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Notations
Asymptotic growth rates

an ≃ bn The sequences an and bn are of the same order.

an ≲ bn The sequence an is smaller than the sequence bn up to multi-
plicative constants.

an = O (bn) Big O notation. The sequence an is smaller than the sequence
bn up to multiplicative constants.

Functions

1{ · }

Γ( · )

|A|

Indicator function.

Gamma function.

Cardinality of the set A.

supp(v) Support of the vector v. That is {k ∈ {1, . . . , d} | vk ̸= 0} if
v ∈ Rd.

sign(v) Vector which contains the signs, encoded by {−1, 0, 1}, of the
vector v. It is sign(vk) = 1{vk > 0} − 1{vk < 0}.

v1 ⊙ v2 Hadamard product (component-wise product) of the vectors
v1 and v2.

⟨v1, v2⟩

vec(M)

Euclidean inner product of the vectors v1 and v2.

Half-vectorization of the matrix M .

Norms

∥v∥1

∥v∥2

∥v∥∞

∥M∥M,2

ℓ1 norm, Manhattan norm of the vector v.

ℓ2 norm, Euclidean norm of the vector v.

ℓ∞ norm, maximum norm of the vector v.

ℓ2 operator norm, spectral norm of the matrix M .
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Notations

∥M∥M,∞ ℓ∞ operator norm, row sum norm of the matrix M .

Operators

∇f

∂f

Gradient of the smooth function f .

Subdifferential of the convex function f .

Probability

P

E

Var,Cov

Cor
P−→

a.s.−→
d−→

U [a, b]

N (µ, σ2)

Probability.

Expected value.

Variance, covariance.

Correlation.

Convergence in probability.

Almost sure convergence.

Convergence in distribution.

Uniform distribution on the interval [a, b].

Normal distribution with mean µ and variance σ2.

Nd(µ, Σ) Multivariate normal distribution with mean vector µ ∈ Rd

and covariance matrix Σ ∈ Rd×d.

Xn = oP (an) Small O in probability notation. The sequence (Xn/an) con-
verges in probability to zero. For random vectors with respect
to the ℓ∞ norm (or any other vector norm).

Xn = OP (an) Big O in probability notation. The sequence (Xn/an) is tight/
stochastically bounded. For random vectors with respect to
the ℓ∞ norm (or any other vector norm).

Sets

N

R

Ac

The set of natural numbers.

The set of real numbers.

Relative complement of the set A.
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Vectors/Matrices

ek The kth unit vector, with kth coordinate equal to 1, and zero
entries otherwise. The dimension of ek will depend on and be
clear from the context.

0d Zero vector of dimension d.

vA vA denotes either the subvector (vk)k∈A ∈ R|A| or the vec-
tor vA ∈ Rd with (vA)k = vk, k ∈ A, and (vA)k = 0,
k ∈ {1, . . . , d} \ A if v ∈ Rd and A ⊆ {1, . . . , d}.

<, ≤ Inequality signs are understood component-wise for vectors.

|v| The absolute value is understood component-wise for vectors.
That is (|v1|, . . . , |vd|)⊤ if v ∈ Rd.

1/v The reciprocal is understood component-wise for vectors.
That is (1/v1, . . . , 1/vd)⊤ if v ∈ Rd.

Id

0d1×d2

diag(v1, . . . , vd)

M⊤

M−1

Identity matrix of dimension d × d.

Zero matrix of dimension d1 × d2.

Diagonal matrix with entries v1, . . . , vd.

Transpose of the matrix M .

Inverse of the matrix M .

MA MA ∈ Rd1×|A| has entries of M according to column indices
in A if M ∈ Rd1×d2 and A ⊆ {1, . . . , d2}.

MAB MAB ∈ R|A|×|B| has entries of M according to row in-
dices in A and column indices in B if M ∈ Rd1×d2 and
A ⊆ {1, . . . , d1}, B ⊆ {1, . . . , d2}.
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1. Introduction
Modeling the linear relationship between a response variable and some explanatory vari-
ables has been of mayor interest in statistics over the last decades. Practical applications
cover a wide range of areas such as behavioral and social sciences, finance and economics.
However, especially in consumer data analysis and medicine the marginal effects can vary
across the individuals. Regression models with random coefficients are very useful for
analyzing and modeling this unobserved heterogeneity. Hildreth and Houck (1968) and
Swami (1970) considered appropriate linear models from a parametric point of view
and proposed some consistent estimators for the means and variances of the coefficients,
assuming that the covariances vanish. In addition much research in the area of nonpara-
metric identification and estimation of the joint distribution of the coefficients has been
done over the past decades, e.g. Beran and Hall (1992), Beran and Millar (1994), Beran
et al. (1996), Hoderlein et al. (2010), Dunker et al. (2019) and Holzmann and Meister
(2020). Furthermore, Lewbel and Pendakur (2017) considered nonlinear and additive
models, Ichimura and Thompson (1998) and Gautier and Kitamura (2013) binary choice
models, and Gautier and Hoderlein (2011) and Hoderlein et al. (2017) triangular models
with random coefficients.
In this thesis we consider the linear random coefficient regression model, and especially
the means, variances and covariances of the coefficients, which are arguably of most
interest in many applications, in a high-dimensional framework with focus on variable
selection. This means that the number of regressors can exceed the number of ob-
servations, however, only a few of them have influence and/or heterogeneous effects.
High-dimensional statistics in general gained a lot of attention over the last years since
larger data sets with huge numbers of features are collected in many industrial and sci-
entific fields, e.g. in microarray data analysis, functional magnetic resonance imaging
or consumer data analysis. A broad overview about theory and methods in this topic
can be found in Bühlmann and van de Geer (2011), Giraud (2014), Hastie et al. (2015),
Vershynin (2018) and Wainwright (2019).
A very common and effective tool for variable selection in high-dimensional, sparse regres-
sion models are estimators with penalization functions. An important and well-studied
one is the LASSO, which was proposed by Tibshirani (1996) and combines the empirical
quadratic loss function with the ℓ1-penalization. Oracle inequalities in linear regression
models with independent and normally distributed errors for the LASSO are provided
by Bickel et al. (2009) and Meinshausen and Yu (2009). In order to do this an as-
sumption on the design matrix is always necessary, van de Geer and Bühlmann (2009)
and Foucart and Rauhut (2013) discuss several of these assumptions and their relation-
ship to each other. Moreover, Zhao and Yu (2006) showed that for sign-consistency of
the LASSO an additional assumption, commonly called irrepresentable or mutual in-
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1. Introduction

coherence condition, is required, and Wainwright (2009b) introduced the primal-dual
witness characterization of the LASSO and gives sufficient and necessary conditions for
sparsity recovery under independent sub-Gaussian errors. A line of research, followed
e.g. in Wainwright (2009a), then investigated minimal conditions under which for cer-
tain design matrices, consisting for example of independent and identically distributed
Gaussian entries, support recovery is possible for distinct constellations of the numbers
of observations and regressors, the order of sparsity and the minimal non-zero entry of
the coefficient vector in absolute value. Comprehensive results in this direction, which
even include non-Gaussian, heavy-tailed errors, are provided in Ndaoud and Tsybakov
(2020). Another line of investigation tries to get rid of the mutual incoherence condition
for variable selection. In this context Zou (2006) proposed the adaptive LASSO which
enjoys additionally the oracle properties under homoscedasticity and a fixed number of
coefficients. For a growing dimension Huang et al. (2008) provide asymptotics, Wagener
and Dette (2012) and Wagener and Dette (2013) extend these asymptotic results for
heteroscedastic errors. In addition Zhou et al. (2009) and van de Geer et al. (2011) con-
sidered the adaptive LASSO in the high-dimensional framework under independent and
identically normally distributed errors. Moreover, Loh and Wainwright (2017) provide a
high-dimensional analysis of nonconvex penalizations, such as smoothly clipped absolute
deviation (Fan and Li, 2001, SCAD) or minimax concave penalty (Zhang, 2010, MCP),
to drop the mutual incoherence condition.

If the number of regressors exceeds the number of observations, most of the aforemen-
tioned theory is based on a sub-Gaussian tail inequality for the independent errors in
the linear regression model. Dropping this light tail assumption may lead to sub-optimal
rates for the ℓ1, ℓ2 and ℓ∞ norm of the estimation error. However, by the results in Led-
erer and Vogt (2020) it follows that the ordinary LASSO retains the optimal rates from
the light-tail case if the covariates are uniformly bounded and the errors have slightly
more than a finite fourth moment. Especially in the linear random coefficient regression
model the estimation of the variances and covariances leads to a heteroscedastic mean
regression model where the errors contain the centered squares and pairwise products of
the coefficients. Hence, if we assume a sub-Gaussian distribution for the coefficients, the
aforementioned errors are potentially sub-Exponential.

Nowadays a current strand of research deals with robustifying the available methodology
in the high-dimensional framework with respect to deviations from light-tail assumptions
on the errors, and sometimes also on the predictors. One common approach is to replace
the squared loss function by some other, fixed, robust loss function such as the check
function from quantile regression and in particular absolute deviation for the median (Li
and Zhu, 2008; Zou and Yuan, 2008; Belloni and Chernozhukov, 2011; Wang, 2013; Fan
et al., 2014). However, doing so generally changes the target parameter away from the
mean, particularly in the random design regression models with potentially heteroscedas-
tic, asymmetric errors. Furthermore, Loh (2017) considered homoscedastic models with
independent covariates and errors in scenarios where a fixed, robust loss function gives
the desired mean parameter.

Another approach, proposed by Lambert-Lacroix and Zwald (2011), Fan et al. (2017)
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and Sun et al. (2020), is to use the Huber loss function (Huber, 1964) with an addi-
tional tuning parameter. The Huber loss combines squared loss for small values and
absolute loss for larger ones. The tuning parameter, we call it robustification parameter,
is necessary to control the bias since the estimation error contains in general also an
approximation error. Lambert-Lacroix and Zwald (2011) provide asymptotic results for
the adaptive LASSO with a fixed choice of the robustification parameter under sym-
metric errors. If the tuning parameter converges with an appropriate rate, depending
on the sample size and dimension of the coefficient vector, the LASSO with Huber loss
achieves in high-dimensional, heteroscedastic linear regression models with sub-Gaussian
regressors and errors with finite second moments the same rates in ℓ1 and ℓ2 norm as
the ordinary LASSO under homoscedastic, light-tailed errors. Non-asymptotic upper
and lower bounds are provided in Fan et al. (2017) and Sun et al. (2020). However,
variable selection and the ℓ∞ norm of the estimation error have not been studied in this
framework to the best of our knowledge yet. We consider for that purpose a strictly
convex, smooth variant of the Huber loss function and the adaptive LASSO penalty for
computational efficiency. For the resulting estimator we show in the first part of this
thesis sign-consistency and also optimal rates of convergence in the ℓ∞ norm as in the
homoscedastic, light-tailed setting.

The thesis is structured as follows. At the beginning we introduced the basic nota-
tion needed throughout the work. In Chapter 2 we give a brief overview about sign-
consistency in high-dimensional, homoscedastic linear regression models, and motivate
the necessity of similar results for heteroscedastic errors to perform variable selection for
the first and second moments in linear random coefficient regression models. In Chapter
3 we introduce the pseudo Huber loss function, and show sign-consistency and opti-
mal rates in ℓ∞ norm for the adaptive LASSO in heteroscedastic linear mean regression
models with sub-Gaussian regressors and errors with slightly more than a finite second
moment. Simulations illustrate the favorable numerical performance of the proposed
methodology in comparison to the ordinary adaptive LASSO. The results of Chapter 3
are also provided in Hermann and Holzmann (2020). In the second part of the thesis
we consider the linear random coefficient regression model and, in particular, the means,
variances and covariances of the coefficients. Firstly, we give in Chapter 4 sufficient
conditions for the identifiability of the first and second moments. In doing so we focus
on situations of regressors having potentially bounded or even finite support, which is in
contrast to the large support required for nonparametric identification of the joint distri-
bution of the coefficients. In Chapter 5 we establish at first the sparse, heteroscedastic
linear regression models of the first and second moments of the random coefficients. Later
on, we proceed with asymptotic results for the appropriate adaptive LASSO estimators if
the number of coefficients is fixed. Support estimation is our main goal again. Finally, in
Chapter 6 we apply the methods of Chapter 3 to the high-dimensional regression models
of the moments of the coefficients and discuss remaining issues.
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2. Preliminaries
In this chapter we give a brief overview about variable selection in high-dimensional
linear regression models. For that purpose we repeat some suitable estimators and re-
sults of the recent literature, where a sub-Gaussian distribution assumption on the errors
plays an crucial role. We omit an introduction of this class of distributions here, and
refer to Wainwright (2019, Chapter 2) and Vershynin (2018, Chapter 2) for a broad
overview. Furthermore, we outline a current strand of research which deals with robusti-
fying the available methodology, especially with respect to deviations from the light tail
assumption on the errors. Finally, we introduce the linear regression model with random
coefficients and emphasize the importance of sign-consistency results in heteroscedastic
linear regression models if we are interested in the means, variances and covariances of
the coefficients.
This chapter is structured as follows. In Section 2.1 we introduce the well-known linear
regression model and in Section 2.2 we display the idea of variable selection in high-
dimensional sparse models. Moreover, we discuss recent results in this framework and
state the ordinary LASSO and adaptive LASSO. Later on, we proceed with a discus-
sion about robust regularization methods in Section 2.3. In the end, in Section 2.4 we
introduce briefly the linear regression model with random coefficients.

2.1. Linear regression models
Assume one observes the pairs (Y1, x⊤

1 )⊤, . . . , (Yn, x⊤
n )⊤ of data according to the linear

regression model

Yi = x⊤
i β∗ + εi , i = 1, . . . , n , (2.1)

where Yi ∈ R are the response variables, xi ∈ Rp the regressors, β∗ ∈ Rp the unknown
and fixed coefficient vector, and εi ∈ R additive noise modeled through random variables
with E[εi] = 0. We call the model homoscedastic if Var(εi) = ω2 for ω > 0 and all i ∈
{1, . . . , n}, otherwise the errors are called heteroscedastic. Let Yn = (Y1, . . . , Yn)⊤ ∈ Rn,
Xn = [x1, . . . , xn]⊤ ∈ Rn×p the design matrix and ε⃗n = (ε1, . . . , εn)⊤ ∈ Rn, then the
linear regression model (2.1) can be written in matrix notation as

Yn = Xn β∗ + ε⃗n .

Common estimators of the coefficients β∗ are the least squares estimator and the gener-
alized least squares estimator for heteroscedastic and correlated errors. Let

L LS
n

(︁
β
)︁

..= 1
n

∥Yn − Xn β∥2
2 , β ∈ Rp , (2.2)

5



2. Preliminaries

be the empirical quadratic loss function, then the least squares estimator is given by

ˆ︁β LS
n ∈ ρ LS

n
..= arg min

β∈Rp

L LS
n

(︁
β
)︁

.

Furthermore, if the covariance matrix Ωn = Cov(ε⃗n) of the errors is known and positive
definite, we can define the generalized least squares estimator by

ˆ︁β GLS
n ∈ ρ GLS

n
..= arg min

β∈Rp

1
n

⃦⃦⃦
Ω−1/2

n

(︁
Yn − Xn β

)︁⃦⃦⃦2

2
.

A definition of the expression Ω−1/2
n is given subsequently.

Definition 2.1. Let M ∈ Rd×d be a symmetric and positive definite matrix, then the
matrix is diagonalizable with M = T D T ⊤ where D = diag(τ1, . . . , τd) ∈ Rd×d is a
diagonal matrix and T ∈ Rd×d a orthogonal matrix. We define

M−1/2 ..= T D−1/2 T ⊤

with D−1/2 = diag
(︁
τ

−1/2
1 , . . . , τ

−1/2
d

)︁
.

Note that for uncorrelated and homoscedastic errors with Var(εi) = ω2 for ω > 0 the
generalized least squares estimator is equal to the least squares estimator since Ωn =
ω2 In, and hence

arg min
β∈Rp

1
n

⃦⃦⃦
Ω−1/2

n

(︁
Yn − Xn β

)︁⃦⃦⃦2

2
= arg min

β∈Rp

1
ω2 n

∥Yn − Xn β∥2
2 = arg min

β∈Rp

L LS
n

(︁
β
)︁

.

As a result the estimator is independent of the knowledge of the error level ω2.

Remark 2.2. Consider the linear regression model (2.1) and suppose that the number
p of coefficients is smaller or equal to the number n of observations, and that the design
matrix Xn has full rank p. Then the least squares estimator is unique and can be
expressed by

ˆ︁β LS
n =

(︁
X⊤

n Xn

)︁−1X⊤
n Yn .

In addition the generalized least squares estimator is also unique and has the analogous
form

ˆ︁β GLS
n =

(︁
X⊤

n Ω−1
n Xn

)︁−1X⊤
n Ω−1

n Yn .

2.2. Variable selection in the high-dimensional framework
Now we consider the linear regression model (2.1) in a high-dimensional framework. This
means that the number n of observations can be smaller than the dimension p of the

6



2.2. Variable selection in the high-dimensional framework

regressors, however, only a few of them have influence. This is formalized by sparsity of
the coefficient vector β∗. For that purpose let

S ..= supp
(︁
β∗)︁ =

{︂
k ∈ {1, . . . , p}

⃓⃓⃓
β∗

k ̸= 0
}︂

be the support of β∗ and s ..= |S| the number of coefficients unequal to zero. Furthermore,
let Sc ..= {1, . . . , p} \ S the relative complement of S. Sparsity then means that s < p is
satisfied, and hence the linear regression model (2.1) can also be expressed by

Yn = Xn,S β∗
S + ε⃗n .

One major goal in this framework is variable selection, meaning to find estimators ˆ︁βn

and appropriate conditions so that ˆ︁βn,Sc = 0p−s holds with high probability. A fur-
ther extended property is the so-called sign-consistency of an estimator, which includes
variable selection and in addition the estimation of the true signs on the support. Such
results depend on the smallest absolute value of the entries of β∗ on its support S, hence
let

β∗
min

..= min
k∈S

⃓⃓
β∗

k

⃓⃓
.

Common and well-studied estimators to perform variable selection are the ordinary
LASSO (Tibshirani, 1996) and the adaptive LASSO (Zou, 2006) which are based on
the empirical quadratic loss function and a (adaptive) ℓ1-penalization. The LASSO is
given in the Lagrangian form by

ˆ︁β L
n ∈ ρ L

n,λn

..= arg min
β∈Rp

(︃
L LS

n

(︁
β
)︁

+ 2λn ∥β∥1

)︃
,

where λn > 0 is the regularization parameter and the loss function L LS
n is given in (2.2),

and the adaptive LASSO by

ˆ︁β AL
n ∈ ρ AL

n,λn

..= arg min
β∈Rp

(︄
L LS

n

(︁
β
)︁

+ 2λn

p∑︂
k=1

|βk|⃓⃓ ˆ︁β init
n,k

⃓⃓)︄ ,

where ˆ︁β init
n = (ˆ︁β init

n,1 , . . . , ˆ︁β init
n,p )⊤ ∈ Rp is an initial estimator of β∗. If ˆ︁β init

n,k = 0, we
require βk = 0 in the above definition. These estimators are regularized M-estimators of
the coefficients β∗ and solutions to convex optimization problems, or more specifically
to quadratic programs with convex constraints. Numerically these problems are solved
with the so-called coordinate descent algorithm, see for example Friedman et al. (2010)
and Hastie et al. (2015, Section 2.4) for more details.

To give results on sign-consistency, Wainwright (2009b) introduced the primal-dual wit-
ness characterization of the LASSO and its adaptive version, which we provide in the
following lemmas.
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Lemma 2.3 (Primal-dual witness characterization of the LASSO). Assume that s ≤ n
and rank(Xn,S) = s hold. Furthermore, if⃦⃦⃦⃦

X⊤
n,ScXn,S

(︂
X⊤

n,SXn,S

)︂−1
sign

(︁
β∗

S

)︁
+ 1

n λn
X⊤

n,ScPX⊥
n,S

εn

⃦⃦⃦⃦
∞

< 1 (2.3)

with

PX⊥
n,S

= In − Xn,S

(︂
X⊤

n,SXn,S

)︂−1
X⊤

n,S

holds, and

˜︁βn,S = β∗
S +

(︃
1
n
X⊤

n,SXn,S

)︃−1(︃ 1
n
X⊤

n,S εn − λnsign
(︁
β∗

S

)︁)︃
satisfies sign

(︁˜︁βn,S

)︁
= sign

(︁
β∗

S

)︁
, then the unique LASSO solution ρ L

n,λn
=
{︁ˆ︁β L

n

}︁
satisfies

sign
(︁ˆ︁β L

n

)︁
= sign

(︁
β∗)︁ , ˆ︁β L

n,S = ˜︁βn,S and ˆ︁β L
n,Sc = 0p−s .

Proof. Cf. Wainwright (2009b, Lemma 3).

Lemma 2.4 (Primal-dual witness characterization of the adaptive LASSO). Assume
that s ≤ n and rank(Xn,S) = s hold. Furthermore, if⃓⃓⃓⃓
⃓X⊤

n,ScXn,S

(︂
X⊤

n,SXn,S

)︂−1
λn

(︃
1⃓⃓ ˆ︁β init
n,S

⃓⃓ ⊙ sign
(︁
β∗

S

)︁)︃
+ 1

n
X⊤

n,ScPX⊥
n,S

εn

⃓⃓⃓⃓
⃓ <

λn⃓⃓ ˆ︁β init
n,Sc

⃓⃓ (2.4)

with

PX⊥
n,S

= In − Xn,S

(︂
X⊤

n,SXn,S

)︂−1
X⊤

n,S

holds, and

˜︁βn,S = β∗
S +

(︃
1
n
X⊤

n,SXn,S

)︃−1
(︄

1
n
X⊤

n,S εn − λn

(︃
1⃓⃓ ˆ︁β init
n,S

⃓⃓ ⊙ sign
(︁
β∗

S

)︁)︃)︄

satisfies sign
(︁˜︁βn,S

)︁
= sign

(︁
β∗

S

)︁
, then the unique adaptive LASSO solution ρ AL

n,λn
={︁ˆ︁β AL

n

}︁
satisfies

sign
(︁ˆ︁β AL

n

)︁
= sign

(︁
β∗)︁ , ˆ︁β AL

n,S = ˜︁βn,S and ˆ︁β AL
n,Sc = 0p−s .

Proof. Cf. Zhou et al. (2009, Lemma 12.1) with w⃗ =
(︁
1/|ˆ︁β init

n,1 |, . . . , 1/|ˆ︁β init
n,p |

)︁⊤ ∈ Rp.

In the subsequent remark we summarize the non-asymptotic results for variable selection
in a high-dimensional framework with p ≥ n. In doing so we omit the ordinary LASSO
since then a further assumption, called irrepresentable or mutual incoherence condition,
is needed (Zhao and Yu, 2006).
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Remark 2.5. Zhou et al. (2009) considered the adaptive LASSO with the LASSO as
initial estimator in a homoscedastic linear regression model with normally distributed
errors and a random design where the regressors are also independent and identically
normally distributed with mean zero and covariance matrix Π. Under a restricted eigen-
value assumption on Π, and the scaling n ≳ s2 log(p) and β∗

min ≳ s (log(p)/n) 1
2 the

adaptive LASSO with an appropriate choice of the regularization parameter is unique
and sign-consistent with probability at least 1−3/p2 in this framework (Zhou et al., 2009,
Theorem 5.3). The corresponding proofs show that also ∥ˆ︁β AL

n − β∗∥∞ ≲ (s log(p)/n) 1
2

holds with high probability. Moreover, the authors provide analogous results for fixed de-
signs. In a similar regime with independent and sub-Gaussian regressors and errors Loh
and Wainwright (2017) proposed estimators based on the empirical quadratic loss func-
tion and a nonconvex regularizer such as smoothly clipped absolute deviation (SCAD)
and minimax concave penalty (MCP). If the minimal eigenvalue of the covariance ma-
trix of the regressors is bounded below and the ℓ∞ operator norm of the inverse of the
sample covariance matrix of the covariates is upper bounded by a positive constant, then
these estimators, with an appropriate choice of the regularization parameter, are sign-
consistent and the ℓ∞ norm of the estimation error has an order of (log(p)/n) 1

2 with high
probability under the scaling β∗

min ≳ (log(p)/n) 1
2 and n ≳ s log(p) (Loh and Wainwright,

2017, Corollary 1). In comparison to the adaptive LASSO variable selection is provided
under a weaker beta-min condition and a smaller sample size, but the adaptive LASSO
is computationally more efficient. Moreover, by the additional bound on the inverse of
the sample covariance matrix of the regressors Loh and Wainwright (2017) achieve a
faster rate for the ℓ∞ norm of the estimation error. In a constructive work Loh (2017)
allows additionally for heavy-tailed, symmetric errors, but independent of the regressors
as well, and considered robust loss functions such as Huber, Tukey and Cauchy loss com-
bined with nonconvex regularizers. Under the additional scaling n ≳ max(s2, s log(p))
the resulting estimators are sill sign-consistent (Loh, 2017, Theorem 2).
Variable selection in high-dimensional linear regression models with heteroscedastic and
potentially heavy tailed errors has not been studied sufficiently to the best of our knowl-
edge yet, which we want to highlight at this point. We will see in Section 2.4 that
especially for the estimation of the first and second moments in the linear random coef-
ficient model heteroscedastic regression models play an important role.

2.3. Robust regularization methods
It is well-known that the LASSO achieves the optimal estimation rates in ℓ1, ℓ2 and ℓ∞
norm, and enjoys sign-consistency in high-dimensional, homoscedastic linear regression
models if the errors are normal or at least sub-Gaussian (Meinshausen and Yu, 2009;
Bickel et al., 2009; Wainwright, 2009b). These results rely heavily on the light tail as-
sumption, and are very sensitive to violations. Moreover, the quadratic loss function
is in general also sensitive to outliers in the response variable, and in the regressors as
well. In the recent literature robust regression methods have been developed to preserve
variable selection and the optimal estimation rates for a broader class of error distribu-
tions with potentially heavy tails in the high-dimensional framework. For that purpose
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various robust loss functions have been considered, for example one major line is least
absolute deviation, or more general quantile regression (Belloni and Chernozhukov, 2011;
Wang et al., 2012; Wang, 2013; Fan et al., 2014). Another approach with a broader class
of loss functions, including Huber, Tukey and Cauchy loss, is provided by Loh (2017).
Note that the target parameter of these methods may differ from the mean parameter
β∗, especially for asymmetric and/or heteroscedastic errors, and hence an additional
approximation error is generated in these settings. In the following remark we give an
intuition for the robust regularization methods proposed by Loh (2017).

Remark 2.6. Consider the linear regression model (2.1), and let l : R → R denote a
differentiable loss function and

Ln

(︁
β
)︁

= 1
n

n∑︂
i=1

l
(︁
Yi − x⊤

i β
)︁

the associated empirical loss function. Then a natural regularized M-estimator is given
by

ˆ︁β ∈ arg min
β∈Rp

(︂
Ln

(︁
β
)︁

+ ρλn

(︁
β
)︁)︂

,

where ρλn
: Rp → R is a penalization function with regularization parameter λn > 0.

One crucial task to achieve optimal estimation rates for the parameter β∗ is to control
the rate of the ℓ∞ norm of the gradient ∇Ln(β∗) of the empirical loss function, cf. Loh
(2017, Theorem 1) for nonconvex regularizers and Negahban et al. (2012, Theorem 1) for
decomposable norms, such as the LASSO penalization, as regularizers. Evidently, the
gradient is given by

∇Ln

(︁
β∗)︁ = − 1

n

n∑︂
i=1

l′(︁Yi − x⊤
i β∗)︁xi = − 1

n

n∑︂
i=1

l′(︁εi

)︁
xi .

If the loss function l(x) = x2 is the quadratic loss function, the factors l′(εi) in the sum
are equal to 2 εi, which means that also extreme observations have influence on the above
quantity. To get in the high-dimensional framework with p ≥ n a required bound of the
form

⃦⃦
∇Ln

(︁
β∗)︁⃦⃦

∞ ≤ C

(︃
log(p)

n

)︃ 1
2

with high probability for a positive constant C > 0, a sub-Gaussian distribution for the
errors is sufficient if they are homoscedastic (Negahban et al., 2012, Corollary 2). How-
ever, if we choose a loss function l with a upper bounded first derivative, the contribution
of extreme realizations of the errors εi to the gradient is bounded as well. Hence the
quantity is more robust in terms of error distribution and potential outliers then. All
of the mentioned loss functions at the beginning of this section satisfy this condition.
Furthermore, if the derivative of the loss function is equal to zero for very large values,
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extreme outliers have in fact no influence on the gradient. However, note that such func-
tions have to be nonconvex, which leads to an additional cost in computational time.
In the robust regression literature these estimators are called redescending M-estimators
(Loh, 2017).

It is obvious that for homoscedastic errors and centered regressors the target param-
eter of the robust regularization methods in Remark 2.6 is the mean vector β∗ since
E[∇Ln(β∗)] = 0p holds. Hence the theory of Loh (2017) applies and we obtain sufficient
conditions for high-dimensional variable selection and optimal estimation rates in sparse,
homoscedastic linear regression models.

In more general mean regression models Fan et al. (2017) and Sun et al. (2020) considered
exclusively the Huber loss function (Huber, 1964), defined by

l̃α(x) = (2α−1|x| − α−2)1{|x| > α−1} + x2
1{|x| ≤ α−1} (2.5)

with parameter α > 0, and a LASSO penalization. The Huber loss combines a quadratic
loss for small values and an absolute loss for large ones. To control the additional
approximation error for asymmetric and/or heteroscedastic errors they let the tuning
parameter α tend to zero with an appropriate rate depending on the sample size n and
the dimension p, and, thus, achieve optimal rates for the estimation error in ℓ1 and ℓ2
norm. However, variable selection in this framework is still an open issue.

2.4. Linear regression models with random coefficients
In this section we introduce briefly the linear regression model with random coefficients
and random design, which will be studied and discussed in the second part of the the-
sis intensively. However, we want to emphasize the heteroscedastic error structure of
the regression models of the first and second central moments of the coefficients here,
which motivates the results in the first part of this thesis. The linear random coefficient
regression model can be formalized by

Y = B0 + W⊤B , (2.6)

where B, W ∈ Rp−1 are random vectors, B0 is a random variable and A = (B0, B⊤)⊤ ∈
Rp and W are independent. In this context W = (W1, . . . , Wp−1)⊤ represents the
random regressors and A = (A1, . . . , Ap)⊤ the random regression coefficients. These
are used to model unobserved heterogeneity across the individuals in comparison to the
ordinary linear regression model. In this thesis we are mainly interested in the first and
second moments of the coefficients A. Hence we assume that they exist and set

µ ..= E[A] ∈ Rp

and

Σ ..= Cov(A) ∈ Rp×p , σ ..= vec(Σ) ∈ R
p(p+1)

2 , (2.7)
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where

vec : Rd×d → R
d(d+1)

2 , (2.8)

M ↦→
(︁
M11, . . . , Mdd, M12, . . . , M1d, M23, . . . , M2d, . . . , M(d−1)d

)︁⊤

is the half-vectorization of quadratic matrices. Since covariance matrices are symmet-
ric no information about the second central moments of the coefficients is lost by the
half-vectorization, more precisely redundant information is deleted. Note that the first p
entries of σ are the variances of the coefficients and the remaining entries are the covari-
ances. In a high-dimensional framework sparsity of the first and second central moments
means that only a few of the random coefficients have influence and/or heterogeneous
effects. Variable selection is used to detect these coefficients.

Let X = (1, W⊤)⊤ ∈ Rp, then we can rewrite model (2.6) in terms of the means by

Y = X⊤A = X⊤µ + X⊤(︁A − µ
)︁

. (2.9)

Evidently, this linear regression model has a heteroscedastic error structure. Analogously
we can use the squared residuals, if the means are known, to give a quadratic form in
the shape of(︁

Y − X⊤µ
)︁2 =

(︂
X⊤(︁A − µ

)︁)︂2
= X⊤Σ X + X⊤

(︂(︁
A − µ

)︁(︁
A − µ

)︁⊤ − Σ
)︂

X

for the variances and covariances of the random coefficients A. With the help of the half-
vectorization vec and the corresponding vector transformation we can write the above
quadratic form as a heteroscedastic linear regression model as well.

As mentioned in the previous Sections 2.2 and 2.3 variable selection in high-dimensional,
heteroscedastic mean regression has not been studied sufficiently in the literature. Hence
we want to close this gap with the theory provided in the first part of this thesis.
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Part I.

High-dimensional, robust,
heteroscedastic linear regression
based on the pseudo Huber loss
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3. Support estimation with the adaptive
LASSO

In this chapter we consider the well-known linear regression model, introduced in Section
2.1, where we allow for heteroscedastic and heavy-tailed, non sub-Gaussian errors. How-
ever, we restrict ourselves to light-tailed regressors. Indeed, results in Lederer and Vogt
(2020) imply that for uniformly bounded covariates, if the errors have slightly more than
a finite fourth moment, the ordinary least squares LASSO estimator retains the rates of
convergence in ℓ1 and ℓ2 norm known from the sub-Gaussian case. For high-dimensional
mean regression under still weaker assumptions, as mentioned in Section 2.3, Fan et al.
(2017) and Sun et al. (2020) considered LASSO estimates with the Huber loss function
(Huber, 1964), which is given in (2.5). To deal with the resulting bias, they let the
tuning parameter α of the Huber loss depend in a suitable way on the sample size n
and the dimension p of the coefficient vector. A result from Sun et al. (2020) is that
if the errors have a finite second moment and the covariates are sub-Gaussian, then for
α ≃ (log(p)/n) 1

2 the estimator has the same rates of convergence in ℓ1 and ℓ2 norm as
in the light-tailed case.
We shall study sign-consistency and rates in ℓ∞ norm in this framework. Our estimator
is based on a smooth and strictly convex variant of the Huber loss function and the
adaptive LASSO penalty. In our proofs we combine and extend methods from Zhou
et al. (2009), Fan et al. (2017), Loh and Wainwright (2017) and Sun et al. (2020). The
results are also provided in Hermann and Holzmann (2020).
This chapter is structured as follows. In Section 3.1 we introduce the exact estimator and
Section 3.2 contains the main result in a qualitative form where we focus on the orders
and discard exact constants. After reporting on the results of numerical experiments in
Section 3.3, we present more precise versions of our results together with the main steps
of the proofs in Section 3.4. Section 3.5 concludes, while technical proofs are deferred to
Section 3.6.

3.1. Model and estimator
We consider the random design linear regression model

Yi = X⊤
i β∗ + εi , i = 1, . . . , n , (3.1)

in which the real-valued responses Yi and the p-variate covariates Xi ∈ Rp are observed,
and β∗ ∈ Rp is the unknown parameter vector. We allow for a random design with
heteroscedastic errors, and assume that (X⊤

1 , ε1)⊤, . . . , (X⊤
n , εn)⊤ are independent and
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identically distributed with E
[︁
εi | Xi

]︁
= 0, so that E

[︁
Yi | Xi

]︁
= X⊤

i β∗ is the identified
conditional mean. We shall focus on the high-dimensional case where p is at least of the
order n, and consider sub-Gaussian regressors and heavy-tailed errors, where we require
only slightly more than second moments.

We use the following variant of the Huber loss function, sometimes called pseudo Huber
loss,

lα(x) = 2α−2
(︂√︁

1 + α2x2 − 1
)︂

, (3.2)

as proposed by Charbonnier et al. (1994). In contrast to the Huber loss in (2.5), lα is
smooth and strictly convex. We consider a computationally feasible estimator based on
minimizing the empirical pseudo Huber loss function with a weighted LASSO penalty
given by

ˆ︁β WLH
n ∈ arg min

β∈Rp, ∥β∥2≤Cβ

(︃
L H

n,αn

(︁
β
)︁

+ λn

p∑︂
k=1

wk |βk|
)︃

(3.3)

with regularization parameter λn > 0, robustification parameter αn > 0 and weights
wk > 0 for k ∈ {1, . . . , p}, and where the parameter Cβ > 0 (or rather Cβ/2, see
Assumption 3.1, (iv)) is some given a-priori bound on the ℓ2 norm of the true parameter
β∗. In (3.3), the empirical loss function L H

n,α associated with the pseudo Huber loss is
defined by

L H
n,α

(︁
β
)︁

..= 1
n

n∑︂
i=1

lα
(︁
Yi − X⊤

i β
)︁

, (3.4)

and lα is as in (3.2). We shall call ˆ︁β WLH
n the weighted LASSO Huber estimator (WLHE).

It estimates the parameter

β∗
αn

..= arg min
β∈Rp, ∥β∥2≤Cβ

E
[︂
lαn

(︁
Y1 − X⊤

1 β
)︁]︂

, (3.5)

which coincides with β∗ in the particular case of a symmetric conditional distribution
of ε1 given X1, but differs from β∗ in general. Later on we assume E[X1X⊤

1 ] to be
positive definite, hence β∗

αn
is unique by the strict convexity of lαn . For a suitable initial

estimator ˆ︁β init
n = (ˆ︁β init

n,1 , . . . , ˆ︁β init
n,p )⊤ ∈ Rp of β∗ such as the LASSO Huber estimator

from Fan et al. (2017), choosing the (random) weights

wk = max
{︂

1/
⃓⃓ ˆ︁β init

n,k

⃓⃓
, 1
}︂

, k = 1, . . . , p , (3.6)

in (3.3) leads to the adaptive LASSO Huber estimator (ALHE) ˆ︁β ALH
n which we shall

focus on. Here, if
⃓⃓ ˆ︁β init

n,k

⃓⃓
= 0 so that formally wk = ∞, we require that βk = 0 in (3.3).

We shall investigate the sign-consistency as well as the rate of convergence in the ℓ∞
norm of ˆ︁β ALH

n . To this end, let us set up some notation used in the following. Denote
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the support of the coefficient vector β∗ and its regularized version β∗
αn

in (3.5) by

S ..= supp
(︁
β∗)︁ =

{︂
k ∈ {1, . . . , p} | β∗

k ̸= 0
}︂

, s ..= |S|,

Sαn
..= supp

(︁
β∗

αn

)︁
=
{︂

k ∈ {1, . . . , p} | β∗
αn,k ̸= 0

}︂
, sαn

..=
⃓⃓
Sαn

⃓⃓
,

where |S| is the cardinality of S. A major additional issue in our investigation will be
that the support S of β∗, the object of interest, differs from the support Sαn

of β∗
αn

, the
parameter which is actually estimated. Indeed, even if β∗ is sparse in the sense that S is
of small cardinality, this need not be the case for β∗

αn
. However, our analysis will show

that the adaptive LASSO penalty reliably sets the small superfluous entries of β∗
αn

to
zero.
Results on support recovery are well-known to depend, in terms of so-called beta-min
conditions, on the smallest absolute value of the entries of β∗ on its support S, which we
denote by

β∗
min

..= min
k∈S

⃓⃓
β∗

k

⃓⃓
.

3.2. Sign-consistency and rate of convergence in ℓ∞ norm
In this section we state our main results on sign-consistency and convergence rates in the
ℓ∞ norm of the adaptive LASSO Huber estimator in our setting with heteroscedastic,
heavy-tailed and potentially asymmetric errors. Below we give a qualitative version
of this result when discarding the constants and focusing on the orders. More precise
formulations are provided in Lemma 3.19 combined with Lemmas 3.13 and 3.14 in Section
3.4.
To derive our results we adopt the following assumptions from Fan et al. (2017).

Assumption 3.1.

(i) For m = 2 or m = 3 and q > 1 we have that E
[︁
E
[︁
|ε1|m

⃓⃓
X1
]︁q]︁ ≤ Cϵ,m < ∞, where

Cϵ,m > 0 is a positive constant.

(ii) For positive constants 0 < cX,l ≤ cX,u we have that cX,l ≤ λmin
(︁
E
[︁
X1X⊤

1
]︁)︁

≤
λmax

(︁
E
[︁
X1X⊤

1
]︁)︁

≤ cX,u < ∞, where λmin(M) and λmax(M) denote the minimal
and maximal eigenvalues of a symmetric matrix M ∈ Rd×d.

(iii) For any v ∈ Rp \ {0p} the variable v⊤X1 is sub-Gaussian with variance proxy at
most c2

X,sub∥v∥2
2, c2

X,sub > 0, that is P
(︁
|v⊤X1| ≥ t

)︁
≤ 2 exp

(︁
− t2/(2 c2

X,sub∥v∥2
2)
)︁

for all t ≥ 0.

(iv) We have the a-priori upper bound ∥β∗∥2 ≤ Cβ/2, where Cβ ≥ 1/8 is a numerical
constant.
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The assumptions are essentially those from Fan et al. (2017). In (i), we use a weaker
moment assumption, but slightly more than the finite second moment as required in
Sun et al. (2020). Further, as in Fan et al. (2017, Section 5) for the loss function from
Catoni (2012), in (i) we can only make use of moments up to order 3 when estimat-
ing the approximation error. The normalization Cβ/2 is made for later mathematical
convenience.
We shall assume that the initial estimator ˆ︁β init

n in the adaptive LASSO achieves the
following rates in the ℓ1 and ℓ2 norm,⃦⃦⃦ ˆ︁β init

n − β∗
⃦⃦⃦

2
≤ Cinit λ init

n

√
s ,

⃦⃦⃦ ˆ︁β init
n − β∗

⃦⃦⃦
1

≤ Cinit λ init
n s with λ init

n ≃
(︃

log(p)
n

)︃ 1
2

(3.7)

for a positive constant Cinit ≥ 1. The notation suggests that the estimator is based
on the regularization parameter λ init

n which then determines its rates. Indeed, under
Assumption 3.1 the original LASSO Huber estimator given as a solution of

arg min
β∈Rp

(︃
1
n

n∑︂
i=1

l̃αn

(︁
Yi − X⊤

i β
)︁

+ λn

p∑︂
k=1

|βk|
)︃

with Huber loss l̃α defined in (2.5), satisfies (3.7) for n ≳ s log(p) under the scaling
αn ≃ (log(p)/n) 1

2 of the robustification parameter and the choice of the regularization
parameter as in (3.7), with probability at least 1−3/p, see Sun et al. (2020, Theorem 8).
From our results in Section 3.4.1 it follows that the same is true when using the pseudo
Huber loss function lα instead.
In the following result, the constants in the order symbols ≃ and ≲ have to be chosen
appropriately to achieve the estimate with the desired probability (3.10), see Lemmas
3.13, 3.14 and 3.19 in Section 3.4 for more details.

Theorem 3.2 (Sign-consistency and rate in the ℓ∞ norm). In model (3.1) under As-
sumption 3.1, consider the adaptive LASSO estimator ˆ︁β ALH

n with initial estimator ˆ︁β init
n

assumed to satisfy (3.7). Further, suppose that⃦⃦⃦⃦(︂
E
[︁
X1X⊤

1
]︁

SS

)︂−1
⃦⃦⃦⃦

M,∞
≤ CS,X , (3.8)

where CS,X > 0 is a positive constant, is also satisfied. Assume that the robustification
parameter αn for the adaptive LASSO is chosen of the order

αn ≃
(︃

log(p)
n

)︃ 1
2

, (3.9)

and that the regularization parameter λn is chosen of order

λn ≃ λ init
n

(︄⃓⃓
S
⃓⃓
log(p)
n

)︄ 1
2

, where S =
{︂

k ∈ {1, . . . , p}
⃓⃓⃓ ⃓⃓ ˆ︁β init

n,k

⃓⃓
> λ init

n

}︂
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and λ init
n ≃ (log(p)/n) 1

2 is as in (3.7). If n ≳ s2 log(p) and β∗ satisfies a beta-min
condition of order β∗

min ≳ s λ init
n , then with probability at least

1 − c1 exp(−c2n) − c3

p2 , (3.10)

where c1, c2, c3 > 0 are suitable constants, the adaptive LASSO Huber estimator ˆ︁β ALH
n

as a solution to (3.3) with weights (3.6) is unique and satisfies

sign
(︁ˆ︁β ALH

n

)︁
= sign

(︁
β∗)︁ and

⃦⃦⃦ ˆ︁β ALH
n − β∗

⃦⃦⃦
∞

≲ λ init
n . (3.11)

If we drop assumption (3.8) but instead have s ≤ log(p), then we retain the sign-
consistency in (3.11) but only obtain a ℓ∞-rate of order⃦⃦⃦ ˆ︁β ALH

n − β∗
⃦⃦⃦

∞
≲

√
s λ init

n .

Remark 3.3. The order in the beta-min condition β∗
min ≳ s (log(p)/n) 1

2 as required
in our result is the same as in Zhou et al. (2009, equation (4.10)), and quite stronger
than the order β∗

min ≳ (log(p)/n) 1
2 required in Loh and Wainwright (2017, Corollary

1, Corollary 3). Potentially, this might be weakened in our setting as well by working
with nonconvex regularizers. However, here we preferred to accept this restriction but to
have the computationally more efficient adaptive LASSO. The requirement n ≳ s2 log(p),
while being stronger than the n ≳ s log(p) for ordinary least squares in Loh and Wain-
wright (2017, Corollary 1), is, however, weaker than e.g. the n ≳ s3 log(p) required in
Loh and Wainwright (2017, Corollary 3) for logistic regression. The rate in (3.11) under
the additional assumption (3.8) is optimal, while the final bound without this condition
is as in Zhou et al. (2009). Somewhat unfortunately, this result requires that s ≤ log(p)
and hence is only useful in high dimensions, however, at this stage we were not able to
get rid of this assumption. Also, note that the order λn ≃

√
s log(p)/n of the regulariza-

tion parameter is smaller than the one of the ordinary LASSO. Finally, the bound (3.11)
together with the sign-consistency implies that⃦⃦⃦ ˆ︁β ALH

n − β∗
⃦⃦⃦

2
≲

√
s λ init

n and
⃦⃦⃦ ˆ︁β ALH

n − β∗
⃦⃦⃦

1
≲ s λ init

n ,

as for the ordinary LASSO Huber estimator. Our results, in particular Lemmas 3.10 and
3.19 in Section 3.4 imply that this remains true under the weaker set of assumptions in
Theorem 3.2, when dropping (3.8).

3.3. Simulations
In this section we numerically compare the performance of the LASSO Huber estimator
(LH denotes the LASSO with Huber loss and LPH the LASSO with pseudo Huber loss)
and the adaptive LASSO Huber estimator (ALH with Huber loss and ALPH with pseudo
Huber loss) with the well-known ordinary LASSO (L) and adaptive LASSO (AL) with
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quadratic loss function in a simulation setting which is similar to that in Fan et al. (2017).
We consider the high-dimensional linear regression model (3.1) with normally distributed
covariates X1, . . . , Xn ∼ Np

(︁
0p, Ip

)︁
of dimension p = 400 and n = 200 observations, and

a parameter vector given by

β∗ =
(︁
3, . . . , 3, 0, . . . , 0

)︁⊤

with S = supp
(︁
β∗)︁ = {1, . . . , 20} and s = |S| = 20. In the following we discuss different

types of errors (light/heavy tails, symmetric/asymmetric, homo-/heteroscedastic). In
the homoscedastic case we assume εi = ˜︁εi with ˜︁ε1, . . . , ˜︁εn independent and identically
distributed with E[˜︁ε1] = 0 and independent of the covariates X1, . . . , Xn, while in the
heteroscedastic case the errors are

εi = 1
√

3 ∥β∗∥2
2

(︁
X⊤

i β∗)︁2 ˜︁εi .

Evidently, (X⊤
1 , ε1)⊤, . . . , (X⊤

n , εn)⊤ are independent and identically distributed and
E[εi | Xi] = 0. Furthermore, the factor 1/

(︁√
3 ∥β∗∥2

2
)︁

implies

E
[︁
ε2

1
]︁

= 1
3 ∥β∗∥4

2
E
[︂(︁

X⊤
1 β∗)︁4

]︂
E
[︁˜︁ε 2

1
]︁

= 1
3 ∥β∗∥4

2
3 ∥β∗∥4

2 E
[︁˜︁ε 2

1
]︁

= E
[︁˜︁ε 2

1
]︁

since X⊤
1 β∗ ∼ N

(︁
0, ∥β∗∥2

2
)︁
. Hence the homo- and heteroscedastic errors have the same

variance in our simulations.

To compute the estimators in the simulation we use the functions of the packages glmnet
(ordinary LASSO and adaptive LASSO) and hqreg (LASSO with Huber loss and adap-
tive LASSO with Huber loss). They have a factor of 1/2 in the quadratic loss. Further,
the definition of the Huber loss includes an additional scaling of α/2 in the package
hqreg, cf. Yi and Huang (2017). As a consequence, for the Huber loss the regularization
parameter λ of the (adaptive) LASSO includes this scaling factor of α as well, therefore
we actually displayed λ/α for the Huber loss, which needs to be compared to λ for the
ordinary LASSO and the pseudo Huber loss. To compute the estimator for the pseudo
Huber loss, we modified the functions of the package hqreg which were provided on
GitHub by Yi and Huang (2017). This package uses a semismooth Newton coordinate
descent algorithm, in contrast to the classical coordinate descent algorithm in glmnet
or the iterative local adaptive majorize-minimization (I-LAMM) algorithm in Fan et al.
(2018).
The parameters α and λ of the estimators are chosen such that the ℓ2 distance of the re-
spective estimation error is minimal. For this purpose we use 100 independent repetitions
where the errors have a specified distribution, and run through a one- or two-dimensional
grid for the parameters in each set. In the adaptive versions of the estimators the param-
eters of the initial estimators are fixed (and equal to the optimal choices for the LASSO),
so that we do not require a four-dimensional grid search for the adaptive LASSO. The
resulting choices of the robustification parameter α and the regularization parameter λ
are displayed in the subsequent tables. Somewhat surprisingly, the tuning parameter
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for the adaptive version of the estimators differs quite strongly between the ordinary
least squares and the estimators based on (pseudo) Huber loss, even for homoscedastic,
normally distributed errors.
Next we use these values of the parameters λ and α in a Monte Carlo simulation with
1000 iterations. In addition to the average ℓ2 and ℓ∞ norm of the estimation error,
we also compute the average percentage of false positives (FP, noise covariates that are
selected) and false negatives (FN, signal covariates that are not selected).
The following tables list the results. Overall we have the following main findings. First,
for all methods, the version with adaptive weights is superior to that with ordinary
weights for both ℓ2 and ℓ∞ estimation error, as well as for the proportion of false posi-
tives. Second, estimators based on Huber and pseudo Huber loss function perform very
similarly. Third, in particular for heteroscedastic errors these estimators have a much
better performance than the ordinary LASSO, both in terms of estimation error as well
as - in the adaptive versions - for their variable selection properties. Of course, the price
to pay is that the additional tuning parameter α has to be chosen.

(a) Symmetric errors with light tails.
In this scenario we consider normally distributed errors ˜︁εi ∼ N (0, 4) with variance
equal to 4.

L AL LH LPH ALH (LH) ALPH (LH) ALPH (LPH)
λ 0.154 0.695 0.157 0.150 0.066 0.067 0.069
α 0.115 0.061 0.153 0.050 0.050

ℓ2 norm 1.66 0.93 1.67 1.67 0.83 0.83 0.83
ℓ∞ norm 0.60 0.41 0.61 0.61 0.38 0.38 0.38
FP in % 16.14 1.83 15.76 16.32 1.06 0.99 0.97
FN in % 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 3.1.: homoscedastic normally distributed errors.

L AL LH ALH (LH) ALPH (LH)
λ 0.150 0.715 0.018 0.0003 0.0003
α 3.476 57.068 55.474

ℓ2 norm 1.65 0.98 1.12 0.23 0.22
ℓ∞ norm 0.59 0.41 0.37 0.10 0.09
FP in % 15.81 1.91 21.47 0.96 1.08
FN in % 0.00 0.00 0.00 0.00 0.00

Table 3.2.: heteroscedastic normally distributed errors.

(b) Symmetric errors with heavy tails.
Here we consider ˜︁εi = 2 Qi with Qi ∼ t3 t-distributed with 3 degrees of freedom.
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L AL LH LPH ALH (LH) ALPH (LH) ALPH (LPH)
λ 0.262 0.901 0.142 0.080 0.059 0.040 0.033
α 0.429 0.742 0.563 0.769 0.974

ℓ2 norm 2.85 1.89 2.34 2.35 1.17 1.18 1.19
ℓ∞ norm 1.03 0.76 0.85 0.85 0.53 0.53 0.53
FP in % 15.64 2.74 16.66 17.59 1.38 1.39 1.51
FN in % 0.03 0.05 0.00 0.00 0.00 0.00 0.00

Table 3.3.: homoscedastic t-distributed errors.

L AL LH ALH (LH) ALPH (LH)
λ 0.226 0.849 0.019 0.0005 0.0006
α 3.574 33.854 29.368

ℓ2 norm 2.71 1.87 1.37 0.28 0.28
ℓ∞ norm 0.94 0.72 0.46 0.12 0.11
FP in % 16.36 3.05 20.95 1.13 1.18
FN in % 0.11 0.16 0.00 0.00 0.00

Table 3.4.: heteroscedastic t-distributed errors.

(c) Asymmetric errors with heavy tails.
Finally, we consider ˜︁εi = Qi − E[Qi] with Qi ∼ St(0, 1, 0.6, 3) skew t-distributed
with location parameter 0, scale parameter 1, skew parameter 0.6 and 3 degrees of
freedom. An exact definition can be found in Azzalini and Capitanio (2003) and
it is E[Qi] =

(︁
0.6/

√
1.36

)︁√︁
3/π / Γ(3/2).

L AL LH LPH ALH (LH) ALPH (LH) ALPH (LPH)
λ 0.118 0.709 0.070 0.058 0.019 0.011 0.010
α 0.863 0.871 1.124 1.842 2.184

ℓ2 norm 1.33 0.74 1.08 1.12 0.47 0.46 0.47
ℓ∞ norm 0.48 0.32 0.39 0.40 0.22 0.22 0.23
FP in % 16.37 1.56 16.48 16.49 0.52 0.63 0.53
FN in % 0.01 0.01 0.00 0.00 0.02 0.00 0.01

Table 3.5.: homoscedastic skew t-distributed errors.
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L AL LH ALH (LH) ALPH (LH)
λ 0.110 0.649 0.009 0.0003 0.0002
α 7.00 33.898 50.684

ℓ2 norm 1.28 0.77 0.64 0.11 0.11
ℓ∞ norm 0.45 0.32 0.22 0.05 0.05
FP in % 16.00 1.80 21.18 0.43 0.48
FN in % 0.02 0.02 0.00 0.00 0.00

Table 3.6.: heteroscedastic skew t-distributed errors.

3.4. Main steps of the proof and auxiliary results
In this section we present the results in more technical form together with the main
steps of the proofs. Various technical details are deferred to Section 3.6. Let us give an
overview of our approach. In Section 3.4.1 we start with various technical preparations,
including a bound on the approximation bias and the restricted strong convexity con-
dition for the pseudo Huber loss, similar to Fan et al. (2017, Section 5) for the Catoni
loss function. Section 3.4.2 details how to implement the primal-dual witness approach
from Wainwright (2009b) in our setting. Compared to Loh and Wainwright (2017) and
Zhou et al. (2009), the main additional issue is that β∗

αn
as defined in (3.5) does not have

support S and, indeed, need not to be sparse. Lemmas 3.13 and 3.14 take care of tech-
nical expressions, in particular the inverse of the Hessian of the empirical loss function
restricted to S, and of a term involving the gradient when checking strict dual feasibility.
In Section 3.4.3, we deduce a result for the general weighted LASSO Huber estimator in
(3.3), which still involves a mutual incoherence condition. Finally, in Sections 3.4.4 and
3.4.5 this is specialized for the adaptive LASSO, first for an initial estimator satisfying
general rate assumptions, and then for one which is assumed to satisfy (3.7), for which
we can get rid of the mutual incoherence condition.

We shall use the following additional notation. Xn =
(︁
X1, . . . , Xn

)︁⊤ ∈ Rn×p is the de-
sign matrix where Xi ∈ Rp is the covariate vector in model (3.1). w = (w1, . . . , wp)⊤ de-
notes the vector of weights from (3.3), and we set wmax

(︁
S
)︁

= maxk∈S wk and wmin
(︁
Sc
)︁

=
mink∈Sc wk.

3.4.1. Technical preparations
We start with some technical preparations where we extend results from Fan et al.
(2017) to the pseudo Huber loss function lα given in (3.2). See also Fan et al. (2017,
Section 5) for similar extensions to the Cantoni loss function (Catoni, 2012). The proofs
of the lemmas in this section are provided in Section 3.6.1. To start, straightforward
differentiation gives

l′
α(x) = 2x√

1 + α2x2
so that

⃓⃓
l′
α(x)

⃓⃓
≤ 2|x|√

α2x2
= 2α−1, (3.12)
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and

l′′
α(x) = 2α−3

(α−2 + x2)3/2 so that 0 < l′′
α(x) ≤ 2α−3

(α−2)3/2 = 2 . (3.13)

In particular, lα is strictly convex. Also note that limα→0 lα(x) = x2 for all x ∈ R. For
the empirical loss function in (3.4) this gives

∇L H
n,α(β) = − 1

n

n∑︂
i=1

l′
α

(︁
Yi − X⊤

i β
)︁
Xi , ∇2L H

n,α(β) = 1
n

n∑︂
i=1

l′′
α

(︁
Yi − X⊤

i β
)︁
XiX⊤

i .

(3.14)

The following result is similar to Fan et al. (2017, Theorem 1 and Theorem 6), however,
we work with a weaker moment assumption.

Lemma 3.4 (ℓ2 norm bound on the approximation error). Under Assumption 3.1 we
have for β∗

αn
in (3.5) that ⃦⃦

β∗
αn

− β∗⃦⃦
2 ≤ Capx αm−1

n , (3.15)

where

Capx = 5 2m cX,sub

cX,l

[︄(︄
q

q − 1 Γ
(︃

q

2(q − 1)

)︃)︄ q−1
q

(Cϵ,m)
1
q

+
(︂

2
(︁
2C2

β c2
X,sub

)︁m (2m)! Γ(m)
)︂ 1

2

]︄

and Γ(x) =
∫︁∞

0 tx−1 exp(−t) dt, x > 0, is the gamma function.

Remark 3.5. The above result leads to
⃦⃦
β∗

αn
−β∗

⃦⃦
2 < Cβ/2 for an (appropriate) choice

of αn. Together with the assumption ∥β∗∥2 ≤ Cβ/2 this will imply that β∗
αn

is strictly
feasible for (3.5), that is, ⃦⃦

β∗
αn

⃦⃦
2 < Cβ , (3.16)

which we will assume from now on.

Next we show along the lines of Fan et al. (2017, Lemmas 2 and 4) that restricted strong
convexity, cf. Loh and Wainwright (2017), is satisfied by the pseudo Huber loss function.

Lemma 3.6 (RSC condition). Under Assumption 3.1 there exist cα > 0 (depending on
cX,l, cX,u, cX,sub and Cβ) and cP

1 , cP
2 > 0 (depending on cX,l and cX,sub) such that for

all ∥β∥2 ≤ 4Cβ, ∥∆∥2 ≤ 8Cβ and α ≤ cα with probability at least 1 − cP
1 exp(−cP

2 n)
the empirical pseudo Huber loss function L H

n,α satisfies the restricted strong convexity
condition

⟨︁
∇L H

n,α(β + ∆) − ∇L H
n,α(β), ∆

⟩︁
≥ cRSC

1 ∥∆∥2
2 − cRSC

2
log(p)

n
∥∆∥2

1 (3.17)
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with

cRSC
1 = cX,l

16 , cRSC
2 =

1600 c2
X,sub

(︂
max

(︁
4cX,sub

√︂
log(12c2

X,sub/cX,l), 1
)︁)︂4

cX,l
.

Restricted strong convexity implies in particular ordinary strong convexity locally on the
support S of β∗.
Lemma 3.7. Under Assumption 3.1, if α ≤ cα and n ≥ cRSC

3 s log(p) with cRSC
3 =

2cRSC
2 /cRSC

1 we have with probability at least 1 − cP
1 exp(−cP

2 n) for β ∈ Rp with ∥β∥2 ≤
4Cβ that

λmin

(︂(︁
∇2L H

n,α(β)
)︁

SS

)︂
≥ cRSC

1
2 = cX,l

32 , (3.18)

where λmin(M) denotes the minimal eigenvalue of a symmetric matrix M ∈ Rd×d.

The following result gives a bound on the gradient of the empirical loss function, and is
analogous to Fan et al. (2017, Lemma 1).
Lemma 3.8 (ℓ∞ norm bound on the gradient). Under Assumption 3.1 there exist
cGrad

1 , cGrad
2 > 0 (depending on q, Cϵ,m, cX,sub and Cβ) such that for all αn ≥

cGrad
1 (log(p)/n) 1

2 with probability at least 1 − 2/p2 the ℓ∞ norm of the gradient of the
empirical pseudo Huber loss function L H

n,αn
at β∗

αn
is bounded by

⃦⃦
∇L H

n,αn

(︁
β∗

αn

)︁⃦⃦
∞ ≤ cGrad

2

(︃
log(p)

n

)︃ 1
2

.

3.4.2. Primal-dual witness approach
The proof of Theorem 3.2 is based on the primal-dual witness (PDW) approach as
originally introduced in Wainwright (2009b). Following Loh and Wainwright (2017) we
summarize the three main steps as follows. The key results in this section for imple-
menting this approach in our setting are Lemma 3.12, together with the Lemmas 3.13
and 3.14.

(i) Optimize the restricted program

ˆ︁β PDW
n ∈ arg min

β∈Rp,supp(β)⊆S,∥β∥2≤Cβ

(︃
L H

n,αn

(︁
β
)︁

+ λn

∑︂
k∈S

wk |βk|
)︃

, (3.19)

where we enforce the constraint that supp
(︁ˆ︁β PDW

n

)︁
⊆ S, and show that all solutions

have norm < Cβ .

(ii) Choose ˆ︁γ = ˆ︁γn ∈ Rp such that (a.) ˆ︁γS ∈ ∂
⃦⃦ˆ︁β PDW

n,S

⃦⃦
1, (b.) it satisfies the zero-

subgradient condition

∇L H
n,αn

(︁ˆ︁β PDW
n

)︁
+ λn

(︁
w ⊙ ˆ︁γ)︁ = 0p , (3.20)

and (c.) such that ˆ︁γSc satisfies the strict dual feasibility condition ∥ˆ︁γSc∥∞ < 1.
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(iii) Show that ˆ︁β PDW
n is also a minimum of the full program (3.3),

arg min
β∈Rp, ∥β∥2≤Cβ

(︄
L H

n,αn

(︁
β
)︁

+ λn

p∑︂
k=1

wk |βk|

)︄
,

and, moreover, the uniqueness of the minimizer of this program.

We shall always assume in the following that

αn ≤ cα

holds, where cα is given in Lemma 3.6. Later, αn is chosen of an order tending to zero, so
that this is automatically satisfied. The following lemma lists some technical properties
of the second derivatives of the empirical loss function.

Lemma 3.9. We may write

ˆ︁Q ..=
∫︂ 1

0
∇2L H

n,αn

(︂
β∗

αn
+ t
(︁ˆ︁β PDW

n − β∗
αn

)︁)︂
dt = 2

n

n∑︂
i=1

di Xi X⊤
i = 2

n
X⊤

n DXn , (3.21)

where D = diag
(︁
d1, . . . , dn

)︁
with

di = 1
2

∫︂ 1

0
l′′
αn

(︂
Yi − X⊤

i
(︁
β∗

αn
+ t
(︁ˆ︁β PDW

n − β∗
αn

)︁)︁)︂
dt ∈ (0, 1] .

Furthermore, under Assumption 3.1, if n ≥ cRSC
3 s log(p) with probability at least 1 −

cP
1 exp(−cP

2 n) the submatrix ˆ︁QSS is invertible with minimal eigenvalue bounded below by
cX,l/32 and we have the bound ⃦⃦⃦(︁ ˆ︁QSS

)︁−1
⃦⃦⃦

M,∞
≤ 32

√
s

cX,l
. (3.22)

Proof of Lemma 3.9. (3.21) follows from straightforward calculation, see (3.14). More-
over, every point β ∈ Rp between β∗

αn
and ˆ︁β PDW

n has ℓ2 norm smaller than or equal to
Cβ because

⃦⃦
β∗

αn

⃦⃦
2,
⃦⃦ˆ︁β PDW

n

⃦⃦
2 ≤ Cβ . Hence (3.18) implies the invertibility of ˆ︁QSS and

(3.22) follows from ⃦⃦⃦(︁ ˆ︁QSS

)︁−1
⃦⃦⃦

M,∞
≤

√
s
⃦⃦⃦(︁ ˆ︁QSS

)︁−1
⃦⃦⃦

M,2
≤ 32

√
s

cX,l
.

In the following lemma we show that ˆ︁β PDW
n is strictly feasible for (3.19), meaning⃦⃦ˆ︁β PDW

n

⃦⃦
2 < Cβ holds, for an appropriate choice of λn and αn.
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Lemma 3.10 (ℓ2 norm error bound on the PDW estimator). Under Assumption 3.1 we
have for ˆ︁β PDW

n in (3.19) with αn ≥ cGrad
1

(︁ log(p)
n

)︁ 1
2 that⃦⃦⃦ ˆ︁β PDW

n − β∗
⃦⃦⃦

2
≤

(︄
cGrad

2

(︃
log(p)

n

)︃ 1
2

+ wmax
(︁
S
)︁

λn + 2Cβ cRSC
2

√
s log(p)

n

)︄ √
s

cRSC
1

+ Capx αm−1
n

with probability at least 1 − cP
1 exp(−cP

2 n) − 2/p2.
Proof of Lemma 3.10. Let

β∗
αn,supp = arg min

β∈Rp,supp(β)⊆S,
∥β∥2≤Cβ

E
[︂
lαn

(︁
Y1 − X⊤

1 β
)︁]︂

and ∆PDW
n = ˆ︁β PDW

n − β∗
αn,supp ,

(3.23)

then ˆ︁β PDW
n in (3.19) is a regularized M-estimator of β∗

αn,supp. Following the proof of
Lemma 3.4 leads on the one hand to⃦⃦

β∗
αn,supp − β∗⃦⃦

2 ≤ Capx αm−1
n .

In doing so note that

E
[︂
lαn

(︁
Y1 − X⊤

1 β∗
αn,supp

)︁]︂
≤ E

[︂
lαn

(︁
Y1 − X⊤

1 β∗)︁]︂ and
⃦⃦
β∗

αn,supp
⃦⃦

2 ≤ Cβ

because of (3.23), supp
(︁
β∗)︁ = S and ∥β∗∥2 ≤ Cβ by (iv) of Assumption 3.1. Further,ˆ︁β PDW

n has to satisfy the first-order necessary condition of a convex constrained opti-
mization problem over a convex set to be a minimum of (3.19), cf. Ruszczynski (2006,
Theorem 3.33), that is, there exists ˆ︁γ ∈ ∂

⃦⃦ˆ︁β PDW
n,S

⃦⃦
1 such that⟨︂

∇L H
n,αn

(︁ˆ︁β PDW
n

)︁
+ λn

(︁
w ⊙ ˆ︁γ)︁, β − ˆ︁β PDW

n

⟩︂
≥ 0 for all feasible β ∈ Rp .

Hence by the restricted strong convexity of the empirical pseudo Huber loss function in
Lemma 3.6 and the first-order necessary condition it follows that

cRSC
1

⃦⃦
∆PDW

n

⃦⃦2
2 − cRSC

2
log(p)

n

⃦⃦
∆PDW

n

⃦⃦2
1 ≤

⟨︂
∇L H

n,αn
(ˆ︁β PDW

n ) − ∇L H
n,αn

(β∗
αn,supp), ∆PDW

n

⟩︂
≤
⟨︁
−∇L H

n,αn
(β∗

αn,supp) − λn

(︁
w ⊙ ˆ︁γ)︁, ∆PDW

n

⟩︁
≤
⃦⃦
∇L H

n,αn
(β∗

αn,supp)
⃦⃦

∞

⃦⃦
∆PDW

n

⃦⃦
1

+ wmax
(︁
S
)︁

λn

⃦⃦
∆PDW

n

⃦⃦
1

with probability at least 1−cP
1 exp(−cP

2 n). Here the last inequality follows since β∗
αn,supp

and ˆ︁β PDW
n both have support (contained in) S. Rearranging leads to

cRSC
1

⃦⃦
∆PDW

n

⃦⃦2
2 ≤

(︃⃦⃦
∇L H

n,αn
(β∗

αn,supp)
⃦⃦

∞ + wmax
(︁
S
)︁

λn

+ cRSC
2

log(p)
n

⃦⃦
∆PDW

n

⃦⃦
1

)︃⃦⃦
∆PDW

n

⃦⃦
1 .
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We obtain
⃦⃦
∆PDW

n

⃦⃦
1 ≤

√
s
⃦⃦
∆PDW

n

⃦⃦
2 and

⃦⃦
∆PDW

n

⃦⃦
2 ≤ 2Cβ because of (3.19) and

(3.23). In addition, by following the proof of Lemma 3.8 we get
⃦⃦
∇L H

n,αn
(β∗

αn,supp)
⃦⃦

∞ ≤
cGrad

2 (log(p)/n) 1
2 with probability at least 1 − p2/2. Hence it follows that

⃦⃦⃦ ˆ︁β PDW
n − β∗

αn,supp

⃦⃦⃦
2

≤

(︄
cGrad

2

(︃
log(p)

n

)︃ 1
2

+ wmax
(︁
S
)︁

λn + 2Cβ cRSC
2

√
s log(p)

n

)︄ √
s

cRSC
1

and in total the assertion of the lemma.

Remark 3.11. The results below will imply that with an (appropriate) choice of λn

and αn,

⃦⃦⃦ ˆ︁β PDW
n − β∗

⃦⃦⃦
2

= O

(︄(︃
s log(p)

n

)︃ 1
2
)︄

holds with high probability, so that in particular
⃦⃦ˆ︁β PDW

n − β∗
⃦⃦

2 < Cβ/2. Together with
the assumption ∥β∗∥2 ≤ Cβ/2 this will imply that ˆ︁β PDW

n is strictly feasible for (3.19),
that is, ⃦⃦⃦ ˆ︁β PDW

n

⃦⃦⃦
2

< Cβ , (3.24)

which we will assume from now on.

Lemma 3.12 (Solving the PDW construction). Suppose that Assumption 3.1 holds and
that β∗ satisfies the beta-min condition

β∗
min > Capx αm−1

n , (3.25)

and that n ≥ cRSC
3 s log(p). Let ˆ︁β PDW

n be as in the PDW construction, and suppose thatˆ︁γ ∈ Rp satisfies ˆ︁γS ∈ ∂
⃦⃦ˆ︁β PDW

n,S

⃦⃦
1 and the zero-subgradient condition (3.20). Then, with

probability at least 1 − cP
1 exp(−cP

2 n) the strict dual feasibility condition ∥ˆ︁γSc∥∞ < 1 is
equivalent to the condition⃓⃓⃓⃓
⃓ ˆ︁QScS

(︁ ˆ︁QSS

)︁−1
(︃

λn

(︁
wS ⊙ ˆ︁γS

)︁
+
(︂

∇L H
n,αn

(︁
β∗

αn

)︁)︂
S

)︃
−
(︂

∇L H
n,αn

(︁
β∗

αn

)︁)︂
Sc

+
(︂ ˆ︁QSc(Sαn \S) − ˆ︁QScS

(︁ ˆ︁QSS

)︁−1 ˆ︁QS(Sαn \S)

)︂
β∗

αn,Sαn \S

⃓⃓⃓⃓
⃓ < wSc λn . (3.26)

Furthermore, if (3.26) is satisfied we have that the minimizer ˆ︁β WLH
n in (3.3) is unique

and given by ˆ︁β WLH
n = ˆ︁β PDW

n , so that in particular supp
(︁ˆ︁β WLH

n

)︁
⊆ supp

(︁
β∗)︁, and,

furthermore, that ⃦⃦⃦ ˆ︁β WLH
n − β∗

⃦⃦⃦
∞

≤ ϕn,∞ ,
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where

ϕn,∞ =
⃦⃦⃦(︁ ˆ︁QSS

)︁−1
⃦⃦⃦

M,∞

⃦⃦⃦(︂
∇L H

n,αn

(︁
β∗

αn

)︁)︂
S

⃦⃦⃦
∞

+ wmax
(︁
S
)︁

λn

⃦⃦⃦(︁ ˆ︁QSS

)︁−1
⃦⃦⃦

M,∞

+
⃦⃦
β∗

αn,S − β∗
S

⃦⃦
∞ +

⃦⃦⃦(︁ ˆ︁QSS

)︁−1
⃦⃦⃦

M,∞

⃦⃦⃦(︁ ˆ︁QS(Sαn \S) β∗
αn,Sαn \S

⃦⃦⃦
∞

. (3.27)

Furthermore, if we have in addition the beta-min condition of the same order

β∗
min > ϕn,∞ , (3.28)

then we have the sign-recovery property sign
(︁ˆ︁β WLH

n

)︁
= sign

(︁
β∗)︁.

The beta-min condition (3.25) is required so that the approximation error
⃦⃦
β∗

αn
− β∗

⃦⃦
∞

is smaller than β∗
min, which implies that the support Sαn of β∗

αn
contains the support S

of β∗. Later, we shall choose αn and achieve a rate ϕn,∞, which in any case also includes
an approximation term

⃦⃦
β∗

αn,S − β∗
S

⃦⃦
∞, such that (3.28) implies (3.25).

Proof of Lemma 3.12. We start by showing that under assumption (3.25) we have S ⊆
Sαn

. To this end, we estimate⃓⃓
β∗

αn,k

⃓⃓
=
⃓⃓
β∗

αn,k − β∗
k + β∗

k

⃓⃓
≥
⃓⃓
β∗

k

⃓⃓
−
⃓⃓
β∗

αn,k − β∗
k

⃓⃓
≥ β∗

min −
⃦⃦
β∗

αn
− β∗⃦⃦

∞

≥ β∗
min −

⃦⃦
β∗

αn
− β∗⃦⃦

2

≥ β∗
min − Capx αm−1

n > 0

for k ∈ S, where the first inequality in the last line follows from (3.15) and the final
inequality from (3.25). Now, usingˆ︁Q (︁ˆ︁β PDW

n − β∗
αn

)︁
= ∇L H

n,αn

(︁ˆ︁β PDW
n

)︁
− ∇L H

n,αn

(︁
β∗

αn

)︁
,

see (3.21) for the definition of ˆ︁Q, we may rewrite the subgradient condition (3.20), which
holds since ˆ︁β PDW

n is strictly feasible as in (3.24), asˆ︁Q (︁ˆ︁β PDW
n − β∗

αn

)︁
+ ∇L H

n,αn

(︁
β∗

αn

)︁
+ λn

(︁
w ⊙ ˆ︁γ)︁ = 0p

or in block-form[︄ ˆ︁QSS
ˆ︁QS(Sαn \S) ˆ︁QSSc

αnˆ︁QScS
ˆ︁QSc(Sαn \S) ˆ︁QScSc

αn

]︄⎛⎜⎝ˆ︁β PDW
n,S − β∗

αn,S

−β∗
αn,Sαn \S

0|Sc
αn

|

⎞⎟⎠+

⎛⎝(︂∇L H
n,αn

(︁
β∗

αn

)︁)︂
S(︂

∇L H
n,αn

(︁
β∗

αn

)︁)︂
Sc

⎞⎠
+ λn

(︃
wS ⊙ ˆ︁γS

wSc ⊙ ˆ︁γSc

)︃
= 0p ,

where we used that ˆ︁β PDW
n,Sc = 0p−s by the primal-dual witness construction. By invert-

ibility of ˆ︁QSS , see Lemma 3.9, this leads to

ˆ︁β PDW
n,S − β∗

αn,S =
(︁ ˆ︁QSS

)︁−1
(︃

− λn

(︁
wS ⊙ ˆ︁γS

)︁
−
(︂

∇L H
n,αn

(︁
β∗

αn

)︁)︂
S

+ ˆ︁QS(Sαn \S) β∗
αn,Sαn \S

)︃
(3.29)
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and

λn

(︁
wSc ⊙ ˆ︁γSc

)︁
= ˆ︁QScS

(︁ ˆ︁QSS

)︁−1
(︃

λn

(︁
wS ⊙ ˆ︁γS

)︁
+
(︂

∇L H
n,αn

(︁
β∗

αn

)︁)︂
S

)︃
−
(︂

∇L H
n,αn

(︁
β∗

αn

)︁)︂
Sc

+
(︂ ˆ︁QSc(Sαn \S) − ˆ︁QScS

(︁ ˆ︁QSS

)︁−1 ˆ︁QS(Sαn \S)

)︂
β∗

αn,Sαn \S .

The second equation shows the equivalence of the strict dual feasibility condition
∥ˆ︁γSc∥∞ < 1 and (3.26). Now, if this holds then we obtain that ˆ︁γ ∈ ∂

⃦⃦ˆ︁β PDW
n

⃦⃦
1, and

since the loss function L H
n,αn

is convex (and obviously also the weighted ℓ1 norm), we
obtain by (3.20) that ˆ︁β PDW

n is also a solution of (3.3), cf. Ruszczynski (2006, Theorem
3.33) and recall from (3.24) that ˆ︁β PDW

n is (assumed to be) strictly feasible. To con-
clude ˆ︁β WLH

n = ˆ︁β PDW
n we need to show that this solution is unique. Then apparently

supp
(︁ˆ︁β WLH

n

)︁
⊆ supp

(︁
β∗)︁ and (3.27) follows from (3.29). If the beta-min condition (3.28)

holds, then for k ∈ S⃓⃓⃓ ˆ︁β WLH
n,k − β∗

k

⃓⃓⃓
≤
⃦⃦⃦ ˆ︁β WLH

n − β∗
⃦⃦⃦

∞
< β∗

min ≤
⃓⃓
β∗

k

⃓⃓
,

which implies sign
(︁ˆ︁β WLH

n,k

)︁
= sign

(︁
β∗

k

)︁
and hence the sign-consistency of ˆ︁β WLH

n . It
remains to show uniqueness of the solution of the program (3.3). To this end, we show
that all stationary points ˜︁β, that is points satisfying ∇L H

n,αn

(︁˜︁β)︁ = −λn

(︁
w ⊙ ˜︁γ)︁ with˜︁γ ∈ ∂∥˜︁β∥1, have support S, cf. Loh and Wainwright (2017, Lemma 3) or Tibshirani

(2013, Section 2.3). Then strict convexity of the loss function restricted to vectors with
support S, as implied by (3.18), concludes the proof.
From the form (3.14) of the gradient of the loss function we see that uniqueness of the
fitted values Xn

˜︁β for all stationary points implies uniqueness of the subgradient ˜︁γ, that
is ˜︁γ = ˆ︁γ. The strict dual feasibility condition ∥ˆ︁γSc∥∞ < 1 for ˆ︁γ then implies that ˜︁β
must also have support in S, cf. Tibshirani (2013, Section 2.3) or Wainwright (2009b,
Lemma 1 (b)). Now, uniqueness of the fitted values follows from the strict convexity of
the pseudo Huber loss by using Lemma 1 (ii) in Tibshirani (2013). This concludes the
proof of the lemma.

In the next two technical results we show how to take care of the terms involving the
gradient of the loss in the strict dual feasibility assumption (3.26), and how to obtain a
sharper bound on the inverse of ˆ︁QSS then (3.22) under (3.8).

Lemma 3.13 (Strict dual feasibility and norm bound I). Suppose that Assumption 3.1
and (3.8) are satisfied and assume that the robustification parameter αn is chosen as in
(3.9). If n ≥ C3 s2 log(p) for a sufficiently large positive constant C3 > 0, then there
exist constants C1, C2, CQ,S > 0 and CQ,L ≥ 1 such that⃦⃦⃦(︁ ˆ︁QSS

)︁−1
⃦⃦⃦

M,∞
≤ CQ,S (3.30)
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is satisfied with probability at least 1 − C1/p2 − 6/p5s, and⃦⃦⃦ ˆ︁QScS

(︁ ˆ︁QSS

)︁−1
(︂

∇L H
n,αn

(︁
β∗

αn

)︁)︂
S

−
(︂

∇L H
n,αn

(︁
β∗

αn

)︁)︂
Sc

⃦⃦⃦
∞

≤ CQ,L cGrad
2

(︃
log(p)

n

)︃ 1
2

(3.31)

with probability at least 1 − (4 + C1 + C2)/p2 − 6/p5s, where cGrad
2 is as in Lemma 3.8.

The proof is deferred to Section 3.6.2. If we drop the requirement (3.8) we still obtain a
bound of the form (3.31) under the somewhat restrictive scaling s ≤ log(p). The bound
(3.30) is no longer valid and needs to be replaced by (3.22).

Lemma 3.14 (Strict dual feasibility and norm bound II). Suppose that Assumption 3.1
holds and assume that the robustification parameter satisfies αn ≥

√︁
4/3 cGrad

1 (log(p)/n) 1
2 ,

where cGrad
1 is as in Lemma 3.8. Then for s ≤ log(p) and n ≥ max

{︁
cRSC

3 s log(p), 6 log(p)
}︁

we still have (3.31) with probability at least 1 − cP
1 exp(−cP

2 n) − 6/p2.

The proof is provided in Section 3.6.3.

3.4.3. General result for the weighted LASSO Huber estimator
In the next lemma we consider support recovery and ℓ∞ bounds for a generic form of the
weighted LASSO Huber estimator. This is similar to Zhou et al. (2009, Lemma 8.2). For
clarity of formulation we shall impose (3.31), and (3.30) in the second part, as high-level
conditions. These are taken care of in the preceding lemmas.

Lemma 3.15 (Weighted LASSO Huber). Consider model (3.1) under Assumption 3.1.
Suppose that (3.31) holds true, and that the weights satisfy the mutual incoherence con-
dition, that is for some η ∈ (0, 1) we have that⃓⃓⃓⃓ ˆ︁QScS

(︁ ˆ︁QSS

)︁−1(︁
wS ⊙ ˆ︁γS

)︁⃓⃓⃓⃓
≤ wSc

(︁
1 − η

)︁
, (3.32)

where ˆ︁γ is the subgradient of the ℓ1 norm of the estimator in the PDW construction. For
the regularization parameter λn we assume that

wmin
(︁
Sc
)︁

λn >
4 CQ,L cGrad

2
η

(︃
log(p)

n

)︃ 1
2

. (3.33)

Furthermore, suppose that the robustification parameter αn is chosen in the range

cGrad
1

(︃
log(p)

n

)︃ 1
2

≤ αn ≤

(︄
cGrad

2
80 Capx c2

X,sub

(︃
log(p)

n

)︃ 1
2
)︄ 1

m−1

(3.34)

and

β∗
min > ϕn,∞,s , where ϕn,∞,s = 128

cX,l
max

{︃
cGrad

2

(︃
s log(p)

n

)︃ 1
2

, wmax
(︁
S
)︁

λn

√
s

}︃
.

(3.35)
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Then for n ≥ max
{︁

cRSC
3 s log(p), 6 log(p)

}︁
with probability at least

1 − cP
1 exp(−cP

2 n) − 2 exp(−2n) − 4
p2 , (3.36)

the weighted LASSO Huber estimator as a solution to the program (3.3) is unique, given
by ˆ︁β WLH

n = ˆ︁β PDW
n and satisfies

sign
(︁ˆ︁β WLH

n

)︁
= sign

(︁
β∗)︁ and

⃦⃦⃦ ˆ︁β WLH
n − β∗

⃦⃦⃦
∞

≤ ϕn,∞,s (3.37)

with ϕn,∞,s in (3.35).
If in addition (3.30) is assumed as well, we may replace ϕn,∞,s in the beta-min condition
(3.35) and in the ℓ∞ bound in (3.37) by

ϕn,∞,f = 4 CQ,S max
{︃

cGrad
2

(︃
log(p)

n

)︃ 1
2

, wmax
(︁
S
)︁

λn

}︃
. (3.38)

Proof of Lemma 3.15. We shall apply Lemma 3.12. Using the mutual incoherence con-
dition (3.32), in order to show strict dual feasibility as in (3.26) it suffices to prove
that⃦⃦⃦ ˆ︁QScS

(︁ ˆ︁QSS

)︁−1
(︂

∇L H
n,αn

(︁
β∗

αn

)︁)︂
S

−
(︂

∇L H
n,αn

(︁
β∗

αn

)︁)︂
Sc

⃦⃦⃦
∞

+
⃦⃦⃦(︂ ˆ︁QSc(Sαn \S) − ˆ︁QScS

(︁ ˆ︁QSS

)︁−1 ˆ︁QS(Sαn \S)

)︂
β∗

αn,Sαn \S

⃦⃦⃦
∞

<
wmin

(︁
Sc
)︁

η

2 λn .

(3.39)

The first term is bounded by (3.31) (which is satisfied by assumption). We prove in
Section 3.6.4 that⃦⃦⃦(︂ ˆ︁QSc(Sαn \S) − ˆ︁QScS

(︁ ˆ︁QSS

)︁−1 ˆ︁QS(Sαn \S)

)︂
β∗

αn,Sαn \S

⃦⃦⃦
∞

≤ 80 Capx c2
X,sub αm−1

n (3.40)

with probability at least 1 − 2 exp(−2n) − 2/p2. Then the choices of λn and αn in (3.33)
and (3.34) imply (3.39). Since the first beta-min condition in Lemma 3.12 is also satisfied
in both cases by the choice of αn in (3.34), the first part of that lemma up to (3.27)
applies. Here we assumed that

√
s ≥ cX,l/(2560 c2

X,sub) for (3.35) and 320 c2
X,sub CQ,S ≥ 1

for (3.38), which can be arranged by choosing the constants appropriately.
Now we show that ϕn,∞ in (3.27) is bounded by ϕn,∞,s and, under the additional con-
dition (3.30), is even bounded by ϕn,∞,f . Then (3.35) (or the analogous condition with
ϕn,∞,f ) implies the beta-min condition (3.28) in Lemma 3.12, which concludes the proof.
To this end, note that ϕn,∞ is bounded by four times the maximum of the summands in
(3.27). In addition (3.22) leads to

4 wmax
(︁
S
)︁

λn

⃦⃦⃦(︁ ˆ︁QSS

)︁−1
⃦⃦⃦

M,∞
≤

128 wmax
(︁
S
)︁

λn
√

s

cX,l
,
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and together with Lemma 3.8 and the lower bound of αn in (3.34) this leads to

4
⃦⃦⃦(︁ ˆ︁QSS

)︁−1
⃦⃦⃦

M,∞

⃦⃦⃦(︂
∇L H

n,αn

(︁
β∗

αn

)︁)︂
S

⃦⃦⃦
∞

≤ 128 cGrad
2

cX,l

(︃
s log(p)

n

)︃ 1
2

with probability at least 1 − cP
1 exp(−cP

2 n) − 2/p2 . Further, Lemma 3.4 implies

4
⃦⃦
β∗

αn,S − β∗
S
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∞ ≤ 4
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β∗

αn
− β∗⃦⃦

2 ≤ 4 Capx αm−1
n ≤ 128 cGrad

2
cX,l

(︃
s log(p)

n

)︃ 1
2

with the choice of αn in (3.34). Finally, in Section 3.6.4 we also show that⃦⃦⃦ ˆ︁QS(Sα\S) β∗
α,Sα\S

⃦⃦⃦
∞

≤ 80 Capx c2
X,sub αm−1

n (3.41)

with high probability. Together with (3.22) this implies

4
⃦⃦⃦(︁ ˆ︁QSS
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⃦⃦⃦

M,∞

⃦⃦⃦ ˆ︁QS(Sα\S) β∗
α,Sα\S

⃦⃦⃦
∞

≤
10240 Capx c2

X,sub

cX,l

√
s αm−1

n

≤ 128 cGrad
2

cX,l

(︃
s log(p)

n

)︃ 1
2

by the choice of αn, which concludes the proof of ϕn,∞ ≤ ϕn,∞,s. To show ϕn,∞ ≤ ϕn,∞,f

under the assumption (3.30), after arranging 80 c2
X,sub CQ,S ≥ 1 we proceed analogously

(and use the estimate (3.30) instead of (3.22) in the previous inequalities). This concludes
the proof of the lemma.

3.4.4. Adaptive LASSO with generic first-stage estimator
The next step is to provide a result on the sign-consistency and ℓ∞ norm of the estimation
error of the adaptive LASSO Huber estimator ˆ︁β ALH

n in (3.3) with weights in (3.6) for a
generic initial estimator, similar to Zhou et al. (2009, Theorem 4.3)

Lemma 3.16 (Adaptive LASSO Huber). Consider model (3.1) under Assumption 3.1.
Suppose that (3.31) holds true, and that αn is chosen according to (3.34). For the esti-
mation error

∆n
..= ˆ︁β init

n − β∗

of the initial estimator ˆ︁β init
n , we assume upper bounds of the form

∥∆n,S∥∞ ≤ an < 1 , ∥∆n,Sc∥∞ ≤ bn < 1 (3.42)

with sequences (an) and (bn) tending to zero. Furthermore, assume that for some η ∈
(0, 1) and Cλ > 4/η the regularization parameter is chosen from the range

4 CQ,L cGrad
2 bn

η

(︃
log(p)

n

)︃ 1
2

< λn ≤ Cλ CQ,L cGrad
2 bn

(︃
log(p)

n

)︃ 1
2

, (3.43)
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and, in addition, suppose that there is a sequence qn ≤ (1 − η)/bn, which may grow if
bn ↓ 0, such that ⃦⃦⃦ ˆ︁QScS

(︁ ˆ︁QSS

)︁−1
⃦⃦⃦

M,∞
≤ qn . (3.44)

Finally, setting

ϕn,∞,s,1 = 128
cX,l

max
{︃

cGrad
2

(︃
s log(p)

n

)︃ 1
2

, λn

√
s

}︃
,

suppose that the beta-min assumption

β∗
min > max

{︃
2 an , ϕn,∞,s,1 , 2 max

{︂ qn

1 − η
, Cλ CQ,L

}︂
bn

}︃
(3.45)

is satisfied. Then for n ≥ max
{︁

cRSC
3 s log(p), 6 log(p)

}︁
with probability at least equal to

(3.36), the adaptive LASSO Huber estimator, given as a solution to the program (3.3)
with weights in (3.6), is unique, given by ˆ︁β ALH

n = ˆ︁β PDW
n and satisfies

sign
(︁ˆ︁β ALH

n

)︁
= sign

(︁
β∗)︁ and

⃦⃦⃦ ˆ︁β ALH
n − β∗

⃦⃦⃦
∞

≤ ϕn,∞,s,1 . (3.46)

If in addition (3.30) is also assumed, we can replace ϕn,∞,s,1 in the beta-min condition
(3.45) and in the upper bound of the ℓ∞ norm of the estimation error by

ϕn,∞,f,1 = 4 CQ,S max
{︃

cGrad
2

(︃
log(p)

n

)︃ 1
2

, λn

}︃
. (3.47)

Proof of Lemma 3.16. We shall apply Lemma 3.15. To this end, we start by checking
the mutual incoherence condition (3.32) and the condition (3.33) on the regularization
parameter λn. For (3.33), since

⃓⃓ ˆ︁β init
n,k

⃓⃓
=
⃓⃓
β∗

k + ∆n,k

⃓⃓
=
⃓⃓
∆n,k

⃓⃓
≤
⃦⃦
∆n,Sc

⃦⃦
∞ for k ∈ Sc,

we obtain from (3.42) that

wmin
(︁
Sc
)︁

= min
k∈Sc

{︂
max

{︁(︁⃓⃓ˆ︁β init
n,k

⃓⃓)︁−1
, 1
}︁}︂

≥
⃦⃦
∆n,Sc

⃦⃦−1
∞ ≥ 1

bn
(3.48)

and hence wmin
(︁
Sc
)︁

λn ≥ λn/bn, which together with the assumption (3.43) on λn gives
(3.33). Next, we turn to the mutual incoherence condition (3.32), for which it suffices to
prove ⃦⃦⃦ ˆ︁QScS

(︁ ˆ︁QSS

)︁−1
⃦⃦⃦

M,∞
≤

wmin
(︁
Sc
)︁

wmax
(︁
S
)︁ (︁1 − η

)︁
. (3.49)

From the beta-min condition (3.45) and the bounds in (3.42) we have in particular that
β∗

min/2 > an ≥ ∥∆n,S∥∞ ≥
⃓⃓
∆n,k

⃓⃓
and hence that

⃓⃓ ˆ︁β init
n,k

⃓⃓
=
⃓⃓
β∗

k + ∆n,k

⃓⃓
≥
⃓⃓
β∗

k

⃓⃓
−
⃓⃓
∆n,k

⃓⃓
> β∗

min − β∗
min
2 = β∗

min
2
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for k ∈ S. This together with the definition of the weights implies

wmax
(︁
S
)︁

= max
k∈S

{︂
max

{︁(︁⃓⃓ˆ︁β init
n,k

⃓⃓)︁−1
, 1
}︁}︂

≤ max{2/β∗
min, 1} . (3.50)

In order to conclude (3.49) we consider two cases. If β∗
min ≤ 2, then we have wmax

(︁
S
)︁

≤
2/β∗

min because of (3.50) and hence with (3.48) and the last term in the beta-min con-
dition (3.45) we obtain
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S
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> qn ≥
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)︁−1
⃦⃦⃦

M,∞

by (3.44). If β∗
min > 2, then wmax

(︁
S
)︁

≤ 1 and by (3.44), (3.48) and the choice of qn it
follows that

wmin
(︁
Sc
)︁

wmax
(︁
S
)︁ (︁1 − η

)︁
≥ 1 − η

bn
≥ qn =

⃦⃦⃦ ˆ︁QScS

(︁ ˆ︁QSS

)︁−1
⃦⃦⃦

M,∞
,

so that (3.49) is satisfied in both cases.
Next, we show that ϕn,∞,s ≤ ϕn,∞,s,1, then the beta-min condition (3.45) directly implies
(3.35). Comparing ϕn,∞,s,1 and ϕn,∞,s it remains to show that

128 wmax
(︁
S
)︁

λn
√

s

cX,l
≤ 128

cX,l
max

{︃
cGrad

2

(︃
s log(p)

n

)︃ 1
2

, λn

√
s

}︃
. (3.51)

To this end, note that the last lower bound in the inequality (3.45) implies

128 cGrad
2

cX,l

(︃
s log(p)

n

)︃ 1
2

>
128 cGrad

2
cX,l

(︃
s log(p)

n

)︃ 1
2 2 Cλ CQ,L bn

β∗
min

≥ 256 λn
√

s

cX,l β∗
min

by the choice of the regularization parameter λn in (3.43). This together with (3.50)
implies (3.51). So Lemma 3.15 applies and we conclude that the ℓ∞ bound in (3.37) can
be reduced to (3.46).
For the sharper bound, ϕn,∞,f ≤ ϕn,∞,f,1, under assumption (3.30), one argues similarly.
This concludes the proof.

3.4.5. Adaptive LASSO with the LASSO in the first stage
We start with the following lemma, which is analogous to Zhou et al. (2009, Lemma 4.2)
and gives a superset S of the support S, the cardinality of which is of the same order
s. This is used to determine the order of regularization in the adaptive LASSO Huber
estimator in the lemma to follow.
Lemma 3.17 (Thresholding procedure). If the initial estimator ˆ︁β init

n satisfies (3.7), and
if the following beta-min condition

β∗
min > 2 Cinit λ init

n

√
s (3.52)

holds, then the set S =
{︁

k ∈ {1, . . . , p}
⃓⃓ ⃓⃓ ˆ︁β init

n,k

⃓⃓
> λ init

n

}︁
satisfies

S ⊆ S and s ≤
⃓⃓
S
⃓⃓

≤ 2 Cinit s .
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Proof of Lemma 3.17. Let ∆n = ˆ︁β init
n − β∗. Then from (3.7) it follows that

∥∆n,S∥∞ ≤ ∥∆n∥∞ ≤ ∥∆n∥2 ≤ Cinit λ init
n

√
s ,

and hence for all k ∈ S that⃓⃓ ˆ︁β init
n,k

⃓⃓
=
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−
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≥ β∗

min − ∥∆n,S∥∞ > Cinit λ init
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√
s

because of inequality (3.52). As a consequence, the definition of the set S implies the
membership S ⊆ S. Furthermore, for k ∈ Sc (since β∗

k = 0) it is⃓⃓ ˆ︁β init
n,k

⃓⃓
=
⃓⃓
β∗

k + ∆n,k

⃓⃓
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∆n,k

⃓⃓
and the upper bound of the ℓ1 norm of the estimation error in (3.7) leads to⃦⃦⃦ ˆ︁β init
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⃦⃦⃦
1

= ∥∆n,Sc∥1 ≤ ∥∆n∥1 ≤ Cinit λ init
n s .

Hence, we include at most Cinit s more entries from Sc in S, thus

s ≤
⃓⃓
S
⃓⃓

≤ s + Cinit s ≤ 2 Cinit s ,

which completes the proof.

Lemma 3.18. Suppose Assumption 3.1 and n ≥ max
{︁

cRSC
3 s log(p), 6 log(p)

}︁
hold.

Then
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hold true with probability at least 1 − cP
1 exp(−cP

2 n) − 2/p2.

The technical proof of this lemma is deferred to Section 3.6.3.
For clarity of formulation in the following result we shall again impose (3.31), and (3.30)
in the second part, as high-level conditions. Theorem 3.2 then follows from the following
Lemma 3.19 together with the Lemmas 3.13 and 3.14.

Lemma 3.19 (Adaptive LASSO Huber with LASSO in the first stage). Consider model
(3.1) under Assumption 3.1. Suppose that (3.31) holds true, and that the robustification
parameter αn is chosen according to (3.34). Suppose that the initial estimator ˆ︁β init

n

satisfies (3.7) with λ init
n = Cλ,init (log(p)/n) 1

2 for some constant Cλ,init ≥ 16 cGrad
2 /cX,l,

and that for suitable η ∈ (0, 1) and Cλ,L > 4 (2 Cinit)
1
2 /η the regularization parameter is

chosen from the range
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(3.53)
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with S =
{︁

k ∈ {1, . . . , p}
⃓⃓ ⃓⃓ ˆ︁β init

n,k

⃓⃓
> λ init
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}︁
as above. In addition, suppose that the sample

size satisfies
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, (3.54)

and that we have the beta-min condition

β∗
min > 2 max

{︃
33 cX,sub

√
s

√
cX,l (1 − η) , Cλ,L CQ,L
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Cinit λ init
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s . (3.55)

Then with probability at least

1 − cP
1 exp(−cP

2 n) − 2 exp(−2n) − 4
p2

the adaptive LASSO Huber estimator, given as a solution to the program (3.3) with
weights in (3.6), is unique, given by ˆ︁β ALH

n = ˆ︁β PDW
n and satisfies

sign
(︁ˆ︁β ALH
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)︁
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(3.56)

If in addition (3.30) is assumed as well, the upper bound of the ℓ∞ norm of the estimation
error in (3.56) reduces to⃦⃦⃦ ˆ︁β ALH

n − β∗
⃦⃦⃦

∞
≤ max
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4 CQ,S cGrad
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Proof of Lemma 3.19. We shall apply Lemma 3.16. To check the assumptions, for (3.42)
using (3.7) we get ∥∆n∥∞ ≤ ∥∆n∥2 ≤ Cinit λ init

n

√
s = an = bn. For the lower bound in

(3.43), using (3.53), Lemma 3.17 and the choice of bn we estimate
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and similarly for the upper bound
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2
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with Cλ,L > 4/η. Next, (3.44) follows from Lemma 3.18 with qn = 33 cX,sub
√

s/
√

cX,l
with high probability. In addition, the choice of bn and the lower bound (3.54) of the
sample size implies

qn ≤ 33 cX,sub√
cX,l

(1 − η) √
cX,l

33 cX,sub Cinit Cλ,init (s log(p)/n) 1
2

= 1 − η

bn
.

So, finally we have to check the beta-min condition in (3.45), which concludes the proof
of the lemma in this setting. The last term in the maximum is given by (3.55) and the
choice of bn and qn, and β∗

min ≥ 2 an is clear because of the choice of an and (3.55).
Hence for applying Lemma 3.16 it remains to show that

ϕn,∞,s,1 ≤ 2 Cλ,L CQ,L Cinit λ init
n

√
s .

This bound implies then also (3.56) because of (3.46). It is
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Under the stronger assumption (3.30) we show

ϕn,∞,f,1 ≤ max
{︃

4 CQ,S cGrad
2

Cλ,init
,

Cλ,L CQ,S CQ,L Cinit cX,l

16

}︃
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n ,

which implies (3.57) because of (3.47). Note that the upper bound is obviously also
smaller than the right term in (3.55). It is easy to see that
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by (3.53), (3.54) and Lemma 3.17, which concludes the proof.
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3.5. Conclusions

In their recent paper, Sun et al. (2020) extended the analysis from Fan et al. (2017) to
fixed designs, as well as to conditional moments of ε1 of order strictly smaller than 2,
in which case they showed that the rates of convergence deteriorate. Results on support
estimation, rates of convergence in the ℓ∞ norm together with a data-driven choice of
the robustification parameter would be of some interest in this setting as well.
Furthermore, Fan et al. (2016) and Sun et al. (2020) suggest also robustification of the
covariates, which would be of major interest as well, especially for the estimation of the
second moments in the linear random coefficient regression model. For more details see
Section 6.2.
Another possible extension or modification of our method would be the use of nonconvex
penalty functions such as smoothly clipped absolute deviation (SCAD) as in Loh and
Wainwright (2017) and Loh (2017), with the methodological aim to achieve milder beta-
min conditions.
Another extension of some interest would be to robustify asymmetric versions of least
squares regression (Newey and Powell, 1987; Gu and Zou, 2016), that is, high-dimensional
expectile regression.

3.6. Technical proofs

At first we introduce further notations. For a random variable Y ∈ R we write Y ∼
subG(τ) with τ > 0 if P(|Y | ≥ t) ≤ 2 exp

(︁
− t2/(2 τ2)

)︁
for all t ≥ 0, and for a random

vector Y ∈ Rd we write Y ∼ subGd(τ) if P(|v⊤Y| ≥ t) ≤ 2 exp
(︁

− t2/(2 τ2∥v∥2
2)
)︁

for all v ∈ Rd \ {0d} and t ≥ 0. In addition, a random variable Y ∼ subE(τ, b) is
called sub-Exponential with τ, b > 0 if E[Y ] = 0 and E

[︁
exp(t Y )

]︁
≤ exp

(︁
t2τ2/2

)︁
for all

|t| < 1/b. Furthermore, we denote by X⃗1, . . . , X⃗p ∈ Rn the columns of Xn and the rows
are Xi = (Xi,1, . . . , Xi,p)⊤ ∈ Rp.

3.6.1. Proofs for Section 3.4.1

Proof of Lemma 3.4. Let l(x) = x2, then by (ii) of Assumption 3.1 we get

E
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l
(︁
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1 β∗
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2 . (3.58)
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Let gαn(x) = l(x) − lαn(x) = x2 − 2α−2
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(︁√︁
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, then
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αn

minimizes E
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]︁
over ∥β∥2 ≤ Cβ and ∥β∗∥2 ≤ Cβ by (iv) of

Assumption 3.1. Furthermore, the mean value theorem implies

E
[︂
gαn

(︁
Y1 − X⊤

1 β∗
αn

)︁
− gαn

(︁
Y1 − X⊤

1 β∗)︁]︂ = E
[︂
g′

αn
(Z)
(︁
X⊤

1 (β∗ − β∗
αn

)
)︁]︂

≤ E
[︂⃓⃓

g′
αn

(Z)
⃓⃓ ⃓⃓

X⊤
1 (β∗ − β∗

αn
)
⃓⃓
1{|Z| ≥ α−1

n }
]︂

+ E
[︂⃓⃓

g′
αn

(Z)
⃓⃓ ⃓⃓

X⊤
1 (β∗ − β∗

αn
)
⃓⃓
1{|Z| < α−1

n }
]︂

(3.60)

with Z = Y1 − X⊤
1
˜︁β and ˜︁β between β∗ and β∗

αn
. Note that ˜︁β is also a random vector.

For the first summand we obtain from (3.12) that

E
[︂⃓⃓

g′
αn

(Z)
⃓⃓ ⃓⃓

X⊤
1 (β∗ − β∗

αn
)
⃓⃓
1{|Z| ≥ α−1

n }
]︂

≤ 2E
[︃
|Z|
(︃

1 − 1√︁
1 + α2

nZ2

)︃ ⃓⃓
X⊤

1 (β∗ − β∗
αn

)
⃓⃓
1{|Z| ≥ α−1

n }
]︃

.

Let Pε be distribution of ε1 conditional on X1 and Eε the corresponding conditional
expectation. Then we get the inequality

Eε

[︃
|Z|
(︃

1 − 1
α2

nZ2

)︃
1{|Z| ≥ α−1

n }
]︃

≤ Eε

[︁
|Z|1{|Z| ≥ α−1

n }
]︁

=
∫︂ ∞

0
Pε

(︁
|Z| ≥ α−1

n , |Z| > t
)︁

dt

=
∫︂ ∞

α−1
n

Pε

(︁
|Z| > t

)︁
dt +

∫︂ α−1
n

0
Pε

(︁
|Z| ≥ α−1

n

)︁
dt

≤
∫︂ ∞

α−1
n

Eε

[︁
|Z|m

]︁
tm

dt +
∫︂ α−1

n

0

Eε

[︁
|Z|m

]︁
α−m

n
dt

= αm−1
n

m − 1 Eε

[︁
|Z|m

]︁
+ αm−1

n Eε

[︁
|Z|m

]︁
≤ 2 αm−1

n Eε

[︁
|Z|m

]︁
,
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where m ∈ {2, 3} is given in Assumption 3.1, and in consequence

E
[︂⃓⃓

g′
αn

(Z)
⃓⃓ ⃓⃓

X⊤
1 (β∗ − β∗

αn
)
⃓⃓
1{|Z| ≥ α−1

n }
]︂

≤ 4 αm−1
n E

[︂
|Z|m

⃓⃓
X⊤

1 (β∗ − β∗
αn

)
⃓⃓]︂

. (3.61)

Now we analyze the second term in (3.60). Taking the derivative in the series expansion

gαn
(x) = −2

∞∑︂
k=2

(︃
1/2
k

)︃
α2k−2

n x2k , α2x2 ≤ 1 , (3.62)

implies that ⃓⃓
g′

αn
(x)
⃓⃓

=
⃓⃓⃓⃓
⃓− 2

∞∑︂
k=2

(︃
1/2
k

)︃
2k α2k−2

n x2k−1

⃓⃓⃓⃓
⃓ ≤

⃓⃓
α2

n x3 ⃓⃓ = α2
n |x|3 ,

and hence that

E
[︂⃓⃓

g′
αn

(Z)
⃓⃓ ⃓⃓

X⊤
1 (β∗ − β∗

αn
)
⃓⃓
1{|Z| < α−1

n }
]︂

≤ α2
n E
[︂
|Z|3

⃓⃓
X⊤

1 (β∗ − β∗
αn

)
⃓⃓
1{|Z| < α−1

n }
]︂

because αn|Z| < 1. Moreover, it is

α2
n Eε

[︁
|Z|3 1{|Z| < α−1

n }
]︁

= α2
n Eε

[︁
|Z|m |Z|3−m

1{|Z| < α−1
n }
]︁

≤ α2+m−3
n Eε

[︁
|Z|m 1{|Z| < α−1

n }
]︁

≤ αm−1
n Eε

[︁
|Z|m

]︁
,

and in consequence

E
[︂⃓⃓

g′
αn

(Z)
⃓⃓ ⃓⃓

X⊤
1 (β∗ − β∗

αn
)
⃓⃓
1{|Z| < α−1

n }
]︂

≤ αm−1
n E

[︂
|Z|m

⃓⃓
X⊤

1 (β∗ − β∗
αn

)
⃓⃓]︂

. (3.63)

So in total we obtain by (3.58) - (3.63) the inequality⃦⃦
β∗

αn
− β∗⃦⃦2

2 ≤ 5
cX,l

E
[︂
|Z|m

⃓⃓
X⊤

1 (β∗ − β∗
αn

)
⃓⃓]︂

αm−1
n . (3.64)

The mean on the right-hand side can be upper bounded by

E
[︂
|Z|m

⃓⃓
X⊤

1 (β∗ − β∗
αn

)
⃓⃓]︂

= E
[︂⃓⃓

ε1 + X⊤
1 (β∗ − ˜︁β)

⃓⃓m ⃓⃓X⊤
1 (β∗ − β∗

αn
)
⃓⃓]︂

≤ 2m−1
(︃
E
[︂
|ε1|m

⃓⃓
X⊤

1 (β∗ − β∗
αn

)
⃓⃓]︂

+ E
[︂⃓⃓

X⊤
1 (β∗ − ˜︁β)

⃓⃓m ⃓⃓X⊤
1 (β∗ − β∗

αn
)
⃓⃓]︂)︃

. (3.65)

Moreover, for the first term in the brackets we obtain by Hölder’s inequality and (i) of
Assumption 3.1

E
[︂
|ε1|m

⃓⃓
X⊤

1 (β∗ − β∗
αn

)
⃓⃓]︂

= E
[︂
E
[︁
|ε1|m

⃓⃓
X1
]︁ ⃓⃓

X⊤
1 (β∗ − β∗

αn
)
⃓⃓]︂

≤ E
[︂
E
[︁
|ε1|m

⃓⃓
X1
]︁q]︂ 1

q E
[︂⃓⃓

X⊤
1 (β∗ − β∗

αn
)
⃓⃓ q

q−1
]︂ q−1

q

≤ (Cϵ,m)
1
q E
[︂⃓⃓

X⊤
1 (β∗ − β∗

αn
)
⃓⃓ q

q−1
]︂ q−1

q

.
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In addition, note that X⊤
1 (β∗ −β∗

αn
) ∼ subG

(︁
cX,sub

⃦⃦
β∗ − β∗

αn

⃦⃦
2

)︁
by (iii) of Assumption

3.1, and that the moments of a sub-Gaussian random variable Q ∼ subG(τ) with τ > 0
are bounded by

E
[︁
|Q|r

]︁
≤
(︁
2τ2)︁ r

2 r Γ
(︃

r

2

)︃
, E

[︁
|Q|r

]︁ 1
r ≤

√
2
(︄

r Γ
(︃

r

2

)︃)︄ 1
r

τ (3.66)

for r > 1. This can be proven analogously to Rigollet and Hütter (2019, Lemma 1.4).
Hence

E
[︂
|ε1|m

⃓⃓
X⊤

1 (β∗ − β∗
αn

)
⃓⃓]︂

≤
√

2 (Cϵ,m)
1
q

(︄
q

q − 1 Γ
(︃

q

2(q − 1)

)︃)︄ q−1
q

cX,sub
⃦⃦
β∗ − β∗

αn

⃦⃦
2 .

(3.67)

For the second term in the brackets in (3.65) the Cauchy-Schwarz inequality implies

E
[︂⃓⃓

X⊤
1 (β∗ − ˜︁β)

⃓⃓m ⃓⃓X⊤
1 (β∗ − β∗

αn
)
⃓⃓]︂

≤
(︃
E
[︂⃓⃓

X⊤
1 (β∗ − ˜︁β)

⃓⃓2m
]︂
E
[︂⃓⃓

X⊤
1 (β∗ − β∗

αn
)
⃓⃓2]︂)︃ 1

2

≤ 2E
[︂⃓⃓

X⊤
1 (β∗ − ˜︁β)

⃓⃓2m
]︂ 1

2
cX,sub

⃦⃦
β∗ − β∗

αn

⃦⃦
2 .

(3.68)

To give a upper bound for the remaining expected value we consider at first a tail bound
for the appropriate random variable. Let L be the line between β∗ and β∗

αn
, then L is

also the convex hull of V(L) = {β∗, β∗
αn

} and we obtain

P
(︂⃓⃓

(β∗ − ˜︁β)⊤X1
⃓⃓

> x
)︂

≤ P
(︁

max
u∈L

⃓⃓
u⊤X1

⃓⃓
> x

)︁
for x ≥ 0 because ˜︁β lies between β∗ and β∗

αn
. Moreover, X⊤

1 β∗ and X⊤
1 β∗

αn
are sub-

Gaussian with variance proxy C2
β c2

X,sub by (iii) and (iv) of Assumption 3.1 and
⃦⃦
β∗

αn

⃦⃦
2 ≤

Cβ by (3.5). Hence Rigollet and Hütter (2019, Theorem 1.16) leads to

P
(︁⃓⃓

(β∗ − ˜︁β)⊤X1
⃓⃓

> x
)︁

≤ P
(︁

max
u∈L

⃓⃓
u⊤X1

⃓⃓
> x

)︁
≤ 4 exp

(︃
− x2

2C2
β c2

X,sub

)︃
.

In addition, Rigollet and Hütter (2019, Lemma 1.4) and the corresponding proof imply

E
[︂⃓⃓

X⊤
1 (β∗ − ˜︁β)

⃓⃓2m
]︂

≤ 2
(︁
2C2

β c2
X,sub

)︁m (2m)! Γ(m) . (3.69)

In total (3.64) - (3.69) leads to⃦⃦
β∗

αn
− β∗⃦⃦

2 ≤ Capx αm−1
n
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with

Capx = 5 2m cX,sub

cX,l

(︄
(Cϵ,m)

1
q

(︄
q

q − 1 Γ
(︃

q

2(q − 1)

)︃)︄ q−1
q

+
(︂

2
(︁
2C2

β c2
X,sub

)︁m (2m)! Γ(m)
)︂ 1

2

)︄
.

Proof of Lemma 3.6. We obtain

⟨︁
∇L H

n,α(β + ∆) − ∇L H
n,α(β), ∆

⟩︁
= 1

n

n∑︂
i=1

(︂
l′
α

(︁
Yi − X⊤

i β
)︁

− l′
α

(︁
Yi − X⊤

i (β + ∆)
)︁)︂

X⊤
i ∆

for β, ∆ ∈ Rp by (3.14). Firstly we show that

⟨︁
∇L H

n,α(β + ∆) − ∇L H
n,α(β), ∆

⟩︁
≥ 1

2n

n∑︂
i=1

φτ∥∆∥2

(︂
X⊤

i ∆1{|Yi − X⊤
i β| ≤ T}

)︂
(3.70)

for all α ≤ 1/(T + 8τ Cβ) and (β, ∆) ∈ A ..=
{︁

(β, ∆) : ∥β∥2 ≤ 4Cβ and ∥∆∥2 ≤ 8Cβ

}︁
,

where

φt(u) = u2
1{|u| ≤ t/2} +

(︁
t − |u|

)︁2
1{t/2 < |u| ≤ t}

and

T = 96
c2

X,sub
√

cX,u Cβ

cX,l
, τ = max

{︂
4cX,sub

√︂
log(12c2

X,sub/cX,l), 1
}︂

.

The function φt satisfies obviously φt(u) ≤ u2
1{|u| ≤ t}. Let i ∈ {1, . . . , n} be fixed,

then we get on the one hand

φτ∥∆∥2

(︂
X⊤

i ∆1{|Yi − X⊤
i β| ≤ T}

)︂
= 0

if |X⊤
i ∆| > τ∥∆∥2 or |Yi − X⊤

i β| > T . In addition, we have always(︂
l′
α

(︁
Yi − X⊤

i β
)︁

− l′
α

(︁
Yi − X⊤

i (β + ∆)
)︁)︂

X⊤
i ∆ ≥ 0

because of the convexity of g(β) = lα(Yi − X⊤
i β). On the other hand, if |X⊤

i ∆| ≤ τ∥∆∥2
and |Yi − X⊤

i β| ≤ T , we get ⃓⃓
Yi − X⊤

i β
⃓⃓

≤ T ≤ α−1

and ⃓⃓
Yi − X⊤

i (β + ∆)
⃓⃓

≤
⃓⃓
Yi − X⊤

i β
⃓⃓
+
⃓⃓
X⊤

i ∆
⃓⃓

≤ T + τ∥∆∥2 ≤ T + 8τ Cβ ≤ α−1
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because (β, ∆) ∈ A and the choice of α. In addition, the mean value theorem implies

l′
α

(︁
Yi − X⊤

i β
)︁

− l′
α

(︁
Yi − X⊤

i (β + ∆)
)︁

= l′′
α(c)

(︂
Yi − X⊤

i β − Yi + X⊤
i (β + ∆)

)︂
= l′′

α(c) X⊤
i ∆

with c ∈
(︁
Yi−X⊤

i β, Yi−X⊤
i (β+∆)

)︁
since the pseudo Huber loss lα is twice differentiable.

The above conditions lead to |c| ≤ α−1 as well. Moreover, note that

l′′
α(c) = 2α−3

(α−2 + c2)3/2 ≥ 2α−3

(2α−2)3/2 = 2
23/2 ≥ 1

2

for all |c| ≤ α−1. Hence it follows that(︂
l′
α

(︁
Yi − X⊤

i β
)︁

− l′
α

(︁
Yi − X⊤

i (β + ∆)
)︁)︂

X⊤
i ∆ = l′′

α(c)
(︁
X⊤

i ∆
)︁2 ≥ 1

2
(︁
X⊤

i ∆
)︁2

≥ 1
2 φτ∥∆∥2

(︂
X⊤

i ∆1{|Yi − X⊤
i β| ≤ T}

)︂
if |X⊤

i ∆| ≤ τ∥∆∥2 and |Yi − X⊤
i β| ≤ T . So in total inequality (3.70) is satisfied for all

(β, ∆) ∈ A and α ≤ 1/(T + 8τCβ). Furthermore, the condition of α reduces to α ≤ cα,
where cα is a positive constant depending on cX,l, cX,u, cX,sub and Cβ , because of the
choice of T and τ . The proof of Fan et al. (2017, Lemma 2) provides

1
n

n∑︂
i=1

φτ∥∆∥2

(︂
X⊤

i ∆1{|Yi − X⊤
i β| ≤ T}

)︂
≥ c1∥∆∥2

(︄
∥∆∥2 − c2

(︃
log(p)

n

)︃ 1
2

∥∆∥1

)︄
(3.71)

with c1 = cX,l/4 and c2 = 160 τ2cX,sub/cX,l. Additionally, the proof of Fan et al. (2017,
Lemma 4) leads to

c1∥∆∥2

(︄
∥∆∥2 − c2

(︃
log(p)

n

)︃ 1
2

∥∆∥1

)︄
≥ c1

2 ∥∆∥2
2 − c1c2

2
2

log(p)
n

∥∆∥2
1 . (3.72)

All in all the inequalities (3.70) - (3.72) imply the assertion of Lemma 3.6.

Proof of Lemma 3.7. For v ∈ BS
..=
{︁

v ∈ Rp | supp(v) ⊆ S, ∥v∥2 = 1
}︁

we have that

(︁
∇2L H

n,α(β)
)︁

v = lim
t→0

∇L H
n,α

(︁
β + t v

)︁
− ∇L H

n,α(β)
t

,

and hence that

v⊤(︁∇2L H
n,α(β)

)︁
v = lim

t→0

⟨︁
∇L H

n,α

(︁
β + t v

)︁
− ∇L H

n,α(β), t v
⟩︁

t2 . (3.73)
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The RSC condition (3.17) implies that for t ≤ 1 and v ∈ BS we obtain⟨︁
∇L H

n,α

(︁
β + t v

)︁
− ∇L H

n,α(β), t v
⟩︁

≥ t2
(︃

cRSC
1 ∥v∥2

2 − cRSC
2

log(p)
n

∥v∥2
1

)︃
≥ t2

(︃
cRSC

1 − cRSC
2

s log(p)
n

)︃
,

where we used ∥v∥1 ≤
√

s ∥v∥2 since supp(v) ⊆ S and ∥v∥2 = 1. Plugging this into
(3.73) together with the condition n ≥ cRSC

3 s log(p) gives

v⊤(︁∇2L H
n,α(β)

)︁
v ≥ cRSC

1 − cRSC
1
2 = cRSC

1
2 ,

which is equivalent to the estimate (3.18).

Proof of Lemma 3.8. By (3.12) and (3.14) we obtain

∇L H
n,αn

(︁
β∗

αn

)︁
= − 1

n

n∑︂
i=1

l′
αn

(︁
Yi − X⊤

i β∗
αn

)︁
Xi

with
⃓⃓
l′
αn

(x)
⃓⃓

≤ 2α−1
n and

⃓⃓
l′
αn

(x)
⃓⃓

≤ 2|x| for all x ∈ R. Furthermore, by (3.66) in the
proof of Lemma 3.4 it follows that

E
[︁
|Q|ru

]︁ 1
r ≤

(︄(︁
2τ2)︁ ru

2 ru Γ
(︃

ru

2

)︃)︄ 1
r

≤
(︁
2τ2)︁u

2
(︂(︁

ru
)︁
!
)︂ 1

r

≤
(︁
2τ2)︁u

2
(︂(︁

u!
)︁r

rru
)︂ 1

r =
(︁
2τ2)︁u

2 u! ru (3.74)

for Q ∼ subG(τ) with τ > 0 and u, r ∈ N with u ≥ 2 and r/2 ∈ N. In the last inequality
we bound the r largest factors of (ru)! by ru, then the next r largest factors by r(u − 1)
and so on. Now we choose 1 < q1 ≤ q, where q is given in Assumption 3.1, such that
r1 = q1/(q1 − 1) ∈ N and r1 is even. Then we obtain

E
[︃(︂

l′
αn

(︁
Yi − X⊤

i β∗
αn

)︁
Xi,k

)︂2
]︃

≤ 4E
[︂(︁
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i (β∗ − β∗

αn
)
)︁2

X2
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]︂
≤ 8E

[︃(︂
ε2
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(︁
X⊤

i (β∗ − β∗
αn

)
)︁2
)︂

X2
i,k

]︃
= 8E
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E
[︁
ε2

i

⃓⃓
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]︁

X2
i,k +

(︁
X⊤

i (β∗ − β∗
αn

)
)︁2

X2
i,k

]︂
≤ 8E

[︃(︂
1 + E

[︁
|εi|m

⃓⃓
Xi
]︁)︂

X2
i,k +

(︁
X⊤

i (β∗ − β∗
αn

)
)︁2

X2
i,k

]︃
≤ cGrad

3

with

cGrad
3 = 32 c2

X,sub

(︂
1 + (1 + Cϵ,m)

1
q1 r2

1 + 22 64 c2
X,sub C2

β

)︂
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for k = 1, . . . , p. In the last inequality we used the Hölder and Cauchy-Schwarz inequality,
(3.74) with u = 2 and r ∈ {2, r1}, and the fact that Xi,k ∼ subG(cX,sub) and X⊤

i (β∗ −
β∗

αn
) ∼ subG(2Cβ cX,sub) by (iii) of Assumption 3.1. Analogously we obtain for higher

moments, u ≥ 3, using
⃓⃓
l′
αn

(x)
⃓⃓u ≤ 4 (2α−1

n )u−2 x2, the estimate

E
[︃⃓⃓⃓
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In addition, note that E
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]︁
= 0 because of (3.5) and (3.16). Now

Bernstein’s inequality, cf. Massart (2007, Proposition 2.9), leads to
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and hence
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Union bound implies
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3.6.2. Proof of Lemma 3.13
The proof of Lemma 3.13 relies on the following two technical results.

Lemma 3.20. Suppose Assumption 3.1 and αn = Cα(log(p)/n) 1
2 for some positive

constant Cα > 0 hold. If in addition n ≥ max
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with probability at least 1 − C1/p2 − 6/p5s.

Proof of Lemma 3.20. The following proof uses elements of the proof of Lemma 1 in Sun
et al. (2020). Let Bs

2 =
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. Then using (3.21) in Lemma 3.9 we have⃦⃦⃦⃦
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Z2
n(u) = 1
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To handle the first sum in (3.75) we consider the series expansion in (3.62), which implies
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Standard spectral norm bounds on the sample covariance matrix (with independent and
identically distributed sub-Gaussian rows), cf. Wainwright (2019, Theorem 6.5), and (ii)
of Assumption 3.1 lead to
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with probability at least 1 − C1/p2 for some positive constants C1, C4 > 0. Hence
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with high probability. For the second sum in (3.75) we firstly estimate
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Using the inequality
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(3.79)

We consider each of the three terms separately. By (iii) of Assumption 3.1 we get for
fixed u ∈ Bs

2 that u⊤(︁Xi
)︁

S
∼ subG(cX,sub), and following the proof of Rigollet and

Hütter (2019, Lemma 1.12) together with
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Bernstein’s inequality, cf. Rigollet and Hütter (2019, Theorem 1.13), implies

P

(︄⃓⃓⃓⃓
2
n

n∑︂
i=1

Qi(u)
⃓⃓⃓⃓

> x

)︄
≤ 2 max

{︄
exp

(︃
− x2 n

2048 c4
X,sub

)︃
, exp

(︃
− x n

64 c2
X,sub

)︃}︄

49



3. Support estimation with the adaptive LASSO

for x > 0 and fixed u ∈ Bs
2. Now we proceed with a covering argument. Consider a

1/8-cover A of cardinality N = N(1/8; Bs
2, ∥ · ∥2) ≤ 24s of the unit Euclidean ball of

Rs with respect to the Euclidean distance, cf. in Rigollet and Hütter (2019, Lemma
1.18) or Wainwright (2019, Example 5.8). We can argue similarly to the proof in Wain-
wright (2019, Theorem 6.5) since we consider also a quadratic form, and obtain for
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since 4 log(p) ≥ 1 if p ≥ 2, and by assumption n ≥ 16 log(24) s log(p). In addition, we
obtain
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By building the maximum of the expected values over u ∈ Bs
2 and collecting terms we

find that
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with probability at least 1 − 2/p5s. We proceed similarly for the second and third sum
in (3.79), hence it is sufficient to consider the rates of the expected values
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The vector ˆ︁β PDW
n has support S and satisfies
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by Rigollet and Hütter (2019, Theorem 1.19) together with Assumption 3.1. By the
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choice of αn and the sample size n we obtain
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since exp(x) ≥ x2/2 for x > 0. Therefore
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by the Cauchy-Schwarz inequality. So finally the previous considerations in (3.75) -
(3.83) showed that⃦⃦⃦⃦
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for a positive constant C5 > 0 with probability at least 1 − C1/p2 − 6/p5s. Furthermore,
repeated application of the spectral norm bound in (3.76) leads to
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for a positive constant C2 > 0. By the choices of αn and n ≳ s2 log(p) together with
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m ∈ {2, 3}, finally, it follows that
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for some positive constants C3, C6 > 0 with probability at least 1 − C1/p2 − 6/p5s.

Lemma 3.21. Let M ∈ R|A|×|B| be a matrix with A, B ⊆ {1, . . . , p} and
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Proof of Lemma 3.21. We follow the proof of Lemma 3.8. It is
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for u ∈ N, u ≥ 3, where cGrad
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4 are given in the proof of Lemma 3.8. Moreover,
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= 0p (see proof of Lemma 3.8). Arguing as in the proof
of Lemma 3.8 concludes the proof.
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Proof of Lemma 3.13. For the first part we invoke Lemma 3.20 and obtain (if C3 ≥
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(576 log(6) Cα C2

β c2
X,sub)2, 16 log(24)

}︁
in Lemma 3.13)
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with high probability if
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s ≥ 2 C4 CS,X. Finally, the triangle inequality and once again
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with probability at least 1 − 2/p2. In addition, we get by Lemma 3.8 also
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with the same probability. The final task is now to study the rate of
maxk∈{1,...,p−s} ∥∆2 ek∥2. First of all it is
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We proceed similarly to the proof of Lemma 3.20 but here we have only the maximum
over p2 elements in comparison to the 24s elements in the mentioned proof. In addition
we use the fact that the centered product of two sub-Gaussian random variables is sub-
Exponential, cf. Vershynin (2018, Lemma 2.7.7), and that also the centered product of
two sub-Gaussian random variables and a bounded random variable is sub-Exponential.
Hence we do not have the rates depending on s in (3.76) and in (3.80) the factor s can
be dropped. It follows that there exist positive constants C2, C5, C6 > 0 such that
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with probability at least 1−C2/p2 by the choices of αn in (3.9) and n ≳ s2 log(p) together
with m ∈ {2, 3}. Hence
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with high probability and in total we obtain by (3.86) - (3.90) the inequality
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with probability at least 1 − (4 + C1 + C2)/p2 − 6/p5s for some positive constant C7 > 0.
Renewed application of Lemma 3.8 and the triangular inequality lead to⃦⃦⃦ ˆ︁QScS
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3.6.3. Proofs of Lemmas 3.14 and 3.18
We start with proving Lemma 3.18. For this purpose we need a technical result concern-
ing the column normalization of the design matrix Xn.

Lemma 3.22. Let Xn =
(︁
X1, . . . , Xn

)︁⊤ ∈ Rn×p be a matrix with independent and
identically distributed rows Xi ∼ subGp(cX,sub) with variance proxy c2

X,sub > 0. Then
for n ≥ 6 log(p) the columns X⃗k of Xn satisfy with probability at least 1 − 2/p2

1
n

max
k∈{1,...,p}

⃦⃦⃦
X⃗k

⃦⃦⃦2

2
≤ 17 c2

X,sub .

Proof of Lemma 3.22. We have Xi,k = e⊤
k Xi ∼ subG(cX,sub) for all i = 1, . . . , n and k =

1, . . . , p by the definition of a sub-Gaussian random vector. Rigollet and Hütter (2019,
Lemma 1.12) implies X2

i,k − E
[︁
X2

i,k

]︁
∼ subE(16 c2

X,sub, 16 c2
X,sub) and with Bernstein’s

inequality, cf. Rigollet and Hütter (2019, Theorem 1.13), it follows that

P

(︄⃓⃓⃓⃓
1
n

n∑︂
i=1

(︂
X2

i,k − E
[︁
X2

i,k

]︁)︂⃓⃓⃓⃓
> x

)︄
≤ 2 max

{︄
exp

(︃
− x2 n

512 c4
X,sub

)︃
, exp

(︃
− x n

32 c2
X,sub

)︃}︄
for all x > 0 and k = 1, . . . , p since X1,k, . . . , Xn,k are independent and identically
distributed. By the union bound and the condition n ≥ 6 log(p) we obtain

P

(︄
max

k∈{1,...,p}

⃓⃓⃓⃓
1
n

n∑︂
i=1

(︃(︁
e⊤

k Xi
)︁2 − E

[︂(︁
e⊤
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)︁2
]︂)︃⃓⃓⃓⃓

> 16 c2
X,sub

)︄
≤ 2 p exp

(︃
− n

2

)︃
≤ 2

p2 .

Furthermore, we have for all k = 1, . . . , p the estimate

1
n

n∑︂
i=1

E
[︁
X2

i,k

]︁
= E

[︁
X2

1,k

]︁
≤ c2

X,sub

since X1,k is sub-Gaussian with variance proxy c2
X,sub, and therefore we get

max
k∈{1,...,p}

1
n

⃦⃦⃦
X⃗k

⃦⃦⃦2

2
≤ max

k∈{1,...,p}

⃓⃓⃓⃓
1
n

n∑︂
i=1

(︂
X2

i,k − E
[︁
X2

i,k

]︁)︂⃓⃓⃓⃓
+ max

k∈{1,...,p}

1
n

n∑︂
i=1

E
[︁
X2

i,k

]︁
≤ 16 c2

X,sub + c2
X,sub = 17 c2

X,sub

with high probability.
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Proof of Lemma 3.18. We follow the proof of Zhou et al. (2009, Lemma 10.3). It is

ˆ︁QScS

(︁ ˆ︁QSS

)︁−1 = 2
n
X⊤

n,Sc DXn,S

(︃
2
n
X⊤

n,S DXn,S

)︃−1
= X⊤

n,Sc DXn,S

(︁
X⊤

n,S DXn,S

)︁−1
,

see Lemma 3.9. For k ∈ Sc let

rk =
(︁
X⊤

n,S DXn,S

)︁−1X⊤
n,S D X⃗k ∈ Rs ,

then we have ⃦⃦⃦ ˆ︁QScS

(︁ ˆ︁QSS

)︁−1
⃦⃦⃦

M,∞
= max

k∈Sc
∥rk∥1 .

Furthermore, on the one hand the column normalization in Lemma 3.22 under the con-
dition n ≥ 6 log(p) and the submultiplicativity of the spectral norm lead to

max
k∈Sc

⃦⃦⃦
D

1
2 Xn,S rk

⃦⃦⃦
2

≤ max
k∈Sc

(︃⃦⃦⃦
D

1
2 Xn,S

(︁
X⊤

n,S DXn,S

)︁−1X⊤
n,S D

1
2

⃦⃦⃦
M,2

⃦⃦⃦
D

1
2

⃦⃦⃦
M,2

⃦⃦⃦
X⃗k

⃦⃦⃦
2

)︃
≤ max

k∈Sc

⃦⃦⃦
X⃗k

⃦⃦⃦
2

≤
√

17 cX,sub
√

n

with probability at least 1−2/p2 since D
1
2 Xn,S

(︁
X⊤

n,S DXn,S

)︁−1X⊤
n,S D

1
2 is an orthogonal

projection matrix and D a diagonal matrix with entries smaller than or equal to 1. On
the other hand under the condition n ≥ cRSC

3 s log(p) the smallest eigenvalue of ˆ︁QSS =
2
n X⊤

n,S DXn,S is bounded below by cX,l/32 with probability at least 1 − cP
1 exp(−cP

1 n),
see Lemma 3.9, which implies⃦⃦⃦

D
1
2 Xn,S rk

⃦⃦⃦2

2
= r⊤

k X⊤
n,S DXn,S rk = n

2 r⊤
k

(︃
2
n
X⊤

n,S DXn,S

)︃
rk ≥ cX,l

64 ∥rk∥2
2 n

for all k ∈ Sc. Hence we obtain by the last inequalities the estimate

max
k∈Sc

∥rk∥2 ≤ max
k∈Sc

(︃
64

cX,l n

)︃ 1
2 ⃦⃦⃦

D
1
2 Xn,S rk

⃦⃦⃦
2

≤ 33 cX,sub√
cX,l

,

and in total⃦⃦⃦ ˆ︁QScS

(︁ ˆ︁QSS

)︁−1
⃦⃦⃦

M,∞
= max

k∈Sc
∥rk∥1 ≤ max

k∈Sc

√
s ∥rk∥2 ≤ 33 cX,sub

√
s

√
cX,l

with high probability.

Lemma 3.14 immediately follows from the following lemma and Lemma 3.8.
Lemma 3.23. Suppose Assumption 3.1 and αn ≥

√︁
4/3 cGrad

1 (log(p)/n) 1
2 hold. Then

for s ≤ log(p) and n ≥ max
{︁

cRSC
3 s log(p), 6 log(p)

}︁
we have that⃦⃦⃦ ˆ︁QScS

(︁ ˆ︁QSS

)︁−1
(︂

∇L H
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(︁
β∗
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)︁)︂
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⃦⃦⃦
∞

≤
√

4 66 c2
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2

(︃
log(p)

n

)︃ 1
2

with probability at least 1 − cP
1 exp(−cP

2 n) − 4/p2.
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Proof of Lemma 3.23. Set

T =
{︃⃦⃦⃦ ˆ︁QScS

(︁ ˆ︁QSS

)︁−1
(︂
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⃦⃦⃦
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≤
√

4 66 c2
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2

(︃
log(p)
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)︃ 1
2
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.

Then

P
(︁
T c
)︁

≤ P

(︄
T c ∩

{︃
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k∈{1...,p−s}

⃦⃦⃦⃦(︂
e⊤

k
ˆ︁QScS

(︁ ˆ︁QSS

)︁−1
)︂⊤
⃦⃦⃦⃦

2
≤ 33 cX,sub√

cX,l
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⃦⃦⃦⃦(︂
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k
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)︂⊤
⃦⃦⃦⃦

2
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⃦⃦⃦⃦(︂
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k
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(︁ ˆ︁QSS

)︁−1
)︂⊤
⃦⃦⃦⃦

2
≤ 33 cX,sub√

cX,l

}︃)︄
+ cP

1 exp(−cP
2 n) + 2/p2 (3.91)

because of Lemma 3.18. Further, by definition of the event T ,

P

(︄
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{︃
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⃦⃦⃦⃦(︂
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⃦⃦⃦⃦
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⃓⃓⃓
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)︂⊤
⃦⃦⃦⃦
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. (3.92)

In the following we proceed with a covering argument. Let A denote a 1/2-cover of
cardinality N = N(1/2; Bs

2, ∥ · ∥2) of the unit Euclidean ball Bs
2 =

{︁
u ∈ Rs : ∥u∥2 ≤ 1

}︁
of Rs with respect to the Euclidean distance, cf. Rigollet and Hütter (2019, Definition
1.17) or Wainwright (2019, Definition 5.1). Then, as in the proof of Rigollet and Hütter
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(2019, Theorem 1.19), we obtain
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(3.93)

Now we can write for fixed u ∈ A, analogously to the proof of Lemma 3.21,
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Zn are independent and identically distributed and have mean equal

to zero, see proof of Lemma 3.21 for more details. In addition (iii) of Assumption
3.1 implies that the random variables Z1, . . . , Zn are sub-Gaussian with variance proxy
1089 c4
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3

for u ∈ N, u ≥ 3, where cGrad
3 and cGrad

4 are given in the proof of Lemma 3.8. Bernstein’s
inequality and the choice of αn leads for fixed u ∈ A to
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,

see proof of Lemma 3.8 for more details. By the union bound and the definition of cGrad
2

in the proof of Lemma 3.8 we get
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≤ 2 exp
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− 4 log(p) + s log(6)
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≤ 2 exp
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− 4 log(p) + 2 log(p)
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= 2
p2 (3.94)

since the 1/2-covering-number N can be upper bounded by 6s, cf. Rigollet and Hütter
(2019, Lemma 1.18) or Wainwright (2019, Example 5.8), and we assumed s ≤ log(p). In
conclusion the inequalities (3.91) - (3.94) imply the assertion of the lemma.
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3.6.4. Proofs of (3.40) and (3.41)
From (3.21) in Lemma 3.9 we obtain(︂ ˆ︁QSc(Sαn \S) − ˆ︁QScS
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The matrix in brackets, which we will denote by P, is an orthogonal projection matrix.
Therefore using Lemma 3.22, on an event with probability at least 1 − 2/p2 we obtain
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The vector Q has independent and sub-Gaussian entries
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by (iii) of Assumption 3.1, and Rigollet and Hütter (2019, Theorem 1.6) implies
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Finally, Rigollet and Hütter (2019, Theorem 1.19) with the choice δ = exp(−2n) leads
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so that we obtain overall
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Similarly, for the vector ˆ︁QS(Sαn \S) β∗
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l = 0 for all l ∈ Sαn

\ S. So in total we have⃦⃦⃦ ˆ︁QS(Sαn \S) β∗
αn,Sαn \S

⃦⃦⃦
∞

,
⃦⃦⃦(︂ ˆ︁QSc(Sαn \S) − ˆ︁QScS

(︁ ˆ︁QSS

)︁−1 ˆ︁QS(Sαn \S)

)︂
β∗

αn,Sαn \S

⃦⃦⃦
∞

≤ 80 Capx c2
X,sub αm−1

n

with probability at least 1 − 2 exp(−2n) − 2/p2, which yields the claimed inequalities in
(3.40) and (3.41).

62



Part II.

Variable selection for the means
and covariances in linear random

coefficient regression models
with the adaptive LASSO
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4. Identifiability of the mean vector and
covariance matrix

In this chapter we consider the linear regression model with random coefficients in-
troduced in Section 2.4. From a nonparametric point of view the identification and
estimation of the joint distribution or density of the coefficients is intensively studied, cf.
Beran and Hall (1992), Hoderlein et al. (2010) and Holzmann and Meister (2020). For
that purpose a large support of the covariates is required. However, often explanatory
variables only have compact or even finite support. Hence our main interest in this chap-
ter is the identifiability of the mean vector and covariance matrix of the (potentially)
random coefficients from regressors with possibly only finite support. Some consistent
estimators for this parametric approach are also provided in Hildreth and Houck (1968)
where the authors, however, restrict themselves to mutually independent coefficients.
Note that the first and second moments would determine the density under a normality
assumption, but we do not assume this here.
Now we repeat briefly the concept of identifiability in our statistical model. Consider
the linear regression model (2.6) with random coefficients. Let θ ∈ Θ be the unknown
parameters of the conditional distribution Pθ of the response variable Y . Then identifi-
ability of the parameters means that Pθ1 = Pθ2 leads to θ1 = θ2 for θ1, θ2 ∈ Θ. In the
following results the choice of the parameter space Θ will be clear from the context. For
example, in the final theorems the unknown parameters are the means, variances and
covariances of the random coefficients, that means θ = (µ⊤, σ⊤)⊤ and Θ = Rp ×V+

p with

V+
p =

{︁
vec(M)

⃓⃓
M ∈ Rp×p symmetric and positive semi-definite

}︁
⊂ R

p(p+1)
2 .

This chapter is structured as follows. In Sections 4.1 and 4.2 we provide sufficient condi-
tions for the identifiability of the first and second central moments in the linear random
coefficient regression model (2.6), where the detailed proofs are deferred to Section 4.3.

4.1. Preliminary results
In previous papers about the estimation of the moments, e.g. Hildreth and Houck (1968),
the authors often a-priori assumed that the covariance matrix Σ in the linear random
coefficient regression model (2.6) is a diagonal matrix,

Σ = diag
(︁
σ2

1 , . . . , σ2
p

)︁
. (4.1)

However, first of all correlations between the random coefficients may be of applied
interest. Secondly, even if the main interest lies on the variances of the coefficients,
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4. Identifiability of the mean vector and covariance matrix

in particular on their potential randomness, it is important not to exclude correlations
without very good reasons, since otherwise one may draw wrong conclusions about the
(non-)randomness of the coefficients. Let us illustrate the second point for a univariate
regressor W1, which means that the model (2.6) simplifies to

Y = B0 + W1 B1 . (4.2)

The following proofs are all provided in Section 4.3.1.

Proposition 4.1. Suppose that in model (4.2) the random variable W1 ∈ {0, 1} is
binary, and denote the identified standard deviations by

s1 =
√︁
Var(B0) , s2 =

√︁
Var(B0 + B1) .

Then each value √︁
Var(B1) ∈

[︁
|s1 − s2|, s1 + s2

]︁
is consistent with s1 and s2, provided the correlation ρ = Cor(B0, B1) is chosen for
s1 > 0 and

√︁
Var(B1) > 0 as

ρ = s2
2 − s2

1 − Var(B1)
2 s1

√︁
Var(B1)

∈

{︄
[−1, 1], if s1 < s2 ,[︁

− 1, −
√︁

s2
1 − s2

2/s1
]︁

if s1 ≥ s2 .
(4.3)

Thus, to conclude from Var(B0) = Var(B0 + B1) that Var(B1) = 0 fully relies on the
assumption of a diagonal covariance matrix, without this assumption B1 can well be
random. Hence we mainly focus on the case of a general covariance matrix Σ.

Let us proceed with some preliminary results. Consider at first the simple model (4.2)
again.

Proposition 4.2. In model (4.2), if W1 has n + 1 support points and E
[︁
|B0|n

]︁
< ∞,

E
[︁
|B1|n

]︁
< ∞, then all mixed moments E

[︁
Bj

0 Bk
1
]︁
, j, k ≥ 0, j + k ≤ n are identified.

Remark 4.3. The proposition shows that three distinct support points of W1 are
enough to identify the means E[Bj ], the variances Var(Bj), j = 0, 1, and the covari-
ance Cov(B0, B1). From Proposition 4.1 and not surprisingly, two support points are
insufficient for this purpose.

Let us now turn to general dimensions for the regressors. Recall that points w1, . . . , wd ∈
Rd−1 are said to be in general position if

∑︁d
k=1 αkwk = 0d−1 for αk ∈ R,

∑︁d
k=1 αk = 0,

implies that α1 = . . . = αd = 0.

Lemma 4.4 (General position). Points w1, . . . , wd ∈ Rd−1 are in general position if
and only if one of the following conditions holds.

1. w2 − w1, . . . , wd − w1 are linearly independent.

2. For each j ∈ {1, . . . , d} the point wj is not contained in
{︁∑︁d

k=1,k ̸=j αkwk,∑︁d
k=1,k ̸=j αk = 1

}︁
, the hyperplane generated by wk, k ̸= j.
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4.2. Full point identification

Before going to the general case, let us briefly consider diagonal covariance matrices
for the random coefficients. For a vector w = (w1, . . . , wd)⊤ ∈ Rd we write w2 =
(w2

1, . . . , w2
d)⊤ ∈ Rd.

Proposition 4.5 (Identifiability of the means and variances). Consider model (2.6)
with a diagonal covariance matrix as in (4.1). If the support of W contains p points
w1, . . . , wp ∈ Rp−1 in general position, the means µ are identified. If, moreover, the
support also contains possibly distinct points w̄1, . . . , w̄p ∈ Rp−1 for which w̄1

2, . . . , w̄p
2

are in general position, the variances σ2
1 , . . . , σ2

p are identified as well.
Remark 4.6. Consider model (2.6) and let p = 3, that is Y = B0 + W1 B1 + W2 B2.
Consider the support points (1, 1)⊤, (2, 4)⊤, (

√
5,

√
21)⊤, which are in general position,

while the squares (1, 1)⊤, (4, 16)⊤, (5, 21)⊤ are not. However, if we have an additional
support point (w1, w2)⊤ such that (w2

1, w2
2)⊤ is not on the line (1, 1)⊤ + λ (1, 5)⊤, λ ∈ R,

then (w1, w2)⊤ will be in general position with at least one pair of the original three
points, and the squares of these three points will be in general position as well.

4.2. Full point identification
Now we turn to the case of a general covariance matrix for the random coefficients A. If
the means µ of A are identified, we identify for the variances and covariances by

Var
(︁
Y
⃓⃓
W = w) = (1, w⊤) Σ (1, w⊤)⊤ = v

(︂
(1, w⊤)⊤

)︂⊤
σ , (4.4)

where w ranges over the support of W, the half-vectorization σ of the covariance matrix
Σ of the coefficients A is given in (2.7) and the associated vector transformation v is
defined by

v : Rd → R
d(d+1)

2 , (4.5)

x ↦→
(︁
x2

1, . . . , x2
d, 2x1x2, . . . , 2x1xd, 2x2x3, . . . , 2x2xp, . . . , 2xd−1xd

)︁⊤
.

Note that we can also write

v
(︂

(1, w⊤)⊤
)︂

=
(︁
1, (w2)⊤, 2w⊤, 2w1w2, . . . , 2w1wp−1, 2w2w3, . . . , 2wp−2wp−1

)︁⊤
.

Based on equation (4.4) we can establish a linear system for the p(p + 1)/2 entries of σ
(respectively Σ). With the above notation, we may state the following basic result. The
proofs of this section are deferred to Section 4.3.2.
Theorem 4.7 (Identifiability of the means, variances and covariances I). In model (2.6)
a sufficient condition for identification of the mean vector µ and the covariance matrix
Σ of the random coefficients is the existence of p(p+1)/2 points w1, . . . , w p(p+1)

2
∈ Rp−1

in the support of W, for which the matrix

S =
[︃
v
(︂

(1, w⊤
1 )⊤

)︂
, . . . , v

(︂
(1, w⊤

p(p+1)
2

)⊤
)︂]︃⊤

∈ R
p(p+1)

2 × p(p+1)
2 (4.6)

is of full rank. This condition is also necessary among the full-rank covariance matrices.
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4. Identifiability of the mean vector and covariance matrix

Note that certain singular covariance matrices may also be identified from lower-rank
matrices S.

Remark 4.8. For which points is the matrix S in (4.6) of full rank? Its determinant is
a sum of monomials in the coordinate variables of the vectors w1, . . . , w p(p+1)

2
∈ Rp−1

of degree (p − 1)2 + 2(p − 1). Hence characterizing its zero set, that are those points for
which the requirement of full rank is not satisfied, is a formidable task even for p = 2. Of
course, given p(p + 1)/2 support points, one may simply form the matrix S and compute
its determinant. More generally, given m ≥ p(p + 1)/2 support points, one may directly
check whether

Sm =
[︃
v
(︂

(1, w⊤
1 )⊤

)︂
, . . . , v

(︂
(1, w⊤

m)⊤
)︂]︃⊤

∈ Rm× p(p+1)
2

has full rank p(p+1)/2, which is equivalent to the p(p+1)/2 column vectors of Sm being
linearly independent in Rm, or to S⊤

mSm being invertible.

Example 4.9. Let W = (W1, . . . , Wp−1)⊤, and suppose that W1 has only two support
points a and b. The joint support of W is assumed to be finite (the example remains true
without this assumption), but of unrestricted cardinality. Then the matrix Sm, where m
is total number of support points, has rank at most p(p + 1)/2 − 1. Thus, from Theorem
4.7, full-rank covariance matrices Σ are not identified. Indeed, the matrix S⊤

m contains
the submatrix ⎡⎣ 1 . . . 1 1 . . . 1

a . . . a b . . . b
a2 . . . a2 b2 . . . b2

⎤⎦ ∈ R3×m .

Evidently, this matrix has column rank at most 2, since there are only two distinct
columns. Thus, its row rank is also at most two, which implies that the corresponding
three columns in Sm are linearly dependent.

Hence it is of some interest to have a simple, sufficient condition for identifiability of the
covariance matrix. We provide the following general result.

Proposition 4.10. Consider model (2.6) and suppose that the support of W contains
points satisfying the following properties.

1. The p points w1, . . . , wp ∈ Rp−1 are in general position.

2. For each j ∈ {1, . . . , p} there exist points wj,1, . . . , wj,p−1 ∈ Rp−1, possibly equal
to those in 1., such that

• wj, wj,1, . . . , wj,p−1 are in general position,
• and for each j ∈ {1, . . . , p}, k ∈ {1, . . . , p−1} there is a zj,k ∈ Rp−1 for which

wj, wj,k, zj,k are all distinct but generate only a one-dimensional affine space,
that means they are all contained in a line.

Then the design matrix S in (4.6) formed from all the points wj, wj,k and zj,k has full
rank p(p+1)/2 and hence, the mean vector µ and the covariance matrix Σ of the random
coefficients are identified.
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4.3. Detailed proofs

The minimal number of support points required in Proposition 4.10 is p + p(p − 1)/2 =
p(p + 1)/2, which corresponds to the number of free parameters in Σ. Our major appli-
cation of this proposition is to covariates having Cartesian products as supports. The
following theorem makes this precise.

Theorem 4.11 (Identifiability of the means, variances and covariances II). Consider
model (2.6). Suppose that the support of the covariate vector W = (W1, . . . , Wp−1)⊤

contains a Cartesian product of three distinct points in each coordinate. Then there exist
p(p + 1)/2 support points such that the matrix S in (4.6) has full rank p(p + 1)/2 and
consequently, the mean vector µ and the covariance matrix Σ of the random coefficients
are identified. Conversely, if there is a Wj having only two support points, then in the
full-rank covariance matrices identification fails.

4.3. Detailed proofs

4.3.1. Proofs for Section 4.1
Proof of Proposition 4.1. Set u =

√︁
Var(B1). From s2

2 = s2
1 + u2 + 2 ρ s1 u and |ρ| ≤ 1

we obtain the inequalities
(u − s1)2 ≤ s2

2 ≤ (u + s1)2.

By equating s2
2 = (u+s1)2 we obtain the solutions ±s2−s1 for u, which yields u ≥ s2−s1

if s2 > s1. If s2 ≤ s1 we obviously have only the bound u ≥ 0. Equating s2
2 = (u − s1)2

gives the solutions ±s2 + s1 for u, which yields the bounds

u ∈
[︁
|s1 − s2|, s1 + s2

]︁
for the standard deviation u of B1. Solving the equation at the beginning for the cor-
relation gives ρ = (s2

2 − s2
1 − u2)/(2 s1u), which ranges over the whole interval [−1, 1]

if s2 > s1. If s1 ≥ s2, the correlation must be negative, and maximizing the above
expression for ρ over u yields u =

√︁
s2

1 − s2
2, and finally the upper bound in (4.3).

Proof of Proposition 4.2. It is enough to show that all mixed moments of order n are
identified from n + 1 support points, the claim then follows by induction. It is

E
[︁
Y n
⃓⃓
W1 = w

]︁
= E

[︁
(B0 + w B1)n

]︁
=

n∑︂
k=0

(︃
n

k

)︃
wk E

[︁
Bn−k

0 Bk
1
]︁

by model (4.2). If W1 has distinct support points w1, . . . , wn+1, we obtain a linear system
for the moments E

[︁
Bn−k

0 Bk
1
]︁
, k = 0, . . . , n. Its design matrix

X =
(︄(︃

n

k − 1

)︃
wk−1

j

)︄
j,k∈{1,...,n+1}
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4. Identifiability of the mean vector and covariance matrix

satisfies

det
(︁
X
)︁

=
n∏︂

l=0

(︃
n

l

)︃
det
(︂

wk−1
j

)︂
j,k∈{1,...,n+1}

=
n∏︂

l=0

(︃
n

l

)︃ ∏︂
1≤j<k≤n+1

(wk − wj)

̸= 0 ,

where we used in the last equation the determinant of the Vandermonde matrix. Hence
the design matrix X is nonsingular and its kernel is trivial. As a consequence, the
identity of the conditional moments of Y implies identical mixed moments E

[︁
Bn−k

0 Bk
1
]︁
,

k = 0, . . . , n.

Proof of Lemma 4.4. Equivalences are clear by the definition of vectors in general posi-
tion.

Proof of Proposition 4.5. The linear system E[Y | W = wj] = E[B0] + w⊤
j E[B], j =

1, . . . , p, has design matrix ⎡⎢⎣1 w⊤
1

...
...

1 w⊤
p

⎤⎥⎦ .

The matrix is of full rank, since its rank is the same as the one of the matrix⎡⎢⎢⎢⎣
1 w⊤

1
0 w⊤

2 − w⊤
1

...
...

0 w⊤
p − w⊤

1

⎤⎥⎥⎥⎦ ,

which is invertibe by Lemma 4.4. Hence the means µ = E[A] are identified, see proof of
Proposition 4.2 for further detailed arguments. Similarly, we have

Var
(︁
Y
⃓⃓
W = w̄j

)︁
= E

[︂(︁
Y − E[Y | W = w̄j]

)︁2
⃓⃓⃓
W = w̄j

]︂
= E

[︂(︁
B0 + w̄⊤

j B − E[B0] − w̄⊤
j E[B]

)︁2
]︂

= σ2
1 + (w̄j

2)⊤ (︁σ2
2 , . . . , σ2

p

)︁⊤

for j = 1, . . . , p, because the covariances of the coefficients are assumed to be equal to
zero. The linear system has design matrix⎡⎢⎣1 (w̄1

2)⊤

...
...

1 (w̄p
2)⊤

⎤⎥⎦ ,

which is also of full rank by Lemma 4.4. Hence also the variances σ2
1 , . . . , σ2

p are identified.
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4.3. Detailed proofs

4.3.2. Proofs for Section 4.2
Proof of Theorem 4.7. Suppose that S is of full rank. Since S contains the matrix⎡⎢⎢⎣

1 2w⊤
1

...
...

1 2w⊤
p(p+1)

2

⎤⎥⎥⎦ ∈ R
p(p+1)

2 ×p

as a submatrix, in order for S to have full rank, it is necessary that this submatrix has
rank p. This implies that there are p points among the support points w1, . . . , w p(p+1)

2
in

general position, thus, identifying the means by Proposition 4.5. Then the linear system
which determines Var(Y | W = wj), j = 1, . . . , p(p + 1)/2, in terms of the entries of Σ
has design matrix S, see (4.4). Thus, identification of Σ from the conditional variances
follows by the nonsingularity of S.
Conversely, let m = p(p + 1)/2 and suppose that the condition of Theorem 4.7 is not
satisfied. Then all support points w of W are such that the vectors v

(︁
(1, w⊤)⊤)︁ are

contained in a (m − 1)-dimensional linear subspace V of Rm. The (p × p)-dimensional
positive semi-definite matrices form a convex cone in the space of all (p × p)-dimensional
symmetric matrices. Its interior consists of all positive definite matrices and hence the
image under the map vec is a convex cone C ⊂ Rm with non-empty interior.
Let z be a unit vector orthogonal to V , and let Z be the (p × p)-dimensional sym-
metric matrix for which vec(Z) = z. Since the positive definite matrices are open in
the space of all (p × p)-dimensional symmetric matrices, given a positive definite ma-
trix Σ, for small ϵ > 0 the matrix Σ1 = Σ + ϵ Z will still be positive definite, and
hence a covariance matrix. Moreover, it is vec(Σ1) = vec(Σ) + ϵ vec(Z) = vec(Σ) + ϵ z
and (1, w⊤) Z (1, w⊤)⊤ = v

(︁
(1, w⊤)⊤)︁⊤ z = 0 for w in the support of W by construc-

tion. Hence the conditional variances (1, w⊤) Σ (1, w⊤)⊤ and (1, w⊤) Σ1 (1, w⊤)⊤ will
be the same over the support of W. Thus, for normally distributed A ∼ Np(0p, Σ)
or A ∼ Np(0p, Σ1), the conditional normal distributions of Y | W = w will coincide,
showing nonidentifiability of the covariance matrix.

For the proof of Proposition 4.10 we require two lemmas.

Lemma 4.12. Suppose that Σ ∈ Rp×p is a symmetric matrix and v1, . . . , vp ∈ Rp form
a known basis of Rp. If v ∈ Rp and v⊤Σ vj, 1 ≤ j ≤ p, is identified, then v⊤Σ u is
identified for any vector u ∈ Rp. In particular, Σ is identified from the values v⊤

j Σ vk,
1 ≤ j ≤ k ≤ p.

Proof of Lemma 4.12. Given u ∈ Rp we may write u =
∑︁p

j=1 λjvj with λ1, . . . , λp ∈ R.
Then

v⊤Σ u =
p∑︂

j=1
λjv⊤Σ vj ,

showing the first claim. For the second, let ek denote the kth unit vector in Rp. By
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4. Identifiability of the mean vector and covariance matrix

assumption, one may write ek =
∑︁p

j=1 λk,jvj, where λj,k ∈ R. Then

Σkl = e⊤
k Σ el =

p∑︂
j1,j2=1

λk,j1λl,j2v⊤
j1

Σ vj2 .

The result follows from the assumptions and the symmetry of Σ.

Lemma 4.13. Let v1, v2, v3 ∈ Rp be such that each pair is linearly independent, but all
three are linearly dependent, so that v3 = λ1v1 + λ2v2, where λ1, λ2 ∈ R \ {0}. Then
for a symmetric matrix Σ ∈ Rp×p it holds that

v⊤
1 Σ v2 = 1

2 λ1λ2

(︂
v⊤

3 Σ v3 − λ2
1 v⊤

1 Σ v1 − λ2
2 v⊤

2 Σ v2

)︂
.

Proof of Lemma 4.13. Plug in the expression for v3 and compute the right side of the
equation.

Proof of Proposition 4.10. By Proposition 4.5 and the first assumption the means µ are
identified. Hence we obtain the equation (4.4) with w ranging over the support points
mentioned in the statement of the proposition. To show that the design matrix S in
(4.6) formed from all the points wj, wj,k and zj,k has full rank p(p + 1)/2, it suffices
to show that from these equations one can uniquely solve for σ. To this end, from the
second assumption, for j ∈ {1, . . . , p} and k ∈ {1, . . . , p − 1}, letting v1 = (1, w⊤

j )⊤,
v2 = (1, w⊤

j,k)⊤ and v3 = (1, z⊤
j,k)⊤ in Lemma 4.13 we identify (1, w⊤

j ) Σ (1, w⊤
j,k)⊤.

Since (1, w⊤
j ) Σ (1, wj) is also identified, from the first part in Lemma 4.12 we identify

(1, w⊤
j ) Σ (1, w⊤

l )⊤, j, l ∈ {1, . . . , p}. Hence from the second part of that lemma and
the first assumption of Proposition 4.10 together with Lemma 4.4 the entries σ of the
covariance matrix Σ itself are identified.

Proof of Theorem 4.11. For the sufficiency, suppose that the support of Wj contains
{wj,k, k = 1, 2, 3}, j = 1, . . . , p − 1. We apply Proposition 4.10 with

• wj = (w1,1, . . . , wj−1,1, wj,2, wj+1,1, . . . , wp−1,1)⊤, j ∈ {1, . . . , p − 1}, and wp =
(w1,1, . . . , wp−1,1)⊤,

• for j ∈ {1, . . . , p − 1} let wj,k, k ∈ {1, . . . , p − 1}, k ̸= j, enumerate the points
having kth coordinate wk,2 and jth coordinate wj,2, otherwise coordinates wi,1,
the corresponding zj,k having kth coordinate wk,3, jth coordinate wj,2, otherwise
coordinates wi,1. Furthermore, let wj,j = wp and let zj,j have jth coordinate wj,3,
otherwise wi,1,

• let wp,k = wk, k ∈ {1, . . . , p − 1}, and zp,k = (w1,1, . . . , wj−1,1, wj,3, wj+1,1, . . . ,
wp−1,1)⊤.

The requirements of the proposition are then easily checked by applying Lemma 4.4, 1.
By Proposition 4.10 it is also obvious that we find p(p+1)/2 points among all the points
wj, wj,k and zj,k so that the consequent design matrix S in (4.6) of these points has
full rank. The necessity of at least three support points in each coordinate, if Σ has full
rank, is clear from Example 4.9.
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5. Sign-consistency for a fixed number
of coefficients

Our main goal in this chapter is variable selection and estimation of the first and second
moments for a fixed number p of random coefficients in model (2.6). For this purpose we
consider the ordinary LASSO and the adaptive LASSO, which are introduced in Section
2.2. These estimators are very common and well-studied, cf. Tibshirani (1996), Zhao
and Yu (2006), Zou (2006) and Wainwright (2009b).

The regression model of the first moments of the coefficients is actually a linear regression
model with independent and heteroscedastic errors. Hence the associated results for
variable selection are also provided in Wagener and Dette (2012), where the authors give
asymptotics for bridge estimators and the adaptive LASSO under heteroscedasticity and
fixed designs. See also Knight and Fu (2000), Zou (2006) and Zhao and Yu (2006) for
the homoscedastic case and a discussion about random designs. However, in the linear
regression model of the variances and covariances of the coefficients the errors have a
variant form since the appropriate response variable involves also the estimation error
from the first stage mean regression. This leads for example to correlated errors.

Consider the linear regression model (2.6) with square-integrable coefficients. In the
following we want to estimate their mean vector and covariance matrix, hence we denote
by

µ∗ ..= E[A] ∈ Rp

and

Σ∗ ..= Cov(A) ∈ Rp×p , σ∗ ..= vec(Σ∗) ∈ R
p(p+1)

2 (5.1)

the true moments. Moreover, let

Sµ
..= supp(µ∗) =

{︂
k ∈ {1, . . . , p}

⃓⃓⃓
µ∗

k ̸= 0
}︂

,

Sσ
..= supp

(︁
σ∗)︁ =

{︄
k ∈

{︃
1, . . . ,

p(p + 1)
2

}︃ ⃓⃓⃓⃓
σ∗

k ̸= 0
}︄

be the supports of the mean vector µ∗ and the half-vectorization σ∗ of the covariance
matrix. In addition, we denote the cardinalities of these sets by

sµ
..= |Sµ| , sσ

..= |Sσ|
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5. Sign-consistency for a fixed number of coefficients

and the relative complements by

Sc
µ

..= {1, . . . , p} \ Sµ , Sc
σ

..=
{︃

1, . . . ,
p(p + 1)

2

}︃
\ Sσ .

Throughout this chapter we allow the mean vector and the covariance matrix to be
sparse. This means that the number sµ of coefficients with mean unequal to zero can
be smaller than the number p of coefficients, and that the number sσ of variances and
covariances unequal to zero can be smaller than p(p + 1)/2. The sparsity implies the
following points.

• There can be deterministic coefficients in the linear random coefficient regression
model (2.6). If k ∈ {1, . . . , p} is an element of Sc

σ, then Var(Ak) = 0 and hence Ak

is constant (almost surely). Note that this coefficient is then also uncorrelated with
the other coefficients Al, l ∈ {1, . . . , p}, l ̸= k. As a consequence, the kth column
and row of Σ∗ and the corresponding entries of σ∗ are equal to zero as well, and
hence elements of Sc

σ.

• Some of the coefficients can be equal to zero. If k ∈ {1, . . . , p} is an element of Sc
µ

and Sc
σ, then E[Ak] = Var(Ak) = 0 and hence Ak = 0 (almost surely).

• There can be uncorrelated coefficients. If k ∈ {p + 1, . . . , p(p + 1)/2} is an element
of Sc

σ, then Cov(Al, Al′) = 0 for some l, l′ ∈ {1, . . . , p}.

This chapter is structured as follows. In Section 5.1 we introduce the linear regression
model of the first moments of the random coefficients and give asymptotic results for a
growing number of observations. In particular, we provide sign-consistency and asymp-
totic normality of the adaptive LASSO. In Section 5.2 we proceed analogously for the
variances and covariances of the coefficients. The main steps of the proofs are given in
Section 5.4 and in Section 5.3 we report on results of appropriate numerical experiments.
Finally, Section 5.5 provides the technical proofs.

5.1. First moments

5.1.1. Regression model and estimator
We observe independent random vectors (Y1, X⊤

1 )⊤, . . . , (Yn, X⊤
n )⊤ distributed according

to the linear random coefficient regression model (2.9), and write

Yi = X⊤
i µ∗ + X⊤

i
(︁
Ai − µ∗)︁ , i = 1, . . . , n , (5.2)

where Xi = (1, W⊤
i )⊤ ∈ Rp with Wi ∼ W ∈ Rp−1 and Ai = (Bi,0, B⊤

i )⊤ ∼ A ∈ Rp

are independent random vectors. Here Xi = (Xi,1, . . . , Xi,p)⊤ represents the observed
individual covariates and Ai = (Ai,1, . . . , Ai,p)⊤ the unobserved individual regression
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5.1. First moments

coefficients. Moreover, note that the deterministic parameter vector µ∗ is sµ-sparse and
the errors are evidently heteroscedastic. We define

Yµ
n

..=
(︁
Y1, . . . , Yn

)︁⊤ ∈ Rn ,

Xµ
n

..=
[︁
X1, . . . , Xn

]︁⊤ ∈ Rn×p ,

εµ
n

..=
(︂

X⊤
1
(︁
A1 − µ∗)︁, . . . , X⊤

n
(︁
An − µ∗)︁)︂⊤

∈ Rn ,

and hence model (5.2) can be written in matrix form as

Yµ
n = Xµ

n µ∗ + εµ
n = Xµ

n,Sµ
µ∗

Sµ
+ εµ

n .

The entries of εµ
n are pairwise independent and identically distributed since (X⊤

1 , A⊤
1 )⊤,

. . . , (X⊤
n , A⊤

n )⊤ are independent and identically distributed. The conditional mean of
the error vector εµ

n regarding the regressors is given by

E
[︁
εµ

n

⃓⃓
Xµ

n

]︁
=
(︂

X⊤
1
(︁
E[A1] − µ∗)︁, . . . , X⊤

n
(︁
E[An] − µ∗)︁)︂⊤

= 0n ,

and the conditional variances are

Var
(︂

e⊤
i εµ

n

⃓⃓⃓
Xi

)︂
= Var

(︂
X⊤

i
(︁
Ai − µ∗)︁ ⃓⃓⃓Xi

)︂
=

p∑︂
k,l=1

Xi,kXi,l Cov
(︁
Ai,k, Ai,l

)︁
= X⊤

i Σ∗ Xi .

Hence we obtain the conditional covariance matrix

Ωµ
n

..= Cov
(︁
εµ

n

⃓⃓
Xµ

n

)︁
= diag

(︁
X⊤

1 Σ∗ X1, . . . , X⊤
n Σ∗ Xn

)︁
. (5.3)

Remark 5.1. The matrix Ωµ
n is obviously positive definite if the values X⊤

1 Σ∗ X1, . . . ,
X⊤

n Σ∗ Xn are positive. That is generally given if the covariance matrix Σ∗ of the random
coefficients is positive definite and X1, . . . , Xn ̸= 0p. However, we allow also sparsity
of the second central moments of the coefficients, and in consequence the covariance
matrix can be positive semi-definite. Especially, as we mentioned at the beginning of
this chapter, if some of the coefficients are deterministic, the covariance matrix has rows
and columns with zeros and in consequence no full rank. In that case the matrix can be
expressed by

Σ∗ =
[︃

Σ∗
1 0d×(p−d)

0(p−d)×d 0(p−d)×(p−d)

]︃
with Σ∗

1 ∈ Rd×d, d ≤ p (change the order of the coefficients and the associated ex-
planatory variables to get the block form). So, if we assume Σ∗

1 to be positive definite
and the corresponding covariates (X1,1, . . . , X1,d)⊤, . . . , (Xn,1, . . . , Xn,d)⊤ ̸= 0d, then the
conditional covariance matrix Ωµ

n of the errors εµ
n is still positive definite.
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5. Sign-consistency for a fixed number of coefficients

Consider the linear regression model (5.2) of the first moments. The appropriate empir-
ical quadratic loss function is given by

L LS
µ,n

(︁
β
)︁

..= 1
n

∥Yµ
n − Xµ

n β∥2
2 = 1

n

n∑︂
i=1

(︁
Yi − X⊤

i β
)︁2

, β ∈ Rp .

Then we define the least squares estimator by

ˆ︁µ LS
n ∈ ρ LS

µ,n
..= arg min

β∈Rp

L LS
µ,n

(︁
β
)︁

, (5.4)

the ordinary LASSO with regularization parameter λµ
n > 0 by

ˆ︁µ L
n ∈ ρ L

µ,n,λµ
n

..= arg min
β∈Rp

(︃
L LS

µ,n

(︁
β
)︁

+ 2λµ
n ∥β∥1

)︃
, (5.5)

and the adaptive LASSO by

ˆ︁µ AL
n ∈ ρ AL

µ,n,λµ
n

..= arg min
β∈Rp

(︄
L LS

µ,n

(︁
β
)︁

+ 2λµ
n

p∑︂
k=1

|βk|⃓⃓ˆ︁µ init
n,k

⃓⃓)︄ , (5.6)

where ˆ︁µ init
n = (ˆ︁µ init

n,1 , . . . , ˆ︁µ init
n,p )⊤ ∈ Rp is an initial estimator of µ∗. If ˆ︁µ init

n,k = 0, we
require βk = 0, and, moreover, the sequence

(︁ˆ︁µ init
n

)︁
n∈N ⊂ Rp should be consistent with

respect to µ∗.

5.1.2. Asymptotic results
We need some assumptions to prove asymptotic results for the LASSO and adaptive
LASSO in the linear regression model (5.2) of the first moments.

Assumption 5.2. We assume that

(A1) the random coefficients A have finite second moments,

(A2) the covariates X = (1, W⊤)⊤ (or rather W) have finite fourth moments,

(A3) the symmetric second moment matrix

Cµ ..= E
[︁
X X⊤]︁ ∈ Rp×p

of the covariates is positive definite.

The third assumption (A3) is connected to the identifiability of the first moments, dis-
cussed in Proposition 4.5. The proof of the following lemma is provided in Section 5.5.1.

Lemma 5.3. If the support of W contains p points w1, . . . , wp ∈ Rp−1 in general
position, then Cµ is positive definite.

Now we can give sufficient conditions for the sign-consistency of the LASSO. The proof
is deferred to Section 5.4.
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5.1. First moments

Theorem 5.4 (Asymptotics LASSO of the means). Consider the linear regression model
(5.2) and suppose that Assumption 5.2 as well as the mutual incoherence condition⃦⃦⃦

Cµ
Sc

µSµ

(︁
Cµ

SµSµ

)︁−1
⃦⃦⃦

M,∞
< 1 (5.7)

are satisfied. If in addition λµ
n → 0 and

√
n λµ

n → ∞ hold, the LASSO ˆ︁µ L
n as a solution

to (5.5) is sign-consistent,

P
(︂

sign
(︁ˆ︁µ L

n

)︁
= sign

(︁
µ∗)︁)︂ → 1 ,

and has estimation rate λµ
n on the support Sµ of µ∗, that is

1
λµ

n

(︁ˆ︁µ L
n,Sµ

− µ∗
Sµ

)︁
= OP (1) .

Remark 5.5. The mutual incoherence condition (5.7) is crucial for the sign-consistency
of the LASSO, cf. Zou (2006) and Wainwright (2009b). The assumption can be dropped
if the adaptive LASSO is used instead. Moreover, this estimator enjoys additionally the
oracle properties under homoscedasticity (Zou, 2006). That includes the selection of the
true model by the estimator and an optimal estimation rate of 1/

√
n. Theorem 5.4 shows

that the LASSO satisfies only one of these properties, if the regularization parameter λµ
n

is chosen as in the mentioned theorem, since λµ
n tends slower to zero than the square

root of the number n of observations to infinity.
To achieve sign-consistency and an optimal estimation rate of the adaptive LASSO also
assumptions on the regularization parameter λµ

n are necessary. However, they depend
on the estimation rate of the initial estimator. Thus, we assume in the following that
the initial estimator of the adaptive LASSO achieves already an optimal rate of 1/

√
n.

Furthermore, for the asymptotic normality on the true support Sµ we define in addition
the matrix

Bµ ..= E
[︂(︁

X⊤Σ∗ X
)︁

X X⊤
]︂

∈ Rp×p . (5.8)

It is evidently symmetric and positive semi-definite because of Assumption (A3) and
the positive semi-definiteness of the covariance matrix Σ∗. The proof of the following
theorem is deferred to Section 5.4 as well.
Theorem 5.6 (Asymptotics adaptive LASSO of the means). Consider the linear regres-
sion model (5.2) and let Assumption 5.2 be satisfied. In addition, suppose that the initial
estimator ˆ︁µ init

n of the means µ∗ of the random coefficients satisfies
√

n
(︁ˆ︁µ init

n − µ∗)︁ =
OP (1), and that the regularization parameter λµ

n satisfies λµ
n → 0,

√
n λµ

n → 0 and
n λµ

n → ∞. Then the adaptive LASSO ˆ︁µ AL
n as a solution to (5.6) is sign-consistent,

P
(︂

sign
(︁ˆ︁µ AL

n

)︁
= sign

(︁
µ∗)︁)︂ → 1 ,

and satisfies the asymptotic normality
√

n
(︁ˆ︁µ AL

n,Sµ
− µ∗

Sµ

)︁ d−→ Nsµ

(︂
0sµ

,
(︁
Cµ

SµSµ

)︁−1 Bµ
SµSµ

(︁
Cµ

SµSµ

)︁−1
)︂

(5.9)

on the support Sµ of µ∗.
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5. Sign-consistency for a fixed number of coefficients

Remark 5.7. The asymptotic covariance matrix in (5.9) can be degenerate since we
have no further assumption on Bµ. If Bµ

SµSµ
is positive definite, then the asymptotic

covariance matrix of the rescaled estimation error of the adaptive LASSO is positive
definite as well. Moreover, we obtain also

√
n
(︁ˆ︁µ LS

n − µ∗)︁ d−→ Np

(︂
0p,
(︁
Cµ
)︁−1 Bµ

(︁
Cµ
)︁−1
)︂

(5.10)

under Assumption 5.2, see Remark 5.28 in Section 5.4 for more details. This shows
that the least squares estimator and the adaptive LASSO have on the true support Sµ

the same asymptotic normality. Additionally, by (5.10) it follows that the least squares
estimator can be used as initial estimator in Theorem 5.6. The LASSO ˆ︁µ L

n with an
appropriate choice for its regularization parameter and the Ridge estimator,

ˆ︁µ Ridge
n ∈ ρ Ridge

µ,n,λµ
n

..= arg min
β∈Rp

(︃
L LS

µ,n

(︁
β
)︁

+ λµ
n ∥β∥2

2

)︃
,

are also potential choices as initial estimator, cf. Knight and Fu (2000) and Wagener
and Dette (2012).

5.2. Second central moments

5.2.1. Regression model and estimator
At first we want to point out that for the estimation of the variances and covariances
of the random coefficients knowledge about their means µ∗ is crucial. Hence we have
to proceed in a two-step procedure. Firstly, we determine a consistent estimator ˆ︁µn of
µ∗ based on the observations (Y1, X⊤

1 )⊤, . . . , (Yn, X⊤
n )⊤ and with the help of the linear

regression model (5.2). Then we consider the regression residuals

˜︁Yi
..= Yi − X⊤

i ˆ︁µn , i = 1, . . . , n .

Note that these variables are also observable since they only depend on (Y1, X⊤
1 )⊤, . . . ,

(Yn, X⊤
n )⊤. Moreover, the linear regression model (5.2) implies

˜︁Yi = X⊤
i µ∗ + X⊤

i
(︁
Ai − µ∗)︁− X⊤

i ˆ︁µn = X⊤
i
(︁
Ai − µ∗)︁+ X⊤

i
(︁
µ∗ − ˆ︁µn

)︁
.

Henceforth we denote by

Y σ
i

..= ˜︁Y 2
i =

(︂
X⊤

i
(︁
Ai − µ∗)︁)︂2

+
(︂

X⊤
i
(︁
µ∗ − ˆ︁µn

)︁)︂2
+ 2 X⊤

i
(︁
Ai − µ∗)︁X⊤

i
(︁
µ∗ − ˆ︁µn

)︁
,

i = 1, . . . , n, the squared residuals. These include among other terms the products of the
centered coefficients and hence they are the response variables in the linear regression
model of the variances and covariances. Expansion of the products and rearranging leads
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to

Y σ
i = X⊤

i

(︂(︁
Ai − µ∗)︁(︁Ai − µ∗)︁⊤ +

(︁
µ∗ − ˆ︁µn

)︁(︁
µ∗ − ˆ︁µn

)︁⊤ + 2
(︁
Ai − µ∗)︁(︁µ∗ − ˆ︁µn

)︁⊤
)︂

Xi

= X⊤
i

(︂(︁
Ai − µ∗)︁(︁Ai − µ∗)︁⊤ +

(︁
µ∗ − ˆ︁µn

)︁(︁
µ∗ − ˆ︁µn

)︁⊤

+
(︁
Ai − µ∗)︁(︁µ∗ − ˆ︁µn

)︁⊤ +
(︁
µ∗ − ˆ︁µn

)︁(︁
Ai − µ∗)︁⊤

)︂
Xi .

Evidently, the dependent variables are a quadratic form, which is determined by the
matrices in brackets, in the explanatory variables. We define the symmetric matrices

Di
..=
(︁
Ai − µ∗)︁(︁Ai − µ∗)︁⊤ ∈ Rp×p , (5.11)

En
..=
(︁
µ∗ − ˆ︁µn

)︁(︁
µ∗ − ˆ︁µn

)︁⊤ ∈ Rp×p , (5.12)

Fn,i
..=
(︁
Ai − µ∗)︁(︁µ∗ − ˆ︁µn

)︁⊤ +
(︁
µ∗ − ˆ︁µn

)︁(︁
Ai − µ∗)︁⊤ ∈ Rp×p (5.13)

for i ∈ {1, . . . , n}. The matrices D1, . . . , Dn contain the products of the centered in-
dividual coefficients. Hence E[Di] = Σ∗ holds since the coefficients Ai are identically
distributed with covariance matrix Σ∗. Furthermore, En captures the (products of the)
estimation error of the first stage mean regression and Fn,1, . . . , Fn,n contain the mixing
products. With the above notation the response variables can be written as

Y σ
i = X⊤

i Σ∗ Xi + X⊤
i
(︁
Di − Σ∗ + En + Fn,i

)︁
Xi , i = 1, . . . , n .

Now the first part of the sum on the right-hand side includes the variances and covariances
in which we are interested. To get the common structure of a linear regression model
we use the half-vectorization vec in (2.8) for symmetric matrices and the corresponding
vector transformation v in (4.5). Then we obtain

Y σ
i = v

(︁
Xi
)︁⊤

σ∗ + v
(︁
Xi
)︁⊤vec

(︁
Di − Σ∗ + En + Fn,i

)︁
, i = 1, . . . , n , (5.14)

where σ∗ = vec(Σ∗). Note that the deterministic coefficient vector σ∗ is sσ-sparse. The
errors are heteroscedastic and, moreover, they are not independent since they all depend
on the estimate ˆ︁µn of the means µ∗. Let

Yσ
n

..=
(︁
Y σ

1 , . . . , Y σ
n

)︁⊤ ∈ Rn ,

=
(︂(︁

Y1 − X⊤
1 ˆ︁µn

)︁2
, . . . ,

(︁
Yn − X⊤

n ˆ︁µn

)︁2
)︂⊤

,

Xσ
n

..=
[︂
v
(︁
X1
)︁
, . . . , v

(︁
Xn
)︁]︂⊤

∈ Rn× p(p+1)
2 ,

εσ
n

..=
(︂

v
(︁
X1
)︁⊤vec

(︁
D1 − Σ∗ + En + Fn,1

)︁
, . . . , (5.15)

v
(︁
Xn
)︁⊤vec

(︁
Dn − Σ∗ + En + Fn,n

)︁)︂⊤
∈ Rn ,

=
(︂

X⊤
1
(︁
D1 − Σ∗ + En + Fn,1

)︁
X1, . . . ,

X⊤
n
(︁
Dn − Σ∗ + En + Fn,n

)︁
Xn

)︂⊤
,
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then the linear regression model in (5.14) can be written in matrix notation as

Yσ
n = Xσ

n σ∗ + εσ
n = Xσ

n,Sσ
σ∗

Sσ
+ εσ

n . (5.16)

We define again the appropriate empirical quadratic loss function

L LS
σ,n

(︁
β
)︁

..= 1
n

∥Yσ
n − Xσ

n β∥2
2 = 1

n

n∑︂
i=1

(︂(︁
Yi − X⊤

i ˆ︁µn

)︁2 − v
(︁
Xi
)︁⊤

β
)︂2

, β ∈ R
p(p+1)

2 ,

where ˆ︁µn is a consistent estimator of the first moments µ∗ of the random coefficients
based on the observations (Y1, X⊤

1 )⊤, . . . , (Yn, X⊤
n )⊤.

The least squares estimator of the variances and covariances is given analogously to
Section 5.1.1 by

ˆ︁σ LS
n ∈ ρ LS

σ,n
..= arg min

β∈R
p(p+1)

2

L LS
σ,n

(︁
β
)︁

, (5.17)

the ordinary LASSO with regularization parameter λσ
n > 0 by

ˆ︁σ L
n ∈ ρ L

σ,n,λσ
n

..= arg min
β∈R

p(p+1)
2

(︃
L LS

σ,n

(︁
β
)︁

+ 2λσ
n ∥β∥1

)︃
, (5.18)

and the adaptive LASSO by

ˆ︁σ AL
n ∈ ρ AL

σ,n,λσ
n

..= arg min
β∈R

p(p+1)
2

(︄
L LS

σ,n

(︁
β
)︁

+ 2λσ
n

p(p+1)
2∑︂

k=1

|βk|⃓⃓ˆ︁σ init
n,k

⃓⃓)︄ , (5.19)

where ˆ︁σ init
n = (ˆ︁σ init

n,1 , . . . , ˆ︁σ init
n,p(p+1)/2)⊤ ∈ R

p(p+1)
2 is an initial estimator of the second

central moments σ∗. If ˆ︁σ init
n,k = 0, we require again βk = 0 in (5.19).

5.2.2. Structure of the regression errors
In this section we take a closer look at the errors in the linear regression model (5.14)
of the variances and covariances of the random coefficients. In particular, we emphasize
their structure if the first moments of the coefficients are known and do not have to be
estimated in the first place.

Remark 5.8. The error vector εσ
n in (5.15) can be decomposed in three terms, namely

εσ
n = δn + ζn + ξn
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with

δn
..=
(︂

v
(︁
X1
)︁⊤vec

(︁
D1 − Σ∗)︁, . . . , v

(︁
Xn
)︁⊤vec

(︁
Dn − Σ∗)︁)︂⊤

∈ Rn , (5.20)

=
(︂

X⊤
1
(︁
D1 − Σ∗)︁X1, . . . , X⊤

n
(︁
Dn − Σ∗)︁Xn

)︂⊤
,

ζn
..=
(︂

v
(︁
X1
)︁⊤vec

(︁
En

)︁
, . . . , v

(︁
Xn
)︁⊤vec

(︁
En

)︁)︂⊤
∈ Rn , (5.21)

=
(︂

X⊤
1 E1X1, . . . , X⊤

n EnXn

)︂⊤
,

ξn
..=
(︂

v
(︁
X1
)︁⊤vec

(︁
Fn,1

)︁
, . . . , v

(︁
Xn
)︁⊤vec

(︁
Fn,n

)︁)︂⊤
∈ Rn , (5.22)

=
(︂

X⊤
1 Fn,1X1, . . . , X⊤

n Fn,nXn

)︂⊤
.

The matrices D1, . . . , Dn, En, Fn,1, . . . , Fn,n are defined in (5.11), (5.12) and (5.13). Note
that the first term δn is unavoidable in the situation where we want to estimate the
variances and covariances of the random coefficients. However, the error terms ζn and
ξn occur because we have no knowledge about the first moments and have to estimate
them simultaneously.

Remark 5.9. In the special case where the means µ∗ of the random coefficients are
known in advance, we can set ˆ︁µn = µ∗ in the linear regression model (5.14). As a
consequence, the matrices En and F1,n, . . . , Fn,n are equal to the null matrix and hence
the model simplifies to

Y σ
i = v

(︁
Xi
)︁⊤

σ∗ + v
(︁
Xi
)︁⊤vec

(︁
Di − Σ∗)︁ , i = 1, . . . , n ,

respectively the error vector in (5.16) is εσ
n = δn. In this setting the heteroscedastic

errors are independent as well.

In the following lemma we provide the conditional first and second moments of the error
vector δn which is not affected by the estimator error of the first stage mean regression.
The corresponding proof is deferred to Section 5.5.2.

Lemma 5.10. Assume that the random coefficients A have finite fourth moments. Then
the vector δn in (5.20) satisfies E

[︁
δn

⃓⃓
Xσ

n

]︁
= 0n and

Ωσ
n

..= Cov
(︁
δn

⃓⃓
Xσ

n

)︁
= diag

(︂
v
(︁
X1
)︁⊤Ψ∗ v

(︁
X1
)︁
, . . . , v

(︁
Xn
)︁⊤Ψ∗ v

(︁
Xn
)︁)︂

, (5.23)

where

Ψ∗ ..=
[︂
vec
(︁
M11)︁, . . . , vec

(︁
Mpp

)︁
, vec

(︁
M12)︁, . . . , vec

(︁
M1p

)︁
, (5.24)

vec
(︁
M23)︁, . . . , vec

(︁
M2p

)︁
, . . . , vec

(︁
M(p−1)p

)︁]︂⊤
∈ R

p(p+1)
2 × p(p+1)

2
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with Mkl ∈ Rp×p and(︁
Mkl

)︁
uv

= Cov
(︂(︁

D1
)︁

kl
,
(︁
D1
)︁

uv

)︂
= Cov

(︂(︁
Ak − µ∗

k

)︁(︁
Al − µ∗

l

)︁
,
(︁
Au − µ∗

u

)︁(︁
Av − µ∗

v

)︁)︂
(5.25)

holds. In particular, the entries of δn are independent as well.

Remark 5.11. The matrix Ψ∗ is symmetric and contains the (mixed) fourth central
moments of the random coefficients. Since we claimed in Lemma 5.10 the existence of
the fourth moments, the Cauchy Schwarz inequality implies the well-definedness of Mkl

for k, l ∈ {1, . . . , p}, and hence of Ψ∗ as well. In addition, note that the matrix Mkl is
symmetric, and that Mkl and Mlk are equal for k, l ∈ {1, . . . , p}. Hence no information
about the fourth central moments is missing in the definition of Ψ∗. Moreover, let
Kkl, Kk ∈ Rp×p and κkl, κk ∈ Rp for k, l ∈ {1, . . . , p} with(︁

Kkl
)︁

uv
= Cov

(︁
AkAl, AuAv

)︁
,(︁

Kk
)︁

uv
= Cov

(︁
Ak, AuAv

)︁
,(︁

κkl
)︁

u
= Cov

(︁
AkAl, Au

)︁
,(︁

κk
)︁

u
= Cov

(︁
Ak, Au

)︁
,

then the properties of the covariance lead to

Mkl = Kkl − κkl
(︁
µ∗)︁⊤ − µ∗(︁κkl

)︁⊤ + µ∗
l

(︂
κk
(︁
µ∗)︁⊤ + µ∗(︁κk

)︁⊤ − Kk
)︂

+ µ∗
k

(︂
κl
(︁
µ∗)︁⊤ + µ∗(︁κl

)︁⊤ − Kl
)︂

.

In addition the proof of Lemma 5.10 shows that

v
(︁
x
)︁⊤Ψ∗ v

(︁
x
)︁

≥ 0 (5.26)

is satisfied for all x ∈ Rp.

5.2.3. Asymptotic results
In the following we provide analogous results as in Theorem 5.4 and 5.6 in Section 5.1.2
for the half-vectorization σ∗ of the covariance matrix Σ∗ of the random coefficients.
Note that the linear regression model (5.14) of the second central moments depends on
the estimator ˆ︁µn of the first moments µ∗ of the coefficients. For this purpose we choose
throughout this section an estimator with estimation rate of 1/

√
n, that is

√
n
(︁ˆ︁µn−µ∗)︁ =

OP (1). Once again we need some assumptions for the results provided in this section.

Assumption 5.12. We assume that

(A4) the random coefficients A have finite fourth moments,

(A5) the covariates X = (1, W⊤)⊤ (or rather W) have finite eighth moments,
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5.2. Second central moments

(A6) the symmetric matrix

Cσ ..= E
[︂
v
(︁
X
)︁

v
(︁
X
)︁⊤
]︂

∈ R
p(p+1)

2 × p(p+1)
2 ,

which contains the fourth moments of the covariates, is positive definite.

Remark 5.13. The matrix

E
[︂
(1, 2 W⊤)⊤ (1, 2 W⊤)

]︂
∈ Rp×p

is a submatrix of Cσ because of the definition of the vector transformation v in (4.5).
If Assumption (A6) is satisfied, then also the above matrix has to be positive definite,
which implies the positive definiteness of Cµ = E[X X⊤] as well. Hence, if Assumption
5.12 holds, also Assumption 5.2 is satisfied.

Furthermore, the critical Assumption (A6) is connected to the identification results in
Section 4.2. The following lemma makes this precise and the corresponding proof is
provided in Section 5.5.1.

Lemma 5.14. Under the assumption of Theorem 4.11, that the support of the covariate
vector W contains a Cartesian product with three distinct points in each coordinate, the
matrix Cσ is positive definite.

Now we give sufficient conditions, similar to Theorem 5.4, for the sign-consistency of the
ordinary LASSO. The proof is deferred to Section 5.4.

Theorem 5.15 (Asymptotics LASSO of the variances and covariances). Consider the
linear regression model (5.14) with an estimator ˆ︁µn of the first moments µ∗ of the random
coefficients that satisfies

√
n
(︁ˆ︁µn − µ∗)︁ = OP (1). In addition, suppose that Assumption

5.12 and the mutual incoherence condition⃦⃦⃦
Cσ

Sc
σSσ

(︁
Cσ

SσSσ

)︁−1
⃦⃦⃦

M,∞
< 1 (5.27)

are satisfied. Moreover, if λσ
n → 0 and

√
n λσ

n → ∞ hold, the LASSO ˆ︁σ L
n as a solution

to (5.18) is sign-consistent,

P
(︂

sign
(︁ˆ︁σ L

n

)︁
= sign

(︁
σ∗)︁)︂ → 1 ,

and has estimation rate λσ
n on the support Sσ of σ∗, that is

1
λσ

n

(︁ˆ︁σ L
n,Sσ

− σ∗
Sσ

)︁
= OP (1) .

See also Remark 5.5 for a discussion about the disadvantages of the LASSO in comparison
to the adaptive LASSO.
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5. Sign-consistency for a fixed number of coefficients

In the subsequent theorem we provide, similar to Theorem 5.6, a statement about the
sign-consistency of the adaptive LASSO of the variances and covariances and its asymp-
totic normality on the true support Sσ. For this purpose we define

Bσ ..= E
[︃(︂

v
(︁
X
)︁⊤Ψ∗ v

(︁
X
)︁)︂

v
(︁
X
)︁

v
(︁
X
)︁⊤
]︃

∈ R
p(p+1)

2 × p(p+1)
2 , (5.28)

where the matrix Ψ∗ is given in (5.24). The above matrix is positive semi-definite because
of Assumption (A6) and the inequality (5.26) in Remark 5.11. The proof of the following
theorem is deferred to Section 5.4 as well.

Theorem 5.16 (Asymptotics adaptive LASSO of the variances and covariances). Con-
sider the linear regression model (5.14) with an estimator ˆ︁µn of the first moments µ∗ of
the random coefficients that satisfies

√
n
(︁ˆ︁µn − µ∗)︁ = OP (1), and let Assumption 5.12 be

satisfied. In addition, suppose that the initial estimator ˆ︁σ init
n of the variances and covari-

ances σ∗ of the coefficients satisfies
√

n
(︁ˆ︁σ init

n −σ∗)︁ = OP (1), and that the regularization
parameter λσ

n satisfies λσ
n → 0,

√
n λσ

n → 0 and n λσ
n → ∞. Then the adaptive LASSOˆ︁σ AL

n as a solution to (5.19) is sign-consistent,

P
(︂

sign
(︁ˆ︁σ AL

n

)︁
= sign

(︁
σ∗)︁)︂ → 1 , (5.29)

and satisfies the asymptotic normality
√

n
(︁ˆ︁σ AL

n,Sσ
− σ∗

Sσ

)︁ d−→ Nsσ

(︂
0sσ

,
(︁
Cσ

SσSσ

)︁−1 Bσ
SσSσ

(︁
Cσ

SσSσ

)︁−1
)︂

(5.30)

on the support Sσ of σ∗.

Remark 5.17. Potential choices for the consistent estimator ˆ︁µn of the first moments µ∗

of the random coefficients are the least squares estimator and the adaptive LASSO with
an appropriate choice for its regularization parameter, cf. Theorem 5.6 and Remark 5.7.
Moreover, for further comments on the choice of the initial estimator ˆ︁σ init

n of the variances
and covariances and the asymptotic covariance matrix in (5.30) see also Remarks 5.7 and
5.27.
In addition, the results in Section 5.4 show that the asymptotic normality of the adaptive
Lasso ˆ︁σ AL

n on the true support Sσ is independent of the fact whether we know the first
moments µ∗ in advance or whether we estimate them simultaneously with an appropriate
estimator ˆ︁µn, see Remark 5.27 for more details.

Remark 5.18. We take a closer look at the problem of this section, variable selection
and estimation of the variances and covariances of the random coefficients. If we are
only interested in the fact whether some coefficients are deterministic or uncorrelated, the
adaptive LASSO ˆ︁σ AL

n provides for a large number n of observations under the conditions
of Theorem 5.16 the right solution with high probability. However, if we are interested
in the whole covariance matrix Σ∗, a problem arises. Let

mat: R
d(d+1)

2 → Rd×d ,

x ↦→ vec−1(x)
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5.3. Simulations

be the inverse function of the half-vectorization vec, which is defined in (2.8). If we
determine for a fixed number n the adaptive LASSO ˆ︁σ AL

n of the half-vectorization of the
covariance matrix, it is possible that the corresponding matrix ˆ︁Σ AL

n = mat
(︁ˆ︁σ AL

n

)︁
is not

positive semi-definite. Hence it would be preferable to optimize in the definition (5.19)
of the adaptive LASSO only over the image

V+
p =

{︁
vec(M)

⃓⃓
M ∈ S+

p

}︁
⊂ R

p(p+1)
2

of the half-vectorizations of the cone of the positive semi-definite matrices

S+
p =

{︁
M ∈ Rp×p

⃓⃓
M is symmetric and positive semi-definite

}︁
⊂ Rp×p .

This leads to the adaptive LASSO ˆ︁σ AL,pos
n as a solution of the constrained optimization

problem

ˆ︁σ AL,pos
n ∈ ρ AL,pos

σ,n,λσ
n

..= arg min
β∈V+

p

(︄
L LS

σ,n

(︁
β
)︁

+ 2λσ
n

p(p+1)
2∑︂

k=1

|βk|⃓⃓ˆ︁σ init
n,k

⃓⃓)︄ ,

with regularization parameter λσ
n > 0 and initial estimator ˆ︁σ init

n ∈ R
p(p+1)

2 . Evidently,
we get for every number n of observations by ˆ︁Σ AL,pos

n = mat
(︁ˆ︁σ AL,pos

n

)︁
a positive semi-

definite matrix. However, technically it is hard to extend the primal-dual witness ap-
proach underlying the proof of Theorem 5.16 to this setting. Moreover, if the true
covariance matrix Σ∗ is positive definite, meaning it is in the interior of S+

p respectively
σ∗ is in the interior of V+

p , then asymptotically the solutions of the constrained and
unconstrained optimization problem are equal with probability tending to one, that is

P
(︁ˆ︁σ AL

n = ˆ︁σ AL,pos
n

)︁
→ 1 ,

because the optimality conditions are the same. Hence, if we assume for the true covari-
ance matrix Σ∗ the block form

Σ∗ =
[︃

Σ∗
1 0d×(p−d)

0(p−d)×d 0(p−d)×(p−d)

]︃
with Σ∗

1 ∈ Rd×d, d ≤ p, is positive definite, then under the conditions of Theorem 5.16
for a large number n of observations the image mat

(︁ˆ︁σ AL
n

)︁
of the ordinary adaptive

LASSO ˆ︁σ AL
n is a covariance matrix of the above form with high probability. This is

an implication of the sign-consistency and the consistency on the true support Sσ in
Theorem 5.16. Note that the corresponding statement would not be true for the ordinary
least squares estimator.

5.3. Simulations
We consider in our numerical study the linear random coefficient regression model (2.6)
with normally distributed coefficients A = (B0, B1, . . . , B5)⊤ ∼ N6(µ∗, Σ∗) with mean
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5. Sign-consistency for a fixed number of coefficients

vector µ∗ = (40, 15, 0, −10, 20, 0)⊤ ∈ R6 and covariance matrix

Σ∗ =

⎡⎢⎢⎢⎢⎢⎢⎣
10 15.65 −5.20 0 0 0

15.65 50 0 12.65 0 0
−5.20 0 30 −12.25 0 0

0 12.65 −12.25 20 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ R6×6 .

The exact correlation coefficients are ρ12 = 0.7, ρ13 = −0.3, ρ24 = 0.4, ρ34 = −0.5
and evidently ρ14 = ρ23 = 0. Furthermore, the covariates W1, . . . , W5 are assumed to be
independent and identically distributed. We simulate n pairs (Y1, W⊤

1 )⊤, . . . , (Yn, W⊤
n )⊤

of data according to the specified model (2.6) and afterwards we estimate the means,
variances and covariances of the random coefficients A with the adaptive LASSO based
on these observations. The appropriate estimators ˆ︁µ AL

n and ˆ︁σ AL
n with regularization

parameters λµ
n, λσ

n > 0 are given in (5.6) and (5.19). The initial estimator of the adaptive
LASSO is always the least squares estimator, see (5.4) and (5.17), and in the second stage
mean regression for the variances and covariances σ∗ we use the adaptive LASSO ˆ︁µ AL

n

as estimator for the first moments µ∗. Moreover, note that the mean and variance of the
random intercept B0 are not penalized in our simulation because we use the function
glmnet(). This is plausible in terms of content since the random intercept includes the
deterministic intercept as well as a random error which is not affected by the regressors.
In each of the following scenarios we perform two Monte Carlo simulations with m =
10.000 iterations each to illustrate the sign-consistency and asymptotic normality ofˆ︁µ AL

n and ˆ︁σ AL
n , provided in the Theorems 5.6 and 5.16, for various sample sizes. In

first simulation we consider always n1 = 10.000 observations and in the second one
n2 = 100.000. The regularization parameters are chosen such that there is a satisfactory
trade-off between a high sign-recovery rate and a small estimation error. For this purpose
we use 1000 independent repetitions, run through a grid for the parameters λ in each
data set and determine the parameters with a correct number of degrees of freedom and,
in addition, among these the one with the smallest ℓ2 norm of the respective estimator
error. Based on this information we choose the regularization parameters for the adaptive
LASSO estimators ˆ︁µ AL

n and ˆ︁σ AL
n in the Monte Carlo simulations.
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5.3. Simulations

(a) U [−1,1] distributed covariates.
We consider W1, . . . , W5 ∼ U [−1, 1] independent and uniformly distributed on the
interval [−1, 1], and the regularization parameters are chosen by λµ

n1
= 0.4, λµ

n2
=

0.2, λσ
n1

= 16.5 and λσ
n2

= 12.0. For the sign-consistency we obtain the empirical
probabilities

P
(︂

sign
(︁ˆ︁µ AL

n1

)︁
= sign

(︁
µ∗)︁)︂ = 0.9427 , P

(︂
sign

(︁ˆ︁µ AL
n2

)︁
= sign

(︁
µ∗)︁)︂ = 0.9641 ,

P
(︂

sign
(︁ˆ︁σ AL

n1

)︁
= sign

(︁
σ∗)︁)︂ = 0.7513 , P

(︂
sign

(︁ˆ︁σ AL
n2

)︁
= sign

(︁
σ∗)︁)︂ = 0.9127 .

A comparison of the empirical and asymptotic densities of the rescaled estimation
errors for the means, variances and covariances of the random coefficients, which
are unequal to zero, are shown in the following figures. In particular, the larger
sample size n2 increases the sign-recovery rate for the second central moments and
the empirical densities lie closer to the asymptotic ones as well.
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Figure 5.1.: comparison of the densities of the rescaled estimation error for the means
with U [−1, 1] distributed covariates.

87



5. Sign-consistency for a fixed number of coefficients

0.000

0.001

0.002

-500 0 500

x

f(
x
)

Variance S11
*

0e+00

5e-04

1e-03

-1500 -1000 -500 0 500 1000

x

f(
x
)

Variance S22
*

0.0000

0.0005

0.0010

0.0015

-1500 -1000 -500 0 500 1000

x

f(
x
)

Variance S33
*

0.0000

0.0005

0.0010

0.0015

-1000 0 1000

x

f(
x
)

Variance S44
*

0.000

0.001

0.002

0.003

0.004

0.005

-400 -200 0 200

x

f(
x
)

Covariance S12
*

0.000

0.002

0.004

-250 0 250 500

x

f(
x
)

Covariance S13
*

0.000

0.001

0.002

-1000 -500 0 500

x

f(
x
)

Covariance S24
*

0.000

0.001

0.002

0.003

-500 0 500

x

f(
x
)

Covariance S34
*

Density Simulation 1 Simulation 2 asymptotic

Figure 5.2.: comparison of the densities of the rescaled estimation error for the variances
and covariances with U [−1, 1] distributed covariates.
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(b) U{−1,0,1} distributed covariates.
We consider W1, . . . , W5 ∼ U{−1, 0, 1} independent and uniformly distributed on
the set {−1, 0, 1} and the regularization parameters are chosen by λµ

n1
= 0.5, λµ

n2
=

0.3, λσ
n1

= 23.8 and λσ
n2

= 17.4. The following results are very similar to the ones
in scenario (a), which confirms numerically that three distinct support points for
each regressor are sufficient for the variable selection and estimation of the means,
variances and covariances of the random coefficients.

P
(︂

sign
(︁ˆ︁µ AL

n1

)︁
= sign

(︁
µ∗)︁)︂ = 0.9398 , P

(︂
sign

(︁ˆ︁µ AL
n2

)︁
= sign

(︁
µ∗)︁)︂ = 0.9688 ,

P
(︂

sign
(︁ˆ︁σ AL

n1

)︁
= sign

(︁
σ∗)︁)︂ = 0.7045 , P

(︂
sign

(︁ˆ︁σ AL
n2

)︁
= sign

(︁
σ∗)︁)︂ = 0.898 .
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Figure 5.3.: comparison of the densities of the rescaled estimation error for the means
with U{−1, 0, 1} distributed covariates.
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Figure 5.4.: comparison of the densities of the rescaled estimation error for the variances
and covariances with U{−1, 0, 1} distributed covariates.
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(c) U [0,1] distributed covariates.
We consider W1, . . . , W5 ∼ U [0, 1] independent and uniformly distributed on the
interval [0, 1], and the regularization parameters are chosen by λµ

n1
= 0.2, λµ

n2
=

0.1, λσ
n1

= 2.1 and λσ
n2

= 1.0. Here the parameter for the variance estimation is
chosen such that we obtain the highest possible probability for sign-consistency.
However, these results are not comparable to the ones in the scenarios (a) and
(b). The plots in Figure 5.6 suggest that the variances Σ∗

33 and Σ∗
44 and all non-

zero covariances are set to zero in some iterations of the first simulation. In the
second one problems persist only for the variance Σ∗

33 and the covariance Σ∗
13,

while the empirical densities of the covariances Σ∗
12, Σ∗

24 and Σ∗
34 look much better.

Apparently, positive and negative values for the regressors are crucial to perform
satisfying variable selection for the second central moments if the initial estimator
is the least squares estimator. Maybe one achieves better results if for that purpose
the empirical quadratic loss is combined with the Ridge or elastic net penalty. This
stabilizes the regularization paths even for regressors that are highly correlated.
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Figure 5.5.: comparison of the densities of the rescaled estimation error for the means
with U [0, 1] distributed covariates.
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Figure 5.6.: comparison of the densities of the rescaled estimation error for the variances
and covariances with U [0, 1] distributed covariates.
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5.4. Main steps of the proofs
The proofs of the results for the LASSO in the Theorems 5.4 and 5.15 as well as the
ones for the adaptive LASSO in the Theorems 5.6 and 5.16 are very similar. Thus, we
mainly prove the statements for the estimation of the variances and covariances of the
random coefficients in Section 5.2.3 in detail, and merely outline the ones for the mean
regression in Section 5.1.2.
At first we consider the equivalence of the convergence of a sequence of matrices and the
convergence of their entries. The proof is deferred to Section 5.5.3.

Lemma 5.19.

1. A sequence of matrices (Qn)n∈N ⊂ Rd1×d2 converges to Q ∈ Rd1×d2 with respect to
the ℓ∞ operator norm if and only if the entries

(︁
(Qn)kl

)︁
n∈N converge to Qkl for

all k ∈ {1, . . . , d1} and l ∈ {1, . . . , d2}.

2. A sequence of random matrices (Qn)n∈N ⊂ Rd1×d2 converges almost surely to Q ∈
Rd1×d2 with respect to the ℓ∞ operator norm if and only if the entries

(︁
(Qn)kl

)︁
n∈N

converge almost surely to Qkl for all k ∈ {1, . . . , d1} and l ∈ {1, . . . , d2}.

In the following proofs the rescaled Gram matrices 1
n

(︁
Xσ

n

)︁⊤Xσ
n and the matrices

1
n

(︁
Xσ

n

)︁⊤Ωσ
n Xσ

n, where the conditional covariance matrix Ωσ
n is defined in (5.23), play

an important role. Thus, we discuss in the subsequent remark their expected value and
convergence.

Remark 5.20. The rescaled gram matrices can also be written as

1
n

(︁
Xσ

n

)︁⊤Xσ
n = 1

n

n∑︂
i=1

v
(︁
Xi
)︁

v
(︁
Xi
)︁⊤

.

Under Assumption (A5) the entries of the matrices are integrable and we obtain the
expected value

E
[︃

1
n

(︁
Xσ

n

)︁⊤Xσ
n

]︃
= 1

n

n∑︂
i=1

E
[︂
v
(︁
Xi
)︁

v
(︁
Xi
)︁⊤
]︂

= E
[︂
v
(︁
X
)︁

v
(︁
X
)︁⊤
]︂

= Cσ

since the regressors X1, . . . , Xn are independent and identically distributed. Further-
more, the strong law of large numbers implies

e⊤
q

(︃
1
n

(︁
Xσ

n

)︁⊤Xσ
n

)︃
er = 1

n

n∑︂
i=1

e⊤
q v
(︁
Xi
)︁

v
(︁
Xi
)︁⊤

er
a.s.−→ E

[︁
e⊤

q v
(︁
X
)︁

v
(︁
X
)︁⊤

er

]︁
= e⊤

q Cσ er

for q, r ∈ {1, . . . , p(p+1)/2}, and together with Lemma 5.19 the almost sure convergence⃦⃦⃦⃦
1
n

(︁
Xσ

n

)︁⊤Xσ
n − Cσ

⃦⃦⃦⃦
M,∞

a.s.−→ 0 (5.31)
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follows. If in addition Assumption (A4) is satisfied, the matrix Ψ∗ with the fourth
moments of the random coefficients exists, cf. Lemma 5.10 and Remark 5.11, and,
moreover, we obtain

1
n

(︁
Xσ

n

)︁⊤Ωσ
n Xσ

n = 1
n

n∑︂
i=1

(︂
v
(︁
Xi
)︁⊤Ψ∗ v

(︁
Xi
)︁)︂

v
(︁
Xi
)︁

v
(︁
Xi
)︁⊤

since Ωσ
n is a diagonal matrix with entries v(X1)⊤Ψ∗ v(X1), . . . , v(Xn)⊤Ψ∗ v(Xn). This

leads to

E
[︃

1
n

(︁
Xσ

n

)︁⊤Ωσ
n Xσ

n

]︃
= 1

n

n∑︂
i=1

E
[︃(︂

v
(︁
Xi
)︁⊤Ψ∗ v

(︁
Xi
)︁)︂

v
(︁
Xi
)︁

v
(︁
Xi
)︁⊤
]︃

= Bσ (5.32)

under the Assumptions (A4) and (A5), where Bσ is given in (5.28). Furthermore, we
obtain also ⃦⃦⃦⃦

1
n

(︁
Xσ

n

)︁⊤Ωσ
n Xσ

n − Bσ

⃦⃦⃦⃦
M,∞

a.s.−→ 0 (5.33)

by the strong law of large numbers and Lemma 5.19. Note that the almost sure con-
vergences in (5.31) and (5.33) hold with respect to ℓ2 operator norm as well since
∥M∥M,2 ≤ ∥M∥M,∞ for a symmetric matrix M ∈ Rd×d. Additionally, the above av-
erages can be used as consistent estimators for the matrices Bσ and Cσ, and hence also
for the asymptotic covariance matrix in (5.30) in Theorem 5.16. In doing so one can in
principle construct a consistent estimator for the matrix Ψ∗, which can be obtained from
linear regression equations for higher-order moments of the random coefficients similarly
to those for the variances and covariances.

Remark 5.21. Similar to Remark 5.20 we obtain under the Assumptions (A1) and (A2)
the expected values

E
[︃

1
n

(︁
Xµ

n

)︁⊤Xµ
n

]︃
= Cµ , E

[︃
1
n

(︁
Xµ

n

)︁⊤Ωµ
n Xµ

n

]︃
= Bµ ,

and the almost sure convergences⃦⃦⃦⃦
1
n

(︁
Xµ

n

)︁⊤Xµ
n − Cµ

⃦⃦⃦⃦
M,∞

a.s.−→ 0 ,
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1
n

(︁
Xµ

n

)︁⊤Ωµ
n Xµ

n − Bµ
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M,∞

a.s.−→ 0 ,

where the second moment matrix Cµ of the covariates is given in (A3), the conditional
covariance matrix Ωµ

n of the first stage mean regression errors in (5.3) and Bµ in (5.8).

A further crucial object in the following proofs is the gradient

∇L LS
σ,n

(︁
σ∗)︁ = − 2

n

(︁
Xσ

n

)︁⊤(︁Yσ
n − Xσ

n σ∗)︁ = − 2
n

(︁
Xσ

n

)︁⊤
εσ

n
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of the empirical quadratic loss function L LS
σ,n with argument σ∗. We will see that stochas-

tic boundedness of the sequence

Zσ
n

..= −
√

n

2 ∇L LS
σ,n

(︁
σ∗)︁ = 1√

n

(︁
Xσ

n

)︁⊤
εσ

n ∈ R
p(p+1)

2

of random vectors is required for the sign-consistency of the (adaptive) LASSO. Fur-
thermore, the asymptotic covariance matrix in the normality (5.30) in Theorem 5.16 is
essentially determined by the asymptotic covariance matrix of this sequence.

Remark 5.22. Remember the decomposition of the error vector εσ
n in Remark 5.8, then

we can write

Zσ
n = 1√

n

(︁
Xσ

n

)︁⊤(︁
δn + ζn + ξn

)︁
= Zσ,1

n + Zσ,2
n

with

Zσ,1
n

..= 1√
n

(︁
Xσ

n

)︁⊤
δn , Zσ,2

n
..= 1√

n

(︁
Xσ

n

)︁⊤(︁
ζn + ξn

)︁
. (5.34)

The random vectors ζn and ξn, which are given in (5.21) and (5.22), are affected by the
first stage mean regression, whereas the random vector δn, given in (5.20), is independent
of this estimation error and exists also if the means of the random coefficients are known
in advance. We can show in the following lemma that the random vectors Zσ,2

n converge
in probability to zero if we assume that the estimator ˆ︁µn of the means µ∗ has rate 1/

√
n.

Hence, in this case, the stochastic boundedness and asymptotic covariance matrix of Zσ
n

is only determined by the random vectors Zσ,1
n .

Lemma 5.23. Suppose that the Assumptions (A4) and (A5) hold. Then the random
vectors Zσ,2

n in (5.34) converge in probability to zero,

Zσ,2
n = oP (1) ,

if
√

n
(︁ˆ︁µn − µ∗)︁ = OP (1) is satisfied.

The technical proof is deferred to Section 5.5.4. Now we make a statement about the
remaining part of the rescaled gradient Zσ

n .

Lemma 5.24. Suppose that Assumption (A4) holds. Then the random vectors Zσ,1
n in

(5.34) satisfy

E
[︁
Zσ,1

n

⃓⃓
Xσ

n

]︁
= 0 p(p+1)

2
and Cov

(︁
Zσ,1

n

⃓⃓
Xσ

n

)︁
= 1

n

(︁
Xσ

n

)︁⊤Ωσ
n Xσ

n .

If in addition Assumption (A5) holds, then

Cov
(︁
Zσ,1

n

)︁
= Bσ ,

which implies

Zσ,1
n = OP (1) .
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Proof of Lemma 5.24. Consider the definition of the random variables Zσ,1
n in (5.34).

Under Assumption (A4) we obtain

E
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and
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n Xσ

n

by Lemma 5.10. For real-valued, square-integrable random variables Q1, Q2 and Q3 on
the same probability space the law of total covariance implies the decomposition

Cov
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)︁
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,E
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Q3
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.

This can be extended to random vectors and covariance matrices, and hence we obtain
under the Assumptions (A4) and (A5) the matrix
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.

Moreover, the equation (5.32) in Remark 5.20 leads to
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n Xσ
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]︃
= Bσ .

In the subsequent lemma we formulate the analogous result for the rescaled gradient of
the empirical quadratic loss function L LS

µ,n of the first moments of the random coefficients.

Lemma 5.25. Suppose that Assumption (A1) holds. Then the random vectors
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If in addition Assumption (A2) holds, then

Cov
(︁
Zµ

n

)︁
= Bµ ,

which implies

Zµ
n = OP (1) .
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Proof of Lemma 5.25. Proceed similarly to the proof of Lemma 5.24. In doing so we use
the results in Remark 5.21.

Now we can prove the Theorems 5.4 and 5.15.

Proof of Theorem 5.15. We use the primal-dual witness characterization of the LASSO
in Lemma 2.3 in Section 2.2 to prove the desired results.
By Assumption (A6) and the almost sure convergence in (5.31) in Remark 5.20 there
exists a N ∈ N so that the matrices 1

n

(︁
Xσ

n

)︁⊤Xσ
n are invertible almost surely for all n ≥ N .

Thus, henceforth we assume that the number n of observations is at least N . By Loh
and Wainwright (2017, Lemma 11) the inequality

⃦⃦⃦⃦
⃦
(︃

1
n

(︁
Xσ

n

)︁⊤Xσ
n

)︃−1
−
(︁
Cσ
)︁−1
⃦⃦⃦⃦
⃦

M,∞

≤

⃦⃦⃦(︁
Cσ
)︁−1
⃦⃦⃦2

M,∞

⃦⃦⃦
1
n

(︁
Xσ

n

)︁⊤Xσ
n − Cσ

⃦⃦⃦
M,∞

1 −
⃦⃦⃦(︁

Cσ
)︁−1
⃦⃦⃦

M,∞

⃦⃦⃦
1
n

(︁
Xσ

n

)︁⊤Xσ
n − Cσ

⃦⃦⃦
M,∞

follows, and hence by Assumption (A6) and the aforementioned convergence in (5.31)
we obtain ⃦⃦⃦⃦
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and hence by the almost sure convergences in (5.31) and (5.35) it follows that⃦⃦⃦⃦(︁
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Consequently, we obtain
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almost surely by the mutual incoherence condition in (5.27). Hence there exists a η > 0
so that for large sample sizes n it holds that
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Moreover, by Lemmas 5.23 and 5.24 together with Remark 5.22 and the convergence in
(5.36) it follows that
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since
√

n λσ
n → ∞ holds by assumption. With the help of the triangle inequality the first

condition (2.3) of Lemma 2.3 follows with high probability for a sufficient large number
n of observations. Furthermore, let

˜︁σn,Sσ
= σ∗

Sσ
+
(︃

1
n

(︁
Xσ

n,Sσ

)︁⊤Xσ
n,Sσ

)︃−1(︃ 1
n

(︁
Xσ

n,Sσ

)︁⊤
εσ

n − λσ
n sign

(︁
σ∗

Sσ

)︁)︃
.

Then we obtain

1
λσ

n

(︁˜︁σn,Sσ
− σ∗

Sσ

)︁
= 1

λσ
n

(︃
1
n

(︁
Xσ

n,Sσ

)︁⊤Xσ
n,Sσ

)︃−1(︃ 1
n

(︁
Xσ

n,Sσ

)︁⊤
εσ

n − λσ
n sign

(︁
σ∗

Sσ

)︁)︃
=
(︃

1
n

(︁
Xσ

n,Sσ

)︁⊤Xσ
n,Sσ

)︃−1
(︄

1√
n λσ

n

(︃
1√
n

(︁
Xσ

n,Sσ

)︁⊤
εσ

n

)︃
− sign

(︁
σ∗

Sσ

)︁)︄
.

The vector in brackets satisfies

1√
n λσ

n

(︃
1√
n

(︁
Xσ

n,Sσ

)︁⊤
εσ

n

)︃
− sign

(︁
σ∗

Sσ

)︁
= 1√

n λσ
n

OP (1) + O(1) = oP (1) + O(1) = OP (1)
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because of the results in the Lemmas 5.23 and 5.24 together with the assumption√
n λσ

n → ∞. Hence the convergence in (5.35) implies

1
λσ

n

(︁˜︁σn,Sσ
− σ∗

Sσ

)︁
= OP (1) , (5.38)

and the condition λσ
n → 0 leads to

˜︁σn,Sσ
− σ∗

Sσ
= oP (1) .

As a consequence, the second condition, sign
(︁˜︁σn,Sσ

)︁
= sign

(︁
σ∗

Sσ

)︁
, of Lemma 2.3 is

satisfied with high probability for large sample sizes n. The mentioned lemma and
equation (5.38) imply the assertions of Theorem 5.15.

Proof of Theorem 5.4. Proceed similarly to the proof of Theorem 5.15. In doing so we
use the results in Remark 5.21 and Lemma 5.25.

The asymptotic normalities in the Theorems 5.6 and 5.16 are based on the following
central limit theorem of random vectors.

Proposition 5.26 (Lindeberg-Feller central limit theorem).
For each n ∈ N let Qn,1, . . . , Qn,kn ∈ Rd, kn ∈ N, be independent random vectors with
finite variances such that

lim
n→∞

⃦⃦⃦⃦
⃦

kn∑︂
i=1

Cov
(︁
Qn,i

)︁
− Π

⃦⃦⃦⃦
⃦

M,∞

= 0

with Π ∈ Rd×d, and for every δ > 0

lim
n→∞

kn∑︂
i=1

E
[︂
∥Qn,i∥2

2 1
{︁

∥Qn,i∥2 > δ
}︁]︂

= 0 . (5.39)

Then the sequence
∑︁kn

i=1
(︁
Qn,i −E[Qn,i]

)︁
converges in distribution to a normal Nd(0d, Π)

distribution.

Proof. Cf. van der Vaart (1998, Proposition 2.27).

Finally, we prove the results of the adaptive LASSO in the Theorems 5.6 and 5.16.

Proof of Theorem 5.16. We use the primal-dual witness characterization of the adaptive
LASSO in Lemma 2.4 in Section 2.2 to prove the sign-consistency in (5.29), and the
Lindeberg-Feller central limit theorem 5.26 to prove the asymptotic normality in (5.30).
The assumptions

√
n λσ

n → 0 and
√

n (ˆ︁σ init
n − σ∗) = OP (1) in Theorem 5.16 imply

0 ≤
√

n λσ
n⃓⃓ˆ︁σ init

n,k

⃓⃓ ≤
√

n λσ
n⃓⃓⃓⃓⃓

σ∗
k

⃓⃓
−
⃓⃓ˆ︁σ init

n,k − σ∗
k

⃓⃓⃓⃓⃓ P−→ 0 (5.40)
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for all k ∈ Sσ since |σ∗
k| > 0 for these k. Hence it follows by (5.36) and (5.37) in the

proof of Theorem 5.15 that

√
n

[︄(︁
Xσ

n,Sc
σ

)︁⊤Xσ
n,Sσ

(︂(︁
Xσ

n,Sσ

)︁⊤Xσ
n,Sσ

)︂−1
λσ

n

(︃
1

|ˆ︁σ init
n,Sσ

|
⊙ sign

(︁
σ∗

Sσ

)︁)︃

+ 1
n

(︁
Xσ

n,Sc
σ

)︁⊤PXσ
n,Sσ

εσ
n

]︄

= OP (1) oP (1) +
√

n
1√
n

OP (1)

= OP (1) , (5.41)

where

PXσ
n,Sσ

= In − Xσ
n,Sσ

(︂(︁
Xσ

n,Sσ

)︁⊤Xσ
n,Sσ

)︂−1(︁
Xσ

n,Sσ

)︁⊤
.

Note that (Xσ
n,Sσ

)⊤Xσ
n,Sσ

is invertible for large sample sizes n with probability equal to
one. Moreover,

√
n (ˆ︁σ init

n − σ∗) = OP (1) leads also to
√

n ˆ︁σ init
n,k = OP (1) for all k ∈ Sc

σ

since σ∗
k = 0 for these k. Thus, by the third requirement n λσ

n → ∞ on the regularization
parameter it follows that

√
n λσ

n⃓⃓ˆ︁σ init
n,k

⃓⃓ = n λσ
n√

n
⃓⃓ˆ︁σ init

n,k

⃓⃓ P−→ → ∞

for all k ∈ Sc
σ. Together with (5.41) this implies the first condition (2.4) of Lemma 2.4

with high probability for a sufficient large number n of observations. Furthermore, let

˜︁σn,Sσ = σ∗
Sσ

+
(︃

1
n

(︁
Xσ

n,Sσ

)︁⊤Xσ
n,Sσ

)︃−1
(︄

1
n

(︁
Xσ

n,Sσ

)︁⊤
εσ

n − λσ
n

(︃
1

|ˆ︁σ init
n,Sσ

|
⊙ sign

(︁
σ∗

Sσ

)︁)︃)︄
.

Then we obtain

√
n
(︁˜︁σn,Sσ

− σ∗
Sσ

)︁
=
(︃

1
n

(︁
Xσ

n,Sσ

)︁⊤Xσ
n,Sσ

)︃−1 1√
n

(︁
Xσ

n,Sσ

)︁⊤
εσ

n + oP (1) (5.42)

by the convergences in (5.35) and (5.40). Moreover, by Remark 5.22 and the Lemmas
5.23 and 5.24 it follows that

√
n
(︁˜︁σn,Sσ

− σ∗
Sσ

)︁
=
(︃

1
n

(︁
Xσ

n,Sσ

)︁⊤Xσ
n,Sσ

)︃−1 1√
n

(︁
Xσ

n,Sσ

)︁⊤
δn + oP (1) (5.43)

= OP (1) + oP (1) = OP (1) ,

where δn is given in (5.20), which in turn leads to

˜︁σn,Sσ − σ∗
Sσ

= OP

(︃
1√
n

)︃
= oP (1) .
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Hence the second condition, sign
(︁˜︁σn,Sσ

)︁
= sign

(︁
σ∗

Sσ

)︁
, of Lemma 2.4 is satisfied with high

probability for large sample sizes n as well. Sign-consistency of the adaptive LASSO andˆ︁σ AL
n,Sσ

= ˜︁σn,Sσ
is the consequence.

Note that for the asymptotic normality of the rescaled estimation error in (5.30) only
the first term in (5.43) is crucial. Hence we consider the random vectors

Zσ,1
n = 1√

n

(︁
Xσ

n

)︁⊤
δn = 1√

n

n∑︂
i=1

(︁
e⊤

i δn

)︁
v
(︁
Xi
)︁

= 1√
n

n∑︂
i=1

(︂
v
(︁
Xi
)︁⊤vec

(︁
Di − Σ∗)︁)︂ v

(︁
Xi
)︁

,

where Di =
(︁
Ai − µ∗)︁(︁Ai − µ∗)︁⊤. Now we want to apply the Lindeberg-Feller central

limit theorem 5.26 for the array

Qn,i = 1√
n

(︂
v
(︁
Xi
)︁⊤vec

(︁
Di − Σ∗)︁)︂ v

(︁
Xi
)︁

∈ R
p(p+1)

2

with i ∈ {1, . . . , n}. The random vectors are independent and identically distributed in
each row (for fixed n) since (X⊤

1 , A⊤
1 )⊤, . . . , (X⊤

n , A⊤
n )⊤ enjoy this property. Further-

more, they are centered,

E
[︁
Qn,i

]︁
= 1√

n
E
[︃
E
[︂
v
(︁
Xi
)︁⊤vec

(︁
Di − Σ∗)︁ ⃓⃓⃓Xσ

n

]︂
v
(︁
Xi
)︁]︃

= 1√
n
E
[︂
0 · v

(︁
Xi
)︁]︂

= 0 p(p+1)
2

,

and for the sum of the covariance matrices
n∑︂

i=1
Cov

(︁
Qn,i

)︁
= Cov

(︃ n∑︂
i=1

Qn,i

)︃
= Cov

(︁
Zσ,1

n

)︁
we get by Lemma 5.24 the equation

n∑︂
i=1

Cov
(︁
Qn,i

)︁
= Bσ

under the Assumptions (A4) and (A5). Moreover, we obtain for arbitrary δ > 0 the
equation

n∑︂
i=1

E
[︃
∥Qn,i∥2

2 1
{︁

∥Qn,i∥2 > δ
}︁]︃

= E
[︃
v
(︁
X1
)︁⊤vec

(︁
D1 − Σ∗)︁ v

(︁
X1
)︁⊤vec

(︁
D1 − Σ∗)︁ v

(︁
X1
)︁⊤v

(︁
X1
)︁

· 1
{︁

v(X1)⊤vec(D1 − Σ∗) v(X1)⊤vec(D1 − Σ∗) v(X1)⊤v(X1) > δ2n
}︁]︃

.

The expected value E
[︁
v(X1)⊤vec(D1 − Σ∗) v(X1)⊤vec(D1 − Σ∗) v(X1)⊤v(X1)

]︁
exists

because of Assumption 5.12 and the Cauchy Schwarz inequality. Thus, we get

lim
n→∞

n∑︂
i=1

E
[︃
∥Qn,i∥2

2 1
{︁

∥Qn,i∥2 > δ
}︁]︃

= 0
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by Lebesgue’s dominated convergence theorem, which coincides with Lindeberg’s condi-
tion (5.39) in Proposition 5.26. Hence the proposition implies the weak convergence

Zσ,1
n = 1√

n

(︁
Xσ

n

)︁⊤
δn =

n∑︂
i=1

Qn,i
d−→ Q ∼ N p(p+1)

2

(︂
0 p(p+1)

2
, Bσ

)︂
,

respectively
1√
n

(︁
Xσ

n,Sσ

)︁⊤
δn

d−→ QSσ
∼ Nsσ

(︂
0sσ

, Bσ
SσSσ

)︂
.

So, all in all a multivariate version of Slutsky’s theorem, cf. van der Vaart (1998, Theorem
2.7, Lemma 2.8), together with equation (5.43) and the almost sure convergence in (5.35)
in the proof of Theorem 5.15 leads to

√
n
(︁ˆ︁σ AL

n,Sσ
− σ∗

Sσ

)︁ d−→
(︁
Cσ

SσSσ

)︁−1
QSσ

.

In addition, it follows that(︁
Cσ

SσSσ

)︁−1
QSσ

∼ Nsσ

(︂
0sσ

,
(︁
Cσ

SσSσ

)︁−1Bσ
SσSσ

(︁
Cσ

SσSσ

)︁−1
)︂

by the symmetry of Cσ
SσSσ

and the properties of the multivariate normal distribution,
and hence the asserted asymptotic normality in (5.30).

Proof of Theorem 5.6. Proceed similarly to the proof of Theorem 5.16. In doing so we
use the results in Remark 5.21 and Lemma 5.25

Remark 5.27. Keep the considerations in the Remarks 5.8 and 5.9 in mind. Then it is
obvious that we would obtain equation (5.43) in the proof of Theorem 5.16 as well, even
if we know the first moments µ∗ of the random coefficients in advance and εσ

n = δn holds.
Hence the asymptotic normality of the estimator ˆ︁σ AL

n of the variances and covariances
σ∗ of the coefficients on their support Sσ is independent of the fact whether we know
the first moments µ∗ in advance or whether we estimate them simultaneously with an
appropriate estimator ˆ︁µn.
Moreover, by Assumption 5.12 the Gram matrices

(︁
Xσ

n

)︁⊤Xσ
n are invertible with probabil-

ity equal to one for large sample sizes n because of the almost sure convergence in (5.35)
in the proof of Theorem 5.15. In this case the least squares estimator of the variances
and covariances σ∗ in (5.17) is unique and given by

ˆ︁σ LS
n =

(︂(︁
Xσ

n

)︁⊤Xσ
n

)︂−1(︁
Xσ

n

)︁⊤Yσ
n =

(︂(︁
Xσ

n

)︁⊤Xσ
n

)︂−1(︁
Xσ

n

)︁⊤(︁Xσ
n σ∗ + εσ

n

)︁
= σ∗ +

(︃
1
n

(︁
Xσ

n

)︁⊤Xσ
n

)︃−1 1
n

(︁
Xσ

n

)︁⊤
εσ

n .

Hence under Assumption 5.12 and the assumption that the estimator ˆ︁µn of the first
moments µ∗ of the random coefficients satisfies

√
n
(︁ˆ︁µn − µ∗)︁ = OP (1), it follows that

√
n
(︁ˆ︁σ LS

n − σ∗)︁ d−→ N p(p+1)
2

(︂
0 p(p+1)

2
,
(︁
Cσ
)︁−1 Bσ

(︁
Cσ
)︁−1
)︂

by the considerations, especially equation (5.42), in the proof of Theorem 5.16.
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Remark 5.28. Similar to Remark 5.27 for a large number n of observations the least
squares estimator of the first moments µ∗ of the random coefficients in (5.4) is unique
and given by

ˆ︁µ LS
n = µ∗ +

(︃
1
n

(︁
Xµ

n

)︁⊤Xµ
n

)︃−1 1
n

(︁
Xµ

n

)︁⊤
εµ

n

with probability equal to one under Assumption 5.2. Moreover, the (more detailed) proof
of Theorem 5.6 implies

√
n
(︁ˆ︁µ LS

n − µ∗)︁ d−→ Np

(︂
0p,
(︁
Cµ
)︁−1 Bµ

(︁
Cµ
)︁−1
)︂

under Assumption 5.2

5.5. Technical proofs
5.5.1. Proofs of Lemmas 5.3 and 5.14
Proof of Lemma 5.3. Let W1, . . . , Wp ∼ W be independent, then the matrix

Xµ
p =

[︁
X1, . . . , Xp

]︁⊤ =

⎡⎢⎣1 W⊤
1

...
...

1 W⊤
p

⎤⎥⎦
is of full rank on a set A which has positive probability P(A) > 0. If the points w1, . . . , wp
have positive probability each, this is clear by the proof of Proposition 4.5. Otherwise,
if wj itself has probability equal to zero, every neighborhood of wj must have positive
probability. Moreover, for all points z ∈ Rp−1 in a very small open neighborhood of wj
we obtain that ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 w⊤
1

...
...

1 w⊤
j−1

1 z⊤

1 w⊤
j+1

...
...

1 w⊤
p

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
has full rank since the set of the full rank matrices is open and the coordinate projections
are continuous. This can be done for each support point, and hence for each row of the
above matrix. We conclude that

(︁
Xµ

p

)︁⊤Xµ
p =

p∑︂
i=1

Xi X⊤
i
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is positive definite on A and otherwise positive semi-definite, which leads to

v⊤Cµ v = 1
p

v⊤E
[︃ p∑︂

i=1
Xi X⊤

i

]︃
v = 1

p
E
[︂
v⊤(︁Xµ

p

)︁⊤Xµ
p v
]︂

= 1
p

(︃∫︂
A

v⊤(︁Xµ
p

)︁⊤Xµ
p v dP +

∫︂
Ac

v⊤(︁Xµ
p

)︁⊤Xµ
p v dP

)︃
> 0

for all v ∈ Rp \ {0p}, since the first integral is positive and the second non-negative.

Proof of Lemma 5.14. Firstly, Theorem 4.11 implies that there exist p(p + 1)/2 support
points w1, . . . , w p(p+1)

2
∈ Rp−1 of W such that the matrix S in (4.6) has full rank

p(p + 1)/2. Then we can argue similarly to the proof of Lemma 5.3 to show the positive
definiteness of Cσ.

5.5.2. Proof of Lemma 5.10
Proof of Lemma 5.10. Since E[Di] = Σ∗ holds, we get for the conditional mean vector
of δn the equation

E
[︁
δn

⃓⃓
Xσ

n

]︁
=
(︃

v
(︁
X1
)︁⊤E

[︂
vec
(︁
D1 − Σ∗)︁]︂, . . . , v

(︁
Xn
)︁⊤E

[︂
vec
(︁
Dn − Σ∗)︁]︂)︃⊤

=
(︃

v
(︁
X1
)︁⊤vec

(︂
E
[︁
D1
]︁

− Σ∗
)︂

, . . . , v
(︁
Xn
)︁⊤vec

(︂
E
[︁
Dn

]︁
− Σ∗

)︂)︃⊤

= 0n .

The entries

e⊤
i δn = v

(︁
Xi
)︁⊤vec

(︁
Di − Σ∗)︁ = X⊤

i
(︁
Di − Σ∗)︁Xi = X⊤

i

(︂(︁
Ai − µ∗)︁(︁Ai − µ∗)︁⊤ − Σ∗

)︂
Xi

of δn are pairwise independent because the random vectors (X⊤
1 , A⊤

1 )⊤, . . . , (X⊤
n , A⊤

n )⊤

are independent. Hence the conditional covariance matrix of δn is a diagonal matrix and
it remains to determine the conditional variances of the errors. We get for i ∈ {1, . . . , n}
on the one hand

Var
(︁
e⊤

i δn

⃓⃓
Xi
)︁

= Var
(︂

X⊤
i
(︁
Di − Σ∗)︁Xi

⃓⃓⃓
Xi

)︂
=

p∑︂
k,l,u,v=1

Xi,kXi,lXi,uXi,v Cov
(︂(︁

D1
)︁

kl
,
(︁
D1
)︁

uv

)︂
=

p∑︂
k,l,u,v=1

Xi,kXi,lXi,uXi,v

(︁
Mkl

)︁
uv
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because of the definition of Mkl in (5.25). On the other hand it is

Var
(︂

e⊤
i δn

⃓⃓⃓
v
(︁
Xi
)︁)︂

= Var
(︂

v
(︁
Xi
)︁⊤vec

(︁
Di − Σ∗)︁ ⃓⃓⃓ v(︁Xi

)︁)︂
=

p(p+1)
2∑︂

q,r=1
v
(︁
Xi
)︁

q
v
(︁
Xi
)︁

r
Cov

(︂
vec
(︁
D1
)︁

q
, vec

(︁
D1
)︁

r

)︂
.

Definition (2.8) of the half-vectorization vec and the last two equations imply

Cov
(︂

vec
(︁
D1
)︁

q
, vec

(︁
D1
)︁

r

)︂
= Ψ∗

qr

for q, r = {1, . . . , p(p + 1)/2}. Hence

Var
(︂

e⊤
i δn

⃓⃓⃓
v
(︁
Xi
)︁)︂

= v
(︁
Xi
)︁⊤Ψ∗ v

(︁
Xi
)︁

,

and in total the conditional covariance matrix of δn regarding v
(︁
X1
)︁
, . . . , v

(︁
Xn
)︁

is given
by

Cov
(︁
δn

⃓⃓
Xσ

n

)︁
= diag

(︂
v
(︁
X1
)︁⊤Ψ∗ v

(︁
X1
)︁
, . . . , v

(︁
Xn
)︁⊤Ψ∗ v

(︁
Xn
)︁)︂

.

5.5.3. Proof of Lemma 5.19
Proof of Lemma 5.19.

1. It is

lim
n→∞

⃓⃓⃓(︁
Qn − Q

)︁
kl

⃓⃓⃓
≤ lim

n→∞
max

k∈{1,...,d1}

d2∑︂
l=1

⃓⃓⃓(︁
Qn − Q

)︁
kl

⃓⃓⃓
= lim

n→∞
∥Qn − Q∥M,∞

≤ lim
n→∞

d1∑︂
k=1

d2∑︂
l=1

⃓⃓⃓(︁
Qn − Q

)︁
kl

⃓⃓⃓

=
d1∑︂

k=1

d2∑︂
l=1

lim
n→∞

⃓⃓⃓(︁
Qn − Q

)︁
kl

⃓⃓⃓
for k ∈ {1, . . . , d1} and l ∈ {1, . . . , d2}. Hence the convergence of the matrices with
respect to the ℓ∞ operator norm is equivalent to the component-wise convergence
of the matrices.

2. Suppose that (Qn)n∈N converges almost surely to Q with respect to the ℓ∞ operator
norm. This implies

P
(︃

lim
n→∞

⃓⃓⃓(︁
Qn − Q

)︁
kl

⃓⃓⃓
̸= 0
)︃

≤ P
(︂

lim
n→∞

∥Qn − Q∥M,∞ ̸= 0
)︂

= 0
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for k ∈ {1, . . . , d1} and l ∈ {1, . . . , d2}. Conversely, we obtain

P
(︂

lim
n→∞

∥Qn − Q∥M,∞ ̸= 0
)︂

≤ P
(︃ d1∑︂

k=1

d2∑︂
l=1

lim
n→∞

⃓⃓⃓(︁
Qn − Q

)︁
kl

⃓⃓⃓
̸= 0
)︃

≤ P
(︃ d1⋃︂

k=1

d2⋃︂
l=1

{︂
lim

n→∞

⃓⃓⃓(︁
Qn − Q

)︁
kl

⃓⃓⃓
̸= 0
}︂)︃

≤
d1∑︂

k=1

d2∑︂
l=1

P
(︃

lim
n→∞

⃓⃓⃓(︁
Qn − Q

)︁
kl

⃓⃓⃓
̸= 0
)︃

= 0

if (Qn)n∈N converges component-wise almost surely to Q.

5.5.4. Proof of Lemma 5.23
For the proof of Lemma 5.23 we use in particular the consistency of the estimator ˆ︁µn of
the first moments µ∗ of the random coefficients with an estimation rate of 1/

√
n. Lemma

5.23 is an immediate consequence of the following two lemmas.

Lemma 5.29. Suppose that the Assumptions (A4) and (A5) hold. Then the random
vectors

Zσ,3
n

..= 1√
n

(︁
Xσ

n

)︁⊤
ζn ,

where ζn is defined in (5.21), converge in probability to zero,

Zσ,3
n = oP (1) ,

if
√

n
(︁ˆ︁µn − µ∗)︁ = OP (1) is satisfied.

Proof of Lemma 5.29. The random vectors Zσ,3
n can be written with the definition of ζn

in (5.21) as

Zσ,3
n = 1√

n

n∑︂
i=1

(︁
e⊤

i ζn

)︁
v
(︁
Xi
)︁

= 1√
n

n∑︂
i=1

(︂
v
(︁
Xi
)︁⊤vec

(︁
En

)︁)︂
v
(︁
Xi
)︁

= 1√
n

n∑︂
i=1

(︃ p(p+1)
2∑︂

q=1
v
(︁
Xi
)︁

q
vec
(︁
En

)︁
q

)︃
v
(︁
Xi
)︁

=
p(p+1)

2∑︂
q=1

√
n vec

(︁
En

)︁
q

(︃
1
n

n∑︂
i=1

v
(︁
Xi
)︁

q
v
(︁
Xi
)︁)︃

, (5.44)
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where

En =
(︁
µ∗ − ˆ︁µn

)︁(︁
µ∗ − ˆ︁µn

)︁⊤
.

By the assumption
√

n
(︁ˆ︁µn − µ∗)︁ = OP (1) it follows that the entries of the matrix En

satisfy

e⊤
k En el =

(︁ˆ︁µn,k − µ∗
k

)︁(︁ˆ︁µn,l − µ∗
l

)︁
= OP

(︃
1
n

)︃
for k, l ∈ {1, . . . , p}, and hence also

√
n vec

(︁
En

)︁
q

= OP

(︃
1√
n

)︃
= oP (1) (5.45)

for all q ∈ {1, . . . , p(p + 1)/2}. Furthermore, the random vectors

Qq
i = v

(︁
Xi
)︁

q
v
(︁
Xi
)︁

are independent and identically distributed for i ∈ {1, . . . , n} since X1, . . . , Xn enjoy
this property. Additionally, the inequality ∥x∥2 ≤ ∥x∥1 for x ∈ Rd implies

E
[︂
∥Qq

i ∥2

]︂
≤ E

[︂
∥Qq

i ∥1

]︂
= E

[︃⃦⃦⃦
v
(︁
Xi
)︁

q
v
(︁
Xi
)︁⃦⃦⃦

1

]︃
=

p(p+1)
2∑︂

r=1
E
[︃⃓⃓⃓

v
(︁
Xi
)︁

q
v
(︁
Xi
)︁

r

⃓⃓⃓]︃
< ∞

since the fourth moments of the regressors exist by Assumption (A5). Hence we get by
the strong law of large numbers and Lemma 5.19 the convergence⃦⃦⃦⃦

⃦ 1
n

n∑︂
i=1

v
(︁
Xi
)︁

q
v
(︁
Xi
)︁

− E
[︁
Qq

1
]︁⃦⃦⃦⃦⃦

∞

=
⃦⃦⃦⃦
⃦ 1

n

n∑︂
i=1

Qq
i − E

[︁
Qq

1
]︁⃦⃦⃦⃦⃦

∞

a.s.−→ 0 ,

which implies

1
n

n∑︂
i=1

v
(︁
Xi
)︁

q
v
(︁
Xi
)︁

= OP (1) (5.46)

for all q ∈ {1, . . . , p(p + 1)/2}. So all in all (5.44) - (5.46) lead to the assertion

Zσ,3
n =

p(p+1)
2∑︂

q=1
oP (1) OP (1) = oP (1) .

Lemma 5.30. Suppose that the Assumptions (A4) and (A5) hold. Then the random
vectors

Zσ,4
n

..= 1√
n

(︁
Xσ

n

)︁⊤
ξn ,
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where ξn is defined in (5.22), converge in probability to zero,

Zσ,4
n = oP (1) ,

if
√

n
(︁ˆ︁µn − µ∗)︁ = OP (1) is satisfied.

Proof of Lemma 5.30. The random vectors Zσ,4
n can be written with the definition of ξn

in (5.22) as

Zσ,4
n = 1√

n

n∑︂
i=1

(︁
e⊤

i ξn

)︁
v
(︁
Xi
)︁

= 1√
n

n∑︂
i=1

(︂
v
(︁
Xi
)︁⊤vec

(︁
Fn,i

)︁)︂
v
(︁
Xi
)︁

= 1√
n

n∑︂
i=1

(︃ p(p+1)
2∑︂

q=1
v
(︁
Xi
)︁

q
vec
(︁
Fn,i

)︁
q

)︃
v
(︁
Xi
)︁

= 1√
n

n∑︂
i=1

(︃ p∑︂
k,l=1

Xi,kXi,l

(︁
Fn,i

)︁
kl

)︃
v
(︁
Xi
)︁

,

where

Fn,i =
(︁
Ai − µ∗)︁(︁µ∗ − ˆ︁µn

)︁⊤ +
(︁
µ∗ − ˆ︁µn

)︁(︁
Ai − µ∗)︁⊤

.

Hence it is

Zσ,4
n = 1√

n

n∑︂
i=1

(︃
2

p∑︂
k,l=1

Xi,kXi,l

(︁
µ∗

k − ˆ︁µn,k

)︁(︁
Ai,l − µ∗

l

)︁)︃
v
(︁
Xi
)︁

=
p∑︂

k,l=1

√
n
(︁ˆ︁µn,k − µ∗

k

)︁(︃
− 2

n

n∑︂
i=1

Xi,kXi,l

(︁
Ai,l − µ∗

l

)︁
v
(︁
Xi
)︁)︃

. (5.47)

Similarly to the proof of Lemma 5.29 we consider the random vectors

Qk,l
i = −2 Xi,kXi,l

(︁
Ai,l − µ∗

l

)︁
v
(︁
Xi
)︁

for k, l ∈ {1, . . . , p}, which are independent and identically distributed since (X⊤
1 , A⊤

1 )⊤,
. . . , (X⊤

n , A⊤
n )⊤ enjoy this property. Furthermore, we obtain

E
[︃⃦⃦⃦

Qk,l
i

⃦⃦⃦
2

]︃
≤ E

[︃⃦⃦⃦
Qk,l

i

⃦⃦⃦
1

]︃
= 2

p(p+1)
2∑︂

r=1
E
[︃⃓⃓⃓

Xi,kXi,l v
(︁
Xi
)︁

r

⃓⃓⃓]︃
E
[︂⃓⃓

Ai,l − µ∗
l

⃓⃓]︂
< ∞

by the Assumptions (A4) and (A5), and hence the strong law of large numbers together
with Lemma 5.19 implies⃦⃦⃦⃦
⃦− 2

n

n∑︂
i=1

Xi,kXi,l

(︁
Ai,l − µ∗

l

)︁
v
(︁
Xi
)︁

− E
[︂
Qk,l

1

]︂⃦⃦⃦⃦⃦
∞

=
⃦⃦⃦⃦
⃦ 1

n

n∑︂
i=1

Qk,l
i − E

[︂
Qk,l

1

]︂⃦⃦⃦⃦⃦
∞

a.s.−→ 0
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with

E
[︂
Qk,l

1

]︂
= −2E

[︂
X1,kX1,l v

(︁
X1
)︁]︂

E
[︁
A1,l − µ∗

l

]︁
= 0 p(p+1)

2

for all k, l ∈ {1, . . . , p} since X1 and A1 are independent and E[A1] = µ∗ holds. In
particular, this leads to

− 2
n

n∑︂
i=1

Xi,kXi,l

(︁
Ai,l − µ∗

l

)︁
v
(︁
Xi
)︁

= oP (1)

for all k, l ∈ {1, . . . , p}. Moreover, the remaining factors in the sum in (5.47) satisfy
√

n
(︁ˆ︁µn,k − µ∗

k

)︁
= OP (1)

by assumption. So all in all we obtain the assertion

Zσ,4
n =

p∑︂
k,l=1

OP (1) oP (1) = oP (1) .
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6. High-dimensional variable selection
in random coefficient regression
models

In this chapter we consider the variable selection for the means, variances and covariances
of the random coefficients in the linear regression model (2.6) in the high-dimensional
framework, that means that the number p of coefficients is at least of the order of the
sample size n. As we have seen in Section 5.1.1, the errors in the linear regression model
of the first moments of the random coefficients are independent and heteroscedastic.
Hence, we can immediately apply the theory for the adaptive LASSO Huber estimator,
which is provided and discussed in Chapter 3, and is partially motivated by the prob-
lem of selecting the deterministic, random or correlated coefficients, to perform variable
selection for their means. Since the response variables in the linear regression model of
the variances and covariances of the coefficients, established in Section 5.2.1, include also
the estimation error of the first stage mean regression and, moreover, the corresponding
covariates consist of squares and products of the observed explanatory variables, we ob-
tain a more complicated heteroscedastic mean regression model for the second central
moments. Hence it is not possible to deduce results on variable selection for the variances
and covariances of the coefficients immediately from the theory in Chapter 3 in general.
This chapter is structured as follows. In Section 6.1 we provide sign-consistency of
the adaptive LASSO Huber estimator of the means of the coefficients, and also bounds
for the ℓ∞ norm of respective the estimation error. In Section 6.2 we discuss issues and
extensions of the theory in Chapter 3 which are required to establish variable selection for
the variances and covariances in a general high-dimensional framework as well. Moreover,
we consider the special case where the first moments of the coefficients are known in
advance and can be used for the estimation of the second central moments.

6.1. First moments
Remember the linear regression model (5.2) of the means µ∗ of the random coefficients,

Yi = X⊤
i µ∗ + X⊤

i
(︁
Ai − µ∗)︁ , i = 1, . . . , n , (6.1)

established in Section 5.1.1. Note that (X⊤
1 , A⊤

1 )⊤, . . . , (X⊤
n , A⊤

n )⊤ are assumed to be
independent and identically distributed, and, furthermore, that the errors are centered,

E
[︂
X⊤

i
(︁
Ai − µ∗)︁ ⃓⃓⃓Xi

]︂
= X⊤

i
(︁
E[Ai] − µ∗)︁ = 0
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since Xi and Ai are independent and µ∗ = E[Ai] holds.
Firstly, we make similar assumptions in the above regression model (6.1), as in Assump-
tion 3.1, to provide results for the adaptive LASSO Huber estimator of the means µ∗ in
the following.

Assumption 6.1.

(i) For m = 2 or m = 3 and q > 1 we have that

E
[︃
E
[︂⃓⃓

X⊤
1
(︁
A1 − µ∗)︁⃓⃓m ⃓⃓⃓X1

]︂q
]︃

≤ Cµ,m < ∞ ,

where Cµ,m > 0 is a positive constant.

(ii) For positive constants 0 < cX,l ≤ cX,u we have that cX,l ≤ λmin
(︁
E
[︁
X1X⊤

1
]︁)︁

≤
λmax

(︁
E
[︁
X1X⊤

1
]︁)︁

≤ cX,u < ∞, where λmin(M) and λmax(M) denote the minimal
and maximal eigenvalues of a symmetric matrix M ∈ Rd×d.

(iii) For any v ∈ Rp \ {0p} the variable v⊤X1 is sub-Gaussian with variance proxy at
most c2

X,sub∥v∥2
2, c2

X,sub > 0, that is P
(︁
|v⊤X1| ≥ t

)︁
≤ 2 exp

(︁
− t2/(2 c2

X,sub∥v∥2
2)
)︁

for all t ≥ 0.

(iv) We have the a-priori upper bound ∥µ∗∥2 ≤ Cµ/2, where Cµ ≥ 1/8 is a numerical
constant.

Remark 6.2. If we consider m = 2 in the first assumption (i) we obtain

E
[︂⃓⃓

X⊤
1
(︁
A1 − µ∗)︁⃓⃓2 ⃓⃓⃓X1

]︂
= E

[︃ p∑︂
k,l=1

X1,kX1,k

(︁
A1,k − µ∗

k

)︁(︁
A1,k − µ∗

k

)︁ ⃓⃓⃓⃓
X1

]︃

=
p∑︂

k,l=1
X1,kX1,k E

[︂(︁
A1,k − µ∗

k

)︁(︁
A1,k − µ∗

k

)︁]︂
= X⊤

1 Σ∗ X1

with Σ∗ = Cov(A1). Moreover, note that X⊤
1 Σ∗ X1 = v(X1)⊤σ∗, where the half-

vectorization σ∗ of the covariance matrix Σ∗ of the random coefficients is given in (5.1)
and the associated vector transformation v in (4.5), holds true. Hence it follows that

E
[︃
E
[︂⃓⃓

X⊤
1
(︁
A1 − µ∗)︁⃓⃓2 ⃓⃓⃓X1

]︂q
]︃

= E
[︂(︁

v
(︁
X1
)︁⊤

σ∗)︁q
]︂

= E

[︄(︃ ∑︂
r∈Sσ

v
(︁
X1
)︁

r
σ∗

r

)︃q
]︄

,

where Sσ denotes the support of σ∗. As a consequence, if we assume that the variances
and covariances of the coefficients are uniformly bounded, then the above expected value
depends on the cardinality sσ of the set Sσ since the moments of the regressors X1 are
bounded by (iii) of Assumption 6.1, cf. Rigollet and Hütter (2019, Lemma 1.4), as well.
Thus, the first part (i) of Assumption 6.1 with m = 2 is satisfied if the number sσ of
second central moments unequal to zero does not grow with the number p of coefficients.
Otherwise, the expected value may grow with rate sq

σ.
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We consider in the following the adaptive LASSO Huber estimator of the means,

ˆ︁µ ALH
n ∈ arg min

β∈Rp, ∥β∥2≤Cµ

(︃
1
n

n∑︂
i=1

lαµ
n

(︁
Yi − X⊤

i β
)︁

+ λµ
n

p∑︂
k=1

wk |βk|
)︃

, (6.2)

with regularization parameter λµ
n > 0, robustification parameter αµ

n > 0 and random
weights

wk = max
{︂

1/
⃓⃓ˆ︁µ init

n,k

⃓⃓
, 1
}︂

, k = 1, . . . , p ,

where ˆ︁µ init
n = (ˆ︁µ init

n,1 , . . . , ˆ︁µ init
n,p )⊤ ∈ Rp is a suitable initial estimator of µ∗ and the pseudo

Huber loss lα is defined in (3.2). Here, if
⃓⃓ˆ︁µ init

n,k

⃓⃓
= 0, we require that βk = 0 in (6.2).

In the subsequent corollary we assume that the initial estimator ˆ︁µ init
n in the adaptive

LASSO satisfies⃦⃦ˆ︁µ init
n − µ∗⃦⃦

2 ≤ Cinit λµ,init
n

√
sµ ,

⃦⃦ˆ︁µ init
n − µ∗⃦⃦

1 ≤ Cinit λµ,init
n sµ (6.3)

with

λµ,init
n ≃

(︃
log(p)

n

)︃ 1
2

(6.4)

for a positive constant Cinit ≥ 1. Under Assumption 6.1 the original LASSO Huber
estimator given as a solution of

arg min
β∈Rp

(︃
1
n

n∑︂
i=1

l̃αn

(︁
Yi − X⊤

i β
)︁

+ λn

p∑︂
k=1

|βk|
)︃

with Huber loss l̃α defined in (2.5), achieves the upper bounds in (6.3) with probability
at least 1 − 3/p if the orders of λn, αn and n are chosen appropriately, see Section 3.2
for more details. Furthermore, we denote by

µ∗
min

..= min
k∈Sµ

⃓⃓
µ∗

k

⃓⃓
the smallest absolute value of the mean vector µ∗ on its support Sµ. Now we can state our
result on sign-consistency and convergence rates in the ℓ∞ norm of the adaptive LASSOˆ︁µ ALH

n of the first moments µ∗ of the random coefficients. The following corollary is an
immediate consequence of Theorem 3.2.

Corollary 6.3 (Sign-consistency and ℓ∞ rate in the mean regression). In model (6.1)
under Assumption 6.1, consider the adaptive LASSO estimator ˆ︁µ ALH

n with initial esti-
mator ˆ︁µ init

n assumed to satisfy (6.3). Further, suppose that⃦⃦⃦⃦(︂
E
[︁
X1X⊤

1
]︁

SµSµ

)︂−1
⃦⃦⃦⃦

M,∞
≤ CSµ,X , (6.5)
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where CSµ,X > 0 is a positive constant, is also satisfied. Assume that the robustification
parameter αµ

n for the adaptive LASSO is chosen of the order

αµ
n ≃

(︃
log(p)

n

)︃ 1
2

,

and that the regularization parameter λµ
n is chosen of order

λµ
n ≃ λµ,init

n

(︄⃓⃓
S
⃓⃓
log(p)
n

)︄ 1
2

, where S =
{︂

k ∈ {1, . . . , p}
⃓⃓⃓ ⃓⃓ˆ︁µ init

n,k

⃓⃓
> λµ,init

n

}︂
and λµ,init

n ≃ (log(p)/n) 1
2 is as in (6.4). If n ≳ s2

µ log(p) and if µ∗ satisfies a minimum
condition of order µ∗

min ≳ sµ λµ,init
n , then with probability at least

1 − c1 exp(−c2n) − c3

p2 ,

where c1, c2, c3 > 0 are suitable constants, the adaptive LASSO Huber estimator ˆ︁µ ALH
n

as a solution to (6.2) is unique and satisfies

sign
(︁ˆ︁µ ALH

n

)︁
= sign

(︁
µ∗)︁ and

⃦⃦ˆ︁µ ALH
n − µ∗⃦⃦

∞ ≲ λµ,init
n . (6.6)

If we drop assumption (6.5) but instead have sµ ≤ log(p), then we retain the sign-
consistency in (6.6) but only obtain a ℓ∞-rate of order⃦⃦ˆ︁µ ALH

n − µ∗⃦⃦
∞ ≲

√
sµ λµ,init

n .

Remark 6.4. As previously discussed in Remark 6.2 the upper bound in the first part
(i) of Assumption 6.1 may depend on sσ, the number of variances and covariances of
the coefficients unequal to zero. Then the orders in Corollary 6.3 depend on sσ as well,
and, in particular, this leads to a additional factor of √

sσ in the orders of µ∗
min and

the ℓ∞ norm of the estimation error. See also Remark 3.3 for further discussion on the
conditions of Corollary 6.3.

6.2. Second central moments
Remember the linear regression model (5.14) of the covariance matrix Σ∗, respectively
of its half-vectorization σ∗, of the random coefficients,(︁

Yi − X⊤
i ˆ︁µn

)︁2 = Y σ
i = v

(︁
Xi
)︁⊤

σ∗ + v
(︁
Xi
)︁⊤vec

(︁
Di − Σ∗ + En + Fn,i

)︁
, i = 1, . . . , n ,

(6.7)

established in Section 5.2.1, with

Di =
(︁
Ai − µ∗)︁(︁Ai − µ∗)︁⊤

, En =
(︁
µ∗ − ˆ︁µn

)︁(︁
µ∗ − ˆ︁µn

)︁⊤
,

Fn,i =
(︁
Ai − µ∗)︁(︁µ∗ − ˆ︁µn

)︁⊤ +
(︁
µ∗ − ˆ︁µn

)︁(︁
Ai − µ∗)︁⊤

,
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and ˆ︁µn is an estimator of the first moments µ∗ of the coefficients based on the observations
(Y1, X⊤

1 )⊤, . . . , (Yn, X⊤
n )⊤. Evidently, the heteroscedastic errors are in general mutually

correlated since they all depend on the estimator ˆ︁µn of the means, see also Section 5.2.2
for further discussion on the error structure.

6.2.1. Special case: known means
Firstly, we consider in the following the special case where the means µ∗ of the random
coefficients are known in advance. Then we can set ˆ︁µn = µ∗ in model (6.7) and obtain
the simplified linear regression model(︁

Yi − X⊤
i µ∗)︁2 = Y σ

i = v
(︁
Xi
)︁⊤

σ∗ + v
(︁
Xi
)︁⊤vec

(︁
Di − Σ∗)︁ , i = 1, . . . , n . (6.8)

Here the errors are obviously centered,

E
[︂
v
(︁
Xi
)︁⊤vec

(︁
Di − Σ∗)︁ ⃓⃓⃓ v(︁Xi

)︁]︂
= v

(︁
Xi
)︁⊤
(︂
E
[︁
vec(Di)

]︁
− σ∗

)︂
= 0 ,

since Xi and Ai are independent and σ∗ = vec(Σ∗) = E
[︁
vec(Di)

]︁
holds. Moreover,

the response variables Y σ
i are independent and identically distributed. Thus, we shall

formulate an analogous result to Corollary 6.3 for the variable selection for the variances
and covariances of the coefficients in this framework, which is an immediate consequence
of Theorem 3.2 as well.

We make the following assumptions in the linear regression model (6.8).

Assumption 6.5.

(i) For m = 2 or m = 3 and q > 1 we have that

E
[︃
E
[︂⃓⃓

v
(︁
X1
)︁⊤vec

(︁
D1 − Σ∗)︁⃓⃓m ⃓⃓⃓X1

]︂q
]︃

≤ Cσ,m < ∞ ,

where Cσ,m > 0 is a positive constant.

(ii) For positive constants 0 < cv(X),l ≤ cv(X),u we have that

cv(X),l ≤ λmin

(︂
E
[︁
v
(︁
X1
)︁

v
(︁
X1
)︁⊤]︁)︂ ≤ λmax

(︂
E
[︁
v
(︁
X1
)︁

v
(︁
X1
)︁⊤]︁)︂ ≤ cv(X),u < ∞ ,

where λmin(M) and λmax(M) denote the minimal and maximal eigenvalues of a
symmetric matrix M ∈ Rd×d.

(iii) For any v ∈ R
p(p+1)

2 \{0 p(p+1)
2

} the variable v⊤v(X1) is sub-Gaussian with variance
proxy at most c2

v(X),sub∥v∥2
2, c2

v(X),sub > 0, that is

P
(︁
|v⊤v(X1)| ≥ t

)︁
≤ 2 exp

(︁
− t2/(2 c2

v(X),sub∥v∥2
2)
)︁

for all t ≥ 0.

115



6. High-dimensional variable selection in random coefficient regression models

(iv) We have the a-priori upper bound ∥σ∗∥2 ≤ Cσ/2, where Cσ ≥ 1/8 is a numerical
constant.

Remark 6.6. The sub-Gaussian tail bound on the vector transformation v(X1) of the
regressors X1 in the third part (iii) of Assumption 6.5 is rather restrictive. For example, if
the covariates are independent and normally distributed, the squares and mixed products,
which are contained in v(X1) have a sub-Exponential tail behavior. However, it should
hold for independent and uniformly bounded explanatory variables. Take also notice of
the discussion in Remark 6.2 about the first part (i) of Assumption 6.5.

Let

ˆ︁σ ALH
n ∈ arg min

β∈R
p(p+1)

2 , ∥β∥2≤Cσ

(︃
1
n

n∑︂
i=1

lασ
n

(︁
Y σ

i − v(Xi)⊤β
)︁

+ λσ
n

p(p+1)
2∑︂

k=1
wk |βk|

)︃
(6.9)

be the adaptive LASSO Huber estimator of the variances and covariances with regular-
ization parameter λσ

n > 0, robustification parameter ασ
n > 0 and random weights

wk = max
{︂

1/
⃓⃓ˆ︁σ init

n,k

⃓⃓
, 1
}︂

, k = 1, . . . , p(p + 1)/2 ,

where ˆ︁σ init
n = (ˆ︁σ init

n,1 , . . . , ˆ︁σ init
n,p(p+1)/2)⊤ ∈ R

p(p+1)
2 is a suitable initial estimator of σ∗ and

lα is the pseudo Huber loss defined in (3.2). Here, if
⃓⃓ˆ︁σ init

n,k

⃓⃓
= 0, we require that βk = 0

in (6.9). In the subsequent corollary we assume that the initial estimator ˆ︁σ init
n in the

adaptive LASSO satisfies⃦⃦ˆ︁σ init
n − σ∗⃦⃦

2 ≤ Cinit λσ,init
n

√
sσ ,

⃦⃦ˆ︁σ init
n − σ∗⃦⃦

1 ≤ Cinit λσ,init
n sσ (6.10)

with

λσ,init
n ≃

(︄
log
(︁p(p+1)

2
)︁

n

)︄ 1
2

(6.11)

for a positive constant Cinit ≥ 1. Under Assumption 6.5 the original LASSO Huber
estimator given as a solution of

arg min
β∈R

p(p+1)
2

(︃
1
n

n∑︂
i=1

l̃αn

(︁
Y σ

i − v(Xi)⊤β
)︁

+ λn

p(p+1)
2∑︂

k=1
|βk|

)︃

with Huber loss l̃α defined in (2.5), achieves the upper bounds in (6.10) in the linear
regression model (6.8) with probability at least 1 − 6/

(︁
p(p + 1)

)︁
if the orders of λn, αn

and n are chosen appropriately, see Section 3.2 for more details. Furthermore, we denote
by

σ∗
min

..= min
k∈Sσ

⃓⃓
σ∗

k

⃓⃓
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the smallest absolute value of the covariance matrix Σ∗ of the coefficients on its support
Sσ. Now we state our result on sign-consistency and convergence rates in the ℓ∞ norm of
the adaptive LASSO ˆ︁σ ALH

n of the second central moments σ∗ of the random coefficients.
The following corollary is an immediate consequence of Theorem 3.2 as well.

Corollary 6.7 (Sign-consistency and ℓ∞ rate in the variance/covariances regression
with known means). In model (6.8) under Assumption 6.5, consider the adaptive LASSO
estimator ˆ︁σ ALH

n with initial estimator ˆ︁σ init
n assumed to satisfy (6.10). Further, suppose

that ⃦⃦⃦⃦
⃦
(︃
E
[︂
v
(︁
X1
)︁

v
(︁
X1
)︁⊤
]︂

SσSσ

)︃−1
⃦⃦⃦⃦
⃦

M,∞

≤ CSσ,v(X) , (6.12)

where CSσ,v(X) > 0 is a positive constant, is also satisfied. Assume that the robustification
parameter ασ

n for the adaptive LASSO is chosen of the order

ασ
n ≃

(︄
log
(︁p(p+1)

2
)︁

n

)︄ 1
2

,

and that the regularization parameter λσ
n is chosen of order

λσ
n ≃ λσ,init

n

(︄⃓⃓
S
⃓⃓
log
(︁p(p+1)

2
)︁

n

)︄ 1
2

, where S =
{︄

k ∈
{︃

1, . . . ,
p(p + 1)

2

}︃ ⃓⃓⃓⃓
⃓ ⃓⃓ˆ︁σ init

n,k

⃓⃓
> λσ,init

n

}︄

and λσ,init
n ≃

(︁
log
(︁p(p+1)

2
)︁
/n
)︁ 1

2 is as in (6.11). If n ≳ s2
σ log

(︁p(p+1)
2
)︁

and if σ∗ satisfies
a minimum condition of order σ∗

min ≳ sσ λσ,init
n , then with probability at least

1 − c1 exp(−c2n) − c3(︁
p(p + 1)

)︁2 ,

where c1, c2, c3 > 0 are suitable constants, the adaptive LASSO Huber estimator ˆ︁σ ALH
n

as a solution to (6.9) is unique and satisfies

sign
(︁ˆ︁σ ALH

n

)︁
= sign

(︁
σ∗)︁ and

⃦⃦ˆ︁σ ALH
n − σ∗⃦⃦

∞ ≲ λσ,init
n . (6.13)

If we drop assumption (6.12) but instead have sσ ≤ log
(︁p(p+1)

2
)︁
, then we retain the

sign-consistency in (6.13) but only obtain a ℓ∞-rate of order⃦⃦ˆ︁σ ALH
n − σ∗⃦⃦

∞ ≲
√

sσ λσ,init
n .

6.2.2. General case
Now we come back to the general linear regression model (6.7) of the covariance matrix
of the random coefficients where the response variables additionally depend on the esti-
mation error of the first stage mean regression. To get similar results as in Corollary 6.7
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in this setting, some of the main steps in Chapter 3 have to be modified. This concerns
all results considering the gradient of the empirical pseudo Huber loss, in particular,
Lemma 3.6 for establishing the restricted strong convexity, and the Lemmas 3.8, 3.13
and 3.14 for bounding the ℓ∞ norm of (a transformation of) the gradient. One has to pay
attention to the specific error structure in model (6.7) to adapt the proofs appropriately.
For this purpose also the results of the first stage mean regression in Corollary 6.3 are
crucial.

A second challenge is to weaken the light tail assumption on the vector transformation
of the regressors in the third part (iii) of Assumption 6.5. As mentioned in Remark
6.6, for instance for independent and normally distributed covariates this condition is
not satisfied. Recent literature on this topic suggests robustification of the (potentially)
heavy-tailed regressors by truncating them as well. For this purpose an additional tuning
parameter ω > 0 is used, see Fan et al. (2016, Section 3.1) and Sun et al. (2020, Section 4)
for more details. Another approach is to use influence/weight functions for the covariates
to shrink large values, cf. for example Loh (2017, Section 2.2).

To sum up, one could say that high-dimensional variable selection for the variances
and covariances of the random coefficients in the general model (6.7) can not be solved
completely with the results in this thesis yet. However, we provided and discussed
essential approaches to tackle this problem in the future.
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Zusammenfassung (deutsch)
Lineare Regressionsmodelle genießen seit einigen Jahrzehnten großes Interesse in der
Statistik. Praktische Anwendungen kann man in einer Vielzahl von Bereichen, wie z.B.
den Verhaltens- und Sozialwissenschaften, der Finanzwelt und der Ökonometrie, fin-
den. Insbesondere bei der Analyse von Konsumentendaten und in der Medizin können
die marginalen Effekte jedoch über die Individuen hinweg variieren. Regressionsmodelle
mit zufälligen Koeffizienten sind sehr hilfreich, um diese unbeobachtete Heterogenität
zu analysieren und modellieren. Hildreth und Houck (1968) und Swami (1970) betrach-
teten entsprechende lineare Modelle aus einem parametrischen Standpunkt heraus und
schlugen unter der Annahme, dass die Kovarianzen verschwinden, konsistente Schätzer
für die Erwartungswerte und Varianzen der zufälligen Regressionskoeffizienten vor. Dar-
über hinaus wurde in den letzten Jahrzehnten intensive Forschung in dem Gebiet der
nichtparametrischen Identifikation und Schätzung der gemeinsamen Verteilung der Ko-
effizienten betrieben, wie z.B. in Beran und Hall (1992), Beran und Millar (1994), Beran
et al. (1996), Hoderlein et al. (2010), Dunker et al. (2019) und Holzmann und Meister
(2020). Des Weiteren untersuchten Lewbel und Pendakur (2017) nichtlineare und addi-
tive Modelle, Ichimura und Thompson (1998) und Gautier und Kitamura (2013) binäre
Modelle, sowie Gautier und Hoderlein (2011) und Hoderlein et al. (2017) Dreiecksmodelle
mit zufälligen Koeffizienten.
In der vorliegenden Arbeit betrachten wir das lineare Regressionsmodell mit zufälli-
gen Koeffizienten und insbesondere deren Mittelwerte, Varianzen und Kovarianzen, die
möglicherweise in vielen Anwendungen hauptsächlich von Interesse sind, in einem hoch-
dimensionalen Rahmen mit Fokus auf Variablenwahl. Dies bedeutet, dass die Anzahl
der Regressoren die Anzahl der Beobachtungen übersteigen kann, aber nur einige weni-
ge erklärende Variablen tatsächlich einen Einfluss und/oder heterogene Effekte haben.
Die hochdimensionale Statistik im Allgemeinen hat in den letzten Jahren viel Aufmerk-
samkeit erlangt, da in vielen industriellen und wissenschaftlichen Bereichen größere Da-
tensätze mit einer großen Anzahl an Merkmalen gesammelt werden, wie z.B. in der
funktionellen Magnetresonanztomographie oder auch der Analyse von Microarray- und
Konsumentendaten. Ein umfassender Überblick über Methoden und zugehörige Theorie
in diesem Themenbereich befindet sich unter anderem in Bühlmann und van de Geer
(2011), Giraud (2014), Hastie et al. (2015), Vershynin (2018) und Wainwright (2019).
Eine weit verbreitete und effektive Methode für die Variablenwahl in hochdimensionalen
Regressionsmodellen mit dünnbesetzten Parametervektoren sind Schätzer mit Penalisie-
rungsfunktionen. Ein prominentes Beispiel ist der LASSO-Schätzer, welcher zuerst von
Tibshirani (1996) vorgeschlagen wurde und die empirische quadratische Verlustfunkti-
on mit der ℓ1-Penalisierung kombiniert. Orakelungleichungen für den LASSO-Schätzer
in linearen Regressionsmodellen mit unabhängigen und normalverteilten Fehlern wer-
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den unter anderem in Bickel et al. (2009) und Meinshausen und Yu (2009) bewiesen.
Dabei ist immer eine Annahme an die Datenmatrix notwendig; van de Geer und Bühl-
mann (2009) sowie Foucart und Rauhut (2013) diskutieren verschiedene Annahmen und
ihre Beziehung zueinander. Darüber hinaus haben Zhao und Yu (2006) gezeigt, dass
für die Vorzeichenkonsistenz des LASSO-Schätzers eine zusätzliche Annahme erforder-
lich ist, die meistens als wechselseitige Inkohärenzbedingung bezeichnet wird. Außerdem
hat in diesem Kontext Wainwright (2009b) die Primal-Dual-Witness-Charakterisierung
des LASSO-Schätzers eingeführt, sowie hinreichende und notwendige Bedingungen für
die Vorzeichenkonsistenz unter unabhängigen sub-Gaußschen Fehlern gegeben. In einem
nachfolgenden Forschungszweig, wie z.B. in Wainwright (2009a), wurden minimale Be-
dingungen diskutiert, unter denen für bestimmte Datenmatrizen, welche z.B. aus un-
abhängig und identisch normalverteilten Einträgen bestehen, Vorzeichenkonsistenz für
verschiedene Konstellationen von Stichprobengröße, Anzahl der Regressoren, Anzahl
von Koeffizienten ungleich null und betragsmäßig kleinstem Eintrag ungleich null des
Koeffizientenvektors möglich ist. Umfangreiche Ergebnisse in dieser Richtung, die auch
nicht-Gaußsche und endlastige Fehler einbeziehen, befinden sich in Ndaoud und Tsyba-
kov (2020). In einem weiteren Literaturstrang wird versucht sich von der wechselseitigen
Inkohärenzbedingung für die Variablenwahl zu befreien. In diesem Zusammenhang hat
Zou (2006) den adaptiven LASSO-Schätzer vorgeschlagen. Für wachsende Dimension des
Koeffizientenvektors liefern Huang et al. (2008) asymptotische Resultate, Wagener und
Dette (2012) sowie Wagener und Dette (2013) erweitern diese Asymptotik für heteros-
kedastische Fehler. Darüber hinaus betrachten Zhou et al. (2009) und van de Geer et al.
(2011) den adaptiven LASSO-Schätzer in hochdimensionalen linearen Regressionsmodel-
len mit unabhängig und identisch normalverteilten Fehlern. Außerdem bieten Loh und
Wainwright (2017) eine hochdimensionale Analyse von nicht-konvexen Penalisierungen,
wie z.B. der glatt abgeschnittenen absoluten Abweichung (Fan und Li, 2001, SCAD)
oder der minimax-konkav-Penalisierung (Zhang, 2010, MCP), um die Bedingung der
wechselseitigen Inkohärenz aufzuheben.

Falls die Anzahl der erklärenden Variablen die Anzahl der Beobachtungen übersteigt,
dann basiert der Großteil der oben genannten Resultate auf einer sub-Gaußschen Ab-
schätzung für die Ränder der unabhängigen Fehler im linearen Regressionsmodell. Das
Fallenlassen dieser Annahme kann zu suboptimalen Raten für die ℓ1-, ℓ2- und ℓ∞-Norm
des Schätzfehlers führen. Aus den Resultaten in Lederer und Vogt (2020) geht jedoch
hervor, dass der gewöhnliche LASSO-Schätzer die optimalen Raten aus dem Modell mit
leichten Rändern für die Fehlerverteilung beibehält, vorausgesetzt die Regressoren sind
gleichmäßig beschränkt und die Fehler haben etwas mehr als ein endliches viertes Mo-
ment. Insbesondere im linearen Regressionsmodell mit zufälligen Koeffizienten führt die
Schätzung der zugehörigen Kovarianzmatrix zu einem heteroskedastischen Modell, in
welchem die Fehler der Regression die zentrierten Quadrate und paarweisen Produkte
der Koeffizienten enthalten. Falls wir also eine sub-Gaußsche Verteilung für die Koeffizi-
enten annehmen, dann haben die eben genannten Fehler keine leichten Ränder mehr.

Ein aktueller Forschungszweig beschäftigt sich daher mit der Robustifizierung der ver-
fügbaren Methodik in hochdimensionalen linearen Regressionsmodellen im Hinblick auf
Abweichungen von der Annahme von leichten Rändern bei den Fehlern und manchmal
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auch bei den erklärenden Variablen. Ein gängiger Ansatz besteht darin, die quadratische
Verlustfunktion durch eine andere, robuste Verlustfunktion, wie z.B. die Check-Funktion
aus der Quantilsregression und insbesondere die absolute Abweichung für den Medi-
an (Li und Zhu, 2008; Zou und Yuan, 2008; Belloni und Chernozhukov, 2011; Wang,
2013; Fan et al., 2014), zu ersetzen. Dies führt jedoch vorzugsweise in linearen Regressi-
onsmodellen mit potentiell heteroskedastischen, asymmetrischen Fehlern dazu, dass der
Zielparameter geändert wird. Des Weiteren hat Loh (2017) robuste Verlustfunktionen,
die den gewünschten Mittelwertparameter liefern, in homoskedastischen Modellen mit
unabhängigen erklärenden Variablen und Fehlern analysiert.

Ein anderer Ansatz, welcher von Lambert-Lacroix und Zwald (2011), Fan et al. (2017)
und Sun et al. (2020) verfolgt wurde, ist die Verwendung des Huber-Verlustes (Huber,
1964) mit einem zusätzlichen Tuning-Parameter. Der Huber-Verlust kombiniert einen
quadratischen Verlust für kleine Werte und einen absoluten Verlust für große Werte. Der
Tuning-Parameter, den wir als Robustifizierungsparameter bezeichnen, ist notwendig,
um den Bias der Schätzung zu kontrollieren, da der Schätzfehler im Allgemeinen auch
immer einen Approximationsfehler enthält. Lambert-Lacroix und Zwald (2011) liefern
asymptotische Resultate für den entsprechenden adaptiven LASSO-Schätzer mit einer
festen Wahl des Robustifizierungsparameters in linearen Regressionsmodellen mit sym-
metrischen Fehlern. Wenn der Tuning-Parameter mit einer angemessenen Rate, welche
abhängig von der Stichprobengröße und der Dimension des Koeffizientenvektors ist, kon-
vergiert, dann erreicht der LASSO-Schätzer mit Huber-Verlust in hochdimensionalen,
heteroskedastischen linearen Regressionsmodellen mit sub-Gaußschen Regressoren und
Fehlern mit endlichem zweitem Moment die gleichen Raten in der ℓ1- und ℓ2-Norm wie
der gewöhnliche LASSO-Schätzer unter homoskedastischen Fehlern mit leichten Rän-
dern. Entsprechende obere und untere Schranken wurden in Fan et al. (2017) und Sun
et al. (2020) bewiesen. Allerdings wurde in diesen Modellen unseres Wissens nach die
Variablenwahl und die ℓ∞-Norm des Schätzfehlers noch nicht untersucht. Wir betrach-
ten dazu im Folgenden eine strikt konvexe, glatte Variante des Huber-Verlustes und
die adaptive LASSO-Penalisierung, um eine rechentechnische Effizienz zu gewährleisten.
Im ersten Teil der vorliegenden Arbeit zeigen wir für den resultierenden Schätzer Vorzei-
chenkonsistenz und auch optimale Konvergenzraten in der ℓ∞-Norm, welche aus linearen
Regressionsmodellen mit homoskedastischen Fehlern mit leichten Rändern bekannt sind.

Die Arbeit ist wie folgt aufgebaut. Zu Beginn wird die grundlegende Notation einge-
führt, welche in der Arbeit benötigt wird. In Kapitel 2 geben wir einen kurzen Über-
blick über die Vorzeichenkonsistenz in hochdimensionalen, homoskedastischen linearen
Regressionsmodellen und motivieren die Notwendigkeit analoger Resultate für heteros-
kedastische Fehler, um Variablenwahl für die ersten und zweiten Momente in linearen
Regressionsmodellen mit zufälligen Koeffizienten durchführen zu können. In Kapitel 3
führen wir den Pseudo-Huber-Verlust ein und zeigen Vorzeichenkonsistenz sowie opti-
male Raten in der ℓ∞-Norm für den adaptiven LASSO-Schätzer in heteroskedastischen
linearen Regressionsmodellen mit sub-Gaußschen Regressoren und Fehlern mit etwas
mehr als einem endlichem zweiten Moment. Simulationen illustrieren die Vorteile der
vorgeschlagenen Methodik im Vergleich zum gewöhnlichen adaptiven LASSO-Schätzer.
Die Resultate von Kapitel 3 sind auch in Hermann und Holzmann (2020) enthalten. Im

127



Zusammenfassung (deutsch)

zweiten Teil der vorliegenden Arbeit widmen wir uns dem linearen Regressionsmodell
mit zufälligen Koeffizienten und insbesondere deren Erwartungswerten, Varianzen und
Kovarianzen. Dazu geben wir in Kapitel 4 erst einmal hinreichende Bedingungen für
die Identifizierbarkeit der ersten und zweiten Momente der Koeffizienten an. Dabei kon-
zentrieren wir uns auf Situationen, in denen die Regressoren möglicherweise nur einen
beschränkten oder sogar endlichen Träger haben. Dies steht im Gegensatz zu dem großflä-
chigen Träger, der für die nichtparametrische Identifikation der gemeinsamen Verteilung
der Koeffizienten notwendig ist. In Kapitel 5 stellen wir zunächst die heteroskedastischen
linearen Regressionsmodelle für den dünnbesetzen Vektor der Erwartungswerte und die
dünnbesetzte Kovarianzmatrix der zufälligen Koeffizienten auf. Anschließend beweisen
wir asymptotische Resultate für die entsprechenden adaptiven LASSO-Schätzer, voraus-
gesetzt die Anzahl der Koeffizienten ist fest, wobei die Vorzeichenkonsistenz abermals
unser Hauptziel ist. Schlussendlich wenden wir in Kapitel 6 die Methoden aus Kapitel
3 auf die hochdimensionalen Regressionsmodelle der Momente der Koeffizienten an und
diskutieren ausstehende Probleme.
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