents the number 

of independent microtiter plate cultures. For proteomics and metabolomics n represents the number 

of independent microtiter plate or shake flask cultures. Three replicates were used for metabolomics, 

and one of the three replicates was removed based on its Euclidean distance from the other two 

replicates. The remaining two replicates were used to calculate means. This removed outliers in the 

metabolome data set, which can occur due to the high sensitivity of the metabolome during sampling. 

In the proteomics dataset, proteins with an average variability between triplicates higher than 20% 

were removed. This left 1507 proteins that were measured in every sample. Significant proteins were 

defined with a two-fold cut-off and a p-value<0.05 for a two-sample t-test. Similarity of proteomes 

was obtained calculating the Jaccard index of significantly differentially expressed proteins.  
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Table S3 Source Data Figure 2D. Response times in the two experiments 

Table S4 Source Data Figure 2F. Response times of 252 bottleneck genes 
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Supplementary Figures 

 

 

Figure S1. Related to Figure 2.  

(A) Read counts of 7177 sgRNAs in the initial CRISPRi library. Shown are read counts after 
transformation of plasmid into E. coli YYdCas9 and cultivation on LB medium.  

(B) Fold-change between sgRNA counts after 13 hours cultivation on M9 glucose medium (without 
induction), relative to the initial CRISPRi library. Fold-change is plotted against read counts of the initial 
library. sgRNAs with fold-change higher than 2 are shown in orange. 

(C) Histogram of fold-changes between sgRNA counts after 13 hours cultivation on M9 glucose 
medium (without induction), relative to the initial CRISPRi library.  
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log2 fold-change (replicate 2) 

Figure S2. Related to Figure 2. 

Fold-changes of sgRNA abundances in the two competition experiments. Each plot shows data for one 
of the 14 time points. R2 is the correlation coefficient between replicate 1 and replicate 2. 
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Figure S3. Related to Figure 2. 

Growth of cells expressing the control sgRNA or a sgRNA targeting the gene relA. Expression of dCas9 
was induced by adding 200 nM of aTc. Cells were grown on minimal glucose medium in microtiter 
plates. Means of n = 3 replicates are shown as lines, shadows are standard deviations. Maximum 
growth rates of the strains were calculated in the exponential phase and are shown as number in the 
legend (in 1/h). 
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Figure S4. Related to Figure 2.  

(A) Distribution of response times across 4-6 sgRNAs per target-gene. Shown are all 253 genes with 
response-times below 14 h (metabolic-bottleneck genes). Orange lines show the 50% percentile and 
black lines the 95% percentile. Response times were normalized to the average response time per 
target-gene. 

(B) Distribution of response times across all 253 metabolic-bottleneck genes per position on the 
target-gene (position 1 is closest to the translation start site). Boxes show the 50% percentile and 
whiskers the 90% percentile. Response times were normalized to the average response time per 
target-gene. 

 

 



  Chapter 1 
 

67 
 

 

Figure S5. Related to Figure 3.  

Growth of the 30 CRISPRi strains in 96-well plate cultures. Black are un-induced cultures and orange 
are induced cultures.   
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Figure S6. Related to Figure 3. 

(A) Operon structure of the 29 target-genes. Red indicates the approximate loci that is targeted by 
sgRNAs. The genes in grey encode proteins that were measured. (B) Fold-changes of enzymes encoded 
by genes in the operons shown in (A). Data was calculated using the means of n = 3 samples per strain.  
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Figure S7. Related to Figure 3. 

Proteome data of the 30 CRISPRi strains. Data is represented as log2 fold-change between samples 
from induced and un-induced cultures (n = 3). Only significantly changed proteins are shown (p<0.05). 
Strains are ordered according to the number of significantly changed proteins with fold-change > 2. 
Target-enzymes are shown in blue. Enzymes that are in proximity of the target-enzyme are shown in 
green. 

 

 

Figure S8. Related to Figure 3.  

Proteome of the MetE strain and the PfkA strain at earlier time points (150 min MetE and 120 min 
PfkA).  

(A) Growth of the MetE and PfkA strains. Un-induced cultures are black, Induced cultures are orange 
(n = 2 cultures). Dashed lines indicate the sampling time point. 

(B) Fold change between the proteome of un-induced and induced MetE and PfkA strains (n = 2).  
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Figure S9. Related to Figure 3.  

(A) Reduction in growth rates of 29 CRISPRi strains is shown on the y-axis. The reduction of the target-
enzyme is shown on the x-axis. 

(B) Reduction in growth rates of 29 CRISPRi strains is shown on the y-axis. The number of significant 
differentially expressed proteins (p-value<0.05, FC>2) is shown on the x-axis. 

 

A         B 

Figure S10. Related to Figure 3.  

Similarity between the differentially expressed proteins of the 30 measured proteomes. 

(A) Similarity matrix of differentially expressed proteins (FC=2, p-value<0.05) of the 30 measured 
proteomes. Similarity is defined as the Jaccard similarity index. Highest similarity was calculated for 
the pairs: Gnd-Pgi (40%), FbaA-GapA (38.89%), Eno-Ppc (34.27%), AroA-CysH (33.33%), CysH-Eno 
(32.26%), AroA-Eno (30.51%).  

(B) Distribution of Jaccard similarity indexes between differentially expressed proteins in different 
strains. The median similarity for the distribution is 5.7%. 
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Figure S11. Related to Figure 3. 

Heatmaps show log2 fold-changes of proteins between induced and un-induced cultures. Data was 
calculated using the means of n = 3 samples per strain. Data is organized based on metabolic 
subsystems in iML1515.  
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Figure S11. (continued) 



  Chapter 1 
 

73 
 

 

Figure S11. (continued) 
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Figure S11. (continued) 
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Figure S11. (continued) 
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Figure S11. (continued) 
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Figure S12. Related to Figure 4.  

Fold-changes of substrates and products in CRISPRi strains (in which both metabolites were 
measured). MetE has two substrates. PurB catalyzes two reactions. Data are represented as mean (n 
= 2). 

 

 

Figure S13. Related to Figure 5.  

(A) Allosteric activation of CarAB by ornithine was modelled with a hyperbolic function and an 
activation constant (Ka) of 0.37 mM (Bueso et al., 1999). The wild-type concentration of ornithine is 
0.01 mM (Bennet et al. 2009) and shown as blue dot (3% activity). The concentration of ornithine 
increased 512-fold in the CarAB knockdown (red dot, 94% activity). 

(B) Allosteric inhibition of Ppc by malate and aspartate. Aspartate and malate bind to different sites 
of Ppc, and therefore inhibition was modelled as the product of two hyperbolic functions with 
inhibition constants (Ki) of 0.23 mM for malate (Gold and Smith, 1974), and 0.31 mM for aspartate 
(Gold and Smith, 1974). The wild-type concentration of malate and aspartate is 1.68 mM and 4.34 
mM, respectively (Bennet et al. 2009), and shown as blue dot (8% activity). Malate and aspartate 
decreased 16-fold and 13-fold in the Ppc knockdown (red dot, 33% activity). 
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Figure S14. Related to Figure 6. 

Fold changes of enzymes in pathways of arginine biosynthesis, methionine biosynthesis, sulfur 
assimilation (Cys), valine/isoleucine biosynthesis. CRISPRi strains with a compensatory upregulation 
are shown in bold. On the right panel, concentration of metabolites that are allosteric effectors of 
transcription factors ArgR, MetJ, CysB. Valine and isoleucine regulate enzyme expression via 
transcriptional attenuation. Colored dots highlight strains that showed a compensatory upregulation 
of the respective pathway (boxes in the heatmap). 

Regulation is: arginine (arg) allosterically activates ArgR (transcriptional repressor of genes in arginine 
biosynthesis), S-adenosylmethionine (sam) allosterically activates MetJ (transcriptional repressor of 
genes in methionine and sam biosynthesis) O-acetyl-L-serine (acser) activates CysB (transcriptional 
activator of genes in sulfur assimilation), branched chain amino acids (valine and (iso-)leucine) inhibit 
expression of genes that are involved in biosynthesis of branched chain amino acids (via 
transcriptional attenuation). 
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Abstract  

The interaction of metabolites with transcriptional regulators is one example of how enzyme levels 

can be adjusted upon varying environmental and intracellular conditions a cell is exposed to. Here, we 

used CRISPR interference (CRISPRi) to induce changes of metabolite and protein levels in vivo which 

results in an activation of metabolic genetic circuits. We combined a library of 7177 CRISPRi 

knockdown strains with a fluorescent transcriptional reporter plasmid to measure the activity of a 

transcription factor (TF) involved in amino acid biosynthesis (ArgR) upon the induction of the 

knockdown. This enabled us to sort strains from the library via cell-sorting, based on their 

fluorescence, which were only genes located in the arginine biosynthesis pathway. Proteome as well 

as metabolome measurements confirmed an activation of the feedback circuit in the sorted strains. 

Furthermore, we could demonstrate that the knockdown of fruK is the only strain of our library that 

leads to an inactivation of Cra in the conditions we tested, which is the first time this could be shown 
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in vivo. In conclusion, this work demonstrates how CRISPRi can be used to identify genetic metabolic 

circuits in vivo. 

Introduction 

Allosteric binding of metabolites can have a strong influence on activity and function of proteins. 

Examples are metabolic enzymes (Gerosa and Sauer, 2011) , protein kinases (Li et al., 2010) or 

transcription factors (Motlagh et al., 2014), which are modulated by the cell’s own metabolites. The 

current challenge is to distinguish between functional and unspecific metabolite-protein interactions 

(Kochanowski et al., 2015) and to detect them at a very large-scale. The gold standard are still in vitro 

binding assays, like isothermal titration calorimetry (ITC) or nuclear magnetic resonance spectroscopy 

(NMR) (He et al., 2015; Nikolaev et al., 2016), which are low-throughput. More systematic approaches 

with metabolomics-based LC-MS enabled to map the interactions between metabolites and proteins 

at larger scales, by immobilizing proteins and incubation with a mixture of metabolites. These were 

extracted from the protein-metabolite complexes and measured by untargeted metabolomics (Tagore 

et al., 2008; Vinayavekhin and Saghatelian, 2011). The combination of this untargeted LC-MS and 

native MS was applied to find potential interacting metabolites and later on to confirm the new 

interaction (Qin et al., 2019). Furthermore, a first systematic mapping of protein-metabolite 

interactions on a proteome-wide scale was enabled by a chemoproteomic approach, which combined 

limited proteolysis (LiP)  with MS in the presence of unmodified metabolites (Piazza et al., 2018). 

However, no in vivo method exists that detects functional interactions in a high-throughput manner 

and their direct effects on cellular processes, for instance transcription. 

Here, we focused on interactions between transcription factors and metabolites in E. coli and 

developed an in vivo based method (MapMe) to identify functional interactions between metabolites 

and transcriptional regulators (TF) at a genome scale. In earlier studies, we investigated how E. coli 

responds to decreases of single metabolic enzymes by using CRISPR interference (CRISPRi) and multi-

omics analysis. We found that CRISPRi knockdowns lead to very specific and local changes of 

metabolite levels in the cell, which then activate a transcriptional response and induce metabolic 

genetic circuits (Donati et al., 2021). Because metabolite changes and the accompanying proteome 

changes in the CRISPRi library were remarkably specific, we reasoned that these responses could 

potentially inform about metabolism-transcription interactions at a large-scale. Thus, we combined a 

library of 7177 CRISPRi knockdowns with a fluorescent reporter plasmid to measure the activity of the 

TF ArgR, which is involved in amino acid metabolism. This enabled us to recover the known metabolic-

genetic circuit of ArgR. Furthermore, we tested a reporter to measure the activity of the TF Cra against 



  Chapter 2 
 

86 
 

all knockdowns in the CRISPRi library and found fruK to be the only responding target. Moreover, 

metabolite measurements in the fruK knockdown revealed that hexose-phosphate levels are not 

increasing upon the induction of CRISPRi, which gives an indication of a direct interaction between Cra 

and fruK. 

Results 

The MapMe approach 

CRISPRi is making use of a catalytically inactivated Cas9 protein, which is guided by a small guide RNA 

to a target gene (Figure 1A). The transcription of this gene is then blocked by the complex, why enzyme 

levels will decrease and functions of this gene can be further explored (Bikard et al., 2013; Larson et 

al., 2013; Qi et al., 2013). For MapMe we made use of a pooled CRISPRi library, harboring 4-6 guides 

for all metabolic genes of the latest iML1515 model in E. coli (Beuter et al., 2018; Donati et al., 

2021)(Figure 1B). This library is transformed with a fluorescent transcriptional reporter to measure 

transcription factor activity. Upon the induction of CRISPRi, metabolite levels change and lead to a 

deactivation of the TF and therefore a release of the TF from the promoter which should allow us to 

sort the cells with the highest green fluorescence via FACS after the induction of dCas9 (Figure 1C). 

Afterwards, the cells are arrayed on 96-well plates and GFP and OD are measured over time to confirm 

the higher green fluorescence in the induced CRISPRi strains. Those strains are then sequenced to find 

out which CRISPRi target they have. Also, proteome and metabolome measurements are performed 

with strains occurring the most, i) to exclude off-target effects and ii) to find the potential interacting 

metabolite of the transcription factor. 

 

CRISPRi knockdown of CarAB leads to an inactivation of ArgR 

As described in Donati and Kuntz et al. (2021), we used CRISPR interference (CRISPRi) as a tool to 

knockdown single enzymes in E. coli metabolism. We screened a library of 7177 strains for fitness 

defects and could see that metabolism is remarkably robust and buffers fitness defects for hours after 

induction of CRISPRi. Furthermore, we measured the metabolome and proteome of 30 CRISPRi strains, 

for example CarAB. In this strain CarAB is targeted by CRISPRi, which is an enzyme involved in 

pyrimidine and arginine biosynthesis (Figure 2A). It catalyzes the reaction of L-glutamine to 

Carbamoyl-phosphate, which is later used for the synthesis of arginine. If arginine accumulates in the 

cell, it binds to the transcriptional regulator ArgR, which then represses the arginine biosynthesis 

genes (Figure 2B).  
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We introduced a fluorescent reporter plasmid that expressed GFP from an ArgR regulated promoter 

(puA66-argE-gfp) (Zaslaver et al., 2006) into the CarAB CRISPRi strain. We cultivated the strain with 

and without induction of dCas9 in microtiter plates in a plate reader and measured OD and GFP levels. 

Indeed, GFP expression increased after 2 hours of CRISPRi induction, showing that ArgR responded to 

the knockdown (Figure 2C). Therefore, we concluded that a decrease of arginine levels in the cell led 

to a release of ArgR from the promoter which led to a higher transcription of gfp and therefore to an 

increased GFP fluorescence in the induced strain. Hence, the induction leads to an activation of the 

feedback circuit and we next sought to use this approach to search for the effects of changing 

metabolite levels on transcription factor activity on a large-scale. 

 

 

Figure 1. MapMe approach: a tool to find new metabolite-TF interactions. (A) Scheme of dCas9 and sgRNA forming a 
complex to repress the transcription of a target gene and therefore the abundance of the respective target enzyme. (B) 
Schematic of a metabolism-wide CRISPRi library which is generated in E. coli YYdCas9 having dCas9 encoded on the genome. 
The strain is first transformed with the fluorescent transcriptional reporter plasmid for TF activity (ArgR), harboring two 
binding sites for the transcriptional repressor ArgR and afterwards with the CRISPRi plasmid library. (C) The strain library is 
cultured and the cells with the highest green fluorescence are sorted by FACS (shown as dashed square). Those strains are 
further confirmed in plate reader experiments by comparing the growth and green fluorescence of an induced and not 
induced culture over time. The strains with high green fluorescence are sequenced and proteomics and metabolites are 
measured via LC-MS/MS. 
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FACS screening of CRISPRi knockdown library filters out targets involved in arginine biosynthesis 

To screen for metabolite- transcription factor interactions at a large-scale, the strain library was 

cultured as a pool in M9 glucose with induction of dCas9. After 5 to 6 hours, cells showing the highest 

GFP fluorescence were sorted by FACS (Figure 1B). First, we inspected the GFP signal in a control strain 

without sgRNA (E. coli YYdCas9 WT). The strain showed a high variety of green fluorescence in the cells 

(Figure S1). This phenomenon was already observed by Silander et al., 2012, who were screening for 

promoter-mediated phenotypic noise and it leads to the conclusion that the noise of the reporter 

plasmids probably derived from a natural cell to cell variation. As a reference for cells that should 

activate ArgR, we measured GFP in a strain with a sgRNA targeting argE. Based on the GFP 

fluorescence the induced population was clearly distinguishable from the uninduced population 

(Figure 2D). Accordingly, it should be possible to filter out strains with a higher fluorescent level due 

to the induction of dCas9 by FACS. We subsequently measured the CRISPRi library induced and 

uninduced (Figure 2E). The induced population slightly shifted to a higher GFP fluorescence compared 

to the uninduced library. For cell sorting, the gate was set to sort for the top 0.25% green fluorescent 

cells of the overall culture. 1000 sorted cells were arrayed in 96-well plates and OD and GFP signals 

were measured in a plate reader. 171 out of 672 strains (25%) showed a clear increase in GFP levels 

in the induced compared to the uninduced state. Those strains were pooled on 96-well plates and 

sent for Sanger sequencing. 78% of these strains had a CRISPRi target in arginine biosynthesis, and the 

three top hits were ArgA (32%), CarA (12%) and CarB (9%) (Figure 2F). 8% of the sequenced targets 

were guides for the genes glcA and eutD. Those genes have no direct link to arginine levels in the cell, 

which led us to the question why they appeared so often in our screen. As only one out of all guides 

for these genes appeared, we were searching for off-target effects of those guides with the Cas-

OFFinder (Bae et al., 2014). Indeed, the guide for eutD had an off-target for argC, which could explain 

a decrease of arginine levels in the cells and therefore a response of the reporter resulting in a higher 

GFP signal. Nevertheless, we could not explain glcA by using this approach. Hence, we decided to 

measure the proteome of glcA, argA as a positive control and a control strain, having a guide without 

a target in the E. coli genome. As shown in Figure 2G, the knockdown of argA led to an almost 4-fold 

decrease of the target gene, while dCas9 2-fold upregulated compared to the uninduced strain. Also, 

the knockdown induced an increase of protein levels of all ArgR targets directly linked to arginine 

biosynthesis, while those targets did not show any response in the control strain. We could see the 

same effect of the arginine biosynthesis genes for the glcA strain, with the only difference that carB 

was downregulated by 2-fold. Therefore, we were searching again for an off-target effect of the guide 

for glcA and found that the 11 bp right next to the PAM site matched perfectly with a sequence in the 

carB gene. This short sequence is known to be enough to provoke a downregulation of an off-target  
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Figure 2. Screening of the CRISPRi library with a reporter for transcriptional regulator ArgR. (A) Schematic of the arginine-
pyrimidine branch point. Dotted arrows indicate allosteric activation and straight line shows inhibition by the repressor ArgR. 
(B) Scheme of the regulatory logic of the argCBH operon, as an example for the function of ArgR as a repressor. (C) The CarAB 
knockdown was transformed with a fluorescent reporter plasmid that expressed GFP from an ArgR regulated promoter 
(puA66-argA-gfp). The fold-change of GFP/OD between induced and uninduced cultures is shown in green. The fold change 
of OD is shown in black. Both is shown as a log2-fold change. (D) The histogram shows the green fluorescent signals of 100000 
cells after growth for 5.5 hours. Shown is the argE knockdown strain harboring a fluorescent transcriptional reporter for ArgR 
activity with (black) and without the induction of CRISPRi (red). (E) Shown is the CRISPRi library with 7177 guides and the 
fluorescent transcriptional reporter plasmid for ArgR activity not induced (black) and induced (red) (F) GFP/OD values for 
arrayed and sequenced strains, measured in a plate reader. GFP and OD were measured over time and shown are GFP/OD 
values at OD 0.5 for every strain. Green points indicate strains that were found more than once in the screening. (G) 
Proteome data of strains harboring a guide to target argA and glcA. Protein Level are shown in log2 foldchange compared to 
the uninduced strains. Dark grey dots indicate proteins related to the argR operon and orange dots are argR regulated genes 
belonging to the arginine biosynthesis, red dots are proteins of target genes and black dots show levels of cas9 protein. (H) 
Metabolite concentrations of amino acids in the argA and carB knockdown strains shown as a log2 foldchange compared to 
uninduced strains. Grey dots show amino acids, and orange dots show the arginine levels.  
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in E.coli (Cui et al., 2018; Rousset et al., 2018) and is not covered by the Cas-OFFinder. To support our 

hypothesis of an off-target effect, we designed three new guides targeting the glcA gene and 

measured OD and GFP levels over time. We could observe that indeed only the guide which we found 

in the library screening led to increased GFP levels (Figure S2A). Furthermore, we measure the 

metabolite levels of all amino acids in the argA and carB knockdown strain and could see that arginine 

was by far the most strongly downregulated metabolite (Figure 2H). Hence, with our approach we 

were able to find all targets that are directly linked to arginine biosynthesis due to an activation of the 

metabolic genetic feedback circuit. Next, we aimed to investigate a global transcription factor whose 

interacting metabolite could not be proven in vivo yet.  

 

Cra reporter shows a strong response to knockdown of fruK 

As shown, the method described here can be used to find known regulatory metabolites of 

transcription factors, we decided to screen the CRISPRi library with a reporter plasmid for the 

transcription factor Cra. Cra is a global regulator for carbon metabolism, and it modulates the direction 

of carbon flow through different metabolic pathways and is therefore involved in the expression of a 

large number of operons. So far it was thought to interact with fructose-1,6-bisphosphate (FBP) to 

regulate the glycolytic flux. Nevertheless, biochemical analysis showed that FBP neither binds nor 

regulates Cra activity, but fructose-1-phosphate does (Bley Folly et al., 2018). Yet, none of these 

interactions could be found or confirmed in in vivo experiments. Therefore, we transformed the 

YYdCas9 strain with a reporter plasmid expressing GFP from a CRA regulated promoter (puA66-fruB-

gfp, (Zaslaver et al., 2006). It was previously shown that fruB is one of the strongest binding sites for 

Cra (Shimada et al., 2005), thus we chose this promoter to test for the binding activity of CRA in a 

native context. The basis strain with the reporter plasmid was then transformed with the before 

described CRISPRi plasmid library. The resulting strain library was again cultured as a pool in M9 

glucose with induction of dCas9. After 5 to 6 hours, cells showing the highest GFP fluorescence were 

sorted by FACS (Figure S3). After comparing the GFP levels in the induced and not induced library, the 

gate was set to sort for the top 0.2% green fluorescent cells. The sorted cells were grown on plates 

overnight and arrayed on 96-well-plates. After that OD and GFP were measured in the induced and 

uninduced strains. 86 out of 576 strains (15%) showed a higher GFP signal in the induced state. Those 

strains were pooled on one plate and sent for sequencing. The most found targets were fruB (37%), 

ulaA (21%) and fruK (12%) (Figure 3A). fruB encodes for the fructose-specific PTS multiphosphoryl 

transfer protein FruB and phosphorylates fructose resulting in fructose-1-phosphate while 

transporting it into the cell, and it is located in an operon upstream of fruK. Consequently, a 
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knockdown will lead to a downregulation of the whole operon. The promoter of the operon has 2 

binding sites for Cra, which blocks the transcription without the presence of the regulating metabolite. 

fruK itself is encoding for the 1-phosphofructokinase, which catalyzes the reaction of fructose-1-

phosphate to fructose-1,6-bisphosphate. Hence, the knockdown of fruK and fruB both result in 

decreasing FruK levels and could lead to increasing fructose-1-phosphate levels in the cells and 

therefore an inhibition of Cra.  ulaA as the third most appearing target in the screen, has no direct link 

to glycolysis metabolites and a search with Cas-OFFinder did not show any results for possible related 

off-targets.  

 

Figure 3. Screening of the CRISPRi library with a reporter for the transcriptional regulator Cra. (A)FruB operon and GFP/OD 
values for arrayed and sequenced strains, measured in a plate reader. GFP and OD were measured over time and shown are 
GFP/OD values at OD 0.5 for every strain. Green points indicate strains with guides that were found more than once in the 
screening. (B) Proteome data of strains harboring a guide to target fruK, ulaA and a control guide, having no target in E. coli 
genome. Protein Level are shown in log2 foldchange compared to the uninduced strains and were divided into genes 
belonging to the activated (left) and repressed targets (right) of Cra. Orange and dark grey dots indicate proteins whose 
genes are part of the Cra operon, red dots are proteins of target genes and black dots show levels of cas9 protein. (C) 
Metabolite data of CRISPRi strain fruK. Shown are relative Hexose-Phosphate and Fructose-1,6-bisphosphate levels. (D) 
Schematic of the regulation of glycolysis by the transcriptional regulator Cra. Orange arrows indicate a regulation by Cra and 
shown in green is fruK, which catalyzes the reaction of fructose-1-P to fructose-1,6-PP. Chemical structures of these two 
metabolites are shown next to their names.  
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To show the effect of the fruK knockdown on the CRA regulon and to find possible off-target effects 

of ulaA, we measured the proteome of those strains and a control strain, having no target in E. coli 

genome (Figure 3B). The proteome of fruK showed a downregulation of fruK and fruA, which is 

encoded after fruK in the operon, by almost 2-fold. On the contrary fruB is upregulated by 4-fold, 

which is located before fruK in the operon. Also, ppsA, which is a positively regulated gene of Cra, was 

decreased 1.2-fold. This strongly implies a response of Cra to the knockdown of fruK.  ulaA caused a 

very strong upregulation of the fruBKA operon around 10-fold, while ppsA was downregulated 3.2-

fold and cra 3.6-fold. This indicates that the guide for ulaA has an off-target in cra and therefore leads 

to a strong response of the reporter plasmid. Thus, we checked again the sequence of the guide and 

found that 10 bp next to the PAM site perfectly matched with the cra gene, and the off-target was 

also confirmed by measuring OD and GFP levels of strains with other guides for ulaA (Figure S2B). 

Accordingly, our approach enabled to find CRISPRi targets directly influencing Cra activity and 

furthermore giving a strong indication for fructose-1-phosphate being the main signal metabolite for 

CRA. We wanted to show next via metabolomics the accumulation of fructose-1-phosphate in the fruK 

knockdown. 

 

fruK regulates CRA  

Thus, we measured metabolites in the fruK strain and could not see an accumulation of hexose-

phosphates (Figure 3C).  As the separation of hexose-phosphates via LC-MS is extremely difficult, we 

first had to set-up a method with a standard mixture of fructose-1-phosphate (F1P), fructose-6-

phosphate (F6P) and glucose-6-phosphate (G6P). Once we were able to detect a clear separation 

(Figure S4A), we measured these metabolites in the fruK knockdown strain. While we could see no 

change upon the induction of CRISPRi for fructose-1,6-bisphosphate levels (FBP) (Figure 3C), being the 

product of the reaction of fruK (Figure 3D), we could not detect an accumulation of F1P in the 

knockdown. The F1P concentration in the knockdown was below the detection limit, and a knockdown 

of fruK did not lead to an accumulation high enough to measure F1P (Figure S4B). It was shown for 

Pseudomonas putida that F1P binds cra with a KD ~200 nm (Chavarría et al., 2011), which could be 

below the detection limit of our method. Furthermore, a more recent study described the direct 

interaction of FruK with Cra in vivo and that FruK also catalyzes the reverse reaction from FBP to F1P 

which, based on their study, regulates the affinity of the Cra/FruK complex to the Cra operators in 

vitro (Singh et al., 2017). In conclusion, we could show that fruK is involved in the regulation of Cra in 

vivo but it remains unclear whether this happens through a regulatory metabolite, the direct binding 

of fruK to Cra or both. 
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Discussion 

Finding interactions between metabolites and proteins is mostly based on in vitro approaches (Diether 

and Sauer, 2017). These studies focus on the binding of metabolites to purified proteins and vice versa, 

and large-scale mapping approaches revealed 1000s of new interactions (Gallego et al., 2010; Lempp 

et al., 2019; Li et al., 2010). But the biggest challenge remains to identify and separate interactions 

that are functional in vivo, and therefore play a role in cellular metabolism from unspecific binding 

events, and to do this at a very large-scale. 

In this study, we used CRISPRi to induce metabolic genetic circuits which enabled us to change and 

measure the activity of transcription factors in vivo with the help of fluorescent transcriptional 

reporters. Using a CRISPRi library with 7177 targets in E. coli metabolism allowed us to filter out 

knockdowns via cell-sorting that resulted in a response of the TF. Hence, this is an approach which 

only detects functional responses of TFs initiated by metabolite or protein level changes in the 

knockdown. Using a reporter plasmid for the TF ArgR revealed a change in its activity for the 

knockdowns of 9 out of 11 genes that are directly linked to the arginine biosynthesis pathway. 

Measuring metabolite levels showed that arginine is the regulatory metabolite of ArgR which was 

already shown by in vitro studies many years ago (Maas, 1994; Van Duyne et al., 1996). The two genes 

we could not detect in the library were argH and argF/I. As not every knockdown leads to the same 

growth defect of the cells, this can change the abundance and distribution of guides and targets in the 

library at different timepoints (Donati et al., 2021). Hence, the timepoint of sampling can have a big 

influence on which strains will be sorted from the library. Moreover, the testing conditions will have 

an influence on the response of the transcription factor. As many genes are only expressed under 

certain conditions (Nicolas et al., 2012; Schmidt et al., 2016), the knockdown of these genes will not 

lead to any metabolite or protein changes if the assay is carried out in a condition when the gene is 

not expressed. Thus, varying testing conditions and sampling timepoints might help to recover 

different target genes whose knockdown has an influence of the transcription factor activity. 

Furthermore, the manner with which the gate is set for the sorting process will have a big influence. 

Since in this approach we were only working with one fluorescent marker and a comparatively weaker, 

native promoter fused to gfp, the discrimination between strains with a higher green fluorescence 

and the rest of the population was extremely difficult. This could be improved by using a stronger 

promoter or a second fluorescent marker which is constitutively expressed, so the fluorescent signal 

of cells with a response of the TF could be easier discriminated from the background (He et al., 2019; 

Miao et al., 2009). Therewith, the sorting of a lot of false-positives could also be avoided. But it must 
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be noted that the usage of an artificial promoter will also result in a loss of the natural context of the 

approach.  

The cryptic targets that we found after the cell sorting could be explained by off-target effects of the 

sgRNAs for genes that are also related to the arginine biosynthesis pathway. They were the result of 

a perfect match of 9 nt next to a PAM sequence in the off-target site (Cui et al., 2018). Unfortunately, 

this cannot be easily avoided when designing sgRNAs for CRISPRi libraries which makes it necessary to 

further investigate sorted targets by down-stream analysis. However, the usage of multiple sgRNAs 

per gene can give an idea whether the target results in a response of the TF or whether this is based 

on an off-target effect. 

In conclusion, our study shows that the method developed here enables us to filter out strains from a 

CRISPRi library in which the knockdown of a target gene leads to a change of the activity of a 

transcriptional regulator. Further analysis via metabolomics could show that decreasing arginine levels 

were the cause of the response of the repressor ArgR in these strains. Hence, combining CRISPRi with 

fluorescent transcriptional reporters to measure protein activity and metabolomics could allow us to 

detect new functional interactions in vivo at a large-scale.  
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Material and Methods 

Strains and Culture 

The wild-type strain used in this study was E. coli YYdCas9 (Lawson et al., 2017) and all strains used for 

this study derive from it. Strains are listed in the Strain table. For cloning NEB 5-alpha Competent E. 

coli (Cat#C2987) cells were used.  

Construction of the CRISPRi pooled library 

The construction of the CRISPRi library was done as described in Donati and Kuntz et al. (2021). To 

measure transcription factor activity the plasmid puA66 was used (Zaslaver et al., 2006). 

Media 

Cultivations were performed with LB medium or M9 minimal medium with glucose as sole carbon 

source (5 g L-1). M9 medium was composed by (per liter): 7.52 g Na2HPO4 2 H2O, 5 g KH2PO4, 1.5 g 

(NH4)2SO4, 0.5 g NaCl. The following components were sterilized separately and then added (per liter 

of final medium): 1 mL 0.1 M CaCl2, 1 mL 1 M MgSO4, 0.6 mL 0.1 M FeCl3, 2 mL 1.4 mM thiamine-HCl 

and 10 mL trace salts solution. The trace salts solution contained (per liter): 180 mg ZnSO4 7 H2O, 120 

mg CuCl2 2 H2O, 120 mg MnSO4 H2O, 180 mg CoCl2 6 H2O. For strains transformed with pgRNA-bacteria 

plasmids, 100 μg mL-1 ampicillin (Amp) was added to the media. To induce expression of the dCas9 

protein in the YYdCas9 strain, aTc was added to a final concentration of 200 nM. In experiments with 

pUA66 plasmids 50 μg mL-1 kanamycin was added to the medium. 

Cultivation conditions of the pooled CRISPRi library for FACS sorting 

A preculture of 50 mL LB+Amp+Kan was inoculated with 500 µL of the pooled CRISPRi strain library 

from a glycerol stock and incubated at 37 °C for 5 hours. From the LB culture a second preculture in 

M9+Glc was inoculated with a dilution of 1:10000 and incubated for 13 hours. After 13 hours the M9 

preculture was in exponential phase and it was used to inoculate two cultures with an initial OD of 

0.02 in shaking flasks, either containing 100 mL of M9 with 200 nM of aTc to induce expression of 

dCas9 or without aTc. After 5-6 hours 10 ml of cells were sampled at RT and washed twice in 1x PBS. 

The cells were diluted in appropriate concentrations and sorted within one hour after sampling. 

FACS measurements and sorting 

Fluorescence activated cell sorting (FACS) was carried out on a Sony SH800SHP with all four lasers 

activated (405, 488, 562, 638nm), using a 100 µm nozzle sorting chip and the standard filter set. The 

threshold was set to 0.5% BSC with the sensor gain for FSC and BSC at 4 and 32%, respectively. Sensor 

gains for fluorescent channels 2 (GFP, 525/50nm) was set to 40%. 
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Events per second (eps) were kept below 1000, and “purity” mode was selected for sorting. The top 

0.25%/ 0,2 %GFP-fluorescent cells were sorted into a 1.5 ml Eppendorf tube with 1 ml fresh M9 

medium without Glucose or antibiotics. Cells were spread on big LB+Amp+Kan plates and grown 

overnight at 37°C. 1000 colonies were picked into deep-well plates with LB+Amp+Kan and grown for 

5-6 h. Afterwards, a glycerol stock was generated. 

Cultivation conditions for proteome sampling 

Strains were streaked out on LB+Amp+Kan plates. Single colonies were transferred into liquid 5 mL 

LB+Amp+Kan, and then re-inoculated in M9+Glc medium overnight in 13 mL culture tubes under 

shaking at 37 °C. For proteomics sampling, M9 pre-cultures were adjusted to a starting OD600 of 0.02 

into 12-well plates, with 2 mL of medium in each well. Strains were cultivated in triplicates with or 

without aTc, added at the beginning of the culture. Optical density at 600nm was measured every 10 

min using a plate reader (Biotek, Synergy) for 5.5 h. Plates were then rapidly transferred to ice and 

1.75 ml were sampled.  

Proteomics sample preparation and measurement 

Proteomics samples were prepared as described previously (Donati et al., 2021) with minor 

modifications. Cultivations were performed as described above. Culture aliquots were transferred into 

2 mL reaction tubes and washed two times with PBS buffer (0.14 mM NaCl, 2.7 mM KCl, 1.5 KH2PO4, 

8.1 Na2HPO4). Cell pellets were solubilized in 0.5 % sodium laroyl sarcosinate (SLS) and protein 

denaturation was carried out by applying heat (95 °C for 10min), followed by incubation with 5 mM 

Tris(2-carboxyethyl)phosphine (TCEP) and 10 mM iodoacetamide. 50 µg extracted protein was 

digested with 1 µg trypsin (Serva) overnight and peptides were purified using C18 reverse phase solid 

phase extraction columns (Macherey-Nagel). Peptides were analyzed using a Q-Exactive Plus mass 

spectrometer connected to an Ultimate 3000 RSLC nano and a nanospray flex ion source (Thermo 

Scientific). Peptide separation was performed on a reverse-phase HPLC column (75 μm x 42 cm) 

packed in-house with C18 resin (2.4 μm, Dr. Maisch GmbH, Germany). The following separating 

gradient was used: 96 % solvent A (0.15% formic acid) and 4 % solvent B (99,85 % acetonitrile, 0.15 % 

formic acid) to 30 % solvent B over 90 minutes at a flow rate of 300 nL/min. The data acquisition mode 

was set with the following parameters: 1 MS scan at a resolution of 70,000 with 50 ms max. ion 

injection fill time, MS/MS at 17,500 scans of the 10 most intense ions with 50 ms max. fill time. Label-

free quantification (LFQ) of the data was performed using Progenesis QIP (Waters) and MASCOT (v2.5, 

Matrix Science) for spectrum/peptide identification. Progenesis outputs were further processed with 

SafeQuant. The data was further processed with custom MATLAB scripts. 
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Cultivation conditions for metabolome sampling 

Strains were streaked on LB+Amp+Kan plates and single colonies were inoculated in liquid 5 mL 

LB+Amp+Kan for 6 hours. Different dilutions were prepared in M9 medium and incubated over night 

at 37°C. For strains with an ArgR reporter the M9-precultures were adjusted to a starting OD600 of 0.05 

in 2 mL culture volume in 12-well plates using a plate reader (Tecan, Grödig, Austria, Spark). Strains 

were cultivated for 6.5 h in triplicates were aTc inducer was added at the beginning of the experiment. 

Strains with a FruB reporter were adjusted to a starting OD600 of 0.05 in 50 mL culture volume. Strains 

were cultivated in triplicates with and without inducer for 4.5 h. Optical density at 600nm was 

measured every 10 min using a spectrophotometer. For sampling the cultures were transferred rapidly 

to a thermostatically controlled hood at 37 °C while shaking them continuously during the sampling 

procedure. 

Metabolomics measurements 

Cultivations were performed as described above. Samples from cultures were vacuum-filtered on a 

0.45 μm pore size filter (HVLP02500, Merck Millipore). After filtering, filter membranes were 

immediately transferred into a 40:40:20 (v-%) acetonitrile/methanol/water extraction solution at -

20°C. Filters were incubated for 30 min in the extraction solution. Thereafter, metabolite extracts were 

centrifuged for 15 minutes at 13,000 rpm at -9 °C and only the supernatant was stored at -80 °C until 

analysis. Agilent 6495 triple quadrupole mass spectrometer (Agilent Technologies) was used for LC-

MS/MS analysis as described previously (Guder et al., 2017). For liquid chromatography an Agilent 

1290 Infinity II UHPLC system (Agilent Technologies) was used. Metabolite extracts were mixed with 

in a 1:1 ratio with prepared 13C-labeled internal standard. The ratio of 12C and 13C peaks, normalized 

to OD at the sampling point was used to quantify the metabolites. 3µL injection volume was used and 

the temperature in the column oven was 30°C. To measure amino acids the LC column Acquity BEH 

amide (30 x 2.1 mm, 1.7 μm) was used in acidic conditions. Used solvents were in channel A: water 

with 10 mM ammonium formate and 0.1% formic acid (v/v) and in channel B: acetonitrile with 0.1% 

formic acid (v/v). To measure hexose phosphates and fructose1,6-biphosphate the LC column iHILIC-

Fusion(P) (50 x 2.1 mm, 5 μm) was used in basic conditions. Used solvents were in channel A: water 

with 10 mM ammonium carbonate and 0.2% ammonium hydroxide (v/v) and in channel B: acetonitrile 

without additive. As gradient for acidic and basic condition was used: 0 min 90% B; 1.3 min 40 % B; 

1.5 min 40 % B; 1.7 min 90 % B; 2 min 90 % B. For the measurement of fructose-1-phosphate samples 

were processed and stored as described before. HILICpak VG-50 2D (2.0 x 150 mm) was used as LC 

column.  The injection volume was 9 μL and the temperature of the column oven was 30°C. LC solvent 

in channel A was water with 10 mM ammonium formate and 0.1% formic acid (v/v) LC solvent in 

channel B was acetonitrile with 0.1% formic acid (v/v). Applied conditions were: 63 min 30% B. 
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Supplementary Figures 

 

Figure S1. FACS Data control ArgR. Shown are the green fluorescent signals of 100000 cells sampled 
from a wildtype YYdCas9 culture (black) and the wildtype strain with the fluorescent transcriptional 
reporter plasmid to measure the activity of ArgR (green). 

 

 

Figure S2. OD and GFP Levels of off-targets from the ArgR and Cra screening. To prove off-target 
activity new guides were designed (1-3) and compared to the growth and GFP levels of a control strain 
(ctrl) and the guide that was found in the library screening (Lib). All strains were tested with the 
induction of the CRISPRi system. Shown in (A) are guides targeting the gene glcA and in (B) guides 
targeting fruB. 
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Figure S3. FACS data of the Cra library. (A) Green fluorescent signals of 100000 cells sampled from a 
wildtype YYdCas9 culture (black) and the wildtype strain with the fluorescent transcriptional reporter 
plasmid to measure the activity of Cra (green). (B) Green fluorescent signal of the Cra library with (red) 
and without induction of CRISPRi (black).  
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Figure S4. Measurement of Hexose-phosphates. (A) Chromatogram of the separation of fructose-1-
phosphate (F1P) from glucose-6-phosphate (G6P) and fructose-6-phosphate (F6P) from a pooled 
standard mix, while the concentration of each metabolite in the mix was 1 µM. (B) Chromatograms of 
the separation of Hexose-phosphates in the standard mix and the fruK knockdown strain induced (atc) 
and not-induced. 
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This chapter is written in manuscript style and is in preparation (work in progress). This manuscript 

includes a detailed protocol for all working steps used in chapter 1 and 2 of this thesis. My contribution 

to this work included the development, testing and implementation of all working steps, and co-writing 

the manuscript.  

Abstract 

Pooled CRISPRi library screenings are a well-established and powerful tool to investigate the function 

of essential and non-essential genes. Therefore, it is very important to establish high-throughput 

readouts, which is mostly achieved by the combination of fitness growth assays with NGS. 

Furthermore, the combination of CRISPRi with fluorescent reporters allows to screen for and select 

strains which show a certain phenotype, from big libraries. The protocol provided here explains how 

to design and construct sgRNA libraries for an inducible CRISPRi system in E. coli with a genomically 

integrated dCas9 protein, the transformation of sgRNA libraries into the strain of interest, a detailed 

timeline how to perform fitness growth assays and NGS, data analysis of NGS and alternatively how 

to combine a CRISPRi library with a fluorescent reporter and cell sorting via FACS. The protocol enables 

to design and construct the library in 6-7 days, performing a fitness assay, NGS and the data analysis 

in 5-7 days or to execute a selective enrichment via FACS in 4 days. 
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Introduction 

The sequencing of full genomes made it possible to identify the location of genes or homologues in 

organisms. However, for many of them the in vivo function could not be revealed by systematic 

approaches yet. In the past, targeted genome regulation methods like zinc-finger or transcription 

activator like effector (TALE) proteins, RNA interference (RNAi) and sRNAs were used to investigate 

the function of genes (Garg et al., 2012; Hannon, 2002; Segal and Barbas, 2001; Yoo et al., 2013). 

Nevertheless, these methods often show limitations because of many off-target effects, toxicity, low 

efficiency and can only be used if the investigated organism holds the appropriate enzyme machinery 

(Larson et al., 2013). Moreover, big strain libraries were generated, providing a knockout of every gene 

in the genome of a certain organism (Baba et al., 2006). Screenings of these strains enable the 

exploration of the specific phenotypes of the gene knockouts and helps to assign a gene to a function. 

Yet, these screenings have limitations in exploring functions of essential genes as the knockouts can 

lead to auxotrophies, which means the strains are not able to grow anymore, and their function cannot 

be investigated under certain conditions. In conclusion, an inducible system is required which can 

target every location of a gene and is transferable to many organisms. Hence, the screening of big 

CRISPRi libraries was used widely to study the function of genes in many bacteria (Cui et al., 2018; 

Peters et al., 2019; Rousset et al., 2018; Todor et al., 2021; Wang et al., 2018).  

The CRISPRi system contains a dead (inactive) Cas9 protein, which can be used to silence or activate 

genes. For this reason, CRISPRi can be used for RNA-guided transcription regulation (Bikard et al., 

2013; Larson et al., 2013; Qi et al., 2013). The dCas9 forms a complex with a 20-25 bp long single guide 

RNA (sgRNA), whose sequence is complementary to the template or non-template strand of the DNA 

target and is located next to the protospacer adjacent motif (PAM) (Figure 1A). The dCas9 protein 

does not have endonuclease activity, hence it will bind the target sequence and will interfere with 

transcription by sterically hindering the binding of the RNA polymerase (RNAP). Thus, every gene can 

be silenced by CRISPRi if its sequence contains a PAM site. The strength of the silencing can be 

controlled, for example by introducing mismatches or choosing different target positions inside the 

gene (Larson et al., 2013; Qi et al., 2013). Moreover, the expression of dCas9 or of the sgRNAs can be 

induced (Beuter et al., 2018; Larson et al., 2013; Lawson et al., 2017; Qi et al., 2013). 

The biggest advantage of CRISPRi is that it can be used for pooled library screenings, which are less 

laborious and cost-intensive as experiments with single strains (Shalem et al., 2015). All steps can be 

performed in a pooled manner, from cloning the library to the final phenotyping. As sequencing gets 

cheaper every year, it not only allows to order big oligonucleotide libraries, but also to combine pooled 

growth assays with Next-Generation sequencing (NGS) to define the fitness of gene knockdowns. 
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(Donati et al., 2021; Rousset et al., 2018, 2021; Todor et al., 2021). Furthermore, the combination of 

a CRISPRi library with a fluorescent reporter plasmid enables the enrichment of strains with a certain 

phenotype via Fluorescence-activated Cell Sorting (FACS) (Beuter et al., 2018). 

Development of the protocol 

The CRISPRi interference library described here was initially created to select slow-growing strains 

from a pooled library of  E. coli NCM3722 with the help of a TIMER protein, indicating the growth-rate 

of bacteria (Beuter et al., 2018).  We also cloned the sgRNA library into the plasmid pgRNA of the 

original CRISPRi system (Qi et al., 2013) and used it in E. coli YYdCas9, which was created by Lawson 

et al. (2017). This strain has the gene for dCas9 introduced into the genome and therefore shows a 

more tightly controlled expression of dCas9, compared to the plasmid-based system. When 

performing fitness growth assays with the metabolism-wide library, we investigated dynamically how 

the knockdown of certain metabolic genes influences the growth of E. coli over time (Donati et al., 

2021). Furthermore, by measuring the metabolome and proteome of 30 single CRISPRi strains, we 

could show which mechanisms are used by E. coli to buffer knockdowns. Currently, the CRISPRi library 

is combined with a fluorescent reporter for transcription factor activity (Kuntz et al., in preparation). 

In this protocol, we describe in detail how to construct and clone a CRISPRi library and how to track 

the abundance of library members during dynamic fitness assays by next-generation amplicon 

sequencing. Furthermore, we show which other methods and techniques can be used to investigate 

CRISPRi libraries and perform selective enrichments by FACS sorting. 

Applications of the method 

Our designed CRISPRi library can be used to study the roles of all metabolic genes of the latest iML1515 

model of E. coli (addgene accession number pending). It contains 7177 strains with 4-6 sgRNAs per 

gene. By comparing the effect on the knockdown between the different guides, off-target effects can 

be identified when, for example, only one of the guides leads to a specific effect. Furthermore, the 

strength of guides can be measured directly. CRISPRi is not limited to E. coli and can also be used in 

other organisms like Bacillus subtilis or Vibrio cholerae (Todor et al., 2021). Various studies were done 

that investigated fitness effects based on CRISPRi knockdowns, effects of antibiotics, as well as 

comparison studies between knockout strains and the wildtype (Liu et al., 2021; Qu et al., 2019; 

Rousset et al., 2018; Shields et al., 2020). The here described library can easily be re-cloned into other 

vectors (pNUT1527), which makes it possible to apply it for other systems and organisms. 

Furthermore, the Matlab code provided here makes it possible to design guides for single genes or to 

get a list of sgRNAs for other organisms if the correct genomic sequence is loaded. Therefore, it is 
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possible to design oligos for single strains as well as oligo pools for the cloning of CRISPRi strain 

libraries, as it is described here.  

This protocol mainly focuses on fitness screenings of CRISPRi libraries, but we also show which other 

methods can be combined instead of NGS to obtain faster readouts and for example single strains out 

of a pool of strains for direct investigations without re-cloning. 

Comparison with other methods 

To determine the role of a gene, it is necessary to disrupt its functionality inside the cell. Hence, 

methods like screening knockout libraries provide a good insight on how a certain gene contributes to 

specific phenotypes which can finally reveal its function in metabolism (Baba et al., 2006; Giaever et 

al., 2002). But the creation of these libraries also has its limitations as knockouts of essential genes 

cannot be created and the function of the gene cannot be studied because the cells cannot grow 

anymore. Furthermore, the construction of such arrayed libraries is very laborious and has therefore 

only been done for a handful of organisms. Besides this, the screening of knockout libraries is mostly 

performed with single cells and not in a pooled manner, as it is very difficult to map the deletion of a 

gene with any high-throughput technology. For example, the usage of DNA microarrays only enables 

the comparison of the gene expression level of the WT and one gene knockout strain (Capaldi, 2010). 

The strains are grown to a certain OD, the DNA or RNA is extracted and labelled with different 

fluorescent dyes. The microarray is produced by the annealing of cDNA or oligonucleotides to a solid 

surface, which are later incubated with the labelled samples and washed. Thus, the examination of 

DNA microarray experiments is very laborious, and one needs to precisely follow every little detail of 

the protocol to prevent high variations between the samples.   

The application of transposon insertion sequencing (Tn-seq) has allowed to identify the function of 

genes at a genome-scale (van Opijnen et al., 2009; Québatte et al., 2017). The approach is based on 

the usage of a saturated transposon insertion library, with transposons as mobile genetic elements, 

inserting into every non-essential gene and therefore disrupting the function of the gene. The library 

is grown under a certain experimental condition and all disrupted genes, which are necessary for 

growth under this condition, will decrease in frequency from the whole population. The fitness of 

every mutant is mapped by the massively parallel sequencing of the transposon flanking region and 

therefore reveals the abundance and location of each mutation. However, this method also has 

various limitations as it cannot be applied to essential genes, the genes of interest cannot be directly 

targeted due to the random insertion of the transposon and thousands of mutants are needed to 

reach full saturation.  
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In contrast, the protocol provided here for pooled CRISPRi library screenings enables the precise 

targeting of genes of interest, leading to smaller library sizes. Moreover, CRISPRi is inducible and 

allows the dynamic control over the repression strength (Hawkins et al., 2020; Qi et al., 2013). 

Furthermore, the knockdown of an essential gene only leads to a growth phenotype after a certain 

time, allowing to investigate its function under different growth conditions. We show here that 

CRISPRi libraries can be easily screened using a fluorescent transcriptional reporter. By FACS, single 

cells of a CRISPRi library that have a certain phenotype can be isolated. These strains can then be 

further investigated, as it is known for arrayed CRISPRi library screenings (Shalem et al., 2015). 

Therefore, the hereby provided protocol combines the high efficiency of pooled CRISPRi screenings 

with the precision of experiments done with arrayed strains.  

Experimental design (Figure 3) 

Design and construction of the CRISPRi library 

For each gene in the iML1515 model (Monk et al., 2017), 4-6 NGG PAM sites that target the coding 

strand and are equally distributed over the open reading frame were filtered with customized Matlab 

scripts. In total, 7184 sites were considered. Next to the chosen PAMs, 20 nucleotides (nt) were 

selected as the protospacer sequence for a small guide RNA (sgRNA). These sgRNAs were paired with 

65 nt flanking regions, homologous to the pgRNA backbone, which was used as a parental vector for 

this study (Figure 1B). This resulted in 150 nt long oligonucleotides, which were synthesized by Agilent 

Technologies. The resulting oligonucleotide library was amplified with 15 cycles of PCR. The pgRNA 

vector was linearized by PCR and the before amplified oligonucleotides were inserted by Gibson 

assembly. The resulting product was purified and then transformed into E. coli YYdCas9 by 

electroporation. The transformants were plated on 15 cm diameter Petri dishes, which resulted in 

approximately 9.9× 107 colonies. LB medium was spread on plates and all colonies were washed from 

the plate. The resulting cell suspension was pooled, glycerol was added and stored as a glycerol stock 

at -80°C.  

Fitness assays with the pooled CRISPRi library 

The library was grown in duplicates in shake flasks on M9 minimal medium with glucose with a starting 

OD of 0.05. The pre-culture was kept in exponential growth phase to allow a direct induction of the 

CRISPR interference system in the main culture with 200 nM anhydrotetracycline (aTc). After the 

induction, the cultures were grown for 14 hours, while every two hours they were back-diluted to OD 

0.05. Samples were taken every hour. Cells were centrifuged and the pellet stored at -20°C.  
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Illumina Miniseq  

After finishing the growth experiment and collecting samples for 14 hours, plasmid DNA of all samples 

was extracted and concentrations were measured. A 300 bp fragment of the plasmids, including the 

sgRNA sequence, was amplified and Illumina adapters added for performing NGS. The sequence of 

the adapters was dependent on the combination of samples that were sequenced in one run. For the 

sequencing of this library, the Illumina Mini-Seq High Output Reagent Kit (150 cycles) was used, which 

allows to get up to 25M reads. For a library of ~7200 sequences, we wanted to have at least a coverage 

of 100 reads per guide per run which results in 720000 reads per sample. Due to the high similarity of 

the amplicons, 50% phiX was used. To ensure sufficient coverage, we calculated with ~2M reads per 

sample, which allowed us to sequence 10 samples at the same time. Thus, the samples were 

sequenced in 3 different batches, making sure that the replicates of each time point were sequenced 

in the same run to not introduce any batch effects. Instead of splitting the samples, the Illumina system 

also provides machines and kits with a higher read output (Hiseq).  

Data analysis 

Demultiplexing was carried out by the MiSeq system and resulted in .fastq files. These files were 

loaded into our custom-scripted Matlab code and the 20 bp sgRNA sequence was trimmed from the 

read. The sgRNA sequences were then aligned with the sequences of the initial sgRNA library and only 

perfect matching sequences were counted. These counts were divided by the number of all reads per 

run/sample. sgRNAs with less than 10 reads were excluded from further analysis. The log2 fold-change 

was calculated by the division of reads of each sgRNA of each time point with the starting read count. 

The response time was determined for every target gene, by fitting a sigmoidal function to the time 

course of the fitness score. The response time is defined as the time when the knockdown reduced 

the fitness of the strain by 50%.  

Optional screening methods for a CRISPRi library 

FACS 

Instead of performing an NGS screening of samples taken from a fitness assay, it is also possible to 

combine the pooled library with a fluorescent reporter plasmid and to sort a fraction with the desired 

fluorescent response from the pooled strain library. This was used either to enrich slow-growing cells 

by cell sorting via the monitoring of the growth rate of the strains (Beuter et al., 2018) or to find 

targets, whose knockdown influenced the activity of a transcription factor (Kuntz et al., in 

preparation). Both approaches make it possible to find and array cells, in which the knockdown of a 

target gene provokes a certain response of the reporter plasmid. Hence, these strains are directly 

available for further experiments and it is not necessary to reclone them.  



  Chapter 3 
 

110 
 

The library was transformed with a fluorescent reporter plasmid and grown on M9 glucose with 

inducer until the desired time point. 10 ml of the culture were sampled and washed with PBS. The 

cells were loaded into the FACS and gates were set according to the desired fluorescence. Sorted cells 

were grown on plates or in a shake flask and then further investigated either by NGS or plate reader 

experiments. 

Expertise needed to implement the protocol  

For the design of sgRNAs to target the E. coli genome and the analysis of data sets customized Matlab 

scripts were used. For the customization and application in other organisms, basic programming skills 

are needed. When evaluating CRISPRi fitness screens with the protocol described here, expertise in 

handling Illumina MiniSeq system is needed. Alternatively, sequencing services can be used. 

Furthermore, when sorting cells from the library via FACS, the user must be familiar with handling a 

sorting machine or the service of a core facility is needed.  

Limitations 

Targeting genes with CRISPRi also has its limitations. Genes without PAM sites or PAM sites located 

distant to the promoter region, will lead to no or mild repression of the target. Therefore, not every 

gene can be repressed by CRISPRi. Furthermore, targeting genes in operons will lead to a repression 

of all genes located downstream of the target. Hence, the knockdown of genes in operons cannot be 

performed without effecting the rest of the operon and cannot be used for gene-level resolution. 

The design of guides used in this protocol does not include the search for bad-seed effects or off-

targets and on-target activity evaluation. Therefore, each gene is targeted by several guides and users 

should always exclude off-targets by calculating means of several guides or only conclude a specific 

phenotype if at least two guides are showing the same effect. 

The execution of fitness assays with CRISPRi libraries can also be influenced by competitive effects, as 

some knockdowns can lead to an overproduction of supplements, which are secreted to medium or 

the knockdown of certain genes can lead to higher growth rates, as for example the knockdown of the 

gene relA (Donati et al., 2021; Towbin et al., 2017).   

In conclusion, CRISPRi should be mainly used as a screening method and certain phenotypes should 

be validated by follow-up experiments of single CRISPRi strains.  
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Materials 

Reagents 

Reagent or Resource Source Identifier 

Anhydrotetracycline (final conc. 200 nM) Sigma-Aldrich Cat#1035708-25MG 

IPTG Roth Cat#CN08.2 

Ampicillin (100 μg mL-1) Roth Cat#K029.2 

Kanamycin (50 μg mL-1) Roth Cat#T832.3 

 

Kits 

• Bioanalyzer HS DNA Sensitivity Kit (cat. no. 5067-4626) 

• Illumina  MiniSeq High Output Reagent Kit (300-cycles; cat. no. FC-420-1003)  

    MiniSeq High Output Reagent Kit (150-cycles; cat. no. FC-420-1002) 

• AMPure XP beads (Beckman Coulter; cat. no. 10453438 ) 

• NucleoSpin Gel and PCR Clean-up Kit (Macherey-Nagel, Germany; cat. no. 740609.50) 

• DNA Clean and Concentrator-5 (Zymo Research; cat. no. D4014) 

 

Equipments 

Hardware 

• Electroporator 

• Bioanalyzer Agilent 

• Illumina Mini-Seq 

• Qubit 2.0 Fluorometer 

• FACS: Sony SH800SHP 

• Magnetic stand for Eppendorf tubes 

• Big petri dishes (15 cm) 
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Software 

Reagent or Resource Source Identifier 

Matlab R2018b (9.5.0.944444) for analysis 

of experimental data 

mathworks.com N/A 

 

Plasmids 

Reagent or Resource Source Identifier 

pgRNA-bacteria  Qi et al. 2013 Addgene plasmid 

#44251 

 

Strains 

Reagent or Resource Source Identifier 

NEB® 5-alpha Competent E. coli: fhuA2 Δ(argF-

lacZ)U169 phoA glnV44 Φ80 Δ(lacZ)M15 gyrA96 

recA1 relA1 endA1 thi-1 hsdR17 

New England Biolabs Cat#C2987 

YYdCas9: BW25993 intC::tetR-dcas9-aadA 

lacY::ypet-cat 

Lawson et al. 2017 N/A 

 

Oligonucleotides 

Oligonucleotide Sequence (5’-3’) Description 

psgRNAamp-F GTTTTAGAGCTAGAAATAGCAAGTTAAAATAAG

GC 

Amplification of pgRNA 

for Gibson Assembly 

with amplified spacer 

oligonucleotides  

psgRNAamp-R ACTAGTATTATACCTAGGACTGAGCTAGC Amplification of pgRNA 

for Gibson Assembly 

with amplified spacer 

oligonucleotides  

protoamp-F TTGACAGCTAGCTCAGTCCTAGGTATAATACTAG

T 

Amplification of spacer 

oligonucleotide 
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protoamp-R GCCTTATTTTAACTTGCTATTTCTAGCTCTAAAAC Amplification of spacer 

oligonucleotide 

FWD_cassette_seq1 CCGAGTTGCTCTTGCC Sequencing of cloned 

CRISPRi plasmids 

Rev_pkD-

pgRNA_seq2 

GACTCGAGTAAGGATCCAGTTC Sequencing of cloned 

CRISPRi plasmids 

OH_amp_fwd  TAAGGATGATTTCTGGAATTCTAAAG  Amplification of pooled 

oligonucleotides  

OH_amp_rev  GTGCCACTTTTTCAAGTTGATAAC  Amplification of pooled 

oligonucleotides  

EcF_forward  GTTTTAGAGCTAGAAATAGCAAGTTAAAATAAG

GC  

Amplification of the 

pgRNA backbone for 

Gibson Assembly with 

amplified pooled 

oligonucleotides  

(Qi et al., 2013) 

EcF_reverse  ACTAGTATTATACCTAGGACTGAGCTAGC  Amplification of the 

pgRNA backbone for 

Gibson Assembly with 

amplified pooled 

oligonucleotides  

(Qi et al., 2013) 

NGS_F2_adapter  TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG

CGCAATAGGCGTATCACGAGG  

Amplification of a 300 bp 

fragment of pgRNA 

including the sgRNA  

NGS_R2_adapter  GTCTCGTGGGCTCGGAGATGTGTATAAGAGACA

GCGACGGCGCTATTCAGATCC  

Amplification of a 300 bp 

fragment of pgRNA 

including the sgRNA  

Custom_N705 CAAGCAGAAGACGGCATACGAGATGGACTCCTG

TCTCGTGGGCTCGG  

I7 oligo 

Custom_N706 CAAGCAGAAGACGGCATACGAGATTAGGCATGG

TCTCGTGGGCTCGG  

I7 oligo 

Custom_N721 CAAGCAGAAGACGGCATACGAGATTACGCTGCG

TCTCGTGGGCTCGG 

I7 oligo 
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Custom_N503 AATGATACGGCGACCACCGAGATCTACACAGAG

GATATCGTCGGCAGCGTC  

I5 oligo 

Custom_N504 AATGATACGGCGACCACCGAGATCTACACAGAG

TAGATCGTCGGCAGCGTC 

I5 oligo 

Custom_N511 AATGATACGGCGACCACCGAGATCTACACCGGA

GAGATCGTCGGCAGCGTC 

I5 oligo 

Custom_N513 AATGATACGGCGACCACCGAGATCTACACCTAGT

CGATCGTCGGCAGCGTC 

I5 oligo 

 

Supplementary Protocols from companies  

• NEB: Making your own electrocompetent cells 

• Illumina Miniseq System Guide 

• Illumina: MiniSeq System-Denature and Dilute Libraries Guide 

• Illumina Adapter Sequences 

• NEBNext® Multiplex Oligos for Illumina® (Index Primers Set 1) 

 

Media and buffers 

Reagent or Resource Source Identifier 

LB Medium Roth Art. No. X968.2 

   

M9 Minimal medium   

5 x base salt solution   

Na2HPO4 2 H2O (30 g) Roth P030.2 

KH2PO4 (15 g) Roth 3904.1 

(NH4)2SO4 (7.5 g) Sigma-Aldrich A3920 

NaCl (2.5 g) Roth 9265.1 

-add ddH2O to obtain 1 L   

   

100 x trace element solution   

ZnSO4 · 7 H2O (0.18 g) Sigma-Aldrich Z4750 

CuCl2 · 2 H2O (0.12 g) Sigma-Aldrich C3279 

MnSO4 · H2O (0.12 g) Sigma-Aldrich M7899 
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CoCl2 · 6 H2O (0.18 g) Sigma-Aldrich 255599 

- add ddH2O to obtain 1 L   

   

500 x Thiamine-HCl (Vit. B1)   

Thiamine-HCl Sigma-Aldrich T4625-25G 

- add ddH2O to obtain 50 ml 

- store at 4°C 

  

   

1000 x MgSO4 solution   

MgSO4 · 7 H2O (24.6 g) Sigma-Aldrich 63138-250G 

- add ddH2O to obtain 100 ml 

- store at 4°C 

  

   

1000 x CaCl2 solution   

CaCl2 · 2 H2O (1.47 g) Sigma-Aldrich C8106-500G 

- add ddH2O to obtain 100 ml 

- store at 4°C 

  

   

1666 x FeCl3 solution   

FeCl3 · 6 H2O (1.35 g) Sigma-Aldrich 31232-250G-D 

- add ddH2O to obtain 50 ml 

- store covered with tin foil 

(light sensitive!!!) 

- store at 4 °C 

  

   

Carbon source solution  

(200 g/L) 

  

Glucose (8 g) Roth X997.1 

- add ddH2O to obtain 40 mL 

(use Falcon tube) 

- sterile filtrate 

  

   

SOB medium   

Tryptone (2 %) Sigma-Aldrich T9410 
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Yeast extract (0.5 %) Sigma-Aldrich Y1625 

NaCl (10mM) Roth 9265.1 

KCl (2.5 mM) Sigma-Aldrich P4504 

MgCl2 (10mM) Roth KK36.1 

MgSO4 (10mM) Sigma-Aldrich 63138-250G 

   

SOC medium   

SOB medium + Glucose (20 

mM) 

  

 

For 1 L M9 minimal liquid medium: 

Fill a Schott Bottle in the following order (mix by shaking after each step!) 

1. 200 ml 5 x base salts 

2.  fill with app. 600 ml ddH2O 

3.  10 ml trace element solution 

4.  1 ml MgSO4 solution 

5.  1 ml CaCl2 solution   

6. 0.6 ml FeCl3 solution 

7. 2 ml Thiamine solution 

8.  use ddH2O to fill up to 1 L (use mark of the bottle) 

 

Sterile filtrate and store at room temperature.   

Add carbon source before experiment. 

 

Procedure 

sgRNA design and planning of amplicons TIMING 1 day  

1. Run “CRISPRi_Design_Tool.m” (Figure 2) 

2. Add the target genes by typing in e.g. “argA” and pressing “Add target gene” or load a list of 

targets from an Excel sheet (in “.xls” format). The folder also contains a file “amino acid related 

genes.xls”, which gives an example for such loading of target genes 

3. Select the number of sgRNAs per gene target and the DNA strand to be targeted. By default, 

the non-template (coding) strand is preselected because targeting this strand usually gives 

stronger repression 
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4. Press “Create sgRNA” to generate the protospacers (recognition sites) of the targets 

Beware! The tool does only design the protospacers (recognition sites). Any handles (like the 

dCas9 handle) or overlaps (such as the promotor region) must be added! 

5. By clicking on the entries of the “Found genes”-list box you can select which gene you want 

to review 

6. The right table gives some metadata related to the selected gene targets (based on gene 

ontology consortium database, 12/04/2017) 

7. By pressing the “Export to .xls” button all designed protospacers (recognition sites) are saved 

to an spreadsheet 

8. The finished list of sgRNAs has to be loaded with another customized Matlab script and 

overhangs are added to perform the Gibson assembly (step 15) 

9. The finished list of oligonucleotides is uploaded to the ordering platform of a company 

providing the service of synthesizing pooled oligo libraries (Twist, Agilent) 

 

 Cloning of a CRISPRi library TIMING 1-2 days  

10. For the amplification of guide RNAs in the oligonucleotide pool, use the following amounts of 

reagents: 

10 µL dNTPs 

2.5 µL each primer (OH_amp_fwd + rev) 

1 µL guide RNA stock (solubilized according to supplier’s instructions) 

20 µL Q5 reaction buffer 

1 µL Q5 polymerase 

63 µL H2O 

11. Split into 2 50 µL tubes and perform a PCR amplification based on supplier’s instructions with 

an annealing temperature of 62°C, elongation length 20 sec for 15 cycles 

12. Perform a DNA clean up with NucleoSpin Gel and PCR Clean-up Kit (Macherey-Nagel, 

Germany) 

13. For the amplification of the pgRNA acceptor plasmid backbone mix the following reagents: 

2 µL dNTPs 
5 µL each primer (EcF forward, EcF reverse) 
1 µL Template DNA (pgRNA, max 100 µg) 
20 µL Q5 reaction buffer 
1 µL Q5 polymerase 
66 µL H2O 

14. Split into 2 50 µL and perform a PCR amplification based on suppliers’ instructions with an 

annealing temperature of 66°C, elongation length 1:30 min for 30 cycles tubes 

15. Perform a gel extraction from an agarose gel of the linearized plasmid  
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TROUBLESHOOTING 

PAUSE point: amplified vector and inserts can be stored at -20°C  

16. Perform a Gibson Assembly with the amplified oligos and the linearized vector: 

- Mix 100 ng plasmid, 29 ng insert (1:5 ratio), 10 µL Gibson Assembly Master Mix, ad 20 µL 

H2O 

- Incubate at 50°C, 15 min 

17. Perform a NucleoSpin Gel and PCR Clean-up, elute everything in H2O 

18. Do a DpnI digest according to the supplier’s instructions (this step is important to get finally 

rid of the backbone plasmid) 

 

CRITICAL step: if there is too much backbone left in the control step after transforming the library, 

search for advice in the troubleshooting table 

TROUBLESHOOTING 

19. afterwards clean up with a DNA Clean-up Kit (Zymo Research) and elute in 6 µl H2O 

 

Preparation of electrocompetent YYdCas9 cells TIMING 3 days  

(protocol modified after NEB protocol, for source check section supplementary protocols from 

companies) 

Day 1 

20. Prepare the following buffers and media: 

- SOB and SOC 

- Sterile 10% glycerol (can be autoclaved) is needed for the washes. The volume of 10% 

glycerol needed is 2X the culture volume (for example, a 500 ml culture requires 1L of 10% 

glycerol) 

21. Streak out the strain that should be made electrocompetent on fresh plates: streak E. coli 

YYdCas9 on LB plates without antibiotics 

PAUSE point: cells have to be incubated over night 
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Day 2 

22. Procedure for 2* 250 ml cultures (500 ml total): Inoculate 1 colony from a fresh plate of the 

strain to be made electrocompetent into 10 ml of SOB in a 125 ml flask and incubate for 16-

18 hours at 37°C and 250 rpm  

PAUSE point: pre-culture has to be inoculated over night 

Day 3 

23. Have ready 2, 1 L flasks containing 250 ml each of SOB pre-warmed to 37°C. Add two drops of 

the overnight culture to each of the flasks 

24. Shake at 37°C and 250 rpm until the cultures reach an OD600 of 0.5-0.7. Be sure to turn on 

centrifuge and cool rotor to 4°C well in advance of harvesting cells. Be sure to place 1 L of 10% 

glycerol on ice well in advance of harvesting cells 

25. Place cultures on ice for 15 minutes. From this point on the cultures must be kept ice cold. 

Pour each 250 ml culture into chilled 500 ml (or 1000 ml) centrifuge bottles 

26. Centrifuge at 5000 rpm for 10 min. Pour off the supernatant and aspirate any residual broth 

27. Add 250 ml of glycerol to each of the centrifuge bottles and completely suspend the cells by 

pipetting up and down 

28. Centrifuge at 5000 rpm for 10 min. Pour off the supernatant, it is not necessary to aspirate. 

Completely suspend the cells in 250 ml glycerol and re-centrifuge 

29. Pour off the supernatant and suspend the cells in the residual glycerol by pipetting up and 

down 

PAUSE point: 

30. At this point you can electroporate or freeze the cells away. To freeze, add 100 microliters of 

the culture to microcentrifuge tubes on ice. Once you have used all of the culture, transfer the 

tubes to dry ice for 10 minutes or into liquid nitrogen. Once the cultures are frozen, transfer 

them to a -80°C freezer. The cultures should be stable for >6 months 

 

Transformation of electrocompetent YYdCas9 cells with a CRISPRi library TIMING 2 

days  

31. Place Cuvettes at -20°C, turn on the electroporator and set it to 1.7-2.5 kV (optimize for strain), 

200 ohms and 25 µF 

32. Place recovery SOC in 37°C water bath or incubator 

33. Pre-warm LB-antibiotic plates containing Amp at 37°C 



  Chapter 3 
 

120 
 

34. Thaw cells on ice for 10 min or use freshly made cells 

35. Place appropriate number of microcentrifuge tubes and 1 mm-electroporation cuvettes on ice 

36. Flick the tube containing cells a few times to mix and add 20 µl to the microcentrifuge tubes 

37. Add 1.5 µl of the prepared Gibson assembly mix (eluted in H2O) to the cells in the 

microcentrifuge tube 

38. Put 1 ml recovery medium in a 2 ml tube, take it with you to the electroporator 

39. Transfer the DNA-cell mixture to the cold cuvette, tap on countertop 2X, wipe water from 

exterior of cuvette and place in the electroporation module and press pulse 

40. Immediately add 980 µl of 37°C SOC, mix by pipetting up and down once and transfer back to 

2 ml tube. 

41. Rotate in a 37°C incubator for 1 h 

42. Plate 3*300 µl on big petri dishes and dilute the remaining 100 µl in a dilution series from 

(1:10-1:100000) and plate on small petri dishes 

43. Incubate overnight at 37°C 

PAUSE point: cells have to be incubated over night 

 

Day 4 

44. Count cells on the plates of the dilution series and calculate approximate number to check the 

coverage of the transformation 

45. Pick at least 1/1000 of the overall number of sgRNAs of your library and send to Sanger 

sequencing to check whether the cloning was successful  

CRITICAL step: if all picked colonies have a different guide, it should be sufficient to continue with 

the fitness assay and NGS, if not steps 10-45 have to be repeated 

TROUBLESHOOTING 

46. Pool Library: put 10 ml LB on one plate and scratch colonies off carefully with spatula 

47. Pool everything into a 50 ml Falcon by using a pipette 

48. Mix the pooled cells carefully and prepare cryo stocks 

PAUSE point: cryo stocks can be at -80°C for years 

Performing a fitness assay with a pooled CRISPRi library TIMING 2-3 days  

49. Grow a pre-culture of the CRISPRi strain library from a glycerol stock: add 500 µL of the strain 

library to 50 ml LB+Amp, incubate for 5 hours at 37°C 
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50. Prepare a second pre-culture in M9+Glucose+Amp, dilute LB pre-culture 1:10000 and incubate 

for 13 hours 

51. Use the M9 pre-culture which should be in exponential phase and inoculate at least 2 main 

cultures with an initial OD of 0.5 in shaking flasks (100 ml M9+Glucose+Amp, 200nM aTc) 

52. Measure OD every hour and collect samples for plasmid extraction and sequencing. Collect 

sample which equals OD 3 (if cells are at OD 1, collect 3 ml). Centrifuge samples for plasmid 

preparation (RT, max speed, 5 min) and store at -20°C until plasmid extraction 

53. Dilute cultures back every 2 hours to OD 0.05 with fresh and pre-warmed M9+Glucose+Amp 

+ 200 nM aTc 

54. Grow cultures for the desired time (14 hours in our case, which equals to 14 doublings) 

55. After all samples were collected, extract plasmids with GeneJET Plasmid Miniprep Kit 

(ThermoFisher Scientific) 

PAUSE point: plasmid DNA can be stored at -20°C for at least one year 

 

Next-generation Illumina sequencing TIMING 2-3 days  

Amplicon amplification and addition of indices 

56. Amplify the 300 bp fragment including the sgRNA sequence and flanking regions using Q5 

polymerase (New England Biolabs, USA): 

- Template: 150 ng purified library plasmids as template  

- 50 μL PCR reaction with following settings: 98 °C for 10 s, 12 cycles of 98 °C for 10 s, 65 °C 

for 30 s and 72 °C for 15 s; final extension at 72 °C for 5 min 

- Oligos: NGS_F1 and NGS_R1 

57. Purification of the PCR products with NucleoSpin Gel and PCR Clean-up Kit (Macherey-Nagel, 

Germany) 

PAUSE point: amplified DNA can be stored at -20°C for at least one year 

58. Amplification of the 300 bp fragment and addition of different pairs of indexes (i5 and i7) to 

each amplicon using Phusion High- Fidelity DNA Polymerase (New England BioLabs, USA)  

- Template: 4 ng of purified library from step 46. 

- 20 μL PCR reaction with following settings: 98 °C for 30 s; 12 cycles of 98 °C for 10 s, 55 °C 

for 30 s and 72 °C for 20 s; final extension at 72 °C for 5 min 

59. The PCR products were cleaned up using AMPure XP beads (Beckman Coulter): Add x μL of 

H2O to each well of the PCR plate or strip to have a total volume of 50 µl 

60. Add 50 µl of Ampure XP beads to each well of a 96-well plate or Eppendorf cup 
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61. Transfer 50 µl PCR product to the plate/ Eppendorf cup and pipette to mix 

62. Incubate 10 minutes at RT 

63. Plate the plate/ Eppendorf cups on a magnetic stand for 5 min (liquid must become clear) 

64. Discard the supernatant by pipetting 

65. Wash samples by adding 190 µl of freshly prepared 80% EtOH and wait 30 sec on the magnetic 

stand 

66. Discard all supernatant and repeat the washing step for a total of 2 washes 

67. Remove plate/ Eppendorf cups from the magnetic stand and let it air dry for 2-3 min (make 

sure there is no EtOH left, don not over dry it) 

68. Remove the plate/ Eppendorf cups from the magnetic stand and resuspend in 22 µl of H2O by 

mixing it thoroughly 

69. Incubate for 10 min at RT 

70. Place it back on the magnetic stand and wait 5 min 

71. Transfer 20 µl to a new plate/ Eppendorf cup 

PAUSE point: amplified DNA can be stored at -20°C for at least one year 

 

Library preparation for NGS run 

(Protocol modified after Protocol A: Standard normalization method of Illumina: MiniSeq System-

Denature and Dilute Libraries Guide) 

Preparation of reagents: 

72. Prepare a fresh dilution of 0.1 N NaOH, combine the following reagents in a microcentrifuge 

tube and invert the tube to mix (use within 12 hours) 

- 900 µl ddH2O 

- 100 µl NaOH (1.0 N) 

73. Prepare hybridization buffer (comes with Illumina MiniSeq High Output Reagent Kit): 

- Remove the tube from freezer and thaw at RT 

- Once it is thawed, store at 2°C to 8°C  

- Vortex briefly before usage  

74. Prepare RSB: 

- 10 mM Tris-HCl, pH 8.5  

- 0.1% Tween 20 

- Store at 2°C to 8°C  

Creation of a normalized library pool: 
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75. Measure all samples in a Qubit 2.0 Fluorometer using Qubit dsDNA BR Assay 

76. Mix 10 ng of each sample that should be sequenced in one tube 

77. Dilute the pooled libraries to 10nM using RSB buffer 

78. Afterwards, dilute the library pool to 1 nM in a fresh tube using RSB buffer 

79. Vortex briefly and centrifuge at 280 × g for 1 min 

PAUSE point: pooled library can be stored at -20°C for at least one year 

Denature the library: 

80. Combine the following volumes in one tube: 

- 5 µl library (1nM) 

- 5 µl NaOH (0.1 N) 

81. Vortex briefly and centrifuge at 280 × g for 1 min 

82. Incubate at RT for 5 min 

83. Add 5 µl 200 mM Tris-HCl, pH 7.0 

84. Vortex briefly and centrifuge at 280 × g for 1 min 

Dilution of library to loading concentration: 

85. Add 985 µl of prechilled Hybridization buffer to the denatured library (total vol. 1 ml at 5 pM) 

86. Vortex briefly and centrifuge at 280 × g for 1 min 

87. Transfer 180 µl diluted library to a new microcentrifuge tube 

88. Add 320 µl prechilled Hybridization buffer (total vol. 500 µl at 1.8 pM) 

89. Vortex briefly and centrifuge at 280 × g for 1 min 

Denature and dilute PhiX (modified after Denature and Dilute PhiX Control in Illumina guide): 

90. Thaw a tube of 10 nM PhiX stock 

91. Combine 15 µl RSB and 10 µl of PhiX (10nM) in one tube (final vol. 25 µl at 4 nM) 

92. Vortex briefly and pulse centrifuge (can be stored at -25°C to -15°C for up to 3 months) 

93. Combine in a microcentrifuge tube: 

- 5 µl PhiX (4 nM) 

- 5 µl NaOH (0.1 N) 

94. Vortex briefly and pulse centrifuge 

95. Incubate at RT for 5 min 

96. Add 5 µl 200 mM Tris-HCl, pH 7.0 

97. Vortex briefly and centrifuge at 280 × g for 1 min 
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98. Add 985 µl prechilled Hybridization buffer to the tube of denatured PhiX (total vol. 1 ml at 20 

pM) 

99. Combine in a microcentrifuge tube (total vol. 500 µl at 1.8 pM) 

- 45 µl of denatured PhiX 

- 455 µl of prechilled hybridization buffer 

100. Invert to mix and centrifuge at 280 × g for 1 min (can be stored at -25°C to -15°C for 

up to 2 weeks) 

Combine library and PhiX control: 

101. Mix in a microcentrifuge tube: 

- 250 µl PhiX (1.8 pM) 

- 500 µl denatured library (step 78.)  

- Results in a 50% PhiX spike-in 

102. Loading the MiniSeq machine with the finished library: 

- See Illumina Miniseq System Guide 

- After reagent cartridge is thawed, 500 µl of the prepared library-PhiX mix are loaded 

 

Data Analysis of pooled CRISPRi screening TIMING 1 day  

103. Fastq data file of Single-end reads were read out by custom Matlab script 

104. Single-end reads are matched to sgRNA guide sequences of the CRISPRi reference 

library and read counts are calculated 

105. Read counts of each sgRNA are normalized to the total number of read counts per 

sample to achieve frequencies of sgRNAs 

106. To calculate fold-changes, frequencies are normalized to first time point (t= 0 h) 

 

Optional experiments  

FACS screening with CRISPRi library TIMING 4 days 

- Before performing step 20, transform your base train (YYdCas9) with a suitable 

fluorescent reporter plasmid 

- Then continue the procedure until step 48 

49a. Grow a pre-culture of the CRISPRi strain library from a glycerol stock: add 500 µL of 

the strain library (cryo stock) to 50 ml LB+Amp, incubate for 5 hours at 37°C 

50a. Prepare a second pre-culture in M9+Glucose+Amp, prepare various dilutions of the LB 

pre-culture to have an exponential culture on the next day and incubate for 13 hours 

Dilution series of the library: 
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1:5.000  33 uL (library) in 165 ml (medium M9+Glc+antibiotics) 

1:10.000 65 ml (of the dilution before) + 65 ml (fresh medium) 

1:50.000 30 ml (of the dilution before) + 120 ml (fresh medium) 

1:100.000 50 ml (of the dilution before) + 50 ml (fresh medium) 

PAUSE point: cells have to be incubated for 13 hours 

51a. Use the M9 pre-culture which should be in exponential phase and inoculate a main 

culture with an initial OD of 0.02 in a shaking flask (100 ml M9+Glucose+antibiotics, 200nM 

aTc in a one litre shake flask), additionally grow the library in a lower volume without inducer 

(control for FACS) 

CRITICAL step: we start with a low OD of 0.02, so we do not have to back-dilute the library if 

the incubation time does not exceed 6-7 hours. Dependent on the experiment and incubation 

time, the library must be diluted to keep it in exponential phase! 

52a. Start the FACS machine according to the supplier’s instructions to minimize the time 

the cells are stored in PBS 

53a. After an appropriate incubation time, centrifuge and wash 10 ml of the libraries 2 

times with the same volume PBS buffer (RT, 4000rpm, 10 min), dilute 10-fold if OD~0.5  

54a. Measure the library in the FACS machine induced and not induced, measure the 

fluorescence with suitable laser settings and screen at least 100000 cells  

55a. Perform a cell-sorting after setting gates appropriately for what you want to sort 

(highest GFP levels)  

- Fill the tube for the sorted cells with 1 ml M9 (without glucose to prevent cell growth as 

cells are kept at RT) 

TROUBLESHOOTING 

Some FACS systems have the option to directly sort into wells of for example 96-well plates, 

however many cells will not survive the sorting and wells will therefore stay empty. 

56a. Streak out different dilutions on LB plates with antibiotics 100 µl, the remaining 900 

µl are equally distributed and plated on 3 big petri dishes 

PAUSE point: cells have to be incubated over night 

57a. On the next day, count the cells to calculate the survival rate and pick single colonies 

for further investigations, for example into 96-well plates 

TROUBLESHOOTING 

- Further experiments: sequencing, plate reader measurements (fluorescence and OD), 

metabolomics, proteomics, microscopy 
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Timing 

All times mentioned in the table below only cover the here described workflow in E. coli (Figure 3). 

Depending, on the organism, systems and machines used, knowledge of the experimenter, growth 

conditions and number of samples, the times can differ. 

- sgRNA design (step 1-9)      1 day 

- cloning CRISPRi library (step 10-19)    1-2 days 

- transformation of the CRISPRi library (step 20-48)  4 days 

- fitness assay (step 49-55)     2-3 days 

- NGS (step 56-102)      2-3 days 

- Data analysis (step 103-106)    1 day 

- FACS screening of CRISPRi library (step 49a-57a)  4 days 
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Troubleshooting 

Step Problem Solution 

15. The amplification of the backbone 

might lead to smear on the gel 

having the plasmid linearized with a 

restriction enzyme as a control also on the 

gel so that you can identify the correct 

band 

18. and 45. There is still backbone left in your 

sample 

perform an overnight DpnI digest of the 

backbone following the supplier’s 

instructions and redo the cloning 

45. No colonies grew over night 1) Test your electrocompetent cells with 

another plasmid, which you know works 

2) vary the molar ratios of the Gibson 

assembly mix  

3) increase the number of Gibson 

Assembly reactions and transformations 

55a. It is hard to discriminate between 

induced and not induced cultures 

1) plot the measured cultures in different 

ways, for example use a scatter plot 

instead of a histogram to see distribution 

of single cells 

2) use different laser settings 

3) try to find an appropriate positive 

control, which enables to set a get where 

cells of interest should be located 

4) choose another reporter plasmid, 

which has an increased signal upon 

induction 

57a. Low survival rate after cell sorting 1) try to decrease the time that cells are 

stored in PBS 

2) try to decrease sorting time by 

changing gates 
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Figures and legends 

 

Figure 1. Schematic of the sgRNA and the pgRNA plasmid. (A) Sequence of the sgRNA used in this protocol to target a gene 
in the genome of E. coli on the non-template strand. The sgRNA includes the recognition site (20-25 bp), the dCas9 handle 
to bind the dCas9 protein and the terminator derived from S. pyogenes. Also shown is the PAM site (NGG), located upstream 
of the recognition site of the sgRNA. (B) pgRNA plasmid (Addgene #44251), harboring the sequence for the sgRNA 
constitutively expressed by promotor J23119. The vector carries an ampicillin resistance cassette (AmpR) and ColE1 origin. 
The whole vector can be amplified with the oligonucleotides Ec-F and Ec-R, while Ec-F can be used to exchange the sgRNA 
sequence (modified after Schramm, 2015; unpublished). 

 

 

Figure 2. Window of sgRNA design tool. The CRISPR design tool provides a surface to design sgRNA for targeting genes in E. 
coli. Genes can either be selected by pressing „add target gene“ or by uploading a table „import from .xls“. The targeting 
strand can be selected and also how many targets per gene should be shown. “Create sgRNA” will show a list of possible 
sgRNA sequences on the right side of the window and the list can be exported by pressing “export to .xls”. 
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Figure 3. Outline of the workflow and timeline to work with a CRISPRi library. The here described steps can be used to 
either perform a fitness assay with a CRISPRi library (step A-B-C) or to enrich single cells, which show a certain phenotype, 
from a CRISPRi library via FACS (step A-B2-C2). Both options include step A: the design and construction of a CRISPRi library 
in the YYdCas9 strain, having dCas9 encoded on the genome and the sgRNA on the pgRNA plasmid. This step is either followed 
by step B and C, performing a fitness assay, NGS and data analysis or step B2 and C2, performing growth and sampling of the 
CRISPRi library, FACS sorting, plating and arraying of strains, followed by additional experiments. All steps indicate which 
steps of the protocol have to be followed and how long each step takes. 
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Abstract 

Metabolism controls gene expression through allosteric interactions between metabolites and 

transcription factors. These interactions are usually measured with in vitro assays, but there are no 

methods to identify them at a genome-scale in vivo. Here we show that dynamic transcriptome and 

metabolome data identify metabolites that control transcription factors in E. coli. By switching an E. 

coli culture between starvation and growth, we induce strong metabolite concentration changes and 

gene expression changes. Using Network Component Analysis, we calculate the activities of 209 

transcriptional regulators and correlate them with metabolites. This approach captures, for instance, 

the in vivo kinetics of CRP regulation by cyclic-AMP. By testing correlations between all pairs of 

transcription factors and metabolites, we predict putative effectors of 71 transcription factors, and 

validate five interactions in vitro. These results show that combining transcriptomics and 

metabolomics generates hypotheses about metabolism-transcription interactions that drive 

transitions between physiological states. 
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Introduction 

Transcriptional regulation of metabolism is well characterized regarding the canonical flow of genetic 

information, which considers how transcription modulates the abundance of enzymes, and thereby 

metabolic flux and metabolites1–4. In reverse, metabolites convey information back to the 

transcription network by directly or indirectly interacting with a transcription factor (TF) 5–9 (Fig. 1a). 

In Escherichia coli, for example, the amino acid arginine allosterically regulates the activity of ArgR, 

which is a TF that controls genes involved in arginine biosynthesis, but the total regulon includes more 

than 400 genes10. Allosteric TF regulation allows a cell to tune gene expression depending on its 

metabolic state and theory shows that this regulation is robust and predictable by models11. An 

important consequence of allosteric TF regulation is that metabolites are not just biomass building 

blocks but they serve as internal signals with the potential to actively drive transitions between 

different physiological states.  

It is largely unexplored which of the many intracellular metabolites interact with TFs12,13, yet 

many transcriptional regulators are expected to bind a small molecule5. Currently, a major limitation 

to fill this gap of knowledge is the lack of methods to identify the most functionally relevant 

metabolite-TF interactions that control gene expression in vivo. Detection of physical interactions 

between metabolites with transcriptional regulators is mainly based on in vitro assays, which are low-

throughput, feasible for only certain compounds and combinatorial effects cannot be assayed14. An 

alternative approach is to probe protein structural changes with proteomics, which can detect binding 

of a single metabolite across thousands of proteins in cell extracts, but this approach cannot decipher 

unspecific binding from interactions that are functional in vivo15. An in vivo approach has been 

proposed, which searches for correlations in metabolomics data and data from fluorescent 

transcriptional reporters. This method could indeed recover few of the known metabolites that are 

relevant for gene regulation of central carbon metabolism in E. coli16.  

Here, we measure the E. coli transcriptome and metabolome changes during a 20 h dynamic 

transition, and show that integrating these two data-types generates hypotheses about metabolite-

TF interactions that may have functional relevance in vivo. We also construct a metabolite-TF network 

for E. coli from the literature and databases, and show that our approach recovers more than 50% of 

the interactions in this network that were covered by our data. Moreover, we validate five predicted 

interactions with in vitro binding assays, i.e. lysine-ArgR, tyrosine-TrpR, glutamate-SgrR, tryptophan-

SoxR and dihydroxyacetone phosphate-DhaR, showing that our methodology generates 

physiologically meaningful results.  
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Results 

Switching E. coli between growth and carbon starvation 

We used a 1 Liter bioreactor to switch the culture conditions of E. coli between 6 h growth, 12 h carbon 

starvation and 2 h growth resumption. First, cells grew on minimal medium with glucose and when 

the culture reached an optical density (OD) of 2, we transferred cells to minimal medium without 

carbon source. This rapid medium exchange caused an immediate growth arrest and cells starved for 

a period of 12 h (Fig. 1b). After 12 h we added again glucose to the culture and within 10 min cells 

resumed growing exponentially (Fig. 1b). Apart from the fast growth resumption, also oxygen uptake 

and CO2-production increased rapidly upon glucose addition and reached the same rate as before 

starvation (Supplementary Fig. 1). Thus, physiological parameters like growth and respiration change 

in a fast and reversible fashion when E. coli cells enter and exit carbon starvation. Next, we 

investigated metabolism and transcription during the growth-starvation-growth switch, and 

measured the concentration of 123 metabolites by LC-MS/MS (Supplementary Fig. 2) and 4242 

transcripts by RNA sequencing (Fig. 1c and Supplementary Data 1, Supplementary Data 2). In total, 

we collected transcriptomics samples at 29 and metabolomics samples at 35 different time points in 

duplicates from a single bioreactor (Supplementary Data 3), with average errors of 18% for 

metabolites and 16% for transcripts. Only 8% of metabolites and 17% of the transcripts did not change 

significantly in either phase. To explore global dynamics of the metabolome and transcriptome data, 

we grouped each data set into four clusters (hierarchical clustering, z-score normalized). The clusters 

showed that the largest group of metabolites (63%) and transcripts (68%) decreased during the 

starvation phase and increased during the exit-phase (Cluster A, Supplementary Fig. 3). This group 

included intermediates in glycolysis like fructose-bisphosphate, dihydroxyacetone phosphate and 

acetyl-CoA, as well as the nucleotide-triphosphates ATP and GTP (Fig. 2). Another group of 

metabolites and transcripts accumulated during the first 4-6 hours into starvation, such as the amino 

acids lysine and phenylalanine that originate from degradation of proteins17 (Cluster C, 

Supplementary Fig. 3). Similarly, accumulation of nucleotide derivatives like hypoxanthine was 

presumably a consequence of RNA degradation (Fig. 2). These data indicate that starving E. coli cells 

catabolize RNA and proteins during the early phase of starvation, an interpretation that is consistent 

with the relatively high production of CO2 in this phase (Supplementary Fig. 1), and also with the 

expression of genes involved in RNA, protein and glycogen degradation processes (Supplementary 

Fig. 4). Notably, expression of genes in glycogen degradation preceded the expression of genes in RNA 

and protein degradation (Supplementary Fig. 4), confirming that glycogen functions as short-term 

energy storage. After switching cells back to glucose, 95% of the metabolites and 78% of transcripts 
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reached the same steady state levels that they had before the starvation phase. However, for many 

metabolites and transcripts it took over 1 h until they reached a steady state, thus indicating extensive 

regulation during the exit phase.  

 

 

Figure 1.  Dynamic metabolomics and transcriptomics during the growth-starvation switch in E. coli. a) Schematic of the 
mutual feedback between metabolism and transcription. Transcription regulates enzyme levels, which affect flux and 
metabolite concentrations. Metabolite concentrations regulate gene expression by allosteric interactions with 
transcriptional regulators. b) Growth of E. coli during the switch between growth, carbon starvation and back to growth. 
Cells were cultivated in a 1 L bioreactor on glucose minimal medium to an OD of 2 and then the medium was exchanged to 
minimal medium without carbon source. After 12 h carbon starvation glucose was added to the culture. µ is the growth rate 
calculated by linear regression in the first and second growth phase. c) Dynamic transcriptomics and metabolomics data 
measured at 29 and 35 time points, respectively. The first measurement was before the switch to starvation, 19 samples 
were collected during starvation and 9 samples during exit from starvation. Shown are z-score normalized transcript levels 
(in TPM) of 4242 genes and the z-score normalized concentration of 123 metabolites. Blue indicates high 
expression/concentration; orange indicates low expression/concentration. Data is grouped by hierarchical clustering and the 
four largest clusters are indicated as clusters A-D (average cluster dynamics are shown in Supplementary Fig. 2). Source data 
are provided as a Source Data file. 
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Figure 2. Examples of metabolite concentration changes during the growth-starvation-growth switch. Absolute 
concentration of metabolites in central carbon metabolism (green), amino acid metabolism (orange) and nucleotide 
metabolism (blue). The dashed lines indicate the starvation and growth phases. Black dots show concentrations of two 
replicates per time point (four at the first time point), colored dots are the mean. The energy charge is calculated from the 
concentration of ATP, ADP and AMP. (Abbreviations: fbp – fructose-1,6-bisphosphate, dhap – dihydroxyacetone phosphate, 
pep – phosphoenolpyruvate, accoa – acetyl-coenzyme A, glu – glutamate, arg – arginine, lys – lysine, phe – phenylalanine, 
atp – adenosine triphosphate, gtp – guanosine triphosphate, hxan – hypoxanthine) Source data are provided as a Source 
Data file. 

 

Integrating metabolomics and transcriptomics data 

To identify metabolites that are potential regulators of gene expression during the growth-starvation-

growth switch, we searched for correlations between dynamics of metabolites and transcripts. 

Because metabolites modulate transcription through allosteric TF regulation, we sought to determine 

the activity of TFs and other regulators like 70 and S. The relationship between transcriptional 

regulators and their target genes is well-characterized in E. coli, in the form of a transcription 

regulation network18. A well-mapped transcription regulation network allowed us to infer activities of 

transcriptional regulators from measured gene expression profiles using algorithms like Network 

Component Analysis (NCA)19,20. The NCA algorithm estimates activity profiles of transcriptional 

regulators, which minimize the error between theoretical and measured gene expression profiles (for 

2167 genes that are mapped to 209 transcriptional regulators in the E. coli transcription regulation 

network). In total we performed 100 searches with the NCA algorithm, each with a different 

randomized initial condition, such that we obtained means and confidence intervals for activity 

profiles of the 209 transcriptional regulators (Fig. 3a, Supplementary Data 5). These 209 activity 

profiles were able to reproduce 75% of the transcript dynamics and were consistent with the expected 

responses of transcriptional regulators during starvation and growth21. For example, 70, the major 
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sigma factor during exponential growth, was deactivated upon entry to starvation, and the stress 

response regulator S was immediately activated (Supplementary Fig. 5).  

Allosteric regulation of a TF by a metabolite is often described by Hill-type kinetics11, which 

assumes a sigmoidal relationship between TF activity and the concentration of an effector metabolite. 

In a canonical example of this regulation, the secondary messenger cyclic-AMP activates CRP, which 

is a global TF in E. coli22,23. On the basis of Hill kinetics, we tested how well the measured cyclic-AMP 

concentration predicts the activity profile of CRP (Fig. 3b). Cyclic-AMP and CRP activity revealed indeed 

a Hill-type relationship with an activation constant (KH) of 39 µM, which is very close to the in vitro 

determined value of 27 µM23. Thus in vivo metabolite and transcript data identifies the existence of 

the known interaction between cyclic-AMP and CRP, and additionally captures the underlying kinetics 

of allosteric TF regulation. Another well-known metabolite-TF pair is tryptophan and the repressor of 

the tryptophan operon (TrpR), which also showed Hill-type kinetics, and the in vivo KH of 355 µM was 

again relatively close to the in vitro value of 160 µM24 (Fig 3c).  

 

 

Figure 3. Metabolite levels and transcription factor activities recover regulatory interactions. a) Z-score normalized activity 
of 209 transcriptional regulators. Blue indicates high activity; orange indicates low activity. Activity was estimated from the 
transcriptome data with Network Component Analysis (NCA). b) Dynamics of cyclic-AMP concentration (left) and CRP activity 
(middle) during the growth-starvation-growth switch. Correlation of cyclic-AMP and CRP activity (right). The red line is the 
best fit of a Hill function (KH = 39 µM). The correlation is shown with a time-lag of one data point to account for a time-delay 
between activity changes of CRP and changes in gene expression. c) Same correlation analysis as in b) for tryptophan (Trp) 
and the activity of TrpR, the repressor of the tryptophan operon. For cAMP and tryptophan, black dots show two replicates 
per time point, and colored dots are the mean. Error bars of transcription factor activity indicate the 95% confidence interval 
of n = 100 randomized estimates with NCA. Source data are provided as a Source Data file. 

 

Next, we wondered how many of the known metabolite-TF interactions are covered by our 

data, and whether they show a Hill-type relationship. Therefore, we first constructed a “literature 

network” of known metabolite-TF interactions by mining RegulonDB18, the EcoCyc database25 and the 
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Allosteric Database26. This literature metabolite-TF network included in total 134 interactions between 

87 TFs and 106 metabolites (Supplementary Fig. 6). 41% of the interactions are activating, 38% 

inhibiting and for 21% it is not known whether the metabolite inhibits or activates the TF. Our data 

covered interactions for 21 out of the 87 TFs, and 12 of them correlated with at least one of the known 

regulatory metabolites (Fig. 4a, Pearson’s correlation coefficient R² > 0.75). Thus, our data recovered 

known interactions in more than 50% of the cases, and in each of these cases the correlation correctly 

reflected, whether the metabolite activates or inhibits the TF. In case of NadR and ExuR, our data 

suggests that they are inhibited by ATP and lysine, respectively.  

 

Mapping metabolism-transcription interactions systematically 

A problem of the correlation analysis was that several metabolites correlated with the activity of a TF, 

resulting in many false positives (Fig. 4b). The large number of false positives is mainly caused by 

metabolites that have similar dynamics. The same problem was previously reported for a multi-omics 

analysis of yeast metabolism, which searched for correlations between metabolites and fluxes27. In 

this study, correlations between metabolites caused also many false positives, and including prior 

knowledge about metabolic flux regulation solved the problem. Here, we could not adapt such an 

approach, due to the limited information about allosteric TF regulation. Instead, we reduced the 

number of putative interactions by using a distance criterion for metabolites and TFs: metabolite-TF 

pairs were only considered, if at least one target-gene of the TF encodes an enzyme that participates 

in the same metabolic subsystem as the metabolite or if the metabolite is a substrate or a product. 

The hypothesis behind this distance criterion is that metabolites are more likely to regulate genes that 

are involved in their own biosynthesis. This assumption is supported by a recent study in cancer cells, 

which showed that metabolite-gene pairs have a higher correlation when they are close in the 

metabolic network28. We observed a similar proximity of metabolite-TF interactions in our literature 

network, because more than 80% of these interactions have a small distance in the E. coli genome-

scale metabolic model29 (Supplementary Fig. 6). We then applied the distance criterion to our data 

and only considered metabolite-TF pairs that fulfilled the distance criterion (black dots in Fig. 4b). For 

the 12 known metabolite TF-interactions that showed a Hill-type relationship, 11 fulfilled the distance 

criterion, and only the interaction between ExuR and lysine was rejected. The advantage of the 

distance filter was that it reduced the number of highly correlating metabolites from an average of 34 

metabolites per TF to an average of 9 (Fig. 4b). 
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Figure 4. Identification and validation of known metabolite-transcription factor interactions. a) Metabolite-TF interactions 
that are described in the literature and covered by the metabolome data in Fig. 1c and the TF activities in Fig. 3a. Shown are 
21 transcription factors (rows) and their respective effector metabolites (columns). Orange indicates an activation of the TF 
by the metabolite, blue indicates an inhibition, and grey indicates that the mode is unknown. Metabolite-TF pairs that show 
Hill-type kinetics in the metabolome and transcriptome data (R² > 0.75) are indicated with a box. b) Correlation coefficients 
of 12 transcription factors, which had activity profiles that correlated with at least one of the known effector metabolites 
(green dots). Grey and black dots are correlation coefficients with all other 123 measured metabolites. Black dots are 
metabolites that fulfill the distance criterion (same metabolic subsystem or product/substrate of a target-gene). Grey dots 
are metabolites that are rejected by the distance criterion. For ExuR the distance criterion excluded the known effector 
lysine. Lysine and tyrosine are indicated in orange for ArgR and TrpR. c) In vitro measured dissociation constants (KD) of ArgR 
and TrpR with the known effectors (arginine and tryptophan) and the predicted additional effectors (lysine and tyrosine). 
Binding was measured with His-tag purified ArgR and TrpR using micro scale thermophoresis (MST). Error bars show the 95% 
confidence interval of KD estimates, which are based on fitting n = 9 MST assays (proteins purified three times, each measured 
in three MST assays). MST data are shown Supplementary Figure 9. (Abbreviations: arg – arginine, lys – lysine, asn – aspartate, 
acser – O-acetyl-Serine, cytd – Cytidine, atp – adenosine triphosphate, gly – glycine, pep – phosphoenolpyruvate, leu – 
leucine, 26dap – diaminopimelic acid, amet – S-adenosylmethionine, acgam6p – N-acetyl-glucosamine phosphate, hxan – 
hypoxanthine, gua – guanine, trp – tryptophan, tyr – tyrosine, phe – phenylalanine) Source data are provided as a Source 
Data file. 
 

Among the false positives that remained after the distance filter were lysine-ArgR and tyrosine-TrpR 

(orange dots in Fig. 4b). Because lysine and tyrosine share structural similarity with the known 

allosteric effectors (arginine for ArgR and tryptophan for TrpR), we tested if lysine and tyrosine are 

additional and previously unidentified regulators of ArgR and TrpR. Therefore, we purified the two TFs 

and tested binding of lysine and tyrosine in vitro using micro-scale thermophoresis (MST). The in vitro 

MST assays showed indeed binding of lysine and tyrosine to ArgR and TrpR, respectively, thus 
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validating the in vivo prediction (Fig. 4c, Supplementary Fig. 9). The in vitro assays also confirmed the 

known arginine-ArgR and tryptophan-TrpR interactions (Fig. 4c, Supplementary Fig. 9). Because ArgR 

regulates essential steps in lysine biosynthesis as well as two lysine transporters, the physiological 

function of the lysine-ArgR interaction is presumably a metabolic feedback that inhibits lysine 

production and import when lysine is abundant30,31. In case of TrpR, previous studies showed that 

deletion of TrpR, affects expression of tyrA in the tyrosine biosynthesis pathway32. Here, we show that 

also tyrosine is linked to TrpR, and the crosstalk between the two aromatic amino acids could 

potentially coordinate their biosynthesis.  

Finally, we tested if we can generate hypotheses about the existence of metabolite-TF interactions in 

an unbiased fashion by fitting Hill functions to all pairs of metabolites and TFs. We first reduced the 

number of TFs from 209 to 125 by excluding: i) TFs that followed simple on-off-on dynamics, ii) TFs 

with poor estimates of activity profiles (confidence interval >100%), and iii) TFs that are part of two-

component systems (these regulators are more likely modulated by external signals rather than 

internal metabolites). The remaining 125 TFs and 123 metabolites resulted in 15,375 metabolite-TF 

pairs, for which we tested if they show a Hill-type relationship. A total of 3067 metabolite-TF pairs 

(20%) showed a Hill type relationship (R² > 0.75 Supplementary Data 6), and by applying again the 

distance criterion we reduced this number to 513, which we considered as putative metabolite-TF 

interactions (Supplementary Fig. 7, Supplementary Fig. 8, Supplementary Data 7). 

The putative 513 interactions included 71 TFs, and we focused on the 30 TFs that correlated 

only with one or two metabolites (Supplementary Data 7). The resulting network shows mostly 

interactions of TFs with metabolites from amino acid and nucleotide metabolism but also with 

intermediates in carbon and cofactor metabolism (Fig. 5a). We purified three of the identified TFs to 

test if they bind the predicted metabolite. In vitro MST assays validated that SoxR binds tryptophan, 

SgrR binds glutamate and DhaR binds the glycolysis intermediate dihydroxyacetone phosphate (DHAP) 

(Fig. 5b, Supplementary Fig. 9). SoxR is known to activate expression of aroF and tyrA, which encode 

enzymes catalyzing the first step in the biosynthesis of all aromatic amino acids (aroF) and the tyrosine 

branch (tyrA)33. By binding tryptophan, SoxR could be part of a feedback regulation circuit in aromatic 

amino acid biosynthesis, which reduces expression of aroF and tyrA when tryptophan levels are high. 

SgrR activates alaC that encodes a transaminase that converts glutamate and pyruvate to alpha-

ketoglutarate and alanine34. This transaminase accounts, together with a corresponding isoenzyme, 

for 90% of the catalytic activity for biosynthesis of alanine in E. coli35. As our in vivo data shows an 

inhibition of SgrR by glutamate, low glutamate levels would upregulate alaC. Because low glutamate 

level brings the transamination reaction closer to thermodynamic equilibrium, an accompanying 

upregulation of alaC might provide the necessary enzymatic capacity36. The last new interaction is 
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DhaR and DHAP, a regulator of dihydroxyacetone kinases, which seems to activate in response to 

increasing DHAP levels37. As DhaR activates the dihydroxyacetone kinases, the interaction could be 

part of a positive feedback loop. 

 

Figure 5. Identification and validation of new metabolite-transcription factor interactions. a) Network of potentially new 
interactions between transcription factors and metabolites. Shown are 30 transcription factors that correlated with one or 
maximal two metabolites (only metabolites that fulfill the distance criterion). Metabolites are colored according to the 
subsystems of amino acid metabolism (red), carbon metabolism (purple), cofactor metabolism (green) or nucleotide 
metabolism (yellow). Connections in bold black highlight new interactions that are validated in vitro. b) In vitro measured KD 
values of the new interactions indicated in bold in a). Binding was measured with His-tag purified SoxR, SgrR and DhaR using 
micro scale thermophoresis (MST). Error bars show the 95% confidence intervals of KD estimates, which are based on fitting 
n = 9 MST assays (proteins purified three times, each measured in three MST assays).  MST data are shown Supplementary 
Figure 9. (Abbreviations: ala – alanine, leu/ile – leucine/isoleucine, asp – aspartate, glu – glutamate, arg – arginine, 26dap – 
diaminopimelic acid, trp – tryptophan, 15-dap – 1,5-diaminopimelate, val – valine, pser – 3-phosphoserine, ahcys - S-
adenosylhomocysteine, amet – S-adenosylmethionine, PP – pentose phosphate, acgam6p – N-Acetyl-D-Glucosamine-P, udpg 
– UDP-glucose, pep – phosphoenolpyruvate, dhap – dihydroxyacetone phosphate, ppcoa – propionyl-coenzyme A, ipdp – 
isopentenyl diphosphate, pydam – pyridoxamine, glucys – gamma-glutamyl-cysteine, dhpt – dihydropteroate, nadh – 
nicotinamide adenine dinucleotide (reduced), nadph – nicotinamide adenine dinucleotide phosphate (reduced), dhnpt – 
dihydroneopterin, 2dr5p – deoxyribose phosphate,  dtdp – thymidine diphosphate, xtsn – xanthosine, dcmp – deoxycytidine 
monophosphate, adp – adenosine diphosphate) Source data are provided as a Source Data file. 

Discussion 

In conclusion, data of the E. coli transcriptome and metabolome during a 20 h starvation-growth-

starvation switch generated hypotheses about potential interactions between metabolites and TFs. 

The scale of this approach is the biggest advantage, because it allows pair-wise testing of all TFs against 

all metabolites. Here, we provided a first proof of principle that the combination of transcriptomics 

and metabolomics has a great potential to identify metabolite-TF interactions at a metabolism-wide 

scale. To this end we showed that many of the known metabolite-TF interactions were reflected by 

our data (e.g. cyclic AMP-CRP), and therefore that metabolite and gene expression data contain the 

information that is necessary to reconstruct metabolic-genetic networks. Moreover, we could validate 

five of the predicted metabolite-TF interactions with in vitro assays (lysine-ArgR, tyrosine-TrpR, 

glutamate-SgrR, tryptophan-SoxR and dihydroxyacetone phosphate-DhaR). 
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In our analysis, we excluded two-component systems, because they are likely responsive to external 

metabolites. By measuring the exo-metabolome it should be possible to identify effectors of two-

component systems with the method proposed in this study. We also excluded TFs with poor 

estimates of activity profiles, and to include these TFs one could probe their activities with fluorescent 

transcriptional reporters as recently suggested16. Accurate information about TF activities was 

important for our approach because it allowed pairwise testing of Hill-type relationships between TF 

activities and metabolites. Here, we inferred TF activities with the NCA algorithm that requires a well-

mapped transcription regulation network. While the transcription regulation network is known in 

E. coli, it is unknown for most other organisms. To overcome the need for a known transcription 

regulation network, the TF activities could be inferred from the transcriptome data directly without 

using prior knowledge about the transcription regulation network. Previous studies showed for 

example that machine learning methods can infer TF activities in E. coli based on transcriptomics 

data38, and inference of regulatory metabolites with such methods was also suggested39. Future 

approaches could even consider determining TF activities and regulatory metabolites simultaneously.  

The main limitation in our study was that many metabolites showed similar dynamics, which in turn 

caused false positive predictions of metabolite-TF interactions. The high correlation among 

metabolites could be a general problem in metabolomics-based inference approaches27. A solution 

for this problem is to enforce more specific metabolite concentration changes by localized 

perturbations of metabolism, for example by disturbing single enzymes. We anticipate that the 

transcriptome and metabolome of hundreds of locally perturbed metabolic states would provide 

sufficient information to faithfully map metabolite-TF interactions of an organism. An effective 

perturbation method is CRISPR interference, because of its potential to interfere with the expression 

of every enzyme of an organism.  

A complete map of metabolite-TF interactions would advance our knowledge about the dynamic 

nature of metabolic regulation and enable the construction of dynamic metabolic models. Here, we 

focused mainly on interactions that are part of metabolic-genetic feedback circuits, because we 

considered the distance between TFs and metabolites. However, metabolites will not only affect 

transcription of genes encoding enzymes, but also affect genes involved in various other physiological 

processes. Understanding these long-ranging metabolite-TF interactions would dramatically increase 

our understanding about how metabolism drives physiological responses, e.g. to oxidative stress40 or 

antibiotics41. Finally, there is the possibility to exploit the knowledge about metabolite-TF interactions 

to engineer better strains for biotechnology, e.g. by designing genetic-metabolic feedback that acts as 

valves in production strains42 or growth switches43.  
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Material & Methods 

Strains and cultivation 

E. coli BW25113 (parent strain for the Keio Collection, CGSC#: 7636) was cultivated in 1 L bioreactor 

with 500 mL of M9 minimal medium containing 5 g*L^-1 glucose to an optical density at 600 nm (OD) 

of 2. Then the culture was centrifuged at 37 °C and 1800 x g for 5 min. Pelleted cells were resuspended 

in M9 medium at 37°C without glucose and transferred back to the bioreactor. After 12 h, the culture 

was supplemented glucose to a final concertation of 5 g*L^-1 glucose. The M9 minimal medium 

consisted of the following components (per liter): 6 g Na2HPO4 · 2 H2O, 3 g KH2PO4, 1.5 g (NH4)2SO4, 

0.5 g NaCl. The following components were sterilized separately and then added to the medium (final 

concentrations): 0.1 mM CaCl2, 1 mM MgSO4, 60 µM FeCl3, 2.8 µM thiamine-HCl, and 10 mL trace salt 

solution. The trace salt solution contained (per liter) 180 mg ZnSO4 · 7 H2O, 120 mg CuCl2 · 2 H2O, 

120 mg MnSO4 · H2O, 180 mg CoCl2 · 6 H2O. The dissolved oxygen in the bioreactor was kept at 30% 

and pH 7 was controlled with 5 M NH4OH and 20% H3PO4. The bioreactor was a BioFlo115 bioprocess 

system (Eppendorf, Hamburg, Germany), equipped with a pH-sensor (Mettler Toledo, Colombus, OH) 

and a DO-sensor (Mettler Toledo, Colombus, OH). Exhaust gas of the cultivation was analyzed by a 

DASGIP GasAnalyser (Eppendorf, Hamburg, Germany). The GasAnalyser was calibrated with two-

point-calibration prior to the cultivation. The bioreactor cultivation was monitored with the 

BioCommand-Software (Eppendorf, Hamburg, Germany).  

Metabolomics 

For metabolomics 1 mL culture aliquots were vacuum-filtered on a 0.45 µm pore size filter 

(HVLP02500, Merck Millipore). Filters were immediately transferred into 40:40:20 (v-%) 

acetonitrile/methanol/water at -20°C for extraction. Extracts were centrifuged for 15 minutes at 

11 000 xg at -9 °C. Centrifuged extracts were mixed with 13C-labeled internal standard. 

Chromatographic separations were performed on an Agilent 1290 Infinity II LC System (Agilent 

Technologies) equipped with an Acquity UPLC BEH Amide column (2.1 x 30 mm, particle size 1.8 µm, 

Waters) for acidic conditions and an iHilic-Fusion (P) HPLC column (2.1 x 50 mm, particle size 5 µm, 

Hilicon) for basic conditions. We were applying the following binary gradients at a flow rate of 400 

µl*min^-1: Acidic condition) 0-1.3 min: isocratic 10% A (water/formic acid, 99.9/0.1 (v/v), 10 mM 

ammonium formate), 90% B (acetonitrile/formic acid, 99.9/0.1 (v/v)); 1.3-1.5 min linear from 90% to 

40% B; 1.5-1.7 min linear from 40% to 90% B, 1.7-2 min isocratic 90% B. Basic condition) 0-1.3 min: 

isocratic 10% A (water/formic acid, 99.8/0.2 (v/v), 10 mM ammonium carbonate), 90% B (acetonitrile); 

1.3-1.5 min linear from 90% to 40% B; 1.5-1.7 min linear from 40% to 90% B, 1.7-2 min isocratic 90% 

B The injection volume was 3.0 µl (full loop injection). Eluting compounds were detected using an 
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Agilent 6495 triple quadrupole mass spectrometer (Agilent Technologies) equipped with an Agilent 

Jet Stream electrospray ion source in positive and negative ion mode. Source gas temperature was set 

to 200 °C, with 14 L*min^-1 drying gas and a nebulizer pressure of 24 psi. Sheath gas temperature was 

set to 300 °C and flow to 11 L*min^-1. Electrospray nozzle and capillary voltages were set to 500 and 

2500 V, respectively. Metabolites were identified by multiple reaction monitoring (MRM), and MRM 

parameters were optimized and validated with authentic standards44. Metabolites were measured in 

12C- and 13C isoforms, and data was analyzed with published Matlab code44.  Metabolites were sampled 

four times at the first time point t0; and two samples were collected at the remaining time points (see 

also reporting standards in Supplementary Data 10). Metabolomics metadata is accessible under the 

MetaboLights accession number MTBLS1044. 

Transcriptomics 

For transcriptomics 0.5 mL culture was transferred into reaction tubes and centrifuged at 11 000 xg 

for 2 min, and the pellet was frozen in liquid nitrogen. The total RNA of the cells was isolated using the 

Total RNA Isolation Mini Kit (Agilent, Santa Clara, CA). The integrity of the RNA was measured using 

the BioAnalyzer Pico-Kit (Agilent, Santa Clara, CA). RNA sequencing was performed by the Max Planck-

Genome-Centre Cologne, Germany (https://mpgc.mpipz.mpg.de/home/). The sequencing reads were 

analyzed and mapped using the CLC Software (QIAGEN, Venlo, NL). For normalization, gene expression 

was calculated as transcripts per kilobase million (TPMs). RNA was sampled four times at the first time 

point t0; and two samples were collected at the remaining time points. For the time points t13, t15, t19 

and t24 one of the two replicates was excluded due to low quality of the sampled RNA. Transcriptomics 

metadata is accessible under the GEO number GSE131992. 

Network component analysis (NCA) 

 NCA was performed by iteratively optimizing connectivity strength and TF-activity by using the 

connectivity matrix of the transcription regulation network and the measured gene expression. The 

optimization is a least square optimization between the gene expression and the product of 

connectivity and TF-activity: 

(1) min
𝐴,𝑃

‖𝐸 − 𝐴𝑃‖2 

Where E is the log10 transformed gene expression data (in TPMs) (Supplementary Data 9), A the 

connectivity matrix of the transcription regulation network (matrix with regulator-gene interactions 

Supplementary Data 8) and P the TF-activity19. To generate the connectivity matrix, a matrix of 

transcription regulator – gene interactions was generated by combining the matrixes of TF – gene 

interactions and sigma factor – gene interactions of RegulonDB18. Additional regulation that was 
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added was the (p)ppGpp regulon and transcriptional attenuation, as described in the EcoCyc 

database25. To account for basal expression of every gene by the RNA polymerase we added a global 

regulator, which was connected to all genes in the connectivity matrix. Randomized starting points 

were used for each calculation cycle of the algorithm. A calculation cycle was aborted if the summed 

squared 2-norm of the residuals did not change by more than 1%.  

Correlations between metabolites and TF activities 

Metabolite concentrations and TF activities were first correlated linearly. In case of a positive linear 

correlation we used activating Hill kinetics as the basis for a non-linear fit. In case of a negative linear 

correlation we used inhibition kinetics: 

(2) Activation kinetics:  𝑦 =  𝑦max ∗
𝑥h

𝑥h+𝐾H
h 

(3) Inhibition kinetics:  𝑦 =  𝑦max ∗
𝐾H

h

𝑥h+𝐾H
h 

Where y is the TF activity, and x the metabolite concentration. KH is the activation constant, h the Hill 

coefficient and ymax is the maximal TF activity, which was assumed to be constant over time. 

Parameters of the Hill equations (KH and h) were estimated in total 50 times per metabolite-TF pair. 

The Hill coefficient h was constrained to an upper value of 10. For each pair of metabolite and TF, we 

tested if a negative time-shift of the TF activity by one time point would improve the parameter 

estimation. This accounts for the fact that TF activities are derived from gene expression data, which 

could potentially succeed changes of metabolite levels (Supplementary Fig. 10). The correlation 

coefficient R2 was calculated between the measured TF activity and the transformed metabolite levels 

using the estimated Hill parameters. 

Distances of metabolite-TF interactions 

First, we remove all cofactors, as well as periplasmatic and extracellular metabolites from the 

stoichiometric matrix of the iJO1366 metabolic genome scale model of E. coli. Next, we create a 

metabolite-gene adjacency matrix, F, by calculating the inner product of the modified stoichiometric 

matrix, N, and the reaction-gene matrix, G. We finish by computing the Boolean of F, F’. Next, we 

transform F’ it into an undirected, bipartite graph, nodes denoting metabolites and genes, 

respectively. For this graph, we calculate a distance matrix, D, containing all pairwise distances 

between metabolites and genes in F. For known metabolite-TF interactions, we look for the distances 

between the regulating metabolite and each of the target genes of the TF and take the smallest 

distance. In case a regulating metabolite is not part of the iJO1366, we omit the distance calculation45. 

The distance criterion for correlating metabolite-TF pairs (Fig.  4b) was also based on the genome scale 

model iJO136629. Pairs of metabolites and TFs were only considered if at least one of the two criteria 
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were fulfilled. Criteria 1: the metabolite is a product or a substrate of an enzyme that is encoded by a 

target-gene of the TF. Criteria 2: the metabolite is listed in the same metabolic subsystem as an 

enzyme that is encoded by a target-gene of the TF. Subsystems of TFs were defined as the metabolic 

pathways controlled by the TF in the genome scale model. Subsystems of metabolites were defined 

according to the Supplementary Data 1. 

Protein overexpression and purification 

TFs were purified from the E. coli ASKA strains46. Cells were grown in 200 mL TB medium containing 

30 µg*mL^-1 Chloramphenicol at 37 °C. When cells reached OD 0.6 we added 0.5 mM IPTG. Cells were 

incubated at 37 °C for 3 h more and harvested by centrifugation. Proteins were purified from the 

pellets using Protino™ Ni-TED-IDA 1000 Kit (Macherey-Nagel, Düren Germany). Protein purity was 

confirmed by SDS-PAGE and concentrations were determined by the Pierce protein BCA Assay 

(Thermo Fischer Scientific, Waltham, MA). 

Quantitation of interactions by Microscale Thermophoresis 

Microscale Thermophoresis (MST)47 was performed on a Monolith NT.115 (Nano Temper 

Technologies GmbH, Munich, Germany) at 21°C (red LED power was set to 75% and infrared laser 

power to 80%). 50 nM of the respective protein was labeled with the dye Monolith His-Tag Labeling 

Kit RED-tris-NTA 2nd Generation (MO-L018) supplied by NanoTemper Technologies. Labeled proteins 

were titrated as indicated with the respective metabolite in buffer T (50 mM NaH2PO4, 500 mM NaCl, 

pH 5.7). At least nine independent MST experiments (three technical replicates of three biological 

replicates) were performed at 680 nm and processed by Nano Temper Analysis package 1.2.009 and 

Origin8 (OriginLab, Northampton, MA). 

Data & Code availability 

Gene expression data that support the findings of this study have been deposited in NCBI’s Gene 

Expression Omnibus with the accession code GSE131992 

[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE131992]. Metabolomics data that support 

the findings of this study have been deposited in MetaboLights database with the accession codes 

MTBLS1044[https://www.ebi.ac.uk/metabolights/MTBLS1044].  The source data of Figures 1a-b, 2, 3a-

c, 4b-c and 5b and Supplementary Figures 1, 3, 4, 5, 7 and 9 are provided as a Source Data file. All other 

data are available from the corresponding author on reasonable request. Supplementary data tables can 

be accessed from the GitHub repository via https://github.com/mlempp/PhD_Thesis. 

Matlab code to perform Network Component Analysis and Kinetic correlations can be accessed from 

the GitHub repository via https://github.com/nfarke/Lempp_Metabolite_TF_interaction_Ecoli.  
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Supplemental Information 

 

Supplementary Figure 1. Specific oxygen consumption (qO2) and carbon production rates (qCO2) 
during the growth-starvation-growth switch. The dashed line indicates the phase when biomass was 
too low to determine rates. Pink indicates growth phases and grey the starvation phase. (Source data 
are provided as a Source Data file.)  
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Supplementary Figure 2. Metabolite levels during the switch between starvation and growth. Relative 
concentrations are shown as fold change relative to the first data point. Black dots show levels of two 
replicates per time point (four at the first time point), red dots are the mean. Dashed vertical lines 
indicate the growth-starvation-growth switch.  
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Supplementary Figure 2. (continued) 
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Supplementary Figure 2. (continued) 
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Supplementary Figure 2. (continued)  
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Supplementary Figure 3. Average dynamics of the hierarchical clusters A - D of transcripts and 
metabolites. Percentages show the number of metabolites/transcripts in cluster relative to the total 
number of measured metabolites/transcripts. Pink indicates growth phases and grey the starvation 
phase. (Source data are provided as a Source Data file.) 
 
 

 

 

Supplementary Figure 4. Average expression of genes in degradation pathways of glycogen (green), 
RNA (purple) and proteins (orange) during the starvation phase. Pink indicates the growth phase and 
grey the starvation phase. Expression profiles include only genes that increase during the starvation 
phase (Glycogen degradation: 4 of 6 genes; RNA degradation: 13 of 35 genes; Protein degradation: 42 
of 106 genes) (Source data are provided as a Source Data file.)  
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Supplementary Figure 5. Activity of the sigma factors 70 and  S during the switch between starvation 
and growth. The grey area indicates the 95% confidence interval of n = 100 randomized estimations 
with Network Component Analysis. Pink indicates growth phases and grey the starvation phase. 
(Source data are provided as a Source Data file.) 
 
 

 

Supplementary Figure 6. a) Metabolite-transcription factor interactions that are described in the 
literature and databases. Shown are 87 transcription factors (rows) and their respective effector 
metabolites (columns). Orange indicates an activation of the TF by the metabolite, blue indicates an 
inhibition, and grey indicates that the mode is unknown. b) Mode of metabolite-transcription factor 
interactions; fraction of unique metabolites in the 134 different interactions; number of transcription 
factors for which an interacting metabolite is known. c) Distance between a metabolite and the target 
genes of the interacting transcription factor. The distance d was transformed by the following 
equation to account only for genes: Distance=(d+1)/2.  
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Supplementary Figure 7. a) Number of significant kinetic correlations (R²>0.75) per transcription 
factor without distance filter. b) Number of significant kinetic correlations (R²>0.75) per transcription 
factor with the distance filter. (Source data are provided as a Source Data file.) 
 

 

 

Supplementary Figure 8. Steps to reduce the number of correlating metabolite-transcription factor 
pairs.  
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Supplementary Figure 9. In vitro binding assays with micro-scale thermophoresis (MST).  Normalized 
fluorescence (black dots) was fitted (solid red line) to calculate the binding affinity of each interaction. 
The respective transcription factor (50 nm) was titrated with increasing amount of the putative 
effector metabolite. Shown are the mean and standard deviation of n = 9 MST assays (three technical 
replicates of three biological replicates). (Source data are provided as a Source Data file.) 

 

 

 

Supplementary Figure 10. Schematic of the potential time lag between real and calculated 
transcription factor activity (TFA). Real TFA follows immediately the change in effector metabolite 
level (black). Because of a delay in gene expression, the actual transcriptional response has a negative 
time-lag (red). Therefore, we allow a negative time-lag for TFA in the correlation analysis with 
metabolites (blue arrows).   
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This chapter is written in manuscript style and was published in Cell Systems 2019, 8 (1), 66–75.e8. My 

contribution to this work included cloning plasmids with small guide RNAs for applying CRISPR 

interference in allosteric feedback mutants and performing growth experiments with the respective 

strains. 

Summary 

Microbes must ensure robust amino acid metabolism in the face of external and internal 

perturbations. This robustness is thought to emerge from regulatory interactions in metabolic and 

genetic networks. Here, we explored the consequences of removing allosteric feedback inhibition in 

seven amino acid biosynthesis pathways in Escherichia coli (arginine, histidine, tryptophan, leucine, 

isoleucine, threonine and proline). Proteome data revealed that enzyme levels decreased in five of 

the seven dysregulated pathways. Despite lower enzyme levels flux through the dysregulated 

pathways was not limited, indicating that enzyme levels are higher than absolutely needed in wild-

type cells. We show that such enzyme overabundance renders the arginine, histidine and tryptophan 

pathway robust against perturbations of gene expression, using a metabolic model and CRISPR 

interference experiments. The results suggest a sensitive interaction between allosteric feedback 

inhibition and enzyme level regulation that ensures robust yet efficient biosynthesis of histidine, 

arginine and tryptophan in E. coli. 
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Introduction 

Regulation of microbial metabolism involves a wide range of mechanisms that act on different cellular 

layers and together control the abundance and activity of enzymes (Chubukov et al., 2014). An 

example is end-product inhibition of amino acid biosynthesis in Escherichia coli, which can act on 

enzyme abundance through transcriptional regulatory cues, and enzyme activities through allosteric 

feedback inhibition. However, since metabolic reaction rates are determined by both enzyme 

abundance and enzyme activity it has been difficult to disentangle the specific roles of the two 

regulatory layers, and to understand how they interact to control metabolism (Chubukov et al., 2013; 

Daran-Lapujade et al., 2007; Kuile and Westerhoff, 2001). 

Allosteric feedback inhibition of the committed step in biosynthetic pathways is thought to maintain 

homeostasis of end-products (Umbarger, 1956), and 16 out of 20 amino acids in E. coli feedback inhibit 

enzymes of their own biosynthesis pathway (Reznik et al., 2017). The consequences of dysregulating 

these enzymes were mainly studied in vitro (Schomburg et al., 2013), or in the context of 

biotechnological overproduction strains (Hirasawa and Shimizu, 2016). For the case of nucleotide 

biosynthesis in E. coli, a detailed in vivo study showed that removing allosteric feedback inhibition did 

not perturb nucleotide homeostasis (Reaves et al., 2013). In the absence of allosteric feedback 

inhibition, additional regulatory mechanisms accomplished proper control of the pathway by 

channeling the excess of nucleotides into degradation pathways (so-called directed overflow). 

Theoretical analyses, in contrast, suggest a key role of allosteric feedback inhibition in achieving end-

product homeostasis (Hofmeyr and Cornish-Bowden, 2000), metabolic robustness (Grimbs et al., 

2007), flux control (Kacser and Burns, 1973; Schuster and Heinrich, 1987) and optimal growth (Goyal 

et al., 2010). 

The abundance of enzymes in E. coli amino acid metabolism is mainly regulated at the layer of 

transcription, either by transcriptional attenuation (Yanofsky, 1981) or transcription factors (Cho et 

al., 2008, 2012). For example, a set of four transcription factors (ArgR, TrpR, TryR and Lrp) control 

expression of 19 out of 20 amino acid pathways, by sensing the availability of amino acids via allosteric 

binding (Cho et al., 2012). This regulation ensures that enzymes in amino acid pathways are only made 

when they are needed (Schmidt et al., 2016; Zaslaver et al., 2004). As a consequence of such need-

based enzyme level regulation, one would expect that enzyme levels are not higher than absolutely 

needed for amino acid biosynthesis. However, recent data suggest that cells express the majority of 

enzymes at higher levels than necessary to fulfill biosynthetic demands, and that such enzyme 

overabundance provides a benefit in changing environments (Davidi and Milo, 2017; O’Brien et al., 

2016). For example, enzyme overabundance enables a quick activation of the pentose phosphate 
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pathway upon stresses (Christodoulou et al., 2018), and similar benefits were attributed to 

overabundant ribosomes (Mori et al., 2017) and coenzymes (Hartl et al., 2017).  

Here we constructed seven E. coli mutants, each with a different feedback-dysregulated amino acid 

biosynthesis pathway (arginine, histidine, tryptophan, leucine, isoleucine, threonine and proline), and 

measured proteins, metabolites, fluxes and growth of the mutants. In all seven feedback-dysregulated 

pathways the concentration of amino acid end-products increased, and in five pathways we measured 

lower enzyme levels. Despite the lower enzyme levels biosynthetic flux was not limited, indicating that 

these enzymes are not operating at maximal capacity in wild-type cells. By combining theoretical and 

experimental analysis, we show that this enzyme overabundance provides a robustness benefit 

against genetic perturbations, in case of the arginine, tryptophan and histidine pathway. 

Results 

Dysregulating Allosteric Enzymes Changes Levels of Specific Amino Acids in E. coli 
 
To explore the function of allosteric feedback inhibition in the arginine, histidine, tryptophan, leucine, 

isoleucine, threonine and proline biosynthesis pathways, we first created a panel of seven 

allosterically dysregulated E. coli mutants (Figure 1A and Table S1). Using a scarless CRISPR method 

(Reisch and Prather, 2015), we introduced point mutations into genes encoding the allosteric enzyme 

that catalyzes the committed reaction in each pathway (argA, hisG, trpE, leuA, ilvA, thrA and proB). 

These mutations have been shown previously to abolish the allosteric interaction while not affecting 

enzyme activity, thereby allowing us to study regulation of the pathway in the absence of allosteric 

feedback (Caligiuri and Bauerle, 1991; Csonka et al., 1988; Doroshenko et al., 2013; Gusyatiner et al., 

2005; LaRossa et al., 1987; Lee et al., 2003; Rajagopal et al., 1998). For N-acetylglutamate synthase 

(ArgA), we confirmed with in vitro assays that the mutation does not affect enzymatic activity, and 

abolishes inhibition by arginine (Figure S1). To analyze metabolism of the mutants we quantified 

intracellular metabolites during exponential growth on glucose by LC-MS/MS (Guder et al., 2017). 

Stronger metabolic changes were restricted to amino acid biosynthesis, with specific increases 

between 2- and 16-fold of only the amino acid products of the dysregulated pathways (Figure 1B). 

Despite these changes within the dysregulated pathways, the remaining amino acid concentrations as 

well as the global metabolite profile remained relatively stable (Figure 1B and S2). Thus, dysregulating 

allosteric enzymes in E. coli amino acid biosynthesis elevated the intracellular concentration of the 

corresponding amino acid product.  
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Figure 1. Amino Acid Profile of Feedback-dysregulated E. coli Mutants 
(A) Seven amino acid pathways were dysregulated by genomic point mutations in the indicated genes. See also Table S1. 
Negative allosteric feedbacks of amino acids on enzymes in the biosynthetic pathways are shown as dotted lines. Negative 
transcriptional feedbacks of amino acids are shown as dashed lines. Boxes indicate enzymes in the biosynthesis pathways. 
(B) Relative concentrations of intracellular amino acids in wild-type E. coli and the seven dysregulated mutants. Bar plots 
show absolute concentrations of the amino acid in the dysregulated pathways. See also Figure S2. Data are represented as 
mean, and error bars are ± SD (n = 3).  

 

Lower Expression of Enzymes in Feedback-Dysregulated Pathways 

With the exception of proline biosynthesis, all of the dysregulated pathways are additionally 

controlled at the layer of enzyme abundance, either via transcription factors or transcriptional 

attenuation. To probe if elevated amino acid concentrations in our mutants affected enzyme levels in 

the corresponding pathways, we measured their proteomes (Figure 2A). The data covered relative 

abundances of 173 out of the 204 enzymes annotated to amino acid metabolism in the latest E. coli 

metabolic model (Monk et al., 2017). Enzyme expression was indeed lower in five of the seven 

dysregulated pathways (argA*, trpE*, hisG*, leuA*, thrA*), indicating that the elevated amino acid 

concentrations caused a compensatory downregulation of their associated pathway (Figure 2A). 

Enzyme levels did not change in the proB* and ilvA* mutant, which is expected because proline 

biosynthesis lacks enzyme level regulation and isoleucine biosynthesis is subject to a second allosteric 

feedback that was not removed (Figure 1A and 2A). The leuA* mutant showed more global changes 

in enzyme levels than the other mutants. The high leucine concentration in this strain likely activates 

the leucine responsive transcription factor Lrp, which acts on many genes in amino acid metabolism 
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(Cho et al., 2008). In the argA* mutant we observed an expected accompanying decrease in histidine 

biosynthesis enzymes, which are additional targets of the transcription factor ArgR (Gama-Castro et 

al., 2016). Apart from the compensatory downregulation of biosynthetic enzymes, enzymes in 

dedicated amino acid degradation pathways were upregulated in three mutants (AstC in the arginine 

mutant, TnaA in the tryptophan mutant and PutA in the proline mutant, Figure 2A). This likely 

constitutes an additional compensatory mechanism similar to the directed overflow reported for 

nucleotides (Reaves et al., 2013). 

 

 

Figure 2. Expression of Enzymes in Feedback-dysregulated Pathways 

(A) Abundance of 173 enzymes in amino acid metabolism (out of 204 enzymes in total), relative to the level in the wild-type. 
Data are represented as mean (n = 3). For each strain the enzymes in the dysregulated pathway are shown as colored dots. 
Enzymes in degradation pathways of arginine, tryptophan and proline are indicated by their names. (B) GFP-fluorescence 
measured by flow cytometry. GFP-promoter fusions were transformed in wild-type cells and the indicated mutant. Upper 
panel: pPargA-gfp; middle panel: pPtrpL-gfp; lower panel: pPthrL-gfp. Histograms represent fluorescence of 10,000 single 
cells. Mean fluorescence was calculated from 10,000 single cells of n = 3 independent cultures. See also Figure S3. 
 

To obtain additional evidence for lower enzyme levels in the dysregulated pathways, we used GFP-

promoter fusions and measured fluorescence in single cells (Figure 2B). GFP expression from an ArgR-

regulated promoter was indeed ~3-fold lower in the argA* mutant compared to the wild-type. 

Similarly, a TrpR-regulated promoter was ~3-fold stronger repressed in the trpE* mutant. The cell-to-

cell variation in GFP content was similar in wild-type cells and the mutants, thus indicating that all cells 

in the population of allosteric feedback mutants have lower enzyme levels in the dysregulated 

pathway. A GFP reporter with the thrL leader peptide was only 17% repressed in the thrA* mutant 

compared to the wild-type, which is consistent with the small decrease of enzymes levels in the 

dysregulated threonine pathway (Figure 2A and 2B). We also fused GFP to the hisL and leuL leader 

peptides, but they did not report repression by amino acids even when they were added to the 
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medium (Figure S3). Probably transcriptional attenuation by hisL and leuL requires the genomic 

context, and cannot function on plasmids. In summary, proteome data revealed a lower expression of 

enzymes for five of the seven dysregulated pathways (argA*, trpE*, hisG*, leuA* and thrA*). GFP-

promoter fusions confirm this enzyme level regulation at the single cell level, and indicate that 

downregulation of enzymes in the argA*, trpE* and thrA* mutant occurs at the transcriptional layer.   

 

Allosteric Feedback Inhibition Enforces Enzyme Overabundance 

Next, we wondered if lower expression of enzymes limits the biosynthetic capacity of the mutants. 

First, we tested steady state growth on glucose minimal medium and seven other carbon sources 

(Figure S4). All mutants showed wild-type like growth, except the leuA* mutant, which grew in average 

10% slower than the wild-type. To test if lower enzyme levels affect biosynthetic capacity in dynamics 

shifts, we starved cells for carbon and measured growth resumption on glucose minimal medium 

(Figure 3A). During the initial phase of growth resumption all mutants had the same growth rate as 

the wild-type. Only the leuA*, ilvA* and thrA* mutants reached lower growth rates than the wild-type 

during the subsequent 4 hours. The three strains had also lower ODs after 20 hours starvation. 

Similarly, nutritional upshifts from galactose to glucose did not affect growth of the mutants (Figure 

S5). The three strains with highest reduction in enzyme levels (argA*, trpE* and hisG*) grew like the 

wild-type in all tested conditions, indicating that biosynthetic capacity is not limited by lower enzyme 

level. The advantage of lower protein costs in these pathways was either too subtle to be detected by 

growth assays, or counterbalanced by negative effects of feedback-dysregulation.  

To directly probe biosynthetic capacity, we traced intracellular fluxes of amino acids with 15N labeling 

experiments (Figure 3B). Labeling of arginine, tryptophan and proline was similar in the respective 

mutant and the wild-type, whereas histidine, (iso)-leucine and threonine labeled slower in the 

mutants. However, it is important to consider that labeling rates depend on fluxes, and also on 

absolute pool sizes of amino acids. Because amino acid pools were higher in the mutants we used a 

method for quantitative analysis of the labeling profiles to estimate fluxes (Yuan et al., 2008). To 

account for unknown labeling profiles of upstream nitrogen precursors, we calculated fluxes for a wide 

range of precursor labeling rates in the literature (Yuan et al., 2006). The flux estimates show that 

none of the mutants had lower flux through the dysregulated pathways than the wild-type (Figure 

3B). In most cases biosynthetic flux was even higher, indicating that downregulation of enzyme levels 

could not fully compensate the loss of allosteric feedback inhibition in some of the mutants. This might 
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be the reason for the growth-phenotype of the leuA*, ilvA* and thrA* mutants in dynamic growth 

experiments (Figure 3A). 

 

Figure 3. Growth and Biosynthetic Flux of Feedback-dysregulated E. coli Mutants  
(A) Growth resumption after 20 hours carbon starvation of wild-type E. coli and the seven dysregulated mutants. Cells were 
starved in minimal medium and glucose was added at t = 0 h. OD was measured in 5 minute intervals in a plate reader. Shown 
are means of n = 3 cultures. Inserts show the specific growth rate in h-1 during the same time period. Growth rates were 
estimated by linear regression over a moving 30 minute window. The same wild-type growth curve and growth rate is shown 
in each graph in black as a reference. See also Figure S4 and S5. (B) Decay of unlabeled amino acids in the wild-type E. coli 
(black) and the seven dysregulated mutants (color). The measured amino acid is indicated above each graph. Cells were 
loaded from shake flasks onto filters and perfused with 15N-medium for different lengths of time (0, 30, 60, 120 and 180 
seconds). Dots are means of n = 2 samples for each time point. Lines are means of 1000 fits of decay rates based on equations 
for kinetic flux profiling. Box plots show fluxes based on the 1000 fits, relative to the median flux estimate in the wild-type. 
Boxes contain 50% and whiskers 99% of the flux estimates.  

 

In conclusion, the feedback-dysregulated mutants showed the same or higher flux through the 

dysregulated amino acid pathways than wild-type cells, although in five mutants (argA*, trpE*, hisG*, 

leuA* and thrA*) enzyme levels in the dysregulated pathway were lower. Especially, the argA*, trpE* 

and hisG* mutant had ~2-fold lower enzyme levels in the dysregulated pathways compared to the 

wild-type, while fluxes were 1-2-fold higher and growth was unaffected. This indicates that these 

enzymes are not operating at maximal capacity in wild-type E. coli during growth on glucose. We then 

hypothesized that this enzyme overabundance emerges from allosteric feedback inhibition by 

maintaining low concentration of end-products, which in turn increases production of enzymes (e.g. 

by de-repression of transcription). Next, we explored this interplay between control of enzyme activity 

and enzyme abundance and its relevance for cellular metabolism. 
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Interdependence of Allosteric Feedback Inhibition and Enzyme Level Regulation 

To obtain a better mechanistic understanding of the interplay between allosteric feedback inhibition 

and enzyme level regulation, we developed a kinetic model of metabolism and enzyme expression 

(Figure 4A). Briefly, the model includes two enzymes e1 and e2, and two metabolites m1 and m2 in a 

two-step pathway. The end-product m2 represents an amino acid, which is consumed in the last 

reaction for protein synthesis and growth. The end-product m2 feedback inhibits the expression of 

both enzymes, as well as the activity of the first enzyme. The first reaction and the expression of both 

enzymes follow simple inhibition kinetics, whereas the second reaction follows Michaelis-Menten 

kinetics (Figure 4A). As such this model is a simplified representation of an amino acid biosynthesis 

pathway that is controlled at two layers (Figure 1A). 

 

 

Figure 4. A Kinetic Model Predicts a Robustness-Efficiency Tradeoff 

(A) Stoichiometry and structure of the kinetic model. m1 and m2 are metabolites, e1 and e2 are enzymes. Kinetics of the 
enzyme catalyzed reactions r1 and r2, as well as kinetics of enzyme expression rates β1 and β2 are sampled in the indicated 
intervals. (B) Steady state concentrations of e1, e2, m1 and m2 calculated with 5000 random parameter sets for the complete 
model (grey), and the model with only enzyme level regulation (blue). Boxes contain 50% and whiskers 99% of the simulated 
concentrations. All concentrations are normalized to the median concentrations of the complete model. See also Figure S6 
and S7. (C) Enzyme levels (sum of e1 and e2) and robustness against perturbations of β2,max, for 5000 simulations of the 
complete model (dots). The color of each dot shows the ratio of inhibition constants for allosteric feedback inhibition (K1) 
and enzyme level regulation (K2) in the respective model. Robustness corresponds to the percentage downregulation of β2,max 
that was tolerated by each model. 100% enzyme abundance corresponds to the maximum theoretical enzyme concentration 
in the model.  
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As a starting point for the model analysis, we fixed the flux in the pathway to the amino acid 

requirement given by the growth rate of E. coli on glucose. We randomly sampled seven model 

parameters (maximal rates and binding constants) 5000 times from physiologically meaningful ranges 

based on literature values (Davidi and Milo, 2017; Li et al., 2014; Milo et al., 2010). For each of the 

thus derived 5000 parameter sets we calculated concentrations of e1, e2, m1 and m2, for a model 

including feedback on enzyme activity and enzyme abundance (complete model, grey in Figure 4B), 

and also for a model including only feedback on enzyme abundance (single feedback model, blue in 

Figure 4B). The simulated concentrations of e1, e2, m1 and m2 matched qualitatively the measured 

protein and metabolite data: the two enzymes decreased in the single feedback model (Figure 2A), 

whereas the end-product m2 increased (Figure 1B). Also, the simulated concentration of the 

intermediate m1 matched the measured increase of intermediates in amino acid pathways (Figure S6). 

Thus, a simple model confirms our hypothesis that allosteric feedback inhibition enforces enzyme 

overabundance. In theory, other types of enzyme inhibition could cause a similar increase in enzyme 

expression. To test this, we replaced the allosteric feedback in the model with competitive product 

inhibition of the second reaction (Figure S7). However, removing competitive product inhibition was 

compensated by lower substrate concentrations (m1), and not by lower enzyme levels. This model 

result indicates that enzyme overabundance does not emerge from all types of enzyme inhibition.  

 

The Interplay of two Feedbacks solves a Robustness-Efficiency Tradeoff  

Next, we set out to investigate the function that emerges from the interplay between feedback on 

enzyme activity and enzyme abundance. While low enzyme levels are obviously advantageous due to 

lowering protein cost, high enzyme levels could provide a cellular benefit by improving robustness 

against perturbations in enzyme expression. To test this with the model, we made use of a numerical 

parameter continuation method to quantify robustness (Lee et al., 2014). This method iteratively 

decreases a model parameter until instabilities occur in the model. Robustness can then be defined 

as the percentage change of this parameter that was tolerated. Using this method, we calculated 

robustness against perturbations of the maximal expression rate of the second enzyme (2,max) in the 

complete model with 5000 randomly sampled parameter sets (Figure 4C). Changing 2,max reflects 

genetic or environmental perturbations of gene expression that can lead to a bottleneck in the 

pathway. Consistent with our expectations, models with high enzyme levels showed increased 

robustness, while models with lower enzyme levels were more sensitive to perturbations of enzyme 

expression (Figure 4C). However, robustness was not proportional to the enzyme level: a relatively 

small increase of enzyme levels already conferred a large robustness benefit. Very high enzyme levels, 
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in comparison, did not increase robustness substantially over more subtle changes in enzyme 

abundance. Our model thus reveals a tradeoff between protein costs and robustness, which can be 

solved by sensitively balancing enzyme levels.  

The optimal balance of enzyme levels occurs in models occupying the middle of the tradeoff frontier, 

those models with equally strong feedback on enzyme activity and enzyme abundance (indicated by 

similar inhibition constants Ki, black dots in Figure 4C). We then wondered if amino acid biosynthesis 

in E. coli operates in the middle of the tradeoff frontier, meaning that both feedbacks are 

simultaneously active. In particular enzyme levels in the argA*, trpE* and hisG* mutant demonstrated 

that wild-type E. coli does not operate with minimal enzyme levels in these pathways (blue dots in 

Figure 4C). To test if enzymes in these pathways are maximally expressed (orange dots in Figure 4C), 

we removed their transcriptional regulation, which functions by different mechanisms: a transcription 

factor (arginine), transcriptional attenuation (histidine), or both (tryptophan). In the arginine and 

tryptophan pathway we deleted the respective transcription factor (∆argR and ∆trpR), and in histidine 

biosynthesis we removed the leader peptide hisL. Removing transcriptional regulation of all three 

pathways resulted in higher expression of enzymes in the respective pathway (Figure 4D): arginine 

enzymes increased between 5 and 60-fold, histidine enzymes about 6-fold, and tryptophan enzymes 

about 8-fold. This shows that E. coli does not operate at maximal expression of arginine, tryptophan 

and histidine enzymes, but rather in the middle of the tradeoff frontier. Previous studies that support 

this observation showed that ArgR binds to promoters of arginine genes more than 80% of the time 

when E. coli grows on glucose (Gerosa et al., 2013). Deletion of ArgR caused more global changes of 

amino acid enzymes than removing TrpR or HisL. This reflects the potential of ArgR to control 

metabolism of almost all amino acid pathways (Cho et al., 2012).  

Taken together, both model and dysregulated mutants indicate a regulatory interplay in the arginine, 

tryptophan and histidine pathway: removing transcriptional regulation increased enzyme levels 

(Figure 4D), whereas removing allosteric regulation decreased enzyme levels (Figure 2A). The model 

shows that if feedback on enzyme activity and enzyme abundance are simultaneously active, 

inhibition constant of the two feedbacks must have similar values (black dots in Figure 4C). Inhibition 

constants and binding affinities in the literature show that feedbacks on enzyme activity and enzyme 

abundance are indeed equally strong for many amino acids (Table S5), corroborating the existence of 

a two-pronged regulation strategy. 
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Enzyme Overabundance Provides Robustness against Genetic Perturbations 

To test if arginine, tryptophan and histidine biosynthesis are more robust against perturbations of 

gene expression in wild-type cells than in the feedback-dysregulated mutants, we used CRISPR 

interference (CRISPRi) (Larson et al., 2013). We designed single guide RNAs (sgRNA) targeting the 

genes argE in arginine biosynthesis, hisB in histidine biosynthesis and trpA in tryptophan biosynthesis. 

The sgRNAs were cloned on a plasmid, which harbors an inducible dCas9 and the constitutively 

expressed sgRNA. The three CRISPRi plasmids and a control without target sequence were 

transformed into the wild-type, and also into the argA*, trpE* and hisG* mutants. This resulted in 16 

strains with all combinations of genetic perturbations and dysregulation of the three pathways (Figure 

5A). All strains expressing the control sgRNA without target sequence grew almost identically and also 

induction of dCas9 did not affect growth (Figure 5B).  

Induction of dCas9 in strains with sgRNAs targeting argE, hisB and trpA reduced growth of all strains 

by more than 50% (Figure 5C). However, we observed the strongest growth defect when perturbing a 

gene in a dysregulated pathway. For example, CRISPRi of argE reduced growth of the argA* mutant 

more than twice as much as the other strains. Similarly, the hisG* and trpE* mutant were most 

sensitive to perturbations of expression of hisB and trpA, respectively. The argA*mutant was also 

sensitive to a perturbation of hisB, which matches the lower expression of histidine enzymes in this 

mutant (Figure 2A). These data confirm that feedback-dysregulated mutants are indeed more 

sensitive to a perturbation of gene expression. Notably, the mutants were only more sensitive to a 

perturbation within pathways that had lower enzyme levels, and they did not lack a general 

robustness.  

While these data support the hypothesis that high enzyme levels render arginine, histidine and 

tryptophan biosynthesis more robust against perturbations of gene expression, bacteria would hardly 

face such strong perturbations in nature. Therefore, we designed the sgRNAs in such a way that the 

wild-type showed only a small growth defect without induction of dCas9 (Figure 5D). The mild 

perturbations in un-induced cultures still affected the respective mutants stronger than the other 

strains, causing instable growth and lower growth rates (Figure 5D). Thus, feedback-dysregulation 

renders the arginine, tryptophan and histidine pathways more sensitive against perturbations of gene 

expression, which may arise in nature due to the stochasticity of gene expression.  
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Figure 5. Enzyme Overabundance Achieves Robustness Against Perturbations of Gene Expression by CRISPR Interference.  
(A) CRISPR interference in wild-type cells and the allosteric feedback mutants argA*, hisG* and trpE*. Strains were 
transformed with single guide RNAs targeting genes of the arginine (argE), histidine (hisB) and tryptophan (trpA) pathway, 
as well as an empty sgRNA without target. (B) Growth of wild-type, argA*, hisG* and trpE* with the empty control sgRNA. 
Upper panels show un-induced cultures and lower panel induced cultures (100 µM IPTG). Growth curves show means from 
n=3 cultures cultivated in minimal glucose medium in a plate reader. Numbers are specific growth rates (in h-1), and were 
estimated by linear regression between OD 0.2 and 0.6. (c) Growth of wild-type, argA*, hisG* and trpE* with sgRNAs 
targeting argE, hisB and trpA. dCas9 expression was induced with 100 µM IPTG. Growth curves are means of n=3 cultures; 
two curves per graph show experiments that were performed at different days. Numbers and colors indicate specific growth 
rates (in h-1), which were estimated by linear regression between 5 and 15 hours. All axes have ranges shown in the lower 
left graph. (D) Same as C) but without induction of dCas9. Growth rates were estimated by linear regression between OD 0.2 
and 0.6. All axes have ranges shown in the lower left graph. 

Discussion 

In this study we explored the consequences of missing allosteric feedback inhibition in seven E. coli 

mutants with dysregulated amino acid biosynthesis pathways: arginine (argA*), histidine, (hisG*), 

tryptophan (trpE*), leucine (leuA*), threonine (thrA*), isoleucine (ilvA*), and proline (proB*). In all 

mutants, the amino acid product of the feedback-dysregulated pathway increased, showing that 

allosteric feedback inhibition is relevant to maintain end-products at a desired level. In five mutants 

(argA*, trpE*, hisG*, thrA*, and leuA*), we observed a downregulation of enzymes in the dysregulated 

pathways, presumably because high end-products caused stronger inhibition of enzyme expression. 

However, these low enzyme levels did not limit biosynthetic flux, thus indicating that wild-type cells 

maintain higher enzyme levels than would be necessary to ensure sufficient biosynthetic flux (enzyme 
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overabundance). These results are consistent with enzyme overabundance in other pathways (Davidi 

and Milo, 2017; O’Brien et al., 2016), and the observation that enzymes are rarely operating at 

maximal capacity (Fendt et al., 2010; Hackett et al., 2016).  

Both model analysis and dysregulated mutants indicate that enzyme overabundance is enforced by 

allosteric feedback inhibition, which maintains low end-product levels and thereby increases 

production of enzymes. In case of amino acid biosynthesis, it is likely that low end-products de-repress 

transcription, because amino acid levels are known signals for transcription factors and transcriptional 

attenuation (Cho et al., 2012). Additionally, GFP-promoter fusions indicated regulation at the 

transcriptional layer in the argA*, trpE* and thrA*mutant. It will be important to clarify if enzyme 

overabundance emerges also from other inhibitory interactions, which are abundant in metabolic 

networks (Alam et al., 2017). Besides inhibition of enzymes by metabolites, other sources for enzyme 

overabundance might be post-translational modifications. For example, it was recently shown that 

deleting kinases in yeast has a strong effect on enzyme levels (Zelezniak et al., 2018), pointing towards 

a similar interplay between post-translational modifications of enzymes and enzyme level regulation.  

The strongest and most localized decrease of enzyme levels occurred when we removed allosteric 

feedback inhibition in the arginine, tryptophan and histidine pathway. Removing transcriptional 

regulation in the same pathways caused higher expression of enzymes, which is in agreement with 

previous reports of a role for transcriptional regulation in minimizing protein costs in metabolic 

pathways (Chubukov et al., 2012; You et al., 2013). This antagonistic regulation by allosteric feedback 

inhibition and transcriptional regulation enables an optimal balance of enzyme levels in amino acid 

metabolism of wild-type cells. Optimization of enzyme levels has been shown for the global E. coli 

proteome (Scott et al., 2010; You et al., 2013), for the lac system (Dekel and Alon, 2005), and for a 

single enzyme in the methionine pathway (Li et al., 2014). Here we provided first indication that 

enzyme abundance is optimized in the arginine, histidine and tryptophan pathway, to meet multiple, 

conflicting objectives – robustness and efficiency. Using a simplified model of amino acid metabolism, 

we show that cells can solve this tradeoff between protein costs and robustness through the interplay 

of allosteric feedback inhibition and enzyme level regulation. CRISPRi of metabolic enzymes in the 

dysregulated arginine, tryptophan and histidine pathways showed that allosteric feedback inhibition 

provides a substantial robustness benefit against perturbations of gene expression. While such 

robustness effects were attributed to allosteric feedback by previous modelling approaches (Chandra 

et al., 2011; Grimbs et al., 2007), we quantified it in vivo by studying mutants lacking allosteric control. 

During the lifetime of a cell, perturbations of gene expression could result from stochastic effects at 

the level of transcription or in response to fluctuating environments.  
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In conclusion, our case study of E. coli amino acid metabolism demonstrated that regulation of enzyme 

activity and enzyme abundance are not isolated from each other, but interact to control metabolism. 

Allosteric feedback inhibition sets amino acid concentrations, which are signals for enzyme level 

regulation. Considering the high precision of metabolite concentrations (Fuhrer et al., 2017; Mülleder 

et al., 2016), it seems possible that the proposed regulatory principle goes beyond E. coli amino acid 

metabolism. 

Material & Methods  

Experimental Model and Subject Details 

Strains and Culture 

E. coli MG1655 (DSMZ No. 18039) was the wild-type strain. Chemically competent E. coli TOP10 (One 

ShotTM TOP10, Invitrogen) were used for cloning. All mutants created in this study derive from the 

MG1655 strain and are listed in Key Resources Table. Genomic point mutations were created by 

scarless Cas9 Assisted recombineering (Reisch and Prather, 2015). Therefore, we constructed 7 

specific sgRNA-plasmids, derived from the backbone plasmid pKDsgRNA-ack (Addgene #62654). The 

sgRNAs consist of a gene specific 20 base pair region (argA: ggtcgagggattccgccatt; trpE: 

acacaactggtgaaaaagcg; hisG: tggaaaaactgaaagcgctg; thrA: tggtgctgattacgcaatca; leuA: 

cggtaaagatgcgctgggtc; ilvA: caacacgctgggtacgtact; proB: cgacaccctgcgagcgttgc), which pairs adjacent 

to a NGG PAM site. Each sgRNA-plasmid was transformed together with pCas9-CR4 (Addgene #62655) 

into MG1655 wild-type cells. The resulting strains were grown at 30°C (pKDsgRNA-ack is temperature 

sensitive at 37°C) and supplemented with arabinose (final concentration 1.2 %) to induce the λ-Red 

recombinase genes which are located on the sgRNA-plasmid. The induced strains were then 

transformed with the 70-80 bp homologous oligonucleotides (Table S2), which contain the desired 

base pair exchanges of PAM site and the point mutation disrupting allosteric feedback (argAH15Y, 

trpES40F, hisGE271K, thrAS345F, leuAG462D, ilvAL447F, proBD107N). Cells were plated on LB agar containing 100 

ng ml-1 anhydrotetracycline (aTc) to induce Cas9 expression, which recognizes the sgRNA adjacent to 

the PAM sequence and cleaves the chromosomal DNA. Only cells that successfully integrated the 

homologous oligonucleotides will survive due to the modified PAM sequence which prevents Cas9 

recognition. Thereby we counter selected for clones harboring the desired amino acid exchanges, 

which were verified by sequencing. The transcriptional knockout mutants ∆argR and ∆trpR were 

constructed with the same cloning procedure according to the noSCAR protocol, while ∆hisL was 

constructed by P1 Phage transduction with the donor strain JW2000-1 (∆hisL) from the Keio collection 

(Baba et al., 2006). 
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All cultivations were performed using M9 minimal medium with 5 g L-1 glucose (or the respective 

carbon source in Figure S4). The M9 medium consisted of the following components (per liter): 7.52 

g Na2HPO4 2 H2O, 5 g KH2PO4, 1.5 g (NH4)2SO4, 0.5 g NaCl. The following components were sterilized 

separately and then added (per liter of final medium): 1 ml 0.1 M CaCl2, 1 ml 1 M MgSO4, 0.6 ml 0.1 M 

FeCl3, 2 ml 1.4 mM thiamine-HCL and 10 ml trace salts solution. The trace salts solution contained (per 

liter): 180 mg ZnSO4 7 H2O, 120 mg CuCl2  2 H2O, 120 mg MnSO4  H2O, 180 mg CoCl2  6 H2O. Where 

appropriate, 50 μg mL-1 kanamycin, 34 μg mL-1 chloramphenicol, 15 μg mL-1 gentamycin, 50 μg mL-1 

spectinomycin or 100 μg mL-1 ampicillin was added. For cultivations in microtiter plates, LB pre-culture 

in 96-deep-well format plates were inoculated from glycerol stocks and grown to an exponential stage. 

From this first pre-culture a second M9 pre-culture in 96-deep-well plates was inoculated 1:100 and 

incubated overnight at 37 °C under shaking. Finally, 96-well flat transparent plates (Greiner Bio-One 

International) containing 150 µl M9 minimal medium were inoculated 1:150 from the overnight 

culture. Online measurements of optical density at 600 nm (OD600) were performed at 37°C with 

shaking in a plate reader (Epoch, BioTek Instruments Inc, USA; Spark 10M, Tecan Trading AG, 

Switzerland). For induction of CRISPRi, IPTG was added to the main culture to a final concentration of 

100 µM. Growth rates were calculated as dln(OD)/dt by linear regression over the indicated time 

windows. For cultivations in shake flask, 5 ml LB pre-culture in cultivation tubes were inoculated from 

glycerol stocks and grown to an exponential stage. From this first pre-culture, 5 ml of a second M9 

glucose pre-culture in cultivation tubes was inoculated 1:100 and incubated overnight at 37°C in a 

rotary shaker. For the main culture, a 500 ml shake flask containing 35 ml M9 minimal medium (5 g L-

1 glucose) was inoculated 1:150 from the overnight culture, and incubated at 37 °C under shaking at 

220 rpm.  

Method Details 

CRISPR Interference 

CRISPR interference experiments were performed with a single plasmid (pNUT1533) expressing the 

sgRNA from a constitutive and the dCas9 protein from an IPTG inducible Ptac promotor. For 

construction of this plasmid, the sgRNA and its constitutive promotor were amplified from the pgRNA 

plasmid (Addgene #44251) and the dCas9 gene was amplified from the pdCas9 plasmid (Addgene 

#44249). The promotor of dCas9 was replaced by an IPTG inducible Ptac promotor. To assure tight 

regulation of dCas9 expression, the gene coding for the lacIQ1 repressor (Glascock and Weickert, 

1998) was added to the vector. The two single fragments were joined together by PCR and the 

resulting fragment was inserted into pNUT542 with PacI and NotI restriction enzymes (New England 

Biolabs, USA). This plasmid was used as a backbone for cloning of the specific plasmids targeting the 

arginine (pNUT1533-argE), histidine (pNUT1533-hisB) and tryptophan pathway (pNUT1533-trpA). 
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Therefore, sgRNAs guide sequences were customized by site-directed mutagenesis using the primer 

listed in Table S6.  

Metabolite Measurements 

Shake flask cultivations on M9 glucose were performed as described above. Cells were grown to an 

optical density (OD600) of 0.5 and 2 mL culture aliquots were vacuum-filtered on a 0.45 µm pore size 

filter (HVLP02500, Merck Millipore). Filters were immediately transferred into 40:40:20 (v-%) 

acetonitrile/methanol/water at -20°C for extraction. Extracts were centrifuged for 15 minutes at 

13,000 rpm at -9 °C. Centrifuged extracts were mixed with 13C-labeled internal standard and analyzed 

by LC-MS/MS, with an Agilent 6495 triple quadrupole mass spectrometer (Agilent Technologies) as 

described previously (Guder et al., 2017). An Agilent 1290 Infinity II UHPLC system (Agilent 

Technologies) was used for liquid chromatography. Temperature of the column oven was 30 °C, and 

the injection volume was 3 μL. LC solvents A were water with 10 mM ammonium formate and 0.1% 

formic acid (v/v) (for acidic conditions); and water with 10 mM ammonium carbonate and 0.2% 

ammonium hydroxide (for basic conditions). LC solvents B were acetonitrile with 0.1% formic acid 

(v/v) for acidic conditions and acetonitrile without additive for basic conditions. LC columns were an 

Acquity BEH Amide (30 x 2.1 mm, 1.7 µm) for acidic conditions, and an iHILIC-Fusion(P) (50 x 2.1 mm, 

5 µm) for basic conditions. The gradient for basic and acidic conditions was: 0 min 90% B; 1.3 min 40 

% B; 1.5 min 40 % B; 1.7 min 90 % B; 2 min 90 % B. Absolute concentrations of amino acids in the 13C-

labeled internal standard were determined with authentic standards. Quantification of intracellular 

metabolite concentrations was based on the ratio of 12C and 13C peak heights, and a specific cell 

volume of 2 µL mg-1 was used to calculate the cell volume.  

Proteomics 

Shake flask cultivations on M9 glucose were performed as described above. Cells were grown to an 

optical density (OD600) of 0.5 and 2 mL culture aliquots were transferred into 2 ml reaction tubes and 

washed two times with PBS buffer (0.14 mM NaCl, 2.7 mM KCL, 1.5 KH2PO4, 8.1 Na2HPO4). Cell pellets 

were resuspended in 300 µl lysis buffer containing 100 mM ammonium bicarbonate, 0.5 % sodium 

laroyl sarcosinate (SLS) and 5 mM Tris(2-carboxyethyl)phosphine (TCEP). Cells were lysed by 5 minutes 

incubation at 95 °C and ultra-sonication for 10 seconds (Vial Tweeter, Hielscher). Cells were again 

incubated for 30 minutes at 90 °C followed by alkylation with 10 mM iodoacetamide for 30 minutes 

at 25 °C. To clear the cell lysate, samples were centrifuged for 10 minutes at 15,000 rpm and the 

supernatant transferred into a new tube. Proteins in the cell lysates were digested with 1 µg trypsin 

(Promega) overnight at 30 °C. To remove the SLS by precipitation, trifluoroacetic acid (TFA) was added 

to a final concentration of 1.5 % and rested at room temperature for 10 minutes. Samples were 
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centrifuged for 10 minutes at 10,000 rpm and the supernatant used for C18 purification. The peptide 

purification was performed using the C18 microspin columns according to the manufactor’s 

instructions (Harvard Apparatus). Eluted peptide solutions were dried and resuspended in 0.1 % TFA. 

The concentration of peptides in the samples was measured with a colorimetric peptide assay 

(Pierce™ Quantitative Colorimetric Peptide Assay, Thermo Fischer Scientific). Analysis of peptides was 

performed by liquid chromatography-mass spectrometry. Analysis of peptides was performed by 

liquid chromatography-mass spectrometry, carried out on a Q-Exactive Plus instrument connected to 

an Ultimate 3000 RSLC nano with a Prowflow upgrade and a nanospray flex ion source (Thermo 

Scientific). Peptide separation was performed on a reverse-phase HPLC column (75 µm x 42 cm) 

packed in-house with C18 resin (2.4 µm, Dr. Maisch GmbH, Germany). The following separating 

gradient was used: 98 % solvent A (0.15% formic acid) and 2 % solvent B (99.85 acetonitrile, 0.15 % 

formic acid) to 25 % solvent B over 105 minutes and to 35 % solvent B for additional 35 minutes at a 

flow rate of 300 nl/min. The data acquisition mode was set to obtain one high resolution MS scan at 

a resolution of 70,000 full width at half maximum (at m/z 200) followed by MS/MS scans of the 10 

most intense ions. To increase the efficiency of MS/MS attempts, the charged state screening modus 

was enabled to exclude unassigned and singly charged ions. The dynamic exclusion duration was set 

to 30 seconds. The ion accumulation time was set to 50 ms for MS and 50 ms at 17,500 resolution for 

MS/MS. The automatic gain control was set to 3x106 for MS survey scans and 1x105 for MS/MS scans. 

Label-free quantification (LFQ) of the data was performed using Progenesis QIP (Waters), and for 

MS/MS searches of aligned peptide features MASCOT (v2.5, Matrix Science) was used. The following 

search parameters were used: full tryptic search with two missed cleavage sites, 10ppm MS1 and 0.02 

Da fragment ion tolerance. Carbamidomethylation (C) as fixed, oxidation (M) and deamidation (N,Q) 

as variable modification. Progenesis outputs were further processed with SafeQuant. 

Kinetic Flux Profiling 

Incorporation of 15N label into amino acids was measured with a filter cultivation method (Link et al., 

2013). Briefly, cells were cultured on M9 glucose medium, which contains unlabeled ammonium 

sulfate as sole nitrogen source. At mid-exponential phase when cells reached ODs between 0.4 and 

0.6, 2 mL of the culture was vacuum-filtered, and cell-loaded filters were continuously perfused with 

M9 glucose medium containing labeled ammonium-15N sulfate. Filters were repeatedly loaded and 

perfused with 15N-medium for different lengths of time: 0, 30, 60, 120 and 180 seconds. Subsequently, 

filters were immediately transferred into 40:40:20 (v-%) acetonitrile/methanol/water kept at -20 °C. 

Extracts were centrifuged for 15 minutes at 13,000 r.p.m. at -9 °C and the supernatant was directly 

used for LC-MS/MS. For LC separation of tryptophan, proline, threonine and (iso)leucine a ZIC-pHILIC 

column (150 x 2.1 mm, 5 µm, Merck) was used, and an Acquity BEH Amide (100 x 2.1 mm, 1.7 µm, 
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Waters) for LC separation of histidine and arginine. Buffers were as described for metabolite 

measurements and gradients were for Acquity BEH Amide: 0 min 90% B; 2.6 min 40 % B; 3 min 40 % 

B; 3.4 min 90 % B; 5 min 90 % B. For ZIC-pHILIC: 0 min 90% B; 4.5 min 40 % B; 5 min 40 % B; 6 min 90 

% B; 8 min 90 % B. Transitions for all isotopologues per amino acid were measured by LC-MS/MS and 

the amount of each isotopologue was used to calculate the fraction of unlabeled amino acid FU as: 

 

𝐹𝑈 = 
𝑀0

∑ 𝑀+𝑖𝑁
0

= 
𝑃𝑒𝑎𝑘 𝐴𝑟𝑒𝑎 (𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑 𝐴𝐴) 

𝑆𝑢𝑚 𝑜𝑓 𝑃𝑒𝑎𝑘 𝐴𝑟𝑒𝑎 (𝑎𝑙𝑙 𝐴𝐴 isotopologues )
 

 

 

Where M0 is the amount of the unlabeled amino acid, M+1 is the amount of all isotopologues with one 

15N atom, etc. N is the number of 15N atoms in the amino acid: arginine (N = 4 from 2x glutamate, 1x 

glutamine, 1x aspartate), tryptophan (N = 2 from 1x glutamine, 1x serine), histidine (N = 3 from  ATP, 

1x glutamate), threonine (N = 1 from glutamate), proline (N = 1 from glutamate), iso-/leucine (N = 1 

from glutamate). Fluxes were estimated based on equations for kinetic flux profiling (Yuan et al., 

2008), which considers the decay of the unlabeled fraction FU: 

 

𝐹𝑈 = [
(1 − 𝑎)(1 − 𝑏)

𝑘𝑝𝑐 − 𝑘𝑎𝑎
] [𝑘𝑝𝑐  𝑒

−𝑘𝑎𝑎𝑡 − 𝑘𝑎𝑎 𝑒
−𝑘𝑝𝑐𝑡] + [1 − (1 − 𝑎)(1 − 𝑏)] 

The rate constant kaa is the flux into the amino acid (fluxaa) divided by their absolute concentration: kaa 

= fluxaa / caa. The rate constant kaa was obtained by fitting the equation to the measured unlabeled 

fraction FU. The rate constant kpc describes labeling of upstream nitrogen precursor. Because amino 

acids like arginine receive 15N label from several sources, the rate constant of precursor labeling kpc 

was unknown. To account for this uncertainty the parameter kpc was randomly sampled between 

boundaries of 0.8 min-1 and 14.2 min-1, which are the highest and lowest first order rate constants 

measured for nitrogen assimilation in E. coli (Yuan et al., 2006).  a and b consider amino acid 

production from degradation of protein and other macromolecules and they were estimable 

parameters within bounds of 0 and 0.2. 

 

GFP-promoter Fusions 

GFP reporter plasmids for detection of promotor activity of argA, trpL, hisL and leuL were obtained 

from a library of fluorescent transcriptional reporters for E. coli (Zaslaver et al., 2006). Since the 

original plasmids pUA66-PhisL-gfp and pUA66-PleuL-gfp lacked parts of the attenuator region, we 
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modified the respective promotor resulting in the plasmids pPhisL-gfp and pPleuL-gfp. Therefore, we 

amplified leader sequence including the rho-independent terminator of hisL and leuL from 

chromosomal DNA of E. coli MG1655 (PhisL: hisL_fwd_gfp ccgctcgaggctttcatcattgttgccg, hisL_rev_gfp 

ccgggatcccgcagaatatcaatcggc; PleuL: leuL_fwd_gfp ccgctcgagttgtcccctttttcctcg, leuL_rev_gfp 

ccgggatccgatggtttgcaccgattc). The resulting two single fragments were introduced into an empty 

pUA66 backbone with the restriction enzymes XhoI and BamHI. The threonine reporter plasmid which 

was not available in the library was constructed with the same strategy. The attenuator region of thrL 

was amplified with the primer pair thrA_fwd_gfp (ccgctcgagactgcaacgggcaatatg) and thrA_rev_gfp 

(ccgggatcctcggcatcgctgatattg) and the single fragment was introduced into pUA66 (XhoI and BamHI) 

resulting in pPthrL-gfp. 

Flow Cytometry 

Activity of the argA, trpL and thrL promoter was assayed using plasmid-based GFP reporters that 

were described in the previous section. Strains for flow cytometry were cultivated in three 

independent shake flasks (100 ml) containing 10 ml M9 minimal medium (5 g L-1 glucose; 50 μg mL-

1 kanamycin) as described in Strains and Culture. After reaching an OD between 0.5 and 0.8 cells 

were diluted 1:2000 in tethering buffer (10 mM KH2PO4, 100 μM EDTA, 1 μM L-methionine and 

10 mM lactic acid, pH=7.0) and fluorescence was measured with BD LSRFortessa SORP cell analyzer 

(BD Biosciences, Germany). 488-nm lasers, 600 long pass and a 520/30 band pass filters were used 

for detection of green fluorescence. Per sample, fluorescence of 10,000 single cells was measured. 

Before the measurements, cell aggregates were dispersed by vigorous mixing. BD FACSDiva 

software version 8.0 (BD Biosciences, NJ, USA) and FlowJo v10.4.1 (FlowJo LLC, Ashland, OR, USA) were 

used for analysis of the acquired data. 

Purification and In Vitro Activity Assays of N-Acteylglutamate Synthase 

E. coli BL21 cells harboring the overexpression vector pET28a(+)-argA respectively pET28a(+)-

argA(H15Y) were cultivated at 37 °C (220 rpm) in 500 ml of LB medium (5 L shake flasks) containing 

30 µg ml-1 kanamycine. When cells reached OD600 0.6, the culture was shifted to 16 °C to cool down 

the cell broth. To induce protein expression, 10 µl of IPTG stock solution (final concentration is 10 µM) 

were added. The culture was incubated overnight at 16 °C (220 rpm). The cells were harvested by 

centrifugation at 6000 x g for 10 minutes at 4 °C. The supernatant was completely removed. The cell 

pellet was resuspended in Lysis buffer (50 mM NaH2PO4,  300 mM NaCl, 10 mM Imidazol) (2-5 ml per 

gram wet weight). 50 µl protease inhibitor cocktail and 5 mg of DNAse I powder were added. Lysis of 

cells was performed by french press (1100 bar). The lysate was centrifuged at 4,000 x g for 45 minutes 
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at 4 °C to pellet the cellular debris. The supernatant was filtered using a 0.2-µm-pore-size syringe filter 

and transferred into a new collection tube. Purification was performed with columns purchased from 

GE Healthcare Life Science (His GraviTrap; 11-0033-99). 10 ml of equilibration buffer (50 mM NaH2PO4, 

300 mM NaCl, 20 mM Imidazol) was added to the column. As soon as equilibration buffer flowed 

through, up to 35 ml of filtered supernatant were added to the column. The column was washed twice 

with 10 ml washing buffer (same as equilibration buffer). Elution of the protein was performed 3 times 

with 3 ml elution buffer (50 mM NaH2PO4, 300 mM NaCl, 250 mM Imidazol). Protein concentration of 

all fractions was determined (660 nm protein assay, life technologies PIERCETM #22660). Activity of 

purified N-acetylglutamate-synthase (ArgA) as well as for the feedback-resistant version ArgA (H15Y) 

was assayed in 30 mM TRIS buffer (with 40 mM L-glutamate, 0.65 mM N-acetyl-CoA and 10 mM 

MgCl2). To start the enzymatic reaction 10 µL of enzyme stock solution (0.15 mg/ml) was transferred 

to 90 µL assay buffer and mixed by pipetting up and down. To stop the reaction, 10 µL were transferred 

into 40 µl of 50:50 (v-%) acetonitrile/methanol at -20°C. Samples were taken every minute in a total 

time interval of 8 minutes. The reaction product N-acetylglutamate was measured by LC-MS and 

calibrated with authentic standards. 

Kinetic Model 

The stoichiometry of the model is shown in Figure 4A. Mass balancing results in the system 

of ordinary differential equations (ODEs), F, that is a temporal function of the state variables 

x and the kinetic parameters p: 

𝐹(𝑥, 𝑝) =
𝑑𝑥

𝑑𝑡
=

{
 
 
 

 
 
 
𝑑𝑚1

𝑑𝑡
= 𝑟1 − 𝑟2

𝑑𝑚2

𝑑𝑡
= 𝑟2 − 𝛼 µ

𝑑𝑒1
𝑑𝑡

= 𝛽1 − 𝑒1 µ

𝑑𝑒2
𝑑𝑡

= 𝛽2 − 𝑒2 µ

 

 

 

 

(Equation 1) 

The five reactions (r1, r2, β1, β2, µ) are described by the following kinetic equations: 

Reaction 1 is feedback inhibited by m2 according to normal inhibition kinetics: 

𝑟1 = 𝑘𝑐𝑎𝑡,1 𝑒1  
𝐾1

𝐾1 +𝑚2
 (Equation 2) 
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In the model without allosteric regulation the equation reduces to: 

𝑟1 = 𝑘𝑐𝑎𝑡,1 𝑒1 (Equation 3) 

 

Reaction 2 follows Michaelis-Menten kinetics: 

𝑟2 = 𝑘𝑐𝑎𝑡,2 𝑒2  
𝑚1

𝑚1 + 𝐾𝑚
 (Equation 4) 

 

Expression rates of enzyme 1 and enzyme 2 follow inhibition kinetics  

𝛽1 = 𝛽1,max  
𝐾2

𝐾2 +𝑚2
 (Equation 5) 

 

𝛽2 = 𝛽2,max   
𝐾2

𝐾2 +𝑚2
 (Equation 6) 

 

The growth rate depends on availability of the end-product m2: 

µ = µ𝑚𝑎𝑥  
𝑚2

𝑚2 + 𝐾µ
 (Equation 7) 

Dilution of metabolites by growth was not considered, due to large difference in time scales between 

growth dilution and metabolic flux. Dilution of enzymes by growth is included in equation 1, because 

the time scales of enzyme synthesis and growth dilution are closer. 

Together, the kinetic equations include eight kinetic parameters kcat1, kcat2, β1,max, β2,max, K1, K2, Km and 

α. The physiological ranges for these parameters were derived from literature values. The boundaries 

of enzyme turnover number (kcat,1 and kcat,2) are based on in vitro measured kcat values of enzymes in 

amino acid biosynthesis (Table S3) and have values between 930 min-1 and 4140 min-1. The maximal 

enzyme expression rates (β1,max and β2,max) are defined by the translation rate of ribosomes according 

to equation 8. The equation considers the following parameters that were derived from the 

Bionumbers Database (Milo et al., 2010): average translation rate (rT = 8.4 amino acids s-1), the median 

and abundance weighted protein length (L = 209 amino acids), the fraction of active ribosomes (fR = 

0.8), the cellular volume (Vc,0.6 = 3 x 10-15 L) at a growth rate of µ = 0.6 h-1, the Avogadro number (NA = 
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6.02 x 1023 mol-1), the amount of ribosomes per cell at that growth rate (R0.6 = 8000 ribosomes cell-1) 

and the fraction of ribosomes (p) that synthesize the enzyme: 

𝛽𝑘,𝑚𝑎𝑥 = 
𝑟𝑡 ∙ 𝑅0.6 ∙ 𝑓𝑅
𝐿 ∙ 𝑁𝐴 ∙ 𝑉𝑐

∙ 𝑝 (Equation 8) 

 

The limits of βk,max  are then derived by varying the fraction of ribosomes (p) that synthesize the 

enzymes in the pathway. According to the literature the maximal number for a single amino acid 

biosynthesis enzyme in E. coli is 7% (Li et al., 2014), therefore we set the boundaries to 1% and 10% 

(p = 0.01 - 0.1). The parameter limits for the Ki and Km values were set to 0.01 mM and 1 mM. The 

amino acid requirement (α = 86.6 mM) was a fixed parameter based on the average amino acid 

requirement of an E. coli cell (Table S4). We assumed that the amino acid limits the growth rate 

reaction only at very low concentrations. This reflects the low Km values of tRNA ligases. Therefor we 

fixed Kµ at a low value of 10-5 mM and set µmax to the measured growth rate on glucose of 0.6 h-1. 

Steady State and Robustness Analysis 

For steady state analysis a parameter set was randomly sampled from the intervals given above. With 

a specific parameter set the steady state concentrations of e1, e2, m1 and m2 were calculated 

numerically for each of the two models (complete model and single feedback model). Starting values 

of the numerical solver were 0.01 mM for m1 and m2, and 10-5 mM for e1 and e2. The convergence 

criterion was defined as <10-8 change in all variables. To test stability of the steady state we calculated 

eigenvalues of the Jacobian matrix, and tested if all eigenvalues are negative (λ < -10-5). This procedure 

was repeated until 5000 steady states (with different parameter sets) were achieved. Note that both 

models share the same parameter sets and reach the same steady state flux. In order to estimate 

robustness of the model against perturbations of the maximal enzyme expression rate 𝛽2,𝑚𝑎𝑥, we 

used a numerical parameter continuation method (Lee et al., 2014). The method is based on finding a 

connected path of steady state concentrations (xss: steady state concentration vector containing e1,ss, 

e2,ss, m1,ss, m2,ss), as a parameter, p, is varied. As the system is in steady state it follows that: 

𝑑𝑥

𝑑𝑡
= 𝐹(𝑥𝑆𝑆 , 𝑝) = 0 (Equation 9) 

The derivative of 𝐹(𝑥𝑆𝑆, 𝑝) with respect to the parameters is also zero: 

𝑑𝐹(𝑥𝑆𝑆 , 𝑝)

𝑑𝑝
=  

𝛿𝐹

𝛿𝑥𝑆𝑆
∙
𝑑𝑥𝑆𝑆
𝑑𝑝

+
𝛿𝐹

𝛿𝑝
= 0 (Equation 10) 
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After rearranging Equation 10, Equation 11 is obtained: 

𝑑𝑥𝑆𝑆
𝑑𝑝

= −(
𝛿𝐹

𝛿𝑥𝑆𝑆
)
−1

∙
𝛿𝐹

𝛿𝑝
 (Equation 11) 

which describes the changes in the steady-state concentrations as a kinetic parameter is varied 

iteratively. The iteration stops when one of the following three stability criteria is no longer fulfilled. 

1st criterion: all real parts of the eigenvalues of the system’s Jacobian need to be negative. This implies 

stability of a steady state. Furthermore, in equation 11 the inverse of the Jacobian Matrix (𝛿𝐹/𝛿𝑥𝑆𝑆) 

is required. The inversion is only possible as long as the matrix is regular. Once an eigenvalue reaches 

zero, the Jacobian becomes singular and matrix inversion is no longer possible. This bifurcation point 

defines the boundary between the stable and unstable parameter space. In other words: after this 

point is passed, the system no longer returns to a stable steady state. By checking the eigenvalues of 

the Jacobian at each step, we make sure that the iteration is terminated when one eigenvalue 

becomes bigger than λ = -10-5. 2nd criterion: all variables are required to be positive. 3rd criterion: a 

model is considered unstable when a certain time limit (t > 1 s) is exceeded, which can be the case 

when numerical errors occur during the numerical integration process. The maximum theoretical 

enzyme amount in the model was calculated as: 

0 = 𝛽𝑖,𝑚𝑎𝑥 − 𝑒𝑖,𝑚𝑎𝑥 µ (Equation 12) 

 

After rearranging equation 12 and substituting the upper parameter bound of the maximum protein 

translation rate (βi,max
ub ), the maximum theoretical enzyme amount of each enzyme is: 

𝑒𝑖,𝑚𝑎𝑥 =
𝛽𝑖,𝑚𝑎𝑥
𝑢𝑏

µ
=
8.5 ∙ 10−4 𝑚𝑀 𝑚𝑖𝑛−1

0.01 𝑚𝑖𝑛−1
=  0.085 𝑚𝑀 (Equation 13) 

 

Considering that the model includes two enzymes, the maximum amount of total enzyme is 0.17 mM, 

which was defined as the maximal enzyme level (100%).  

Quantification and Statistical Analysis 

Statistical analysis was done with MATLAB. The statistical details of each experiment can be found in 

the respective figure caption. For proteomics and metabolomics n represents the number of 

independent shake flask cultures. In growth assays, n represents the number of independent 

microtiter plate cultures. For in vitro assays, n represents the number of independent reaction vessels. 
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Software 

All codes for model analysis are available in the Github repository: 

https://github.com/nfarke/Sander_et_al.  
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Supplemental Information 

 

 

Figure S1. Related to Figure 1; In vitro kinetics of N-acetylglutamate-synthase (NAGS) from E. coli 
(ArgA) in the A native and B the allosteric feedback resistant version ArgA (H15Y). Dots represent 
means from n=2 independent assays (filled = no arginine; empty = 1 mM arginine). Activity of His-
tagged purified enzymes was assayed in 30 mM TRIS buffer (40 mM L-glutamate, 0.65 mM Acetyl-CoA 
and 10 mM MgCl2). For sampling 10 µL of reaction solution was transferred into 40 µL of 50:50 (v-%) 
acetonitrile/methanol at -20°C. The reaction product N-acteylglutamate was measured by LC-MS/MS. 
Specific activity in [µmol mg-1 min-1] was calculated from linear regression through the 8 time points. 
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Figure S2. Related to Figure 1; Relative concentrations of 110 intracellular metabolites in wild-type E. 
coli and seven dysregulated mutants (n = 3).  
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Figure S3. Related to Figure 2; GFP expression of promotor fusions PargA-gfp, PtrpL-gfp, PthrL-gfp, 
PhisL-gfp and PleuL-gfp in E. coli wild-type with and without addition of external amino acids. Bar plots 
show fold-changes of GFP per OD600 relative to the condition without external amino acids (n=3). Cells 
were grown in M9 minimal medium (5 g L-1 glucose) and GFP expression was measured in mid-
exponential phase at OD600 ~0.5 with a plate reader. Amino acids were supplemented to a final 
concentration of 2 mM.  



  Chapter 5 
 

188 
 

 

Figure S4. Related to Figure 3; Growth of wild-type E. coli and 7 mutants (see also Figure 1A) on 
fructose (Fru), galactose (Gal), gluconate (Gnt), glucose (Glu), glycerol (Gly), pyruvate (Pyr), succinate 
(Suc), and xylose (Xyl). Shown are three cultivations in microtiter plates. The dashed line is the mean 
of the wild-type in the particular condition (n = 3). Numbers are the maximal growth rates in h-1, which 
is reached at the time indicated by dots. All x-axes range from 0 to 24 hours. All y-axes range from -4 
to 2 (lnOD600). 
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Figure S5. Related to Figure 3; Growth of wild-type E. coli and the seven dysregulated mutants in shifts 
from galactose to glucose. For up-shifts from galactose to glucose, cells were grown in M9 minimal 
medium with 5 g L-1 galactose and glucose was added to a final concentration of 5 g L-1 at an OD of 
0.1. Shown are means of n = 3 cultures. Inserts show the growth rate during the same time period. 
Growth rates were estimated by linear regression over a moving 30-minute window. The same wild-
type growth curve is shown in each graph in black as a referenc
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Figure S6. Related to Figure 4; Intermediates in dysregulated pathways measured by LC-MS in wild-
type E. coli and seven dysregulated mutants (n = 3). 
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Figure S7. Related to Figure 4;  

(A) Model with product inhibition, instead of allosteric feedback inhibition. Metabolite 2 inhibits 
reaction 2 by competitive product inhibition, which was modelled using the following equation:  

𝑟2 = 𝑘𝑐𝑎𝑡,2 ∙ 𝑒2 ∙
𝑚1

𝑚1 + 𝐾𝑚 ∙ (1 +
𝑚2
𝐾1
)
    

(B) Steady state concentrations of e1, e2 m1 and m2 calculated with 5000 simulations for the complete 
model (grey), and the model with only enzyme level regulation (blue). Boxes contain 50% and whiskers 
99% of the simulated concentrations. All concentrations are normalized to the median concentrations 
of the complete model. 

(C) Enzyme levels (sum of e1 and e2) and robustness against perturbations of β2,max for 5000 simulations 
of the complete model (dots). The color of each dot shows the ratio of inhibition constants for 
allosteric feedback inhibition (K1) and enzyme level regulation (K2) in the respective model. 
Robustness corresponds to the percentage downregulation of β2,max that was tolerated by each model. 
100% enzyme abundance corresponds to the maximum theoretical enzyme concentration in the 
model. 
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Table S1. Related to Figure 1; Mutations in allosteric enzymes that were investigated in this study.  
 

 

 

Table S2. Related to Figure 1; Oligonucleotides for recombineering 

Gene Oligonucleotides for recombineering (5’-3’) 
Protospacer 
sequence (5’-3’) 

argA GTGGTAAAGGAACGTAAAACCGAGTTGGTCGAGGGAT 
TCCGCTATTCAGTTCCCTATATCAATACCCACCGGGGAA 

GGTCGAGGGATT 
CCGCCATT 

   
ilvA GGAATCACCGGGCGCGTTCCTGCGCTTTCTCAACACG 

CTGGGTACGTACTGGAACATTTCTTTGTTCCACTATCG 
CAACACGCTGG 
GTACGTACT  

   
hisG GTCAGCAGCAAAACCCTGTTCTGGGAAACTATGGAAA 

AACTGAAAGCGCTGGGGCCAGTTCAATTCTGGTCCTG 
TGGAAAAACTGA 
AAGCGCTG  

   
leuA CTGGTGAAATACAGCCTGACCGCCAAAGGACACGGTA 

AAGATGCGCTGGATCAGGTGGATATCGTCGCTAACTAC 
CGGTAAAGATGC 
GCTGGGTC  

   
proB ACCCGTGCTAATATGGAAGACCGTGAACGCTTCCTGAACGCTCGCGACAC

CCTGCGAGCGTTGCTCGATAACAATATC 
CGACACCCTGCG 
AGCGTTGC  

   
thrA GCGCGCGTCTTTGCAGCGATGTCACGCGCCCGTATTT 

TCGTGGTGCTGATTACGCAATCATCTTCCGAATACAGC 
TGGTGCTGATTA 
CGCAATCA  

   
trpE CTTATCGCGACAATCCCACTGCGCTTTTTCACCAGTTGTGTGGGGATCGTC

CGGCAACGCTGCTGCTGGAATTCGCAGAT 
CGCTTTTTCACC 
AGTTGTGT  

 

 

 

Pathway Gene Enzyme Mutation Reference 

L-arginine 
 biosynthesis 

argA 
N-acetylglutamate 

synthase 
H15Y Rajagopal et al., 1998 

L-isoleucine 
 biosynthesis 

ilvA 
Threonine 
deaminase 

L447F LaRossa et al., 1987 

L-histidine 
 biosynthesis 

hisG 
ATP phosphoribosyl 

transferase 
E271K Doroshenko et al., 2013 

L-leucine 
 biosynthesis 

leuA 
2-isopropylmalate 

 synthase 
G462D Gusyatiner et al., 2002 

L-proline 
 biosynthesis 

proB 
Glutamate-5- 

kinase 
D107N Csonka et al., 1988 

L-threonine 
 biosynthesis 

thrA 
Aspartate 

kinase 
S345F Lee et al., 2003 

L-tryptophan 
 biosynthesis 

trpE 
Anthranilate 

synthase 
S40F Caligiuri and Bauerle, 1991 
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Table S3. Related to Figure 4; Literature kcat values for enzymes in amino acid biosynthesis. The 
values were collected from the BRENDA database, and from Davidi and Milo, 2017. - indicates that 
no value could be found in both sources. The 25th and 75th quartiles of these kcat values are 930 min-

1 and 4140 min-1, respectively. 
 

Name kcat, s-1 Name kcat, s-1 Name kcat, s-1 

argA 654.00 cysK 378.50 ilvN 40.00 

argB - cysM 24.00 leuA - 

argC - cysN - leuB 69.00 

argD - cysQ 11.00 leuC - 

argE 1800.00 dadX 33.66 leuD - 

argF - dapA 104.00 lysA 33.00 

argG - dapB 382.00 lysC 22.13 

argH - dapD 36.00 metA 22.00 

argI - dapE - metB 121.00 

aroA 32.00 dapF 84.00 metC 34.10 

aroB 14.00 gdhA 37.00 metE 3.50 

aroC 39.00 glnA 33.00 metH - 

aroD 75.00 gltB - metL - 

aroE 237.00 gltD - pheA 32.00 

aroF - glyA 10.00 proA 10.00 

aroG 4.20 hisA 7.20 proB 53.00 

aroH - hisB - proC 717.00 

aroK - hisC - prs - 

aroL - hisD 12.00 serA 29.00 

asd - hisF - serB - 

asnA - hisG - serC 1.80 

asnB 4.50 hisH - thrA - 

aspC - hisI - thrB 17.00 

avtA - ilvA - thrC - 

cysC 50.00 ilvB 38.50 trpA - 

cysD - ilvC 0.30 trpB - 

cysE 772.00 ilvD 69.00 trpC 18.77 

cysH - ilvE - trpE - 

cysI 47.00 ilvH - tyrA 71.00 

cysJ - ilvI - tyrB - 
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Table S4. Related to Figure 4; Amino acid requirements of E. coli (Monk et al., 2017). The mean of 

86.6 mM was used as parameter α in the model. 

 

Amino 
Acid 

Coefficients, 
mmol gdw

-1 
alpha, 
mM 

ala-L 0.499 166.4 

arg-L 0.287 95.8 

asn-L 0.234 78.1 

asp-L 0.234 78.1 

cys-L 0.089 29.7 

gln-L 0.256 85.2 

glu-L 0.256 85.2 

gly 0.595 198.4 

his-L 0.092 30.7 

ile-L 0.282 94.1 

leu-L 0.438 145.9 

lys-L 0.333 111.1 

met-L 0.149 49.8 

phe-L 0.180 60.0 

pro-L 0.215 71.6 

ser-L 0.210 69.9 

thr-L 0.247 82.2 

trp-L 0.055 18.4 

tyr-L 0.134 44.7 

val-L 0.411 137.1 

Mean 0.260 86.6 
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Table S5. Related to Figure 4; Inhibition constants of allosteric enzymes (Ki-value), transcriptional 
attenuation (tRNA-ligase Km-value) and metabolite-transcription factor interactions (Kd-value). 
Values were obtained from EcoCyc (Keseler et al., 2017), Brenda (Schomburg et al., 2002) or 
RegulonDB (Gama-Castro et al., 2016). When more than one value was available, an upper and a lower 
bound are given. The grey background indicates the seven pathways that were investigated during this 
work. The Ki of ArgA was measured in this work with in vitro assays. 
 

Biosynthesis 
pathway 

Allosteric Feedback 
Ki 

mM 
Transcriptional Feedback 

Km/d 
 mM 

Enzyme Metabolite LB UB Mechanism Protein Metabolite LB UB 

Arginine ArgA arg 0.15  Repressor ArgR arg 0.28 

Asparagine AsnA asn 0.12 Repressor AsnC asn 1 

Cysteine CysE cys 0.001      

Histidine HisG his 0.012 0.1 Attenuation his-tRNA ligase his 0.008 0.03 

Isoleucine IlvA ile 0.06 Attenuation ile-tRNA ligase ile 0.0036 1.3 

Leucine LeuA leu 0.28 Attenuation leu-tRNA ligase leu 0.0015 0.05 

Lysine DapA lys 0.21 3.9      

Methionine MetA met 0.1 4 Repressor MetJ 
sa
m 0.01 0.05 

Phenylalanin
e PheA phe 0.1 0.6  TyrR phe >0.18 

Proline ProB pro 0.02      

Serine SerA ser 0.005 0.37      

Threonine ThrA thr 0.097 
0.16

7 Attenuation thr-tRNA ligase thr 0.11 0.2 

Tryptophan TrpE trp 0.17 Repressor TrpR trp 0.16 

Tryptophan TrpE trp 
 

0.17 Attenuation trp-tRNA ligase trp 0.017 

Tyrosine TyrA tyr 0.1 Repressor TyrR tyr 0.18 

Valine IlvB val 0.078 0.1 Attenuation val-tRNA ligase val 0.0043 0.1 
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Table S6. Oligonucleotides used in this study. 

Oligonucleotide Sequence (5'-3') Description 
argA_Forward GGTCGAGGGATTCCGCCATTG 

TTTTAGAGCTAGAAATAGCAAG 
Forward primer used with CPEC001 for amplification of fragment 
1 for customzied pKDsgRNA targeted against argA 

argA_Reverse AATGGCGGAATCCCTCGACCG 
TGCTCAGTATCTCTATCACTGA 

Reverse primer used with CPEC002 for amplification of fragment 2 
for customzied pKDsgRNA targeted against argA 

ilvA_Forward AGTACGTACCCAGCGTGTTGG 
TTTTAGAGCTAGAAATAGCAAG 

Forward primer used with CPEC001 for amplification of fragment 
1 for customzied pKDsgRNA targeted against ilvA 

ilvA_Reverse  CAACACGCTGGGTACGTACTG 
TGCTCAGTATCTCTATCACTGA 

Reverse primer used with CPEC002 for amplification of fragment 2 
for customzied pKDsgRNA targeted against ilvA 

hisG_Forward  CAGCGCTTTCAGTTTTTCCAGT 
TTTAGAGCTAGAAATAGCAAG 

Forward primer used with CPEC001 for amplification of fragment 
1 for customzied pKDsgRNA targeted against hisG 

hisG_Reverse  TGGAAAAACTGAAAGCGCTGG 
TGCTCAGTATCTCTATCACTGA 

Reverse primer used with CPEC002 for amplification of fragment 2 
for customzied pKDsgRNA targeted against hisG 

leuA_Forward  GACCCAGCGCATCTTTACCGG 
TTTTAGAGCTAGAAATAGCAAG 

Forward primer used with CPEC001 for amplification of fragment 
1 for customzied pKDsgRNA targeted against leuA 

leuA_Reverse  CGGTAAAGATGCGCTGGGTCG 
TGCTCAGTATCTCTATCACTGA 

Reverse primer used with CPEC002 for amplification of fragment 2 
for customzied pKDsgRNA targeted against leuA 

proB_Forward  GCAACGCTCGCAGGGTGTCGG 
TTTTAGAGCTAGAAATAGCAAG 

Forward primer used with CPEC001 for amplification of fragment 
1 for customzied pKDsgRNA targeted against proB 

proB_Reverse CGACACCCTGCGAGCGTTGCG 
TGCTCAGTATCTCTATCACTGA 

Reverse primer used with CPEC002 for amplification of fragment 2 
for customzied pKDsgRNA targeted against proB 

thrA_Forward  TGATTGCGTAATCAGCACCAG 
TTTTAGAGCTAGAAATAGCAAG 

Forward primer used with CPEC001 for amplification of fragment 
1 for customzied pKDsgRNA targeted against thrA 

thrA_Reverse  TGGTGCTGATTACGCAATCAG 
TGCTCAGTATCTCTATCACTGA 

Reverse primer used with CPEC002 for amplification of fragment 2 
for customzied pKDsgRNA targeted against thrA 

trpE_Forward  ACACAACTGGTGAAAAAGCGG 
TTTTAGAGCTAGAAATAGCAAG 

Forward primer used with CPEC001 for amplification of fragment 
1 for customzied pKDsgRNA targeted against trpE 

trpE_Reverse  

 
CGCTTTTTCACCAGTTGTGTG 
TGCTCAGTATCTCTATCACTGA 

Reverse primer used with CPEC002 for amplification of fragment 2 
for customzied pKDsgRNA targeted against trpE 

argR_Forward  ATTCTTCAATGGACTGGAGGG 
TTTTAGAGCTAGAAATAGCAAG 

Forward primer used with CPEC001 for amplification of fragment 
1 for customzied pKDsgRNA targeted against argR 

argR_Reverse  CCTCCAGTCCATTGAAGAATGT 
GCTCAGTATCTCTATCACTGA 

Reverse primer used with CPEC002 for amplification of fragment 2 
for customzied pKDsgRNA targeted against argR 

CPEC001 TTTATAACCTCCTTAGAGCTCGA Reverse primer for amplification of fragment 1 for pKDsgRNA 
CPEC002 CCAATTGTCCATATTGCATCA Forward primer for amplification of fragment 2 for pKDsgRNA 
Ec-F GTTTTAGAGCTAGAAATAGCAAGTTAA

AATAAGGC 
Foward primer used with guide_Rev for ampflification of 
customized pNUT1533-ctrl 

Ec-F-argE-mm5 TTTTTCATTGTTGACACCCCTCGTTTTAG
AGCTAGAAATAGCAAGTTAAAATAAGG
C 

Foward primer used with guide_Rev for ampflification of 
customized pNUT1533-argE 

Ec-F-trpA TTCTTTGCGCTCCTTCAACTGTTTTAGA
GCTAGAAATAGCAAGTTAAAATAAGGC 

Foward primer used with guide_Rev for ampflification of 
customized pNUT1533-trpA 

Ec-F-hisB TCACTCGGCGGTTCGCTAATCAGTTTTA
GAGCTAGAAATAGCAAGTTAAAATAAG
GC 

Foward primer used with guide_Rev for ampflification of 
customized pNUT1533-hisB 

Ec-R ACTAGTATTATACCTAGGACTGAGCTA
GC 

Reverse primer for amplification of customized pNUT1533 
plasmids 

ArgA_fwd_NdeI TGACCATATGATGGTAAAGGAACGTAA
AAC 

Amplification of genomic argA 

ArgA_rev_BamHI TGACGGATCCTTACCCTAAATCCGCCAT
CA 

Amplification of genomic argA 

ArgA_H15Y_fwd AGGGAACCGAATAGCGGAATCCCTC Forward primer for amplification pET28a(+)-argA 
ArgA_H15Y_rev ATATCAATACCCACCGGG Reverse primer for amplification pET28a(+)-argA 
hisL_fwd_gfp CCGCTCGAGGCTTTCATCATTGTTGCCG Forward primer for amplification of hisL attenuator region 
hisL_rev_gfp CCGGGATCCCGCAGAATATCAATCGGC Reverse primer for amplification of hisL attenuator region 
leuL_fwd_gfp CCGCTCGAGTTGTCCCCTTTTTCCTCG Forward primer for amplification of leuL attenuator region 
leuL_rev_gfp CCGGGATCCGATGGTTTGCACCGATTC Reverse primer for amplification of leuL attenuator region 
thrA_fwd_gfp CCGCTCGAGACTGCAACGGGCAATATG Forward primer for amplification of thrL attenuator region 
thrA_rev_gfp CCGGGATCCTCGGCATCGCTGATATTG Reverse primer for amplification of thrL attenuator region 
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Conclusion and Outlook 

Key Findings 

Chapter 1 

A pooled CRISPRi screen, covering all metabolic genes of E. coli, enabled us to systematically search for 

bottleneck genes in metabolism and it revealed the consequences of lowering enzyme levels below 

wild-type levels. Surprisingly, the cell was able to buffer most knockdowns for hours after the induction 

of CRISPRi. Only 253 genes showed a growth defect below 14 hours for at least two guides, while the 

different targeting positions of the guides hardly affected the repression strength. Only 11 genes which 

showed a metabolic bottleneck did not carry flux on M9 medium with glucose or are known to be 

essential, however 3 of them can be explained by polar effects because an essential or flux-carrying 

gene is encoded downstream of the target gene. On average, the response time for the 253 bottleneck 

genes was 7.8 hours, while the 7 most sensitive targets (ilvE/ilvD, ppc, sucA, lpxC, cysD, pyrG and 

nrdA/nrdB) showed a response time below 4 hours. Hypothetically, these genes encode enzymes that 

catalyze rate-limiting steps, which is why they are expressed near-critical levels.  

To understand how E. coli buffers the decrease of enzymes for such a long time, we measured the 

metabolome and proteome of 30 arrayed CRISPRi strains. We found three gene-specific buffering 

mechanisms: i) the knockdown of the carbamoyl phosphate synthetase (CarAB) is buffered by 

ornithine, which increases CarAB activity, ii) S-adenosylmethionine de-repressed the gene expression 

of the methionine pathway and counteracts the knockdown of homocysteine transmethylase (MetE) 

and iii) the knockdown of 6-phosphogluconate dehydrogenase (Gnd) is buffered by 6-

phosphogluconate which activates a bypass.  

Hence, the application of CRISPRi in a pooled library screening revealed bottlenecks in metabolism and 

the investigation of single strains identified local regulatory mechanisms. 

Chapter 2  

The metabolite measurements of chapter 1 showed that in CRISPRi knockout strains the substrate of 

the targeted reaction accumulates while the product level decreases. Hence, we used this inducible 

method to change the metabolite levels inside the cell and combined it with a reporter for transcription 

factor activity to systematically search for functional interactions in vivo.   
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We first combined the pooled CRISPRi library with a reporter plasmid with binding sites of ArgR. We 

were able to sort cells from the library which showed an increase of green fluorescence upon the 

induction of CRISPRi. After arraying these strains, we could show that 78% had a target in arginine 

biosynthesis, and 8% had off-targets for this pathway. The data indicated that the decreasing arginine 

levels in these strains led to a release of the arginine repressor from the promoter and therefore 

resulted in higher GFP levels, as expected.   

We used the same approach to screen for CRISPRi targets whose changing metabolite levels had an 

effect on a reporter plasmid for the activity of Cra, which is a global transcriptional regulator of 

metabolism. For a long time, it was heavily discussed which effector metabolite binds and regulates 

Cra (Bley Folly et al., 2018; Chavarría and de Lorenzo, 2018). Here, we show the effect of a fruK 

knockdown on Cra in an in vivo context.   

Thus, we can use CRISPRi as a tool to increase and decrease metabolite levels in vivo, which allows us 

to measure their effect on transcription factor activity and enables us to identify known and new 

interactions. 

Chapter 3 

This chapter is a resource and provides a detailed protocol for designing and constructing pooled 

CRISPRi libraries and gives a detailed protocol for designing and constructing libraries, performing 

fitness assays combined with Illumina sequencing and sorting single cells by FACS. New data or findings 

were not in the scope or focus of this chapter. 

Chapter 4 

The inference of dynamic metabolite and gene expression data enabled us to find new metabolite- 

transcription factor interactions. By switching E. coli from growth to glucose limitation, we were able 

to measure dynamically changing metabolites and transcript levels. In total, we measured 123 

metabolites by LC-MS/MS and 4242 transcripts for 29 (35) different time points. The application of 

network component analysis and the good knowledge about the transcriptional regulatory network in 

E. coli allowed us to calculate the activity of 209 transcription factors and to correlate this data with 

metabolite levels. Using Hill-type kinetics, we were able to correlate the levels of cAMP with the 

transcription factor CRP, which is a known interaction and held as a validation of our approach. 

Performing the same correlation for all transcription factors and metabolites enabled us to predict 

putative regulatory metabolites of 71 transcriptional regulators, of which we validated 5 by in vitro 

binding affinity assays: dihydroxyacetone phosphate-DhaR, tyrosine-TrpR, glutamate-SgrR, 

tryptophan-SoxR and lysine-ArgR.  
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Hence, the external perturbation of the cell can also be applied to identify new metabolite-

transcription factor interactions.  

Chapter 5 

Microbes have to face internal and external perturbations, and developed several mechanisms to 

buffer disruptions of their metabolism. As shown in chapter 1, this robustness can be mediated by the 

interaction of metabolites with proteins. We removed the allosteric feedback regulation of seven 

amino acid pathways in E. coli metabolism and measured decreasing enzyme levels of five of the seven 

dysregulated pathways. A decrease in metabolic flux was not observed. This indicated that enzyme 

levels in cells must be higher than needed to maintain metabolic homeostasis. Using a metabolic model 

and CRISPRi for the pathways of arginine, histidine and tryptophan biosynthesis, we showed that an 

overabundance of enzymes can improve the robustness of a pathway.  

Thus, we could demonstrate that the fine-tuned interplay of enzyme-level regulation and allosteric 

feedback inhibition ensures a robust but also efficient synthesis of enzymes involved in arginine, 

histidine and tryptophan pathways in E. coli. Hence, CRISPRi can also be used to identify the function 

of regulatory mechanisms.  

Outlook 

In this thesis, we highlight the potential to investigate the regulation of metabolism via CRISPRi. Its 

application to map interactions between metabolites and transcriptional regulators (chapter 2) and to 

identify their function (chapter 5) opens new possibilities for the investigation of the regulatory 

network in E. coli and other bacteria. It enables us to find and examine interactions in vivo, which is 

why this method minimizes the identification of non-functional interactions. Undoubtedly, the 

conditions that are used to perform the assays play an important role for the outcome of the 

screenings and a combination of internal (CRISPRi, chapter 1,2 and 5) and external perturbations 

(chapter 4) could even raise the number of found interactions. 

In chapter 2, we show that, for the transcription factors ArgR and Cra, the combination of a pooled 

CRISPRi library with a fluorescent transcriptional reporter allows us to identify already known and new 

metabolite- transcription factor interactions. The screening condition was based on the growth of E. 

coli on M9 minimal medium with glucose as the sole carbon source. As some pathways are only 

activated under certain conditions (Shimizu, 2013; Zampieri et al., 2019), we expect that by performing 

this assay with a different carbon source we would find many new PMIs, which could have been missed 

before. Moreover, some TFs like ArgR do not only act as repressors but also activators. Hence, changing 
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conditions could reveal new interactions with so far unknown metabolites that only activate or repress 

the TF under these circumstances.  

As shown in chapter 4, another interesting approach could be to switch the CRISPRi library with a 

fluorescent reporter plasmid for TF activity between conditions and to take samples dynamically. Thus, 

it could be possible to identify interactions that for example only apply under the change of a carbon 

source. This method is not only limited to transcriptional regulators, but also a known binding site of 

any other protein could be fused with a fluorescent reporter to measure the influence of a metabolite 

on the binding activity. Furthermore, cells could be treated with cold-shocks, antibiotics or oxidative 

stress to test for interactions that are only active under stress conditions. As shown in chapter 1, these 

environments cannot only be applied to identify metabolite- transcription factor interactions, but also 

to find bottleneck genes for certain conditions. Hence, the before mentioned settings can also be used 

in fitness assays with CRISPRi libraries without the reporter plasmid, which is especially interesting for 

identifying target genes for new antibiotics (Jiang et al., 2020). Moreover, CRISPRi libraries may well 

also be used to investigate microbial communities. Microbial interaction is often achieved by the 

exchange of metabolites between species (Braga et al., 2016; D’Souza et al., 2018). However, the exact 

interaction network is often not completely determined (Blasche et al., 2021). Thus, interfering 

metabolism of one species via CRISPRi could help to identify which metabolite leads to a specific 

phenotype of another species. 

In conclusion, the implementation of new tools like CRISPRi enables us to not only identify the function 

of genes, but also to reconstruct the way bacterial metabolism is regulated and to find the specific 

function and key signals of these regulations. Moreover, systematic techniques as proteomics, 

metabolomics and NGS are constantly developing, so a combination of all these approaches might help 

us to gain a full picture of bacterial metabolism and to determine the function of every single 

component.  
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Kapitel 1:  Mein Anteil an der Studie umfasst die Ausführung der Experimente mit der gepoolten 

CRISPRi library, als auch das Testen einzelner CRISPRi Stämme in 

Wachstumsexperimenten. Des Weiteren habe ich die Illumina Sequenzierung 

durchgeführt und die Proben entsprechend vorbereitet, als auch die Daten 

ausgewertet. Außerdem habe ich die entsprechenden Experimente geplant, als auch 

das Manuskript mitverfasst. 

 

Kapitel 2: Mein Anteil and diesem Kapitel beinhaltet das Aufsetzen der Studie, die Ausführung 

der Wachstumsexperimente mit der CRISPRi library, die Durchführung des Cell-

Sortings, als auch die Probenentnahme für Proteommessungen. Des Weiteren habe 

ich die Analyse der Daten durchgeführt und das Manuskript mitverfasst. 

 

Kapitel 3: Mein Anteil an diesem Protokoll umfasst die Durchführung der 

Wachstumsexperimente mit der CRISPRi library, als auch das Cell-Sorting. Des 

Weiteren habe ich alle Anleitungen zur Durchführung der Experimente verfasst bzw. 

gesammelt und anschließend als Manuskript zusammengefasst. 

 

Kapitel 4:  Mein Anteil an der Studie umfasst die Implementierung zur Aufreinigung von 

Proteinen, als auch die experimentelle Aufreinigung von Proteinen zur Ausführung von 

Bindeassays. 

 

Kapitel 5:  Mein Anteil an diesem Kapitel umfasst die Klonierung von Plasmiden mit sgRNAs zur 

Anwendung von CRISPRi in allosterischen disregulierten Mutanten und die Ausführung 

von Wachstumsexperimenten mit diesen Stämmen. 
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