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Principles of Human Learning

Abstract

What are the general principles that drive human learning in different situa-
tions? I argue that much of human learning can be understood with just three
principles. These are generalization, adaptation, and simplicity. To verify this
conjecture, I introduce a modeling framework based on the same principles. This
framework combines the idea of meta-learning – also known as learning-to-learn
– with the minimum description length principle. The models that result from
this framework capture many aspects of human learning across different do-
mains, including decision-making, associative learning, function learning, multi-
task learning, and reinforcement learning. In the context of decision-making,
they explain why different heuristic decision-making strategies emerge and how
appropriate strategies are selected. The same models furthermore capture or-
der effects found in associative learning, function learning and multi-task learn-
ing. In the reinforcement learning context, they resemble individual differences
between human exploration strategies and explain empirical data better than
any other strategy under consideration. The proposed modeling framework – to-
gether with its accompanying empirical evidence – may therefore be viewed as a
first step towards the identification of a minimal set of principles from which all
human behavior derives.
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Prinzipien des Menschlichen Lernens

Zusammenfassung

Was sind die allgemeinen Prinzipien, die das menschliche Lernen in verschiede-
nen Situationen antreiben? Ich behaupte, dass ein Großteil des menschlichen
Lernens mit nur drei Prinzipien verstanden werden kann. Diese sind generaliza-
tion, adaptation und simplicity. Um diese Hypothese zu überprüfen, führe ich
ein Modellierungsframework ein, das auf denselben Prinzipien basiert. Dieses
Framework kombiniert die Idee des meta-learning – auch als learning-to-learn
bekannt – mit dem minimum description length Prinzip. Die Modelle, die sich
aus diesem Framework ergeben, erfassen viele Aspekte des menschlichen Ler-
nens in verschiedenen Bereichen, einschließlich dem Entscheidungsfinden, dem
assoziativem Lernen, dem Funktionslernen, dem Lernen mit mehreren Aufgaben
und dem bestärkenden Lernen. Im Kontext der Entscheidungsfindung erklären
sie, warum unterschiedliche heuristische Entscheidungsstrategien entstehen und
wie geeignete Strategien ausgewählt werden. Dieselben Modelle erfassen außer-
dem Anordnungseffekte, die beim assoziativen Lernen, beim Funktionslernen
und beim Lernen mit mehreren Aufgaben auftreten. Im Kontext des bestärk-
enden Lernens spiegeln sie individuelle Unterschiede zwischen menschlichen Ex-
plorationsstrategien wider und erklären empirische Daten besser als jede andere
in Betracht gezogene Strategie. Das vorgeschlagene Modellierungsframework
kann daher – zusammen mit den dazugehörigen empirischen Befunden – als er-
ster Schritt zur Identifizierung einer minimalen Menge von Prinzipien, von denen
das gesamte menschliche Verhalten abgeleitet werden kann, angesehen werden.
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1.1 Principles of Human Learning

From the hobby gardener who tries to figure out how to grow vegetables in his

garden to someone attempting to master the game of chess, we constantly find

ourselves in situations where we have to learn something new. You could even

argue that without the ability to learn, we would not be able to get much done

at all. But, how do people learn? How does a hobby gardener figure out what it

takes to grow vegetables, and how does one become an expert at playing chess?

The main goal of this thesis is to identify general principles that drive human

learning in different contexts. More specifically, I seek to establish a minimal set

of principles from which all of human behavior derives. Clearly, this is a gigantic

task, and I do not claim to solve it in its entirety. However, I hope that the re-

sults presented here can serve as the first step towards this goal. In particular, I

put forward the following three principles (also see Figure 1.1):

• Generalization: People learn to make good inferences in new situations.

• Adaptation: How people learn is adapted to their environment.

• Simplicity: People use short and simple learning algorithms.

The roots of these principles date back to Herbert Simon’s ideas on bounded

rationality (Simon, 1956, 1990a). Simon emphasized – using his now-famous

analogy of the two blades of a scissor – that models of human cognition need

to take both the structure of the environment (i.e., adaptation) and cognitive

limitations of the mind (i.e., simplicity) into account (Simon, 1990b). Ever since

then, all three principles have received a significant amount of attention within

psychology.
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Figure 1.1: The three suggested principles of human learning: generalization, adaptation and sim-
plicity.

From an empirical perspective, people show remarkable generalization abil-

ities (Shepard, 1957, Shanks and Darby, 1998, Ghirlanda and Enquist, 2003).

They can extrapolate well beyond the training distribution (DeLosh et al., 1997,

Schulz et al., 2016b) and learn from just a few examples (Carey and Bartlett,

1978, Markman, 1989, Lake et al., 2015, 2017). Shepard (1987) – a pioneer in

the studies of human generalization – even went as far as suggesting that “psy-

chology’s first general law should be a law of generalization” and subsequently

proposed a theory of generalization that explains how people generalize from one

stimulus to another based on an exponentially decaying function of the distance

between the two stimuli.

The no free lunch theorem states that when averaged over all possible prob-

lems, no learning algorithm is better than another (Wolpert, 1996, Wolpert and
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Macready, 1997). Therefore, learning algorithms need to be adapted to envi-

ronment they are applied in. In his seminal work on rational analysis Anderson

(1991b) asked “is human cognition adaptive?” and found evidence for this idea

in memory retrieval, categorization, causal inference, and problem-solving. From

an evolutionary perspective, this should come as no surprise, as we expect na-

ture to select for individuals that perform well within their environment (Todd

and Gigerenzer, 2007, 2012).

A general theory of human learning should also reflect that the brain only has

a limited capacity (Simon, 1990a, Gershman et al., 2015, Lieder and Griffiths,

2020). Therefore, people need to use simple algorithms. The complexity of an

algorithm can be defined as the shortest computer program that implements it

(Kolmogorov, 1965, Solomonoff, 1964, Chaitin, 1969). In this view, simplicity

is essentially compressibility (Feldman, 2016). Chaitin (2002) eloquently high-

lighted the importance of compression within intelligent systems by proclaiming

that “comprehension is compression”. Echoes of this idea are found through-

out all of cognitive science and psychology (Chater and Vitányi, 2003, Maguire

et al., 2015, Feldman, 2000).

1.2 From Principles To Computational Models

Viewed independently all three principles are quite uncontroversial. But, how

can we demonstrate that people actually follow them? The approach I take in

this thesis is to build computational models that follow the same principles and

then verify that these models do things that are similar to what people are do-

ing. My main contribution is to provide implementations of learning algorithms

4



that embody the three suggested principles and the following empirical investi-

gation of how far we can get towards a general theory of human learning with

a combination of them. The proposed framework relies on two key ideas: meta-

learning (Bengio et al., 1990, Schmidhuber et al., 1996, Thrun and Pratt, 1998)

and the minimum description length principle (Rissanen, 1978, Grünwald and

Grunwald, 2007, Hinton and Van Camp, 1993).

Meta-learning refers to the concept of learning a learning algorithm based on

previous experience. The meta-learning models used in this thesis accomplish

this by parameterizing learning algorithms through deep neural networks (Good-

fellow et al., 2016), which are then trained to make optimal inferences within

a specific environment. Eventually, this leads to the emergence of an adapted

learning algorithm that generalizes optimally to future data-points. Therefore,

meta-learning covers two of the suggested principles; generalization and adapta-

tion.

The last principle is realized by limiting the description length of the emerging

learning algorithm through an additional information-theoretic regularization

term. The description length of an algorithm is defined as the number of bits

required to implement it. Limiting it, therefore, acts as a particular notion of

simplicity.

Putting these two ideas together leads to a class of algorithms for solving su-

pervised learning problems called bounded meta-learned inference (BMI) and to

one for reinforcement learning problems called RL3. By applying BMI and RL3

to a set of diverse domains, I demonstrate that generalization, adaptation, and

simplicity capture many characteristics of human learning across different re-

search areas.
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1.3 Summary

Chapter 2 starts with a review of computational theories of human learning.

Therein, I also discuss how prior work has addressed generalization, adaptation,

and simplicity. Chapter 3 introduces BMI and RL3 in detail and contrasts them

with other theories of learning. Chapters 4 to 6 then examine BMI and RL3 on a

diverse set of learning problems:

• Chapter 4 demonstrates that different heuristics, that have been previ-

ously suggested as models of human decision-making, emerge naturally

from BMI. BMI furthermore makes precise predictions about if and when

these heuristics should emerge, which were verified in three new experi-

mental studies.

• Chapter 5 demonstrates that BMI additionally captures different order ef-

fects found in associative learning, function learning, and multi-task learn-

ing.

• Chapter 6 demonstrates that RL3 discovers a diverse spectrum of explo-

ration strategies that align with individual differences in human explo-

ration on a two-armed bandit task.

In Chapter 7, I wrap up this thesis by discussing limitations of the proposed

framework and suggest directions for future research.

6
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Previous Theories of Human Learning
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Do current computational theories of human learning already address the

three suggested principles? This chapter reviews prevalent theories, with a fo-

cus on how they address generalization, adaptation, and simplicity. Table 2.1

provides a summary of all reviewed theories along with their characteristics.

The main focus of this chapter is on supervised learning problems. In such

problems, an agent – either human or machine – has to learn how to map an

input variable x ∈ Rd to a target variable y. If the target variable is an un-

constrained real number, this is known as a regression problem. If it belongs to

a discrete set of categories, then this is a classification problem. I assume that

data arrives sequentially and denote a sequence of input-target pairs of length

t as x1:t, y1:t. In each time-step, the agent observes an input. It then makes a

prediction for that input and subsequently receives feedback about the actual

target variable. This problem formulation is extremely general, and it maps di-

rectly to many experimental paradigms from the psychology literature, including

those found in associative learning (Shanks, 1995), category learning (Ashby and

Maddox, 2005) and decision-making (Gigerenzer and Gaissmaier, 2011). For ex-

ample, in an associative learning setting x may correspond to the presence or

absence of a stimulus and y to an associated reward, or in a decision-making set-

ting x may represent different features of two football teams, while y indicates

the outcome of a match between the two.

Describing how computational theories address generalization, adaptation,

and simplicity requires formal definitions of the three principles. Therefore, I

will discuss briefly how each of them can be formalized before relating them to

different theories.

8



Framework Generalization Adaptation Simplicity

Rescorla-Wagner • • •
Bayesian Inference • • •
Rational Process Models • • •
Program Induction • • •
Connectionism • • •
Gradient-Based Meta-Learning • • •
Model-Based Meta-Learning • • •
Table 2.1: Properties of different learning frameworks. Green dots indicate that the corresponding
principle is addressed optimally within the framework. Red dots indicate no consideration at all.
Instances in between both ends are labeled with an orange dot.

Generalization

Being able to generalize means to perform well in novel situations. In machine

learning, performance is typically measured in terms of a loss function. Let

L(x, y,x1:t, y1:t,m) be such a loss function that compares predictions of model

m on input x with the the target variable y after having observed t input-target

examples x1:t, y1:t. The generalization loss Lg is obtained by averaging L over all

possible future data-points:

Lg(x1:t, y1:t,m) = Ep(x,y) [L(x, y,x1:t, y1:t,m)] (2.1)

I say that a learning algorithm generalizes optimally if its generalization loss is

as low as possible.

9



Adaptation

Adaptation can be defined in a similar fashion. It is the ability to adjust to an

environment in a way that one learns well on tasks that are typically encoun-

tered within that particular environment. I define an environment as the distri-

bution over tasks p(x1:t, y1:t) can be encountered, and say that a learning algo-

rithm is adapted to its environment if it minimizes performance averaged over

all tasks:

La(m) = Ep(x1:t,y1:t) [Lg(x1:t, y1:t,m)] (2.2)

= Ep(x1:t,y1:t) Ep(x,y) [L(x, y,x1:t, y1:t,m)] (2.3)

Simplicity

Formally, an algorithm’s complexity can be defined as the length of the short-

est computer program that implements it (Kolmogorov, 1965, Solomonoff, 1964,

Chaitin, 1969). Learning algorithms with low complexity are simple. Typically,

simplicity is at odds with measures of performance such as generalization; one

has to give away performance for simplicity. I say that a learning algorithm op-

timally trades-off performance for simplicity if no shorter algorithm that achieves

the same level of performance exists.

2.1 Rescorla-Wagner Model

Historically, the Rescorla-Wagner model (Rescorla and Wagner, 1972) provides

one of the earliest computational theories of human learning. The model as-

sumes that predictions are computed through a linear combination between

10



inputs and their corresponding associative strength wt ∈ Rd. Learning – i.e.,

updating of associative strengths – is realized through gradient descent on a

squared error loss function between the prediction and the target:

L(x, y,wt) =
1

2
y −wT

t x
2 (2.4)

wt+1 = wt − α∇wtL(x, y,wt) (2.5)

= wt + α y −wT
t x x (2.6)

where α is a learning rate parameter.

The Rescorla-Wagner model demonstrated that many empirical observations

can be explained through error-based learning. However, there are also impor-

tant aspects of human learning that the model does not capture (Miller et al.,

1995, Daw et al., 2008, Gershman, 2015). Despite constituting an important step

in improving our theoretical understanding of human learning, the model does

not fully address any of the three principles:

1. It does not guarantee that generalization error is minimal after learning.

2. It can not be adapted to properties of the environment.

3. It does not involve any measure of simplicity.

2.2 Bayesian Inference

From a probabilistic perspective the predictive posterior distribution p(y|x,x1:t, y1:t)

expresses how to make predictions on new inputs given that one has previously

observed a sequence of input-target pairs. In this view, building a model of learn-

ing boils down to defining how the predictive posterior distribution is obtained.
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Bayesian inference offers a principled tool for doing exactly this. Essential for

Bayesian inference are a prior p(w) that defines an agent’s initial beliefs about

possible parameter values before any data is observed and a likelihood p(y1:t|x1:t,w)

that captures its knowledge about how the environment generates data for a

given set of parameters. Bayesian inference proceeds to compute the predictive

posterior distribution in two steps. First, it combines prior and likelihood to a

posterior distribution over parameters by applying Bayes’ theorem:

p(w|x1:t, y1:t) =
p(y1:t|x1:t,w)p(w)

p(y1:t|x1:t)
(2.7)

Then, it averages over all possible parameter values weighted by their poste-

rior probability to get the predictive posterior distribution:

p(y|x,x1:t, y1:t) =

Z
p(y|x,w)p(w|x1:t, y1:t)dw (2.8)

Bayesian theories of human learning are supported by a considerable amount

of empirical evidence (Tenenbaum and Griffiths, 2001, Griffiths et al., 2008).

They, for example, capture patterns in associative learning that are not accounted

for by the Rescorla-Wagner model (Dayan and Long, 1998, Dayan and Kakade,

2001, Courville et al., 2004, 2005, 2006, Gershman, 2015). They have also con-

tributed to our theoretical understanding by unifying theories that have been

previously considered as disjunct (Lucas et al., 2015, Anderson, 1991a). Beyond

learning, Bayesian inference has been also successfully applied to other domains

of human cognition, including perception (Knill and Richards, 1996), motor con-

trol (Körding and Wolpert, 2004), everyday judgements (Griffiths and Tenen-
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baum, 2006) and logical reasoning (Oaksford et al., 2007).

There are, however, also issues that come with Bayesian inference. Applying

Bayes’ theorem to compute posterior distributions is only possible in a few spe-

cial cases and uncomputable in general. The main reason for this is that it is

often difficult to find a closed-form expression for the integral in the denomina-

tor of Equation 2.7. Besides that, it has been argued by critics of the Bayesian

approach that characterizing the right prior and likelihood is often impossible.

Savage (1972) referred to situations in which this is possible as small worlds

and contrasts them with large worlds, in which not all available hypothesis and

choices can be enumerated or are known in advance (Gigerenzer and Gaissmaier,

2011). The critics of the Bayesian approach to human learning argue that “real

world problems of theoretical significance tend not to be small world problems”

(Brighton and Gigerenzer, 2012) and that Bayesian inference provides no justifi-

cation for optimal reasoning within the real world (Binmore, 2007).

How do Bayesian models address the three suggested principles? If we set our

loss to the negative probability of targets under the predictive posterior distribu-

tion, Bayesian inference implements an ideal observer, which is optimal in terms

of its generalization loss (Jaynes, 2003, Berger, 2013). Bayesian inference can

furthermore adapt itself to different environments by adjusting which prior and

likelihood it uses. Finally, it is also possible to define priors that favor simple so-

lutions (MacKay, 1992, Rasmussen and Ghahramani, 2001). However, this does

not tell us anything about how costly it is to implement the algorithm that com-

putes the solution. Consequently, Bayesian inference only embodies a restricted

form of simplicity.
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2.3 Rational Process Models

The intractability of Bayesian inference provides a challenge for statisticians,

that want to apply such models to real-world problems, and to cognitive scien-

tists, that like to consider them as models of human cognition. In consequence,

researchers have developed approaches that can approximate Bayesian inference

without running into computational difficulties. The prime examples of such ap-

proaches are variational approximations (Jordan et al., 1999) and sample-based

methods (Geman and Geman, 1984).

In the context of cognitive science, such approximations are also referred to

as rational process models (Sanborn et al., 2010, Griffiths et al., 2015). Ratio-

nal process models can account for cases where human behavior deviates from

the notion of optimality prescribed by Bayesian inference. There is evidence that

supports both variational and sample-based approximations. For example, vari-

ational approximations have been shown to replicate known sensitivities to the

arrangement of observations in associative learning studies (Daw et al., 2008,

Sanborn and Silva, 2013), whereas sample-based approximation have the po-

tential to account for differences between individual participants (Courville and

Daw, 2008, Sanborn et al., 2010, Vul et al., 2014).

Like Bayesian inference, rational process models embody the principles of gen-

eralization and adaptation. They are furthermore designed to require fewer com-

putational resources. Therefore, they are simple in some sense. In general, how-

ever, rational process models do not comply with the formal definition of sim-

plicity given above – they do not take the length of the computer program that

implements the learning algorithm into consideration.
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2.4 Program Induction

Learning through program induction extends the framework of Bayesian infer-

ence to rich, structured hypothesis spaces instead of using simple priors over

atomic hypotheses. Potential choices of hypothesis spaces include probabilis-

tic grammars (Goodman et al., 2008), logic systems (Piantadosi et al., 2016)

and programming languages (Ellis et al., 2016). The combination of Bayesian

inference and structured hypothesis spaces has helped us to understand how

people learn and reason in complex domains. Program induction, for example,

captures how people learn about compositional concepts from few observations

(Lake et al., 2015), and accounts for many patterns in human concept learning

(Piantadosi et al., 2016, Rule et al., 2018).

Because program induction is essentially Bayesian inference within a richer

space of hypotheses, all statements regarding Bayesian inference and the three

principles also apply to program induction. Namely, it does generalize optimally

to novel observations and can be adapted to environment-specific characteristics,

but only embodies a restricted form of simplicity.

2.5 Connectionism

The framework of connectionism (McClelland et al., 1986) provides a very dif-

ferent approach for understanding human learning: it tries to explain learning

through neural networks. Typically, these networks consist of a large number of

simple processing elements that communicate with each other by transmitting

signals. Thus, connectionism explains cognitive processes as emergent conse-

quences of the interaction between a large number of simple processing units,
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instead of characterizing them directly as it is common in other theories (Mc-

Clelland et al., 2010).

Neural networks are not a theory of learning on their own; they have to be

coupled with a learning algorithm. In the connectionism framework, this is com-

monly done through gradient-based learning (Rumelhart et al., 1986). Learn-

ing in these systems is slow, and as such connectionist models have been tra-

ditionally applied to study human learning at larger time-scales; for example,

to understand the acquisition of language during development (Elman, 1993,

Rumelhart and McClelland, 1986). However, there also exist a number of no-

table connectionist models in associative learning (Kruschke, 2001), function

learning (DeLosh et al., 1997) and category learning (Kruschke, 1992).

Empirically, neural networks show some forms of generalization, but often fail

to generalize systematically (Fodor et al., 1988, Lake and Baroni, 2018). More

specifically, they do not guarantee that generalization error is minimal after

learning. Traditional connectionist models rely on fixed learning algorithms and

thus contain no mechanism for adaptation to environment-specific characteris-

tics. They also do typically not involve any measure of simplicity.

2.6 Meta-Learning

The framework of meta-learning offers an alternative to fixed, hand-coded learn-

ing algorithms used by connectionist models. The goal of a meta-learning system

is to learn the learning algorithm itself through repeated encounters with simi-

lar learning problems (Schmidhuber et al., 1996, Bengio et al., 1990, Thrun and

Pratt, 1998). The two dominant meta-learning approaches are gradient-based
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meta-learning (Finn et al., 2017) and model-based meta-learning (Hochreiter

et al., 2001b, Santoro et al., 2016).

Model-agnostic meta-learning (MAML) is an example of a gradient-based

meta-learning method. MAML attempts to find weight initializations for neu-

ral networks that facilitate optimal gradient-based learning within a given envi-

ronment (Finn et al., 2017, Grant et al., 2018). This results in a connectionist-

like learning algorithm that is adapted to environment-specific characteristics.

However, while this addresses the issue of slow learning in connectionist mod-

els, learning itself is still restricted to gradient-based updates, which means that

there is no guarantee that generalization will be optimal after learning. Like tra-

ditional connectionist models, MAML also does not involve any measure of sim-

plicity.

Model-based meta-learning is another method to obtain an environment-specific

learning algorithm. In this approach, the learning algorithm is represented through

a general-purpose function approximator, typically some form of neural network

(Hochreiter et al., 2001b, Santoro et al., 2016, Garnelo et al., 2018). The goal

is then to turn this function approximator into an optimal learning algorithm.

Typically, this is done by minimizing a sample-based estimate of Equation 2.3.

If the function approximator is expressive enough, this will lead to an adapted

algorithm that generalizes optimally to future observations. Existing model-

based meta-learning approaches, however, still do not involve any measure of

simplicity.

The study of meta-learning in the context of human learning is still in its in-

fancy, but it has received an increased amount of interest from cognitive science

(Griffiths et al., 2019) and neuroscience (Wang et al., 2018) in the recent past.
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Whereas both gradient-based and model-based meta-learning have been used to

replicate human-like abilities qualitatively (Lake, 2019, McCoy et al., 2020), the

work presented in this thesis is among the first to connect meta-learning models

to empirical data collected in psychological studies.

2.7 Summary

There have been a number of computational theories of human learning in the

past, some of which I have reviewed in this chapter. Each offers its own strengths

and weaknesses. Learning algorithms in the Bayesian family generalize optimally

to future observations and can be adapted to work well in a given environment.

Traditional connectionist models trained through gradient-based methods en-

joy no formal guarantees on how well they generalize, although they often show

interesting generalization patterns. Meta-learning allows neural network-based

models to adapt to an environment through interactions with similar learning

problems.

None of the reviewed theories accounts for the cost of implementing the learn-

ing algorithm, and thus none of them embodies all three of the suggested prin-

ciples of human learning. How can one even quantify how costly it is to imple-

ment an algorithm? In general, the answer to this question is far from trivial (Li

et al., 2008). However, as I will show in the next chapter, there exists a straight-

forward extension to model-based meta-learning that allows us to do exactly

this.
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3
A New Modeling Framework
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In this chapter, I present two novel classes of learning algorithms; one for solv-

ing supervised learning problems called bounded meta-learned inference (BMI)

and one for solving reinforcement learning problems called RL3. Both of them

embody all three suggested principles of human learning. They are obtained by

combining existing model-based meta-learning approaches (Hochreiter et al.,

2001a, Santoro et al., 2016, Garnelo et al., 2018, Duan et al., 2016, Wang et al.,

2016) with an objective that controls for the description length of the emerging

learning algorithm (i.e., the number of bits required to implement it). Section

3.1 introduces general concepts of the framework in the context of supervised

learning problems. Section 3.2 demonstrates that the same ideas can also be

applied to reinforcement learning problems. Section 3.3 outlines several details

that are important for implementing these models.

3.1 Bounded Meta-Learned Inference

Bounded meta-learned inference (BMI) is a class of learning algorithms for su-

pervised learning problems. It combines model-based meta-learning with the

minimum description length principle. I will first show how meta-learning can

be used to create learning algorithms that generalize optimally in a particular

environment. This leads to a variant called meta-learned inference (MI). Then, I

will show how MI can be extended to the take description length of the emerging

learning algorithm into account.

The goal of a learning algorithm is to compute a predictive posterior distribu-

tions p(y|x,x1:t, y1:t). Like Bayesian inference, MI computes statistically optimal

predictive posterior distributions, but it does so in a very different way. In MI,
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a function approximator is trained to act as an optimal learning algorithm – a

process that is commonly called meta-learning. How does this work? Initially,

the function approximator maps a sequence of previously observed input-target

examples x1:t, y1:t and a queried input x to a random predictive posterior dis-

tribution over targets y. During meta-learning, the system is then trained on a

distribution over tasks p(x1:T , y1:T ) to infer statistically optimal predictive pos-

terior distributions. I also refer to the distribution over tasks as environment

and meta-learning distribution throughout this thesis. In probabilistic terms,

we can learn to infer statistically optimal predictive posterior distributions for

an environment by minimizing negative log-probabilities of the data under an

expectation over tasks:

LMI(Θ) = Ep(x1:T ,y1:T )

"
T−1X
t=0

− log p(yt+1|xt+1,x1:t, y1:t,Θ)

#
(3.1)

where Θ denotes the parameters of the function approximator. In principle,

any type of general-purpose function approximator could be used to implement

this mapping. However, as the length of input-target sequences may vary, recur-

rent neural networks (RNNs) are a natural choice for the aforementioned sequen-

tial learning setting. Figure 3.1 shows an example of how the RNN processes a

sequence of data-points.

During meta-learning, a sample-based approximation of the MI objective (Equa-

tion 3.1) is optimized until convergence using standard optimization techniques.

Figure 3.2 provides pseudocode describing the meta-learning procedure. Through

repeated exposure to tasks from the meta-learning distribution, the model adapts

itself to the properties of the encountered environment. After meta-learning is
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Figure 3.1: Unrolled RNN processing a single task x1:T , y1:T . In time-step t + 1 the network
reads in the input xt+1 and the target from the previous time-step yt. The outputs µt+1, σt+1

correspond to parameters of the predictive posterior distribution p(yt+1|xt+1,x1:t, y1:t,Θ) =
N (yt+1|µt+1, σt+1). For classification tasks the predictive posterior distribution may be
parametrized through a categorical distribution. Black arrows indicate forward passes, blue arrows
indicate backward passes.

completed, the RNN acts as a free-standing learning algorithm without requir-

ing any further parameter updates. Instead, learning is implemented through

the forward dynamics of the RNN: we provide the network with a sequence of

input-target examples and an input that we want to query, and the network pro-

vides us with predictions for that input. Typically, one is only interested in the

properties of the emerging learning algorithm after meta-learning is completed

and not in what happens during meta-learning. Thus, all results reported in this

thesis refer to fully converged models.

MI is a learning algorithm that embodies two of the suggested principles of

human learning; generalization and adaptation. The model learns to generalize

optimally because the log-probability term inside the expectation encourages it

to make optimal predictions on future observations. The model is adapted to

environment-specific characteristics because this term is optimized for a par-

ticular distribution over tasks. It has been shown in previous work that this
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Algorithm 1: Meta-Learning
while not converged do

/* sample a batch of tasks */
x1:T , y1:T ∼ p(x1:T , y1:T );
/* compute loss */
LMI(Θ) =

PT−1
t=0 − log p(yt+1|xt+1,x1:t, y1:t,Θ);

/* update model parameters */
Θ← Θ− α∇ΘLMI(Θ);

end

Figure 3.2: Pseudocode for the meta-learning procedure. For BMI, one has to replace the MI
objective with the BMI objective.

meta-learning approach leads to the emergence of a learning algorithm that ap-

proximately simulates Bayesian inference (Rabinowitz, 2019, Ortega et al., 2019,

Mikulik et al., 2020). I provide several model simulation results that support

this claim in Section 3.1.1.

BMI combines the MI objective with an additional term that acts as a regu-

larizer for the description length of the emerging learning algorithm. Therefore,

it also embodies the third suggested principle of human learning; simplicity. In

the meta-learning setting, the trained RNN acts as a learning algorithm. Thus,

controlling the description length of RNN parameters implies that we control

how many bits are required to implement the learning algorithm itself.

How can we accomplish this? Instead of keeping point estimates of neural

network parameters, we keep track of a distribution over their plausible values

q(Θ|Λ), which I refer to as the encoding distribution. During meta-learning, we

then attempt to optimize the parameters of this encoding distribution Λ.∗ For
∗For example, Λ could correspond to the mean and standard deviation of a normal distri-

bution.
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BMI, this involves minimizing the following objective:

LBMI(Λ) = Eq(Θ|Λ) [LMI(Θ)] + βKL [q(Θ|Λ)||p(Θ)] (3.2)

where p(Θ) is a prior over model parameters. The Kullback–Leibler (KL) di-

vergence between q(Θ|Λ) and p(Θ) can be interpreted as a measure of the pa-

rameters’ description length (Hinton and Van Camp, 1993).† Minimizing the

BMI objective (Equation 3.2), therefore, leads to a learning algorithm that op-

timally trades-off predictive power against β-weighted description length. For

β = 0, it reverts to an unconstrained learning algorithm that is equivalent to MI.

It is possible to map the three principles neatly onto different parts of the

BMI objective:

Eq(Θ|Λ)

Ep(x1:T ,y1:T )| {z }
adaptation


T−1X
t=0

− log p(yt+1|xt+1,x1:t, y1:t,Θ)| {z }
generalization


+ βKL [q(Θ|Λ)||p(Θ)]| {z }

simplicity

(3.3)

BMI achieves generalization by being explicitly trained to make optimal in-

ferences on new data-points after observing a sequence of input-target examples

from the same task. BMI achieves adaptation by maximizing performance for

a specific distribution over tasks. BMI achieves simplicity by penalizing the de-

scription length of the emerging learning algorithm.

For completeness, it should be noted that there also exists an interpretation of

the BMI objective that appeals to PAC-Bayesian theory (McAllester, 1999, 2013,
†Further explanation about why that is the case is provided Section 3.3.2.
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Dziugaite and Roy, 2017, Achille and Soatto, 2018). From the PAC-Bayesian

perspective, minimizing the BMI objective corresponds to minimizing an upper-

bound on the generalization error for tasks that were not encountered during

meta-learning. Recently, several meta-learning models have been proposed that

that rely on this alternative interpretation instead of the information-theoretic

interpretation used here (Yin et al., 2019, Rothfuss et al., 2020, Jose and Sime-

one, 2020).

3.1.1 Meta-Learning and Bayes-Optimality

Previously, I have remarked that MI – or equivalently BMI without resource lim-

itations – approximately simulates a Bayes-optimal learner. This statement is of

course subject to the expressiveness of the employed function approximator, and

one might question whether it also holds in practice. In this section, I demon-

strate that this is indeed the case on a simple example problem. Let us consider

the following environment:

p(x1:T , y1:T ,w) = p(w)
TY
t=1

p(xt)p(yt|xt,w) (3.4)

p(w) = N (w|0, I) (3.5)

p(xt) = U(xt| − 1, 1) (3.6)

p(yt|xt,w) = N (yt|wTxt, 0.1) (3.7)

Equations 3.4 to 3.7 state that tasks in this environment are generated by first

sampling a random weight vector, then sampling random input vectors x1:T , and

finally sampling their corresponding targets y1:T . They also express the assump-
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tions that the input-target relationship is linear and that each input-target pair

is independent of other input-target pairs given the weight vector.

An agent sequentially observes input-target examples and has to make pre-

dictions for new inputs without having access to the underlying weight vector.

A Bayes-optimal learner does this by computing the predictive posterior dis-

tribution. The given environment is simple enough such that it is possible to

find an analytical expression for the predictive posterior distribution (Dayan and

Kakade, 2001, Gershman, 2015):

p(yt|xt,x1:t−1, y1:t−1) =

Z
p(yt|xt,w)p(w|x1:t−1, y1:t−1)dw (3.8)

= N (yt|µµµT
t xt,x

T
t Σtxt + σ2) (3.9)

µµµt = µµµt−1 + kt yt−1 − µµµT
t−1xt−1 (3.10)

Σt = Σt−1 − ktx
T
t−1Σt−1 (3.11)

kt =
Σt−1xt−1

xT
t−1Σt−1xt−1 + σ2

(3.12)

Next, I will show that MI closely approximates this Bayes-optimal learner.

The implementation used here makes use of gated recurrent units (Bahdanau

et al., 2014), which are a particular type of RNN.‡ The network processes the

current input xt and the last target yt−1, and outputs the parameters of a nor-

mal distribution over yt as shown in Figure 3.1. In the ideal case, these parame-

ters should be identical to the ones of the predictive posterior distribution.

The sequence length was fixed to T = 10 for all simulations, and I report re-

sults for environments of varying complexity. The complexity of an environment
‡For further details on gated recurrent units, see Section 3.3.1.

26



1 3 5 7 9
Trial

0

1

2
lo

gp
(y

t|x
t)

d = 2
Bayes-optimal
MI (h = 512)
MI (h = 256)
MI (h = 128)

1 3 5 7 9
Trial

0

1

2

lo
gp

(y
t|x

t)

d = 4

1 3 5 7 9
Trial

0

1

2

lo
gp

(y
t|x

t)

d = 8

Figure 3.3: Performance comparison of MI with the Bayes-optimal learner in environments of
different complexity. The x-axis indicates the number of observed data-points, the y-axis negative
log-probabilities of targets under the predictive distribution averaged over 10000 tasks.

is controlled by the dimensionality of the weight vector d ∈ {2, 4, 8}. The MI ob-

jective 3.1 was minimized during meta-learning using the AmsGrad optimizer

(Reddi et al., 2019) with a learning rate of 0.001. In total, meta-learning com-

prised 2.5 · 106 gradient steps with batches of size 32.

Figure 3.3 compares the performance of MI with h ∈ {128, 256, 512} hidden

units to the Bayes-optimal learner. For the environment with the lowest com-

plexity (d = 2), the performance of MI is identical to the Bayes-optimal learner

for all practical purposes. For the environment with medium complexity (d = 4),

the performance of MI deviates only minimally from the Bayes-optimal learner.

For the environment with the highest complexity (d = 8), the performance gap

becomes larger; at this point MI does not anymore align with the Bayes-optimal

learner. The studies presented later on involve between one and four features.

It can therefore be concluded that MI – or equivalently BMI without resource

limitations – approximately simulates a Bayes-optimal learner for the purpose of

this thesis.
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3.1.2 Why Not Bayesian Inference?

It is reasonable to ask what additional explanatory power the proposed frame-

work offers, given that meta-learning produces models that approximately simu-

late Bayesian inference. After all, why not just stick to good-old Bayesian infer-

ence? There are, however, a few arguments that speak in favor of BMI.

First, BMI represents the learning algorithm with a parametric model, which

makes it possible to quantify – and control for – its complexity in a principled

way. It can, therefore, also explain behavior that deviates from the notion of op-

timality prescribed by Bayesian inference (Kahneman and Tversky, 1972, Chater

and Vitányi, 2003, Gershman et al., 2015).

Second, Bayesian inference scales poorly to complex situations to the extent

that finding analytical expressions for predictive posterior distributions is not

possible beyond idealized toy examples. BMI, on the other hand, can be trained

to infer approximately optimal predictive posterior distributions, even if the cor-

responding Bayesian inference problem has no analytical solution. It also makes

the design of Bayes-optimal learning algorithms easier and faster, as one is not

forced to derive new updating equations anymore whenever encountering a new

inference problem. Instead, one can run the same meta-learning algorithm in a

new environment to automate the process of creating a Bayes-optimal learning

algorithm.

Third, Bayesian inference requires access to an explicit functional form of the

likelihood and the prior. If these are not available, Bayesian inference provides

no justification for optimal reasoning (Binmore, 2007). BMI, on the other hand,

can infer approximately optimal predictive posterior distributions even if it is
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impossible to phrase the corresponding inference problem in the first place; all

that it needs for this are samples of tasks from the environment. In contrast to

Bayesian inference, BMI can therefore provide a justification for optimal reason-

ing in large world problems.

3.1.3 Marr’s Levels of Analysis

Nearly 40 years ago, Marr (1982) presented a framework for categorizing model-

ing approaches depending on their level of analysis. He suggested three such lev-

els: computational, algorithmic, and implementational. The computational level

is about defining what goal the system under investigation is trying to achieve.

The algorithmic level describes how the system transforms inputs into outputs,

or in other words, how it processes information. Finally, we have the implemen-

tational level that specifies how the system is realized in physical hardware. Not

all modeling approaches map nicely on Marr’s levels of analysis, but many do.

Indeed, up to this date, Marr’s levels continue to be an influential framework in

cognitive science for thinking about what questions to ask and how to answer

them (Griffiths et al., 2012, Zednik and Jäkel, 2016, Lieder and Griffiths, 2020).

Marr’s levels help us to clarify what questions a given model tries to answer.

Large parts of contemporary cognitive science are devoted to identifying the

processes that describe how the brain maps inputs into outputs. The resulting

process models tend to be located at Marr’s algorithmic level (Jarecki et al.,

2020). For example, Lewandowsky and Farrell (2010) argued that “cognitive

scientists would ultimately prefer an explanatory process model over most char-

acterizations”, and McClelland (2009) stated that “most cognitive scientists are

concerned with understanding cognitive processes”. If one is looking for such a
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model, BMI will probably not provide a satisfying answer. Instead, BMI answers

a question on Marr’s computational level of analysis: what would an optimal

learner that is subject to limited computational resources do in a particular envi-

ronment?

3.2 RL3

The ideas that were outlined in the last section can not only be applied to su-

pervised learning problems but also to reinforcement learning problems (Sutton

and Barto, 2018). Reinforcement learning deals with sequential decision-making

problems in unknown environments, which are typically modeled as Markov de-

cision processes (MDPs, Bellman, 1957). Let M = (S,A, p) be an undiscounted

MDP with a set of states S, a set of actions A and a joint distribution over the

next state and a scalar reward signal p(st+1, rt|st, at). Note that this formula-

tion does not include a discount factor γ. However, discounting can always be

incorporated if desired by modifying the transition dynamics such that the agent

transitions to a terminal state with probability 1− γ (Levine, 2018).

A reinforcement learning agent interacts with an MDP in discrete time inter-

vals. In each time-step t, it observes the current state of environment st, based

on which it executes a specific action at. In turn, this action influences the state

of the environment and triggers a reward signal rt. The interaction between

agent and environment repeats for a certain number of time-steps or until a ter-

minal state is reached. The agent’s goal is to find the policy π that maximizes

the expected return Ep,π [
P∞

t=1 rt] without having access to the dynamics of the

environment p(st+1, rt|st, at).

30



How can one meta-learn an algorithm for solving MDPs? Previous work has

shown that it is possible to accomplish this through standard reinforcement

learning techniques (Wang et al., 2016, Duan et al., 2016). Duan et al. (2016)

refer to this approach as RL2. In this section, I will present a resource-limited

extension of RL2 to which I refer to as RL3. RL3 shares many of its ideas with

BMI. As in BMI, a RNN is trained on a distribution over tasks to act as a free-

standing learning algorithm, but this time to solve an MDP sampled from a

distribution over MDPs instead of solving a supervised learning problem. The

RNN takes previous actions and rewards as inputs in addition to the current

state, making the output a function of the current state st and the entire history

ht = s1:t−1, a1:t−1, r1:t−1. By integrating information from the history, the RNN

attempts to infer the optimal policy for the currently encountered MDP.

Any reinforcement learning algorithm could be used to turn the RNN into an

optimal reinforcement learning algorithm. Throughout this thesis, I make use of

a particular algorithm called Q-Learning (Watkins and Dayan, 1992). The goal

of Q-Learning is to learn the action-value function of the optimal policy π∗:

Q∗(st, ht, at) = Ep,π∗

"
∞X
k=0

rt+k|st, ht, at

#
(3.13)

If one has access to Q∗, the optimal policy can be readily derived:

π∗(at|st, ht) =


1 if at = argmax

a∈A
Q∗(st, ht, a)

0 else
(3.14)

Keeping the probabilistic interpretation from the earlier section, the outputs
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of the RNN parametrize a distribution over action-values of the optimal policy,

and model parameters are adjusted to maximize the log-likelihood of observed

data-points. However, one cannot use Q∗ directly as targets because that would

require access to the optimal policy. The key insight behind Q-Learning is that

one can instead use targets defined by:

qt = rt +max
a

Q∗(st+1, ht+1, a) (3.15)

≈ rt +max
a

E [qt+1|st+1, ht+1, a,Θ] (3.16)

For tabular environments, it can be shown that using targets as defined in Equa-

tion 3.15 leads to provable convergence to the action-value function of the opti-

mal policy (Jaakkola et al., 1994). Q∗ can be estimated by a simple forward pass

through the network after meta-learning is completed, and one can subsequently

derive the optimal policy based on Equation 3.14. Therefore, the RNN now im-

plements a freestanding reinforcement learning algorithm through its recurrent

activations.

The complete RL3 objective is obtained by trading-off accurate predictions of

optimal action-values for a shorter description length:

LRL3(Λ) = Eq(Θ|Λ)

"
Ep(s1:T ,a1:T ,r1:T )

"
T−1X
t=0

− log p(qt+1|st+1, ht+1, at+1,Θ)

##

+ βKL [q(Θ|Λ)||p(Θ)] (3.17)

Minimizing the RL3 objective for β = 0 leads to a reinforcement learning al-

gorithm that approximates the Bayes-optimal policy (Duff, 2003, Zintgraf et al.,
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2019b, Ortega et al., 2019). For β > 0, we get a family of reinforcement learn-

ing algorithms that trade-off performance for a shorter description length. Like

its counterpart for solving supervised learning problems, RL3 also embodies all

three suggested principles of human learning; generalization, adaptation, and

simplicity.

3.3 Modeling Details

Thus far, I have introduced the general ideas of BMI and RL3, but remained

vague about some of their details. In this section, I will close this gap. Each

subsection focuses on a particular aspect of the BMI or RL3 objective. Section

3.3.1 provides details about the model architecture that is used. Section 3.3.2

explains why the KL divergence between encoding distribution and prior can

be interpreted as a measure of the parameters’ description length. Section 3.3.3

specifies the encoding distribution and prior used. Finally, Section 3.3.4 provides

a short discussion about how to select the appropriate meta-learning distribution

when considering BMI and RL3 as models of human learning.

3.3.1 Gated Recurrent Units

I have argued that RNNs are the natural choice for a function approximator in

our setting as they can easily deal with sequences of varying lengths. This is im-

portant because it allows us to condition the model on a variable number of pre-

viously observed input-target examples. RNNs do this by compressing a history

of observations of arbitrary length into a vector of fixed length ht ∈ Rh. In each

time-step, this hidden state is updated based on the new inputs to the model
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xt, yt−1 and the hidden state from the previous time-step ht−1. Early RNNs were

based on simple activation functions (Elman, 1990), such as the tanh function:

ht = tanh (Wih[xt, yt−1] +Whhht−1) (3.18)

where Wih denotes parameters of a linear transformation from the input to

the hidden state and Whh denotes parameters of a linear transformation from

the previous hidden state to the updated hidden state.

RNNs are typically trained using gradient-based methods. The most popu-

lar approach to obtain gradients with respect to RNN parameters is the idea of

backpropagation through time (Werbos, 1988). In backpropagation through time,

the RNN is unrolled over multiple time-steps, which results in a computational

graph that can be interpreted as a very deep feed-forward network with shared

weights. In principle, this allows to directly compute the desired gradients using

automatic differentiation software. However, in practice this type of training suf-

fers from the problem of vashining gradients (Hochreiter et al., 2001a); gradients

of the loss function will approach zero as the depth of the network increases, es-

sentially preventing the model from learning long-term dependencies.

A popular approach to prevent this issue is to use gated activations functions,

which better control the information flow through the hidden state (Hochreiter

and Schmidhuber, 1997, Chung et al., 2014). Among RNNs with gated activa-

tions functions the gated recurrent unit (GRU, Bahdanau et al., 2014) has be-

come one of the standard models. It is based on the following updating equation

34



for the hidden state:

rt = σ (Wir[xt, yt−1] +Whrht−1) (3.19)

zt = σ (Wiz[xt, yt−1] +Whzht−1) (3.20)

ht = zt ⊙ ht−1 + (1− zt)⊙ tanh (Wih[xt, yt−1] +Whh (rt ⊙ ht−1)) (3.21)

where σ denotes the logistic sigmoid function, ⊙ denotes element-wise multi-

plication and Θ = {Wir,Whr,Wiz,Whz,Wih,Whh} are model parameters.

All meta-learning models used in this thesis are based on GRUs. GRUs are

a suitable choice because they are Turing-complete (Siegelmann and Sontag,

1992), and because they have been shown to work well in a diverse set of prob-

lems. However, there exists a range of alternatives that could also be success-

fully applied within the same setting, such as models with external memory

(Graves et al., 2016) or attention-based models (Mishra et al., 2017, Kim et al.,

2019).

3.3.2 The Bits-Back Argument

Why does minimizing the KL divergence lead to models with a shorter descrip-

tion length? The formal justification for this is given by the bits-back argument

(Hinton and Van Camp, 1993). The goal of this section is to explain how bits-

back coding schemes compress data. To understand bits-back coding, however, it

is useful to discuss simpler coding schemes first. Thus, I will explain both deter-

ministic and stochastic two-part coding schemes before getting to the bits-back

argument.

Let me start by assuming that we would like to find the shortest description
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of the data possible; this is known as the minimum description length princi-

ple (Rissanen, 1978, Hinton and Van Camp, 1993, Grünwald and Grunwald,

2007). Why is that a desirable goal? The thought here is that any regularity

in the data can be used to compress it. This implies that if we compress the

data enough, we will find regularities in it. Throughout this section, I assume

that we are given some data y ∼ p(y) that we would like to compress. However,

note that all ideas presented here also apply to the conditional probability dis-

tributions used in meta-learning. According to Shannon’s source coding theorem

(Shannon, 1948) transmitting the data losslessly with an optimal code requires

on average at least H [p(y)] = Ep(y) [− log2 p(y)] bits. Efficient coding schemes

that come close to this lower bound exist if p(y) is known (Huffman, 1952, Wit-

ten et al., 1987).

Deterministic Two-Part Coding Schemes

However, often we do not have access to p(y); learning it is the actual problem.

What can be done instead in that case? Two-part coding schemes offer one so-

lution to this problem (Grünwald and Grunwald, 2007). They assume that both

encoder and decoder agree in advance on a class of parametrized models p(y|Θ)

and a prior over their parameters p(Θ). In a two-part coding scheme, the en-

coder splits transmitting the data into two parts. First, it selects an arbitrary Θ

and compresses it based on the prior distribution. Then, being aware that the

decoder can recover these parameters, it does not have to compress the entire

data anymore, but only the error that is not explained by the model with the
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chosen parameters. This leads to an expected code length of:

Ldet(Θ) = Ep(y)[− log2 p(y|Θ)| {z }
bits to transmit
model mismatch

] − log2 p(Θ)| {z }
bits to transmit

model parameters

(3.22)

Note, that minimizing a sample-based estimate of Equation 3.22 is equivalent

to finding the maximum a posteriori estimate of model parameters (Honkela and

Valpola, 2004).

Stochastic Two-Part Coding Schemes

Alternatively, the encoder might not use a single deterministic Θ, but instead

encode parameters based on a sample from an encoding distribution q(Θ|Λ).

Doing so leads to the following expected code length:

Lsto(Λ) = Eq(Θ|Λ) Ep(y) [− log2 p(y|Θ)]− log2 p(Θ) (3.23)

= Eq(Θ|Λ) Ep(y) [− log2 p(y|Θ)] +H [q(Θ|Λ); p(Θ)] (3.24)

It holds that min
Λ
Lsto(Λ) ≥ min

Θ
Ldet(Θ). Hence, at first sight it seems like

nothing can be gained by using a stochastic parameter encoding.

Bits-Back Coding Schemes

This is where the bits-back argument comes in. It turns out that using a stochas-

tic parameter encoding it is possible to achieve a shorter code length if we make

two additional assumptions:

• We want to transmit some additional auxiliary data in the form of random

bits.
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• The decoder is able to run the same algorithm as the encoder to obtain

q(Θ|Λ).

The key observation of bits-back coding is that sampling from a probability

distribution is technically equivalent to generating a sequence of random bits. In

a bits-back coding scheme, the encoder proceeds in the following steps:

1. Use random bits from the auxiliary data to generate a sample Θ ∼ q(Θ|Λ),

which requires to use − log2 q(Θ|Λ) bits from the auxiliary data.

2. Encode the mismatch between model predictions and the data, which leads

to a sequence of − log2 p(y|Θ) bits.

3. Encode the parameter sample using the prior distribution, which leads to a

sequence of − log2 p(Θ) bits.

Then, the encoder transmits the entire sequence of bits to the decoder, i.e.,

the bits for the sampled parameter value and the bits for the modeling mis-

match. Importantly, it does not have to transmit the bits from the auxiliary

data that were used to generate Θ because the decoder can recover them by it-

self. How can it do that? After decoding the transmitted parameter value and

data, the decoder can run the same algorithm as the encoder to get q(Θ|Λ).

Then, it has access to q(Θ|Λ) and the sample Θ that was transmitted by the

encoder, which in turn allows the decoder to deduce which sequence of bits was

used to generate the sample. This process is illustrated graphically in Figure 3.4.
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Bit-stream with auxiliary data.

Generate a sample Θ ∼ q(Θ|Λ).

Encode y using p(y|Θ).

Encode Θ using p(Θ).

Decode Θ using p(Θ).

Decode y using p(y|Θ).

Run algorithm to get q(Θ|Λ) and recover auxiliary data.

Encoder

Decoder

Figure 3.4: Schematic illustration of how the data is encoded and decoded in a bits-back coding
scheme. Figure adapted from (Kingma et al., 2019, Townsend et al., 2019).

In expectation, this leads to the following description length of the data:

Lbb(Λ) = Eq(Θ|Λ)[Ep(y) [− log2 p(y|Θ)]] +H [q(Θ|Λ); p(Θ)]−H [q(Θ|Λ)] (3.25)

= Eq(Θ|Λ)[Ep(y) [− log2 p(y|Θ)]| {z }
bits to transmit
model mismatch

] + KL [q(Θ|Λ)||p(Θ)]| {z }
bits to transmit

model parameters

(3.26)

The bits-back argument makes it possible to identify the KL divergence be-

tween encoding distribution and prior with the description length of model pa-

rameters. It also demonstrates that it can be advantageous to use a stochastic

encoding distribution instead of encoding with deterministic parameters. There

is a nice intuitive explanation for this phenomenon: for some parameters, know-

ing their exact value is not so important, and hence we can represent them with

limited precision, and a stochastic encoding allows us to do exactly this through
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the uncertainty represented in the encoding distribution q(Θ|Λ). Note the im-

mediate similarity between Equation 3.26 and the BMI objective from Equation

3.2. The main difference between both is that the BMI objective adds an addi-

tional hyperparameter β for controlling how important compression of parame-

ters is relative to model performance.

3.3.3 Variational Dropout Prior

The bits-back argument holds for any prior, as long it is known by both the en-

coder and the decoder. However, in general, priors that promote simple func-

tions are favored. The models presented in this thesis use sparsity-inducing pri-

ors (Tipping, 2001). This type of prior is appealing for two reasons:

1. They have been successfully applied to a wide range of neural network

architectures (Nowlan and Hinton, 1992, Williams, 1995, Blundell et al.,

2015, Ghosh and Doshi-Velez, 2017, Louizos et al., 2017, Ullrich et al.,

2017).

2. There is evidence from the neuroscience literature that sparsity plays an

important role in the human brain (Olshausen and Field, 1997, 2004).

In particular, throughout this thesis, I employ a prior that is based on the

idea of variational dropout (Kingma et al., 2015). In variational dropout param-

eter means µµµi are corrupted by multiplicative normally distributed noise ξξξi as
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follows:

Θi = µµµi · ξξξi (3.27)

ξξξi ∼ N (ξξξi|1,αααi) (3.28)

⇒ q(Θ|Λ) =
Y
i

N (Θi|µµµi,αααiµµµ
2
i ) (3.29)

Instead of parametrizing the encoding distribution by Λ = {µµµi,αααi}, Molchanov

et al. (2017) suggested the following reparametrization to reduce the variance of

stochastic gradients:

σσσ2
i = αααi · µµµ2

i (3.30)

⇒ q(Θ|Λ) =
Y
i

N (Θi|µµµi,σσσ
2
i ) (3.31)

which is used together with an improper log-scale uniform prior over model

parameters. There is no analytical expression for the KL term (ref. Equation

3.2) under this prior and encoding distribution; however it can be approximated

numerically. Molchanov et al. (2017) suggested the following approximation:

KL [q(Θi|Λi)||p(Θi)] ≈ −k1σ(k2 + k3 logαααi) + 0.5 log(1 +ααα−1
i )− const. (3.32)

k1 = 0.63576, k2 = 1.87320, k3 = 1.48695 (3.33)

How does this prior work? The KL term is minimized as αααi goes towards in-

finity, thus regularization favors large αααi (Molchanov et al., 2017). Looking at

Equation 3.27, one can see that this leads to parameters that are corrupted by

large multiplicative noise, which negatively affects performance. The only way to
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prevent a decrease in performance is to turn off unimportant parameters entirely

by setting some subset of µµµi to zero. In our setting, this implies that under large

resource limitations only networks with few non-zero parameters remain. Thus,

resulting learning algorithms are not only simple in terms of their description

length but also in terms of the number of their remaining parameters.

3.3.4 What Tasks To Adapt To?

Properties of BMI and RL3 are determined by the distribution over tasks that

was used during meta-learning. When considering them as models of how peo-

ple learn, an important question arises: how to choose the “right” distribution

over tasks? For the upcoming studies, I use the following guidelines to construct

meta-learning distributions:

1. The meta-learning distribution should reflect people’s experiences with

similar problems (either through direct interactions or evolutionary pro-

cesses).

2. The meta-learning distribution should reflect people’s expectancies about

what tasks they might encounter in the study.

Note that the distribution on which BMI and RL3 are eventually evaluated

might differ from the one used during meta-learning.

42



4
Heuristics From Bounded Meta-Learned

Inference
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Abstract: How do people make decisions? An influential theory of decision-

making argues that people do so using heuristics – simple strategies that ignore

part of the relevant information. We show that BMI discovers two previously

suggested types of heuristics – one reason decision-making and equal weighting –

in specific environments, and thus provide a normative justification for heuristic

decision-making. Furthermore, BMI makes clear and precise predictions about

when each heuristic should be applied, which allows us to gain new insights on

the mixed results of prior empirical work on heuristic decision-making. In three

empirical paired comparison studies with continuous features, we verify predic-

tions of our theory and show that it captures several characteristics of human

decision-making not explained by alternative theories.

This chapter is based on the following publication:

Binz, M., Gershman, S. J., Schulz, E., & Endres, D. (2020). Heuristics From

Bounded Meta-Learned Inference (under review).

The code to reproduce the presented results is publicly available under https:

//github.com/marcelbinz/HeuristicsFromBMLI.
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4.1 Introduction

Imagine having to decide which of two movies you are going to watch tonight:

Movie A vs. Movie B. Movie A has a higher average rating on a website that

you trust, while Movie B is directed by a known director and has previously won

an Oscar for the best picture. From past experiences, you know that rating is

the best indicator for a good movie. Whether the movie won an Oscar and who

directed it is less important for how much you normally enjoy watching a movie.

How do people make decisions like this? The question of how people decide be-

tween two options is as fundamental as its answer is contentious. Indeed, even

though we make countless such decisions every day, the underlying principles

of these decisions are still debated in psychology (Todd and Gigerenzer, 2000),

behavioral economics (Samuels et al., 2012), and neuroscience (Camerer et al.,

2005).

Traditionally, researchers have approached this problem by looking at how

rational agents decide. From this ideal observer perspective (Geisler, 1989) it

is assumed that people weight different attributes of each option appropriately

to combine information from all available sources. Psychologists were however

quick to point out that rational decision-making can be too burdensome (Si-

mon, 1990b, Tversky and Kahneman, 1974). Instead, they suggested that human

decision-making may be based on a variety of heuristics, which are simple strate-

gies that ignore part of the relevant information (Gigerenzer and Todd, 1999,

Shah and Oppenheimer, 2008, Tversky and Kahneman, 1974).

Two common classes of heuristics are one reason decision-making (Gigerenzer

and Goldstein, 1999) and equal weighting (Dawes and Corrigan, 1974, Einhorn
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and Hogarth, 1975). One reason decision-making heuristics are based on the idea

that good reasoning often requires just a single piece of information (Marewski

et al., 2010). Applying such a strategy to the initial example, you would only

need to inspect the most important attribute: the movie rating. Based on this

attribute, you decide to watch Movie A and ignore all other information about

both movies. Equal weighting heuristics on the other hand completely abstain

from differentiating between the attributes and instead tally all of them together

to decide which option to choose. In our example, Movie B has two attributes in

its favor, while Movie A only has one. Hence, you would decide to watch Movie

B if your decision was based on an equal weighting heuristic.

Even though they are computationally simplistic strategies, heuristics can

be surprisingly competitive on real-world benchmarks (Czerlinski et al., 1999,

Lichtenberg and Şimşek, 2017). This observation led different researchers to con-

sider heuristics as ecologically rational strategies (Gigerenzer and Todd, 1999,

Gigerenzer and Gaissmaier, 2011, Payne et al., 1993), implying that heuristics

are strategies that are particularly well-suited for our complex and dynamic

world. The ecological rationality of heuristics also makes it appealing to view

them as models of human decision-making. Empirical studies attempting to

show that people actually apply heuristics have, however, produced mixed ev-

idence (Ayal and Hochman, 2009, Bröder, 2000, Glöckner and Betsch, 2008,

Bröder and Gaissmaier, 2007, Hilbig, 2010, see also our later discussion on em-

pirical results).

In this chapter, we apply BMI to decision-making problems like the aforemen-

tioned movie example; i.e., we set it up to infer decision-making strategies. Like

ideal observer models, BMI attempts to infer optimal decision-making strategies
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but does so while taking computational resources into account. Like heuristics,

strategies inferred through BMI are tailored to a specific environment. However,

unlike heuristics, the inductive biases of such strategies have been meta-learned

through previous interactions with the environment instead been built-in by de-

sign.

Through a series of model simulations, we demonstrate that BMI discovers

several previously suggested heuristics. Specifically, our results reveal three im-

portant classes of environments that lead to three different strategies. First, if

the model knows the correct ranking of attributes but not their weights, then

it learns a strategy that makes decisions based only on the attribute with the

highest ranking, a form of one reason decision-making. Secondly, if the model

knows that the direction of correlation between attributes and outcome is pos-

itive, then it learns a strategy that makes decisions based on equal weighting.

Finally, if the model does not know either the ranking or the direction of at-

tributes, it learns to use individual weights for each attribute. This analysis

provides new insights into the mixed results of prior empirical work on heuris-

tics because it makes precise predictions about if and when a specific heuristic

should be used. We verify these predictions in three empirical paired comparison

studies and show that the vast majority of participants apply heuristics when-

ever they are optimal strategies for the current environment after taking limited

computational resources into account.

In summary, our work makes the following three main contributions:

1. We show that heuristics can emerge through BMI, thereby providing a

normative justification for previously suggested heuristics.
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2. We clearly map out which features of an environment lead to which (heuris-

tic) decision-making strategy, where knowing the correct ranking of at-

tributes leads to one reason decision-making, knowing the directions of the

attributes leads to equal weighting, and not knowing about either leads to

strategies that use weighted combinations of multiple attributes.

3. We test these predictions empirically in three experiments and find strong

evidence for our theory’s predictions, thereby reconciling several past con-

tradictory results.

The remainder of the chapter is organized as follows: we first summarize the

relevant literature on heuristic decision-making and introduce its general ter-

minology. Afterwards, we present formal models corresponding to different hy-

potheses considered in our work. By running simulations on different environ-

ments, we generate several predictions of our theory, which we empirically test

in three new decision-making experiments. Finally, we discuss our results and

connect our theory to related ideas.

4.2 Past Research on Heuristic Decision-Making

There has been an extensive amount of past research on heuristic decision-making.

In this section, we describe common heuristics and review prior studies in the

paired comparison setting with a focus on the empirical evidence they provide

for heuristic decision-making.
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4.2.1 Heuristics Toolbox

Although a mathematically precise definition of what constitutes a heuristic

is still a topic of ongoing debates (Van Rooij et al., 2012, Chater et al., 2003),

here we adopt the following definition put forward by Gigerenzer and Gaissmaier

(2011): “A heuristic is a strategy that ignores part of the information, with the

goal of making decisions more quickly, frugally, and/or accurately than more

complex methods.”

The collection of different heuristics is often thought of as an adaptive toolbox

from which appropriate decision-making strategies can be selected as required

(Gigerenzer and Selten, 2002). We are primarily interested in heuristics that can

be applied to paired comparison tasks (e.g., Martignon and Hoffrage, 2002) like

the aforementioned movie example. In such tasks, a decision-making agent is

asked to judge which of two options is superior on an unobserved criterion. To

aid the decision-making process, the agent observes multiple attributes of both

options, also known as cues or features in the decision-making literature. Most

heuristics developed for the paired comparison setting make use of binary fea-

tures that indicate whether an attribute is present or not.∗

Many heuristics are built around the concept of feature validity (Todd and

Dieckmann, 2005). The validity of a binary feature is the rate at which it allows

the agent to make correct predictions given that the feature is present in one

option but not the other (Lee and Cummins, 2004). For example, the validity

of being directed by a known director for predicting whether you like a movie
∗Note that non-binary features, like average movie ratings, can always be dichotomized at a

loss of information. In past studies, this has been frequently done by setting values which were
less than the median to 0 and otherwise to 1.
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could be 0.8, indicating that you would enjoy a movie that is directed by some-

one you know over someone you do not in eighty percent of the cases. In gen-

eral, decision-making strategies for paired comparison tasks can be categorized

into two classes: compensatory and non-compensatory strategies. A strategy is

compensatory whenever it integrates information from multiple features, whereas

it is non-compensatory when a feature cannot be outweighed by any combina-

tion of less important features (Rieskamp and Hoffrage, 1999).

The weighted additive strategy (WADD, Gigerenzer and Goldstein, 1996) is

an example for compensatory decision-making. WADD weights features by their

validities and decides for the option with the larger sum of weighted features.

Although WADD combines information from multiple sources, it is – according

to our definition – a heuristic, because it ignores potential interactions between

features. In our movie example, this would correspond to weighting and adding

all features together without paying attention to how they might interact (e.g., a

movie database could potentially always dislike Oscar-winning movies for being

too mainstream; WADD would ignore this interaction).

Most heuristics are, however, much simpler than WADD. Equal weighting

heuristics, for example, are compensatory, yet simple, decision-making strategies.

They do not distinguish between how features are weighted and instead use an

identical weighting for all features. The process itself is realized by tallying fea-

tures of both options together and selecting the one with the larger sum (Dawes

and Corrigan, 1974, Einhorn and Hogarth, 1975).

The prime example for a non-compensatory strategy is the take-the-best heuris-

tic (Gigerenzer and Goldstein, 1996, TTB, ). TTB belongs to the family of one

reason decision-making heuristics. It assumes a ranking of features based on
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their validities and inspects features in decreasing order until a feature that dis-

criminates between both options is reached. The final decision is based on the

validity of that feature alone, ignoring all other information. Should a ranking of

features not be a priori accessible, then it can either be estimated from observa-

tions or a random ranking can be used. A TTB strategy using a random ranking

of features is referred to as the Minimalist heuristic (Gigerenzer and Goldstein,

1996).

Given the seemingly endless pool of decision-making strategies, one might ask:

how do people decide which strategy to apply? This problem is known as the

strategy selection problem. An influential theory on how people solve the strat-

egy selection problem is that they select the strategy that works best in a partic-

ular environment (Erev and Barron, 2005, Rieskamp and Otto, 2006). In a series

of papers Hogarth and Karelaia (2006, 2005, 2007) provided guidance for the

selection of strategies by characterizing environmental conditions under which

different heuristics – like TTB and equal weighting – are equivalent to ideal ob-

server models in terms of their performance. Their results suggest that there

exist environments in which even a fully rational decision-maker could opt to use

heuristics.

4.2.2 Empirical Studies

The observation that heuristics are computationally efficient and ecologically

rational strategies is often used to justify them as models of human decision-

making (Todd and Gigerenzer, 2007). However, to truly establish that people

actually use heuristics, proving good performance in simulation is not sufficient;

it also requires empirical evidence. Many studies have attempted to find such
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Rieskamp and Otto (2006, Study 1) 7  1 168 2 6 3 3 + 3

Rieskamp and Otto (2006, Study 2) 3  1 182 2 6 3 7 + 3

Glöckner and Betsch (2008, Study 2) 7  1 138 3 3 3 3 + 3

Scheibehenne et al. (2013) 7  1 48 2 6 3 3 + 7

Van Ravenzwaaij et al. (2014, Study 1) 7  1 100 2 9 3 3 + 7

Van Ravenzwaaij et al. (2014, Study 2) 7  1 100 2 9 3 3 + 7

Bröder (2000, Study 3) 7 $ 1 120 2 4 3 3 + 3

Rieskamp and Otto (2006, Study 3) 7 $ 1 168 2 6 3 3 + 3

Dieckmann and Rieskamp (2007) 7 $ 1 96 2 6 3 3 + 3

Newell et al. (2003, Study 1) 3 $ 1 60 2 6 3 3 + 7

Newell et al. (2003, Study 2) 3 $ 1 60 2 2 3 3 + 7

Newell and Lee (2011, Study 2) 3 $ 1 80 2 6 3 7 + 7

Newell et al. (2007, Study 1) 3 1 102 2 4 3 7 ? 3

Bröder and Schiffer (2003) 7 1 52 10 4 3 3 ? 3

Bröder and Schiffer (2006) 7 1 52 10 4 3 3 ? 3

Bröder and Gaissmaier (2007) 7 1 52 10 4 3 3 ? 3

Table 4.1: Empirical studies that involved costs to acquire information about features. The learn-
ing column indicates whether validities/weights were provided (7) or had to be learned (3). The
cost column describes how costs to acquire features were implemented, with  referring to a
Mouselab paradigm, $ indicating that monetary fees are required to reveal a feature and the floppy
disk representing a memory-based retrieval setting. The direction column shows the direction of
features, with + for positive directions and ? for unknown directions. The evidence column indi-
cates whether the study found evidence for heuristics (3) or not (7).

evidence, yet no consensus for or against heuristics has been reached. Here, we

provide an overview of these studies and attempt to connect their findings. We

consider studies in which information about features was freely accessible and

those that included a cost for obtaining information. Tables 4.1 and 4.2 sum-

marize characteristics of studies with and without costs to acquire information,

respectively.

Problems where it is costly to access feature values naturally favor strategies
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Bergert and Nosofsky (2007, Study 1) 3 7 1 160 2 6 3 7 + 3

Bergert and Nosofsky (2007, Study 2) 3 7 1 160 2 6 3 7 + 3

Bröder (2000, Study 1) 3 7 1 30 2 5 3 7 + 7

Bröder (2000, Study 2) 3 7 1 120 2 5 3 7 + 7

Lee and Cummins (2004) 3 7 1 5 2 6 3 7 + 7

Glöckner and Betsch (2008, Study 1) 7 7 1 138 3 3 3 3 + 7

Newell and Lee (2011, Study 1) 3 7 1 40 2 6 3 7 + 7

Parpart et al. (2017) 3 7 1 10 2 4 3 7 + 7

Newell et al. (2009, Study 1) 3 7 1 240 2 4 3 7 ? 7

Newell et al. (2009, Study 2) 3 7 1 240 2 4 3 7 + 3

Gluck et al. (2002) 3 7 1 200 2 4 3 7 ? 3

Lagnado et al. (2006) 3 7 1 200 2 4 3 7 ? 7

Juslin et al. (2003a) 3 7 1 130 2 4 3 7 ? 7

This work (Study 1) 3 7 30 10 2 4 7 3 ? 3

This work (Study 2) 3 7 30 10 2 4 7 7 + 3

This work (Study 3) 3 7 30 10 2 4 7 7 ? 7

Table 4.2: Empirical studies that involved no costs to acquire information about features. The
learning column indicates whether validities/weights were provided (7) or had to be learned (3).
The direction column shows the direction of features, with + for positive directions and ? for un-
known directions. The evidence column indicates whether the study found evidence for heuristics
(3) or not (7).
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that only require a few pieces of information. Because of that, studies in this

context concentrated on one reason decision-making heuristics such as TTB. For

our review, we look at studies in the Mouselab paradigm (Payne et al., 1988),

studies with monetary costs (Newell et al., 2003) and memory-based retrieval

studies (Bröder and Schiffer, 2003).

The Mouselab paradigm is a process-tracing approach to decision-making,

which requires participants to click or hover over a specific feature to reveal its

value. This paradigm allows researchers to identify which information is con-

sidered by the participant. In studies making use of the paradigm, Rieskamp

and Otto (2006) showed that people’s selection of strategies depended on the

environment they interacted with. Participants in their study had initial pref-

erences for compensatory strategies, but then slowly adopted TTB in a non-

compensatory environment and WADD in a compensatory one. However, other

studies with comparable conditions arrived at different conclusions. For exam-

ple, Scheibehenne et al. (2013) demonstrated that people were better described

through a mixture of TTB and WADD even in non-compensatory environments,

indicating a general preference for compensatory strategies. Van Ravenzwaaij

et al. (2014) showed that hierarchical models accounting for both search order

and termination provided a better explanation for participants’ choices than

TTB and WADD.

Requiring a monetary cost to reveal features is another process-tracing ap-

proach. Like the Mouselab paradigm, it facilitates strategies that rely on less in-

formation. In several experiments with monetary costs, Bröder (2000) produced

evidence in favor of one reason decision-making heuristics. In his experiments,

more participants were classified as TTB users in a high-cost condition com-
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pared to a low-cost condition. Similarly, Dieckmann and Rieskamp (2007) ob-

served that TTB predicted more decisions in environments with monetary costs.

However, Newell et al. (2003) demonstrated that even with large monetary costs

and other conditions favoring one reason decision-making heuristics, not many

participants acted according to TTB.

Requiring participants to recall features from memory is yet another method

to constrain the amount of information they use. In multiple experiments with

memory-based retrieval, Bröder and colleagues demonstrated that participants

became more consistent with TTB when features had to be retrieved from mem-

ory (Bröder and Schiffer, 2003, 2006, Bröder and Gaissmaier, 2007). Bröder and

Schiffer (2003), for example, classified 72% of participants as TTB users when

they were under high working memory load, but only 56% when they were not.

In general, studies with increased costs for utilizing information indicate that

human decision-making becomes more consistent with one reason decision-making

heuristics. Nonetheless, even under supposedly favorable conditions, prior re-

search did not reach a clear consensus on whether people use one reason decision-

making heuristics or if they rely on more complex strategies instead.

Glöckner and Betsch (2008) argued that process-tracing studies are likely to

underestimate the cognitive capacity of participants, as they hinder the activa-

tion of automatic decision-making processes. They verified this claim by demon-

strating that participants were generally able to combine information from mul-

tiple features extremely quickly when the acquisition of information was not con-

strained. Further studies with freely accessible information provided similar re-

sults (Bröder, 2000, Lee and Cummins, 2004, Parpart et al., 2018), always con-

cluding that few participants made decisions consistent with TTB and that their
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choices were, in general, better described through compensatory strategies such

as logistic regression. Newell and Lee (2011) highlighted large inter-individual

differences and presented a sequential sampling model providing better fits than

TTB, WADD, and a strategy selection model across all participants. Bergert

and Nosofsky (2007) were among the few who provided support for heuristics in

human decision-making even when information is free. They showed that peo-

ple exhibit non-compensatory patterns of decision-making, assigning over half of

the total weight to a single feature, and provided additional evidence for frugal

strategies in form of reaction times.

To summarize, many past paired comparison studies attempted to produce

evidence for one reason decision-making, thereby focusing less on other heuris-

tics such as equal weighting. Many of them concluded that heuristic strategies

were indeed more apparent when it was costly to access information. Evidence

for heuristics in human decision-making in the unimpeded setting is, however,

rare. Looking at Tables 4.1 and 4.2, we observe that the majority of prior em-

pirical studies evaluated their hypothesis in environments that either explicitly

or implicitly assumed positive directions of features. While it is always possible

to code features such that they have positive directions (e.g., changing the fea-

ture “won an Oscar” to “did not win an Oscar” if winning an Oscar has a nega-

tive correlation with the outcome), doing so can influence the strategies people

apply. To foreshadow our results, we demonstrate that a restriction to environ-

ments with known positive attribute directions causes equal weighting heuristics

to become optimal under limited computational resources. Therefore, at least

some of the mixed results of prior studies can be explained by the use of envi-

ronments that favor strategies not considered in their analyses.
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There are a number of research areas that use experimental paradigms similar

to paired comparison studies and that have, interestingly enough, also produced

mixed evidence on whether people rely on heuristic decision-making or not. In

probabilistic category learning (Ashby and Maddox, 2005) participants are asked

to classify objects into one of usually two categories. Thus, similar to paired

comparison tasks participants learn a mapping between features and a binary

outcome. Juslin et al. (2003b) noted that category learning emphasizes exemplar

models, which is in contrast to the linear additive cue-integration models stud-

ied in the decision-making domain. Based on this observation they investigated

which factors modulate a shift from exemplar models to cue-integration models.

However, they did not examine the role of heuristic decision-making strategies in

the context of category learning. In a follow-up study Juslin et al. (2003a) did

consider the possibility for one reason decision-making heuristics but found lit-

tle evidence for such strategies. Adding additional time pressure did not change

their conclusion that most participants integrated information from multiple fea-

tures, either through exemplar or cue-integration models.

Another closely connected paradigm with a long history on its own is multiple-

cue probability learning (MCPL, Hammond, 1955, Brehmer, 1979, Gluck and

Bower, 1988). In MCPL people have to learn about an imperfect relationship

between an object described by multiple features and an outcome. A popular in-

stance of MCPL is given by the weather prediction task. Here, participants are

presented with a multi-dimensional stimulus taking the form of tarot cards and

learn based on feedback whether given patterns lead to sunny or rainy weather.

Gluck et al. (2002) conjectured that people approach this task using three dif-

ferent strategies: (1) an optimal strategy, in which people learn about all avail-
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able features, (2) a one reason decision-making heuristic, in which decisions are

based on a single feature, and (3) a singleton heuristic, in which people learn

only about the patterns that have a single feature present. In two studies they

found that a majority of participants (85% across both studies) was overall best

fit by the singleton heuristic. As more data was observed participants either

switched towards the one reason decision-making heuristic in a more challeng-

ing experiment or the optimal multi-cue strategy in an easier experiment. In a

similar setup but using a different analysis, Lagnado et al. (2006) instead con-

cluded that a vast majority of participants was best described by a strategy

that integrated information from all features (86% across three studies). Newell

et al. (2007) reported similar results, with the additional observation that peo-

ple switched towards a more simplistic singleton heuristic if they were put un-

der working memory load. Finally, it is worth pointing out that equal weighting

heuristics also received some attention in the MCPL literature: when partici-

pants were provided with directional information about features, they switched

from a multi-cue strategy towards an equal weighting heuristic (Newell et al.,

2009). In the context of this article, this is an interesting observation, because –

as we will show later on – it is exactly what our meta-learning models predict.

At the heart of ecologically rational heuristics is a powerful idea: there are

much simpler ways of interacting effectively with many natural problems than

the use of complex strategies. Moreover, computational constraints render it

necessary that people should make use of these shortcuts extensively. In our

summary of previous empirical studies, we have seen that this is indeed some-

times observed but certainly not always. In general, prior empirical work has

produced mixed evidence on whether people do in fact rely on heuristic decision-
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making strategies or not. An important aspect that has been largely neglected

in prior empirical work is the identification of conditions under which a particu-

lar heuristic occurs.

4.3 Computational Models

When applied to decision-making problems, BMI assumes that people make

environment-specific inferences about which strategies to use, while also making

optimal use of limited computational resources. Having access to such a model

does allow us to predict if and when people should rely on heuristic decision-

making strategies, assuming that they use available computational resources ef-

ficiently. To test this conjecture, we also introduce several other computational

models of decision-making in paired comparison tasks. First, we will outline the

assumptions about the structure of the problem to be solved and define a cor-

responding ideal observer model. Then, we will introduce probabilistic variants

of two popular heuristics. Both heuristics are considerable simplifications with

respect to how they use information compared to the ideal observer model. Fi-

nally, we will describe how BMI can be applied to decision-making problems.

The decision-making problems we focus on in this chapter are paired com-

parison tasks with continuous features. In a paired comparison task an agent –

either human or machine – has to decide which of two options with feature vec-

tors xA,B ∈ Rd has the higher value on an unobserved criterion yA,B. In our

movie example, the feature vector contains information about whether the movie

has won an Oscar, its average rating on a reviewing website and so on, while

the unobserved criterion corresponds to your personal rating of the movie (i.e.,
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how much you would like the movie). We consider the setting where data arrives

sequentially, i.e. one at a time, and with feedback that indicates which option

had the higher criterion value. Let xA,t and xB,t denote the observed features at

time-step t and let ct be a binary variable that takes the value of 1 if option A

has the higher criterion value and 0 otherwise. In each time-step, the agent first

observes both options, then makes a prediction about ct, and subsequently re-

ceives feedback about which option actually had the higher criterion value. Note

that learning in this setting is always based on feedback in form of ct, and that

the unobserved criteria yA,t and yB,t are never observed directly.

In contrast to most prior work, we investigate paired comparison tasks with

continuous features. In many real-world scenarios, features are naturally de-

scribed through continuous values and thus we believe that the restriction to

binary features neglects a characteristic present in many of the problems people

typically solve. Moving to continuous features also facilitates statistical analysis

as fewer trials are needed to observe expected effects. For example, it would re-

quire over four times more trials to distinguish an ideal observer model from a

single cue heuristic in environments with dichotomized features instead of con-

tinuous ones (see Appendix A for further details).

4.3.1 Ideal Observer

Ideal observer (IO) models are designed to provide a theoretical upper bound on

performance in a specific task. In the following, we construct an ideal observer

model for paired comparison tasks. For this, we assume that there exists an un-
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derlying linear relationship between features and the criterion:

yA = wTxA + ϵA

yB = wTxB + ϵB (4.1)

with feature weights w ∈ Rd and independent, additive noise ϵA,B ∼ N (0, σ2).

Under this assumption we can express the probability, that option A has a higher

criterion value than option B as:

p(YA,t > YB,t|xA,t,xB,t,w,m = IO) = p(Ct = 1|xt,w,m = IO)

= Φ
wTxt√

2σ
(4.2)

where Φ is the cumulative distribution function of a standard normal distribu-

tion. For ease of notation, we have denoted the difference between feature vec-

tors as xt = xA,t − xB,t and used a binary random variable Ct to indicate which

of the two options has a higher criterion value.

Equation 4.2 is known in the statistics and machine learning literature as pro-

bit regression model. The probit regression model makes it clear that an ideal

observer should represent the probability that one option is better than the

other using a weighted sum of differences between features of the options. Hence,

the ideal observer model is a compensatory decision-making strategy.

Parameter Estimation

Equation 4.2 provides an ideal observer model under the assumption that under-

lying weights w are known. However, we assume that weights are not provided
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in advance to the decision-making agent. Thus, the agent has to infer them

based on past observations. An ideal observer can apply Bayesian inference to

infer unobserved parameters from data in a normative manner. In our setting,

we estimate unobserved parameters by applying Bayesian inference sequentially.

Exact inference is not possible under the above assumptions and thus we re-

sort to a variational approximation (Jordan et al., 1999). We approximate the

true posterior is with a normal distribution q(w|λλλt) = N (w|µµµt,Σt) and opti-

mize its parameters λλλt = (µµµt,Σt) through gradient ascent on the evidence lower

bound:

L(λλλt) = Eq(w|λλλt) [log p(Ct = ct|xt,w)]−KL [q(w|λλλt)||q(w|λλλt−1)] (4.3)

where q(w|λλλ0) corresponds to an initial prior distribution. This kind of ap-

proximation is equivalent to exact inference when the true posterior is within

the considered variational family. We provide further details on how Equation

4.3 is optimized in Appendix B.

To make predictions, we average over all plausible parameter values given

by the variational distribution. The resulting predictive distribution can be ex-

pressed in closed form:

p(Ct+1 = 1|xt+1,λλλt) =

Z
p(Ct+1 = 1|xt+1,w)q(w|λλλt)dw = Φ

 µµµT
t xt+1q

2σ2 + xT
t+1Σtxt+1


(4.4)

Furthermore, we assume that features weights are sampled from a standard

normal distribution at the beginning of each task and held constant over its en-
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tire duration, which implies that an ideal observer should use a prior in form of

a standard normal distribution, i.e. q(w|λλλ0) = N (w|0, I).

4.3.2 Heuristics

The two heuristics we consider in our analysis belong to the categories of one

reason decision-making and equal weighting. In contrast to traditional heuris-

tics, like TTB, they are probabilistic decision-making strategies for tasks with

continuous features. Both are obtained through modification of the ideal ob-

server model, such that either less information is required to make a decision or

that information is combined in a simpler way.

One Reason Decision-Making

In our implementation of one reason decision-making, we modify Equation 4.2

and replace it with a model that only takes a single feature x∗
t into account:

p(Ct = 1|xt, w,m = SC) = Φ
w · x∗

t√
2σ

(4.5)

We refer to the resulting strategy as single cue (SC) heuristic. If a ranking of

features is available, decisions are based on the most predictive feature, other-

wise we select the feature that performed best on the data so far. In contrast to

TTB, the single cue heuristic does not involve sequential search over features.

However, we assume that features take continuous values, and hence search is

not required as a feature nearly always discriminates between options (Luan

et al., 2014).
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Equal Weighting

In our probabilistic version of equal weighting, we replace Equation 4.2 with a

model that has a single, tied weight for all features:

p(Ct = 1|xt, w,m = EW) = Φ

 
w ·
Pd

i=1 xt,i√
2σ

!
(4.6)

If w > 0, this equal weighting heuristic probabilistically selects the option

with the larger sum of features. For w < 0, it becomes more likely to select the

option with the smaller sum. Using a negative weight is appropriate if most fea-

tures have negative correlations with the criterion. Note that the ideal observer

model contains as many free parameters as there are observed features, while

both heuristics have only a single free parameter regardless of how many fea-

tures are observed.

4.3.3 Strategy Selection Model

Theories of strategy selection argue that based on repeated interactions with

an environment people learn to select the strategy from a given repertoire that

works best in that environment (Erev and Barron, 2005, Rieskamp and Otto,

2006). We also consider the possibility that human choices are based on a strat-

egy selection model in our later analysis. The strategy selection model used here

is based on the idea of Bayesian model selection (Bishop, 2006). In time-step

t + 1, the agent selects the model m with the highest posterior probability given

the past data p(m|x1:t, c1:t) from a set of candidate models M. In our model

simulations we define the set of candidate models as M = {IO, SC,EW} and as-
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sume a uniform prior over models. The computation of the posterior distribution

over models can be expressed recursively:

mt+1 = argmax
m∈M

[log p(m|x1:t, c1:t)] (4.7)

= argmax
m∈M

[log p(c1:t|x1:t,m) + log p(m)] (4.8)

= argmax
m∈M

[log p(c1:t|x1:t,m)] (4.9)

= argmax
m∈M

[log p(ct|xt,x1:t−1, c1:t−1,m) + log p(c1:t−1|x1:t−1,m)] (4.10)

= argmax
m∈M

[log p(ct|xt,λλλt−1,m) + log p(c1:t−1|x1:t−1,m)] (4.11)

Equation 4.11 reveals that this strategy selection model amounts to select-

ing the model with the highest accumulated log-evidence over all previous time-

steps. The strategy selection model combines advantages of the ideal observer

model with those of heuristics: if additional information is provided heuristics

may outperform the ideal observer early on and hence they will be initially pre-

ferred. After a while, the ideal observer model surpasses both heuristics in terms

of performance and hence it will be preferred during later stages of a task.

4.3.4 Bounded Meta-Learned Inference

Next, we explain how one can meta-learn an algorithm that infers decision-making

strategies in a paired comparison task. The idea is simple: instead of using Bayesian

(or variational) inference to infer posterior distributions over probit regression

weights, we train a RNN to make this inference. In time-step t + 1 the network

processes the previous feature vector xt together with its corresponding target ct

and uses this information to update its hidden state ht. The parameters of the
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posterior distribution λλλt = {µµµt,Σt} are then computed through a linear transfor-

mation of the hidden state:

µµµt = Wµµµht (4.12)

logσσσt = Wσσσht (4.13)

Σt = diag elogσσσt (4.14)

Finally, the model combines the estimated weights with the feature vector

xt+1 as described in Equation 4.4 to obtain the predictive posterior distribution:

p(Ct+1 = 1|xt+1,x1:t, c1:t,Θ) = p(Ct+1 = 1|xt+1,λλλt,Θ) (4.15)

=

Z
p(Ct+1 = 1|xt+1,w)q(w|λλλt)dw (4.16)

Figure 4.1 illustrates graphically how the RNN processes a sequence of ob-

servations. The described setup deviates slightly from the one presented in Sec-

tion 3.1. Instead of estimating the predictive posterior distribution directly, we

have chosen to make the dependence probit regression weights explicit. Doing so

makes it easier to analyze what kind of strategies BMI infers. The general con-

cepts, however, remain the same.

Initially, the RNN implements a random mapping. During meta-learning it is

then turned into a resource-rational learning algorithm. This is accomplished by
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(xt, ct)

λλλt = {µµµt,Σt} xt+1

p(Ct+1 = 1|xt+1,λλλt,Θ) =
R
p(Ct+1 = 1|xt+1,w)q(w|λλλt)dw

Figure 4.1: Graphical depiction of BMI for paired comparison tasks. The RNN sequentially pro-
cesses examples from a given task. Through its recurrent activations it combines information from
all previous feature-target pairs to compute a distribution over weights, which is then combined
with the next input to obtain the predictive distribution.

minimizing the BMI objective until convergence:

LBMI(Λ) = Eq(Θ|Λ)

"
Ep(x1:T ,c1:T )

"
T−1X
t=0

− log p(Ct+1 = ct+1|xt+1,x1:t, c1:t,Θ)

##

+ βKL [q(Θ|Λ)||p(Θ)] (4.17)

After meta-learning is completed, the RNN acts as an environment-specific

learning algorithm that makes optimal use of limited computational resources.

In Appendix C we provide a full specification on the network architecture, meta-

learning procedure and choice of prior.

At this point, it seems sensible to ask: what types of decision-making strate-

gies can BMI infer? Both the single cue heuristic and equal weighting are sub-

sets of the space of all possible weight vectors that can be inferred. Equal weight-

ing heuristics correspond to uniform vectors (e.g., [1, 1, 1, 1]), while single cue

heuristics can be expressed through a vector with a single non-zero entry (e.g.,

[1, 0, 0, 0]). BMI could thus – in principle – discover the two heuristics and se-
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lect between them whenever appropriate. We know that MI – or equivalently

BMI with β = 0 – approximately simulates an ideal observer, and hence we

expect it to infer strategies that use independent and non-zero weights for all

features. However, as we decrease the description length of the emerging learn-

ing algorithm, we expect it to infer simpler strategies like the single cue or equal

weighting heuristic. Importantly, which strategy BMI infers, and whether it cor-

responds to a particular heuristic or not, does not only depend on its complexity

but also on the distribution over tasks that was used for meta-learning.

4.3.5 Feedforward Network

We also compare our models to a simple feedforward neural network baseline

model. The feedforward network uses the same architecture as MI and BMI,

but without recurrent connections and without the previous target as addi-

tional input. Learning is performed through gradient descent on the negative

log-probabilities of observed targets. The exact forward pass equations are given

by:

rt = σ (Wirxt) (4.18)

zt = σ (Wizxt) (4.19)

ht = (1− zt)⊙ tanh (Wihxt + rt) (4.20)

µµµt = Wµµµht (4.21)

logσσσt = Wσσσht (4.22)

Σt = diag elogσσσt (4.23)
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where σ denotes the logistic sigmoid function and ⊙ element-wise multiplica-

tion.

4.3.6 Model Summary

Let us briefly summarize all outlined models again and contrast the assumptions

they make:

Ideal observer model Assumes that everything about the structure of the

decision-making environment is known. Specifically,

it knows about the linear-Gaussian relationship. With

this knowledge, it is able to compute the optimal

solution by combining information from all features

through weighted sums.

Heuristics Assume that computing weighted sums is too bur-

densome and instead bet on simpler ways for making

decisions, like using only a single feature or using an

equal weight for all features.

Strategy selection

model

Assumes a predefined repertoire of strategies and se-

lects the one that works best on a given task after

repeated interactions with it.

BMI Does not know anything about the structure of the

environment explicitly. Instead, it uses a resource-

rational algorithm that has been acquired through

repeated encounters with the environment to infer

decision-making strategies.
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Feedforward network Based on same non-linear model architecture as BMI.

However, learning is implemented through gradient de-

scent instead of the forward dynamics of a RNN. The

learning algorithm is not adapted to the environment

and there are no resource limitations.

4.4 Model Simulations

Next, we demonstrate through a series of model simulations that BMI recovers

both single cue and equal weighting heuristics in specific environments. This im-

plies that both heuristics can be resource-rational strategies under certain con-

ditions. However, we also identify circumstances where BMI does not discover

any known heuristic and instead infers strategies that use weighted combina-

tions of all features. Before running these simulations, we first have to specify

the assumptions we make about the environment and introduce a method for

analyzing the emerging strategies.

4.4.1 Environments

Applying BMI to decision-making problems requires to specify a distribution

over tasks p(x1:T , c1:T ) that is used for meta-learning. In general, this distribu-

tion should reflect a participant’s prior experiences in the world and its expecta-

tions about what tasks might be encountered during the experiment. Here, we

make the following assumptions. To generate a single task, we proceed in three

steps:

1. Randomly generate features xA,t and xB,t from a multivariate normal dis-

70



tribution with zero mean and a given covariance matrix. All tasks pre-

sented in this chapter involve four-dimensional feature vectors.

2. Randomly generate features weights (ref. Equation 4.1 or 4.2) by sampling

from a standard normal distribution.

3. Randomly determine which option has the larger criterion by sampling

from a Bernoulli distribution with a success probability given by Equation

4.2.

Features weights are held constant over a task but are resampled between

tasks. Importantly, we assume that the decision-making agent cannot access

these weight vectors directly, but instead has to infer them based on observa-

tions. An unrestricted meta-learned algorithm that is trained on such an envi-

ronment will be approximately equivalent to our ideal observer model.

Both redundancy and uncertainty are crucial factors in many real-world decision-

making problems (Gigerenzer and Gaissmaier, 2011). Thus, we want them to

be present in our environments. Partially redundant features are ensured by

drawing separate feature covariance matrices from a LKJ prior with η = 2

(Lewandowski et al., 2009) for each task. To introduce uncertainty, we use a

limited number of trials in each task (T = 10) and set the additive noise term σ

such that an ideal observer is correct in 85% of the cases in the tenth trial.

We consider three variations of the previously outlined environments, that

assume (1) known rankings of features, (2) known directions of features, or (3)

neither. To provide agents with a ranking of features, we arrange them in de-

creasing order according to the magnitude of their weights. Known directions

are ensured by inverting the sign of a feature if it has a negative correlation with
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the criterion, leading to features with only positive directions. Note that our

ideal observer implementation always assumes the original standard normal prior

over weights, i.e. the prior is not adjusted based on the additional information

about ranking or direction. These environments are used during meta-learning,

for the model simulation results presented next, and to generate the tasks for

our empirical studies.

4.4.2 Strategy Analysis

To characterize different decision-making strategies, we adopt a measure from

the economics literature called the Gini coefficient (Atkinson et al., 1970). The

Gini coefficient was originally intended to describe income and wealth distribu-

tions of countries. Its minimal value of zero corresponds to a country in which

all residents are equally wealthy, while the maximal value of one corresponds to

a country in which a single person possesses everything.†

The extreme cases of the Gini coefficient also coincide with the two previ-

ously discussed heuristics: equal weighting heuristics have a Gini coefficient of

zero, while single cue heuristics have a Gini coefficient close to one. Thus, we

can employ the Gini coefficient to understand how similar estimated regression

weights are compared to both heuristics. In practice, we compute Gini coeffi-

cients from absolute values of weight vectors. Mathematically, the Gini coeffi-

cient of a weight vector w ∈ Rd is defined as half of the relative mean absolute
†The extreme value of one is only reached in the limit of an infinite number of residents,

otherwise the maximum Gini coefficient for d residents is 1− d−1.

72



difference:

G(w) =

dX
i=1

dX
j=1

|wi −wj|

2d
dX

i=1

wi

(4.24)

Throughout this section, we analyze Gini coefficients for BMI (with β = 0.01),

MI, and ideal observer models. If Gini coefficients are consistently close to zero

or one, we deduce that the model has recovered one of the two heuristics.

Additionally, we evaluate the average KL divergence from the predictive pos-

terior distribution of both heuristics to the predictive posterior distribution of

BMI. This KL divergence can be interpreted as a distance measure between two

models. If it is significantly lower for one of the two heuristics, this would fur-

ther strengthen our claim that BMI has discovered that particular heuristic.

4.4.3 Model Simulations

First, we considered an environment with known feature rankings. For MI and

BMI we optimized meta-parameters until convergence in an environment where

features are ordered based on the magnitude for their associated weight. We

then analyzed the Gini coefficients of inferred regression weights after meta-

learning is completed. Because MI and BMI are adapted to the environment,

they could exploit the additional ranking information to adjust how they infer

strategies.

Figure 4.2 (a) visualizes Gini coefficients obtained from BMI. We observe

strategies with nearly maximum Gini coefficients, which correspond to weight
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(a) BMI (β = 0.01) (b) MI (c) Ideal Observer
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Figure 4.2: (a) to (c) Gini coefficients for an environment with known rankings. High values indi-
cate similarity to the single cue heuristic, while low values correspond to equal weighting heuristics.
(a) BMI results in Gini coefficients that are close to the single cue heuristic. (b) MI shows tenden-
cies towards the single cue heuristic, especially with few observations. (c) Gini coefficients of the
ideal observer model cover the whole range of possible values, indicating that a weighted combina-
tion of multiple features is used. (d) Average KL divergence from the predictive posterior distribu-
tion of both heuristics to the predictive posterior distribution of BMI. The KL divergence is lower
for the single cue heuristic, which confirms our results from the Gini coefficient analysis.
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vectors that only have a single non-zero component. Thus, we conclude that

the single cue heuristic emerged as the resource-rational strategy for an envi-

ronment with known feature rankings. Looking at MI in Figure 4.2 (b), we find

Gini coefficients that cover a much wider range of values. Even though there is

an initial tendency towards single cue heuristics, many later decisions are based

on compensatory rules. This indicates that being adapted to the environment

alone is not a sufficient justification for heuristics. Instead, we need algorithms

that are adapted to the environment and efficient in terms of their computa-

tional resources. Decisions in the ideal observer model are nearly always based

on weighted combinations of multiple features, and hence its Gini coefficients

in Figure 4.2 (c) spread over an even wider range of values. Figure 4.2 (d) con-

firms our findings by showing that BMI infers predictive posterior distributions

that are much more similar to the single cue heuristic than to equal weighting in

terms of their KL divergence.

Next, we looked at environments where feature directions are known instead

of their ranking. For this, we optimized MI and BMI in an environment with

only positive feature directions. The result here looks very different compared to

the ranking condition. Gini coefficients resulting from BMI, visualized in Figure

4.3 (a), are consistently close to zero. Low Gini coefficients correspond to uni-

form weight vectors and hence in this environment the equal weighting heuristic

turned out to be rational under limited computational resources. Figure 4.3 (b)

confirms earlier results showing that MI only leads towards an initial tendency

towards heuristics. Early strategies are similar to equal weighting, but especially

as more data is observed strategies with higher Gini coefficients emerge. The

ideal observer model on the other hand does not exploit environmental charac-
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Figure 4.3: (a) to (c) Gini coefficients for an environment with positive directions. High values
indicate similarity to the single cue heuristic, while low values correspond to equal weighting heuris-
tics. (a) BMI results in Gini coefficients that are close to the equal weighting. (b) MI shows ten-
dencies towards the equal weighting heuristic, especially with few observations. (c) Gini coefficients
of the ideal observer model cover the whole range of possible values, indicating that a weighted
combination of multiple features is used. (d) Average KL divergence from the predictive posterior
distribution of both heuristics to the predictive posterior distribution of BMI. The KL divergence is
lower for the equal weighting heuristic, which confirms our results from the Gini coefficient analysis.
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(a) BMI (β = 0.01) (b) MI (c) Ideal Observer
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Figure 4.4: (a) to (c) Gini coefficients for an environment without ranking or direction. High val-
ues indicate similarity to the single cue heuristic, while low values correspond to equal weighting
heuristics. (a) BMI, (b) MI and (c) ideal observer models result in Gini coefficients that cover
the whole range of possible values, indicating that a weighted combination of multiple features is
used. (d) Average KL divergence from the predictive posterior distribution of both heuristics to the
predictive posterior distribution of BMI. The KL divergence is roughly equal for both heuristics,
indicating that neither of the two is particularly similar to BMI.

teristics and hence we find no noticeable change in Gini coefficients compared to

an environment with known rankings (Figure 4.3 (c)). As before, our results are

confirmed when looking at the KL divergence between both heuristics and BMI,

which is now substantially smaller for the equal weighting heuristic as shown in

Figure 4.3 (d).

We have seen that BMI discovered different heuristics in two classes of en-

vironments. Next, we show that there are also environments where this is not

77



the case. For this, we optimized MI and BMI such that they adjust to problems

without additional information in the form of ranking or direction. Gini coef-

ficients obtained from BMI reveal that neither single cue nor equal weighting

heuristics are resource-rational under such circumstances, as shown in Figure 4.4

(a). Instead, the pattern now looks more similar to one observed in MI and the

ideal observer models, shown in Figures 4.4 (b) and (c) respectively. In all cases,

Gini coefficients cover the full range of possible values, indicating that inferred

weight vectors integrate information from multiple features to different degrees.

This time, we find no difference in the KL divergence between both heuristics

and BMI (ref. Figure 4.4 (d)), which confirms the earlier conclusion that BMI

does not recover any of the two heuristics in an environment without additional

information about ranking or direction.

4.4.4 Experimental Predictions

BMI discovers both single cue and equal weighting heuristics when information

about ranking and direction is provided, respectively. However, resulting strate-

gies diverge from known heuristics whenever such information is not present.

Instead, our simulation results suggest that weighted combinations of multiple

features should be used in such situations. Under the assumption that people

make adaptive and computationally efficient inferences, our results enable us

to make precise predictions about when to expect heuristics as part of human

decision-making and when not: knowing the correct ranking of attributes leads

to one reason decision-making, knowing the directions of the attributes leads

to equal weighting, and not knowing about either leads to strategies that use

weighted combinations of multiple attributes. Below, we present the results of
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three paired comparison studies that confirm the predictions made by BMI.

4.5 Experiment 1: Known Ranking

In the first study, participants made decisions in multiple paired comparison

tasks while having access to a ranking of features, but not their underlying weights.

Previously, we showed that in environments with known feature rankings, single

cue heuristics are resource-rational strategies. Hence, we hypothesized that peo-

ple are more likely to apply the single cue heuristic in this condition.

4.5.1 Methods

Participants

Participants were students from the University of Marburg, taking part in the

study for course credits. Besides course credits, they got a chance to win a ⁄10

voucher if they made more than 66.6% correct decisions. The experiment was

approved by the local ethics board (AZ 2020-32k). In total, we collected data

from 28 participants (23 female, average age: 22.36± 5.65).

Procedure

Each participant performed 30 different paired comparison tasks that were ran-

domly generated according to the previously described distribution. Each task

consisted of ten trials. Underlying weights remained fixed within a task but var-

ied between tasks. Participants were informed about transitions between tasks.

Each participant encountered the same set of paired comparison tasks in a ran-

domized order.
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Figure 4.5: Graphical illustration of a single trial in the experiment. “Alien X gewinnt” translates
to “Alien X wins”.

The problem was framed as an alien sports competition on an unknown planet

(see Figure 4.5). Participants observed four numerical attributes for two aliens

and indicated by a button press which alien they believed was more likely to

win. The alien cover story was used to keep the meaning of features completely

abstract from the participant’s perspective. Participants did not have access to

the underlying weights but instead had to learn about the importance of fea-

tures based on experience. Feedback about the correct choice was provided di-

rectly after each decision. For this condition, features were displayed in descend-

ing order based on the magnitude of weights. Participants were told that fea-

tures are arranged from top to bottom according to how well they predict the

winner. Being aware of this additional ranking information allowed them to

apply strategies that are appropriate for this environment. Participants went

through a short tutorial and did a comprehension check to confirm that they

understood the instructions. The median time to complete the experiment was

26.00 minutes.
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Figure 4.6: (a) Percentage of correct decisions (averaged over all tasks) in the ranking condition
plotted over the number of trials within a task. For human performance shaded contours represent
the standard error. The left panel shows the ideal observer model and both heuristics, while the
right shows BMI for different values of β. (b) Posterior distributions for each participant over dif-
ferent strategies in the ranking condition. High values indicate that the participant was likely to use
the corresponding strategy.

4.5.2 Results

Performance

Figure 4.6 (a) shows the percentage of correct decisions for participants in our

study together with the accuracy of different models. Participant performance

was within the range of the single cue heuristic and BMI. On average, partici-

pants made 68.25± 7.55% correct choices.
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Model Comparison

If people make efficient use of their available computational resources, we expect

them to adopt the single cue heuristic in this experiment. To examine this hy-

pothesis, we performed a Bayesian model comparison and computed posterior

probabilities of different models given the decisions made by a participant. Ap-

pendix D provides a detailed description of the methods we used for statistical

analysis. Because the single cue heuristic and BMI make redundant predictions,

we decided to split our analysis into two parts. First, we analyzed all models ex-

cept BMI for individual participants. Then, we compared BMI against the other

models on the data of all participants.

In 22 out of 28 participants, we found evidence for the application of the sin-

gle cue heuristic. For all of those participants, the model evidence decisively fa-

vored the single cue heuristic (p(m = SC|Di) > 0.99). Figure 4.6 (b) summarizes

posterior probabilities of different models for all participants. Most of the par-

ticipants not best described by one reason decision-making were instead best

described by guessing; one participant was best described by the feedforward

network. The protected exceedance probability (PXP), which measures the prob-

ability that a particular model is more frequent in the population than all the

other models under consideration (Rigoux et al., 2014), favored the single cue

heuristic decisively (PXP > 0.999).

Finally, we compared how well BMI fared against the other models. Because

BMI also includes guessing with large and compensatory strategies with low

resource limitations, it allows us to capture individual differences. The result-

ing posterior probabilities indicated that across all participants BMI offered an
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even better explanation for the observed data than the other models (p(m =

BMI|D) ≈ 1). This is the case, because BMI explained the behavior of partici-

pants that used single cue heuristics and participants that used guessing.

4.5.3 Discussion

Most empirical evidence for one reason decision-making has been provided by

studies that involved a cost for acquiring information about features (Bröder,

2000, Rieskamp and Otto, 2006, Bröder and Gaissmaier, 2007). However, even

with an experimental protocol that favored a few pieces of information, evidence

for these strategies remained inconclusive (Newell et al., 2003, Scheibehenne

et al., 2013). When information is freely available, people are often better de-

scribed through compensatory strategies such as logistic regression (Bröder,

2000, Lee and Cummins, 2004, Glöckner and Betsch, 2008, Parpart et al., 2018).

Our results are among the first to decisively show that people’s choices can be

based on a single piece of information, even when such strategies are not favored

by the experimental protocol. This was possible, because we precisely identi-

fied conditions under which one reason decision-making should appear. Nearly

all participants in our study applied strategies that were efficient in terms of re-

sources while also accounting for environmental characteristics.

4.6 Experiment 2: Known Direction

In our second study, we provided no information about ranking and instead

informed participants about feature directions; otherwise, it was identical to

the first experiment. In our previous analysis, we have seen that this modifica-
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tion also caused a change in what strategy is resource-rational. Now, resource-

rational decision-making amounts to the application of equal weighting heuris-

tics. We, therefore, hypothesized that participants would become more likely to

use such strategies.

4.6.1 Methods

Participants

Participants were students from the University of Marburg, taking part in the

study for course credits. Besides course credits, they got a chance to win a ⁄10

voucher if they made more than 66.6% correct decisions. The experiment was

approved by the local ethics board (AZ 2020-32k). In total, we collected data

from 24 participants (22 female, average age: 22.54± 3.28).

Procedure

The design was identical to the first experiment, except that participants were

informed about the presence of positive feature directions instead of the fea-

ture ranking. This was realized by telling them that higher feature values always

made it more probable for an alien to win the competition. The median time to

complete the experiment was 29.69 minutes.

4.6.2 Results

Performance

Participants made on average 73.85 ± 4.53% correct choices, putting their per-

formance within the range of all models, see Figure 4.7 (a). The higher average
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Figure 4.7: (a) Percentage of correct decisions (averaged over all tasks) in the direction condition
plotted over the number of trials within a task. For human performance shaded contours represent
the standard error. The left panel shows the ideal observer model and both heuristics, while the
right shows BMI for different values of β. (b) Posterior distributions for each participant over dif-
ferent strategies in the direction condition. High values indicate that the participant was likely to
use the corresponding strategy.

performance indicates that participants found it overall easier to process infor-

mation about direction than about ranking. Participants’ performance in the

initial step turned out to be substantially higher than the ideal observer model

and both heuristics, indicating that information about direction is useful even

before making observations. This characteristic is also captured in BMI.
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Model Comparison

In this condition, equal weighting and BMI made partially redundant predic-

tions. Thus, we again decided to split our analysis into two parts. First, we an-

alyzed all models except BMI for individual participants. Then, we compared

BMI against the other models on the data of all participants.

The posterior probabilities of different models, illustrated in Figure 4.7 (b),

confirmed the prediction of our earlier simulations. Most participants indeed

adhered to the resource-rational maxim and applied equal weighting heuris-

tics. For all participants, equal weighting provided the best explanation for the

observed data. For all but one participant, evidence turned out to be decisive

(p(m = EW|Di) > 0.99). The probability that equal weighting was the most

frequent model in the population (PXP > 0.999) supported the conclusion that

people, in general, applied equal weighting heuristics when information about

direction was available.

When additionally comparing BMI against the other models on the aggre-

gated data of all participants, we found that BMI again offered an even better

explanation than all other models (p(m = BMI|D) ≈ 1). Here, this was the case

because BMI was able to capture participants’ decisions in the initial step, while

the equal weighting heuristic did not.

4.6.3 Discussion

Similar to the results of our first study, we found that people apply resource-

rational strategies that are adequate for the given environment. Participants

performed better compared to the first study, indicating that they found it eas-
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ier to work with directions than with rankings. We speculate that one explana-

tion for this observation could be that positive correlations are more frequently

encountered in the world.

Previous empirical studies (see our earlier analysis in Tables 4.1 and 4.2) on

heuristics were often restricted to tasks with positive correlations between fea-

tures and the criterion. Despite this, few studies actually consider equal weight-

ing heuristics when comparing their hypotheses. Instead, most of them attempted

to show that people rely on one reason decision-making, often with inconclusive

results. We believe that this mismatch between the hypotheses being tested and

the structure of the tasks considered is an important factor in explaining the

mixed results of prior empirical work.

4.7 Experiment 3: Unknown Ranking and Direction

In our final study, we investigated choice behavior in an environment that did

not provide information about ranking or direction. In the previous model simu-

lations, we have demonstrated that no heuristic emerges under such conditions.

Instead, BMI discovered strategies with compensatory weights even under large

resource constraints. Hence, we predicted that people in this condition are less

reliant on traditional heuristics and instead integrate information from multiple

features properly.
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4.7.1 Methods

Participants

Participants were students from the University of Marburg, taking part in the

study for course credits. Besides course credits, they got a chance to win a ⁄10

voucher if they made more than 60% correct decisions. The experiment was ap-

proved by the local ethics board (AZ 2020-32k). In total we collected data from

23 participants (16 female, average age: 23.09± 4.38).

Procedure

The design was identical to both previous experiments, except that it did not

include information about feature rankings and direction anymore. The median

time to complete the experiment was 36.09 minutes.

4.7.2 Results

Performance

The ideal observer model and the equal weighting heuristic remained identical

in their performance compared to the first study, see Figure 4.8 (a). The sin-

gle cue heuristic however performed slightly worse, as it was not provided with

knowledge about the most predictive feature anymore, but instead had to infer

it based on observations. Note, that with an identical level of resource limita-

tions the performance of BMI substantially decreased compared to the previous

environments.

Participants also found this version much harder and performed substantially

worse. Without the additional information from the first two conditions, their
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Figure 4.8: (a) Percentage of correct decisions (averaged over all tasks) in the unrestricted con-
dition plotted over the number of trials within a task. For human performance shaded contours
represent the standard error. The left panel shows the ideal observer model and both heuristics,
while the right shows BMI for different values of β. (b) Posterior distributions for each participant
over different strategies in the unrestricted condition. High values indicate that the participant was
likely to use the corresponding strategy.

cognitive resource limitations became a dominating factor. The average perfor-

mance dropped to 57.14 ± 4.38%. While some participants performed well, a

substantial amount was at or close to chance level.

Model Comparison

According to our model simulations, we should expect to find evidence for mod-

els using weighted combinations of multiple features in this condition. Because
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no known heuristic emerged in this environment, we did not split our analysis

and already considered BMI on the level of individual participants.

Posterior probabilities obtained from a Bayesian model comparison in Figure

4.8 (b) confirmed that most participants combined information from multiple

features instead of using heuristics like equal weighting or one reason decision-

making. Fifteen out of 23 participants were best described by BMI; in eight of

those we found decisive evidence (p(m = BMI|Di) > 0.99). Amongst the partic-

ipants not best described by BMI, six were best described by guessing and two

by the feedforward network. We again found that BMI fared favorably against

all other models on the aggregated data (p(m = BMI|D) ≈ 1). The protected

exceedance probability (PXP > 0.999) also supported the conclusion that BMI

was the most frequent explanation for participants in our population.

4.7.3 Discussion

In an environment that did not provide additional information about ranking or

direction, participants’ decision-making again followed the prediction made by

BMI. Most participants applied strategies that involved weighted combinations

of features, as it was suggested by our model simulations. The general result

that most people were able to quickly combine information from multiple sources

if needed is also consistent with results of prior studies (Bröder, 2000, Glöckner

and Betsch, 2008, Parpart et al., 2018).
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4.8 General Discussion

At the core of theories of ecological rationality, researchers have posited an in-

teraction between cognition and the environment. Brunswik (1956) argued that

human perception cannot be understood in laboratory settings alone, but rather

has to be interpreted in the light of real environments in which real objects are

perceived and acted upon. Simon (1990b) famously highlighted the interaction

between cognition and the environment using an analogy of a pair of scissors,

with one blade being the structure of the environment and the other blade the

computational capabilities of the subject. This conceptualization of ecological

rationality has strongly influenced theories of heuristic decision-making. The

need to economize cognitive resources places pressure on the mind to employ

heuristics that work well in specific environments. Nonetheless, how people pick

a particular heuristic for a specific environment and where those heuristics come

from in the first place has remained elusive. The theoretical picture becomes

even more puzzling when looking at the empirical support for heuristic decision-

making. Proponents of heuristic decision-making acknowledge these problems.

For example, Gigerenzer (2008) writes: “Why do heuristics work? They exploit

evolved capacities that come for free. In addition, they are tools that have been

customized to solve diverse problems. By understanding the ecological ratio-

nality of a heuristic, we can predict when it fails and succeeds. The systematic

study of the environments in which heuristics work is a fascinating topic and

is still in its infancy.” But what does a theory, which can explain how heuris-

tics emerge and how they are selected while at the same time accounting for the

sometimes mixed empirical results, look like?
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We have put forward BMI as a theory that makes significant advances on

these questions. Our simulation results show that BMI discovers previously

suggested heuristics. Thus, it provides a normative justification for heuristic

decision-making. Moreover, we find that different heuristics emerge depending

on environmental assumptions. Thus, BMI also explains how decision-making

strategies are selected. Finally, our account generates predictions about if and

when a specific heuristic should be applied. Since we find that one reason decision-

making is unlikely to occur in many of the past experimental set-ups, this ex-

plains the mixed results of prior empirical work.

Already early on, researchers working on heuristic decision-making levied the

criticism that simply observing behavioral biases is not enough, and that “in

place of plausible heuristics that explain everything and nothing – not even the

conditions that trigger one heuristic rather than another – we need models that

make surprising (and falsifiable) predictions” (Gigerenzer, 1996). However, the

very fact that several heuristic components have been claimed to be part of a

heuristic toolbox without fully specifying how they are selected and combined,

has subjected heuristic theories to a similar line of criticism: “. . . if one cannot

predict which heuristics will be used in which environments then determining

the heuristic that will be selected from the toolbox for a particular environment

becomes necessarily post hoc and thus the fast-and-frugal approach looks dan-

gerously like becoming unfalsifiable.” (Newell et al., 2003). In contrast to these

arguments, BMI makes clear, falsifiable and surprising predictions about when

people should apply which heuristic. Specifically, our simulation results show

that there are three important classes of environments triggering three decision-

making strategies. If people know the correct ranking of attributes but not their
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weights, then they should exhibit one reason decision-making. If people know

the direction of the attributes but not their ranking, then they should exhibit

equal weighting strategies. Finally, if people do not know either the ranking

or the direction of the attributes, then they should exhibit strategies that use

weighted combinations of attributes.

We subjected these predictions to a rigorous test in three paired comparison

experiments and found that the vast majority of participants applied decision-

making strategies as predicted by BMI. Moreover, BMI captured elements of hu-

man decision-making that could not be explained by traditional heuristics in all

three experiments: In the first study it additionally accounted for participants

that resorted to guessing, in the second study it provided an explanation for the

good initial performance of participants and in the third study it predicted cor-

rectly that performance should decrease and that people apply compensatory

strategies instead of established heuristics. Together, these results enrich our

theoretical and empirical understanding of ecologically rational decision-making.

4.8.1 Limitations

Gigerenzer and Todd (1999) argued that decision-making under limited resource

cannot be expressed through models that perform optimization under constraints:

“Optimization under constraints also limits search, but does so by computing

the optimal stopping point, that is, when the costs of further search exceed the

benefits.” Computing this optimal stopping point can be at least as expensive

as finding the optimal solution; hence it defeats the initial intention of mod-

eling decision-making under resource limitations (Gigerenzer and Todd, 1999,

Scheibehenne and Von Helversen, 2009). BMI involves optimization under con-
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straints but importantly does so at the meta-learning level, which happens on

a much larger time scale (e.g. through evolutionary processes). Learning within

an individual task, on the other hand, is fast as it does not involve any form of

optimization. This perspective of learning at multiple scales is also at the core of

recent theories of fast and slow reinforcement learning (Botvinick et al., 2019).

BMI assumes that meta-learning happened prior to the experiment, but it

remains agnostic about the exact processes controlling the acquisition of strate-

gies. BMI could, for example, be acquired through evolutionary processes, through

individual experiences, or both. If meta-learning indeed happened prior to the

experiment, we should find no noticeable improvement in performance over the

course of our studies. We find support for this hypothesis when comparing hu-

man performance in the first and second half of our studies (Figure 4.9 (a) and

(b)). Furthermore, we evaluated posterior probabilities of different models for

each task as opposed to for each individual participant (Figure 4.9 (c) and (d))

and found that participants did not apply different strategies during the exper-

iment. Nonetheless, a valid criticism of our current work is that it does not ad-

dress the precise process of meta-learning, and whether this process is rather

shaped by ontogeny, phylogeny, or both. This is indeed an open problem for

all theories of heuristic decision-making, which at various times have argued

that heuristics emerge from evolutionary pressures (Hutchinson and Gigeren-

zer, 2005), developmental processes (Gigerenzer, 2003), or task-specific adapta-

tions (Marewski and Schooler, 2011). The time scale of meta-learning therefore

remains an open theoretical and empirical question.

Currently, our approach also does not directly offer a way to predict which

properties of the environment will determine what type of decision-making strate-
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Figure 4.9: (a) and (b) show that performance of participants did not change over the experi-
ment, indicating that meta-learning already happened prior to the experiment. Shaded contours
represent the standard error. (c) and (d) confirm this observation by showing that the selection of
strategies also did not change during the experiment. High values indicate that the corresponding
strategy was applied with high probability in the given task.

gies are ecologically rational. Instead, we have to train our meta-learning models

in different environments and then analyze what decision strategies emerge, for
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example by analyzing the weights’ Gini coefficient. Looking at a model’s emerg-

ing properties is a common method when neural network approaches are applied

to psychological questions (Ritter et al., 2017). We believe that this possible

weakness can also be a strength, because it forces researchers to truly study the

properties of environments, as has been the core proposal of theories of ecologi-

cal rationality for decades.

4.8.2 Related Work

To highlight what BMI adds to existing theories, we compare it to other ideas

put forward in previous investigations. In the context of decision-making, we

focus on methods that address how strategies are selected and how they are dis-

covered. Beyond that, we discuss how meta-learning and resource-rationality

have been applied to understand other phenomena.

Strategy Selection

First, there have been several theories explaining how strategies are selected.

Rieskamp and Otto (2006) proposed a theory of strategy selection learning that

framed the strategy selection process as a model-free reinforcement learning

problem. Their theory assumes that people slowly learn how to select the right

strategy from a given repertoire of strategies based on repeated interactions. A

key finding of their experiments was that over time participants learned to se-

lect the best-performing strategy for a particular environment. Their method

requires learning from scratch whenever it encounters novel problems and hence

it does not address how knowledge is transferred between different environments,

or why participants are immediately able to select appropriate strategies in our
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experiments.

Lieder and Griffiths (2017) addressed the missing ability to transfer knowledge

between environments through an approach based on rational meta-reasoning.

Based on properties of the environment, they predicted speed and accuracy of

different strategies. They showed that participants selected the strategy that was

best for solving the speed-accuracy trade-off in the current context. In contrast

to their work, we used separate models for each environment. However, it would

be possible to extend our modeling framework by conditioning the initial state of

the RNN on features of an environment.

Marewski and Schooler (2011) postulated a probability landscape describing

an individual’s ability to apply a strategy as a function of cognitive capabili-

ties and the environment. Their work referred to situations in which a strategy

can be applied as a cognitive niche and showed that cognitive niches of differ-

ent strategies are disjoint in many cases. This greatly simplified the strategy

selection problem and was in line with participants’ behavior across a number of

experiments. We believe that cognitive niches could also be the result of meta-

learning, where an algorithm adapts to a given characteristic of an environment

until it cannot easily be applied to a vastly different environment anymore.

Previous theories of strategy selection all require to define a set of potential

strategies in advance. In contrast, BMI is not restricted to predefined sets and

instead discovers useful strategies on the fly.

Strategy Discovery

There have also been some accounts that explain how strategies are discovered.

Schulz et al. (2016a) proposed a method for learning decision-making strategies
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from small, probabilistic building blocks. Based on a self-reinforcing sampling

scheme, they were able to build tree-like non-compensatory heuristics. Their

approach can recover TTB on data sets that have been generated by the TTB

heuristic. However, it is not able to learn about other, non-compensatory strate-

gies or to make predictions about when participants would prefer which strategy.

Lieder et al. (2017) suggested a model that composes strategies from atomic

computations. According to their theory, an agent represents computations as

costly actions in a meta-level Markov decision process. The agent’s goal is to

maximize the external payoff obtained from making correct decisions while ac-

counting for the computational costs of actions. When they applied their theory

to several decision-making problems, they found that it discovered two known

heuristics – TTB and guessing – as well as a novel strategy that combined TTB

with satisficing (Simon, 1956).

Parpart et al. (2018) showed that heuristics can emerge from Bayesian infer-

ence in the limit of infinitely strong priors. Using this idea, they identified pri-

ors corresponding to an equal weighting heuristic. Finding a prior that leads to

TTB proved to be more challenging in the Bayesian framework and was only

possible after introducing an additional decision rule. Instead of relying on the

complexity argument as justification for heuristics, their analysis suggested that

heuristics work well because they implement priors that reflect the actual struc-

ture of the environment.

Theories that build algorithms from simpler computations (Schulz et al., 2016a,

Lieder et al., 2017) discover one reason decision-making heuristics without diffi-

culties, but struggle to account for equal weighting heuristics. Theories based on

Bayesian inference (Parpart et al., 2018) on the other hand have no difficulties
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with discovering equal weighting heuristics, but require additional components

to find heuristics that rely on a single piece of information. We show that peo-

ple actually use both classes of strategies and provide a theory that can discover

both of them in an appropriate context. While there exist prior approaches that

address either the strategy selection problem or the strategy discovery problem

independently, BMI is also the first to account for both problems jointly within

a unified framework.

Meta-Learning as Theory of Human Behavior

Brighton (2006) and Chater et al. (2003) considered standard feed-forward net-

works trained with backpropagation as models of decision-making in paired com-

parison tasks. Their results indicated that, if only a few examples were used,

such models tended to overfit and were outperformed by much simpler, more

robust alternatives. Brighton (2006) suggested meta-learning as a potential so-

lution to this problem of overfitting but did not provide a concrete implemen-

tation of this conjecture. BMI is such an implementation that can be applied

to paired comparison tasks with few examples and – crucially – without show-

ing signs of overfitting. The key to BMI’s success is that learning happens in the

network’s recurrent activations and not through traditional gradient-based train-

ing schemes.

When we look beyond decision-making and paired comparison tasks, meta-

learning has recently received increased attention as an explanation for human

behavior across a variety of cognitive and neuroscientific questions. For exam-

ple, meta-learning has been shown to lead to human-like characteristics in the

contexts of few-shot learning (Santoro et al., 2016), systematic compositionality
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(Lake, 2019), exploration (Binz and Endres, 2019) as well as one-shot navigation

and model-based reasoning (Wang et al., 2016). The current work adds heuristic

strategies of decision-making as another domain to this list.

Directly relevant to our work is the approach of Dasgupta et al. (2020), who

taught neural networks to approximate Bayesian inference, given some infor-

mation about an inference problem’s prior and likelihood. Restricting the size

of the network allowed them to account for a large number of cognitive biases,

including base rate neglect and conservatism. This approach shares its core prin-

ciples with our theory: resource-rationality and meta-learning. However, BMI

does not approximate Bayesian inference explicitly as done by Dasgupta et al.

(2020). Instead, it attempts to infer distributions that are optimal for making

future predictions (which may or may not correspond to Bayesian inference).

4.8.3 Future Directions

Most computational models in psychology and cognitive science are confined

to idealized settings. BMI on the other hand can – in principle – scale to much

more complex domains (Wang et al., 2016, Santoro et al., 2016). Having access

to such models allows us to study human behavior under more realistic condi-

tions. In the context of decision-making, it becomes, for example, possible to in-

vestigate how and why different representational formats influence human strate-

gies (Bröder and Schiffer, 2006) by learning models that directly process visual

representations of the task.

In this paper, we have applied BMI to the paired comparison setting. How-

ever, BMI is more general than that and we believe that it could also be used to

explain heuristics in other contexts, such as the recognition heuristic (Goldstein
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and Gigerenzer, 2002) or the gaze heuristic (Shaffer et al., 2004, Belousov et al.,

2016). BMI could also provide insights into other phenomena in human learning,

such as the observation that learning about multiple tasks is usually easier when

tasks are presented successively compared to an interleaved presentation (Flesch

et al., 2018).

The classical approach to computational modeling is to propose a model, test

its predictions, and finally revise the model if required. However, we can also

envision an approach for the revision of theories that puts the study of envi-

ronments first. In this framework, we would ask ourselves what environments

can account for observed behavior assuming that people make ecologically and

resource-rational decisions, instead of revising arbitrary parts of the model. That

this is a promising research direction for building more human-like agents was

shown for example by Hill et al. (2020), who demonstrated that systematic gen-

eralization can be an emergent property of an agent interacting with a rich envi-

ronment.

Finally, our theory provides us with a set of predictions about what should

happen when available computational resources are manipulated. It will be in-

teresting to see whether people follow the behavioral trajectories stipulated by

BMI when put under cognitive load or whether patients with attention or mem-

ory impairment are better described by models with lower complexity.

4.8.4 Conclusion

The idea that theories of human cognition should consider both the structure

of the environment and the computational capabilities of the subject has been a

central theme in psychology (Simon, 1990b, Todd and Gigerenzer, 2012). How-
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ever, actual implementations of this principle have been lacking so far. BMI

provides such an implementation by combining the ideas of resource-rationality

and meta-learning. BMI accounts for two open questions in the decision-making

literature simultaneously, explaining why different strategies emerge and how

appropriate strategies are selected. By mapping out environments that cause

different strategies to be resource-rational, we obtain precise predictions about

when previously suggested heuristics should be used and when not. We con-

firmed these predictions in three paired comparison experiments. Taken to-

gether, BMI offers a normative and empirically supported theory of human decision-

making.

102



5
Towards A Domain-General Theory Of

Order Effects
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Abstract: Order effects are ubiquitous in human learning: people’s responses

vary when learning about associations of events if the order of trials is rear-

ranged, they learn faster about functions with a structured presentation of data-

points, and they adapt better to multiple tasks simultaneously when encounter-

ing them in blocks. We show that while previous theories reproduce order effects

found in associative learning studies, they cannot provide a unifying explanation

for the human sensitivity to rearrangements of observations in other domains,

such as function learning and multi-task learning. To close this explanatory gap,

we suggest BMI as an alternative theory for why order effects occur. Through

model simulations, we show that BMI captures all order effects under consid-

eration without the need for any domain-specific modifications. These results

offer a significant step towards a domain-general computational theory of order

effects.

This chapter is based on the following publication:

Binz, M., & Endres, D. (2020). Towards A Domain-General Theory Of Order

Effects (submitted).

104



5.1 Introduction

Humans are sensitive to the arrangement of data-points during learning. Em-

pirically, such order effects have been observed consistently across different sub-

disciplines of cognitive psychology: in associative learning multiple paradigms in

which people’s responses vary when the order of trials is rearranged have been

identified (Been et al., 2003, Medin and Bettger, 1991), in function learning peo-

ple find it easier to learn about functions when inputs are presented in ascending

order (Byun, 1996) and when learning about multiple tasks simultaneously hu-

man performance can improve if tasks are presented in blocks compared to an

interleaved presentation (Lee et al., 1992, Flesch et al., 2018).

This behavior is in stark contrast to many machine learning models that as-

sume that data-points are independent and identically distributed, or at least

exchangeable, which in turn implies that learning in such models is invariant

to a reordering of data-points. This is true in particular for Bayesian theories

of learning, which in general have been very successful at capturing how people

learn (Anderson, 1991a, Dayan and Long, 1998, Gershman, 2015, Lucas et al.,

2015), but often assume that data-points are exchangeable. Previous research

has suggested two approaches to resolve this dilemma while allowing to retain

the normative character of Bayesian inference:

1. People assume that their environment is changing over time (Dayan and

Long, 1998, Dayan and Kakade, 2001, Courville et al., 2006).

2. People only use approximations to exact Bayesian inference (Kruschke,

2006, Daw et al., 2008, Sanborn et al., 2010, Abbott and Griffiths, 2011,
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Sanborn and Silva, 2013).

A changing environment can manifest itself in order effects because under

such conditions recent data provides more information about the environment

and hence should be weighed more heavily than old data. Approximate infer-

ence strategies on the other hand inevitably discard some information about

the data. Importantly, trial order can influence what information gets thrown

away, which in turn induces order effects of different kinds. Both ideas are ap-

pealing from a psychological perspective. Realistic environments are often non-

stationary, which makes it reasonable to assume that people carry the strategies

acquired under such conditions over to laboratory studies. At the same time,

people do not have unbounded computational resources (Simon, 1990a, Gersh-

man et al., 2015, Lieder and Griffiths, 2020), and thus it is natural to consider

approximate inference strategies that are less demanding in terms of their com-

putational complexity.

We ask: how well do the current explanations for order effects generalize across

domains, and what are the ingredients required for a domain-general theory of

order effects? We find that while both previously described ideas capture order

effects found in associative learning studies (Dayan and Kakade, 2001, Kruschke,

2006, Daw et al., 2008, Sanborn and Silva, 2013), they fall short of an explana-

tion for order effects in other domains, such as function and multi-task learning.

This lack of a comprehensive account calls for a novel theory. In particular,

we suggest that order effects arise from a meta-learned learning algorithm that

optimally trades-off performance for a lower computational complexity. To test

this hypothesis, we apply BMI to several paradigms in which people show order
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effects. BMI unifies – and generalizes – previous theories of order effects. It has

been adapted to particular environment through meta-learning, allowing it to

attribute order effects to properties of the environment. It furthermore involves

a regularizer for the complexity of the emerging learning algorithm, allowing it

to attribute order effects to limited computational resources.

The remainder of this chapter is structured as follows: we first provide back-

ground information about different models of human learning. Then, we look

at three research areas where order effects occur: associative learning, function

learning and multi-task learning. First, we verify that BMI reproduces order ef-

fects found in associative learning, which are also explained by earlier theories.

Then, we show that BMI additionally captures order effects found in function

and multi-task learning, which are challenging for alternative theories. Finally,

we summarize our results and discuss their implications for both cognitive psy-

chology and machine learning.

5.2 Computational Models

In this chapter, we consider regression problems, i.e., tasks in which an agent

has to learn how to map an input variable x ∈ Rd to a target variable y ∈ R.

Many experimental paradigms can be framed in this way. For example, in an

associative learning experiment x may correspond to the presence or absence of

different stimuli and y to an associated reward; or in a function learning set-

ting x could correspond to different features of a tree, while y represents the

tree’s size in one month from now. In each task the agent encounters a sequence

of input-target pairs x1:T , y1:T . In each time-step t, it first observes an input
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xt, then makes a prediction for that input, and subsequently receives feedback

about the actual target variable yt. In this section, we provide background in-

formation on different computational models that are sensitive to the order in

which data-points are observed.

5.2.1 Kalman Filters

Kalman filters implement the idea of Bayesian inference for a specific class of

linear dynamical systems. In particular, they make the following assumptions

about prior and likelihood:

p(y1:T |x1:T ,w0:T−1) =
TY
t=1

N (yt|wT
t−1xt, σ

2) (5.1)

p(w0:T−1) = N (w0|µµµ0,Σ0)
T−1Y
t=1

N (wt|wt−1, τ
2I) (5.2)

What is the intuition behind these assumptions? Equation 5.1 states that the

target variable can be represented through a linear combination between inputs

and a set of regression weights plus some additive normally distributed noise

with variance σ2. Equation 5.2 expresses the additional assumption that param-

eters are jittered by normally distributed noise with variance τ 2 in between ob-

servations. In our upcoming model simulations, we set the initial prior to a stan-

dard normal distribution. Because all random variables are normally distributed,
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the posterior distribution in a Kalman filter has an analytical expression:

p(wt|x1:t, y1:t) = N (wt|µµµt,Σt) (5.3)

µµµt = µµµt−1 + kt yt − µµµT
t−1xt (5.4)

Σt = Σt−1+τ 2I− ktx
T
t Σt−1 + τ 2I (5.5)

kt =
(Σt−1+τ 2I)xt

xT
t (Σt−1+τ 2I)xt + σ2

(5.6)

and the predictive posterior distribution can also be expressed analytically:

p(y|x,x1:t, y1:t) = N (y|µµµT
t x,x

TΣtx+ σ2) (5.7)

For τ = 0, which we also refer to as stationary Kalman filter, the underlying

system does not change over time. In this case, data-points are independent and

identically distributed, making the model invariant to rearrangement of data-

points. However, when τ > 0 Kalman filters consider recent data-points as more

important because these provide more information about the current state of the

system, which in turn leads to a recency bias (Dayan and Kakade, 2001, Daw

et al., 2008).

5.2.2 Variational Linear Regression

Exact Bayesian inference can be challenging from a computational perspective.

Thus, it makes sense to entertain the possibility that human learning is based

on approximations. The prime examples of such approximations are variational

inference (Jordan et al., 1999) and sample-based methods (Geman and Geman,

1984). Prior work has shown that both approaches can lead to order effects sim-
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ilar to the ones found in human learning (Daw et al., 2008, Sanborn et al., 2010,

Sanborn and Silva, 2013, Abbott and Griffiths, 2011).

Here, we focus on a variational approximation to the stationary Kalman filter,

which is also know as variational linear regression. In variational inference, the

problem of inference is phrased as an optimization problem: the true posterior

is approximated through a family of parametrized distributions – in our case a

multivariate normal distribution q(w|µµµt,Σt) = N (w|µµµt,Σt) – and the goal is to

find the member in the approximating family that minimizes the KL divergence

to the true posterior. This can be achieved through maximizing the evidence

lower bound:

L(µµµt,Σt) = Eq(w|µµµt,Σt) [log p(yt|xt,w)]−KL [q(w|µµµt,Σt)||q(w|µµµt−1,Σt−1)] (5.8)

where the initial approximate posterior q(w|µµµ0,Σ0) is set to the prior. We

refer the reader to Appendix B for further details on how Equation 5.8 is opti-

mized.

This variational approach is equivalent to Bayesian inference whenever the

true posterior is within the considered approximating family. However, from a

computational perspective, it is often convenient to restrict the approximating

family to simpler distributions. A common constraint – which we also adopt in

our model simulations – is to restrict the covariance matrix Σt to be low-rank.

Necessarily, there will be a loss of information if we make such simplifications.

This causes a sensitivity to the arrangement of data-points even if the exact so-

lution is order-invariant because what information is lost may depend on trial

order.
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5.2.3 Bounded Meta-Learned Inference

We also investigated whether order effects result from a meta-learned learning

algorithm that optimally trades-off performance for a shorter description length.

To test this hypothesis, we train a RNN to act as a learning algorithm using the

framework presented in Section 3.1. In time-step t + 1 the network processes

the current input vector xt+1 and the target from the previous time-step yt.

Through its recurrent activations, it has access to the entire history of previously

observed input-target examples. Its outputs correspond to the mean µt+1 and

standard deviation σt+1 of a normal distribution. Together, these parametrize

the predictive posterior distribution p(yt+1|xt+1,x1:t, y1:t,Θ). Figure 3.1 illus-

trates how the network processes a sequence of observations.

Initially, the RNN implements a random mapping. During meta-learning it is

then turned into a resource-rational learning algorithm. This is accomplished by

minimizing the BMI objective until convergence:

LBMI(Λ) = Eq(Θ|Λ)

"
Ep(x1:T ,y1:T )

"
T−1X
t=0

− log p(yt+1|xt+1,x1:t, y1:t,Θ)

##

+ βKL [q(Θ|Λ)||p(Θ)] (5.9)

After meta-learning is completed, the RNN acts as an environment-specific

learning algorithm that makes optimal use of limited computational resources.

In Appendix C we provide a full specification on the network architecture, meta-

learning procedure and choice of prior.

There are two reasons why BMI can exhibit order effects. First, BMI has been

trained to make optimal inferences on a particular distribution over tasks. Thus,
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like Kalman filters, BMI can show order effects if the arrangement of data-points

is important for reasoning accurately in a particular environment. However,

unlike Kalman filters, BMI is not limited to linear environments that change

according to normally distributed noise. Second, BMI embodies the idea that

computational resources are costly. Thus, like variational inference, it can show

order effects even if the training distribution implies that data-points are ex-

changeable. However, unlike variational inference, BMI does not require to make

any assumptions about what hypotheses to consider in advance but instead

adapts automatically to the demands of the environment during meta-learning.

5.2.4 Model Summary

Thus far, we have described three different models that can show sensitivities

to the arrangement of observations: Kalman filters, variational linear regression,

and BMI. Let us briefly recapitulate and contrast these approaches before mov-

ing to our model simulation results.

Kalman filters Explains order effects through optimal learning in

a non-stationary environment. In a changing world,

recent observations provide more information about

the state of the world than past observations, which

implies that a rational learner should exhibit a recency

bias.
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Variational linear

regression

Explains order effects through optimal learning within

a simplified space of hypotheses. Simplifying the space

of possible posterior distributions leads to a loss of

information, which in turn may cause sensitivities to

the arrangement of observations.

BMI Explains order effects through a meta-learned learning

algorithm that optimally trades-off performance and

complexity. Therefore, it provides two reasons for the

emergence of order effects: (1) adaptation to the envi-

ronment and (2) optimal use of limited computational

resources.

5.3 Model Simulations

Next, we investigate how far towards a domain-general theory of order effects

each of the aforementioned approaches brings us. For this, we look at three

different areas where order effects occur: associative learning, function learn-

ing, multi-task learning. Previous work applied a combination of Kalman filters

and approximate inference to capture different order effects found in associative

learning studies (Daw et al., 2008). First, we reproduce these modeling results

and additionally demonstrate that BMI also captures these effects. Then, we

ask: how well does each theory generalize to other domains? We find that both

Kalman filters and variational linear regression do not readily account for order

effects from the function and multi-task learning literature, whereas BMI does.
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5.3.1 Associative Learning

Associative learning studies how people learn associations between different

events. We know from prior work that the order in which stimuli are presented

influences how people learn such associations (Shanks, 1985, Kruschke, 2003).

Here, we consider two widely studied paradigms from the associative learning

literature in which people exhibit trial order effects: forward/backward blocking

and highlighting.

Most associative learning studies are concerned with the response to a spe-

cific sequence of data-points and remain vague about the distribution of tasks

an agent can potentially encounter. However, for our meta-learning models it

is necessary to specify this distribution over tasks. Here, we make the following

assumptions:

p(y1:T |x1:T ,w) =
TY
t=1

N (yt|wTxt, 0.1) (5.10)

p(x1:T ) =
TY
t=1

N (xt|0, I) (5.11)

p(w) = N (w|0, I) (5.12)

Note that this training distribution is equivalent to the data generating dis-

tribution assumed by the stationary Kalman filter, implying that MI will be

invariant to rearrangements of data-points because it simulates a stationary

Kalman filter. For the associative learning simulations we encode different stim-

uli through binary vectors that indicate which stimulus is present (e.g. A =

[1, 0, 0] and AB = [1, 1, 0]) and train models on sequences of length 20.
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Forward/Backward Blocking

In forward blocking stimulus A is paired with reinforcement Y several times dur-

ing a first phase. In a second phase, the compound stimulus AB is paired with

Y an equal number of times. Backward blocking is identical to forward blocking,

except that the first and second phase are reversed. We use four observations

per phase in our simulations and set Y to a constant value of 1. The forward

and backward blocking paradigms are illustrated graphically in Figure 5.1 (a)

and (b). Their ordering aside, data-points in forward and backward blocking

are identical. Thus, models that make the assumption of exchangeability pre-

dict the same response to any stimulus at the end of the second phase for both

paradigms. However, people typically show a weaker response to B after forward

blocking compared to after backward blocking (Shanks, 1985).

Looking at Figure 5.1 (c), we observe that all models except MI can replicate

the empirically observed effect. The observation that MI shows no difference be-

tween both paradigms comes as no surprise, as it approximately simulates a sta-

tionary Kalman filter, which is invariant under a rearrangement of data-points.

All other models respond weaker to B after forward blocking compared to after

backward blocking. Hence, there are at least three possible explanations for the

order effect found in forward/backward blocking:

• Participants assume a non-stationary environment.

• Participants make inferences within a simplified space of hypotheses.

• Participants make optimal use of limited computational resources.
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(a) Forward Blocking Paradigm
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(b) Backward Blocking Paradigm
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Figure 5.1: (a) Graphical illustration of the forward blocking paradigm. (b) Graphical illustra-
tion of the backward blocking paradigm. (c) Predictive posterior means for stimulus B during for-
ward and backward blocking in different models. Kalman filters and variational linear regression
assume an output variance of σ = 0.1, the Kalman filter additionally assumes a diffusion variance
of τ = 1.0. BMI uses a β-value of 0.001. All models except MI, which approximately simulates a
stationary Kalman filter, show the empirically observed order effect.
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Highlighting

In highlighting the compound stimulus AB is associated with outcome R, while

the compound stimulus AC is associated with outcome S. Both associations are

presented an equal amount of times. However, AB → R is presented predomi-

nantly in the first phase, while AC → S is presented predominantly in the sec-

ond phase. Here, we follow the variant of (Daw et al., 2008) and set R to 1 and

S to −1 and again use four observations per phase. This highlighting paradigm

is illustrated graphically in Figure 5.2 (a).

When tested on A at the end of the second phase people tend to predict an

outcome that is closer to 1. This is a primacy effect because A was predomi-

nantly rewarded early on. However, when tested on BC at the end of the second

phase people tend to predict an outcome that is closer to −1. This is a recency

effect because the association of C with −1 was more prevalent in the second

phase. Because A has been paired with positive and negative rewards an equal

number of times overall, any deviations from the null response after the second

phase have to be attributed to the specific ordering of trials; the same holds for

both parts of the compound BC.

Figure 5.2 (b) demonstrates that only variational linear regression and BMI

are in agreement with the empirical data from the literature. Both are more

likely to predict that A results in a positive outcome and that BC results in a

negative outcome at the end of the second phase. Neither MI nor the Kalman

filter can account for the empirical observations made in the highlighting paradigm.

As more data is observed, both of them conclude that A is entirely unpredictive

for the obtained reward and thus attribute all positive rewards to B and all neg-
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(a) Highlighting Paradigm

A A A A A A A AB B B C B C C C

+1 +1 +1 -1 +1 -1 -1 -1

Phase 1 Phase 2

(b) Predictive Posterior Means

0 2 4 6 8
Trial

1

0

1

[y
t|{

A,
B,
C,
BC

}]

A

B

C

BC

Variational Linear Regression
Order Effect

0 2 4 6 8
Trial

A

B

C

BC

Kalman Filter

0 2 4 6 8
Trial

1

0

1

[y
t|{

A,
B,
C,
BC

}]

A

B

C

BC

Meta-Learned Inference

0 2 4 6 8
Trial

A

B

C

BC

Bounded Meta-Learned Inference

Figure 5.2: (a) Graphical illustration of the highlighting paradigm. (b) Predictive posterior means
for different stimuli during learning in different models. Each line is labelled with the corresponding
stimulus. Kalman filters and variational linear regression assume an output variance of σ = 0.1, the
Kalman filter additionally assumes a diffusion variance of τ = 1.0. BMI uses a β-value of 0.001.
Both variational linear regression and BMI show the empirically observed order effect, whereas the
Kalman filter and MI do not.

118



ative rewards to C. In turn, this also implies a null response to BC.

These results show that the hypothesis that people assume a non-stationary

environment does not offer an explanation for order effects observed in the high-

light paradigm. Meanwhile, both other explanations – inferences within a sim-

plified space of hypotheses and making optimal use of limited computational re-

sources – are able to account for effects in both forward/backward blocking and

highlighting.

5.3.2 Function Learning

Next, we are going to examine how well each of the discussed theories general-

izes beyond the setting of associative learning. From the function learning litera-

ture, we know that sequences with structured inputs are easier to learn than se-

quences with random order (Byun, 1996). Byun (1996), for example, contrasted

how people learn different functions with one-dimensional inputs that are either

presented randomly or in ascending order. Looking at linear, quadratic, and si-

nusoidal functions, they found that people tend to learn these functions better if

inputs are presented in ascending order.

We set up an analogous learning environment: models observe ten inputs with

their corresponding targets, and subsequently make predictions about ten addi-

tional inputs without feedback. To-be-learned relationships are based on either
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linear, quadratic or sinusoidal functions and tasks are generated as follows:

p(y1:T |x1:T ,w) =
TY
t=1

N (yt|µt, 0.1) (5.13)

µt =


w1 +w2 · xt if c = 0

w1 +w2 · xt +w3 · x2
t if c = 1

w1 + · sin (2πw2 · xt +w3) if c = 2

(5.14)

p(x1:T ) =
TY
t=1

N (xt|0, 1) (5.15)

p(w) = N (w|0, I) (5.16)

where c is a uniformly distributed categorical variable that is sampled at the

beginning of each task and kept constant for its entire duration. Input sequences

of the initial phase being either sorted in ascending order or left unchanged. Ex-

amples for possible input sequences and all function types are illustrated in Fig-

ure 5.3 (a).

The same distribution over tasks is used to adapt our meta-learning models.∗

As in the associative learning simulations, this training distribution implies that

MI should be invariant to rearrangements of data-points and thus that it should

not differ in its generalization performance between the random and the sorted

condition.

The primary quantity we are interested in is generalization performance dur-

ing the second phase. Both variational linear regression and Kalman filters are
∗Inputs that correspond to the targets from the previous step are masked in the second

phase (set to an uninformative value of zero). This ensures that no feedback is provided to the
meta-learning models after the end of the first phase.
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(a) Function Learning Paradigm
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Figure 5.3: (a) Graphical illustration of the function learning paradigm. The upper panel shows
examples of the three functions types used in our model simulations. The lower panels shows exam-
ples of input sequences for both the random and the sorted condition. (b) Negative log-likelihoods
for different models plotted over number of observed data-points. Lower values correspond to bet-
ter performance. Kalman filters and variational linear regression assume an output variance of
σ = 1.0, the Kalman filters additionally assumes a diffusion variance of τ = 1.0. BMI uses a β-
value of 0.001. BMI is the only approach showing the empirically observed order effect. Kalman
filters show the reverse effect, whereas the other models show no effect.
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linear models, and thus the non-linear functions used in this task pose a chal-

lenge for them. Figure 5.3 (b) indicates that the performance of variational lin-

ear regression is identical for both conditions. Interestingly, the Kalman filter

shows the reverse of the empirically observed order effect: generalization perfor-

mance is worse with ascending order than it is with random order. Fitting a lin-

ear function to the most recent inputs – as done by Kalman filter – will worsen

the fit to previous inputs. As inputs in the middle of sorted sequences are most

likely according to the data generating distribution, neglecting these inputs in

favor of more recent ones leads to reduced generalization performance in the sec-

ond phase.

In MI, we find a minuscule preference for sorted sequences. Although MI should

implement an algorithm that is invariant to trial order, this argument is still

subject to a sufficiently complex model architecture. This finding indicates that

MI requires a slightly more expressive model architecture to perform optimally

in the given task. From all the models under consideration, only BMI fully cap-

tures the empirically observed order effect by showing a substantial improvement

on sequences with ascending order. This is the case because a simple learning

algorithm may still learn well if there exist structure in the data, whereas learn-

ing becomes more difficult if structure is absent. The simplifications made in

variational linear regression, however, go too far; a linear relationship is not ex-

pressive enough for the given task.

Previously, we have seen that order effects in associative learning can be ex-

plained by different theories. However, moving to a non-linear function learning

setting provides a challenge for some of them, including variational linear re-

gression and Kalman filters. In contrast to this, BMI adapts flexibly to the non-
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linear function learning environment and also accounts for order effects found in

function learning studies.

5.3.3 Multi-Task Learning

Not only are people sensitive to the presentation order of inputs, but they are

also sensitive to the presentation order of different tasks (Lee et al., 1992, Flesch

et al., 2018). For instance, when learning about multiple tasks simultaneously

people tend to perform better when tasks are grouped together compared to an

interleaved presentation order. Flesch et al. (2018) demonstrated this effect in

an experimental study where people learned to categorize naturalistic images of

trees according to one of two orthogonal task rules.

To investigate this effect, we created a simplified version of the experiment

used by Flesch et al. (2018). Each episode starts with an initial phase of ten

trials from two tasks, with feedback provided after each prediction. This ini-

tial phase is followed by a second phase with another ten trials from each task

without feedback. Instead of using naturalistic images as done by Flesch et al.

(2018), we directly provide a two-dimensional feature representation as inputs to
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our models. Specifically, tasks are generated using the following expression:

p(y1:T |x1:T ,w) =
TY
t=1

N (yt|µt, 0.1) (5.17)

µt =


wT

Axt if task id = A

wT
Bxt if task id = B

(5.18)

p(x1:T ) =
TY
t=1

N (xt|0, I) (5.19)

p(wA) = N (w|0, I) (5.20)

p(wB) = N (w|0, I) (5.21)

In the initial phase, tasks are either presented interleaved with each other or

in blocks (i.e. ten presentations of task A, followed by ten presentations of task

B). In the second phase, tasks are always presented interleaved with each other.

The task identity can be observed by the learner. MI and BMI do so by receiv-

ing an additional one-hot vector corresponding to the current task identity. For

all tasks we train separate models for the different conditions. This multi-task

learning paradigm is illustrated in Figure 5.4 (a).

All meta-learning models are trained on the same distribution over tasks.†

Again, this implies that MI should be invariant to rearrangements of data-points

and thus that it should not differ in its generalization performance between the

blocked and the interleaved condition.

The primary measurement of interest is again generalization performance on
†Inputs that correspond to the targets from the previous step are masked in the second

phase (set to an uninformative value of zero). This ensures that no feedback is provided to the
meta-learning models after the end of the first phase.
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(a) Multi-Task Learning Paradigm
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Figure 5.4: (a) Graphical illustration of the blocked and interleaved condition in the multi-task
learning paradigm. Bars indicate the corresponding task (blue for task A, orange for task B). (b)
Negative log-likelihoods for different models plotted over number of observed data-points. Lower
values correspond to better performance. Kalman filters and variational linear regression assume an
output variance of σ = 0.1, the Kalman filter additionally assumes a diffusion variance of τ = 1.0.
BMI uses a β-value of 0.001. BMI is the only approach showing the empirically observed order
effect, i.e. its performance is better after a blocked presentation of tasks.
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data-points in the second phase. There are multiple conceivable ways to extend

single-task models (variational linear regression and Kalman filters) to the multi-

task setting. The most natural choice, which we also adopt here, is to keep a

separate model for each task and assume the ability to switch to the correct

model based on the provided task identity. With this approach, both varia-

tional linear regression and the Kalman filter observe the same data-points in

both conditions, and hence they predict no difference in generalization perfor-

mance between interleaved and blocked sequences. Figure 5.4 (b) verifies this

hypothesis. MI also shows no difference between the two conditions because for

an ideal observer – which MI simulates – it is irrelevant in which order trials are

observed.

BMI is the only model that shows an improved generalization performance

when tasks are grouped together – a result that echoes the empirical findings re-

ported by Flesch et al. (2018). We hypothesize that presenting tasks in blocks

avoids interference between them, which in turn requires a less complex learning

algorithm to make successful inferences. There are a few additional interesting

patterns in the learning curves of BMI. First, after the switch between tasks in

the blocked condition, prediction error rises above predicting at chance level.

This might be caused by an urge towards sticking to predictions acquired in

the old task. Second, we observe that performance in the testing phase is worse

compared to the level reached during training. This indicates an interference of

the learned mappings when both tasks are interleaved.
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5.4 Conclusion

We have analyzed several order effects that have been identified in previous ex-

perimental studies. Historically, these effects have been investigated indepen-

dently within different sub-disciplines, each attempting to find their own expla-

nations. In this chapter, we brought these separated research areas together and

investigated whether different theories provide explanations for order effects that

are found across domains.

Through multiple model simulations, we have demonstrated that only BMI

offers a domain-general explanation for the order effects under consideration,

whereas other previously suggested theories do not readily account for all of

them. Besides its empirical support, BMI also offers several practical advan-

tages. It can explain order effects that arise due to reasoning correctly in a par-

ticular environment and for those that are due to limited computational re-

sources. While it may be possible to construct models based on variational in-

ference or Kalman filters that can account for the investigated effects, doing so

would require non-trivial adjustments. In contrast to this, BMI extends readily

to new conditions without requiring any modifications to the model, which we

argue is one of its biggest advantages.

Although BMI offers two potential explanations for order effects, limited com-

putational resources alone were sufficient to explain all of the effects investigated

in this chapter. In future work, it might be interesting to look at order effects

that are neither explained through limited computational resources nor the jit-

tering mechanism of Kalman filters, but that require more complex assumptions

about the environment. It might also be interesting to test whether the other
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predictions made by BMI can be confirmed empirically. For example, as shown

in the function learning simulations, we expect to find a decrease in performance

for inputs that are unlikely according to the data generating distribution. Fur-

thermore, as shown in the multi-task learning simulations, we expect to find that

performance becomes worse than chance at transition points between blocks of

tasks. Finding such patterns in empirical studies would provide further evidence

in favor of BMI.

More generally, we believe that cross-discipline studies – like the one pre-

sented here – are important in the search for general principles of human cog-

nition because they provide additional validity for computational theories. A

general theory of human learning does not only have to capture a specific aspect

of human learning but should instead account for a wide range of different phe-

nomena. In the context of this thesis, we demonstrate that BMI also explains

why people use decision-making strategies (ref. Chapter 4) and that variants

build for the reinforcement learning setting account for individual differences in

human exploration strategies (ref. Chapter 6). These results add credibility to

the idea that meta-learning and resource-rationality are domain-general princi-

ples of human learning.

Finally, our work also has implications for research in machine learning and

artificial intelligence. Real-world environments are structured in many different

ways and people are, in contrast to current machine learning models, very effi-

cient at exploiting these structures for their benefits. If our goal is to build more

human-like machines, it seems necessary to consider structured training envi-

ronments that induce learning curricula (Bengio et al., 2009) along with models

that can exploit these. Inevitably, such models have to be sensitive to the ar-

128



rangement of data-points, ideally in a way that is similar to what people show.

We have demonstrated that BMI is such a model and hence it could serve as the

foundation for future research in this direction.
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6
Where Do Exploration Strategies Come

From?
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Abstract: People constantly face the decision of whether they should exploit

their currently available knowledge or whether they should instead explore parts

of their environment they do not know much about yet. The reinforcement learn-

ing framework offers many approaches that address this trade-off between explo-

ration and exploitation. Looking at human exploration on a two-armed bandit

problem, we find that people apply several different exploration strategies. This

leads us to the question of why people use these particular strategies. We hy-

pothesize that people explore by making optimal use of limited computational

resources and test this conjecture with the help of RL3. We find that RL3 dis-

plays characteristics that resemble individual differences between human partic-

ipants and that it explains empirical data better than any other strategy under

consideration.

This chapter is based on the following publication:

Binz, M., & Endres, D. (2019). Where Do Heuristics Come From?. In Proceed-

ings of the 41th Annual Conference of the Cognitive Science Society (pp. 1402-

1408).

The code to reproduce the presented results is publicly available under https:

//github.com/marcelbinz/MDLDQN.
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6.1 Introduction

Knowing how to efficiently balance between exploring unfamiliar parts of an

environment and exploiting currently available knowledge is a requirement for

any intelligent organism. Multi-armed bandits offer an idealized problem setting

that allow us to study the trade-off between exploration and exploitation. In a

multi-armed bandit problem, an agent repeatedly interacts with k slot machines,

each providing noisy rewards according to some unknown probability distribu-

tion (Lattimore and Szepesvári, 2020).

To behave optimally in such problems, an agent has to maximize the total

amount of accumulated rewards. It is possible to express Bayes-optimal strate-

gies as the result of a planning process in an augmented MDP (Duff and Barto,

2002). However, analytical solutions are only available for a few special cases;

for example, when considering infinite time horizons and geometric discount-

ing, which results in the Gittins index strategy (Gittins, 1979). The general in-

tractability of the problem led to the development of countless heuristic ap-

proaches for solving the exploration-exploitation trade-off; including approaches

based on sampling (Russo et al., 2017), visitation frequencies (Auer et al., 2002),

uncertainty bonuses (Kaufmann et al., 2012), and information gain (Russo and

Van Roy, 2014).

The sheer magnitude of available exploration strategies begs the question:

how do people explore? Prior work indicated that we explore intelligently by

using uncertainty estimates to guide our choices (Speekenbrink and Konstantini-

dis, 2015, Wu et al., 2018, Gershman, 2019, Schulz and Gershman, 2019, Schulz

et al., 2019), but also that our choices systematically deviate from the ones pre-
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scribed by the Bayes-optimal strategy (Steyvers et al., 2009, Zhang and Angela,

2013).

Is there any justification for why people use particular exploration strategies?

We approach this question from the perspective of resource-rationality (Simon,

1990a, Gershman et al., 2015, Lieder and Griffiths, 2020), and hypothesize that

people attempt to explore optimally but are subject to limited computational

resources. To test this conjecture, we make use of RL3. RL3 is a meta-learned

approximation to the Bayes-optimal strategy that accounts for limited compu-

tational resources. RL3 parametrizes the to-be-learned algorithm by an RNN,

which is trained via meta-learning (Duan et al., 2016, Wang et al., 2016) to im-

plement a reinforcement learning algorithm that (1) explores optimally, and (2)

is as simple as possible. Modifying the relative importance of the two factors

leads to a spectrum of resource-rational algorithms, each possessing different

properties. Algorithms without resource limitations approximate the Bayes-

optimal strategy, whereas more constrained algorithms must implement simpler

exploration strategies.

We find that RL3 displays characteristics of human exploration on both a

qualitative and quantitative level. It not only captures individual differences in

human exploration strategies but also explains empirical data better than any

other strategy under consideration. Taken together, these results indicate that

the seemingly sub-optimal exploration strategies used by people might be a con-

sequence of the constraints under which these very strategies are learned.
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6.2 Computational Models

Multi-armed bandits are MDPs consisting of a single state. In each time-step t,

an agent selects one out of k available actions and is rewarded according to an

unknown distribution based on its choice. The agent’s objective is to maximize

its total sum of rewards during T interactions with the problem. Finding the

policy that optimally balances exploration and exploitation in such problems

is incredibly difficult. In the special case of an infinite horizon and geometric

discounting, the Bayes-optimal solution is the Gittins index strategy (Gittins,

1979). More generally, the Bayes-optimal solution is defined as the result of a

planning process in an augmented MDP (Duff and Barto, 2002).

The difficulty of the multi-armed bandit problem led to the development of

several heuristic approaches for addressing the exploration-exploitation trade-

off. These methods can roughly be categorized into two major groups: directed

and random exploration strategies. Directed exploration attempts to gather in-

formation about uncertain but learnable parts of the environment, while ran-

dom exploration injects stochasticity of some form into the policy. Gershman

(2018) showed that these two principles can be distinguished exactly under cer-

tain conditions. Next, we present several algorithms for interacting with bandit

problems. We first summarize the random and directed exploration strategies

suggested by Gershman (2018). Then, we describe how RL3 can be applied to

the given problem setting.
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6.2.1 Value-Directed Exploration

Following Gershman (2018), we consider two-armed bandit problems with nor-

mal distributions over the mean of rewards for each arm θa, and a normal distri-

bution over the reward at each time-step rt:

p(θa) = N (θa|µ0,a, σ0,a) (6.1)

p(rt|at) = N (rt|θat , τ) (6.2)

If our objective is to maximize the total sum of rewards, keeping track of how

rewarding each arm is, is a good starting point. In our case, agents maintain a

posterior distribution over mean rewards for each arm. Because everything is

normally distributed, this posterior will also be normally distributed, i.e.

p(θt+1|rt, at) = N (θt+1|µt+1, σt+1). The corresponding updating equations are

given by:

(µt+1,a, σ
2
t+1,a)←

 (µt,a, σ
2
t,a), if At ̸= a

µt,a + α (rt − µt,a) , σ
2
t,a − ασ2

t,a , if At = a
(6.3)

α←
σ2
t,a

σ2
t,a + τ 2a

(6.4)

Let us now the define the following quantities:

Vt = µt,0 − µt,1

RUt = σt,0 − σt,1 (6.5)

TUt =
q
σ2
t,0 + σ2

t,1
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Vt constitutes the estimated difference in value between both arms, while RUt

and TUt describe relative and total uncertainty. These quantities allow us to

formulate many popular exploration strategies. Perhaps the simplest strategy is

to select the arm with the higher expected reward. In other words: select arm

0 if Vt > 0 and arm 1 otherwise. This is a purely exploitation-based approach

that never explores. A modified version of this idea is to choose the arm with

the higher expected reward probabilistically. Gershman (2018) suggested to do

so by transforming the value difference through the cumulative distribution func-

tion of a standard normal distribution Φ:

p(At = 0|m = VD) = Φ(w1Vt) (6.6)

where w1 is a parameter that controls how noisy choices are. Equation 6.6

implements a type of random exploration, which we refer as value-directed explo-

ration.

6.2.2 Upper Confidence Bounds

Value-directed exploration is based on expected rewards alone. It turns out

that we can explore more efficiently than that by using how uncertain the agent

is. Intuitively, an agent can still learn a lot about arms with high uncertainty,

whereas it is almost sure how much rewards arms with low uncertainty provide.

Upper confidence bound algorithms (UCB, Auer et al., 2002) formalize this idea

by adding an uncertainty-based bonus reward. This can be expressed using the
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previously defined quantities; in particular, the relative uncertainty RUt:

p(At = 0|m = UCB) = Φ (w1Vt + w2RUt) (6.7)

If the uncertainty for arm 0 is higher than for arm 1, RUt will be positive,

which in turn leads to a higher probability of selecting arm 0. If uncertainty

for arm 1 is higher, the agent will be encouraged to select arm 1. Equation 6.7

is thus a directed exploration strategy – it directs an agents towards arms with

high uncertainty. The parameters w1 and w2 determine the influence of value

difference and relative uncertainty, respectively.

6.2.3 Thompson Sampling

Thompson sampling (Russo et al., 2017) is another way to incorporate uncer-

tainty estimates into the decision-making process. An agent that applies Thomp-

son sampling selects arms relative to their probability of being optimal. This

probability can be expressed analytically for bandits with two arms and nor-

mally distributed posteriors (Gershman, 2018):

p(At = 0|m = TS) = p(θt,0 > θt,1) (6.8)

= p(θt,0 − θt,1 > 0) (6.9)

= Φ
Vt

TUt

(6.10)

Like value-directed exploration, Thompson sampling is a random exploration

strategy. It also probabilistically selects the arm with the higher expected re-

ward. However, in contrast to value-directed exploration, it scales the value dif-
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ference by the total uncertainty TUt. This implies that behavior becomes more

stochastic if uncertainties are high in general.

6.2.4 Hybrid Model

It is possible to combine all three algorithms presented so far in a single, unified

probit regression model:

p(At = 0|m = HYBRID) = Φ w1Vt + w2RU t + w3
Vt

TUt

(6.11)

where w = [w1, w2, w3] define the influence of each exploration strategy. For

w = [w1, 0, 0] we recover value-directed exploration, for w = [w1, w2, 0] we re-

cover UCB, and for w = [0, 0, 1] we recover Thompson sampling.

Fitting the coefficients of the hybrid model to empirical data allows us to in-

spect how much a given agent relied on value-directed, directed, and random

exploration respectively. Figure 6.1 verifies that this procedure is able to recover

different exploration strategies from data generated by them. We will apply this

form of analysis to both human participants and to meta-learned agents in the

next section.

6.2.5 RL3

Finally, we want to look at how meta-learning can be used to discover differ-

ent exploration algorithms for the given two-armed bandit problem. Bandits

are MDPs with a single state, and thus we can directly apply the RL3 method

described in Section 3.2. RL3 parametrizes the to-be-learned exploration algo-

rithm with a RNN. The RNN takes previous actions and rewards from a ban-
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Figure 6.1: Parameters obtained by fitting the hybrid probit regression model to data generated
by value-directed, directed (UCB), and random exploration (Thompson sampling). The figure high-
lights that this form of analysis is able to recover each exploration strategy from data generated by
it.

dit problem as inputs, making the output a function of the entire history ht =

a1:t−1, r1:t−1. The outputs of the network parametrize a distribution over action-

values of the optimal policy. A good algorithm has to integrate information

from the history to accurately predict action-values of the optimal policy, based

on which it subsequently selects the appropriate strategy.

Initially, the RNN implements a random mapping. During meta-learning it is

then turned into a resource-rational reinforcement learning algorithm. This is

accomplished by minimizing the RL3 objective until convergence:

LRL3(Λ) = Eq(Θ|Λ)

"
Ep(a1:T ,r1:T )

"
T−1X
t=0

− log p(qt+1|ht+1, at+1,Θ)

##

+ βKL [q(Θ|Λ)||p(Θ)] (6.12)

Here, we use an approximation to the Q-Learning targets qt defined in Equa-

tion 3.15. This approximation is computed using a single sample from the en-
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coding distribution (Lipton et al., 2017) of a separate target network (Mnih

et al., 2015). The target network is synchronized with the main network every

100 training iterations.

The RNN implements a resource-rational reinforcement learning algorithm

through its recurrent activations after meta-learning is completed. The outputs

of the network approximate the action-value function of the optimal policy, from

which the corresponding policy can be derived. In Appendix C we provide a full

specification on the network architecture, meta-learning procedure and choice of

prior.

RL3 may implement different exploration strategies depending on its β-value.

Duan et al. (2016) demonstrated that a similar algorithm without resource lim-

itations closely approximates the Bayes-optimal policy for bandit problems of

low to medium complexity. Increasing the β-value will lead to algorithms with a

shorter description length, which in turn implement simpler exploration strate-

gies. In the following section, we investigate whether we can understand indi-

vidual differences in human exploration by considering models with different β-

values.

6.2.6 Model Summary

Let us briefly summarize the presented exploration strategies before showing

how they can help us to understand how people explore:
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Value-directed explo-

ration

Probabilistically selects the arm with the higher esti-

mated reward. It only depends on the value difference

and does not take into account how uncertain the

agent is.

UCB Implements the idea of optimism in the face of uncer-

tainty by adding a bonus reward that directs the agent

towards arms with high uncertainty.

Thompson sampling Samples arms relative to their probability of being

optimal. In contrast to value-directed exploration, it

does utilize uncertainty estimates as a scaling factor

that determines how stochastic choices are.

Hybrid model Integrates value-directed exploration, UCB and

Thompson sampling into a single exploration strat-

egy.

RL3 A meta-learned algorithm that makes optimal use of

limited computational resources. The implemented ex-

ploration strategy will depend on the relative weight-

ing between performance and cost for computational

resources.

6.3 Empirical Analysis

Next, we demonstrate how the previously described models can help us to un-

derstand which exploration strategies people are using. Our analysis involved

three parts. First, we fitted the probit regression coefficients of the hybrid model
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(ref. Equation 6.11) to data generated by RL3. This allowed us to reveal how

much a given meta-learning agent relied on value-directed, directed, and random

exploration. Then, we performed the same analysis for data generated by peo-

ple, and compared the resulting coefficients to those obtained from RL3. Finally,

we ran a Bayesian model comparison to obtain a quantitative measure that de-

scribes how well the considered strategies capture human exploration.

For our analysis, we relied on data collected by Gershman (2018), which con-

tains records of 44 participants, each playing 20 two-armed bandit problems

with an episode length of T = 10. The mean reward for each arm was drawn

from N (θa|0, 10) at the beginning of an episode and the reward in each step

from N (rt|θat , 1).

6.3.1 Model Simulations

First, we illustrate that RL3 leads to the emergence of a spectrum of diverse ex-

ploration strategies. We trained otherwise identical models with varying reg-

ularization factors β on the two-armed bandit problem described above until

convergence. Reported results are averaged over 5 random seeds unless other-

wise noted. Figure 6.2 (a) shows that performance continuously improved as β

decreased, which confirmed our expectation that RL3 should become better at

solving the exploration-exploitation trade-off when it faces fewer resource con-

straints.

Fitting the aforementioned probit regression model to data generated by RL3

revealed value-based characteristics towards one end of the spectrum of resource-

rational algorithms as shown in Figure 6.2 (b). Towards the other end of the

spectrum, we observed a transition towards Thompson sampling-like strategies,
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Figure 6.2: Results for RL3 with different β-values. (a) Visualization of per episode regret aver-
aged over 5 models and 1000 episodes. Lower regret indicates a better performance. (b) Coeffi-
cients of the probit regression analysis for RL3 with different β-values. Error bars indicate uncer-
tainties (one standard deviation) in the coefficients estimated through a Laplace approximation.
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with smaller influences of value-directed and directed characteristics.

6.3.2 Human Exploration Strategies

We performed the same probit regression analysis for each participant that took

part in the study of Gershman (2018). To get a better understanding of the ex-

ploration strategies people used, we applied a dimensionality reduction technique

to the resulting probit regression coefficients. The results are visualized in Fig-

ure 6.3 (a). This analysis revealed a continuum of strategies within the popula-

tion. We performed an additional cluster analysis and visualized coefficients of

three example participants in Figure 6.3 (c). While some participants seemed

to adopt Thompson sampling (cluster 2), others relied on UCB (cluster 1) or a

mixture between both (cluster 3).

We then compared the probit regression coefficients of participants to the ones

of RL3. Figure 6.3 (b) visualizes coefficients for 35 models (5 for each value of β)

alongside those of human participants. Although some parts of the embedding

were over- and underrepresented, the overall variability of human exploration

strategies was captured well by the set of RL3 models.

6.3.3 Model Comparison

To obtain a quantitative measure for the explanatory power of RL3, we per-

formed a Bayesian model comparison. Appendix D provides a detailed descrip-

tion of the methods we used for statistical analysis. In particular, we computed

the posterior probability that a participant used a given strategy. Figure 6.4

shows posterior probabilities for each participant and model. We found that RL3

was best at capturing participants’ choices in 26 out of 44 participants. In 21
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Figure 6.3: Visualization of human exploration strategies alongside those from RL3. (a) UMAP
(McInnes et al., 2018) embedding of probit regression coefficients for all participants. We also show
the result of a cluster analysis obtained from a mean-shift clustering. (b) Joint UMAP embed-
ding of coefficients for human participants and RL3. (c) Probit regression coefficients of example
participants from each cluster. Error bars indicate uncertainties (one standard deviation) in the
coefficients estimated through a Laplace approximation.
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Posterior probabilities for each participant
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Figure 6.4: Posterior distributions for each participant over different exploration strategies. High
values indicate that the participant was likely to use the corresponding strategy.

of those the model evidence decisively favored RL3 (p(m = RL3|Di) > 0.99).

Amongst the participants not best described by RL3, nine were best described

by directed exploration (UCB), eight by random exploration (TS), and one by

value-directed exploration (VD). The model evidence on the aggregated data of

all participants indicated that RL3 was overall better at capturing human explo-

ration strategies than any other strategy under consideration (p(m = RL3|D) ≈

1). We also observed that different participants were described best by differ-

ent β-values. There were 24 participants best described by log2(β) = −7, ten

by log2(β) = −8, three by log2(β) = −9, four by log2(β) = −10, two by

log2(β) = −11, and one by log2(β) = −12.

6.4 Conclusion

We hypothesized that the idea of resource-rationality offers a justification for

the seemingly sub-optimal exploration strategies used by people in multi-armed

bandit problems. To test this hypothesis, we compared human data to a family

of meta-learned reinforcement learning algorithms called RL3. RL3 discovered

a spectrum of exploration strategies that resembled human exploration without

being explicitly trained to do so. Further model comparisons demonstrated that
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RL3 also described human exploration well on a quantitative level.

There are, however, a number of research questions left to be explored. For

example, we plan to investigate whether manipulating β-values in RL3 results in

behavior that aligns with what we find when resources are manipulated in peo-

ple. In this context, it might be interesting to look at data from children (Schulz

et al., 2019, Meder et al., 2020), people with brain dysfunctions (Bechara et al.,

1994), and people who have been put under cognitive load (Cogliati Dezza et al.,

2019).

The bandit setting does not contain any mechanism that enables an agent to

control its environment. Thus, bandits only allow to study a limited aspect of

human exploration; for instance, they certainly do not explain how young chil-

dren explore their environment during play (Orhan et al., 2020). A full under-

standing of human exploration will require much richer paradigms. An impor-

tant advantage of the presented method is that it can be applied to more com-

plex domains without algorithmic modifications. Therefore, we view the multi-

armed bandit problems studied in this chapter merely as the first step towards

investigating exploration in more complex domains.

In the bigger context of this thesis, we have shown the ideas of meta-learning

and resource-rationality do not only apply to supervised learning problems but

also to reinforcement learning problems. Recent work on meta-learned reinforce-

ment learning algorithms – similar to the one employed here – demonstrated

that such systems develop capabilities that allow them to perform model-based

planning (Wang et al., 2016), causal reasoning (Dasgupta et al., 2019), and few-

shot learning (Santoro et al., 2016). Having scalable systems that are capable of

such feats opens up new possibilities for the study of human cognition.
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7
Discussion
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The goal of this thesis was to establish general principles that drive human

learning across domains. Identifying a minimal set of such principles is not only

valuable for our understanding of how people learn but also for building more

human-like machines. In particular, I have put forward three principles that I

believe to be important. They are generalization, adaptation, and simplicity.

There has already been a lot of prior work on them, so it is perhaps somewhat

surprising that a domain-general model realizing all of them did not exist. To

close this gap, I have presented a framework that combines meta-learning with

the minimum description length principle.

In three different studies, I have shown that instantiations of this framework

– BMI and RL3 – captured many aspects of human learning across different do-

mains. In the context of decision-making, BMI discovered previously suggested

heuristics and selected between them appropriately. It also made precise predic-

tions about if and when a particular heuristic should be used, which were sub-

sequently confirmed in three new experiments. BMI also captured order effects

across different domains, including associative learning, function learning, and

multi-task learning, without requiring any modification. In the context of rein-

forcement learning, RL3 discovered a spectrum of exploration strategies that re-

sembled individual differences in human exploration, which demonstrated that

presented ideas can also scale beyond supervised learning problems. In sum-

mary, the presented framework offers a domain-general, scalable, and empirically

supported theory of human learning.
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7.1 Limitations

It is also important to discuss what issues BMI and RL3 do not address. First of

all, I do not view them as process models; that is to say, they do not offer sig-

nificant insights with regard to the processes that transform inputs into outputs.

Instead, they focus on a question on the computational level of analysis: how

would an optimal learner that is subject to limited computational resources be-

have in a particular environment? Having said that, I believe that pushing down

these models towards the algorithmic and implementational level will allow for

additional insights into the human mind. A potential path towards this goal is

to make use of biologically plausible model architectures. Recently, there has

been a lot of progress in training spiking neural networks (Maass, 1997, Bellec

et al., 2020, Wunderlich and Pehle, 2020). If these algorithms can be successfully

applied to the meta-learning setting, they would be the ideal candidate for this

purpose.

BMI and RL3 also only implement a specific notation of resource-rationality;

one accounting for how many bits are required to store the learning algorithm.

Presently, they do not account for memory or time constraints during the learn-

ing algorithm’s execution, which are the objects studied in other resource-rational

models (Ortega and Braun, 2013, Zaslavsky et al., 2018, Ho et al., 2020, Gersh-

man, 2020, Sanborn et al., 2010, Vul et al., 2014, Lieder and Griffiths, 2017).

Extending BMI and RL3 to such types of resource-rationality is an interesting

topic for future research. The natural way to do this involves placing informa-

tion processing constraints on network activations in addition to the already ex-

isting constraints on its parameters. Whether the distinction between different
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types of resource constraints is relevant in practice remains to be seen.

Finally, all models presented in this thesis used a particular type of RNN to

implement the learning algorithm. This was a heuristic modeling choice made

out of convenience. For the sake of the resource-rational argument, the function

approximator that optimally solves the trade-off between performance and de-

scription length should have been employed instead. Identifying this function

approximator can – in principle – be part of the meta-learning objective by com-

bining it with methods for automated neural architecture search (Elsken et al.,

2018, Stanley et al., 2019). In this context, it would also be interesting to test

whether architectures found by these methods contain sub-parts that can be

mapped onto different brain areas.

7.2 Future Directions

The idea that people are adapted to a particular environment is a central premise

of the meta-learning framework. The meta-learning models used in this thesis

were adapted to tasks that could be encountered in the subsequent experiment.

However, what we actually want to express is that people are adapted to the en-

vironment they live in, and not to the experiment some crazy psychologist come

up with. Therefore we should ask ourselves: how can we construct meta-learning

distributions that reflect real-world learning problems? I can see several possibil-

ities to approach this question: (1) construct a meta-learning distribution based

on a collection of real-world data-sets, (2) use crowdsourcing services to ask peo-

ple to generate learning problems, or (3) generate learning problems automati-

cally based on some objective. Each of these approaches has its own advantages
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and disadvantages. Future work should investigate if any of them can enrich our

understanding of human learning.

People observe a rich stream of sensory information. Most computational

models of human behavior – including those used in this thesis – abstract away

much of this information and rely on idealized stimuli instead. In part, this is

out of necessity; traditional models do not scale easily to naturalistic environ-

ments. However, the study of naturalistic environments is important because the

“conclusions that are reached when experimenting with pared-down or idealised

stimuli may be different from those reached when considering more complex or

naturalistic data, since the simplicity of the stimuli can stifle potentially impor-

tant emergent phenomena” (Hill et al., 2020). In principle, meta-learning is not

subject to any fundamental scaling limitations. Indeed, it has already been ap-

plied to construct learning algorithms that process raw visual inputs (Santoro

et al., 2016, Finn et al., 2017, Mishra et al., 2017, Gordon et al., 2018, Zintgraf

et al., 2019a). Therefore, one of the primary goals of future work should be to

apply meta-learning to study human behavior in more naturalistic environments.

Finally, there are also practical applications for the models presented in this

thesis. For example, in computational psychiatry (Huys et al., 2016), they could

help us identify which environmental characteristics cause particular psychiatric

symptoms. The acquired insights could then subsequently be used to ask how

the environment needs to be changed to treat these symptoms. The framework

of self-play (Bansal et al., 2017, Silver et al., 2018) offers another possible appli-

cation. The general idea of self-play is to set up multiple instances of an agent,

which are then improved iteratively by pitting them against each other. While

self-play is a powerful tool for obtaining agents that can cooperate or compete
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with each other, it often results in behavior that is unnatural from a human

perspective (Carroll et al., 2019). If we want self-play agents to exhibit more

human-like behavior, they would need to be exposed to human-like agents dur-

ing self-play. The models presented in this thesis could be the first step in this

direction.

7.3 Conclusion

What are the general principles that drive how people learn? In this thesis, I

have set out to answer this question. Towards this end, I have put forward three

principles that I believe to be important; generalization, adaptation, and sim-

plicity. Together, these three principles revealed a lot of structure in what ini-

tially looked like sub-optimal human behavior. However, whether they also form

a minimal set of principles – or if additional principles are needed – can only be

answered by looking at a more extensive set of domains.

I began this thesis with two motivating examples: the hobby gardener who

tries to figure out how to grow vegetables in his garden and someone who at-

tempts to master the game of chess. The hobby gardener is clearly the better

metaphor for the studies presented in this thesis, and arguably also for studies

in cognitive science more generally. In part, this is because traditional compu-

tational models are confined to such a setting. I hope that the ideas presented

here allow us to scale up computational models of human learning, such that one

day they also can be applied to understand how the chess player improves his

game.
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A
Power Analysis

Environments with continuous features can facilitate statistical analysis as fewer
trials are needed to observe expected effects. To verify this hypothesis, we con-
ducted a power analysis for an environment with continuous features and one for
an environment, where features are dichotomized based on their median. Here,
we present results from environments with known feature rankings and T = 10
decisions per task.

In both settings, we computed how many tasks are on average required to dis-
tinguish the single cue heuristic from the ideal observer model, assuming that
decisions are made by the single cue heuristic. In dichotomized environments,
ties between features of two options are likely, and hence we modified the sin-
gle cue heuristic to make decisions based on the first feature that discriminates
between both options.

We assumed that decisions are made by the single cue heuristic and measured
the average support for the single cue heuristic over the ideal observer model on
a single task by computing log-Bayes Factors (Kass and Raftery, 1995) between
both strategies:

logB = Ep(x1:T ,y1:T )

"
TX
t=1

Z
p(ct|xt, w,m = SC) log

p(ct|xt, w,m = SC)

p(ct|xt,w,m = IO)
dct

#

= Ep(x1:T ,y1:T )

"
TX
t=1

KL [p(ct|xt, w,m = SC)||p(ct|xt,w,m = IO)]

#
(A.1)
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Figure A.1: Power analysis for environments with known feature ranking. The plot illustrates how
many tasks are on average required to distinguish the ideal observer model from the single cue
heuristic, assuming that decisions are made by the single cue heuristic. We show results for both
dichotomized environments (dotted) and environments with continuous features (solid).

The expectation over tasks was approximated using 105 samples. Further-
more, we assumed that tasks are sampled independently from each other, mean-
ing that we can multiply logB by the total number of encountered tasks K
to get expected log-Bayes Factors for an experiment with K tasks. Figure A.1
shows this analysis for both continuous and dichotomized environments. We ob-
served that it requires roughly four times more tasks to distinguish the single
cue heuristic from an ideal observer model in environments with dichotomized
features compared to one with continuous features.
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B
Black-Box Variational Inference

Chapters 4 and 5 include models based on black-box variational inference (Ran-
ganath et al., 2014). In both cases, initial priors are set to a standard normal
distribution and variational posterior distributions are parametrized through a
multivariate normal distribution, i.e. q(w) = N (w|µµµt,Σt). The decision-making
models of Chapter 4 adopt a mean field approximation, where posterior covari-
ance matrices are restricted to be diagonal. To ensure positive semi-definite co-
variance matrices we parametrize them with logarithms of their standard devi-
ations. The regression models of Chapter 5 parametrize the covariance matrix
through a diagonal plus low rank factorization (Barber and Bishop, 1998) as de-
scribed in Equation B.1. For all our model simulations we use a rank of r = 1.

Σt = diag (exp(υυυt))
2 + FtF

T
t , Ft ∈ Rd×r (B.1)

Evidence lower bounds (ref. Equations 4.3 and 5.8) are optimized after each
observation using the AmsGrad optimizer (Reddi et al., 2019). Training is
stopped once the objective does not improve anymore over ten steps or after
1000 total gradient steps; the optimization procedure has typically converged
at this point. The KL-divergence term is evaluated in closed-form, whereas we
approximate the expected log-likelihood term through 100 samples and use the
reparametrization trick (Kingma and Welling, 2013) to obtain gradients w.r.t.
the variational parameters. The decision-making models use a learning rate of
0.1, whereas the regression models use a learning rate of 0.05.
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C
Meta-Learning Details

BMI and RL3 are obtained by minimizing Equation 4.16, Equation 5.9 and Equa-
tion 6.12 using the AmsGrad optimizer (Reddi et al., 2019). Learning rates are
set to 3 · 10−4 for the models from Chapter 4 and to 10−3 for the models from
Chapters 5 & 6. Each model is initialized from a pretrained version without re-
source limitations and we increase β linearly to the desired value. We train for
106 iterations with a batch size of 32; at the end of meta-learning the loss func-
tion has converged.

Model architectures for all studies consists of a GRU with a hidden size of 128
units, which is followed by:

• a linear projection to a posterior distribution over probit regression weights
(Chapter 4).

• a linear projection to the mean and log standard deviation of the predic-
tive posterior distribution (Chapter 5).

• a linear projection to the mean of the optimal action-value function (Chap-
ter 6). We construct a distribution over the optimal action-value function
using this mean and a constant standard deviation of 10.

We employ the variational dropout prior in all models and parametrize the en-
coding distribution q(Θ|Λ) through a fully factorized normal distribution (ref.
Section 3.3.3). During meta-learning, the expectation of the log-likelihood term
is approximated through one sample from the encoding distribution q(Θ|Λ), and
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we obtain gradients with respect to Λ using the reparametrization trick (Kingma
and Welling, 2013). During evaluation, the expectation of the log-likelihood
term is approximated through K = 100 samples from the encoding distribution,
and we perform no further updates of meta-parameters.
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D
Bayesian Model Comparison

Bayesian model comparison (Bishop, 2006) provides us with a principled tool
for comparing the evidence of different models. For the most part we perform
separate comparisons for each participant and compute the probability that par-
ticipant i used model m via Bayes’ theorem:

p(m|Di) =
p(Di|m)p(m)

p(Di)
(D.1)

The evidence for the decision-making models from Chapter 4 is given by:

p(Di|m) =
KY
k=1

TY
t=1

p(Di,k,t|m) (D.2)

=
KY
k=1

TY
t=1

p(Ci,k,t = ĉi,k,t|xi,k,t,m) (D.3)

ĉi,k,t denotes the decision made by participant i in task k and trial t and xi,k,t

denotes the corresponding input vector. K refers to the total number of tasks
and T to the number of trials per task.
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The evidence for the exploration models from Chapter 6 is given by:

p(Di|m) =
KY
k=1

TY
t=1

p(Di,k,t|m) (D.4)

=
KY
k=1

TY
t=1

p(Ai,k,t = âi,k,t|m) (D.5)

âi,k,t denotes the action taken by participant i in task k and trial t.

In all our analyses, we assume a uniform prior over models. For some models,
we additionally want to fit model parameters to empirical data. In these cases,
we determine the parameter value that best describes each participant and ap-
proximate the model evidence using the Bayesian information criterion (BIC,
Schwarz et al., 1978):

log p(Di|m) ≈ −1

2
logKT +max

θ
log p(Di|m, θ) (D.6)

Fitted parameters include the learning rate α of neural networks and the reg-
ularization factor β of BMI and RL3. Finding the exact parameter value that
maximize the model evidence for the given models is difficult, and thus we ap-
proximate it using a discrete set of candidate values. These are:

Chapter Model Parameter Values
4 Neural network α {0, 2−8, 2−7, 2−6, 2−5, 2−4, 2−3}
4 BMI β {0, 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1}
6 RL3 log2 β {−13,−12,−11,−10,−9,−8,−7}
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