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Abstract 

TP53 is an essential tumor suppressor gene which is inactivated in every second 

tumor. Most frequently TP53 is disabled by missense mutations which result in the 

expression of a mutant p53 protein. Mutant p53 protein is unable to prevent 

uncontrolled proliferation and can additionally increase cancer growth by dominant 

negative and gain of function effects. Mutations in TP53 are frequently associated 

with aggressive tumor growth, chemotherapy resistance and shortened survival. 

Therefore, the TP53 gene status has important clinical implication. Moreover, 

information about TP53 mutations will be essential for application of emerging p53-

targeted therapeutics: Mdm2 inhibitors and p53 reactivators. 

Eight most frequent hotspot mutations account for nearly 30% of all missense TP53 

variants found in tumors and are extensively studied. Hotspot TP53 mutations lead 

to production of a transcriptionally inactive loss of function protein. The rest 70% of 

TP53-mutated tumors contain one of >2000 distinct mutant p53 variants, most of 

which are uncharacterized. Such a broad spectrum of mutants makes prediction of 

their impact on disease outcome a very challenging task. Therefore, for advancing 

personalized cancer treatment it would be of utmost importance to study how the 

hundreds of individual p53 mutations influence a therapy response. Functional 

characterization of hundreds of mutations in a gene of interest is a tall order task 

which requires time-consuming in vitro and in vivo experiments. Thus, an 

experimental approach for a massive parallel phenotypic screening of mutations in 

TP53 gene would be of a great value. 

In the present work we took advantage of the CRISPR-Cas9 gene editing technology 

to develop the CSMS – CRISPR-based saturated mutagenesis screening of TP53 

gene, an improved system for massive parallel functional screening of p53 mutants. 

We have established rapid and flexible protocol of targeting p53 mutations into 

endogenous TP53 locus using CRISPR-Cas9-induced homology-directed repair. We 

have validated CSMS by performing saturation mutagenesis of the short protein 

motif and demonstrated outstanding performance. We have scaled our protocol up to 

establish a high-throughput method that allows precise functional characterization of 

thousands of p53 variants. We have tested effects of p53 mutations on response to 

Mdm2 inhibitors and irradiation and revealed excellent correlation of screening 
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results with known structural, functional and clinical data. Furthermore, we have 

demonstrated that CMSM is able to highlight even subtle functional difference 

between mutants and identify partially loss of function mutants. Manipulating the 

endogenous TP53 locus allowed us to study effects of mutation in non-coding 

regions, which was previously unachievable. A detailed comparison of our data with 

the previously published studies provided compelling evidence, that the procedure 

established in our study is significantly more accurate in categorization of pathogenic 

TP53 mutations. 

In summary, we have attested CSMS as a powerful tool to catalogue TP53 

mutations. This tool can be used in the future to increase the utility of mutations in 

TP53 as clinical biomarkers. 
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Zusammenfassung 

TP53 ist ein essentieller Tumorsuppressor, der in jedem zweiten Tumor inaktiviert 

vorliegt. In den meisten Fällen ist die Ursache hierfür eine missense Mutation, 

welche zur Expression eines veränderten p53-Proteins führt. 

Das mutierte p53 Protein ist nicht in der Lage eine unkontrollierte Proliferation zu 

verhindern und kann das Tumorwachstum im Falle von dominant-negativen oder 

gain of function Mutationen sogar aktiv unterstützen.  

Mutationen im TP53 Gen sind häufig assoziiert mit einem aggressiven 

Tumorwachstum, Chemoresistenz und einer kürzeren Überlebensspanne der 

Patienten. Aus diesem Grund ist der p53 Genstatus von hoher klinischer Relevanz. 

Darüber hinaus sind Informationen zu verschiedenen TP53 Mutationen essentiell für 

die Applikation vergleichsweise neuer Therapiestrategien, welche gezielt an p53 

ansetzen: Mdm2-Inhibitoren und p53-Reaktivatoren.   

Die acht häufigsten so genannten Hotspot Mutationen versachen nahezu 30% aller 

in Tumoren gefundenen p53 missense-Mutationen und werden daher umfassend 

untersucht. Diese Hotspot Mutationen führen zur Produktion von transkriptionell 

inaktiven loss-of-function Proteinen. Die restlichen 70% der TP53 Mutationen 

bestehen aus mehr als 2000 unterschiedlichen p53 Varianten, von denen die 

meisten bisher nicht charakterisiert sind. Neben Tumor-assoziierten non-Hotspot 

Mutationen macht diese Vielzahl an Mutanten eine Vorhersage über ihren Einfluss 

auf die Erkrankung zu einer großen Herausforderung.  

Aus diesem Grund wäre es für eine verbesserte personalisierte Krebstherapie von 

großer Wichtigkeit, heraus zu finden, wie hunderte verschiedener individueller p53 

Mutationen die Therapieantwort beeinflussen.  

Die funktionelle Charakterisierung hunderter Mutationen eines Gens ist eine 

umfassende Aufgabe, die zeitaufwendige in vitro und in vivo Studien beinhaltet. 

Daher wäre ein experimenteller Ansatz von großem Vorteil, welcher es erlaubt, 

umfangreiche phänotypische Screenings von p53 Mutanten parallel durchzuführen.  

In der vorliegenden Arbeit wurde das CRISPR-Cas9 System genutzt um das 

CRISPR-basierte gesättigte Mutagenese Screening (CRISPR-based saturated 

mutagenesis screening – CSMS) des TP53 Gens zu entwickeln, ein verbessertes 

System zum parallelen umfangreichen phänotypischen Untersuchung von p53 
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Mutanten. Wir haben damit ein schnelles und flexibles Protokoll entwickelt, um unter 

Einsatz des CRISPR-Cas9-induzierten homology-directed repair (Homologie-

gerichtete Reparatur) p53 Mutationen in den endogenen TP53 Genlocus 

einzubringen. Das CSMS wurde mittels getättigter Mutagenese des kurzen Protein 

Motivs validiert und erwies sich als überaus erfolgreiche Methode. Wir haben unser 

Protokoll soweit verbessert, um eine Hochdurchsatz-Methode zu entwickeln, welche 

eine exakte funktionelle Charakterisierung von tausenden p53 Varianten ermöglicht.   

Wir haben die Effekte von p53 Mutationen auf das Ansprechen auf Mdm2-Inhibitoren 

und Bestrahlung untersucht und dabei eine herausragenden Korrelation zwischen 

den Ergebnissen des Screenings und bekannten strukturellen, funktionalen und 

klinischen Daten feststellen können.  

Darüber hinaus konnten wir zeigen, dass CSMS in der Lage ist selbst kleinste 

funktionelle Unterschiede zwischen Mutationen aufzuzeigen und partielle loss-of-

function Mutanten identifizieren kann.  

Die Manipulation des endogenen TP53 Genlocus erlaubt es uns, die Effekte von 

Mutationen in nicht-kodierenden Regionen zu untersuchen, was bisher unmöglich 

war. Ein genauer Vergleich unserer Daten mit bisher publizierten Studien bewies, 

dass die in unserer Studie etablierte Methode eine deutlich genauere 

Kategoriosierung pathogener p53 Mutationen ermöglicht.  

Zusammegefasst können wir bestätigen, dass CSMS ein leistungsfähiges Instrument 

zur Katalogisierung von TP53 Mutationen darstellt. Diese Methode kann zukünftig 

genutzt werden, um den Nutzen von Mutationen im TP53 Gen als klinischen 

Biomarker zu verbessern.  
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1. Introduction 

1.1 TP53 is a key tumor suppressor 

TP53 is the most frequently mutated gene in human cancer. On average, the TP53 

gene is altered in every second tumor. In some cancer entities (e.g., ovarian and 

uterine cancers), TP53 is mutated in more than 80% of cases (Leroy et al. 2014b; 

Donehower et al. 2019). The importance of TP53 as a tumor suppressor is 

exemplified by the hereditary cancer predisposition disorder, Li-Fraumeni syndrome. 

Germline TP53 mutations were identified in most individuals with Li-Fraumeni 

syndrome (Guha and Malkin 2017). 

TP53 encodes a transcription factor that controls a network of hundreds of genes: 

p53 reacts to various extrinsic and intrinsic stimuli (DNA damage, oxidative stress, 

activation of oncogenes, nutrient deprivation, telomere shortening) and regulates cell 

fate by inducing various responses: cell cycle arrest, apoptosis, senescence, DNA 

repair and others (Williams and Schumacher 2016). Deregulation of the p53 network 

is a universal hallmark of cancer. The p53-mediated response can be dampened in 

cancer cells either by mutations in the TP53 gene itself or by alterations in the genes 

encoding negative or positive p53 regulators like MDM2 and CDNK2A (p14ARF). 

Mutations in TP53 are frequently associated with poor clinical prognosis, aggressive 

tumor growth, metastasis, and therapy resistance (Olivier et al. 2010). 

p53 protein prevents the spreading of genetically altered cells via two core programs: 

apoptosis and cell cycle arrest (Donehower et al. 2019). P53-driven apoptosis 

involves the transcriptional induction of target genes, including BAX, PMAIP1 (Noxa), 

and BBC3 (Puma), which ultimately leads to permeabilization of the mitochondrial 

outer membrane, release of cytochrome c from mitochondria, activation of caspases, 

and cell death (Riley et al. 2008; Zilfou and Lowe 2009; Aubrey et al. 2018b). 

Furthermore, p53-dependent transcription-independent initiation of apoptosis was 

described in numerous studies (Moll et al. 2005; Haupt et al. 2003; Kim et al. 1999; 

Ho et al. 2019). Besides apoptosis, p53 can engage other cell death pathways: 

necrosis (Baumann 2012), ferroptosis (Le Jiang et al. 2015), pyroptosis (Ranjan and 
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Iwakuma 2016), anoikis (Ghosh et al. 2010), and necroptosis (Muller and Vousden 

2014; Xie et al. 2013). 

Under moderate stress p53 engages a reversible cell cycle arrest and DNA repair, 

thereby limiting the propagation of oncogenic mutations. The key mechanism of p53-

mediated cell cycle arrest relies on the activation of the CDKN1A gene, whose 

product p21 inhibits cyclin-dependent kinases (CDKs) to halt cell cycle progression. 

Inhibition of CDKs prevents the hyperphosphorylation of Rb and thereby induces cell 

cycle arrest. Upon certain conditions (oncogene activation, persistent DNA damage), 

p53 response leads to an irreversible block of cell division (senescence) through 

transcriptional activation of target genes such as CDKN1A, PAI1, SUV39H, and PML 

(Riley et al. 2008; Kortlever et al. 2006). p53 regulates cellular metabolism by 

controlling the expression of anti-oxidative genes SESN1, SESN2, GPX, and 

regulators of glycolysis (TIGAR) (Liu et al. 2008; Sablina et al. 2005). 

Activation of p53-driven response can be lethal for the cell. Therefore, in normal cells 

it is tightly controlled. In unstressed cells, p53 is continuously produced but is 

immediately complexed with MDM2 and MDMX proteins via the N-terminal domain 

(Marine and Jochemsen 2004). The E3-ubiquitin-ligase MDM2 labels p53 with 

polyubiquitin, promoting its nuclear export and proteasomal degradation (Haupt et al. 

1997; Tollini et al. 2014; Sane and Rezvani 2017; Boehme and Blattner 2009).  

MDM2-dependent degradation of p53 is interrupted by stress stimuli. DNA damage-

induced phosphorylation of MDM2 and p53 by CHK1, CHK2, ATM, and ATR protein 

kinases prevents ubiquitination of p53 (Kruse and Gu 2009). Additionally, MDM2-p53 

interaction can be disrupted by the p14ARF protein in response to hyperproliferative 

signaling from oncogenes (Pomerantz et al. 1998; Zhang et al. 1998; Kamijo et al. 

1998). Since elevated levels of p53 are toxic to the cell, the duration of p53 

accumulation is controlled by a negative feedback loop: the MDM2 gene itself is a 

transcriptional target of p53. Therefore, stabilization of p53 induces MDM2 

expression and dampens p53 activity (Wu et al. 1993). 

Taken together, p53 is a key regulator of cellular fate with multifaceted functions and 

complex dynamics. It effectively prevents propagation of stressed and genetically 

altered cells. Deregulation of the p53 response is an imperative for any cancer cell. 



15 

1.2 TP53 structure 

The p53 protein contains 393 amino acids and is divided into several domains: the 

N-terminal domain (1-62 aa) and the adjacent proline-rich domain (63-97 aa) are 

essential for transactivation (Fig. 1A) (Baptiste et al. 2002; Zhu et al. 2000). The 

central DNA-binding core domain (DBD) (102-292 aa) mediates sequence-specific 

binding to response elements located in promotors of target genes. The binding of 

four p53 subunits to DNA is facilitated by a tetramerization domain (323-356 aa). The 

C-terminal domain (364-393 aa) supports DNA binding (Laptenko et al. 2015). 

Moreover, it can be subjected to multiple post-translational modifications and 

essential for regulating cellular levels of p53 (Gu and Zhu 2012; Joerger and Fersht 

2007).  

1.3 p53 mutations and their consequences 

 Loss of function (LOF) mutations 

Unlike most other tumor suppressor genes, which are frequently inactivated by 

deletions, frameshift, or nonsense mutations, approximately 70% of TP53 alterations 

found in human cancers are missense mutations (Fig. 1B) (Levine and Vosburgh 

2008; Muller and Vousden 2013; Donehower et al. 2019).  

The primary consequence of TP53 mutations is the loss of normal tumor-

suppressive functions due to impaired DNA binding or protein misfolding, which 

confers critical selective advantage during tumor progression. However, disruption of 

protein functionality could also be achieved by nonsense or frameshift mutations. 

The unusual mutational spectrum of the TP53 gene (prevalence of missense over 

nonsense or frameshift mutations) has two explanations. First, the selection of 

missense variants exerts neomorphic pro-oncogenic functions that foster more 

aggressive cancer growth (gain of function, GOF) (Brosh and Rotter 2009; Baugh et 

al. 2018). Second, missense mutants exhibit a dominant-negative effect (DNE), 

nonmutational inactivation of the second wild-type allele (Srivastava et al. 1993; Lee 

et al. 2012). Missense mutations in TP53 generate a vast diversity of more than2000 

mutant proteins. Mutations in TP53 have been traditionally considered equally 

damaging. However, increasing experimental evidence suggests that missense 
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mutations generate a “rainbow” of mutant proteins with distinct characteristics 

(Sabapathy and Lane 2018; Walerych et al. 2015).   

 Consistent with the indispensable role of transactivation for normal p53 functions, 

most cancer patients carry mutations of the DNA-binding domain (Leroy et al. 

2014b). Among them, eight mutations are found in nearly 10% of all human tumors 

with p53 missense mutations and are referred to as hotspot mutations (R175H, 

G245S, R248W, R273C, R273H, R282W, R248Q, and R249S) (Baugh et al. 2018). 

All hotspot mutants represent classical LOF mutations because they are completely 

unable to transactivate target genes and suppress cellular growth (Campomenosi et 

al. 2001; Kotler et al. 2018). Deleterious effects of hotspot mutations on tumor 

suppression are well exemplified by animal models: mice with heterozygous 

Figure 1. Mutational spectrum of TP53 

A. Distribution of missense TP53 mutations (N=27847). B. 

Frequencies of distinct classes of TP53 mutations (N=28866). Data 

source: IARC database, R20, July 2019. 

B 

A 



17 

germline hotspot mutations (Trp53+/mut) show the same (for example, R172H and 

R270H) or even stronger (R248Q) predisposition to the development of sporadic 

tumors as Trp53+/- animals (Olive et al. 2004; Hanel et al. 2013) 

Hotspot mutations are divided into two classes: contact and structural. Contact 

mutations (R273H and R248W) affect residues that directly interact with DNA, 

whereas structural mutations (R175H, G245S, R249S, and R282H) hit residues 

essential for the maintenance of p53 structure (Joerger and Fersht 2007; Ang et al. 

2006; Joerger et al. 2006). Mutation R248Q fits both categories (Wong et al. 1999). 

In contrast to contact p53 mutants that retain normal folding, structural mutants 

unfold at body temperature and tend to aggregate. Many non-hotspot variants were 

predicted to impair p53 function via structural alterations (Baugh et al. 2018).  

Several studies from our group have described non-hotspot p53 variants that do not 

fit into the aforementioned classes because they neither decrease protein stability 

nor affect residues contacting DNA. These mutations impair another essential 

property of p53: DNA binding cooperativity. The binding of p53 monomers to DNA 

promotes the formation of tetramers via protein-protein interactions between the H1- 

helices of the DNA-binding domains (Weinberg et al. 2004). Mutations at residues 

E180 and R181 disrupt salt bridges between adjacent monomers, weaken 

cooperative binding with DNA and reduce p53-mediated tumor suppression (Kitayner 

et al. 2006; Dehner et al. 2005; Timofeev et al. 2013; Schlereth et al. 2010a; 

Schlereth et al. 2013). Such cooperativity mutations promote tumorigenesis in mice 

and are found in sporadic cancers as well as in Li-Fraumeni syndrome individuals 

with hereditary cancer susceptibility (Schlereth et al. 2010a; Timofeev et al. 2013; 

Timofeev et al. 2019).   

 Partial loss of function mutations 

Comprehensive studies of the hotspot TP53 mutations have undoubtedly 

demonstrated their complete loss of functional properties. Accordingly, all p53 

mutants were regarded as equally non-functional. Nowadays, it is increasingly 

recognized that p53 mutations generate a spectrum of proteins with various degrees 

of residual functionality (Sabapathy and Lane 2018; Manfredi 2019). Some of the 

non-hotspot p53 mutants, which were overlooked by earlier studies, retain the ability 
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to transactivate particular target genes, representing, therefore, “separation-of-

function” or “partial loss of function” (partial-LOF) mutants (Kato et al. 2003; 

Menendez et al. 2006; Jordan et al. 2010). A good example is the tumor-derived 

mutant R175P. Its murine equivalent R172P is devoid of pro-apoptotic activity but 

retains the ability to induce cell cycle arrest, maintains chromosome stability, and 

partially suppresses tumorigenesis (Liu et al. 2004). 

The other example of partial-LOF mutants is cooperativity mutations located in the 

H1 helix, two of which were extensively studied by our group. The mutant E177R 

(the equivalent of human E180R) is unable to induce apoptosis but efficiently 

activates cell cycle arrest, controls oxidative stress, and partially protects mice from 

tumorigenesis (Timofeev et al. 2013). The other mutant R178E (the equivalent of 

human R181E) is transcriptionally inactive but can still drive mighty chemotherapy 

response in vivo via a non-transcriptional mechanism (Timofeev et al. 2019). These 

studies pinpoint the chance that many of the non-hotspot mutants retain residual 

activities. Whether partial-LOF mutants can be exploited for cancer therapy is 

unknown. Since non-hotspot mutations account for 70% of all missense variants 

found in cancers, this question deserves deeper investigation. 

 Gain of function mutations 

Besides losing transactivating ability, some mutant p53 variants (for example, 

R175H, R273H, R248Q, R248W, and others) can actively fuel malignant growth by 

acquiring novel oncogenic functions (gain of function, GOF) (Muller and Vousden 

2014; Kim and Lozano 2018; Mello and Attardi 2013). Experimentally, GOF 

properties of some mutants were initially demonstrated upon their overexpression in 

p53-null cells, where they conferred enhanced cell growth and tumorigenicity 

(Dittmer et al. 1993). Studies of such GOF-mutants in in vivo models have 

demonstrated that they provide a strong survival advantage to cancer cells, creating 

oncogene-like addiction, confer enhanced metastatic and invasive potential, drug 

resistance, drive angiogenesis, and epigenetic reprogramming (Basu et al. 2018; 

Morton et al. 2010; Muller and Vousden 2013; Vogiatzi et al. 2016; Lang et al. 2004; 

Olive et al. 2004; Hanel et al. 2013; Do et al. 2012; Hientz et al. 2017; Blandino et al. 

1999; Buganim et al. 2006; Aschauer and Muller 2016; Schulz-Heddergott and Moll 

2018; Alexandrova et al. 2015).  
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Mechanistically, GOF properties are still incompletely understood and seem to 

involve, among others, aberrant interactions of mutant p53 with transcriptional 

cofactors (e.g., NF-Y, YAP, NF-κB, E2F1, Sp-1, Ets-1), which result in 

transactivation of non-canonical target genes (Vogiatzi et al. 2016; Chin et al. 1992; 

Frazier et al. 1998; Lee et al. 2000; Ludes-Meyers et al. 1996; Quante et al. 2012; 

Freed-Pastor et al. 2012; Weisz et al. 2007). Interestingly, GOF activity was 

demonstrated for several non-missense p53 mutants. For example, truncating 

mutations in exon 6 generate proteins that are devoid of transactivating function and 

induce epithelial-mesenchymal transition and grant prometastatic features via 

binding to cyclophilin D in mitochondria (Shirole et al. 2016). 

GOF effects can also be driven by interactions of mutant p53 with its two homologs, 

p63 and p73 (Li and Prives 2007; Hall and Muller 2019). The two transcription 

factors normally exhibit tumor-suppressive properties. The binding of mutant p53 to 

p63 and p73 can lead to improper binding to target gene promoters and 

downregulation of proapoptotic functions (Muller and Vousden 2014; Li and Prives 

2007).  

 Dominant-negative effect 

Monoallelic missense TP53 mutations can compromise functions of the wild-type 

TP53 allele. This phenomenon is known as a dominant-negative effect (DN-effect) 

and was demonstrated upon coexpression of mutant and wild-type p53 proteins 

(Vries et al. 2002; Srivastava S. et al. 1993; Kern et al. 1992; Shaulian et al. 1992; 

Sun et al. 1993). DN-effect has also been demonstrated in mouse models: co-

expression of one mutant Trp53 allele with wild-type protein accelerates 

cancerogenesis compared to Trp53+/- animals (Michele Harvey et al. 1995; Geng Liu 

et al. 2000; Vries et al. 2002; Giacomelli et al. 2018). Similarly, Li-Fraumeni 

syndrome patients carrying missense TP53 mutations are diagnosed with cancer 

earlier in life than patients with truncating mutations (Jillian M Birch et al. 1998). Of 

note, the DN-effect was shown to be mutant-specific: the degree of residual 

transactivation of target genes by wild-type p53 depends on the particular co-

expressed mutant (Paola Monti et al. 2002). The DN-effect is mechanistically 

explained by the formation of non-functional tetramers composed of both normal and 

mutant subunits, which results in decreased concentration of functional tetramers 
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and unfolding of the wild-type protein (Milner and Medcalf 1991; DiGiammarino et al. 

2002).  

Even though the DN-effect and GOF properties were conclusively demonstrated in 

multiple in vitro and animal studies, their relevance for the progression of human 

tumors is still under debate. Two recent studies have conclusively shown that the 

majority of the hundreds of tested missense mutations exert a dominant-negative 

effect in multiple cancer cell lines (Boettcher et al. 2019; Giacomelli et al. 2018). 

However, one of these reports found no evidence of GOF properties (e.g., growth 

stimulation or drug resistance) for hotspot mutants in leukemia cell lines (Boettcher 

et al. 2019). A recent analysis of the TCGA dataset revealed that 90% of tumors 

have biallelic TP53 loss, suggesting that the DN-effect alone is unable to completely 

impair p53-mediated tumor suppression (Donehower et al. 2019). In line with this, a 

recent study in the mouse lymphoma model demonstrated that DNE does not 

globally impair functions of the wild-type protein but rather selectively suppresses 

only a subset of target genes, which is sufficient for deregulation of tumor-

suppressive circuits and transformation of premalignant cells in cooperation with c-

Myc (Aubrey et al. 2018a). 

Presumably, both GOF-effect and DNE are relevant for oncogenesis. However, they 

can operate at distinct cancer progression stages and be strongly dependent on the 

particular mutant, genetic, and cellular contexts. Therefore, the importance of both 

phenomena for cancer patients still needs to be firmly established. 

 Importance of functional characterization of non-hotspot mutations  

The prevalence of eight hotspot mutations over the others prompted a 

comprehensive characterization of these variants in multiple in vivo and in vitro 

models (Lang et al. 2004; Olive et al. 2004; Hanel et al. 2013; Muller and Vousden 

2013; Muller et al. 2011; Liu et al. 2016; Xu et al. 2014; Achatz and Zambetti 2016). 

At the same time, functional consequences of non-hotspot missense p53 mutations 

remain poorly characterized. While some of these mutants exhibit full loss of function 

(identical to null allele), many others can retain particular wild-type properties, exhibit 

DN or neomorphic GOF effects (Freed-Pastor and Prives 2012; Muller and Vousden 

2014; Shirole et al. 2016). GOF activities of mutant p53 vary between particular 
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mutants, depend on oncogenic context and tissue type (Olive et al. 2004; Lang et al. 

2004; Stein et al. 2020). Together with a vast array of LOF and partial LOF 

mutations, they create tremendous diversity of protein variants, many of which can 

represent potential targets for distinct therapeutic modalities (Liu et al. 2015; 

Parrales and Iwakuma 2015; Sur et al. 2009; Martins et al. 2006; Muller and 

Vousden 2014). The fact that only eight mutations among more than 2000 are well-

characterized emphasizes the high demand for a comprehensive functional 

characterization of non-hotspot p53 mutants.  

1.4 TP53 isoforms and non-coding mutations 

The human TP53 locus encodes 12 protein isoforms. Isoforms are generated by 

alternative splicing, alternative initiation of transcription or translation (Surget et al. 

2013; Joruiz and Bourdon 2016). The existence of p53 isoforms adds another level 

of complexity to the p53 network. For example, canonical full-length p53 isoform 

(p53α) is produced from mRNA with complete exclusion of intron 9. Partial retention 

of this intron generates two isoforms (p53β and γ) with a truncated C-terminal 

domain. p53 isoforms are expressed in a tissue-specific manner, and their functional 

importance is still far from being fully understood. In normal cells, p53 isoforms are 

believed to finetune the p53 network, while in malignant cells, they may inhibit 

functions of the full-length protein, e.g., via a dominant-negative effect or by 

promoting aggregation (Vieler and Sanyal 2018). Deregulated expression of p53 

isoforms was found to participate in many pathological conditions: premature aging, 

inflammation, developmental disorders, and many human cancer entities (Muhlinen 

et al. 2018; Cooks et al. 2014; Marcel et al. 2011). For example, overexpression of 

the p53 isoform Δ133p53α, produced from an internal promoter in intron 4, was 

described in colorectal cancer, serous ovarian cancer, breast cancer, and 

cholangiocarcinoma (Vieler and Sanyal 2018; Joruiz and Bourdon 2016; Khoury and 

Bourdon 2011; Surget et al. 2013).  

Non-coding variants can change the balance between p53 isoforms. Mutations 

localized in the intron 4 affect the alternative promoter and impair the synthesis of 

several p53 isoforms (Leroy et al. 2014b; Leroy et al. 2017). Mutations at the 

boundary between intron 6 and exon 7 lead to the production of the shortened p53Ψ 
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isoform, which drives the reprogramming of cells into a premetastatic state (Senturk 

et al. 2014). Moreover, multiple synonymous and non-synonymous germline variants 

were discovered in intron 9, which encodes alternative exons for p53β and p53γ 

isoforms. Although the clinical significance of these variants is unclear, it is possible 

that they may determine expression levels of distinct p53 isoforms (Silden et al. 

2013; Solomon et al. 2014; Graupner et al. 2009). In summary, mutations in the non-

coding sequence of TP53 deserve more comprehensive characterization. 

 Splice mutations 

Although missense mutations in TP53 exons are most frequent, much more rare 

alterations in non-coding regions can also alter p53 protein synthesis and have, 

therefore, clinical significance. For example, recurrent rearrangements in the first 

intron are frequently found in osteosarcomas, and mutations at splice sites in introns 

1 and 9 are associated with Li-Fraumeni syndrome (Chen et al. 2014; Ribi et al. 

2015; Verselis et al. 2000). Splice-site mutations result in the expression of aberrant 

transcript variants and shortened polypeptides. The production of truncated p53 

isoforms was reported in colorectal cancer (Smeby et al. 2019), chronic lymphocytic 

leukemia (Bromidge et al. 2000), lung cancer (Takahashi et al. 1990), and other 

cancer entities (Holmila et al. 2003). Besides, recent study reported a novel type of 

TP53 alterations: splice-site-creating mutations (Jayasinghe et al. 2018). Finally, 

mutations in exonic splicing enhancers and silencers can impair mRNA splicing 

(Gorlov et al. 2004; Wang et al. 2004; Laverdière et al. 2000).  

Hence, TP53 variants affecting splicing can have important clinical implications and 

require more comprehensive characterization.  

1.5 Clinical significance of TP53 mutations 

Some germline mutations in TP53 undoubtedly predispose individuals to cancer 

development (Malkin et al. 1990; Gonzalez et al. 2009). Tumors developing in 

animals harboring p53 genomic mutations demonstrate early onset, aggressive 

metastatic growth, and therapy resistance (Zuber et al. 2009; Lozano 2010). In 

cancer patients, TP53 mutations are also associated with poor prognosis and 

therapy resistance in multiple studies. One of the best examples of the clinical value 
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of TP53 status is chronic lymphocytic leukemia (CLL). Although the frequency of 

TP53 variants is very low in asymptomatic patients, the presence of TP53 variants is 

often associated with poor prognosis characterized by advanced clinical stage, rapid 

disease progression, chemoresistance, and shorter overall survival (Leroy et al. 

2017). Besides, TP53 mutational status in acute myeloid leukemia (AML) is an 

important predictor for the therapy outcome (Hunter and Sallman 2019). 

Nevertheless, the clinical significance of p53 mutation status remains controversial 

(Robles and Harris 2010). The majority of studies demonstrate an association 

between TP53 mutations and poor survival for patients with breast, hematopoietic, 

head and neck, and liver cancers (Zhang et al. 2017). Conversely, roughly half of the 

studies in bladder, brain, lung, colon, esophagus, and ovarian cancer patients failed 

to identify such association (Robles and Harris 2010). Likewise, a report based on 

the TCGA dataset analysis has also demonstrated that the presence of the TP53 

mutation alone has poor prognostic value for many cancer types (Olivier et al. 2007). 

By contrast, a mutant TP53-associated gene expression signature was a much more 

informative outcome predictor (Donehower et al. 2019). The controversial diagnostic 

utility of TP53 mutational status for clinical prognosis can be partially explained by 

the immense complexity of the p53 network and the multitude of mutations. This 

underscores the need for comprehensive functional analysis of the full mutational 

spectra to increase the predictive value of TP53 mutational status (Sinn et al. 2020).  

1.6 IARC TP53 and UMD databases 

The immense diversity of TP53 mutations and clinical value of TP53 mutational 

status substantiated the need of tools to classify and sort information on p53 variants 

retrieved from thousands of publications and medical reports. Nowadays, two 

regularly updated databases of TP53 variants are available: the IARC TP53 

database (www.iarc.fr/P53) and the UMD-p53 database (Universal Mutation 

Database) (http://p53.curie.fr/ and www.umd.necker.fr:2001/). The IARC TP53 

database has been launched in 1989 (Olivier et al. 2002; Bouaoun et al. 2016; 

Hollstein et al. 1994; Hernandez-Boussard et al. 1999). The currently available 

version R20 July 2019 comprises data on 29900 somatic mutations and 9200 

variants. The UMD-p53 database was released in 1994, and the last 2017_R2 
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version includes data on the TP53 status of more than 80400 tumors and 6870 TP53 

variants (Cariello et al. 1994; Leroy et al. 2014a). Both databases contain information 

about germline and somatic mutations, common TP53 polymorphisms in human 

populations, TP53 status in human cell lines. Besides information on mutation 

frequencies, databases contain functional annotations retrieved from the literature, 

including three high-content studies (Kato et al. 2003; Kotler et al. 2018; Giacomelli 

et al. 2018). IARC TP53 and UMD databases are essential sources of information on 

p53 mutations for scientists and clinicians. 

1.7 Targeting p53 for cancer therapy  

 Reactivation of wild-type p53 with MDM2 and MDMX inhibitors 

In approximately 50% of all tumors, the wild-type TP53 gene is retained (Donehower 

et al. 2019). In such tumors, cellular levels of p53 protein are kept low due to 

constant proteasomal degradation of p53 promoted by E3 ubiquitin ligases (most 

notably, MDM2) (Kruse and Gu 2009). Tumors with retained wild-type p53 need to 

enforce this negative feedback loop to avoid lethal activation of p53 by oncogenic 

signaling. Therefore, the amplification of MDM2 and the inactivation of the CDNK2A 

gene, encoding the MDM2-inhibiting protein p14ARF, are common genetic 

alterations of wild-type p53 tumors (Mina et al. 2017; Donehower et al. 2019). The 

central role of MDM2 in the degradation of wild-type p53 encouraged the 

development of inhibitors of MDM2 and its homolog MDMX as a means for 

reactivation of the p53 pathway in cancers without TP53 alterations. In 2021, 25 

clinical trials of 10 MDM2 and MDMX inhibitors were registered at clinicaltrials.gov. 

The prototypic compound for MDM2-inhibitors is nutlin-3a, a cis-imidazoline that 

occupies the p53-binding pocket of MDM2 and disrupts the p53-MDM2 interaction 

(Vassilev et al. 2004). Inhibition of p53-MDM2 interaction with nutlin leads to p53 

stabilization, cell cycle arrest, and apoptosis (Khoo et al. 2014). More potent nutlin 

derivatives (e.g., RG7112 and RG7388 by Roche) are extensively tested in 

preclinical and clinical studies, alone or in combination with other drugs (e.g., 

chemotherapy, BH3 mimetics, or monoclonal antibodies) (Ding et al. 2013; Tovar et 

al. 2013; Andreeff et al. 2016; Tisato et al. 2017). Another drug, SAR405838 (MI-

773, Sanofi), forms the MI-773-MDM2 complex by mimicking three key amino acid 



25 

residues of p53 involved in MDM2 binding. Additionally, the compound induces 

refolding of the unstructured N-terminus of MDM2, which further enhances 

interactions between the molecule and the protein and enhances the binding affinity 

(Jiaxiong Lu et al. 2016; Wang et al. 2014). At present, two clinical trials were 

completed with MI-773 (NCT01636479 and NCT01985191). AMG 232 (Amgen) is a 

piperidinone inhibitor of the MDM2-p53 interaction. AMG 232 is tested in clinical 

trials on melanoma, glioblastoma, and acute myeloid leukemia (NCT02110355, 

NCT01723020, NCT02016729) (Sun et al. 2007). Besides the drugs listed above, 

several other compounds are currently under clinical development: MK-8242 

(Merck), CGM097, and HDM201 (Novartis). 

Recently, the MDM2 homolog MDMX (or MDM4) also gained attention as a 

therapeutic target. MDMX has non-overlapping functions with MDM2. It lacks the E3 

ubiquitin-ligase activity and negatively regulates p53 via direct interaction and 

sequestration, and forms regulatory complexes with MDM2 (Tollini et al. 2014). 

Reports on amplification of MDMX in some tumors raise concerns that MDM2 

inhibition alone may be ineffective in such patients (Donehower et al. 2019; 

Riemenschneider et al. 1999; Yu et al. 2014a; Danovi et al. 2004; Bao et al. 2016). 

This prompted the development of a novel class of dual MDM2/MDMX inhibitors (Wu 

et al. 2015; Bernal et al. 2010; Chang et al. 2013; Chen et al. 2017). One member of 

this class of molecules is RO-5963 (Graves et al. 2012). RO-5963 is a cell-

permeable indolyl-hydantoin compound that simultaneously hinders binding of both 

MDM2 and MDMX with p53 and activates p53 signaling and apoptosis in cells with 

high levels of MDMX. Besides inhibiting MDMX-p53 interaction, additional strategies 

of targeting MDMX are explored, for example, inducing protein degradation and 

inhibiting its expression (Yu et al. 2020).  

Although MDM2 inhibitors were developed to treat cancers with wild-type TP53, 

there is evidence that they may have some activity against mutant TP53-expressing 

tumors. For example, apoptosis-deficient mutants E177R and R178E reveal lethal 

activities during embryonic development in an Mdm2-null background, highlighting 

the fact that even variants with strongly compromised pro-apoptotic function can 

exert cytotoxic action upon excessive stabilization (Klimovich et al. 2019). Moreover, 

treatment of cells expressing transcriptionally-inactive mutant R178E with a 
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combination of nutlin and doxorubicin unleashes residual cytoplasmic activities of the 

mutant and kills cells by apoptosis (Timofeev et al. 2019). In clinical trials, some 

activity of RG7112 was reported for a few leukemia patients with p53 mutations 

(Andreeff et al. 2016). Thus, MDM2 inhibitors may potentially have clinical utility for 

the treatment of tumors with certain p53 mutants. 

Another unexplored possibility is that treatment of patients carrying p53 mutation 

with MDM2 inhibitors may have a detrimental effect due to excessive stabilization of 

mutant p53 and amplification of their GOF or DN-effect (Alexandrova et al. 2017a; 

Yue et al. 2017). Therefore, MDM2 inhibitors need to be tested in the context of the 

whole mutational spectra to fully understand the hidden benefits and potential side 

effects of these compounds.  

 Mutant p53 reactivators 

Since p53 is most frequently inactivated by missense mutations, the mutant protein 

is retained in cancer cells. This opens an opportunity to harness mutant p53 for 

therapy. Two major strategies are pursued: the first approach involves the 

restoration of wild-type-like conformation and functions of the improperly folded 

mutant protein. This concept was supported by numerous studies demonstrating that 

re-expression of p53 kills p53-negative cells (Feldser et al. 2010; Junttila et al. 2010; 

Martins et al. 2006; Xue et al. 2007). Many mutant p53 variants are unfolded at body 

temperature. Experiments with temperature-sensitive p53 mutants demonstrated that 

stabilization of protein conformation turns unfolded p53 back into a wild-type state 

(Friedlander et al. 1996; Michalovitz et al. 1990). Therefore the development of small 

molecular compounds leading to stabilization and functional rescue of mutant p53 

was actively pursued, and more than a dozen compounds were developed in the 

past decades, some of which are listed in Table 1 (Bykov et al. 2017). 

Mechanistically, many mutant p53-reactivators rely on the same principle: they bind 

covalently to the mutant protein, elevating its thermostability and shifting the 

equilibrium toward a native conformation by mass action (Bullock and Fersht 2001). 

The most advanced compound of this class is APR-246 (PRIMA-Met). APR-246 is a 

prodrug that is converted to the Michael acceptor methylene quinuclidinone (MQ) 

(Bykov et al. 2005; Bykov et al. 2016). MQ covalently binds to cysteines (Cys124 

and 277) in p53, followed by protein refolding and restoration of wild-type function 
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(Wassman et al. 2013; Lambert et al. 2009; Zhang et al. 2018). The drug has 

demonstrated cytotoxic activity against tumors with the p53 mutations R175H and 

R273H (Bykov et al. 2016). APR-246 demonstrated a favorable safety in phase I 

clinical trials in patients with hematological tumors (NCT03931291, 

NCT03588078, NCT03072043) and in phase II trials in prostate cancer patients 

(NCT00900614). APR-246 in combination with azacitidine showed robust clinical 

efficacy in TP53 mutant MDS/AML patients (NCT03745716) (Sallman 2020; Cluzeau 

et al. 2019). Further clinical trials are currently ongoing. Notably, MQ has been 

reported to inhibit thioredoxin reductase 1 (Trxr1) and deplete the cellular pool of 

glutathione, thereby killing mutant p53-expressing cells, which are more vulnerable 

to oxidative damage (Liu et al. 2017; Peng et al. 2013). These reports highlight that 

some mutant p53 reactivators have low selectivity and may exert a plethora of side 

effects, questioning whether observed clinical effects are indeed dependent on 

mutant TP53 refolding. Other examples of p53 reactivators sharing the same mode 

of action are shown in Table 1 (Bykov et al. 2017). While some p53 reactivators 

target a broader spectrum of mutants by stabilizing their conformation (e.g., CP-

Table 1. Overview of mutant p53-reactivating compounds (Bykov et al. 2017) 

https://clinicaltrials.gov/ct2/show/NCT03588078
https://clinicaltrials.gov/ct2/show/NCT03072043
https://clinicaltrials.gov/ct2/show/NCT03745716
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31398 was shown to refold V173A, S241F, R249S, and R273H), other compounds 

were explicitly designed to target single mutants, e.g., PK7088 refolds only p53 

Y220C by filling a surface cleft left by the mutation of tyrosine and stabilizing the 

native conformation (Parrales and Iwakuma 2015; Boeckler et al. 2008). Another 

class of p53 reactivators is zinc chelators. Zinc (Zn2+) ions are required for correct 

folding of p53, DNA binding, and transactivation (Loh 2010; Butler and Loh 2003, 

2007). Zn2+ stabilizes two loops in the DBD by tetrahedral coordination by Cys176-

His179 and Cys238-Cys242. Zinc-free DBD is unfolded at body temperature (Butler 

and Loh 2003). Incubation of cells with Zn2+ chelators results in the transition of p53 

into unfolded inactive conformation, which can be reversed back to normal by 

supplementing cells with Zn2+ (Hainaut and Milner 1993). The binding of Zn2+ can be 

perturbed by several mutations, including the most frequent hotspot variant R175H 

(Cho et al. 1994). Supplementation of mutant p53-expressing cells with an excess of 

Zn2+ can partially rescue DNA binding, supporting the idea of using zinc 

administration for mutant p53 reactivation (Puca et al. 2011). However, 

supplementation with free zinc is not a feasible strategy because a relatively small 

excess of zinc also induces p53 denaturation (Butler and Loh 2007). A 

thiosemicarbazone compound ZMC-1 (zinc metallochaperone) functions as a zinc 

ion buffer, providing an optimal concentration of intracellular Zn2+ ions and 

supporting correct p53 folding without direct binding to the protein (Blanden et al. 

2015). Accordingly, ZMC-1 was shown to selectively inhibit the growth of cells 

harboring p53 mutants with impaired zinc-binding (e.g., R175H, C238S, C242F, and 

C176F) (Yu et al. 2014b). 

 Mutant p53 degrading drugs 

The universal characteristic of the majority of mutant p53-expressing tumors is the 

massive accumulation of the mutant protein. Therefore intensive p53 

immunostaining is a reliable surrogate marker of p53 mutations, widely used by 

pathologists (Bartek et al. 1990; Yemelyanova et al. 2011; Köbel et al. 2016).  

Importantly, mutant p53 is not accumulated when expressed in non-transformed 

cells or in normal tissues of transgenic (mutant knock-in) mice (Lang et al. 2004; 

Olive et al. 2004). Therefore, stabilization of mutant p53 is a specific hallmark of 

cancer cells and considered required for its oncogenic GOF activities (Mantovani et 
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al. 2019). Several mechanisms drive the accumulation of mutant p53. First, lack of 

transactivation and impaired ubiquitination by MDM2 and CHIP lead to disfunction of 

the p53-MDM2 feedback loop. Furthermore, short MDM2 isoforms frequently 

produced in cancer cells can inhibit the ubiquitination of mutant p53 (Zheng et al. 

2013; Sigalas et al. 1996; Jacob et al. 2013). Second, Hsp90 and Hsp70 chaperons 

bind to mutant p53 and protect it from aggregation and MDM2-dependent 

ubiquitination (Frum R.A. 2014; Li et al. 2011; Blagosklonny et al. 1996; Whitesell et 

al. 1998). Finally, co-chaperone proteins from the BAG family were shown to interact 

with mutant p53, protect it from degradation and promote GOF (Yue et al. 2016; Yue 

et al. 2015).   

Excessive stabilization of mutant p53 creates an oncogene-like addiction to GOF 

mutants (Parrales and Iwakuma 2015; Schulz-Heddergott and Moll 2018; Sabapathy 

2015). Targeting this addiction by inhibition or genetic ablation of mutant p53 

counteracts cancer growth in vitro and in vivo (Schulz-Heddergott and Moll 2018; 

Freed-Pastor et al. 2012; Weissmueller et al. 2014; Walerych et al. 2016; 

Alexandrova et al. 2015; Schulz-Heddergott et al. 2018; Zhu et al. 2015). Hence, 

elimination of mutant p53 from cancer cells by promoting its degradation is a 

reasonable therapeutic approach. Inhibition of HSP90 with ganetespib or 

combination of 17AAG (HSP90 inhibitor) with SAHA (HDAC 6 inhibitor) was shown 

to deplete mutant p53 levels and significantly extended the survival of mice carrying 

T cell lymphomas expressing p53 R172H and R248Q (Alexandrova et al. 2015). 

Moreover, ganetespib synergized with chemotherapy to eliminate mutant p53-

expressing tumors (Alexandrova et al. 2017b). A combination of ganetespib with 

paclitaxel was tested in cancer patients (Ray-Coquard et al. 2019). 

Another mechanism of mutant p53 stabilization implicates the Hsp40 family member 

DNAJA1, which shelters mutant p53 from CHIP-mediated degradation in conjunction 

with the mevalonate pathway intermediate mevalonate-5-phosphate (Parrales et al. 

2016). Interestingly, inhibition of the mevalonate pathway with HMG-CoA reductase 

inhibitors (statins), the most common cholesterol-lowering drugs, was shown to 

decrease levels of several mutant p53 variants (Parrales et al. 2016; Xu et al. 2019). 

Statins were also shown to prevent HSP90-mediated mutant p53 stabilization and 

induce MDM2-dependent degradation (Ingallina et al. 2017). Mutant p53 directly 
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activates the mevalonate pathway by interacting with SREBP2, which supports the 

malignant behavior of cancer cells via activation of Ras, Rho, and YAP/TAZ 

(Sorrentino et al. 2014). Therefore, statins directly counteract mutant p53 by 

reducing oncogenic signaling (Parrales et al. 2018). Statins have shown cytotoxicity 

in lung cancer cells (Chou et al. 2019). Moreover, moderate efficacy was evident in 

autochthonous T-lymphomas expressing two different GOF mutant p53 alleles. 

(Tutuska et al. 2020). Whether statin therapy can be translated into clinical benefit 

for patients with p53-mutant cancer, remains to be established (Chae et al. 2015; 

Blandino and Di Agostino 2018).  

 Targeting mutant p53 aggregation 

Mutant p53 is improperly folded and forms amyloid aggregates in cancer cell lines 

and human tumor samples (Silva et al. 2014; Xu et al. 2011; Levy et al. 2011; 

Oliveira et al. 2020). Disaggregation is a prospective approach for the rescue of 

normal functions of mutant p53. This concept was tested in high-grade serous 

ovarian carcinomas by designing the peptide Reacp53 that disrupts p53 aggregates 

and shifts the dynamic equilibrium towards a correctly folded form, recovering a wild-

type-like protein. Reacp53 restores the p53 functions in hotspot mutants R175 and 

R248 and improves survival of animals xenografted with ovarian carcinoma (Soragni 

et al. 2016).  

 Targeting interactions between mutant p53 and p73 

Several p53 GOF mutants strongly bind and inactivate the p53 family member p73 

that has many overlapping functions with p53. The mutant p53-p73 heterotetramers 

block p73 function supporting proliferation and chemoresistance (Schulz-Heddergott 

and Moll 2018). The disruption of the mutant p53-p73 complex would restore p73 

functions. RETRA (“reactivation of transcriptional reporter activity”) disrupts such 

complexes and restores p73-mediated transcription and cell death (Kravchenko et al. 

2008; Hong et al. 2014; Hepburn 2007). 

Pharmacological targeting of mutant p53 was proven to be very challenging, and 

despite substantial efforts, no drugs have been approved for clinical application so 

far. All currently available compounds were shown to act on a specific small set of 

hotspot mutants (Parrales and Iwakuma 2015). How suitable these emerging 
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therapeutics are to the broader spectrum of p53 mutants is unknown. Therefore, the 

development of a mutant p53 screening system allowing for parallel testing of 

multiple p53-targeting compounds in the context of the full mutational spectrum is of 

high translational value. 

1.8 Experimental systems for functional studies of p53 mutations 

Mouse models were extensively used to study p53. Animal experiments gave 

supporting evidence for the development of p53-targeting therapies. Despite their 

utility, only a small amount of mouse models with germline p53 mutations 

corresponding to human ones were generated (e.g., Trp53R172P, Trp53R172H, and 

Trp53R270H) (Liu et al. 2004; Geng Liu et al. 2000; Olive et al. 2004). Mouse 

models carrying the human variants R248W, R248Q, or G245S, are also available 

(Hanel et al. 2013). These models gave invaluable insight into p53 biology. However, 

mouse models have lots of limitations, first of all, the limited number of available 

genotypes. Therefore, they are unsuitable for studying the vast diversity of mutant 

p53 protein variants. 

Cell lines are widely used to investigate mutant p53. Not surprisingly, mutation 

occurrence in cell lines reflects their frequency in human cancers: among more than 

2000 mutant p53 cell lines listed in the IARC-p53 database, more than 500 contain 

mutations in one of 8 hotspot codons. Mutations occurrence among cell lines is 

strongly biased towards hotspot mutations probably due to survival benefit during in 

vitro culture, whereas non-hotspot mutants are strongly underrepresented. Cell lines 

lack for majority of non-hotspot mutations, therefore they can be characterized only 

using engineered cell lines. Since every cell line has a unique genetic background 

and carries mutations in many genes, comparisons of large groups of cell lines 

would be needed to reveal phenotypic effects of multiple p53 mutants. Therefore, for 

the detailed studies of large sets of mutations, a common isogenic background is 

needed. 

 Systematic analysis of the p53 mutome 

The tremendous diversity of p53 variants, a wide range of biological effects of mutant 

proteins (DN, LOF, and GOF), as well as lack of suitable models for most of the 
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mutants, prompted the development of high-throughput screening approaches aimed 

to characterize the full mutational continuum. The first attempt to gain a deep insight 

into the complexity of p53 mutations was made in 2001 (Campomenosi et al, 2001), 

followed by Kato and co-authors in 2003 (Kato S. et al. 2003). 2314 mutant p53 

variants were tested in a yeast-based reporter assay for their ability to activate 

transcription from p53 response elements of different target genes (MDM2, PMAIP1, 

BAX, CDKN1a, GADD45, AIP1, 14-3-3δ). This work confirmed that the majority of 

mutations localized in the DNA binding domain completely impair transactivation. 

The other domains turned out to be much more resistant to mutagenesis. 

Importantly, this assay also demonstrated that many non-spot variants exhibit only 

partial loss of transactivation, suggesting that the p53 mutome is functionally much 

more diverse than previously appreciated. This publication demonstrated the value 

of deep mutational scanning for functional and structural studies of p53 and served 

since then as the most important source of functional annotation for most of the p53 

variants identified in patients and listed in databases (IARC p53, UMD, and ClinVar).  

A later study from the Kato group highlighted an important disadvantage of the 

transactivation reporter-based screening system (Kakudo Y. et al. 2005). Testing a 

panel of 179 mutants in p53-negative Saos-2 cells surprisingly revealed that the 

transactivating properties of many mutants did not correlate with their ability to 

induce apoptosis. This implied that the functional impact of p53 mutations is not a 

direct result of target genes transactivation, supporting the importance of 

transactivation-independent apoptosis. In support of this, wild-type p53 was shown to 

directly interact with pro- and anti-apoptotic proteins (Bak, Bax, Bcl-xL, and Bcl-2) 

and induce mitochondrial outer membrane permeabilization and consecutive 

apoptosis independently of target genes transactivation (Chipuk et al. 2004; Mihara 

et al. 2003). These findings were recently corroborated by the description of a 

transactivation-deficient mutant, which is nevertheless able to induce apoptosis in 

response to chemotherapy in vivo (Timofeev et al. 2019). This study highlighted the 

problem: comprehensive profiling of p53 variants requires not just a measurement of 

the transactivating potential but rather quantification of their impact on cell fitness. 

Advances in next-generation sequencing have allowed the implementation of high-

throughput functional screening of p53 variants in mammalian cells. Three recent 
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publications reported the application of lentiviral cDNA libraries containing thousands 

of p53 variants introduced into human cells (Kotler et al. 2018; Giacomelli et al. 

2018; Boettcher et al. 2019). Next-generation sequencing was used as a readout to 

quantify changes in mutation abundance. The first study assessed enrichment or 

dropout of mutations after the prolonged cultivation of p53-deficient H1299 lung 

cancer cells infected with the lentiviral library and demonstrated a profound 

correlation between functional effects of p53 mutations, structural features, and 

evolutionary conservation. This experimental system was able to delineate wild-type-

like and LOF mutations accurately. Moreover, passaging of the library infected cells 

in vivo revealed preferential enrichment of some cancer-associated variants, 

highlighting the GOF activities of selected mutants. 

The second study (Giacomelli et al. 2018) assayed human A549 lung cancer cells 

infected with a lentiviral library of p53 variants and treated them with nutlin in two 

configurations. For the assessment of the dominant-negative effect, cells carrying 

wild-type p53 locus were infected. LOF mutants were identified after delivery of the 

library into p53-knockout A549 cells. This work has demonstrated that 80% of the 

mutants tested exert DN-effect on the wild-type allele.  

The third study (Boettcher et al. 2019) utilized a p53 wild-type AML cell line MOLM-

13 engineered to express a p21-GFP reporter. After introducing a saturated library of 

p53 missense mutants sorting of cells showing weak GFP fluorescence allowed to 

isolate p53 variants that exert a dominant-negative effect on the normal p53. Similar 

to the previous report, this work also revealed that the vast majority of DBD-mutants 

exert a strong DN-effect on the wild-type protein.  

Interestingly, the aforementioned studies reported conflicting results regarding the 

GOF effects of p53 mutants. Kotler et al. have assessed the enrichment of mutants 

from their library in three settings: standard cell culture conditions, 3D-culture in 

spheroids, and in vivo growth upon subcutaneous injection in NSG mice. Strikingly, 

enrichment of variants from in vivo experiments did not correlate with both in vitro 

systems. Among mutations recovered from the tumors formed in mice, 10 mutants 

belong to the most frequent cancer-associated variants, suggesting that they elicit 

GOF effects in the in vivo model. Notably, enrichment of variants was highly 
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correlated between standard and 3D culture conditions in vitro. These results clearly 

demonstrate that GOF effects are strongly dependent on selective forces that 

operate only in a particular context.  

Conversely, the other two studies did not find any evidence of GOF for any of the 

mutants tested. Such discrepancies in reporting GOF activities of p53 mutants point 

out that the functional consequences of p53 mutations are strongly dependent on the 

experimental system used to uncover them. This emphasizes the need for the 

development of more advanced screening systems.  

The elegant studies by S. Kato, E. Kotler, A. Giacomelli, and S. Boettcher have 

made important advances in exploring the diversity of mutant p53 variants. However, 

these studies have several disadvantages: 

- the study of Kato and coauthors (Kato et al., 2012) was performed in yeast cells 

that naturally lack p53 and, in turn, the complete network of p53 regulators and 

posttranslational modifications, making the system overtly non-physiological; 

moreover, the screening was focused on only 8 short response elements from p53 

target genes: MDM2, p53R2, BAX, Noxa, GADD-45, AIP1, 14-3-3δ, WAF1, whereas 

the transcriptional network of p53 includes hundreds of genes controlled by complex 

enhancer-promoter interactions (Sullivan et al. 2018; Bieging and Attardi 2012) 

- the more recent studies utilized lentiviral cDNA libraries to express p53 in human 

cells. In the conditions of p53 overexpression from a strong lentiviral promoter, 

cellular effects may have been exaggerated;  

- using cDNA makes it impossible to test non-coding intronic variants and mutations 

of splice-sites;  

- expression of p53 from cDNA simplifies the complexity of p53 isoforms; 

- another drawback of using cDNA is the non-physiological regulation of expression 

by a lentiviral promoter and lack of post-transcriptional regulation via miRNA binding 

to sites in the 3’UTR  (Kafri et al. 2000; Brendel et al. 2012; Matoulkova et al. 2012; 

Bottini et al. 2017; Kotagama et al. 2015; Vislovukh et al. 2014). 

To overcome these inherent drawbacks of the cDNA-based screening system, 

mutations need to be introduced into the endogenous genomic locus. The discovery 
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of CRISPR and tremendous progress in the development of gene-editing technology 

makes this task feasible. 

1.9 Genome editing using CRISPR-Cas 

The discovery of the CRISPR (clustered regularly interspaced short palindromic 

repeats) system has led to a giant leap in the field of genome editing and 

dramatically simplified genome engineering and mutagenesis. In 2013, two groups 

(of Feng Zhang and George Church) simultaneously published the description of 

genome editing using the CRISPR/Cas9 system in human cells (Le Cong et al. 2013; 

Mali et al. 2013). By the end of 2014, nearly 1000 papers mentioning CRISPR had 

been published. Nowadays, the CRISPR/Cas system is involved in clinical trials 

worldwide and demonstrated successful treatment of sickle cell disease in the 

patient (Ledford 2020). 

The CRISPR-Cas system originates from genomes of prokaryotic organisms such as 

archaea and bacteria (Wiedenheft et al. 2012). The system serves as a defense 

mechanism against infections by bacteriophages. Riboprotein complexes encoded 

by CRISPR recognize and cleave DNA from bacteriophages, preventing the entry of 

foreign genetic material. CRISPR-Cas systems from various bacterial species were 

used to develop highly efficient programmable endonucleases suitable for site-

specific DNA cleavage in any living organism. 

The most widely used CRISPR-Cas9 system that was also implemented in the 

present work was derived from Streptococcus pyogenes. The S. pyogenes CRISPR-

Cas9 complex comprises two RNA molecules: (crRNA and tracrRNA) and the Cas9 

nuclease (Fig. 2A) (Barrangou 2015; Deltcheva et al. 2011). Two RNAs are fused in 

a chimeric single-guide RNA (sgRNA) in most currently employed systems (Jinek et 

al. 2012). sgRNA targets the nuclease to the specific DNA sequence in the genome. 

Most of the 100 bp-long sequences of the sgRNA are invariant; the binding 

specificity of the complex is determined by the 20 bp-long fragments on the 5’-end of 

the sgRNA. Therefore, the specificity of the Cas9 protein can be easily changed by 

replacing the 20 bp fragment in the sgRNA (Fig.2B).  
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Cleavage of DNA by the Cas9 enzyme requires a specific motif in the proximity of 

the recognition sequence, the protospacer adjacent motif (PAM). The PAM 

sequence recognized by the Cas9 nuclease is NGG and is located 3 nucleotides 

downstream of the cleavage site. Cas9 binds to the target sequence determined by 

sgRNA homology and makes a blunt double-strand break in DNA between the 17th 

and 18th bases of the target sequence (Jinek et al. 2012) (Fig. 2C). The DNA repair 

machinery immediately recognizes a double-strand break. Genome editing exploits 

two distinct DNA repair mechanisms: non-homologous end-joining (NHEJ) and 

homology-directed repair (HDR) (Fig. 2A,C). NHEJ occurs in the absence of the 

homologous DNA molecule and forms random short insertions or deletions (indels), 

leading to frameshifts and ultimately to knockout of the gene (Fig. 2C). When the 

DNA template homologous to the double strand break site is provided in the form of 

a homologous chromosome, plasmid DNA or oligonucleotide, the HDR mechanism 

can proceed (Fig. 2C). HDR replaces a damaged DNA segment with a template 

sequence, seamlessly introducing the template into the genome. If the HDR template 

contains desired modifications, they are integrated into the genome. Therefore, 

unlike the inaccurate NHEJ mechanism, which generates random indels, HDR 

enables precise editing of genomic DNA by introducing single mutations or 

substantially large inserts into the genome in the proximity of the cleavage site. 

Importantly, NHEJ and HDR mechanisms are competing with each other (Sargent et 

al. 1997). NHEJ is a preferential repair pathway, making the selection of cells which 

have undergone HDR a substantial challenge during gene editing. Additional 

obstacle for the efficient gene editing is p53-mediated DNA damage response 

induced by double strand breaks. Besides limiting the frequency of HDR-mediated 

transgene integration, DNA damage response promotes selection of cells with 

inactivating mutations in TP53 (Enache et al. 2020; Haapaniemi et al. 2018; Ihry et 

al. 2018). Inactivation of p53 during editing enhances editing efficiency and protects 

TP53 locus from acquisition of random alterations.  

 

 

 



37 

 

 

Figure 2. CRISPR-Cas9-mediated genome editing 

A. Structure of the S. pyogenes Cas9-sgRNA RNA-guided nuclease 

complex Figure adapted from Yu Wang et al., Applied and Environmental 

Microbiology 2018. B. A plasmid for the expression of the human codon-

optimized SpCas9 and chimeric single guide RNA (sgRNA). BbsI 

recognition sites indicate the cloning site for the sgRNA. Modified from 

https://www.addgene.org/42230. C. Cas9 protein forms a complex with a 

sgRNA, binds the target site, and cleaves genomic DNA creating a 

double-strand break (DSB) 3-4 nucleotides upstream of the PAM 

sequence. DSB is repaired by the non-homologous end-joining (NHEJ) or 

homology-directed repair (HDR). As a result of NHEJ, random insertions 

and deletions are generated. HDR results in the precise integration of the 

provided donor template which has sequence homology with the target 

region. Figure modified from https://www.neb-online.de/genome-editing/. 

B 

A 

C 

Insertion/

deletion 



38 

1.10 Saturation mutagenesis 

Saturation mutagenesis is a technique applied in functional studies and protein 

engineering, in which a codon at a certain position is exchanged with all possible 

amino acids. Generation of scanning site saturation libraries enables the 

interrogation of every possible alteration in the given protein (Fig. 3A,B).  

This approach was implemented in studies of numerous genes, including tumor 

suppressors (PTEN) (Mighell et al. 2018). However, before the advent of the 

CRISPR-Cas9 era, saturation mutagenesis in mammalian cells was possible only in 

trans (by episomal expression of mutagenic libraries from plasmid or lentiviral 

vectors) (Siloto and Weselake 2012). Nowadays, the CRISPR-Cas9 system has 

been widely implemented for targeted genome editing allowing to perform site-

Figure. 3 Schematic of the saturation mutagenesis principle 

employed in the work shown for the R175 and H1 helix libraries 

A. A single site-saturation library for the codon R175 included mutations 

to all 19 amino acids, 3 synonymous mutations, stop codon, codon 

deletion, and 3 frameshifts. B. Amino acid sequence of the p53 H1 helix. 

Each position (shown as X) was mutated to the 19 amino acids, one 

synonymous mutation, and a stop codon.  

B 

A 
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saturation mutagenesis at almost any genomic locus using HDR (Findlay et al. 2014; 

Ma et al. 2017; Canver et al. 2020).  

A good example of the CRISPR-Cas-guided HDR-based saturated mutagenesis is a 

comprehensive mutational screening of nearly 4000 variants in the BRCA1 gene 

(Gregory M. Findlay et al. 2018). The study revealed many new pathogenic variants 

in the gene and showcased the utility of CRISPR-based mutagenesis for functional 

studies. CRISPR-Cas9 system was recently implemented to introduce the most 

frequent hotspot mutations into TP53 locus of leukemia cell lines (Boettcher et al. 

2019). However, no reports on systematical mutagenesis of the endogenous TP53 

locus were published so far to our knowledge. 

We aimed to take advantage of CRISPR-Cas9-induced genome editing to design an 

improved system for high-content phenotypic characterization of TP53 mutations, 

considering the limitation of the prior studies.  

1.11 Aim 

The aim of the present study was to develop a system for massive parallel 

phenotypic analysis of p53 mutations in the context of the endogenous TP53 locus. 

To achieve this goal, we set several objectives: 

1. Establish a protocol for the generation of site-saturation libraries of the TP53 

gene. Develop an efficient strategy using CRISPR-Cas9-induced HDR to target 

variant libraries into the endogenous genomic locus of human cancer cells to 

produce isogenic cellular libraries.  

2. Develop a workflow for the high-content quantification of anti-proliferative capacity 

and specific tumor-suppressive functions (apoptosis, cell cycle arrest) of p53 

variants. 

3. Validate the system using libraries of increasing complexity. Compare the 

phenotypical impact of variants with previously published experimental evidence and 

clinical data from the public databases (IARC TP53 and UMD). 

4. Assess the impact of p53 mutations on the sensitivity of cancer cells to therapeutic 

agents activating wild-type or mutant p53. 
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5. Explore phenotypic consequences of intronic mutations to showcase the 

advantages of the employed strategy. 

6. Perform a comprehensive analysis of thousands of p53 DNA binding domain 

variants and compare the resulting phenotypic catalog with earlier studies and public 

resources.  
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2. Material and methods 

2.1 Materials: 

 Bacterial strains 

Name Source 

DH10B ElectroMAX LifeTechnologies 

OneShot Mach1-T1® LifeTechnologies 

 Plasmids 

Backbone Name Insert Source 

pENTR™/D-TOPO® pENTR™/D-TOPO®  LifeTechnologies 

pENTR™/D-TOPO® pENTR_HA1 TP53 ex4-int4 Present work 

pENTR™/D-TOPO® pENTR_HA2_GGate TP53 ex4-int6 Present work 

HR700PA-1 HR700PA-1  System Biosciences 

HR700PA-1 HR700_HA1_HA2_GGate_H1 helix 
TP53 ex4-int4 

TP53 ex4-int6 
Present work 

HR700PA-1 HR700_HA1_HA2_EE 

TP53 ex4-int4 

TP53 int4-EE-

int6 

Present work 

HR700PA-1 HR700_R175_golden_gate 
TP53 ex4-int4 

TP53 int4-int6 
Present work 

HR700PA-1 HR700_Exon5_golden_gate 
TP53 ex4-int4 

TP53 int4-int6 
Present work 

pCR-BluntII-TOPO®   LifeTechnologies 

pCR-BluntII-TOPO 
pCR-Blunt II-

TOPO_HA2_GoldenGate_R175 
 Present work 

px330-U6-

Chimeric_BB-CBh-

hSpCas9 

px330-sgRNA_in5_p53wt 
gRNA TP53 

intron5 
AG Stiewe 

px330-U6-

Chimeric_BB-CBh-

hSpCas9 

px330-sgRNA_in5_p53+T 
gRNA TP53 

intron5+T 
Present work 

HR700PA-1 HR_R175 
R175 mutant 

library 
Present work 

HR700PA-1 HR_H1 helix 
H1 helix mutant 

library 
Present work 
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HR700PA-1 HR_Exon5 
Exon 5 mutant 

library 
Present work 

px330-U6-

Chimeric_BB-CBh-

hSpCas9 

px330-sgRNA_Puro 
gRNA 

Puromycin 
AG Stiewe 

 

 Cell lines 

Cell line p53 status 

HCT-116 (human colon carcinoma) +/+ 

HCT-116 Δ/TP53E Δ/LSL-editable 

HCT-116 Δ/LSL-R175-Lib Δ/LSL-R175-mutation library 

HCT-116 Δ/R175-Lib Δ/R175-mutation library 

HCT-116 Δ/LSL-H1 helix-Lib Δ/LSL-H1 helix-mutation library 

HCT-116 Δ/H1 helix-Lib Δ/H1 helix-mutation library 

HCT-116 Δ/LSL-Exon5-Library Δ/LSL-Exon 5-mutation library 

HCT-116 Δp53-L Δ/Δ (deletion from exon 2 to exon 9) 

HCT-116 +/LSL +/LSL 

HCT-116 Δ/LSL-Splicing-Lib Δ/LSL-Splicing-library 

HCT-116 Δ/ Splicing-Lib Δ/Splicing-library 

 

 Oligonucleotides 

Name Sense  (5’-3’) Antisense (5’-3’) 

1 HA1_f_CACC_BsrGI CACCTATATGTACAAGAGGCTGCTCCCCCCGTG 

2 HA1_r_BsaI_S TATAGAGACCGATGGATAAAAGCCCAAATTC 

3 HA2_f_CACC_MluI_L CACCACGCGTCCATCACACCCTCAGCATCTC 

4 HA2_r_SalI TATAGTCGACGAGATGGAATCTCGCTCTGTC 

5 P53Int4-for1 CCCTTTGGCTTCCTGTCAGTG 

6 CRISPR_seq_for AGCAACAGATGGAAGGCCTC 

7 MCS2_HR700PA_1_f GGGGGCTGTCCCTAGATCTATAA 

8 TP53Exon5 fwd GTTGATTCCACACCCCCGCC 

9 TP53Exon6 rev GGGCACCACCACACTATGTC 

10 Ex7 hp53_2 rev GATGGTGGTACAGTCAGAGCC 

11 TP53_ex5_NGS_BC11_r AGAACCAGAAGACTTGCCAACTGGCCAAGACCT 
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12 TP53_mutPAM_f_BCO1 
CGTACAAGAGACAAGCAATCAGTGAGGAATCAGAGG

CCTCC 

13 TP53_mutPAM_f_BCO3 
CGTACTAGCAGACAGCAATCAGTGAGGAATCAGAGG

CCTCC 

14 TP53_mutPAM_f_BCO5 
TCTTGAGTATCTGTAGCAATCAGTGAGGAATCAGAG

GCCTCC 

15 TP53_mutPAM_f_BCO3+1bp 
ACGTACTAGCAGACAGCAATCAGTGAGGAATCAGAG

GCCTCC 

16 TP53_mutPAM_f_BCO5+2bp 
GCTCTTGAGTATCTGTAGCAATCAGTGAGGAATCAG

AGGCCTCC 

17 TP53_ex5_NGS_BC11_r-1bp GAACCAGAAGACTTGCCAACTGGCCAAGACCT 

18 TP53_ex5_NGS_BC11_r-2bp AACCAGAAGACTTGCCAACTGGCCAAGACCT 

19 H1_helix_R175_BbsI 
[PHOS]CATGACGGAGGTTGTGAGGCGGTCTTCCCA

CCATGAGCGCTGCTGAAGACG 

20 BbsI_H1_1 
[PHOS]CGGAGGTTGTGAGGCGCTGGTCTTCCCATG

AGCGCTGCTCAGAT 

21 BbsI_H1_2 
[PHOS]GGTCTTCCCATGAGCGCTGCTGAAGACGCG

ATGGTGAGCAGCTG 

22 EE_Ggate_f GCGCTGCCCCCACCATGAGGAATGCTCAGATAGC 

23 EE_Ggate_r CATCGCTATCTGAGCATTCCTCATGGTGGGGGCA 

24 Intron_4_mut_oligo_13nt_fwd CAATATGAAGACCTCTGTCTCCTTC 

25 Intron_4_mut_oligo_13nt_rev ATATATGAAGACTCTCCAGCCCCAG 

26 p53_Intron4_BbsI_1 
GCCCTGACTTTCAACTCTGTCTGTCTTCTCTTCCTA

CAGTACTCCCCTG 

27 p53_Intron5_BbsI_2 
GATAGCGATGGTGAGCAGAAGACGCTGGAGAGACGA

CAGGG 

28 p53_cDNA_rev GCCAACCTCAGGCGGCTCAT 

 

 sgRNAs 

Name Sense  (5’-3’) Antisense (5’-3’) 

gRNA in5wt CACCGTCAGTGAGGAATCAGAGGCC AAACGGCCTCTGATTCCTCACTGAC 

gRNA in5del CACCGAGAGCAATCAGTGGGGACCC AAACGGGTCCCCACTGATTGCTCTC 

gRNA in5+T CACCGTGAGGAATCAGAGGACCTG AAACCAGGTCCTCTGATTCCTCAC 

gRNA Puro CACCGCACGCCGGAGAGCGTCGAAG AAACCTTCGACGCTCTCCGGCGTGC 
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 MiSeq kit 

Name Source 

NEBNext ChIP-Seq Library Prep Master Mix Set for Illumina 

E6240 
New England 

BioLabs 
NEBNext Multiplex Oligos for Illumina (Index Primer Set 1) E7335 

 

 Enzymes 

Name Source 

AfeI 

New England Biolabs 

BbsI 

BsrGI 

BsaI 

MluI 

NdeI 

NotI-HF 

SalI-HF 

SfiI 

T7 Endonuclease I 

Q5® Hot Start High-

Fidelity DNA Polymerase 

GoTaq® G2 DNA 

Polymerase 
Promega 

T4 DNA Ligase LifeTechnologies 
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 Antibodies 

 

Primary antibodies 

Antigen Clone Host Clone type 
Dilution 

for WB 
Source 

β-actin AC-15 mouse monoclonal 1:10000 Abcam 

p53 DO1 mouse monoclonal 1:10000 
Dr. B. 

Vojtesek 

p21  rabbit polyclonal 1:200 
SantaCruz 

Biotech 

 

Secondary antibodies 

Antigen Host 
Clone 

type 

Dilution for 

WB 
Source 

Alexa Fluor 488-linked anti-mouse-

IgG 
goat monoclonal 1:60 

Life 

Technologies 

HRP-linked anti-mouse IgG sheep monoclonal 1:10000 
GE 

Healthcare 

HRP-linked anti-rabbit IgG donkey polyclonal 1:10000 
GE 

Healthcare 

 

 Chemicals (drugs, antibiotics) 

Name Source 

MI-773 Selleckchem 

nutlin-3a Sigma-Aldrich 

RG7388 MedChem Express 

MEL23 Merck 

AMG 232 MedChem Express 

RO-5963 Merck-Millipore 

puromycin dichloride Thermo Fisher 
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2.2 Methods 

 Molecular cloning procedures 

Site directed mutagenesis 

Site directed mutagenesis was performed using QuikChange Lightning Multi Site-

Directed Mutagenesis Kit – Academic according to manufacturer’s protocol 

(#210513, Agilent).  

Splicing, R175 and H1 helix libraries design 

P53 variant libraries were prepared by cloning of double-stranded oligonucleotides 

containing individual mutations into vector HR-2-Golden-Gate. Individual single-

stranded 26, 37 and 34 bp oligonucleotides for the Splicing, R175 and H1 helix 

libraries correspondingly were synthesized by Eurofins*. Pairs of single-stranded 

oligonucleotides (sense and antisense) were reannealed to generate double-

stranded fragments with sticky ends. 

Exon5 library design 

To prepare the HDR template library a pool of 3843 230 nucleotide-long single-

stranded oligonucleotides was manufactured by Agilent using array-based synthesis 

(SurePrint technology)*. Each oligonucleotide was spanning the region Chr. 17: 

7,675,045 - 7,675,261 (assembly hg28) and contained a single codon substitution. 

The pool of single-stranded oligonucleotides was converted into double-stranded 

using PCR with primers #26 and #27 containing BbsI recognition sequences at 5’-

ends (see primer table in Materials and methods). The resulting PCR fragments 

were cloned into the modified HR-Golden Gate cloning vector.  

Golden Gate cloning 

Oligonucleotides reannealing was performed in 96-well PCR plates (Engler et al. 

2008). Each pair of oligonucleotides was mixed in individual well and after 

reannealing all double-stranded oligonucleotides were pooled together in 2 ml 

eppendorf tube. 

Reannealing buffer: 

• 10 µl 1M Tris-HCl pH=7.5 

• 10 µl 5M NaCl 
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• 980 µl H2O 

Reannealing reaction (in PCR tubes): 

• 16 µl reannealing buffer 

• 2 µl 10 µM sense oligonucleotide (dilute stock of oligo 10 times) 

• 2 µl 10 µM antisense oligonucleotide (dilute stock of oligo 10 times) 

Cycling parameters were: 95ºC 5 min, afterwards cooling down 1 degree per 30 

seconds up to 21ºC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

___________________________________________________________________

* The list of all mutant libraries, sequences and raw data see on the USB stick. 
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For library assembly, Golden Gate cloning reaction included the following 

components:  

2.5 µl reannealed oligo 

1 µl HR-2-Golden-Gate vector (1µg) 

1 µl BbsI NEB (10U) 

0.5 µl DNA ligase NEB (30 U) 

2 µl 10x buffer 2.1 NEB 

1 µl 10 mM ATP (NEB or Fermentas) 

1 µl 100 mM DTT 

H2O up to 20 µl 

 

 Cycling parameters: 

37°C 2 min 

20°C 5 min 

65°C 25 min 

4°C ∞  

Golden Gate cloning reaction (in PCR tubes) was setup in three tubes. 

Samples were then pooled together before transformed into bacteria. 

TOPO cloning 

Cloning of PCR products was performed using pENTR/D-TOPO or Zero Blunt TOPO 

PCR cloning kits according to manufacturer’s protocol (#K240020, #450245 Thermo 

Fisher correspondingly).  

Bacterial culture and plasmid DNA isolation 

Transformation of cloning product was performed into electrocompetent bacteria. 

Frozen bacteria were thawed on ice and mixed with 1-2 μl of the cloning product. 

Bacteria were then transferred into a cooled electroporation cuvette and pulsed with 

1.8 kV pulse in a Micropulser (BioRad). Bacteria were incubated in 500 µl of LB 

medium for 30-40 minutes at 37°C under shaking at 250 rpm. 100-200 μl of 

transformed bacteria were plated on LB agar plates supplemented with antibiotics for 

selection of positive clones. Agar plates were incubated overnight at 37°C and 

 50x 
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clones were picked for small scale plasmid preparations. Following reagents were 

used: 

• LB medium: 5 g/l NaCl, 5 g/l yeast extract, 10 g/l Bactotryptone 

• Agar Plates: 1.5% agar-agar in LB medium with Kanamycin (50μg/ml) or 

Ampicillin (100μg/ml) 

Preparation of plasmid DNA for the libraries 

Plasmid DNA was prepared at 3 distinct scales for R175, H1 helix or Exon 5 

libraries. 

Transformation of cloning product was performed into the electrocompetent bacteria. 

2, 3 or 10 frozen bacteria aliquots were thawed on ice and mixed with 1-2 μl of the 

cloning product for R175, H1 helix or Exon 5 libraries respectively. Bacteria were 

then transferred into a cooled electroporation cuvette and pulsed with 1.8 kV pulse in 

a Micropulser (BioRad). Bacteria were incubated in 1 ml, 2ml or 5 ml LB media 

respectively for 30-40 minutes at 37°C upon shaking at 250 rpm. 100-200 μl of 

transformed bacteria were plated respectively on 5, 15 or 40 15 cm LB agar plates 

supplemented with antibiotics for selection of positive clones. Agar plates were 

incubated overnight at 37°C. Bacterial colonies were scraped from all plates using a 

rubber cell scrapper, resuspended in LB medium and used for medium scale plasmid 

preparations. 

Small scale plasmid isolation (Mini-prep) 

To screen for appropriate clones by control restriction digest and Sanger 

sequencing, small-scale plasmid preparation was performed by alkaline lysis method 

using following solutions: 

• P1 buffer: 50 mM Tris HCl pH 7.5, 10 mM EDTA pH 8.0, 100 μg/ml RNaseA 

• P2 buffer: 200 mM NaOH, 1% SDS 

• P3 buffer: 3 M potassium acetate pH 5.5 

Overnight cultures were inoculated into LB medium supplemented with Kanamycin 

(50μg/ml) or Ampicillin (100μg/ml). 2 ml of the overnight culture were centrifuged and 

resuspended in 300 μl P1 buffer. After addition of 300 μl P2 buffer bacteria were 

lysed for 5 min on ice. 300 μl of buffer P3 were added to neutralize the reaction. The 

suspension was centrifuged (10 min at 13 000 g) and supernatant was transferred 
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into a fresh tube. DNA was precipitated with 700 μl isopropanol and pelleted by 

centrifugation at 13 000 g for 30 min at 4°C. Pellets were washed once with 70% 

ethanol, dried at 37 °C for 10-20 min and resuspended in 50 μl ddH2O. DNA yield 

and quality were assessed using Nanodrop ND-1000. 

Medium scale plasmid isolation (Midi-prep) 

Medium scale plasmid preparation was performed to obtain highly purified plasmid 

DNA for transfection of eukaryotic cells or further cloning steps. Mini-prep cultures of 

scrapped bacterial colonies were used to inoculate 100 ml of LB medium containing 

proper antibiotics. Plasmid DNA purification from overnight cultures was performed 

by anion-exchange chromatography using Nucleobond Xtra Midi Kit (Macherey-

Nagel #740410.100) according to manufacturer´s protocol. 

 Cell culture 

HCT-116 cells were cultured in Dulbecco's modified Eagle's medium (DMEM) 

supplemented with 10% fetal bovine serum (FBS), 1% penicillin (10.000 

U/ml)/streptomycin (10 mg/ml) and 0,4% amphotericin B (250 g/ml). Cells were kept 

at 37°C with 5% CO2 in humidified incubator. Passaging of cells was performed 

when cells reached confluency. Cells were washed once with 1xPBS and then 

incubated with 2% trypsin-EDTA solution for 5 min, resuspended in medium, washed 

once´and plated. Cell were counted using Beckman Culter Z-series counter. 

Following reagents were used: 

• DMEM high glucose, sodium pyruvate, with L-glutamine (#41966, Life 

Technologies)  

• FBS (#F0804, Sigma-Aldrich) 

• Amphotericin B (#A2942, Sigma-Aldrich)  

• Pen-Strep 100 units/ml penicillin, 100 μg/ml streptomycin (#15140-122, Life 

Technologies)  

• 1x PBS Dulbecco's phosphate-buffered saline without Ca2+, Mg2+ (#14190 

Life Technologies) 

• Trypsin 10x Trypsin-EDTA solution (#T4174, Sigma-Aldrich)  
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 Establishing of the HCT-116 Δ/TP53E cell line 

Transient transfection 

Cells were plated 24 hours before transfection into appropriate tissue culture dish at 

60% confluency. Number of plated cells was adjusted according to the library size to 

achieve a ratio of 1000-10000 cells per each mutation. Before transfection cells were 

washed once with serum-free DMEM. Transfection was performed in serum-free 

DMEM without additives. Lipofectamine 2000 Reagent (#11668027, 

LifeTechnologies) and DNA were diluted in Opti-MEM reduced serum medium and 

transfection was performed according to the manufacturer´s protocol. The amount of 

reagents for the transfection is shown in the table below. Medium was changed to 

complete DMEM 4-5 hours after transfection. 

Dish 

Total 

volume, 

ml 

Opti-MEM, 

ml 

Plasmid 

DNA, µg 

Lipofectamine 

2000, µl 

6 well 2 0.2 2.5 4.6 

10 cm 10 1 12.5 23 

15 cm 20 2 25 46 

 

Three days after transfection cells were treated with 1 µg/ml puromycin for 5 days. 

After 5 days medium was changed to complete DMEM. 

Infection with Cre-recombinase adenovirus 

For reactivation of the silenced TP53 allele after editing cells were transduced with 

adenovirus expressing Cre-recombinase (Ad5CMVCre VVC-U of Iowa-5, University 

of Iowa Healthcare). Cells were plated 24 hours before infection at 60% confluency 

into an appropriate cell culture dish. Infection was performed with concentration 

sufficient to infect 50% of cells determined by titration. Cells were incubated with 

virus 30 minutes; cells were carefully swirled every 10 minutes.  After that medium 

was changed to complete DMEM. Cells were cultured 10-14 days until complete loss 

of GFP signal indicating complete Cre-mediated recombination in most of the cells. 
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 Flow cytometry and cell sorting  

To assess the efficiency of Cre-mediated recombination GFP expression in infected 

cells was tested by flow cytometry. GFP signal was quantified in the FL1-A channel 

on a BD Accuri C6 flow cytometer. Data were analyzed using BD Accuri C6 

software. 

Annexin V positive and negative cells were sorted with MoFlo Astrios sorter 

(Beckman Coulter, AY16010) using the Summit 6.3.1 software.   

 Cell imaging 

96-well plates were imaged hourly in the IncuCyte S3 time-lapse microscopy system 

(Sartorius) equipped with an IncuCyte Zoom 10× Plan Fluor objective (Sartorius). 

Imaging was performed up to 72 h at 37°C. The graphs were generated using the 

time plot feature in the graph/export menu of the IncuCyte Zoom software. Raw data 

were exported in the MS Excel and GraphPad Prism to calculate the confluency. 

 X-ray irradiation 

Cells were irradiated in 60% confluency using an X-RAD 320iX tube with settings of 

320 kV voltage and current of 8 mA with the dose rate ~1Gy/min. 

 Western blotting 

Protein extraction 

Proteins of interest were detected by western blot technique. Protein extracts were 

prepared by lysing the cells in an appropriate amount of NP40 lysis buffer 

supplemented with protease inhibitor. After three rounds of freezing in liquid nitrogen 

and thawing in warm water bath lysates were centrifuged for 20 min at 13 000 g and 

supernatant was transferred into a new tube.  

Protein concentration was measured using Bradford-based Bio-Rad Protein Assay 

(#5000006) following manufacturer’s instructions.  

Protein lysates were denatured by adding LDS sample buffer and reducing agent 

(#NP0007, #NP0009, Thermo Fisher) followed by heating at 95°C for 5 minutes. 

Protein electrophoresis and blotting 
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Denatured protein lysates were loaded on precast gels (NuPAGE Novex 4-12% Bis-

Tris). Gels were run under constant voltage (100-150 V) in NuPAGE SDS MOPS 

running buffer for 1-2 hrs.  

Proteins were transferred from gels to nitrocellulose membranes in XCell II Blotting 

modules. Blotting was performed in NuPAGE Transfer Buffer supplemented with 

15% methanol at constant voltage (100V) and current limit of 500 mA for 60-90 

minutes, depending on protein size. All antibodies were diluted in TBST containing 

5% nonfat dry milk. To avoid unspecific binding of primary antibodies, membranes 

were blocked in TBST containing 10% nonfat dry milk prior to overnight incubation 

with primary antibodies at 4°C. After three washings with TBST, HRP- or Alexa 

Fluor-488-coupled secondary antibodies were incubated for 1 hour at room 

temperature, followed by 3 washing steps with TBST. Chemiluminescent and 

fluorescent signals were detected by the Gel Doc XR System (Biorad). Following 

reagents were used: 

• NP-40 lysis buffer: 

50 mM Tris-HCl pH 7,4  

150 mM NaCl 

5 mM EDTA pH 8,0 

2% NP-40 

• Protease inhibitor cocktail complete (#04693116001, Roche) 

• Loading buffer 1x LDS sample buffer (#NP0008, Life Technologies) 

• 1x Reducing agent (#NP0009, Life Technologies) 

• SDS-Page gels NuPAGE Novex Bis-Tris Mini and Midi Gels (#WG1402BOX, 

Life Technologies) 

• Running buffer NuPAGE MOPS SDS Running Buffer (#NP0001, Life 

Technologies) 

• Protein ladder PageRuler Prestained Protein Ladder (#26616, Thermo 

Scientific) 

• Transfer buffer NuPAGE® Transfer Buffer (#NP00061, (Life Technologies) 

• Nitrocellulose membrane (#RPN303D, GE Healthcare) 

• TBS 15 mM NaCl, 5 mM Tris HCl pH 7.5 
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• TBST 1x TBS with 0.1% Tween 20 

• Nonfat dry milk Skim Milk Powder (Sigma #70166) 

• HRP substrate Western Bright Chemiluminescence Substrate Sirius (Biozym 

#541021) 

 Extraction of genomic DNA 

Purification of genomic (g)DNA from cells was performed according to 

manufacturer’s protocol using either the QIAamp DNA blood Mini Kit or Blood & Cell 

Culture DNA Max Kit (#51104 or #13362, Qiagen). DNA quality and yield were 

evaluated using microvolume spectrophotometer (Nanodrop ND-1000). 

 Extraction of RNA 

Before isolation of total RNA cells were washed once with PBS, lysed directly on the 

cell culture dish by adding 600 μl RLT buffer (#79216, Qiagen) and scraped from the 

dish. RNA was isolated from cell lysates with the RNeasy Mini Kit (#74106, Qiagen) 

according to manufacturer´s protocol using the QIAcube (Qiagen). RNA quality and 

yield were evaluated by microvolume spectrophotometer (Nanodrop ND-1000). 

cDNA synthesis 

Total RNA was reverse transcribed using the SuperScript VILO cDNA synthesis kit 

(#11754, Life Technologies) according to the manufacturer’s protocol. cDNA was 

diluted up to concentration 5 ng RNA/μl and used for qPCR. 

Reagents Amount  

RNA 500 ng 

5x VILO Script mix 2 µl 

10x SuperScript enzyme 1 µl 

ddH2O up to 10 µl 

 

Cycling parameters:  

25°C 10 min 

42°C 60 min 

85°C 5 min 

4°C ∞ 
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 PCR 

Genotyping of cell lines with PCR 

Screening for correct genetic modifications during engineering of cell lines was 

performed by PCR using GoTaq polymerase (M3005, Promega) according to the 

following protocol: 

Reagents Amount  

Template ng/reaction 150 ng 

10 µM sense oligonucleotide 1 µl 

10 µM antisense 

oligonucleotide 

1 µl 

PCR buffer 4 µl 

dNTPs 0.4 µl 

DMSO 1 µl 

GoTaq polymerase 10U 0.2 µl 

H2O, ul up to 20 µl  

 

Cycling parameters:  

95 °C - 2 min 

95 °C - 0:30 min                     

56 °C – 1min/kb min           

72 °C - 0:30 min 

72 °C - 5 min 

4 °C - ∞ 

The presence of fragment was analyzed by agarose gel electrophoresis using 1,5-

2% agarose gel and RedSafe DNA stain (#21141, Chembio). 

Amplification of oligonucleotides for the exon 5 library 

Amplification was performed using primers #24 and 25 with 13 bp homology regions 

and additional BbsI recognition sequences. Fragments were purified using QIAquick 

PCR Purification Kit (#28106, Qiagen) and used for the Golden Gate cloning 

procedure.  

 

 

 

 35 cycles        
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Reagents Amount  

Template 5 pg 

10 µM sense oligonucleotide 1 µl 

10 µM antisense 

oligonucleotide 
1 µl 

PCR buffer 4 µl 

dNTPs 0.4 µl 

DMSO 1 µl 

GoTaq polymerase 10U 0,2 µl 

H2O up to 20 µl 

 

Cycling parameters:  

95 °C - 2 min 

95 °C - 0:30 min                     

56 °C – 0:30 min 

72 °C - 0:30 min 

72 °C - 5 min 

4 °C - ∞ 

 

PCR for amplicon library preparation 

Preparation of amplicon libraries for next generation sequencing was performed 

using nested PCR. Nested PCR using two sets of primers enabled exclusive 

amplification of the mutation-carrying TP53 allele. 

The first PCR reaction was used to amplify a region from intron 4 to exon 7 from both 

p53 alleles and exclude amplification of non-recombined alleles. Amount of gDNA 

used for amplification was adjusted in order to ensure proper coverage of each 

mutant corresponded to 1,5; 0,45; 1,5 and 10 µg per replicate for splicing-, R175-, 

H1 helix and Exon 5-libraries respectively. Therefore, PCR was performed in 10, 3, 

10 and 70 parallel reactions for respective libraries. Afterwards PCR products of 

PCR reaction were pooled together and 40, 20, 40 and 280 µl of splicing-, R175-, H1 

helix- and Exon 5-library respectively were purified with QIAquick PCR Purification 

Kit (#28106, Qiagen) according to manufacturer’s instructions and eluted in 30 µl 

H2O.  

 35 cycles        
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Reagents Amount  

Template 150 ng 

10 µM sense oligonucleotide 1 µl 

10 µM antisense 

oligonucleotide 
1 µl 

PCR buffer 4 µl 

10 mM dNTPs 0.4 µl 

DMSO 1 µl 

GoTaq polymerase 10 U 0.2 µl 

H2O up to 20 µl 

 

Cycling parameters:  

95 °C - 2 min 

95 °C - 0:30 min                     

59 °C – 1:30 min                 

72 °C - 0:30 min 

72 °C - 5 min 

4 °C - ∞ 

 

The presence and concentration of 1,48 kb PCR product was detected by capillary 

electrophoresis using DNA Screening Kit QIAxcel and QIAxcel Advanced instrument 

(#929004 and #9001941, Qiagen).  

Second reaction was performed for specific amplification of the targeted mutation-

carrying allele splicing-, R175- and H1 helix libraries (primers #12-16 and #11, 17, 

18) or 270 bp long primers #12-16 and #24) for the Exon5 library. Primers #12-16 

specifically bind to mutated PAM sequence and carries internal barcodes used to 

identify reads from corresponding replicates in sequencing data. Primers #11, 17, 18 

bind in exon 5 for splicing-, R175 and H1 helix libraries. Primer #24 binds in intron 4 

for the Exon 5 library. The specificity of the PCR reaction was improved by reducing 

amount of MgCl2 and dNTPs. To reduce amounts of PCR errors amplification was 

performed in 5; 3; 5 or 10 parallel reactions for splicing-; R175-; H1 helix- and Exon 5 

library respectively. Afterwards PCR reaction products were pooled together and 

purified with QIAquick PCR Purification Kit (#28106, Qiagen) according to 

 20-25 cycles        



58 

manufacturer’s instructions and eluted in 30 µl H2O. The second round of purification 

was performed with Agencourt AMPure XP (63881, Beckman Coulter).   

 

Reagents Amount  

Template pg/reaction 5 pg 

10 µM sense oligonucleotide 1 µl 

10 µM antisense oligonucleotide 1 µl 

MgCl2, 25 mM 1 µl 

10x Mg2+-free PCR buffer 2 µl 

10 mM dNTPs 0.1 µl 

DMSO 1 µl 

GoTaq polymerase 10U 0.2 µl 

H2O up to 20 µl 
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Cycling parameters: 

95 °C - 2 min 

95 °C - 0:30 min 

66 °C – 0:30 min 

72 °C - 0:30 min 

72 °C - 5 min 

4 °C - ∞ 

 

Concentration of 1,48 kb PCR product was detected by capillary electrophoresis 

DNA Screening Kit QIAxcel using QIAxcel Advanced Instrument (#929004 and 

#9001941, Qiagen).  

Triplicate samples were pooled together at equal concentrations (3.3 ng) and used 

for NGS sequencing library preparation. 

 Compound treatment 

All substances were dissolved in DMSO and stored according to manufacturer’s 

recommendations.  Compounds were titrated to determine the half maximal 

inhibitory concentration (IC50). Briefly, cells were treated with a range of 

concentrations of compounds and viability was determined after 3 days using Cell 

Titer Glo assay (#G7573, Promega). IC50 values were calculated using GraphPad 

Prism 8.0 software. Library-carrying cells were treated with compounds at their 

corresponding IC50 concentrations for 2-16 days and harvested for DNA isolation.  

 Preparation of the amplicon library for next generation sequencing  

Quantification of the mutation abundance in genomic DNA from library-expressing 

cells was performed using massive parallel sequencing (next generation sequencing, 

NGS) of amplicon libraries. Sequencing libraries were prepared from amplicons 

using NEBNext ChIP-Seq Library Prep Master Mix Set for Illumina and NEBNext 

Multiplex Oligos for Illumina (Index Primer Set 1) (E6240L and E7335S, New 

England Biolabs) according to manufacturer’s protocol. Samples were sequenced 

using MiSeq Reagent Kit v2 Nano or MiSeq Reagent Kit v3 (Illumina) on the MiSeq 

system.  

22 cycles        
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 Data analysis and software  

GraphPad Prism 8.0 

Statistical analysis, IC50 calculations, and preparation of figures were performed in 

GraphPad Prism 8.0 software. Pearson and Spearman correlation coefficients were 

calculated regarding the Normality test in GraphPad Prism 8.0. Methods used to 

infer statistical significance are shown in figure legends and in the text.  

TP53 databases 

Information about p53 mutant frequencies was taken from the UMD database. 

Scores from in silico predictors (SIFT, Polyphen2, REVEL, BayesDel, Mutassessor, 

Provean) were retrieved from the UMD database as well. Align-GVGD scores were 

retrieved from http://agvgd.hci.utah.edu/agvgd_input.php.  

Bioinformatics 

Edited regions of p53 were analyzed using paired-end AmpliconSeq 

workflow. Sequenced paired-end reads were further demultiplexed according to the 

combination of forward/reverse barcoded primer sequences found in the reads. 

Primer sequences were identified using CutAdapt (version 2.7) with a 

parametrization that allowed for a maximal hamming distance of 2 and discarded 

truncated adapter sequences ensuring that at most two mismatches were accepted. 

Subsequently, primers were trimmed from the reads and corresponding mate pairs 

were merged using NGMerge (version 0.3) using "stiched" mode with enabled 

checking for dovetailing with 3' overhangs. 

Merged reads were then compared to a set of in silico precompiled edited coding 

sequences. Since the genome editing should potentially create sequences that differ 

from the wild-type sequence only by a single base pair, merged reads were simply 

checked for identity to the expected reads and tallied. If no correspondence was 

found reads were discarded. 

Relative read counts were obtained by dividing the raw counts by the sum of all 

expected sequences omitting wild-type and non-matched read counts. 

Principal component analysis (PCA) was performed ClustVis software 

(https://biit.cs.ut.ee/clustvis/). Values of reporter genes activity extracted from the 
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study of Kato and colleagues (Kato et al., 2002) were uploaded on the website and 

processed using default parameters.  

Evolutionary conservation scores were extracted from the ConSurf database 

(https://consurf.tau.ac.il/) using p53 structure 1TUP as a query. 

  

  

  

https://consurf.tau.ac.il/
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3. Results 

3.1 CRISPR-mediated Saturation Mutagenesis Screen (CSMS) 

We aimed to improve the existing methodologies for high-content analysis of TP53 

mutants and developed the CRISPR-mediated Saturation Mutagenesis Screen 

(CSMS). We have employed recent advances in the CRISPR-Cas9-mediated 

genome editing to target the library of mutants into endogenous TP53 locus via 

homologous recombination. 

A brief description of the method is shown in Fig. 4. First, the wild-type TP53 locus in 

the cell line is exchanged for the mutant allele using CRISPR-Cas9-mediated 

homology-directed repair. For this purpose, cells expressing wild-type p53 are co-

transfected with two plasmids. The first plasmid encodes the TP53-specific CRISPR-

nuclease. The second plasmid or plasmid pool contains the TP53 gene fragments 

with multiple mutations (one mutation per construct) and represents a library of 

donor templates for homology-directed repair. After co-transfection, CRISPR-

nuclease cleaves DNA in the TP53 locus. The double-strand break is repaired by 

HDR using the provided library as donor templates. As a result, the wild-type TP53 

allele is exchanged for one of the mutated alleles from the library, and the pool of 

isogenic cells containing multiple TP53 alterations is generated. Afterward, library-

expressing cells are treated with p53-activating stimuli (e.g., MDM2-inhibitor or DNA 

damaging agent). 

Activation of p53 mutants with preserved wild-type function promotes cell cycle 

arrest or apoptosis, which results in depletion of cells harboring such mutations from 

the pool. Conversely, cells carrying LOF mutants stay unresponsive to the p53-

activating stimuli and proliferate, becoming enriched in the population. Thus, 

counting the number of cells expressing a mutant before and after treatment enables 

measuring antiproliferative properties of each protein variant. The stronger the 

mutation is enriched after p53 activation, the less functional the mutant protein is. 

The abundance of cells carrying particular mutants in the population is quantified 

using massive parallel sequencing (next generation sequencing, NGS) of the TP53 

locus. Sequencing data from untreated (control) and treated samples are compared 

to identify enriched and depleted variants (Fig. 4). Finally, the enrichment score is 
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calculated for each mutant as a measure of p53 protein functionality: low enrichment 

score of depleted variants reflects preserved wt-like function, whereas high 

Figure 4. Experimental design of the CSMS 

A.  Cells are co-transfected with a CRISPR/Cas9 nuclease targeting TP53 

locus and vectors carrying a mutant library. CRISPR nuclease cleaves 

DNA in the TP53 locus. Double-strand breaks are repaired by HDR. Cells 

utilize provided library as homology recombination templates and integrate 

mutations into the locus. B. CSMS employs massive parallel 

measurement of the impact of p53 mutations on cellular fitness. Cells 

expressing the library of p53 variants are subjected to p53-activating 

stimuli and harvested later for DNA isolation, allele-specific PCR, and 

sequencing library preparation. The relative abundance of each variant is 

quantified using next-generation sequencing and compared between 

treated and untreated samples. Wild type-like mutations are depleted after 

the treatment, LOF mutations are strongly enriched after the treatment, 

partially-LOF mutations show intermediate enrichment. 

B 

A 
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enrichment score of enriched variants indicates loss of function. 

We aimed to conduct initial proof-of-concept experiments by performing saturation 

mutagenesis of the most frequently mutated hotspot codon R175 because functional 

outcomes of most mutations at this position are well studied (Freed-Pastor and 

Prives 2012; Walerych et al. 2015; Timofeev et al. 2019; Freed-Pastor et al. 2012; 

Yu et al. 2012; Xu et al. 2014). We have further expanded our analysis to the R175-

adjacent region (H1 helix) and, finally, to the complete 5th exon of TP53 

(approximately 22% of all TP53 mutations affect the 5th exon).  

3.2 TP53 targeting strategy 

For the development of the CSMS-system, we have chosen the colorectal cancer 

cell line HCT-116. HCT-116 cells respond to DNA damage and treatment with MDM2 

inhibitors with p53 stabilization, induction of p53 target genes, and undergo cell cycle 

arrest and apoptosis. These cells have been widely used during the last decade for 

studying the biology of p53 (Polyak et al. 1996; Sur et al. 2009). The cell line is 

diploid and contains two intact TP53 copies (Liu and Bodmer 2006). This allows 

inactivating one allele and manipulating the other in a hemizygous configuration to 

avoid interference from the second allele and establish clear genotype-phenotype 

correlations. Moreover, the functionality of both TP53 alleles ensures that mutations 

will be engineered in the normal genomic context with functional regulatory 

elements. In this section the general concept is described, the experimental details 

are explained in detail in following sections. 

Insertional mutagenesis mediated by homologous recombination has inherently low 

efficiency (Maruyama et al. 2015). An additional factor limiting the efficiency of 

CRISPR-mediated gene editing is p53 activation: Cas9-induced double-strand 

breaks activate the p53-dependent DNA damage response and proliferation arrest in 

the edited cells (Haapaniemi et al. 2018). To overcome these limitations and 

enhance HDR-mediated targeting, we have devised a cell line with an editable TP53-

locus (HCT-116Δ/TP53E), which enabled us to perform mutagenesis with 

unprecedented efficiency. The schematic view of the TP53 targeting strategy is 

shown on Fig. 5. One TP53 allele in this cell line (TP53Δ) is permanently inactivated 

to ensure that each cell will express a single mutant after editing. The second allele 

undergoes CRISPR-mediated editing and is therefore called “editable” (TP53E). It is 
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temporarily inactivated to disable p53-mediated DNA damage response provoked by 

CRISPR-Cas9. After completion of the gene editing, this allele is reactivated to 

express the mutant protein (Fig.5). 

We have created the cell line with described characteristics using two rounds of 

CRISPR-mediated genome editing. Initially, we were attempting to inactivate one 

TP53 allele by deleting it with a pair of two CRISPR-nucleases that target upstream 

and downstream sequences in the gene locus, respectively. However, resulting cell 

lines revealed instability and rapidly inactivated the remaining wild-type allele via loss 

of heterozygosity (LOH). Interestingly, we found that relatively small deletions in the 

5th intron completely impaired p53 mRNA splicing and protein translation. This fact 

allowed us to knock out one TP53 copy with a small intronic deletion and generate a 

Figure 5. Simplified scheme of TP53 targeting strategy 

Cells are co-transfected with a CRISPR/Cas9 nuclease targeting TP53 

locus and a vector carrying the LSL-cassette. After CRISPR/Cas9 

overexpression the first p53 allele is permanently inactivated by deletion. 

The second allele is temporary inactivated by the integration of LSL-

cassette. Next, this cell line undergoes transient transfection with 

CRISPR/Cas9 nuclease targeting TP53 locus in the LSL-allele and vector 

carrying a single p53 mutation or a plasmid mutant library. After infection 

with adeno-Cre LSL-cassette is excised and mutant p53 expression is 

restored. 
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genetically stable cell line with a single active TP53 copy.  

Therefore, in the first editing round, we have used a single CRISPR-nuclease to 

induce a deletion in the intron 5 of one TP53 allele. In the same gene editing step, 

we have integrated the transcription termination cassette (lox-stop-lox, LSL carrying 

green fluorescent protein (GFP) and the puromycin selection marker) into the 4th 

intron of the second TP53 allele using homologous recombination. 

HDR-mediated integration of the LSL cassette into the TP53 locus created the 

conditionally silenced allele and enabled the selection of targeted cells using 

puromycin resistance or GFP expression. Additionally, erroneous repair of the 5th 

intron by Cas9-nuclease in the edited conditional allele (TP53E) has generated a 

single nucleotide variant (SNV). The SNV was used as an allele-specific recognition 

site for CRISPR-nuclease in the second gene editing round. 

In the second step of editing, we have employed the allele-specific CRISPR-

nuclease to induce double-strand breaks exclusively in the TP53E allele and to target 

the library of TP53 variants into the locus. Lack of p53 expression (the second allele 

is permanently inactivated) enabled to increase the editing rate due to dampened 

DNA-damage response.  

After the second editing round, the silenced conditional TP53E allele was turned back 

into an active state by Cre-recombinase expression, which excised the LSL cassette.  

As a result, a population of cells expressing a single mutant or a pool (library) of 

mutants from a single TP53 allele was generated. 

To validate the system, we decided to perform mutagenesis of the small region of 

the gene. Therefore, initially we have focused on the most frequently mutated codon 

R175. Next, we have explored the adjacent region (H1 hellix) which contains several 

functionally important conserved residues (e.g. C176, H179, E180, R181). Later we 

have performed mutagenesis of the complete 5th exon of the TP53 gene. Targeting 

of the exon 5 is described in section 3.10. 

3.3 Generation of the targeting vector for homologous recombination-driven 

TP53 editing 

To engineer the endogenous TP53 locus we have designed a series of plasmid 

templates for homologous recombination (targeting vectors). One vector was used to 

generate the editable TP53 allele; the others were utilized for the mutagenesis. 
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For conversion of the wild-type TP53 allele into the editable one we have designed 

the targeting vector (HR-1) consisting of the following components: 

- the HA700PA-1 backbone (Fig. 6A), 

- two homology arms spanning the region between 4th exon and 6th intron of TP53 

(chr. 17:7.676.244-7.674.422, GRCh38 assembly),  

- lox-STOP-lox (LSL) cassette in the 4th intron, composed of two LoxP sites flanking 

the puromycin N-acetyl transferase gene (pac, confers puromycin resistance), green 

fluorescent protein gene (GFP), the transcription termination sequence (STOP) and 

insulator sequences (to prevent activation of endogenous genes by the EF1 

promoter in the proximity of the integration site). 

Homology arm one spanning 3’-end of the exon 4 and 5’-end of the intron 4 (chr.17:  

Figure 6. Schematics of the targeting vector for HDR-mediated TP53 

editing 

A. Vector HR700PA-1 contains two polylinkers (MCS) for cloning of the 

homology arms and the LSL cassette (used for selection of targeted cells, 

harbors GFP and puromycin resistance genes and the transcription 

terminator sequence (STOP) flanked by insulators and LoxP sites). 

Integration of the LSL cassette into the TP53 locus leads to silencing of 

p53 expression. B. Assembly of the HR-1 targeting vector. TP53 

homology arms were amplified from genomic DNA and cloned into MCS 1 

and 2. The location of primers for amplification of homology arms is 

shown with arrowheads. Coordinates are according to the GRCh38 

human genome assembly. 
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7.676.224-7.675.841) was amplified by PCR from genomic DNA of HCT-116 cells. 

The amplicon was digested with BsaI and BsrGI and ligated into the multiple cloning 

site (MCS1) of the HR700-1A vector (Fig. 6B) (primers #1, 2). Homology arm two 

spanning the region between exon 4 and intron 6 (chr.17: 7.675.842-7.674.422) was 

amplified using primers to the 3’-end of intron 4 and 5’-end of the intron 6 and cloned 

via SalI and MluI digestion and ligation into MCS2 of the HR700-1A vector with 

previously cloned homology arm one (primers #3, 4) (Fig. 6B). 

3.4 Establishment of the TP53-hemizygous HCT-116Δ/TP53E cell line using HR-1 

targeting vector  

The efficacy of homologous recombination strongly depends on the distance 

between the homology arm and the double-strand break (Elliott et al. 1998). To 

ensure the complete replacement of the endogenous H1 helix region at the end of 

exon 5 with the mutants’ library, we have located the targeting site for the Cas9 

nuclease in direct proximity of this region in intron 5 (Fig. 7A). 

In the first step, we have co-transfected parental HCT-116 cells with a plasmid 

encoding Cas9 nuclease with intron 5-specific single guide RNA (sgRNA) (pX330-

sgRNAp53i5) and an HR-1 targeting vector. Cells with an integrated targeting vector 

were selected with puromycin (Fig. 7A). Then resistant transfectants were treated 

with MDM2-inhibitor nutlin for 14 days to enrich the population for p53-null cells, 

which either harbor TP53 allele temporarily inactivated by the LSL-cassette, or 

inactivating deletion or both. This nutlin-enriched population was subcloned to select 

a cell line with the desired configuration of TP53 alleles. For this purpose, cells were 

plated at clonal density, single-cell clones were isolated, and gDNA from the clones 

was analyzed for the correctly integrated targeting vector using PCR. Forward primer 

#7 (Fig. 7B) was located in the LoxP site in the targeting vector, whereas reverse 

primer #10 (Fig. 7B) was placed in the 7th exon, located downstream of the right 

homology arm. Therefore, amplification proceeded only with template DNA from 

clones with on-target integration of the targeting vector (Fig. 7B,C). Clones 1, 3, and 

5 with confirmed on-target integration of the HR-1 vector were amplified and infected 

with the Cre-recombinase-expressing adenovirus (adeno-Cre) to excise the LSL 

cassette and restore p53 expression. Two weeks after infection, cells were treated 

for 24 hours with 10 µM nutlin to activate p53 and analyzed with western blotting 



69 

together with lysates from non-infected cells. As shown in Fig. 7D, clones have 

responded to adeno-Cre infection differently. Clone 3 showed no reactivation of p53 

upon adeno-Cre infection and nutlin treatment, suggesting complete inactivation of 

both alleles. Clone 5 revealed high levels of p53 in the absence of Cre, indicating 

that at least one allele was spared by editing. Finally, clone 1 was identical to p53-

knockout cells under basal conditions (lanes 5 and 6) but demonstrated Cre-

dependent restoration of p53 expression (lanes 7 and 8), implying that at least one 

TP53 allele contained an integrated targeted vector with the LSL cassette. Moreover, 

similarly to p53 wild-type cells, clone 1 revealed nutlin-dependent p53 stabilization 

and expression of the p21 protein, as expected for the cell line carrying the  

conditional p53 allele.  

To confirm that the TP53 locus in the engineered cell line had the desired 

configuration, we have designed a series of PCR primers to generate amplicons 

covering the region between 4th and 6th exons. The location of amplicons and 

sequencing results are shown in Fig. 7E. 

First, we have amplified DNA with primers #5 and #10 (upper part of Fig. 7E). This 

primer pair amplified the 1,6 kb long fragment from the intact intron 4. Integration of 

the LSL cassette would generate the 4.6 kb long fragment; therefore, the targeted 

allele was not amplified. Sanger sequencing of the 5’-end of the amplicon showed 

the intact sequence of the TP53 intron 4 without the integration of the LSL cassette 

(upper left chromatogram, the dashed line shows the boundary between intron 4 and 

LSL cassette in the targeting vector). The sequence of the 3’-end of the same 

amplicon contained 15-bp deletion at the CRISPR-nuclease recognition site (upper 

right chromatogram). Since cells did not express detectable levels of p53 in the 

absence of adeno-Cre (Fig. 7D, lanes 5 and 6) we have concluded that the first allele 

in the engineered cell line contained inactivating deletion and designated this allele 

as TP53Δ. 

Next, we have selectively amplified the second, targeted allele with primers #6 and 

#10 (primer #6 is specific to the pac gene) (Fig. 7E). The sequencing of the resulting 

amplicon confirmed integration of the targeting vector in the TP53 locus (5’ end of 

the amplicon was identical to the pac sequence from the vector, lower left 

chromatogram). Since the treatment of cells with Cre-recombinase led to re-
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expression of p53 (Fig. 7D, lanes 7 and 8), we concluded that the second allele was 

converted into a conditional allele by the integration of the targeting vector. Notably, 

the sequencing of the 3’-end of the same amplicon revealed a single nucleotide 

insertion in the 5th intron (lower right chromatogram). This single nucleotide variant 

(SNV) was exploited as a target site for allele-specific CRISPR-nuclease in the 

second editing step. We have designated the second allele in the cell line as editable 

(TP53E). 

The stability of the cell line properties was confirmed by analyzing three independent 

subclones of clone 1 from Fig. 7F for their ability to restore p53 expression upon 

adeno-Cre infection and upregulate p21 after nutlin treatment (Fig. 7F). The 

established cell line Δ/TP53E.1 was designated as HCT-116Δ/TP53E and was utilized 

in all consecutive experiments.  

Western blotting (Fig. 7F) revealed that HCT-116Δ/TP53E cells show markedly lower 

p53 and p21 expression after adeno-Cre infection and nutlin treatment than the 

parental cell line (compare lanes 1 and 3 with lanes 7 and 8). P53 is a known 

haploinsufficient tumor suppressor. In line, the lack of one gene copy was shown to 

significantly decrease mRNA and protein levels in HCT-116 cells (Lynch and Milner 

2006). Insufficient expression of p53 could potentially lead to reduced activity and, 

consequently, to improper classification of wild-type-like variants. We have 

addressed this issue in Discussion.  

The selection of cells after homologous recombination is essential to ensure a high 

yield of edited cells. HCT-116Δ/TP53E cells already contained a puromycin resistance 

gene in the TP53E allele. To enable the puromycin selection of the targeted cells 

carrying the library in the second round of editing, we have inactivated the pac gene 

using CRISPR/Cas9. We have designed a single guide RNA specific to the pac 

gene, cloned it into pX330 vector, and transfected into HCT-116Δ/TP53E cells. (Fig. 

7G). We expected that double-strand breaks induced by the pac-specific Cas9 

nuclease would be repaired via NHEJ generating inactivating indels. For the 

selection of cells with inactivating pac mutations, single-cell clones were isolated and 

tested for puromycin sensitivity. One clone with restored puromycin sensitivity was 

established and used in further experiments (Fig. 7H).  
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Figure 7. Establishment of the TP53-hemizygous cell line HCT-

116
Δ/TP53E 

for highly efficient editing of the TP53 locus 

A. HCT-116 cells were co-transfected with the plasmid encoding 

CRISPR nuclease targeting intron 5 of TP53 and donor template for 

homologous recombination (HR-1). Blue rectangles represent active 

alleles, grey – inactive. Transfected cells were selected with puromycin. 

Afterward cells with the functional p53 were eliminated by nutlin 

treatment. Single-cell clones were established and genotyped. B. The 

desired configuration of the TP53 locus after targeting. Primers used for 

genotyping of single-cell clones are shown as arrowheads. Primers #7 

and #10 were used for the identification of clones with correct integration 

of LSL cassette, primers #8 and #9 - for Sanger sequencing of the intron 

5, primer #5 was used for Sanger sequencing of the intron 4, primers #6 

and #10 were used for amplification of the LSL cassette, primer #6 was 

used for Sanger sequencing of the LSL cassette. Black dot – single 

nucleotide variant (SNV), +T insertion in the targeted conditional allele. 

Red triangles: Lox-P sites. C. Identification of single-cell clones with the 

correct integration of the targeting vector using PCR with primer #7 to 

LSL cassette and #10 to the exon 7. Single cell clones are labeled from 1 

to 22. 1.4 kb PCR fragments corresponding to targeted TP53 alleles are 

labeled. Parental HCT-116 cells serve as a negative control. D. Western 

blot analysis of p53 and p21 expression in 3 clones with targeted TP53 

alleles from (C) (designated as Δ/TP53
LSL

). Cells were infected with 

adenovirus encoding Cre-recombinase and after 2 weeks were treated 

with 10 µM nutlin for 24h. Clone 1 demonstrates the Cre-controlled 

activation of p53 and nutlin-dependent activation of p21. 

F 

G 
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To summarize, the engineered HCT-116Δ/TP53E cell line has the following properties. 

1. One copy of the TP53 gene is permanently inactivated by a 15-bp deletion in 

intron 5 to ensure a single active TP53 allele presents in each cell. 

2. The second conditional “editable” TP53 allele (TP53E) is temporarily 

inactivated by the LSL cassette to allow editing in p53-negative background. 

After editing is completed, the allele is reactivated by Cre-recombinase, and 

p53 is re-expressed. 

3. TP53E-allele can be targeted by the allele-specific CRISPR-nuclease directed 

against a single-nucleotide variant in intron 5 (Fig. 7H). Thereby monoallelic 

integration of the library of p53 variants in the following round of genome 

editing is ensured. 

Figure 7. Continued 

E. Sanger sequencing results and schematic representation of two TP53 

alleles of the clone 1 (from D). Two upper chromatograms demonstrate 

the intact intron 4 without vector integration (vertical dashed line shows 

the end of homology arm 1 and the beginning of the homology arm 2) and 

the 15 bp inactivating deletion in the 5
th
 intron (dotted line) of one allele 

(TP53
Δ
). Amplicon was produced using primers #5 and #10 and 

sequenced using primers #5, 8, and 9. Two lower chromatograms 

demonstrate the integration of the LSL cassette into the second allele and 

+T insertion (SNV) in the targeted conditional allele (TP53E). Sequenced 

amplicons are shown with dashed lines, primers shown with arrows. 

Amplicon was sequenced using primers #6, 8, and 9.  Red triangles: Lox-

P sites. F. Western blot analysis of p53 and p21 expression in three 

independent single-cell subclones of the clone 1 from (D) after 

transduction with adeno-Cre. Cells were treated with 10 μM nutlin for 24h 

to stabilize p53. Parental cells (WT) and TP53-knockout cells (KO) were 

used as positive and negative controls respectively. β-actin serves as a 

loading control. G. Restoration of the puromycin sensitivity in HCT-

116
Δ/TP53E 

cells via inactivation of the pac gene. Cells were transfected 

with the plasmid encoding sgRNA targeting pac, single-cell clones were 

established and tested for puromycin sensitivity. H. Schematics of the 

TP53 locus of the HCT-116
Δ/TP53E 

cell line. The puromycin-sensitive cell 

line contains one allele inactivated by 15 bp CRISPR-induced deletion in 

the intron 5. The second allele contains the cassette with the non-

functional pac gene and GFP in the intron 4 (red cross). 
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4. The puromycin resistance gene in the HCT-116Δ/TP53E cell line is disrupted, 

making cells puromycin-sensitive. Therefore, cells that successfully 

underwent recombination with the pac-containing HDR template can be 

selected. 

3.5  Generation of cell pools expressing p53 variants 

To introduce mutations into the TP53E allele, we have employed the second round of 

genome editing. We first aimed to perform mutagenesis of the codon R175 and the 

adjacent region (H1 helix). To generate the library of targeting vectors carrying 

mutations, we have utilized the Golden Gate cloning procedure. The protocol 

enables the rapid single-step cloning of inserts into the vector with almost 100% 

efficiency (Engler et al. 2008). Golden Gate cloning procedure utilizes the digest of 

the vector with the Type IIs restriction enzyme, which cleaves DNA outside the 

recognition site, ensuring seamless cloning. To make the HR-1 targeting vector 

compatible with this procedure, we have performed site-directed mutagenesis and 

introduced two recognition sites for the type IIs enzyme BbsI into the vector. Since 

we first aimed to modify the hotspot codon R175 and the H1 helix domain, we have 

flanked this region with the recognition sites. Cleavage of this vector with BbsI 

generates two pairs of incompatible sticky ends that can be ligated only with double-

stranded oligonucleotides with corresponding compatible sticky ends (Fig. 8). This 

precludes circularization of the empty vector and ensures superior cloning efficiency. 

Additionally, a dinucleotide mutation was introduced into the vector to destroy the 

protospacer-adjacent motif (PAM) in the 5th intron in the donor template (TCC to 

TGG, chr.17:7.674.839-7.674.841). The PAM sequence is essential for the binding 

of CRISPR nuclease to DNA. Therefore, its mutation in the HDR template prevents 

cleavage of transfected plasmid and the recombined allele. In addition, the GG 

dinucleotide was used as the unique primer binding site for the amplification of the 

TP53 DNA exclusively from library-carrying cells. Thereby cells that were not 

targeted and retained the non-edited TP53E allele were excluded from further 

analysis. The resulting vector was named HR-2-Golden Gate.  
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As a first step we have introduced single mutations one by one into the modified 

targeting vector by cloning double-stranded oligonucleotides using the Golden Gate 

protocol (Fig. 8). To do so, a pair of single-stranded complementary oligonucleotides 

Figure 8. Generation of the HDR template vector for the introduction 

of the library of H1 helix mutants into TP53 locus (HR-2-Golden Gate) 

To enable Golden Gate cloning of the oligonucleotide library into the 

targeting vector, two BbsI recognition sites in opposite orientation were 

introduced into the sequence encoding H1 helix in the right homology arm 

of the HR-1 targeting vector using site-directed mutagenesis (BbsI 

recognition sequences are marked in red, cleavage sites are marked with 

arrowheads). 34 bp double-stranded oligonucleotides with 4-bp 

overhangs encoding variants of the H1 helix (5
th
 exon) (shown in blue) 

were cloned into the vector either separately or as a pool using Golden 

Gate cloning protocol. R181E mutation is shown as an example. HR-2-

Golden Gate vector contains a mutated PAM sequence in the intron 5 

(GG). GG dinucleotide is used as a primer annealing site for specific 

amplification of the edited allele (arrow). For mutagenesis of the full exon 

5, the vector was redesigned to allow cloning of 230 bp oligonucleotides 

spanning exon 5 (HR_Exon5) (section 3.10). 
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with a mutation was designed to form two sticky ends compatible with the BbsI-

digested HR-2-Golden Gate vector. Oligonucleotides were annealed and cloned into 

the HR-2-Golden Gate vector. Cloning product was transformed in E. coli; bacteria 

were plated on LB-agar plates. Plasmid DNA purified from harvested colony and was 

designated as vector carrying a single p53 mutation. To examine the presence of a 

TP53 mutation a fragment was amplified with primers #3 and #4 and sequenced 

using Sanger sequencing. Co-transfection of cells with the pX330 plasmid encoding 

the allele-specific sgRNA and targeting vector resulted in HDR-mediated integration 

of the mutation into the TP53E allele (Fig. 9A). Subsequent puromycin selection 

generated a mutation-carrying cell line (Fig. 9B). After infection with adeno-Cre the 

LSL-cassette was excised, restoring the p53 expression (Fig. 9C). 
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3.6 The HCT-116Δ/TP53E cell line enables highly efficient HDR-mediated 

mutagenesis of the endogenous TP53 locus 

To test the efficiency of mutagenesis in our system, we have introduced a single 

inactivating mutation (R181E, CGC > GAA) in the H1 helix-encoding region of the 

TP53E allele, as shown in Fig. 10A. This mutation destroys the AfeI restriction site. 

Therefore, cells can be easily genotyped using restriction fragment length 

polymorphism analysis. Following the co-transfection of the pX330-sgRNAp53i5 

plasmid encoding the TP53E-specific CRISPR nuclease with the HR-vector carrying 

the R181E donor, template cells were selected with puromycin. Afterward, 13 single-

Figure 9. Schematic representation of the introduction of variants 

into the TP53
E
 allele of the HCT-116 

Δ/TP53E 
cell line using HDR 

A. Cells were co-transfected with the plasmid encoding the CRISPR 

nuclease targeting the 1-bp insertion in the intron 5 of the TP53
E
 allele 

(black dot, SNV) and HR-2-Golden Gate vector carrying a single mutation 

or a mutagenic library (red rectangle in the exon 5). GG denotes the 

mutated PAM-sequence which prevents repeated cleavage of the 

targeted allele and is used as a site for primer binding. B,C. Schematic of 

the conditional allele carrying a single p53 mutation or the variant library 

before (B) and after (C) Cre-mediated restoration of the p53 expression. 

Red triangles: Lox-P sites. 

A 

B 

C 
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cell clones were established, and genomic DNA was assayed for HDR template 

integration. Strikingly, amplicons from 11 clones were resistant to AfeI digestion, 

suggesting correct modification. Only two clones have retained the initial TP53E 

A 

B 

C 

Figure 10. Highly efficient introduction of the R181E mutation into 

the TP53 locus of the HCT-116 
Δ/TP53E

 cell line 

A. Schematic of the TP53 locus in the cell line targeted with the donor 

template carrying the R181E mutation. AfeI recognition site is disrupted 

by the mutation (red rectangle). Arrows indicate primers used for the 

allele-specific PCR. Bottom: PCR-RFLP-genotyping of single-cell clones 

of HCT-116
Δ/TP53E

 cells co-transfected with the CRISPR plasmid and the 

HR-2 Golden Gate-R181E donor template. PCR fragments from 11 of 13 

clones were resistant to digest with AfeI, demonstrating targeting efficacy 

of 75%. KO - cell line with the deletion spanning exons 2 to 9 of TP53, 

used as a negative control, WT – parental HCT-116 cells serve as a 

positive control for AfeI digestion. B. Western blot analysis of p53 and 

p21 expression after infection with adeno-Cre in parental (WT), p53-null 

(KO), and HCT-116 
Δ/TP53E 

cells as well as in one of the R181E-carrying 

clones from (A) (untreated and nutlin-treated). C. Sanger sequencing 

confirms the presence of the R181E mutation in the genomic DNA of the 

engineered cell line. 
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allele (Fig. 10A). After adeno-Cre infection, expression of p53 was restored, but no 

p21 activation was evident after nutlin treatment in agreement with transactivation 

deficiency of the R181E mutant (Fig. 10B) (Timofeev et al. 2019; Schlereth et al. 

2010a; Schlereth et al. 2013; Kitayner et al. 2006; Dehner et al. 2005). Finally, 

successful targeting in 11 clones was confirmed with Sanger sequencing (Fig. 10C). 

 Later, a panel of 8 mutant cell lines was generated in our group using a similar 

approach (data courtesy of Julianne Funk, Michelle Neuman, and Pascal Hunold). 

The presence of desired mutations in all cell lines (R175Stop, R175H, R175P, 

C176F, H179R, R181L, R181P, and E180R) (Fig. 11A) was validated with Sanger 

sequencing (Fig. 11B) and western blot after nutlin treatment (Fig. 11C). 

Additionally, two other cell lines carrying H1 helix mutants (S183A, S185A, and 

S183D, S185D) were established using the approach developed in this work. These 

cell lines were used to explore the importance of H1 helix phosphorylation for tuning 

the p53 activity (Fig. 11D) (Timofeev et al. 2020). 

Summarizing, the HCT-116Δ/TP53E cell line together with a set of targeting vectors and 

corresponding protocols established in this work comprise a highly effective system 

for targeted mutagenesis of the endogenous TP53 locus.  
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3.7 The HCT-116Δ/TP53E cell line enables the introduction of 

multiple mutations into the TP53 locus: construction of the R175 

mutagenic library, assessment of the library quality, and targeting 

efficiency 

CSMS approach requires the efficient generation of mutational diversity. To test if 

the HCT-116Δ/TP53E cell line is suitable for massive parallel mutagenesis, we have 

constructed a library representing all possible variants of the hotspot codon R175. 

The library was composed of 27 oligonucleotides encoding 19 amino acid 

substitutions, three synonymous mutations (R175R), one stop codon (TGA), R175 

deletion, and three frameshift mutations (+1, -1, and -2). The HDR template was 

prepared by cloning a pool of all double-stranded oligonucleotides into the HR-2-

Golden Gate vector. Before establishing a cellular library, we have verified the 

presence of all variants in the donor vector by NGS. Vector fragments were amplified 

with primers flanking the R175 region sequence (primers #11 and 12). After 

sequencing, the number of reads corresponding to each variant was calculated. 

Normalized read counts were calculated by dividing the number of reads assigned to 

each variant by the total amount of reads in the sample. The analysis revealed that 

all variants were presented in the library. Mutation frequencies were normally 

Figure 11. HCT-116 
Δ/TP53E

 enables the of the panel of isogenic cell 

lines with H1 helix mutations 

A. Schematic of the TP53 locus in the HCT-116
Δ/TP53E

 cell line and the list 

of mutations introduced. Primers used for Sanger sequencing are shown 

with arrows. B. Sanger sequencing confirming the successful generation 

of mutant isogenic cell lines. Data courtesy of Julianne Funk and Pascal 

Hunold. C. Western blot analysis of p53 and p21 expression in HCT-

116
Δ/TP53E 

cell (before and after adeno-Cre infection, Δ/E and Δ/WT) and in 

8 isogenic cell lines expressing corresponding p53 mutants. No 

expression of p21 by mutant cell lines under nutlin treatment is evident 

except cells expressing a known pLOF mutant R181L. Data courtesy of 

Michelle Neumann D. Western blot analysis of p53 and p21 expression in 

HCT-116
Δ/S183A_S185A 

and HCT-116
Δ/S183D_S185D 

cells (in response to 

doxorubicin, after adeno-Cre infection, Δ/WT and Δ/E cells serve as 

positive and negative controls). Data courtesy of Oleg Timofeev and 

Constantin Niederau.  
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distributed (Kolmogorov-Smirnov test p>0.1, skewness 0.74) and none of the 

variants were lost from the pool, which demonstrates that cloning protocol generates 

libraries with fairly uniform coverage (Fig. 12). 

After transfection of cells with a plasmid encoding the allele-specific CRISPR-

nuclease and a pool of HDR templates and consecutive puromycin selection, a 

population of library-carrying cells was established. 

Next, we have assessed the targeting efficiency. From our experience, adenoviral 

infection is stressful for cells. Therefore, to exclude stress-induced changes in 

variant abundance, we have first analyzed cellular libraries before adeno-Cre 

infection. We have isolated genomic DNA from cells and amplified it using two 

rounds of PCR.  

CRISPR-nucleases always demonstrate some degree of unpredictable off-target 

cleavage (Wang et al. 2020; Chakrabarti et al. 2019; Tuladhar et al. 2019; Zhang et 

al. 2015). To exclude the possibility that changes in variant abundance are caused 

by off-target damage of the irrelevant gene, we have always maintained the amount 

of input DNA used for sequencing library preparation above a certain threshold. This 

ensured the amplification of variants from a sufficient number of different cells and 

minimized random off-target effects. We calculated a minimal amount of genomic 

DNA for PCR as follows: 

Figure 12. Distribution of variant frequencies across the R175 library 

The relative abundance of sequence variants in the plasmid pools 

carrying saturation R175 mutagenic library in the three independently 

prepared replicates of the HR-2-Golden-Gate plasmid. Fraction of reads 

±SD for each variant is shown. 
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gDNA amount = x∙1000∙6 pg 

 

where x – the number of mutations in the library, 1000 – desirable representation of 

each mutant in the sequencing library, 6 pg – the amount of DNA in one diploid cell. 

The calculated amount was increased by 30% to account for a fraction of non-

recombined cells after adeno-Cre infection (amount of non-recombined GFP-

expressing cells did not exceed 30% as determined by flow cytometry, data not 

shown).  

In the first PCR round, the TP53E allele was amplified using one primer annealing to 

the LSL cassette and the other annealing to the sequence downstream of the donor 

template (exon 7, primers #7 and #10) (Fig. 13A). Using this primer combination 

precluded the amplification of HDR templates falsely integrated outside of the TP53 

locus. The second allele (TP53Δ) failed to amplify due to the absence of the LSL 

cassette. The second PCR round with a primer specific to the dinucleotide mutation 

in the 5th intron (CC > GG) ensured exclusive amplification of DNA from the properly 

edited allele (primers #11 and 12-14) (Fig. 13B). During all PCR steps, the number of 

cycles was kept below 20-25 to minimize amplification bias.  

PCR products were used to construct the fragment library for massive parallel 

amplicon sequencing. Before library preparation, PCR fragments were purified, and 

their concentrations were adjusted. To exclude PCR errors, each sample was 

amplified in three independent PCR reactions, and then products were pooled. 

Molecular barcoding was used to enable parallel sequencing of multiple samples. 

First, three allele-specific primers (#12-14) with unique barcodes were employed 

(Fig. 13B). Groups of three barcoded samples were combined and additionally 

barcoded during the library preparation step using the NEBNext kit. Such a strategy 

enabled parallel sequencing of up to 90 samples. Libraries were sequenced using 

Illumina Miseq sequencer and analyzed as described in section 2.2.10. To assess 

the reproducibility of the procedure, all experiments were performed three times, and 

triplicate samples from every test condition were sequenced. After sequencing, read 

counts for each variant were calculated and normalized to total read counts in each 

sample as described above.  
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The distribution of mutations in the cell population before Cre-mediated p53 

activation was strongly correlated with the distribution in the targeting vector 

(r2=0.94) (Fig. 14A). The abundance of individual mutants was very similar between 

triplicate preparation of cellular libraries (r2=0.98) (Fig. 14B). Therefore, our approach 

reproducibly generates cell libraries with significant mutational diversity in the TP53 

locus. 

Figure 13. Preparation of the amplicon library before Cre-mediated 

recombination using nested PCR 

A. In the first round of PCR only the TP53
E
 allele was amplified due to the 

specificity of a primer #7 to the LSL cassette. Mutations are shown with a 

red rectangle. B. In the second round of PCR, a primer specific to the 

GG-dinucleotide in the conditional allele ensured the selective 

amplification of the targeted allele with the full-length integration of the 

targeting vector. Cells that have undergone partial targeting (LSL 

cassette is integrated, the mutation is not integrated) were excluded from 

amplification. Primers and amplicons are indicated with arrows and 

dashed lines. Amplicons were purified and used for NGS library 

preparation. 

A 

B 
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Next, cells were infected with adeno-Cre to restore p53 expression from the 

conditional TP53E allele. Fourteen days after infection, genomic DNA was isolated 

and amplified using two rounds of PCR. In the first PCR round, the Cre-recombined 

TP53E allele was amplified together with the inactive second allele (primers #5 and 

10, Fig. 15A). Under the chosen conditions, residual non-recombined TP53E alleles 

containing the LSL cassette failed to amplify due to their large size (Fig. 15A). The 

second round of PCR with a primer specific to the dinucleotide mutation in the 5th 

intron (CC > GG) ensured exclusive amplification of DNA from the properly edited 

and recombined allele (Fig. 15B, primers #11 and 12-14). Sequencing data from 

triplicate samples were analyzed as described above. Analysis of mutation 

frequencies in cultures after Cre-mediated p53 activation revealed a strong 

correlation between triplicates, Rs=0.96 and 0.97, respectively (Fig. 16A). 

Reassuringly, comparing the relative abundance of variants in cellular libraries 

before and after Cre-mediated p53 activation also revealed a remarkable correlation 

(Fig. 16B, Rs=0.85, 0.9 and 0.87 respectively, p<0.0001). These data further 

demonstrated the reproducibility of the developed mutagenesis procedure and 

highlighted the stability of library-expressing pools after adeno-Cre infection.  

A B 

Figure 14. CRISPR-mediated homologous recombination in HCT-

116
Δ/TP53E 

cells results in the reproducible introduction of the R175 

site-saturation library into the TP53 locus 

A,B. Correlation of normalized read counts for each of the 27 variants 

between (A) triplicates of the plasmid library and library-expressing cells 

before adeno-Cre infection, (B) triplicate cultures of library-expressing 

cells before adeno-Cre infection. r
2 

- squared Pearson correlation 

coefficient. 
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3.8 System validation: CSMS quantifies anti-proliferative capacity of p53 

variants 

We have used two metrics to measure the impact of mutations on tumor cell fitness: 

enrichment score and relative fitness score. The enrichment score (ES) is a measure 

of the relative enrichment or depletion of the variant in a given sample, where p53 

was activated by treatment, compared to the untreated sample. It was calculated as 

a ratio between normalized read counts (n) in the treated and untreated sample: 

A 

B 

Figure 15. Preparation of the amplicon library after Cre-mediated 

recombination using nested PCR 

A. In the first round of PCR the non-recombined TP53
E
 allele (above) 

was not amplified due to its the large size (3.5 kb) and was excluded from 

the amplicon library. Recombined TP53 allele without LSL-cassette and 

inactive second allele were both amplified (below). The mutation is 

shown with a red rectangle. B. In the second round of PCR a primer 

specific to the GG-dinucleotide in the conditional allele ensured selective 

amplification of the targeted allele and exclusion of the second inactive 

allele. Primers and amplicons are indicated with arrows and dashed lines. 

Amplicons were purified and used for NGS library preparation.  
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ES=ntreated/nuntreated. The relative fitness score (RFS) was calculated as log2-

transformed ES (RFS=log2ES).  

It was expected that cells carrying wild-type p53 and mutants with preserved function 

would respond to p53-activating stimuli with cell cycle arrest or apoptosis. Such 

variants would be depleted from the population, generating low ES values and 

negative RFS values. Conversely, cells expressing LOF mutants would remain 

unaffected and continue to proliferate, leading to the expansion of the variant and 

Figure 16. Restoration of the p53 expression after adeno-Cre 

infection does not change the abundance of the variants. 

A. Correlation of normalized read counts for each of the 27 variants in 

triplicate cultures of library-expressing cells after adeno-Cre infection. r
2
 - 

squared Pearson correlation coefficient. B. Correlation of normalized 

read counts between three independent replicates before and after 

infection with adeno-Cre. r
2
 - squared Pearson correlation coefficient.  

A 

B 

C 
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generating high ES or positive RFS values at the endpoint analysis. For most of the 

calculations, non-log-transformed ES values were used. To ease data interpretation, 

we used RFS values in heat maps (positive RFS values show enrichment (red color), 

negative RFS values show depletion (blue color). We have first measured the 

dynamics of each variant in the R175 library during eight weeks of passaging. We 

have collected and sequenced DNA samples 2, 4, 6, and 8 weeks after adeno-Cre 

infection. Analysis of sequencing data revealed modest changes in relative variant 

abundance after eight weeks of culture (Fig. 17A). Synonymous (wild-type-like) 

mutations R175R were slightly depleted during passaging (RFS=-0.5), while several 

missense and nonsense variants were marginally enriched (RFS=0.2-0.3). 

Our recent study has demonstrated that HCT-116 cells are highly tolerant to the 

expression of wild-type p53 and that p53 depletion gives them only a weak 

proliferative advantage (Klimovich et al. 2019). Therefore, minor changes in the 

abundance of mutants imply that their expression from the edited allele does not 

exceed normal physiological levels and that changes observed can be predominantly 

related to the stress induced by adenoviral infection. 

To validate the ability of CSMS to measure the anti-proliferative capacity of p53 

mutants, we have activated p53 in library-expressing cells with a panel of MDM2-

inhibitors. We have utilized five structurally distinct p53-activating compounds.  

Nutlin-3a was chosen as the first-in-class compound and the most extensively tested 

MDM2 antagonist (>900 citations in Pubmed). To improve the clinical relevance of 

our data, we have included three compounds that are currently undergoing clinical 

evaluation: a nutlin derivative with improved potency RG7388 (Hoffmann-La Roche) 

and two structurally unrelated compounds: the piperidinone AMG 232 (Amgen) and 

the spirooxindole MI-773 (15, 8, and 2 clinical trials respectively, clinicaltrials.gov). 

Finally, RO-5963 was added to our drug panel as a member of the class of dual 

MDM2/MDM-X inhibitors (Graves et al. 2012). Using several structurally distinct 

compounds allowed us to address several issues. First, to our knowledge, a 

systematic comparison of the efficacy of structurally distinct MDM2 antagonists 

against cells expressing multiple mutant p53 variants has not been performed so far. 

Second, using five distinct compounds could improve the robustness of the 

screening and address potential off-target effects of the inhibitorsNutlin-3a was 
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chosen as the first-in-class compound and the most extensively tested MDM2 

Figure 17. Impact of mutations at the codon R175 on cellular fitness 

under treatment with MDM2 inhibitors 

A. Dynamics of the R175 codon variants in the untreated cellular pool 

along the 8 weeks time course (3 left columns) and treatment with 

indicated MDM2 inhibitors (5 right columns). Cells expressing the R175 

library after adeno-Cre infection were cultured 2, 4, 6, and 8 weeks or 

treated with MDM2 inhibitors at IC50 concentrations for 8 days. Relative 

fitness scores (RFS) calculated relative to 2 weeks for 8 weeks time 

course experiment or relative to 8 days without treatment for the MDM2 

inhibitors treatment experiment.  

A 

C B 
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antagonist (>900 citations in Pubmed). To improve the clinical relevance of our data, 

we have included three compounds that are currently undergoing clinical evaluation: 

a nutlin derivative with improved potency RG7388 (Hoffmann-La Roche) and two 

structurally unrelated compounds: the piperidinone AMG 232 (Amgen) and the 

spirooxindole MI-773 (15, 8, and 2 clinical trials respectively, clinicaltrials.gov). 

Finally, RO-5963 was added to our drug panel as a member of the class of dual 

MDM2/MDM-X inhibitors (Graves et al. 2012). Using several structurally distinct 

compounds allowed us to address two issues. First, to our knowledge, a systematic 

comparison of the efficacy of structurally distinct MDM2 antagonists against cells 

expressing multiple mutant p53 variants has not been performed so far. Second, 

using five distinct compounds could improve the robustness of the screening and 

address potential off-target effects of the inhibitors. 

  

Figure 17. Continued 

RFS values are shown for triplicates according to the color scale: Red 

indicates high fitness (retention of the variant), blue indicates low fitness 

(depletion of the variant). Hereinafter: R175R1,2,3 – synonymous 

mutations, Stop – premature stop codon, Delta R – R175 deletion, F.S. – 

frameshifts. * - mutations annotated in the UMD TP53 database (UMD), ** 

- R175H. B. Correlation matrix demonstrating the similarity between cell 

libraries treated with MDM2 inhibitors. Spearman correlation coefficient of 

pairwise comparisons is shown according to the color bar. C. Enrichment 

scores of 3 groups of protein variants. Each point is ES of the individual 

mutation in the nutlin-treated library. Mutants demonstrating high, 

medium, and low enrichment scores are combined in groups 1, 2, and 3 

respectively. ***p<0.0001, ANOVA with Tukey post-test.  
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Library-expressing cells were treated for eight days with MDM2-inhibitors at 

corresponding IC50 concentrations. Then DNA was isolated, and amplicon 

sequencing was performed. Enrichment scores were calculated relative to untreated 

samples, as described above. A comparison of enrichment scores derived from 

replicate libraries revealed a high correlation (Rs>0.9) (Fig. 17A,B), further 

demonstrating the superior accuracy of the screening protocol. Treatment of the 

library with MDM2 inhibitors resulted in strong changes in variants abundance, 

evident from the reduced correlation between untreated and treated samples 

(Rs<0.8, Fig. 17B). Treatment of cells with five MDM2-inhibitors revealed very similar 

response patterns exemplified by high correlation between the samples (Fig. 17B). 

Enrichment scores calculated for each variant did not differ significantly between 

inhibitors (Friedman test, p=0.058). This indicates that all compounds exert similar 

effects independently of chemical structure. 

Further analysis of the dataset uncovered the differential impact of R175 variants on 

cellular fitness (Fig. 17A). Expectedly, all three synonymous mutations (R175R) were 

strongly depleted under treatment with all five compounds (mean ES=0.14±0.02). 

Conversely, the nonsense mutation (stop codon) and three frame-shift variants were 

significantly enriched after treatment (mean ES=1.49±0.07), as well as the hotspot 

mutation R175H (mean ES=1.63±0.1) (Kruskal-Wallis test p<0.0001). Almost equal 

ES computed for distinct DNA sequences with similar functional impact further 

verified the robustness of the system (note comparable depletion of all synonymous 

mutations and equal enrichment of frameshifts and stop codon).  

Detailed examination of the data presented in Fig. 17A revealed that all missense 

R175 variants could be divided into three groups based on their behavior under 

treatment (Fig. 17C). Nine mutants, including the most frequent cancer-associated 

variant R175H, were retained in the population comparable to nonsense variants 

demonstrating apparent LOF phenotype (R175D, E, F, G, H, L, Q, W, and Y, mean 

ES for nutlin=1.51±0.07 versus 1.49±0.07). Group of six variants (R175I, K, N, P, S, 

M) showed weak changes upon treatment (mean ES for nutlin=0.95±0.15). The 

relative abundance of these mutants was significantly different from both nonsense 

and synonymous mutations, suggesting partial-LOF properties (ANOVA with Tukey 

test, p<0.0001). Finally, four mutants (R175A, C, T, V) were depleted comparable to 
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synonymous mutations being, therefore, wild-type like (mean ES for 

nutlin=0.22±0.11 versus 0.14±0.02) (Fig. 17C). Surprisingly, two tumor-derived 

variants, R175S and R175C, demonstrated moderate (ES=0.81±0.11) to strong 

(ES=0.33±0.15) depletion upon treatment with all MDM2 inhibitors classifying them 

as wild-type-like variants with only little LOF (Fig. 17A). R175C was found in tumor 

samples as frequently as variant R175L, which was classified as LOF by CSMS (71 

and 74 UMD records, respectively). Since recurrent cancer-associated TP53 

mutations are expected to be damaging, both these variants ought to be enriched in 

our screen.  

Supporting this expectation, three in silico predictors have classified both variants to 

be as damaging as other LOF mutants (data were retrieved from UMD database) 

(Fig. 18A). Such discrepancy raised doubts about the accuracy of the classification 

made by CSMS. To verify the validity of our classification, we have analyzed data on 

the transcriptional activity of the six R175 variants as an independent predictor of 

protein functionality. Specifically, we have retrieved the data from the study of Kato 

(Kato S. et al. 2003). In this study, the transcriptional activity of hundreds of p53 

mutants was measured in the yeast system. The reporter gene was coupled with p53 

response elements from the promoters of eight distinct p53 target genes, and 

reporter expression levels were measured for each mutant. To identify patterns in 

this multivariate dataset, we have performed principal component analysis using 

ClustVis software (https://biit.cs.ut.ee/clustvis/) (Fig. 18B). PCA revealed that R175C 

and R175S were most strongly separated from other variants along with the principal 
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component 1 axis, suggesting that they have mostly distinct transactivation patterns 

among all six mutants (Fig. 18B,C). Furthermore, PC1 values exhibited a strong 

correlation with enrichment score (R2=0.81), demonstrating that anti-proliferative 

Figure 18. Cancer-associated variants R175S and R175C are 

functional  

A. Prediction of the functionality of R175 mutants made by in silico 

predictors Polyphen2, REVEL, and BayesDel. All variants are predicted to 

be equally damaging (scores >0.8 (Polyphen2), >0.5 (REVEL), and >0 

(BayesDel) predict the deleterious effect of mutation). B. Principal 

component analysis of the transcriptional activity of R175 mutants. 

Transcriptional signature for each mutant was extracted from the study of 

Kato et al., 2003. It is composed of transactivation values of p53 response 

elements from 8 p53 target genes measured in the yeast reporter assay 

and normalized to transactivation values of the wild-type protein. Values 

we subjected to principal component analysis using ClustVis 

(https://biit.cs.ut.ee/clustvis). Two orthogonal principal components are 

shown. Large distance between mutants R175C, S, and R175 G, H along 

the 1st principal component axis reflects a distinct transactivation pattern. 

Analysis performed by Boris Klimovich. C. Correlation between 

enrichment scores and PC1 values from B. r
2
 - squared Pearson 

correlation coefficient. D. Transcriptional activation of individual p53 

response elements by R175 mutants. Data are shown as expression 

levels of the reporter gene normalized to wild type p53 (Kato et al. 2003).  

A B 

D C 
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capacity measured by CSMS indeed reflects the transactivating properties of 

selected p53 mutants (Fig. 18C). 

Closer examination of the transactivation of single response elements by individual 

mutants uncovered a clear pattern (Fig. 18D). Mutants with the highest enrichment 

scores (R175H, G, and L) showed weak transactivating activity. The mutant with 

intermediate enrichment (R175P, mean ES=1.21) showed substantial transactivation 

of three response elements (>50% of wild-type) (Fig. 18D). Finally, mutants R175S 

and R175C, classified by CSMS as wild-type like, demonstrated strong (>50% of 

wild-type) induction of reporter gene expression with five and six response elements, 

respectively. Remarkably, both these mutants activated promoter of the pro-

apoptotic gene Noxa stronger than the wild-type protein (132 and 162%, 

respectively) (Fig. 18D). Thus, CSMS has identified anti-proliferative properties in 

mutants with preserved transactivating capacity. 

Further evidence supporting the validity of our classification can be found in the 

literature. Mutant R175S (showed weak depletion in CSMS) was shown to activate 

cell cycle arrest (Ryan and Vousden 1998; Goh et al. 2011; Billant et al. 2017). 

Similarly, mutant R175C was shown to induce both cell cycle arrest and apoptosis in 

different cell lines (MCF7, Saos, and PC-3) (Ryan and Vousden 1998; Flaman et al. 

1998; Blagosklonny 1997; Ory et al. 1994; Blagosklonny 2002). Finally, cDNA-based 

screening by Kotler and colleagues has produced scores for the R175C mutant 

strikingly similar with ours: (RFS for R175C and WT respectively: -2.15 and -2.56 for 

CSMS and -2.69 and -2.43 for the cDNA screen).  

Mutation R175C originates from a C>T transition at a methylated CpG site, which is 

the most frequent mutation signature of p53 (Giacomelli et al. 2018). Therefore, it is 

highly plausible that R175C is a non-pathogenic passenger mutation. 

Taken together, the CSMS classified six cancer-associated R175 variants in better 

agreement with previously published data than the commonly used in silico tools. 

 CSMS dissects the impact of mutations on p53-regulated effector pathways 

Inspired by the good agreement of our results with previous findings, we have 

continued experimenting with the R175 library to further explore the capabilities of 

the CSMS. Apart from LOF and wild-type-like mutants, the R175 library screening 

revealed a group of six mutants with intermediate enrichment (R175I, K, N, P, S, and 
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M) (group 2 Fig. 17D). Outcomes of p53-mediated response strongly depend on the 

intensity and duration of treatment. Shorter treatment preferentially induces cell cycle 

arrest, whereas prolonged treatment leads to apoptosis (Kracikova et al. 2013; 

Murray-Zmijewski et al. 2008; Paek et al. 2016). Therefore, to gain more detailed 

mechanistic insight into mutants’ properties, we have profiled antiproliferative effects 

of R175 variants across the range of nutlin concentrations (2.5 – 20 µM nutlin) or 

treatment durations (2-25 days). 

As expected, LOF mutants from group 1 (from Fig. 17D) (R175D, E, F, G, H, L, Q, 

W, and Y) were strongly enriched even when treated with the lowest concentration of 

nutlin (2.5 µM) (Fig. 19A,B) and demonstrated progressive enrichment upon 

increased treatment duration (Fig. 19C,D). Wild-type-like mutants (R175A, C, T, V) 

revealed rapid depletion from the population even at the lowest concentration of 

nutlin and after shorter treatment (4-8 days) (Fig. 19B,D). 

In striking contrast, five variants from group 2 from Fig. 17D (R175I, K, M, N, S) 

showed a changing response pattern. In detail, the mutants in the sample treated 

with 2.5 µM nutlin, demonstrated significant dose-dependent depletion (Fig. 19B). A 

similar trend was revealed when the mutants-expressing cell library was treated for 

an extended period: the abundance of five mutants was comparable to LOF mutants 

after 2-4 days but was significantly decreased upon more extended treatment and 

reached the level of wt-like variants for two mutants (mean ES at 25 days wt-like: 

0.12±0.01, R175M 0.11±0.02, R175S 0.1±0.02, 2-way ANOVA with Sidak’s test, 

p>0.0001). Interestingly, the mutant R175P with documented partial-LOF features 

did not change its abundance in both experiments (Barboza et al. 2006; Liu et al. 

2004) but was nevertheless depleted significantly stronger than LOF variants 

(p=0.0002 and 0.0027 for Fig. 19B and D respectively, 2-way ANOVA). Collectively, 

such behavior revealed partial-LOF properties of the group of six mutants.  

These observations uncovered substantial qualitative differences in the response of 

p53 mutants to MDM2 inhibition. Wild-type-like variants were rapidly cleared from the 

population even in response to low levels of the stimulus (mean ES at 2.5 µM nutlin= 

0.12±0.01, mean ES after two days of treatment 0.36 ±0.08), suggesting that 

apoptosis is the principal mechanism eliminating variant-carrying cells. Conversely, 

the persistence of partial-LOF mutants in the population under low concentrations of 
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nutlin and their depletion under prolonged treatment or elevated concentrations 

evident from Fig. 19B indicate selective apoptosis defect in these mutants and 

suggest cell cycle arrest as the principal tumor-suppressive mechanism involved 

(Fig. 19D). 

TP53 mutations that disable specific effector pathways but spare the others have 

E
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Figure 19. Dose- and time-dependent variations of the impact of 

mutations at the codon R175 on the response to MDM2 inhibitors 

A. Cells were treated with 2.5 – 20 µM nutlin for 8 days. Heatmap shows 

RFS values for individual replicates. B. Mean enrichment score values for 

the selected R175 mutants from A. ns: p=0.29, ****p<0.0001, Two-way 

ANOVA with Sidak’s test. C. Time course dynamics of variants in the 

R175 library (n=3) under nutlin treatment. Cells carrying R175 library 

were treated with 10 µM nutlin for 2 - 25 days as indicated on the 

heatmap. Mean RFS across triplicates are shown. D. Mean enrichment 

scores for the selected R175 mutants from C. ns: p=0.93, ****p<0.0001, 

Two-way ANOVA with Sidak’s test.  
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been extensively studied. For example, mutants R175P, R181L, and E180R 

demonstrate a specific defect in apoptosis but retain the ability to arrest proliferation 

(Rowan et al. 1996; Ludwig et al. 1996; Liu et al. 2004; Timofeev et al. 2013). 

Furthermore, it is plausible that partially preserved functionality can be a widespread 

intrinsic property of non-hotspot tumor-associated mutations. Indeed, our analysis of 

the dataset “functionalAssessment” from the IARC database, which consists of 

manually curated information from almost 350 publications, identified 317 patient-

derived variants that were reported to suppress cellular growth despite being 

apoptosis-deficient. Therefore, it was of considerable interest to examine if CSMS 

could identify mutants with selective defects in effector functions. Hence, we have 

designed experiments to explore the impact of mutants on apoptosis and cell cycle 

arrest. 

In the first experiment, instead of continuously treating cells with MDM2-inhibitor, we 

have exposed them to nutlin for 4, 6, or 8 days. Afterward, nutlin was washed out, 

and surviving cells were further expanded and harvested eight days later. Control 

samples were either treated with nutlin for 16 days or left untreated (Fig. 20A). We 

assumed that cells harboring wild-type-like variants would be rapidly killed by 

apoptosis and strongly depleted from the population even after 4 days of treatment. 

Conversely, cells harboring LOF mutants will be markedly enriched in the population 

irrespective of the treatment duration. Partial-LOF mutants capable of arresting 

proliferation were expected to stay relatively abundant after short nutlin treatment 

due to resuming proliferation after drug withdrawal. Upon extended exposure to 

nutlin these mutants were anticipated to stay in cell cycle arrest and become 

progressively eliminated. In good agreement with our expectations, synonymous 

variants were strongly depleted already 4 days after the beginning of the treatment 

(mean ES=0.27±0.18), whereas nonsense and frameshift mutations, as well as 

hotspot R175H and other missense LOF variants, were enriched (mean 

ES=2.56±1.15) (Fig. 20B) in line with previous experiments (Fig. 19). Partial-LOF 

mutants identified in the experiment shown in Fig. 20B (R175I, K, M, N, S) and the 

extensively studied pLOF mutant R175P demonstrated an intermediate enrichment 

pattern. After four days of nutlin treatment, they were almost as abundant as LOF 

mutants (mean ES 1.00±0.17 versus 1.26±0.14), indicating that cells have resumed 
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proliferation. However, after 16 days of continuous MDM2 inhibition, partial-LOF 

mutants were eliminated (mean ES=0.39±0.28). Therefore, the pattern of enrichment 

and depletion of partial LOF mutants perfectly fits our expectations regarding protein 

variants with the selective defect in apoptosis and preserved ability to induce cell 

cycle arrest.  

Next, we applied CSMS to demonstrate apoptosis deficiency of partial-LOF mutants 

directly. We have treated library-carrying cells with 10 µM nutlin and stained 

apoptotic cells after two and four days with annexin V-APC conjugate. Next, we 

Figure 20. Annotation of the cell cycle arrest-proficient R175 mutants 

A. Schematic of the experiment. Cells expressing the R175 library were 

treated with nutlin for 4, 6, 10, and 12 days. After 4-8 days drug was 

washed away, and cells were harvested on the 16
th
 day from the beginning 

of the experiment for gDNA extraction. B. Heatmap shows RFS values for 

individual replicates calculated relative to untreated control. * -mutations 

annotated in the UMD database, ** - R175H. pLOF mutants are shown with 

arrowheads. 
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separated annexin V positive and negative populations using fluorescence-activated 

Figure 21. CSMS captures the apoptosis proficiency of R175 

mutants 

A. Schematic representation of the experiment. Cells carrying the R175 

library were treated with 10 µM nutlin for 2 or 4 days and apoptotic cells 

were stained with annexin V-APC. Annexin V positive and negative 

fractions were separated using fluorescence-activated sorting and used 

for DNA isolation and library preparation. Representative FACS plot 

demonstrates the gating strategy. B. Heatmap demonstrates triplicate 

RFS values of each variant in the annexin V-positive population (RFS 

for each variant was calculated relative to the annexin V-negative 

population). Right 3 column: RFS of variants after 8 days of nutlin 

treatment (relative to untreated cells). C. Mean enrichment scores of 

apoptosis-proficient R175 mutants 2 and 4 days after p53 activation 

with nutlin. R175R – mean ES of 3 synonymous codons. **p=0.0048, 

***p=0.0009, two-way ANOVA with Sidak's test. D. Enrichment scores 

of partial-LOF mutants (R175I, K, M, N, P, S) after 16 days of nutlin 

treatment compared with ES of nonsense variants. ****p<0.0001, t-test. 
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C D 
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cell sorting. We have prepared amplicon libraries from both samples and sequenced 

them (Fig. 21A). 

We have compared the fraction of reads corresponding to each sequence variant in 

annexin-positive and annexin-negative fractions and plotted the relative enrichment 

scores along with RFS for the library treated with nutlin for 16 days (Fig. 21B). 

Concordant with their intact proapoptotic activity synonymous mutants were strongly 

enriched in annexin-positive fraction after two days of treatment (mean 

ES=1.64±0.23). Likewise, missense mutants characterized as wild-type-like in 

previous experiments (R175A, C, T, V) were also prevalent among the annexin-

positive population after two and four days of treatment (Fig. 21B). Tumor-associated 

variant R175C revealed partially preserved apoptotic function in good agreement 

with our data and with previous reports (Ory et al. 1994). As expected, all apoptosis-

proficient variants were depleted from the library after 16 days of continuous nutlin 

treatment (Fig. 21B). Interestingly, the abundance of synonymous variants, R175T 

and R175V, was strongly decreased after four days of treatment (mean ES at 4d 

0.35±0.12), indicating rapid depletion of apoptotic cells. (Fig. 21C). At the same time, 

mutants R175A and C were significantly less abundant than wild-type among 

apoptotic cells at two days of treatment (ES=0.80 and 0.94, p=0.0048 and 0.0009, 

two-way ANOVA with Sidak’s multiple comparison test, p<0.005) and were depleted 

from the annexin-positive fraction to a lesser extent at day 4 (mean ES 0.68±0.13). 

Distinct dynamics of the two groups of variants suggest partially compromised pro-

apoptotic activity of R175A and R175C. 

Loss-of-function mutants identified in the previous experiments (R175D, E, F, G, H, 

L, Q, W, Y) were expectedly unable to activate apoptosis, as evident from the 

depletion of these variants from the annexin-positive population (Fig. 21C). 

Mutants categorized as partial-LOF (R175I, K, M, N, P, S) showed no enrichment in 

the annexin-positive fraction over nonsense variants (mean ES at 2 days 0.95±0.21 

versus 0.82±0.31), highlighting their severe apoptosis deficiency (Fig. 21C). 

Nevertheless, they were depleted significantly more than stop codons after 16 days 

of nutlin treatment (mean ES=0.36±0.21 versus 1.74±0.13, unpaired t-test p<0.0001) 

(Fig. 21D). This observation further demonstrates that these apoptosis-deficient 

mutants retain the ability to induce cell cycle arrest. 



101 

In summary, our system accurately delineated p53 mutations with differential impact 

on effector mechanisms and identified several partial-LOF mutants in good 

agreement with previously published findings. 

 CSMS measures the impact of p53 mutations on response to conventional 

chemo- and radiotherapy  

We have validated the CSMS as a sensitive tool for measuring the antiproliferative 

effects of p53 mutants in response to MDM2-inhibitors. MDM2-inhibitors act as direct 

non-genotoxic p53 activators. However, the therapy of many cancer entities still 

relies on the induction of DNA damage by genotoxic substances or irradiation. P53 

integrates stress response signals to activate cell cycle arrest or cell death. 

Therefore, mutations in p53 enforce chemo- and radioresistance and are selected 

during therapy (Lee and Bernstein 1993; Sturm et al. 2003; Keshelava et al. 2001; 

Wong et al. 2015). Moreover, drug resistance can be further enhanced via 

neomorphic gain-of-function activities (Stiewe and Haran 2018; Blandino et al. 1999; 

Lavra et al. 2009; Wong et al. 2007). Therefore, the cataloging of p53 mutations 

causing resistance to DNA damaging agents would be of great value to advance 

personalized cancer treatment. 

DNA-damaging agents induce extensive post-translational modifications of p53, 

which modulate p53-mediated responses. Therefore, p53 might show different 

activities upon treatment with DNA-damaging stimuli compared to nutlin. For 

example, treatment of cancer cells with nutlin or doxorubicin results in substantially 

different genome-wide binding patterns and transactivation outcomes (Tonelli et al. 

2017; Menendez et al. 2006).  

To examine how DNA damage response is affected by mutations in p53, we have 

treated cells expressing the R175-library with two genotoxic agents: X-rays and 5-

fluorouracil (5-FU). Both modalities are used for the therapy of colorectal cancer and, 

therefore, are expected to produce clinically valuable estimates in our system based 

on the colorectal cancer cell line. Unlike MDM2-inhibitors, which specifically trigger 

apoptosis by stabilizing p53, DNA damage can result in both p53-dependent and 

p53-independent apoptosis (Clarke et al. 1993; Strasser et al. 1994; Lanni et al. 

1997). Therefore, to minimize p53-independent effects and achieve maximal 
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resolution between wild-type, LOF, and partial LOF mutants, we have first optimized 

treatment conditions.  

Preliminary experiments have demonstrated that X-ray irradiation with 6 Gy 

completely inhibited the growth of parental HCT-116 cells at clonogenic density (Fig. 

22A). To determine the optimal treatment dose for cells growing in a dense culture, 

we have irradiated parental HCT-116 and HCT-116Δ/TP53E (p53-null) cells with 8 Gy 

and evaluated the viability of cells by monitoring the confluence using the live-cell 

imaging system Incucyte S3. Relative viability was calculated by normalizing 

confluence at each timepoint to the confluence readings of untreated cells at the last 

time point (69 hours). As shown in Figure 22B, irradiation with 8 Gy resulted in a 

marked decrease in the viability of both cell lines. Parental p53 wt cells were more 

sensitive to irradiation, as evident from significantly lower relative viability (two-sided 

t-test, p<0.0001). Higher doses of irradiation resulted in the low viability of both cell 

Figure 22. Establishment of the optimal irradiation regime for library-

expressing cells 

A. HCT-116 p53 wild-type and knockout cells were irradiated with 1-6 Gy 

and plated at clonogenic density. After 7 days of culture, colonies were 

counted. Survival fraction was calculated as a ratio of the number of 

colonies formed by treated versus untreated cells. Data courtesy of 

Bernadette Wezorke. B. Parental HCT-116 and HCT-116
Δ/TP53E   

cells 

were plated 3000 per well of 96 well plate. 18h after plating cells were 

irradiated with 8 Gy. Growth was monitored for 3 days by live-cell 

microscopy using the IncuCyte S3. Hour 0 is a time point after irradiation. 

All confluence values were normalized to the confluence of untreated 

cells at the end of the time course (69h) and shown as mean. 

****p<0.0001, two-sided t-test. 

A B 
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lines (data not shown). We have irradiated library-expressing HCT-116Δ/TP53E cells 

with 4 doses ranging from 2 to 8 Gy based on these results.  

Examination of changes in clonal abundance after X-ray irradiation revealed a 

characteristic pattern. Synonymous mutations, as well as wild-type-like mutations 

(R175A, C, M, T, V), were progressively depleted from the population with increasing 

irradiation dose, whereas nonsense and LOF variants (R175 D, E, F, G, H, L, Q, W, 

and Y) were markedly enriched (Fig. 23A). Mostly, functional effects of substitutions 

at the position R175 were correlated in irradiated and nutlin-treated cells (Rs=0.79 

A B 

C 

Figure 23. Annotation of R175 mutations conferring radioresistance 

A. Cells harboring the R175 library were irradiated with X-rays with 2, 4, 

6, and 8 Gy and harvested 8 days later. RFS values for irradiated cells 

relative to untreated cells are shown (n=3, four left columns). Right 

column: RFS values for cells treated for 8 days with nutlin. B. Correlation 

between RFS values of R175 mutants in nutlin- and X-ray-treated 

libraries. Rs: Spearman correlation coefficient. C. Comparison of ES 

between nutlin- and X-rays-treated libraries for 3 groups of mutants: LOF 

(red) wild type-like (blue) and partial-LOF (green). ****p<0.0001 mixed-

effects analysis with Sidak’s multiple comparison test. 



104 

and 0.77 for 6 Gy and 8 Gy versus nutlin) (Fig. 23B). More specifically, LOF and 

partially-LOF variants were similarly enriched after both treatments. Interestingly, 

synonymous and wild-type-like mutants demonstrated distinct behavior: all these 

variants were depleted by nutlin significantly stronger than by irradiation (mean ES 

for nutlin 0.16 ± 0.034, mean ES for 8Gy X-ray 0.52±0.06, p<0.001) (Fig 23C). This 

result points to the essential mechanistic difference in the cellular response to these 

stimuli. Moderate depletion of cells carrying wild-type-like p53 variants after 

irradiation suggests that this type of treatment induces both p53-dependent and p53-

independent response, and thereby diminishes proliferation of all cells. By contrast, 

non-genotoxic activation of p53 with nutlin affects particularly wild-type cells and 

leaves cells with LOF mutants unaffected. Therefore, the difference between wild-

type-like and LOF variants is stronger for nutlin than for the X-ray irradiation. 

Additionally, distinct depletion of wild-type variants can be explained by various 

stimuli duration. Transient p53 stabilization after irradiation results preferentially in 

cell cycle arrest and DNA repair leading to retention of funcitonal variants, whereas 

sustained p53 signaling under MDM2 inhibition triggers apoptosis and eliminates 

these mutants (Paek et al. 2016; Purvis et al. 2012). Examination of changes in 

clonal abundance after X-ray irradiation revealed a characteristic pattern. 

Synonymous mutations, as well as wild-type-like mutations (R175A, C, M, T, V), 

were progressively depleted from the population with increasing irradiation dose, 

whereas nonsense and LOF variants (R175 D, E, F, G, H, L, Q, W, and Y) were 

markedly enriched (Fig. 23A). Mostly, functional effects of substitutions at the 

position R175 were correlated in irradiated and nutlin-treated cells (Rs=0.79 and 

0.77 for 6 Gy and 8 Gy versus nutlin) (Fig. 23B). More specifically, LOF and partially-

LOF variants were similarly enriched after both treatments. Interestingly, 

synonymous and wild-type-like mutants demonstrated distinct behavior: all these 

variants were depleted by nutlin significantly stronger than by irradiation (mean ES 

for nutlin 0.16 ± 0.034, mean ES for 8Gy X-ray 0.52±0.06, p<0.001) (Fig 23C). This 

result points to the essential mechanistic difference in the cellular response to these 

stimuli. Moderate depletion of cells carrying wild-type-like p53 variants after 

irradiation suggests that X-ray irradiation induces both: p53-dependent and p53-

independent response, and thereby diminishes proliferation of all cells. Since nutlin 
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affects particularly wild-type cells remaining LOF cells unaffected, the difference 

between wild-type-like and LOF is stronger for nutlin than for the X-ray irradiation. 

Besides, we measure enrichment relative to the population mean, ES values are 

more pronounced. they rather underwent cell cycle arrest than apoptosis. This 

difference can be explained by distinct stimuli duration: transient p53 stabilization 

after irradiation results preferentially in cell cycle arrest and DNA repair, whereas 

sustained p53 signaling under MDM2 inhibition triggers apoptosis (Paek et al. 2016; 

Purvis et al. 2012).  

Next, we have treated library-expressing cells with 5-FU. To optimize 5-FU 

concentration, we have treated parental HCT-116 and HCT-116Δ/TP53E cells with four 

concentrations of the compound (2.5-20 µM) and monitored culture confluence over 

one week using the Incucyte S3 (Fig. 24A, B). Nutlin treatment was used as a 

positive control. Treatment with 10 µM nutlin expectedly affected the growth of p53 

wild-type cells and did not affect p53 knockout HCT-116Δ/TP53E. Treatment with the 

lowest dose of 5-FU (2.5 µM) did not influence the viability of both cell lines, whereas 

higher doses (10-20 µM) decreased proliferation below the level of nutlin-treated 

wild-type cells pointing at p53-independent toxicity. Cells treated with 5 µM 5-FU 

demonstrated an intermediate proliferation rate between nutlin-treated wild-type and 

HCT-116Δ/TP53E cells. Moreover, p53-wt cells showed pronounced growth retardation 

80h after treatment, whereas HCT-116Δ/TP53E cells continued to proliferate 

(corresponding curves are labeled with arrowheads). We have reasoned that such 

treatment conditions would be the most suitable to measure the anti-proliferative 

effects accurately. Therefore, the library was treated with 5 µM 5-FU. To minimize 

the p53-independent effects of continuous treatment, we have exposed cells to 5-FU 

for 24 or 48h, washed the drug away, and harvested cells eight days after plating 

(Fig. 25A). Analysis of relative variant frequency revealed a high correlation with the 

nutlin dataset (Fig. 25B) (Rs=0.93 and 0.88 for 24 h and 48h, respectively). 
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Similar to the irradiation experiment, enrichment of most of the LOF variants was 

comparable to enrichment under nutlin treatment (Fig. 25C). However, by contrast to 

the nutlin-treated library, exposure to 5-FU produced more similar enrichment scores 

for distinct mutant groups. For example, synonymous and wild-type-like mutants 

Figure 24 Estimation of the optimal concentration of 5-fluorouracil 

for the treatment of library-expressing cells 

HCT-116
Δ/TP53E 

(A) and parental p53 wild-type (B) cells were treated with 

2.5-20 µM of 5-FU. Growth was monitored for 7 days by live-cell 

microscopy using the IncuCyte S3. Hour 0 is the beginning of treatment. 

All confluence values were normalized to the confluence of untreated 

cells at the end of the time course (172 h) and shown as mean. Curves 

generated under the selected drug concentration are labeled with 

arrowheads.  

A 

B 
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were depleted by 5-FU markedly less than by nultin (mean ES=0.53 ± 0.09 versus 

0.13±0.07) (Fig. 25C). Likewise, depletion of pLOF mutants was less prominent 

(mean ES for 5-FU 48h 0.92±0.15 versus 0.76±0.18 for nutlin). On the contrary, 

enrichment of LOF mutants was significantly lower under 5-FU treatment than under 

Figure 25. Impact of mutations at the codon R175 on the DNA 

damage response induced by 5-fluorouracil 

A. Cells harboring the R175 library were treated with 5 µM 5-FU for 24 or 

48h, washed with medium, and harvested 8 days after the beginning of 

treatment. RFS values for treated library triplicates are shown (two left 

columns). Right column: RFS values for cells treated for 8 days with 

nutlin. B. Correlation between enrichment scores of R175 mutants in 

nutlin- and 5-FU-treated libraries. Rs, Spearman correlation coefficient. 

C. Comparison of ES between nutlin- and 5-FU-treated libraries for 3 

groups of mutants: LOF (red), wild-type-like (blue), and partial-LOF 

(green). Each dot represents one variant averaged across replicates. **** 

p<0.0001, ** p=0.004, * p=0.015. ANOVA with Sidak’s multiple 

comparison test. 

A B 

C 
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nutlin (mean ES 5-FU 48h 1.24±0.27 versus 1.43±0.27 for nutlin Fig. 25C). Most 

likely, this was a result of distinct treatment duration. Under the short-term 5-FU 

treatment, some cells carrying wild-type-like mutants undergo cell cycle arrest and 

recover upon treatment withdrawal. Meanwhile, eight days long nutlin treatment 

Figure 26. CSMS reveals no restoration mutants p53 functions by 

APR-246  

A. Estimation of the optimal concentration of APR-246 for treatment of 

the library in H1299 cells expressing p53 mutants. Parental p53-negative 

H1299 cells and cells overexpressing R175H and R273H hot-spot 

mutants were treated with 25 µM APR-246. The growth of cells was 

monitored for 5 days by live-cell microscopy using the Incucyte S3. Hour 

0 is the beginning of treatment. All confluence values were normalized to 

the confluence of untreated cells at the end of the time course (120 h) 

and shown as mean. B. Cells harboring the R175 library were treated 

with 12.5 and 25 µM of APR-246 for 8 days and harvested for DNA 

isolation. Additionally, cells were treated with a combination of APR-246 

with 10 µM nutlin. RFS values for treated library triplicates are shown. 

A 

B 
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efficiently depletes wt-like and pLOF mutants either by apoptosis or by permanent 

cell cycle arrest. Furthermore, p53-independent action of genotoxic compound can 

also contribute to observed effects. 

Our experiments have validated the CSMS as a versatile tool for predicting the 

response of mutant p53-expressing cells to various treatments: MDM2 inhibitors, 

irradiation, and 5-FU. Despite the substantial correlation between datasets, CSMS 

revealed a qualitative difference in response to these treatments. For example, 

prolonged exposure to nutlin strongly depleted synonymous variants indicating 

preferential induction of apoptosis. Conversely, single-dose irradiation or short-term 

(48h) treatment with 5-FU preferentially induced cell cycle arrest, exemplified by 

partial retention of wt-like mutants in the population. Our data argue that the CSMS 

captured an essential mechanistic difference between therapeutic agents and might 

be used to identify p53 mutations that confer drug resistance.  

 CSMS reveals no reactivation of p53 mutants by APR-246 

Mutant p53 reactivation therapy aims at the pharmacological restoration of normal 

tumor-suppressive functions in missense mutants. Several p53 reactivators are 

currently investigated. Some compounds are active against single mutants: e.g., 

PK7088 and ZMC1 reactivate Y220C and R175H, respectively (Blanden et al. 2015; 

Bykov et al. 2018). Other molecules are targeting a broader spectrum of mutant 

proteins. However, most of the p53-reactivating compounds were only tested with a 

small number of exemplary hotspot mutations. Therefore, a comprehensive 

characterization of the response of non-hotspot mutants to p53 reactivators would 

give useful information for selecting patients for clinical trials. To this end, we have 

tested the response of cells expressing the R175 mutant library to APR-246, the 

most advanced compound in the class, which is currently under clinical studies 

(NCT03745716, NCT03931291, NCT03588078, NCT03072043, NCT00900614). 

The optimal concentration of the compound was determined by monitoring the 

growth of two isogenic H1299 cell lines expressing p53 hotspot mutants (R175H and 

R273H) in comparison to parental p53-null H1299 cells. 25 µM APR-246 delayed 

proliferation of both mutant-expressing cell lines but not parental p53-null cells. (Fig. 

26A). We have treated cells expressing the R175 mutant library with two 

concentrations of APR-246 for eight days (12.5 and 25 mM). Since APR-246-

https://clinicaltrials.gov/ct2/show/NCT03588078
https://clinicaltrials.gov/ct2/show/NCT03072043
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mediated restoration of p53 activity was shown to synergize with MDM2 inhibition 

(Izetti et al. 2014), we have additionally treated cells with the combination of APR-

246 and nutlin to potentially amplify the effects of p53 reactivation by elevating the 

mutant protein levels.  

We have expected that successful reactivation of mutant p53 with APR-246 would 

deplete some of the missense mutants (for example, R175H) from treated samples. 

Surprisingly, none of the mutants revealed any significant abundancy changes under 

treatment compared to untreated cells (Fig. 26B). Both sequencing datasets 

obtained from the APR-treated cells revealed almost absolute correlation with the 

dataset from untreated cells (Rs=0.989 and 0.993 for 12.5 and 25 µM respectively, 

p>0.0001). No changes in abundance of R175H mutant were observed as well. 

Combined treatment with APR-246 and nutlin revealed no APR-246-specific effects 

(correlations between nutlin-treated samples with or without APR-246: Rs=0.993 

(12.5 µM) and 0.976 (25 µM), ANOVA p=0.88) (Fig. 26B). Again, no depletion of 

R175H variant hinting at p53 reactivation was evident upon combined treatment 

(ES=1.39 versus 1.37 and 1.21 for nutlin and nutlin-APR-246 combinations, 

respectively). 

In summary, we were unable to reveal any p53-reactivating effects of APR-246 in the 

CSMS experiment with the HCT-116Δ/TP53E cell line expressing the R175 mutant 

library.  

3.9 CSMS probes the functional status of hundreds of H1 helix mutants  

We have extensively validated the CSMS for accurate measurement of functional 

consequences of p53 mutations. To explore the applicability of the CSMS for high-

content experiments, we have generated a library of HDR templates carrying 210 

mutations representing all possible amino acid substitutions in the H1 helix of the 

p53 DNA-binding domain (positions C176-S185). H1 helix contains several residues 

essential for p53 function (e.g., C176, H179, E180, R181). Therefore, this small 

region was extensively studied, which makes it especially suitable for performance 

evaluation. 
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To construct the library, 210 double-stranded 34 base pair-long oligonucleotides 

Figure 27. CRISPR-mediated homologous recombination 

reproducibly introduces the library of 210 H1 helix mutants into the 

endogenous TP53 locus of the HCT-116
Δ/TP53E

 cells  

 

A B 

C D 

E 
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were cloned into the HR-2-Golden Gate vector and used together with a Cas9-

encoding plasmid in a standard co-transfection procedure. To assess the 

reproducibility of the library production, we have first sequenced three independently 

prepared pools of targeting vectors (plasmid libraries) and found a high correlation 

between samples (Rs=0.87 and 0.84, p<0.0001 for comparison between triplicates) 

(Fig. 27A). Next, to evaluate the TP53 targeting efficacy, we have sampled cells from 

three independently transfected pools before adeno-Cre infection and sequenced the 

H1 helix region. Reassuringly, the variant prevalence in the cellular libraries revealed 

a strong correlation with the targeting vector (Rs=0.8, p<0.0001), indicating that 

library complexity was preserved during mutagenesis (Fig. 27B). Moreover, high 

similarity between replicates of cellular libraries demonstrated reproducibility of the 

protocol (Rs=0.71 and 0.65, p<0.0001 before adeno-Cre infection, Rs=0.64 and 

0.78, p<0.0001 after adeno-Cre infection) (Fig. 27C,D). 

Analysis of libraries prepared from adeno-Cre-infected cells showed that the 

infection did not lead to global changes in variants abundancy since substantial 

correlation with libraries before the infection was evident (Rs=0.89, 0.85 and 0.78, 

p<0.0001) (Fig. 27E). Importantly, no mutations were lost from libraries at any step of 

the procedure, further demonstrating efficient targeting of the TP53E allele with a 

highly complex pool of mutants. 

To assess the stability of the library, we have sampled three adeno-Cre-infected 

replicates after 4, 6, and 8 weeks of passaging. We have revealed significant global 

Figure 27. Continued 

Correlation between a fraction of reads for each variant in the library 

measured in the following samples: 

A. Three independently prepared replicates of the HR-2-Golden-Gate 

plasmid pools carrying saturation mutagenesis library of the H1 helix 

(vector). B. Plasmid pools (library) and the transfected cell pools before 

infection with adeno-Cre (mean of 3 replicates). C. Three replicates of the 

transfected cell pools before adeno-Cre infection. D. Three replicates of 

the transfected cell pools after adeno-Cre infection. E. Three replicates of 

the transfected cell pools before and after adeno-Cre infection. Each 

figure shows one replicate. 

On each figure fraction of reads for each mutant is shown (for individual 

samples or mean of 3 samples) together with corresponding values of 

Spearman correlation coefficients.  



113 

changes in the abundance of variants after 6 and 8 weeks of library propagation 

(Friedman test, 2 weeks verses 4 and 8 weeks, p=0.0015 and 0.0007 respectively, 

Fig. 28A). Specifically, synonymous mutations were marginally depleted in 8 weeks 

(one-way ANOVA p=0.012), whereas nonsense mutations were slightly enriched 

(one-way ANOVA p=0.76, ns). Missense variants have shown a diverse pattern of 

enrichment and depletion. 

Figure 28. Time course dynamics of H1 helix sequence variants 

during 8 weeks of passaging of library-expressing cells 

A. Cells carrying the H1 helix library were cultured for 2, 4, 6, and 8 

weeks after infection with adeno-Cre. The violin plot illustrates the 

distribution of the fraction of reads for all variant in the library across 

biological replicates. Dashed lines indicate mean. Comparison of 4, 6 and 

8 weeks to 2 weeks is non-significant (Kruskal-Wallis test, p>0,99, 

p=0,31, p=0,126 correspondingly). B. Heatmap illustrates the dynamics of 

individual protein variants along 8-week time course. RFS relative to the 

early timepoint sample (2 weeks) is shown for library triplicates. C. 

Dynamics of 6 variants with mean ES>(mean ESstop codons)x2. R181M 

showed significant enrichment above the level of stop codons suggesting 

GOF effects. 

C 

B 

A 
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Of note, repeated measurements at 4, 6, and 8 weeks revealed that some mutations 

were depleted from the population significantly stronger than synonymous variants, 

for example, D184 A, G, I, N, Q, R, T, V, and S (mean ES=0.16±0.08 versus 

0.65±0.2 for synonymous variants at 8 weeks, Mann-Whitney test, p<0.0001) (Fig. 

28B). 

Interestingly, six mutations were enriched stronger than stop codons after 6-8 weeks 

of passaging (mean ES at 8 weeks exceeded more than two times mean ES of stop 

codons) (Fig. 28C). Such behavior likely pointed at GOF effect. However, enrichment 

of most of the variants was very inconsistent between library replicates, reaching 

statistical significance only for R181M (FDR q values 0.000284 and 0.000236 for 6 

and 8 weeks respectively, multiple 2-sided t tests in combination with false discovery 

rates (FDRs). Growth-promoting GOF effects are likely more sensitive to culture 

conditions, cell density and stochastic fluctuations than potent cytotoxic effects of 

wild-type p53. Hence, experiments with a larger number of replicates will be needed 

to rigorously confirm these observations. 

To gain insight into the functional diversity of H1 helix mutants, we have analyzed 

changes in clonal abundance upon treatment with MDM2 inhibitors. The outstanding 

reproducibility of the screening workflow was demonstrated by the uniform depletion 

of all synonymous mutations (mean ES=0.18±0.04), significant enrichment of all 

nonsense mutations (mean ES=1.7±0.5, p=0.002), and high correlation between 

replicates (average for all replicates Rs=0.82, p<0.0001). Similar to the R175 library, 

our analysis did not reveal any significant difference between the effects of five 

distinct MDM2 inhibitors (Rs for all inhibitors >0.95, p<0.0001). 

Further analysis revealed a remarkably distinct sensitivity of H1 helix residues to 

mutagenesis. Residues 182-185 were highly resistant to alterations since most of the 

variants at these positions were depleted as strong as synonymous mutations (Fig. 

29A). On the contrary, mutations at the positions C176-H179 most frequently lead to 

the loss of function, as evident from their strong enrichment. Variants at positions 

H178, E180, and R181 demonstrated the most variable pattern depletion and 

enrichment (Fig. 29B). 

Interestingly, the cluster of amino acids resistant to mutagenesis (C182-S185) 

includes asparagine D184. This residue is conserved among 99 mammalian species, 
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suggesting its critical functional role (Sulak et al. 2016). Therefore, one could expect 

Figure 29. CSMS captures the functional consequences of H1 helix 

mutations 

A. Cells expressing the library of H1 helix variants were treated 2 weeks 

after adeno-Cre infection with 5 mdm2-inhibitors at IC50 concentrations 

and harvested for gDNA extraction after 8 days. RFS values are shown 

(n=3). B. Same data as in (A) for mutations at positions H178, E180 and 

R181.  

A 

B 

C 

D 
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that mutations at this position would be damaging and highly prevalent in human 

cancers. In striking contrast, missense mutations of this amino acid are very rare (39 

out of 80400 records in the UMD database). High conservation and low mutation rate 

collectively imply that most of the alterations at this position lead to the enhancement 

of the p53 activity, and therefore, such mutations are non-oncogenic in good 

agreement with CSMS-based classification. 

Moreover, depletion of many D184 variants in our long-term culture experiment to 

the degree exceeding the depletion of wild-type variants also supports this notion 

(average mean ES for D184 A, G, I, N, R, S, Q, T, and V is 0.16±0.08 versus 

0.65±0.23 for wild-type variants) (Fig. 28B). Much like mutations at D184, alteration 

of the serine 183 also did not lead to the loss of protein function and were depleted 

as strong as wild-type variants (mean ES for nutlin 0.16±0.09 versus 0.16±0.04) (Fig. 

29A). Phosphorylation of the S183 by 

 Aurora B kinase promotes p53 degradation (Gully et al. 2012). Hence alterations at 

this site can lead to increased p53 stability rather than to the loss of function. In 

support of this, 140 of 159 annotated variants at this position are nonsense or 

frameshift (UMD database). Therefore, the depletion of most of the S183 variants 

from the screen is in line with the role of this residue in regulation of p53 stability. 

Unlike mutagenesis resistant residues C182-S185, mutations at positions C176-

H179 had a strong damaging effect on p53 functionality (mean ES for all MDM2 

inhibitors 1.28±1.33 respectively) (Fig. 29A). This observation was in good 

agreement with the known role of the H1 helix residues in maintaining the p53 

structure. Cysteine 176 and histidine 179 are critical for coordinating a zinc ion that is 

essential for protein activity (Olivier et al. 2010). Accordingly, CSMS has scored all 

Figure 29. Continued 

C. Enrichment scores for selected mutants ordered according to their 

DNA binding ability in vitro as shown by Schlereth et al., 2010. Inverse 

correlation of ES and DNA binding is evident. Means of replicates for 

each mdm2-inhibitor are shown. Statistical significance was assessed by 

ANOVA with Dunnett’s multiple comparison test. D. CSMS-derived RFS 

are plotted against the relative abundance of each mutant across human 

cancers (UMD database). 
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mutations at these positions as damaging (mean ESC176=1.77±0.43 and 

ESH179=1.73±1.35) (Fig. 29A). Residues P177 and H178 are critical for forming a 

protein-protein interface between two p53 monomers bound to DNA (Brandt et al. 

2009). In line with this, many mutations at these positions also impaired p53 function 

according to CSMS (mean ESP177=1.73±0.67, ESH178=1.08±0.33).  

Residues E180 and R181 demonstrated intermediate sensitivity to mutagenesis (Fig. 

29B). Our group and other investigators have identified these residues as essential 

for the cooperative binding of two p53 subunits to DNA. Oppositely charged arginine 

and glutamic acid of the two p53 monomers form reciprocal salt bridges that stabilize 

the DNA-bound p53 tetramer (Ma et al. 2007; Dehner et al. 2005; Liu et al. 2017; 

Olive et al. 2004). Missense mutations at the codons 180 and 181 alter the 

cooperative DNA binding to a different extent and are referred to as “cooperativity 

mutations.” Cooperativity mutants display distinct DNA binding affinity and, 

consequently, different transactivation capacities. For example, mutants E180L, 

E180R, and R181L have reduced DNA binding and demonstrate impaired apoptosis 

activation but can halt proliferation. 

On the contrary, R181E is unable to transactivate any target genes and is deprived 

of both apoptotic and cell cycle arrest activities (Schlereth et al. 2010a). Notably, our 

screening could uncover functional differences between some cooperativity 

mutations in good agreement with published experimental data. As shown in Fig. 

29C, R181L and E180L were depleted from the pool comparably to wild-type 

variants in line with their partially retained DNA binding and transactivation (mean ES 

for nutlin R181L 0.26±0.13, E180L 0.2±0.05, R181R 0.17±0.03, E180E 0.2±0.04) 

(Fig. 29B). Mutant R181H binds to DNA and transactivates target genes weaker than 

R181L (Schlereth et al. 2010a). Accordingly, this variant demonstrated intermediate 

enrichment in our dataset. Similarly, mutant E180R, which was extensively 

characterized as partial-LOF in vivo (Timofeev et al. 2013), also demonstrated 

significantly lower enrichment compared to nonsense variants (ANOVA with 

Dunnett’s test p<.0001) (Fig. 29C). Mutants with weaker residual DNA binding and 

transactivation (E180K and R181C) showed slightly lower enrichment than nonsense 

mutations, which was nevertheless statistically significant (ANOVA with Dunnett’s 

test p=0.0051 and 0.0007 respectively). Finally, mutants R181E and R181P were 
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described as entirely DNA binding- and transactivation-deficient (Schlereth et al. 

2010a; Timofeev et al. 2019). They showed no significant difference from nonsense 

variants in our screening. Collectively, these observations further justify that CSMS 

can precisely capture even subtle functional differences between p53 variants.On 

the contrary, R181E is unable to transactivate any target genes and is deprived of 

both apoptotic and cell cycle arrest activities (Schlereth et al. 2010a). Notably, our 

screening could uncover functional differences between some cooperativity 

mutations in good agreement with published experimental data. Figure 29C depicts 

enrichment scores of 8 variants of R181 and E180. Mutants were ordered according 

to their in vitro DNA binding capacity measured in electrophoretic mobility shift assay 

with 32P-labelled dsDNA fragment containing p53 concensus response element (data 

from Schlereth, 2010). As shown in Fig. 29C, R181L and E180L were depleted from 

the pool comparably to wild-type variants in line with their partially retained DNA 

binding and transactivation (mean ES for nutlin R181L 0.26±0.13, E180L 0.2±0.05, 

R181R 0.17±0.03, E180E 0.2±0.04) (Fig. 29B). Mutant R181H binds to DNA and 

transactivates target genes weaker than R181L (Schlereth et al. 2010a). 

Accordingly, this variant demonstrated intermediate enrichment in our dataset. 

Similarly, mutant E180R, which was extensively characterized as partial-LOF in vivo 

(Timofeev et al. 2013), also demonstrated significantly lower enrichment compared 

to nonsense variants (ANOVA with Dunnett’s test p<.0001) (Fig. 29C). Mutants with 

weaker residual DNA binding and transactivation (E180K and R181C) showed 

slightly lower enrichment than nonsense mutations, which was nevertheless 

statistically significant (ANOVA with Dunnett’s test p=0.0051 and 0.0007 

respectively). Finally, mutants R181E and R181P were described as entirely DNA 

binding- and transactivation-deficient (Schlereth et al. 2010a; Timofeev et al. 2019). 

They showed no significant difference from nonsense variants in our screening. 

Collectively, these observations further justify that CSMS can precisely capture even 

subtle functional differences between p53 variants. 

Next, we have analyzed how the loss of protein functionality in our screening 

correlates with the prevalence of mutations in cancer patients. Most variants found in 

more than ten cancer specimens had a positive RFS, indicating loss of tumor-

suppressive activity (Fig. 29D). More specifically, mutagenesis-resistant residues 
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182-185 are rarely mutated in tumors (157 out of 58522 missense mutation records 

in the UMD TP53 database, 39 mutations/codon). Thus, mutations at these positions 

do not impair protein functionality and do not give tumor cells a selective advantage.  

By contrast, mutations of residues sensitive to mutagenesis (176-179) are found in 

tumors very frequently (2108 missense mutations in UMD TP53 database, 527 

mutations/codon) (Fig. 29A), and none of these variants are annotated in the UMD 

database as functional in respect of the transactivation, on the contrary to mutations 

in residues 182-185. 

Mutations at residues E180 and R181 have demonstrated a variable pattern of 

functional p53 impairment in CSMS. They have an intermediate frequency in tumors 

(289 UMD TP53 records, 144.5 mutations/codon). 

Summarizing, our analysis identified many pathogenic mutations in the H1 helix in 

good agreement with known structure-function dependencies, previously published 

experimental and clinical data. This demonstrates that the CSMS is suitable for 

accurate functional classification of p53 mutations in a high-content manner. 
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In section 3.7.3 we have explored the effects of mutations in the codon R175 on 

cellular fitness under treatment with 5-FU and APR246. Although 5-FU has a distinct 

mechanism of action than nutlin, our screening revealed a very similar pattern (mean 

Rs=0.93 and 0.87 for 24 and 48h of treatment compared to nutlin (8 days). 

Surprisingly, the treatment of cells with APR-246 failed to identify any mutants that 

could be reactivated by the compound (Fig. 26B). This could be due to the small 

sample size (19 mutants). To confirm our validation experiment results with the 

larger panel of mutants, we have treated cells carrying the H1 helix library with 5-FU 

Figure 30. Impact of mutations in H1 helix on cellular fitness under 

treatment with 5-fluorouracil 

A. Cells harboring the H1 helix library were treated with 5 µM 5-FU for 24 

or 48h, washed with medium, and harvested 8 days after the beginning of 

treatment. Heatmap demonstrates RFS values for 5-FU and nutlin-treated 

cells (n=3). B. Correlation of RFS measured for cell libraries treated with 

nutlin or 5-FU. Rs, Spearman correlation coefficient. 

A 

B 
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and APR-246, as described previously (sections 3.7.2-3). Plotting of RFS computed 

for 5-FU and nutlin-treated libraries revealed a strong correlation (Rs=0.86 or 0.85 

for 24 and 48h, p<0.0001) (Fig. 30A). Similar to the R175-library experiment, 

markedly lower depletion of mutants under 5-FU treatment compared to nutlin was 

noticed (compare X and Y axes on the Fig. 30B). Several variants were not depleted 

after 48 hours of 5-FU treatment, despite strong depletion after eight days of nutlin 

treatment (S183W, C182N), which may indicate preferential induction of cell cycle 

arrest by these mutants under 5-FU treatment. In summary, the experiment has 

Figure 31. Lack of response of H1 helix mutants to the treatment 

with mutant p53 reactivating compound APR-246  

A. Cells harboring the H1 helix library were treated with 12.5 and 25 µM 

of APR-246 alone or in combination with nutlin for 8 days and harvested 

for DNA isolation. RFS values are shown (n=3). B. ES measured after 

treatment of library-expressing cells with 25 µM APR-246 shown for 3 

groups of mutants. p=0.54, unpaired t-test. C. Correlation of RFS 

measured for cell libraries treated with nutlin or with the combination of 

nutlin and APR-246. Rs, Spearman correlation coefficient. 

A 

B C 
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demonstrated that H1 helix p53 mutants reveal similar response patterns under 

treatment with MDM2- inhibitor nutlin and DNA damaging agent 5-fluorouracil. 

Next, we have treated cells expressing the H1 helix library with APR-246. Rescue of 

tumor-suppressive functions of missense mutants would result in APR-246-

dependent elimination of some of the variants enriched under nutlin treatment. 

Therefore, we have expected that such mutants would reveal significantly lower 

enrichment scores than both nonsense and wild-type-like variants (which should 

remain unaffected by APR-mediated p53 refolding). We did not observe any mutants 

demonstrating such behavior: all missense variants that were enriched under nutlin 

treatment (ES>1) showed an APR-246 response similar to nonsense and 

synonymous variants (mean ES=0.95, 1.0 and 1.0; range 0.7, 0.5, and 0.7 for 

synonymous, nonsense and missense variants respectively) (Fig. 31A, B). As noted 

before, APR-246-mediated restoration of p53 activity synergizes with MDM2 

inhibition (Izetti et al. 2014). However, a comparison of RFS measurements from 

cells treated with nutlin or with the combination of two compounds demonstrated a 

high correlation, suggesting a lack of APR-specific effects. Not a single mutant 

conferring resistance to nutlin became depleted by combined treatment with APR-

246 (Fig. 31C, lower right quadrant). In summary, our experiments again failed to 

demonstrate the rescue of mutant p53 functions by APR-246. 
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3.10 CSMS reveals mutations leading to nonsense-mediated mRNA 

decay of TP53 transcript 

Nonsense-mediated mRNA decay is a process used by eukaryotic cells to control 

the quality of mRNA. It detects and degrades mRNAs with nonsense mutations, for 

example, premature termination codons (Meyers et al. 1993; Mateo et al. 2020; Teng 

et al. 2017; Meisler 1975; Jones et al. 2008). In addition, the p53 missense mutation 

K120R leads to the formation of an aberrant splicing site which in turn generates a 

transcript variant with a frame-shifted premature termination codon. mRNA produced 

from this transcript is subjected to nonsense-mediated mRNA decay (Lee et al. 

2019). Expression of p53 variants from the native locus in the CSMS system is 

expected to discover missense mutations leading to aberrant splicing. To explore 

this potential advantage of our protocol, we have isolated genomic DNA and RNA 

from cells expressing R175 and H1 helix libraries. After first-strand cDNA synthesis, 

PCR with a primer pair annealing at the 3’-end of the exon 5 and at the junction 

between exon 6 and exon 7 Nonsense-mediated mRNA decay is a process used by 

eukaryotic cells to control the quality of mRNA. It detects and degrades mRNAs with 

nonsense mutations, for example, premature termination codons (Meyers et al. 

1993; Mateo et al. 2020; Teng et al. 2017; Meisler 1975; Jones et al. 2008). In 

addition, the p53 missense mutation K120R leads to the formation of an aberrant 

splicing site which in turn generates a transcript variant with a frame-shifted 

premature termination codon. mRNA produced from this transcript is subjected to 

nonsense-mediated mRNA decay (Lee et al. 2019). Thanks to the expression of p53 

variants from the native locus the CSMS system is expected to discover missense 

mutations leading to aberrant splicing. To explore this potential advantage of our 

protocol, we have isolated genomic DNA and RNA from cells expressing R175 and 

H1 helix libraries. After first-strand cDNA synthesis, PCR with a primer pair 

annealing at the 3’-end of the exon 5 and at the junction between exon 6 and exon 7 

was performed (primers #11 and #28 correspondingly). Such a design for the 

reverse primer was chosen to amplify exclusively cDNA and exclude amplification of 

genomic DNA. Genomic DNA was amplified as previously described (Fig. 32A). 

Both amplicon libraries were sequenced, and the number of reads assigned to each 

mutation in cDNA and gDNA libraries were compared (Fig. 31A, B). Comparison of 
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read fractions (RF) measured in the R175 library revealed, that missense mutations 

were equally presented in gDNA and cDNA (mean RFgDNA=0.037±0.02, mean 

RFcDNA=0.043±0.025, Mann Whitney test p=0.216). Similar tendency was revealed 

in the H1 helix library: missense mutations were equally presented in genomic DNA 

and cDNA (mean RFgDNA=0.0046±0.0032, mean RFcDNA=0.005±0.003, Mann-

Whitney test p=0.17, Fig. 32 A,B). Notably, nonsense variants and frameshifts  

demonstrated distinct behavior in both libraries. They were significantly less 

abundant in the cDNA as compared to gDNA (shown as red dots, R175 library: 

RFgDNA=0.037±0.008, RFcDNA=0.0021±0,0005, t-test p<0.0001; H1 helix library: 

RFgDNA=0.0072±0.0035, RFcDNA=0.00046±0,0004, Fig. 32A, B). These data imply 

that transcripts containing stop codons and frameshifts are subjected to nonsense-

mediated decay. Importantly, the deletion of the codon 175, which disrupts protein 

functionality but does not influence mRNA stability, was equally abundant in gDNA 

and cDNA libraries (mean read fraction 0.020 versus 0.025, Delta R in Fig. 32A).  
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Interestingly, mutation R175Y was significantly less abundant in cDNA compared to 

all other missense variants (RFmissense=0.043±0,025, RFR175Y=0,015±0,002, 

Mann-Whitney test p=0.0082), suggesting that R175 CGC>TAC mutation might lead 

to mRNA degradation. R175Y was identified as LOF in CSMS and in earlier reports 

(Ryan and Vousden 1998; Kim et al. 2003). Although no data from the literature point 

on its influence on mRNA stability, our findings deserve further investigation. 

Figure 32. CSMS identifies mutations causing nonsense-mediated 

mRNA decay.  

A. Schematic of the cDNA (above) encoded by the TP53E allele (below). 

The junction between exons 6 and 7 in cDNA is indicated with the 

orange line. This junction is absent in the gDNA sequence and the 

fragment with primers #11 and #28 fails the amplification. B,C. Cells 

carrying R175 (B) and H1 helix libraries (C) were cultivated for 2 weeks 

after adeno-Cre infection and harvested for gDNA and mRNA extraction. 

gDNA and cDNA sequencing were performed to quantify the abundance 

of each variant in the population (gDNA) and abundance of variant-

coding transcripts (cDNA). Shown are mean fraction of reads from gDNA 

and cDNA datasets (n=3). Nonsense mutations are labelled with red 

dots. 

A 

B C 
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Collectively, our observations show that CSMS can be used to discover mutations 

causing nonsense-mediated decay of TP53 transcripts. 

3.11 CSMS identifies pathogenic non-coding TP53 mutations 

We devised the CSMS as a system for analyzing TP53 mutations in the context of 

the genomic locus with preserved regulatory elements (such as enhancers, introns, 

and promoters). Mutations at splice sites account for 2% of all detected TP53 

alterations (Fig. 33A) (Bouaoun et al. 2016; Leroy et al. 2014a). The pathogenic 

effects of such mutations cannot be studied using systems based on the expression 

of cDNAs. Consequently, none of the previous studies of the p53 mutome analyzed 

this class of mutations. On the contrary, our system enables capturing the complete 

diversity of alterations at the TP53 locus, including mutations in non-coding regions.  

To evaluate this potential advantage of the CSMS, we have assembled a saturating 

mutagenic library of the splice donor site (SDS) in the 5th intron. Mutations at this site 

were found in cancer patients (Smeby et al. 2019). Specifically, the SDS library 

comprised the following mutations at the junction between exon 5 and intron 5: 

synonymous mutations and stop codons (TAA, TAG, TGA) at positions D184, S185 

and D186, all possible permutations of the last nucleotide (c.559) of exon 5 (forms 

the codon G187 with exon 6), and all possible permutations of the first 12 

nucleotides of the intron 5. 54 double-stranded 26 base pair-long oligonucleotides 

were cloned into HR-2-Golden Gate vector and the resulting library was used in a 

standard co-transfection procedure. Cells carrying the SDS library cells were treated 

for eight days with nutlin and harvested for DNA isolation and sequencing. Strong 

enrichment of nonsense mutations and depletion of synonymous variants 

demonstrated the validity of the analysis (Fig. 33B). Remarkably, mutations at 

positions c. 559, +1, +2, and +5 turned out to impair p53 function, as evident from 

the enrichment of all sequence variants at these positions. These mutations likely 

disrupt splicing of the transcript, in line with stringent sequence requirements for 

positions +1, +2, and +5 in eukaryotic splice sites (G, T, and G respectively) (Burset 

et al. 2001; Shapiro and Senapathy 1987). Notably, mutation c.559+1G>A was 

described as a variant affecting splicing and leading to the production of the 

truncated polypeptide in individuals with the hereditary cancer-predisposing 
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syndrome (ClinVar record NM_001126112.2) (Surget et al. 2013; Lai et al. 1993). 

These results showcase the extended capabilities of the CSMS platform in the 

Figure 33. CSMS reveals non-coding pathogenic mutations of the 

splice donor site in the intron 5  

A. Frequency and distribution of mutations in TP53 splicing sites (red) and 

missense mutations (grey). Frequency of mutations at each codon or 

splice site in the UMD database is shown. Modified from Smeby et al. 2019 

B. Heatmap depicts RFS of mutants in the SDS library measured in 

triplicate cultures of library-expressing cells treated with nutlin. The library 

was composed of 3 synonymous variants and 3 stop codons at positions 

D184, S185, and D186 as positive and negative controls and all possible 

permutations of the last nucleotide of the exon 5 and first 12 nucleotides of 

the intron 5. Wild-type sequence starting from the position c.559 is shown 

below. +1, +2, and +5 are positions in the splice donor site of the intron 5. 

Alignment of the wild-type sequence with the cocensus sequence of the 

donor splice site is shown (modified from Desmet F., Hamroun Dalil, 

Collod-Béroud, Gwenaëlle, Claustres, M., Beroud, Christophe, 2010). 

A 

B 
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characterization of. Mutations at this site were found in cancer patients (Smeby et al. 

2019). 

Donor splice sites are very conserved across eukaryotes (Shapiro and Senapathy 

1987). The concensus sequence of 5’-donor splice sites is AGGTA/GAGT. The 

donor splice site in the 5th intron of TP53 is almost identical to the concensus 

(AGGTGAC). We have included the following mutations at the junction between 

exon 5 and intron 5 into the SDS library: synonymous mutations and stop codons 

(TAA, TAG, TGA) at positions D184, S185 and D186, all possible permutations of 

the last nucleotide (c.559) of exon 5 (forms the codon G187 with exon 6), and all 

possible permutations of the first 12 nucleotides of the intron 5. 54 double-stranded 

26 base pair-long oligonucleotides were cloned into HR-2-Golden Gate vector and 

the resulting library was used in a standard co-transfection procedure. Cells carrying 

the SDS library cells were treated for eight days with nutlin and harvested for DNA 

isolation and sequencing. Strong enrichment of nonsense mutations and depletion of 

synonymous variants demonstrated the validity of the analysis (Fig. 33B). 

Remarkably, mutations at positions c. 559, +1, +2, and +5 turned out to impair p53 

function, as evident from the enrichment of all sequence variants at these positions. 

These mutations likely disrupt splicing of the transcript, in line with stringent 

sequence requirements for positions +1, +2, and +5 in eukaryotic splice sites (G, T, 

and G respectively) (Burset et al. 2001; Shapiro and Senapathy 1987). Notably, 

mutation c.559+1G>A was described as a variant affecting splicing and leading to 

the production of the truncated polypeptide in individuals with the hereditary cancer-

predisposing syndrome (ClinVar record NM_001126112.2) (Surget et al. 2013; Lai et 

al. 1993). These results showcase the extended capabilities of the CSMS platform in 

the characterization of non-coding TP53 alterations.  
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3.12 CSMS-based functional classification of >1200 p53 protein 

variants 

To further evaluate the performance and scalability of the CSMS system, we have 

designed a saturation mutagenesis library encoding 3843 TP53 nucleotide variants. 

Specifically, the library encoded the pool of sequence variants representing all 

possible permutations at each position from Y126 until S186 (encoded by the 5th 

exon). 

To prepare the HDR template library, a pool of 3843 single-stranded oligonucleotides 

(230 bp) was manufactured by Agilent using array-based synthesis. Each 

oligonucleotide was spanning the genomic region Chr. 17: 7.675.045 – 7.675.261 

(assembly GRCh38) and contained a single codon substitution. To make the HR-2 

Golden Gate vector compatible with 230 bp-long oligonucleotides, the BbsI 

recognition sequences were located at the beginning and at the end of exon 5. The 

pool of single-stranded oligonucleotides was converted into double-stranded using 

PCR with primers #26 and #27 containing BbsI recognition sequences at 5’-ends. 

The resulting PCR fragments were cloned into the modified HR-2 Golden Gate 

cloning vector (Fig. 8) using Golden Gate protocol. The plasmid library was purified 

using procedures described in the Materials and methods section. Library quality 

was verified using NGS. 

The pool of library-encoding plasmids was transfected into 100 million HCT-

116Δ/TP53E cells. For adeno-Cre infection and nutlin treatment, the same number of 

transfected cells was used, and the splitting ratio was maintained at 1:2 to retain 

library complexity. Triplicate cultures were treated for eight days with nutlin and 

harvested simultaneously with untreated samples. It is essential to highlight the fact 

that Cre-mediated recombination is not 100% efficient. Therefore, cellular libraries 

always contain non-recombined cells expressing no p53. This results in the 

background from unrecombined (GFP-positive) cells, which does not affect 

sequencing results for the low complex R175 and H1 helix libraries, but becomes an 

important factor in the case of the highly complex exon 5 library. To enrich the 

cellular library for GFP-negative cells which have undergone Cre-mediated 

recombination, we have used FACS sorting. Genomic DNA was isolated from 15 

million cells per replicate. To improve the sequencing coverage, the amount of 
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genomic DNA and the number of PCR reactions was increased as described in 

Materials and methods in section 2.2.10. Next-generation sequencing of the TP53 

locus was conducted as described above. 

The sequencing of the targeting vector revealed that all 3843 nucleotide variants 

were retained in the plasmid preparation. This demonstrated that the large-scale 

oligonucleotide synthesis and cloning procedures were successfully implemented 

(read counts: minimum 45, maximum: 42111, mean: 917). Comparison of 

sequencing data derived from the vector and the cellular library revealed a 

substantial abundance decrease for many mutants: the frequency of the least 

abundant variant in the Cre-infected cell library was 0.0000008 compared to 

0.000013 in the vector (16-fold change, Wilcoxon test p<0.0001 (Fig. 34A) This 

indicates that transfection and subsequent propagation of the library introduced 

substantial bias. Nevertheless, further analysis of the dataset confirmed the validity 

of the experiment. 

Analysis of sequencing data from untreated cells revealed that variant frequencies 

were highly correlated between three library replicates, demonstrating good 

reproducibility of the mutagenesis procedure (Rs=0.9 and 0.86 for library 1 versus 2 

and 3 respectively, p<0.0001) (Fig. 34B). Libraries prepared from adeno-Cre-infected 

and sorted GFP-negative cells yielded 99.79% variant coverage, demonstrating 

preserved library complexity. As shown in Fig. 33C, in two library replicates only 6% 

of nucleotide variants were covered by less than 50 reads, approximately 20% were 

covered by less than 500 reads, and the majority of mutants was covered by more 

than 500 reads (Fig. 34C). The third replicate revealed lower sequencing depth, 

which could be caused by poor DNA quality or some error during library preparation. 

Considering the high coverage of most of the variants in the library and high 

reproducibility of the mutagenesis procedure, we have considered our data to have 

sufficient quality for further analysis, despite some obvious technical issues (Fig. 

34B, C). 

Next, we have assessed the measurement precision by calculating the coefficient of 

variation (CV) for each variant as a ratio of the standard deviation to the mean read 

count across replicates. Comparison of CVs revealed a substantial difference 

between untreated and nutlin-treated libraries. In the untreated dataset, 644 variants 
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had CV >0.25, whereas in the nutlin dataset, only 128 (Fig. 35A). These data imply 

that in the untreated cellular library, variant frequencies are subjected to stronger 

fluctuations than in the nutlin-treated library. To reduce measurement noise, we have 

selected an arbitrary threshold based on CV values. All variants with CVuntreated<0.45 

and CVnutlin<0.3 were retained for further analysis, whereas variants with  

 

B 

C 

A 

Figure 34. CSMS protocol enables introduction of a highly complex 

library of 3646 variants in the TP53 locus 

A. Comparison of read fractions for each of 3646 nucleotide variants in the 

plasmid library (vector) and in the transfected cell pool after infection with 

adeno-Cre. B. Correlation of read fractions for all variants across 3 library-

expressing replicates. Rs, Spearman correlation coefficient. C. Heatmap 

depicts variant coverage in the vector and triplicate cultures of library-

expressing cells. Number of reads assigned to each variant is shown 

aligned to the sequence of exon 5 according to the color scale.  
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CVuntreated>0.45 or CVnutlin>0.3 were discarded (Fig. 35B). Application of the threshold 

enabled us to remove the most inconsistently measured mutants without 

compromising the global complexity of the dataset.  

Next, we have summarized filtered read counts for all mutations encoding the same 

amino acid substitution in each replicate and computed normalized read counts for 

protein variants. Application of the threshold resulted in a loss of just 21 protein 

variants from the dataset, 1249 protein variants (98%) were retained in the 

processed dataset. 

The relative abundance of variants upon nutlin treatment revealed expected 

dynamics: all synonymous variants were depleted from the population (mean 

ES=0.6±0.27), whereas missense and nonsense mutations were enriched (mean 

ES=1.26±0.9 and 1.62 ±0.95 respectively) (Fig. 36A).  

To assess the accuracy of the CSMS in a high-content format, we have compared 

results with R175 and H1 helix and libraries as validation datasets since mutations 

present in the two smaller libraries were also contained in the larger exon 5 library. 

Figure 35. Comparison of variance in sequencing data of untreated 

and nutlin-treated cell libraries 

A. Frequency distribution of the coefficient of variation (CV) calculated 

for each variant across triplicates in the untreated and nutlin-treated cell 

libraries. CV was calculated as a ratio of the standard deviation to the 

mean normalized reads. Smaller variance in the nutlin dataset is 

evident. B. CVs for each variant from untreated and nutlin-treated 

libraries were plotted and used to select the threshold: all sequence 

variants outside the lower-left quadrant were excluded from the analysis 

to reduce measurement noise. CV calculation was performed with the 

help of Boris Klimovich. 

B A 
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Reassuringly, both comparisons revealed a significant positive correlation 

(Rs(R175)=0.63, p=0.002, and Rs(H1 helix)=0.72, p<0.0001), demonstrating that high-

content screening mainly reproduces the classification made in the low-throughput 

experiments (Fig.36 B, C). Nevertheless, some variants were classified discordantly 

in two experiments (located in the upper left and lower right quadrants in Fig. 36B 

and 36C). To find the reason for discordant classification, we have compared 

enrichment scores for all variants present in both H1 helix and exon 5 datasets (Fig. 

36D). The comparison revealed a remarkably distinct distribution of RFS values. 

Despite having similar median RFS (-0.15 and 0.07), the H1 helix dataset 

demonstrated significantly larger data spread, exemplified by the higher range and 

interquartile range values (5.42 versus 3.08 and 1.43 versus 0.74 respectively). Data 

presented in Fig. 36 clearly demonstrate that the primary source of higher variance 

in the H1 helix dataset is more substantial depletion of variants compared to the 

exon 5 dataset. Therefore, scaling up the CSMS protocol resulted in decreased 

resolution between LOF and wild-type-like mutants due to reduced depletion of 

mutants from cellular pools. 

To further examine the ability of high-throughput CSMS to capture the functionality of 

p53 variants, we have calculated an evolutionary conservation score (ECS). ECS 

was previously used as an indicator of the vulnerability of p53 residues to functional 

alteration. The most conservative amino acids were identified as highly susceptible 

to mutations, whereas less conservative were resilient to mutations (Kotler et al. 

2018). ECS was computed for each of the 50 residues based on the alignment of 

1498 p53 protein sequences using ConSurf2016 (Ashkenazy et al. 2016). Negative 

scores indicate high evolutionary conservation. Comparison of the ECS with mean 

enrichment score values for each amino acid position revealed significant negative 

correlation (Rs=-0.54, p<0.0001): evolutionary conserved residues with low ECS 

demonstrated higher mean ES in our screening, indicating intolerance to 

mutagenesis (Fig. 37A). Therefore, our experiment performed the classification of 

p53 variants in good agreement with functionality prediction inferred from 

evolutionary conservation. 
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Figure 36. Comparison of the relative fitness scores measured for 

R175 and H1 helix variants by low- and high-content CSMS 

protocols 

A. ES values measured in the nutlin-treated libraries for 3 groups of 

variants. Synonymous variants are significantly depleted, nonsense 

variants are strongly enriched, enrichment pattern of missense 

mutations is highly variable n=3. **** p<0.0001, unpaired t-test with 

Welch's correction. B. RFS values derived from the exon 5 dataset are 

plotted against corresponding RFS values from the R175 dataset. Rs, 

Spearman correlation coefficient. C. RFS values derived from the exon 5 

dataset are plotted against corresponding RFS values from the H1 helix 

dataset. Rs, Spearman correlation coefficient. D. Comparison of RFS 

values computed for all missense variants from H1 helix and exon 5 

datasets. Bold line: median, dotted lines: quartiles.  

B A 

C D 
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Next, we have analyzed if our functional measurements correlated with the 

transactivating capacity of the mutants. As in Section 3.7, Fig. 18D, we have utilized 

the data capturing transactivation of 8 response elements by p53 mutants derived 

from the yeast reporter assay (Kato S. et al. 2003). We have extracted the reporter 

activity values for 352 variants encoded by the 5th exon and performed principal 

component analysis using ClustVisto to separate mutants with mostly dissimilar 

transactivating patterns (Metsalu and Vilo 2015). Then we have plotted relative 

fitness scores derived from the nutlin treatment experiment versus values of principal 

component 1 (PC1), which explains 79.1% of the variance in the transcriptional 

activity dataset (Fig. 37B). The comparison revealed a significant correlation 

between relative fitness score and transactivating properties of mutants represented 

by PC1 values (Rs=-0.68, p<0.0001). This implies that the high-content CSMS 

captures the global difference in the transactivation capacity of hundreds of mutants. 

We next analyzed whether the functional consequences of mutations in exon 5 

measured by CSMS correlate with mutational prevalence in human tumors. To this 

end, we have selected all exon 5 variants reported in more than 10 patients’ samples 

and plotted their frequency in the UMD database against mean relative fitness 

scores. This comparison revealed a weak but significant correlation between ES and 

mutation prevalence in tumors (Rs=0.33, p<0.0001). The most frequent cancer-

associated hotspot mutant R175H was enriched markedly weaker than many other 

less frequent mutants (Fig. 37C). This fact further highlighted the low resolution of 

the high-content CSMS because, in the experiment with the R175 library, this mutant 

had markedly higher enrichment (1.66 versus 0.83). 

Interestingly, many rare tumor-associated mutations were highly enriched in the 

dataset, supporting earlier observations (Fig. 37C) (Kotler et al. 2018; Ory et al. 

1994). Therefore, the loss of functionality and clinical significance cannot be 

deduced solely from mutation prevalence in patients and highlights the importance of 

functional measurements. 

Plotting individual RFS for each protein variant revealed a diverse pattern of 

sensitivity to alterations (Fig. 38). Anti-proliferative capacity remained almost 

unaffected by mutations at specific positions (for example, 165-170 and 182-186). 

However, p53 functionality was strongly impaired by almost every substitution of 
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Figure 37. Functional effects measured by CSMS correlate with 

evolutionary conservation, transactivation capacity, and 

occurrence in cancer patients 

A. Evolutionary conservation score (ECS) was computed for every 

residue encoded by the 5th exon using ConSurf 2016 and plotted against 

corresponding mean RFS values (calculated for each amino acid 

position across all missense mutations). Rs, Spearman correlation 

coefficient. Analysis performed by Boris Klimovich. B. Data on 

transactivation of p53 response elements in yeast reporter system were 

extracted from the study of Kato (Kato et al., 2002) and subjected to the 

principal component analysis using ClustVis. The resulting PC1 values 

were plotted against RFS. Rs, Spearman correlation coefficient. Analysis 

performed by Boris Klimovich. C. RFS values for exon 5 mutants are 

plotted against their relative abundance in human tumor specimens (from 

the UMD database, Log2-transformed).  

C 

A B 

some residues (e.g., 162-163, 173, 179). Importantly, the cluster of mutagenesis-

tolerant residues (C182-S185), as well as mutagenesis-sensitive Zn-coordinating 

residues C176 and H179, were already revealed in the experiment with the H1 helix 

library. Therefore, our high-content assay displayed a similar phenotypic response to 

mutagenesis compared to low-content validation experiments.  
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Importantly, clusters of mutagenesis-sensitive residues contained the positions most 

frequently mutated in cancers (orange bars, Fig. 38). Taken together, analysis of the 

exon 5 dataset demonstrated that the CSMS platform allows the fast and simple 

generation of large libraries of p53 mutants. We were able to measure the functional 

consequences of more than 1000 protein variants in a single high-content screening 

experiment. We have revealed strong associations between our functional 

classification, evolutionary conservation, transactivating properties, mutation 

prevalence in human tumors, and results of our validation experiments. Despite 

remarkable results achieved in this experiment, further improvements are needed to 

increase the classification accuracy of the high-content CSMS protocol.  
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Figure 38. CSMS captures the impact of 3646 mutations on the anti-

proliferative capacity of p53 

Triplicate cultures of adeno-Cre-infected cell libraries were treated with 

nutlin for 8 days. Heatmap depicts RFS for each protein variant. Grey 

bars on top show conservation score (CS) at each position across all 

tumor types (data from ConSurf). Orange bars below show the 

prevalence of mutations at each position across all tumor types (data 

from UMD). Synonymous and nonsense variants are shown separately, 

missing data points are labeled with X.  
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3.13  Comparison of functional classification of exon 5 mutations 

derived from CRISPR- and cDNA-based screening experiments 

 CSMS outperforms the cDNA-based method in the classification of rare 

patient-derived mutations of H1 helix 

To better understand the ability of CSMS to predict the tumorigenic potential of TP53 

mutations, we have compared CSMS-derived classification patterns of p53 

mutations with the recently published dataset from the study of Kotler et al. The 

authors established the cDNA library encoding >10 000 of p53 variants. They 

delivered it into p53-negative H1299 cells using lentiviral infection and cultured cells 

for two weeks. Afterward, the relative abundance of each mutation was quantified 

using deep sequencing. The depletion or enrichment of variants after two weeks of 

cultivation was used as a measure of antiproliferative capacity. On the contrary to 

our experiments, no treatment with MDM2-inhibitors or other compounds was 

performed. We have extracted corresponding enrichment scores for all protein 

variants present in our dataset and plotted them against CSMS-derived RFS values 

(Table S3 from Kotler et al, 2019).  

First, we have compared enrichment scores for all mutations at position 175. 

Noteworthy, both methods yielded a very similar pattern of enrichment and depletion: 

synonymous variants were strongly depleted in both datasets, whereas nonsense 

variants and the most frequent cancer-derived variant R175H were enriched. 

Interestingly, the cDNA-based screen scored several variants as wild-type-like, 

whereas in CSMS these variants were enriched as strong as LOF mutants. Such 

discordant classification raised the question, which estimation is correct. Importantly, 

among these mutations (shown in the lower right quadrant on Fig. 39A), two were 

repeatedly recovered from tumor samples: R175P and R175L (12 and 74 records in 

the UMD database, respectively). R175L was described as a germline mutation 

associated with adrenal cortical carcinoma (West et al. 2006). R175P is a partial-

LOF variant (Crook et al., 1994; Ludwig et al., 1996; Rowan et al., 1996), whose 

mouse analog (R172P) was reported as tumorigenic in a knock-in model (Liu et al. 

2004). Hence, CSMS correctly identified these two variants as pathogenic, whereas 

the cDNA-based system misclassified them as benign.  
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Next, we have expanded our analysis to the H1 helix dataset. We have listed all 

missense mutations from H1 helix found in human tumors and compared the 

classification of these mutations made by CSMS and cDNA-based screening (Fig. 

39B). All variants retrieved from more than 90 tumor samples and therefore being 

undoubtedly cancer-predisposing, were classified as loss of function by CSMS 

Figure 39. CSMS outperforms cDNA-based screening in 

classification of the pathogenic mutations in the H1 helix  

A, B. CSMS-derived RFS values form the R175 (A) and H1 helix (B) 

datasets are plotted against corresponding RFS values extracted from 

the cDNA-based study (Kotler et al., 2019). A. Synonymous and 

nonsense mutations are presented as mean RFS values of all 

corresponding variants (10 synonymous and 10 nonsense). R175P 

(green) and R175L (violet) are two mutations with documented residual 

activities. B. H1 helix mutations are color-coded according to their 

prevalence in cancer patients (from the UMD database). Individual 

mutations discussed in the text are labeled. 

A 

B 
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(enrichment score >0, red dots). However, the cDNA-based analysis failed to predict 

loss of functionality for two bona fide cancer-driving mutations (C176Y and R181C 

(281 and 101 UMD records respectively, the pathogenicity of the R181C was 

recently confirmed in a mouse model (Kang et al. 2020). Less frequent H1 helix 

mutations found in 10-90 patients still can be considered as likely cancer-

predisposing. In good agreement with this, 71% of them were classified as loss of 

function by CSMS (blue dots). In contrast, just 8 of them (26%) were scored as LOF 

in the study of Kotler. Data from the literature imply that the scoring of the rest 29% 

of intermediate-frequency variants as wild-type-like is also correct. For example, 

mutation R181H is relatively abundant in patients (80 UMD records), lies in the “grey 

zone” in the CSMS dataset, but is scored as wild-type-like in the cDNA screen. This 

is a temperature-sensitive mutant, which exhibits normal properties at 30⁰C and, 

therefore, can exhibit residual activity but is nevertheless tumor-promoting (Soussi et 

al. 2005). Relatively abundant variant D184N (41 UMD TP53 records) is a known 

natural benign SNP (Wang et al. 2013). Two variants: D184H and S183L, were 

shown to retain 60-100% of transactivation of most of the promoters in the study of 

Kato et al. (Kato S. et al. 2003) and are classified by both screenings as more active 

than two synonymous variants annotated in the UMD database (H178H and P177P), 

being most obviously passenger variants or sequencing artifacts. Most variants 

found in less than ten tumor samples, being more likely neutral passenger mutations 

or sequencing errors (grey circles), are consistently classified by both studies as 

wild-type-like, demonstrating that the CSMS system does not over-estimate LOF 

properties of mutants. Finally, we have compared the classification of 532 cancer-

associated variants inferred from our exon 5 CSMS dataset with the cDNA-based 

screening outcome (Fig. 40). As expected, both systems classified most of the very 

rare variants (<10 UMD records, grey dots) as wild-type-like (227 variants), and only 

25 of them were classified by both screenings as LOF, suggesting that most of these 

mutations are either sequencing errors or neutral passenger mutations. 39 variants 

were scored by two systems discordantly: 29 variants were classified as LOF only by 

the CSMS, and 10 only by the cDNA screen. Thus, the high-throughput CSMS could 

overrate LOF properties of mutants compared to the cDNA-based system. Among 

protein variants with the intermediate frequency (11-90 UMD records (potentially 
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tumorigenic) both systems classified 40% as functional and 23% as non-functional 

(72 and 43 variants, respectively). Amid discordantly classified mutations, 43 were 

scored as LOF only by CSMS and 22 only by cDNA-based analysis. 

Out of 32 bona fide cancer-driving mutations (>90 UMD records), 13 were 

consistently classified by both methods as LOF. For other variants, two experiments 

provided contradictory classification. As noted in section 3.9, the most frequent 

hotspot mutant R175H was unexpectedly depleted in the CSMS (RFS=-0.26). Seven 

other variants were scored by the CSMS as functional (depleted), while cDNA-

screen scored them as LOF (Y163C, H179Y, V173M, P151S, C135Y, K132R, 

Y126C). 7 of these mutants had CSMS-derived RFS values markedly higher than 

synonymous variants (-0.22±0.12 versus -0.89±0.2), demonstrating moderate 

depletion. One mutant (Y126C, 98 UMD records) was depleted in CSMS to a degree 

comparable to synonymous variants (mean RFS -0.83 versus -0.88). This mutation 

was characterized in several studies as LOF (Kato et al. 2003; Monti et al. 2011; Shi 

Figure 40. Comparison of CSMS- and cDNA-based classification of 

exon 5 mutants 

CSMS-derived RFS values are plotted against corresponding RFS 

values extracted from Kotler et al., 2019 Mutations are color-coded 

according to their prevalence in cancer patients (from the UMD 

database). Green dot – mean RFS value of all synonymous variants. Rs, 

Spearman correlation coefficient. 
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et al. 2002; Grochova et al. 2008) and therefore is falsely classified as functional by 

the CSMS. 

The opposite classification (LOF in CSMS and wild-type-like in the cDNA screen) 

was derived for six mutants (G154V, C135F, A161T, V143M, P152L, and 

R156P).arge 

Interestingly, both screenings have classified five variants frequently found in tumors 

as partially functional: R158H, C176Y, C141Y, R181C, P151H (315, 281, 230 101, 

and 98 UMD records, respectively). RFS values for these mutants (red dots in the 

lower right quadrant in Fig. 40) were higher than of synonymous variants but below 

zero in both screenings. According to the ClinVar database, all these variants were 

recovered from patients with hereditary cancer predisposition, attesting them as 

cancer-driving. However, several of them were shown to retain residual functions. 

For example, R158H demonstrated transactivating capacity and growth-suppressing 

activity (Campomenosi et al. 2001; Wasserman et al. 2015; Monti et al. 2011). 

R181C has been described as a cancer-predisposing variant in the mouse model; 

however, the phenotype conferred by this mutation was mild compared to the p53-

null allele (30% reduction of median survival, 25% increase in cancer incidence) 

(Kang et al. 2020). Therefore, the classification of these two mutants as partially 

functional seems plausible. Importantly, R181C was undoubtedly scored as LOF in 

our H1 helix dataset (Fig. 29C), as well as the other clearly tumorigenic variant from 

the group: C176Y. 

Taken together, our comparison of the exon 5-CSMS dataset with the study of Kotler 

demonstrates that both systems classify many p53 variants in good agreement with 

their incidence in cancer patients. Both approaches generated discrepant 

classification of many mutants abundant in tumor samples. Notably, several of these 

mutants were classified in the low-content H1 helix dataset as tumorigenic, whereas 

cDNA-based screening scored them as benign. This implies that CSMS is potentially 

more accurate in classifying p53 mutants and calls for further optimization of the 

high-content screening protocol.  
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 CSMS outperforms in silico prediction tools in categorizing of pathogenic p53 

variants 

The introduction of multi-gene panel testing led to the identification of rare TP53 

variants of uncertain clinical significance. Bioinformatic predictors are valuable tools 

for estimating pathogenicity of mutations that were neither reported in families with 

Li-Fraumeni syndrome nor tested experimentally. The IARC TP53 and UMD TP53 

databases contain predictions made by seven tools: SIFT, Polyphen2, REVEL, 

BayesDel, Mutassessor, Provean, and Align-GVGD. SIFT and Mutassessor use 

evolutionary conservation to predict mutations affecting protein functions. Align-

GVGD and Polyphen2 utilize a combination of evolutionary conservation with 

biochemical and structural information. REVEL and BayesDel combine multiple 

algorithms (SIFT, REVEL, Polyphen, and others) for predictions (Leroy et al. 2013; 

Hicks et al. 2011; Adzhubei et al. 2010; Ramensky et al. 2002; Sunyaev et al. 1999; 

Vaser et al. 2016; Sim et al. 2012; Ioannidis et al. 2016; Choi 2012; Choi et al. 2012; 

Reva et al. 2007, 2011). 

Although instrumental, such tools have important limitations: they do not include 

functional test results and do not predict the response of mutation-carrying cancer 

cells to therapy. To our knowledge, no systematical comparison of the performance 

of the in silico predictors with high-content cell-based functional assays has been 

made. 

We, therefore, assessed how the effects of mutations measured in vitro by CSMS 

correlate with in silico-predicted impact. 

First, we have extracted values computed by three in silico predictors (SIFT, 

Provean, and Mutassessor) from the UMD database and plotted them against RFS 

scores from the H1 helix CSMS dataset (we did not use the Polyphen2 scoring 

because it separates variants in just three classes) (Fig. 40A). This comparison  

revealed that most of the H1 helix mutations enriched in the CSMS dataset (RFS>0) 

were accordingly classified as damaging by all three tools tested (lower right 

quadrant on each diagram). However, partial-LOF and wild-type-like variants that 

were depleted in the CSMS screening have demonstrated inconsistent classification 

by algorithms: approximately half of these variants were scored as tolerated and half 

as damaging. Mutassessor predicted 4 neutral mutations, SIFT and Provean 13, 
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whereas CSMS discovered 21 mutations with no apparent impact on protein function 

(RFS below mean score of synonymous mutants (<-2,5).  

Next, we have extended our analysis to the complete exon 5 dataset. As shown in 

Fig. 41B, CSMS and all algorithms tested agreed on the classification of the 

substantial number of mutants as LOF (lower right quadrant). Similar to the H1 helix 

dataset, half of the variants with negative RFS (tolerated) were classified by all 

algorithms as deleterious. Therefore, our comparison revealed a substantial 

discrepancy: all three predictive algorithms significantly overrated the number of 

deleterious variants by contrast to the functional test. 
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Next, we have compared CSMS-derived RFS values with the estimates made by two 

Figure 41. Comparison of the CSMS-based classification of H1 helix 

(A) and exon 5 (B) variants with pathogenicity estimations made by 

3 in silico predictors (Mutassessor, Provean, and SIFT) 

RFS values are plotted against corresponding scores. Dotted lines show 

specific threshold values for each of the methods: Mutassessor: <0.8 – 

neutral mutation, 0.98-1.935 – low probability of pathogenicity, >1.95 – 

the medium probability of pathogenicity. Provean: <-2.5 – deleterious 

mutation, >-2.5 – neutral mutation. SIFT: >0.05 – tolerated mutation, 

<0.05 – damaging mutation- CSMS: <0 – depleted, >0 – enriched. 

Analysis by courtesy of Boris Klimovich. 

B exon 5 A H1 helix 
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pathogenicity predictors: Align GVGD and BayesDel. A combination of these scoring 

algorithms was shown to be the most accurate method for in silico categorization 

(Fortuno et al. 2018). Align GVGD assigns a class value to each mutation (from 0 to 

65, where 0 is the strongest evidence for benign impact, and 65 is the strongest 

evidence for pathogenic impact). Fortuno and colleagues defined optimal cut-off 

parameters: Align GVGD class >15 and BayesDel score >0,16. We have extracted 

both values for each mutant from the IARC database (geneVariationIARC TP53 

dataset), filtered all mutations with BayesDel score >0,16, and plotted 208 variants 

against corresponding RFS values extracted from the CSMS exon 5 dataset. 

Additionally, we have plotted corresponding RFS values from our most rigorously 

validated H1 helix dataset (Fig. 42). The resulting plot depicts all variants from exon 

5 having moderate to strong evidence of pathogenicity (Align GVGD class >15, 

BayesDel >0,16) and their corresponding RFS from the two CSMS experiments. 

Values from the exon 5 dataset were scattered around RFS=0 (red dots), 

demonstrating no consistent pattern. Although CSMS and Align GVGD coherently 

classified many variants as LOF (class >15, RFS>0), a substantial number of 

variants with the highest probability of loss-of-function (class 65) were scored as 

benign by CSMS (RFS<0, 39 of 116 mutants). When we overlaid values from the H1 

helix dataset on the Align GVGD-BayesDel classification (blue dots) we revealed that 

20% of mutants (6 out of 27) belonging to class 65 were scored by the CSMS as 

functional. Among them, the H178Y was depleted below the average level of 

synonymous variants (-4.8 versus -2.5) and is most probably benign (2 UMD 

records), whereas the other five variants had intermediate depletion (from -0.8 to -

2.1). Additionally, among other possibly pathogenic variants (class 25-55) 4 were 

classified in the CSMS-H1 helix dataset as wild-type-like, 2 as intermediate (RFS≈0), 

and only 2 as LOF. Finally, two mutations falling into class 15 (uncertain 

pathogenicity) were classified by the CSMS as LOF and were in 

deed recurrently found in cancer patients (H179Q: RFS 0.7, 91 UMD records, 

H178Q: RFS 0.6, 18 UMD records). 

Therefore, the most advanced predictive approach failed to identify two likely 

pathogenic variants and simultaneously erroneously classified many benign 

mutations as damaging. Summarizing, our observations very clearly demonstrate 
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that the CSMS provides more accurate estimates of pathogenicity of TP53 mutations 

than any of the existing in silico prediction tools. 

  

Figure 42. Comparison of the CSMS-based classification of exon 5 

variants with pathogenicity prediction made by the combined Aligh 

GVGD-BayesDel algorithm (Fortuno et al., 2018) 

The plot depicts all variants from the exon 5 dataset having moderate to 

strong evidence of pathogenicity (red dots) (Align GVGD class >15, 

BayesDel >0,16) (located above the dotted line). X-axis – CSMS-RFS, Y-

axis – Align GVGD classes. The higher is the class – the stronger is the 

evidence for pathogenicity. Additionally, all variants from the H1 helix 

dataset are plotted (blue dots). Analysis by courtesy of Boris Klimovich. 

Note that many H1 helix mutants undoubtedly classified as benign by the 

CSMS, have the highest Align GVGD class.  
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4. Discussion 

Comprehensive functional classification of recurrent cancer-associated TP53 

alterations can improve clinical decision-making (Sabapathy and Lane 2018; Cheok 

and Lane 2017). Compelling evidence suggests that information about individual 

TP53 mutations can be useful for predicting the disease course, chemo- and 

radiotherapy response, and ultimately patient survival (Campling and El-Deiry 2003; 

Schon and Tischkowitz 2018; Richter-Pechańska et al. 2017; Murakami et al. 2000; 

Hamelin et al. 1994; Zhu et al. 2020). The development of numerous p53-targeting 

therapeutics further increases the value of the detailed characterization of TP53 

mutations (Mantovani et al. 2017; Di Agostino et al. 2019). For example, TP53 status 

is the main eligibility criteria for clinical trials of MDM2 inhibitors (Jiang and Zawacka-

Pankau 2020). The inclusion of mutant p53 in the list of actionable targets requires 

precise characterization of the full spectrum of p53 variants beyond the most 

frequent hotspot mutations.  

Two recent studies have performed a thorough investigation of the p53 mutome and 

substantially updated the catalog of p53 variants (Kotler et al. 2018; Giacomelli et al. 

2018). One severe limitation of these studies is the employment of lentiviral cDNA 

libraries to express p53 protein variants. Expression of the transgene from 

heterologous promoters may result in non-physiological protein levels and, 

consequently, in biased classification. Moreover, such an experimental setting 

excludes many other variables from the analysis, such as mutations in non-coding 

regions and splicing sites, p53 isoforms and miRNA-dependent regulation of the 

transcript stability (Feng et al. 2011). 

We aimed to create an improved phenotypic screening system that probes the 

effects of multiple TP53 mutations in the native genomic context. As a result, we 

have developed the CRISPR-based saturated mutagenesis screening, a high-

throughput protocol that enables precise functional characterization of thousands of 

p53 variants.  
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4.1 CSMS: a novel system for high-content functional 

classification of TP53 mutations 

We have envisioned a screening system where p53 mutations are targeted into the 

TP53 locus using CRISPR-Cas9-induced homology-directed repair. Although 

numerous attempts to improve HDR-driven genome editing were undertaken, its 

inherently low frequency remains a major obstacle for high-content applications (Lin 

et al. 2014). To overcome this limitation, we have engineered the original cell line 

(HCT-116Δ/TP53E) to achieve the highest possible gene editing efficiency. The 

resulting cell line became a cornerstone of the CSMS platform and had several 

important features. It enables editing of the single TP53 locus in each cell by using 

an allele-specific CRISPR-nuclease. During the editing process, the allele is inactive, 

which ensures the editing in the absence of the efficiency-limiting p53-induced DNA 

damage response (Bowden et al. 2020; Haapaniemi et al. 2018; Ihry et al. 2018). 

Multiple approaches were attempted to enhance HDR-mediated gene editing 

efficiency, for example, chemical or genetic modulation of mediators of DNA repair, 

usage of mutant Cas9 variants, and conjugation of Cas9 nuclease with 

oligonucleotides (Liu et al. 2018; Nambiar et al. 2019). Most of these improvements 

lead to several-fold increased HDR frequency (up to roughly 30%, reviewed in (Ling 

et al. 2020; Liu et al. 2018). Our protocol achieved a very high editing rate (80%, Fig. 

10A). The simplicity of the protocol and the underlying mechanism (p53 inactivation 

and selection of recombined cells with puromycin) suggests that this approach can 

be easily adapted for other cell lines. 

We have demonstrated the efficient generation of cell lines carrying multiple 

individual p53 variants (Fig. 11), implying that our protocol can be used to generate 

large panels of isogenic cell lines rapidly. CRISPR-Cas9 technology was previously 

used to perform saturation mutagenesis of tumor suppressor genes (BRCA1) 

(Findlay et al. 2018; Kweon et al. 2020) and oncogenes (BCR-ABL) (Ma et al. 2017) 

and to introduce single point mutations into the TP53 locus (Boettcher et al. 2019). 

To our knowledge, the present work is the first successful attempt of CRISPR-

mediated saturation mutagenesis of the endogenous TP53 locus. 
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Editing of the single TP53 allele in the HCT-116Δ/TP53E cell line ensured unambiguous 

genotype-phenotype correlation. The drawback of this approach is a reduced level of 

p53 expression evident in Fig. 7. P53 is the haploinsufficient tumor suppressor: lack 

of one gene copy reduces transcript levels up to 4-fold, decreases protein levels, and 

impairs DNA damage response  (Lynch and Milner 2006; Teoh et al. 2014). 

Reduction of gene dosage was shown to accelerate carcinogen-induced tumor 

formation (Venkatachalam et al. 2001). Consequently, decreased basal expression 

levels in the HCT-116Δ/TP53E cells compared to the parental line could reduce 

functionality, blunted transactivation, and apoptosis resistance. This, in turn, could 

lead to the misclassification of wild type-like variants as LOF or pLOF. However, our 

analysis has clearly demonstrated that wild-type variants were markedly depleted 

from cellular libraries even without additional stabilization with nutlin (Fig. 17A, 27B), 

suggesting adequate expression levels. Data shown in Fig. 39 demonstrate that 

most of the rare tumor-associated variants (found in less than 10 samples) are 

classified by CSMS as wild-type (28 out of 35) in good agreement with the cDNA-

based screening (Kotler, 2019). This further substantiates that the p53 expression 

level in the cell line is sufficient to drive a full-blown p53-mediated response and that 

the CSMS does not overestimate the pathogenicity of neutral variants.  

We have performed a comprehensive evaluation of the performance of the CSMS 

protocol by conducting saturation mutagenesis of codon R175 and, subsequently, of 

the H1-helix. Encouragingly, we have confirmed the reproducible introduction of both 

libraries into the TP53 locus (Fig. 14, 27). Analysis of variant dynamics in the cell 

population after treatment with a panel of MDM2 inhibitors revealed the excellent 

performance of the screening system. All variants with an expected loss of function 

(nonsense, R175 codon deletion, as well as the most frequent cancer-associated 

variant R175H) were strongly enriched after treatment, whereas synonymous 

mutations were eliminated, supporting the robustness of measurements (Fig. 12). 

The comparison of the CSMS results with the prevalence of mutations in human 

tumors further confirmed the outstanding ability of the workflow to identify pathogenic 

mutants: most of the cancer-associated H1-helix variants were scored as LOF (Fig. 

29D). 
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4.2 CSMS grasps the complexity of the TP53 mutome: 

classification of rare pLOF and wt-like variants 

Correct estimation of LOF phenotype by the CSMS would not be sufficient for 

reliable categorization of the plethora of p53 variants. To produce clinically-relevant 

predictions, the system should capture the complex of natural phenotypic diversity of 

the p53 mutome and provide sufficient resolution to separate mutants with partially-

retained functionality form truly LOF and fully functional variants. Reassuringly, in all 

our experiments, synonymous (fully functional) variants were reproducibly depleted 

form the library to a much higher degree than missense mutants concordant with 

their fully preserved anti-proliferative functions (Fig. 17C, 29A, 36A). This underlines 

the reliable identification of neutral mutations, which is critical for distinguishing 

between non-damaging passenger variants and genuine driver mutations. 

Discriminating driver and passenger mutations is a considerable challenge for 

cancer genomics. Driver mutations affect critical positions in tumor suppressor genes 

or oncogenes, support transformation, and confer growth advantage, whereas 

passenger mutations are randomly scattered across the genome and confer no 

malignant traits. A good demonstration of the power of the CSMS in identifying 

passenger mutations is the R175C variant. Despite being a clear cancer-associated 

mutant (71 UMD records), it was classified as wt-like by the CSMS (Fig. 17C). 

Further analysis of published data confirmed the intact functionality of the variant 

(Fig. 18) (Ryan and Vousden 1998; Flaman et al. 1998; Blagosklonny 1997; Ory et 

al. 1994; Blagosklonny 2002). Several other lines of evidence further support that the 

R175C is a neutral passenger variant. First, 30% of tumors with this mutation have 

other TP53 alterations. Second, this variant has never been described as a germline 

mutation (Leroy et al. 2014a). Third, mutation R175C originates from C>T transition 

at the methylated CpG site, which is the most frequent mutation signature of TP53 

(Giacomelli et al. 2018). The other transition type, G>A, happens at a similar rate. 

Therefore, mutations generated by these two transition types are expected to arise 

with equal probability. This holds true for hotspot codons 248 and 273. Variant pairs 

R248Q-R248W and R273H-R273C have similar frequencies and share LOF 

phenotype (2562, 2003, 2361, and 2214 UMD records, respectively). However, 

R175H mutation originating from G>A transition is 50 times more frequent than the 
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R175C. Therefore, R175C mutation is not selected during neoplastic transformation 

and is a neutral passenger variant. Notably, the benign phenotype of R175C could 

not be deduced from the variant occurrence in cancer patients or from in silico 

predictors (Fig. 18A). Conversely, direct functional measurement inferred from the 

CSMS unambiguously identified the mutant as benign, again underscoring the utility 

of the system.  

Detailed analysis of the H1-helix dataset further showcased the excellent ability of 

the CSMS to explore the complex mutational landscape of TP53. 

CSMS revealed a mutagenesis-resistant region in H1-helix (C182-S185): almost all 

substitutions at these positions were classified as non-damaging (Fig. 29A). Among 

these residues, two are highly conserved: S183 is found in all mammals, whereas 

D184 is almost invariant among 99 animal species (Sulak et al). Highly conservative 

residues in p53 are frequently mutated in tumors in line with their functional 

importance (Baugh et al. 2018). The p53 protein contains 64 amino acid residues 

that are conserved in all vertebrates. Most of these residues are frequently mutated 

in cancers (between 25 and >2,000 UMD records) (Soussi 2014). However, 

missense mutations F19 and W23 have never been reported in cancer. These 

residues are essential for the binding of MDM2 to p53; therefore, any substitutions at 

these positions would be lethal for the cell due to uncontrolled p53 stabilization 

(Kussie et al. 1996). Likewise, missense mutations at conserved positions D184 and 

S183 are strikingly rare. The UMD database contains only 73 mutations at D184 and 

19 at S183 (the mean frequency of missense mutations in DBD is 287 per residue). 

Collectively this indicates that alterations at position 184 do not give a fitness 

advantage and do not lead to enhanced tumorigenesis. Similar to D184, missense 

mutations of the conserved residue S183 were eliminated from the cell library in the 

screening, as well as mutations at S185. Phosphorylation of the S183 by Aurora B 

kinase was shown to stimulate p53 degradation (Gully et al. 2012). The recent report 

from our group further supported the data on the inhibitory role of phosphorylation of 

S183/S185. Timofeev and colleagues reported on the mouse knock-in model of the 

phosphorylation-deficient mutant p53 S180A (unlike a human, mice have one serine 

residue in H1 helix). Cells expressing S180A demonstrated enforced DNA binding 

and increased transactivation of target genes. Elevated p53 activity translated into a 
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reduced incidence of spontaneous and oncogene-induced cancer. Interestingly, 

despite lower susceptibility to cancer, S180A mice demonstrated shortened lifespan 

due to accelerated aging (Timofeev et al. 2020). These results were also confirmed 

in human HCT-116 cells. Isogenic cell lines expressing the double phospho-deficient 

mutant (S183A, S185A) were generated by the author using the procedure 

described in section 3.5. HCT-116Δ/TP53S183A, S185A cells demonstrated enhanced 

target gene expression and apoptosis in response to DNA damage. Taken together, 

these results strongly suggest that phosphorylation of S183 and S185 have inhibitory 

effects on p53 function; therefore, alterations at these positions are expected to be 

benign in good agreement with CSMS predictions, which explains their low 

frequency in human tumors. 

Finally, alterations at C182 were previously shown to have a minor effect on p53 

functionality, in good agreement with our data (Stoner et al. 2009; Eldar et al. 2013; 

Kaar et al. 2010). In summary, the discovery of the mutagenesis-resistant region 

(C182-S185) in the H1-helix made by CSMS is supported by several lines of 

evidence, including the cDNA-based screening (Kotler et al.), functional data from 

animal models, and clinical observations. This further demonstrates that the CSMS 

protocol correctly classifies neutral TP53 variants. Reliable identification of benign 

mutations has an important medical implication. Although rarely, such mutations are 

found in human tumors. For example, the UMD database contains 157 cases with 

missense mutations at mutagenesis-resistant positions C182-S185. 

Moreover, the UMD database contains 187 cases with mutations in H1-helix 

classified by the CSMS as neutral. Such mutations must be considered wild-type, 

and patients carrying them can profit from therapy with MDM2 inhibitors and should 

be included in clinical trials. Furthermore, detection of such benign p53 variant in the 

germline of a cancer patient would indicate a lack of inherited cancer predisposition 

(if no other predisposing mutations (e.g., in BRCA1/2) are also not found). Therefore, 

family members of such individuals do not have an elevated risk of developing 

cancer, do not need to be screened for this variant, and can evade unnecessary 

screening procedures and preventive measures (e.g., prophylactic mastectomy). 
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Closer examination of the mutational effects within positions E180 and R181 

underlined the exquisite ability of the CSMS to detect partially-functional p53 

variants. Residues E180 and R181 form a salt bridge between two adjacent 

monomers in the DNA-bound tetramer (Ma and Levine 2007; Dehner et al. 2005). 

Alterations at these positions modulate DNA binding cooperativity and were 

extensively studied by our group and others (Madhumalar et al. 2009; Schlereth et 

al. 2010a; Timofeev et al. 2013). Therefore, these positions are especially suited for 

the characterization of partially-active mutants because comprehensive data on DNA 

binding for multiple variants are available. The fitness advantage conferred by eight 

distinct mutations revealed a striking correlation with DNA binding strength inferred 

from biochemical studies (Fig. 29C) (Schlereth et al. 2010a). Among 8 mutants, the 

R181L showed antiproliferative capacity mostly similar to the wild-type. This is a 

well-characterized tumor-associated apoptosis-deficient partial-LOF mutant with 

preserved transactivation of certain target genes (CDKN1A, MDM2) and the ability to 

activate cell cycle arrest (Ludwig et al. 1996; Schlereth et al. 2010a). The other well-

characterized pLOF mutant in H1-helix is E180R. It also demonstrated a selective 

apoptotic defect and retained the cell cycle arrest (Timofeev et al. 2013; Klimovich et 

al. 2019). Importantly, its DNA binding was weaker than of R181L (Schlereth et al. 

2010a; Schlereth et al. 2010b). In good agreement with weaker DNA binding, E180R 

was depleted from the library significantly weaker than the R181L. 

In the work of Schlereth and coauthors, tumor-suppressive properties of other H1 

helix mutants inferred from DNA binding strength, transactivation of p53 response 

elements, and proapoptotic activity declined in the order WT > R181L > R181H > 

R181C > E180K > R181P. Strikingly, the CSMS-derived measurement of the activity 

of protein variants reproduced precisely the same pattern, justifying the single CSMS 

screening ability to replace a multitude of functional assays to decipher the complex 

landscape of p53 mutants. 

4.3 High-content CSMS protocol: advantages and limitations 

Successful validation of the CSMS performance using the R175 and H1-helix 

datasets prompted us to establish the high-throughput CSMS workflow to perform a 

comprehensive analysis of thousands of p53 variants. The CSMS design enabled a 
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relatively simple scale-up of the procedure. We have engineered a novel targeting 

vector to accommodate large 230-bp long oligonucleotides spanning the whole 5th 

exon and increased the number of cultured cells and input DNA used for the 

sequencing library construction to compensate for the increase in library complexity. 

Importantly, the same system can be easily employed for extended analysis to the 

complete DNA binding domain encoded by a relatively short region (exons 5-8 span 

1,5 kb). For this purpose, one would need to design a set of targeting vectors with 

extended homology arms spanning the region between intron 4 and intron 9. 

Because the maximum size of synthetic oligonucleotides slightly exceeds 200 

nucleotides, each exon will be targeted by a separate vector. Therefore, each of the 

3 vectors needs two recognition sites for type IIs restriction enzymes flanking 

corresponding exons for cloning oligonucleotides using the Golden Gate protocol. 

Since the probability of homologous recombination significantly decreases with the 

distance from the double-strand break, additional modification of HCT-116Δ/TP53E cell 

line might be needed to ensure efficient editing. Specifically, the generation of a 

novel recognition site for the allele-specific CRISPR-nuclease could be required to 

shift the location of the double-strand break closer to the region of interest. This can 

be achieved by transfecting HCT-116Δ/TP53E cells with a CRISPR-nuclease specific to 

intron 7 or 8. Random nucleotide polymorphisms in the TP53E allele generated by 

non-homologous end joining can be used as a target for the allele-specific nuclease, 

as it is shown in Fig. 7 for exon 5. Finally, minor modifications of PCR protocols and 

bioinformatics pipeline will make the CSMS platform suitable for analysis of >90% of 

the complexity of the p53 mutome. 

Analysis of the exon 5 dataset revealed that despite strongly increased library 

complexity, 99.79% of mutants were successfully integrated into the TP53 locus, 

supporting the applicability of our methodology for high-content mutagenesis. 

However, a comparison of the scorings retrieved from the exon 5 dataset with the 

measurements made in the validation experiments (R175 and H1 helix libraries) 

showed substantial inconsistency between low- and high-throughput protocols (Fig. 

36 B,D). We have observed markedly lower depletion of variants as a major source 

of these discrepancies and concluded that applying the high-content protocol 

resulted in decreased resolution between LOF and wild-type-like mutants (Fig. 36 C). 
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Most probably, this issue was a result of the suboptimal passaging schedule used 

during nutlin treatment. During two weeks of nutlin treatment, library-expressing cells 

were passaged with a low split ratio (1:2) to avoid accidental loss of rare mutations 

and maintain the complexity of the library. Passaging at high density can result in a 

decreased effective concentration of nutlin, ineffective killing of nutlin-sensitive cells, 

and consequently reduced depletion of wild-type-like variants. At the same time, the 

exponential outgrowth of resistant cells can be limited by high culture density. Both 

factors will reduce the dynamic range of the system. 

Despite this technical issue, the relative fitness landscape derived from the high-

throughput CSMS experiment was highly correlated with the study of Kotler and with 

the distribution of mutants in human tumor specimens (Fig. 39 and 40). This implies 

that we have successfully captured a large portion of phenotypic diversity in our 

cellular library. 

We are convinced that simple measures can further improve the performance of the 

high-throughput protocol. Reducing cell density and prolonging the expansion of the 

population would enhance the separation of wild-type and LOF variants. Increasing 

the cell number and adding more replicates would reduce the drop out of mutations 

from the pool. Therefore, despite the need for minor protocol improvements, the 

CSMS has fully demonstrated its utility as a high-throughput phenotypic screening 

platform. 

4.4 CSMS dissects distinct p53-dependent tumor-suppressive 

programs  

Previously reported screening systems employed the antiproliferative activity as a 

single measure of p53 functionality (Giacomelli et al. 2018; Kotler et al. 2018). To 

demonstrate the value of CSMS for in-depth characterization of the p53 mutome, we 

have employed our system to dissect two p53-mediated programs, apoptosis and 

cell cycle arrest, in the context of the R175-variant library. To this end, we have 

performed two experiments described in section 3.8.1. In the first experiment, we 

have compared populations of cells treated with nutlin for a short or prolonged time 

and identified mutants, which were able to arrest proliferation temporarily but could 
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not kill cells by apoptosis (Fig. 20). In the second experiment, we have compared 

mutations prevalent among annexin V positive and negative library fractions after 

nutlin treatment to directly reveal apoptosis proficient and deficient mutants (Fig. 13 

A,B). These experiments gave several interesting insights into the functional impact 

of R175 mutations. For example, the non-damaging tumor-associated variant R175C 

has demonstrated preserved proapoptotic activity in good agreement with published 

data, further confirming its benign properties (Xu-Monette et al. 2012; Ory et al. 

1994). Interestingly, mutants R175C and R175S exhibited very similar transcriptional 

profiles in the study of Kato et al. (Fig. 18C,D) (Kato S. et al. 2003). However, they 

demonstrated distinct features in the annexin-V experiment. Apoptosis-proficient 

R175C was depleted to the level of wild-type, whereas R175S was apoptosis-

deficient (Fig. 21B). This example clearly shows the advantage of phenotypical 

functional measurements. 

Several apoptosis-deficient mutants recovered from the annexin-negative fraction 

(Fig. 21B, R175I/K/N/P/S) demonstrated remarkable behavior in the other 

experiment: they were moderately enriched after short nutlin treatment but 

progressively depleted upon more prolonged exposure, suggesting their ability to 

induce cell cycle arrest (Fig. 20B). Strikingly, all these mutants were previously 

shown to provoke cell cycle arrest when separately expressed in p53-negative Saos 

cells (Ryan and Vousden 1998). Moreover, the murine analog of R175P, R172P 

revealed similar properties in a mouse model (Liu 2004). These findings have further 

strengthened our confidence that CSMS is a powerful tool for the elaborate 

functional characterization of p53 variants. Two simple experiments allowed us to 

dissect between mutants proficient in the induction of cell cycle arrest or apoptosis in 

exceptional agreement with previous experimental observations.  

Sorting of library-expressing cells according to the expression of a particular marker 

(as we did with annexin) is a simple and elegant approach to decipher complex 

genotype-phenotype correlations. The array of markers can be easily extended to 

quantify proliferation (EdU), DNA repair (γH2AX), the activity of certain promoters 

(using reporter genes), or even phosphorylation states (using phospho-specific 

antibodies) or metabolic conditions. 
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4.5 CSMS quantifies the impact of p53 mutations on cellular 

response to therapeutic agents  

p53 plays a central role in apoptosis induction in response to DNA damage. 

Therefore, mutations in TP53 confer resistance to chemo- and radiotherapy, which 

rely on DNA damage induction(Stiewe and Haran 2018; Hientz et al. 2017; Zhou et 

al. 2019). Besides reduced sensitivity to apoptosis, various GOF mechanisms have 

been implicated in protecting cancer cells from chemotherapy-induced death (He et 

al. 2017; Blandino et al. 1999; Keshelava et al. 2000; Zhang et al. 2020). However, 

little is known about the impact of non-hotspot mutations on therapy resistance. 

Considering the complexity of the p53 mutome and the multitude of mutant p53 

protein interactions with binding partners and the genome, a systematic 

characterization of the drug resistance phenotype conferred by multiple p53 

mutations has an important clinical implication.  

p53-reactivating compounds can potentially tackle mutant p53-induced drug 

resistance. Some p53 reactivators are directed against specific mutants (for 

example, PK083 and NSC319726 target Y220C and R175H, respectively), whereas 

other molecules affect a broader spectrum of variants (for example, APR-246) 

(Bykov and Wiman 2014). All emerging mutant p53-targeting therapeutics have been 

tested on several exemplary hotspot mutants, and none of them was systematically 

assayed with multiple protein variants in an isogenic context.  

Previous functional studies of the p53 mutome did not address the issue of drug 

resistance. In the work of Kotler and colleagues, the proliferation of untreated cells 

was used as a readout. In the Giacomelli study, cells were treated with nutlin or 

etoposide; however, etoposide treatment was used solely to identify wild-type-like 

variants. Therefore, we have utilized the CSMS to investigate the influence of p53 

mutations on the response to therapeutic agents. Besides treating the library with the 

non-genotoxic p53 activator nutlin, we have subjected cells to irradiation and 

treatments with the chemotherapeutic 5-fluorouracil and the p53 reactivator APR-

246. Our analysis revealed significant similarity in response of mutant-expressing 

cells to treatment with nutlin, irradiation, and 5-FU (Fig. 23B and 25B). However, one 

mutant group demonstrated a substantial difference in enrichment pattern: wild-type-
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like mutants were depleted significantly stronger under nutlin treatment than under 

treatment with DNA-damaging agents, demonstrating preferential induction of cell 

cycle arrest by wild-type like mutants under tested conditions as compared to nutlin. 

Although all three stimuli activate apoptosis in HCT-116 cells, distinct dynamics of 

the p53 activation play a significant role in controlling p53 response outcome. 

Irradiation induces rapid activation of p53 followed by pulsing p53 protein levels of 

decreasing amplitude (Hafner et al. 2017; Lev Bar-Or et al. 2000), leading to 

preferential activation of arrest-inducing genes and recovery from DNA damage. 

Conversely, continuous treatment with MDM2 inhibitors results in sustained p53 

activation expression of proapoptotic target genes and cell death (Paek et al. 2016; 

Purvis et al. 2012). Distinct behavior of the group of synonymous and wild-type-like 

mutants under distinct stimuli likely reflects the influence of p53 signaling dynamics 

on cell fate.  

We did not reveal any other mutants which dynamics were significantly distinct under 

non-genotoxic p53 activation with nutlin and after exposure to genotoxic agents. This 

suggests that resistance to apoptosis is the most important determinant of therapy 

resistance in our system. 

Besides genotoxic agents, we have treated library-expressing HCT-116 cells with the 

p53-reactivating compound APR-246. It is the most advanced p53 reactivator and 

currently undergoes clinical testing (12 studies listed at clinicaltrials.gov). A 

successful rescue of functions of mutant p53 would result in depletion of selected 

missense LOF mutants from the library compared to nonsense and synonymous 

mutations. Surprisingly, our analysis did not reveal any mutant-specific effects (Fig. 

26 and 31). Neither the R175H mutants shown previously to be refolded with APR-

246 nor other missense mutants showed any depletion below the basal level (Zhang 

et al. 2018; Ceder et al. 2020; Bykov et al. 2016; Bykov et al. 2002).    

Mutant p53 is constitutively stabilized in cancer cells. Refolding of the mutant protein 

with a reactivating compound leads to rapid accumulation of active p53 and 

cytotoxicity. However, mutant p53 stabilization is not an immediate consequence of 

p53 mutation but rather an acquired hallmark of the cancer cell (Schulz-Heddergott 

and Moll 2018; Yamamoto and Iwakuma 2018). HCT-116 cells express wild-type p53 

and therefore likely lack alterations essential for p53 stabilization. Consequently, the 



161 

introduction of the mutant allele into HCT-116Δ/TP53E cells did not result in the 

accumulation of the mutant protein: expression levels of missense mutants were 

comparable to the wild-type (Fig. 11C). Treatment of mutant-expressing cells with 

nutlin increased p53 levels (Fig. 11C). The synergy between nutlin and APR-246 has 

been shown before (Izetti et al. 2014). However, our experiments did not reveal any 

APR-246-specific cytotoxicity under combined treatment with nutlin and APR-246 

(Fig. 31). Nutlin induced a moderate increase of p53 levels in mutant-expressing 

HCT-116Δ/TP53E cells (Fig. 11C). By contrast, mutant p53-expressing cell lines usually 

demonstrate massive protein accumulation (Zandi et al. 2011). Therefore, the most 

likely explanation for the failure to observe any effects of APR-246 in our system is 

insufficient expression levels of mutant proteins. Presumably, using a mutant p53-

expressing cell line with a high basal level of mutant protein would enable us to 

explore the p53 mutome in the context of continuous p53 stabilization. However, 

gene editing in p53-mutated cell lines presents a substantial challenge due to 

genomic instability and frequent copy number alterations of the TP53 locus 

(Donehower et al. 2019).  

In conclusion, our work is the first study that has attempted to assess the impact of 

p53 mutants on the response to therapeutic regimens. The simplicity of our system 

enables rapid and cost-effective testing of multiple compounds to gain insight into 

mutant p53-mediated drug resistance and expand the knowledge about the 

selectivity of mutant p53 targeting compounds.  

4.6 GOF of mutant p53 in CSMS 

Numerous p53 mutations confer neomorphic GOF activities to the protein. These 

activities foster cancer cell proliferation, enhance invasion and metastasis and 

promote chemoresistance (Walerych et al. 2012; Walerych et al. 2015; Mantovani et 

al. 2019). GOF effects are mutant- and context-specific. Therefore, high-content 

profiling of GOF properties of multiple p53 mutant variants would significantly impact 

personalized cancer treatment. 

We have identified several mutants that displayed higher enrichment than nonsense 

variants upon prolonged cultivation of the untreated H1-helix library, suggesting that 

these mutants stimulate proliferation (Fig. 28 C). However, the detected proliferative 
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advantage was statistically significant only for a single mutant (R181M, not found in 

tumors). Interestingly, variant H179Y, which demonstrated strong enrichment in one 

of three library replicates but failed to reach a statistically significant difference with 

nonsense mutants, was reported to promote the proliferation of embryonic lung 

fibroblasts (Di Yang et al. 2007). Enrichment of mutants with suggested GOF activity 

showed substantial variance between replicate libraries (Fig. 28C). Therefore, to 

discriminate between true neomorphic activities and stochastic fluctuations of variant 

frequency in the complex library, experiments with an increased number of replicates 

might be needed.  

Besides fueling proliferation, GOF mutants can promote radio- and chemoresistance 

(Valenti et al. 2011; Lisek et al. 2018; He et al. 2017; Yue et al. 2017). Therefore, we 

have analyzed data from nutlin-, 5-FU and X-ray treatment experiments to identify 

mutants with GOF properties. However, we did not detect any variants with 

enrichment significantly exceeding nonsense mutations. For example, in the library 

treated with MDM2 inhibitors, ES of 98% of missense mutants lies within 3 standard 

deviations of the mean ES of nonsense variants. The only mutant with enrichment 

exceeding this level in all 5 libraries is P177D, but its high enrichment is due to the 

extremely low amount of reads in one of the untreated library replicates (8 reads, 

obvious outlier) (Supplementary Fig. 1). Similarly, we found no evidence of more 

extensive enrichment for any of the missense mutants under 5-FU treatment or after 

irradiation. Therefore, our analysis suggests that most p53 mutants exhibit no GOF 

phenotype in the CSMS system. 

The stabilization of mutant p53 is a prerequisite for its tumor-promoting GOF 

(Alexandrova et al. 2017a; Hingorani et al. 2005; Terzian et al. 2008; Schulz-

Heddergott and Moll 2018). Tumor dependence on sustained elevated levels of 

mutant p53 has been demonstrated in elegant animal models: ablation of mutant 

p53 expression results in tumor regression, decreased metastasis, and improved 

survival (Muller and Vousden 2014; Weissmueller et al. 2014; Vogiatzi et al. 2016). 

Therefore, mechanisms driving mutant p53 stabilization are attractive therapeutic 

targets (Alexandrova et al. 2015; Schulz-Heddergott and Moll 2018; Yue et al. 2017; 

Yue et al. 2015). As already noted, none of the missense mutants showed 

expression levels exceeding the wild-type protein when expressed in HCT-116Δ/TP53 



163 

(Fig. 11), despite some of these mutants showing prominent stabilization in tumor 

samples (e.g., R175H and mouse equivalent of E180R) (Timofeev et al. 2013; 

Hwang et al. 2018). The lack of clearly detectable GOF properties in our screening is 

in line with previous observations. Both comprehensive high-throughput mutagenesis 

screens failed to identify any GOF properties in in vitro experiments (Kotler et al. 

2018; Boettcher et al. 2019). However, clear predominant expansion of cells carrying 

hotspot mutants with proven GOF properties was demonstrated in tumor xenografts 

grown in nude mice in the study of Kotler. This exceptionally interesting observation 

highlights the difference between selective forces operating in vitro and in vivo. 

Although HCT-116 cells used in the CSMS do not show stabilization of mutp53 in 

vitro and reveal no addiction to the mutant protein, adaptation of the cellular library to 

the growth in a complex in vivo setting could result in a selection of subclones with 

stabilized mutp53 with neomorphic activities conferring the selective advantage. 

Therefore, optimization of the CSMS procedure for in vivo experiments could enable 

the identification of mutants with GOF and further improve the clinical value of our 

work. 

Two recent studies attested DNE as a universal feature of p53 mutants (Boettcher et 

al. 2019; Giacomelli et al. 2018). Unfortunately, the CSMS is unable to capture the 

DNE because it utilizes a cell line with a single TP53 allele. However, minor 

modifications would enable us to do this. Specifically, one needs to establish a cell 

line with an editable TP53 allele and preserved second wild-type allele. The 

generation of such cell lines is currently underway in our group. 

4.7 CSMS identifies pathogenic mutations in non-coding regions 

CSMS has demonstrated its outstanding performance in measuring the functional 

impact of missense p53 mutations. However, all these experiments could also be 

performed in cDNA-based screening systems with comparable results. The 

unquestionable advantage of the CSMS approach is its ability to assess the 

consequences of mutations in non-coding regions of the endogenous locus. Our 

experiments showcased this advantage of the CSMS by identifying the known 

pathogenic variant of the splice site in the 5th intron (c.559+1 G>A ) (ClinVar record 

NM_001126112.2) (Surget et al. 2013; Lai et al. 1993; Smeby et al. 2019) (Fig. 33). 
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Mutations in non-coding regions are rarely found in cancer patients (156 splice site 

mutations are listed in the UMD TP53 database). However, their actual frequency in 

cancers may be underestimated since mutational analysis is mainly restricted to 

protein-coding regions. They are frequently mutually exclusive with exonic variants, 

highlighting their pathogenicity (Li et al. 2018). Identification of intronic pathogenic 

variants in TP53 outside splice sites suggests that non-coding tumor-predisposing 

TP53 variants are more frequent than previously considered (Peller et al. 1995; 

Avigad et al. 1997; Sailaja et al. 2012; Barel et al. 1998).  

Interestingly, several synonymous SNVs (sSNV) in the coding TP53 sequence were 

identified as pathogenic. For example, two sSNV at codon 125 (c.375G>A or 

c.375C>T) at the end of exon 4 are adjacent to the donor site in intron 4 and impair 

TP53 splicing) (54 UMD records) (Varley et al. 1998). Similarly, sSNV c.672G>A 

(encodes E224) is likely to disturb splicing (Leroy et al. 2014a). cDNA-based 

methods would undoubtedly characterize these rare mutations as benign but likely 

scored correctly as pathogenic by the CSMS. 

Summarizing, we believe that the CSMS is a powerful novel platform for discovering 

novel pathogenic variants in non-coding regions of p53. Identification of intronic 

pathogenic variants in TP53 outside splice sites suggests that non-coding tumor-

predisposing TP53 variants are more frequent than previously considered (Peller et 

al. 1995; Avigad et al. 1997; Sailaja et al. 2012; Barel et al. 1998). This further 

emphasizes the advantage of the CSMS over cDNA-based screening protocols for 

the comprehensive classification of rare TP53 variants.    

4.8 CSMS outperforms cDNA-based methods in the classification 

of pathogenic variants 

Comparing the CSMS-derived measurements with the cDNA-based screening 

results revealed a clear correlation between the two datasets (Fig. 39 and 40) (Kotler 

et al. 2018). However, the classification was discrepant for some variants. Notably, 

several of these variants are experimentally confirmed LOF (R175P, R175L, R181C) 

(Kang et al. 2020). Moreover, another mutant (C176Y) is also definitely pathogenic 

(it was frequently found in ovarian and other cancers, 281 UMD records) (Kang et al. 
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2013; Mullany et al. 2015). These four mutants were erroneously classified in the 

cDNA-based screen as functional but correctly scored by the CSMS as non-

functional. 

Furthermore, CSMS scored several potentially tumorigenic H1 helix mutants with 

intermediate occurrence in tumor samples (10-90 records) as LOF. Again, the cDNA-

based screen failed to assign these variants to the pathogenic category (Fig. 39). At 

the same time, our screening did not overestimate the pathogenicity of mutation 

since most of the mutations found in less than 10 patient samples were classified as 

benign. Therefore, CSMS demonstrated a more accurate classification of H1-helix 

variants compared to the cDNA study. Unfortunately, the low dynamic range of the 

exon 5 dataset resulted in imprecise classification (as illustrated by low RFS values 

of the R175H mutant). However, we expect that minor modifications of screening 

conditions would be sufficient to confirm the superior performance of the CSMS over 

cDNA-based methods.  

We did not include the other similar study in the analysis because it quantified wild-

type and LOF effects in two separate experiments, making the direct juxtaposition of 

data cumbersome (Giacomelli et al. 2018). Direct comparison between studies of 

Kotler and Giacomelly was performed recently and found their excellent agreement 

(Carbonnier et al. 2020). Therefore, we can anticipate that our conclusions would be 

valid for the second study as well. Finally, most of the very rare variants (<10 UMD 

records, being likely sequencing artifacts or neutral bystander mutations) are 

unequivocally classified by both systems as functionally normal, suggesting that our 

protocol does not overestimate the amount of LOF mutations. Summarizing, a 

detailed comparison of our data with the dataset of Kotler et al. provides compelling 

evidence that the procedure established in our study is significantly more accurate in 

the categorization of pathogenic TP53 mutations, especially mutations with residual 

functions. 

4.9 Method limitations 

CSMS demonstrated impressive performance in our hands. However, we ought to 

address some limitations of our approach. Our aim, among others, was to improve 

the catalog of p53 mutations used for testing patients with increased cancer 
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susceptibility. From this perspective, the important limitation is the employed 

readout. We assessed the tumor-suppressive properties of mutants by quantifying 

the antiproliferative capacity of p53 mutants under treatment with mdm2 inhibitors. 

However, the ability of a p53 variant to kill cancer cells upon mdm2 inhibition is not a 

direct measure of “tumor suppression,” the ability of a protein to prevent initiation and 

progression of cancer in vivo. Two observations can exemplify this notion. 

On the one hand, therapeutic response to nutlin in murine Eµ-Myc lymphoma solely 

relies on Puma-mediated apoptosis (Valente et al. 2016b). At the same time, neither 

loss of Puma alone nor in combination with the other critical proapoptotic factor Noxa 

does not accelerate tumorigenesis to the same extent as p53 loss (Valente et al. 

2016a). Even more strikingly, p53 efficiently suppresses spontaneous tumorigenesis 

in mice deficient for p21, puma, and noxa in the absence of its three main programs: 

apoptosis, cell cycle arrest, and senescence (Valente et al. 2013). These 

observations clearly demonstrate that classical p53 functions assessed by 

mutagenesis screens, including CSMS, are dispensable for tumor suppression. 

Other activities, such as maintaining genomic stability, can be more crucial but are 

difficult to assess in vitro in a high-content manner (Eischen 2016; Hanel and Moll 

2012; Liu et al. 2004). Therefore, caution is needed when applying data on sensitivity 

to mdm2 inhibitors to identify cancer-predisposing mutants. 

The other limitation of our method stems from the usage of the isogenic setting: all 

mutants are expressed in the same cell line. Despite obvious advantages, this 

approach dramatically simplifies the cellular context and limits the findings to the 

single colorectal cell line. However, p53-mediated effects and their importance for 

tumor suppression are considerably distinct between tissue types. For example, p53-

null mice predominantly develop T-cell lymphomas and soft tissue sarcomas, 

whereas other cancer types are much rarer, pointing at the paramount importance of 

p53 for tumor suppression in the hematopoietic compartment in mice. In humans, the 

most frequent tumor type among carriers of germline TP53 mutations is breast 

cancer (Donehower et al. 1992; Bouaoun et al. 2016). TP53 mutational spectrum 

varies significantly between cancer types (Kastenhuber and Lowe 2017). To a large 

extent, this variation can be explained by specific mutagenic processes operating in 

different tissues (Alexandrov et al. 2016; Giacomelli et al. 2018). However, tissue-
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specific oncogenic GOF might also shape the mutational landscape (Barta and 

McMahon 2019). Collectively this suggests that the prognostic value of a mutant 

determined in colorectal cancer cell line can be distinct in the other tumor types. This 

can be especially relevant for low penetrant cancer-predisposing mutants acting in a 

tissue-specific manner, such as R337H. This inherited p53 variant is found in the 

Brazilian population and predisposes to developing adrenal cortical tumors and lung 

adenocarcinomas (Ribeiro et al. 2001; Vieira et al. 2021). Importantly, R337H is a 

pLOF mutant with preserved proapoptotic capacity. Therefore, its tissue-specific 

tumorigenic effects would presumably be difficult to capture in experimental systems 

based on cancer cells of distinct tissue origin.   

Tissue specificity of p53-driven response has an important implication for therapeutic 

response: the outcome of p53 activation can be very heterogeneous in different 

tissues. For example, in normal tissues, irradiation-induced p53 activation damages 

hematopoietic tissues and hair follicles due to apoptosis induction but exerts 

protective effects due to activation of cell cycle arrest and DNA repair in small 

intestine (Gudkov and Komarova 2010). Diverse p53-mediated responses are 

dictated by tissue-specific activation of p53 targets and distinct dynamics of p53 

levels (Fei et al. 2002; Tanikawa et al. 2017; Stewart-Ornstein et al. 2021). A 

paradoxical example of tissue-specific action of p53 in the context of cancer therapy 

is the tumor-protective action of wild-type p53 in breast cancer. Contrary to a 

textbook view, wild-type p53 was shown to mediate poor chemotherapy response in 

murine MMTV-Wnt1 mammary tumors compared to the mutant. Mechanistically, p53 

activated cell cycle arrest and senescence, which protected cancer cells from 

doxorubicin-induced DNA damage. 

Conversely, mutant p53 was unable to halt proliferation which leads to cell death via 

mitotic catastrophe (Jackson et al. 2012; Tonnessen-Murray et al. 2018). A similar 

protective action of p53 was revealed in melanoma (Webster et al. 2020). These 

observations underscore the importance of tissue context when assessing the 

response of cancer cells to chemotherapy and translation of results of high-content 

screenings.  
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The application of isogenic background in our screening has another important 

implication. TP53 mutations never act as the sole driver of malignant growth. 

Conversely, in many tumors, p53 loss is a late genetic event, which cooperates with 

multiple preexisting oncogenic alterations to fuel aggressive cancer growth (Fearon 

and Vogelstein 1990). Every tumor carries a unique combination of genetic 

alterations, which collectively determines its properties, including the behavior of 

wild-type or mutant p53. Cooperating oncogene may dramatically change the effect 

of p53 mutations on tumor development and therapy response. For example, murine 

leukemia arising from progenitors expressing AML1/ETO fusion protein 

demonstrates strongly increased aggressiveness and therapy resistance upon loss 

of p53. 

Conversely, leukemias initiated by the MLL/ENL fusion protein are highly aggressive 

and resistant to chemotherapy independently of p53 status (Zuber et al. 2009). This 

example underscores that functional screens based on a single cell line are confined 

to a unique combination of mutations. The importance of genetic background is 

further exemplified by the fact that even p53-wild-type cell lines demonstrate a fairly 

distinct response to mdm2 inhibitors, determined by additional genetic alterations 

(e.g., MDM2 amplification) (Ishizawa et al. 2018; Saiki et al. 2015). Accordingly, 

phenotypic effects of p53 mutations are partially determined by the cooperating 

mutations. Colorectal cancer cell line HCT-116 harbors activating mutations in b-

catenin and KRas (G13D) (Sekine et al. 2002; Steckel et al. 2012). Additionally, it 

contains a mutation of the CDKN2A locus encoding p14ARF protein. p14ARF acts 

as an mdm2 inhibitor and activates p53 in response to oncogenic signaling. 

Therefore, the CDKN2A mutation enables cells to maintain high levels of Ras-driven 

MAPK signaling and evade activation of the wild-type p53. Importantly, the 

introduction of p53 mutants into HCT-116 cells creates a genetic configuration that 

rarely exists in tumors: TP53 and CDNKN2a mutations are mutually exclusive 

(Donehower et al. 2019). Assaying the effects of mutant p53 in such context have 

important consequences. In a typical mutant p53-expressing cell with wild-type 

CDKN2A, constitutively active KRas drives p14ARF-dependent stabilization and 

accumulation of mutant p53. P53 stabilization is a prerequisite for oncogenic GOF 

(Suh et al. 2011). Lack of ARF in HCT-116 cells prevents stabilization of mutant 
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variants. This might explain the lack of detectable GOF effects in our system and 

emphasize the necessity to perform screenings in multiple cell lines. Another 

important consequence of the usage of ARF-mutant cell line concerns the testing 

p53 reactivating compounds. Cells harboring p53 mutations are not responding to 

the restoration of wild-type p53 equally well. Conversely, p53 reactivation 

successfully eliminates only those tumors where upregulated oncogenic signaling is 

translated into ARF-dependent stabilization of mutant p53 (Junttila et al. 2010; 

Feldser et al. 2010). Accordingly, screening in ARF-deficient HCT-116 cells will likely 

keep effects of p53-reactivating compounds such as APR-246 obscured. 

In summary, the aforementioned limitations need to be considered when interpreting 

and generalizing data of our study. We are convinced that CSMS-based 

classification of most LOF and wild type-like variants could be applied to a broad 

spectrum of cancer entities. In support of this, the CSMS dataset obtained from 

colorectal cancer cells revealed a reassuringly high correlation with the study of 

Kotler and colleagues performed in the H1299 cell line (expresses oncogenic NRas 

and wild-type p14ARF). Furthermore, a recent report revealed an excellent 

correlation between the study of Kotler and another cDNA-based screening 

performed in A549 cells (Carbonnier et al. 2020). However, our estimates regarding 

pLOF mutants could be affected by cell line-specific traits (e.g., tissue-specific p53-

dependent transcriptome, cooperating mutations) and can therefore be confined to a 

particular cancer subtype. Likewise, CSMS-based predictions regarding GOF and 

the impact of mutations on response to chemotherapy or p53-reactivating 

compounds can be predetermined by choice of the host cell line and need to be 

interpreted with caution.  

4.10  Conclusion 

TP53 is mutated in up to 80% of human cancers (Donehower et al. 2019; Leroy et al. 

2014a), and the proper systematization of p53 mutants is in high demand. Our study 

provides the foundation of the first catalog of functional consequences of p53 

variants encoded by the native TP53 locus in an isogenic genetic background.  
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At present development of the system in our group progresses further. For instance, 

the editing of the TP53 locus in the HCT-116Δ/TP53 cell line was implemented in exons 

6, 7, and 8, and reassuring preliminary data were obtained. Furthermore, the CSMS 

toolkit was expanded with a lung cancer cell line. TP53 mutations are very abundant 

in lung cancer patients; therefore, the addition of non-small cell lung cancer cell line 

to the screening will provide valuable information and broaden the clinical relevance 

of generated data. 

Over the decades, studies of p53 mutations were mainly focused on bona fide 

cancer-driving hotspot variants. Pathogenicity of rare non-hotspot alterations 

remained ambiguous due to the small number of reported patients and lack of 

experimental evidence (e.g., cell lines or mouse models). Clinical interpretation of 

rare variants was greatly empowered by bioinformatic tools such as SIFT, PolyPhen, 

REVEL, and others (Ng and Henikoff 2003; Adzhubei et al. 2013; Ioannidis et al. 

2016). Nowadays rapid development of gene editing technologies and next-

generation sequencing offered the exciting possibility to directly test phenotypic 

effects of hundreds of mutants in parallel in a time- and cost-effective manner. We 

have demonstrated that the CSMS-based classification is significantly more precise 

than existing bioinformatic predictors (Fig. 41). Moreover, CSMS has showcased its 

outstanding ability to predict the impact of mutations on therapy response, whereas 

none of the currently available algorithms are able to do this.  

Although several earlier studies have already reported high content characterization 

of the p53 mutome, the CSMS approach has several unique advantages and is likely 

more accurate. Therefore, we are convinced that the findings of the present work will 

serve as a substantial contribution to the further development of public p53-focused 

resources for researchers and clinicians. 
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Figure 1. Comparison of enrichment scores of nonsense and 

missense variants in libraries treated with MDM2 inhibitors. Means 

of triplicates are shown. Dotted line: 2x mean ES of nonsense variants. 

Note that only single missense variants are enriched above this 

threshold. The most enriched missense variant in each library is P177D. 
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