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ABSTRACT

Current techniques used in pipelining recursive filters require high hardware complexity.

These techniques attempt to preserve the exact frequency response of the original circuit

while seeking to construct a pipelined architecture. We present a technique that relaxes

the need to preserve the exact frequency response and instead considers a least-squares

formulation in conjunction with the pipelined architecture. The benefit of this design is

that it reduces the complexity of the pipelined circuit immensely, while enabling a simple

pipelined architecture based on a polyphase decomposition of the original filter.
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CHAPTER 1

INTRODUCTION

Moore’s law has provided speed and power benefits at the device level for the last few decades.

We approach physical limitations that make developing smaller devices increasingly difficult.

It is imperative to probe and develop additional techniques to pursue higher throughput and

achieve lower power in digital circuits. One such technique is pipelining. By pipelining an

architecture, we enable the architecture to operate at higher clock rates and, if it is designed

to run slower than the achievable throughput, enable reduced power consumption. In this

work, we will focus on one particular kind of circuit, namely, a recursive filter. Unlike feed

forward digital filters with finite length impulse response (FIR), which can be easily pipelined

using feed forward cut-sets (therefore translating into higher clock rates), recursive sections

are more difficult to pipeline and typically require more hardware to do so. Pipelining

recursive circuits by delay scaling or introducing latches in the feedback loop is not always

effective. Delay scaling (look-ahead transformations) [1]-[5] can be useful for applications

that need moderate sampling rates or that have multiple independent time series that need

processing. If such time series are available, then they could be efficiently filtered using time

interleaving techniques. In most real systems this is not the case. A variety of techniques

are described below that are primarily used for pipelining recursive circuits. In this work, we

introduce a new technique that can be used to pipeline recursive filters. This approach does

not attempt to preserve the exact frequency response of the original filter to be pipelined.

Rather we trade off exact functionality in favor of an ease in pipelining.

The method proposed in this thesis strives to preserve the characteristics of the original

filter (pass band, transition band, stop band attenuation, and phase response) while pro-

viding stability and yet significantly reducing the complexity in hardware as compared with

other related methods for pipelining recursive filters.
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CHAPTER 2

CLUSTERED LOOK-AHEAD

The clustered look-ahead method uses pole zero cancellation to preserve the original filter

characteristics as described in [6]. One of the problems with this method is that one or more

of the cancelling poles can be outside of the unit circle and, therefore, can make the system

unstable. It makes use of additional overhead in the feed forward section, which utilizes

additional adders and multipliers. Clustered look-ahead (CLA) realization is a result of

back subsitution in the original difference equation. Back subsitution P − 1 times results in

a P -fold pipelined filter. The additional hardware complexity needed for CLA is P multiply

and accumulates (MACs), where P is the pipelining level. The complexity added due to

latches is ignored since it is negligible when compared to the complexity added by MACs.

Given an equation,

x(n+ 1) = ax(n) + bu(n) (2.1)

it can be pipelined by M levels using

x(n+ P ) = aPx(n)
P−1∑
i=0

aibu(n+M − 1− i) (2.2)

and depicted by the architecture shown in Figure 2.1.

Figure 2.1: Pipelined transformation using clustered look-ahead scheme.
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Given a system with unput u[n] and output y[n],

y(n) =
N∑
i=1

aiy(n− i) +
N∑
i=0

biu(n− i) (2.3)

let

z(n) =
N∑
i=0

biu(n− i). (2.4)

Then the time domain pipelined filter is given by

y(n) =
N−1∑
j=0

[
N∑

k=j+1

akrj+P−k

]
y(n− j − P ) +

P−1∑
j=0

rjz(n− j) (2.5)

where

ri = 0, for i < 0,

ri = 1, for i = 0, and

ri =
∑N

k=1 akri−k, for i > 0.

The z-transform of the above time domain equation yields,

H(z) =

∑P−1
i=0 ri

∑N
j=0 bjz

−(i+j)

1−
∑N−1

i=0

[∑N
j=i+1 ajri+P−j

]
z−(i+P )

. (2.6)

It can be readily seen that the coefficients of z−1, ...., z−P+1 in the denominator are zero.

Therefore, this can be a P level pipelined realization.

Let us see an example where we will use this technique. To implement a level 2 pipelining,

but the resulting filter will be unstable and, therefore, display a weakness of this technique.

Let us consider an all-pole filter with poles at z = 1/2 and z = 3/4. Therefore,

H(z) =
1

1− 5
4
z−1 + 3

8
z−2

, (2.7)

which has the following difference equation

y(n) = x(n) +
5

4
y(n− 1)− 3

8
y(n− 2) (2.8)

Using back substitution, at P = 2,
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y(n) = x(n) +
5

4
x(n− 1) +

19

16
y(n− 2)− 15

32
y(n− 3), (2.9)

or,

H(z) =
1 + 5

4
z−1

1− 19
16
z−2 + 15

32
z−3

. (2.10)

(a) original pole-zero diagram (b) pipelined pole-zero diagram

Figure 2.2: Clustered look-ahead transformation.

It can be seen in Figure 2.2 (b) that a cancelling pole and zero were introduced at z =

-5/4 to achieve this pipelining. Since the resulting pole is outside of the unit circle, this

filter becomes unstable. Similarly it can be shown that even at P = 3, the resulting filter

is unstable. It can be shown that there is no guarantee of getting a stable pipelined filter

using this technique. The additional hardware complexity needed for CLA is P, where P is

the pipelining level.
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CHAPTER 3

SCATTERED LOOK-AHEAD

Scattered look-ahead (SLA) technique is similar to CLA in the sense that it too introduces

cancelling poles and zeros in the transfer function [7]. For each pole of the original system,

P − 1 cancelling poles and zeros are introduced. These cancelling poles and zeros are intro-

duced in such a way that they are evenly spread out around the origin and are equidistant

(therefore symmetric). Unlike CLA, SLA always results in a stable pipelined filter. Addi-

tional hardware complexity needed is N(M − 1) multiplys and accumulates (MACs). The

resulting system function is

H(z) =
N(z)

D(z)
=
N(z)

∏P−1
k=1 D(zej2πk/P )∏P−1

k=0 D(zej2πk/P )
=
N

′
(z)

D′(z)
, (3.1)

where

D(z) =

[
1−

N∑
i=1

aiz
−i

][
1 +

P−1∑
j=1

rjz
−j

]
. (3.2)

Let us look at the example shown in Chapter 2, where the poles of the original transfer

function are at 1/2 and 3/4. We add poles and zeros at 1
2
e±j2π/3 and at 3

4
e±j2π/3 in order to

pipeline this recursive filter by P = 3. The pole zero plot is shown in Figure 3.1.

The overhead of this technique is much larger than CLA as it is depicted by the architecture

shown in Figure 3.2.
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Figure 3.1: Pipelined pole-zero plot.

Figure 3.2: Pipelined transformation using the scattered look-ahead scheme.
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CHAPTER 4

POLYPHASE DECOMPOSITION TECHNIQUE

Infinite-length impulse response (IIR) filters can also be pipelined by working with the

polyphase decomposition [8]. Using constrained design in a polyphase decomposition tech-

nique, the resulting filter has intrinsic pipelining delay scaling. The complexity of imple-

menting this technique is comparable to scattered look-ahead.

This method consists of four steps.

Step 1: Given a rational transfer function, using the constrained filter design method of

[8], restrict the denominator polynomial to be a function of zP instead of z. Therefore, given

H(z) =
B(z)

A(z)
(4.1)

make the transformation, such that

H(z) =
B(z)

A(zP )
. (4.2)

Step 2: Using FIR polyphase decomposition, decompose A(z) into polyphase filters, such

that

H(z) =
P−1∑
i=0

H(i)(zP )z−i, (4.3)

where

H(i)(zP ) =
B(i)(zP )

A(zP )
. (4.4)

Step 3: Evaluate H(i)(zP ) for each i by the method shown above.

Step 4: Set up the individual filters in a polyphase architecture to pipeline the resulting

system directly exploiting the the zP structure.
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CHAPTER 5

GENERAL LOOK-AHEAD SCHEME AND
OPTIMAL APPROXIMATION

In the general look-ahead scheme, Shaw and Ahmed [9] decouple the numerator and denomi-

nator coefficients to find a set of coefficients that would be a close approximation to the given

filter and yet be a pipelined implementation. As shown in [10], an alternating non-linear

minimization procedure is used to approximate the resulting filter.

This minimization is performed through an iterative algorithm, which is terminated when

each coefficent |alk − al−1k | ≤ δ, where δ is an arbitrary number. Unfortunately, we were

unable to reproduce the performance of this algorithm. There were no examples presented

in [9]. We tried simulating the example presented for this thesis research, but the algorithm

presented in [9] resulted in an unstable pipelined architecture.
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CHAPTER 6

LEAST-SQUARES APPROXIMATION USING
PRONY’S METHOD AND POLYPHASE
DECOMPOSITION

In this section we describe a new method that we have developed for this thesis research for

pipelining recursive filters based on Prony’s method and polyphase architectures.

6.1 Time Domain Polyphase Decomposition

Prony’s method based polyphase decomposition is similar to the polyphase decomposition

method described in Chapter 4. We use the idea of polyphase decomposition, but only to

seek an approximation of H(z). Also, we focus on the IIR section. Our aim idea is to make

the following approximation:

H(z) =
B(z)

A(z)
= B(z)

1

A(z)
≈ B(z)

P−1∑
i=0

ci
A(i)(zP )

. (6.1)

Therefore, some key differences between our method and the polyphase decomposition

method presented above are

(a) The desired impulse response is an approximation.

(b) The polyphase decomposition is of the IIR section only.

(c) Unlike the non-linear approximation performed in [9], we perform a linear least-sqaures

approximation that is easy to implement.

6.2 Prony’s Method

We use Prony’s method to perform the approximation as an established IIR filter design

and an easy optimization problem. Given an all-pole IIR filter, our aim is to recover the

recursive coefficients aks to fit the desired hd by minimizing the squared prediction error,

9



ε2p =
∞∑
n=0

(hd[n]−
N∑
k=1

akhn[n− k])2, (6.2)

where hd is the desired impulse response. In the matrix form, equation (6.2) can be written

as

or,

Hda ≈ −hd. (6.3)

The least-squares solution of the system of linear equations presented by equation (6.3) is

given by

aopt = −((HT
d Hd)

−1HT
d hd. (6.4)

We split hd into P independent impulse responses in the time domain. Then through

application of Prony’s method, we derive pipelined coefficients for each of the P filters. Note

that each of these filters is of the form H(zP ). Therefore, there are P − 1 coefficients that

are equal to zero before each non-zero coefficient of the denominator.

The approximation using Prony’s method could be made more accurate by adding an

FIR section to each of the decomposed filters. The FIR coefficients for each filter can be

calculated by equation (6.5), which is also called Pade’s method:

bk =
N∑
k=1

akh(n− k). (6.5)
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CHAPTER 7

SIMULATION RESULTS

The results of this thesis research can be summarized as follows:

1. For a particular pipelining level P , the approximation gets worse as the filter order is

increased.

2. The approximation gets better as P > N for a filter of order N .

3. The approximation gets significantly more accurate as the pass band of the filter that

has to be approximated gets larger.

We performed the Prony-based polyphase decomposed method by restricting each de-

composed filter to two non-zero coefficients. Each of these filters is stable. Through more

simulations, we recognized that as the depth in pipelining level increased with respect to the

order of the original filter, the second coefficient of each filter became ineffective, so much

so, that it could be removed entirely from the approximation without changing the impulse

response in any significant way. As the depth of pipelining increases, the second coefficient

used for approximation tends to zero. This implies that a filter of an arbitrary order can be

pipelined in an approximate sense to an arbitrarily high pipelining level P through approx-

imation with P (one coefficient) filters by using the Prony-based polyphase decomposition

method. Therefore, added complexity is 3P − N MACs when two coefficients are used for

each polyphase filter, but 2P −N MACs when only one coefficient is used per decomposed

filter.

This pattern holds when a majority of the energy of a recursive filter sits in its first few

taps. Therefore, as the pipelining level increases, there are more filters available, which are

interleaved between each other; as a result, they provide more control on how we choose the

first few taps and, therefore, most of the energy of the original filter is retained.

To evaluate results, the following methods were used:

1. Evaluate the integral,

1

2π

∫
W (w)(H(w)−Hd(w))2dw, (7.1)
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where W (w) is a window function and can be used to evaluate error in the pass, transition,

and stop bands. Unfortunately, this integral is not always analytically tractable; therefore,

alternative methods that are proposed below were used.

2. Evaluate a large FFT of both the desired and the approximated frequency response,

and then evaluate

1

N

N∑
k=1

W (k)(H(k)−Hd(k))2, (7.2)

which is a numerical approximation of the integral above. After evaluating the quantity

above, it was normalized by

1

N

N∑
k=1

W (k)Hd(k)2. (7.3)

We let the normalized error in the pass, transition, stop, and total bands be PE, QE,

SE, and TE respectively using this metric.

3. Using Parseval’s relation,

ε =
1

2π

∫ 2π

0

(H(w)−Hd(w))2dw =
∞∑
k=0

(h(k)− hd(k))2 ≈
N∑
k=0

(h(k)− hd(k))2. (7.4)

For N sufficiently large, the above integral could be evaluated directly from the impulse

response of the two filters. The quantity above is normalized by

N∑
k=0

hd(k)2. (7.5)

We let the total normalized error calculated using this method be PTE.

Tables 7.1 and 7.2 show error in dB for filters of pass band of 0.2π and 0.4π, respectively.

Table 7.3 shows the addition in hardware complexity caused due to pipelining and compares

various methods to the Prony-based polyphase decompostion method presented in Chapter

6.
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Table 7.1: Error in approximation in dB in filters with pass band of 0.2π

N P PE QE SE TE PTE

1 3 -32 32 31 32 33

2 3 -1.7 -1.4 -0.9 -1.5 -1.5

2 4 -2.6 -2.3 -1.7 -2.3 -2.3

3 4 -1.7 -0.9 -0.2 -1.2 -1.2

3 5 -2.8 -2.2 -0.7 -2.3 -2.3

3 6 -4.1 -3.8 -2.8 -3.9 -3.9

4 6 -3.6 -2.4 -0.5 -2.6 -2.6

4 8 -2.5 -2.2 -0.3 -2.3 -2.3

5 7 -2.6 -1.8 -0.3 -2.3 -2.3

5 20 -4.9 -4.1 -1.7 -4.5 -4.5

7 20 -3.2 -2.4 -0.9 -2.9 -2.9

8 16 -2.0 -1.1 -2.7 -1.7 -1.7

8 20 -2.9 -2.1 -1.3 -2.7 -2.7

10 15 -1.9 -0.7 -4.1 -1.5 -1.5

10 40 -4.5 -3.4 -2.1 -3.9 -3.9

13



Table 7.2: Error in approximation in dB in filters with pass band of 0.4π

N P PE QE SE TE PTE

1 3 -34 34 34 34 36

2 3 -6.3 -6.0 -6.1 -6.2 -6.2

2 4 -5.5 -5.2 -5.3 -5.4 -5.4

3 4 -3.3 -2.9 -2.9 -3.1 -3.1

3 5 -6.9 -6.7 -6.1 -6.7 -6.7

3 6 -5.3 -5.0 -4.6 -5.1 -5.1

4 6 -3.5 -3.1 -2.6 -3.2 -3.2

4 8 -6.0 -5.6 -4.7 -5.6 -5.6

5 7 -2.9 -2.8 -1.6 -2.6 -2.6

5 20 -8.3 -8.1 -6.9 -8.0 -8.0

7 20 -7.9 -8.0 -6.7 -7.9 -7.9

8 16 -4.3 -4.0 -2.1 -4.0 -4.0

8 20 -6.8 -6.9 -5.4 -6.8 -6.8

10 15 -3.6 -4.4 -1.6 -3.7 -3.7

10 40 -9.9 -10.8 -7.6 -9.9 -9.9
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Table 7.3: Hardware complexity added (additional MACs) by using CLA, SLA, polyphase
decomposition and Prony-based polyphase decomposition

N P CLA SLA PolyD Prony(2nd order) Prony (1st order)

1 3 3 3 6 9 5

2 3 3 5 12 9 4

2 4 4 7 16 12 6

3 4 4 10 24 12 5

3 5 5 13 30 15 7

3 6 6 16 36 18 9

4 6 6 21 48 18 8

4 8 8 29 64 24 12

5 7 7 31 70 21 9

5 20 20 96 200 60 35

7 20 20 134 280 60 33

8 16 16 121 256 48 24

8 20 20 153 320 60 32

10 15 15 141 300 45 20

10 40 40 391 800 120 70
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CHAPTER 8

COMPARISON BETWEEN PRONY-BASED
POLYPHASE DECOMPOSITION AND OTHER
APPROXIMATION TECHNIQUES

We have looked at FIR approximation of IIR filters (FIR filters are readily pipelinable, with

almost no additional complexity except latches), and also at IIR approximations of IIR filters.

There is a lot of work that has been done on the former and, therefore, we will compare the

approximation performance of other methods to the Prony-based polyphase decomposition

method.

Since there are various methods given for FIR approximation of IIR filters, we will com-

pare our results to that of the most recent work in [11] that claims to have the best FIR

approximation of IIR filters.

Example: This example is taken from [11], where G(z) is a model IIR filter with many

corner cases as shown in Figure 8.1 (a).

G(z) =
−0.1242z5 + 0.1581z4 + 0.5273z3 + 0.2154z2 − 0.0647z1 + 0.6889

z6 − 1.095z5 + 1.299z4 − 1.113z3 + 1.028z2 − 0.6043z1 + 0.426
. (8.1)

Figures 8.1 and 8.2 compare the approximation quality of the various methods discussed

in [11] with our method with pipelining level of 12 and 24, respectively. Figure 8.3 compares

the l2 error of various approximation techniques to that of our method.
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(a) FIR appeoximations (b) Prony-based polyphase decompostion

Figure 8.1: Approximations with a hardware complexity of 12 MACS. Approximation
quality of methods shown in [11] (left), the approximation quality of Prony-based
polyphase decomposition method (right).

(a) FIR approximations (b) Prony-based polyphase decompostion
method

Figure 8.2: Approximations with a hardware complexity of 24 MACS. Approximation
quality of methods shown in [11] (left), the approximation quality of Prony-based
polyphase decomposition method (right).
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(a) FIR approximations (b) Prony-based polyphase decompostion
method

Figure 8.3: Plot of l2 error at different hardware complexities.
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CHAPTER 9

CONCLUSION

We have proposed a method that optimizes the IIR filter coefficients under restrictions such

that the resulting filter is pipelined, is stable, and at the same time reduces complexity

dramatically. The tradeoff in this process is that we lose the accuracy in approximation

for hardware complexity. This method works well for P >> N , where P is the depth in

pipelining and N is the filter order. More importantly, for any filter order, if the pipelining

level is large enough, it can be decomposed into P (with only one coefficient, order P ) filters

by using our method. There is immense room for approximation techniques in order to

reduce the complexity of circuits.
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APPENDIX

SIMULATION RESULTS

The results of various simulations that were performed are shown in Figures A.1 - A.11.

The filters used in the following simulations are all Butterworth filters with a passband of

0.2π. Note that similar results were observed with other kinds of filters, such as Chebychev.
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Case 1: A 1st order Butterworth filter

ak = [1 -0.5095], Pipelining Factor P = 2,

Filter 1 : ak = [1 0 -0.2596]

Filter 2 : ak = [1 0 -0.2596]

The simulation results are shown in Figure A.1

:
(a) Original and pipelined frequency re-
sponse comparison

(b) Original impulse response

(c) Pipelined impulse response

Figure A.1: Comparison between original and pipelined filter frequency response and
impulse response.
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Case 2: A 1st order Butterworth filter

ak = [1 -0.5095], Pipelining Factor P = 3

Filter 1 : ak = [1 0 0 -0.1323]

Filter 2 : ak = [1 0 0 -0.1323]

Filter 3 : ak = [1 0 0 -0.1323]

The simulation results are shown in Figure A.2

:
(a) Original and pipelined frequency re-
sponse comparison

(b) Original impulse response

(c) Pipelined impulse response

Figure A.2: Comparison between original and pipelined filter frequency response and
impulse response.
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Case 3: A 2nd order Butterworth filter

ak = [1 -1.143 0.4128], Pipelining Factor P = 2

Filter 1 : ak = [1 0 -0.6132 0 0.1177]

Filter 2 : ak = [1 0 -0.4126 0 0.0682]

The simulation results are shown in Figure A.3

:
(a) Original and pipelined frequency re-
sponse comparison

(b) Original impulse response

(c) Pipelined impulse response

Figure A.3: Comparison between original and pipelined filter frequency response and
impulse response.
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Case 4: A 2nd order Butterworth filter

ak = [1 -1.143 0.4128], Pipelining Factor P = 3

Filter 1 : ak = [1 0 0 -0.4110 0 0 -0.0133]

Filter 2 : ak = [1 0 0 -0.2048 0 0 -0.0062]

Filter 3 : ak = [1 0 0 -0.0727 0 0 -0.0045]

The simulation results are shown in Figure A.4

:
(a) Original and pipelined frequency re-
sponse comparison

(b) Original impulse response

(c) Pipelined impulse response

Figure A.4: Comparison between original and pipelined filter frequency response and
impulse response.
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Case 5: A 2nd order Butterworth filter

ak = [1 -1.143 0.4128], Pipelining Factor P = 4

Filter 1 : ak = [1 0 0 0 -0.4110 0 0 0 -0.0133]

Filter 2 : ak = [1 0 0 0 -0.2048 0 0 0 -0.0062]

Filter 3 : ak = [1 0 0 0 -0.0727 0 0 0 -0.0045]

Filter 4 : ak = [1 0 0 0 -0.0727 0 0 0 -0.0045]

The simulation results are shown in Figure A.5

:
(a) Original and pipelined frequency re-
sponse comparison

(b) Original impulse response

(c) Pipelined impulse response

Figure A.5: Comparison between original and pipelined filter frequency response and
impulse response.
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Case 6:A 3rd order Butterworth filter

ak = [1 -1.76 1.1829 -0.2781], Pipelining Factor P = 2

Filter 1 : ak = [1 0 -0.6911 0 0.1984]

Filter 2 : ak = [1 0 -0.5844 0 0.1584]

The simulation results are shown in Figure A.6

:
(a) Original and pipelined frequency re-
sponse comparison

(b) Original impulse response

(c) Pipelined impulse response

Figure A.6: Comparison between original and pipelined filter frequency response and
impulse response.
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Case 7: A 3rd order Butterworth filter

ak = [1 -1.76 1.1829 -0.2781], Pipelining Factor P = 3

Filter 1 : ak = [1 0 0 -0.4444 0 0 -0.0445]

Filter 2 : ak = [1 0 0 -0.3716 0 0 -0.0401]

Filter 3 : ak = [1 0 0 -0.1729 0 0 -0.0261]

The simulation results are shown in Figure A.7

:
(a) Original and pipelined frequency re-
sponse comparison

(b) Original impulse response

(c) Pipelined impulse response

Figure A.7: Comparison between original and pipelined filter frequency response and
impulse response.
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Case 8: A 3rd order Butterworth filter

ak = [1 -1.76 1.1829 -0.2781], Pipelining Factor P = 4

Filter 1 : ak = [1 0 0 0 -0.3475 0 0 0 -0.0043]

Filter 2 : ak = [1 0 0 0 -0.1865 0 0 0 -0.0022]

Filter 3 : ak = [1 0 0 0 0.0063 0 0 0 -0.0008]

Filter 4 : ak = [1 0 0 0 0.1383 0 0 0 -0.0005]

The simulation results are shown in Figure A.8

:
(a) Original and pipelined frequency re-
sponse comparison

(b) Original impulse response

(c) Pipelined impulse response

Figure A.8: Comparison between original and pipelined filter frequency response and
impulse response.
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Case 9: A 3rd order Butterworth filter

ak = [1 -1.76 1.1829 -0.2781], Pipelining Factor P = 5

Filter 1 : ak = [1 0 0 0 0 -0.2999 0 0 0 0 0.0006]

Filter 2 : ak = [1 0 0 0 0 0.0055 0 0 0 0 0.0002]

Filter 3 : ak = [1 0 0 0 0 0.1174 0 0 0 0 0.0001]

Filter 4 : ak = [1 0 0 0 0 0.1736 0 0 0 0 0.0000]

Filter 5 : ak = [1 0 0 0 0 0.1383 0 0 0 0 0.0000]

The simulation results are shown in Figure A.9

:
(a) Original and pipelined frequency re-
sponse comparison

(b) Original impulse response

(c) Pipelined impulse response

Figure A.9: Comparison between original and pipelined filter frequency response and
impulse response.
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Case 10: A 4th order Butterworth filter

ak = [1 -2.3695 2.3140 -1.0547 0.1874], Pipelining Factor P = 6

Filter 1 : ak = [1 0 0 0 0 0 -0.4140 0 0 0 0 0 0.0007]

Filter 2 : ak = [1 0 0 0 0 0 0.1387 0 0 0 0 0 0.0000]

Filter 3 : ak = [1 0 0 0 0 0 0.2192 0 0 0 0 0 0.0000]

Filter 4 : ak = [1 0 0 0 0 0 0.2176 0 0 0 0 0 0.0000]

Filter 5 : ak = [1 0 0 0 0 0 0.1915 0 0 0 0 0 0.0000]

Filter 6 : ak = [1 0 0 0 0 0 0.1370 0 0 0 0 0 0.0000]

The simulation results are shown in Figure A.10

:
(a) Original and pipelined frequency re-
sponse comparison

(b) Original impulse response

(c) Pipelined impulse response

Figure A.10: Comparison between original and pipelined filter frequency response and
impulse response.
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Case 11: A 5th order Butterworth filter

ak = [1 -2.9754 3.8060 -2.5453 0.8811 -0.1254], Pipelining Factor P = 7

Filter 1 : ak = [1 0 0 0 0 0 0 -0.3020 0 0 0 0 0 0 -0.0003]

Filter 2 : ak = [1 0 0 0 0 0 0 0.3935 0 0 0 0 0 0 0.0000]

Filter 3 : ak = [1 0 0 0 0 0 0 0.3398 0 0 0 0 0 0 0.0000]

Filter 4 : ak = [1 0 0 0 0 0 0 0.2555 0 0 0 0 0 0 0.0000]

Filter 5 : ak = [1 0 0 0 0 0 0 0.1674 0 0 0 0 0 0 0.0000]

Filter 6 : ak = [1 0 0 0 0 0 0 0.0629 0 0 0 0 0 0 0.0000]

Filter 7 : ak = [1 0 0 0 0 0 0 -0.1088 0 0 0 0 0 0 0.0001]

The simulation results are shown in Figure A.11

:
(a) Original and pipelined frequency re-
sponse comparison

(b) Original impulse response

(c) Pipelined impulse response

Figure A.11: Comparison between original and pipelined filter frequency response and
impulse response.
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