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1. Introduction 

 

Cell migration is one of the fundamental processes in the cell biology of metazoans. It is vital in immune 

response, development, and constitutes one of the hallmarks of cancer cells371,187,553. The basic underling 

cellular processes are evolutionary highly conserved and seem to even predate metazoans and 

multicellular life in general. Motion of prokaryotes relied mostly on flagellate-powered swimming. 

Early eukaryotes developed a new basic type of motility: amoeboid crawling412,279,151. 

It is long-known that single-cell eukaryotes such as Amoeba species move, using actin-dependent 

pseudopodia15,16. Other branches in the tree of eucaryote life also possess the capacity to use amoeboid 

movement. Heath and Steinberg (1999) showed that fungi have this ability200. In using amoeboid 

migration based on actin-containing pseudopodia-like structures, cells of the amphibia infecting 

parasitic fungus Batrachochytrium dendrobatidis can reach speeds similar to Dictyostelium amoebae. 

This process depends on the dynamics of the fundamental actin-related protein 2/3 (Arp2/3) activators 

of the Wiskott–Aldrich Syndrome family (WASp/WAVE family)151,515,524. Holistic sequence analysis 

and comparison of genes of the WAVE/WASp family revealed that the earliest eukaryotes must have 

already possessed a homologue. Accordingly, eukaryotes without WASp such as plants seem to have 

lost them during their evolution. It can be concluded that the capacity to migrate may be one of the 

ancestral and defining features of eukaryotic cells in general.248 

Of course, the development of multicellularity constitutes a drastic change in the surrounding 

environment of cells. Still, rather than fundamentally changing the basic modes of motility, cells in 

multicellular organisms seem to have merely adjusted their migratory behaviours to cope with the new 

challenges. In summary, two fundamental properties changed. Firstly, the surface to migrate on altered, 

resulting in a variety of migration modes as summarized in section 1.1. Secondly, contact with 

neighbouring cells became a crucial factor, resulting in a complex network of interaction, comprising 

e.g. direct physical interaction and long-distance crosstalk. Ultimately, these conditions resulted in 

something Michael Abercrombie, a pioneer in the fields of cell migration, named the “social behaviour” 

of cells1. The highest level of “social” organization is achieved in collective cell migration, summarized 

in section 1.2.    

 

1.1 Creating motion from potential energy: modes of motility 

It was also Michael Abercrombie and colleagues, who provided a first detailed description of cellular 

motility2–4,8,5. As an experimental system, they chose fibroblasts derived from embryonic chick heart 

and neonatal mouse muscle. Using phase-contrast microscopy, they observed a leading flat fan-like 

cellular protrusion they termed “lamellipodium”. This structure seemed to be the engine behind the cell 

movement, pushing against the leading edge by adding material to its front. At the same time, the rear 

seemed to retract. Dorsally in the lamellipodium, Abercrombie et al. observed a constant retrograde flow 
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of particles. Electron microscopy gave the resolution to characterize the material as “microfilaments” or 

actin2–4,8,5. Electron dense particles were recognized as substrate adhesions. Based on their observations, 

Abercrombie et al. proposed the mechanism later termed “Abercrombie-cycle” as a mode of motility 

for migratory cells2–4,8,5. It can be broken down into four steps: 1. Protrusion: microfilaments get 

elongated at the leading edge, pushing it forward. 2. Substrate adhesion: via adhesive molecules, 

microfilaments are tethered to the substratum to build an anchor to push against. 3. Retraction: the cell 

actively retracts in the rear. 4. Loss of substrate adhesion: in the rear part of the cell, matured adhesions 

get disassembled and loose contact to the substratum.2–4,8,5 These rules laid the foundation for decades 

of cell migration research. Although they may simplify the process, they still correctly describe the 

mechanics inside a lamellipodium. Years of research has broadened our understanding of cell migration. 

The molecular mechanisms behind force generation and lamellipodial migration are addressed in section 

1.1.1–1.1.3. However, the lamellipodium does not constitute the only cellular structure capable of 

promoting migration. Other mechanisms of migration are addressed in section 1.1.4 & 1.1.5. 

 

1.1.1 Actin treadmilling: the basic force generator 

There are two known actin-dependent processes which can convert chemical into kinetic energy: 

Myosin-driven contractility and actin polymerization. Protrusive forces in most known migration 

processes rely on actin elongation reviewed in 403. Monomeric G-actin is a globular protein of about 42 kDa. 

It contains a medial Adenosine triphosphate (ATP)/Adenosine diphosphate (ADP) binding cleft. A high 

concentration of Ca2+ or Mg2+ increases ATP/ADP association. Lowering the concentration shifts the 

balance, favouring dissociation. Monomers lacking nucleotides are denatured as a 

consequence267,235,451,120. G-actin-ATP is more likely to bind G-actin-ATP than G-actin-ADP to generate 

filamentous (F) actin and thereby building a double-helical microfilament389. For actin molecules, being 

a part of a filament increases the rate of hydrolyzation to actin-ADP, which may be a stochastic 

process47,230. Nucleotide exchange to the ATP-bound form is never occurring in F-actin, meaning that 

actin-ATP can only be restored in its monomeric form383. Because the phosphate residue dissociates 

very slowly, there is an actin-ADP-Pi intermediate step. It is identical in polymerization rate as 

actin-ATP. For a filament to grow, new G-actin-ATP must be bound before hydrolyzation is completed. 

If the binding of new G-actin-ATP happens at a slower rate than hydrolyzation, the filament shortens 

because terminal actin-ADP tends to dissociate. If the process is faster than hydrolyzation, the filament 

effectively elongates. The free energy accessible during this process can be utilized to exert 

force.383,154,122,253,210,480 

Under physiological conditions, the initial hurdle lies in bringing a minimum number of actin 

molecules together to reach a stable phase. Actin-dimers and trimers are unstable but if a nucleus of 

more than four actin-molecules assembles, polymerization continues. As expected in a stochastic 

process, the duration of this initial lag in polymerization depends on the total actin concentration in the 

medium454,101,145,363. Monomeric G-actin is an inherently asymmetric protein. One end of the molecule 
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is much more prone to polymerization than the other. This end is referred to as “barbed” in contrast to 

the slowly polymerizing “pointed” end. Accordingly, the filament has a barbed and a pointed end, too. 

If the actual actin concentration is higher than the critical concentration elongation occurs in both 

directions but at a faster rate on the barbed end. The critical actin-concentration is reached when the 

depolymerization-rate at the pointed end equals the polymerization-rate at the barbed end. This process 

– in which the net length of the filament stays in a dynamic equilibrium – is called 

“treadmilling”.541,83,384,493,153,542,59,466, reviewed in 62,387,385 

The treadmilling process constitutes the very basis of all actin polymerization-based modes of 

cellular motility. Nevertheless, physiological concentrations of G-actin would yield a speed of roughly 

0.04 µm/min387. Since a lot of cells reach higher velocities, it becomes clear that mechanisms exist to 

optimize the treadmilling process and thereby to obtain a faster yet steady turnover. Enhancement of 

polymerization and depolymerization-rate and nucleation can be performed by numerous actin 

regulators as summarized in the following section. reviewed in 75,387,403,259,405 

 

1.1.2 Actin regulation: the key process for persistent motion 

There is a large number of proteins regulating actin dynamics. To address them all exceeds the scope of 

this work. It can be summarized, that for a faster treadmilling process a faster polymerization and 

depolymerization rate are necessary. A rate-limiting step in polymerization is the concentration of 

G-actin-ATP.  The protein Profilin catalyses nucleotide exchange in G-actin, and thereby restores the 

G-actin-ATP pool, resulting in a drastically faster polymerization rate reviewed in 381. Meanwhile, a faster 

depolymerization rate of actin-ADP is enhanced by Actin depolymerizing factors (ADF)/cofilin reviewed 

in 31. A factor slowing down the polymerization rate is actin-capping. Especially barbed-end-capping by 

Capping Protein (CP)  is utilized to inhibit further elongation of the filament. reviewed in 127 

Another strategy to accelerate treadmilling is to promote the de-novo nucleation of filaments. In 

principle, there are three kinds of nucleators known. Firstly, tandem-monomer-binding nucleators like 

Spire and Cordon-bleu comprise a cluster of G-actin binding sequences which simply bring monomeric 

actin molecules together and thereby foster nucleation401. The same principle seems to be used by 

Enabled (Ena)/Vasodilator-stimulated phosphoprotein (VASP) to nucleate and elongate filaments reviewed 

in 37. Secondly, there is Arp 2/3 and thirdly, there are Formins as nucleators which will be addressed in 

more detail in the following.  

Arp 2/3. In the first half of the 1990s, numerous unconventional actin-related proteins with unknown 

functions were discovered98,290,100,289,382,96,155,143,341,99,196,452. These were later termed actin-related 

proteins 1-11 (Arp1-Arp11)448. Many members of the Arp family were later found to participate in 

chromatin remodelling (Arp4-9)361 or dynein transport as part of the dynactin complex (Arp1&11)33. A 

complex of two such factors named Arp2 and Arp3 that was firstly purified from Acanthamoeba 

castellanii , however, would turn out to be the core unit of the complex which takes a leading role in 

actin nucleation306,239,344,343. It was found that Arp2/3 complex induces nucleation of a new filament by 
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attaching monomeric G-actin to an already existing mother-filament with its barbed end pointing 

outwards and thereby creating a 70° branching point. Arp2/3 takes the role of a hinge or y-piece, 

interconnecting mother and daughter filament. This is possible because Arp2 and Arp3, as actin-related 

proteins, can bind to actin molecules239,18,343,46. Thereby, Arp2/3 creates a dendritic network of branched 

F-actin386. Shortly after its discovery, it was shown in vivo in zebrafish (Danio) and frog (Xenopus) 

keratinocytes and in yeast that Arp2/3 induced membrane pushing is the main force responsible for 

protruding the lamellipodium491,490,551,338. Arp2/3 was also found concentrated in lamellipodia of 

fibroblasts, the model system in which the Abercrombie-cycle was originally discovered304,438, and in 

the leading edge of carcinoma cells27. It can be concluded that the Arp2/3 complex is the crucial factor 

in lamellipodia based motility.  

Crystallography of bovine Arp2/3 revealed that the entire complex consists of 7 subunits. Five of 

them (ARPC1–5) keep the crucial Arp2 and Arp3 subunits apart from each other, incapacitating 

nucleation547,410. Approaches using cryogenic electron microscopy substantiated the notion that Arp2/3 

lies directly in the actin branch and elucidated the exact position of each component of the complex. In 

contrast, all activators except Cortactin dissociate after nucleation of the new branch occurred128, reviewed 

in 387,176. Even before it was elucidated by its crystal structure how the Arp2/3 complex is autoinhibited, 

it was clear that a promoting factor is necessary for inducing dendritic nucleation. In 1997–1999, the 

Wiskott–Aldrich syndrome family (WASp/WAVE family) was discovered.305,552,307,413  

Wiskott–Aldrich syndrome protein (WASp) was originally characterized to be responsible for the 

Wiskott–Aldrich syndrome. It was presumed to have a function in lymphocytes and thrombocytes in 

which it was demonstrated to be expressed112,359,113,111.  WASp binds to Arp2/3 to promote dendritic 

nucleation by bringing Arp2 and Arp3 subunits in contact. It was the first example of a nucleation 

promoting factor (NPF) which could link surface receptor activation to dendritic network formation 

reviewed in 205. WASp and its homolog N-WASp, which was first thought to be neuronally expressed but 

later showed to be ubiquitously present, contain a C-terminal VCA domain. It comprises the monomeric 

G-actin binding Verprolin homology (VPH; V-site; WASp homology domain 2, WH2) domain and the 

Arp2/3 binding acidic residue (CA)-site332,328,307,413. Deletion analysis of WASp and physical binding 

assays demonstrated that the C-terminus with the VCA domain binds to the p21-Arc motif of Arp2/3. 

In N-WASp, it was illustrated that the V-site, which showed to be indispensable for the actin regulation 

function, directly binds to monomeric G-Actin. Overexpression of the VCA-domain resulted in ectopic 

Arp2/3 localization and perturbation of lamellipodia-formation332,307. Before its NPF-function was fully 

understood, WASp was shown to be an activator of actin polymerization downstream of Cell division 

control protein 42 (Cdc42) using genetic tools. Later, physical interaction was confirmed. WASp 

contains a Cdc42/Rac interactive binding (CRIB) motif which was shown to procure binding to Cdc42 

and Ras-related C3 botulinum toxin substrate (Rac) GTPases22,494,63. Overexpression of N-WASp (but 

not WASp) and active Cdc42 induces ectopic filopodia in cultured cells330.  It was known before that 

overexpression of active Cdc42 induces actin spikes356,256. Interestingly, the additional expression of N-
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WASp massively increased the length of these, whereas expression of N-WASp alone did not affect the 

cell morphology. This led to the assumption that N-WASp needs Cdc42-GTP binding to be activated. It 

was also shown to physically interact with Cdc42332. N-WASp was also found to function downstream 

of phosphatidylinositol-4,5-bisphosphate (PIP2) as it contains a pleckstrin homology (PH) domain, like 

WASp328. When not activated, N-WASP seems to be in a folded conformation in which the CRIB 

Domain contacts the C Site. Thereby, the VCA-domain, which is needed for Arp2/3 activation, is 

masked. To activate N-WASp, PIP2 must bind to PH-domain and Cdc42 to the CRIB-domain. This 

causes conformal changes which will expose the VCA-domain and thereby promote N-WASp 

function.206,414,581,392,330,242,413 reviewed in 500. Phosphorylation by the Src-family of tyrosine kinases seems to 

enhance WASp/N-WASp function484,516,432,102. 

Suppressor of cAR (SCAR) is another member of the Wiskott–Aldrich syndrome family which was 

firstly found in Dictyostelium. A loss of the heterotrimeric G-protein-coupled receptor cAR perturbs tip 

formation in the multicellular development phase of Dictyostelium. Expressing SCAR can rescue that 

phenotype. A knockdown leads to aberrations in F-actin localization38. Its vertebrate homolog, WASP 

family Verprolin-homologous protein (WAVE, SCAR1) induces membrane ruffles when 

overexpressed in Swiss 3T3 fibroblast. WAVE also contains a VCA domain, similar in function to the 

one found in WASp305,331,307. Rac1 was found to be an activator of WAVE. Rac was shown before, to be 

the main regulator of lamellipodia, inducing membrane ruffles when overexpressed404,256. Expression of 

dominant-negative Rac1 in Swiss 3T3 fibroblasts leads WAVE to change its location from the cytosol 

to ectopic membrane ruffles. Expression of an inactive WAVE∆VPH, rescues the membrane ruffle 

phenotype. Active Cdc42 induced filopodia could not be rescued. Based on these results, it seemed as 

WAVE gets activated by Rac1, although it contains no  GTPase binding domain (GBD)/CRIB-motif331. 

This could be explained when it was found that WAVE is part of a pentameric complex, the WAVE 

regulatory complex (WRC), that in addition comprises the following subunits: 1. specifically Rac1-

associated protein-1 (Sra1), 2. p53-inducible protein 121 (PIR121,), 3. Nck-associated protein 1 (Nap1) 

or its mouse paralog hematopoietic protein-2 (Hem2), and 4. Abelson interacting protein 1 

(Abi1)224,166,457. The 3D structure of this complex causes Sra1 to mask the VCA-Domain and thereby 

inhibiting NPF function226,110,90. The allosteric release of the autoinhibited stage of the WRC is the target 

of a multitude of regulative mechanisms. Most notably, Rac1 was shown to be the main regulatorreviewed 

in 109,259,90. Besides, ADP-ribosylation factor 1 (Arf) can cooperate, to activate WAVE250. 

Phosphorylation of the WRC by numerous kinases seems to play a role, too329,243. It was shown in-vitro 

that full WRC activation requires phosphorylation, prenylated Rac1, and PI(3,4,5)P3, presumably 

ensuring that WAVE activation is restricted to the membrane286,360. Crystallographic data indicated that 

a Rac1-binding is built by a part of the Sra1-surface and possibly part of the meander-region of WAVE90. 

Cryo-electron microscopy later revealed that there is another Rac1-binding site on the opposite side of 

Sra1. Analytical ultracentrifugation confirmed both, the newly found site (D-site) and the known site 

(A-site), to bind Rac1. The D-site has a 40fold higher affinity to Rac1. Pyrene-assays demonstrated that 
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both sides are required for WRC activation87. Very recent findings based on cell culture data indicated 

that the A-site suffices for WRC function. In contrast, the D-site appears only to enhance the function 

without being mandatory439.  

There are several further WASp family NPFs which activate Arp2/3 in different cellular processes 

or act redundantly. Their common feature is the WCA domain reviewed in 421. In Drosophila, WHAMY was 

discovered to be a fly-specific paralog of WASp which underwent a duplication of the CRIB domain. 

Unlike WASp, WHAMY seems to bind specifically active Rac1 and not Cdc42. Accordingly, it appears 

to be important for – and localized in filopodia and lamellipodia60. 

Formins. The third group of F-actin nucleators consists of the Formins. Formin 1 was found in mice 

and originally termed Limb deformity (Ln) as its alleles ldHD and ldln2 cause strong defects in the 

pattering of developing mouse limbs227,577,560,303,561. Shortly after diaphanous (dia) had been 

characterized in Drosophila81, the Formin Bni1p was found in yeast247. In mammals, there are 15, and 

in Drosophila six different genes encoding Formins reviewed in 58.  Early studies revealed that yeast Formins 

elongate and nucleate F-actin and induce actin cable formation426,132,427,131,394. In metazoan cells, 

predominantly Diaphanous-related Formins (Drfs) were discovered to take a major role in filopodia 

assembly373,49,567. Other roles of Formins were found in lamellipodia formation431,50,567, cellular junctions 

reviewed in 52, vesicle transport294,378,285,449,25, stress fibers225,216,501,275,374,450,447,433,165,434, and many more 

cellular processes. Formins are large proteins consisting of more than 1000 amino acids and comprise a 

formin homology domain 1 (FH1) and 2 (FH2), that have actin-binding capability. In some, further 

actin-binding motifs, like WH2 domains, can be found at the C-terminus. Drfs, the most abundant type 

in animals, typically contain an N-terminal GBD, a diaphanous inhibitory domain (DID), a dimerization 

domain (DD), and a C-terminal a diaphanous autoregulatory domain (DAD). When not activated, Drfs 

are in an autoinhibited state, in which the DID binds the DAD. Rho-GTPase binding to the GBD 

allosterically releases this binding, activating Formins.91,208,202,207,395,81,293,92,532  

To deploy NPF function, Formins dimerize to antiparallel dimers that can bind to actin barbed 

ends582,252,565,394. This process prevents capping proteins from inhibiting elongation53,459,339,254,197,583. The 

FH2 domain alone suffices to induce actin nucleation. Yet, it is very inefficient when only Profilin-actin, 

which is the most abundant actin under physiological circumstances, serves as substrate91,339,463,565. For 

instance, binding of Profilin-actin to a potentially existing WH2 or the FH1 domain can accelerate the 

nucleation process85,368,178,202,252,254,427,221. Subsequently, Formin can also act as potent elongator. It is not 

entirely understood, how Formins enhance elongation. In the current model it is believed that FH2 

domains of both monomers are responsible for the attachment to the barbed end of the growing filament 

in a step-wise process: there seems to be a continuous alternating binding of each FH2 domain that has 

consecutive “open states” where actin can be bound and “closed states” where no monomers can be 

added. The FH1 is very flexible and thereby can enhance elongation by directly delivering Profilin-actin 

complexes to the FH2 domain. How this process works exactly, remains 

elusive368,251,583,365,339,416,523,252,565,255,369,370. Cell culture studies, targeting the Drf Formin-like 2 (FMNL2) 
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revealed that its elongation function seems to outplay its nucleation function in lamellipodial driven 

motility. Arp2/3 complex works as a nucleator creating barbed ends that are elongated by FMNL250,236.  

The interplay of actin regulators in the lamellipodium is steered by Rho-GTPases. Rho-GTPases 

work as molecular switches that either bind to guanosine triphosphate (GTP) or guanosine diphosphate 

(GDP). In their GTP-bound form, they activate downstream effectors like actin regulators. The Rho-

GTPases Rac1, Cdc42, and Ras homolog family member A (RhoA) take roles in establishing and 

maintaining asymmetry as “master-regulators”10,356,404,406,191,117. Rac-GTP activates the Arp2/3 complex 

at the leading edge via WRC. Arp2/3 branching nucleation constantly creates new barbed ends as a 

substrate, used by Formins and Ena/VASP for further elongation. Thereby the typical fan-like structure 

of the lamellipodium is created387,420,271,50,236. It is important to note that relative to the substrate the 

branched actin network itself remains stationary due to the molecular clutch mechanism explained in 

the following. For example, by using photoactivation experiments this can be shown directly505. It should 

also be mentioned that polymerization does not only occur at the tip but also inside the sheet of the 

lamellipodium538. Cdc42-GTP activates WASp in the lamellipodium and probably in filopodia305,413 

which explore the environment. In the very rear of the cell, RhoA induces retractive fibre formation and 

activates Rho-associated protein kinase (Rock), which in turn activates Myosin II reviewed in 527. This allows 

for a controlled retraction of the trailing edge. The leading edge in lamellipodial migrating cells does 

not only contain the lamellipodium but behind it a region of contractile actin fibres called the lamella388 

(fig 1 a). This promotes persistent motion based on actomyosin contractility. Yolland et al. suggest in a 

recent publication that global cellular flow of actin, rather than the very narrow lamellipodial protrusive 

area, guarantees persistent motion in cells570. Findings like this demonstrate that the significance of 

lamellipodial dynamics must be re-evaluated in the future to understand the basics of persistent cellular 

motion.  

 

1.1.3 The molecular clutch: regulation of substrate adhesion 

In 1988, Mitchison and Kirschner proposed a new explanatory model for adhesion in cellular 

locomotion. They summarized that the actin-flow in cells is constant, yet cellular motion is variable. 

Like in a car where the motor is consistently running a clutch is necessary as a regulator to switch force 

submission on and off. Accordingly, this principle was termed “molecular clutch” 333. Its task is to 

physically link the extracellular matrix (ECM) to the treadmilling F-actin and to detach from the 

substrate as an answer to signalling/mechanical cues. If the link is established, retrograde flow is 

“slowed down”, and F-actin polymerization advances the leading edge instead of treadmilling rearwards. 

reviewed in 526  

An F-actin binding complex centred around the ECM-binding protein Integrin promotes this 

function. Integrin is a heterodimeric transmembrane receptor comprising an α and a β subunit220. It binds 

to ECM (like fibronectin) using the extracellular domains and numerous linkers using intracellular 

domains220,217,576. Integrin can bind the protein Talin213 which in turn can bind F-actin203. Furthermore, 
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Integrin can be attached to F-actin via α-actinin364. There is also an indirect linkage between F-

actin/Talin and F-actin/α-actinin via Vinculin168,64,233,174. The adhesive complexes built by these proteins 

can also comprise further molecular players as Paxillin, p120Cas, and many more 562,reviewed in 526. Integrin 

based adhesions can also have a signalling function, most prominently performed by the adhesion 

complex binding tyrosine kinases Focal adhesion kinases (FAK) and Src (cSrc=Abbreviation for cellular 

sarcoma) reviewed in 562. FAK localizes to focal adhesions using its focal adhesion targeting (FAT) 

domain209,440. FAK auto-phosphorylates to bind Src which thereby further phosphorylates FAK69,266,441. 

FAK is known to positively regulate RhoA via one of its GEFs578. Src activates by binding to FAK and 

is crucial to regulate focal adhesion turnover and thereby cell behaviour and motility141,193,296. 

In cellular protrusions during migration, adhesion complexes can assemble in clusters, generally 

termed “Integrin-mediated adhesions”40,28. This process could be induced by mechano-sensing of F-

actin polymerization generated force409 or interaction of Arp2/3 with vinculin and FAK107,455. In the 

initial stage, these complexes are called “nascent adhesions”. Their assembly seems to rely on force 

but is independent of actomyosin contractility, reflecting their position in the leading edge171,159,486,409,93 

(fig. 1 a). Rather, it seems to be actin polymerization itself that triggers their formation170,14,575. At the 

rear end of the lamellipodium, nascent adhesions can either get disassembled93 or triggered by Myosin II, 

turn to so-called “focal complexes” 167,539,517,30 (fig. 1 a). Focal complexes possess Talin, Vinculin, 

Paxillin, and FAK but no α-actinin170,575. Their dynamics are known to be regulated by Rac1 and 

Cdc42356. Focal complexes can either disassemble or if clusters are large enough or mature into “focal 

adhesions”, accompanied by the binding of α-actinin186,103,575,536. These are tethered to actomyosin 

contractile fibres in the lamella region of the cell216 (fig. 1 a). Their assembly and disassembly are known 

to be regulated by Rho/Rock activity404,517,97,215,409. Mature focal adhesions must resist higher tension 

forces than nascent adhesions162. The crucial factor for adhesion stability seems to be Talin579. FAK 

appears to promote Talin recruitment in nascent adhesions284. In focal adhesions there is a positive 

feedback loop as the amount of Talin and Vinculin binding increases, the more force is applied177,180. If 

due to actomyosin contractility a lot of force is applied Talin gets stretched, exposing more Vinculin 

binding sites, increasing stability further reviewed in 70. Recently, in a detailed and large systemic approach, 

the roles of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) in Rho-

GTPase activation/deactivation was deciphered. Interestingly, about one-quarter of all GEFs and GAPs, 

predominantly Rac1 regulators, are associated with Integrin based adhesions. There was a clear spatial 

distinction between Rac1-GEFs, which were present close to the membrane, and Rac1-GAPs rearwards 

at the lamella-region. Accordingly, Rac1 activating GEFs were found in nascent adhesions and Rac1 

deactivating GAPs in focal adhesions. These findings explain how the spatiotemporal regulation of Rac1 

is guaranteed by Rac1 regulators to safeguard maturation of substrate adhesions342. 
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1.1.4 Lamellipodia independent types of motility 

The dynamics described so far apply to the so-called lamellipodial (or fibroblast-like/mesenchymal566) 

migration type (fig. 1 a). It is important to note that there are numerous other modes of motility. Bleb-

based motility is a migration mode independent of treadmilling but relying on F-actin/Myosin-

interaction. When moving by blebbing, the cell uses the potential energy in its hydrostatic pressure via 

controlled rupture of the cortical actin cytoskeleton or by loosening the connection between cortex and 

membrane, using actomyosin contractility 86,reviewed in 367,514 (fig. 1 b). This causes the membrane to 

“bulge”, and thereby to protrude. Interestingly, in some cell types, as in Danio mesoderm progenitors, 

membrane blebs and lamellipodia can coexist119. Other cell types can switch between bleb-based 

motility and lamellipodia-based motility545,41. Walker carcinosarcoma cells, for instance, can switch 

from lamellipodia-based motility to blebbing when positioned in non-adhesive environments471. 

Lobopodia are cylindrical shaped protrusions that combine characteristics of lamellipodia and blebs (fig. 

1 d). They contain Integrin-based adhesions but are fuelled by hydrostatic pressure, released by 

actomyosin contractility. Originally discovered in protozoans, this mode of motility was found to be 

used by fibroblasts in three-dimensional ECM environments which were linearly elastic465,261,376. 

Amoeboid movement is used by many authors as an umbrella term, describing all actin and actomyosin 

based modes of motility, including lamellipodia/lamella-based motility and blebbing279 (Note: some 

authors use amoeboid motility as a synonym for bleb-based motility566).  Lämmermann and Sixt 

presented an intelligible classification of all amoeboid modes of motility subdivided by three major 

forces: (substrate) adhesion (A), (actomyosin) contraction (C) and (filament) polymerization (P)279. 

Using the “ACP” model, depending on which force the respective type of motility relies upon, every 

mode can be characterized. Classical fibroblast motion relies equally on polymerization, adhesion, and 

contraction (ACP). Bleb-based movement relies mostly on contraction (aCp), whereas lobopodia-based 

motility makes use of contraction and adhesion (ACp). Through this model, it becomes clear that 

different modes of motility are merely combinations of a single toolbox of mechanics. They need to be 

applied, varied, or changed as an answer to certain physical environments or cues. There are intermediate 

modes, simultaneous use of different forms and versatile cells that change their means of migration to 

cope with different surroundings.  

Filopodia are thin rod-like dynamic cell protrusions containing bundled actin. They get elongated by 

formins like Dia or by Ena/VASP and are regulated by different Rho-GTPases. Actin bundlers such as 

Fascin or α-actinin build the scaffold, to keep F-actin filaments densely packed. Very often, filopodia 

are found to be anchored in the lamellipodium 134,133,188,reviewed in 228. Filopodia were firstly characterized 

in sea urchin embryos521. Findings in the same model organism firstly shed light on their role in long-

range cell-cell communication237,309.  In the “classical” view, their role is considered largely explorative. 

They can sense chemoattractants and thereby promote chemoattraction17. Invadopodia are viewed by 

some authors as a subtype of filopodia228. Thereby, the ability to digest ECM can be considered a 

potential filopodial feature. Furthermore, filopodia in some cells bear integrin-based adhesion, sharing 
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similarities with those described in lamellipodia. They can be localized at the tip, the base or inside the 

shaft288,437,118,415,163. The exact role and composition remain elusive, but it seems they resemble focal 

adhesions. They can mature into such when passing over to the lamellipodium 556. Adhesions at the tip 

probably take a role in sensing ECM rigidity, enabling durotaxis232,556. 

Filopodia can exert pushing force by F-actin polymerization. The mechanics of filopodia have been 

well-examined, using biophysical approaches and mathematical models56,84. An interesting consequence 

of these findings is that filopodia could bear the potential to drive migration instead of lamellipodia or 

lobopodia. Gustafson and Wolpert proposed this kind of migration when they were working on primary 

mesenchyme cell migration in sea urchin embryogenesis without calling the structures filopodia as they 

were not defined yet. Later, this idea has been dismissed in favour of a more explorative role of 

filopodia323. Whether endothelial filopodia have a protruding function during angiogenesis, is a matter 

of discussion142. But it was shown that a loss of filopodia in Danio endothelia still allows for migration, 

demonstrating the importance of lamellipodial dynamics in angiogenesis379.  In mouse embryonic 

fibroblasts, it was shown that the receptor tyrosine kinase Ror2 induces filopodia downstream of Wnt5a. 

Incapacitating filaminA binding to Ror2 leads to a loss of filopodia and Wnt5a induced migration. 

Thereby it can be deduced, that filopodia can act as a motor for migration355. Cancerous and other 

versatile cell types can deploy numerous migration modes as an answer to environmental cues. It has 

been observed multiple times that cancer cells possess many highly dynamic filopodia228. Their loss or 

upregulation strongly influences metastasis20,77,462. Therefore, it is likely that filopodial migration is part 

of their repertoire and thereby should be addressed in the future. 

 

1.1.5 Dimensionality in cell migration 

An especially important distinction is whether cells migrate in one dimension (1D, along a single fibril) 

two dimensions (2D, fig. 1 a, b) or three dimensions (3D, fig. 1 c–e).  Inherently versatile cells like 

fibroblasts and leukocytes but also cancer cells have to migrate through complex 3D environments and 

thereby deploy a multitude of migration modes161,566. In the case of lamellipodial and bleb-based 

motility, there is a 3D analogue to the “2D-version” 566,376 (fig. 1 c, e). Lobopodial motion is inherently 

three-dimensional (fig. 1 d). Cancer cells in 3D can dynamically switch between all these 

modes357,367,214. A major challenge coming with 3D migration is confinement by the ECM or other 

physical barriers. Experiments using microfluidic chambers have shown that the nucleus poses the rate-

limiting step when squeezing through such barriers but perinuclear Arp2/3-based nucleation allows for 

nuclear deformation511. Leucocytes, for instance, choose their migration trajectories based on where the 

nucleus can fit through when confronted with mazes containing pores of different sizes423. Instead of 

simply coping, some cells also modify their environment to facilitate 3D movement. One way to achieve 

this lies in degrading ECM with proteolytic enzymes like matrix metalloproteases (MMPs)61. 

Protrusions containing such proteases and digesting their environments exist in 2D and 3D migration 

modes and are known as invadopodia or podosomes61,357,482,108,228. Proteolytic ECM remodelling is a 
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behaviour not only exhibited by cancer cells but also by cells in development, like sprouting endothelia 

in Danio angiogenesis534,51.  

 

 

Figure 1. Modes of migration in 2D and 3D environments. Lamellipodia based migration relies on treadmilling 

of the dendritic actin network and contraction of contractile actomyosin fibres (a). Differently matured Integrin-

based adhesions (red) transmit the force to the matrix. Cells can also migrate via blebs by locally disrupting the 

cortical actin cytoskeleton (b). lamellipodia and bleb-based motility can also be utilized in 3D environments (c, e). 

Lobopodia use hydrostatic pressure and thereby resemble blebs but comprise Integrin-based adhesions (d). They 

possess traits of blebs and lamellipodia. F-actin: blue.  
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1.1.6 Principles of directionality 

It is crucial in highly coordinated processes such as wound closure and development that cells reach 

their assigned destination. There are multiple ways of how signals can steer and coordinate migration. 

In chemotaxis, a spatial gradient of a chemical attractant is established and sensed by cells reviewed in 308. 

In a highly complex procedure adjacent tissues or other migrating cells must create a source and a sink 

for the chemoattractant reviewed in 68. There are different means of how chemoattraction can be integrated 

by migrating cell groups reviewed in 508. The most common one is the use of an externally created gradient 

as a directional cue. For instance, in Drosophila tracheal sprouting, tracheal tip cells express the 

Fibroblast Growth Factor receptor (FGFR) Breathless (Btl) and migrate along a gradient of the FGF-

Ligand Branchless (Bnl)489,244. The cell with the highest Btl activation induces lateral inhibition via 

Delta/Notch in adjacent cells inhibiting protrusion in them and becomes a highly protrusive leader-

cell287,82,169. Consequently, sprouting trachea will always follow a Bnl gradient. On the other hand, FGF-

Ligands can also work as a non-directional cue. It has been shown in wound scratch essays using Human 

Umbilical Vein Endothelial Cells (HUVECs) that they migrate due to FGF-cues. But different from 

Trachea-cells in Drosophila, they already possess asymmetry without a signal because cells at the 

wound edge have just one open side to protrude. In this model, FGF has been shown to induce migration 

without the source of the signal being important531. A directional gradient must not be established by 

adjacent tissues but can be generated by the migrating group itself. In Danio lateral line, it became 

evident that polarized expression of a receptor in medial parts of the cluster can locally reduce ligand 

concentration which in turn affects trailing cells. Ectopic expression of the receptor perturbs migration 

481,121. There are also models known in which it is not a leader that drags followers but instead, cells 

pushing from behind that can react to chemoattractant. This mode is known as “rear-wheel drive” 

chemotaxis461. In haptotaxis, instead of a soluble chemical, ECM-bound cues guide cell migration 

reviewed in 407. ECM can also be deposited by leader cells for followers to migrate on, to control their 

migration routes352. Durotaxis refers to migration along an ECM stiffness gradient reviewed in 300. 

Additionally, there is a great number of ECM features that can regulate and fine-tune collective and 

single-cell migration566. Another factor contributing to migration directionality is stress caused by 

physically attached cells. This behaviour exhibited by cohesively migrating cells is called 

plithotaxis502,519.  

 

1.2 „The social behaviour of cells” –migrating in a collective 

Swarm behaviour is a basic property observed in many types of so-called “active matter”. This term 

from theoretical physics describes a collective of agents or particles that transform energy from their 

surroundings into motion. Examples of active matter include liquid crystals, animal swarms, or human 

crowds. In 1995, the Hungarian scientist Tamás Vicsek introduced a general model, explaining how 
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simple rules in these systems can result in the complexity observed in swarm behaviour. He discovered 

that it suffices if every agent adapts its motion angle to the adjacent particles with a degree of uncertainty. 

The basic rules he introduced can be observed in nature across scales, especially in biological systems 

reviewed in 115. It has been shown that they also apply to clusters of cells during migration 495reviewed in 190. The 

question which arises is, by which mechanisms cells can reach this high degree of organization 

comparable to flocks of starlings and shoals of herrings. 

Interaction between cells is multifaceted and ranges from physical interaction to a multitude of ways 

to communicate via different signals. Cells can affect each other’s micro-environment or directly 

crosstalk. Therefore, it is self-evident that migrating cells will influence each other. Michael 

Abercrombie has already recognised the crucial role of “social” behaviour in migrating fibroblasts upon 

contact, in 1954. It is still an ongoing matter of discussion, at which point, migration of multiple cells 

can be considered “collective cell migration”. Peter Friedl and Darren Gilmour define three hallmarks: 

Firstly, a physical and functional connection throughout migration. Secondly, multi- or supracellular 

polarity. Finally and as an optional point, a modification of the tissues along the migration path147. This 

very restrictive definition would not include cells with a transient connection that can also influence 

each other’s migratory behaviour. Therefore, Roberto Mayor and colleges introduced a new definition 

referred in various reviews. According to their view, the defining feature of collective migration is that 

cells migrate more efficiently in a group than solely and influence each other by interactions with their 

neighbours322,509,510. Pernille Rørth came to a similar conclusion, as her definition states that cells are 

collectively migrating if they move together, make contact at least some of the time, and affect each 

other’s behaviour in some way417. She also addressed the question of why cells should migrate in groups 

and formulated four reasons. Firstly, they do so if tissues must change position while remaining intact. 

Secondly, inherently immobile cells can be dragged, employing cell-cell adhesion. Thirdly, cells can 

coordinate and thereby properly shape tissues. Lastly, some decisions can only be made in a collective 

as described in the Vicsek-Model528. Force measurements have shown that a migrating sheet exerts more 

force on the substratum as single cells422. This finding demonstrates a basic feature of all collective 

processes in which the whole is more than the sum of its parts. Collective cell migration is one of the 

most essential processes in metazoan development reviewed in 436,544, cancer motility/metastasis reviewed in 147, 

and wound healing reviewed in 458. In the following section it will be described how cells achieve a sense of 

direction and are guided as a collective. Further on, it will be clarified how cells migrate collectively in 

section 1.2.2–1.2.3, by comparing different model systems ranging from development to wound closure 

and cancer cell motility.  

 

1.2.1 Initiation of collective migration 

A wide range of cues is necessary to allow cells to migrate in groups. Signals of different sources such 

as adjacent tissues, neighbouring cells, or the substrate must be integrated. Usually, the first step is 

marked by the initiation of a migratory stage189. To migrate, cells that are organized in epithelia or 
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endothelia must undergo an epithelial-mesenchymal transition (EMT) in which they lose their planar 

polarity in favour of a front-rear polarity. This process can be the consequence of changes in ECM 

stiffness543,402,34. A decision that needs to be made simultaneously is whether cells migrate solely or in a 

collective. Several mechanisms have been introduced over time. It appears, that in some systems, ECM 

degradability takes a major role. Less degradable ECM seems to be a potential inductor of collective 

strand-like migration in cell culture reviewed in 518. It has also been shown that hypoxia can induce 

collectively migrating clusters in epithelial cancer cells291. Very recently, Protein phosphatase 1 (Pp1) 

was shown to be an activator of collective motility in Drosophila border cell migration, by promoting 

E-Cadherin-based cell-cell adhesion and restricting contractile actomyosin cables to the periphery. 

Depletion caused cells to dissociate and migrate using different modes of locomotion89.  

Yamada and Sixt classified migration modes by the “strength” of EMT. A non-migration epithelium 

(fig. 2 a) can undergo complete EMT, resulting in individually migrating cells (fig. 2 b). It can undergo 

partial EMT, resulting in migrating mesenchymal cells that are still transiently coupled via cell-cell 

adhesions (fig. 2 c, see section 1.2.2). Alternatively, it can pass EMT except for some leader-cells, 

resulting in the dynamics referred to as epithelial migration (fig. 2 d, see: section 1.2.3). EMT induced 

front-rear polarity is marked by the polarized activation of Rho-GTPases as Rac1, Cdc42, and RhoA 

and follows in principle the same rules as in single-cell migration322. There seem to be three major modes 

of how this is achieved in detail. In less cohesive cells every cell undergoes EMT and has a front-rear 

polarity which is always reestablished upon contact479 (fig. 2 e). There are also some models in which 

the entire cluster behaves like a single cell as front cells have protrusive dynamics and follower cells are 

retractive. This phenomenon was termed “supracellular polarity” 399,460,461 (fig. 2 f). In the classical 

model, only a part of the cells undergoes EMT and thereby reach a migratory stage (fig. 2 g). These 

leader cells sense cues and drag epithelial followers using actin cables. In some epithelial sheets, like 

the Drosophila follicular epithelium, every single cell is front-rear-polarized319,473 (fig. 2 h). 

 

……………………………………………………………………………………………………………

……………………………………………………………………………………………………………
Figure 2. Modes of collective cell migration (next page).  Non-migrating epithelia (A) can adopt different modes 

of collective motility after EMT. They can become undergo full EMT and become mesenchymal to migrate 

individually (B). Mesenchymal single cells can still exhibit collective behaviour like CIL (C). They can also 

undergo partial EMT and migrate as epithelia with (pseudo-)mesenchymal leader cells (D). Migrating cells are 

polarized through spatially restricted activation of small GTPases. Single migrating cells usually possess a front 

(red) and a rear (blue). In a supracellular unit, multiple cells are polarized like a single cell (F). “Classical” 

migrating epithelial sheets possess front-rear polarized leaders. Followers maintain an apico-basal organization 

(G). In some epithelia, every single cell has a front-rear-polarization. A–D based on566, E–H based on460.  
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1.2.2 Collectiveness among individual cells: mesenchymal collective cell migration  

Eric Theveneau and Roberto Mayor established a classification of migration modes with a gradient 

ranging from solely migrating cells to migrating epithelia with constant cell-cell adhesion. Mesenchymal 

collective cells constitute an intermediate type509. This type is characterized by short-lived cell-cell 

contacts of mostly individually migrating cells accompanied by an exchange of information (fig. 2 c). 

A common trait of many cell types that migrate as individuals or establish transient cell-cell adhesion is 

“contact stimulation of locomotion” (CIL). This term refers to a process in which two cells upon 

contact either cease migration or migrate in opposite directions479. Originally, it was found and termed 

by Michael Abercrombie in 1954 using cultured fibroblasts1,6. The first in vivo evidence of CIL came 

from the neural crest cell model in Xenopus78. Neural crest cells are highly migratory cells that 
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delaminate from the neural tube during gastrulation while undergoing EMT. They migrate in several 

distinct streams dorsoventrally to build many tissues during development including smooth muscles, 

bone, cartilage, neurons, glia, endocrine cells and connective tissue265,506,435,317,71,318,336. Inside a stream 

individual cell behaviour becomes obvious as cells quickly exchange neighbours265. During their 

migration, neural crest cells are polarized, building prominent lamellipodia. Before CIL was revealed to 

play a role, Wnt signalling was found to be important for neural crest migration317,71,318. CIL occurs when 

cells directly contact while transient N-Cadherin-based adhesions are built435, followed by repolarization 

of both cells away from the point of contact78. The traction force which is built up due to these new 

lamellipodia provokes divergent migration435. At the contact site, Wnt/PCP signalling activates RhoA, 

resulting in “rear”-dynamics78. N-Cadherin/Par3506,336 signalling, on the other hand, inhibits Rac1, 

ensuring repolarization506,435. In conclusion, repolarization is guaranteed by RhoA activation and 

Cdc42/Rac1 inhibition at the contact site506,36,23,336,114. Additionally, focal adhesions are disassembled at 

the point of contact, inhibiting force transmission507. Consequently, cells at the edge of the migrating 

cohort exhibit much more prominent protrusions than cells inside the sheet. On top, CIL serves as a kind 

of collision control, ensuring through repulsion that a monolayer is built and maintained321. Interestingly, 

cells exhibiting CIL are more persistent than solely migrating cells, allowing them to migrate in distinct 

streams. On a larger scale, CIL has a unifying effect on the directionality of cells78. To allow that, several 

mechanics must work in parallel. It has been shown that cells not only exhibit repulsive behaviour upon 

direct contact. On a larger scale, there is a common attraction, enforcing cohesion79. Chemoattraction 

via CXCL12/SDF-1 ensures that the cluster migrates to it destination506,507. Flanking the migration paths, 

lateral repulsive cues guarantee movement in a coherent stream without cells expanding left or 

right160,411,574,467,129,246. Numerous mathematical and computational models exist, describing how CIL 

and the aforementioned parallel mechanisms affect collective behaviour558,74,114,295. In other model 

organisms, the basic mechanisms of CIL have also been demonstrated in vivo, e.g in Drosophila 

macrophages 478 and mouse Cajal-Retzius cells 529. 

A very specialized type of contact inhibition constitutes the dynamic referred to as “chase and run”. 

Xenopus epithelial placodes, which later give rise to sensory organs, exhibit slow motility. They 

chemically attract neural crest cells but show CIL-like repulsion, when contacted by them. In this self-

perpetuating cycle, neural crest cells “chase” placode cells which in turn gain motility and “run” 507. 

Placode cells are not the only type of cohesive cells that undergo CIL. Danio prechordal plate cells 

migrate in an epithelium, interconnected via E-Cadherin. Cells need collectiveness to migrate since 

transplanted single cells are immotile125. The follicle epithelium surrounding the Drosophila egg 

chamber is not a rigid structure but constantly rotates around the inner cells (oocyte, nurse cells). This 

migration of a planar polarized epithelium seems to be driven by a CIL-like process in which cells inhibit 

protrusions in their neighbours via semaphoring(Sema-5c)-signalling473. Chick cephalic neural crest 

behaves very much like Xenopus neural crest but cells are interconnected by long filopodia which are 

thought to exist for long-range communication. It is shown that cell content is shared through these 
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finger-like protrusions. This causes a CIL response in connected cells much farther apart than in 

Xenopus neural crest cells. As in Xenopus, the resulting interconnected network causes cells to polarize 

toward the free edges.262–264,326,503 

 

1.2.3 Locomotion with constant adhesion: epithelial collective cell migration 

The collective migration of epithelial cell sheets is well studied150,417,322,509,147,544,149. Numerous model 

systems exist in cell culture but also in vivo during development. Some of these systems will be 

elucidated in the following. In epithelial collective migration, only partial EMT in some “steering-” or 

leader-cells occurs (fig. 2 d). In the “classical” view these leaders pull follower cells due to constant 

cell-cell adhesion, e.g. via Cadherins reviewed in 149, 326. These are cell-surface trans-membrane proteins than 

enable Ca2+-dependant cell-cell adhesion in many different tissues reviewed in 456,496,504,183. Cadherins can 

cluster to so-called adherens junctions reviewed in 198. In these, the intracellular domains of Cadherin can 

bind β-catenins, which in turn recruit α-cateninsreviewed in 571,366. α-catenins procure actin-binding via 

recruitment of adaptors like Vinculin546. Usually, cadherins only allow homophilic binding. Therefore, 

mixed cells expressing different Cadherins segregate by their respective Cadherin-types497. In vertebrate 

neurulation, two classical Cadherin types have been described: E-Cadherin and N-Cadherin396,497–499. N-

Cadherin is typically expressed in mesenchymal cells, as explained above. The switch from E- to N-

cadherin constitutes one of the hallmarks of EMT in many different tissues and in cancer cells reviewed in 

548. In the early vertebrate ectoderm, E-cadherin in used to build a continuous epithelial sheet. 

Presumptive cells of the neural tube undergo a switch to N-Cadherin and thereby segregate396. E-

Cadherin as the typical epithelial type, has been shown to play an important role in many kinds of 

epithelial cell migration, like for example in blood vessel sprouting375,9 and in some types of cancer 297,76. 

Cohesion in epithelial sheets can be supported by trans-cellular actin cables linked via cell-cell 

adhesions530. In extreme examples, follower-cells possess no migratory capacity at all which causes 

them to completely cease migration if separated from leaders by mechanical perturbation. In these cases, 

leader-cells migrate alone550,298,73.  

A basic principle in cell biology, stated by Abercrombie in 1960 in a publication concerned with the 

properties of cancer cells, is that epithelia do not accept open edges and react with protrusions7. An open 

edge always gives a sense of directionality without polarizing guidance cues. This principle has been 

shown several times to be used by epithelial monolayers in wound scratch assays354,48,390. During 

wound closure, cells at the front are motile due to the inherent asymmetry. However, cells inside the 

layer also contribute to protrusion135,137,362,531,390. Through mechanical coupling, the motion of adjacent 

cells in epithelia is partially synchronized528,531,390. Interestingly, forces seem not only to be generated in 

a substratum-dependent fashion but also by cell-cell interaction since it was shown that a retrograde 

flow of adherents junctions exerts force from cell to cell372. Not only epithelial monolayers but also 

fibroblasts react to open spaces with polarization in direction of the free edge. Although, after migration 

starts they turned out to migrate in a completely non-collective fashion316. The Drosophila dorsal 



Introduction 

 

19 

   

closure strongly resembles wound closure as observed in scratch assays314. Originally, it was thought to 

be organized by a trans-cellular contractile actin cable in a purse-string-like manner573. By mechanically 

perturbing this structure, it was shown that closure still works and thus seems to rely on multiple 

processes241,229,218. Dorsal closure seems to be a combination of actin polymerization-based protrusive 

and actomyosin contractility-based constrictive processes. These findings demonstrate another basic 

rule of epithelial monolayers; convex membrane curvature on open epithelia edges causes protrusive 

dynamics, and concave membrane curvature causes actin-cables (“purse-string”) to close the opening 

or wound398, reviewed in 269. Most closure processes probably rely on both principles. 

Drosophila border cell migration provides an example of invasive collective motility in 3D reviewed 

in 334. The border cell cluster consists of two immotile polar cells, that are enwrapped in six to eight 

motile cells that were recruited from the follicle epithelium. The follicle epithelium surrounds the entire 

egg-chamber, a structure composed of the oocyte and large nurse cells. The polar cells induce follicle 

cells to delaminate and undergo EMT, by secreting Unpaired (Upd), a Janus-kinase/Signal transducer 

and activator of transcription proteins (JAK/STAT)-Ligand that activates the JAK/STAT-pathway in 

follicle cells39,464. This causes activation of the transcription factor Slow border cells (Slbo) which in 

turns promotes expression of FAK, the actin bundler singed (sn), E-cadherin and Drosophila β-catenin 

armadillo (arm)335,54,537. These, and many more downstream factors of Slbo promote follicle cells to 

surround polar cells, to invade the nurse cells, and subsequently to migrate to the oocyte where it forms 

the later sperm entry point (micropyle). During migration, there is a constant change in cell position 

among the motile cells in the cluster334,335,391,418,43. The guidance cue seems to be based on 

chemoattractants produced by the oocyte and the nurse cells. PDGF- and VEGF-related factor 1 (PVF1) 

and epidermal growth factor (EGF) seem to have redundant function in the first part of the migration, 

posteriorly towards the egg124,123. Ectopic expression of the ligands is shown to mislead the cluster324,325. 

The second part of the migration, dorsally along the oocyte depends on EGFR und Gurken123. During 

the first part of the migration, the cluster is led by one cell which has more pronounced protrusions than 

the rest of the cluster. As there is a constant change of position the leader-state fluctuates and cannot be 

inherent to one specific cell. Its amount of protrusion was shown to be regulated by Rac1 activity 

downstream of PVR activation. The cell with the highest degree of PVR activation stands out as the cell 

with most Rac1-GTP activity and thereby builds the longest protrusions, safeguarding directionality. A 

dominant-negative form of Rac1 or a loss of PVR impairs migration as all cells build 

protrusions347,223,391,535,140,43. Rac1 was directly shown to be polarized inside the cluster, demonstrating 

that the border cell can be classified as “supracellular polarized”397,67,460,140. It was shown that 

photoactivation of Rac1 suffices to redirect migration of the cluster. Photoactivation of a dominant-

negative version of Rac1 leads to protrusions in all cells and a loss of leader-follower distinction535. 

Interestingly, the invasive migration of the border cell cluster does not rely on ECM/Integrin dynamics 

as there is no matrix between nurse cells. Traction force appears to be generated in a cell-cell dependent 

manner via E-Cadherin as its depletion perturbs the migration of the entire cluster. Using direct tension 
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measurements, the role of E-Cadherin in motion could be elucidated in detail353,67. At the same time, E-

Cadherin is also needed for the cohesion of the cluster299,380. Cohesions seems to be ensured also via 

trans-cellular contractile actin-cables at the periphery of the cluster204,19. 

A lot of tumour cells, especially of epithelial origin, invade collectively, using multiple 

modes 428,148,reviewed in 95. Examples for such tumours are colorectal carcinomas, melanomas, breast cancer, 

rhabdomyosarcomas, oral squamous cell carcinomas, fibrosarcomas, and endometrial 

carcinomas349,147,201,146. Collectively invading cancer cells have been documented in clinical specimens 

of patients with advanced stages of cancer95. They can be also directly observed in vivo after 

implantation, using murine skin-fold chambers13. In Madin–Darby canine kidney (MDCK) cells 

substrate adhesions seems to be restricted to the migration front, revealing a clear leader-role of the first 

rows of cells422. In different cancer cell types in culture it could be shown that cells in the cluster are 

interconnected via Cadherins like E-Cadherin to pull follower cells540,268,13,24,95. However, migration in 

an epithelial-like conformation is not the only mode used by cancer cells. Some types invade in a strand-

like fashion with every cell undergoing incomplete EMT315,32. A crucial factor for tumour invasion is 

the secretion of matrix proteases, typically MMPs554,468,348. In MDCK cells it has been shown that 

overexpression of MMPs suffices to promote invasive migration into tissue468. An exciting finding was 

that that the role of invading leader cells can be taken over by fibroblasts which can mechanically bind 

and guide tumour cells by building migratory tracks. Fascinatingly, both cell types relied on different 

Rho-GTPases. Fibroblasts need RhoA for migration whereas cancer cells relied on Cdc42. In both cases, 

Myosin II seemed to be the downstream effector. Nevertheless, it seems as the cell types rely on different 

migration mechanics158. 

 

1.3 The Drosophila testis myotube migration system 

The common fruit fly, as one of the most versatile model organisms with a toolbox for genetic 

perturbations and modification, is ideally suited for research on collective motility. Its testes are covered 

in a multinucleated smooth-like musculature at the imago stage488. Testis and muscles originate from 

spatially distinct anlagen that coalesce during pupal development in an intricate process. The larval testis 

comprises germ cells and gonadal mesoderm cells.  The former arises from pole cells set aside early in 

development that enter the embryo through the hindgut primordium and are contacted by mesodermal 

cells which give rise to the gonadal mesoderm430. In larvae and pupae up to 30 h after pupae formation 

(APF), testes lie spatially separated from other tissues, except for the fat body in the body cavity (fig. 2 

a). The genital imaginal disc in larvae builds most somatic parts of the male genitalia including the 

seminal vesicles, the paragonia, the ejaculatory duct, and the sperm pump (fig. 3 a)88,130,94,199. It is located 

terminally in larvae and early pupal stages.  Prospective testis myoblasts are adhered to it, covering its 

distal tips (the prospective seminal vesicles, sv, fig. 3 a) in multiple layers (fig. 3 a, in red)260,12,130,257. In 

pupae 30 h APF, the testes and the prospective seminal vesicles coalesce through an epithelial fusion of 
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the seminal vesicle epithelium and the testis terminal epithelium (tte, fig. 3 a)351,476,477,257. Shortly before 

and during this process, the mononucleated myoblasts fuse to multinucleated testes nascent myotubes 

(myotubes, fig. 3 a,b)488,260. Subsequently, myotubes start to migrate on the testes shortly before and 

after connection to the genital disc is established (fig. 3 b)351,476,477,260,257. They do not move on its surface 

but between an outer layer of pigment cells that in turn expands over the seminal vesicles  and the cysts 

which contain the germ cells (fig. 3 b, magnification)257. This finding might speak for a potentially 

invasive migration mechanism. 

There are multiple related cell migration model systems. In comparison with what is already known 

about Drosophila myogenesis, the fact that migration occurs in a multinuclear myotube state is atypical. 

During embryonal myogenesis and flight muscle development it is always mononuclear myoblasts, 

more precisely fusion competent myoblasts (FCM) in embryogenesis and dorsal longitudinal muscle 

(DLM) myoblasts during flight muscle formation, that possess the ability for locomotion reviewed in 195,184. 

FCMs migrate in a Rac1, Rac2, and WAVE dependent manner172. Not much is known about the 

regulation except that Dumbfounded (Duf), expressed in founder cells, seems to be an attractive cue424. 

DLM myoblasts migrate on nerve cells138,139, using filopodial protrusions116,453,173. There is nothing 

known about FCMs and DLM using collective migration. When compared to male genital myogenesis 

both processes would be analogous to the migration of myotubes onto the genital disc prior to the 

migration steps described here. Migration-like processes involving multinuclear myotubes in 

Drosophila are only known for myofiber guidance to the attachment sites subsequent to fusion 445,reviewed 

in 184. In a complex process, comprising multiple phases, embryonal myotubes elongate on two opposite 

ends, in a more or less oblique fashion roughly extending in dorsal and ventral direction, depending on 

their exact position in the segment. During this process, filopodial protrusions at the two opposite 

leading edges seem to generate the necessary force. This highly coordinated process is guided by 

numerous factors acting as guidance cues including Derailed (Drl), Slit, and Kon-Tiki (Kon)445,446. 

Recently, FGF-signalling via the ligands Thisbe (Ths)/Pyramus (Pyr), binding to the FGFR heartless 

(Htl), was introduced to support myotube guidance by regulating Rac1 activity and thereby promoting 

lamellipodial dynamics568. 
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During vertebrate muscle repair and myogenesis, satellite cell migration, which normally starts at the 

niche and ends at the site of muscle trauma, is a well-studied phenomenon due to numerous cell-culture 

approaches reviewed in 175. It is a chemically stimulated lamellipodia-based single-cell migration, sharing 

more traits with fibroblast motility than with testis myoblast migration. Testis myotubes seem to 

resemble vertebrate smooth muscles which might justify a comparison. Yet, it must be noted that 

Drosophila contains no smooth muscle actin as all fly actin orthologs cluster with vertebrate cytoplasmic 

actins230. Smooth muscle cells line the vascular, digestive, urinary, and reproductive system as a 

contractile layer and have to migrate during development and repair11. Vascular smooth muscle 

migration also seems to use “canonical” fibroblast dynamics and chemoattraction via multiple pathways 

reviewed in 11,301. In culture it was shown that vascular smooth muscle cells undergo invasive migration, 

using the same principles already shown for other 3D-migrating cells reviewed in 301. Interestingly, smooth 

muscle cell migration in cell culture wound scratch assays can be perturbed by a loss of N-Cad which 

may indicate a collective dynamic302.  

Figure 3. Testis nascent myotube migration. 24 h APF testes and genital disc lie spatially distinct (a). At 28–30 

h APF, myoblasts (red) fuse to nascent multinuclear myotubes. At 30 h APF the testis terminal epithelium (tte) 

and the seminal vesicle (sv) epithelium fuse to a continuous tube. Subsequently, migration starts. At 30 h APF 

migration is in the process (b). Migrating myotubes move in the narrow space between pigment cells and the cyst 

(magnification). p = prospective paragonia. Modified from pub. 2 
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1.4 Aim of the work 

The objective of the present work is to gain insights into collective dynamics in development and to find 

key mechanisms that could potentially also be used by cancer cells or in tissue repair. To accomplish 

this, Drosophila testis explants should be established as a new live-cell imaging model for collective 

cell migration. This model may combine the advantages of mechanical, genetic, and pharmacological 

perturbation with high visual resolution. Testis myotube migration has the potential to be a valuable tool 

as the entire germ cell-containing portion is enclosed by pigment cells and thereby a self-contained 

system like the egg chamber in the border cell migration model. To achieve similar usability, exact 

conditions for live-cell imaging must be determined and genetic driver tools that allow for tissue- and 

time-specific expression of target genes must be identified.  

Using these tools, potential actin regulators promoting myotube migration ought to be found. 

Preliminary studies suggest that migration of testis myotubes is mostly Arp 2/3 independent152. This 

could indicate that myotubes use atypical locomotion mechanisms. Cancerous and other versatile cells, 

important in immune response and tissue repair, can deploy numerous migration modes as an answer to 

their environment. Therefore, the discovery of new types of motility is vital and bears the potential to 

find new implements in the toolbox of migratory cells. An important factor could be that myotubes 

migrate in a thin gap beneath the pigment cells. Therefore, migration seems neither 2D, nor truly 3D but 

rather an intermediate form. The aim is to find which adaptions in migratory mechanisms permit 

locomotion under such circumstances. These cannot be simulated in cell culture. Therefore, the testis 

myotube migration system may create opportunities for novel approaches.   

Early experiments have shown that migration of testicular nascent myotubes appears to be in close 

contact with neighbours. Therefore, complex collective dynamics seem likely. The question arises, 

which mechanisms steer the potentially collective motility of testis myotubes. It could be extrinsic 

factors, as chemoattractants or intrinsic factors, allowing self-regulation. In this regard, the role of cell-

cell contacts in collective dynamics must be addressed. The aim is to find how they contribute to 

cohesion, directionality, and collective cell behaviour. 
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2. Material and Methods 

In this section, only additional materials and methods, regarding experiments that were not part of the 

publications and manuscripts in this work, are listed. For all further materials and methods: See section 

3. 

 

2.1 Fly genetics 

Fly genetics were employed according to the methods described elsewhere21. RNAi based experiments 

were carried out at 25 °C.  

 

 

2.1.1 List of mutant fly stocks 

Lists of the used mutant lines are attached (section 7.5). 

 

 

2.1.2 List of transgenic fluorescence reporter fly stocks 

 

designation chromosome fly stock ID/source 

UAS-mCD8-EGFP II BL-32186 

UAS-mCD8-EGFP III BL-32185 

vkg-EGFP (vkgG205) II 337 

 

 

2.1.3 List of transgenic Gal4 and UAS fly stocks  

Lists of the used Gal4 driver stocks and UAS stocks (except for fluorescence reporter lines, see section 

2.1.2) are attached (sections 7.3 and 7.4). 

 

 

2.1.4 Characterization of Gal4 driver stocks 

To find new putative driver tools deployable in testis myoblast research Janelia FlyProject231,377 was 

searched. Janelia FlyProject provides expression data in the larval genital disc234. Candidates with a 

promising pattern were ordered and tested by crossing them with UAS-mCD8-EGFP (BL-32186). A list 

of characterized driver lines is attached in section 7.3. 
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2.1.5 Gal4/UAS based screen for adult testis phenotypes 

It could be shown that missing myotube coverage of the adult testis is accompanied by testis shaping 

defects that are visible in low magnification light microscopy419. Based on that a fast screening method 

was established. Gal4 driver virgins are crossed with UAS constructs (e.g. RNAi)57 and kept on 25 °C. 

1–3 days old male offspring are dissected using surgical forceps under a dissecting microscope (Leica 

Stemi 508). Testes are analysed regarding their shape. A club-like shape with a dilated hub region is 

defined as “medium migration defect”. A slightly dilated hub region is defined as a “weak migration 

defect”. If more than 50% of the testis volume is dilated phenotypes are considered “strong migration 

defects” (cf. pub.2 Fig S1a). A list of all lines tested is attached. (section 7.4) 

 

2.2 Microscopic image processing 

Microscopy is carried out as described in the enclosed publications (pub. 1, pub. 2). In addition, image 

stitching is employed on Zeiss Apotome-fluorescence micrographs to allow for high-resolution images 

covering the entire testis. Multiple images of a structure are stitched using the Fiji-Plugin 

Grid/Collection stitching393.  

 

2.3 Quantification Methods 

2.3.1 Indirect measurement of cell cohesion using beatVC Gal4 mosaic expression  

beatVC Gal4 is used to drive expression of UAS-mCD8-EGFP and a respective UAS construct. Male 

prepupae are collected from the offspring and timed 48 h APF. Testes are prepared as described 

previously419. Phalloidin Atto-565 (Sigma Aldrich) is used to mark F-actin. Images are taken and stitched 

as explained in section 2.2. The Fiji tool segmented line is used to measure the migration distance of 

GFP positive cells. With the same tool, the total migration distance is measured 10 times by measuring 

and averaging the distance between the testis basis and the farthest point where myotubes could be 

detected. Excel is used to quantify the output. Boxplots and statistical testing are performed as described 

in pub 2.  
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2.4 Molecular Biology 

 

2.4.1 List of Plasmids 

designation source comment 

pENTR/D-Topo Invitrogen gateway compatible entry vector. 

pUASTattb-rfa-GFP Raiko Stephan,  

2008 Dissertation 

gateway compatible destination vector with a GFP tag and 

an attB site for Drosophila germline transformation via the 

phiC31 integrase vector system. 

pUASTattb-GFP-rfa Raiko Stephan,  

2008 Dissertation 

gateway compatible destination vector with a GFP tag and 

an attB site for Drosophila germline transformation via the 

phiC31 integrase vector system. 

pOT2 LD47929 DGRC Sra1 cDNA clone. 

Template for generation of 

pUASt-Sra1.Asite-eGFP, 

pUASt-Sra1-eGFP.Asite 

pUASt-Sra1.Dsite-eGFP 

pUASt-Sra1-eGFP.Dsite 

pFLC-I RE12101 DGRC WASp cDNA clone. 

Template for generation of 

pUASt-WASp.Crib-eGFP 

pUASt-Crib.WASp-Asite 

pUASTattb-whamy long-GFP Brinkmann et al., 2016 60 long form of whamy cloned in pUASTattb-rfa-GFP60. 

Template for generation of 

pUASt-Whamy.Crib-eGFP 

pUASt-Crib.Whamy -Asite 

 

 

2.4.3 PCR 

(Saiki et al., 1985, Mullis & Faloona 1987)429,345 

(Q5 High-Fidelity DNA Polymerase (M0591), NEB) 

 

Components used in a PCR reaction (25 µl): 

component volume/amount final concentration 

Plasmid DNA 1 µl/1 ng 0.04 ng/µl 

forward primer 1.25 µl 0.5 µM 

reverse primer 1.25 µl 0.5 µM 

dNTP’s 0.5 µl 200 µM 

5xQ5 Buffer 5 µl 1x 

Q5 polymerase 0.25 µl  0.5 U 

ddH2O 15.75 µl  
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Thermocycling conditions used: 

duration temperature  step 

30 sec 98 °C initial denaturation 

10 sec 98 °C denaturation 

35 cycles 30 sec 70 °C primer annealing 

7-42 sec (30 sec/kb) 72 °C elongation 

2 min 72 °C final elongation 

 4 °C cooling 

 

 

2.4.4 DNA gel electrophoresis  

(5x DNA Loading Buffer, Blue (Bioline), GelRed (Biotium), HyperLadder 1KB: (Bioline)) 

 

TAE buffer (50x): 2 M Tris, 5.7% (v/v) acetic acid, 50 mM EDTA in ddH2O (pH 8.5). 

 

Gels for preparative and analytic applications are produced by solving 1% (w/v) agarose in TAE buffer 

(1x). 0.005 % (v/v) GelRed is added after the mix cooled down below 60 °C. The gel polymerizes in a 

gel tray (Compact XS/S, Biometra). Gels are run in TAE in a standard gel chamber (Compact XS/S, 

Biometra). PCR-product or plasmids are mixed with loading dye and ddH2O. HyperLadder 1KB is used 

as a molecular weight size marker (“DNA-Ladder”). Horizontal agarose electrophoresis is performed at 

100 V. Bands are analysed or extracted using a standard gel documentation system (MWG Biotech). 

 

 

2.4.5 DNA restriction with restriction endonucleases 

(EcoRV HF (NEB, 20,000 U/ml), Not1 HF (NEB, 20,000 U/ml), CutSmart (NEB)) 

 

DNA concentration is measured using a microvolume spectrophotometer (NanoDrop, ThermoFisher). 

For each reaction, 0.5 µg DNA, 2.5 µl CutSmart buffer and 0.25 µl (5 U, 10fold “overdigestion” as 

recommended by NEB) enzyme are mixed. Water is added to a total volume of 25 µl. The reaction mix 

is incubated for 30 min at 37 °C. For analytic DNA gel electrophoresis, the restriction mix is mixed with 

loading buffer without further dilution in water. 
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2.4.6 Directional cloning using the pENTR TOPO System 

(pENTR/D-TOPO Cloning Kit (ThermoFischer)) 

 

Primers are designed to include a CACC-sequence on the 5’ end of the forward primer. They are 

designed in a way that the domain of interest is fused with the GFP-Tag in frame. The domain of interest 

is amplified using the standard-PCR procedure (section 3.4.3). DNA concentration is measured using a 

microvolume spectrophotometer (NanoDrop, ThermoFisher). The cloning reaction was set according to 

the manufacturer’s instructions without any alterations and transformed into chemically competent E. 

coli (section 3.4.8, 3.4.9) 

 

 

2.4.7 Subcloning using the Gateway technology 

(Clonase Gateway LR Clonase II enzyme-mix (ThermoFischer)) 

 

Constructs are cloned into the Gateway System compatible vectors pUAST-attb-rfa-EGFP or pUAST-

attb-EGFP-rfa. The cloning reaction is set according to the manufacturer’s instructions and transformed 

into chemically competent E. coli. 

 

 

 

 

2.4.8 Generation of chemically competent E. coli 

(Mandel & Higa 1970)311 

(E. coli (DH10B)) 

 

LB medium 42: 1% (g/v) bacto tryptone, 0.5% (g/v) yeast extract, 85.5 mM NaCl in ddH2O (pH 7.0). 

50 mM CaCl2 in H2O: 7.85 g CaCl2 ·  2H2O in 1 l ddH2O. 

50 mM CaCl2 in glycerol: 7.85 g CaCl2 ·  2H2O in 70 ml ddH2O and 30 ml 50% (v/v) glycerol. 

 

E. coli are incubated in LB medium overnight at 37 °C and 200 rpm. The medium is diluted 1/80 in LB 

medium and incubated at 37 °C/200 rpm until OD600=0.3. The medium is centrifuged at 4 °C/4000 rpm 

for 10 min. The supernatant is discarded. The pellet gets dissolved in 50 ml 50 mM CaCl2 (in H2O, ice-

cold). The mix is centrifuged at 4 °C/4000 rpm for 10 min. The supernatant is discarded. The pellet gets 

dissolved in 50 ml 50 mM CaCl2 (in H2O, ice-cold) and is incubated on ice for 2.5 h. The mix is 

centrifuged at 4 °C/3000 rpm for 8 min. The supernatant is discarded. The pellet gets dissolved in 15 ml 

50 mM CaCl2 (in glycerol, ice-cold). Bacteria are stored in aliquots of 100 µl at -80 °C. 
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2.4.9 Transformation of E. coli  

(Maniatis et al., 1985)312 

 

SOB medium 192: 2% (w/v) bacto tryptone, 0.5% (w/v) yeast extract, 10 mM NaCl, 2.5 mM KCl, 10 

mM MgCl2 und 10 mM MgSO4 in ddH2O (pH 7.0). 

SOC medium 192: SOB medium (autoclaved) and 20 mM glucose in ddH2O. 

LBamp selective plate: LB medium with 100 μg/ml ampicillin, 1.5% (w/v) agar (high purity). 

LBkana selective plate: LB medium with 100 μg/ml kanamycin A, 1.5% (w/v) agar (high purity). 

 

 

2 µl of the cloning reaction mix is added to chemically competent E. coli (section 2.4.8). They are 

incubated on ice for 30 min. Cells are heat shocked for 40 sec at 42 °C. Subsequently, they are transferred 

on ice. 250 µl of SOC is added. Tubes are incubated for an hour at 37 °C/500 rpm. 100 µl are spread on 

selective plates containing either kanamycin A or ampicillin. 

 

 

 

2.4.10 Purification of plasmids from transformed bacteria (Mini, Midi) 

(E.Z.N.A. Plasmid DNA Mini Kit I (omega), Plasmid Plus Midi Kit (Qiagen)) 

 

Transformed E. coli are amplified in liquid culture overnight. Clones are picked from selective plates, 

using a pipette tip and transferred in LB medium containing 100 µg/ml of the respective antibiotic. They 

are incubated at 37 °C with shaking. 3 µl of liquid culture is incubated for Mini-preparation and 250 µl 

in the case of Midi-preparation. The steps of purification over columns, using a vacuum pump, were 

carried out according to the manufacturer’s instructions. 

 

 

2.4.11 RNA isolation 

(RNeasy Mini Kit (Qiagen)) 

 

All steps are performed, using RNase-free material. 5x106 S2R+ cells444 are centrifuged for 5 min at 300 

G. The pellet is dissolved in 350 µl RLT-Buffer (containing 10 µl/ml β-mercaptoethanol) by inverting 

the reaction tube. The lysate is centrifuged 3 min at 13,000 rpm. The supernatant is transferred in a new 

reaction tube and mixed with 350 µm 70 % (v/v) ethanol and transferred onto an RNeasy spin column. 

The column in centrifuged for 15 sec at 8000 rpm, the flow-through is discarded. 500 µl Buffer RW1 is 

added. The column in centrifuged for 15 sec at 8000 rpm, the flow-through is discarded. 500 µl Buffer 

RPE is added. The column in centrifuged for 15 sec at 8000 rpm, the flow-through is discarded. To dry 
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it, the column is transferred to a new collection tube and centrifuged for 1 min at 13,000 rpm. The 

collection tube is replaced by a reaction tube and 30 µl. RNAse-free water is added. The column is 

centrifuged for one min at 8000 rpm. RNA concentration is measured using a microvolume 

spectrophotometer (NanoDrop, ThermoFisher). The product is stored at -20 °C.  

 

 

2.4.12 cDNA synthesis  

(SensiFAST cDNA Synthesis Kit (Bioline)) 

 

All steps are performed, using RNase-free material. 1 µg RNA, 4 µl (5x) TransAmp Buffer (includes 

oligo dT primers and random hexamer primers), 1 µl (=1 U) Reverse Transcriptase are mixed in RNase 

free water to a final volume of 20 µl. They are mixed gently by pipetting. The following program is used 

in a thermal cycler. 

 

 

duration temperature  step 

10 min 25 °C primer annealing 

15 min 42 °C reverse transcription 

5 min 85 °C inactivation 

 4 °C cooling 

 

cDNA concentration is measured using a microvolume spectrophotometer (NanoDrop, ThermoFisher). 

The reaction product is stored at -20 °C.  

 

 

2.4.13 DNA sequencing 

All sequencing was performed by Microsynth Seqlab GmbH. Samples were prepared according to their 

instructions. 

 

 

2.4.14 Transgenesis of Drosophila melanogaster based on the PhiC31 system 

(Bateman et. al., 2006, Bischof et. al., 2007, Groth et. al., 2004, Horn et. al., 2005, Oberstein et. al., 2005, Thorpe et. al., 2000, 

Venken et. al., 2006)35,513,181,358,44,212,525 

 

Injection and PhiC31 Integrase-mediated transgenesis were performed by BestGene Inc. They make use 

of the FlyC31 system. The service type “H” was chosen. Samples were prepared according to their 

instructions. 



Material and Methods 

 

31 

   

2.4.15 List of synthetic oligonucleotides (primer) 

designation  sequence annealing 

temperature 

EGFP_WhamyCrib_F  CACCTACACATACGCCTACATCTCCG 70 °C 

EGFP_WhamyCrib_R  TTATGGCTGCGCCTGAAGATCACTTTTTGG 70 °C 

WhamyCrib_EGFP_F  CACCATGGAGGATTACACATACGCCT 70 °C 

WhamyCrib_EGFP_R  CTGAAGATCACTTTTTGGTGGCAT 70 °C 

WASpCrib_EGFP_F  CACCATGAAGAAGCGCAAGGTGACCAAGG 70 °C 

WASpCrib_EGFP_R  CGAAGCCAGGACATTGTTGCTCT 70 °C 

EGFP_WASpCrib_F  CACCGACAAGAAGCGCAAGGTGACCAAGG 70 °C 

EGFP_WASpCrib_R  CTAAGCCAGGACATTGTTGCTCTGTATGAAGTCGTAG 70 °C 

Sra1Dsite_EGFP_F  CACCATGCTGATCCAGGGCTCGCTGCT 70 °C 

Sra1Dsite_EGFP_R  TAGCTCTGTCTTCGCGTCCGGA 70 °C 

EGFP_Sra1Dsite_F  CACCCCACTGATCCAGGGCTCGCTG 70 °C 

EGFP_Sra1Dsite_R  TCACTCTGTCTTCGCGTCCGGATATTGCACGAT 70 °C 

Sra1Asite_EGFP_F  CACCATGGGCAAGTTTATCAACATGTTTGCCGTGCT 70 °C 

Sra1Asite_EGFP_R  CTTGCACTCCTCGTTGTGCTGATG 70 °C 

EGFP_Sra1Asite_F  CACCCTAGGCAAGTTTATCAACATGTTTGCCGTGC 70 °C 

EGFP_Sra1Asite_R  CAGCTACTTGCACTCCTCGTTGTGCTGATGC 70 °C 

MbtCrib_EGFP_F  CACCATGTTCTCGAAGAAGAAAAAGAAACCGCTGATC  70 °C 

MbtCrib_EGFP_R  CTTCAGATCGAGAATCTCGGTGGG 70 °C 

EGFP_MbtCrib_F CACCATGTTCTCGAAGAAGAAAAAGAAACCGCTGATCTC 70 °C 

EGFP_MbtCrib_R  CTACAGATCGAGAATCTCGGTGGGCGTAATCTC 70 °C 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Material and Methods 

 

32 

   

2.4.16 List of newly created vectors 

designation size 

pENTR/D-TOPO-Whamy.Crib-EGFP 3273 BP 

pENTR/D-TOPO-EGFP-Whamy.Crib 3276 BP 

pENTR/D-TOPO-WASp.Crib-EGFP 2811 BP 

pENTR/D-TOPO-EGFP-WASp.Crib 2811 BP 

pENTR/D-TOPO-Sra1.Asite-EGFP 4035 BP 

pENTR/D-TOPO-EGFP-Sra1.Asite 4041 BP 

pENTR/D-TOPO-Sra1.Dsite-EGFP 2745 BP 

pENTR/D-TOPO-EGFP-Sra1.Dsite 2745 BP 

pENTR/D-TOPO-Mbt.Crib-EGFP 2799 BP 

pENTR/D-TOPO-EGFP- Mbt.Crib 2799 BP 

pUAST attB-Whamy.Crib-EGFP 10.017 BP 

pUAST attB-EGFP-Whamy.Crib 10020 BP 

pUAST attB-WASp.Crib-EGFP 9555 BP 

pUAST attB-EGFP-WASp.Crib 9555 BP 

pUAST attB-Sra1.Asite-EGFP 10779 BP 

pUAST attB-EGFP-Sra1.Asite 10785 BP 

pUAST attB-Sra1.Dsite-EGFP 9489 BP 

pUAST attB-EGFP-Sra1.Dsite 9489 BP 

pUAST attB-Mbt.Crib-EGFP 9543 BP 

pUAST attB-EGFP- Mbt.Crib 9543 BP 

 

2.4.17 List of newly created GTPase sensor fly stocks 

genotype chromosome  injection stock 

w-,y-;;wmini,UASt-Whamy.Crib-EGFP III ZH-86Fb (BL- 24749) 

w-,y-;; wmini,UASt-WASp.Crib-EGFP III ZH-86Fb (BL- 24749) 

w-,y-;; wmini,UASt-Sra1.Asite-EGFP III ZH-86Fb (BL- 24749) 

w-,y-;; wmini,UASt-Sra1.Dsite-EGFP III ZH-86Fb (BL- 24749) 

w-,y-;; wmini,UASt-mbt.Crib-EGFP III ZH-86Fb (BL- 24749) 
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Myotube migration to cover and shape the testis of Drosophila

depends on Heartless, Cadherin/Catenin, and myosin II
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and Renate Renkawitz-Pohl1,2,‡

ABSTRACT

During Drosophila metamorphosis, nascent testis myotubes migrate

from the prospective seminal vesicle of the genital disc onto pupal

testes and then further to cover the testes with multinucleated smooth-

like muscles. Here we show that DWnt2 is likely required for

determination of testis-relevant myoblasts on the genital disc. Knock

down of fibroblast growth factor receptor (FGFR) heartless by RNAi

and a dominant-negative version revealed multiple functions of

Heartless, namely regulation of the amount of myoblasts on the

genital disc, connection of seminal vesicles and testes, and migration

of muscles along the testes. Live imaging indicated that the

downstream effector Stumps is required for migration of testis

myotubes on the testis towards the apical tip. After myoblast fusion,

myosin II is needed for migration of nascent testis myotubes, in which

Thisbe-dependent fibroblast growth factor (FGF) signaling is activated.

Cadherin-N is essential for connecting these single myofibers and for

creating a firm testismuscle sheath that shapes and stabilizes the testis

tubule. Based on these results, we propose a model for the migration

of testis myotubes in which nascent testis myotubes migrate as a

collective onto and along the testis, dependent on FGF-regulated

expression of myosin II.

KEYWORDS: DWnt2, Thisbe, Stumps, FGF, Testes tubules, Muscles

INTRODUCTION

Cell migration is essential for many developmental and

physiological processes throughout the animal kingdom, and is

also implicated in diseases, e.g. cancer metastasis (Roca-Cusachs

et al., 2013). In Drosophila, various single as well as collective cell

migration processes have been described, such as border cell

migration in the ovary and embryonal mesoderm migration (Pocha

and Montell, 2014).

In the current study, we focus on the migration of muscle cells

during the development of the male reproductive tract ofDrosophila.

The five different organs of the inner male reproductive system of

Drosophila develop from two different tissues. The testes are of

gonadal origin located in segment A5, whereas the somatic parts arise

from a single genital imaginal disc (hereafter called genital disc) in

segments A8/A9/A10 (Estrada et al., 2003; Greig and Akam, 1995;

Stern, 1941). Duringmetamorphosis, the genital disc and pupal testes

grow towards each other, and the developing seminal vesicles fuse

with the terminal epithelium of the testes (Kozopas et al., 1998;

Nanda et al., 2009; Stern, 1941). Nascent myotubes migrate over

the developing seminal vesicles onto the pupal testes and build

the muscle sheath surrounding the adult testis (Kozopas et al., 1998;

Kuckwa et al., 2016). This musculature is composed of

multinucleated, smooth-like myofibers (Susic-Jung et al., 2012).

Myoblasts of the genital disc build muscle sheaths for all parts

of the male reproductive system (Susic-Jung et al., 2012). The

myoblasts that form the testis muscle sheath originate from a

common pool and accumulate during the first day of metamorphosis

on the prospective seminal vesicles of the genital disc (Fig. 1A).

Founder-cell-like (FC-like) myoblasts and fusion-competent-

myoblast-like (FCM-like) cells start to fuse around 28 h after

puparium formation (APF) to build multinucleated myotubes

(Kuckwa et al., 2016). Around 30 h APF, the multinucleated

nascent myotubes begin to migrate from the genital disc towards the

testis, contact the gonad at the distal end, and migrate further to

cover the entire testis (Fig. 1A′) (Kozopas et al., 1998; Kuckwa

et al., 2016). Migration of testis myotubes is independent of

successful fusion of testis-relevant myoblasts (Kuckwa et al., 2016).

Early evidence indicated that this migration process might be

dependent on the presence of the Wnt ligand DWnt2 in addition to,

or as a consequence of, the failure of pigment cell migration, since in

DWnt2mutant males smooth-like muscles do not accumulate on the

testis (Kozopas et al., 1998).

Another relevant pathway for the development of the male

reproductive organs ofDrosophila is fibroblast growth factor (FGF)

signaling. The FGF receptor (FGFR) Breathless (Btl) and its ligand

Branchless recruit larval mesodermal cells, which become epithelial

and give rise to paragonia and seminal vesicles (Ahmad and Baker,

2002). Btl is also essential for cell migration during embryonal

tracheal development (Glazer and Shilo, 1991) and for directed cell

migration of midline glial cells (Klämbt et al., 1992). The second

FGFR in Drosophila, Heartless (Htl), becomes activated by its

ligands Thisbe (Ths) and Pyramus (Pyr) (Gryzik and Müller, 2004;

Stathopoulos et al., 2004) and is implicated in various migration

processes. Htl is expressed in the mesoderm during gastrulation

(Shishido et al., 1993), where it is necessary for the epithelial-

mesenchymal transition, i.e. the dorsolateral migration of individual

mesodermal cells along the ectoderm (Gisselbrecht et al., 1996). Htl

is also needed during ovarian muscle tissue development (Irizarry

and Stathopoulos, 2015). Htl-dependent FGF signaling also guides

the migration of founder cells of the longitudinal midgut muscles

during Drosophila embryogenesis (Kadam et al., 2012; Reim et al.,

2012). During migration, these longitudinal founder cells fuse withReceived 30 March 2017; Accepted 2 November 2017
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fusion-competent myoblasts to build syncytia. Rudolf et al. (2014)

have shown that this migration and fusion process is dependent

on cytoskeletal rearrangements, particularly Arp2/3-induced actin

polymerization. The function of cytoskeleton components and their

regulators is also implicated in other cell migration processes. In

vertebrate cells, Arp2/3 is needed for actin nucleation in lamellipodia-

dependent cell migration (Campellone and Welch, 2010), while non-

muscle myosin II plays a fundamental role in promoting directional

cell migration (Vicente-Manzanares et al., 2009).

In Drosophila, cadherins such as Shotgun (Shg, the Drosophila

homologue of E-Cadherin) and Cadherin-N (Cad-N) can mediate

adhesion between neighboring cells. Catenins, such as beta-catenin,

mediate the link between cadherins and the cytoskeleton (Bulgakova

et al., 2012). Exemplarily, during the epithelial-mesenchymal

transition in the Drosophila embryo, a series of changes in cell

polarity, cell adhesion, and motility occur. Cells undergo a switch

from an adhesive state towards a migrating state (Lim and Thiery,

2012). Thereby, the transcription factor Snail down-regulates

epithelial genes, e.g. Shg, while Twist induces the transcription of

Cad-N in the mesoderm (Leptin and Grunewald, 1990).

Here, we report first insights into the migration process of nascent

myotubes from the prospective seminal vesicle onto the pupal testis

and further towards the apical tip of the testis. Based on our results,

we propose a model that links Ths- and Htl-dependent FGF

signaling to myosin II-dependent processes during the migration of

nascent myotubes from the genital disc onto the testes.

Fig. 1. Scheme of Drosophila testis myotube migration. (A) The male reproductive tract develops during metamorphosis. At 24 h APF, the single genital disc

and paired testes (te) are separate organs. The seminal vesicles (vs) and the paragonia (pg) already start to grow. In the adult, the tubular testis is connected to the

seminal vesicle. (A’) During metamorphosis, the prospective seminal vesicles and testes grow towards each other and fuse. On genital discs 24 h APF,

testis-relevant myoblasts accumulate on the prospective seminal vesicle. Pigment cells cover the pupal testis. At 28 h APF, myoblasts fuse to build multinucleated

testis myotubes. These nascent testis myotubes migrate beneath the pigment cells onto the pupal testis, while pigment cells migrate from the testis onto

the developing seminal vesicle. By 36 h APF, the epithelia of seminal vesicles and the terminal epithelium of the testes have fused. Modified after Bodenstein

(1950), Kozopas et al. (1998), Kuckwa et al. (2016).
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RESULTS

The adhesionmolecule Cadherin-N is essential for building a

continuous testis sheath

Since the Drosophila adult testis is encircled by a tight muscle

sheath, we asked whether cadherins mediate the adhesion between

myotubes in the testis muscle sheath before, during, and after

migration. In expression analyses, we used Mef2-Gal4-driven

UAS-mCD8-GFP flies to visualize myoblasts on genital discs and

pupal testes at distinct time points. We observed that on genital discs

30 h APF, Shg (Cad-E) was expressed in the epithelium of the

prospective seminal vesicle but was hardly detectable in myoblasts

(Fig. 2A–A″).

By contrast, Cad-N was detected in the membranes of nascent

myotubes on genital discs 30 h APF (Fig. 2B–B″) as well as on testes

at 30 h APF (Fig. 2C–C″). Nascent myotubes of testes 44 h APF

expressed Cad-N in correlation to their stage ofmigration. Specifically,

myotubes at the basal testis end already started to elongate and to build

a sheath, and expressed Cad-N (Fig. 2D,D′), whereas Cad-N was

barely detected in nascent myotubes near the apical tip in mCD8-GFP-

labeledmyotubes in an optical section (Fig. 2D,D″). In the testis sheath

of adult males, Cad-N was distinctly localized in the adjacent

membranes of multinucleated myotubes (Fig. 2E).

Hence, we then knocked down cad-N by RNA interference

(RNAi) with the driver line UAS-Dcr-2;;Mef2-Gal4 specifically in

myoblasts. This resulted in a disturbed morphology of the testis. In

the wild type, the adult testis is a long, thin tubule of 2.5 coils

(Fig. 2F). In the RNAi-mediated knock-down of cad-N, the adult

testis was partly irregular in shape and had roughly only one coil

(Fig. 2G). The testis muscle sheath exhibited holes, which indicated

that the myotubes were not properly attached to one another

(Fig. 2G′). Genital discs 24 h APF exhibit Duf-expressing FC-like

and sticks and stones (SNS)-expressing FCM-like myoblasts on

prospective seminal vesicles (Kuckwa et al., 2016). In differential

interference contrast (DIC) images, FC-like and FCM-like cells are

visible (Fig. S2A), Cad-N expression is largely restricted to FC-like

myoblasts (Fig. S2A′).mefGAL4-driven knock-down of Cad-N was

efficient in FC-like myoblasts, whereas expression was hardly

affected in myoblasts lying over the paragonia (compare Fig. S2B′

to wild type Fig. S2A′). At 44 h APF, cad-N knock-down testes

displayed nascent myotubes, which were distributed all over the

testes (Fig. S2C′). In contrast to wild-type testes (Fig. S2C), the

nascent myotubes in these cad-N knock-down testes are less

elongated and their number seemed to be reduced (Fig. S2C).

Nevertheless, adult males with this phenotype were able to produce

offspring (89%, Fig. S1).

Furthermore, we down-regulated Armadillo (Arm), the beta-catenin

homologue in Drosophila (Peifer et al., 1992), specifically in

myoblasts. Adult testes with down-regulated arm had about two

coils (Fig. 2H). The testis muscle sheath exhibited numerous small

holes, which indicated that the adhesion between single myotubes was

disturbed (Fig. 2H′). These males also had a reduced fertility (60%,

Fig. S1). Cad-N expression between adjacent myotubes was preserved

upon arm knock-down, whereas no Cad-N expression was detected

when testis myotubes did not adhere to each other (Fig. 2I).

We conclude that Cad-N in cooperation with Arm is involved in

testis myotube migration and is necessary both to stabilize the testis

muscle sheath and to shape the testis.

Non-muscle myosin II regulates the migration of nascent

myotubes onto the testes

Many migratory processes depend on the actin-myosin network

(Campellone and Welch, 2010; Vicente-Manzanares et al., 2009).

Using myoblast-specific RNAi experiments, we therefore investigated

the relevant myosins of nascent myotubes as they populated the testis.

Down-regulation of the light or heavy chain of non-muscle myosin II

led to drastic defects.

When we myoblast-specifically knocked down spaghetti squash

(sqh), the regulatory light chain of non-muscle myosin II (Karess

et al., 1991). The testes were smaller than in the wild type (Fig. 3A),

and had bulky tips and 1.5 coils in adult males (Fig. 3C). The

muscle sheath did not cover the entire testes and had numerous

holes; single myofibers appeared shorter (Fig. 3C′) than in the wild

type (Fig. 3B). These males had reduced fertility (43%, Fig. S1).

Testes morphology and musculature were also disturbed when

zipper (zip), the non-muscle myosin II heavy chain (Mansfield et al.,

1996), was down-regulated. Adult testes had 1.5 coils and a bulky

head (Fig. 3D), comparable to the phenotype observed in the sqh

knock-down, and the muscles resembled a broad-meshed net rather

than a sheath (Fig. 3D′). In contrast to sqh knock-down males, the

fertility of zip knock-down males was preserved (100%, Fig. S1).

This was surprising because the sqh and zip knock-down

phenotypes resembled each other and are components of myosin

II. The observed differences in male fertility might be due to an

unpredicted off-target in the sqh RNAi line.

As an example, we first analyzed adult sqh knock-down testes in

more detail. Cad-N was expressed between the few remaining

adjacent myotubes (Fig. S2D), which suggested that the muscle

sheath defect was not due to faults in Cad-N-mediated attachment of

single myotubes. Instead, it was likely caused by insufficient

population of the testis with muscles. We further analyzed the status

of the extracellular matrix by monitoring Terribly reduced optic

lobes (Trol) (Voigt et al., 2002), which is expressed in the testis

muscle sheath (Susic-Jung et al., 2012). Expression of Trol revealed

no changes in adult sqh knock-down testes (Fig. S2E,F), which

indicated extracellular matrix integrity. At 44 h APF, pupal testes

with myoblast-specific sqh knock-down were populated with fewer

nascent myotubes than wild-type testes (Fig. S2H, compare to G).

However, the testis shape was not affected at this time of

development.

Taken together, these data led us to conclude that non-muscle

myosin II is required for testis myotube migration and that correct

shaping of the testis depends on the presence of an intact tight

muscle sheath.

DWnt2 signaling controls determination of testis-relevant

myoblasts

It has been previously suggested that DWnt2 plays a role in the

migration of myoblasts from the prospective seminal vesicle onto

the testes (Kozopas et al., 1998). Therefore, we analyzed the testis

shape and muscle sheath of two amorphic DWnt2 alleles in trans

(DWnt2L, DWnt2O; Kozopas et al., 1998). The resulting flies were

not able to hatch, and pharate lethal. The development and

morphology of testes was variable in these flies, as has also been

recently observed by Linnemannstöns et al. (2014). The most

abundant phenotypes were deformed and not elongated adult testes

that did not resemble the wild-type adult testis shape (Fig. 4A).

Instead, the shapes were comparable to those of pupal testes

(Fig. 4C). Testis stability was decreased, and germ cells leaked

(Fig. 4C, arrow). Unlike the wild-type musculature (Fig. 4B),

smooth-like muscles were not detected on these testes, but some

multinucleated actin-rich structures that contained repetitive actin

filaments resembling striated muscles were visible (Fig. 4C′,C″,

arrows). The leaking cysts with elongated spermatids that appeared

shortly before individualization (Fig. 4D, arrow) indicated that germ
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Fig. 2. Knock-down of Cadherin-N or Armadillo strongly reduces the adhesion between testis myotubes. Immunofluorescence analyses of genital discs

and testes. (A) Seminal vesicles 30 h APF stained or marked with anti-Shotgun (red), GFP (green; myoblasts and myotubes on genital discs and pupal

testesmarkedwithMef2≫mCD8-GFP), and Hoechst (blue; nuclei). (A′,A″) Enlargement of boxed area in A, stained ormarked as indicated. (B) Genital discs 30 h

APF and (C) testis 30 h APF stained or marked with anti-Cad-N (red), GFP (green), and Hoechst (blue), magnification of prospective seminal vesicle is shown.

(B′,B″,C′,C″) Enlargement of boxed area in B and C stained or marked as indicated. (D–D″) Testis 44 h APF. (D) Differential interference contrast (DIC)

micrograph of testis 44 h APF, (D′,D″) enlargement of boxed area in D stained or marked with anti-Cad-N (red), GFP (green), and Hoechst (blue). (E) Adult testis

stained with Hoechst (blue), Phalloidin to visualize F-actin (red), and anti-Cad-N (green). (F) DIC micrograph of wild-type testis. (G) DIC micrograph of

cad-N knock-down testis; (G′) enlargement of boxed area in G showing Phalloidin (red) and Hoechst (blue) staining of testis muscle sheath. (H) DICmicrograph of

arm knock-down testis; (H′) enlargement of boxed area in H showing Phalloidin (red) and Hoechst (blue) staining of testis muscle sheath. (I) Adult arm

knock-down testis stained with Hoechst (blue), Phalloidin to visualize F-actin (red), and anti-Cad-N (green). Dotted lines reflect approximate shape of the organ.

Asterisk, hub region; vs, seminal vesicle. Scale bars: 20 µm.
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cell maturation proceeded normally. This is in agreement with our

earlier observations that spermatogenesis in vitro in cultured

isolated cysts proceeds until shortly before individualization,

independently of the presence of the testis muscle sheath (Awe

and Renkawitz-Pohl, 2010; Gärtner et al., 2014). Other organs of the

reproductive system showed no obvious defects (data not shown),

which suggested a selective effect on testis-relevant myoblasts.

From these data, we concluded thatDWnt2L/DWnt2Omutant flies

fail to determine testis-specific myoblasts from the common pool of

myoblasts. However, this does not exclude an additional later role of

DWnt2 during migration of muscles onto the testes.

Heartless-dependent FGF signaling is essential for the

migration of nascent myotubes onto the testis

FGF signaling is involved in various migration processes

throughout the animal kingdom (Itoh and Ornitz, 2011; Ornitz

and Itoh, 2015; Shilo, 2016). Therefore, we examined the role of

FGF signaling in the migration of nascent testis myotubes. We

analyzed the expression of Stumps, the intracellular adaptor protein

specific for FGFRs, which is also known as Heartbroken (Hbr) and

Downstream of FGF (Dof ) (Imam et al., 1999; Michelson et al.,

1998a; Vincent et al., 1998), using a specific antibody (Vincent

et al., 1998) on genital discs. At 24 h APF, Stumps was detected in

the cytoplasm of myoblasts in the inner layer, the so-called FC-like

myoblasts (Fig. 5A–A″). Nascent myotubes on genital discs 30 h

APF (Fig. 5B–B″) and testes 30 h APF (Fig. 5C–C″) also expressed

Stumps in the cytoplasm. We investigated the potential expression

pattern of Htl on male genital discs in an Htl-Gal4 driver line that

has been shown to drive expression in the epithelial sheath of the

ovary (Irizarry and Stathopoulos, 2015). We observed Htl-driven

mCD8-GFP expression in myoblasts on the prospective seminal

vesicles at 24 h APF (Fig. 5D) and 30 h APF (Fig. 5E). Notably,

Stumps was expressed in FC-like Htl-positive myoblasts on

developing seminal vesicles at 24 h APF (Fig. 5D–D″) and in all

nascent myotubes at 30 h APF (Fig. 5E–E″), which suggested that

FGF signaling might be activated during migration.

InDrosophila, Stumps is a unique adaptor protein in FGF signaling

that can be activated by two FGFRs (Vincent et al., 1998). Myoblast-

specific knock-down of the FGFR Btl did not result in any defects in

testis musculature or shape, but resembled thewild-type situation (Fig.

S3A). By contrast, we observed very drastic defects when the FGFR

Htl was knocked down. Specifically, all flies were pharate lethal, and

most testes were not attached to the seminal vesicles and did not

elongate (Fig. 6C). The testes did not contain muscles, and the sheath

consisted solely of pigment cells (Fig. 6C′, arrowhead). Nevertheless,

spermatogenesis appeared to be normal in these testes since we

observed bundles of spermatids shortly before or during

individualization (Fig. 6C′, arrow). This indicates that the presence

of testis muscles is not essential for germ cell maturation, as we also

observed in hypomorphDWnt2 alleles (Fig. 4). In the htl knock-down,

the other organs of the male reproductive system were malformed and

partly degraded, and muscles were mainly absent (data not shown).

This might be due to myoblast determination defects, since htl knock-

down genital discs 24 h APF contained fewer myoblasts than wild-

Fig. 3. Myoblast-specific down-regulation of non-

muscle myosin II leads to inefficient population of

the testis with muscles. Analysis of adult (A,B) wild-

type testes, (C,C′) sqh knock-down testes, and

(D,D′) zip knock-down testes. (A,C,D) DIC micrograph;

asterisk, hub region. (B,C′,D′) Phalloidin staining to

visualize F-actin (red), and Hoechst staining of nuclei

(blue). C′ and D′ are enlargements of areas boxed in C

and D, respectively. Dotted lines reflect approximate

shape of the organ. Scale bars: 20 µm.

1880

RESEARCH ARTICLE Biology Open (2017) 6, 1876-1888 doi:10.1242/bio.025940

B
io
lo
g
y
O
p
e
n

 by guest on September 27, 2020http://bio.biologists.org/Downloaded from 

http://bio.biologists.org/lookup/doi/10.1242/bio.025940.supplemental
http://bio.biologists.org/lookup/doi/10.1242/bio.025940.supplemental
http://bio.biologists.org/


type genital discs 24 h APF. This was especially the case in the

posterior part of the genital discs, where myoblasts for the muscle

sheaths of the ejaculatory duct and sperm pump are localized (Fig.

S3B,C, arrows). At 30 h APF, prospective seminal vesicles of htl

knock-down genital discs contained fewer nascent myotubes than the

wild type (compare Fig. S3F-F″ to Fig. 5B). This is in agreement with

the observed Htl-driven expression of mCD8-GFP in most myoblasts

on genital discs 24 hAPF (Fig. S3D).Myoblast-specific expression of

a dominant-negative (DN) version of Htl lacking the kinase domain

(Michelson et al., 1998b) resulted in a milder phenotype than the htl

knock-down, comparable to the other htl-RNAi line (Table S1). The

adult testes were elongated and coiled, but had bulky tips as observed

with the DN-version of Htl (Fig. S3E). The testis muscles covered the

organs except for the tips (Fig. S3E′). To gain further insight into

which FGF ligand activates Htl in nascent myotubes, we analyzed the

testis shape and musculature of hypomorph thse02026/Df(2R)ths238

mutants. Adult testes had approximately two coils and a very bulky tip

(Fig. 6D). The smooth-like testis muscle sheath had numerous holes,

and the testis tip was free of muscles (Fig. 6D′) as previously observed

for DN-version of Htl and knock down by the RNAi line BL35024.

Unfortunately, we could not analyze the other FGF ligand Pyr because

no hypomorph alleles were available.

When we down-regulated stumps specifically in myoblasts, a

strong phenotype was generated, comparable to that of the htl knock-

down.But unlike the strongest htl knock-down testes, adult testeswith

reduced Stumps levels were attached to seminal vesicles, and about

30% of the testis sheath contained muscles. All flies were pharate

lethal, andmost testes attached to the seminal vesicles did not elongate

(Fig. 6E). Themuscles did not build a complete sheath but remained at

the basal end of the testis, and the muscle pattern was disturbed

(Fig. 6E′). On the adult stumps knock-down testis, Cad-N was

normally expressed in the membranes between adjacent myofibers,

where muscles formed an intact sheath (Fig. 6F). However, where

myofibers did not attach to one another, no Cad-N was detected

(Fig. 6F). No Stumps expression was visible in stumps knock-down

genital discs 24 h APF, which indicated a strong down-regulation of

stumps (Fig. S3G-G″). After stumps knock-down – in contrast to the

htl knock-down (Fig. S3F-F″) – we observed many myoblasts lying

over the seminal vesicles (Fig. S3G-G″). Stumps expression on htl

knock-down genital discs 24 h APF remained unchanged in testis-

relevant myoblasts (Fig. 6G-G″). At 40 h APF, mCD8-GFP-positive

nascent myotubes were visible on both wild-type (Fig. 6H) and

stumps knock-down testes (Fig. 6I), which indicated that the initial

migration process was intact upon stumps knock-down.

These results suggest that Htl-controlled FGF signaling activated

by Ths is essential for the correct migration of nascent myotubes on

testes.

Stumps is necessary for proper myotube migration on the

testis ex vivo

To gain further insights into the migration process on the testis, we

established ex vivo live imaging of co-cultures of pupal testes and

Fig. 4. DWnt2 affects testis muscle determination.

Analysis of adult (A,B) wild-type testes and (C-D)

DWnt2L/DWnt2O testes. (A,C) DIC micrographs; arrow,

leaking sperm; asterisk, hub region. (C′,C″) Enlargement

of the respective boxed areas in C stained with Phalloidin

to visualize F-actin (red) and Hoechst to visualize nuclei

(blue). Arrows, thin actin filaments. (D) DIC micrograph

and Hoechst staining (blue) of adult DWnt2L/DWnt2O

testis. Arrow, nuclei of leaking spermatid bundles. Scale

bars: 20 µm.
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genital discs. For investigating the migrating nascent myotubes on

the testis itself, we used 40 h APF testes expressing myoblast-

specific mCD8-GFP. The testes were still attached to part of the

developing seminal vesicles, but not to the genital disc. When live

imaging started, approximately 60% of the pupal testis surface was

already covered with multinucleated nascent myotubes (Fig. 6J,

arrowhead). Four hours later, the myotubes had spread out and

migrated towards the apical region (Fig. 6J′, arrowhead). After nine

hours, myotubes covered about 80% of the pupal testis surface

(Fig. 6J″, arrowhead). During live imaging, the testis grew in length.

We then tested the effect of down-regulated stumps on the

migration process on pupal testes. We cultured stumps knock-down

testes 40 h APF expressing myoblast-specific mCD8-GFP. These

testes were also still attached to a part of the developing seminal

vesicle. When live imaging started, approximately 30% of the pupal

testis was coveredwith nascent myotubes (Fig. 6K, arrowhead). After

four hours, myotubes covered about 40% of the testis (Fig. 6K′,

arrowhead). After nine hours, myotubes still covered no more than

40%of the testis (Fig. 6K″, arrowhead). Strikingly, themorphologyof

the nascent myotubes was affected; the cells seemed smaller than in

the control (Fig. 6K, compare to J) and did not spread out on the testis

during live imaging. In addition, the testis grew only little in length.

From these results, we conclude that Stumps is essential for the

migration of nascent myotubes on pupal testes, and that when

Stumps is efficiently reduced, testes can grow and even attach to the

developing seminal vesicles, but nascent myotubes fail to fully

cover the testes.

Non-muscle myosin II expression depends on Heartless

signaling

So far, we gained evidence for Heartless-dependent migration of

nascent myotubes along the testes and showed that knock-down of

Cad-N (Fig. 2G-G′) and Sqh (Fig. 3) lead to distortion of the

coverage of testes with muscles. We now asked whether the

expression of Cad-N or Sqh or both depends on Heartless signaling.

As the htl-RNAi line with the strongest phenotype after myoblast-

specific activation had no muscles on the testis, we applied a second

htl-RNAi line (BL35024) in our analysis, which resembles the Htl-

DN (Fig. S3E) phenotype and the thisbe hypomorph mutant and

thus had muscles on the testes. As RNAi-mediated knock-down of

Stumps (Fig. S3G-G′) was very efficient (Fig. S3G-G″), we focused

on stumps in our analysis in parallel to the htl-RNAi line BL35024.

We observed Cad-N expression in nascent myotubes migrating

along the testis and in the mature musculature (Fig. 2D-E). We

asked whether reducing Heartless signaling impairs expression of

Cad-N in pupal testes (arrows in Fig. 7A-C). Cad-N was expressed

at the site of contact (Fig. 7A) in wild type and after knock-down of

either Htl (Fig. 7C) or Stumps (Fig. 7B), which indicates that Cad-N

expression is independent of Htl signaling. At 44 h APF in the

Stumps knock-down mutant, nascent myotubes were less tightly

Fig. 5. FGF signaling components are expressed during migration of testis myotubes. Immunofluorescence analysis of Stumps. Myoblasts and

nascent myotubes on (A-A″) wild-type genital discs 24 h APF, (B-B″) wild-type genital discs 30 h APF (magnifications of prospective seminal vesicles

are shown), and (C-C″) pupal testis 30 h APF stained or marked with anti-Stumps (red), Mef2-driven mCD8-GFP (green), and Hoechst (blue; nuclei).

(A′,A″,B′,B″,C′,C″) Enlargement of boxed areas in A, B, and C, respectively, marked with GFP or stained with anti-Stumps. (D-E″) Myoblasts and myotubes

on Htl-Gal4≫mCD8-GFP genital discs at (D-D″) 24 h APF (magnification of prospective seminal vesicle is shown) and (E-E″) 30 h APF, stained or marked with

anti-Stumps (red), Htl-driven mCD8-GFP (green), and Hoechst (blue). (D′,D″,E′,E″) Enlargement of boxed area in D and E, respectively, marked with Htl-driven

mCD8-GFP or stained with anti-Stumps. Dotted lines reflect approximate shape of the organ. vs, seminal vesicle. Scale bars: 20 µm.
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Fig. 6. See next page for legend.
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packed and many Cad-N-positive filopodia were visible at the

contact sites between neighboring myotubes (Fig. 7B).

Next we asked whether Sqh, the light chain of myosin II, is

expressed dependent on Htl signaling. At 44 h APF, Sqh localized

to the filopodia of nascent myotubes on wild-type testes, and Sqh

was enriched at the ends of stretching myotubes (Fig. 7D). In the htl-

RNAi knock-down situation, however, nascent myotubes were less

densely packed and had started to stretch while encircling the testis

tube. In this situation, Sqh expression was not obviously disturbed

(Fig. 7F). This is not surprising since in the less efficient htl-RNAi

line showed a weak phenotype comparable to the dominant-

negative version. By contrast, we did not detect Sqh in the poorly

stretched nascent myotubes after efficient reduction of Stumps in the

parallel experiment (Fig. 7E) (for knock down phenotype with

respect to testis shape see Fig. 6E). We propose that Heartless

signaling via Stumps directly or indirectly activates the synthesis of

Sqh, the regulatory light chain of myosin II.

DISCUSSION

Wnt signaling does not directly affect testis myotube

migration but affects determination of testis-relevant

myoblasts

DWnt2 functions in pigment cell determination and possibly also

in the migration of nascent myotubes onto pupal testes in

addition to, or as a consequence of, the failure of pigment cell

migration (Kozopas et al., 1998). We checked whether amorphic

DWnt2 alleles have migration defects. In agreement with the

results of Kozopas et al. (1998) and Linnemannstöns et al.

(2014), an amorphic allelic combination of DWnt2 produced

small testes of various sizes. Kozopas et al. (1998) observed only

a small amount of muscles on adult DWnt2 mutant testes. We

showed that smooth-like muscles were absent from the testis

sheath. Surprisingly, a few striated muscles were visible on these

testes.

The results presented here led us to tentatively conclude that

DWnt2 affects cell fate determination of testis-relevant myoblasts.

Indeed, it has been shown that Wnt signaling specifies cell identity

of a subset of somatic muscle founder cells in Drosophila

embryogenesis (Baylies et al., 1995) and during many other

determinations of the fate of the cell (Bertrand, 2016; Munoz-

Descalzo et al., 2015). However, an additional later role in the

migration of testis myotubes cannot be excluded.

Fig. 6. Ths-activated Heartless is essential for populating the testis with

myotubes. Analysis of htl and stumps knock-down and ths mutant. (A) DIC

micrograph of adult wild-type testis. (B) Phalloidin staining to visualize F-actin

(red), and Hoechst staining of nuclei (blue). (C) DIC micrograph of adult

htl knock-down (v6692) testis. (C′) Enlargement of boxed area in C showing

adult htl knock-down testis stained with Phalloidin (red; F-actin) and Hoechst

(blue; nuclei); arrowhead, pigment cell nuclei; arrow, spermatids during

individualization. (D) DIC micrograph of adult ths mutant testis.

(D′) Enlargement of boxed area in D showing adult thsmutant testis stained with

Phalloidin (red) and Hoechst (blue). (E) DIC micrograph of adult stumps knock-

down testis. (E′) Enlargement of boxed area in E showing adult stumps knock-

down testis stained with Phalloidin (red) and Hoechst (blue). (F) Adult stumps

knock-down testis stained with anti-Cad-N (green), Phalloidin (red), and

Hoechst (blue). (G-G″) htl knock-down genital disc 24 h APF stained or marked

with anti-Stumps (red), GFP (green), and Hoechst (blue); magnification of

prospective seminal vesicle is shown. (G′,G″) Enlargement of boxed area in G

marked with GFP or stained with anti-Stumps. (H) Myoblasts on wild-type testis

40 h APFmarked with Mef2-driven mCD8-GFP (green). (I) Myotubes of stumps

knock-down testis 40 h APF marked with GFP (green). (J-K″) Live imaging over

time of testes 40 h APF expressing Mef2-driven mCD8-GFP to reveal the

migration of nascent myotubes in an ex vivo culture of (J-J″) wild-type testis and

(K-K″) stumps knock-down testis. Dotted lines reflect the approximate shape of

the organ. Arrowheads, the front of migrating nascent myotubes; asterisk, hub

region; vs, seminal vesicle. Scale bars: 20 µm.

Fig. 7. Expression of the myosin II subunit Spaghetti squash is not detectable after knock-down of Stumps. (A-F) Visualization of muscles on testes

by Phalloidin (red). (A-C) Expression of Cad-N in (A) wild type, (B) stumps knock-down, and (C) htl knock-down. (D-F) Sqh expression in (D) wild type (Z-stacks,

27 images with 0.48 µm per layer), (E) stumps knock-down (Z-stacks, 12 images with 0.52 µm per layer), and (F) htl knock-down (Z-stacks, 9 images with

0.24 µm per layer). Arrows in A-C indicate Cad-N and in D-F indicate Sqh; dotted lines indicate border of testis.
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Multiple roles of Heartless-dependent FGF signaling during

the development of the male reproductive system

The FGF receptor Btl is required for migration of glia and tracheal

cells (Klämbt et al., 1992). In our study, down-regulation of the

FGFR Btl, specifically in myoblasts, did not result in migration

defects of testis myotubes. Conversely, knock-down of htl led to

adult testes of a severely reduced size that remained free of muscles

or to less drastic phenotypes, depending on the RNAi fly line

chosen.

The htl knock-down yielded two further phenotypes. One

phenotype was the drastically reduced number of non-testes-

relevant myoblasts building the genital discs 24 h APF, while

testis-relevant myoblasts were present on the developing seminal

vesicles. This might be due to decreased proliferation of myoblasts

on genital discs, since myoblasts undergo mitosis around 16 h

APF (Kuckwa et al., 2016). Alternatively, this might be due to

survival or determination defects. The second phenotype was the

lack of a connection between the seminal vesicles and the testes.

Knock-down of htl by one RNAi line caused testes development to

stop early, whereas the dominant-negative version of Htl (Fig. 8A)

and a weaker RNAi line (BL 35024) resulted in testes shapes that

pointed towards a much later stop in development. Testes of

hypomorph mutants of the Htl ligand Ths (Fig. 8A) showed a

remarkably similar phenotype. This suggests that Ths is an important

ligand of Htl in this system.

Stumps was expressed in FC-like myoblasts and nascent

myotubes adjacent to the epithelium on genital discs and testes. In

addition, down-regulation of the adaptor protein stumps yielded

drastic defects in covering the testes with myotubes. This could be

caused by a reduced number of myotubes or by a migration defect.

We observed a fairly normal amount of myoblasts lying over the

seminal vesicles. This and the disruption of migration of these

myotubes in ex vivo cultures of testes argue for a migration defect in

addition to morphology defects. stumps knock-down pupal testes

40 h APF exhibited many nascent myotubes, which indicated that

initial migration occurred. However, we cannot exclude that we

were unable to detect a low level of Stumps in immunofluorescence

assays and that such a low amount could be sufficient for initial

migration onto the testes.

Our results led us to conclude that migration of nascent myotubes

on the testis depends on FGF signaling via Ths, Htl, and Stumps.

Future research will focus on unravelling the distinct functions of

FGF signaling via Heartless during muscle development in the male

reproductive system.

Non-muscle myosin II drives the migration of nascent testis

myotubes dependent on Heartless signaling

Down-regulation of non-muscle myosin II (i.e. zip or sqh) resulted

in adult testes that were not fully covered with muscles, which

indicated that non-muscle myosin II is necessary for the migration

of nascent testis myotubes. Myosin II is also required for proper

detachment and migration of border cells during egg chamber

development (Combedazou et al., 2016; Majumder et al., 2012),

and Drosophila tubulogenesis (Saxena et al., 2014; Nie et al.,

2014). Signaling through epidermal growth factor receptor activates

non-muscle myosin II (Saxena et al., 2014; Combedazou et al.,

2016). Here, we propose that Heartless-mediated FGF signaling

directly or indirectly induces non-muscle myosin II, which

promotes migration of nascent testis myotubes. This might

explain migration and morphological defects of myotubes in vivo

and ex vivo.

Cadherin-N and Armadillo are expressed during cell

migration and for stabilizing the testis muscle sheath

Cad-N was expressed in myoblasts and nascent myotubes of

genital discs and pupal testes as well as in the membranes of adult

testis myotubes. In contrast to the epithelial-mesenchymal

transition during embryogenesis (Leptin and Grunewald, 1990),

no change in expression from Shg to Cad-N was observed when

the nascent myotubes started to migrate. During the initial

migration onto and along the testis, Cad-N was expressed, which

suggests a collective mode of cell migration. We propose that lack

of Cad-N or Arm leads to disturbances in collective cell migration.

As a consequence, far fewer myotubes spread over the testes, and

residual myotubes cannot yield a tight sheath of muscles. This

leads to thickened areas in the testes, where the population of

muscles is low. Therefore, we in turn propose that Cad-N in

cooperation with Arm is furthermore essential for mediating cell

adhesion between single testis myotubes, thereby stabilizing the

testis muscle sheath and the tubular and coiled shape of the testes.

In contrast, to Sqh we gained no evidence for Htl dependent

expression of Cad-N.

Testis shaping depends on an intact muscle sheath

Shaping of adult testes was disturbed to varying degrees depending

on the genetic background (Fig. 8). The shape resembled that of

different developmental time points in the wild type (Fig. 8A).

Mutants with amorphic DWnt2 alleles, htl knock-down, or stumps

knock-down showed hardly any shaping. These phenotypes

correlate with the total absence or presence of only a few testis

muscles. Hypomorph Ths mutants as well as the expression of a

dominant-negative version of Htl led to a less severe phenotype that

matched the shaping defects produced by down-regulating htl with

another RNAi fly line. These adult testes resembled those of the

wild type at 72 h APF. Knock-down of cadN, arm, sqh, or zip led to

adult testes whose shape, but not the degree of coverage of the testes

with muscles, resembled that of wild-type testes at 54–72 h APF. At

42 h APF, nascent myotubes reach the testis tip in the wild type

(Kuckwa et al., 2016). This is also the case when cadN, arm, sqh, or

zip is down-regulated specifically in myoblasts. However, already at

this stage, fewer myotubes were present on knock-down testes

(Fig. 7), which supports our conclusions that Cad-N and non-

muscle myosin II are required for the migration of testis myotubes

and that an intact muscle sheath is required for the shaping of the

testis.

Conclusions and model

Based on our results, we propose a model in which testis myotube

migration is divided into two Htl- and Cad-N-dependent phases.

(i) After myoblast fusion, when Stumps and Cad-N are distributed

along the plasma membrane of nascent testis myotubes that are in

close contact to the adjacent epithelium of the prospective seminal

vesicles, FGF signaling initiates collective migration of nascent

testis myotubes from the prospective seminal vesicle onto the testis

(Fig. 8B). (ii) The coverage of the testes with muscles is achieved by

collective cells migrating towards the testis tip, and this migration

requires myosin II and the formation of a network of nascent

myotubes with Cad-N-positive connections (Fig. 8C).

We propose that the ligand Ths and possibly also Pyr binds Htl in

nascent myotubes and thereby activates FGF signaling via Stumps

during both phases of migration; the source of these ligands needs to

be determined. Downstream, components of MAPK signaling, such

as Erk, could be activated, which might cause changes in transcription
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of different target genes. Indeed, we observed Htl-dependent

expression of Sqh. We hypothesize that Thisbe/Heartless-induced

MAPK signaling might link to the actin cytoskeleton via non-muscle

myosin II, thereby facilitating cytoskeletal changes needed for cell

migration (Fig. 8B).

Our data provide first insights into the Thisbe/Heartless-

dependent regulation of myotube migration via myosin II

expression from the seminal vesicle to and along the testes, which

is dependent on successful connection of these tissues. Future

studies aiming at identifying missing components and functions to

fully elucidate testis myoblast specification and myotube migration

will require the establishment of more specific tools, such as driver

lines specifically active in testes myoblasts and myotubes.

MATERIALS AND METHODS

Fly stocks

Flies were kept and RNAi crossings were carried out on standard medium at

25°C. w1118 (BL6326) was used as the wild-type reference. The following

transgenic flies were used: Mef2-Gal4 (Ranganayakulu et al., 1995), Htl-Gal4

(BL40669), UAS-Dcr-2;;Mef2-Gal4 (BL25756), UAS-htl-DN (BL5366),

and UAS-mCD8-GFP (BL32186). For RNAi experiments, the following fly

lines were used: UAS-cadN-RNAi (v1092, v1093, v101642), UAS-arm-

RNAi (BL31304, BL35004), UAS-sqh-RNAi (BL32439, BL33892), UAS-

zip-RNAi (BL36727, BL37480), UAS-btl-RNAi (BL40871, v27106), UAS-

htl-RNAi (BL35024, v6692), and UAS-stumps-RNAi (v21317, v105603).

We conducted all RNAi experiments with at least two different fly lines per

gene; the differences were in knock-down efficiencies or effects of second site

insertions, as described in Vissers et al. (2016). An overview of all produced

Fig. 8. Model of testis myotube migration. (A) Summary of shaping defects of knock-down/mutant testes. Stages of testis development in wild-type males during

metamorphosis, from 11 h APF to adult. Bars indicate the stage to which to mutant testes develop [myoblast-specific knock-down (k.d.) mutants, mutant testes

expressing the dominant-negative (DN) Htl protein, or a DWnt2 mutant]. According to the affected gene or genetic manipulation, testis development correlates to

different stages of wild-type development. For example, down-regulation of btl does not interrupt testis development, whereas htl knock-down leads to a very

early stop in development. (B,C) Two-phasemodel of testis myotubemigration. (B) Phase one represents the Htl dependent migration of nascent myotubes onto the

testis before and after fusion of the epitheliumof the seminal vesicle (vs) and the terminal epithelium (te) of the testes. Pigment cells (pc)migrated towords the vs. The

FGF ligand Ths and possibly Pyr are secreted by an unknown source. (C) In phase two, nascent myotubes are already on the testis and migrate further

towards the tip. Cad-Nmediates adhesion between adjacentmyotubes. Stumpsmight control themigration process, likely via non-muscle myosin II. Sqh expression

depends onStumps,which suggests Sqh regulation byHtl signaling. Note that after an initial phase one, both phases run in parallel until all myotubes reach the testis.
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phenotypes is given in Table S1. The ths mutant was generated by crossing

thse02026/CyO.actin-GFP (Stathopoulos et al., 2004) and Df(2R)ths238/CyO.

actin-GFP (Kadam et al., 2009). For DWnt2 experiments, DWnt2L (BL6909,

Kozopas et al., 1998) and DWnt2O (BL6958, Kozopas et al., 1998) flies were

used. BL flies were ordered from Bloomington Drosophila Stock Center

(Bloomington, IN, USA), and v flies were obtained from Vienna Drosophila

RNAi Center (Vienna, Austria).

Fertility tests

One adult male of the F1 generation from RNAi crossings was mated with

three virgin females (w1118) over seven days. After twoweeks, the efficiency

of the matings was examined. All fertility tests were carried out at 25°C.

Immunofluorescence

Pupae selection, genital disc dissection, and immunofluorescence were

carried out as described elsewhere (Kuckwa et al., 2016) andwere repeated at

least three times. The following antibodies were used: anti Duf/Kirre (1:500,

Kreisköther et al., 2006), anti-Cadherin-N (1:100, DSHB DN-Ex #8), anti-

Shotgun (1:100, DSHBDCAD2), anti-Stumps (Dof, 1:1000; gift fromMaria

Leptin,Universityof Cologne,Germany;Vincent et al., 1998), antiSqh [1:10,

64 h incubation time; anti Phospho-Myosin Light Chain 2 (ser19), #3671

Cell Signaling; dilution according to Saxena et al., 2014; Nie et al., 2014] and

anti-Trol (Perlecan domain V, 1:2000; gift from Stefan Baumgartner, Lund

University, Sweden; Friedrich et al., 2000). The following secondary

antibodies were used: anti-rat Cy3 (1:500; Jackson ImmunoResearch

Laboratories), anti-rat Alexa Fluor® 488 (1:500; Jackson ImmunoResearch

Laboratories), anti-rabbit DyLight 488 (1:500; Vector Laboratories), anti-

rabbit DyLight 549 (1:500;Vector Laboratories). For visualization of F-actin,

we used Phalloidin-Atto 565 (4 nmol l−1; 94072, Sigma-Aldrich, St. Louis,

MO, USA); to visualize nuclei, Hoechst 33342 was used (3.2 µg ml−1;

62249, Thermo Fisher Scientific, Waltham, MA, USA).

Live imaging of ex vivo cultures

Male white prepupae were collected at 0 h APF and aged on a moistened

filter. Genital discs and pupal testes were dissected in culture medium and

transferred into a tissue culture treated µ-Dish35mm,high (81156, ibidi,

Martinsried, Germany) containing 2 ml culture medium Shields and Sang

M3 Insect Medium (S8398, Sigma-Aldrich) was made according to Aldaz

et al. (2010) by filtering and supplementing with 2% fetal bovine serum

(S0113, Biochrom AG, Berlin, Germany), 0.5% penicillin-streptomycin

(P11-010, PAA, Cambridge, UK), and 0.1 µg ml−1 Ecdysone (H5142,

Sigma-Aldrich). Culture medium worked successfully for up to 4 days

when stored at 4°C. A Zeiss AxioObserver Z.1 inverse microscopewas used

for live imaging. A Z-stack was acquired every 15 min for up to 10 h.

Image acquisition and processing

Conventional fluorescent images and optical sections were captured with a

Zeiss AxioObserver Z.1 inverse microscope with ApoTome function.

Images were taken and processed with AxioVision LE64 (Carl Zeiss

Microscopy GmbH, Jena, Germany), figures were assembled with Adobe

Photoshop CS6 (Adobe Systems Incorporated, San José, CA, USA), and

models were generated in Adobe Illustrator CS6 (Adobe Systems

Incorporated). Charts were generated in Microsoft Excel 2016 (Microsoft

Corporation, Redmond, WA, USA).
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Suppl Figures and Tables 
Figure S1: Fertility of males after RNAi knock-down experiments. Mef2- or Mef2>>Dcr2-driven RNAi males were crossed with three wild type virgin females. For controls, RNAi males were tested under the same circumstances. Neither cad-N knock-down nor zip knock-down resulted in reduced male fertility. Fertility of the males was reduced only upon down-regulation of sqh and arm. n = 30. 
Biology Open (2017): doi:10.1242/bio.025940: Supplementary information

Biology Open � Supplementary information



Figure S2: Reduction of Cad-N or Spaghetti squash does not influence expression of Trol in adult testes but disturbes efficient population of the testes with muscles. (A, B) Differential interference contrast (DIC) micrograph of testis 44 h APF; 8A´-H: immunolfuoresence;  Phalloidin (red) labels F-actin, and Hoechst (blue) visualises nuclei. (A) On genital discs of wild type males FC-like (arrow) and FCM-like (arrowhead) myoblasts are visible in interference contrast. (A’) The adhesion protein Duf/Kirre was expressed in FC-like 

Biology Open (2017): doi:10.1242/bio.025940: Supplementary information

Biology Open � Supplementary information



myoblasts on seminal vesicles 24 h APF.  B) After knock down of cad-N, FC-like (arrow) and FCM-like myoblasts (arrow head) were detectable and B’) Duf/Kirre expression was maintained.  (C, C’ ) At 44 h APF, pupal cad-N knock-down testes  (C`) contain nascent myotubes with less elongated shapes; the number of myotubes might be reduced (compare to C, wild type ). (D) Cad-N was expressed between adjacent myotubes (arrow) in sqh knock-down testes. (E) The ECM protein Trol was expressed in the muscle sheath of wild type testes and (F) in the irregular-shaped muscles upon sqh knock-down. (G) Pupal wild type testes at 44 h APF. (G) Pupal sqh knock-down testes at 44 h APF showed little defects in shape (compare to F), but are covered with fewer nascent myotubes. Scale bars, 20 µm. Biology Open (2017): doi:10.1242/bio.025940: Supplementary information

Biology Open � Supplementary information



Figure S3: Analysis of FGF-signaling components (A) Down-regulation of htl did not affect the adult testis muscle sheath. (B) Upon htl knock-down, the number of myoblasts on genital discs 24 h APF was severely reduced in the posterior part (compare to C; arrows), whereas testis-relevant myoblasts accumulated over the prospective seminal vesicle. Triangle indicates fat tissue. (C) Myoblasts on genital discs 24 h APF. (D) Htl-Gal4 drives expression in posterior myoblasts (arrows) and in testis-relevant myoblasts (arrowhead) on genital discs 24 h APF. (E) Myoblast-specific expression of Htl-dominant negative (DN) produced an adult testis with a bulky tip. (E’) In the htl-DN background, testis muscles did not cover the bulky tips. (F–F’’) At 30 h APF, htl knock-down (BL35024) seminal vesicles exhibited a severely reduced number of myotubes. Fʹ and Fʹʹ show enlargements of the respective boxed areas in F. (G–G’’) On stumps knock-down genital discs 24 h APF, Stumps was not expressed. Phalloidin (red) visualizes F-actin, Hoechst (blue) labels nuclei. On genital discs, myoblasts and nascent myotubes are marked with Mef2-driven mCD8-GFP. Asterisk marks testis hubs. Dotted lines reflect approximate organ shape. Scale bars, 20 µm. 
Biology Open (2017): doi:10.1242/bio.025940: Supplementary information

Biology Open � Supplementary information



Table S1: Phenotypes of RNAi fly lines RNAi fly line Testis phenotype Predicted off-targets Mef2>>Dcr-2;cadN-RNAi v1092 shape: not coiled properly muscle sheath: not continuous none Mef2>>Dcr-2;cadN-RNAi v1093* shape: not coiled properly muscle sheath: not continuous none Mef2>>cadN-RNAi v101642 shape: wt muscle sheath: some holes CadN2 Mef2>>Dcr-2;;sqh-RNAi BL32439* shape: small and thickly muscle sheath: not encircling none Mef2>>Dcr-2;;sqh-RNAi BL33892 shape: wt muscle sheath: holes none Mef2>>Dcr-2;;zip-RNAi BL36727 shape: small and thickly muscle sheath: big holes none Mef2>>Dcr-2;zip-RNAi BL37480* shape: coiled with big testis tip muscle sheath: holes none Mef2>>arm-RNAi BL31304* shape: many thickenings muscle sheath: short muscles, holes Sequoia (zink finger protein) Mef2>>arm-RNAi BL35004 shape: wt muscle sheath: wt none Mef2>>Dcr-2;;btl-RNAi BL40871 shape: wt muscle sheath: wt none Mef2>>Dcr-2;btl-RNAi v27106* shape: wt muscle sheath: wt none Mef2>>Dcr-2;;htl-RNAi BL35024 shape: coiled with big testis tip muscle sheath: no muscles at tip none Mef2>>htl-RNAi v6692* shape: small and round, no connection to vs muscle sheath: no muscles none Mef2>>stumps-RNAi v21317* shape: variable, small and round, but connected to vs muscle sheath: variable, no muscles at apical region none 
Biology Open (2017): doi:10.1242/bio.025940: Supplementary information

Biology Open � Supplementary information



Mef2>>stumps-RNAi v105603 shape: variable, small and round, but connected to vs muscle sheath: variable, big regions without muscles none wt = wild type; vs = seminal vesicle; * = presented in Results Biology Open (2017): doi:10.1242/bio.025940: Supplementary information

Biology Open � Supplementary information
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Abstract  

Cells migrate collectively to form tissues and organs during morphogenesis. Contact 

inhibition of locomotion (CIL) drives collective migration by inhibiting lamellipodial 

protrusions at cell-cell contacts and promoting polarization at the leading edge. Here, 

we report on a CIL-related collective cell behavior of myotubes that lack lamellipodial 

protrusions, but instead use filopodia to move as a cohesive cluster in a formin-

dependent manner. Genetic, pharmacological and mechanical perturbation analyses 

reveal essential roles of Rac2, Cdc42 and Rho1 in myotube migration. They 

differentially control not only protrusion dynamics but also cell-matrix adhesion 

formation. Here, active Rho1 GTPase localizes at retracting free edge filopodia. Rok-

dependent actomyosin contractility does not mediate a contraction of protrusions at 

cell-cell contacts but likely plays an important role in the constriction of supracellular 

actin cables. 

We propose that contact-dependent asymmetry of cell-matrix adhesion drives 

directional movement, whereas contractile actin cables contribute to the integrity of the 

migrating cell cluster.  
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Introduction  

The ability of cells to migrate as a collective is crucial during tissue morphogenesis and 

remodeling1,2. The molecular principles of collective cell migration share features with 

the directed migration of individual cells. The major driving forces in migrating single 

cells are Rac-mediated protrusions of lamellipodia at the leading edge, formed by 

Arp2/3 complex dependent actin filament branching and Rho-dependent actomyosin 

driven contraction at the cell rear3,4. Cells can migrate directionally in response to a 

variety of chemical cues, recognized by cell surface receptors that initiate downstream 

signaling cascades controlling the activity or recruitment of Rho GTPases. Directional 

cell locomotion is also controlled by mechanical stimuli such as upon cell-cell contact5-

7. A well-known phenomenon is contact inhibition of locomotion (CIL), whereby two 

colliding cells change direction after coming into contact 8,9. Mayor and colleagues 

provided first mechanistic evidence how CIL might act in vivo as the driving force to 

polarize neural crest cells that derived from the margin of the neural tube and disperse 

by migration during embryogenesis10,11.  

 

In neural crest cells, CIL involves distinct stages of cell behavior including cell-cell 

contact, protrusion inhibition, repolarization, contraction and migration away from the 

collision12. The initial cell-cell contact requires the formation of transient cadherin-

mediated cell junctions. Once the cells come in close contact, a disassembly of cell-

matrix adhesion near the cell-cell contact and the generation of new cell-matrix 

adhesions at the free edge occur. Such mechanical crosstalk between N-cadherin-

mediated cell-cell adhesions and integrin-dependent cell-matrix adhesions has been 

recently described in vivo during neural crest cell migration in both Xenopus and 

zebrafish embryos13. However, the loss of cell-matrix adhesions at cell contacts alone 

is not sufficient to drive CIL. A subsequent repolarization of the cells away from the 

cell-cell contact and thereby the generation of new cell-matrix adhesions and 

protrusions at the free edge are required to induce cell migration away from the 

collision. In neural crest cells, this depends on the polarized activity of the two Rho 

GTPases, Rac1 and RhoA14. A model of CIL has been proposed in which a contact-

dependent intracellular Rac1/RhoA gradient is formed that generates an asymmetric 

force driving directed cell migration15. N-cadherin binding triggers a local increase of 

RhoA and inhibits Rac1 activity at the site of contact14,16. Thus, Rac1-dependent 
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protrusions become biased to the opposite end of the cell-cell contact and cells 

migrating away from the collision.  

Overall, CIL has been successfully used to explain contact-dependent collective 

migration of loose clusters of mesenchymal cells such as neural crest cells and 

hemocytes12, but it is still unclear whether mechanisms governing CIL might also 

contribute to the migratory behavior of cohesive cell clusters or epithelia5,7. 

Here, using an integrated live-cell imaging and genetic approach, we identified a CIL 

related, contact-dependent migratory behavior of highly cohesive nascent myotubes of 

the Drosophila testis. Myotubes lack lamellipodial cell protrusions, but instead form 

numerous large filopodia generated at both N-cadherin-enriched cellular junctions at 

cell-cell contacts and integrin-dependent cell-matrix sites at their free edge. Filopodia-

based myotube migration requires formins and the Rho family small GTPases Rac2, 

Cdc42 and RhoA, whereas the Arp2/3 complex and its activator, the WAVE regulatory 

complex (WRC) seem only to contribute to filopodia branching. Rac2 and Cdc42 

differentially control not only protrusion dynamics but also cell-matrix adhesion 

formation. Unlike CIL, RhoA is not activated at cell-cell contacts, but rather gets locally 

activated along retracting protrusions. Genetic and pharmacological perturbation 

analysis further revealed an important requirement of Rho/Rok-driven actomyosin 

contractility in myotube migration.  

In summary, we propose a model in which N-cadherin-mediated contact dependent 

asymmetry of cell-matrix adhesion acts as a major switch to drive cell movement 

towards the free space, whereas contractile actin cables contribute to the integrity of 

the migrating cell cluster.  

 
 
Results  
 
Long-term live imaging of Drosophila smooth-like testes muscles as a new 
collective cell migration model  
 

At 24h after puparium formation (APF), both testes lay free in the body cavity (Figure 

1a). The genital disc provides the myoblasts and other somatic parts of the 

reproductive system such as the seminal vesicles17,18. Testes myoblasts adhere to the 

epithelium of the seminal vesicles (Figure 1a, sv) and fuse to small syncytia shortly 

before the connection between seminal vesicles and terminal epithelia (Figure 1a, te) 

has been formed (Figure 1a, b19,20). Between 28-30h APF this connection has been 
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established (Figure 1, see arrow between a and b). At 30 h APF nascent myotubes 

(Figure 1b, mt in red) start to migrate beneath the pigment cell layer (Figure 1b, pc) to 

and along the testes towards the apical end (Figure 1b 21). At 40 h APF, myotubes 

cover the whole pupal testis as a thin muscular sheet22.  

To better understand how myotubes cover the testis, we established a protocol for ex 

vivo organ cultivation and long-term imaging (7 h) of isolated 33h APF pupal testes 

(Figure 1c). We used the muscle-specific mef2-Gal4 or the heartless-Gal4 (htl-Gal4) 

driver to express a UAS-LifeAct-EGFP transgene either in myotubes or in both, 

myotubes and pigment cells respectively (see supplementary figure S2a). This method 

provides an excellent experimental system for studying the highly dynamic migratory 

cell behavior of myotubes and to visualize their actin-rich protrusions over several 

hours at high resolution. Spinning disc live imaging microscopy of 33 h APF old testes 

onwards revealed that myotubes migrate collectively on an ellipsoid surface 

constrained by the outermost layer of pigment cells and the basal membrane enclosing 

the inner cysts (Figure 1d, e; supplementary movie M1). To better track the migratory 

behavior of individual cells within the cell cluster we additionally labeled the cells by 

co-expression of the membrane marker mCD8-RFP enabling precise 4D (xyz and t) 

trajectory mapping using the Imaris software (Figure 1f; supplementary movie M2). 

Since all mathematical directionality descriptors for 2D migration (biased angle, 

persistence angle, straightness, etc.) are based on Euclidean geometry, we had to 

transform our 3D(+time) datasets into corresponding 2D(+time) datasets for precise 

cell quantification. A simple xy-projection would neglect curvature and lead to wrong 

results. Preexisting tools using unwrapping algorithms and Riemannian manifold 

learning were not compatible with our system23. Instead of an unwrapping algorithm fit 

for every kind of surface, but with some restrictions in angle and distance accuracy, 

we developed a Mercator-projection based process, which allows for high angle-

accuracy but neglects distances (illustrated in supplementary figure S3 b-f). 

Dissecting the cell trajectories of wild type myotubes revealed a directional cell 

behavior with maximal cell movement into the base-apex direction with a speed about 

0.37 µm/min over a distance of about 130 µm (Figure 1f’, Figure 4q, supplementary 

figure S2g; supplementary movie M2). Once myotubes reached the testis apex they 

started to elongate and form large actin bundles that aligned perpendicular to the pupal 

testis surface (Figure 1g, supplementary movie M1, middle). After completing pupal 
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development, myotubes form a densely packed muscle sheath surrounding the 

elongated, tubular adult testis (Figure 1h, h’). 

 

Myotube migration depends on formin-dependent filopodial membrane 
protrusions  
 

Strikingly, migrating myotubes largely lacked lamellipodial protrusions, but instead 

formed numerous filopodia-like protrusions (from here on referred to as filopodia; 

Figure 1i; supplementary movie M3). Expression of LifeAct-EGFP together with a 

nuclear targeted EGFP transgene in myotubes in a mosaic-like fashion further showed 

that myotubes also formed prominent filopodial protrusion between neighboring cells 

(Figure 1j.; supplementary movie M4). To better characterize the distribution of 

filopodia in these cells, we quantified the directionality of filopodia of cells by measuring 

the orientation angle as illustrated in figure 1m and m’. This analysis revealed no strong 

bias in filopodia generation or directionality in cells within the cluster (Figure 1n) and 

surprisingly also at the front edge of the cluster (Figure 1o). To statistically analyze 

this, we differentiate the filopodia (in cells at the front edge) in those which are 

assembled at the cell front (pointing to the testis apex) and those at the “rear” (pointing 

to the testis base; Figure 1kl). To account for irregular cell shapes, we calculated the 

density (number/µm) by measuring edge length. There was no significant difference in 

filopodia density between front and rear. Thus, the directionality of collective myotube 

migration cannot be simply predicted by filopodia number or direction. 

 

We next determined how central actin nucleators such as formins and the Arp2/3 

complex contribute to filopodia formation and myotube migration. Treatment with the 

specific Arp2/3 inhibitor CK-66624 did not strongly affect the overall cell cluster 

morphology compared to control cells incubated with DMSO (Figure 2a, b and c; 

supplementary movie M5). Likewise, cells depleted of the arp3 subunit or wave by RNA 

interference (RNAi) showed moderate changes in cell morphology despite prominent 

fusion defects (see mononucleated myotubes marked by co-expression of the mCD8-

RFP marker excluded from the nuclei in figure 2e; supplementary movie M6). Similar 

to CK666 treatment, arp3 and wave depleted cells were still able to migrate persistently 

in a directed fashion (Figure 2b-e’; supplementary figure S2h. However, cells depleted 

of the arp3 subunit or treated with CK666 showed a significantly reduced migration 
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speed and distance along the x-axis (compare migratory tracks in figure 2a, b and d; 

quantification in figure 2h supplementary figure S2g). Thus, the Arp2/3-WRC pathway 

promotes motility, but seems to be dispensable for directed migration of myotubes.  

By contrast, treatment with the pan-formin small-molecule inhibitor SMIFH2 25 strongly 

affected cell morphology and completely disrupted collective myotube migration 

(Figure 2f, g and g’; supplementary movie M7; quantification in figure 2h, S2 g). 

Compared to CK666 treatment, cells treated with SMIFH2 showed a prominent 

reduced number of dynamic, but instead highly branched filopodia-like protrusions 

(Figure 2k; supplementary movie M7). Interestingly, cells co-treated with CK666 and 

SMIFH2 completely lacked these branched filopodial protrusions suggesting that their 

formation or branching depends on a still prominent Arp2/3 complex activity in SMIFH2 

treated cells (Figure 2l). Supporting this notion, cells only depleted for Arp3 showed a 

reduction in filopodia branches resulting in a significant reduction of protrusions (Figure 

3a, b; quantification in c). Consistently, an Arp3-EGFP transgene localized close to 

newly forming branches as we recently found in dendrite branchlet formation of 

Drosophila larval sensory neurons (arrowheads in Figure 3d, e 26). Interestingly, we 

also found a strong accumulation of the Arp3-EGFP at cell-cell contacts, an 

observation made in different cell systems (asterisks in Figure 3e’).  

 

Taken together, these findings suggest that Arp2/3 activity is required in filopodia-

branching, whereas the activity of formins are essential to generate filopodial 

protrusions. RNAi-mediated suppression of single Drosophila formins did not result in 

prominent protrusion or migration defects (see supplementary table 1), suggesting a 

potential redundant and synergistic functions of different formins in protrusion 

formation. 

 

Migrating myotubes preferentially form more stable cell-matrix adhesions at 
their free edge  
 

It is generally believed that filopodia may promote mesenchymal migration by 

promoting cell-matrix adhesiveness at the leading edge to stabilize the advancing 

lamellipodium 27. Migrating myotubes lack lamellipodia, but instead filopodia appear to 

be critical for myotube migration as inhibition of their formation by interfering with formin 

function results in a complete loss of migration. Expression of a cell-matrix adhesion 
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targeting reporter (FAT-EGFP 28) revealed that migrating myotubes indeed formed 

numerous cell-matrix anchorage sites at the base, along the shaft, and at the tip of 

filopodia (Figure 3f; supplementary movie M8). Multiple cell-matrix adhesions were 

built in a single filopodium, giving them a beaded appearance (Figure 3g; 

supplementary movie M8). Cell-matrix adhesions formed along filopodia shafts 

subsequently seemed to move rearwards, along a retrograde flow of bundled actin 

filaments, eventually getting disassembled in the outer rim of the cell body (Figure 3g; 

supplementary movie M8). Co-expression with a LifeAct-RFP reporter marked 

especially thicker actin bundles attached to large, more elongated cell-matrix adhesion 

structures that shows a more classical appearance of matrix adhesions found in 

lamellipodia (Figure 3h-h’’).  

Remarkably, the number of cell-matrix adhesions within single cells at the front edge 

of the cluster correlates with the presumed direction of migration towards the testis tip 

(Figure 3k). Cells formed an increased number of cell-matrix adhesions at the migrating 

front (pointing to the testis apex; figure 3i) when compared to the rear. An even more 

pronounced difference becomes apparent, when instead of comparing front and rear, 

cell-matrix adhesions are divided into those build at the free edge (excluding free edge 

regions comprising actin cables marked in blue) versus the cell-cell edge as illustrated 

in figure 3j, k. Quantitative analysis of matrix adhesion dynamics further showed that 

cell-matrix contacts formed at free edges showed significantly increased lifetime 

compared to those close to cell-cell contacts (Figure 3l-l’’; supplementary movie M9; 

quantification in figure 3n). This asymmetric distribution of cell-matrix adhesion implies 

that polarization along the cell edge of myotubes does not require specialized leader 

cells, as observed in endothelial cells or border cell migration 29. It rather appears to 

be a response on exhibiting free edge and potentially can occur in every cell within the 

cluster. Consistently, an increase of free edges within the cell cluster was accompanied 

with the formation of new matrix adhesions as ablation experiments showed. Myotubes 

immediately migrated when exposed to an empty space and filled the gaps within laser-

induced wounds (Figure 3o; supplementary movie M10).  
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Reduced N-cadherin expression promotes single cell migration at the expense 
of collective directionality 
 

Reduced cell-matrix adhesion density of myotubes in contact might be due to an 

enhanced disassembly of cell-matrix complexes at cell-cell contacts as previous 

reported for neural cells undergoing CIL 13. Migratory myotubes predominantly express 

N-cadherin as a key adhesion molecule of cell-cell contacts 30, which is essential in 

early Drosophila embryogenesis 31. N-cadherin was not only found along adjacent 

membranes of myotube sheets at the testis base (Figure 4a, b, b’), but were also highly 

enriched along the bridges of interdigitating filopodia (Figure 4c, c’, e, e’). In contrast, 

single myotubes without any cell neighbor that were rarely observed (Figure 4f, f’) 

completely lacked N-cadherin clusters at their free edge filopodia. Live imaging of 

migrating myotubes expressing a N-Cad-EGFP transgene confirmed a highly dynamic 

accumulation at cell-cell contacts and along filopodia forming initial contacts between 

neighboring cells (Figure 4g; see also supplementary movie M11). 

To further test the importance of N-cadherin-dependent cell-cell contacts in controlling 

the collective behavior of myotubes we used an RNAi approach to downregulate N-

cadherin expression in myotubes by using the mef2-Gal4 driver (Figure 4h, i; 

supplementary movie M12). Expression of two different RNAi transgenes efficiently 

downregulates N-cadherin protein level as shown by immunostainings of adult testes 

(Supplementary figure S2 h, i, quantification in S2 j). Myotubes depleted for N-cadherin 

are still able to migrate, and even change more frequently their relative positions with 

each other within the moving cluster (Figure 4h, i; supplementary movie M12). 

Expression of different N-cad RNAi transgenes resulted in an obvious increase of free 

cell edges with prominent cell-matrix adhesions (Figure 4j, k; supplementary movie 

M13) and increased gaps between migrating myotubes (Figure 4l, m) in a dosage-

dependent manner, but did not affect the cell number or cell size (Supplementary figure 

S2b, c, d and e). Consistently, suppression of N-cadherin led to a significantly 

decreased neighbor permanency suggesting that indeed a reduced N-cadherin 

function weakened cell-cell adhesions (Figure 4n). Quantitative analysis of the 

migration pattern of individual cells further revealed prominent changes of the 

migratory behavior. Overall, the total migration distance along the x-axis was not 

affected indicating that N-cadherin-depleted cells migrate as far as wild type cells 

(Figure 4o; supplementary movie M12). However, N-cadherin-depleted cells migrate 
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significantly less directional but faster compared to wild type cells (Figure 4p, q). Thus, 

myotubes did not display a leader-follower cell dynamics, in which leader cells drag 

inherently passive followers cells by means of strong cell-cell cadherin contacts. By 

contrast, N-cadherin-mediated cell-cell contacts seem to be required for the 

directionally coordinated migratory behavior of myotubes. 

 

Migrating myotubes need cell-cell contact to achieve directionality 

 
To further test whether myotubes require cell-cell contacts for their directional cell 

migration, we performed laser ablation experiments. Isolation of single myotubes by 

laser ablation of the adjacent neighboring cells on the testis created a situation, in 

which a cell is surrounded by free edge. After the ablation, the isolated cells 

immediately ceased directional migratory behavior and cells formed numerous 

filopodial protrusions pointing in all directions (Figure 5a-c; supplementary movie M14). 

Once those cells got in close contact to adjacent cells, they started to migrate forward 

along those migratory sheets as a collective (Figure 5d, e; supplementary movie M14). 

Single cell tracking before and after cell-cell contact confirmed a contact-dependent 

migratory cell behavior of myotubes, a phenomenon that is reminiscent of CIL (Figure 

5e-g). Remarkably, such a contact-stimulated migratory behavior could not be 

observed between two individual cells, which were still connected by cell-cell junctions 

but isolated from remaining cell cluster by laser ablation (Figure 5h; supplementary 

movie M15). Cell pairs neither migrated away from each other nor became polarized 

pointing protrusions into opposite directions, but instead always stuck together with 

constant contact distance over time (Figure 5 i, j supplementary movie M15). 

 
Rac2 and Cdc42 functions play important roles in myotube migration shaping 
testis morphology  
 
Cell adhesions are not only required to mechanically couple cells within the cluster, but 

also to link adhesion complexes to the actin cytoskeleton controlling the protrusion 

dynamics and directionality32. Rho GTPases are critical molecular players that regulate 

adhesions and motility during single and collective cell migration 33,34.  

To identify such key players contributing to myotube migration we used an RNAi 

approach to screen numerous candidate genes (see supplementary table 1). Defects 

in testis myotube migration during pupal metamorphosis can be identified by a 
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prominent disturbed morphology of adult testis (supplementary figure S1a-l; 30. The 

adult testis is a pair of thin tubules of 2.5 coils and ∼2 mm in length surrounded by a 

sheath of multinuclear smooth-like muscles 19,30. Defective N-cadherin-mediated cell-

cell adhesion resulted characteristic holes in the muscle sheet 19, where myotubes 

were not properly attached to one another (supplementary figure S1a, c, e). In contrast, 

defects in myotube migration resulted in an abnormal testis morphology with reduced 

coils and bulky tips (Supplementary figure S1a, f-k). Depending on the phenotypic 

strength the muscle sheath only partially or completely failed to cover the entire testis 

resulting into strong elongation/coiling defects (supplementary figure S1a). Strong 

abnormalities were observed following RNAi-mediated suppression of Cdc42 and 

Rac2 functions, one of the two very similar rac genes in Drosophila 35. In both cases, 

the adult testes were smaller than in the wild type with reduced coils and bulky tips 

(Supplementary figure S1f, g). The muscle sheath either did not cover the entire testes 

with numerous large holes. In comparison, suppression of Arp2/3 complex subunits 

and single subunits of the WAVE regulatory complex (WRC 36) such as WAVE and the 

Rac-effector Sra-1, resulted into more moderate morphological defects compared to 

rac2 or cdc42 depletion. Adult testes deficient for Arp3, WAVE and Sra-1 still had about 

1.5 to 2 coils, however many myotubes also did not reach the testis apex resulting into 

bulky tips (Supplementary figure S1h-j).  

 

 
Rac2 and Cdc42 are required for myotube migration by differentially regulating 
cell-matrix adhesions 
 

Compared to suppression of the Arp2/3-WRC pathway, knockdown of Rac2 functions 

led to stronger defects in membrane protrusions and cell migration suggesting that 

Rac2 might have additional roles in myotube migration (Figure 6a, d; compare 

quantification in supplementary figure S2g). rac2-depleted cells showed a severely 

changed cell morphology with thinner and highly dynamic filopodial protrusions. These 

filopodia were unable to adhere stably (Figure 6g, g’; supplementary movie M16, M17). 

Supporting this notion, live-cell imaging of rac2 knockdown cells using the FAT-EGFP 

reporter revealed a prominent loss of cell-matrix adhesion contacts (Figure 6l, 

supplementary movie M18). Since mef2-Gal4 driven FAT-EGFP is still normally 

enriched in integrin-dependent adhesion structures such as muscle attachment sites 
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of the larval body wall musculature, a general impact of Rac2 function on matrix 

adhesion can be excluded (Supplementary figure S1m, n). 

Suppression of Cdc42 function also severely impaired migration speed resulting in a 

strongly reduced migration distance on the x-axis (Figure 6b, e; supplementary movie 

M15; compare quantification in supplementary figure S2g). However, compared to 

rac2-depleted cells, cdc42-deficient myotubes showed an increase of thin and 

prolonged filopodia (Figure 6g, g’; supplementary movie M17, M19). Overall, the 

cdc42-depleted myotubes showed an elongated cell shape with numerous gaps 

between adjacent cells. Live-cell imaging of cdc42 knockdown cells using the FAT-

EGFP reporter revealed a significantly increased lifetime of cell-matrix adhesions 

(Figure 6m; quantification in figure 6n; supplementary movie M18). Compared to wild 

type cells, the cell-matrix adhesions remained much longer, even when they reached 

the trailing end of a migrating cell (Supplementary movie M18). In summary, Rac2 and 

Cdc42 are both required for myotube migration, but appear to differentially regulate 

cell-matrix adhesions.  

 

Activated Rho1 is not enriched at cell-cell contacts 

 

The activity of Rho137,38, the Drosophila homologue of RhoA, appears to be as 

essential for myotube migration as Cdc42 and Rac2. RNAi-mediated suppression of 

Rho1 but not RhoL activity in myotubes indeed resulted in strong morphological defects 

of the testes, and even under low RNAi transgene expression (using lbe-Gal4 driver) 

rho1 depleted myotubes showed strong migration defects (see supplementary figure 

S1k, table 1). Suppression of the same RNAi transgenes using the mef4-Gal4 driver 

resulted into an early pupal lethality (data not shown, supplementary table 1).  

Different from neural crest cells undergoing CIL, activated Rho1 was not enriched at 

cell-cell contacts between myotubes (Figure 7a). Live imaging of migrating myotubes 

coexpressing a Rho1-GTP biosensor or Anillin Rho-binding domain fused to GFP 

(Anil.RBD-GFP 39 and a LifeAct-RFP transgene uncovered highly dynamic, local 

pulses of Rho1 activity along retracting filopodial protrusions at free edges (Figure 7a, 

b; supplementary Movie M20). Rho1 activation appeared to be synchronous with 

backward movement of retracting filopodial protrusions (Figure 7b; supplementary 

Movie M20). Once a protrusion has been completely retracted, activated Rho1 

disappeared. Remarkably, retracting protrusions were often followed by new forward-
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directed protrusions at the same region without any Rho1 signal (Figure 7b, 

Supplementary Movie M20). Thus, migrating myotubes are not simply polarized along 

a front-rear axis. 

 

 

Myotube migration requires Rok-dependent actomyosin contractility 

 

Rho1 is known to control myosin II-dependent contraction through the protein kinase 

Rok shaping cells into tissue in a large variety of morphogenetic events during 

development 40,41. To test whether Rok-dependent actomyosin-mediated contractility 

is required for myotube collective migration, we first inhibited contractility by treating 

ex vivo cultured pupal testes with the specific Rok inhibitor Y-2763242 and with 

blebbistatin 43 or rather its photostable derivate para-nitro-blebbistatin 44, which targets 

the action of the myosin II (Figure 7c, Supplementary Movie M21). Compared to control 

cells treated with DMSO, we found similar striking changes in cell morphology in a 

time-dependent manner that eventually disturb myotube cell migration (Figure 7c, e, f; 

supplementary Movie M21). Following treatment with Y-27632 or blebbistatin, the 

myotube cell cluster was still able migrate, but became dramatically elongated with 

long interconnecting cell processes as expected for a tissue under stretch. As 

consequence, the cell cluster showed large gaps between individual cells, which 

dramatically increased in the total size over time (see quantification in figure 7h). 

Consistently, RNAi-mediated depletion of both the regulatory light chain of the myosin 

II (spaghetti squash, sqh) and the myosin II heavy chain (zipper, zip) phenocopies the 

pharmocological inhibition of Rok (Figure 7d, g, supplementary Movie M21; 

quantification in figure 7h). Migratory defects and the inability to tighten up the cell 

cluster finally led to small adult testes with reduced coils and bulky tips with numerous 

large holes in the muscle sheet similar to those depleted of Rho1 (compare figure 7k, 

l with supplementary figure S1b, k). In conclusion, these data show an important role 

of Rok-driven actomyosin contractility in collective myotube migration. Together, our 

data do not support that actomyosin-dependent contractility is required for myotube 

forward movement, but rather contribute to the integrity of the migrating cell cluster.  
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Discussion  

Myotube migration – a new model system for collective cell migration 

In this study, we established a new model system for studying collective cell migration 

in organ culture that allows high-resolution long-term live-imaging microscopy 

combined with genetic, pharmacological, and mechanical perturbation analysis. Our 

data implies that a contact-dependent migration mechanism acts as a driving force to 

polarize Drosophila myotubes and to promote their directional movement along the 

testes. A contact-stimulated migration has been already observed in cultured cells 

many years ago, but the molecular mechanisms underlying this phenomenon has been 

never analyzed in more detail 45. Thomas and Yamada observed that both primary 

neural crest cells and two neural-crest-derived cell lines barely moved when isolated 

in suspension, but could be stimulated up to 200-fold to migrate following contact with 

migrating cells 45. This process might help to ensure the cohesion and coordination of 

collectively migrating myotubes to form dense muscular sheets in the walls of 

developing hollow organs. Those muscle fibers that race ahead will immediately cease 

migration when they lose contact with their neighbors. That is exactly what we 

observed in our experiments. After ablation, an isolated myotube awaits restimulation 

by the other cells of the migrating cluster. Consistently, reduced N-cadherin function 

promotes single cell migration toward the free space at the expense of collective 

directionality. The contact-dependent behavior of myotubes also resembles contact 

inhibition of locomotion (CIL), a well-characterized phenomenon 16. CIL regulates the 

in vivo collective cell migration of mesenchymal cells such as neural crest cells by 

inhibiting protrusions forming within the cluster at cell-cell edges and by driving actin 

polymerization at their free edge 46.  

Different from neural crest cells, myotubes did not migrate as loose cohorts, but 

maintain cohesiveness (see model in figure 8). In the context of more-adhesive cells, 

a CIL-related mechanism, termed “frustrated” CIL has been proposed by which cell-

cell junctions can determine the molecular polarity of a collectively migrating epithelial 

sheet 47,48. The authors provided evidence that cell-cell junctions determine the 

molecular polarity through a network of downstream effectors that independently 

control Rac activity at the cell free end and Rho-dependent myosin II light chain (MLC) 

activation at cell-cell junctions 47,48. At the first glance myotubes do not show an 

obvious polarized cell morphology with prominent polarized protrusions. Instead, 
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myotubes form numerous competing protrusions in all directions. However, protrusions 

pointing to the free space preferentially form more stable cell-matrix adhesions as 

anchorage sites for forward protrusions, whereas the lifetime of cell-matrix adhesions 

at cell-cell contacts is decreased. Thus, a contact-dependent asymmetry in matrix 

adhesion dynamics seems to be important for the directionality of migrating myotubes, 

a molecular polarity that has been also found in neural crest cells undergoing CIL 13,49.  

Only when one of the adhesions of competing protrusions disassembles, pulling of the 

cell body towards the competing protrusions might contribute to symmetry breaking 

and directionality of collective migration (see model in figure 8).  

 

Rho GTPases differentially regulate myotube migration 

We further provide evidence for a differential requirement of the Rho GTPases, Rac2 

and Cdc42 in regulating cell-matrix adhesion. cdc42 knockdown cells formed less 

cohesive clusters and showed a significant increase of cell-matrix adhesion lifetime 

probably due to a decrease cell-matrix adhesion turnover. In contrast, Rac2 depletion 

resulted in a prominent loss of cell-matrix adhesions, a phenotype that has already 

been described in Rac1-/- mouse embryonic fibroblasts 50. Thus, we propose a model 

in which cell-matrix adhesions are downregulated at N-cadherin-dependent cell-cell 

contacts, a process that requires Cdc42 functions. To finally test whether a contact 

dependent reduction of cell-matrix adhesion in filopodia is sufficient to explain the 

observed collective cell behavior, we developed a simplified simulation model with a 

few rules governing cell behavior such as protrusive filopodia, matrix adhesion, cell-

cell adhesion, and membrane resistance (Supplementary movie M22). Unlike 

comparable computer models 51,52, single cells do not possess directional information. 

A cell’s position is defined by the geometric center of all its filopodia, whose 

emergence/disappearance/elongation causes translation of the centroid, perceived as 

motion. Upon cell-cell contact, filopodia lose their cell-matrix adhesion and thereby 

their grip on the ECM, but keep connections through cell-cell adhesions. These 

adhesions are recognized by both contributing cells to calculate their respective 

centroids (see supplementary material). Using these simple rules, we could indeed 

model myotube collective migration, provided that cells are positioned in a confined 

area mimicking the unfolded testis surface (Supplementary movie M22 2A, 2B). If 

filopodia disappear directly after contact, cells exhibit a different cell behavior that is 
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very reminiscent of CIL (Supplementary movie M22 2C).  This simplified model further 

confirms our observation that local regulation of cell-matrix adhesion suffices to drive 

collective motility.  

 

Actomyosin function ensures the integrity of cohesive myotube cluster during 
migration 

Myotube migration also requires Rho1 the Drosophila homologue of RhoA. Different 

from cells undergoing CIL, in migrating myotubes activated Rho1 was not enriched at 

cell-cell contacts between myotubes, but rather localized as local pulses along 

retracting filopodial protrusions at free edges. The effects of tensile forces have to be 

addressed separately in the future, by establishing one of the many existing force 

measurement techniques such as transition force microscopy (TFM) or using in vivo 

FRET-based tensions sensors in this system. We show that loss of Rok activity, sqh 

and zip phenocopies rho1 knockdown suggesting that a canonical pathway controls 

myotube migration in which Rho1 acts through Rok kinase to activate myosin II 

contractility. This finding supports the notion that in testis myotubes, unlike many other 

cell types, locally restricted Rho-GTPase regulation outweighs global Rac/Rho 

regulation along the cell-rear axis to achieve directionality. Previous studies 

demonstrated that myosin II-dependent contraction is essential for coordinating the 

CIL response in colliding cells. In myotube migration, Rok-dependent actomyosin 

contraction seems to be not required to drive the myotube cluster forward, but rather 

contractile actin cables contribute to the integrity of the migrating cell cluster. Thus, 

myotube cluster behave more like a collectively migrating monolayered epithelial sheet 

during gap closure53. While myotubes migrate into any given free space, they leave 

larger gaps within the cell sheet surrounded by prominent circumferential actin cables. 

Constriction of these supracellular actin cables necessarily might lead to gap closure 

observed in wildtype, but not in cells defective for RhoRok-driven actomyosin 

contractility. 
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Filopodia based-myotube migration depends on the differential function of 
formins and the Arp2/3 complex 

 

Efficient mesenchymal cell migration on two-dimensional surfaces is thought to54 

require the Arp2/3 complex generating lamellipodial branched actin filament networks 

that serve a major engine to push the leading edge forward .  

Interestingly, epithelial and mesenchymal cells form more filopodia when the Arp2/3 

complex is absent 55-57. Under these conditions, mesenchymal cells lack lamellipodia 

and adopt a different mode of migration only using matrix-anchored filopodial 

protrusions. Our data further provide evidence for a filopodia-based cell migration in a 

physiological context during morphogenesis. This migration mode largely depends on 

formin as central known actin nucleators generating filopodia 33,58. Our data also 

suggest that the Arp2/3 and its activator, the WRC contribute to a more efficient 

myotube migration by promoting filopodia branching, and thereby increasing the 

number of cell-matrix adhesions, thus increased anchorage sites. Overall, filopodia-

based migration enables the cell to regulate discrete subunits of membrane protrusions 

as an answer to the environment. The sum of filopodial protrusions adds up to a net 

cell locomotion that occurs similarly during lamellipodial migration please compare 

figure 8). Filopodial matrix adhesion complexes not only provide anchorage sites, but 

also allow cells to directly restructure their microenvironment by membrane-bound 

matrix proteases. There is indeed increasing clinical evidence suggesting filopodia play 

a central role in tumor invasion 27,59. Similar to invading cancer cells myotubes rather 

migrate through a 3D microenvironment composed of extracellular matrix restricted by 

pigment cells from the outside of the testis. Thus, it will be interesting to determine to 

what extent extracellular matrix restructuring by metalloproteinases is required for 

myotube migration. 

 

Taken together, our data suggest that contact-stimulated filopodia-based collective 

migration of myotubes depends on a CIL-related phenomenon combining features and 

molecular mechanisms described in mesenchymal and epithelial sheet migration as 

well. We propose a model in which contact-dependent asymmetry of cell-matrix 

adhesion acts as a major switch to drive directional motion towards the free space, 

whereas contractile actin cables contribute to the integrity of the migrating cell cluster.  
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Experimental procedures  

Drosophila Genetics 

Fly husbandry and crossing were carried out according to the standard methods 60. 

Crossings and all UAS-Gal4-based Experiments including RNAi were performed at 25 

°C. The following fly lines were used: mef2-Gal4 61, beatVC-Gal4 (BL-40654), htl-Gal4 

(BL-40669), lbe-Gal4 (BL-47974), UAS-LifeAct-EGFP (BL-35544), UAS-LifeAct-RFP 

(BL-58715), UAS-GFP nls (BL-4775), UAS-mcd8-RFP (BL-32219), UAS-myr-mRFP 

(BL-7119), cell-matrix adhesion sensor UAS-fat-GFP 28; RhoA-activity sensor Ubi-

Anillin.RBD-GFP 39. All UAS-RNAi lines we used are summarized in table 1 

(Supplementary data). CyO/Sco; TM2/TM6B was used as a tool for multi-step 

crossings, control crossings were conducted using w1118. 

 

Immunohistochemistry and fluorescence staining 

Adult and pupal testis fixation and antibody staining was performed as described 

elsewhere 19. The following antibody was used: anti-Cadherin-N (1:500, DSHB DN-Ex 

#8). The following secondary antibodies were used: Alexa Fluor 488 (Molecular 

Probes). Alexa Fluor Phalloidin 568 (Molecular Probes) staining on pupal testes was 

carried out during the secondary antibody incubation for 2 h (1:1000 in PBS). Adult 

testes were stained overnight (1:1000 in PBS). DAPI (Molecular Probes) was 

performed for 10 min. 

 

Microscopy/4D live cell imaging of testicular nascent myotubes 

Fixed pupal testes were embedded in Fluoromount-G (SouthernBiotech) and imaged 

on object slides. Adult testes were imaged in live-culture dishes in PBS, to maintain 

their natural shape. Light micrographs were taken with a Leica M165 FC stereo 

microscope equipped with a Leica DFC7000 T CCD camera. All fluorescent 

microscopic stills were taken with a Leica TCS SP8 with a HC PL APO CS2 20x/0.75 

dry objective. 4D live cell imaging was performed on developing testes of 33 h APF 

pupae. Prepupae were collected and timed as described elsewhere 30. Life imaging of 

pupal testes was performed like on egg chambers, as described before 62. Images 

were taken on a Zeiss Observer.Z1 with a Yokogawa CSU-X1 spinning disc scanning 

unit and an Axiocam MRm CCD camera (6.45 µm x 6.45 µm). Long-term imaging was 

performed using a LD LCI Plan-Apochromat 25x/0.8 Imm Korr DIC oil-immersion 
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objective over 7 h, with a z-stack every 5 min. Close-ups were taken with a C Plan-

Apochromat 63x/1.4 oil-immersion objective over 2 h, with a z-stack every 2 min. Laser 

ablation of single cells on the testis was performed with a Rapp TB 355 laser. 

 

Chemical inhibitors 

Live imaging experiments with chemical inhibitors were performed exactly as 

described above. All inhibitors were pre-solved in DMSO and stored at -20°C. The 

following inhibitors were used: CK666 (100 µM, Sigma-Aldrich), Formin inhibitor 

SMIFH2 (10 µM, Abcam), para-nitro-blebbistatin (10 µM, Cayman Chemical), Rok 

inhibitor Y-27632 (10 µM, Cayman Chemical). 

 

Data processing and quantification with Fiji 

 

Filopodia angles were obtained by manually tracking filopodia tips using the Multiple 

Points tool.  The center of mass was calculated in Fiji. Testes for single cell analysis 

(marked with beatVC-Gal4 >> lifeact-EGFP) were always oriented with the testis tip, 

the presumptive destination, pointing left (See Figure 1m’). The angle of the vector 

between filopodia tip and center of mass was calculated in R using the package matlib. 

Rose plots where generated using the package ggplot2. Membrane length for filopodia 

density (number per µm membrane) was quantified with the Free Hand Line tool and 

R. For single cell analysis of oriented images, points left of a virtual horizontal line 

crossing the center of mass (front) where compared to points on the right-hand side 

(rear, see Figure 1k).  For processing and quantification of adhesion defects on still 

images a ROI with a defined size (120 x 220 px), in the middle of the migrating sheet 

was chosen. To obtain a black-and-white image for further analysis, a threshold was 

set (min: 299, max: 300). The cell number inside the ROI was counted. All further 

values were assessed using the Analyze>Analyze Particles-Tool. Area per cell was 

derived from the total area/cell number. Free cell edge was derived from the sum of all 

perimeters, as they constitute the length of black-to-white border, which is tantamount 

to the free cell edge. The gap number was derived from the number of coherent 

particles, when black-and-white picture are inverted (see also supplementary figure S2 

B, C). The size of gaps during life imaging was measured with Analyze>Analyze 

Particles-Tool, too. Only gaps larger than 20 µm2 where analyzed. Corrected total cell 
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fluorescence (CTCF) was measured on sum-projections based on the method 

established elsewhere 63.  

 

Data processing and quantification of 4D life image stacks  

Manual tracking of migrating myotubes was performed using the spots-module in the 

Imaris 9.3 software. For drift correction, the reference frame module was used. The x-

axis was positioned as axis from the genital disc to the testis hub. Excel was used for 

all processing and quantification. Distance on X is defined as the difference between 

the x-Values of the same track at t=0 and t=7 h on unprojected and unsmoothed 3D-

data. It was used as a measuring tool instead of speed, as fluctuations in manual 

tracking strongly affects velocity especially in slow cells. 

Neighbor permanency is defined as  
𝑁௨௠௕௘௥ ௢௙ ௥௘௠௔𝑖௡𝑖௡௚ ௡௘𝑖௚ℎ௕௢௥௦ ௔௧ ௧=7 ℎ 𝑁௨௠௕௘௥ ௢௙ ௡௘𝑖௚ℎ௕௢௥௦ ௔௧ ௧=଴  . Neighbors 

are defined as the 6 closest cells to a given cell at t=0. A value of 1 means, that all 

neighbors were kept. 

Smooth data. As the manual tracking process is fluctuation-prone, we developed a 

process, taking this uncertainty into account. The smoothing process takes every spot 

as the center of a 10 µm circle and finds the track with the smallest angles, through 

these areas. The process is reiterated 30 times. Weak phenotypes could potentially 

lead to false negative results, but false positive phenotypes get much less likely. 

(Summary and Formula in Fig. S3A, Data after processing: Fig. S3B) 

Mercator projection.  

 [1] An approximation of the central axis is performed by splitting the dataset in 10 

subsets along the x-axis. In every subset, yz-coordinates of the center point are 

approximated by triangulation using the leftmost, rightmost and uppermost points. A 

central axis is derived from the point of gravity of the first 5 subsets and the last 5 

subsets. Based on that, the x-axis is moved with a rotation matrix. This process gets 

reiterated three times. (Summarized in Fig. S3 B-C) 

 
[2] An yz-vector 𝑟௡⃗⃗  ⃗ from every point’s respective yz-coordinate to the yz-coordinate of 

the central axis is generated. Its magnitude is the radius|𝑟௡⃗⃗  ⃗|  of this point. The maximal 

radius of all points is|𝑟௠௔𝑥⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  |  . The formula of the central angle 𝜃 depends on the position 

of the yz coordinates of every respective point. 



Publications  

 
76 

   

IF ݕ௡ ௡ݖ ௔𝑥𝑖௦ ANDݕ > ௔𝑥𝑖௦   𝜃ݖ < = 2 ∗ 𝜋 − cos−ଵ ቆ ௥೙⃗⃗⃗⃗ ∗ቀଵ଴ቁ|௥೙⃗⃗⃗⃗ |∗|ቀଵ଴ቁ|ቇ  

IF ݕ௡ ௡ݖ ௔𝑥𝑖௦ ANDݕ < ௔𝑥𝑖௦  𝜃ݖ < = − cos−ଵ ቆ ௥೙⃗⃗⃗⃗ ∗ቀଵ଴ቁ|௥೙⃗⃗⃗⃗ |∗|ቀଵ଴ቁ|ቇ  

IF ݖ௡ ௔𝑥𝑖௦     𝜃ݖ > = cos−ଵ ቆ ௥೙⃗⃗⃗⃗ ∗ቀଵ଴ቁ|௥೙⃗⃗⃗⃗ |∗|ቀଵ଴ቁ|ቇ  

A new y-coordinate is generated using the formula: 
𝜋 ଶ⁄ −𝜃𝜋 ଶ⁄ ∗ |𝑟௠௔𝑥⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  | ∗ 𝜋 2⁄  

(summarized in Fig. S2 C-E). 

 

[3] To correct the x-axis with respect to |𝑟௡⃗⃗  ⃗|, all datapoints are sorted by x-coordinate. xnଵ  is the x-coordinate of a given spot before correction. xn−ଵଵ  is the point preceeding 

this point. Its corresponding point after correction is xnଶ  (Summarized in Fig. S3 E-F). 

For the very first point the formula is:            xଵଵ = xଵଶ 

For all further points : xnଵ: the formula is    xnଶ = xn−ଵଶ +(xnଵ − xn−ଵଵ ) ∗ |௥೘𝑎𝑥⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗||௥೙⃗⃗⃗⃗ |  

 

Track speed mean was measured in motility lab using smoothed tracking data, in 

order not to quantify manual tracking inaccuracies. 

Biased angle to x-axis. The usual “biased angle” method measures the bias towards 

a predefined point. As myotubes do not migrate towards a point, but along a defined 

axis, we measured the angle-distribution to the x-axis to analyze myotube 

directionality. As angles get strongly affected by speed, this method can only compare 

cells with the same “distance on x” value (summarized in Fig. S3 F). Rose plots were 

generated in R using the ggplot2 package. 

Meandering distance. To compare the directionality of samples with different speeds, 

their meandering distance |𝑑ଶ⃗⃗⃗⃗ | was measured according to the following formula. The 

median for all tracks on the testis was calculated.    𝑑ଵ⃗⃗⃗⃗ =ቆݔ௡ − ௡ݕ௡ݔ − ௠௘௔௡ ௣௘௥ ௧௥௔௖𝑘ݕ ቇ     |𝑑ଶ⃗⃗⃗⃗ | = |𝑑ଵ⃗⃗⃗⃗ | ∗ |௥೙⃗⃗⃗⃗ ||௥೘𝑎𝑥⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗| 
Cell-matrix adhesion lifetime was measured with the spots module of the Imaris 3.0 

software on 2D maximum projections. 

Cell distance over time between cells isolated by ablation was quantified in R based 

on Imaris tracking data using the packages matlib, reshape2, tibble and beeswarm. 
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Statistical Analysis 

All statistical tests were performed using Prism 7 (GraphPad). Multiple comparisons 

were done using parametric or nonparametric Anova, and for single comparisons 

welsh’s t-test or Mann-Whitney-test was used. Depending on normal distribution, 

assessed with the Shapiro-Wilk test, either parametric or non-parametric tests were 

used. 

 

Image Processing and graphic editing 

For image processing and graphic editing, the following software tools were used: Zen 

Blue (Zeiss), LasX (Leica), Fiji (ImageJ 1.51), Imaris 9.3 (Bitplane), Inkscape 0.91. R 

Studio 1.2.5042 (RStudio, Inc.) and packages therein mentioned above.  For displaying 

cell tracks, Motility lab was used (Miller, unpublished) 

 

Computer simulation of testis myoblast behavior. The software was programmed 

using Unity 2019.2.2f1 (Unity Technologies). A single cell in this model (see also 

supplementary movie M22) is not simulated as a single agent but consists of multiple 

simulated protrusion points (black dots). Their geometrical center (centroid) is 

calculated constantly and constitutes the cells “position”. Protrusion points radially 

move away from the centroid, mimicking filopodia elongation, but must counter 

membrane resistance that gets the higher the farther away the point moves from the 

centroid. On its way every protrusion point creates its own “cell-matrix adhesions” (red 

dots). They mediate a filopodium (= protrusion points & all its adhesions) static friction 

which is needed to counter membrane resistance. If membrane resistance is higher 

than adhesion the entire filopodium gets translated towards the centroid. Protrusion 

points and cell-matrix adhesions have a lifetime. New protrusion points are generated 

in a fixed distance from the centroid (grey circle) where the local density is lowest to 

recapitulate our finding that there is no asymmetry in myotube filopodia assembly. 

When a protrusion point touches the “adhesion radius” (grey circle) of another cell it 

loses its cell-matrix adhesions mimicking the measured shortened lifetime of real cell-

matrix adhesions. The protrusion point is then turned into an “adhesion point” (green 

dot) which is recognized by both cells as one of their protrusion points to calculate their 

respective centroids. For more details see also supplementary material. 
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Figures 

 
Figure 1 Myotubes form numerous filopodial membrane protrusions instead of 
lamellipodia and migrate collectively onto the testis 
 

a, b. Graphics of the Drosophila testis at 24h and 33 h after pupae formation (APF). a. 

Myoblasts (mb, red) arising from the genital disc, adhere to the epithelium of the 

seminal vesicles (sv) and fuse to small syncytia shortly before the connection between 

seminal vesicles and terminal epithelia (te). b. After epithelial fusion nascent myotubes 

(mt) migrate between the basal lamina separating the testicular cyst cells and a layer 

of pigment cells (pc) from the testis base towards the apex. c. Schematic of the ex vivo 

technique enabling life imaging of Drosophila testis development with a spinning disc 

microscope. d. Only one testis of the pair (compare to c) which was prepared is 

depicted, as in 25x magnification (compare to d) only one testis can be seen. e. Wild 

type testis 33 h APF 350 min in ex vivo culture. UAS-LifeAct-EGFP was driven using 

the htl-Gal4 driver line, which promotes expression in migrating myotubes (m) and 

pigment cells (pc). The dashed line in “0 min” represents the area depicted in 100–420 

min. Scale bar, 50 µm. f, f’. Migration of myotubes was tracked using the Imaris 

software. mef2-Gal4 was used to drive UAS-LifeAct-EGFP, expressed only in 

myotubes. f. An overlay of microscopic data and track data are shown. Source data 

are provided as a Source Data file. f’. Only track data is shown. Scale bar, 100 µm. e. 

Top view of a testis 46 h APF in 420 min ex vivo culture. mef2-Gal4 drives UAS-LifeAct-

EGFP expression. g. Subsequent to migration, testis myotubes start to encircle the 

testis, generating ring muscles. The testis starts to change its shape. The dashed line 
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in h represents the area depicted in 0/285 min. Scale bar, 100 µm. h. Confocal image 

of an adult testis stained with phalloidin and DAPI. Due to constriction by building 

muscles in pupal development, the testis gained its typical coiled shape 30 Scale bar, 

100 µm; close-up in h’. i. Close-up of myotubes at the front edge of the migrating sheet 

60 min in ex vivo culture. mef2-Gal4 drives UAS-LifeAct-EGFP expression. Cells at the 

front of the migrating cluster appear like the cells within the cluster depicted in h, as 

they project filopodia-like structures in all directions. The actin cytoskeleton appears in 

stress fiber-like thick bundles. Scale bar 10 µm. j. Close-up of two myotubes during 

migration 60 min in ex vivo culture. beatVC-Gal4 promotes expression of UAS-LifeAct-

EGFP and UAS-GFP-nls in a mosaic fashion, allowing for the analysis of single cells 

within the migrating sheet. Nuclei of neighboring cells are marked by yellow asterisks. 

Even cells within the cluster, enwrapped by neighboring cells, appear to have filopodia-

like protrusions and a general mesenchymal phenotype. Scale bar, 20 µm. l. 

Quantification of filopodia number per cell edge length in cells at the migration front. 

Source data are provided as a Source Data file. Directionality of filopodia of cells was 

quantified by measuring the orientation angle as illustrated in m and m’. Quantification 

revealed no strong bias in filopodia direction neither of cells n. within the myotube 

cluster nor o. of cells at the migration front. Source data are provided as a Source Data 

file. 

 

 

Figure 2 Formins are essential in myotube collective migration and filopodia dynamics, 
but not the Arp 2/3 complex. 
 
a. Migration tracks of testis myotubes 33 h APF in 420 min ex vivo culture, treated with 

DMSO as a control. Source data are provided as a Source Data file. b, c. CK666 (100 

µM) treatment of a testis 33 h APF in 420 min ex vivo culture. Upon Arp2/3 complex 

activity inhibition, migration is reduced. Especially cells at the testis base appear to be 

affected. mef2-Gal4 drives UAS-LifeAct-EGFP and UAS-mCD8-RFP expression. b. 

Migration tracks of testis myotubes upon CK666 treatment. Source data are provided 

as a Source Data file. c. Life imaging micrographs. mCD8-RFP in green and LifeAct-

EGFP in white. The dashed line in c represents the area depicted in 0-420 min. Scale 

bar, 50 µm. d, e. Migration is also mildly reduced by arp3 RNAi. mef2-Gal4 drives UAS-

LifeAct-EGFP, UAS-mCD8-RFP and the RNAi construct UAS-arp3KK102278 (Vienna 

v108951). d. Migration tracks of testis myotubes upon arp3 RNAi. e, e’. Life imaging 
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micrograph. Source data are provided as a Source Data file. mCD8-RFP (green) is 

depicted in e. (Note: mononucleated myotubes marked by co-expression of the mCD8-

RFP marker excluded from the nuclei). Overlay with LifeAct-EGFP (white) in e’. The 

dashed line in e’ represents the area depicted in 0-350 min. Scale bar, 50 µm. f, g. 

Upon Formin suppression through SMIFH2 (10 µM) treatment, migration is completely 

disrupted. mef2-Gal4 drives UAS-LifeAct-EGFP and UAS-mcd8-RFP expression. f. 

Migration tracks of testis myotubes upon SMIFH2 treatment. Source data are provided 

as a Source Data file. g, g’. Life imaging micrographs. mCD8-RFP (green) is depicted 

in g. Overlay with LifeAct-EGFP (white) in g’ The dashed line in g’ represents the area 

depicted in 0-350 min. Scale bar, 50 µm. h. Quantification total migration distance 

along x-axis. Source data are provided as a Source Data file. i-k. Close ups of front-

row myotubes upon different treatments. i. Upon DMSO treatment, cell morphology 

and filopodia composition were not affected. j. Arp2/3 suppression by CK666 treatment 

leads to mild defects. No branched filopodia are built, the overall morphology is 

unaffected. k. Formin suppression by SMIFH treatment leads to strong morphological 

defects. Cells are contracted, filopodia generate more branches. l. CK666 in addition 

to SMIFH2 co-treatment leads to a loss of branched filopodia. Cells are contracted 

even stronger. 

 

Figure 3 Migrating myotubes form stable cell-matrix adhesions at their free edge and 
adherens junctions at their cell-cell edge 
 
 
a, b. Close ups of front-row myotubes a. wild type and b. arp3 knock-down marked by 

Lifeact-EGFP expression. Scale bar, 10 µm. c. Quantification of filopodia tip number 

per cell edge length. Source data are provided as a Source Data file. d. Spinning disc 

microscopy still images of a front-row myotube expressing an Arp3-EGFP transgene. 

The arrowheads mark positions where Arp3 is enriched at filopodial branch points. 

Scale bar, 10 µm. e. Spinning disc microscopy still images of a front-row myotube co-

expressing Arp3-EGFP and Myr-RFP. The arrowhead marks a position of Arp3 at a 

distinct filopodial branch. Scale bar, 10 µm. f, g. Close-up of myotubes at the front 

edge of the migrating sheet, 6 min in ex vivo culture. Cell-matrix adhesions (green) are 

assembled in the shafts of free edge-filopodia. Filopodia elongate, generating new 

adhesions in a beaded string-like manner. Scale bar: 10 µm. g. Some filopodia build 

branches. UAS-FAT-EGFP (cell-matrix adhesion marker and UAS-Myr-RFP was 
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driven by mef2-Gal4. Scale bar: 10 µm. h, h’, h’’. FAT-EGFP and LifeAct-RFP where 

driven by mef2-Gal4. h. Dashed lines represent the area magnified in h’ and h’’. h’. 
Matrix adhesions are found at filopodia tips (white arrowheads) and appear enriched 

at the free edge of cells in contrast to their cell-cell edges. Thick actin cables are 

marked by yellow arrowheads. h’’. Cell-matrix adhesions colocalize with bundled actin 

fibers (white arrowheads). h’, h’’. Scale bar, 10 µm. i, j, k. Quantification revealed i. a 

significant bias in directionality of cell-matrix adhesions, j. an increased number of cell-

matrix adhesions at the cell front (pointing to the testis apex) and k. an increased 

number of cell-matrix adhesions at the free-edge compared to cell-cell edges 

(excluding free edge regions with prominent actin filament bundles marked as “actin 

cables” in blue) as illustrated. Source data are provided as a Source Data file. l, m.  

Cell-matrix adhesions in nascent myotubes during migration. FAT-EGFP was driven 

by mef2-Gal4. Quantified matrix adhesions at the free edge are depicted in red and at 

the cell-cell edge in green. Scale bar: 10 µm. l. Front edge of the migrating sheet. l’. 
Magnification at 0 min. J’’. Magnification at 40 min. m. Following cells in the same 

sheet as in H. m’. Magnification at 0 min. m’’. Magnification at 40 min. n. The 

quantification revealed that cell-matrix adhesions longevity is significantly higher at the 

“free edge” compared to the “cell-cell-edge”. n=3 testes. Source data are provided as 

a Source Data file. o. Cell-matrix adhesions in myotubes in the middle of the migrating 

sheet 33 h APF in ex vivo culture before and after laser ablation. mef2-Gal4 drives 

UAS-FAT-EGFP expression. Before ablation only few and scattered cell-matrix 

adhesions can be observed in “follower” myotubes. After laser ablation, cells adjacent 

to the ablation site start to generate cell-matrix adhesion containing protrusions along 

the newly arose free edge (arrowhead). Scale bar: 10 µm. 

 

Figure 4 Reduced N-cadherin expression increases free edge, promoting cell-
independent behavior at the expense of collective directionality 
 

a-f. Confocal images of a wild type 33 h APF testis stained with an anti-N-cadherin 

antibody. F-Actin was stained using Phalloidin and nuclei were marked with DAPI. a. 

Overview of the testis base. The areas marked with dashed lines are magnified in B, 

C and E, F, respectively. Scale bar: 50 µm. b. On the genital disc adjacent to the testis 

base, nascent myotubes appear epithelial with N-cadherin localized evenly along the 

cell edge. c, c’. In contrast, at the front edge of the migrating sheet, N-cadherin 
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localized in foci at the tip of filopodia-like structures interconnecting cells (white 

arrowhead). d, e, e’. The same is true for cells within the sheet. f, f’. In rare cases, 

completely isolated cells could be observed. No N-cadherin staining can be detected 

in such cells. b, c, e, f. scale bar: 10 µm. g. Spinning disc microscopy still images of 

myotubes expressing a Ncad-EGFP transgene. The arrowheads mark positions where 

Ncad-EGFP is enriched at cell-cell junctions. Scale bar, 10 µm. h, i. mef2-Gal4 was 

used to drive expression of UAS-LifeAct-EGFP and UAS-Ncad-RNAi construct. h. Wild 

type (WT) testis 33 h APF in ex vivo culture. mef2-Gal4 drives expression of UAS-

LifeAct-EGFP. Overview at t = 0 min at the left side. Scale bar: 50 µm. Time steps from 

0 min to 45 min in ex vivo culture at the right side. Scale bar: 20 µm. h’. Migration 

tracks of WT myoblasts. Source data are provided as a Source Data file. i. n-cadherin 

knock down in myotubes. Compare to A. Single cells are not as strongly attached to 

each other. Myotubes are sometimes completely isolated as in WT (yellow asterisk) (t 

= 0 min, 45-60 min). i’. Migrations tracks upon knock down of N-cadherin. Source data 

are provided as a Source Data file. j, k. 18 min life culture demonstrates that an 

increased free edge in every single cell (yellow asterisk) through N-cad RNAi results 

in more cell-matrix adhesion-producing filopodia. The arrowhead marks a retracting 

protrusion. UAS-FAT-EGFP and UAS-Ncad RNAi was driven by mef2-Gal4. Scale bar: 

20 µm. l, m. Quantification with Fiji. Graphical representation of the values is depicted. 

A ROI of the same size of 8 stills of each respective genotype was compared with Fiji 

Particle Analysis after conversion to black-and-white pictures (see also supplementary 

figure S2B, C). l. The number of gaps between cells is significantly increased. m. As 

proxy for free edge, we used the perimeter of the white-to-black edge. Cell free edge 

is significantly increased in N-cad RNAi animals. Source data are provided as a Source 

Data file. n. Neighbour-permanency is significantly reduced when N-cadherin is 

knocked down (using two independent RNAi transgenes). Source data are provided 

as a Source Data file. o. To assess, how far cells were able to migrate on the testis, 

the difference of x values (x-axis = defined as the axis from base to apex) of testis 

myotubes at t = 0 min and t= 420 min was calculated. The mean of each testis was 

compared. Upon N-Cadherin reduction, myotubes come as far as in WT. Source data 

are provided as a Source Data file. p. As a tool for directionality, biased angle in regard 

to the testis axis was measured. Datasets were smoothed and Mercator-projected 

before (see also supplementary figure S3). The mean angle (0-180°) of every track is 

blotted. N-Cadherin reduction causes myotubes to migrate less directional. The same 
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is true using a second RNAi line. Source data are provided as a Source Data file. q. 

Quantification of track speed mean in µm/sec. RNAi line #1 is subject to wider 

fluctuation but not significantly faster. RNAi line #2 is significantly faster than wild type 

(WT). Source data are provided as a Source Data file. 

 

Figure 5 Migrating myotubes need cell-cell contact to achieve directionality. 

 

a-g. Isolation of a single nascent myotube by laser ablation. a. Overview of a testis 

after laser ablation (33 h APF). htl-Gal4 drives UAS-LifeAct-EGFP expression. Scale 

bar, 100 µm. b. Close-up on the ablation site. c. Same site as in b, before ablation. 

Scale bar in c and c’: 20 µm. The dashed line represents the area affected by laser 

ablation. c’. Behavior of the isolated cell from B after ablation. The isolated cell (yellow 

asterisk) shows no forward motion if it has no contact to adjacent cells (upper row). 

After contact is established, it moves along in the migrating sheet (bottom row). d, e. 

To quantify the directionality of the isolated cell, cell motion was tracked using the 

Imaris software. The isolated cell before contacting to the migrating sheet is depicted 

in red, after contacting it is depicted in green. As a control, adjacent cells were tracked. 

They are showed in blue. Source data are provided as a Source Data file. f, g. As a 

measurement tool, we used the biased angle to x-axis. The mean angle (0-180°) of 

every track is blotted. When isolated, cells lose their directionality, but regain it after 

establishing contact to adjacent cells. The color code is the same as in e, f. n= 5 testes. 

Source data are provided as a Source Data file. h-j. Isolation of two adjacent myotubes 

by laser ablation. h. Overview of a testis after laser ablation (33 h APF). htl-Gal4 drives 

LifeAct-EGFP (grey) and Myr-RFP (magenta) expression. The dashed line represents 

the area affected by laser ablation. Scale bar, 100 µm. h’. Behavior of the two isolated 

myotubes from h. after ablation. Scale bar in c and c’: 20 µm. i. Rose plot shows the 

distribution of the biased angle to x-axis. Source data are provided as a Source Data 

file. j. Measurement of the distance between two myotubes over time. Source data are 

provided as a Source Data file. 

 
Figure 6 Rac2 and Cdc42 regulate filopodia matrix adhesion to enable myotube 
collective migration 
 

a, c, i, j. rac2 knockdown was induced by expression of the UAS-rac2NIG.8556R RNAi 

transgene together with UAS-LifeAct-EGFP, using mef2-Gal4. a. rac2 knockdown in 
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myotubes on testis 33 h APF in ex vivo culture. Myotube migration almost completely 

ceases. Tracks are depicted in D. The dashed line in “0 min” represents the area 

depicted in 50–420 min. Scale bar: 50 µm. Source data are provided as a Source Data 

file. b, d, i, j. cdc42 knockdown was induced by expression of the UAS-cdc42TRiP.JF02855 

(#1) or the UAS-cdc42KK108698 (#2) RNAi transgenes, together with UAS-LifeAct-EGFP, 

using mef2-Gal4. Source data are provided as a Source Data file. b. cdc42 knock down 

in myotubes on testis 33 h APF in ex vivo culture. Myotube migration is disrupted. Cells 

change their shape, generating massive filopodia-like structures, in comparison to WT. 

Tracks are depicted in e. The dashed line in “0 min” represents the area depicted in 

50–420 min. Scale bar: 50 µm. Source data are provided as a Source Data file. f-h. 

Close-up of myotubes 33 h APF in ex vivo culture with corresponding color-coded 

projection in f’-h’. Scale bar: 10 µm. f, f’. Wild type (WT) myotubes. g, g’. rac2 RNAi 

causes a fast assembly and disassembly of filopodia. h, h’’. cdc42 RNAi leads to very 

stable filopodia in comparison to wt. Filopodia are prolonged, even between nascent 

myotubes, rendering close cell-cell contact harder to achieve, thus the entire sheet 

appears less dense as in WT. i. Quantification of migration distance on x-axis (compare 

to Fig 3J). Source data are provided as a Source Data file. j. Quantification of median 

meandering distance. Source data are provided as a Source Data file. k. Cell-matrix 

adhesions in myotubes during migration. UAS-FAT-EGFP was driven by mef2-Gal4. 

Scale bar: 10 µm. l. Cell-matrix adhesions are completely lost upon rac2 suppression 

by RNAi. m. Cell-matrix adhesions remain much longer upon cdc42 reduction, even 

reaching the trailing end of a migrating cell. n. Quantification of cell-matrix adhesion 

lifetime. As shown in H, a cell-cell edge cannot be clearly defined upon knock down of 

cdc42, thus just the free edge was compared. cdc42 reduction increased lifetime of 

cell-matrix adhesions significantly, compared to WT, n = 3 testes for WT and cdc42 

RNAi. Source data are provided as a Source Data file. 

 

Figure 7 Rho/Rok-driven actomyosin contractility is essential for myotube migration. 
 

a, b. Close-ups of myotubes at the front edge of the migrating sheet 30 min in ex vivo 

culture. mef2-Gal4 drives UAS-LifeAct-RFP and the Rho1 sensor Anillin-RBD-EGFP. 

UAS-LifeAct-RFP is enriched along the membrane in actin cables. To depict all actin 

structures, gamma was set on 0.09. In the boxes in the upper right corner, details with 

gamma=1 are depicted. a. Rho1-Sensor activity is found in free edge filopodia (white 
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arrowheads, as LifeAct-RFP rapidly bleached out in filopodia tips, EGFP signal 

appears partially outside the cell). When analyzed with gamma=1, it becomes clear 

that Rho1-sensor is only present at parts of the edge containing actin cables. After the 

Rho signal appears, the corresponding part of the cell retracts, and the Rho1 signal 

immediately disappears. During retraction, the LifeAct-RFP signal at the retractive site 

goes back to normal intensity. b. Rho1 sensor activity does not seem to mark rear 

polarity. Filopodia can protrude (left column, yellow line, then activate RhoA and retract 

(middle column, yellow line). Subsequently, neighboring filopodia can elongate again 

(middle and left column, yellow line). c. myotubes expressing LifeAct-EGFP on testis 

33 h APF in ex vivo culture treated with the Rok inhibitor Y-27632. d. sqh knockdown 

was induced by expression of the UAS-sqh RNAi transgene together with UAS-LifeAct-

EGFP using mef2-Gal4. Myotube cell cluster were still able migrate with reduced speed 

and become dramatically elongated with long interconnecting cell processes. The 

dashed line in “0 min” represents the area depicted in 50–420 min. Scale bar: 50 µm. 

Tracks are depicted in e. wild type (WT), f.  Y-27632 treatment and g. sqh knockdown. 

Source data are provided as a Source Data file. h. Measurement of the gap size within 

cell cluster over time. Source data are provided as a Source Data file. i. Quantification 

of migration distance on x-axis. Source data are provided as a Source Data file. j. 

Quantification of the median meandering distance. Source data are provided as a 

Source Data file. k, l. Confocal images of adult testes expressing k. a sqh RNAi 

transgene l. a zip RNAi transgene under the mef2-Gal4 driver, the muscle sheet is 

stained with phalloidin (red) and nuclei are stained with DAPI (cyan). Scale bar: 100 

µm. 

 

Figure 8 Proposed model 

a. Comparison between filopodia-based and lamellipodia-based cell migration. 

Lamellipodia-based migration requires the Arp2/3 complex generating branched actin 

filament networks that serve as the major engine to push the leading edge forward, 

whereas filopodia support mesenchymal migration by promoting cell-matrix 

adhesiveness at the leading edge stabilizing the advancing lamellipodium or by 

sensing the environment. In filopodia-based migration, it seems that filopodia replace 

the lamellipodium as the motor of motility. We assume that polymerization of bundled 

actin filaments through formins pushes parts of the membrane. Arp2/3 complex 

contributes to filopodia branching and thereby provides new barbed ends generating 
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new filopodia. b. Key features and cell behavior in testis myotube migration compared 

to c. migrating mesenchymal neural crest cells undergoing CIL. Different from neural 

crest cells, myotubes did not migrate as loose cohorts, but maintain cohesiveness. 

Unlike neural crest cells, migrating myotubes are not simply polarized along a front-

rear axis and do not form a contact-dependent intracellular Rho gradient that initiates 

cell polarization driving directed cell migration. In myotube migration, a contact-

dependent asymmetry of cell-matrix adhesion rather acts as a major switch to drive 

locomotion towards the free space. Individually or loosely connected migrating cells, 

like neural crests cells are able to migrate persistently due to classical front-rear 

polarity. By contrast, testis myotubes rely on constant cohesion to break symmetry. 

Supracellular contractile actin cables contribute to the integrity of the migrating cell 

cluster and thereby to cohesion.  

 

Supplementary material 
 
Supplementary figures 
 

Figure S1 

a. Graphical representation of types of adult testis defects as a consequence of partial 

loss of adhesion or migration. b-l. Adult testes with different genetic backgrounds. 

Upper left corner: light micrograph of several testis showing the phenotypic range, 

upper right corner: light micrograph of a single testis. Bottom: confocal image of a 

testis. muscle sheet stained with phalloidin (red) and nuclei stained with DAPI (cyan). 

b. Wild type adult testis with a curled shape and an organized and entirely closed 

muscle sheet. c, d. Expression of a N-cad RNAi transgene #1 driven by mef2-Gal4 

leads to small holes in the muscle sheet in a dose dependent-manner30. c. one copy 

of the RNAi transgene #1; d. two copies of the same RNAi transgene #1. e.  Expression 

of a stronger N-cad RNAi transgene #2 causes much stronger defects with large holes 

within the muscle sheet (yellow arrowheads). f. rac2 RNAi driven by mef2-Gal4 leads 

to strong migration defects with a strongly dilated tip, partially uncovered, partially 

covered in disorganized muscles. g. cdc42 RNAi driven by mef2-Gal4, resembles rac2 

RNAi with slightly milder defects. h, i, j. arp3, wave and sra-1 RNAi driven by mef2-

Gal4, leads to mild migration defects with a slightly dilated tip and small uncovered 

areas. k. rho1 RNAi driven by lbe-Gal4. Even using a weak driver line, prominent 

migration defects can be observed. l. Ncad2 RNAi driven by mef2-Gal4 resembles wild 
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type testis without any defects. m, n. Confocal images of FAT-GFP driven by mef2-

Gal4 in larval body wall muscles 6/7. Muscle attachment sites, marked by FAT-GFP 

are not affected by rac2 RNAi, indicating that rac2 depletion has no general impact on 

matrix adhesion or integrin expression, but specifically affects cell-matrix adhesions in 

migratory cells. Using sibling flies, no cell-matrix adhesions can be detected in 

migrating myoblasts. 

 

Figure S2 

a. Graphical representation of the expression patterns of the Gal4 driver lines used (in 

green). Compare to Fig. 1B. b, c. Overview and ROI’s (120 x 220 px) in WT (B) and 

N-cad RNAi (C) on which quantification in D/E and Fig. 3E, F is based. Marked with 

yellow dashed lines in the overview. d. Cell number inside ROI’s. Cell number is not 

affected upon N-cad RNAi. Source data are provided as a Source Data file. e. Area 

per cell inside ROI’s. Cell Area is not affected upon N-cad RNAi. Source data are 

provided as a Source Data file. f, g, h, i. Comparison of neighbor permanency (f.), 

distance on x-axis (g.), directionality based on biased angle (H) and based on 

meandering distance (I), for all genotypes. For every genotype, all trackable cells on 5 

testes were analyzed. The number of tracks for every genotype equals the number of 

data points in h. Source data are provided as a Source Data file. i, j. Confocal images 

of adult testis muscle sheet stained with a specific anti-NCad antibody (green), 

phalloidin (red) and DAPI (blue). i. In wildtype (WT) Ncadherin localizes along the cell-

cell junction. j. Expression of a ncad RNAi transgene strongly reduce anti-NCad 

immunostaining as quantified in k. for two independent RNAi transgenes. Source data 

are provided as a Source Data file. 

 

Figure S3  

Myotubes migrate on the surface of an ellipsoid, thus on a two-dimensional surface, 

that is curved in space. This curvature did not allow to apply mathematical rules based 

in flat geometry. 3D migration tools do not consider the limitations of the surface, to 

which myotubes are bound but assume they can move freely. Instead, we developed 

a Mercator projection-based process, which allows for high angle-accuracy but 

neglects distances. a.-f. Steps of Mercator projection are shown (see material and 

methods for details). Source data are provided as a Source Data file. 
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Supplementary table 1 
 
A list of the RNAi transgenes used in this study, and phenotypic strength using different 

Gal4 driver lines. 

 
Supplementary methods (simulation model) 
 
Description of the simulation model and details on mathematical modeling.  
 
 
Supplementary movies 
 

Supplementary movie M1  

Spinning disc microscopy time-lapse movie of ex vivo cultured wild type testes (33h 

APF) expressing (left) LifeAct-EGFP in myotubes and pigment cells using the htl-Gal4 

driver, (middle) LifeAct-EGFP only in myotubes using the mef2-Gal4 driver, and (right) 

LifeAct-RFP and a nuclear EGFP in myotubes and pigment cells using the htl-Gal4 

driver. Scale bar: 50µm.  

 

Supplementary movie M2  

Spinning disc microscopy time-lapse movie of an ex vivo cultured wild type testis (33h 

APF) expressing a LifeAct-EGFP transgene using the mef2-Gal4 driver. The migration 

of myotubes was tracked using the Imaris software. An overlay of microscopic data 

and track data are shown. Scale bar: 30µm.  

 

Supplementary movie M3  

Spinning disc microscopy time-lapse movie of migrating myotubes (marked by LifeAct-

EGFP expression) at the front edge of the migrating sheet 60 min in ex vivo culture. 

Scale bar 10 µm. 

 

Supplementary movie M4  

Spinning disc microscopy time-lapse movie of migrating myotubes expressing LifeAct-

EGFP and a nuclear EGFP in a mosaic fashion 60 min in ex vivo culture, allowing for 

the analysis of single cells within the migrating sheet. Scale bar 30 µm. 

 

Supplementary movie M5  
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Spinning disc microscopy time-lapse movie of an ex vivo cultured testis (33h APF) 

expressing a LifeAct-EGFP transgene, treated with 100 µM CK666. Upon Arp2/3 

complex activity inhibition, migration is reduced. Especially cells at the testis base 

appear to be affected. Scale bar: 50 µm.  

 

Supplementary movie M6  

Spinning disc microscopy time-lapse movie of an ex vivo cultured testis (33h APF) co-

expressing an arp3 RNAi together with a LifeAct-EGFP transgene in all myotubes 

using the mef2-Gal4 driver. Migration is also mildly reduced by arp3 RNAi. Scale bar: 

50µm.  

 

Supplementary movie M7  

Spinning disc microscopy time-lapse movie of an ex vivo cultured testis (33h APF) 

expressing a LifeAct-EGFP transgene, treated with 10 µM SMIFH2. Myotube migration 

is completely suppressed. Scale bar: 50µm.  

 

Supplementary movie M8  

Spinning disc microscopy time-lapse movie of migrating myotubes expressing the cell-

matrix adhesion reporter FAT-EGFP and a membrane marker Myr-RFP. Scale bar: 10 

µm. 

 

Supplementary movie M9  

Spinning disc microscopy time-lapse movie of migrating myotubes expressing the cell-

matrix adhesion reporter FAT-EGFP tracked using the Imaris software. Quantified cell-

matrix adhesions at the free edge are depicted in red and at the cell-cell edge in green. 

Scale bar: 20 µm. 

 

Supplementary movie M10  

Spinning disc microscopy time-lapse movie of migrating myotubes expressing the cell-

matrix adhesion reporter FAT-EGFP in the middle of the migrating sheet 33 h APF in 

ex vivo culture before and after laser ablation (position is marked by an asterisk). Scale 

bar: 10 µm. 

 

Supplementary movie M11  
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Spinning disc microscopy time-lapse movie of migrating myotubes co-expressing 

NCad-EGFP and LifeAct-RFP in the middle of the migrating sheet 33 h APF in ex vivo 

culture. Scale bar: 10 µm. 

 

Supplementary movie M12  

Spinning disc microscopy time-lapse movie of ex vivo cultured (left) wild type testes 

compared to (right) testis expressing an N-cad RNAi transgene. Myotubes are marked 

by LifeAct-EGFP transgene expression in all myotubes using the mef2-Gal4 driver. 

Scale bar: 50µm.  

 

Supplementary movie M13  

Spinning disc microscopy time-lapse movies of migrating wildtype myotubes (left) 

compared to myotubes depleted of N-cadherin (right) visualized by the cell-matrix 

adhesion reporter FAT-EGFP. Scale bar: 10 µm. 

 

Supplementary movie M13  

Spinning disc microscopy time-lapse movie of an ex vivo cultured testis (33h APF) co-

expressing a rac2 RNAi together with a LifeAct-EGFP transgene in all myotubes using 

the mef2-Gal4 driver. Myotube migration is almost completely disrupted. Scale bar: 

50µm.  

 

Supplementary movie M14 

Spinning disc microscopy time-lapse movie of ex vivo cultured wild type testis (33h 

APF) expressing LifeAct-EGFP using the htl-Gal4 driver. The isolated single myotube 

by laser ablation is marked by an asterisk. Scale bar 100 µm. 

 

Supplementary movie M15 

Spinning disc microscopy time-lapse movie of ex vivo cultured wild type testis (33h 

APF) expressing LifeAct-EGFP using the htl-Gal4 driver. The isolated myotube pair by 

laser ablation is marked by an asterisk. Scale bar 100 µm. 

 

Supplementary movie M16  

Spinning disc microscopy time-lapse movie of an ex vivo cultured testis (33h APF) co-

expressing a rac2 RNAi together with a LifeAct-EGFP transgene in all myotubes using 
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the mef2-Gal4 driver. Myotube migration is almost completely disrupted. Scale bar: 

50µm.  

 

Supplementary movie M17  

Spinning disc microscopy time-lapse movie of an ex vivo cultured (left) wild type testis 

compared to (right) testis expressing a cdc42 RNAi transgene. Migration is strongly 

affected by cdc42 RNAi. Cells change their shape, generating massive filopodia-like 

structures, in comparison to WT Scale bar: 50µm.  

 

Supplementary movie M18 

Spinning disc microscopy time-lapse movies of (right) wild type myotubes, (middle) 

rac2 depleted myotubes and (right) cdc42 depleted myotubes together with a LifeAct-

EGFP transgene, 40 min in ex vivo culture. Scale bar 20 µm. 

 

Supplementary movie M19 

Spinning disc microscopy time-lapse movies of (right) wild type myotubes, (middle) 

rac2 depleted myotubes and (right) cdc42 depleted myotubes marked by the cell-

matrix adhesion reporter FAT-EGFP, 40 min in ex vivo culture. Scale bar 20 µm. 

 

 

 

Supplementary movie M20  

Spinning disc microscopy time-lapse movie of migrating myotubes co-expressing the 

Rho1activity reporter and LifeAct-RFP to visualize protrusion dynamics. Rho-Sensor 

activity is found in retracting free edge filopodia (yellow arrowheads). Note that the 

ubiquitously expressed Rho1 sensor also marks ring canals in the Drosophila germline 

cyst (white arrowheads). Scale bar: 10 µm. 

Supplementary movie M21  

Spinning disc microscopy time-lapse movies of ex vivo cultured (from left to right) testis 

treated with (A) the Rok inhibitor (Y27632), (B) treated with the blebbistatin, expressing 

a (C) sqh and (D) zip RNAi transgene. Migration is strongly affected. Scale bar: 50µm.  

 

Supplementary movie M22  
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Computer simulation model. Cells were positioned at one end of a confinement roughly 

mimicking the unfolded testis surface. (A) If cells behave according to the default 

setting, meaning that just adhesion but not filopodia lifetime is affected by contact, then 

all free space gets covered while cells keep their cohesion. (B) Isolated cells keep their 

cohesion as well, but randomly migrate, until they are contacted by the expanding 

sheet. After contact, they move along, as part of the sheet. (C) When filopodia 

disassemble shortly after contact, the behaviour resembles CIL, as there is a short 

phase of protrusion asymmetry, shifting the centroids apart from each other. Shortly 

after contact the repulsive motion ceases, as new filopodia emerge, until another cell 

moves close. All space gets covered, but there is no cohesion between cells. (A-C) In 

all scenarios a clumping of cells can be observed at the testis base. It seems to be a 

consequence of the interaction with the barrier which has no counterpart in a three 

dimensional limitless but finite surface. It is thereby an artefact with no meaning for the 

simulation (for more details about the simulation see supplementary material). 
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Figure 5 Bischoff et al., 

 
 
 
 
 
 
 
 
 
 
 
 



Publications  

 
102 

   

Figure 6 Bischoff et al., 
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Figure 8          Bischoff et 

al., 



Publications  

 
105 

   

 



Publications  

 
106 

   

 
 
 
 



Publications  

 
107 

   

  



Publications  

 
108 

   

 

 

Supplementary table 1 Bischoff et al.



Additional Results and Discussion 

 
109 

   

4. Additional Results and Discussion 

4.1 Pupal testis myotube development occurs in three steps and can be studied in explants 

Shortly before testis myotube migration starts, testis and seminal vesicle come into close proximity. 

Then, the testis terminal epithelium and the seminal vesicle epithelium fuse to build a continuous 

epithelial tube at 30 h APF260,257. After cell-cell fusion, cells are tightly packed in a columnar fashion, 

containing N-Cadherin260,419 (pub. 1, fig. 8). At the imago stage, testes are covered by a smooth-muscle-

like sheath of elongated myotubes488. As a prerequisite for live-cell imaging approaches, the sequence 

of events including migration, elongation and testis shaping had to be determined. To achieve this, pupae 

were timed in steps ranging from 36 to 76 h APF and stained for F-actin and N-Cadherin (fig. S1). It 

became clear that migration was still going on at 36 h APF and ended at 40 h APF. At that time, the 

elongation of myotubes starts (fig. S1a–b’). During migration, the shape of the testis does not change 

dramatically. Cells are still interconnected via N-Cadherin containing tip adhesions in interdigitating 

filopodia. Subsequently, proximal-distal elongation of the testis from 40–54 h APF is accompanied by 

an expansion of its surface, causing myotubes to recede from each other (fig. S1 b–e’). Still, cells are 

linked by finger-like protrusions, seemingly keeping cells together and countering expansion of the 

substrate. These protrusions are projected in parallel along the elongated myotube. At the same time 

(40–54 h APF), myotubes become narrower, building increasingly parallel F-actin bundles. After 54 h 

APF, myotubes broaden, covering the open testis surface and thereby build a continuous sheet (fig. S1 

e–g’).  This zip-like process ends at 66 h APF and is accompanied by a shortening of interdigitating N-

Cadherin bearing filopodia. From 66 h APF onwards, testes seem to elongate slightly, yet myotubes on 

the surface seem not to change their shape anymore (fig. S1 g–i’).   Interestingly, until the adult stage 

N-Cadherin does not localize along the entire membrane but in distinct foci, revealing small 

interdigitating rod-like protrusions (see in pub. 2, fig. S2 i). Based on these observations, three steps of 

pupal testis myotube development can be defined: 1. myotube migration, approx. 30–40 h APF, 2. 

myotube elongation and condensing, approx. 40–54 h APF, 3. myotube convergence, approx. 54-66 h 

APF. Linkage via N-Cadherin containing finger-like protrusions is kept throughout development and 

thereby appears crucial for mechanical linkage countering tensile forces throughout testis development. 

How cell adhesion affects post-migration stages remains to be elucidated. 

Applying this knowledge, ex vivo imaging of pupal testes explants was established. There were first 

attempts of live-cell imaging of testis myotube migration, preceding this work (pub. 1, fig 6 j–k’) based 

on approaches developed to visualize spermatogenesis164. In these experiments, migration was not 

clearly visible. For further optimize live-cell imaging, methods from Drosophila egg-chamber 

cultivation were applied and modified470. Using these methods, the migration along the testis and the 

elongation step could be reproduced in culture (pub. 2). The explanted organs could be kept alive for up 

to 7 h and were imaged from 33 h APF onwards, to visualize and analyse migration. The system allows 
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for an in-depth analysis of cell dynamics which was so far only feasible in cell culture. Still, this new 

model brings the merits of an in vivo model as all the cellular interfaces resemble the natural 

configuration. The fly testis explant represents an isolated micro-environment, passing through the same 

developmental processes during which it interacts with the same substrates as inside the developing 

animal. The only comparable explant-based system in Drosophila is border cell migration reviewed in 334. 

Nevertheless, due to their flat structure testis myotubes allow for a detailed analysis of cytoskeletal 

structures. Live-cell imaging revealed a constant cell-cell adhesion between myotubes, turning it to a 

genuine model for collective cell migration. Most research regarding collective motility relies on 

cultured isolated cells. These systems bring many advantages in terms of feasibility and imaging, but 

also some shortcomings in emulating the biophysical traits comparable with the situation in vivo417. The 

testis myotube migration model seems to combine the merits of an ex vivo system with imaging 

capacities nearly comparable to 2D cell culture. To facilitate future research in this model-system driver 

lines from the Janelia Research Campus231,377 were screened for expression in myoblasts and adjacent 

tissues (section 7.3).   

 

4.2 Migrating testis myotubes use a filopodia-based mode of motility 

By using the newly established culturing methods, it could be shown that migrating testis myotubes lack 

lamellipodial structures but possess numerous highly dynamic filopodia-like protrusions. Analysing 

defects on the matured testis, it has been shown before that WAVE and Arp3 are seemingly not needed 

for migration but myotube fusion152. Live-cell imaging of RNAi-based arp3, arp2, and wave depleted 

myotubes and pharmacological inhibition of Arp2/3 via CK666 confirmed migration to be largely 

independent of actin-branching. In contrast, perturbation of Formins with SMIFH2 leads to a complete 

cessation of migration, suggesting that nucleation and elongation of bundled actin outweigh dendritic 

network formation. Arp2/3 function only seemed to be supportive in migration since detailed 

mathematical and statistical analysis revealed a slight reduction of the migratory distance during 7 h of 

live-cell imaging (pub. 2). Recently, border cell motility was also suggested to depend on bundled actin 

dynamics based on a loss of the bundler Fascin (singed in Drosophila) disrupting migration274. In this 

work, it could be shown that treatment with SMIFH2 causes a high number of branched filopodia. The 

addition of CK666 reversed this effect. Arp3-GFP localized in branch points that rarely occur in wild 

typic myotubes. It may thus be concluded that formin dependent elongation takes the main role in 

protrusion, whereas Arp2/3 complex dependent dendritic nucleation might contribute to filopodia 

branching. Consistently, number of filopodia was reduced upon arp3 RNAi (pub. 2). It is well-

established that Formins take a central role in filopodia-formation373,49,567. In contrast, Arp2/3 complex 

as a factor in filopodia-branching seems unusual. However, the Arp2/3 complex is known to take a role 

in conventional filopodia assembly. In fibroblast-like motility, filopodia seem to emerge from Arp2/3 

induced branch points inside the lamellipodium249,469. During dendrite branchlet formation in 
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Drosophila sensory neurons, it was demonstrated that Arp2/3 can branch filopodia-like structures 

containing condensed bundled F-actin483. At the same time, Arp2/3-GFP was shown to localize to these 

branch points. The findings presented here, suggest that Arp2/3 complex function can support filopodial 

motility. Presumably, this is caused by a higher number of filopodia tips, increasing Formin dependent 

elongation of barbed ends. 

Using the FAK-localization marker FAT-EGFP350, it could be shown that  Integrin-mediated 

adhesions emerge in filopodia shafts. Filopodia elongate and slide over these adhesions, suggesting a 

molecular clutch process fuelled by actin polymerization as known from lamellipodial migration 

562,reviewed in 526. It is recognized that filopodia can contain Integrin-mediated substrate adhesions that are 

localized either in the tip, the shaft, or the base and bear resemblance with focal adhesions288,437,118,415,163. 

However, their role was either seen as an initial anchoring point for adhesions that are delivered to the 

lamellipodium or as a means for probing ECM-rigidity232,556.  

Many experiments could show that a loss of lamellipodium in different cell types goes along with 

the emergence of numerous filopodia. In the earliest approach, the finding that tropomyosin acts 

negatively on Arp2/3 was applied45. Injection of α-tropomyosin in PtK1 epithelial cells leads to a 

disruption of lamellipodia and abundant filopodia188. Cells without lamellipodia are faster. The authors 

concluded that migration was driven by the actomyosin-based dynamics of the lamella. In another 

approach, a loss of lamellipodium in Arp3-/- mouse embryonic fibroblasts was shown to be accompanied 

by more mDia1 and 2 dependent filopodia. Cells had the same speed but were less persistent487. 

Depleting Arp2 and p34Arp in mouse embryonic fibroblasts also perturbed lamellipodia and induced 

abundant filopodia. Inhibitor experiments demonstrate that the resulting slower random migration is still 

F-actin polymerisation dependent and not actomyosin-contractility driven. This contradicts the 

hypothesis that lamella-based motility is used upon Arp2/3 depletion. Interestingly, sensibility to 

specific migration cues was affected differently. Chemoattraction (via PDGF) remained unaffected, 

whereas cells could not follow a linear gradient of ECM concentration. This led the authors to the 

assumption that haptotaxis seems lamellipodia dependent563. Other approaches to disrupt lamellipodia, 

not targeting Arp2/3 complex, had similar effects on filopodia dynamics. Lamellipodin (Lpd) 

colocalizes and interacts with Ena/VASP at lamellipodia/filopodia tips in “Rat2” fibroblasts and mouse 

neuronal cells. Overexpression of Lpd leads to an increase of lamellipodial protrusion while a knock-

out causes a loss of lamellipodium and numerous filopodia. This caused reduced cell speed258. These 

results have been reproduced in vivo via Lpd knock-down in mouse melanoblast migration283. It can be 

concluded that migration in all the described experimental settings principally still worked with 

filopodia as the only source of protrusive forces. Thereby it can be deduced that filopodia-driven motility 

belongs to the toolkit of many cell types and is mostly masked by lamellipodial dynamics. 188, 487–258.  

In cancer cells, it was demonstrated repeatedly that tempering with structural components of 

filopodia, like Myosin X, affects tumour metastasis20,77,462. Very recently, it was shown that migration 

of ovarian cancer cells through the mesothelial cell layer, which covers peritoneal organs, depends on 
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filopodia not lamellipodia or invadopodia. Trans-migration can be increased by overexpressing Fascin 

1. Downregulation of Fascin-1 or Myosin X inhibited the process. Additionally, downregulation on 

Integrin β1 or N-Cadherin also leads to a drop in the rate of trans-mesothelial migration. Ovarian cancer 

cells seem to deploy filopodial migration only in certain environments. When in contact with glass only 

lamellipodia are built but plated on human peritoneal mesothelial cells numerous filopodia emerge572. It 

looks like in this example for cancer trans-migration, the same mechanisms are utilized as in testis 

myotube locomotion. In the future, it must be elucidated which exact conditions cause cells to switch 

their migration mode to filopodial rather than lamellipodial motility.  

A remarkable finding was that filopodia seemed not to be perturbed but rather elongated by RNAi-

based reduction of Cdc42. In the “classical” view, Cdc42 induces filopodial protrusions via WASp330–

356. Testis myoblast migration is not the only model in which filopodia were built in a Cdc42-

independent manner. It was shown in fibroblastoid cells that Cdc42  is negligible for filopodia and 

lamellipodia formation104. The phenotypes observable in Cdc42 reduced myotubes seem to be a 

consequence a potential regulative function in substrate adhesion, discussed in section 4.5.   

A question not addressed in this work concerns the contribution of actomyosin contractility in 

filopodial locomotion. Future experiments, based on fluorescence recovery after photobleaching 

(FRAP)-based visualization of retrograde flow or Förster resonance energy transfer (FRET)-based 

tension-sensors for example, will have to deduce whether motion arises only by actin polymerization-

based pushing or if actomyosin-based pulling contributes as well. During FRET, a donor fluorophore 

transfers energy to an acceptor fluorophore when the distance between both is under of ~10 µm. As the 

more energy is transferred, the closer they come, measuring of FRET-efficiency provides a tool do 

assess the distance between two tagged molecules273. When acceptor and donor are separated by a 

flexible element an brought into load-bearing regions of a protein, the resulting sensors can be used to 

measure molecular tension211. Experiments like these have been conducted using Vinculin180 or Talin408. 

Force measurements via similar FRET-based tension-sensors or alternatively by atomic force 

microscopy must elucidate the force that can be exerted by filopodia during filopodial migration. 

Combined with latrunculinA and blebbistatin treatment, the roles of actin-pushing and myosin-pulling 

could be dissected in detail. 
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4.3 FGF signalling affects migration but likely not as a chemoattractant 

Fibroblast growth factors (FGF) are involved in many developmental processes including proliferation, 

cell fate decisions, differentiation and cell migration105,340. They are secreted proteins that bind to FGF-

receptors (FGFRs) which have tyrosine kinase activity reviewed in 105. Drosophila possesses two FGFRs, 

the aforementioned Btl and Heartless (Htl) reviewed in 340. Htl is activated by its two ligands Thisbe (Ths) 

and Pyramus (Pyr)66,472,182,313. Downstream of Htl, mitogen activated protein kinase (MAPK)-pathway 

is activated564,156. This causes the phosphorylation of different transcription factors, thereby altering the 

transcription profile569. In Drosophila mesoderm development, Htl seems also to activate the GEF 

Pebble (Pbl), which in turn activates Rac222.  

An RNAi screen in a previous study indicated that Htl might contribute to testis nascent myotube 

migration136. It was observed that RNAi-based reduction of downstream of FGF (dof, stumps) using a 

pan-mesodermal driver tool causes adult testis coverage defects. These phenotypes were discussed being 

a consequence of either the regulation of the number of myoblasts on the genital disc, the connection of 

seminal vesicles, or disturbed cell migration. Downregulation of htl but not btl leads either to weaker 

coverage phenotypes or, depending on the RNAi-construct, to a complete loss of testis/genital disc 

connection (pub. 1)136. htl RNAi-based loss of function can be phenocopied, using more specific driver 

tools. htl-Gal4 is restricted to myoblasts on imaginal discs, including the genital disc (fig.S 2 c–f, cf. 

scheme in c with a). CadN-Gal4, on the other hand, is restricted to prospective testis myotubes on the 

genital disc (fig. S2 g–j, cf. scheme in g with a). Weak phenotypes caused by a reduction of htl could be 

phenocopied using a hypomorphic ths allele. Thus, it can be concluded that FGF-signalling is significant 

for myotube coverage of the testis. A htl-Gal4 driver was used to deduce htl expression. It promotes 

Gal4 expression under the control of an intronic enhancer, representing large parts of the first intron of 

htl. The driver tool could induce strong mcd8-EGFP expression in myoblasts in larval234 and pupal stages 

(pub. 1). Immunofluorescence analysis of Ser19 phosphorylated Myosin II in wild type and stumps RNA 

depleted myotubes suggested that Myosin II activation may be downstream of Stumps/Htl activity. 

Furthermore, RNAi-mediated depletion of the Myosin II heavy chain and light chain genes, zipper (zip) 

and spaghetti squash (sqh) phenocopied weak htl-RNAi/ths hypomorphic allele phenotypes. (pub. 1). 

It is known from many model-organisms that continuous gradients of FGF, either due to diffusion or 

due to gradual expression in tissues, are used to direct collective migration29. The best-established 

model-system for Htl activation by Ths/Pyr in Drosophila is the developing mesoderm. Whether 

mesodermal cells migrate towards a source or along a gradient of the ligand is still debated but so far 

not shown26. There are also many models known in which FGF works in a non-directional way, for 

example by promoting EMT or maintaining a migratory stage531, 485. To discriminate between a potential 

directional or non-directional function in myotube migration, experiments aiming potential sources of 

ligand were carried out. Reduction of ths via RNAi using Gal4 drivers specific for the seminal vesicle 

epithelium and the testis terminal epithelium (fig. S3 a–b’) phenocopied the defects in ths hypomorphic 

allele (fig. S3 e–e’). Weaker coverage defects are yielded when a Gal4 driver is used which only 
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promotes expression in myoblasts and terminal testis epithelium (Supp fig. 3 c–d’, f, f’). Using either 

Gal4 drivers promoting expression exclusively in seminal vesicle epithelium or myoblasts/myotubes, 

no phenotypes can be observed (data not shown). This suggests that Ths expression in the testis terminal 

epithelium is largely responsible for normal development, with a possible additional role for the seminal 

vesicle epithelium. Depleting pyr RNAi instead of ths RNAi yields no defects (data not shown). 

Conversely, strong coverage defects occur when using the terminal testis epithelium/seminal vesicle 

epithelium-driver line to promote ectopic expression of Pyr (fig S4 a–b’, f–f’). In some cases, it seems 

as ectopic striated muscles get attracted to the origin of induced Pyr expression at the seminal vesicle 

epithelium (fig S4 g–g’’) or the testis terminal epithelium (fig S4 h–h’’). Ectopic Pyr expression in the 

seminal vesicle epithelium leads to weak coverage defects with loosely packed myotubes at the testis 

tip (fig S4 c–d’, h–h’’). Overexpression of UAS-Ths in the seminal vesicle epithelium did not lead to 

any coverage defects (data not shown). These findings suggest that Pyr expression in seminal 

vesicle/testis terminal epithelia is not needed for migration and even detrimental for normal 

development. In situ hybridization analysis of ths in the genital disc about 40 h APF revealed transcript 

expression in a gradient starting at prospective paragonia, reaching over the seminal vesicle epithelium 

with its peak at the testis terminal epithelium (Buttgereit, unpublished data). Therefore, it can be 

hypothesized that FGF ligand Ths does not work as chemoattractant during testis myotube migration. It 

is expressed in tissues adjacent to the starting point of myotube migration where the transformation in a 

migratory stage occurs. Secretion of Ths, which in turn activates Htl in myotubes, could induce this 

EMT-like process and thereby work as a gatekeeper for the testis. It might be crucial for the tight 

spatiotemporal regulation of the start of migration. This working hypothesis has to be addressed in the 

future, using the newly established live-cell imaging methods. 

 

4.4 Collective behaviour resembles contact stimulation of migration (CSM) 

In a recent Current Biology “dispatch”, spotlighting a publication that demonstrates principles of CIL 

in epithelial cell rotation473, Roberto Mayor gave rise to the question of whether other developmental 

collective migration processes use modified versions of CIL320. This might be especially interesting, 

regarding more cohesive cells. Even before the testis live-cell imaging system was established, it has 

been shown that myotubes are physically linked during migration. Immunostainings revealed N-

Cadherin localization in cell-cell connecting filopodia, thereby creating a network of interconnected 

myotubes. (fig. S5 a). beatVC-Gal4 was found to promote expression in a mosaic pattern among genital 

disc myoblasts (fig. S5 b–b’). Expression of htl-RNAi under the control of beatVC-Gal4 caused a range 

of phenotypes, reaching from an almost complete lack of muscle coverage to mild defects (fig. S5 C, I–

V). These results suggest that a loss of htl in scattered myotubes during migration causes a disruption of 

migration in the entire sheet. To test whether physical segregation of htl-depleted myotubes from the 

rest of the cluster occurs, GFP was co-expressed and testes were analysed at 48 h APF (fig. S5 d-e’’). 
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The relative migration distance of affected GFP positive cells was quantified in comparison to 

unaffected GFP negative cells (fig. S5 f). The maximum migration distance of all cells was strongly 

affected when compared to wild type (UAS-GFP driven by beat VC, fig. S5 g). Nevertheless, the relative 

distance of GFP positive cells remains the same, showing that the position of possibly immotile cells 

did not alter (fig. S5 h). This indicates a physical link that allows immobilized cells to be dragged 

utilizing strong cell-cell adhesion. Such a behaviour resembles plithotaxis502,519. Future experiments 

have to show whether depletion of N-Cadherin in the same background leads to segregation and 

clustering of GFP+/htl-RNAi cells at the basis. It could even partially rescue the coverage phenotype as 

motile cells gain back their full potential, being “cut off” from their immotile neighbours. 

It could be shown, that RNAi based reduction of N-cadherin leads to adult myotube adhesion defects 

(pub. 1,2). During migration, N-Cadherin is localized in cell-cell interconnecting filopodia. A GFP 

tagged version of N-Cadherin revealed that the link between cells gets constantly renewed by newly 

emerging finger-like protrusions. RNAi-based depletion using the live-cell imaging system revealed that 

N-Cadherin is needed for directional behaviour. Reduction leads to a loss of directionality but did not 

change the total migration distance. What cells lost in persistence they gained in speed (pub. 2). The 

same observations upon depletion of N-Cadherin could be made during human glial cell migration in a 

wound scratch essay72. By these results, the conclusion can be drawn that reduced cell-cell adhesion in 

myotubes causes cells to exhibit more “open edge”. This can be hypothesized to be the reason for the 

loss of persistence. To address this question, single cells were isolated on the testis by laser-based 

ablation of their neighbours. These cells lost all directionality only to regain it after contact with the 

migrating sheet is re-established (pub. 2).  A similar discovery was made in quail neural crest in which 

it was shown that cell-cell contact activates migration. Cells separated from the cluster ceased directional 

migration, a phenomenon termed contact stimulated migration (CSM)512. Transplantation of single 

Danio prechordal plate cells led to the same result. The major difference is that prechordal plate cells 

migrate as epithelia interconnected vie E-Cadherin125. CSM dynamics alone suffices as a sparse 

explanation for the observed behaviour of myotubes. Chemotaxis requires an attractive or repulsive cue 

which is established in a highly complex procedure by adjacent tissues. These must create a source and 

a sink for the chemoattractant/chemorepellent reviewed in 68. Therefore, a simple self-regulating mechanic 

of directionality towards the open edge appears less complex. Directionality based on “free edge” 

resembles behaviour observed in wound scratch essays using epithelial monolayers135,137,362,531,390. Using 

this analogy, the uncovered parts of the testis can be described as the wound that must be closed.  

In contrast to epithelial wound closure, even myotubes inside the sheet contain highly dynamic 

protrusions and do not show a sign of epithelial polarity. All myotubes in the cluster have a mesenchymal 

phenotype. Therefore, their migration can be classified as a type of mesenchymal cell migration by the 

definition of Theveneau and Mayor509. Myotube migration resembles a modified version of CIL506,78. In 

Xenopus neural crest, CIL also causes cells to build more prominent protrusions at the free edges of the 

cluster321. But unlike Xenopus neural crest cells, myotubes are constantly adhered to each other due to 
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the perpetual renewal of filopodial interdigitating. A basic problem in CIL is that it constitutes a 

repulsive and thereby negative cue, causing cells to disperse. To turn it into a positive driving force 

additional cell-cell attracting cues are necessary for Xenopus neural crest cells to ensure cohesion79. In 

myotubes, physical N-Cadherin-mediated adhesion via filopodia might fulfil this function. The absence 

of propulsive behaviour was confirmed by isolating a pair of cells through laser ablation. Conversely, 

Xenopus neural crest cell migration is characterized by a constant neighbour exchange due to a lack of 

constant physical linkage265. To turn CIL into a directive signal in Xenopus additional chemoattraction 

of the cluster is necessary506,507. In myotubes, this seems not to be required as the sheet has to expand 

onto the free space but cannot move in the opposite direction, unlike neural crest cells. Migration of 

chick cephalic neural crest cells seems to be more similar to myotubes. Chick neural crest cell CIL-

behaviour is characterized by constant cell-cell adhesion via long filopodia through which cell content 

is shared262–264,326,503. The main difference between these cells and testis myotubes lies in the fact that 

contact-dependent behaviour seems to be regulated differently. In myotubes, RhoA is not activated at 

the contact site. Cell-cell contact may lead to a similar outcome but the reason for motion towards the 

free edge seems mechanically different as discussed in the following section. 

 

4.5 CSM requires differential matrix adhesion 

Most CIL-related processes are marked by repulsive behaviours due to retraction at the contact site and 

protrusion at the free edge479. Hence, protrusive direction when measured points away from 

neighbouring cells or the cell-sheet. In myotubes, it could not be shown that filopodia align with the 

general direction of migration. Protrusions cannot be used to predict the trajectory but occur 

circumferentially uniform. Yet, anisotropy could also be reached through asymmetry in substrate 

adhesion, allowing submission of force only in distinct areas. Such asymmetry could be measured in 

myotube-migration using FAT-EGFP as a marker for integrin-based adhesions350. At the site of contact, 

there were shown to be less adhesions with a reduced lifetime. Hence, not all filopodia can assert the 

same force, presumably causing directional behaviour. Using laser-ablation techniques, it could be 

demonstrated that cells inside the cluster react with Integrin-mediated adhesions immediately when in 

contact with a newly created free edge. Therefore, the force of circumferential actin polymerization 

seems only to be submitted at the free edge of the cluster. Cell-cell connecting filopodia appear largely 

stall regarding submission of treadmilling, on the other hand, they mechanically link neighbours. This 

sparse regulation scheme alone suffices to explain the CSM-like behaviour observed. Therefore, it was 

recreated in a computer simulation where it caused the same dynamics as observed in ex vivo culture 

(pub. 2). Very recently, a much more complex computer model was presented, taking substrate stiffness 

and cell shape into account. It demonstrated as well that cell-cell adhesion and matrix adhesion are 

crucial factors for maintaining motion and cohesion of migrating sheets580. Contact dependent inhibition 
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of substrate adhesion is also known from Xenopus placode cells upon contact to neural crest cells during 

their “chase-and-run”-behaviour. Yet, cell-cell contact also influences protrusion via Rac-inhibition507. 

Whether in myotubes a break of symmetry is enforced by regulating the actin polymerization rate in 

a contact-dependent manner remains elusive. Stall cell-cell interconnecting filopodia still need actin 

polymerization to counter membrane tension-force and thereby cannot cease treadmilling reviewed in 56. On 

a mechanistic level, it suffices to regulate substrate adhesion without acting on polymerization rate. F-

actin linked matrix adhesion takes the position of a rate-limiting step in the molecular clutch. If it is 

lacking locally, no force can be generated even when polymerization thus retrograde flow, remains 

unaffected. In the presented model, matrix adhesion takes the position of an on/off-switch to convert 

intracellular force into directed locomotion. Though, F-actin polymerization could be regulated 

additionally. To address this question, FRAP experiments visualizing retrograde flow or particle analysis 

have to be conducted to compare cell-cell filopodia with open edge filopodia.  

A possible molecular mechanism for the observed behaviour could be Cadherin/Integrin antagonism. 

This dynamic has been shown numerous times, using different micropatterning assaysreviewed in 65,126,55. In 

glial cell migration, N-cadherin depletion causes the same non-directional behaviour as in myotubes72. 

Knockdown causes expansion of Integrin-mediated adhesions around the cell and a wound scratch essay 

did not yield repolarization as observed in wild type. Similar findings could be made in vascular smooth 

muscle cells425. In a very recent publication, a potential mechanism was presented which explains 

contact-dependent protrusive and adhesive behaviour without cell-cell adhesion/juxtracrine signalling 

at all157. Physical confinement alone seems to suffice as an explanation. A single cell only in contact 

with adhesive micro-stripes reacted to these purely physical cues by a reduction of lamellipodial 

protrusion and matrix adhesion and thereby adopted a follower-like phenotype157. To uncover the 

principles of substrate adhesion regulation in testis myotubes, exact measurements of Integrin-mediated 

adhesions upon a total loss of N-Cadherin have to be conducted. When a loss of matrix-adhesions upon 

contact still occurs, it means that contact-dependent behaviour is regulated by N-Cadherin-independent 

signals or it is purely physical. To prove the latter, myotubes have to be isolated from the testis and 

analyzed in micropatterned environments lacking cell-cell contact but faced with mechanical barriers. 

 

4.6 Cohesion is enforced by purse-string-like dynamics via supracellular actin cables 

Mesenchymal CSM-based migration of testis myotubes is a very dynamic process, presumably 

accompanied by the transmission of stress via cell-cell adhesions. It can be observed that small ruptures 

in the sheet can grow to holes and thereby disturb cohesion. Open edge was shown to promote substrate 

adhesion and thereby openings close by protrusion. Yet, circular gaps partially or completely lack 

protrusions and are enclosed by thick actin cables, passing through multiple cells. Protrusion-less edges 

still manage to close in a multi-cell cooperative process. A dynamic observed in other tissues can be 

confirmed in myoblasts; positive membrane curvature causes protrusive dynamics, whereas negative 
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membrane curvature results in actin cables, closing gaps in a purse-string like manner398,reviewed in 269. 

Perturbation of Myosin II (zip and sqh) by RNAi or pharmacological inhibition of Myosin II and Rock 

causes a phenotype in which holes are not stopped from growing larger. Prominent ruptures are still 

present in adult testes. This suggests that actomyosin contractility is responsible for the process. 

Quantification showed a disturbed cohesion and a negatively affected migration distance. Filopodia-

based protrusion still seemed to work, suggesting that Myosin II takes no direct role in filopodial motion 

(pub 2). This observation is reminiscent to border cell migration in which Cadherin-dependent cohesion 

is also supported by contractile supracellular actin cables204,19. The difference is that border cells are 

surrounded peripherally by actin-cables, whereas myotubes build them internally.  

There are similarities between myotube gap closure and Drosophila dorsal closure that originally 

gave rise to the purse-string analogy573. The same dynamics can be observed in epithelial monolayers 

during wound closure398. As both systems constitute typical examples of epithelial migration, it becomes 

clear again that testis nascent myotubes combine traits of mesenchymal cells and epithelia. 

 

4.7 Regulation of substrate adhesion seems to be orchestrated by Rho-GTPases 

In CIL, a RhoA/Rac1 gradient with the former at the contact site and the latter at the protrusive free 

edge steers the cell (summarized in fig. 4 b). As potential regulators for the matrix-adhesion turnover in 

myotubes, Rac2 and Cdc42 were found (pub. 2). It is long-known that Integrin-mediated adhesions are 

regulated by Rho-GTPases via Paxilin or FAK356,400,522. A central role in this relationship is taken by 

Pax-interacting exchange factor beta (βPix, rtGEF in Drosophila). βPix is a Rac-GEF that binds Paxilin 

via G protein-coupled receptor kinase interactor 1/2 (Git1/2). Thereby, it activates Rac and inhibits 

RhoA245,520,310. Conversely, effects on Integrin-mediated adhesions downstream of Rho-GTPase are 

known. Nobes and Hall observed that Cdc42 and Rac1 induce focal complex assembly356. Later, this 

role of Rac1 was confirmed272,185. Yet, other findings suggest Rac1 being dispensable for integrin-

mediated adhesion assembly474. In myotubes, it could be shown that RNAi-based reduction of Rac2 

causes a near-complete loss of FAT-EGFP marked matrix-adhesions. It must be noted that Drosophila 

Rac2 is not a direct homolog of vertebrate Rac2. In insects and vertebrates, Rac diversification occurred 

independently after the last common ancestor549. Drosophila Rac2 and Rac1 are nearly identical. In 

contrast to Rac2, reduction of Cdc42 in myotubes leads to a longer lifetime of matrix adhesions (pub. 

2). This is a highly unusual finding. In other systems, only opposite effects have been reported, e.g. in 

mouse skin development557. Similar phenotypes have been observed only upon RhoA depletion559,539 as 

actomyosin contractility is thought of as one of the driving forces of Integrin-mediated adhesion 

disassembly reviewed in 219. 

Both, Rac2 and Cdc42 reduction in myotubes cause severe migration defects. These could be linked to 

their influence on matrix adhesion (summarized in fig. 4 a). Rac2-RNAi causes short and unstable 

filopodia explicable by attenuation of substrate adhesion. In contrast, Cdc42-RNAi yields elongated 
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static rod-like protrusions (pub. 2). This phenotype is as previously mentioned unexpected as Cdc42 is 

known to induce filopodia via WASp. Still, mechanistically it makes sense that filopodia appear 

prolonged when matrix-adhesion-disassembly is perturbed. Accordingly, force is exerted as expansion 

not as motion. Similar tail-retraction-defects caused by a lack of adhesion disassembly have been 

observed upon depletion of RhoA559. Therefore, the question arises whether Cdc42 gets activated in a 

contact dependent-manner as RhoA during               CIL506,36,23,336,114 (summarized in fig. 4 a).  

RhoA can be excluded to have this function in myotubes. Analysis of RhoA activation using the 

RhoA-activity sensor Anilin.RBD-GFP346 revealed activation in filopodia at the free edge but never at 

contact sites. Lifeact-RFP is strongly expressed in actin cables that appear in protrusions presumably 

under tensile stress. RhoA activation always occurs in such filopodia followed by immediate retraction. 

In some cases, retraction is directly followed by protrusion (pub. 2). These findings demonstrate that 

RhoA is not a rear-end marker in myotubes but constitutes a short-timed answer to external, probably 

mechanical, cues (summarized in fig. 4 a). In the future, force measurements will have to elucidate 

whether these are truly membrane stress. A large body of evidence supports the finding that RhoA can 

be activated by tensile forces reviewed in 292. 

The activation of RhoA in single filopodia and not the rear gave rise to the hypothesis that filopodial 

migration in testis myotubes works without the “classical” mechanics of Rac/RhoA gradient-based 

polarization. This may work because filopodial dynamics replacing lamellipodia causes 

compartmentalization of forces which can be turned on/off in a binary fashion. Circumferential pushing 

forces can be modulated and orchestrated by controlling substrate adhesion in small regions via GTPase 

activity. Removing substrate adhesion from one compartment automatically leads to motion in the 

opposite direction. This small-scale partitioning allows for a spatially tightly structured regulation of 

forces (summarized in fig. 4 a). Unlike in lamellipodia, GTPase regulation can occur on a minimum 

scale. Rac2 and Cdc42 seem to have a function in substrate adhesion turn over but their exact roles 

remain elusive.  

To address the function of Rac2 and Cdc42 in CSM, the subcellular localization of activation must 

be known. Therefore, bio-sensors were created, using the same principle as employed to create 

Anilin.RBD-GFP. The A and D-site of Sra1 were shown to have a high affinity for Rac87 so they were 

utilized like RBD/CRIB sites in Rho-GTPase sensors475 to create highly specific Rac-activity sensors 

(fig S6 a’, b, c). WHAMY, a Drosophila WASp paralog, contains two Rac-GTP-specific CRIB-sites60 

that are kept in tandem to create another Rac sensor (fig S6 a’’, b, c).  WASp is a classical Cdc42 binding 

partner22,494,63 so its CRIB domain was used to create a Cdc42-activity-sensor (fig S6 a’’’, b, c). Finally, 

the Drosophila pak2 gene mushroom bodies tiny (mbt) was shown to specifically bind active Cdc42 but 

not Rac443. Thus, its CRIB was used to create a second Cdc42 sensor (fig S6 a’’’’, b, c). These sensors 

will be used in the future to elucidate the exact activity pattern of Rho-GTPases at cell-cell contact sites 

and free-edges. As mentioned before, it remains to be clarified which role contact-dependent inhibition 

of actin polymerization plays during myotube CSM. Furthermore, it remains to be explored how Rho-
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GTPases affect actin regulation upon contact. FRAP and particle analysis visualizing retrograde flow 

can be combined with Rho-GTPase depletion-experiments to approach this question. Finally, 

photoactivatable Rac, which was used to shed light on protrusive dynamics in border cell migration535, 

can be used to understand the exact role of Rac in myotube migration. This could be achieved by locally 

activating Rac at cell-cell contacts and, following a measurement of retrograde flow and focal adhesion 

dynamics. 

 

 

 

 

Figure 4. Rho-GTPases in testis myotube CSM compared to CIL. In myotubes (a) small GTPases seem to 

affect integrin-based adhesion turnover (red). Rac2 appears to affect assembly whereas Cdc42 seems to cause 

disassembly. In CIL (b) both Rac and Cdc42 are known positive regulators of integrin-based adhesions. Cell-cell 

adhesion activated RhoA causes nascent adhesion disassembly in accordance with its rear-defining function. In 

fibroblast-like motility RhoA induces retraction of actomyosin fibres via Myosin II-activation (blue arrow, b). In 

myotubes RhoA is not activated in the rear or at the contact site, but in free edge filopodia, seemingly exhibiting 

membrane stress (blue arrow, a). After RhoA activation filopodia retract. Still, in myotubes cell-cell contact seems 

to inhibit matrix adhesion assembly, potentially via Cdc42 (arrow with ?, a). In CIL and fibroblast-like motility 

Rac and Cdc42 mainly affect actin-polymerization via WRC/Wasp. This could not be shown in myotubes. Cell-

cell contact in myotubes is not transient, like in CIL, but gets constantly renewed, causing cells to adhere and 

thereby move as a cluster. Thereby cells move in the free space, adhered to their neighbours, and do not repel each 

other like in CIL (grey arrows in a & b). 
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4.8 Testis nascent myotube migration could be an example for invasive cancer-like motility 

Filopodial migration appears to be a non-conventional mode of motility. A large body of evidence 

supports the notion that migration modes strongly depend on the underlying substrate357,367,214. Hence, 

versatile cells facing different substrates can dynamically switch between means of locomotion. It was 

shown for ovarian cancer cells that they deploy filopodial migration when in contact with peritoneal 

cells to enable trans-migration572. Testis myotube migration occurs always in the same environment that 

seemingly calls for filopodial locomotion. Accordingly, it is crucial to examine the exact nature of the 

migration substrates faced during this process. Previous work suggested that pigment cells enclose 

myotubes, migrating in the opposite direction257. This was demonstrated by marking nuclei. It cannot be 

excluded that only the elevated part of pigment cells, containing the nucleus, breaches the myotube 

layer. Using differential interference contrast microscopy, it is very difficult to visualize the very flat 

cortical regions of pigment cells. The question arises whether these also cover myotubes. To address 

this, a difference in the expression pattern of Lifeact-EGFP and Lifeact-RFP was utilized. When driven 

with htl-Gal4, Lifeact-EGFP is visible in both pigment cells and myotubes (fig. S7 a’). In contrast, 

Lifeact-RFP only accumulates in areas with much F-actin and therefore prominently marks cortical F-

actin in pigment cells, revealing that these build a continuous layer (fig. S7 a, p = pigment cells). In an 

overlay (EGFP: green, RFP: magenta), only pigment cells appear white, whereas myotubes appear 

green. In an orthogonal section, it becomes visible that the cortical regions of pigment cells lay above 

the myotube layer. (fig. S7 a’’–a’’’’, yellow asterisks, cf. to yellow section-line in a). In accordance with 

the results from Kozopas et al., (1998), it can be concluded that pigment cells build a continuous layer, 

completely encasing myotubes during migration (fig. S7 b)257. Using anti-beta3 tubulin antibody to stain 

pigment cells, Detlev Buttgereit came to the same conclusion (unpublished, personal information). 

Therefore, interesting questions concerning physical interactions due to sheer forces between the 

pigment sheet and the myotube sheet arise that can be addressed in the future. During RNAi screens for 

migration defects, some candidates only yielded muscle-coverage defects when driven with htl-Gal4 

which induces expression in pigment cells and myotubes. When exclusively driven in mesoderm via 

mef-Gal4 no phenotypes arose. This occurred when targeting the RNA of the microtubule plus end-

tracker chromosome bows (chb), the formin dia, the GEF rhogef64c and wasp. Using the pigment-cell 

specific driver kr-Gal4257, defects can be phenocopied but only in rear cases. It could be shown that kr-

Gal4 is only expressed in single pigment cells in a mosaic-fashion (data not shown). Judging by these 

non-cell-autonomous muscle defects, it can be assumed that pigment cell dynamics somehow affect 

myotube behaviour. A possible explanation might be cell-cell adhesions acting as means for force 

generation, analogous to cell-matrix adhesions. Processes like this are already known from wound 

closure, where a retrograde flow of adherens junctions was observed to exert force on neighbouring 

cells, in addition to conventional matrix-adhesion generated force372. In border cells, adjacent cells are 

the only substrate to migrate on. Therefore, only E-Cadherin-mediated adherens junctions can be used 

as a substitute for integrin-mediated adhesions to transmit treadmilling-generated force353,67. To test for 
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such dynamics between pigment cells and myotubes, potential cell-cell adhesion proteins have to be 

found. Additionally, a complete loss of pigment cells, using better-suited driver lines, could clarify the 

myotubes dependence on this potential cellular substrate. 

As it was shown that myotube migration depends on the β-Integrin subunit myospheroid (mys, pub. 2), 

it could be assumed that migration requires cell-matrix interaction. Therefore, the spatial structure of 

ECM should be elucidated. To accomplish this, the Collagen IV-marker Viking-EGFP (Vkg-EGFP, 

protein trap insertion) was analyzed. Basement membrane-like Collagen IV sheets could be visualized. 

In areas where pigment cells can be detected in orthogonal sections, the seemingly singular sheet is 

revealed to consist of two layers with pigment cells positioned between (fig. S7 c–c’’’’, asterisks in 

c’/c’’’’). In areas with myotubes and pigment cells both ECM-layers enwrap the two cellular sheets. No 

GFP-marked ECM is detectable between myotubes and pigment cells (fig. S7 c–c’’’’, marked with 

“myo” in c’/c’’’’). It can be concluded that myotubes seem only to contact the lower ECM-layer (fig. 

S7 d). The upper ECM-layer can be detected to ruffle and to partially detach when analysed in top view 

(fig. S7 c, arrows). This “shedding” process appears to progress throughout myotube migration as in 

later stages no more upper basement membrane-like ECM can be detected (fig. S7 e–f). However, this 

process should not affect myotube migration as there seems to be no direct contact. Future experiments 

must elucidate which tissues secrete the ECM-components. Interestingly, migration does not simply 

occur on a 2D-interface, despite the flatness of the sheet. The cell has physical contact with a rigid 

substrate in all spatial dimensions. In conclusion, it migrates through and not on its environment. This 

unconventional “2.5D” configuration possibly represents a requirement for the filopodial migration 

mode. RNAi-based reduction of the matrix metalloprotease Mmp2 causes strong motility defects in the 

sheet. MMPs are zinc-dependent peptidases, that enable proteolysis of components of the ECM. They 

are involved in development, inflammatory processes and cancer invasion reviewed in 240. Upon Mmp2 

reduction, myotubes are still able to migrate, but the further proximal they are localized in the sheet, the 

stronger stuck in the substratum they appear. It seems as flexible cells at the front can cope by finding a 

non-linear way through the meshwork. Cells more rearwards, which are enclosed by neighbours, appear 

not to be able to do so and are therefore trapped (fig. S8 a–a’’’, c–c’’’). Adult testes display atypical 

coverage defects, as the tip is dilated but covered in muscles, mimicking adhesion defects (fig. S8 b,d). 

MMP2 was shown to have a membrane-bound and a released form270. The main difference to the only 

other Drosophila matrix metalloprotease, MMP1, seems to be its substrate specify, including Collagen 

IV270. As a working hypothesis, it can be assumed that MMP2 has to be secreted or accumulated in 

protrusion sites to degrade Collagen-based ECM and thereby allow myotubes to cohesively migrate 

through the substrate. MMP2 possibly supports controlled delamination of pigment cells from the lower 

ECM-layer (fig. S8 e).  These mechanics closely resemble cancer cell invasive migration 61,reviewed in 566. 

So far, border cells take the role of a standard-model for invasive motility in Drosophila. In terms of 

motility and trans-migration through tightly adhered tissues, it bears many similarities to cancer cell 

dynamics and therefore earns this role reviewed in 482. One behaviour that cannot be investigated in border 
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cell migration is matrix adhesion-mediated invasion353,67 which is a hallmark of cancer cell motility371. 

For this reason, myotube migration in Drosophila testis could merit further investigation as a model 

system for cancer-like collective invasive migration. 

Cells not only react to spatial confinement by proteolytic ECM degradation but also through 

deformation and adaption to the substrate555. This could explain why front-cells are still able to migrate 

so well upon Mmp2 reduction. In most systems the limiting factor of migration seems to be the nucleus 

which is much more rigid than the cell body276. Due to the apicobasal narrowness ensured by pigment 

cells and the cysts, myotubes must cope with confinement even under normal circumstances. Therefore, 

using the testis migration system as a model for confinement adaptions in the future seems plausible. 

Especially when it is considered that myotubes even have to carry usually 2–4 nuclei260. Future 

experiments will have to shed light on how perturbation of nuclear rigidity, e.g. by perturbing LaminA, 

affects migratory behaviour as seen in numerous migration model-

systems281,106,533,278,238,194,282,280,442,277,492.  
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4.9 Conclusion 

The described dynamics of testis nascent myotube migration resembles the phenomenon of contact 

stimulation of migration512 and gives first insights on how such a cell-behaviour can be regulated 

mechanically. Myotube migration combines traits from contact inhibition of locomotion typical for 

mesenchymal cells, and wound closure typical for epithelia. In conclusion, these data confirm the notion 

that “epithelial” and “mesenchymal” constitute extreme examples on a gradient. Therefore, this 

simplified classification must be rethought to truly understand the basic mechanisms of collective 

motility. The newly established testis myotube migration model merits further research as it combines 

traits from a multitude of other systems. It allows for high resolution live-cell imaging and combines 

many advantages of an organ culture system with a genetic tractable in vivo model system. Nevertheless, 

further genetical approaches must be established in the future. Currently, all research relies on the 

conditional expression of RNAi-constructs as it is inherent to multinuclear cells that mitotic 

recombination-based methods do not work. Presumably, there is a great potential in UAS/Gal4-induced 

somatic CRISPR-Cas9-based complete deletion of genes327. Establishing such methods in the future 

may be worth the effort. A system comparable with established models as Drosophila border cell 

migration or lateral line development in Danio, would allow the identification of novel regulators of 

collective motility. 

The establishment of the basic live-cell imaging methods in this work may pave the way for future 

research on invasion and adaptions to confinement. The substrate adhesive dynamics described, being 

responsible for “contact stimulation of migration”, might only be possible due to filopodial motility. A 

similar mechanism was just recently shown to enable cancer-cell trans-migration572. In the future, it has 

to be elucidated which exact conditions cause cells to choose filopodial migration over lamellipodial 

motility. There might be common rules that apply to cells in development and cancer cells alike. 

Research in multiple model-systems might allow uncovering such basic axioms. As has been stated 

previously by others482, understanding motility of cancer might be a basic requirement for finding 

therapeutics that stop the spreading of malign cells. 
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5. Summary 

 

Cell migration drives most developmental processes, wound closure, as well as immune response. It 

constitutes a hallmark of cancer. Especially in tumour metastasis and development, cells rely on 

collective cell migration. Much knowledge about the exact mechanics of collective motility was 

gathered from a few model systems in which migration processes can be precisely analysed and 

genetically, mechanically, and pharmacologically influenced. This work aims to extend the existing 

range of such models by establishing a new ex vivo system for collective cell migration. 

The testis of Drosophila is surrounded by a layer of smooth-like muscles. The precursors of these 

cells, multinucleated myotubes, have to get to the testis and to migrate toward its distal end during pupal 

development. Organ-culture conditions were determined, allowing to recapitulate the process ex vivo. 

Thereby, the mechanical rules by which myotubes migrate could be assessed. Testis myotubes seem to 

use a lamellipodium-independent migration mode that is based entirely on the dynamics of filopodia-

like protrusions. In previous studies, a chemoattractive effect mediated by the fibroblast growth factor 

receptor (FGFR) Heartless (Htl) was discussed, besides its likely role in regulating the number of 

myoblasts on the genital disc and its possible role in connecting testis and seminal vesicles. The results 

obtained in this work oppose a chemoattractive function but rather suggest a general role of Htl in the 

initiation of cell migration. Mathematical and statistical analysis of migration trajectories in the 

background of genetic, mechanical, and pharmacological perturbation suggest a self-regulating process. 

The observed dynamics reveal similarities to contact inhibition of locomotion (CIL) since cell-cell 

contacts provide crucial information for individual cells to enable directionality. Cells seem to inhibit 

substrate adhesion in filopodia in a contact-dependent manner. This process appears to be controlled by 

the Rho-GTPases Rac2 and Cdc42. As a result of the contact-dependent loss of adhesion, there is a net-

movement into the cell-free space. At the same time, N-Cadherin seems to ensure that cells maintain 

adhesion to one another. Therefore, there is no repulsive migration as in CIL. Finally, supracellular 

RhoA/Rock-dependent actomyosin cables appear to support cohesion by closing gaps in the cell cluster 

at concavely curved edges. These mechanisms presumably result in a process in which all available 

space is evenly covered by myotubes. Myotube motility appears to be dependent on proteolytic 

degradation of the matrix. For this reason, in the future, the newly established ex vivo system could 

allow studying the collective dynamics of invasive migration in detail. 
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5.1 Zusammenfassung 

Zellmigration treibt zahlreiche entwicklungsbiologische Prozesse, sowie Wundheilung und 

Immunreaktionen an und ist ein Merkmal vieler Krebszellen.  Besonders in metastasierenden Tumoren, 

aber auch in der Entwicklung spielt die kollektive Zellmigration eine grundlegende Rolle. Viel Wissen 

über die exakte Mechanik kollektiver Motilität stammt von wenigen Modellsystemen in denen 

Migrations-prozesse analysiert und genetisch, mechanisch sowie pharmakologisch beeinflusst werden 

können. In der vorliegenden Arbeit soll ein neues ex vivo System zu Erforschung kollektiver Migration 

etabliert werden.  

Der Testis von Drosophila ist von einer Muskelschicht umgeben, die Ähnlichkeit mit glatten 

Muskeln aufweist. Die Vorläufer dieser Zellen, mehrkernige Myotuben, müssen während der puppalen 

Entwicklung auf den Testis gelangen und zu seinem distalen Ende migrieren. Es wurden 

Kulturbedingungen ermittelt, in denen dieser Prozess ex vivo rekapituliert werden kann. Dabei konnten 

die mechanischen Grundlagen der Myotuben-Migration ergründet werden. Testis Myotuben scheinen 

einen Lamellipodium-unabhängigen Migrationsmodus zu nutzen, der gänzlich auf der Dynamik von 

Filopodien-artigen Zellfortsätzen beruht. In vorherigen Arbeiten wurde eine chemoattraktive Wirkung, 

vermittelt über den fibroblast growth factor receptor (FGFR) Heartless (Htl), neben einer 

wahrscheinlichen Rolle in der Regulation der Myoblasten-Anzahl auf der Genitalscheibe und einer 

möglichen Rolle bei der Testis-Genitalscheiben-Verbindung, diskutiert. Die Ergebnisse der 

vorliegenden Arbeit sprechen gegen eine chemoattraktive Funktion, aber für eine generelle Rolle von 

Htl bei der Initiation der Zellmigration. Mathematische und statistische Analysen der 

Migrationsbewegungen bei genetischen, mechanischen sowie pharmakologischen Störungen und 

Beeinflussungen, sprechen für einen selbst-regulierenden Prozess. Dieser hat Ähnlichkeiten zu contact 

inhibition of locomotion (CIL), da Zell-Zell-Kontakte die entscheidenden Informationen zur 

Richtungsfindung einzelner Zellen geben. Zellen scheinen kontaktabhängig die Matrix-Adhäsion von 

Filopodien herunterzuregeln. Dieser Prozess scheint von den Rho-GTPase Rac2 und Cdc42 gesteuert 

zu sein. Als Folge des kontaktabhängigen Adhäsionsverlusts folgt eine Netto-Bewegung in den 

zellfreien Raum. Gleichzeitig scheint N-Cadherin dafür zu sorgen, dass Zellen ihre Zell-Zelladhäsion 

zueinander aufrechterhalten, sich also nicht wie bei CIL abstoßen. Schließlich scheinen suprazelluläre 

RhoA sowie Rock abhängige Actomyosin-Kabel die Kohäsion der Zellcluster zu unterstützen, indem 

sie Lücken zwischen den Zellen mit konkav gekrümmter Kante schließen. Diese Mechanismen 

resultieren allem Anschein nach in einem Prozess, indem sämtlicher zur Verfügung stehender Raum 

gleichmäßig von Myotuben bedeckt wird. Myotuben-Motilität erscheint dabei abhängig von 

proteolytischer Degradation der Matrix zu sein. Aus diesem Grund könnte das neu etablierte ex vivo 

System es in Zukunft ermöglichen, kollektive Dynamiken invasiver Migration zu erforschen.  
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7. Appendix 

7.1 Supplementary figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary figure S1. The development of the Drosophila testis myotube layer (following page). Apotome 

fluorescence micrographs of developing testes stained with phalloidin for F-actin and DAPI for nuclei. The 

overview images (a–i) are stitched pictures from 40x micrographs taken in culture dishes to sustain natural shape. 

Detail images (a’–i’) are taken using a 40x objective of samples stained with an antibody against N-Cadherin and 

mounted on object slides. Testis myotubes undergo migration until 40 h APF (a–b’), elongation/condensing from 

40–54 h APF (b–e’), and subsequently converge from 54–60 h APF (e–g’). From 66 h APF on, the myotube layer 

undergoes no more structural changes (g–i’). During all phases, cells are interconnected via N-Cadherin containing 

filopodia-like protrusion of varying length (a’–i’). Scale bars: 20 µm 
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Supplementary figure S2. Reduction of htl/dof causes severe muscle coverage defects when using specific 

myoblast driver lines.  Differential interference contrast micrographs (DIC, overview, b, d–f, h–j) and apotome 

fluorescence micrographs (details, b’, d’–f’, h’–j’) of phalloidin/DAPI stained adult testis in different genetical 

backgrounds. Combinations of DIC and fluorescence in micrographs of 24 h APF genital discs (c, g). In normal 

development, genital disc-testis coalescence allows myotubes to migrate on the testis (scheme in a). In the adults 

stage, the testis is curled in a distinctive 2,5x coiled shape and evenly covered in elongated smooth-like muscles 

(scheme in a, micrograph in b, b’). UAS-mCD8-EGFP expression shows that htl-Gal4 promotes expression in 

myoblasts of the entire genital disc and CadN-Gal4 causes expression in presumptive testis myoblasts (c, g, 

schemes in c’, g’, cf. with a). Both driver lines cause near-complete coverage defects using two dof-RNAi lines (d, 

d’, e, e’/h, h’, i, i’) with few non-elongated muscles at the testis base. htl-RNAi leads in both cases to a complete 

loss of muscle coverage (f, f’/j, j’). sv = (prospective) seminal vesicle, p = (prospective) paragonia, tte = testis 

terminal epithelium. Scale bars: 20 µm (c, g), 100 µm (b, b’, d–f’, h–j’).  



Appendix 

 
164 

   

Supplementary figure S3. Reduction of ths in the testis terminal epithelium and the seminal vesicle 

epithelium causes testis muscle coverage defects. Differential interference contrast micrographs (DIC, overview, 

e, f) and apotome fluorescence micrographs (details, e’, f’) of phalloidin/DAPI stained adult testis in different 

genetical backgrounds. Combinations of DIC and fluorescence in micrographs of 24 h APF genital discs and testes 

(a, a’, c, c’). UAS-mCD8-EGFP expression shows that robo2-Gal4 promotes expression in testis seminal vesicle 

epithelium (sv)/terminal epithelium (tte) and htl-Gal4 causes expression in myoblasts/tte (a, a’, c, c’, schemes in 

b, b’, d, d’). Expression of ths-RNAi using robo2-Gal4 leads to medium muscle coverage defects with a 

prominently dilated tip. The same RNAi-line when driven with htl-Gal4 causes weak coverage defects. p = 

(prospective) paragonia. Scale bars: 20 µm (a, a’, c, c’), 100 µm (e–f’). 
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Supplementary figure S4. Ectopic expression of pyr in the testis terminal epithelium and the seminal vesicle 

epithelium causes testis muscle coverage defects. Differential interference contrast micrographs (DIC, overview, 

e–h) and apotome fluorescence micrographs (details, e’–h’’) of phalloidin/DAPI stained adult testis in different 

genetical backgrounds. Combinations of DIC and fluorescence in micrographs of 24 h APF genital discs and testes 

(a, a’, c). UAS-mCD8-EGFP expression shows that robo2-Gal4 promotes expression in testis seminal vesicle 

epithelium(sv)/terminal epithelium (tte) and eip93F-Gal4 causes expression in sv but not tte (a, a’, c, schemes in 

b, b’, d, d’). Ectopic expression of pyr with the latter causes weak coverage defects with loosely packed muscles 

at the dilated testis tip (e, e’). Expression of pyr with robo2-Gal4 causes strong coverage defects (f, f’). On some 

testes, ectopic muscles are present on the seminal vesicle (g, g’, dashed box from g’ magnified in g’’) or cover 

thickly the terminal testis epithelium, interrupting testis-genital disc connection (h, h’, dashed box from h’ 

magnified in h’’). p = (prospective) paragonia. Scale bars: 20 µm (a, a’, c), 100 µm (e–h’’). 
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Supplementary figure S5. Mosaic-like expression of htl-RNAi suggests plithotactic direction of immobilized 

cells. Apotome fluorescence stitched micrographs of phalloidin/DAPI stained 36 h APF (a), 48 h APF (d–e’), and 

adult testis (c) in different genetical backgrounds. Combinations of DIC and fluorescence in micrographs of 24 h 

APF genital discs (b). Immunofluorescent staining of N-Cadherin in wild type shows that all myotubes are 

interconnected during migration (a). UAS-mCD8-EGFP expression shows that beatVC-Gal4 promotes expression 

in a mosaic pattern in myoblasts (b, scheme in b’). Expression of htl RNAi causes a broad range of coverage 

phenotypes (c). Shortly after migration in wild type, beatVC>>mCD8-GFP marked cells distribute along the testis 

axis (d). The same is true if single cells get immobilized via beatVC>>mCD8-GFP/htl-RNAi e-e’’. Quantification 

(summarized in f) reveals, that the maximum migration distance of unaffected cells is strongly disturbed (g). 

Relative distance and cell number of GFP positive affected cells remain unaffected. sv = (prospective) seminal 

vesicle, p = (prospective) paragonia, tte = testis terminal epithelium. Scale bars: 20 µm. 
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Supplementary figure S6. Cdc42 and Rac activity sensors are derived from GTPase binding domains of 

different targets. Sra1, WHAMY, WASp and Mbt contain sites with high affinity for activated Rac (Sra1, 

WHAMY, a’,a’’) and Cdc42 (WASp, Mbt, a’’’, a’’’’). These were inserted in pUASTattb-rfa-GFP and thereby fused 

with EGFP under the control of a UAS-promoter (b). Subsequently, transgenic fly stocks were created, using 

PhiC31 Integrase-mediated transgenesis. Transgenic UAS-GTPase-sensor animals must be crossed with Gal4 

driver-line expressing flies, to generate offspring that can be analysed for sensor expression (c). Domain structures 

obtained from 60,87, Pfam version 33.1. 
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Supplementary figure S7. Collagen localization studies suggests two basement membrane-like ECM-layers 

covering myotube/pigment cell layer from both sides. Confocal images of testes 33 h APF (a–a’’’’, c–c’’’’) and 

36 h APF (e–e’’’’). Therein, maximum intensity projections of stacks (a, a’, c, c’, e, e’), single slides (a’’, c’’, e’’), 

orthogonal sections (a’’’, c’’’, e’’’, position: yellow line in pictures on the left), and orthogonal sections with a 

twofold stretched z-axis (a’’’’, c’’’’, e’’’’). Expression of lifeact-RFP causes a strong signal in cortical actin of 

pigment cells (p) using htl-Gal4 as driver (a). lifeact-EGFP is evenly distributed in myotubes and pigment cells 

(a’). Cortical actin in the orthogonal sections in traversed three times (a, *1–*3) and lies on top of the myotube 

layer (a’’’–a’’’’, scheme in b). Vkg-EGFP marks ECM (c). Lifeact-RFP stainings allows to discriminate between 

pigment-cell covered area and myotube/pigment cell covered area (c’). An orthogonal section traverses 

myotube/pigment cell area (c’, myo), and area uncovered by myotubes (c’, asterisk) and reveals two thin basement 

membrane-like ECM layers (c’’–c’’’’). One layer lies under both cell-sheets, the other covers both cell sheets 

(c’’’’, white circle in scheme in d). During migration the upper layer starts to ruffle (c, arrowheads). Simmilar 

stainings in later stages revealed the absence of an upper ECM-layer (e–e’’’’, scheme in f). Scale bars: 20 µm if 

not stated otherwise. 
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Supplementary figure S8. Pan-mesodermal reduction of Mmp2 causes migration defects. Spinning disc 

fluorescence micrographs of 7 h-long ex vivo cultured testes expressing UAS-lifeact-EGFP under the control of 

mef-Gal4 (a–a’’’, c–c’’’). Confocal fluorescence micrographs of adult testes stained with phalloidin for F-actin 

and DAPI for nuclei (b,d). Live-cell imaging revealed that Mmp2 RNAi still allows front cells to migrate non-

directional but disrupts cells the stronger, the father they are in the rear of the sheet (c, cf. with wild type in a). 

This causes adult testis coverage defects in which the tip is dilated due to large gaps between muscles (d, cf. with 

wild type in b). This suggests a role of MMP2 in proteolytic ECM degradation by the collective that allows more 

confined myotubes in the rear to freely migrate through the substrate (scheme in e). Scale bars: 20 µm. 
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7.2 Vector Maps 

Vector maps and gene cards can be found on the enclosed compact disc. 

7.3 Gal4 driver lines screened for genital disc/testis nascent myoblast expression 

 

driver  fly line ID expression pattern shematic  
(gential disc 24 h APF) 

htl Gal4 BL-40669 At 24 h APF in all genital disc myoblasts, 

pigment cells, and the terminal testis 

epithelium. 

At 33 h APF in testis nascent myotubes and 

pigment cells. 

 

beatVC Gal4 BL-40654 At 24 h APF scattered in some testis 

myoblasts in a mosaic fashion. 

At 33 h APF scattered in some testis nascent 

myotubes in a mosaic fashion. 

 

lbe Gal4 BL-47974 At 24 h APF in prospective testis myoblasts 

(weak). 

At 33 h APF in testis nascent myotubes 

(weak). (characterized by D. Buttgereit, 

unpublished) 
 

CadN Gal4 BL-45206 At 24 h APF in prospective testis myoblasts. 

 
CadN Gal4 BL-45579 At 24 h APF in prospective testis myoblasts 

and some epithelial cells of the prospective 

paragonia and ductus ejaculates. 

 
eip93F Gal4 BL-40475 At 24 h APF in all genital disc myoblasts, 

some epithelial cells of the prospective 

seminal vesicle and the terminal epithelium. 
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pnt Gal4 BL-46271 At 24 h APF in genital disc myoblasts at the 

poles of the prospective seminal vesicle and 

prospective paragonia, some epithelial cells of 

the prospective seminal vesicle and 

prospective paragonia. 

 
eip93F Gal4 BL-40473 At 24 h APF in all epithelial cells of the 

prospective seminal vesicle and prospective 

paragonia. 

 
robo2 Gal4 BL-48074 At 24 h APF in all epithelial cells of the 

prospective seminal vesicle, the prospective 

paragonia, and the testis terminal epithelium. 

 
doc1 Gal4 BL-50193 At 24 h APF in all epithelial cells of the 

prospective seminal vesicle and prospective 

paragonia. 

 
dWnt2 Gal4 BL-45974 At 24 h APF in some epithelial cells of the 

prospective seminal vesicle at the tip. 

(characterized by D. Buttgereit, unpublished) 

 
gt Gal4 BL-47597 At 24 h APF in some epithelial cells of the 

prospective ductus ejaculatus at the tip. 

 
kr Gal4 80 At 33 h APF in a few pigment cells in a 

mosaic fashion351. 
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7.4 UAS effector screen for adult testis shaping defect 

 

effector (A-Z) fly line ID construct ID driver phenotypic strength 

abi RNAi v36142 GD14302 mef Gal4 no phenotype 

abi RNAi v100714 KK108071 mef Gal4 no phenotype 

abi RNAi BL-36707 TRiP.HMS01597 mef Gal4 no phenotype 

abi RNAi NIG 9749R-2 - mef Gal4 no phenotype 

α-Cat RNAi v40882 GD8808 mef Gal4 weak adhesion/migration defects 

α-Cat RNAi v20123 GD8808 mef Gal4 no phenotype 

α-Cat RNAi v19182 GD8808 mef Gal4 no phenotype 

α-Catr RNAi v7182 GD1632 mef Gal4 no phenotype 

α-Catr RNAi v104566 KK107455 mef Gal4 no phenotype 

actn RNAi v7762 GD1354 htl Gal4 weak migration defects 

actn RNAi v106162 KK103517 htl Gal4 no phenotype 

actn RNAi v7761 GD1354 htl Gal4 no phenotype 

actn RNAi v15171 GD4964 htl Gal4 no phenotype 

arm RNAi BL-35004 TRiP.HMS01414 mef Gal4 no phenotype 

arp3 RNAi v108951 KK102278 htl Gal4 medium migration defects 

arp3 RNAi v108951 KK102278 mef Gal4 medium migration defects 

arp3 RNAi v35258 GD12273 htl Gal4 medium migration defects 

arp3 RNAi v35258 GD12273 mef Gal4 medium migration defects 

arp3 RNAi BL-32921 TRiP.HMS00711 htl Gal4 no phenotype 

arp3 RNAi v35260 GD12273 htl Gal4 no phenotype 

arp2 RNAi v29943 GD14716 mef Gal4 medium migration defects 

bicC RNAi BL-34997 TRiP.HMS01407 htl Gal4 no phenotype 

bicC RNAi BL- 35631 TRiP.GL00478 htl Gal4 no phenotype 

bru1 RNAi BL-38983 TRiP.HMS01899 htl Gal4 no phenotype 

cad99C RNAi v3733 GD151 htl Gal4 no phenotype 

capu RNAi v34278 GD34278 htl Gal4 no phenotype 

chb RNAi BL-34669 TRiP.HMS01146 htl Gal4 strong migration defects 

chb RNAi BL-34669 TRiP.HMS01146 kr Gal4 occasional medium migration defects 

chb RNAi BL-34669 TRiP.HMS01146 mef Gal4 no phenotype 

chb RNAi BL-35442 TRiP.GL00367 htl Gal4 no phenotype 

cip4 ΔSH3 #1 144 mef Gal4 no phenotype 

cip4 ΔSH3 #2 144 mef Gal4 no phenotype 

cip4 ΔSH3 #10 144 mef Gal4 no phenotype 

cip4 ΔSH3 #10.3 144 mef Gal4 no phenotype 

cip4 RNAi NIG 15015R-3 - mef Gal4 club-like testis, complete muscle coverage 

cip4 RNAi v18492  mef Gal4 club-like testis, complete muscle coverage 
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Cdc42.F89 BL-6286 - htl Gal4 no phenotype 

Cdc42.L89 BL-6389 - htl Gal4 no phenotype 

Cdc42.N17 BL-6288 - htl Gal4 weak migration defects 

Cdc42.V12 B-4854 - htl Gal4 no phenotype 

cdc42 RNAi BL-28021 TRiP.JF02855 htl Gal4 strong-medium migration defects 

cdc42 RNAi BL-28021 TRiP.JF02855 mef Gal4 strong-medium migration defects 

cdc42 RNAi v100794 KK100794 mef Gal4 medium migration defects 

cortactin RNAi v105289 KK108594 htl Gal4 no phenotype 

cortactin RNAi NIG 3637R-3 - htl Gal4 no phenotype 

cortactin RNAi BL-32871 TRiP.HMS00658 htl Gal4 no phenotype 

cyri RNAi v107318 KK108589 mef Gal4 no phenotype 

cyri RNAi v107318 KK108589 lbe Gal4 no phenotype 

cyri RNAi v44825 GD8705 mef Gal4 no phenotype 

daam RNAi BL-39058 TRiP.HMS01978 htl Gal4 no phenotype 

daam RNAi v24885 GD8382 htl Gal4 no phenotype 

Dia.CA BL-27616 - htl Gal4 lethal 

Dia.CA BL-27616 - mef Gal4 lethal 

Dia.CA BL-27616 - lbe Gal4 no phenotype 

Dia.NC Gift from J. Großhans mef Gal4 no phenotype 

dia RNAi v20518 GD9442 htl Gal4 strong migration defects 

dia RNAi v20518 GD9442 kr Gal4 occasional medium-strong migration 

defects 

dia RNAi v20518 GD9442 mef Gal4 no phenotype 

dock RNAi BL-43176 TRiP.GL01519 htl Gal4 no phenotype 

dock RNAi BL-27728 TRiP.JF02810 htl Gal4 no phenotype 

dof RNAi v105603 KK100350 htl Gal4 strong migration defects 

dof RNAi v105603 KK100350 lbe Gal4 no phenotype 

dof RNAi v105603 KK100350 Ncad Gal4 strong migration defects 

dof RNAi v21317 GD10225 htl Gal4 strong migration defects 

dof RNAi v21317 GD10225 lbe Gal4 medium migration defects 

dof RNAi v21317 GD10225 Ncad Gal4 strong migration defects 

drl RNAi BL-29602 TRiP.JF03281 htl Gal4 no phenotype 

dscam1 RNAi BL-29628 TRiP.JF03307 htl Gal4 no phenotype 

dscam1 RNAi BL-38945 TRiP.HMS01859 htl Gal4 no phenotype 

dscam2 RNAi BL-51839 TRiP.HMC03411 htl Gal4 no phenotype 

dWnt2.k BL-6961 - eip 93F Gal4 no phenotype 

dWnt2.k BL-6961 - robo2 Gal4 no phenotype 

dome RNAi BL-53890 TRiP.HMJ21208 htl Gal4 no phenotype 

egfr RNAi BL-36770 TRiP.JF02283 htl Gal4 no phenotype 
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egfr RNAi BL-25781 TRiP.JF01368 htl Gal4 no phenotype 

ena RNAi v43056 GD8910 htl Gal4 no phenotype 

ena RNAi v106484 KK107752 htl Gal4 no phenotype 

FAK56-eGFP 179 mef Gal4 lethal 

fak56 RNAi v17957 GD6840 mef Gal4 no phenotype 

fhos RNAi v45837 GD2374 htl Gal4 no phenotype 

fhos RNAi v45837 GD2374 htl Gal4 no phenotype 

fhos RNAi v34034 GD10435 htl Gal4 no phenotype 

fhos RNAi v34035 GD10435 htl Gal4 no phenotype 

fhos RNAi v108347 KK108388 htl Gal4 no phenotype 

fhos RNAi BL-51391 TRiP.HMJ21037 htl Gal4 no phenotype 

fhos RNAi BL-31400 TRiP.JF01606 htl Gal4 no phenotype 

f RNAi v24630 GD7893 htl Gal4 no phenotype 

f RNAi v103813 KK102771 htl Gal4 no phenotype 

form3 RNAi v107473 KK110697 htl Gal4 no phenotype 

form3 RNAi v45594 GD12856 htl Gal4 no phenotype 

form3 RNAi v42302 GD14823 htl Gal4 no phenotype 

fra RNAi BL-31664 TRiP.JF01457 htl Gal4 no phenotype 

frl RNAi v34412 GD10799 htl Gal4 no phenotype 

frl RNAi v34413 GD10799 htl Gal4 no phenotype 

frl RNAi BL-32447 TRiP.HMS00445 htl Gal4 no phenotype 

gef64c RNAi v47121 GD16275 htl Gal4 strong-medium migration defects 

gef64c RNAi v47121 GD16275 kr Gal4 occasional medium migration defects 

gef64c RNAi v47121 GD16275 mef Gal4 no phenotype 

gef64c RNAi v105252 KK103071 htl Gal4 no phenotype 

gef64c RNAi v34470 GD10829 htl Gal4 no phenotype 

Htl.λ BL-5367 - lbe Gal4 no phenotype 

Htl.λ BL-5367 - htl Gal4 thicker testis with ectopic striated muscles 

Htl.λ BL-5367 - tgx Gal4 no phenotype 

htl RNAi v6692 GD84 htl Gal4 missing testis-genital disc connection 

htl RNAi v6692 GD84 lbe Gal4 weak-medium migration defects 

htl RNAi v6692 GD84 Ncad Gal4 missing testis-genital disc connection 

htl RNAi v6692 GD84 beatVC Gal4 strong-weak migration defects 

htl RNAi BL-35024 TRiP.HMS01437 htl Gal4 medium migration defects 

htl RNAi BL-35024 TRiP.HMS01437 lbe Gal4 no phenotype 

htl RNAi BL-35024 TRiP.HMS01437 Ncad Gal4 medium migration defects 

if RNAi BL-27544 TRiP.JF02695 htl Gal4 lethal 

itgaPS4 RNAi BL-44534 TRiP.HMC02928 htl Gal4 no phenotype 

itgbn RNAi BL-28601 TRiP.HM05089 htl Gal4 no phenotype 
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mbc RNAi v16044 GD6965 htl Gal4 no phenotype 

mew RNAi BL-44553 TRiP.HMS02849 htl Gal4 no phenotype 

mew RNAi BL-27543 TRiP.JF02694 htl Gal4 no phenotype 

mmp1 RNAi BL-31489 TRiP.JF01336 htl Gal4 no phenotype 

mmp2 RNAi BL-61309 TRiP.HMJ23143 htl Gal4 club-like testis, complete muscle coverage 

(low density at the tip) 

mmp2 RNAi BL-61309 TRiP.HMJ23143 mef Gal4 club-like testis, complete muscle coverage 

(low density at the tip) 

msn RNAi BL-28791 TRiP.JF03219 htl Gal4 no phenotype 

msn RNAi v101517 KK 108948 htl Gal4 strong migration defects 

mtl RNAi v108427 KK110274 mef Gal4 no phenotype 

myo10a RNAi v101729 KK108171 mef Gal4 no phenotype 

myo10a RNAi v33486 GD9734 mef Gal4 no phenotype 

mys RNAi v103704 KK100518 htl Gal4 lethal 

mys RNAi v103704 KK100518 mef Gal4 lethal 

mys RNAi v103704 KK100518 lbe Gal4 medium-no migration defects 

mys RNAi v103704 KK100518 Ncad Gal4 missing testis-genital disc connection 

mys RNAi BL-33642 TRiP.HMS00043 htl Gal4 lethal 

mys RNAi BL-27735 TRiP.JF02819 htl Gal4 no phenotype 

Ncad.fl Gift from S. Önel mef Gal4 lethal 

Ncad-GFP Gift from C.-H. Lee mef Gal4 lethal 

Ncad-GFP Gift from C.-H. Lee lbe Gal4 missing testis-genital disc connection 

Ncad-GFP Gift from C.-H. Lee Ncad Gal4 medium migration defects 

Ncad RNAi v101642 KK105304 mef Gal4 defective adhesion 

Ncad2 RNAi v101659 KK105358 mef Gal4 no phenotype 

Ncad2 RNAi v36166 GD14316 mef Gal4 no phenotype 

p120ctn RNAi v103063 KK113572 mef Gal4 no phenotype 

pak1 RNAi v12553 GD4035 htl Gal4 no phenotype 

pak3 RNAi NIC 14895R-1 - htl Gal4 strong-medium migration defects 

pak3 RNAi NIC 14895R-1 - kr Gal4 occasional medium migration defects 

pak3 RNAi NIC 14895R-1 - mef Gal4 no phenotype 

pak3 RNAi NIC 14895R-2 - htl Gal4 no phenotype 

pak3 RNAi v39844 GD8481 htl Gal4 no phenotype 

pak3 RNAi v39843 GD8481 htl Gal4 no phenotype 

Pyr.DN BL-58430 - htl Gal4 no phenotype 

Pyr-HA Gift from A. Müller eip 93F Gal4 Adhesion defects at the testis tip 

Pyr-HA Gift from A. Müller robo2 Gal4 strong migration defects, ectopic striated 
muscle cells at the seminal 
vesicles/terminal testis epithelium 

Pyr-HA Gift from A. Müller htl Gal4 lethal 
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Pyr-HA Gift from A. Müller gt Gal4 no phenotype 

pyr RNAi BL-37520 TRiP.HMS01662 htl Gal4 no phenotype 

pyr RNAi v36523 GD14793 eip 93F Gal4 no phenotype 

pyr RNAi v36523 GD14793 robo2 Gal4 no testis defects, strong leg phenotypes 

pyr RNAi v36523 GD14793 doc1 Gal4 no phenotype 

pyr RNAi v36523 GD14793 gt Gal4 no phenotype 

pyr RNAi v36523 GD14793 dWnt2 Gal4 no phenotype 

pyr RNAi v36523 GD14793 lsp Gal4 no phenotype 

pyr RNAi v36523 GD14793 htl Gal4 no phenotype 

Rac1.N17 BL-6292 - mef Gal4 lethal 

Rac1.N17 BL-6292 - lbe Gal4 no phenotype 

Rac1 RNAi BL-28985 TRiP.JF02813 mef Gal4 no phenotype 

Rac1 RNAi NIG-2248R-1 - mef Gal4 no phenotype 

Rac1 RNAi NIG-2248R-2 - mef Gal4 no phenotype 

Rac1 RNAi BL-34910 TriP.HMS01258 mef Gal4 no phenotype 

Rac1 RNAi v49246 GD17411 mef Gal4 no phenotype 

Rac2 RNAi NIG-8356R-3 - mef Gal4 strong migration defects 

Rac2 RNAi NIG-8356R-1 - mef Gal4 strong migration defects 

Rac2 RNAi v28926 GD13964 mef Gal4 no phenotype 

Rac2 RNAi v50349 GD17536 mef Gal4 no phenotype 

Rac2 RNAi v50350 GD17536 mef Gal4 no phenotype 

rassf8 RNAi v105823 KK100500 mef Gal4 no phenotype 

rho1 RNAi BL-27727 TriP.JF02809 mef Gal4 lethal 

rho1 RNAi BL-27727 TriP.JF02809 lbe Gal4 lethal 

rho1 RNAi BL-32383 TriP.HMS00375 mef Gal4 lethal 

rho1 RNAi BL-32383 TriP.HMS00375 lbe Gal4 medium migration defects 

rho1 RNAi BL-32383 TriP.HMS00375 Ncad Gal4 strong migration defects 

rho1 RNAi v12734 GD4726 mef Gal4 lethal 

rho1 RNAi v109420 KK108182 mef Gal4 no phenotype 

rhoL RNAi v102461 KK111715 mef Gal4 no phenotype 

rib RNAi BL-50682 TriP.HMC03083 htl Gal4 no phenotype 

robo1 RNAi BL- 9285 - htl Gal4 no phenotype 

robo2 RNAi BL-34589 TriP.HMS01063 htl Gal4 no phenotype 

robo2 RNAi BL-27317 TriP.JF02626 htl Gal4 no phenotype 

robo3 RNAi BL-44539 TriP.HMC02934 htl Gal4 missing testis-genital disc connection 

robo3 RNAi BL-44539 TriP.HMC02934 mef Gal4 no phenotype 

robo3 RNAi BL-44539 TriP.HMC02934 kr Gal4 no phenotype 

robo3 RNAi BL-29398 TriP.JF03331 htl Gal4 no phenotype 

rtGef RNAi v100583 KK108300 mef Gal4 no phenotype 

rtGef RNAi v17966 GD6845 mef Gal4 no phenotype 
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scab RNAi BL-27545 TriP.JF02696 htl Gal4 no phenotype 

scab RNAi BL-38959 TriP.HMS01873 htl Gal4 no phenotype 

scar RNAi NIG 4636R-1 - htl Gal4 medium migration defects 

scar RNAi NIG 4636R-1 - mef Gal4 medium migration defects 

scar RNAi BL-51803 TriP.HMC03361 mef Gal4 medium migration defects 

scar RNAi BL-36121 TriP.HMS01536 mef Gal4 no phenotype 

scar RNAi BL-31126 TriP.JF01599 mef Gal4 no phenotype 

shg RNAi v8024 GD2659 htl Gal4 no phenotype 

shg RNAi v27082 GD14421 htl Gal4 no phenotype 

Shi.K44 (DN) BL-5811 - mef Gal4 lethal 

Shi.K44 (DN) BL-5811 - lbe Gal4 lethal 

shi RNAi v3799 GD1529 mef Gal4 weak migration defects 

sos RNAi v42848 GD1539 htl Gal4 no phenotype 

sqh RNAi v109493 KK107557 mef Gal4 medium migration defects 

sqh RNAi v7916 GD1695 mef Gal4 strong migration defects 

sqh RNAi v7917 GD1695 mef Gal4 medium migration defects 

Src42A.DN Gift from S. Luschnig mef Gal4 club-like testis, complete muscle coverage 

Src42A.DN Gift from S. Luschnig 

- 

htl Gal4 club-like testis, complete muscle coverage 

src42A RNAi v17644 GD8338 htl Gal4 no phenotype 

src42A RNAi v17643 GD8338 htl Gal4 no phenotype 

src42A RNAi Bl-44039 TriP.HMS02755 htl Gal4 no phenotype 

swip RNAi v31308 GD7047 mef Gal4 medium migration defects 

swip RNAi v107033 KK102466 mef Gal4 no phenotype 

swip RNAi v31307 GD7047 mef Gal4 no phenotype 

swip RNAi v31307 GD7047 htl Gal4 no phenotype 

swip RNAi v31308 GD7047 htl Gal4 no phenotype 

swip RNAi v107033 KK102466 htl Gal4 no phenotype 

eGFP-Ths-

Cherry 

Gift from A. Müller eip 93F Gal4 no phenotype 

eGFP-Ths-

Cherry 

Gift from A. Müller robo2 Gal4 no phenotype 

eGFP-Ths-

Cherry 

Gift from A. Müller gt Gal4 no phenotype 

Ths BL-28106 - eip 93F Gal4 no phenotype 

Ths BL-28106 - robo2 Gal4 no phenotype 

Ths BL-28106 - gt Gal4 no phenotype 

ths RNAi v102441 KK111662 eip 93F Gal4 no phenotype 

ths RNAi v102441 KK111662 robo2 Gal4 no phenotype 

ths RNAi v102441 KK111662 doc1 Gal4 no phenotype 
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ths RNAi v102441 KK111662 gt Gal4 no phenotype 

ths RNAi v102441 KK111662 dWnt2 Gal4 no phenotype 

ths RNAi v24536 GD7730 eip 93F Gal4 no phenotype 

ths RNAi v24536 GD7730 robo2 Gal4 medium migration defects 

ths RNAi v24536 GD7730 htl Gal4 weak-medium migration defects 

ths RNAi v24536 GD7730 doc1 Gal4 no phenotype 

ths RNAi v24536 GD7730 gt Gal4 no phenotype 

ths RNAi v24536 GD7730 dWnt2 Gal4 no phenotype 

ths RNAi v24536 GD7730 lsp Gal4 no phenotype 

trio RNAi v40138 GD9531 htl Gal4 no phenotype 

tsr.S3A BL-9236 - htl Gal4 no phenotype 

tsr RNAi v110599 KK108706 lbe-Gal4 medium migration defects 

tsr RNAi v110599 KK108706 htl Gal4 lethal 

tsr RNAi v110599 KK108706 mef Gal4 lethal 

unc-5 RNAi BL-33756 TriP.HMS01099 htl Gal4 no phenotype 

velo RNAi BL-32389 TriP.HMS00383 htl Gal4 no phenotype 

vinc RNAi v105956 KK100863 mef Gal4 no phenotype 

wasp RNAi BL-36119 TriP.HMS01534 mef Gal4 no phenotype 

wasp RNAi BL-36119 TriP.HMS01534 htl Gal4 medium migration defects 

wasp RNAi BL-36119 TriP.HMS01534 kr Gal4 occasional medium migration defects 

wasp RNAi v13759 GD1559 htl Gal4 medium migration defects 

wasp RNAi v13759 GD1559 kr Gal4 occasional strong-medium migration 

defects 

wasp RNAi v13759 GD1559 mef Gal4 no phenotype 

wasp RNAi BL-25955 TriP.JF01975 mef Gal4 no phenotype 

wasp RNAi BL-25955 TriP.JF01975 htl Gal4 medium migration defects 

wasp RNAi BL-25955 TriP.JF01975 kr Gal4 occasional medium migration defects 

zip RNAi v7819 GD1566 mef Gal4 strong migration defects 
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7.5 List of mutant fly lines analysed for adult testis shaping defects 

 

mutant fly line ID/source phenotypic strength 

f1 BL- 36 no phenotype 

sn3 BL- 113 no phenotype 

swipΔ1 Franziska Lehne 

(unpublished) 

no phenotype 

wasp3  BL- 39725 strong shaping defects. Myoblasts in phalloidin 

staining not visible, due to strong F-actin signal in 

pigment cells.  
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7.6 Author Contributions 

 

7.6.1 Publication 1 

Rothenbusch-Fender, S., K. Fritzen, M. C. Bischoff, D. Buttgereit, S. F. Önel, & R. Renkawitz-Pohl 

(2017): Myotube migration to cover and shape the testis of Drosophila depends on Heartless, 

Cadherin/Catenin, and myosin II.  

Biology Open 6 (12), 1876–1888. 

 

- Critical reading of the manuscript and planning/execution of the experiments as explained in the 

following. 
Fig. 5 D: Characterization of htl-Gal4 expression pattern in genital disc myoblasts to deduce htl 

expression.  

Fig. 6 D: Characterisation and documentation of thse02026/Df(2R)ths238 (hypomorphic 

allele/deficiency)-induced coverage defects in adult testis. These results indicate a function of Ths and 

constitute the only RNAi-independent muscle coverage defects. 

Fig. 7: N-cadherin/phospho-Myosin II light chain antibody staining on wild type, mef-Gal4>>dof RNAi, 

and mef-Gal4>>htl RNAi. The results indicated that Myosin II light chain phosphorylation is reduced 

downstream of FGF-signalling. Conversely, N-Cadherin seems unaffected.  

Fig. 8 B: Conceptualization and drawing of a preliminary version of the scheme that was adapted using 

photoshop by Susanne F. Önel. 

 

 

7.6.2 Publication 2 

Bischoff, M.C, S. Lieb, R. Renkawitz-Pohl, & S. Bogdan (2020): 

Filopodia-based contact stimulated collective migration drives tissue morphogenesis.  

 

 

Prof. Dr. Renate Renkawitz-Pohl initiated the original project. Prof. Dr. Sven Bogdan and Maik Bischoff 

designed the project, made the figures, the movies and wrote the manuscript. Maik Bischoff performed 

all experiments and statistics. Sebastian Lieb programmed the computer simulation and worked with 

Maik Bischoff on the planning and implementation. All authors commented on the manuscript.
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