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Abstract

In this work, we focus on developing the basic theory of coalgebras over the category Top
(the category of topological spaces with continuous maps). We argue that, besides Set,
the category Top is an interesting base category for coalgebras.

In order to provide a proper framework to study coalgebras over Top, we study some
endofunctors on Top, in particular, Vietoris functor V and P-Vietoris functor Vp (where
P is a set of propositional letters) that due to [12] can be considered as the topological
versions of the powerset functor IP and the Kripke functor Pp, respectively. We will famil-
iarize with the notions of extension (up to isomorphism) and lifting (up to isomorphism)
of a Set-endofunctor to Top. These notions were introduced in [9], where the authors
investigated how a finitary functor on Set can be extended or lifted to the categories
Preord and Poset. We prove that a Top-endofunctor F is a lifting of a Set-endofunctor
T (up to isomorphism) if and only if F' preserves monos and epis. Following this, we
give a strategy to lift a special class of the Set-endofunctors to the category Top. As
an application, we obtained a Top-endofunctor T as a lifting of the Set-endofunctor
T := (—)?>-(—) + 1 that helped us to provide some counterexamples required in this
work. Building on the fact that every inverse limit in Set can be considered as a com-
plete ultrametric space and also by showing that each complete ultrametric spaces is an
inverse limit for some inverse system in Set, we give a strategy to extend the power-set
functor P and finite power-set functor P, to CUM* (the category of complete 1-bounded
ultrametric spaces with non-expansive maps).

We define the notion of compact Kripke structures and we prove that Kripke homomor-
phisms preserve compactness. Our definition of compact Kripke structure coincides with
the notion of modally saturated structures introduced in Fine [27]. We prove that the
class of compact Kripke structures has Hennessy-Milner property (i.e., the notion of the
Kripke bisimilarity coincides with the notion of modal equivalence). As a consequence,
we show that in this class of Kripke structures, behavioral equivalence, modal equivalence
and Kripke bisimilarity all coincide.

Next, we discuss some basic definitions and theorems about coalgebras in Cp under
certain conditions on the base category C and C-endofunctor F. These concepts have
already been discussed in articles [31], [33] and [62] for coalgebras on the Set category.
We define the concept of union of M-subcoalgebras and we show that the union of a
family of M-subcoalgebras need not be always an M-subcoalgebra. As one of our main
results, we proved that if the base category C is M-well powered with sums then the
preservations of M-morphisms by a C-endofunctor F' gives rise to the existence of equal-
izers in Cp. In this case, we constructed the equalizers of two morphisms f, g in Cp via
union of a special family of M-subcoalgebras of their domains. Based on the notion of
A-M bisimulation known by Aczel and Mendler in [2], we define a concept of the largest



A-M bisimulation, and by giving an example from [11], we will show that the largest A-M
bisimulation need not always exist. We explain two strategies to find the largest A-M
bisimulation. As an application of the second strategy, we obtain a way to check whether
a C-endofunctor F' weakly preserves pullbacks or not. We briefly generalize the notion
of modal logic for the coalgebras over Top by defining a language for a Top-endofunctor
F via a modal similarity type A for F, that is a set of clopen subsets of F'(2) where
2:={0,1} is a discrete space.

It will be shown that if X is a set and X* is the set of all finite words over X, then in any
category C with object D and product, a terminal coalgebra for the functor D x (—)*
exists, and it is based on D> (X*-fold product of D in C).

Furthermore, we generalize the notion of descriptive structures defined in [L1] by in-
troducing a notion of Vietoris structures. We identify Vietoris frames and models as
coalgebras for the functors V (the Vietoris functor) and Vp (the P-Vietoris functor) on
the category Top, respectively. One can see that each compact Kripke model can be
modified to a Vietoris model. This yields an adjunction between the categories V.S (the
category of Vietoris structure) and CK S (the category of compact Kripke structures).
Moreover, we will prove that the category of Vietoris models has a terminal object. We
study the concept of a Vietoris bisimulation between Vietoris models. We provide some
characterizations of Vietoris homomorphisms and Vietoris bisimulations between Vietoris
models on compact Hausdorff spaces. We will prove that the closure of a Kripke bisimula-
tion between underlying Kripke models of two Vietoris models is a Vietoris bisimulation.
In the end, it will be shown that in the class of Vietoris structures, Vietoris bisimilarity,
behavioral equivalence, modal equivalence, all coincide.



Zusammenfassung

In dieser Arbeit konzentrieren wir uns auf die Entwicklung der grundlegenden Theorie
der Coalgebren iiber der Kategorie Top (topologische Raume und stetige Abbildungen).
Wir argumentieren, dass neben Set die Kategorie T'op eine interessante Basiskategorie
fiir Coalgebren darstellt.

Um einen geeigneten Rahmen fiir das Studium von Coalgebren iiber Top zu bieten, un-
tersuchen wir einige Endofunktoren tiber Top, insbesondere den Vietoris-Funktor V und
den P-Vietoris funktor Vp (wobei P eine Menge von atomaren Aussagen ist), die auf-
grund von [42] als topologische Versionen des Potenzmengenfunktors P bzw. des Kripke
Funktors Pp betrachtet werden kénnen. Durch die Einfiihrung der Begriffe Extension
(bis auf Isomorphismus) und Lifting (bis auf Isomorphismus) von Funktoren zeigen wir
Beziehungen zwischen Set-Endofunktoren und Top-Endofunktoren. Diese Konzepte er-
scheinen bereits im Artikel [9]. Wir schlagen eine Strategie vor, um eine spezielle Klasse
von Set-Endofunktoren auf die Kategorie Top hoch zu ziehen. Als Anwendung erhalten
wir einen Top-Endofunktor T als Lifting des Set-Endofunktors T := (—)?—(—) + 1, mit
dessen Hilfe wir einige fiir diese Arbeit erforderliche Gegenbeispiele erstellen kdnnen. Wir
beweisen, dass ein Top-Endofunktor F' genau dann ein Lifting eines Set-Endofunktors
T (bis auf Isomorphismus) ist, wenn F' Monos und Epis erhélt. Aufbauend auf der Tat-
sache, dass jeder inverse Limes in Set als vollstindiger ultrametrischer Raum betrachtet
werden kann und auch indem gezeigt wird, dass jeder vollsténdige ultrametrische Raum
ein inverser Limes fiir ein bestimmtes inverses System in Set ist, geben wir eine Strate-
gie, um Set-Endofunktoren auf CUM" (die Kategorie der vollstindigen 1-beschrinkten
ultrametrischen Rdume und non-expansive Abbildungen) zu erweitern. Als Beispiel un-
tersuchen wir die Extensionen des Potenzmengenfunktors P und des endlichen Potenz-
mengenfunktors P, auf CUM!.

Um eine Motivation fiir das Studium von Coalgebren iiber der Kategorie Top, insbeson-
dere Vietoris Coalgebren, zu geben, wir definieren den Begriff der kompakten Kripke-
Strukturen. Unsere Definition "der kompakten Kripke-Struktur” stimmt mit der Defi-
nition “der modally saturated Strukturen” in [27] {iberein. Zunéchst beweisen wir, dass
Kripke-Homomorphismen die Kompaktheit erhalten. Wir zeigen, dass die Klasse der
kompakten Kripke-Strukturen die Hennessy-Milner-Eigenschaft hat (d. h. der Begriff
der Kripke-Bisimilaritit stimmt mit dem Begriff der Modal-Aquivalenz iiberein). Es
folgt, dass in dieser Klasse von Kripke-Strukturen Beobachtungs-Aquivalenz, Modal-
Aquivalenz und Kripke-Bisimilaritiit zusammenfallen.

Wir tragen weiter zur Theorie der Coalgebren iiber die Kategorie der topologischen
Riume bei, indem wir einige grundlegende Definitionen, Beispiele und Theoreme fiir
Coalgebren auf eine Basiskategorie C mit dhnlichen Eigenschaften wie die Kategorie
Top untersuchen. Diese Konzepte wurden bereits in den Artikeln [31], [33] und [62]



fiir Coalgebren auf der Kategorie Set erdrtert. Das Konzept der Vereinigung von M-
Untercoalgebren wurde beschrieben und es wurde gezeigt, dass die Vereinigung einer
Familie von M-Untercoalgebren keine M-Untercoalgebra sein muss. Als eines unserer
wichtigsten Ergebnisse in diesem Schritt, beweisen wir, dass, wenn die Basiskategorie
C well-powered mit Summen ist, die Erhaltung von M-Morphismen durch einen C-
Endofunktor F' die Existenz von Equalizern in der Kategorie Cr garantiert. In diesem
Fall konstruierten wir den Equalizer zweier Morphismen f und g in Cg durch Vereinigung
einer speziellen Familie von M-Untercoalgebren ihrer Doménen. Als Beispiel zeigen wir,
dass, wenn wir Top als eine (epi, regular mono)-Kategorie betrachten, die Equalizer in
den Kategorien T'opy und Topy, existieren.

Dariiber hinaus, basiert auf der Definition der A-M Bisimulation von Aczel und Mendler
in [2] definieren wir ein Konzept der grokten A-M Bisimulation. Ein Beispiel aus [11]
zeigt, dass die grofste A-M Bisimulation nicht immer existieren muss. Wir erkldren zwei
Strategien, um die grofite A-M Bisimulation zu finden. Als Anwendung der zweiten
Strategie erhalten wir eine Mdoglichkeit zu tiberpriifen, ob ein C-Endofunktor F' Pull-
backs schwach erhélt oder nicht. Wir verallgemeiner kurz den Begriff der Modallogik fiir
Coalgebren tiber Top, indem wir eine Sprache fiir einen Top-Endofunktor F' iiber einen
modalen Ahnlichkeitstyp A fiir F' definieren, der eine abgeschlossene offene Teilmenge
von F(2) ist, wobei 2 := {0, 1} als diskreter Raum aufgefasst wird.

Als néchstes diskutieren wir die Existenz und den Aufbau von terminalen Objekten in
den Kategorien der Coalgebren fiir die C-Endofunktoren D x (—) (Black-boxes) und
D x (—)* (automata) wobei C eine Kategorie mit Objekt D und Produkten ist.
Auferdem verallgemeinern wir den Begriff deskriptiver Strukturen in Venema et. al. [11]
durch Einfithrung eines Konzepts von Vietoris-Strukturen. Wir présentieren Vietoris
Frames und Modelle als Coalgebren fiir die Top-Endounktoren V bzw. Vp. Man sieht,
dass jedes kompakte Kripke-Modell zu einem Vietoris-Modell umgebaut werden kann.
Dies ergibt eine Adjunction zwischen den Kategorien V'S (Kategorie der Vietoris Struk-
turen) und CK S (Kategorie der kompakten Kripke-Strukturen). Dariiber hinaus weisen
wir nach, dass die Kategorie der Vietoris-Modellen ein Terminalobjekt hat. Wir unter-
suchen das Konzept der Vietoris-Bisimulation zwischen Vietoris-Modellen, das erstmals
in Venema et. al. [11] zwischen deskriptiven Modellen vorgestellt wurde. Wir geben
einige Charakterisierungen von Vietoris-Homomorphismen und Vietoris-Bisimulationen
zwischen Vietoris-Modellen auf kompakten Hausdorff-Rdumen. Wir sehen, dass die
abgeschlossene Hiille einer Kripke-Bisimulation zwischen den zugrunde liegenden Kripke-
Modellen zweier Vietoris-Modellen eine Vietoris-Bisimulation ist. Als eine Konsequenz
zeigen wir, dass die grofite Vietoris-Bisimulation (in Bezug auf die Einbeziehung von Teil-
mengen) zwischen zwei deskriptiven Modellen existiert und und die abgeschlossene Hiille
der grohten Kripke-Bisimulation zwischen den zugrunde liegenden Kripke-Modellen ist.
Am Ende sehen wir, dass in der Klasse der Vietoris-Strukturen Vietoris-Bisimilaritét,
Beobachtungs- Aquivalenz und Modal-Aquivalenz zusammenfallen.
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Introduction

In the last years, coalgebras and their applications to computer science have received
much attention. One of the reasons is that the theory of coalgebras provides a general
framework to study and develop the general theory of transition systems, bisimulations,
modal logics, etc, see [2,30,31,38,45,46,55,57,62]. The research on the coalgebraic foun-
dation of Kripke structures (i.e., Kripke frames and models), where the powerset functor
has a central role, are evident examples for this claim, see [38,62]. The relation between
modal logic and coalgebras is rather tight. One can generalize the concept of classical
modal logic defined in terms of Kripke structures to arbitrary coalgebras by considering
coalgebras as models for the generalized logic, see [15,416]. The work on modal logics and
coalgebras started with Barwise and Moss, see [8]. Then Moss [55] developed coalgebraic
logic which can be understood as a generalization of modal logic to a large class of coal-
gebras over Set.

Formally, every coalgebra is based on a carrier which itself is an object in the base cat-
egory. In most of the literature on coalgebras, the category Set has been considered as
the base category. One of the aims of this work is to show that, besides Set, the category
Top is also an interesting category as a base category. In this work we try to give a
number of reasons to believe that coalgebras on Top are of interest.

The starting observation is that the category Top like the category Set has many inter-
esting properties (see Adéamek et. al. [3]), for example it is complete and cocomplete.
Moreover, the category Top is an (€, M)—category and it is M-well powered (see sec-
tion 4.17 in [3]). Moreover, there are very interesting categories that are subcategories
and full subcategories of Top. For instance, Stone (i.e. the category of Stone spaces
with continuous maps) and CUM?! (i.e. the category of complete 1-bounded ultrametric
spaces with non-expansive maps) are subcategories of Top. These advantages of Top
motivate us to look for functors on different subcategories of T'op, amongst them CUM!.

The point that descriptive structures (i.e., descriptive frames and models) can be seen
as coalgebras of the Vietoris functor over topological spaces is the second reason for be-
lieving that coalgebras over topological spaces are of interest, see Venema et. al. [11].
Descriptive structures are formed by Kripke structures, in the sense that a descriptive
frame is a pair (X, R) where X is a Stone space and R is a binary relation on X such
that for each x € X the set {y € X | = Ry} is compact and for every clopen subset
UC X theset {x € X | Jy € U.x Ry} is a clopen subset of X; a descriptive model
arises by adding a binary relation =C X x P (where P is a set of propositional letters)
that interprets the proposition letters as clopen subset of X (i.e., for each p € P the set
{r € X | z F p} is a clopen subset of X). These notions were introduced for the first
time by Esaki in [24]. He found that there is a connection between the Vietoris topology
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Introduction

and modal logic and presented his definition of descriptive structures by using this con-
nection. Our presentation in this chapter is based on [11]|, where Venema, Fontaine and
Bezhanishvili proved that descriptive frames and models are, respectively, coalgebras for
the functors V (Vietoris functor) and Vp (P-Vietoris functor) over the category Stone.
This connection of descriptive structures with coalgebras over topological spaces encour-
ages us to study other topological structures with the same property, amongst them
topological automata (see example 7.1.5) and Vietoris structures (see definition 9.0.2).
These examples provide a motivation for us to verify coalgebras over the base categories
different from Set (see part III).

In order to give another motivation to study coalgebras over Top, in particular Vietoris
coalgebras, we should again refer to the results in [I1]. In this article, the authors in-
troduced a new notion of bisimulation between two descriptive models called Vietoris
bisimulation. They proved that Vietoris bisimilarity coincides with Kripke bisimilarity,
with behavioral equivalence and with modal equivalence, but not with A-M bisimilarity.
To find more motivations to study coalgebras over topological spaces, see Kupke et.
al. [17], Hofmann et. al. [12] and Viglizzo [70].

We finish this introduction with an overview of the chapters:

Chapter 1 is allocated to study the basic concepts about topological spaces, nets, metric
and ultrametric spaces which will be used in this work.

In chapter 2, we introduce the most fundamental concepts of category theory, as well as
some lemmas, theorems and examples that we will find useful in the remainder of this
work. We will see that the category Top, like the category Set, has many interesting
properties (see [3]). For example it is complete and cocomplete, meaning that it has all
small limits and small colimits (see example 2.18.5 and remark 2.18.6). Moreover, one
can see that the category Top is an (£, M)—category (see example 2.11.6). It is also
an M-well powered category, i.e. the collection of M- subobjects is a set (see section
4.17 in [3]). One of the properties of T'op is that there are interesting categories that
are subcategory and full subcategory of Top (see definition 2.1.6). For instance, Stone
and CUM! are subcategories of Top (see example 2.1.7). Aside from these advantages
of Top, there are some issues that create some problems to work with Top as a base
category. For instance, T'op is not cartesian closed (see section 2.14).

In chapter 3, we study some endofunctors on Top, in particular, the Vietoris functor
V and the P-Vietoris functor Vp (where P is a set of propositional letters) that can be
considered as the topological versions of the powerset functor P and the Kripke functor
Pp, respectively. In order to compare Top-endofunctors to Set-endofunctors, we check
some properties of the endofunctors on Top, amongst them monos and regular monos-
preservation, and also epis and regular epis-preservation.

In chapter 4, we try to find an answer to the question what are the relationships be-
tween Set-endofunctors and Top-endofunctors. To find an answer for this question, we

14



will familiarize with the notions of extension (up to isomorphism) and lifting (up to iso-
morphism) of functors. In lemma 4.1.1, we prove that a Top-endofunctor F' is a lifting
of a Set-endofunctor T up to isomorphism if and only if the endofunctor F' preserves
monos and epis. We give a strategy to lift a special class of the Set-endofunctors to the
category Top.

In chapter 5, Building on the fact that every inverse limit in Sef can be considered
as a complete ultrametric space and also by showing that each complete ultrametric

spaces is an inverse limit for some inverse system in Set, we give a strategy to extend
Set-endofunctors to CUM?*,

We have allocated chapter 6 to the notion of Kripke structures (see also Rutten [62])
which is one of the main motivations to study the notion of coalgebras and modal logic.
We study the concept of compact Kripke structures and we will prove that Kripke ho-
momorphisms preserve compactness. It will be shown that the class of compact Kripke
structures has the Hennessy-Milner property (i.e., the notion of Kripke bisimilarity coin-
cides with the notion of modal equivalence). As a conclusion of this chapter we find that
in the class of compact Kripke structures, the notions of behavioral equivalence, modal
equivalence and Kripke bisimilarity all coincide.

In chapter 7, we focus on developing the basic theory of coalgebras. We discuss some
basic definitions and theorems about coalgebras for the C-endofunctor F' under certain
conditions on the base category C and C-endofunctor F'. Throughout this chapter, our
base category C is an (£, M)-category such that £ C epis and M C monos. We intro-
duce the notion of topological automata and we will show that these kinds of objects can
be presented as coalgebras for the T'op-endofunctor D x Homqe, (2, —) (product of the
constant functor D and the covariant functor Homqge,(X,—)). By defining the notion
of homomorphism between coalgebras, it is immediately concluded that the collection of
coalgebras for the C-endofunctor F' and their homomorphisms forms a category, denoted
by Cp. After proving some theorems about M-subcoalgebras and factorization systems
of Cp (see theorems 7.1.14 and 7.2.5), we define the concept of union of M-subcoalgebras
and in example 7.3.8, one can see that the union of a family of M-subcoalgebras need not
be always an M-subcoalgebra. We prove that if the base category C is an M-well pow-
ered category with coproducts then the preservation of M-morphisms by C-endofunctor
F gives rise to the existence of equalizers in Cr (see theorem 7.3.6). We study the notion
of A-M bisimulation defined by Aczel and Mendler [2], and in theorem 7.4.6 we will prove
that a C-morphism f : A} — Ay is a homomorphism between coalgebras A; = (A1, )
and Az = (A2, a9) in Cp iff the M-graph of f (see definition 7.4.5) is an A-M bisimu-
lation between A; and As. After defining the notion of supremum of a family of A-M
bisimulations, by giving an example from [11], we will see that the supremum of a fam-
ily of A-M bisimulations is not always an A-M bisimulation (see example 7.4.12). As a
consequence, the largest A-M bisimulation need not exist. In theorems 7.4.13 and 7.4.15,
we present two strategies to obtain the largest A-M bisimulation and the second one
provides us with a way to check whether a C-endofunctor F' weakly preserves pullbacks
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or not (see remark 7.4.17). Based on some assumptions for the base categories C and
C’, C-endofunctor F' and C’-endofunctor G, in section 7.4.3 we discuss the connection
between A-M bisimulations in Cp with these structures in Cf,. In section 7.5, we briefly
generalize the notion of modal logic for coalgebras over Top. Next, in chapter 8, we dis-
cuss the existence and the construction of terminal objects in the categories of coalgebras
for the C-endofunctors D x (—) (black-boxes) and D x (—)* (automata) where C is a
category with object D and products.

Chapter 9 of this work introduces a concept of Vietoris structure as a generalization
of the notion of descriptive structures defined in [11]. We prove that Vietoris frames and
models are coalgebras for the functors V (Vietoris functor) and Vp (P-Vietoris functor)
on the category Top, respectively. Besides, we define the concept of Vietoris homomor-
phisms. The collection of all Vietoris structures together with Vietoris homomorphisms
forms a category which we shall call V.S. In theorem 9.3.7, we will show that there is
an adjunction between the categories V.S and CKS (the category of compact Kripke
structures).

In chapter 10, we will prove that the category of Vietoris models has a terminal ob-
ject (see lemma 10.6.1).

In chapter 11, we generalize the notion of Vietoris bisimulation for Vietoris models. In
this chapter, we will show that in the category of Vietoris models over compact Hausdorff
spaces (i.e., the category of all Vietoris models X = (X, Ry, Ex) in which X is compact
Hausdorff) the composition of two Vietoris bisimulations and the diagonal Ax are Vi-
etoris bisimulations (see lemmas 11.2.5 and 11.2.2 and their corollaries). Moreover, we
will prove that in the category of Vietoris models over compact Hausdorff spaces a map
f X — Y is a Vietoris homomorphism between Vietoris models X = (X, Rx, Fx)
and Y = (Y, Ry, =y) if and only if its graph is a Vietoris bisimulation between X and
Y (see theorem 11.3.1). Next, we will give a characterization of Vietoris bisimulations
between Vietoris models over compact Hausdorff spaces (see theorem 11.3.2, Canonical
Vietoris bisimulation Theorem). In section 11.4, we will prove that the closure of a
Kripke bisimulation between underlying Kripke models of two Vietoris models is a Vi-
etoris bisimulation which is the main result of chapter 11. As a corollary we show that
the largest Vietoris bisimulation between two Vietoris models with respect to the inclu-
sion of subsets exists and it is the largest Kripke bisimulation between the underlying
Kripke models. In the end, we will see that the Vietoris structures over Top with the
notion of Vietoris bisimulation provide a complete semantic for modal logic, in the sense
that Vietoris bisimilarity, behavioral equivalence, modal equivalence, all coincide.
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1. General topology

Before starting the concepts related to the category of topological spaces, we first recall
some basic notions about topology, topological spaces and metric spaces which can be
found in Kelley [19], Munkres [56]. Our main references to study the basic notions of
ultrametric spaces are Crampe and Ribenboim [21,22] and Ribenboim [59].

First, we should define some auxiliary notations used in this work. Formally, for a map
f:X — Y asubset O C X and a subset V' C Y we define ker f, f(O), im f and
FUV) as

ker f = {(z,2) € X x X | f(z) = f(2")},
fO) = {yeY | IO f(z) =y},
imf = f(X),

V) = {zeX | f(z)eV})

If X and Y are sets, we define X — Y as
X-Y = {zeX |x¢Y}

For every subset A C X, the set X — A is called the complement of A in X (or, the
complement of A, if it is clear from the context). The complement of a set A is usually
denoted by A°.

1.1. Topological spaces

Definition 1.1.1. A topological space is a pair (X, 7) where X is a set (called the
underlying set) and 7 a collection of subsets of X satisfying the following axioms:

1) the empty set and X are in 7.

2) the union of any collection of sets in 7 is also in 7 (i.e., 7 is closed under
arbitrary unions), and

3) finite intersection of sets in 7 is also in 7 (i.e., 7 is closed under finite
intersections).

The collection 7 is called the topology on X and its elements are named open subsets
of X. The complements of the open sets are called closed.
In this work, we usually denote a topological space (X, 7) simply by its underlying set.
A subset of X may be neither closed nor open. A subset that is both closed and open is
called a clopen subset.
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1. General topology

A given set can be equipped with many different topologies. As an example, any set X
can be equipped with the discrete topology in which every subset is open. In this case,
the topological space X is called a discrete space. We denote it by Xp. Also, any set X
can be provided by the trivial topology (or indiscrete topology) in which the empty
set and the whole space are the only open subsets. In this case, the topological space X
is called a trivial space (or an indiscrete space) and we denote it by X7.

If 7 and § are two topologies on a set X such that 7 C 4, then 7 is said to be smaller
(or coarser) topology than ¢, and § is said to be larger (or finer) topology than .
Notice that for every set X, the discrete topology is the largest (or finest) topology
which can be defined on X. The smallest (or coarsest) topology on X is the indiscrete
topology.

Definition 1.1.2. Given a topological space X, a subset A C X and an element z €A,
the element z is said to be an interior point of the set A and the subset A is called a
neighborhood of z, if there exists an open subset U of X such that x € U C A. In the
case that A is an open subset of X, we say that A is an open neighborhood of z. We
denote by 91(x), the set of all neighborhoods of the element x € X. Also, we denote by
No(z) the set of all open neighborhoods of the element x € X.

The interior of a subset A C X is denoted by A° and is defined to be the union of all
open sets contained in A. Due to the definition, if A and B are subsets of X with A C B,
then A° C B°. It is well-known that a subset A is open in X if and only if A° = A.

A point x € X is called a limit point of a subset A C X, if every neighborhood of z
contains at least one point of A different from x itself. A space X is a discrete space if
and only if no subset of X has a limit point.

The closure of a subset A C X consists of all elements in A together with all limit
points of A. The closure of a subset A C X is denoted by A . If A and B are subsets of
X with A C B, then A C B. It is well-known that a subset A is closed in X if and only
if A= A. A subset A of a topological space X is called dense in X iff A = X.

1.2. Continuous functions

A function f: X — Y between two topological spaces is called continuous if for every
open subset V C Y the inverse image f~1(V) = {x € X | f(z) € V} is an open subset
of X. This is equivalent to the condition that the preimages of the closed subsets in Y
are closed in X.

Example 1.2.1. ( [19], chapter 3) Every function from a topological space to an indis-
crete space is continuous. Also, each function from a discrete space to an arbitrary space
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1.2. Continuous functions

is continuous. The only continuous functions from an indiscrete space to a discrete space
are constant functions.

Lemma 1.2.2. ( [50], chapter 2, section 18) A function f : X — Y is continuous if
and only if f(A) C f(A) for each subset A C X.

Proof. Let f: X — Y be continuous and A be an arbitrary subset of X. Since f(A) is
a closed subset of Y, we conclude that f=!(f(A)) is a closed subset of X (because f is
continuous). Since f(A) C f(A), we have A C f~1(f(A)). Consequently, A C f~1(f(A))
(because f~1(f(A)) is closed). Hence f(A) C f(A). Conversely, let C C Y be a closed
subset of Y. We need to show that f~!(C) is a closed subset of X. Consider A := f~1(C).
Then f(A) C C. So f(A) C C C C. Therefore, f(A) C C (because f(A) C f(A)).
Hence, we have A C f~1(C) = A. Then A = A and consequently A = f~1(C) is a closed
subset of X. O

Definition 1.2.3. (Dense function) A continuous function f : X — Y is called a
dense if and only if 4m f is a dense subset of Y (i.e f(X) =Y.

Lemma 1.24. If f: X — Y and g: Y — Z are dense functions, then go f is also a
dense function.

Proof. Tt suffices to show that (go f)(X) = Z. We know that (go f)(X) C Z. On the
other hand, we have

(g0 f)(X) = 9(f(X))

(f(X))
lemm% 1.2.2 (j

f(X))
(Y)

Q

Q

f is a dense function

Q

g is a dense function

N

Definition 1.2.5. (Open and closed function) A function f : X — Y between

topological spaces is called open (resp. closed) if given any open (resp. closed) subset
U C X, then f(U) is an open (resp. a closed) subset of Y.
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1. General topology

Definition 1.2.6. (homeomorphism) A function f: X — Y between two topolog-
ical spaces is called a homeomorphism if it is a bijective, continuous and open map.
Alternatively, the function f is called a homeomorphism if f is bijective and continuous
and its inverse is also continuous. In this case, X and Y are said homeomorphic spaces
and we write X 2 Y.

1.3. Base and subbase for a topology

Base for a topology

Let (X, 7) be a topological space. A base B for the topology 7 is a collection of open
sets in 7 such that:

e every open set in 7 can be written as a union of elements of B.

We say that the base B generates the topology 7. Many topologies are most easily de-
fined in terms of a base which generates them.

Example 1.3.1. ( [19], chapter 1) Here we introduce some well-known examples.

1. Single element sets are a base for the discrete topology.

2. The collection of all open intervals of the form (a,b) (where a, b € R) is a base for
the standard topology on R.

A base is not unique. Many bases, even of different sizes, may generate the same
topology. For example, the collection of open intervals with rational endpoints is a base
for the standard topology on the real numbers R. On the other hand, the set of open
intervals with irrational-endpoints is also a base for the standard topology on R. But
these two sets are completely disjoint and both properly contained in the base of all open
intervals.

Subbase for topology

Let (X, 7) be a topological space. A subbase B for the topology 7 is a sub-collection of T
such that every open set in 7 can be written as a union of finite intersections of elements
in B. We say that 7 is generated by B.

Example 1.3.2. ( [19], chapter 1) The set

{(—o0,r) | r e R} J{(r, +o0) | r € R}

is a subbase for the standard topology on R.
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1.4. Initial and Final topology

Subbases are useful, because many properties of topologies can be reduced to statements
about a subbase generating that topology, remark 1.3.3 and lemma 1.3.4 are good evi-
dence for this claim.

Remark 1.3.3. ( [56], chapter 2, section 18) To check the continuity of a function, it
is enough to verify the condition of continuity for the open sets in the subbase of the
topology on the codomain. More clearly, let (X, 7x) and (Y, 7y) be topological spaces,
By a subbase for 7y, and f : X — Y a map. Then f is continuous if and only if for
each V € By the set f~1(V) is an open subset of X. To see this, notice that every open
set in 7y can be written as an union of finite intersections of elements in By. Now, we
just need to use the following properties of the functions:

i) = )N fH (k) (1.3.1)
Uty = r(Uw) (1.3.2)
el el

where {V;};cs is a family of subsets of Y.

Lemma 1.3.4. Given topological spaces (X, 7x) and (Y, 7y ), let Bx and By be subbases
for the topologies Tx and Ty, respectively. If f : X — Y s a continuous function
satisfying the following statement,

VO € Bx.3V € By.O = f~4(V),

then
VO € tx.3V e 1y. O = fY(V).

Proof. Let O C X be an arbitrary open subset of X. Then by the definition of subbase

O = U (N Sij) where S;; € Bx and J; is a finite set (i.e., | J; [< Ro, where Xy is the
i€l jeJd;

smallest infinite cardinal) for each i € I. By assumption for each i € I and j € J; there is

an element U;; € By such that S;; = f~}(U;;). Now consider V := |J( () U;;). Clearly
el ]€J7

V is an open subset of Y. According to equations 1.3.1 and 1.3.2 in the previous remark,

we have O = f=1(V). O

1.4. Initial and Final topology

Initial topology

Suppose {fi : X — Y;}ier is a source! in which X is a set and {(Y;,7y;)}ies is an

indexed family of topological spaces. The initial topology on X generated by the source

' A source is a family of morphisms with a common domain. A 2-source is a source consisting of two
morphisms.
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1. General topology

{fi}ier is the smallest topology on X for which f; : X — Y] is continuous for each i € I.
A subbase for the initial topology may be described as follows,

B={f"U) | i€l U €y} (1.4.1)

Remark 1.4.1. Given a set X and a topological space (Y,7y). If f: X — Y is a map,
then due to equations 1.3.1 and 1.3.2 the initial topology on X generated by f is just

{71 U) | Uemn}

Example 1.4.2. (Subspace topology) ( [76], chapter 2, section 16) The subspace
topology is the initial topology on a subset with respect to the inclusion map. More
exactly, given a topological space (X, 7x), a subset S C X and the inclusion map ¢ :
S — X (i.e., t(x) := x for each € S). Then the open sets in the subspace topology
on S are precisely the ones of the form +~!(U) where U changes over open sets in Ty. It
means the set

s ={UNS | Uerx}. (1.4.2)

is the subspace topology on S. We call the topological space (S, 7s) a subspace of the
topological space (X, 7x). Notice that the inclusion map ¢ from the subspace (S, 7g) to
the topological space (X, 7x) is a continuous map called a topological embedding (or
subspace inclusion).

A closed embedding is a topological embedding ¢ : S — X such that its image (i.e., S)
is a closed subset of X.

Remark 1.4.3. Clearly, if f: X — Y and g: Y — Z are topological embedding, then
go f is also a topological embedding (to see this, notice that

UNY)NX=Un{¥YNX)=UNX

for every open subset U C 7).

We give the following lemma without proof:

Lemma 1.4.4. ( [50], chapter 2, section 17) If (S,Ts) is a subspace of the topological
space (X, Tx), then C C S is a closed subset of S iff there is a closed subset F' of X such
that C =SNF.

As a corollary of the previous lemma we can say:
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1.4. Initial and Final topology

Corollary 1.4.5. If f: X — Y and g: Y — Z are closed embeddings, then go f is
also a closed embedding.

Example 1.4.6. (Product topology) ( [56], chapter 2, section 19) Let {(X;,7x,) }ier
be an indexed family of topological spaces. The product topology is the initial topology
on the set X := [[X; (i.e, the cartesian product of the underlying sets X;) generated
el
by the source of the projection maps {m; : X — X, };e;. The product topology on X is
the smallest topology on X such that for each ¢ € I the projection map m; : X — X;
is continuous. By 1.4.1, the set {m; (U;) | i € I, U; € Tx,} is a subbase for the product
topology on X. Then, the open sets in the product topology on X are unions (finite or

infinite) of sets of the form []U; where each U; is open in X; and U; # X; for only finitely
i€l

many ¢ € I. In particular, for a finite products of topological spaces (i.e., | I |< Ng where

Ng is the smallest infinite cardinal), the set

B = {HU, | U; € Tx, for each i € I'}
el

is a base for the product topology on X.

Final topology

The dual concept of the initial topology is final topology. Suppose {f; : X; — Y }icr is
a sink 2 in which Y is a set and {(X;, Tx,)}ies a family of topological spaces. The final
topology 7 on Y induced by the sink {f;}ics is the largest topology on Y such that for
each ¢ € I the map f; : X; — Y is continuous. Alternatively, the final topology on Y
can be described as follows,

r={GCY | Viel f7}G) € x,}. (1.4.3)

(Clearly, () and X are in 7. By equations 1.3.1 and 1.3.2, the set 7 is closed under finite
intersections and arbitrary unions. This means the set 7 mentioned in equation 1.4.3 is
a topology on Y. Also, due to equation 1.4.3, it is obvious that for each i € I the map
fi  X; — Y is continuous. To see that 7 is the largest topology by which f; : X; — Y
is a continuous map (for each ¢ € I), assume § is another topology on Y such that for
each 7 € I the map f; : X; — Y is continuous. So for each subset O C Y such that
O € § we have fi_l(O) € 7x,, for every ¢ € I. Therefore by 1.4.3, we conclude that
O € 7. Hence, § C 7).

2 A sink is a family of morphisms with a common codomain. A 2-sink is a sink consists of two morphisms.
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1. General topology

Example 1.4.7. ( [50], chapter 2, section 22) If (X, 7) is a topological space, Y a set and
f X — Y a surjective map, then the final topology on Y is called quotient topology
on Y. Explicitly, we can define the quotient topology on Y induced by f (In symbol:Qy)
as the collection of all subsets of Y with an open preimage under the surjective map f.
So, @ can be described as follows

Qr={GCY | [H(G) e} (1.4.4)

In this case the map f with the quotient topology on Y induced by f is a continuous
map called quotient map.

Remark 1.48. If f: X — Y and g : Y — Z are quotient maps, then go f is also a
quotient map. To see this, note that for each subset U C Z,

g is a quotient map
<~

Y(U) is open in Y

U isopenin Z 'n
f~ (g~ 1(U)) is open in X.

f is a quotient map
<~

By considering the definition of Q) in example 1.4.7, we have the following lemma:

Lemma 1.4.9. Let (X, 7) be a topological space, Y a set and f : X — Y a surjective
map. Then Qg = {f(U) | U € X, f7(f(U)) = U}.

Proof. Let U C X be an open subset of X such that f~!(f(U)) = U. By the definition
of Q¢ in equation 1.4.4, we conclude that f(U) € Q. To prove the other direction of this
equality, let G C Y be a subset of Y such that G € Qf. Then f ~1(@) is an open subset
of X. Consider U := f~!(G). Since f is surjective, we have f(U) = f(f~}G)) = G.
Now, it suffices to show that f=1(f(U)) = U. Notice that

FHFW) = fFH(FHG) = F7HG) =T

1.5. Hausdorff spaces

Definition 1.5.1. (Hausdorff space) A topological space X is called a Hausdorff
space (in symbol: T5) if for every two elements z, y € X with x # y, there are open
neighborhoods U € Mp(x) and V' € Np(y) such that U and V are disjoint (i.e., UNV =
0).
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1.5. Hausdorff spaces

Example 1.5.2. The set of real numbers R with the standard topology is a Hausdorff
space. Every discrete space is a Hausdorff space.

Lemma 1.5.3. Given a topological space Y. The following statements are equivalent:

1. Y is a Hausdorff space.

2. For each continuous function f: X — Y, the graph of f, i.e. the set

G(f) = Az, f(z)) | = € X}

is a closed subset of the product space X x Y (i.e., X x Y carries the product
topology).

3. G(idy) (where idy is the identity map on Y') is a closed subset of the product space
Y xY.

Proof. Let Y be a fixed topological space.

(1)=(2): Let Y be Hausdorff and f : X — Y continuous. Given (x,y) ¢ G(f), we
must find an open neighborhood of (z,y) disjoint with G(f). Since Y is Hausdorff, we
find U € No(f(x)) and V € No(y) with UNV = (). Since f is continuous f~H(U) x V is
an open set in X x Y and (x,y) € f~1(U) x V. For each a € f~1(U) we have f(a) € U,
so f(a) ¢ V, which shows that (f~5(U) x V)N G(f) = 0.

(2)=-(3): This is trivial.

(3)=(1): Given = # y then (x,y) ¢ G(idy), thus there is a basic open set U x V with
(z,y) e U xVand (Ux V)NG(idy) =0. Hence z € U,y € V and UNV = () (see [50],
page 101, exercise 13). O

Remark 1.5.4. Notice that the condition "being Hausdorff” for the space Y plays a key
role to prove the implication (1)=-(2) in the previous lemma. By giving an example, we
make this issue more clear. Consider the set R (the set of real numbers) with the trivial
topology®. The product topology on R x R is trivial topology too. It is clear that the
identity function f: R — R with f(z) := x is a continuous function whereas its graph,
ie. G(f) ={(z,z) | x € R} is not closed in the trivial space R x R (see also [25]).

Corollary 1.5.5. A topological space X is a Hausdorff space iff the diagonal of X, i.e.
the set Ax = {(z,z) | x € X} is closed in X x X.

Proof. Notice that Ax = G(idx) for each topological space X. Then by 1.5.3, X is
Hausdorff iff A x is closed. O

3In the trivial topology the only open subsets are ) and R. Consequently the only closed subsets are (}
and R.
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1. General topology

1.6. Compact and locally compact spaces

Definition 1.6.1. (Compact set) A subset K of a topological space X is called compact,
if for every collection A = {Uy }acr of the open subsets of X such that

K c (JUa
acl

there is a finite subset J of I such that

K C U U,.
aeJ

If in definition 1.6.1, the subset K is replaced by the whole space X and the inclusion
symbol is changed to the equality then the topological space X is called compact.

Example. ( [56], chapter 3, section 26) According to definition 1.6.1,
e every finite subset of a topological space is compact,
e 3 subset of a discrete space is compact iff it is finite, and

e 3 discrete space is a compact space if and only if it is finite.

Example 1.6.2. ( [56], chapter 3, section 26) The set of real numbers, i.e. R with the
standard topology is not compact. The open covering

A={(n,n+2) | ne€Z}

contains no finite subcollection covering R.

Example 1.6.3. ( [56], chapter 3, section 27) Consider the set of real numbers R with
the standard topology. Then the closed interval [a, b] in R is compact.

Let X be a set and A = {A4;};cr be a family of subsets of X indexed by an arbitrary set
I. We say that the family A has the finite intersection property (in short: F.I.P) if
for every finite subset J C I, the set () A; is non-empty. The following theorem shows
i€J

the connection between this notion and the concept of compactness.

Theorem 1.6.4. ( [50], chapter 3, section 26) A topological space X is compact if and
only if each family of the closed subsets of X which has the finite intersection property
has a non-empty intersection.
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1.6. Compact and locally compact spaces

Proof. It A = {A;}ier is a family of subsets of a topological space X, then according

to De Morgan’s laws! (|JA4;)¢ = [ A¢. Hence A is a cover of X iff the intersection of
i€l icl

the complements of members of A is empty. The space X is compact iff each family of

open sets such that no finite subfamily of it covers X, fails to be a cover, and this is true

iff each family of closed sets satisfying the finite intersection property has a non-empty

intersection.

O]

The following remark has been proven as a theorem in [56], (see chapter 3, section 26,
theorem 26.5.).

Remark 1.6.5. The Compactness is a topological property. It means, if f: X — Y isa
continuous map then compactness of X results in the compactness of f(X).

A compact Hausdorff space is a topological space that is compact and Hausdorff.
A Stone space is a compact Hausdorff space whose topology has a basis of clopen sets.

All parts of the following theorem have been proven in section 26 of chapter 3 in [56] (see
theorems 26.2. and 26.3.).

Theorem 1.6.6. ( [70], chapter 3, section 26)

1. Every closed subset of a compact space is compact.
2. Each compact subset of a Hausdorff space is closed.

3. In a compact Hausdorff space, closed subsets coincide with compact ones.

Lemma 1.6.7. Let f : X — Y be a continuous map from a compact space X to a
Hausdorff space Y. Then f is closed (i.e., if C C X is a closed subset then f(C) is a
closed subset of Y ).

Proof. Suppose C' C X is a closed subset. Since X is compact, C' is compact too (by
part (1) in theorem 1.6.6). Then f(C) is a compact subset of Y (by remark 1.6.5). As Y
is Hausdorff, each compact subset of Y is closed (by part (2) in theorem 1.6.6). So f(C)
is a closed subset of Y. O

“De Morgan’s laws: if A = {A;}icr is a family of subsets of a set X, then () A;)° = [JA§ and
i€l i€l
(U4 = NA7

iel i€l
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1. General topology

Recall that by lemma 1.5.3, if Y is Hausdorff then for each continuous map f: X — Y
the graph of f (i.e., G(f)) is a closed subset of X x Y. The following theorem known
as “the closed graph theorem in topology” establishes the converse when Y is a compact
space (see [17]). This theorem can be also found in [56] (see [56], page 171, exercise 8).

Theorem 1.6.8. (The closed graph theorem in topology) Let f : X — Y be a
map between topological spaces X and 'Y and let Y be compact. If G(f) (the graph of f)
s a closed subset of X XY, then [ is continuous.

Proof. Let C be an arbitrary closed subset of Y. To prove that f~1(C) is a closed subset
of X, it suffices to show that for each a € (f~1(C))¢, there is an open neighborhood
U € N(a) such that U N f71(C) = 0. Let a be a fixed element in (f~1(C))°. Then
f(a) ¢ C. Hence (a,c) ¢ G(f) for each ¢ € C. Then for each ¢ € C, there is an open
neighborhood U, x V. €€ N((a,c)) such that (U. x V.) N G(f) = 0 (because G(f) is

closed). Notice that C' C |J V¢, so {V.}eec is a collection of the open subsets of YV
ceC
covering C. Since Y is a compact space, C' is compact (by part (1) of theorem 1.6.6).

Then there is a finite subset Cy C C such that C C |J V.. Consider U := ()] U,. Notice
ceCy ceCo

that a € U and U is open (since Cj is finite). Consequently, U is an open neighborhood

of a. It remains to show that U has an empty intersection with f~!(C). We show this

by contradiction. Suppose there exists an element € U N f~%(C). Then f(x) € C.

So there is an element ¢y € Cp such that f(z) € Vg, (because C C |J V;). Therefore,
ceCyp
(x, f(x)) € Ugy X Vo, (since x € () Ue). Then (x, f(x)) € (Ugy X Vi) NG(f). This gives
ceCy
a contradiction (because (U, x V) N G(f) = 0 for each ¢ € C).

O

Remark 1.6.9. One can see that the condition “compactness” for the space Y play a key
role to prove the previous theorem. By giving an example, we make this issue more clear.
Consider the set of the real numbers R with the standard topology. Define f: R — R

1 z#0 . . .
as f(z) = {S 0 Its graph, i.e. G(f) = {(z, ;) | x € R—{0}} U{(0,0)}, is a

closed subset of the product space R x R. However, f is not continuous.

Corollary 1.6.10. [/7] Let X and Y be compact Hausdorff spaces and f: X — Y a
map. Then f is continuous iff G(f) := {(x, f(x)) | * € X} is a closed subset of X XY
(with respect to the product topology).

Proof. Let f : X — Y be a map between compact Hausdorff spaces X and Y. If f
is continuous, then by lemma 1.5.3, G(f) is is a closed subset of X x Y. The converse
direction is obtained immediately form theorem 1.6.8. O

The next theorem states that the product of every collection of compact spaces is a com-
pact space with respect to the product topology. Since this theorem is well-known, we
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ignore its proof in this work.

Theorem 1.6.11. (Tychonoff’s Theorem) ( [,9], chapter 5) Let {(X;,Tx,)}ier be a
family of the topological spaces. The cartesian product [ X; is a compact space if and
el

only if each factor X; is compact.

Definition 1.6.12. A topological space X is called locally compact if for each element
x € X and every open neighborhood U € Mp(x) there is a compact subset K C X such
that € K C U (i.e., for each element x € X every open neighborhood U € Mp(x)
contains a compact neighborhood of z).

Example 1.6.13. ( [56], chapter 3, section 29) The Euclidean spaces R™ (and in par-
ticular the real line R) are locally compact. All discrete spaces are locally compact and
Hausdorff.

1.7. Nets and convergence

Our presentation in this section is based on chapters 2, 3 and 5 in [19].

Definition 1.7.1. A directed set D = (D, >) is a nonempty set D with a binary
relation > satisfying,

(1) VzeeD.x>x (reflexivity)
(2) Vz,y,zeDax>yANy>z =2x>z (transitivity)
(3) Ve,yeD.qze€D.(z>x)AN(z>y) (directedness)

For d € D let Dy := {d € D | d > d}. Then Dy = (Dg4,>) with the ordering in-
herited from D is a directed set, too.

Example 1.7.2. Given a topological space (X, 7) and a point z in X, then M(z) (the
set of all neighborhoods containing z) is a directed set. The binary relation > on 9(x)
is given by reverse inclusion, so that S > T if and only if S is contained in 7.

Definition 1.7.3. Given directed sets D = (D,>) and £ = (E,>),amap ¢ : D — E
is said to be

e monotonic: Vd,d € D.d > d = p(d) > ¢(d');
e cofinal: Ve € E.3d € D. p(d) > ¢;

e converging: Ve € E.3d € D.Vd' > d. p(d') > e.
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Obviously, every converging map is cofinal and every monotonic and cofinal map is con-
verging. However, there are converging maps which are not monotonic, for instance, the
map ¢ : N — N given by ¢(n) :=if (oddn)n — lelsen + 1.

Lemma 1.7.4. If o : D — E and A : E — J are converging maps, then Ao ¢ is also
a converging map.

Proof. Let j be a fixed element in J. We should find an element d € D such that
Ao p(d') > jfor each d > d. Since \ is a converging map, there is an element e; € E
such that A(e’) > j for each ¢’ > e;. Besides, since ¢ is a converging map, there is an
element d.;, € D such that p(d’) > e; for each d’ > d.;. Now, we need just to take
d:=de;. ]

Definition 1.7.5. Given a set X, a net in X is a map ¢ : D — X, where D = (D, >)
is some directed set. Usually, we denote ¢ as (x4)qep. Sometimes we write ¢(d) when
we want to speak about the element x4 in the net ¢.

Example 1.7.6. Every non-empty totally ordered ° set is a directed set. Therefore,
every function on such sets is a net. In particular, the natural numbers with the usual
order forms a directed set, and a sequence in a set X is a function from the natural
numbers N to the set X, so every sequence is a net (see chapter 2 in [19]). The length
of a sequence f : N — X is defined as the number of terms in im f (i.e., the image of
f). A sequence of a finite length n is called a finite sequence. A sequence is called an
infinite sequence if it is not finite one.

Definition 1.7.7. Given two nets ¢ : D — X and ¢ : E — X in X, we say that ¢ is
a subnet of i, if there exists some converging map ¢ : D — E with ¢ =1 o . In this
case we shall use the notation ¢ = (2,(4))dep-

v X
DN

D
According to lemma 1.7.4, if ¢ is a subnet of ¢, and if ¢ is a subnet of k, then ¢ is a
subnet of k.

E

5A non-empty totally ordered set is a nonempty set D with a binary relation > in which for any two
elements a and b either a > b or b > a.
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Remark 1.7.8. Let X be a set. If ¢ = (x,)nen is a sequence of points of X, and if
ny < ng < ... < np < ...Is an increasing sequence of positive integers, then the
sequence ¢ = (yi)ren defined by setting yi = x,, is called a subsequence of the sequence
1. Note that each subsequence ¢ = (zy, )ren of a sequence ¢ = (x,)nen becomes a
subnet of the net ¢ (define ¢ : N — N by (k) := nj for each k € N). Note however
that a subnet of a sequence need not be a subsequence in general, e.g. it is possible to
define a subnet ¢ = (x4)qep of a sequence ¥ = (xy)nen such that D is uncountable.

Definition 1.7.9. ( [19], chapter 2) Let X be a topological space, and let ¢ := (x4)4ep
be a net in X.

e Given a point z € X, we say that the net ¢ is convergent to z, if
YU € N(z).3dy € D.Vd > dy.xqg € U.

In this case we say that z is a limit of ¢ and we write ¢ — z. The set of all
limits of the net ¢, is denoted by lim ¢.

e We say the net ¢ is eventually in A C X if: 3d € D.Vd' > d. x4 € A.
e We say the net ¢ is frequently in A C X if:Vd € D.3d' > d.xzy € A.

e A point z is said to be an accumulation point of the net ¢ if and only if for every
neighborhood U € 91(x), the net ¢ is frequently in U. We write ¢ --» x if x is an
accumulation point of ¢.

Remark 1.7.10. ( [19], chapter 2) Due to definition 1.7.9, one can see that

e x is a limit of a net ¢ if for every open neighborhood U € Mp(x), the net ¢ is
eventually in U, and

e if ¢ is a subnet of ¥ then for all A C X: if ¢ is eventually in A then ¢ is eventually
in A, too.

Lemma 1.7.11. ( [/9], chapter 2) A point x is an accumulation point of a net 1 if and
only if ¢ has a subnet converging to x.

Proof. Let = be an accumulation point of a net ¢ := (z.)ccp. We define a convergent
subnet ¢ in three steps. Firstly, since z is an accumulation point of ¢, for each U € M(x)
we can choose an element e € E such that x. € U. Define a directed set (D,>) as

D:={(e,U) e ExN(x) | z. € U},

e, U) > (e,U) =€ >e and U CU.
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In the second step, we will define a converging map from D to E. Defines a function
p: D — E by ¢((e,U)) :=e. To see that ¢ is a converging map, notice that since x is
an accumulation point of ¢, for each e € E and each neighborhood U € M(z), there is
an element ey € E with ey > e such that z., € U. Now, consider the pair (ey,U) € D.
If (¢/,U’) is an element in D with (¢/,U’) > (ey,U), then ¢(e/,U’) = ¢ > e. Hence
¢ is a converging map and consequently ¢ := {T, (1)} (e,v)ep i @ subnet of ¥. In the
third step, we show that ¢ converges to x. For every open neighborhood U € 9(x), we
can choose an arbitrary e € F such that z, € U (since x is an accumulation point of
). Then (e,U) € D and for each element (¢/,U’) € D with (¢/,U’) > (e,U) we have
Ty vy = T € U CU. Thus ¢ converges to x.

Conversely, suppose 1 := (Z¢)ecp has a subnet converging to x € X. If x is not an
accumulation point of ¢, then there is a neighborhood U of x such that v is not frequently
in U, and therefore v is eventually in the complement of U. Then each subnet of 1 is
eventually in the complement of U and hence v can not converge to x. O

Theorem 1.7.12. ( [/9], chapters 2, 3 and 5) Let X and Y be topological spaces.

1. If X is a Hausdorff space, then the limit of each net in X (if it exists) is unique.

2. If ¢ isanet in X, then ¢ converges to a point z € X iff every subnet of ¢ converges
to .

3. If S is a subset in X, then x is in the closure of S if and only if there exists a net
1 in S such that ¢ converges to x.

4. A function f: X — Y is continuous if and only if for each net 9 in X such that
1 converges to x, then the net f o1 converges to f(z).

5. The topological space X is compact if and only if every net in X has a subnet
converging to some point of X.

6. If (x4, yd)dep is a net in the product space X x Y, then (24, yq4)dep converges to a
point (z,y) iff the nets (z4)4ep and (yq)aep converge to x and y, respectively.

Proof. Let X and Y be topological spaces.

(1) Let X be a Hausdorff space and ¢ a net in X converging to elements = # y € X.
Since X is HausdorfT, there are two disjoint open subsets U, O C X (i.e., UNO # ) such
that x € U and y € O. Since the net ¢ can not be eventually in both disjoint subsets U
and O, the net ¥ does not converge to both x and y.

(2) This follows directly from definitions 1.7.7 and 1.7.9.

(3) Let 1 be a net in S converging to € X. Then each neighborhood of = contains
some points of S. Hence, z is in S. Conversely, let x € S. By example 1.7.2, the set
N(x) (the set of all neighborhoods of z) can be directed by reverse inclusion (i.e., O >V
if and only if O C V). Then we can find a net (z0)oem(s) such that zo € ON S for each
O € N(x). Then (z0)oem(z) is @ net in S. It is easy to see that the net (z0)oem(q) is

34
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eventually in every neighborhood of z (i.e., for every element O € 91(z) and for every
V € N(z) with O €V, we have o € V). Then (70)oen(z) converges to z.

(4) Assume f is continuous and let ¥ be a net in the topological space X that converges
to a point * € X. Let U be a neighborhood of f(z), then f~(U) is a neighborhood
of z. Since 1 is eventually in f~1(U), the net f o is eventually in U. Conversely, let
f: X — Y be a map and for every net ¢ in X if ¢ converges to x, then the net f o
converges to f(xz). We want to show that f is continuous. We have to show that for each
open subset U C Y, the set f~(U) is open in X. So it suffices to prove that for each
open subset U C Y and each x € f~(U) there is an open neighborhood O € MN(x) such
that O C f~1(U). We prove this claim by contradiction. So assume that there are an
open subset U C Y and an element z € f~1(U) such that ON (X — f~4(U)) # 0 for each
O € N(x). By example 1.7.2, the neighborhood system 91(z) with the reverse inclusion
(i.e., O > V if and only if O C V) is a directed set. Then we can find a net (ro0)oen()
such that xo € ON(X — f~1(U)) for each O € N(x). Hence, for every element O € N(x)
and for every V' € N(z) with O C V, we have xo € V. Therefore (z0)pem(s) converges
to z but (f(z0))oen() does not converges f(z). This gives a contradiction with the
assumption.

(5) Let X be a compact space and (x4)gep be a net in the X. For each d € D let Ay
be the set of all points x4y for d > d. Then the family of all sets Ay has the finite
intersection property (because D is directed by >). Consequently the family {A4}qep
(A4 is the topological closure of Ay) has the finite intersection property. Then since X

is compact, by theorem 1.6.4 we have (| Ay # 0. Now, let x € () Ay, then according
deD deD
to the construction of the sets Ay (d € D) the point x is an accumulation point of the

net (z4)4ep (see definition 1.7.9). Then by lemma 1.7.11, the net (z4)4ep has a subnet
converging to x. Conversely, suppose that every net in X has a convergent subnet. For
the sake of contradiction, let {U; | i € I} be an open cover of X with no finite subcover.
Consider D ={J C I || J|< Np}. Observe that D is a directed set under inclusion and
for each J € D, there exists an x; € X such that x; ¢ U; for all j € J. Consider the
net (z7)sep. This net can not have a convergent subnet, because for each z € X there
exist ¢ € I and a neighborhood U; of  such that (z7)jep is not eventually in U; (to see
this, notice that for all J € D with {i} C J, we have x; ¢ U;). This is a contradiction
and completes the proof.

(6) Let (24, yq)dep be anet in X xY that converges to a point (z,y). Since the projection
maps 7x : X XY — X and 7x : X x Y — X are continuous (see example 1.4.6), by
part (4) of this theorem we conclude that the nets (x4)4ep and (yq)dep converge to x and
y, respectively. To show the converse, let (x4, yq)dep be anet in X xY such that the nets
(x4)dep and (yq)dep converge to x and y, respectively. Then for each open neighborhood
U of x the net (z4)4ep is eventually in U and similarly for each open neighborhood V' of
y the net (yq)qep is eventually in V. Hence the net (24, yq)dep is eventually in U x V.
Since each open neighborhood of (x,y) is an union (finite or infinite) of sets of the form
U x V, we conclude that (x4, yq)qep converges to (z,y). O
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In the following, we prove some lemmas that will be used as the auxiliary lemmas to
prove some properties of the Vietoris bisimulations in chapter 9.

Lemma 1.7.13. Given topological spaces X and Y. Let R C X XY be a binary relation
which is closed in X XY (with respect to the product topology). Then

R = {(y,2) €Y x X | (z,y) € R}
s a closed subset of Y x X.
Proof. We have

RC XxY « R=JIUxV|UC X,V C Y}

open open open
= R'=(J{VxU|V C YU C X}
open open

O]

Notice that the relation composition® of two closed relations need not to be closed, see
the following example.

Example 1.7.14. Counsider the set of real numbers R along with the standard topology
and the set of natural numbers N with the discrete topology. Let R = {(%,n) | n € NT}
and S = {(n, £) | n € N*} be binary relations between R and N. Hence

RoS={( ) | ne Nt}

11
n’'n
It is easy to check that the binary relations R and S are closed in R x N and N x R,
respectively. However, R o S is not a closed subset of R x R.

Lemma 1.7.15. Given compact spaces X, Y and Z. Let the binary relations R C X XY
and S CY x Z are closed subsets (with respect to the product topology). Then Ro S is
a closed subset of X x Z.

SIf RC X xY and S C Y x Z are two binary relations, then their relation composition R o S is the
relation

{(z,2) e X xZ | JyeY. (z,y) € RA (y,2) € S}.
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Proof. We need to show that RoS C Ro S. Assume (z,z) € Ro S, then according to
part (3) of theorem 1.7.12, there is a net (24, 24)qep in R oS which converges to (z, 2)
and then by continuity of the projection maps (see example 1.4.6) the nets (z4)qep and
(z4)dep converge to x and z, respectively (see part (4) in theorem 1.7.12). Now, since
for each d € D we have (x4,24) € Ro S, we can find a net (y4)qep in Y such that
(x4, Yd)dep 1s a net in R and (Y4, 24)dep 1s a net in S. Since Y is compact, by part (5)
in theorem 1.7.12 there is a converging map ¢ : E — D and an element y € Y such
that the subnet (y,())ecr converges to y. On the other hand, by part (2) in theorem
1.7.12, the subnet (7, ())ecr converges to x (because (r4)q4ep converges to x). Then by
part (6) in theorem 1.7.12, the subnet (7, (), Yp(e))ecr converges to (x,y). Note that R
is closed, then (z,y) € R.

Now, it suffices to show that (y,z) € S. Consider the subnet (y,(c),Zy(e))ecr Of the
net (Y4, 2d)dep in S. We know that (y,())ecr converges to y, besides by part (2) in
theorem 1.7.12, (2,(c))eck converges to z (because (2q)¢ep converges to z). Then by
part (6) in theorem 1.7.12, the subnet (yy(c), 24(c))ecE converges to (y,z). Since S is
closed, (y,z2) € S.

Hence from (z,y) € R and (y,2) € S we have (z,z) € Ro S. O

1.8. Metric and Ultrametric spaces

Definition 1.8.1. A metric space is a pair (X, d) where X is a set (called the underlying
set) and d (called metric) is a map from X x X to R such that for any z,y,2z € X, the
following hold,

(1) d(z,y) =0,

(2) d(z,y) =0 =z =y,

(3) d(z,y) = d(z,y), and

(4) d(z, z) < d(z,y)+d(y, 2).
For any point z in a metric space X we define the open ball of radius » > 0 (r € R)
around z as the set B(z,r) = {y € X | d(z,y) < r}. We usually write B,(z) instead
of B(x,r). The collection of such open balls is a subbase for a topology on X. This
topology is called the metric topology induced by d. Explicitly, a subset U of X is
open if for every x € U there exists a real number r > 0 such that B(z,r) is contained
in U. A neighborhood of a point z is any subset of X that contains an open ball around
x as a subset. A topological space which can arise in this way forms a metric space
called a metrizable space. It is not hard to see that the non-empty metric spaces are
Hausdorff (for every two point x, y € X, consider the open balls B(x,r) and B(y,r)
where r := %d(x, Y)).
Two metric spaces (X, dx) and (Y, dy) are called isomorphic if there is a bijective, con-
tinuous and open function between them (with respect to the metric topologies induced
by dX and dy).

In what follows we shall always assume (without loss of generality) that the metric space
(X, d) is not empty.
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Example 1.8.2. ( [70], chapter 2, section 20) The set of real numbers R along with the
distance function d : R x R — R defined by d(z,y) :=|  — y | is a metric space.

Remark 1.8.3. If (z,,)nen is a sequence in a metric space (X, d), then according to defi-
nition 1.7.9, we say that a point z € X is a limit of (z,)nen (in symbol: lim z, = x) if
n—ao0

the statement below holds,
Vr > 0.3m € N.Vn > m.d(z,,z) <.

Consequently, if z € X is a limit of the sequence (zy,)nen, then for each radius r > 0,

| {n € N|d(zn,z) <r}[> R,

ie, {neN|d(x,,z) <r}isan infinite set.

Definition 1.8.4. Let (z,)nen be a sequence in a metric space (X,d). We say that
(Zn)nen is a Cauchy sequence if

Ve >0.dM € N.Vi, j > M.d(x;,xj) < e.

A metric space (X, d) is complete if every Cauchy sequence in X has a limit.

Lemma 1.8.5. ( [50], chapter 7, section 43) A metric space (X, d) is complete if every
Cauchy sequence in X has a convergent subsequence.

Proof. Let (x,)nen be a Cauchy sequence in (X,d). We show that if (z,,),en has a
subsequence (zp, )ren that converges to a point x € X, then the sequence itself, i.e.
(Zn)nen converges to x. Given € < 0, then there is an element M € N such that for all
n, m > M we have d(xy,zn) < /2 (because (z,)nen is a Cauchy sequence). On the
other hand, since (zp, )ren converges to x, we can choose an element k € N such that
ng > M and d(zp,,x) < ¢/2. Putting these facts together, we have the desired result
that for n > M,
d(zp,x) < d(zp,xn,) + d(zy,, ) < €.

Definition 1.8.6. A metric space (X, d) is totally bounded if and only if for every real
number € > 0, there exists a finite collection of open balls of radius € in X whose union
contains X.

The next lemma is a part of the proof of theorem 45.1 in [56] (see [56], page 276).
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Lemma 1.8.7. ([50], chapter 7, section 45) Let (X, d) be a totally bounded metric space,
then every sequence in X has a Cauchy subsequence.

Proof. Assume that (X, d) is totally bounded and (x,)nen is a sequence in X. Since X
is totally bounded, it can be covered by finitely many balls of radius 1/k for each k € N.
Then X can be covered by finitely many balls of radius 1. Therefore at least one of those
balls must contain infinitely many terms of (x,)nen. Call that ball By, and let S} be the
set of all indexes n € N for which x,, € Bj.

Now, cover X by finitely many balls of radius 1/2. Because S is infinite, at least one of
these balls, say Bs, must contain z, for infinitely many values of n in S7. Choose Sy to
be the set of those indexes n for which n € S; and x, € Bs. In general, given an infinite
set Sk of positive integers, choose Sy, 1 to be an infinite subset of Sy such that there is a
ball By of radius 1/k+1 that contains x,, for all n € Sky1. Then for each k € N the set
Sk is infinite and Sk C Sk.

Choose an element n; € S;. Given ng, choose ngy; € Skpiq such that ng < ngy1 (this
we can do because Siy1 is an infinite set). Now, we have a sequence (ng)gen such that
for each k € N we have ni € S, and ny < ngy1. One can see that whenever ¢ > k, then
n; € Sk (because for each k € N we have S C Si_1). Thus for all i, j > k, the term
Tp; and z,; are both contained in a ball of radius !/k. Hence the subsequence (zy, )ken
is Cauchy. O

In the following, we show that the notion of compactness for metric spaces involves the
notions of completeness and total boundedness. To show this we first prove an auxiliary
statement which is a part of the proof of the implication (3)==-(1) in theorem 28.2 in [50]
(see [56], page 180).

Lemma 1.8.8. Let (X,d) be a metric space in which every sequence has a subsequence
converging to some point of X. Suppose we are given an infinite open cover’ {U;}icr of
X. Then there ezxists an € > 0 so that every ball of radius € is contained in one of the
(open) sets U;.

Proof. We prove this claim by contradiction. Assume {U,};cs is an infinite open cover
of X for which there is no € > 0 so that every ball of radius € is contained in one of the
(open) sets U;. Then for each n € N there is a ball B,, of radius 1/n which is not contained
in any of the sets U;. Let z, be the center of B,,. Since X is sequentially compact, the
sequence of the centers i.e., (x,)nen has a convergent subsequence (2, )reny with limit
x € X. Since {U,;}icr is a cover for X, there exists an index ig € I such that z € Uj,.
Since Uj;, is open, z is an interior point of it. Then we can choose an € > 0 such that
Be(x) C Ujy. If k is large enough that 1/ny < ¢/2, then the set By, (zy, ) lies in Bej,(zy, ),

TAn open cover of a topological space X is a collection A = {U; }sc1 of the open subsets of X such that

xclu

iel
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if k is also chosen large enough that d(z,,,x) < /2, then B, (zp,) lies in B.(z). But
this means that By, (z,,) contrary to hypothesis. O

The following is a combination of theorems 28.2 and 45.1 in [56] (see [56], pages 179
and 276, respectively):

Theorem 1.8.9. Let (X, d) be a metric space. Then the following are equivalent:
1. (X,d) is complete and totally bounded.
2. Bvery sequence in X has a subsequence that converges to some point of X.
3. X is a compact space (with respect to the metric topology induced by d).

Proof. (1 = 2) Since (X, d) totally bounded, by lemma 1.8.7 every sequence in X has a

Cauchy subsequence. Since (X, d) is complete, every Cauchy sequence in X has a limit.

Then every sequence in X has a subsequence that converges to some point of X.

(2 = 1) By lemma 1.8.5. We proceed by contradiction to show that (X,d) is totally

bounded. Assume that there exists an € > 0 such that X cannot be covered by finitely

many balls with radius €. Construct a sequence of points of X as follows: First, choose

x1 to be any point of X. Notice that the ball B.(x1) is not all of X (otherwise X could

be covered by a single ball with radius €). Choose z2 to be a point of X not in B.(x1).
n

In general, given z1, ..., Ty, choose x,1 to be a point not in the union |J B:(z;) (using
i=1

the fact that these balls do not cover X). Note that by construction d(zp41,x;) > € for

i€ {1,...,n}. Therefore, the sequence (x,)nen can have no convergent subsequence. In

fact, each ball of radius ¢/2 can contains x,, for at most one value of n.

(2 = 3) Let {U,; }icr be an infinite open cover of X. We need to show that there is a finite

subset J & I such that X C (JU;. By lemma 1.8.8 there exists an € > 0 so that every
icJ

ball of radius ¢ is contained in one of the (open) sets U;. From implication (2 = 1), we

know that (X, d) is totally bounded, thus there exist a finite subset {z1,...,2,} of X so

n

that X C|J Be(zk). As for each integer k € {1,...,n} there is an element iy € I such
k=1

that the ball B.(x)) C U;,, by setting J := {iy,...,i,} we have a finite subset J & I

such that X C J U;.

icJ
(3 = 2) Let X be a compact space and (z,,),en be a sequence in the X. For each n € N,
let A, be the set of all points x,, for m > n. Then the family of all sets {Ay},en has
the finite intersection property. Consequently, the family {A, },en (A4, is the topological
closure of A,) has the finite intersection property. Then since X is compact, by theorem

1.6.4 we have (| A, # (. Now, let x € () A,. By the construction of the sets A,,
neN neN
the point z is an accumulation point of the sequence (x;,)nen. Then for each k£ > 1 the

ball By, (7) contains infinitely many terms of (z5)nen. Hence, we can choose a sequence
(nk)ken such that for each k € N we have ny, < ngy1 and zy,, € By, (7). It is easy to see
that the subsequence (xy, )ren converges to x. O
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Ultrametric spaces
Definition 1.8.10. An ultrametric space (X, d) is a metric space in which the metric
d satisfies the strong triangle inequality, i.e.,

d(z,z) < Maxz{d((z,y),d(y,2)}

for each z,y, z € X. In this case d is called an ultrametric.
An 1-bounded ultrametric space is an ultrametric space (X, d) where d : X x X — [0, 1].

In order to give a motivation to study the notion of ultrametric spaces, we continue
this part with an well-known example which has many applications in mathematics and
computer science (see [10], [12] and [50]).

Let X be an arbitrary set. Consider X* as the set of all words® over X. For each
p, ¢ € X¥ with p # ¢, define

m(p,q) := Inf {k € N | p(k) # q(k)}. (1.8.1)
Define a distance function d : X x X — [0, 1] by

0 pP=4q
i _ 1.8.2
(p, @) {Qm(nq) otherwise ( |

We can prove the the following lemmas for d :

Lemma 1.8.11. For each p,q € X* and n € N,

d(p,q) < 27" <= d(p,q) < 2"V

Proof. Given different p,q € X“ and n € N,
d(p,q) < 27" 9 mpa) < 97

m(p,q) > n

Vk € N.p(k) #qlk) =k >n

Vk e N.p(k) #qk) = k>n+1

m(p,q) =n+1

d(p,q) <271

rreeey

O

8Every sequence in X (i.e, every map from N to X) is called a word over X. We denote by X“ the set
of all words over X.
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1. General topology

Lemma 1.8.12. For each p,q € X* and n € N,

d(p,q) < 27" <= Vk < n.p(k) = q(k).

Proof. Given different p,q € X“ and n € N,

9~ m(pa) < 9—n

d(p,q) <27" =
— m(p,q) =n
<~ VkeNpk)#qk) =k>n
— Vk <n.pk)=qk).

Corollary 1.8.13. For each p,q € X¥ and n € N,

d(p,q) < 27" <= Vk <n.p(k) = q(k).
Proof. Given p,q € X*“ (naturally different) and n € N,

d(p,q) <27 MES g(p,q) < 27D

emga k812 gk < o+ 1. p(k)
= VE < n.p(k) = q(k)

q(k)

Lemma 1.8.14. d is an ultrametric.

Proof. We need to check that for every p,q € X%
(1) d(p,q) =0 <= p =g,
(2) d(p,q) = d(q,p), and
(3) d(p,q) < Maz{d((p,r)d(r,q)}.

By the definition of d, the conditions (1) and (2) are trivial. Let d(p,q) = 0. So, for
each n € N, we have d(p,q) < 27™. Therefore, due to lemma 1.8.12 for each n € N we
have p(n) = ¢(n) and consequently p = ¢. Regarding (3), given p,q,ré X (naturally
different), then for each k£ € N such that £ < m(p,r) and k < m(r, q), we conclude that

p(k) = q(k) = r(k). Thus

m(p,q) > Min{m(p,r), m(r,q)}.
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1.8. Metric and Ultrametric spaces

Hence
d(p,q) < Maz{d(p,r), d(r,q)}.

If p=1ror q=r or p=q the claim is trivial. O

Example 1.8.15. Consider the pair (X“,d) (where d is the distance function defined
in equation 1.8.2). According to lemma 1.8.14, the distance function d is an ultrametric
and then (X“,d) is an ultrametric space.

In the following we will show that (X“,d) is a complete ultrametric space.

Lemma 1.8.16. (X¥,d) is a complete ultrametric space.

Proof. We need to prove that every Cauchy sequence in X% converges to an element in
XY, Given a Cauchy sequence (¢n)nen in (X“,d). Then, by the definition of Cauchy
sequences,

Vn € N.3M, € N.Vi,j > M,.d(q;, q;) < 2" (1.8.3)

So, in particular for j = M, we have

Vn € N.dM,, € N.Vi > Mn.d(Qi,QJ\/[n) <27 (1.8.4)

For each n € N let M,, be the smallest element in N satisfying equation 1.8.4. Then for
all n, k € N with k£ < n we have My < M,,. Thus, by equation 1.8.4 we have

Vn,k € Nk <n = d(qu,,qu,) < 27" (1.8.5)

Consequently by corollary 1.8.13,

Vn,k € Nk <n=Vr <k.qum,(r) = qum, (7). (1.8.6)
So, in particular for r = k we have

V’I’L,kZEN.k‘ Sn:>an(k‘) :(IJ\/[k(k). (187)

Define ¢ : N — X by ¢q(n) := qur, (n) for each n € N (where M,, is the smallest natural
number satisfies equation 1.8.4). Hence by equation 1.8.7 we have

Vn,k € Nk <n = qu, (k) = q(k). (1.8.8)
We claim that lim ¢, = ¢q. Since, lim 27" =0, it is enough to show that
n—-ao0 n

1
—00
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1. General topology

Vn € N.3K, e N.Vi > K,.d(gi,q) < 27" (1.8.9)

Let n € N be a fixed element of N. Consider K,, := M,, where M, is the smallest natural
number satisfies equation 1.8.4. Then by equation 1.8.4, we know that

Vi > Ky d(gi,qx,) <27". (1.8.10)
Thus by corollary 1.8.13,
Vi > Kp.Vk < n.qi(k) = gk, (k) = qu, (k).
So, according to equation 1.8.8, we have
Vi > Kp.Vk <n.qi(k) = q(k)
Consequently by corollary 1.8.13,

Vi > K. d(gi,q) <27

Non-expansive maps
Definition 1.8.17. A map f : X — Y between ultrametric spaces (X, dx) and (Y, dy)

is non-expansive when it is non-distance-increasing, i.e.

Va,y € X.dy (f(2), f(y)) < dx(z,y).

A map f: X — Y between ultrametric spaces (X,dx) and (Y,dy) is contractive
when it shrinks the distance between any two points by a non-unit factor, i.e.

IN €[0,1).Vo,y € X.dy(f(z), f(y)) < \dx(x,y).

1.9. Properties of the ultrametric spaces

In the following, we prove some technical lemmas which will be needed in chapter 5.

None of these lemmas are original and they can be found in most standard texts on the
theory of ultrametric spaces, including [21], [22], [52], [59] and [67].

Lemma 1.9.1. Given an ultrametric space (X,d). For all x,y € X and all £,5 > 0
such that e <9,

e cither B.(z) N Bs(y) = 0 or B:(z) C Bs(y).
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Proof. Suppose B.(x) N Bs(y) # 0, then there exists z € X with d(z, z) < ¢ and
d(z, y) < 0. Now, we show B.(x) C Bs(y). Let a € B:(x), then
d(a,y) < Maz{d(a,z),d(z,y)
< Mazx(g,0)
= 4
So d(a,y) < ¢ and consequently a € Bs(y).

Corollary 1.9.2. Given an ultrametric space (X,d). For all x, y € X and each ¢ > 0,

e either B.(z) N B.(y) = 0 or B.(x) = B:(y).

Lemma 1.9.3. Given an ultrametric space (X,d). For each € > 0, the set
Xe:={B:(z) |z € X}
forms a partition” of X .
Proof. 1t is obvious that, X = UXBa(x). In addition, by corollary 1.9.2, we have either
z€

Be(x) N Be(y) = 0 or Be(x) = B:(y)-
O

Lemma 1.9.4. Let (X,d) be an ultrametric space. Every ball B.(x) where x € X and
e >0, is a closed subset of X.

Proof. Let a € X and € > 0.

(B. ()" _ X — B.(a)
temma1.93 | B:(z)) - B:(a)
zeX
corollary 1.9.2 ( U B(z)).
zeX—{a}

This means (B:(a))¢ is open (arbitrary union of open sets is open). Hence, B:(a) is
closed.
U

Lemma 1.9.5. Let (X, d) be an ultrametric space. For every x,y € X and € > 0,

d(z,y) < € <= B.(x) = B:(y).

9A partition of a set X is a set P of non-empty subsets of X such that every element x in X is exactly
in one of these subsets (i.e., P does not contain the empty set; The union of the sets in P is equal to
X; The intersection of every two distinct sets in P is empty).
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1. General topology

Proof. Given x,y € X and ¢ > 0, then

d(z,y) < e = y € B:(x)
— y € Be(x), y € B:(y)
— y € B:(x) N B:(y)

corollary 1.9.2

Be(z) = B:(y).

O

Lemma 1.9.6. Let (X,d) be a complete ultrametric space. Given a family of balls
{Bo—n(p) tnen such that

for all m > n. Then ﬂNBz_n(xn) is a singleton.
ne

Proof. Given a family of balls { By—n(xy,) }nen that satisfies equation 1.9.1 for all m > n.
Then

Vn € N.Vm > n. By-n(2y,) = By—n(xm)

lemma 1.9.5

= Vn € NoVm > n.d(zy, xm) < 27"
— Vn € N.Vmy,ma > n.d(zy, Tm, ) < 27", d(Tp, Tmy) < 27"
disanlirgmetric g, ¢ N, Vmi, ma > n.d(Tm,, Tm,) < 27"

Then the sequence (zp,)nen is a Cauchy sequence (see definition 1.8.4). By assumption
(X, d) is a complete metric space (see definition 1.8.4), then the Cauchy sequence (2, )nen
has a limit in X. Since every metric space is Hausdorff, this limit is unique (see part (1)

in theorem 1.7.12).
O
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2. Category Theory

In this chapter we study the most fundamental concepts of category theory, as well as
some examples that we will find useful in the remainder of this work. All of these concepts
can be found in Adamek et al. [3-5]. See also Awodey [7], Gumm [30], Mac Lane [53]
and Mavoungou and Nkuimi-Jugnia [54].

2.1. Categories and subcategory

Definition 2.1.1. (Category) A category C consists of a class O of objects and a class
Mor of arrows between those objects. Each arrow f € Mor has a start object called the
domain of f (in symbol: dom(f)) and a target object called codomain of f (in symbol:

f
cod(f)). If fis an arrow from A to B, we shall denote this as f : A — B (or A — B,
if necessary). Arrows are often called morphisms. For all objects A € O and all pairs of
morphisms f, g € Mor the following axioms are satisfied:

1. for each object A there exists a morphism id4 starting and ending in A. We call
id 4 the C-identity on A, and

2. morphisms f : A — B and g : B — C can be composed to a morphism
go f: A— C so that the following equations hold,

a) foidy =f=idpof,
b) (hog)of=ho(go f) whenever f: A— B,g: B— C and h:C — D,

(see [3], chapter I, section 3).

Remark 2.1.2. 1f C is a category, then

—_

. every object in C (i.e., each element in O) is called a C-object,

2. the class O of C-objects is usually denoted by Ob(C),

3. each morphism in C is called C-morphism,

4. the class Mor of C-morphisms is usually denoted by Mor(C), and

5. for each pair (A, B) of C-objects, we use the notation Homc(A, B) for the class of
all morphisms in C with domain A and codomain B.
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2. Category Theory

We should emphasize that the objects in a category do not have to be sets and the mor-
phisms need not be functions.

Example 2.1.3. The following are examples of some categories.

1. EC is the empty category. It has no objects and no arrows.
2. The category Set is the class of all sets with set functions.

3. The category Top is the class of all topological spaces with continuous functions
between them.

4. Stone is the category of Stone spaces and continuous functions between them.

5. CUM is the category of complete ultrametric spaces with non-expansive maps (see
definition 1.8.17). The category of complete 1-bounded ultrametric spaces with
non-expansive maps is shown by CUM?!.

6. The class of all preordered sets' with monotone maps (see definition 1.7.1) between
them forms a category denoted by Preord. The category Poset is the class of all
posets ? with monotone maps.

Definition 2.1.4. A category C is called small if both Ob(C) and Mor(C) are actually
sets and not proper classes.

Example 2.1.5. [7] Here are some simple examples of small categories.

1. The diagram o——o is a small category with two objects, their identity mor-
phisms, and exactly one non-identity morphism between objects.

2. Every directed set D = (D, >) (see definition 1.7.1) can be regarded as a small cat-
egory by taking the objects to be the elements of D and taking a unique morphism

a — b if and only if b > a.

The reflexive and transitive condition on > ensure that this is indeed a category.

! A preordered set is a set P equipped with a binary relation p < ¢ that is both reflexive and transitive.
2A poset is a preordered set satisfying the additional condition of antisymmetry.
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Definition 2.1.6. (Subcategory and full subcategory) A category S is said to be
a subcategory of a category C provided that the following conditions are satisfied:

1. Ob(S) C 0b(C),
2. for each A, B € Ob(S), we have Homg(A, B) C Homc¢(A, B),
3. For each S-object A, the C-identity on A is the S-identity on A,

4. the composition law in S is the restriction of the composition law in C to the
morphisms of S.

The category S is called a full subcategory of C if, in addition to the conditions above,
for each A, B€ Ob(S) we have Homg(A, B) = Homc(A, B).

Example 2.1.7. The following categories are subcategories of Top.

1. The class of all Hausdorff spaces with continuous functions specifies the subcategory
Haus of Top.

2. The class of all compact Hausdorff spaces with continuous functions specifies the
subcategory CHTop of Top.

3. The class of all complete ultrametric spaces with non-expansive maps (i.e., CUM)
is a subcategory of Top.

Definition 2.1.8. Given a category C, one can form the dual category C° which has
the same objects as C but has an arrow f°°?: A — B for each arrow f: B — A in C.
Composition for f? : A — B and ¢°? : B — C'is defined as g°? o fP = (f o g)°P.

To any purely category theoretical notion (called category theoretical property), we can
form its dual notion which is obtained by

e reversing the arrows (replacing domain by codomain and vice versa),
e reversing the order of composition.

Obviously, C = (C°) for each category C. Moreover, for each category theoretical
property P true in a category C, its dual property® P is true in C°?. Then we have the
important duality principle:

3The dual property of a category theoretical property P can be obtained by reversing arrows and
compositions in P. More clearly, let P be any category theoretical property. We can forms the dual
property P°? as follows:

1. Interchange the domain of each morphism in P with its codomain.

2. Interchange the order of composing morphisms, i.e., replace each occurrence of fog by go f.
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2. Category Theory
Theorem 2.1.9. ( [3], chapter I, section 8) For each category theoretical property true
in all categories, its dual property is also true in all categories.

Proof. The proof of this theorem follows immediately from the facts that for all categories
C and properties P

1. C = (C°)°, and

2. P°P(C) holds if and only if 7(C) holds.

2.2. Special morphisms

Isomorphisms

Definition 2.2.1. A morphism f: A — B in a category C is called an isomorphism
provided that there exists a morphism g : B — A with go f = id4 and fog = idp.
The morphism g is called an inverse of f. Sometimes, we denote g by f~'.

Example 2.2.2. ( [3], chapter I, section 3) In Set, a morphism f with non-empty do-
main is an isomorphism iff f is bijective (i.e., injective and surjective®).

Example 2.2.3. ( [3], chapter I, section 3) In Top, a morphism f with non-empty
domain is an isomorphism iff f is a homeomorphism in T'op.
Sections, retractions

Definition 2.2.4. In every category C,

1. a morphism f : A — B is called a section (or left invertable) provided that
there exists some morphism g : B — A such that go f =id4, and

2. amorphism f: A — B is called a retraction (or right invertable) provided that
there exists some morphism g : B — A such that fog = idp. If there exists such
a retraction, then B will be called a retract of A.

‘A map f: X — Y is said to be
!

e injective: Vz, 2’ € X. f(z) = f(2') = z =12;
e surjective: Yy € Y. 3z € X.y = f(z).
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Since the composition of morphisms is associative (definition 2.1.1, condition 2-b), it
is clear that the composition of sections (resp. retractions) is again a section (resp. a
retraction).

According to definition 2.2.1, in every category C, a morphism f : A — B is an
isomorphism iff it is section and retraction.

In the following, we discuss about these two kind of morphisms in the categories Set and
Top.

Example 2.2.5. ( [3], chapter II, section 7) In Set, a morphism is a section iff it is an
injective function with non-empty domain (if f : X — Y is a section in Set then there
exists a morphism h : Y — X such that ho f = idx and then ker f C ker (ho f) = Ax
that means f is injective, and the existence of h tell us that X must be non-empty,
conversely, if f : X — Y is an injective map with X # (), define h : ¥ — X as
h(y) := if (y € im f) f~'(y) elsexyp where x¢ is a fixed element in X). On the other
hand in Set the retractions are precisely the surjective maps (if f : X — Y is a re-
traction in Set then there exists a morphism h : Y — X such that idy = f o h and
so Y =im (foh) Cim f that means f is surjective, conversely, by using the axiom of
choice we can show that the surjective functions are retraction).

Remark 2.2.6. Notice that the injective maps are (up to isomorphism) exactly the inclu-
sion of subsets. To see this, let f : X — Y be an injective map. For X = () this claim is
clear, so let X # (). Note that f : X — Y can be factored through its image, i.e. written

as AL B=4a-% m f & B where e : A —» im f is the codomain-restriction of f
and m : tm f — B is the inclusion, and so kere C ker f. Thus, if f is injective then e
is injective too. Therefore e is an isomorphism in Set (because e is also surjective). As a
consequence, we obtain that in the category Set, the sections are (up to isomorphisms)
precisely the inclusions of the non-empty subsets.

Before studying the notion of retractions in Top, we should get familiar with the concept
of topological retractions in T'op.

Definition 2.2.7. (Topological retraction) Let X be a topological space and A a
subspace of X. Then a continuous map r : X — A is a topological retraction if
rot=1idy, where t : A — X is a topological embedding.

Note that, by definition, a topological retraction r : X — A maps X onto A. A
subspace A is called a retract of X if such a topological retraction exists. For instance,
any topological space retracts to a point in the obvious way (the constant map yields a
topological retraction).
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Remark 2.2.8. ([3], chapter II, section 7) According to definition 2.2.7, every topological
retraction r : X — A is a retraction in T'op (in fact the inclusion map ¢ : A — X with
r o =1idya is a right inverse for r).

Example 2.2.9. ( [3], chapter II, section 7) The retractions in Top are (up to isomor-
phism) exactly the topological retractions. Let f : X — Y be a continuous map between
topological space. If f is a topological retraction, by remark 2.2.8, f is a retraction in
Top. To check the other direction, let f : X — Y be a retraction in Top with g as its
right inverse. Then fog = idy. Hence, g is injective. Since in Set, the injective maps are
(up to isomorphism) the inclusion of subsets, g is an inclusion of subsets too. To show
that f is a topological retraction, we need to show that for each open subset U C Y,
there is an open O in X such that U = ¢g~1(O) (i.e., g is a subspace inclusion). By the
equality fog = idy we have g~'(f~1(U)) = U. Now set O := f~1(U).

Monomorphisms and epimorphisms

Definition 2.2.10. In every category C, a morphism f: A — B is called
e monomorphism (in short: mono) if for all morphism g1, go : C — A,
fogi=foge= g1 =g
e epimorphism (in short: epi) if for all morphism ¢1, g2 : B — C,

giof=gaof = g1 = go.

Remark 2.2.11. Since the composition of morphisms is associative, we can see that the
composition of monos (resp. epis) is also mono (resp. epi).

Example 2.2.12. In every category, sections are mono. To see this, let f: A — B be
a section with a left inverse r : B — A (i.e., 7o f =id4). Suppose g1, g2 : C — A are
two morphisms with f o gy = f o gs. Then

gi=1idgogi =rofogi=rofogy=1idso gy = go.

Dually, in every category, retractions are epi.

Lemma 2.2.13. ( [3/, chapter II, section 7) Suppose g : A — C, f: B — C and
h: A — B are three morphisms in the category C such that foh =g. Then
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1. if f and h are monos (resp. epis) then g is mono (resp. epi),
2. if f and g are monos then h is mono, and
3. if g is epi then f is epi.

Proof. All parts of this lemma follow immediately from definition 2.2.10. O

Lemma 2.2.14. ([9], chapter II, section 7) In the category Set,
1. a morphism f is mono iff it is injective, and
2. a morphism f is epi iff il is surjective.

Proof. Let f: A — B be a morphism in Set.

1. Suppose f is mono in Set and it is not injective. So there are two elements p, ¢ € A
such that f(p) = f(q) but p # q. Consider the constant maps p, ¢ : C' — A (where
C' is an arbitrary set). Then fop = foq but p # q. It gives us a contradiction
with the assumption. The converse direction is clear.

2. Suppose f is epi in Set and it is not surjective. Consider two functions p and ¢ from
B to {0,1}. The function p maps every point of B to 0 and ¢ maps precisely the
points of f(A) to 0. So there are two maps p, ¢ : B — {0, 1} such that po f = go f
and p # q. It gives us a contradiction with the assumption. The converse direction
is clear.

O

Remark 2.2.15. According to the previous lemma and remark 2.2.6, in the category Set
the monomorphisms are (up to isomorphism) exactly the inclusions of subsets.

Lemma 2.2.16. ( [3], chapter 11, section 7) In the category Top,
1. a morphism f is mono iff it is injective, and
2. a morphism f is epi iff it is surjective.
Proof. Let f: A — B be a continuous map between topological spaces.

1. Suppose f is mono in Top. If f is not injective, by a similar way used in part (1)
of lemma 2.2.14, we can find two maps p, ¢ : C — A such that fop= foqand
p # q. Equip C by discrete topology. Then p and ¢ are continuous maps such that
fop= foqbut p#q. It gives us a contradiction with assumption. The converse
direction is clear.
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2. Suppose f is epi in Top but it is not surjective. In the proof’s of part (2) in lemma
2.2.14, consider the set {0,1} as an indiscrete space. Suppose f is epi in Top and
it is not surjective. Then the functions p, ¢ : B — {0,1} are continuous maps
such that po f = go f and p # ¢. It gives us a contradiction with assumption. The
converse direction is clear.

Lemma 2.2.17. Let C be category , then for each morphism f : A — B in C the
following are equivalent:

1. f is an isomorphism.
2. f is epi and section.
3. f is mono and retraction.
Proof. Let f: A — B be a fixed morphism in C. (1=-2) and (1=3) are trivial (due

to the definition of isomorphisms and example 2.2.12). To prove (2==-1) let f be epi
and section in C. Then f has a left inverse r : B — A (i.e., 7o f =idy4). Now we have

forof=foidi=f=idgof.
Since f is epi, we conclude that f or = idp, and consequently f is an isomorphism in
C (because f is section and retraction). To Show (3==-1) we use a similar strategy to

(2=1) (here if r is a right inverse for f then we obtain that foro f = foidy and since
f is mono we conclude that r o f = id4). O

2.3. Diagram lemma

Lemma 2.3.1. [70] (Diagram lemma in Set)

1. Let f: X — Y be a surjective map and g : X — Z arbitrary. There is a map
h:Y — Z with ho f = g, if and only if ker f C ker g. Such an h is uniquely
determined.

o4
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2. Let Let f : Y — X be an injective map and g : Z — X arbitrary. There is a
map h: Z — Y with foh =g, if and only if im f C im g. Such an A is uniquely
determined.

x<I vy

A
I
g h |

Z
Proof. For the first statement, let us assume that g = h o f, then
ker f C ker (ho f) = keryg.

So the necessity of the condition is clear. Conversely, since f is surjective, for each y € Y
there is some © € X such that y = f(z). Then we can easily define a map h: Y — Z
by h(y) := g(x) where = € f~!(y). It is clear that g = f o h. Since f is epi, h must be
unique.

For the second part of the lemma, assuming g = f o h, we obtain the necessary condition
img = im foh C imf. Conversely, this condition along with the injectivity of f
guarantees that

h={(zy) | 9(z) = f(y)}.

Defines a map h : Z — Y with f o h = g. Uniqueness of h follows as f is mono. O

2.4. Terminal and initial objects

Definition 2.4.1. (Terminal object) An object T in a category C is called terminal
provided that for each object A in C there is exactly one morphism from A to T.

Example 2.4.2. ( [3], chapter II, section 7) Every one element set is a terminal object
in Set. The terminal object in the category Top are all one element topological spaces.

Lemma 2.4.3. ( [3], chapter II, section 7) Terminal objects, provided they exists, are
uniquely determined up to isomorphism.

Proof. Suppose 17 and T5 are terminal objects in the category C. Then we would have
precisely one morphism f; : 71 — T5 and also precisely one morphism fo : To — T7.
From Tj to T1 we then have both idp, and f2 o f;. Hence fy o fi = idp,. Analogously,
we obtain fi o fo = idp,. Thus f; and fy are isomorphisms. O

The dual notion of terminal object is an initial object, that is:
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2. Category Theory

Definition 2.4.4. (Initial object) An object I in a category C is called initial provided
that for each object A in C there is exactly one morphism from I to A.

Example 2.4.5. ( [3], chapter II, section 7) In the category Set, the empty set () is the
only initial object. From empty to every set X we have the unique map 0x : ) — X.
In the category Top, the empty space is the only initial object.

Lemma 2.4.6. ( [3], chapter II, section 7) Inilial objects, provided they ezist, are
uniquely determined up to isomorphism.

2.5. Products and sums

Definition 2.5.1. (Product) Let {A;}icsr be a family of objects in a category C. An
object P together with morphisms {m; : P — A;}ics is called a product of the family
{A;}ier in C, if for each other object () with morphisms {¢; : Q — A;};er there exists
precisely one morphism h : Q — P, so that ¢; = m; o h for all ¢ € I.

Ak
Q = > P
\\ -~ - .
Qi\\\ \\\\A
A A

The morphisms {m; : P — A;}ics are called the canonical projections. Some authors
call (Q,{¢}icr) a competitor to the real product. If the product (P, {m; };cs) exists, it is
unique up to isomorphisms. The proof for the uniqueness can be obtained by uniqueness

of the morphism h. We often denote P by [[A4; .
el
From now on we shall write X x Y for the product of two objects X and Y in a category

C.

The dual notion of product is Sum. Its definition is therefore:

Definition 2.5.2. (Sum) Let {A;};cs be a family of objects in a category C. An object
S together with morphisms {e; : A; — S}ier is called sum (coproduct) of {A;}icr in
C, if for each other object @ with morphisms {g; : A; — Q}ies there exists precisely
one morphism h : S — @, so that ¢; = hoe; forall ¢ € I.

|
IS Alh /3
“ \\/// [
qi — ary
— q;
-~ /
— e
Az J Aj
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2.5. Products and sums

The morphisms {e; : A; — S}ier are called the canonical injections. Some authors
call the pair (Q,{¢}icr) a competitor to the real sum. If such a sum (5, {e; }icr) exists,
it will be unique up to isomorphism. The proof for the uniqueness can be obtained by
uniqueness of the morphism h. We often denote S by > A;.

icl
From now on we shall write X +Y for the sum of two objects X and Y in a category C.

Example 2.5.3. (Product and Sum in Set) ([3], chapter III, section 10) Let {X; }ier

be a family of sets . The cartesian product P := [[ X; with projections {m; : P — X, }ier
i€l

is a product of the family {X;};c; in the category Set. To see this, let @ with maps

{qi : @ — X, }ier be a competitor. The map h: Q — P given by h(q) := (¢:(q)):er is

a unique map such that m; o h = ¢; for all i € I.

A sum of the family {X,};cs is given by the disjoint union S := | X; which is formally

el
defined as

S=Hxi = J{G2) | v X3} (2.5.1)
il icl
with maps {e; : X; — S}ier defined by e;(x) := (i, x) (for each ¢ € I and each = € X;).
Let @ be a competitor, that is a set with maps ¢; : X; — @, then there is precisely one
map h: S — Q with hoe; = ¢;. It is defined by h(i,z) := ¢;(x).

Example 2.5.4. (Product and Sum in CUM!) [12] In the category CUM", the
binary products are defined in the natural way:

(X1,d1) x (X2,d2) = (X1 x Xo,dx,xx,)
where X7 x X5 is the cartesian product in Set and

dx,xx,((71,2), (y1,92)) = max(di(21,y1), d2(z2,92))-

General products are defined in the same way as binary ones, except that the distance
function on an infinite product space is given by a supremum instead of a maximum.

The sum of a family {(X;, d;)}ics of objects in CUM* is given by (S, d) where S := |H X;
iel

is the disjoint union of the underlying sets {X;}icr (see equation 2.5.1) and the distance

function d is defined as follows:

d(z, ) di(z,y) ifx € X; and y € X; for some i € T
T,y) =
Y 1 otherwise.

For more details see [12] and |63].
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Example 2.5.5. (Product in Top) ( [3], chapter ITI, section 10) Let {(X;, 7x;) }ier be
a family of topological spaces. The pair (P, {m; : P — X;};cr) where P is the cartesian
product of the underlying sets with the initial topology generated by the projection
maps {7m; : P — X, }ier is known as the product of this family in the category Top. Let
topological space (Y, 7y) along with the continuous morphisms {f; : Y — X;};cr be a
competitor (P,{m;}icr). Since the cartesian product P is a product of the underlying
sets in Set, there is exactly one map f : Y — P such that m; o f = f; for each ¢ € I.
Then for each subset U; C X;, we have f~!(m; }(U;)) = f; (U;). Notice that by example
1.4.6, the set {m; "(U;) | i € I, U; € 7x,} is a subbase for the initial topology on P.
So, according to remark 1.3.3, to show the continuity of f, it is enough to check that
f~ 771 (U;)) is an open subset of Y, where i € I and U; is an open subset of X;. Fix
i € I and choose an open subset U; C X;, due to the continuity of f;, the set fi_l(Ui) is
an open subset of Y. Hence by the equality f_l(ﬂ';l(Ui» = f71(U;), we conclude that

(2
f~ (771 (U;)) is open and consequently f:Y — P is continuous.

Remark 2.5.6. The product of finitely many discrete spaces is a discrete space. More
clearly, let {(X;, 7x,)}ier be a family of discrete spaces (i.e., Tx, is the discrete topology
on X; for each ¢ € I). According to the previous example the product of this family is
the cartesian product [[X; of underlying sets with the product topology (see example
iel
1.4.6). Then, the open sets in [] X; are unions (finite or infinite) of sets of the form [[U;
i€l icl
where each Uj; is open in X; and U; # X; for only finitely many ¢ € I. So, if | I |< Ng
(where N is the smallest infinite cardinal), then for every element (x;);er € [ X; the set
i€l
{(z;)ier} is an open subset of [[X; (because {(z;)icr} = [[{zi} and for each ¢ € I the
iel el
one element set {z;} is an open subset of X;), and then every subset of [[X; is open (the
i€l
union of any collection of open sets is open). This means, the set [[ X; carries the discrete
i€l
topology. However, the product of infinitely many discrete spaces each of which has at
least two points is not a discrete space (because in this case the set {(z;)icr} = [[{xi}
el
is not an open subset of [[X; ).
i€l

Clearly, the product of indiscrete spaces is an indiscrete space (because if {(X;, 7x;) }ier
is a family of indiscrete spaces, the only open sets in the product of this family are () and

[1X:).

icl

Example 2.5.7. (Sum in Top) ( [3], chapter III, section 10) Let {(X;, 7x,) }ier be a
family of topological spaces. A sum of this family in Top is the pair (S, {e; : X; — S}ier)
where S is the disjoint union of the underlying sets, (i.e, S = iLérJIXZ-, see equation 2.5.1)
together with the final topology generated by the canonical injection {e; : X; — St}ier.
To see this, let topological space (Y, 7y) with continuous morphisms {f; : X; — Y }ier
be a competitor to (S, {e;}icr). Since the set S with the canonical injections {e;}icr is
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a sum of the underlying sets in the category Set, there is a unique map f : S — Y
such that foe; = fi. Then for each subset U C Y, we have e; '(f1(U)) = f; 1(U).
Now, to check the continuity of f, suppose U is an arbitrary open subset of Y. Since
for each 7 € I, the map f; is continuous, it is concluded that the set f{l(U) is an open
subset of X; for each i € I. Then e; *(f(U)) is open in X; for each i € I (because
e; H(f~HU)) = f71(U))). Now since S carries the final topology generated by the
canonical injections {e; : X; — S}ics, by equation 1.4.3 we obtain that f~1(U) is an
open subset of S. So f:S — Y is continuous.

Remark 2.5.8. The sum of discrete spaces is a discrete space. Let {(X;, 7x,)}ier be a
family of discrete spaces, and let S together with the morphisms {e; : X; — S}ier
be a sum of this family in Top. By the previous example S carries the final topology
generated by maps {e; }ier, and then for each = € S the set {x} is an open subset of S
(because for each i € I the set e;({x}) is an open subset of X;). However, the sum of
indiscrete spaces is not an indiscrete space (because for each i € I the set e;(X;) is an
open subset of S different from S and ()

Lemma 2.5.9. Let X1 and X5 be subspaces of the topological spaces Y1 and Ya, respec-
twely. Then X1 x Xo (resp. X1+ Xo) is a subspace of Y1 X Yo (resp. Y1 + Ys).

Proof. We know that X7 x XoCY7 x Y5 (because X7 C Y7 and X5 C Y3). By lemma
1.3.4, it suffices to check that for each U = U; x Uy (where U; and Us are open subsets
of X; and Xo, respectively) there are open subsets O; C Y7 and Oy C Y3 such that
U = (01 x O2) N (X1 x X2). According to the assumption, X; and Xo are subspaces of
Y1 and Y3, respectively. So

301 C Y1.302 C Y5. (U1 =01N X1 AUy =03NXo).

open open
Hence
U = U1 X UQ
= (01 N Xl) X (OQ N XQ)
= (01 X 02) N (Xl X XQ).
In a similar way, we can prove that X; + X5 is a subspace of Y7 + Y5. O
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2.6. Inverse limits

Let T = (I, <) be a directed poset® and C a category. Let {A;};c; be a family of objects
in C and suppose we have a family of C-morphisms {f;; : A; — Aj}i<jer, with the
following properties:

1. fi; is the identity morphism on A; (for all i € I),
2. fik = fijo fijkx forall i <j <k.

Then the pair ({Ai}ie[, {f” : Aj — Ai}igje[) is called an inverse system.

An inverse limit of an inverse system ({4;}icr, {fij : Aj — Ai}i<jer) in Cis an object
A in C together with a family of morphisms {m; : A — A;}ier in C (called projections)
satisfying

o = fijom; forall i < j and

e for each (Q, {g; : @ — A;}ier) such that ¢; = fijoq; for all ¢ < j, there is precisely
one morphism h : Q — A such that ¢; = m; o h for all ¢ € I, i.e., the following
diagram commutes.

Some authors call (Q, {¢; : @ — A;}icr) a competitor to the real inverse limit. In
some categories, the inverse limit does not exist. If it exists, it is unique up to isomor-
phism, (i.e., given any other inverse limit (A’, {n}};cr), there exists a unique isomorphism
e: A" — A such that m;0e =« for all ¢ € I) and is denoted by lim A;.

Remark 2.6.1. The notion of inverse system makes sense even if the poset I is not assumed
to be directed. However many important results only hold when [ is directed. As an
example, in lemma 2.6.7, we will prove that if ({(X;, )}ier, {fij : Xj — Xiticjer) is
an inverse system of non-empty compact Hausdorff spaces over the directed set I, then
its inverse limit is non-empty. The fact that the indexing set I is directed is essential for
this proof.

A directed poset is a directed set Z = (I, <) in which the binary relation < is antisymmetry (i.e., for
each i, j € IT'if i <j <4 then i =j).
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Example 2.6.2. (Inverse limits in Set) Let ({X;}icr,{fij : X; — Xi}i<jer) be an
inverse system over [ in the category Set. An inverse limit of this system (i.e., MXZ)
is a pair (X, {m;}ier) where X is a set as follows:

X = {(xi)iel S HXz | fzj(l‘j) =x; for all ¢ < j} (2.6.1)
el
and {m; : X — X, }ies are natural projections (for each i € I, the map m; : X — X;
pick out the i*" component of the elements in X). To prove this, suppose for a set Q with
morphisms {g; : Q@ — X, }ier we have ¢; = f;j og; for all i < j. Define h: Q — [[X;
i€l
by h(q) := (¢i(q))ier for each g € Q. It is easy to see that h is unique and m; o h = g; for
all i € I (see [3], part III, section 11).

Remark 2.6.3. If ({ X, }nens, { fen : Xn — Xk }r<nen) is an inverse system in the category
Set over (N, <) (the natural numbers N with the ordinary order <), we usually picture
it as follows:

Xo 4% x, 42 Xy

Remark 2.6.4. (Inverse limit as complete ultrametric space) Notice that an in-
verse limit of an inverse system in Set over (N, <) (the natural numbers N with the
ordinary order <) can be considered as a complete 1-bounded ultrametric space. More
exactly, let ({Xy}nen, {fin * Xn — Xji}r<nen) be an inverse system in the category
Set over (N, <). By the previous example, its inverse limit is the set

X = {(Tn)nen € HXn | fin(zn) = 2 for all k < n}
neN

with the natural projections {7, : X — X, },en. Consider the map dx : X x X — [0, 1]
as the distance function d defined in equation 1.8.2, i.e. for each p, ¢ € X,

L 0 p - q
dx(p, q) := {Q—m(nq) otherwise

where m(p,q) := Inf{k € N | p(k) # q(k)} (here p(k) and q(k) are m(p) and mx(q),
respectively). By lemma 1.8.14 dx is an ultrametric and consequently the set X with

the map dx forms an 1-bounded ultrametric space. Moreover, by the same strategy
used in lemma 1.8.16 we can prove that (X, dx) is a complete ultrametric space. In
fact, we can see that every Cauchy sequence (gn)neny in X converges to the sequence
q := (qn,, (n))nen, where the natural number M, is the smallest element in N satisfying
equation 1.8.4. Note that ¢ is an element in X. To see this we need to check that
fin(anr, (n)) = qu, (k) for all & < n. So, let n € N be a fixed element. Since qpr, € X,
we have fr, (g, (n)) = qu, (k) for all k < n. Also due to equation 1.8.8 in lemma 1.8.16
we have qu, (k) = q(k) = qur, (k) for all & < n.
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Example 2.6.5. (Inverse limits in TOp) If ({(XivTi)}iEI; {fU : Xj — Xi}igjel)
is an inverse system in the category Top, then the set X mentioned in equation 2.6.1
(X is a particular subset of the cartesian product [[X; of the underlying sets) with the
i€l

initial topology generated by the projection maps {m; : X — X; | ¢ € I} is known as an
inverse limit of this system in Top. One can check this issue by the same way done for
the product in T'op (see example 2.5.5).

Then one can say that the inverse limits in the category Top are given by placing the
initial topology generated by projections on the underlying set-theoretic inverse limit.

Lemma 2.6.6. [00] If ({(Xi,7)}ier, {fij + Xj — Xiti<jer) is an inverse system of

Hausdorff topological spaces, then its inverse limit (i.e., (Xi, 7)) is a closed in [[X;

lim
i€l

(with respect to the product topology).
Proof. Let (x;)ier € i];[IXi — (M

fsr(zr) # x5. Choose open disjoint neighborhoods U and V of fg.(x,) and zs in X,

respectively. Let U’ be an open neighborhood of z, in X,, such that fs.(U") C U.

Consider the open subset W = [[V; of [[X; where V, = U’, V;, =V and V; = X; for
X’iv

(Xi,7)). Then there exist 7, s € I with s < r and

icl icl
i #r, s. Then W is a open neighborhood of (x;);cr in [[X;, disjoint from @(

Ti)-
el
O

This shows that [im (X, 1) is closed.

Lemma 2.6.7. [00] Let ({(Xs,7)}ier, {fij + X; — Xi}i<jer) be an inverse system
of non-empty compact Hausdorff spaces over the directed set I. Then its inverse limit
(i.e., M (X, 7)) is non-empty. In particular, the inverse limit of an inverse system of
non-empty finite sets is non-empty.

Proof. For each j € I, define a subset Y; of [[X; to consist of those (x;);c; with the
i€l
property fij(z;) = x; whenever ¢ < j. Using the axiom of choice and an argument
similar to the one used in lemma 2.6.6, one easily checks that each Y; is a non-empty
closed subset of []X;. Observe that if j < j, then Yy CY;. Now, since I is a directed
el
poset, it follows that the collection of subsets {Y; | j € I} has the finite intersection
property (i.e., any intersection of finitely many Y; is nonempty). Then since [[X; is

iel
a compact space (see Tychonoff’s theorem), we conclude that (Y} is nonempty (by
Jel

theorem 1.6.4). Notice that

(Y; = {(zi)ier € HXi | fij(zj) = z; for all i < j}.

jer il
Then [im (X;, 7) = ﬂIYJ (see example 2.6.5), and we obtain the desired result. O

je
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2.7. Equalizers and coequalizers

The notions of equalizers and coequalizers are only meaningful for morphisms with same
domain and codomain (or parallel morphisms). The category theoretical definitions are
formulated for a whole family of parallel morphisms:

Definition 2.7.1. (Equalizer) Let {f; : A — B};cs be afamily of parallel morphisms.
A morphism e : E — A is an equalizer of the family {f;}icr, provided that

o fioe= fjoeforalli, jecI, and

e for each object @ and for each morphism ¢ : Q — A such that f;0q = fjoq holds
for all ¢, j € I, there is precisely one h : ) — E with ¢ =eo h.

fi
E—~~A" B
A/ fi
q J
Jhl
\

Q

Some authors call ¢ : Q@ — A a competitor to the real equalizer. If an equalizer for
the family {f; : A — B}y exists, then it is unique up to isomorphisms. It is easy to
see that equalizers must be mono, for given morphisms hy, hy with e o hy = e 0 ho we
get a conflict with the uniqueness condition of the above definition (i.e, uniqueness of h),
unless h1 = hs.

Definition 2.7.2. (Coequalizer) Let {f; : A — B};cs be a family of parallel mor-
phisms. A morphism g : B — C is a coequalizer of the family {f;}icsr, provided
that

e gofi=go fjforalli, jel, and

e for each object @ and for each morphism ¢ : B — @ such that go f; = go f; holds
for all ¢, j € I, there is precisely one h: C' — Q with g=hog.

Some authors call ¢ : B — ) as competitor to the real coequalizer. If a coequalizer for
the family {f; : A — B}er exists, then it is unique up to isomorphisms. By invoking
duality, we obtain that in any category C, coequalizers are epi.
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Example 2.7.3. (Equalizer and coequalizer in Set) ( [3], chapter II, section 7)
Given a family of maps {f; : X — Y}ier in Set. Their equalizer is given by the
inclusion map ¢ : E — X, where E = {z € X | Vi, j € I, fi(x) = fj(x)}. To construct
coequalizer of the family {f; : X — Y}ier, let 6 be the equivalence relation on Y
generated by the set of pairs

R :={(fi(x), fj(z)) | v € X, 4,j € I}. (2.7.1)
The factor projection map mg : Y — Y/o defined as my(y) = [y]g is a coequalizer of the
{fi}icr. Obviously, for all i, j € I we have mpo f; =mpo f;. Let ¢ : Y — Z be a map
such that go f; = qo fj for all 4,j € I. Consequently 6 C kerq. So by 2.3.1, there is a
unique map h : Y/9 — Z such that homy = q.

Example 2.7.4. (Equalizer and coequalizer in Top) ( [3], chapter I, section 7) An
equalizer of a family of parallel morphisms in Top is given by considering the subspace
topology on the set theoretical equalizer. More precisely, let {f; : X — Y},cr be a
family of continuous maps between topological spaces. Their equalizer is the inclusion
map ¢ : E — X, where E is the set {z € X | Vi,j € I, fi(z) = fj(x)} with the
subspace topology generated by ¢. To see this, let e : Q — X be a continuous map such
that foe = fjoe (i, j € I), then since ¢ is an equalizer of {f; : X — Y}icr in Set,
there is a unique map f : Q — FE such that ¢ o f = e. To prove the continuity of f, it
suffices to show that for each open subset U of X, the set f~H(UNE) = f~1(.=1(U)) is
open in @ (because E is a subspace of X). Notice that by the continuity of e we know
that e=}(U) (where U is a subset of X) is open in Q. So from f~1(.=1(U)) = e~ }(U),
we obtain that for each open subset U of X, the set f~1(:~1(U)) is open in Q.

Dually, the coequalizer is defined by considering the final topology on the Set theoretic
coequalizer. To construct coequalizer of a family of continuous maps {f; : X — Y }ier,
let 6 be the equivalence relation on Y generated by the set of pairs defined in equation
2.7.1. The factor projection map 7y : Y — Y /o defined as m(y) = [ylp is a continuous
map by equipping Y/¢ with the final topology generated by mg. Obviously, for all 4, j € T
we have mpo f; = mgo fj. If ¢ :' Y — Z is a continuous map with go f; = qo f;,
then 6 C kerq. So by the diagram lemma, there is a unique map h : Y/¢ — Z such
that h o mg = q. Now to check the continuity of h, suppose U is an open subset of Z.
Since q is continuous, it is concluded that the set ¢~!(U) is an open subset of Y. Then
7, L(h1(U)) is open in Y (by 7, (k"' (U)) = ¢"}(U)). Now, since Y/o carries the final
topology generated by mp, we obtain that h=!(U) is open in Y/o. So h: Y/o — Z is
continuous and consequently is a coequalizer of the family {f; : X — Y }ier in Top.

2.8. Pullbacks and Pushouts

Definition 2.8.1. (Pullback) Let {f;: A; — B};cr be a sink. An object P together
with a family of morphisms {p; : P — A, };c; is called a pullback of the family {f;}icr,
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provided that
o Vi,jel. fiop;= fjop;, and

e to each other object @, with source {¢; : Q@ — A;}ier satisfying fioq = fjoq;
(for all 4, j € I), there exists a unique morphism h : Q — P with p; o h = ¢; for
all i € I.

fi

fj

Some authors call (@, {¢; : @ — Ai}ier) as competitor to the real pullback. If a
pullback for a sink (f; : A; — B);e exists, then it is unique up to isomorphisms.

Definition 2.8.2. (Pushout) Let {f; : A — B;};cs be asource. An object P together
with a family of morphisms {p; : B; — P};cs is called a pushout of the family { f; }ier,
provided that

o Vi,jel. piofi=pjof;,and

e to each other object @ with sink {¢; : B; — Q}cy satisfying ¢; o f; = gjo f; for all
1, j € I, there exists a unique morphism h: P — Q) with hop; = ¢; for all i € 1.
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Some authors call (@, {g; : Bi — Q}icr) as competitor to the real pushout. If a pushout
for a source {f; : A — B }icr exists, then it is unique up to isomorphisms.

Example 2.8.3. (Pullbacks and Pushouts in Set) ( [3], chapter III, section 11) Let

{fi : Xi — Y}icr be a sink in Set. Let P := [[X; with the projections m; : P — X
el
be the product of the family {X;};,c;. The pullback of the family {f;}ics is constructed
by the equalizer of the maps {f; o m; };cs that is the inclusion map ¢ : Pb — P where
Pb = {(:Ui)iel epP ’ Vi, ] € I, fz(:L’Z) = fj(xj)} (2.8.1)
More clearly, the set Pb with the family of morphisms {m; o ¢t};cr is a pullback of the
family { fi}icr. To see this, let {g; : Q — X;}icr be a source satisfying fjoq; = f;o04q; for
each i, 7 € I. Then @ with the family {¢; };cs is a competitor for the product P. So there
is a unique morphism k : Q — P such that m;0k = ¢; for each i € I. Then for each i € I
we have f; om0k = f; 0q;. So for each i, j € I we conclude that f,omok = fjomjok
(because fjoq; = fjoq;). Therefore, k : Q — P is a competitor for the equalizer
t: Pb— P in Set. Then there is a unique map h : @ — Pb such that coh =k. So h
is a unique map with m;0toh =m; 0 k = g; for each 7 € I.
Dually, if {f; : X — Y;}ier is a family of morphisms in Set, then their pushout is
obtained as the coequalizer of the family {e; o f;};cr, where {e; : Y; — S}ics are the
canonical injections to the sum S of the family {Y;}ies.

Example 2.8.4. (Pullback and pushouts in Top) A pullback of a sink in Top is
given by considering the initial topology on the set theoretical pullback. More clearly, let
{fi : Xi — Y}ier be a family of continuous maps. Let the pair (X, {p; : X — X, }ier)
be a pullback of the underlying sink of {f;}ic; in Set (the sink obtained by forgetting
topologies on domains and codomain). By the previous example (X, {p; : X — X, }ier)
exists. We claim that the set X with the initial topology generated by the source {p;}icr
is a pullback of the sink {f;}icr in Top. Let the topological space @ with the continuous
morphisms {g; : Q@ — X;}icr be a competitor. Then f; 0 ¢ = fj oq; for each i, j € I.
Since (X, {pi : X — X, }icr) is a pullback of the underlying sink in Set, there is exactly
a unique function k£ : Q — X such that p; o k = ¢; for each ¢ € I. It remains to shoe
that k is continuous. Notice that by example 1.4.6, the set {p; "(U;) | i € I, U; C X;}

open

is a subbase for the initial topology on X. So, according to remark 1.3.3, to shpow the
continuity of k, it is enough to check that kil(pi_l(Ui)) is an open subset of ), where i € [
and Uj; is an open subset of X;. Due to the continuity of g;, for each open subset U; C X,
the set qi_l(Ui) is an open subset of ). Hence by the equality kil(p;I(Ui)) = ql-_l(UZ-)
(i € I), we conclude that &k : Q — X is continuous.

Dually, the pushout is defined by considering the final topology on the Set theoretic
pushout (see also [3], chapter 111, section 11).
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2.9. Regular morphisms

Definition 2.9.1. In every category C, a morphism is called regular monomorphism
(or regular mono) if it is an equalizer of a pair of parallel morphisms and regular epimorphism
(or regular epi) if it is a coequalizer.

Example 2.9.2. ( [3], chapter II, section 7) In Set,

1. the regular monomorphisms are the injective functions, i.e. they are (up to isomor-
phism) exactly the inclusions of subsets, and

2. the regular epimorphisms are the surjective functions.

Lemma 2.9.3. ( [9], chapter II, section 7) In Top,

1. the regular monomorphisms are (up to isomorphism) precisely the topological em-
beddings (subspace inclusion).

2. the regular epimorphisms are (up to isomorphism) precisely the quotient maps
(surjective and continuous maps onto spaces with the final topology).

Proof. Suppose f: A — B is a continuous map.

1. Let f : A — B be a topological embedding. Suppose {0,1} carries indiscrete
topology. Consider function ¢g; and go from B to {0,1} such that g; maps every
point of B to 1 and go maps just points of A to 1 and the rest to 0. Then f is
an equalizer of g1 and gy (because A is the equalizer of g1 and gy in Set with the
initial topology on its domain). So every topological embedding in Top is a regular
mono. Conversely, if f: A — B is a regular mono in Top, according to example
2.7.4 it is up to isomorphisms an topological embedding.

2. Let f: A — B be a surjective and continuous map in which the topological space
B carries the final topology generated by f. Provide

ker f ={(a,a’) € Ax A | f(a) = f(d')}

with the initial topology generated by the projection maps from ker f to A. Then
the projection maps from my, o : ker f — A are continuous maps such that
fom = foms. On the other hand, according to example 2.7.4, the quotient map
g : A — Alker f is a coequalizer of 71, . Then there is a unique continuous
morphism h : A/ker f — B such that homg = f. It is easy see that h is a bijective
map. Then h is an isomorphism in T'op. The other direction obtains by the con-
struction of coequalizers on Top (see example 2.7.4).
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O]

Remark 2.9.4. Notice that in every category, regular monos are monos (because equal-
izers are mono) and regular epis are epis (because coequalizers are epi). However, in
general not every mono is a regular mono and not every epi is a regular epi. For example
the identity function id4 : Ap — Ay is both mono and epi in Top whereas it is neither
regular mono nor regular epi.

Remark 2.9.5. In every category, each retraction is a regular epimorphism (let the mor-
phism f : A — B be aretraction with a right inverse r : B — A, then f is a coequalizer
of ro f and id4). Dually, in every category, sections are regular monomorphisms.

2.10. Mono sources and epi sinks

Recall that a source is a family of morphisms with common domain and a sink is a family
of morphisms with common codomain.

Definition 2.10.1. (Mono source) A source {f; : A — B;}ier in a category C is

called mono source provided that it can be cancelled from the left, i.e. for any pair
S

C A of morphisms, if f; or = f; o s for each i € I, then we have r = s.
T

Example 2.10.2. ( [3], chapter III, section 10) Let C be a category with products, and
let {A;}icr be a family of objects in C. If P with the family {m; : P — A;}icr is a
product of {A;}ier in C, then {m;}icr is a mono source in C.

Remark 2.10.3. ( [3], chapter III, section 10) In Set and Top, mono sources are precisely
point-separating sources, i.e., a source {f; : A — B;}icr is a mono source if for every
two different elements a and o’ in A there exists some i € I with f;(a) # fi(d).

Lemma 2.10.4. ( [3], chapter III, section 10) Given mono sources {f; : A — B;}icr
and {f! : A" — B;}ier and morphisms f : A — A’ and g : S — A in a category C,
then

1. if g: S — A is mono, then {f; o g}ier is a mono source, and

2. if flo f = f; (for each i € I), then f is mono.
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Definition 2.10.5. (Epi sink) A sink {f;: A; — B};cs in a category C is called epi
S
sink provided that it can be cancelled from the right, i.e. for any pair B D of
—

morphisms, if r o f; = s o f; for each i € I, then we have r = s.

Example 2.10.6. ( [3], chapter III, section 10) Let C be a category with sums, and let
{A;}ier be a family of objects in C. If S with the family {e; : A; — S}ier is a sum of
the family {A;}ier in C, then {e;}ier is an epi sink in C.

Remark 2.10.7. ( [3], chapter III, section 10) In Set and Top, epi sinks are precisely jointly

surjective sinks, i.e. a sink {f; : A; — B}ier is an epi sink if and only if B = (J f;(4).
el

Lemma 2.10.8. ( [9], chapter 111, section 10) Given epi sinks {f; : Ai — Blier and
{fl+ A; — B'}icr and morphisms f : B — B’ and g : B — C' in a category C, then

1. if g: B— C is epi, then {g o f;}ics is an epi sink, and

2. if fio f = f! (for each i € I), then f is epi.

2.11. Factorization systems

Before starting, we should mention that all concepts in this subsection are originally from
section 14 of chapter IV in [3].

Definition 2.11.1. Let £ and M be classes of morphisms in a category C. Then (£, M)
is called a factorization system for morphisms in C and C is called (€, M)-category,
provided that:

1. each of £ and M is closed under composition,

2. C has (€, M) -factorization of morphisms, i.e. each morphism f in C has a factor-
ization f =moe, with e € E and m € M, and

3. C has the unique (£, M) -diagonalization property, i.e. for each commutative
square
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A—=B
f g

with e € £ and m € M, there exists a unique diagonal, i.e. a unique morphism d such
that the following diagram commutes,

A—°s>B
! % g

(i.e., doe = f and mod = g). In this case, we call the morphisms e and m orthogonal
and we write e L m.
The morphisms in £ are called £-morphisms and those in M are called M-morphisms.

Remark 2.11.2. Let f can be factored as f = moe where e € £ and m € M. Then moe
is said to be an (€, M)-factorization of f.

Theorem 2.11.3. ( [3], chapter IV, section 14) Let C be an (£, M)-category. The
following facts on factorization systems are well known and we omit their proofs.

1. If a morphism f can be factored as f = m o e where e € £ and m € M, then this
factorization is unique up to isomorphism.

2. ENM = Iso, where Iso is the class of isomorphisms in the corresponding category.
3. The classes £ and M are determined one by the other, in the sense that & is
exactly the class of morphisms which are orthogonal to every M-morphisms and

M is exactly the class of morphisms which are orthogonal to every £-morphism.

4. If foge M and f € M, then g € M.

Lemma 2.11.4. [21] In every category C,

1. if e is epi and m regular mono, alternatively, if e is regular epi and m mono then
e L m, and

2. if amorphism f can be factored as f = moe where e is epi (resp. regular epi) and m
is regular mono (resp. mono), then this factorization is unique up to isomorphism.
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Proof. (1) Assume that there are f and g with foe = mog and that m is regular mono,
i.e. the equalizer of some pair p1, ps. Then pjomog = poomog hence p1o foe = pyo foe,
too. As e is epi, it follows py o f = pao f, which reveals f as a competitor to the equalizer
m. This yields a unique map d with mod = f. Then modoe = foe=mog. Since m
is mono, we have d o e = g. The rest follows by duality.

(2) Let m; o e; be an (epi, regular mono)-factorization of f : A — B, for i € {1,2}.
By the definition of factorization system there are unique diagonals d : C; — C5 and
d' : Cy — C such that the diagram below is commutative for both d and d'.

A2

A

02 W‘ B
Also, by the third property of factorization system, d o d’' = idc, and d' od = idc,. O

Example 2.11.5. ( [3], chapter IV, section 14) The category Set is an (epi, mono)-
category. Recall that in Set every function f : A — B can be factored through its
image, i.e. the following diagram commutes,

N A

im f

B (2.11.1)

where e : A — im f is the codomain-restriction of f and m : im f — B is the inclusion
map.

Example 2.11.6. ( |3], chapter IV, section 14) In Top, the pair (£, M) with £ = epis
and M = mono can not be considered as a factorization system (because the intersection
of the classes of the epis and monos is not a subclass of isomorphisms). However, by
factoring each continuous function f : A — B through its image (see diagram 2.11.1),
we will obtain two factorization systems for the category Top as follows:

e if we equip im f with the subspace topology generated by m, then according to
remarks 2.2.11 and 1.4.3 and lemma 2.11.4, the pair (£, M) where £ = epis and
M = regular monos is a factorization system in Top, and

e in the case that im f carries the quotient topology generated by e, then by remarks
2.2.11 and 1.4.8 and lemma 2.11.4, the pair (£, M) with €& = regular epis and
M = mono is a factorization system in Top.
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Lemma 2.11.7. In Top, the pair (£, M), where M is the class of closed embeddings,
and & is the class of dense functions, is a factorization system.

Proof. Notice that

e every continuous map can be factored through the closure of its image, i.e. written

as ALy B=4-% im f & B where e : A —» im f is the codomain-restriction
of f and m : im f — B is the topological embedding,

e the class of dense functions is closed under composition (lemma 1.2.2), and
e by corollary 1.4.5, the class of closed embeddings is closed under composition.

Regarding the condition (3) of definition 2.11.1, let e : A — B be a dense function and
m : C — D an closed embedding. Assume that there are f and g with foe=mog.
Since m is regular mono (see lemma 2.9.3), it is an equalizer of some pair p1, p2 i.e.,
prom =pyom. Then piomog=pyomog and hence pyo foe=pyo foe, too. This
means py o f(b) = pa o f(b) for each b € e(A). We claim that p; o f(e(A)) = pao f(e(A))
for each b € B. To see this, assume b is an arbitrary element in B — e(A). Since e is
a dense function, e(A) = B. Then we can find a net ¢ in A such that the net e o ¢
converges to b. Since f is continuous, the net f o e o1 converges to f(b). Then the net
mo got converges to f(b). It means f(b) is in the closure of the image of m. Then f(b)
is in the image of m (since m is a closed embedding, its image is a closed subset of its
codomain). So p1(f(b)) = p2(f(b)) (becausem is an equalizer of p1, p2). Therefore we
conclude that pi(f(b)) = p2(f(b)) for each b € B. It means p; o f = pg o f which reveals
f as a competitor to the equalizer m. This yields a unique map d with mod = f. Then
modoe= foe=mog. Since m is mono, we have doe = g (see [3], chapter 14). [

Remark 2.11.8. Take £ as the class of dense functions and M as the class of closed
embeddings. Note that the pair (£, M) is a factorization system in Top where £ does
not consist of epimorphisms (i.e., & € epis). The reason is that: in Top there are dense
functions that are not epi. As an example, consider the function f as the constant
function from the indiscrete space {0,1} to itself with value 1. Clearly, f is a dense
function whereas it is not epi.

Definition 2.11.9. (M-Image and £-coimage of a morphism) Suppose C is a
(€, M)-category and f : A — B is a morphism in C. By factoring f in the factorization
system (€, M) we have a diagram as follows:

RN

E
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The M-morphism m : E — B and the £-morphism e : A — E are called M-image of
and E-coimage of f, respectively (see [54]).

2.12. M-subobjects and M-union

Let C be a (£, M)—category and let m; : M; — X and mg : My — X be two
M—morphisms in C. We write m; C meo, if there is a morphism f : M; — My with
my = mgo f. We say that mj and mq are equivalent (in symbol: mj ~ mg) iff mq C meo
and mo C my. An M- subobject of an object X in C is an equivalence class of some M-
morphism m : M — X. We usually identify the equivalence class of an M- morphism

m: M — X with m itself, as an abuse of language, (for more details, see [5] or section
5.1 in [7]).

Definition 2.12.1. (M-well powered category) A category C is said to be M-well
powered, if for each object A in C, the collection of M- subobjects of A is a set.

Definition 2.12.2. Let A be an object in an M-well powered category C. The M-union
of a family {m; : S; — A};cr of M- subobjects of A is an M- subobject m : S — A
satisfying two conditions as follows:

1. m; Cm, forallie I, and
2. m C m’ for any M- subobject m’ : S’ — A with m; C m/ (for all i € T),

see [H4].

The following theorem gives us a construction of M-unions. This construction will be
often used in part 3 of this work:

Theorem 2.12.3. [5/] Let C be a category with (£, M)—factorization system and co-
products and let C be M-well powered. Suppose {m; : S; — Aticr is a family of M-
subobjects of A. If the object S with morphisms {e; : S; — S}icr is the sum of the 0b-
jects {Si}tier in C, then the M-union of the family {m;};cr exists and it is the M-image
of the unique morphism q: S — A with m; = qoe;.
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Lemma 2.12.4. Let C be a category with (£, M)—factorization system and coproducts
and let C be M-well powered. Given C-morphisms f, g: A — B. If {m; : S; — A}icr
is a sink of M-morphisms in C such that fom; = gom; (for eachi € I), then fom = gom
where m : E — A is the M-union of {m;}icr.

Proof. Let the object S with morphisms {e; : S; — S}ier be the sum of the objects
{Si}ier in C. Then according to theorem 2.12.3, the morphism m : E — A (i.e., M-
union of collection {m;};cr) is the M-image of the unique morphism ¢ : S — A in the
following commutative diagram.

m;
/_\ f
S;—=8 : AT B

. g
m
E
If fom; =gom; (for each ¢ € I), then we have
fomoeoe; = fogoe
= fom
= gomy
= gogoeg

= gOmO@OCZ‘

Since {e o e;};er is an epi sink, it is concluded that fom = gom.

2.13. Exponential objects

Definition 2.13.1. Let C be a category with binary products and let X' and Z be objects
of C. An object Z% together with a morphism

ev: Z¥x YN — 7

is an exponential object (for two objects Z and %), if for any object X and each morphism
g: X x XY — Z there is a unique morphism

X

lkg

ZE
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such that the following diagram commutes:

X x X
g

)\gXidz\L
Z¥x Y —=7
Here is some terminology:

o ev: 7% x ¥ — 7 is called evaluation map, and

e \g: X — Z* is called the curried form of g.

Example 2.13.2. In the category Set, the exponential object Z* (for two sets Z and
) is the set of all functions from ¥ to Z (i.e., Z> := Homge (X, Z)). The evaluation
map ev : (Z* x ¥) — Z is just a map sending a pair (f, y) to f(y) for each f € Z*
and y € X, (for more details see section 6.1 in [7]). For every map g : (X x X) — Z,
the morphism \g : X — Z* called the curried form of g is defined by

Ag(7)(y) = g(=,y).

Definition 2.13.3. A category C is called cartesian closed if

e products of every finite families of objects exists, and

e for every two objects Z and ¥ in C, there is the exponential object Z*.

Example 2.13.4. [7] According to the examples 2.5.3 and 2.13.2, the category Set is a
cartesian closed category.

Example 2.13.5. [12] The category CUM" is a cartesian closed category. The ex-
ponential object AP (for two complete ultrametric spaces A and B), has the set of
non-expansive functions from B to A as the underlying set, and the metric d defined by
d(f,g) = sup{dp(f(z),g9(x)) | * € A} as distance function (for more details see [12]
and [67]).
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2.14. Exponential objects in Top

Definition 2.14.1. (Compact-open topology) Let ¥ and Z be two topological
spaces, and let Z> denotes the set of all continuous maps from ¥ to Z. Given a compact
subset K of ¥ and an open subset U of Z, let [K, U] be the set of all continuous functions
f € Z% such that f(K) C U. Then the collection of all such [K, U] forms a subbase for

the compact-open topology on Z>.

In the category of topological spaces, the exponential object Z* (for two topological
spaces Z and X)) exists provided that ¥ is a locally compact space. In that case, the space
Z% is the set of all continuous functions from ¥ to Z together with the compact-open
topology. The evaluation map is defined the same as this map in the category of Set.

Lemma 2.14.2. ( [10], chapter 7) Let ¥ be a locally compact space and Z be an arbitrary
space. Let Z% be the set of all continuous maps from ¥ to Z equipped with the compact-
open topology. Then the map ev : Z> x ¥ — Z defined as ev(f,y) = f(y) (for each
f€Z% and y € X) is continuous.

Proof. Let U be an open subset of Z. By the definition of ev,

e NU)={(f.9) |y e [TIU), feZ% ye X}
It is enough to show that the set ev=!(U) is open. It means we need to show that every
element (f,y) in ev~}(U) is an interior point of ev=*(U). Fix (f,y) € ev™1(U). Then
since f~1(U) is an open neighborhood of y € X and since X is a locally compact space,
there is a compact neighborhood K, C X such that y € K, C f~1(U). Since K, C ¥
is a neighborhood of y, it contains an open subset V,, such that y € V,, C K, C f~HU).
So, f(y) € f(V,) C f(K,) C U. Consequently (f,y) € [K,,U] x V,. Now, it suffices to
show that ([Ky, U] x V) C ev }(U). Let = € [Ky, U] x V,,. Thus, there exist ¢ € [K, U]
and d € V,, with = (e,d). Since, d € V, C K, and ¢ € [K,,U], we have ¢(d) € U.

open

Therefore, z = (¢,d) € ev™}(U). O

Corollary 2.14.3. Let X be a locally compact space and Z be an arbitrary space. Then
the pair (Z%,ev : Z> x ¥ — Z) where Z* is the set of all continuous maps from ¥
to Z equipped with the compact-open topology and ev : Z¥ x ¥ — Z is defined as
ev(f,y) = f(y), (for each f € Z* and y € ), is an exponential object in Top.

If ¥ is not locally compact, the exponential object might not exist (the space Z> still
exists, but it may fail to be an exponential object since the evaluation function ev need
not be continuous). As an example, if ¥ is Q and Z is the closed interval [0,1] in R,
the evaluation map ev : Z>= x ¥ — Z is not continuous (see chapter 7 in [16], for more
details). For this reason the category of topological spaces fails to be cartesian closed.
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2.15. Functors

Functors relate different categories. If we consider categories as structured objects, then
functors can be considered as morphisms between them that preserve their structure.

Definition 2.15.1. (Covariant functor) Let C and D be categories. A covariant
functor F' from C to D (in symbol: F': C — D) associates:

e to each object A € C an object F(A) € D,

e to each morphism f: A — B in C, a morphism F'f : FA — FB in D such that
the following identities hold:

F(ida) = idpa,
F(fog) = FfolFg.

The covariant functors are simply called functors. An endofunctor is a functor whose
domain and codomain are equal. If F'is an endofunctor over a category C (i.e., F: C —
C), then it is called a C-endofunctor.

Remark 2.15.2. ( [3], chapter I, section 3) Notice that

1. by definition, a functor behaves like a pair of maps. The first one (called the
object-map) is defined between objects and the second one between morphisms,
and

2. since a category may have a proper class of objects and a proper class of morphisms
between them, the domains of functors may be proper classes. So they are not really
“maps”. However, we are writing F': C — D.

Example 2.15.3. ( [3], chapter I, section 3) In any category C,
1. there is the identity functor idc : C — C (or (—)¢ : C — C, if necessary)
defined by idc(f: A— B) = A i> B, and
2. for any object C' € C, there is the constant functor C :C — C with value C,
defined by C(f : A — B) :C’Zd—c>C.

Example 2.15.4. ( [3], chapter I, section 3) The discrete functor D : Set — Top
!
(resp. indiscrete functor I : Set — Top) is defined by D(f : A— B) = Ap — Bp
f
(resp. I(f: A— B)=Ar — By).
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Example 2.15.5. (Power functor) If C has product, for any set X, there is the

power functor (—)*:C — C which associates to each object A € C the object [] A

IS
(i.e., ¥-fold product of A in C), and to each morphism f : A — B the obvious morphism
[ with 78 o f¥ = 7/ for each i € ¥ (7P and 7! are canonical projections).

Example 2.15.6. (Covariant Homg.; functor) ( [3], chapter I, section 3) Let X be
a fixed set, the construction F'(—) := Homge (X, —) which associates to each set X the
set of all maps from X to X and to each morphism f: X — Y the map

F(f): Homge (X, X) — Homge(2,Y)

defined by (F'f)(0) := fod, is an endofunctor on the category Set.

Example 2.15.7. Let X be an arbitrary set and n € N be a fixed element in N. The
distance function dX : X x X — [0,1] defined by

27" afx#y
dy (z, y) = .
0 ife=uy.
is an ultrametric. A sequence (x;);ey in (X,dX) is Cauchy iff

3IM € N.Vi > M. dX (x;, zi41) = 0.

and consequently (X,d:X) is a complete 1-bounded ultrametric space. We can easily see
that each map f : X — Y is a non-expansive map from (X,d¥) to (Y,dY). Then, for
each n € N, the construction D,, : Set — CUM?" defined by

Du(f: X — V) = (X,d¥) L5 (v,d))

is a functor from Set to CUM!.

Lemma 2.15.8. Suppose Ci and Cy are categories with sums and products. Let F,
Fy : C1 — Cq be functors, then so are Fy + Fy, F1 X Fy and Fy o Fs if for an arbitrary
object X and an arbitrary Ci-morphism f: X — Y we define:

o (F1o ) (X) = Fi(F2(X)) and (F1 o F2)(f) :== Fi(Fa(f)),
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o (F1 X F»)(X) := F1(X) x Fo(X) and (Fy x F3)(f) := q where q is the unique

morphism in the following commutative diagram

Fi(f)

Fi(X) Fi(Y) (2.15.1)
ﬂFl(X>T TWFI(Y)
1 1
3!
Fi(X) x Fy(X) —% Fi(Y) x Fy(Y)
WF2(X>i lezm
2 2
Fy(f
B(xX) — L By(y)

o (F1 + ) (X) = Fi(X) 4+ F»(X) and (Fy + F)(f) := r where r is the unique
morphism in the following commutative diagram

X)) — L py) (2.15.2)

efl(X)i lelﬂm

Fi(X) + Fa(X) 22> Fi(Y) + Fy(Y)

e;%(X)T T%Fgm

F(f)
Fy(X) - Fy(Y)

Proof. Let Iy, Fr : C; — Cy be functors. We prove that Fy 4+ Fb is also a functor from

C; to Ca. We need to show that the following equalities hold (see definition 2.15.1):

° (Fl + Fg)(idx> = id(F1+F2)(X)7 and
o (F1+ F2)(gof)=(F1+ F2)(g) o (F1 + F2)(f).

To prove the first equality, in diagram 2.15.2 replace the morphism f by idx. Clearly,
. . . . Fi(X) Fi(X) .
idF (x)4+m(x) 18 the unique map such that idp (x)4+myx) © €; =e; o idp,(x) for

each 7 € {1,2}. Hence (Fl + Fg)(idx) = idFl(X)—&-Fg(X) = id(F1+F2)(X)‘
To prove the second one, consider the following diagram

Fi(f) Fi(g)

Fi(X) Fi(Y) Fi(Z) (2.15.3)
eFl(X)l \Lefﬁ(y) ieFl(Z)
1 1 1
P (X) + B(X) 2> F(Y) + B(Y) 22 F(2) + R(2)
eFQ(X)T TeFQ(Y) TeFQ(Z)
2 2 2
Fy(X) : Fy(Y) — Fy(Z)

where h (resp. r) is the unique morphism which makes the right (resp. the left) rectangle
of diagram 2.15.3 in to a commutative diagram. Then we have (F} + F3)(g) = h (resp.
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(F1 + F)(f) = r). Tt is easy to see that h o r is the unique morphism which makes
diagram 2.15.3 commutative. Since {€Z-Fi(X)}Z'€{Lg} is an epi sink, the morphism h o 7 is
unique. Then we have

(F1+ F)(gof) =hor= (F1+F2)(g)o (F1+ F)(f).

By using a similar strategy for diagram 2.15.1, we can prove that F} x F5 is also a functor
from C; to Cs. ]

Definition 2.15.9. (Polynomial functor) [30] Let C be a category with sums and
products. The class of polynomial functors over C is inductively defined as follows:

Fu=Clide | L+ Fy | Fp x Fy | FP

Here idc is the identity functor on the category C. C denotes the constant functor (for an
arbitrary object C). + and x are sum and product in C, respectively; and for every set
D, we consider F” as the functor sending an object X to the D-fold product (F(X))? in
C (i.e FP := (=)P o I, the composition of the functor F' and the power functor (—)Pon
C).

Example 2.15.10. For fixed sets C and D, the functor F/(—) := C'x (—)? (i.e., the prod-
uct of the constant functor C' with the power functor (—)”) is a type of the polynomial
functor on Set.

Concrete category

Generally speaking, a category C is called concrete if its objects are sets with some
additional structure, and the arrows are structure preserving maps between those objects
such that

e id4 is the identity map on the base set of A, and
e composition of arrows is function composition.

To have a categorical definition of concrete categories we need to define faithful functors
as follows:

Definition 2.15.11. Let F': C — D be a functor. F' is called faithful provided that
for all A, B € C, the map

Fa p:Homc(A, B) — Homp(FA, FB)

defined by f —— F(f) is injective. Similarly, F'is full if Fy p is always surjective.
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Now we give a categorical definition of the concrete categories used in this work:

Definition 2.15.12. (Concrete category) A category C is a concrete category if there
is a faithful functor U : C — Set. Sometimes U is called forgetful (or underlying) func-
tor of the category C and the category Set is called the base category.

Example 2.15.13. The category Top with the forgetful functor U : Top — Set which
associates each topological space (X, 7) to its underlying set X and each continuous map
f X — Y to the same morphism in Set is a concrete category. In fact all categories
mentioned in example 2.1.3 are concrete categories.

Remark 2.15.14. Let C be a concrete category and U : C — Set be the forgetful functor
of C, then each case U(A) is the underlying set of the object A € C, and U(f) is the
underlying function of the morphism f.

Remark 2.15.15. If the categories C; and Co mentioned in lemma 2.15.8 are concrete
categories with sums and products, then for an arbitrary object X and an arbitrary
morphism f: X — Y we define the functors Fy + Fb, I} X F5 and F} o F5 as follows:

o (F1oFp)(X) = Fi(Fy(X)) and (F1 o Fy)(f) :== Fi(Fa(f)),

o (F1 x F)(X) = F1(X) x F5(X) and (F1 x F)(f)(2,y) :== (F1(f)(2), F2(f)(v)),
o (F1+ Fy)(X) := Fi(X) + F3(X) and

(F1(f)(w) ifue Fi(X)

(F1+ F)(f)(u) := {(Fg(f))(u) ifue Fy(X).

Contravariant functors

Definition 2.15.16. (Contravariant functor) A contravariant functor F' from a cat-
egory C to a category D is simply a functor F' : C — D. It means F' associates each
object X of C to an object F(X) of D and each C-morphism f : X — Y to a D-
morphism Ff : F(Y) — F(X) so that F(idx) = idp(x) and F(fog) = Fgo Ff.
Obviously, the composition of two contravariant functors yields a covariant functor.

Example 2.15.17. (Contravariant Homg. functor) ([3], chapter I, section 3) Given
a fixed set C, the set of all maps to C yields a contravariant functor F'(—) := Homge(—, C).
For each map f : X — Y, the morphism F(f) : Homget(Y,C) — Homge (X, C) sends
eachd:Y — Ctodof: X — C.
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2.16. More functors on Set

Example 2.16.1. ( [3], chapter I, section 3) The powerset functor P associates to
each set X the set P(X) of all subsets of X. To map f: X — Y between arbitrary sets
X and Y we associate the image map P(f) : P(X) — P(Y) with (P(f))(U) := f(U).
A variation is the finite powerset functor P,, where P,,(X) is the set of all finite subsets
of X. On maps it acts exactly the same as P(—).

Example 2.16.2. [15] The class KPF of Kripke polynomial functors over Set is
inductively defined as follows:

Fu=C |idse | Py | FL4+Fy | Fy x Fy | FP.

Notice the Kripke polynomial functors obtain by conjucting the powerset functor with
the polynomial functors.

Example 2.16.3. [31] For an arbitrary set X define PB(X) := P(X), but for each map
f: X — Y define B(f) : P(Y) — P(X) by (B(f))(V):={zx e X | f(x) € V} for
each V C Y. This construction does not result in a functor, since the direction of maps
is reversed. However, This construction is a contravariant functor called contravariant
powerset functor. The correspondence of subsets with characteristic functions suggests
an alternate notation of 98 as 2(-). Tt is easy to see that the composition 3 o3 (or 22(_>)
is a functor. This functor will be called the neighbourhood functor. It is instructive
to watch the neighborhood functor in action. Elements of 22" are collections of subsets
of X. Given amap f: X — Y, then 22 associates each collection o C P(X) to the
collection 22/ (o) ={V C Y | f~H(V) € o} CP(Y).

The following Set-endofunctor is used in some example of this work:

Example 2.16.4. [2] The Set-endofunctor T := (—)? — (=) + 1 associates each set X
to the set
TX ={(z,2)) € X? | e #2'}U{L}

and every map f: X — Y to the map T'f : TX — TY defined by

(f(2), f(«)  f(=z) # f(a')
Tf(x,a'):=qL f(z) = f(z')
i i
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2.17. Functors and morphisms

Definition 2.17.1. A functor F': C; — C, is said to preserve

e monos (resp. epis) if: for every mono (resp. epi) f in Cq, F'f is also a mono (resp.
epi) in Co,

e sections (resp. retractions) if: for every section (resp. retraction) f in Cy, F'f is
also a section (resp. retraction) in Cs, and

e isomorphisms if: for every isomorphism f in Cy, F'f is also an isomorphism in Co.

Example 2.17.2. ( [3], chapter 2, section 7) All functors preserve sections and retrac-
tions. As a consequence, all functors preserve isomorphisms.

Example 2.17.3. The forgetful functor U : Top — Set and the discrete and indiscrete
finctors D, I : Set — Top preserve all monos and epis.

Example 2.17.4. [31] Every Set-endofunctor preserves monos with non-empty domains.
Dually, every Set-endofunctor preserves epis. To check this, just use this fact that in
the category Set, monos with non-empty domains (resp. epis) are exactly sections (resp.
retractions).

Example 2.17.5. If C has products, then for any set ¥, the power functor (—)* preserves
monos. To see this notice that for each morphism f: A — B and each i € ¥ we have
780 f¥ =7, where 7P and 7! are canonical projections. By part (2) of lemma 2.10.4,
f* is mono. Moreover, it follows from lemma 2.5.9 that the power functor (—)* preserves
regular monos.

Lemma 2.17.6. Suppose Ci and Cy are categories with sums and products. Let Fi,
Fy : C; — Cy be functors preserving monos. Then Fy + Fo, F1 X Fy and F} o Iy
preserve monos too.

Proof. Suppose f: X — Y is a monomorphism in C;. By assumption F;(f) and Fa(f)
are monomorphisms in Ca. To prove that (Fy x F)(f) is mono, consider the following
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diagram:
Fu(f
Fi(X) W) Fi(Y)
ﬂ_Fl(X) WF1(Y)
g 1 FixF)(f) 1
2~ Ri(X) x Fa(x) 2B g vy x By(y)
" WFz(X)l iﬁFgm
2 2
F(f
Fy(X) ) By(Y)

Let (F1 X FQ)(f) oh= (F1 X FQ)(f) °g, then

(Fy x By)(f) ohon*®) = (B, x By)(f) ogont®™),

Since this diagram commutes, we have Fi(f) o Wfl(X) oh = Fi(f)o WlFl(X) og. Since
F1(f) is mono we have Trfl(X) oh= Wfl(X) o g. Similarly 7T2FQ(X) oh= 7T2F2(X) og. As the

. Fy(X) . .
family (7; )i€{1,2} is a mono source, we have h = ¢g. In a similar way, we can prove
this claim for Fy + F5 and F} o F5.

O

Definition 2.17.7. Let C be a category, M a class of C—morphisms and F: C — C
a C-endofunctor. We say that the C-endofunctor F' preserves M-morphisms if F'f € M
for each morphism f € M.

Definition 2.17.8. A functor F' : C; — C; is said to reflect monos (resp. epis) if for
every Ci-morphism f, whenever F'f is a mono (resp. epi) in Cy, then f is also a mono
(resp. epi) in Cy.

Example 2.17.9. The forgetful functor U : Top — Set and the discrete and indiscrete
finctors D, I : Set — Top reflect all monos and epis.

2.18. Limits and colimits in general

Let T and C be categories. A diagram of type I in C is a functor D : I — C with
codomain C. The category I is called the index category of the diagram D. We often
denote the image of an object ¢ € Ob(I) under a diagram D by D; rather than D(7). A
diagram is said to be small whenever its index category is a small category.

A cone over a diagram D consists of an object P in C and a family of morphisms
{pi : P — Di}icoup(n) in C such that for each arrow a : i — j in I we have D(a)op; = p;.
A cone £ = (L, {l; : L — D;};copm) over D is called a limit (or limit source) of the
diagram D, provided that for every cone Q@ = (Q, {¢; : @ — D;}iconm)) over D there
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exists precisely one C-morphism m : Q — L such that [;om = g; for all i € Ob(I). The
cone @ is called a competitor for the cone L. The cone £ = (L, {l; : L — D;}iconm))
is called an weak limit of the diagram D, if we remove the uniqueness condition of the
morphism m (i.e, for every cone Q = (Q, {q; : @ — Di;};conm)) there exists at least one
C-morphism m : Q — L such that I; o m = ¢; for all i € Ob(I)).

Example 2.18.1. ( [3], chapter III, section 11)

1. Terminal objects are limits of the empty diagrams (i.e., diagrams of type the empty
category®). One should note that a cone over an empty diagram is just an object
in the target category).

2. Products are limits of diagrams of type discrete categories” (note that if I is a
discrete category, then a diagram of type I in a category C is just a family of
C-objects).

3. Counsider T as the category o :_j o (i.e., I is a category with two objects, their
required identity morphisms and two parallel non-identity morphisms). A diagram
of type I in a category C is simply a pair of parallel morphisms f, g: A — B in C.
As a consequence we can say that equalizers of pairs of parallel morphisms are limits
of diagrams of type I. If, in the category I , the two parallel non-identity morphisms
are replaced by a set of parallel non-identity morphisms with cardinality A > 2,
then limits of diagrams of type I are equalizers of families of parallel morphisms
indexed by sets with cardinality A.

4. Take I to be the category o ——=o~<——o0 (i.e.,, I is a category with three objects;
their required identity morphisms and two non-identity morphisms with common

codomain). As a diagram of type I in a category C is a 2-sink A N c<2_B
in C), we can say that pullbacks of 2-sinks® are limits of the diagrams of type I.

Colimits are defined dually. Explicitly, a cocone over the diagram D consists of an object
C and morphisms {c; : D; — C'}icop such that for each arrow a : i — j in I we have
cio D(a) = ¢j. A cocone C = (C, {¢; : Di — Cl}icopm) is called a colimit (or colimit
sink) of the diagram D, provided that for every cocone R = (R, {r; : D; — R}iconm))
there exists precisely one morphism r : C — R such that r o ¢; = r; for all i € Ob(I).
The cocone R mentioned above is called a competitor for the cocone C.

SRecall that the empty category is the category whose class of objects is the empty set (see example
2.1.3).
"A discrete category C is a category whose only morphisms are the identity morphisms, i.e.

e Homc(A, A) = {ida} for each A € Ob(C), and
o .Homc(A,B) =0 for all A +# B.

8 A 2-sink is a sink consists of two morphisms.
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Examples of colimits are given by the dual versions of the notions in example 2.18.1.

Example 2.18.2. ( [3], chapter III, section 11) Initial objects are colimits of the empty
diagrams. Sums correspond to colimits of diagrams of type discrete categories. Coequal-
izers of pairs of parallel morphisms correspond to colimits of diagrams of type o 3 o.
Pushouts of 2-sources sre colimits of diagrams of type o <——o0——o0.

Remark 2.18.3. ( |3], chapter III, section 10) It is easy to see that limit sources must
be mono sources. To show this let D : I — C be a diagram of type I in C and let
the cone £ = (L,{l; : L — Di}icopm)) is a limit source of D. If mq, ma : Q —
L are two C-morphisms with I; o m; = l; o mg (for each i € Ob(I)) then the cone
Q = (Q,{li o m1}iconm) = (Q,{li ©ma}iconm) is a competitor for £.The uniqueness
requirement in the definition of in the definition of limit sources implies that m; = mao.
By invoking duality, we obtain that in any category C, colimit sinks are epi sinks.

A limit is said to be small if it is a limit of a small diagram. Dually, small colimit are
colimits of small diagrams. We say, a category C is complete if all small limits in C
exist, and cocomplete if all small colimits in C exist.

As the following theorem is well known, we omit its proof.
Theorem 2.18.4. ( /9], chapter 11, section 12) Given a category C. Then

10

1. C is complete iff small products’ and small equalizers'® exist, and

2. C is cocomplete iff small sums and small coequalizers exist.

Example 2.18.5. The category Top has small products and small equalizers (see exam-
ples 2.5.5 and 2.5.7). Then according to the previous theorem, Top is both complete and
cocomplete. Similarly, we can conclude that the category Set is complete and cocomplete
(see example 2.5.3)

Remark 2.18.6. If K is a diagram in Top, then U o K (where U is the forgetful functor
from Top to Set) is called the underlying diagram of K in Set. One can easily see that
the limit of K in Top is obtained by defining the initial topology on the limit of the
diagram U o K. Specifically, let K : T — T'op be a diagram of type I in Top with values
denoted K(i) = (X;,7;) for each i € Ob(I) (then the underlying diagram U o K is a

9A small product (resp. sum) in a category C is a product (resp. sum) of a family of objects in C
indexed by a set.

10A small equalizer (resp. coequalizer) in a category C is an equalizer (resp. a coequalizer) of a family
of parallel morphisms in C indexed by a set.
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diagram of type I in Set with values U o K (i) = X; for each i € Ob(I)). Let the cone
(L, {li : L — Xi}iconm) be a limit of the underlying diagram U o K in Set. Equip L
with the initial topology 7in: generated by the source {l; : L — Xi}ieow). For any cone
((@,9), {¢i : Q — Xi}icopn)) over K there is a unique function m : QQ — L such that
liom = g; for all i € Ob(I) (because (Q,{gi}iconm) is a competitor for (L, {l; }iconm)
in Set). Now, we require to show that the unique function m is continuous. Note that
the set {li_l(Ui) | i € Ob(I), U; € 1;} is a subbase for the initial topology 7i,: on L.
Then according to remark 1.3.3, to show the continuity of m, we just need to check
that m~1(1;1(U;)) is an open subset of @, where i € Ob(I) and U; is an open subset
of X;. Fix i € Ob(I) and choose an open subset U; C X;, then due to the continuity
of ¢; we conclude that the set ¢, L(U;) is an open subset of Q. Hence by the equality
m~ (171 (U3)) = ¢; H(U;) we conclude that m~*(I;*(U;)) is open and so m is continuous.
Dually, colimits in T'op are obtained by replacing the final topology on the colimit of the
underlying diagrams in Set (see also examples 2.5.5, 2.5.7,2.6.5, 2.7.4 and 2.8.4).

2.19. Functors and limits

Definition 2.19.1. Given a limit £ = (L, {L iy D;}iconry) of a diagram D : [ — C4
in a category Cy. A functor F': C; — Cq is said to preserve the limit £ provided that

FCL=(FL,{FL RiELY FD;}icop(ry) is a limit of the diagram F o D : I — Cg in Ca.

We say that F' weakly preserves the limit £ if FL = (FL, {FL KL FD;}iconrn)) is a
weak limit of the diagram F'o D : I — Cs in Cs.

Notice that colimits-preservation is a dual notion.

Example 2.19.2. According to example , the forgetful functor U : Top — Set preserves
all limits and colimits.

Example 2.19.3. Accordind to remarks 2.5.6 the discrete functor D : Set — Top
preserves finite products''. Besides, due to the remark 2.5.8 this functor preserves all
sums.

2.20. Natural transformations

Definition 2.20.1. Let F, G : C — D be functors. A natural transformation 7
from F to G associates to each object X € C a D—morphism ny : F'(X) — G(X), such
that for each C—morphism f: X — Y we have

Gfonx =nyoFf

'L A finite product in a category C is a product of a finite set of objects in C.
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that is, the following diagram commutes.

F(X) 25 G(X)

Ffl in

F(Y)——=G(Y)

We write n : F' — G if n is a natural transformation from F' to G. We denote the set
of all natural transformation from F' to G by Nat (F,G).

Definition 2.20.2. Suppose F, G : C — D are functors and n : F — G is a natural
transformation from F' to G. we call n a natural isomorphism, if each component nx
(X € C) is an isomorphism in D. In this case we write F' = G. More generally, we call 7
as an M-transformation (where M is a special class of D-morphisms), if nx € M for
each X € C (see section 6 of chapter I in [3]).

Definition 2.20.3. Suppose F, G : C — C are C—endofunctors and C is a (£, M)-
category. We say that G is factor of I, if there is an £- transformation n: F — G.

Lemma 2.20.4. Let n : F — G be a natural transformation between two Functors F
and G.

1. If n is an epi-transformation, then : if F' preserves epis then G preserves epis, too.

2. If n is a mono-transformation, then : if G preserves monos then F' preserve monos,
too.

Proof. Let f: X — Y be an epimorphism and P, P> : G(Y) = Z two morphism such
that Py o Gf = Py o Gf. We have to show P, = P,. Since n : FF —» (G is a natural
transformation, the diagram below commutes.

F(X) 5 G(X)

Ffl in

F(Y) —— G(Y)

Yy

So, we have

PloT]yOFf = PlOGfOT]X

— PyoGfonx
= DPyonyolFYf.

By assumption F'f is epi, so Py ony = Py ony. Since ny is epi, we have P = P,. The

second part of this lemma will be prove in a similar way. O

88



2.21. Adjunction

Lemma 2.20.5. Let C and C' are two categories and U, F and G are functors shown
in the following diagram,

a( C C )F
Co, e

Assume, there is a mono-transformations p: UF — GU. If G preserves monos and U
preserves and reflects monos, then F preserves monos too.

Proof. Let f : A — B be a monomorphism in C. Since U reflects monos, it suffices
to show that UFf is also a monomorphism in C'. Suppose Py, P, : C = UF(A) are
two morphisms such that UFf o P, = UFf o P,. We have to show P, = P,. Since
n: UF — GU is a natural transformation, the following diagram is commutative.

vra "L urp

o |

GUA——GUB
GU(f)

So, we have

GU(f)opaoPr = pupoUF(f)oP
= upoUF(f)o P
= GU(f)opaoPs

By assumption GU(f) is mono, so pug o P, = py o P,. Since n4 is mono, we have
P =P O

2.21. Adjunction

Definition 2.21.1. An adjunction between categories C and D consists of:
1. a functor F': D — C called the left adjoint,
2. a functor G : C — D called the right adjoint,
3. a natural transformation £ : FG — 1¢ called counit, and
4. a natural transformation 7 : 1p — GF called unit,
such that satisfying the following equations:

lrx = &pxoF(ny)

lay = G(&)onay
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Note that 1¢ (resp. 1p) denotes the identity functor on the category C (resp. D) and
1px (resp. lgy) denotes the identity morphism of the object F X (resp. GY').

Example 2.21.2. ( [3], chapter V, section 18) The discrete functor D : Set — Top
is a left adjoint for the forgetful functor U : Top — Set. The indiscrete functor
I: Set — Top is a right adjoint for the forgetful functor U.
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3. Functors on Top

In this part we study some T'op-endofunctors. We show that not every endofunctor on T'op
preserves monos or regular monos and similarly, not every endofunctor on Top preserves
epis or regular epis. We explain that if F'is a Top-endofunctor which preserves all monos
with non-empty domain, then we can modify F to construct a Top-endofunctor F'*
(called the positive functor of F') that preserves all monos. The idea of the construction
of F* is from Barr [10].

3.1. Polynomial functors on Top

The class of polynomial functors on Top is a topological analogue of the polynomial
functors on Set (see definition 2.15.9), and they will be inductively defined as follows:

Fu=C |idroy | i +Fy | F1 x Fy | FP.

Here idr,p is the identity functor on the category T'op; C denote the constant functor
(for an arbitrary topological space C); + and x are sum and binary product in Top,
respectively; and for every set D, we consider F'P as the functor sending a topological
space X to the D-fold product (F(X))? in Top (i.e, FP := (=)P o F, the composition
of functor F' and power functor (—)”on Top).

Example 3.1.1. Given a fixed topological space C' and a fixed set D, then the construc-
tion F(—) := C x (—)P (the product of the constant functor C' with the power functor
(—)P) is a polynomial functor on Top.

Lemma 3.1.2. Polynomial functors on Top preserve monos.

Proof. Tt is known that the identity functor, the constant functor and the power functor
(—)P preserve monos (see also example 2.17.5). The rest of this proof follows immediately
from lemma 2.17.6. O

Lemma 3.1.3. If F1 and F> are two Top-endofunctors preserving topological embeddings,
then F1 + Fy, Fy X Fy and Fy o Fy preserve topological embeddings too.

Proof. We check this claim for F} x Fs. Assume ¢ : S — X is a topological embedding
(see example 1.4.2). By assumption the morphisms Fi(¢) : F1(S) — F1(X) and Fa(¢) :
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3. Functors on Top

F5(S) — F»(X) are topological embeddings. So Fi(S) and Fy(S) are subspaces of
F1(X) and F5(X), respectively. Then by lemma 2.5.9, F;(S) x F»(S) is a subspace of
F1(X) x F5(X). Now by the definition of F} x Fy (see remark 2.15.15),

(F1 x F2) () (21, 22) == (F1(0)(21), F2(0)(22)) = (21, 22)

where (z1,x2) € F1(S) x F5(S). It means (F; x Fy)(¢) is a topological embedding. We
can prove this lemma for F} 4+ F5 and Fj o F5 in a similar way. ]

Corollary 3.1.4. If I and F5 are two Top-endofunctors preserving reqular monos, then
i+ Fy, Fy X Fy and Fy o Fy preserve reqular monos too.

Proof. Since by lemma 2.9.3, in the category Top regular monos are (up to isomorphism)
precisely the topological embeddings, this corollary follows from the previous lemma. [

Corollary 3.1.5. Polynomial functors on Top preserve reqular monos.

3.2. Vietoris functor

For every topological space X, the Vietoris space V(X) has as the base set the set of
all compact® subsets K C X. The Vietoris topology on V(X)) is generated by a subbase
consisting of all sets

e U] ={K €V(X)|K CU}, and
o (U):={K eV(X)|KnNU # 0},
where U ranges over all open subsets of X.

Note that for every subset U of X, we can define [U] and (U) as they are defined above
for the open subsets. So for each subset U of X, we have [U]¢ = (U¢) (where U€ is the
complement of U).

By using the fact that the image f(K) of a compact set K by a continuous map f is
compact, we can extend the Vietoris construction to a functor V : Top — Top which
associates to each topological space X, its Vietoris space V(X) and to each continuous
map f : X — Y the continuous map Vf : V(X) — V(Y) given by (Vf)(K) = f[K]
(for all compact subset K C X). To check that Vf is continuous, we only need to check

! A subset K of a topological space (X, 7) is compact if every open cover of K has a finite subcover.
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that inverse images of subbase members are open (see remark 1.3.3). Thus, let U be an
open subset of Y, then

(VHHU]) = {KeV(X) | f(K)e[U]}
= {KeV(X) | f(K)CU}
— {KeV(X) | K<)}
O
and
(VHTH(U) = {KeV(X) | f(K)e ()}
= {KeV(X) | f(K)NU # 0}
= {KeV(X) | KnfU)#0}
= (7))

In each case, the result is open in V(X), in fact, (Vf)~! takes the subbase of V(Y), to
the subbase of V(X)) (see also [69]). To see that this construction is also an endofunctor
on Stone, refer to [17].

Definition 3.2.1. [l1] (P -Vietoris functor) Let P be a set, consider P(P) as the
set of all subsets of P equipped with the topology generated by a subbase containing all
clopen sets of the form 1 p:={u C P | p € u}, where p € P. The P-Vietoris functor (in
symbol: Vp) is the product of Vietoris functor V with the constant functor with value
P(P) on Top (i.e., V(=) x P(P)).

Lemma 3.2.2. The Vietoris functor preserves mono.

Proof. Let f: X — Y be an arbitrary monomorphism in Top. If X = () then Vf is a
map from the one element space {0} to V(Y') and consequently it is mono (because it is
injective). Now suppose X # (). It suffices to show that Vf : V(X) — V(Y) is injective.
Assume Kj, Ky € V(X) such that Vf(K;) = Vf(K3). So f(K1) = f(K3). Since f is
mono, it is injective. Thus from f(K7) = f(K3) we obtain that K; = Ko. O

Remark 3.2.3. Notice that if S and X are topological spaces, then a continuous map
f S — X is a regular monomorphism in Top iff f is mono and S carries the initial
topology generated by f. To see this issue, suppose f : § — X is a monomorphism such
that S carries the initial topology generated by f. Let f = mor be a factorization of f in
the (epi, regular mono)-system on Top. It suffices to prove that r is an isomorphism in
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3. Functors on Top

Top. Since f and m are monos, r is mono and consequently injective. Also r is surjective
(because it is epi). Then r is a bijective and continuous map. Now we show that r is an
open map. Since S carries the initial topology generated by f, to show that r is an open
map we just need to prove that for each open subset O C X the set r(f~*(0)) is open in
cod(r). Notice that from f = mor we obtain f~1(0) = r=1(m~1(0)) for each open subset
O C X. Then since r is bijective, we have 7(f~1(0)) = m~1(0). As m is continuous, we
know that m~1(O) is an open subset of cod(r) and consequently r(f~1(0)) is open in
cod(r). To prove the converse direction, recall that in T'op the regular monos are exactly
the topological embeddings (see lemma 2.9.3). So, if f is regular mono then f = o7
where ¢ : A — X is a topological embedding and r : S — A is an isomorphism in Top.
It is easy to see that f is mono and S carries the initial topology generated by f.

Lemma 3.2.4. The Vietoris functor preserves reqular monos.

Proof. Suppose f : S — X is a regular mono in Top. If S = () then Vf is a map from
the one element space {0} to V(Y') and consequently it is regular mono (because Vf is
mono and {@} carries the initial topology generated by Vf, see the previous remark).
Now suppose S # (). Since f is regular mono, it is mono. Then by lemma 3.2.2, Vf is
mono . Now, it suffices to check that

YU C S.30 € X.(V(f)'0] = [U).

open open

Let U be an arbitrary open subset of S. Since f is a regular mono in Top, by remark
3.2.3, S carries the initial topology generated by f i.e.

30y € X.U=f10Op).

open

So,

VH Y oy]) = {K cs | f(K) € [Oul}
= {K ¢ S| f(K)COu}
= {K C S| KCfYou)}

= [/ (Ov)]
= [l

and similarly we can show that (Vf)~1({(Oy)) = (U). So by lemma 1.3.4, V(S) carries
the initial topology generated by Vf. Hence by remark 3.2.3, Vf is regular mono.
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Remark 3.2.5. If X and Y are two fixed topological space then according to theorem
1.6.11 (Tychonoft’s Theorem) we have V(X ) xV(Y) C V(X xY'). In general the converse
of this inclusion does not hold. Notice that V(X) x V(Y) D V(X x Y) iff

VK C X xY. K =7nx(K) x ny(K) (3.2.1)
com

(since the canonical projections 7x : X x Y — X and 71y : X x Y — Y are con-
tinuous, by remark 1.6.5 the sets mx (K) and my (K) are the compact subsets of X and
Y, respectively). By giving an easy example we can see that statement 3.2.1 in general
does not hold. Consider the topological space X and Y as the two element discrete space
{1,2}. The set K := {(1,2),(2,1)} is a compact subset of X x Y (finite subsets are
compact) such that K # mx(K) x my (K). Therefore V(X) x V(Y) 2 V(X xY). As a
consequence, we can say that the Vietoris functor does not preserve products.

3.3. Vietoris polynomial functors
The class VPF of Vietoris polynomial functors over Top is inductively defined as follows:
Fu=C |idroy | V| Fi+F | Fy x Fy | FP.

Notice that the Vietoris polynomial functors are topological version of the Kripke poly-
nomial functors (see example 2.16.2) and they will be obtained by adding the Vietoris
functor to the grammar of the polynomial functors on Top.

Remark 3.3.1. Since the Vietoris functor and the polynomial functors over Top preserve
monos (see lemmas 3.2.2 and 3.1.2), by lemma 2.17.6 we conclude that the Vietoris poly-
nomial functors preserve monos. Similarly, since the Vietoris functor and the polynomial
functors over Top preserve regular monos (see lemma 3.2.4 and corollary 3.1.5), according
to corollary 3.1.4 the Vietoris polynomial functors preserve regular monos.

3.4. Path Functor

Definition 3.4.1. A path in a topological space X is a continuous map p from the unit
interval I = [0,1] to X. A path from x € X to y € X is a continuous map p: [ — X
with p(0) =z and p(1) = y. We denote by ?(X)(ZL‘, y) the set of all paths in X between
elements z and y. There are some paths started from a point £ € X and never leave it.
These paths are called the constant path. A loop based at z € X is a path from x to x.
Suppose p is a path from x to y and ¢ is a path from y to z. The (in symbol: px¢q) is a
path defined by first traversing p and then traversing g¢:

) p(2s) 0<s<1/2
prq(s):= {q(2s ) 1p<s<i (3.4.1)
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3. Functors on Top

We say that two elements x, y € X are path-connected, if there exists a path from x
to y. A topological space X is called path-connected, if any two elements z, y € X
are path-connected. Now let us to define the relation = on the topological space X as
follows:

r =y <= x and y are path-connected

2 is an equivalence relation and its equivalence classes are called the path-components of
X. For each x € X, consider [z]= as the path-component of X containing z (that is, the
set of points y € X with x = y). We denote by IIy(X), the set of all path-components
of X (ie., IIo(X) = {[z]= | x € X}). Then the map ¢gx : X — IIp(X) defined as
gx(x) = [z]= (for each z € X), is well-defined and surjective.

Provide ITp(X) with the quotient topology generated by the map ¢x. If f: X — Y isa
continuous map between two topological spaces, then f([x]=) C [f(z)]= for each z € X.
Hence the construction Il can be extended to an endofunctor on the category Top, if
for each continuous map f: X — Y we define I(f) : To(X) — Io(Y) by

o (f)([2]=) := [f (2)]=.

To check the continuity of IIy(f), we only need to check that inverse images of every
element in the quotient topology over IIp(Y) is open in IIp(X). Consider the following
diagram.

X — Iy(X)
fl \LHOU)
Y —=TIo(Y)

This diagram is commutative, i.e. Iy(f) o gx = qy o f. Now, let U be an element in
the quotient topology over IIp(Y), then q;l(U ) is an open subset of Y, and consequently
by the continuity of f, it is concluded that f~!(g;*(U)) is an open subset of X. Since
FHay ' (U)) = g (To(f)~*(U)), we have that g5 (IIo(f)~'(U)) is an open subset of X.
So as IIp(X) carries the quotient topology generated by gx, we obtain that Io(f)~(U)
is open in IIp(X), see [18].

3.5. covariant Homy,, functors

The covariant Homr,, functor is a topological version of the covariant Homge; functor
(see example 2.15.6) and it is defined as follows:

Lemma 3.5.1. For a fized topological space ¥, the construction F(—) := Homrep(X, —)
which associates every topological space X to the set of all continuous functions from X to
X with the compact-open topology (see definition 2.1/.1) and every continuous function
f: X — Y to the function F(f) : F(X) — F(Y) defined as (Ff)(0) := foo, is an
endofunctor on the category Top.
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3.5. covariant Homr,, functors

Proof. For each topological space X we have idx od = 0 and so F(idx) = idrx. Besides,
since the composition of maps is associative, we conclude that F'(fog) = F fo Fg. Then
to prove this lemma, we just need to show that for each continuous function f: X — Y
the function F(f) : Hompep(X, X) — Homrep(X,Y) is continuous. Let [K, U] be an
element in the sub-base of the compact-open topology on Homrap(2,Y).

(FHHK,U]) = {6§€F(X) | fode KU}
= {0eF(X) | f(6(K)) CU}
= {0eF(X) | §(K)C fHU)}
= {0eF(X) | 0€e|K, f
= [K, f7H(U)).

Lemma 3.5.2. For a fized topological space X, the functor F(—) := Homrep(X, —)
PrESeTves monos.

Proof. Assume f: X — Y is a monomorphism in Top. Let hy, hy : C — F(X) be two
arbitrary continuous functions such that F fohy = F fohsy. So (F fohy)(c) = (Ffohg)(c),
for each ¢ € C. Thus, Ff(hi(c)) = Ff(ha(c)) and then by the definition of F' on
morphisms, fo (hi(c)) = fo(ha(c)). Since f is mono, we have hj(c) = ha(c). Now, since
¢ € C is arbitrary, we conclude that h; = ho.

O

Lemma 3.5.3. The covariant functor F(—) := Homrey(X, —) preserves regular monos.

Proof. Suppose f : S — X is aregular monomorphism in T'op. By the previous lemmas,
F preserves monos and so F'f is mono. Now, we show that the following statement holds:

VK C ©.VU C S5.30 C X.[K,U]=(Ff)"Y(K,O].

com open open

Let K C X be a fixed compact subset of X and U C S be a fixed open subset of S. Since
f is a regular monomorphism in Top, by remark 3.2.3 we conclude that S carries the
initial topology generated by f, i.e.

So
(FHK,00)) = {5€F(S) | fode[K. Oul}
— {§EF(S) | (fo8)(K)C O}
— {6 F(S) | 8(K)C [7(00)
— {5 F(S) | 8(K)C U}
= [K,U]
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So by lemma 1.3.4, F'(S) carries the initial topology generated by F'f. Hence by remark
3.2.3, F'f is regular mono.
O

3.6. Contravariant Homrp,, functor and neighborhood
functors

Lemma 3.6.1. For a fized topological space ¥, the construction F(—) := Homrep(—, )
on Top which associates every topological space X to the set of all continuous functions
from X to X with the compact-open topology and every continuous function f: X — Y
to the function F(f) : F(Y) — F(X) defined as (Ff)(0) := d o f is a contravariant
endofunctor on Top.

Proof. For each topological space X we have idx o d = 0 and then F(idx) = idpx.
Besides since the composition of functions is associative, we have F(f og) = Ff o Fg.
Hence to prove this lemma, we just need to show that for each continuous function
f+ X — Y, the morphism F(f) : F(Y) — F(X) is continuous. Let [K,U] be an
element in the subbase of the compact-open topology on F(X). Then

(FHTNKU) = {§€F(Y) | dofe[KUl}
= {0 F(Y) [ 6(f(K)) CU}
= {0eF(Y) | 6€[f(K)Ul}
= [f(K),U].

O

Example 3.6.2. Consider the two elements set 2 := {0, 1}. In fact, there are only three
inequivalent? topologies on the set 2. In this example we want to verify the contravariant
functor F(—) := Homrep(—,2), for all three cases. Suppose X is an arbitrary topological
space.

a) If 2 is an indiscrete space, then the topological space F/(X) is the set P(X) with the
indiscrete topology.

b) In case that we provide 2 with the Sierpinski topology (i.e., the only open sets are (),
{1} and 2), then there are two possibility for the topological space F'(X) as follows:

b-1) F(X) is the set {U C X | U is an open subset of X} with the topology
generated by a subbase consisting all elements as

K] = {U C X |KCU} (3.6.1)

open

where K ranges over all compact subsets of X.

*We say that two topologies 7 and § on a set X are equivalent iff the topological spaces (X, 7) and
(X, ¢) are homeomorphic spaces (i.e., (X,7) = (X, 9)).
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b-2) F(X) is the set {U C X | U is a closed subset of X} with the topology
generated by a subbase consisting all elements as

K] = {U € X|KNU=0} (3.6.2)

closed

where K ranges over all compact subsets of X.

c) Whenever the set 2 carries the discrete topology, the topological space F'(X) is the
set {U C X | U is a clopen subset of X} which carries a topology similar to what
mentioned in part (b) (notice that in this case [K] ={U C X | K C U} for

clopen

each compact subsets K of X).

For all cases, if f : X — Y is a continuous map, then F(f)(V) = f~1(V) for each
VeFY).

As it has been mentioned in lemma 3.6.1, F'(—) is a contravariant endofunctor on Top.
Therefore, F' o F'is a covariant endofunctor on T'op. This functor will be called

e Full neighborhood functor: in case that the set 2 is equipped by trivial topol-
08Y;

¢ Open neighborhood functor: if 2 carries the Sierpinski topology and F(X)
(for each topological space X) is the topological space in (b-1);

e Closed neighborhood functor: if we povide 2 with Sierpinski topology and
F(X) (for each topological space X) is the topological space in (b-2);

e Clopen neighborhood functor: whenever 2 is a discrete space.

3.7. Properties of Top-Endofunctors

By lemma 2.17.1, every endofunctor on Top preserves isomorphisms. However, there
are Top-endofunctors that do not preserve monos or regular monos. We have a similar
problem for epis and regular epis. It means, not every endofunctors on Top preserves
epis or regular epis. In this part we try to clear this issue with some examples.

Epi-preservation

In general, not every endofunctor on Top preserves epis. The following two examples
make this claim more clear. In the first one we will see that the covariant functor
F(—) = Homrop(X, —) does not preserve epimorphisms which are not right invertible.
The second example presents an epimorphism f in the category Top for which V(f) (V
is the Vietoris functor) is not epi.
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Example 3.7.1. Consider the covariant functor F(—) = Homrep(X, —). Suppose the
Top-morphism e : X — ¥ is an epimorphism which is not right invertible. We claim
that the morphism F(e) : F(X) — F(X) is not surjective and consequently not epi.
Consider the identity map ¢dy : ¥ — X. Since e is not right invertible, there is no
morphism 7 : ¥ — X in Top such that e o 7 = idy. Then idy, does not belong to the
image of the morphism Hom(X, —)(e).

Example 3.7.2. Let X be an infinite set. Define the map f : Xp — X as the
identity map idx. It is easy to see that f is continuous and surjective map and thus an
epimorphism in the category Top. Since a discrete space is compact iff X is finite, we
have X ¢ V(Xp). On the other hand every indiscrete space is compact, so X € V(X7).
Hence the continuous map V(f) : V(Xp) — V(X7) is not surjective and consequently
it is not epi.

Regular epi-preservation

In the sequel we will show that the Vietoris functor does not preserve regular epis.

Example 3.7.3. Define the map e: R — [a,b] as

r asxrsSh
e(x):=<a x=»b
b else
where R is the set of real numbers with the standard topology. The map e is a regular
epimorphism in Top, if we provide the closed interval [a,b] with the quotient topology

generated by e (in short: [a,bl.). Now we prove that V(e) is not a regular epimorphism
in Top. To show this claim we need to prove the following two claims:

Claim. The half open interval [a,b) is a compact subset of the closed interval [a, b]..
Proof. Notice that the only open subset of [a,b]. containing the element a is the whole
space [a,b].. If |JO; is an open cover of the interval [a,b) C [a,b]., then there is i € T
iel
such that O; = [a, b]e. This yields that [a,b) is compact in [a, b]..
O

In fact it can be seen that every subset of [a,b]e which contains a is compact.

Now apply the Vietoris functor V on the regular epi e.

Claim. V(e) is not surjective.
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Proof. We want to show that there is no compact subset C C R with e(C) = [a,b). We
do this by contradiction. Assume there is a compact subset C' C R with e(C) = [a,b).
Then we have C C (a,b] (by definition of e). Hence C' S (a,b] (since C' is compact and
(a,b] is not compact in R). Then e(C) S e(a,b] = [a,b) (since e | (44 (restriction of e) is
an injective map). This contradicts the assumption. ]

Mono-preservation

Note that there are endofunctors on the category Top which do not preserve monos,
amongst them the path-functor Ily : Top — Top. The following example bring this
matter to light.

Example 3.7.4. Let S = {1,3} be a subspace of the set of real numbers R with the
standard topology. So, S is the discrete space and then the only continuous maps from
the unit interval I = [0, 1] to S are the constant maps. Hence IIp(S) is the set {{1},{3}}
with the discrete topology (recall that I1o(.S) carries the quotient topology generated by
gx : S — IIp(9), and note that the quotient topology generated by a surjective map
from a discrete space is the discrete topology). On the other hand, since R is a path-
connected space, we have IIo(R) = 1. Now let ¢ : S — R be the subspace inclusion, it
is obvious that ¢ is mono but IIp(¢) is not mono (because it is not injective).

Example 3.7.5. The following functors preserve monos:
e polynomial functors,
e Vietoris functor,
e Vietoris polynomial functors, and

e covariant Homr,), functor.

Regular mono-preservation

Recall from lemma 2.9.3 that a morphism in Top is regular mono iff it is a topological em-
bedding. Generally, not every endofunctor on Top preserves regular monos. For instance,
in example 3.7.4 we have seen that the path-functor Iy : Top — Top does not preserve
regular monos. In this example, we have introduced a regular mono ¢ such that its im-
age under the functor Iy (i.e., ITy(¢)) is not mono and consequently it is not reqular mono.
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Example 3.7.6. The following functors preserve regular monos:

e Polynomial functors,
e Vietoris functor,
e Vietoris polynomial functors, and

e Covariant Homr,, functor.

3.8. Positive functors

As it has been mentioned by Barr in [10], if T" is a Set-endofunctor with T'(() # (), then
the morphism T'(Qx) (where (x is the unique morphism from the empty set () to some
set X) is not necessarily injective and consequently it need not be mono. The same
thing may happen when we work with the endofunctors on the category Top, i.e. if F
is a Top-endofunctor with F(0) # 0, then the morphism F(0x) (where (x is the unique
morphism from the empty space () to some topological space X) need not be mono. In
order to remove this exception about the morphisms with empty domains, we modify F
and define a new Top-endofunctor F'* called the positive functor of F'. Our definition of
F* has been borrowed from Barr [10].

To start, let F' be a Top-endofunctor with F() # (). Suppose F preserves all monos
with non-empty domains. The proviso about the empty space () can be discarded by
modifying the functor F' on this space and on all morphisms with empty domains. To
this end, consider the coproduct 1+ 1 (where 1 is terminal object in T'op) with canonical
injections ep, €1 : 1 — 14+ 1. Let e : P — F(1) be an equalizer of F(eg) and F(ey).

Feg
N
P—5F(1) F(1+1)

N7

Feq

Now, define a construction F'* : Top — Top on objects by

FT(A) =

P if A=0
F(A) else

where A changes over all topological spaces. For each topological space B, by identifying
any b € B with the constant morphism Cj : 1 — B with value b, we have the morphism
Fb: F(1) — F(B), and we can define for any morphism f: A — B in Top:

i JFb)oe ifA=0,beB
Fr(1) = {F(f) else
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Due to the construction of e as equalizer, one easily checks that the definition of F*(f)
does not depend on the choice of b € B. Since composition of continuous maps are
continuous and since F' is a Top-endofunctor, for each continuous map f: A — B, the
morphism F7(f) is continuous. Notice that for every morphism f: A — B in Top we
can choose an element a € A such that F*(f)o FT(0a) = F(f) o (Fa)oe (where (4 is
the unique morphism from the empty space to the topological space A). Then

Fr(f)o F(0a)

Hence, for every morphism f : A — B in Top we have F*(f)o F*(0a) = FT(fo0a).
Since there is no morphism to ), the construction F'* (called the positive functor of F')
is a Top-endofunctor. Then the following lemma can be verified:

Lemma 3.8.1. F'" is a Top-endofunctor which preserves all monos.

The idea of the construction of F™ comes from [10] (see, pages 308 and 309).
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4. Lifting and extending of
Set-endofunctors to Top

The aim of this section is to find a connection between Set-endofunctors and Top-
endofunctors. In order to achieve this goal, we study the notions of extension and lifting of
a Ci-endofunctor to a category Co along the functors D : C; — Cy and U : Co — Cq,
respectively (here we assume that D and U exist). We also define the notions of lifting
and extension up to isomorphism. Our presentation in this section is based on [9], where
the authors investigated how a finitary functor on Set can be extended or lifted to the
categories Preord and Poset.

In this section, we replace F' o G (composition of the functors F' and G) by FG.

Definition 4.0.1. Assume D : C; — Cy and U : C9 — C; are two functors between
the categories C; and C,. Given Ci-endofunctor T' and Cs-endofunctor F'.

e Lifting: F'is called a lifting of T to Cy along U if UF =TU.
e Extension: F is called an extension of T to Cy along D if FF'D = DT.

e Lifting up to isomorphism: F' is called a lifting of T" up to isomorphism along
Uif UF 2TU, i.e. there is a natural isomorphism between functors UF and TU
(UF and TU are both functors from Cy to Cy).

e Extension up to isomorphism: F is called an extension of T" up to isomor-
phism along D if FD = DT, i.e. there is a natural isomorphism between functors
FD and DT (FD and DT are both functors from C; to Cs).

Remark 4.0.2. Let D : Set — Top and U : Top — Set be the discrete and the
forgetful functors between Top and Set, respectively. Given Top-endofunctor F' and
Set-endofunctor T'. Then according to definition 4.0.1,

1. if F'is a lifting (resp. an extension) of T" along U (resp. along D), then F' satisfies
the equation T =UFD,

2. if F' is a lifting (resp. an extension) of 7" up to isomorphism along U (resp. along
D), then T and UF D are naturally isomorphic functors,
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4. Lifting and extending of Set-endofunctors to Top

3. if F is a lifting of T" along U, then for each set X and all topologies 7 and ¢ on X
we have F(X,7) = F(X,0), (we replace the given equality by F(X,7) = F(X,0)
if F'is a lifting of T' up to isomorphism),

4. if F is an extension of T along D, then for each discrete space Xp' we have
F(Xp) = (TX)p, (we replace the given equality by F(Xp) = (T'X)p if F is an
extension of T' up to isomorphism), and

5. each lifting of T along U is a lifting of T" up to isomorphism along U.

6. each extension of T along D is an extension of T up to isomorphism along D.

Remark 4.0.3. In order to define the notion of extension of a Set-endofunctor F' to the
category Top along the indiscrete functor I : Set — Top, we should just in remark 4.0.2
replace the indiscrete functor I with the discrete functor D.

Lemma 4.0.4. If Top-endofunctors F1 and Fy are liftings (resp. extensions) of the Set-
endofunctors Th and Ty along the forgetful functor U : Top — Set (resp. the discrete
functor D : Set — Top), respectively, then the Top-endofunctors Fy + Fy, Fy X Fy and
Fy o Fy are also liftings (resp. ectensions) of the Set-endofunctors Th + To, Ty X Ty and
Ty o Ty along the forgetful functor U (resp. the discrete functor D), respectively.

Proof. Let Fy and F5 be liftings of the Set-endofunctors T} and T, respectively. Then
the following identities hold:

UF; U
UF, = ThU

(4.0.1)
So

Uo(Fi+ F)(X) = UWFI(X)+ F(X)) Sum of functors
= UFR(X)+UF(X) U preserves sums
= TWUX)+TUX) By4.0.1
= (Tl + Tg) o U(X) By 2.15.15

Product is same (notice that U preserves products). To prove the claim for composition
we have to show

Uo(FioFy)=(T10Ts)0U.
So,

! Xp and X7 are the set X with discrete and indiscrete topologies, respectively.
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Uo(FioF)(X) = U(F1(F2(X))) Composition of functors
= Ti(UF(X)) UF, =TU
=  T(DUX)) UF, = ToU
= (TloTQ)OU(X) By2.15.15

To prove this lemma for extension, use the equalities below instead of the equalities in

4.0.1.
D = DI
BD = DT

In this case, we use the fact that the discrete functor preserves sums and finite products
(see example 2.19.3). O

Remark 4.0.5. Note that lemma 4.0.4 dose not hold when we replace the notion of lift-
ing with extension along the indiscrete functor from Set to Top. In fact, if the Top-
endofunctors F; and F5 are extensions of the Set-endofunctors Ty and T5 with respect
to the indiscrete and forgetful functors I and U, then F} 4+ F5 is not an extension of
Ty +T5. The reason is that the sum of two indiscrete spaces is not an indiscrete space
(see remark 2.5.8).

Example 4.0.6. The following functors are some examples of liftings and extensions of
some Set-endofunctors to Top:

1. The Vietoris functor V : Top — Top is an extension of the finite powerset functor
P, : Set — Set to Top along the discrete functor D : Set — Top. To see this
let X be a fixed set. By example 1.6 the underlying set of VD(X) is the set of all
finite subsets of X (i.e., P, (X)). Notice that for each finite subset K C X the one
element set {K} is an open subset of VD(X) (because {K} = ( (] ({z})) N [K]

zeK

for each finite subset K C X). Then VD(X) carries the discrete topology, i.e.,
VD(X) = DE,(X)

2. The path endofunctor Ily : Top — Top is an extension of the identity functor
idger : Set — Set up to isomorphism along the discrete functor D. To show
this let X be a fixed set. Since the only continuous maps from the unit interval
I =10,1] to a discrete space are the constant maps, by definition of Path functor
IIy (see 3.4) we conclude that

Io(D(X)) = {{z} | = € X}.

Recall that IIo(D(X)) carries the quotient topology generated by the function
qgx : D(X) — IIp(D(X)), then the set IIo(D(X)) carries the discrete topology
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4. Lifting and extending of Set-endofunctors to Top

. The power functor (—)

(because the quotient topology generated by a surjective map from a discrete space
is the discrete topology). Now, it is obvious that n : D o idgey — Ilp o D such
that for each set X the morphism nx : D(idge (X)) — Ip(D(X)) is defined by

nx(z) := {z} is a natural isomorphism.

. It is easy to see that the power functor (=) : Top — Top is a lifting of the power

functor (—)* : Set — Set along the forgetful functor U (because the forgetful
functor preserves products).

% . Top — Top is an extension of the power functor

(—)* : Set —» Set along the indiscrete functor I : Set — Top (note that the
product of indiscrete spaces is an indiscrete space).

. For each topological space (C, ), the constant functor (C,7) : Top — Top is a

lifting of the constant functor C' : Set — Set along the forgetful functor U.

. For each topological space (C,7), the functor (C,7) x (=)¥ : Top — Top is a

lifting of the functor C' x (—)* : Set —» Set along the forgetful functor U (by
lemma 4.0.4).

4.1. Lifting lemma

Lemma 4.1.1. Let F' : Top — Top be an endofunctor on Top. The following statements
are equivalent:

1. F preserve monos and epis,

2. F is a lifting of o Set-endofunctor T up to isomorphism along the forgetful functor

U:Top — Set,

3. F preserves monos and there is a Top- endofunctor G and a natural transformatian

n : G — F with the following properties:

a) G preserves epis,

b) n is surjective.

Proof. Let F': Top — Top be an endofunctor on Top.
(1)=(2): Suppose F preserves epis and monos in Top. Define 6 : DU — idr,, as

5x : DU(X) — X
r+——x

where X is an arbitrary topological space. It is easy to check that § is a bijective natural
transformation between T'op-endofunctors DU and idr,,. Since F' preserves epis and
monos, for each topological space X, the morphism Féx : FDU(X) — F(X) is a
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4.2. A strategy to lift Set—endofunctors to Top

bijective continuous map. So UFdx : UFDU(X) — UF(X) is a bijective map. Now
by setting T'= UF' D, the functor TU is naturally isomorphism with UF'.

(2)=(1): Let F be alifting up to isomorphism of a Set -endofunctor T along the forgetful
functor U : Top —> Set. So, there is a natural isomorphism ¢ : UF — TU. Suppose
f: X — Y is an epi (mono) in Top. Since in the category Top the epimorphisms are
exactly surjective and continuous maps (the monomorphisms are exactly injective and
continuous maps), it is enough to show that UF'f is surjective (injective). Consider the
diagram below:

UFX 2~ TUX
UF fi iTU f
UFY —=TUY
Yy

Since ¢ is a natural transformation, this diagram is commutative. Also, since T as a
set functor preserves surjective (injective) maps TU f is surjective (injective). Now by
commutativity of this diagram and since ¢ is a natural isomorphism, it is obtained that
UF'f is surjective (injective).

(3)=(1): It is enough to show that F' preserves epis. By lemma 2.20.4, it is clear.

(1) =(3): By taking F' as Top- endofunctor G, the result will be obtained. O

4.2. A strategy to lift Set—endofunctors to Top

Let U : Top — Set be the forgetful functor. Suppose F' and T are Top-endofunctor
and Set-endofunctor, respectively. Assume, there is a surjective natural transformation
n: UF — TU. Now, for any topological space X, provide TU(X) with the topology
@y defined as follows:

V € Qyy iff ny' (V)is an open subset of F(X). (4.2.1)

where V' C TU(X). Generally speaking, we can say that @, is the quotient topology
generated by the surjective map nx : UF(X) — TU(X).

Remark 4.2.1. Notice that by lemma 1.4.9, we can describe the topology @), defined in
equation 4.2.1 as follows:

Qux = {nx(0) | O € UF(X), nx' (nx(0)) = O}.

Now, consider the construction T : Top — Top to associate each topological space X to
the topological space (TU(X), @y ) and each continuous map f: X — Y to the map
T(f) :TU(X) — TU(Y) defined as T'(f)(z) := TU(f)(z). Then we have the following

lemma:
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4. Lifting and extending of Set-endofunctors to Top

Lemma 4.2.2. T : Top — Top is a Top-endofunctor.

Proof. Tt is enough to show that for each continuous map f: X — Y, the map TU f is
also continuous. Consider the following diagram,

UF(X) - TU(X) (4.2.2)
UFf TUf

UF(Y) 2> TU(Y)

Since 7 is a natural transformation, this diagram is commutative. So, by remark 4.2.1,
it suffices to show that for each open subset O C UF(Y') such that 1y (ny (0)) = O the
following equation holds.

1x' (1x (UFf)7H(0))) = (UFf)~H(0). (4.2.3)

By the properties of functions we know

ny' (nx (UF£)~1(0))) 2 (UFf)~1(0).

We prove the inverse direction of equation 4.2.3 by contradiction.
Let a € 1y (nx (UFf)~1(0))) and a ¢ (UF)1(0). So

nx(a) € nx (UEf)7H(0)).
Hence, there exist an element b € (UF f)~!(O) such that

nx(a) = 1x(b)

and consequently (a,b) € Kernx. Now, since a ¢ (UFf)~1(0), we have (UF f)(a) ¢ O.
So

ny (UF[)(a)) ¢ ny (O) (4.2.4)
(because, 1! (ny (O)) = O). On the other hand, since b € (UF f)~1(0),

(UFf)(b) € O.

Therefore,

ny (UFf)(0)) € ny (0). (4.2.5)
By equations 4.2.4 and 4.2.5, it is concluded that (a,b) ¢ Kerny o (UF f). Hence

Kernx ¢ Kerny o (UFY). (4.2.6)

But equation 4.2.6 is a contradiction with the commutativity of diagram 4.2.2. So we
conclude that a € (UFf)~1(0). O
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4.2. A strategy to lift Set—endofunctors to Top

Example 4.2.3. Let T be the Set-endofunctor (—)2 — (=) + 1 introduced in example
2.16.4. Consider the Top-endofunctor F as the power functor (—)2. For each topological
space X and for each (z,2") € X2, define ny : UF(X) — TU(X) as

(o, = {@m') v

1 z =2

nx is a surjective map. It is easy to check that n : UF — T'U is a natural transformation.
For any topological space X, we provide the set TUX = {(z,2') € X? | z # 2’} U {1}
with the topology @,y defined in equation 4.2.1. Then by remark 4.2.1, the topology
Qux on TUX is as follows:

Qny ={0 | O C X% 0nNAx =0}Uu{(O-Lx)U{L} | O C X? Ax CO} (42.7)
open open
where O is an open subset of X? with respect to the product topology.
By lemma 4.2.2, the construction T : Top — Top which associates to each topological
space X the topological space (TUX, @y, ), and to each continuous map f: X — Y
the continuous map T(f) : TX — TY defined as T(f)(x) := TU(f)(z) is a lifting of
the Set-endofunctor T to Top along the forgetful functor U : Top — Set.

Recall that every Set-endofunctor preserves regular monos. However, there are endofunc-
tors on Top which are liftings of some Set-endofunctors along the forgetful functor but
do not preserve regular monos. The following example shows this issue for the functor
T : Top — Top introduced in the previous example.

Example 4.2.4. Consider topological space Y as the set {1,2,3,4,5} with the topology
generated by the following subbase :

By ={{1,4,5},{2,5},{3,5},{5},{2,3,4,5}}

Notice that for each open subset O of Y2 (with respect to the product topology on Y?2),
we have O N Ay # (0. So, by equation 4.2.7, we have :

Qn = {0~ 2)U{L} | 0 € V2 Ay O} Ji0) (129

Let S = {1,2,3,4} be a subspace of Y. We claim that T'S is not a subspace of TY.
Notice that {(2,3)} is an open subset of S? (by definition of the product topology).
Since {(2,3)} N Ag = 0, by equation 4.2.7, {(2,3)} is open in T'S. But, according
to equation 4.2.8 for each open subset V C TY with (2,3) € V, we obtain that with
VNTS #{(2,3)} (because L € VNTS).

113






5. Extending Set—endofunctors to CUM'!

The theory of ultrametric spaces is closely connected with various branches of mathe-
matics, amongst them general topology, category theory (see remark 2.6.4) and so on.
The properties of the ultrametric spaces have many applications in computer science,
see [50] and [51]. As a well-known ultrametric space which has many applications in
computer science, we can point to the set X (the set of all words over some alphabet
X)) in which the distance between two different words is 2", where n is the first place
at which the words differ (see example 1.8.15). Moreover due to the obtained results
in [12] and [63], the category CUM?" (i.e., the category of complete 1-bounded ultra-
metric spaces with non-expansive maps) is complete and cocomplete (see example 2.5.4
for product in CUM?'). According to [12] and [67], this category is a cartesian closed
category (see example 2.13.5). So, because of all these advantages, the category CUM*
can be a good candidate as a base category for coalgebras. The purpose of this part
is to describe a few properties of complete ultrametric spaces and to give a strategy to
extend Set-endofuctors to CUM! by using these properties. To achieve this goal we will
show that each complete ultrametric space is an inverse limit for some inverse system in
Set. Besides, we used this fact that every inverse limit in Set can be considered as an
complete ultrametric space (see remark 2.6.4). We close this chapter by extending the
power-set functor P and finite power-set functor P, on CUM?! (see section 5.2). One
should notice that all results which will be discussed in this chapter have been originally
worked out by Worrel in [71,72].

5.1. Complete ultrametric spaces as limits of inverse
systems in Set

Before proving the following theorem we should recall that if (X,d) is an ultrametric
space, then for each n € N the set X,, := {By-n(x) | z € X} forms a partition for X (see
lemma 1.9.3). Define gp 1 Xpy — Xy, by gnom(Bo-m(2)) := Ba—n(x) for each m, n € N
with m > n. Notice that g, (m > n) is well-defined. Because for each z, y € X if
By—m(x) = By-m(y) then y € By—m(z) and consequently d(x,y) < 27" < 27". Hence
by lemma 1.9.5 we have By—n(z) = By—n(y).

Now we have the following theorem:
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5. Extending Set—endofunctors to CUM?"

Theorem 5.1.1. If (X, d) is a complete ultrametric space , then the set X can be recov-
ered as a limit of the following inverse system in the category Set,

go,1 91,2 92,3

where X, := {By-n(z) | x € X} for each n € N, and gnm : Xpm —> Xy is defined by
Gnm(Bo-m(x)) := By-n(x) for m > n.

Proof. For each n € N, define map g, : X — X, by gn(z) := By-n(z). We claim
that the set X with the family of maps {gn}nen is a limit for diagram 5.1.1 in Set.
Let (Y, (¢n)nen) be a competitor for (X, (gn)nen). Then gnm © ©m = ¢n for each
m, n € N with m > n. Then for each y € Y the family {¢,(y)}nen is a family of balls
{By-n(xp) tnen satisfying equation 1.9.1 in lemma 1.9.6. Then by lemma 1.9.6, for each
y € Y the set nchpn(y) is a singleton, i.e. for each y € Y there is an element x € X such

that ﬂNgon(y) = {z}. Define f: Y — X as f(y) = = (where ﬂNgon(y) = {z}). So for
ne ne
each n € N,

S

9n(f(v)) =

2-n (f())
(

z)

S

2771
corollary 1.9.2

S

2 (Tn)

= on(y)-

Since for each y € Y the set ﬁan(y) is a singleton, f is unique.
ne

5.2. A strategy to extend Set-endofunctors to CUM!

Assume T is an endofunctor on Set. Our purpose is to extend the Set-endofunctor T to
CUM?" along the functor Dy : Set — CUM? (see example 2.15.7). We try to do this
step by step. Before starting, we should recall that if (X, d) is a complete ultrametric
space then by theorem 5.1.1, the set X can be recovered as a limit of the inverse system
5.1.1 given in theorem 5.1.1.

Step 1: Extending T to objects (1-bounded ultrametric space)

Let (X,d) be a complete 1-bounded ultrametric space. By applying the functor 7' on
diagram 5.1.1, we obtain the following diagram,

T T Tgnn
TXy 20 px, 292 iy, TXn<g—’+TXn+1 (5.2.1)

By properties of Set-endofunctors, this diagram is also an inverse system in Set.
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Remark 5.2.1. According to remark 2.6.4, if (Lx,(m, : Lx — TX})nen) is a limit of
the inverse system given in diagram 5.2.1, then Lx with the map dy, : Ly x Lx — [0,1]
defined by

i (p. ) i 0 p=4q
Lx p? q T 2—m(p7q) other’wise

(where m(p,q) := Inf{n € N | m,(p) # m(q)} for each p,q € Lx) is a complete
1-bounded ultrametric space.

Step 2: Extending T to morphisms (non-expansive maps)

Lemma 5.2.2. Let f : X — Y be a non-expansive map between two complete 1-
bounded ultrametric spaces (X,d) and (Y,d'). Then for every n € N there is an unique
map fn : Xn — Y, with f, o g, = hy, o f where g, and h,, are maps in the following
diagram:

gnt1
N
Xo <L x, o )(n/iﬁiﬁi})(nr%l . X
foi fll fnl fn+1J( lf
}q)<i;;;4,yq .. };L<%E;;I,§§Q+1 .. Yy
~

1

(i.e., gn(x) := Bo-n(x) for each x € X, and hy,(y) := By-n(y) for each y €Y)
Proof. For every n € N, define f,, : X,, — Y, as

fn(By=n(2)) := By-n(f(2)).
First we claim that for all n € N the map f,, is well-defined. Let By—n(z1) = By—n(x2),
then by lemma 1.9.5, d(z1,22) < 27". Since f : X — Y is a non-expansive map,
d (f(x1), f(z2)) < 27" and again by lemma 1.9.5, By—n(f(z1)) = Bon(f(z2)). It
remains to show that f, o g, = hy o f for all n € N. Let x € X be a fixed element, then

fn o gn(x) = fr(gn((2)) = fu(Ba-n(x)) = By-n(f(2)) = hn(f(2)) = hn © f(2).

Lemma 5.2.3. Given two complete 1-bounded ultrametric spaces (X,d) and (Y,d'). Con-
sider (Lx,(mn : Lx — TXy)nen) and (Ly, (7}, : Ly — TY,)nen) as inverse limits of
the corresponding inverse systems mentioned in 5.2.1, then for every non-erpansive map
f: X — Y, there exists an unique non-expansive map f : Lx — Ly such that the
following diagram commutes, i.e. 7, o f = (Tf)om, for each n € N.
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5. Extending Set—endofunctors to CUM?"

_—
N
TX, 2% X, o TX, 20X, o Ly
- )
TYy < — TV, . TY, 72— TVuin . Ly
, R
o

(here {fn : X;, — Y5 }nen are the unique maps introduced in lemma 5.2.2)

Proof. By the diagram above, (Lx, ((T'fn) © Tn)nen) is a competitor for (Ly, (7, )nen).-
Thus, there is an unique map f : Ly —» Ly such that o, of = (T f)omy, for each n € N.
It remains to show f is a non-expansive map between ultrametric spaces (Lx, dr,, ) and
(Ly, dr, ), where dr,, and dy, are ultrametrics defined in remark 5.2.1. We need to
prove that dLY(f(p),f(q)) < dp,(p,q) for each p,q € Lx (naturally diferent). To
achieve this goal, it suffices to show that m(f(p), f(q)) > m(p,q) for each p,q € Lx
(naturally diferent).

m(f(p), f(¢)) = Inf{neN |,

= Inf{neN| (m, f(p)#(WQOf)(Q)}

= Inf{n €N | ((Tfn)om)(p) # (Tfn)om)(a)}
= Inf{n e N[ (Tf)(mn(p)) # (T fn)(mn(q))}

> Inf{n €N | m(p) # mn(q)}

= m(p,q).

As a consequence of this part we have the following theorem:

Theorem 5.2.4. Foe each Set-endofunctor T, define T* : CUM' — CUM* on objects
as T*(X,d) := (Lx,dry) and on non-expansive maps by T*(f : X — YY) := f. Then
T* is an endofunctor on CUM".

Proof. Let (X,d), (Y,d') and (Z,d") be complete 1-bounded ultrametric spaces and let
f:X — Yand g : Y — Z be non-expansive maps. We need to show that the
following equalities hold:

[ ] T*(Zd(X,d)) = idT*(X,d)v and

e T*(go f) = T*(g) o T*(f).
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Before starting our proof, let (Ly, (7, : Lx — TX,)nen), (Ly, (7}, : Ly — TY,)nen)
and (Lz, (7l : Ly — TZ,)nen) be inverse limits of the corresponding inverse systems
mentioned in 5.2.1.

To prove the first equation, note that by lemma 5.2.2 for each n € N the identity map
idx, is the only map such that idx, o g, = gn o idx. Then according to lemma 5.2.3,
Ty O iAEl(X7d) = T(idx, ) o m,. Besides m, oidr, = T(idx,) o m,. So by uniqueness of
i:i(xjd), we conclude that iNd(Xd) = id(nydLX), and then

T*(id(x.q)) = id(x.0) = i1y ay ) = idrs(x,0)

Regarding the second equation, note that according to lemma 5.2.3, there are the unique
non-expansive maps f : Lx — Ly and g : Ly — Lz such that

o o f = (Tf,)om (where {f, : X, — Yy, }nen are the unique maps introduced
in lemma 5.2.2), and

e ' og=(Tgy)omn, (where {g, : Y, — Z,}nen are the unique maps introduced
in lemma 5.2.2).

Therefore

FZO(QOf) = (Tgn)O(Tfn)Oﬂ'n
= T(gno fn)omn.

On the other hand, due to lemma 5.2.3, the morphism m is the unique morphism such

—~—

that 7/ o (f o g) = T(gn © fn) © T, then we have fog=go f and so

—_—~— ~

T*(fog)=fog=gof=T"(f)oT*(g).

Lemma 5.2.5. Let T be an arbitrary Set-endofunctor, then the CUDM?"'-endofunctor
T* (defined in the previous theorem) is an extension of T up to isomorphism along the
functor Dy : Set — CUM?" (see example 2.15.7), i.e. for each set X the metric spaces
T*D1(X) and D1T(X) are isomorphic (see definition 1.8.1).

Proof. Let X be a fixed set. Then D;(X) is the complete 1-bounded ultrametric space
(X, d) where dif : X x X — [0,1] is defined by di* (z,y) :=if (x = y) Oelse 1. So, by
theorem 5.1.1 the set X with maps {g, : X — X, }nen (defined by gn(z) = By-n(x),
for each n € N) is a limit for diagram 5.1.1. We claim that the set 7X with maps
{Tg, : TX — TX,}nen is a limit of diagram 5.2.1. To show this first note that
all maps {g, : X — X, },>1 are surjective (by the definition of g,), and injective
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5. Extending Set—endofunctors to CUM?"

(let n > 1 be a fixed element, then for each x,2’ € X if Bon(x) = Ban(2) then by
lemma 1.9.5, d(z,2’) < 2" < 1 and so by the definition of the metric di we have
x = 2'), and consequently they are isomorphisms. Similarly, we can see that all maps
{gnm : Xm — Xp}tm>n>1 in diagram 5.1.1 (defined by gy m(Bg-m(2)) = By-n(x) for
m > n) are isomorphisms, and then since the functor T preserves isomorphisms, the maps
{Tgn : TX — TX,}p>1 and {Tgnm : TXp — TXp}m>n>1 are also isomorphisms.
Now, let (Q,{gn}nen) be a competitor to (T'X,{gn}nen), i-e. (Tgnm) © ¢m = gn for
all m,n € N with m > n. Since {T'g,}n>1 are isomorphisms, for each n > 1 the set
(Tgn) " (qn(y)) is a singleton. Besides, for each y € Q and each n > 1 we have

Tg1=(Tgn)o(Tgn) Tgin) o0 (Tgn))_l(ch(y))

((

(Tgn) ™" o (Tg1n) ar(y))
= (Tgn)  (Tg1,n) Har(y)))

(

(Tg ,n)OQn:lI
UETT L (Tga) T an(y)).
Then for each y € @ there is a unique element z, € TX such that (T'g,) (g (v)) = 2,

for each n > 1. Define f: Q — TX as f(y) = z, (where (T'gn) ' (gn(y)) = 2, for each
n > 1). For each n > 1,

(Tg1) " (a1(y))

Ton(f(y) = Tgnlzy)
Tgn((Tgn)il(Qn(y)))
(Tgn) © (Tgn)~" (an(y))
= q(y)

Besides for n = 0 we have

Tgo=(Tg%1)O(T91)

Tgo(f(y)) (T'go,1) o (T'g1)(f(y))

_ Tgojl(Tgl( ()))
To(W=a®) 1o ()

(T'go,1)0q1=q0
= q0(y).

Since for each y € @ the element z, € T'X is unique, f is unique.
Then by the previous theorem T*Dy(X) = T*(X,d:) = (T X, drx) where dry is defined
by

drx(p,q) == if (p = q) Oelse2”™®2)
where m(p,q) := Inf{n € N | Tg,(p) # Tgn(q)} for each p,q € TX. Notice that
D1T(X) = (TX,d¥X). Now since the both metrics dry and d¥¥ induce the discrete

topology on T'X, we conclude that the metric spaces T*D;(X) and D1T(X) are isomor-
phic. O
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5.3. Extending power-set functor and finite power-set functor on CUM!

5.3. Extending power-set functor and finite power-set
functor on CUM!

Let (X,dx) be a complete ultrametric space. Now by applying the powerset functor P
on the inverse system given in diagram 5.1.1, we obtain an inverse system as follows:

P(go,1) P P(g1,2) P(gn,n+

PX, X, PX, . PX, Ly L (5.3.1)

Now for an arbitrary complete ultrametric space (X, dx) we have the following lemmas:

Lemma 5.3.1. Assume C := {U C X | U = U} (where U is the closure of U with
respect to the metric topology obtained by the open balls). Then the family of maps
{tn, : C — P(Xp) tnen defined by 1, (U) := {Bo-n(x) | x € U} is a mono-source.

Proof. Assume U # V are two closed subsets of X. We may assume that, there is ¢ € U
such that ¢ ¢ V. It suffices to show that there is n € N such that ¥, (U) # ¥,(V).
Suppose, for every n € N, we have ¢, (U) = 1, (V). Hence,

Vn € N. 3¢, € V. By-n(q) = Ba-n(qn).

Then by lemma 1.9.5,
Vn € N. 3¢, € Vidx(q,qn) <27". (5.3.2)

Now, consider the sequence (gp)nen in V. We claim that (g, )nen converges to ¢. Since,
lim 27" =0, it is enough to show that
n——aoo

Yn € N.3K, e NNVm > K,.dx(q,qm) <27 "

Let n € N be a fixed element. Consider K,, := n, So for each m > n,

equation 5.3.2 —m
dx (¢, 4m) < 2
< 27",

Therefore, limg, = q. Since V is a closed subset in X, we have ¢ € V. This gives a
n—aoQ

contradiction with ¢ ¢ V.
U

Remark 5.3.2. The lemma 5.3.1 still holds, if we replace P (the power-set functor) with
P, (the finite power-set functor). It means the family of maps {¢, : C' — Py, (X,) }nen
defined by ¢, (U) := {By-«(z) | x € U} is a mono-source too (notice that C' is the set
{UCX|U=U}).
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5. Extending Set—endofunctors to CUM?"

Lemma 5.3.3. (C,{¢y, : C — P(X,,) }nen) is an inverse limit of the inverse system in
diagram 5.5.1.

Proof. Let (Y,{pn : Y — P(X,,) }nen) be a competitor for (C, {¢,, : C — P(X,,) }nen)-
Define f: Y — C as f(y) = {x € X | Vn € N.By—n(z) € vn(y)}. To show that f
is well-defined, we need to prove that f(y) = f(y) (i.e., f(y) is a closed subset of X).
It suffices to show that f(y) C f(y). Let a € f(y). Then By-n(a) N f(y) # O for each
n € N. Hence

Vn € N.3a,, € f(y).an € By-n(a).
Then
Vn € N.da,, € f(y).dx(a,a,) <27

Therefore by lemma 1.9.5,
Vn € N.3a, € f(y). By-n(an) = Bay-n(a). (5.3.3)

We know that a,, € f(y) for each n € N. Then By-n(ay,) € pn(y) for each n € N. Hence
by equation 5.3.3, for each n € N we have By-»(a) € ¢,(y) and consequently a € f(y).
It is easy to see that i, o f = ¢, for each n € N. Since {¢,, : C — P(X,)}nen is
mono-source, f is unique. O

Corollary 5.3.4. (Extension of the power-set functor on CUM') The endofunc-
tor P* : CUM' — CUM" maps a complete 1-bounded ultrametric space (X, dx) to the
set C ={U C X | U = U} (the set of all closed subsets of X with respect to the metric
topology obtained by the open balls) equipped with the metric as follows

0 U=V
d(U, V) := {2—m(U,V)

where m(U, V) :=Inf{n € N | Y,(U) # ¢¥n(V)} for all closed subsets U, V C X.

otherwise

Remark 5.3.5. As an application of remark 5.3.2 we can show that lemma 5.3.3 is also
true for the finite power-set functor P,. It means the set C = {U C X | U = U} with the
morphisms {¢,, : C — P, (X,)}nen defined in remark 5.3.2 is a limit of the following
inverse system:

Py (Xo) < 2Vp (x,) . Py (X)) (X000 - (5.3.4)

Consequently, if (X, dx) is a complete 1-bounded ultrametric space then the underlying
set of P (X,dx) is the set C = {U C X | U = U} (the set of all closed subsets of X).
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In the following, we try to present the CUM!-endofunctor P¥ in terms of compact
subsets. In other words, we will to show that if (X, dx) is a complete ultrametric space
then

PX(X,dx) ={U C X | Uis a compact subset of X}. (5.3.5)

Recall that a topological space is compact if and only if it is complete and totally bounded
(see theorem 1.8.9). Since every closed subset of a complete metric space is complete,
each U € P%(X,dx) is also complete. Then in order to prove equation 5.3.5, we just
need to show that each U € P} (X, dx) is totally bounded (see definition 1.8.6).

Suppose V' € PX(X,dx) is a fixed element. According to remark 5.3.5, V is also an
element in the set C = {U C X | U = U}. Note that the set C with the morphisms
{pn : C — Py(Xp) Inen defined by ¢, (U) := {By-n(z) | x € U} (for each n € N) is
a limit of the inverse system given in diagram 5.3.4 (remark 5.3.5). Then the set ¢, (V)
(for each n € N) is finite. Hence, for every n € N, we can find a finite subset V,, C V

such that V' C |J By-n(x). As a consequence of the above mentioned evidences, we
$€Vn
conclude that each U € P} (X, dx) is totally bounded. So we have:

Corollary 5.3.6. ( Extension of the finite power-set functor on CUM") The func-
tor P5 : CUM — CUM maps a complete 1-bounded ultrametric space (X,dx) to the
set of all compact subsets of X with the following metric

0 U=V
AU, V) = {2_m(w)

where m(U, V) :=Inf{n € N | ¢,(U) # ¢n(V)} for all compact subsets U, V C X.

otherwise
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6. Kripke Structures

The concept of Kripke structures is the main motivation to study and develop the theory
of coalgebras and modal logic. As an example, in the next section one can see that Kripke
structures can be presented as coalgebras for the Set-endofunctor Pp (Kripke functor).
The aim of this chapter is to review the notion of Kripke structures and its connection
with modal logic. The main references of section 6.1 are Rutten [62], Gumm [30,37,38]
and Hennessey and Milner [11]. The works of Fine [26,27], Goldblatt [28], Goldblatt and
Thomason [29], Areces and Goldblatt [6] and Hollenberg |13] are the other references for
the notions discussed in this chapter.

6.1. Classical modal logic

Throughout this section, let P be a fixed set of propositional letters.

6.1.1. Kripke models and Kripke frames
Definition 6.1.1. (Kripke model) A Kripke model is a triple X = (X, Ry, Fx)

where

e X is a set,
e Ry C X x X is a binary relation called transition,

e =1+ C X X P is a binary relation called validity.

In this section, we replace x Ry y by * —r, v.

Kripke frames are Kripke models with P = () (i.e., a Kripke frame is a pair X = (X, Ry)
where X is a set and Ry is a binary relation on X).

The validity relation =y can be coded by a validity (or valuation) map Jx : X — P(P)
via dyx(x) :={pe P | z Fx p}.

We can also consider the transition relation Ry as a transition map Ry : X — P(X)
defined by Ry(x) :={ye X | v —r, y}

We can present a Kripke model X = (X, Ry, Ex) as a triple X = (X, Ry, Vx).

6.1.2. Modal formula

Definition 6.1.2. Modal formulas over P are generated inductively as follows:
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6. Kripke Structures

p =T
| p foreachp € P
2N
| e
| O

The truth functional connectives V ("or”), — ("implication”) and also the modal oper-
ation {p ("possibility of ¢”) are defined in the usual way:

L o1 — 2 := (g1 A )
2. @1 V2 i= (21 A )
3. Q=g
In addition, \/ ¢; and A ¢; can be considered as modal formulas, whenever I is finite

i€lp 1€lp
and each ¢; is a formula. We denote the set of modal formulas over P by Lp.

6.1.3. Validity

Definition 6.1.3. If X = (X, Ry, =x) is a Kripke model, we extend the validity relation
Ex from p € P to ¢ € Lp as follows:

rExy T <= true

ThEx p1Ap2 = TEx prandz Fx @2
TExy @ = zFy o
rExy Op <= VYy.z—oy —=yEx ¢

So the semantics of the modal formulas constructed by the other logical connections can
be defined as:

ThEx o1V &= zlx prorzExy 02
ThExy o1 — o2 <= Ky prorzEx g2
rExy Qv <= zkKy O-p

A formula ¢ is valid in a Kripke model X = (X, Ry, [=x) (insymbols: Fx @) iff x E=x ¢,
for each z € X. As an example =y T, for every Kripke model X = (X, Ry, =x). Let
¥ be a subset of Lp, we say that 3 is valid in a Kripke model X (in symbols: =y X) iff
Ex o, for each p € .
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6.1. Classical modal logic

6.1.4. Negation normal form

Definition 6.1.4. In negation normal form each formula is defined by the following
gramiar:
v = T| 1L
| p|-pforeachpe P

| w1 Ap2 |1V
| O | Qe

Lemma 6.1.5. Each modal formula is equivalent to a formula in the negation normal
form.

Proof. By using induction and the following validities, this claim can be proven.

—p = @

“(p1 Ap2) = 1V ps
“(p1Vipa) = 1 A s
e = Oy
Qv = Uy

6.1.5. Semantic map and modal equivalence

Definition 6.1.6. Given a Kripke model X = (X, Ry,Fx). For each x € X, we define

[z = {p€lp|zFx ¢} (6.1.1)

Also, for each ¢ € Lp we denote
lel* = {zeX|zEx ¢} (6.1.2)

We can just write || ¢ ||, if it is clear from the context.

Remark 6.1.7. We can define a binary relation =r,,C Lp x Lp by
w =L, Yiff || ¢ |*=|| ¥ ||* for each Kripke model X.

It is easy to see that =y, is an equivalence relation. We say two formulas ¢ and 9 are
equivalent if ¢ =, 1.
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6. Kripke Structures

In the rest of this section, let X = (X, Rx,Fx), Y = (Y,Ry,Fy) and Z = (Z,Rz,Fz)
be fixed Kripke models.

Definition 6.1.8. Let x € X and y € Y, then we say that x and y are modally
equivalent (in symbols: x ~x y y), if for each modal formula ¢ € Lp,

TExy ¢ &= yFy

We call the binary relation ~y y € X x Y the modal equivalence relation between X and
Y. It is clear that ~x y is an equivalence relation. We drop the index and write ~, if it
is clear from the context.

6.1.6. Kripke bisimulation

Definition 6.1.9. A binary relation B C X x Y is called a Kripke bisimulation
between X and ), if for each two elements x € X and y € Y with x By, we have

l.VpePzFy p=yFy p;
2. Vo' e X.o — g2’ = W €Y.y —gr, ¥ N2’ By
3.Vy €Yy —gr,y = ' € X.o —p, o' N2’ By
Remark 6.1.10. [62] Notice that each Kripke bisimulation can be made into a Kripke

structure. To see that, let B be a Kripke bisimulation between X and ). We can define
a transition relation Rp C B x B and a validity relation =5 C B x P as follows:

o (z,y) — Ry (@,Y): <= = —py 2’ and y —ip,, V/;
e Vpe P.(x,y) Ep p <= zEx pand y =y p.

Then (B, Rp, Ep) is a Kripke model. Notice that Rp is not uniquely determined.

We have the following well-known facts about the Kripke bisimulations:

Lemma 6.1.11. [67]:

1. The empty relation ) C X x Y is a Kripke bisimulation.
2. The diagonal Ax := {(z,z) | * € X} is a Kripke bisimulation.

3. The converse of a Kripke bisimulation is a Kripke bisimulation too.
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6.1. Classical modal logic

4. If By and By are Kripke bisimulations, then their relation composition By o By is
also a Kripke bisimulation.

5. The union of a family of Kripke bisimulations between X and ) is again a Kripke
bisimulation.

Remark 6.1.12. As a consequence of (1) and (5), the largest Kripke bisimulation
between & and ) exists and it is denoted by ~x y. We say B is a Kripke bisimulation
on X if B is a Kripke bisimulation between X and X. The largest Kripke bisimulation
on X is denoted by ~x or simply ~, when X is clear from the context. According to part
(2), (3) and (4), the largest Kripke bisimulation on X" is an equivalence relation. We say
that two points x € X and y € Y are Kripke bisimilar if there is a Kripke bisimulation
B between X and Y with © By. Consequently x € X and y € Y are Kripke bisimilar iff
X ~Xx,y Y.

In the following, we will investigate the existence relationships between Kripke bisim-
ilarity and modal equivalence. A straightforward induction over the construction of the
modal formulas shows that bisimilar states are modally equivalent, i.e.

Theorem 6.1.13. [//] Let v € X and y € Y be Kripke bisimilar elements. Then
TRxy Y.

An example clearly demostrating that the converse of theorem 6.1.13 does not hold,
is given by the infinite systems displayed below. In both systems, the root notes have
countably many immediate successors from which branches of increasing length eman-
ate. In the left structure, all branches are finite, whereas in the right structure an infinite
branch (shown horizontally) is added. In both structures, we consider P = ().

T

!
o oY ——=0oY —— ..

| |

It is easy to see that ¢ can not be Kripke bisimilar to any successor of z in the left
structure. There for  and y are not bisimilar. However, they are modally equivalent.
This is due to the fact that the modal depth! of modalities limits the scope of a modal
formula (taken from [39]).

!The modal depth of a Modal formula ¢ (in symbol: M D(¢p)) is the deepest nesting of modal operators
(O and <). Note that

e modal formulas without modal operators have a modal depth of zero,
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6. Kripke Structures

The following theorem shows that for the class of the image finite Kripke models, the
converse of theorem 6.1.13 does hold. Since this theorem is an well-known result of Hen-
nessey and Milner [11], we ignore its proof. We should mention that a Kripke model X
is called image finite if Ry (x) is a finite set for each x € X.

Theorem 6.1.14. [//] (Hennessy-Milner theorem) Let X and ) be image finite
Kripke models. Then the modal equivalence relation ~xy C X XY is a Kripke bisimu-
lation between X and ).

Corollary 6.1.15. Let X and Y be image finite Kripke models. Then the equivalence
relation ~xy C X XY 1is the largest Kripke bisimulation between X and ).

6.1.7. Kripke homomorphisms and canonical bisimulations

Definition 6.1.16. A map f : X — Y is called a Kripke homomorphism, if its
graph, (i.e., the set G(f) := {(z, f(z)) | * € X}) is a Kripke bisimulation. It means for
every x € X, we have

l.Vpe Pz Ex p<—= f(x) Fy p;
2. Vo' € X.o — g, o' = f(z) —ry f(&);

3.VyeY. f(x) — g, y= ' € X.o —p, 2’ N f(z)=y.

Lemma 6.1.17. [97] Kripke homomorphisms preserve and reflect modal formulas, in
the sense that © Ex ¢ iff f(z) Ey ¢ (where f: X — Y is a Kripke homomorphism
between Kripke models X and )).

Proof. Suppose f: X — Y is a Kripke homomorphism between Kripke models X and
Y and x € X, then since Kripke bisimulations preserve modal formulas, for each formula
i we have

TExp = f(z) By

Corollary 6.1.18. Suppose f : X — Y is a Kripke homomorphism. Then for each
modal formula ¢ € Lp, the following conditions hold:

e MD(p @) =max(MD(p), MD(v))), where @ € {A,V,—1},
e MD(—y)= MD(p), and
o MD(Op) = MD($Gw) = 1+ MD(y).

As an exampel, M D(O(Gp — $Op)) = 3.
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6.2. Compactness and modal saturation

L flel® <Sllell?;

2 e lP?) =l el

Lemma 6.1.19. (Canonical bisimulation theorem) [02] Given Kripke homomorph-
isms px : Z — X and oy : Z — Y, then the set

(px, ov) 2] = {(¢px(2), v (2)) | z € Z}

is a Kripke bisimulation between X and Y, and each Kripke bisimulation is of this shape.

Proof. Since (ox,y)[Z] = G(px)~! o G(py), the result follows from parts (3) and (4)
of lemma 6.1.11. To prove the rest of this lemma let B be a Kripke bisimulation between
X and Y. We know that (mx,7ny)[B] = B, where nx : B— X and 1y : B — Y are
projection maps. Then it is enough to show that the projections mx and 7y are Kripke
homomorphisms. Let Rp C B x B and FpC P x B be the transition relation and the
validity relation defined by B, respectively (see remark 6.1.10). Then (B, Rp, Ep) is a
Kripke model. Now, it is easy to see that the projections7x : B— X andny : B— Y
are Kripke homomorphisms (see definition 6.1.16). O

Remark 6.1.20. Kripke structures together with the Kripke homomorphisms form a cat-
egory denoted by KS.

6.1.8. Congruence

Definition 6.1.21. If f : X — Y is a Kripke homomorphism, then its kernel

ker f:={(z,2") € X x X | f(z) = f(2')}

is called a congruence relation. This is clearly an equivalence relation and a Kripke
bisimulation as well, since we can write it as a relation composition of G(f) (the graph
of f) with its converse as

ker f = G(f)o G(f)~".

6.2. Compactness and modal saturation

In this subsection we introduce the notion of compactness for Kripke structures. We
will prove that this notion coincides with the notion of modal saturation introduced in
Fine [27] for the class of Kripke models. The notion of modal saturation has been also
studied by Goldblatt in [28], Goldblatt and Thomason in [29], Goranko and Otto in [10]
and Hollenberg in [413]. Both notions are used to answer this question what connection
is between the notions of modally equivalence and bisimilarity equivalence.

First we should notice that in general, infinitary disjunctions or conjunctions are not
considered as a formula, but we informally use them. As an instance according to [39],
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6. Kripke Structures

for every element x in a Kripke model X we write z =x ¢, iff (i € I.2 =x ¢;).
el
Consequently, we write
xr ’:X D\/QOZ'
i€l
to mean Va'.(z —pg, o' = Jie .2 E=x ¢;).

We also use the notation x = A iff (Vie .z Ex ¢;). We write
el

rl=x O\

i€l

to mean 3z'.((x — g, ') A (Vi € I.2' Ex ¢;)). If I is finite, the above coincides with
the standard formula semantics.

The next denition can be found in [10] and elsewhere.

Definition 6.2.1. An element z in a Kripke model X is called modally saturated, if
for every family (¢;);cs of formulas the following condition holds,

o if x Ex O A ¢ for each finite subset Iy C I, then = =x O A ¢
i€lp el

Now, we introduce the notion of compactness in terms of the modal operator [J (box),
(defined by Gumm in [39]):

Definition 6.2.2. An element z in the Kripke model X is called compact, if for
each family (¢;)ier with z Ex O\ ¢; we can find a finite subset Iy C I such that
i€l
x Ex OV ¢;. A Kripke structure is called compact (resp. modally saturated) if each
i€lp
of its elements is compact (resp. modally saturated).

The following lemma shows that the notions of compactness and modal saturation
coincide.

Lemma 6.2.3. An element x in the Kripke model X is compact if and only if it is
modally saturated.

Proof. Let x be a compact element such that x =x { A ; for each finite subset Iy C I.
i€lp
We want to prove that = is modally saturated. We show this claim by contradiction.
Suppose z Ex O A i, then 2/ Fx A g; for every element 2/ with x — g, 2. So,
iel iel
' Ex i for every element 2’ with © — g, 2’ and consequently x =x OV —g;.
iel iel
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6.2. Compactness and modal saturation

Now, by the compactness of z, there is a finite subset Iy C I such that z Fx OV —¢p;.
i€ly
Hence z =x =O—(V —p;) and so x Ex =0 A ;. It means x By O A ¢; which gives
icly i€ly i€lp
a contradiction with the assumption. The other direction can be proven in a similar way.

O]

According to definition 6.2.2, the image finite elements are clearly compact, but they
are not the only ones. We make this issue more clear by giving an example discovered by
Gumm in [39]. In this example, there are two Kripke structures with an image infinite
element x, such that in the first structure, z is a non-compact element and in the second
one it is compact. In both structures, we consider P = ().

Example 6.2.4. Given the set X = {z; | i € N} U {x}, define the binary relation R on
X as

R = {(z,z;) | i e N} U{(xi41, =) | i € N}
Then for each z; we have that z; = 0! false, but z; ¥ [V false for j < i. Therefore,

(X, R) is not compact, because x = 0 \/ (0" false), but there is no finite Iy C N such
1€N

y

To<—"T1<—X2

that z =0 \/ (O false).

i€l

(6.2.1)

We now modify the structure given in picture 6.2.1 by adding a limit point x, together
with a self-loop (2, Zoo) to obtain the following structure:

y

Tog<——2=T] <— X9 xooj

(6.2.2)

Now, we claim that:

Lemma 6.2.5. The Kripke structure in picture 6.2.2 is compact.

Proof. We can see that for the point at infinity (i.e., xo) we have:

Too EUp <= 2 F ¢ <= 200 E Qo
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6. Kripke Structures

To continue this proof, we need to show that for each nnf-formula ¢, the following claim
holds.

Claim. If o = ¢, then there is some k € N such that z; = ¢ for each ¢ > k.

We prove the claim by induction over the construction of formulas in negation normal
form. For ¢ = true and ¢ = false the claim is obviously true. Suppose the claim is
true for negation normal formulas @1 and 2. For ¢ = ¢1 A g, from o = @1 A g the
hypothesis yields k1, ke € N such that z; | o1 for each i > ky and x; = @9 for each
i > ko. With k = max(k1, k2) we obtain x; = @1 A @2 for each i > k. For ¢ = 1 V @9
we could similarly choose k = min(ky, k2).

Regarding the formulas ¢ = Oy, it should be observed that we have: z. E ¢ iff

Zoo = 1. By assumption, there is some k such that x; = @1 for each i > k. It follows

that z; = Op; for i > k + 1. Similarly we argue for ¢ = $opy.

Now to show that x in picture 6.2.2, is compact, suppose that z = [O\/ ¢; then there
i€l

is some i € I such that zo | ;. The claim above provides a k such that for each

j > k we have z; = ¢;.,, and for each j S k there is i; € I with z; |= ¢;;. Altogether

then with Iy := {io,41,...,7k—1} U {ic} we have z =0\ ¢;. Thus x is compact. All
i€lp
other points in picture 6.2.2 are image finite, hence compact, too. O

6.2.1. Compactness and Kripke bisimilarity

Points may be modally equivalent without being bisimilar. In [28], Goldblatt defined
that a class C of Kripke structures has the Hennessy-Milner property, if modally equi-
valent elements are Kripke bisimilar. For instance, as it is mentioned in theorem 6.1.14
the class of all image finite Kripke structures has the Hennessy-Milner property (i.e.,
the notions of Kripke bisimilarity and modal equivalence coincide). Also, Goranko and
Otto in [40] have shown that the class of the saturated models® has the Hennessy-Milner
property. Here we replace the concept of saturation by the notion of compactness and we
will prove that the class of the compact Kripke structures has Hennessy-Milner property.
None of lemmas and proofs in this subsection are original and they are straightforward
consequences of the known results of Goldblatt |28] for the class of saturated structures.

We know that Kripke bisimilar elements satisfy same formulas. We extend this well-
known fact to infinitary formulas in the following sense:

Lemma 6.2.6. (Kripke bisimulations preserve compactness) Let B C X XY be a
Kripke bisimulation between X and Y and let x By. Then x is compact iff y is compact.

Proof. Suppose x By and x is compact. If y =y OV ¢4, then each ¢ with y —g,, '
el
satisfies one of the formulas ¢;. By the definition of Kripke bisimulation, each z’ with

2A Kripke model X =(X, R, ) is called saturated if each 2 € X is a modally saturated elements.
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6.2. Compactness and modal saturation

r — R, 2’ is Kripke bisimilar to some ¢y with y —g,, y’. Then since Kripke bisimilar
elements are modally equivalent, each z’ satisfies one of the ¢;, i.e. x =y OV ¢;. Since

el
x is compact, there is a finite subset Iy C I with x =y O\ ¢;. Again, since Kripke
i€lp
bisimulations preserve modal formulas, we have y =y O\ ¢;. O
i€lp

Corollary 6.2.7. Kripke homomorphisms preserve and reflect compaciness, in the sense
that x is compact iff f(z) is compact (where f : X — Y is a Kripke homomorphism
between Kripke models X and )).

Proof. Since f is a Kripke homomorphism, its graph is Kripke bisimulation (definition
6.1.16). Then by lemma 6.2.6, = is compact iff f(z) is compact.
O

Corollary 6.2.8. If f : X — Y is a surjective Kripke homomorphism, then X is
compact iff YV is compact.

Remark 6.2.9. Notice that compact Kripke structures with Kripke homomorphisms form
a category called CKS.

The following theorem shows us that the class of compact Kripke structures has the
Hennessy-Milner property.

Theorem 6.2.10. (Compact Hennessy-Milner theorem) Let X and Y be compact
Kripke models. Then the modal equivalence relation ~xy C X XY is a Kripke bisimu-
lation between X and ).

Proof. Suppose * ~xy y. Then obviously x and y satisfy the same propositional
variables. Now, assume 2’ is an element in X with © — g, 2’ and suppose there is no
element y' € Y such that y —g,, ¥ and 2’ ~x y y'. This means that for every element
Yy €Y with y —g,, ¥ there exists a formula ¢,/ such that 2’ x ¢, and ¢ =y @y
Soy =y O V ¢,. Moreover, y is compact. Therefore, there exists a finite subset
y'ERy(y)
Wiyt C© Ry(y) with y y O(py V... Vo) and 2’ By (o, V... Vo). Finally,
since x and y are modally equivalent, we obtain that x =x D(goyi V...V, ), which
together with # — g, 2’ gives us a contradiction. The proof of the third condition of
Kripke bisimulation is similar. O

As an easy corollary of the previous theorem, we have:
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Corollary 6.2.11. Let X and Y be compact Kripke models. Then the modally equivalence
relation ~xy C X x Y is the largest Kripke bisimulation between X and ).

Proof. By the previous theorem, ~y 3 C X x Y is a Kripke bisimulation between X and
Y. Suppose B C X x Y is an arbitrary Kripke bisimulation between X and ). Due to
lemma 6.1.13, if x By then z ~x y y and consequently B C~y y. O

6.2.2. Modally equivalent and behaviorally equivalent

Definition 6.2.12. Let x € X and y € Y. We say that = and y are behaviorally
equivalent (in symbols:  Vx yy), if there exists a Kripke model K =(K, Rk, =) and
Kripke homomorphisms f : X — K and g : Y — K such that f(z) = g(y). We drop
the index and write xVy, if it is clear from the context.

Remark 6.2.13. It is well known that in the class of Kripke structures, behaviorally
equivalent implies modally equivalent (if z € X and y € Y are two elements such that
xVx yy, then there is a Kripke model K =(K, R, =x) and Kripke homomorphisms
f:X — Kand g: Y — K such that for some element z € Z we have f(x) = z
and f(y) = z, and consequently by lemma 6.1.17, =y z z and y =y z z, and hence

T =xy y).

In the sequel we will show that in the class of the compact Kripke structures modally
equivalent elements are behaviorally equivalent.

It is well-known from Aczel and Mendler [2] that:

Lemma 6.2.14. [2] Every Kripke bisimulation B C X x X which is an equivalence
relation is a congruence relation on X.

Proof. Let B C X x X be a Kripke bisimulation which is also an equivalence relation.
Consider the factor set X/B, consisting of all equivalence classes [z]p with € X. Define
a transition relation Rp C X/B x X/B and a validity relation =5 C X/B x P as follows:

e [z]p — R, [y|B :<=there exist 2’Bx and y' By such that 2’ — g, v/;
e Vpe P.[xlp Ep p i< J/Buz.2’ Ex p.

Then /B = (X/B, Rp, [=p) is a Kripke model.

Now, we show that the canonical map f : X — X/B where f(x) := [z]p is a Kripke
homomorphism.

According to definition 6.1.16, it suffices to show that its graph is a Kripke bisimulation.

e Firstly, by the definition of =5 on X/B we have: = =y p iff [z]p =B p.
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6.2. Compactness and modal saturation

e Secondly, according to the definition of Rp on X/B we have: if © — g, 2’ then
[.’,E]B —>RB [xl]B~

e Finally, assume [z]p —> R, [y]B, we need to find some y” such that 2 — g, y” and
f(@") = [y]p. The definition of Rp on X/B yields there are 2’ Bz and y' By with
¥’ — g, y. Since B is a Kripke bisimulation, we conclude that there exists y”
with 2 — g, v” and ¥/ By”. Since yBy" and by transitivity, we have f(y") = [y] 5.

Then f: X — X/B is a Kripke homomorphism with kernel B.
O

Lemma 6.2.15. If X is a compact Kripke model, then ~ is a congruence relation.

Proof. We know that the modal equivalence relation ~ on X is an equivalence relation.
Besides, due to theorem 6.2.10 the relation ~ is a Kripke bisimulation. Then by the
previous lemma, =2 is a congruence relation on X. O

As a consequence of lemma 6.2.15, we have:
Corollary 6.2.16. Forallz,yc X, ifx =xy y, then xVxyy.

Proof. By the previous lemma there is a Kripke model K =(K, Rx, Ex) and a Kripke
homomorphism f : X — K such that ~x y= ker f. Then from = ~xyy y, we have
f(z) = f(y) and this yields 2 Vx yy. O

As a conclusion of this section we find that in the class of compact Kripke structures, the
notions of behavioral equivalence, modal equivalence and Kripke bisimilarity all coincide.

Theorem 6.2.17. Let x and y be elements in the compact Kripke structures X and ),
respectively. Then the following are equivalent:

1. z and y are behaviorally equivalent,
2. x and y are modally equivalent,
3. x and y are Kripke bisimilar.

Proof. We prove this theorem step by step.

)

Step1: The implication > 1=-2’" is concluded by remark 6.2.13 and the implication
2=1’ follows from lemma 6.2.16.

Step 2 : Theimplication ' 2==3’ follows from theorem 6.2.10 and the implication '3—-2’
is concluded by lemma 6.1.13.

O]

139






7. Coalgebras over (£, M)-categories

In this chapter, We study some basic definitions, examples and theorems for coalgebras
over a base category C with the following property:

Al: C has a factorization system (&£, M) such that €& C epis and M C monos.

We use the categories Set and Top as the base categories in our examples. Our main
references to introduce the theory of coalgebras include Rutten [62], Jacobs and Rutten
[11], Gumm [30-32], Gumm and Schroeder [33,31,36] and Venema [68].

Throughout this chapter we assume that F' is an arbitrary endofunctor on the category
C.

Also, in this chapter, if A and B are two sets and b € B, we denote by C’f the constant
map from A to B that sends each element of A to b.

7.1. Coalgebras and subcoalgebras

Definition 7.1.1. (Coalgebra) An F-coalgebra on C is a pair A =(A, a4) consisting of
an object A in C and a morphism a4 : A — F(A) in C called the structure morphism
(or F-coalgebra structure) of A. We shall often drop the index to the structure map «
when it is clear from the context.

Example 7.1.2. Let X = (X, Rx, =x) be a Kripke model and Ry and 9y the transition
and the validity maps obtained by the binary relations Ry and =y, respectively. It is
well-known that Kripke model X’ can be written as a pair (X, a) where « is a map from
X to P(X) x P(P) defined by a(x) := (Rx(x),9x(x)). Recall that the Kripke functor
Pp maps every set X to the set P(X) x P(P) and each function f : X — Y to the
function Pf x idpp) given by (Pf x id)(U, M) = (f[U], M) (where U C X and M C P).
Therefore, we can say that Kripke models are coalgebras for the Kripke functor Pp.
Kripke frames (i.e., Kripke models with P = ()) are coalgebra for the powerset functor P
on the category of sets.

Example 7.1.3. Let C' be an arbitrary topological space. Consider the endofunctor
F(—) := C x (—=)10p (i.e the polynomial functor obtained by the product of the constant
functor C' with the identity functor (—)7ep). The coalgebras of the Top-endofunctor F'
correspond to the black boxes on T'op which can be described by a triple (.S, h, t) consisting
of a topological space S as input states and a pair of continuous maps h : S — C and
t: S5 — 8.
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7. Coalgebras over (€, M)-categories

Example 7.1.4. Let ¥ be a set of symbols and D an arbitrary set of data. Recall
that an automaton S over X with output in D consists of a set S of states, a transition
function § and an output function vy where

0 1 Sx¥— 5,

vy : S—D.

We show the automaton & by & = (S,%,D,d,7v). To explain how the automaton S
can be seen as a coalgebras for the Set-endofunctor D x (—)*, we shall make use of the
existence of the curried form of the transition function ¢ (see section 2.13). Due to the
existence of the exponential objects in the category Set, there is a morphism & : § —s S
defined by

6(x)(y) = 6(z,y) (7.1.1)

where € S and y € ¥. A coalgebra structure a : S — D x S* which is corresponded

to the automaton S can be defined as a(x) := (y(z),d(z)) for each z € S.

Example 7.1.5. A topological automaton is an automaton § = (S,%, D, d,~) such
that:

e S, Y and D are topological spaces,
e 3 is a locally compact space, and

e §:Sx3¥— Sand~:S — D are continuous maps.

We repeat the same way used in the previous example to show that the topological auto-
mata are coalgebras for the T'op-endofunctor D x Homre,(X, —) (where Hompqp(X, —)
is the covariant functor defined in lemma 3.5.1). Since X is a locally compact space, by
lemma 2.14.2 the map ev : §* x ¥ — S is continuous. Thus, there is the curried form
of 8, i.e. the unique continuous map 8 : S — S* defined as equation 7.1.1. Define a
coalgebra structure a : § — D x Homroy(%, S) by a(z) == (y(z),d(x)) for each z € S.
Therefore, one can see that the topological automaton S can be presented as coalgebra

(S, ).

Definition 7.1.6. (Homomorphism) Suppose A =(A4,a4) and B =(B,ap) are F-
coalgebras over C. An arrow ¢ : A — B in C is called a homomorphism from A to B
if

apow=Fypoay.
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7.1. Coalgebras and subcoalgebras

That is, if the following diagram commutes.

A% .3
OzAl ap
F(4) - - F(B)

They are easy to check that id4 is always a homomorphism and homomorphisms are
stable under composition. Thus F-coalgebras together with their homomorphisms form
a category denoted by Cp.

Remark 7.1.7. There is a forgetful functor Uc : Cp — C which associates each coalgebra
A =(A,ay) in Cp to the underlying object A in C and each homomorphism f: A — B
(between coalgebras A =(A,a4) and B =(B,ap)) to the same morphism (called the
underlying morphism of f) in C.

Example 7.1.8. Every Kripke homomorphism between Kripke models is a homomorph-
ism between corresponding Pp-coalgebras and vice versa. Let A = (A, Ra,Y4) and
B =(B, Rp,¥5) be two Kripke models and let A =(A, ap) and B =(B, ap) be the cor-
responding Pp-coalgebras. A function ¢ : A — B is a homomorphism between Pp-
coalgebras A and B iff the following diagram commutes (see definition 7.1.6).

_—

P(P) P(P) (7.1.2)
ﬁAT Tﬁg
A—* B
o
P(A) = P(B)

Notice that the upper square in diagram 7.1.2 is commutative (i.e., ¥ 4(a) = 95(p(a))
for each a € A) iff for each a € A and each p € P we have a 4 p < ¢(a) =5 p.
Moreover, the equality Rg o ¢ = P(¢) o R4 is equivalent to conditions (2) and (3) in
definition 6.1.16. Then ¢ : A — B is a homomorphism between Pp-coalgebras A and
B iff ¢ is a Kripke homomorphism between Kripke models A and B (see [62]).

Lemma 7.1.9. [02] Given F-coalgebras {A; = (Ai, ) }ier, B=(B,5) and C = (C,~)
in Cp. Let {fi : Ai — C}icr be a sink of homomorphisms and let {g; : A; — Blier
and h : B — C be morphisms such that h o g; = f; (for each i € 1), then

1. if {gi}ier is an epi sink in C and for each ¢ € I the morphism g; is a homomorphism,
then A is a homomorphism, and
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7. Coalgebras over (€, M)-categories

2. if h is a homomorphism with F'h mono, then for each ¢ € I the morphism g; is a
homomorphism.

Proof. For both parts of this lemma, consider the following diagram:

A & C
B
o Y
B
F(4) —— - F(C)
Fg; %
F(B)

The rest of this proof is similar to the proof of lemma 2.4 in [62], where instead of the
sink {g;}icr we have a morphism g. O

Remark 7.1.10. Additional to the assumption Al (i.e., C is an (£, M)-category with
& C epis and M C monos), in the rest of this chapter we use the following assumptions:

A2: C is a cocomplete category.
A3: C is M-well-powered.
A4: C has binary products.

A5: C-endofunctor F' preserves M-morphisms.

Subcoalgebras

Consider the category Cp where the base category C satisfies the assumption A1l. We
have the following definition:

Definition 7.1.11. Let A =(A, a4) be an F—coalgebra in Cr and let m : S — A be an
M-subobject (see section 2.12) of A. Then m : S — A is called an M-subcoalgebra
of A if there is a C-morphism ag : S — F(5) (called M-subcoalgebra structure) such
that the morphism m : S — A is a homomorphism in Cg.

Here, we call M-subcoalgebras of A simply as a subcoalgebras of A, if the class M is
equal to the class of regular monos in C.
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7.1. Coalgebras and subcoalgebras

Remark 7.1.12. Recall that in Top the regular monomorphisms are (up to isomorphisms)
exactly the topological embedding (see lamma 2.9.3). Then a subcoalgebra of a coalgebra
A=(A,an) in Topr (where Top is an (epi, regular mono)- category) is a topological
embedding ¢ : S — A such that there exists a continuous map p : S — F(S) with
agot=Fuiop (ie. ¢ is a homomorphism in Topp).

Definition 7.1.11 does not uniquely determine the M-subcoalgebra structure ag. The
next example shows this issue clearly. It shows that in the category of Ilp-coalgebras over
Top (where Top is an (epi, regular mono)- category), the M-subcoalgebras structures
are not uniquely determined. The reason is that Il does not preserve monos.

Example 7.1.13. Recall example 3.7.4 where S = {1,3} is a subspace of the real
numbers R with the standard topology. We have the following diagram,

HO(S)HO(L) !

where ¢ : S — R is the subspace inclusion. Since 1 (i.e., one element space {1}) is a
terminal object in T'op, every continuous map ag : S — Ily(S) makes diagram above
commutative (recall that IIo(S) is the set {{1},{3}} with the discrete topology).

The previous example suggests the following theorem:

Theorem 7.1.14. Let C be a concrete category (see definition 2.15.12) such that

1. monos in C are precisely those morphisms with the injective underlying functions
in Set, and

2. for each A, B € C and for each constant map Cg(A) :U(A) — U(B) (where U
is the forgetful functor from C to Set and b € U(B)), there is an unique morphism

ap : A — B in C such that Uay = C’;](A).

Then in Cp, each M-subcoalgebra structure is unique iff F' preserves monos.

Proof. Let M-subobject m : S — A be an M-subcoalgebra of A =(A, «4), i.e. there
is a structure ag : S — F(S) such that the morphism m : S — A is a homomorphism
in Cp. If F preserves monos, F'm is also mono (because by assumption A1, we have
M C monos) and then ag is the unique morphism from S to F(S) that satisfies the
equation g4 om = Fmo ag (by the definition of monos).
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7. Coalgebras over (€, M)-categories

Conversely, assume that each M-subcoalgebra structure is unique and assume there is
a monomorphism m : S — A such that F'm is not mono. By assumption in (1), the
morphism UFm (where U is the forgetful functor from C to Set) is not injective. So

Jz,y e UF(S), e € UF(A).(x #y) N (UFm(z) = UFm(y) = c).

According to the given assumption in (2), there are C-morphisms a. : A — F(A)
and ag,ay @ S — F(S) such that Ua, = CCU(A), Ua, = Cf{(S) and Uay, = Cg(s)
(where eV, U(A) — UF(A) is the constant map with value ¢, and the morphisms

OE(S), Cg(S) : U(S) — UF(S) are, respectively, the constant maps with values z and
y). Tt is easy to see that the following diagram commutes.

U(S) s U(A)

Uazi J(any onzc

Then

U((Fm) o ay U(aeom),
U(Fm)oay) = U(acom).

~—

Since U is faithful (because C is a concrete category), we have

(Fm)oay, = acom,

(Fm)oay, = acom.

But this is a contradiction with our assumption, (because «, and «, are two M-
subcoalgebra structures on S making m into a homomorphism). O

Example 7.1.15. Consider Top as an (epi, regular mono)-category.

1. Each subcoalgebra structure in Topy is unique (because the Vietoris functor V
preserves monos, see lemma 3.2.2).

2. If F is a lifting (or a lifting up to isomorphism) of a Set-endofunctor 7' to Top

along the forgetful functor U : Top — Set, then each subcoalgebra structure in
Topr is unique.
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7.2. Factorization system in Cp

Assume F' is an arbitrary C-endofunctor where the category C satisfies assumption A1l
(see remark 7.1.10). The aim of this section is to verify the following statement:

e Cpisa (Ep, Mp)-category where Ep is the class of homomorphisms such that the
underlying morphisms in C belong to £, and M the class of homomorphisms such
that the underlying morphisms in C are in M.

In general, this statement is not true. By giving an example, we make this issue clear.
In this example, we consider T'op as an (epi, regular mono)-category and our objects are
coalgebras of the T'op-endofunctor T introduced in example 4.2.3, i.e. if X is an arbitrary
topological space then TX is the set (X)? — (X) + 1 that carries the followig topology

{010 € X2,0nAx=0tU{(0O-Ax)U{Ll} | O C X2 Ax CO} (7.21)
open

open

(where O is an open subset of X2 with respect to the product topology), and for each
continuous map f : X — Y the continuous map T(f) : TX — TY is defined by
T(f)(z) := TUf(x) for every x € X (notice that U is the forgetful functor from Top to
Set). Recall that T does not preserves regular monos (see example 4.2.4). We define a
homomorphism ¢ in T'ops and we show that there are no homomorphisms € and m in
Tops with ¢ = m oe, where the underlying morphisms of € and m are, respectively, epi
and regular mono in Top.

Example 7.2.1. Let X = {1,2,3,4} be a discrete space. Define a map o : X — TX
by a(z) := (1,2) if z = 1 else L (for each z € X). Since X is a discrete space, «
is continuous. Then X = (X,«) is a T-coalgebra. Now, assume Y is the topological
space defined in example 4.2.4. Recall that since O N Ay # () for each open subset O
of Y2(with respect to the product topology on Y?2), by equation 7.2.1 TY carries the
followig topology :

{(O-ny)u{L} | O € Y2 Ay C O} {0}

Define 8: Y — TY as

By) = {11’2) Z;l (7.2.2)

3 is continuous. To see this, suppose O C TY is an arbitrary non-empty open subset.
Consider two cases:

Casel: If (1,2) € O, then 3710) =Y.

Case2: If (1,2) ¢ O, then 371(0) = {2,3,4,5} is an open subset of Y.
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Then Y = (Y, B) is a T-coalgebra.

Consider ¢ : X — Y as an inclusion of subsets. Since X is a discrete space, ¢ is
continuous. One can easily check that ¢ is a homomorphism in Tops. Notice that
@ =to¢g, where ¢ : X — im ¢ is the codomain-restriction of ¢ and ¢ : imp — Y is
the subspace inclusion, is a factorization of ¢ in the corresponding factorization system
on Top (see example 2.11.6), then we have a diagram as follows:

We claim that there is no continuous map p : im¢ — T(im ) such that £ and ¢ are
homomorphism Topy. We show this claim by contradiction. Suppose there exists a
continuous map p such that this diagram is commutative. Since the right square com-
mutes, we conclude that p(y) = B(y) for each y € im . The definition of p implies
that it is not continuous. Because {(1,2),(4,2)} is an open subset of T(im ), but
p 1({(1,2),(4,2)}) = {1} is not open in im ¢. This give us a contradiction (because we
had assumed that p is continuous). Now, since the factorization ¢ = to¢ is unique up to
isomorphism (see theorem 2.11.3, part 1), we conclude that there are no homomorphisms
¢ and m in Topy with ¢ = m o e where the underlying morphisms of ¢ and m are,
respectively, epi and regular mono in Top.

Theorem 7.2.3 shows that if the C-endofunctor F' preserves M-morphisms, then Cp is
an (Ep, Mp)-category. We first prove the following technical lemma.

Lemma 7.2.2. (factorization) Suppose F is an endofunctor on C which preserves M-
morphisms. Given a homomorphism f : A — B in Cp. Let f = moe be a decomposition
of f into E-morphism e : A — E, followed by an M-morphism m : E — B. Then
there is a unique F-coalgebra structure p on E such that e and m become homomorphism.

Proof. The idea of this proof comes from [31]. Suppose f : A — B is a homomorphism
between coalgebras A = (A,«) and B = (B, ) in Cp. Then by factoring f in (£, M)-
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system we have a diagram as follows:

A = p—T B
ai B
F(m)

F(B)
v

Ef

Since F' preserves M-morphisms, F'm is an M-morphism too. Hence e is orthogonal to
Fm, so there is a unique diagonal p : E — F(FE) such that this diagram is commutative.
O

Theorem 7.2.3. [5/] If C-endofunctor F' preserves M-morphisms, then the category
Cr is a (Ep, MF)-category where Ep is the class of homomorphisms such that the un-
derlying morphisms in C belong to £, and Mg the class of homomorphisms such that the
underlying morphisms in C are in M.

Proof. By lemma 7.2.2, every homomorphism ¢ in Cr can be written as the composition
of two homomorphism € and m in & and M, respectively. The others conditions in
definition 2.11.1 are obvious. For more details see proposition 4.1 in [51]. O

Now, this question naturally arises whether the converse of theorem 7.2.3 holds?

In theorem 7.2.5, we prove that if Cp (where C is a concrete category with some ad-
ditional property) is an (£, Mp)-category, then for every M-morphism m : S — A
with U(S) # () the morphism F(m) is mono. To prove it, we use the following technical
remark.

Remark 7.2.4. Let S be an arbitrary object in the category C. Consider S + S as sum
(coproduct) in C. The object S with the identity map idg : S — S is a competitor to
the sum S + S in C. Hence there is a unique morphism ¢ : S + .5 — S (codiagonal) in
C such that € o e; = idg for each i € {1,2}, and then ¢ is a retraction in C.

Theorem 7.2.5. Let C be a concrete cateqory (see definition 2.15.12) such that

1. monos in C are precisely those morphisms with the injective underlying functions
in Set,
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2. epis in C are precisely those morphisms with the surjective underlying functions in
Set,

3. each retraction in C is an E-morphism, and

4. for each A, B € C and for each constant map CbU(A) :U(A) — U(B) (where U
is the forgetful functor from C to Set and b € U(B)), there is a unique morphism

ap: A —> B in C such that Uay = C’éj(A).

If for every homomorphism ¢ in Cp, the E-coimage and M-image of the underlying
morphism of ¢ in C are homomorphisms in Cg, then for every M-morphismm : S — A
with U(S) # 0, the morphism Fm : F(S) — F(A) is mono.

Proof. Let m : S — A be an M-morphism in C with U(S) # 0. Suppose that the
morphism F'm : F(S) — F(A) is not mono. So UFm : UF(S) — UF(A) is not
injective. Then

dz € UF(A), 3z,y € UF(S). ((z #y) A (UFm(z) = UFm(y) = z)). (7.2.3)

Consider B =S + S (i.e., B is the sum of S with itself in C). By remark 7.2.4, there is
a unique morphism ¢ : S+ S5 — S in C such that € oe; = idg for each i € {1,2} (notice
that {e;}icq1,2) are the canonical injections). Now, consider the morphism ¢ : B — A
as ¢ := moe. By applying F' on ¢ we have a diagram as follows,

F(B) == F(S) " F(A)
v

Fo

Since each functor preserves retractions, Fe is a retraction and consequently it is epi.
Now, if we turn back to equation 7.2.3, since F'e is well-defined and surjective,

dp1, p2 € UF(B).(p1 #p2) N(UFe(p1) =) N (UFe(p2) =v). (7.2.4)

Let oy, ap, : S — F'B be the unique morphisms in C such that U(sz1 Cgl( )

Uap, = CPU;( ) where for each i € {1,2} the morphism Cj, U :U(S) — UF(B) is the
constant map with value p; (by assumption in (4), ay, and oy, exist). F(B) with the
morphisms oy, , ap, : S — F(B) is a competitor for the sum B = S+ 5 in C. Hence
there is a unique morphism [ap,, ap,] : B — F(B) in C such that [a,,, ap,] 0 €; = ay,,
for each i € {1,2}.

Besides, let «, : A — F'A be the unique morphism in C with Ua, = Cg(A) (where
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7.2. Factorization system in Cp

e/ U(A) — UF(A) is the constant map with value p;). Consider the following

diagram.

Up

T
U(S) 2 u(B) Y U(S) UM U (4)

U[O‘P1 vO‘PQ] lUOcz

UF(B) X5 UF(S) YE2 UF(A)
\_//

UFp

1f ¢V is the constant map from U(S) to UF(A) with value z, then we have

U(Fmo Feolap,ap]oe) = UFmoUFeoUlay,,ap,]oUe;
= UFmoUFeoCI(,]i(S)
= CV®)
= Uay,oUmoUeoUe;

= U(azomocoeg;).
Since U is faithful (because C is a concrete category), we have
Fmo Feolap,,ap,]oe; = a,omocoe;.
As {e;i}icq1,2y is an epi sink, we conclude that
FmoFeolop,,ap] = a,omoe.

It means the following diagram commutes.

[apl 7%}2]\1 oy
F(B) L5 F(5) £ F(4)
v

Fe

The morphism ¢ : S+ S — S is a retraction (because € o e; = idg for each i €
{1,2}). Then by assumption it is an &-morphism and so moe is a decomposition of ¢ in
(€, M)—category C (see part (1) of theorem 2.11.3). Hence, there is a unique morphism
p: S — F(S)in C such that m and ¢ become homomorphisms in Cr (by assumption).
Now, let s € U(S) be an arbitrary element, then (Ue;(s), Uea(s)) € ker Ue (because
UeoUe; = idys), for each i € {1,2}). On the other hand, from Ulay, , ap,]oUe; = C’g(s)
(for each ¢ € {1,2}) and equation 7.2.4, we obtain that
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7. Coalgebras over (€, M)-categories

U(Feolap,, ap,])(Uer(s)) = x # y = U(Fe o [ap,, ap,])(Uea(s))

It means (Uei(s), Uea(s)) ¢ ker U(Feo oy, , ap,]), then ker Ue € ker U(Fe ooy, , ap,]).
So by the diagram lemma in Set, UFeoUlay, , ap,| # UpoUe. This gives a contradiction
with Fe o [ap,, ap,] = poe.

O

As a consequence of theorem 7.2.5 we have:

Example 7.2.6. Consider the category T'op as a (€, M)-category where £ = regular epis
and M = monos. Then by the previous theorem a Top-endofunctor F' preserves monos
with non-empty domains iff Topp is an (Ep, Mp)-category.

7.3. Limits and Colimits

This part is a generalization of Rutten’s results about limits and colimits in Setr, see [62].
We will see that all colimits in Cg exist and they are constructed as colimits in the base
category C, i.e. they have the same underlying objects and the canonical morphisms are
homomorphisms. This is not true for limits. As an well-known example, one can not
guarantee the existence of terminal objects in Setp, see [35].

However, in this section, we will show that if the C-endofunctor F' preserves M-morphisms
(where C is an M-well powered category with coproducts) then an equalizer of two ho-
morphisms 1,9 : A — B in Cp does exist and it is constructed via union of a special
family of M-subcoalgebras of their domain.

7.3.1. Colimits

Recall that Ug is the forgetful functor from Cr to C (i.e., for each coalgebra A = (A, aa)
we have Ug(A) = A and for each homomorphism f : A — B between coalgebras
A=(A,aa) and B =(B,apg), we have Uc(f) = f).

Additional to the assumption A1, in this section we assume that the base category
C satisfies the assumption A2 (see remark 7.1.10).

Theorem 7.3.1. Cr is a cocomplete category.

Proof. We need to show that in the category Cp all small colimits exist. Given a small
diagram K : I — Cp of type I in Cp. It means K (i) = (X;, ;) is a coalgebra in Cp
(for each i € Ob(I)). Let the object C' with the sink {e; : X; — C}icopm) be a colimit
of the underlying diagram Uc o K in C, then we have the following diagram,

152



7.3. Limits and Colimits

F(X,) = F(C)
We find that F'(C) with the family of morphisms {F(e;) o ai}iconm) is @ competitor
to the colimit (C,{e;}iconm) in the category C. So there exists a unique structure
v : C — F(C) such that yoe; = F(e;) o ay, i.e. for each i € Ob(I) the morphism e; is a
homomorphism in Cr. Now, let Q = (Q,d) with homomorphism {¢; : X; — Q};conm)
be a competitor of ((C,7),{ei}icopm) in Cr. Thus the follow diagram can be obtained,

Q Pi ; € C

X
N
FQ) ~ px) 29k F(c)

\—/

F(o)

g

The upper row of this diagram say us that @ with the family of morphisms {(; };con)
is a competitor of (C, {e;}iconm) in the category C. Hence there is a unique morphism
o:C — Q with ¢; = ogoe; for all i € Ob(I). It remains to show that o is a
homomorphism. For all i € Ob(Il) we have

doogoe; = dop;
= F(pi)owi
= F(o)oF(e)oaq;
= F(o)ovyoe
Since the (e;);copr is an epi sink, we conclude that § oo = F(0) o 7. O

Corollary 7.3.2. In the category Cp all small colimits exist and they are constructed as
in C.

Remark 7.3.3. According to the previous corollary small sums', small coequalizers® and

small pushouts® in Cr exist and they are formed precisely as in C, i.e. they have the same
underlying objects and the canonical maps are homomorphisms in Cr. More exactly:

'Recall that a small sum in a category C is a sum of a family of objects in C indexed by a set.

*Recall that 11 lizer i t Ci li f a family of llel hisms in C
ecall that a small coequalizer in a category C is a coequalizer of a family of parallel morphisms in
indexed by a set.

3 A small pushout in a category C is a pushout of a source in C indexed by a set.
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7. Coalgebras over (€, M)-categories

1. Suppose {A; = (A;, ;) }ier is a family of coalgebras in Cp indexed by the set I.

Let S := > A; with the canonical injection {e; : A; — P};cs be a sum of the
el

underlying objects {A4;}ier in C. Then F(S) with the morphisms {F(e;) o a; }ier is

a competitor for the sum (5, {e;}ier) in C. So a coalgebra structure v : S — F(.5)

can be uniquely defined on S such that e; is a homomorphism for all ¢ € I. The

coalgebra (S, ) with {e;};cr is a sum of {A;};cr in Cp.

2. Let {¢; : A — B}ier be a family of coalgebra homomorphisms between coalgebras
A=(A,a) and B =(B,p) in Cp indexed by the set I. Let ¢ : B — C be a
coequalizer of the morphisms {¢; }icr in the category C. Then F(C) with morphism
Fyo B is a competitor for ¢ in C. So, there is a unique morphism v : C — F(C)
making the morphism ¢ : B — C into a homomorphism in Cp, and it is easy to
see that ¢ is also a coequalizer of the family {y; }ier in Cp.

3. Suppose {¢; : A — B;}ics is a family of homomorphisms between coalgebras
A =(A,a) and B; =(B;, 3;) in Cg. Let P with a sink {¢; : B; — P}ic; be a
pushout of the source {p;};cr in C. Then F(P) with morphisms {F'i); o B;}icr is a
competitor for (P, {;}icr) in C. Then a coalgebra structure v : P — F(P) can
be uniquely defined such that 1); is a homomorphism for all ¢ € I, and (P,~) with
the morphisms {1;};cr is a pushout of the source {;};cr in Cp.

7.3.2. Union of subcoalgebras

Here we introduce the notion of union of M-subcoalgebras. It will be used to find an
equalizer of a pair of parallel homomorphisms f and ¢g in Cr under an assumption like
the functor F' preserves M-morphisms. This notion is also used to check the existence
of the largest A-M bisimulation between F-coalgebras, if in addition to preserving M-
morphisms by F', we assume that the functor F' weakly preserves pullbacks.

Additional to the assumptions A1 and A2, in this subsection we assume that the con-
ditions A3 and A5 (see remark 7.1.10) hold.

Definition 7.3.4. (Union of M-subcoalgebras) Let {m; : S; — A},c; be an ar-
bitrary family of Me-subcoalgebras of a coalgebra A = (A,«) in Cp. A union of

M-subcoalgebras {m;};c; (in symbols: | |m;) is the M-union of the underlying M-
i€l
morphisms of {m;};er in C (see section 2.12).
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7.3. Limits and Colimits

Remark 7.3.5. According to theorem 2.12.3, | | m; is the M-morphism m in the following
i€l
diagram.

m;

Y
N

where S with the canonical injections {e; : S; — S}ier is a sum of the family {S;}ier
in C; the morphism ¢ : S — A is the unique morphism such that m; = goe;, and moe
is a decomposition of ¢ in (£, M)-factorization system of C.

Si

(7.3.1)

In the following theorem we will show that the union of every family of M-subcoalgebras
is an M-subcoalgebra too.

Theorem 7.3.6. Let {m; : S; — A}icr be an arbitrary family of M-subcoalgebras of a
coalgebra A = (A, ) in Cp. Then | |m; is an M-subcoalgebra of A.

el
Proof. Since {m; : S; — A}ier are M-subcoalgebras of A, by definition 7.1.11, for
each ¢ € I there is a C-morphism «; : S; — F(S;) such that m; : S; — Ais a
homomorphism in Cr. Now, consider the following diagram,

S; € S\ q /A (7.3.2)
o; E o
Fm;
F(S;)

Fei

F(8) ————= F(4)
F(E)

where S with the canonical injections {e; : S; — S}ier is a sum of the family {S;}ier
in C; the morphism ¢ : S — A is the unique morphism such that m; = goe;, and moe
is a decomposition of ¢ in (£, M)-factorization system of C.

Due to part (1) in example 7.3.3, there is a unique structure v : S — F(S) such that
for all ¢ € I the morphism ¢; : S; — S is a homomorphism. Then, since g o e; = m;
(for each i € I) and since {e;}ier is an epi sink in C, by part (1) of lemma 7.1.9 the
unique morphism ¢ : S — A is a homomorphism in Cp. According to remark 7.3.5,
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7. Coalgebras over (€, M)-categories

we know that | |m; is the M-image of the unique morphism ¢ : S — A (i.e., | |my
il iel

is the M-morphism m : E — A). Since F preserves M-morphisms, there is a unique

diagonal § : E — F(F) such that e : S — F and m : E — A are homomorphisms in

Cp. Then m : E — A is an M-subcoalgebra of A. O

As an application of the previous theorem we have:

Corollary 7.3.7. Given an arbitrary family {m; : S; — A}ier of M-subcoalgebras
of a coalgebra A = (A,a) in Cp. Then for each i € I, there is a homomorphism
gi : dom(m;) — dom( | |m;) such that (| |m;) o gi = m;.

= iel
Proof. Consider diagram 7.3.2 in the previous theorem. For every ¢ € I, define a morph-
ismg; :S; — E by g; :=eoe;. L]

We have just proven that if the C-endofunctor F preserves M-morphisms, then the union
of M-subcoalgebras is also an M-subcoalgebra. In general the union of M-subcoalgebras
need not be an M-subcoalgebra. The next example shows this issue clearly. In this
example we will consider T'op as an (epi, regular mono)-category and our objects are
coalgebras of the Top-endofunctor T introduced in example 4.2.3. Recall that T does
not preserves regular monos (see example 4.2.4).

Example 7.3.8. Consider Y = (Y, 3) as the coalgebra introduced in example 7.2.1. Let
t1: S1 — Y and 19 : S9 — Y be two topological embeddings where S; = {1,2} and
So = {3,4}. Consider the following maps.

ai: S — T(Sh) ag 1 Sy — T(Ss)
_)L2) e=1 o
afc) == {J_ oo as(c) ==L

It is easy to see that a1 and ag are continuous maps making ¢ and ¢9 into homomorphisms

in Topp. Therefore, ¢; and ¢; are subcoalgebras of Y = (Y, ). However, their union
| | ¢ that is the topological embedding ¢ : F — Y (where E = {1,2,3,4}), is

ie{1,2

no{t a} homomorphism in Topr. Because as it has been shown in example 7.2.1, the

only structure p which makes the following diagram into a commutative diagram is not

continuous.

E L Y

P B
T(E) —=T(Y

(B) -~ T(Y)
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7.3.3. Equalizer

In this subsection, we assume that the assumptions A1, A2, A3 and A5 (see remark
7.1.10) still hold.

Theorem 7.3.9. Let f, g: A — B be homomorphisms between coalgebras A = (A, «)
and B = (B, ) in Cr. The equalizer of f and g in C is the union of all M-subcoalgebras
{m; : S; — A}icr of A such that f om; =gom; for each i € I.

Proof. Let {m; : S; — A};er be the family of all M-subcoalgebras of A such that
fom; =gom,; for each i € I. Let the object S with morphisms {e; : S; — S}ier be a
sum of the objects {S;}ier in C. By remark 7.3.5, we know that | |m; is the M-image

i€l
of the unique morphism ¢ : S — A in diagram 7.3.1 (i.e., | |m; is the M-morphism
icl
m : E — A). Then by lemma 2.12.4, f o (| |m;) = go (| ]m;). Besides, due to
i€l i€l
theorem 7.3.6, | |m; is a homomorphism in Cr. Now, assume ¢ : (Q,p) — (4,a) is a

i€l
homomorphism in Cp with f oo = go . Suppose ¢ = m/ o e is a decomposition of the
underlying morphism of ¢ in (€, M)-factorization system of C. Consider the diagram
below:

Q B

f
. ) /\
e m/ 9
K
P o B
Ff

7N
F(A) F(B)

F(Q) s L
R Fm/ Fg
F(K)

By theorem 7.2.2, there is a morphism o : K — F(K) such that m’ : K — A is an
M-subcoalgebra of A (because F'im' is an M-morphism). Also

fom/oe = fop
goy
= gom/oe

157



7. Coalgebras over (€, M)-categories

Since e is epi, we obtain f om/ = gom’. Then by assumption there is an element ¢ € T

such that m" = m;. So by corollary 7.3.7, there is a homomorphism r : K — dom/(| |m;)
el

such that m or = m/. Now, consider h := r o e. obviously, one can see that m o h = ¢.

Since m is mono, h is unique. O

Example 7.3.10. Consider the category Top as an (epi, regular mono)-category. Since
the Vietoris functor V (resp. P-Vietoris functor Vp) preserves regular monos (see lemma
3.2.4), an equalizer of two homorphisms f, g : A — B in Topy (resp. Topy,) does exist
and it is the union of all M-subcoalgebras {m; : S; — A};cr such that fom; = gom;
for each 7 € I.

7.3.4. M-morphism in Cp

In this subsection we assume that the assumptions A1, A2 and A5 (see remark 7.1.10)
hold, then:

Lemma 7.3.11. Let f, g : A — B be homomorphisms between coalgebras A = (A, «)
and B = (B,B) in Cp. Ife: (E,p) — (A,«a) is an equalizer of f and g in Cp, then
the underlying morphism of e is an M-morphism in C.

Proof. Suppose e : (E,p) — (A, «) is an equalizer of f and g in Cp. Let e =i o€ be
a decomposition of the underlying morphism of e in (€, M)-system in C, and then we
have the following diagram:

I
|
I
I
I
Ao
Fé [
‘ / \F/
Fh v Fq g

It is enough to prove that € is an isomorphism. Since F' preserve M-morphisms, € is
orthogonal to F'i. So there is a unique diagonal § : Q — F(Q) such that this diagram
is commutative.We have
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foioce = foe

goe

= goioe.

Since € is epi in C, we have foi = goi. Hence (Q,0) with ¢ : (Q,0) — (A,«) is a
competitor for e : (E,p) — (A, a). So there is a unique homomorphism h : Q — E
such that eo h =i.

Claim. € is a section in C.

It suffices to show that h is a left inverse for €. From e o h = 7 we have

eoidp = e
= io€
= eohoe.

Now, since e is an equalizer in Cp, it is a monomorphism in Cp. So hoe = idgs, i.e. éis
a section in Cp. Hence € is a section in C (because the forgetfull functor Ug : Cp — C
preserves sections).

On the other hand € is epi in C. Then € is an isomorphism in C (see lemma 2.2.17).
Now, since i o € = e, it is concluded that e is an M-morphism in C. O

In the case that in the base category C the class of M-morphisms is a subclass of regular
monomorphisms, the converse of lemma 7.3.11 holds. The following theorem shows this
issue.

Theorem 7.3.12. Let C be a category in which every M-morphism be regular mono.
A homomorphism ¢ is reqular mono in Cp iff the underlying morphism of ¢ in C is an
M-morphism in C.

Proof. Let ¢ : A — B be a homomorphism in Cg such that the underlying morphism
of ¢ in C is an M-morphism in C. By assumption ¢ is a regular monomorphism in
C. So there are C-morphisms f,g : B — K such that ¢ is an equalizer of them. Now,
consider (P, p1,p2) as a pushout of ¢ with itself in Cr. Then according to corollary 7.3.2,
(Uc P, Ucp1,Ucpz) (where Uc : Cp — C is the forgetful functor) is a pushout of ¢ with
itself in C. Hence there is a unique morphism h : UP — K such that hop; = f and
hops = g. We claim that ¢ is an equalizer of p; and py in Cp. Solet x : Q — B be a
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competitor of ¢ in Cp, i.e, x is a homomorphism with p; o x = p2 o x.

O\

avh*
Then
fox = hopiox
= hopyox

= gox

It means x : Q — B is a competitor of ¢ in C. Then there is a unique morphism
p: QQ — A such that ¢ o p = x. Since F preserves M-morphisms, it is easy to see that
p is a homomorphism in Cgr. The converse follows from lemma 7.3.11. O

7.4. A-M Bisimulation

Throughout this section, we assume that the base category C satisfies the conditions A1l
and A4 (see remark 7.1.10). Now we have:

Definition 7.4.1. Suppose A; = (A1, a1) and Ay = (A, a9) are two arbitrary coal-
gebras in Cp. An M-subobject m : R — Ay x Ay of the product A; x As in C is
called an A-M bisimulation between A; and Aj, if there exists a coalgebra structure
p: R — F(R) such that the following diagram commutes, i.e., for each i € {1,2} the
morphism 74, om : R — A; is a homomorphism in Cp.

R A1><A2

A; (7.4.1)
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Remark 7.4.2. 1f C is a category in which the objects are sets with additional structures
(as example Set, Top, CUM!,.. .etc), we say that two elements a; € A; and ag € Aj are
A-M bisimilar if there is an A-M bisimulation m : R — A; x As between coalgebras A,
and Ay in Cp and an element r € R such that w4, om(r) = a1 and w4, o m(r) = as.

Remark 7.4.3. Recall that in the category Top the regular monomorphisms are (up to
isomorphisms) exactly the topological embeddings (see lemma 2.9.3). Therefore, if we
consider Top as an (epi, regular mono)-category (see example 2.11.6), then a topological
embedding ¢« : R — A; x Ay (where Ay x Ay with the projection maps {74, }icf1,2} i8
product of the topological spaces A; and As in Top) is an A-M bisimulation between
coalgebras A; = (Aj,1) and Az = (A9, ) in Topp provided that a continuous map
p: R — F(R) on R can be defined so that the morphisms {7, om : R — A;}icq1 9y
become homomorphisms in Topr. Consequently we say that two elements a1 € Ay and
as € Ay are A-M bisimilar if there is an A-M bisimulation ¢ : R — A7 X As between
coalgebras A; and Ap such that (a1, a2) € R.

In general, the product A; x As need not be an A-M bisimulation.

Example 7.4.4. Recall that the category Set is an (epi, mono)-category (see example
2.11.5). Since in Set, the monomorphisms are (up to isomorphisms) exactly the inclusion
of subsets (see remark 2.2.15), we can say that an A-M bisimulation between coalgebras
A = (X1,01) and Ay = (X2,a0) in Setp is a subset R C X; x Xo for which there
exists a map p : R — F(R) that makes the projections {ma, : R — A;}icq1,2y into
homomorphisms in Setp. It is straightforward to check that a sebset R C X1 x Xy is a
Kripke bisimulation between Kripke models X7 and X5 if and only if the inclusion map
R is an A-M bisimulation between the corresponding Pp-coalgebras to X; and Ao (this
example is covered in details in [31], [15] and [62]).

7.4.1. Some facts about A-M Bisimulations

Definition 7.4.5. Given a 2-source {f; : P — A;j};cq1 2y in C. Then P with morphism
fi and fa is a competitor for (A; x Ag, ma,, Ta,), i.e., the product of A; and Az in C.
So there exists a unique morphism [f1, fao] : P — A; X Ag such that w4, o [f1, fo] = f1
and ma, o [f1, fa] = fo. If [f1, fo] = m o e is the decomposition of the morphism [fi, fo]

161



7. Coalgebras over (€, M)-categories

in (€, M)-factorization system of C, we have the following diagram:

Ay (7.4.2)
f1 TAL
P\ - Ay x Ay
G([fl) f2])
f2 TAg
Ao

The M-subobject m : G([f1, fo]) — A1 X Ag of Ay x Ay is called M-graph of the
2-source (fi)ic{1,2}-

The M-graph of the 2-source (idgom(s), f) is called M-graph of f and it is denoted by
m: G(f) — A1 X A2.

For each object A in C, the diagonal A 4 is the M-graph of the identity morphism id 4.
In this work, if the class M is equal to the class of the regular monos, we call M-graphs
just graphs.

The following theorem gives us a characterization of the coalgebra homomorphisms.

Theorem 7.4.6. Let Ay = (A1, 1) and Ay = (Ag, a0) be arbitrary coalgebras in Cp.
A morphism f: Ay — Ag is a homomorphism in Cg iff the M-graph of f is an A-M
bisimulation between A and As.

Proof. In diagram 7.4.2, replace the morphisms f; and fo by the morphisms id4, and f,
respectively. Then m4, omoe =idy,. So e is a section with left inverse w4, om. It is
also epi. Consequently e is an isomorphism (see lemma 2.2.17). Consider the following
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commutative diagram:

Suppose f : Ay — Ay is a homomorphism. Define v := Fe o ay omy, om, then

F(mg,om)oy = F(ma,)oFmoFeoajoms, om

F(ida,)oayoma, om

= «ajoma, om.
Also F(ma, om) o~y = F(ma,) o Fmo Feoaj oma, om, then we have

F(mra,om)oyoe = F(ma,)oFmoFeoajomy, omoe
F(ma,)o Fmo Feoajoida,
Ffoap

ago f

= @O0T4,0moe.

Since e is epi, we have F'(m4, om) oy = agomy, om.

Corollary 7.4.7. The diagonal A4 of a coalgebra A = (A, «) is always an A-M bisim-
ulation.

Theorems 7.4.8 and 7.4.9 provide us with a characterization of A-M bisimulations
between coalgebras in Cp, whenever the base category C has special properties. In the
first theorem, the £-morphisms in C are retractions. In the second one, the M-morphisms

163



7. Coalgebras over (€, M)-categories

in C are exactly monos. Notice that in both theorems A; = (41, a1) and Az = (A, a)
are given as coalgebras in Cp.

Theorem 7.4.8. Suppose C is a category in which each E-morphism is a retraction. An
M-subobject m : R — Ay X Ay is an A-M bisimulation between coalgebras Ay and Ao
in Cr if and only if there is a 2-source {f; : P — Ai}icq1,2y in Cp such that m is the
M-graph of its underlying 2-source in C.

Proof. Let m : R — Aj x Az be an M-subobject in C. Suppose (f; : P — A;)je1,2) 18
a 2-source in Cp such that m is the M-graph of its underlying 2-source in C (i.e., there is
an E-morphism e such that [f1, fa] = moe is a decomposition of the C-morphism [f1, fo]
in (£, M)-factorization system of C, see definition 7.4.5). So according to diagram 7.4.2,
we have the following diagram:

fi

/—\

P R poy A1><A2

e

A

TA,;

Fry.
F(P) £ F(R) —IF(A; x Ay) 2> F(A)

¥/

Ffi
By assumption e is retraction and consequently it has a right inverse p (i.e., eop = idR).
Define the structure p : R — F(R) as p := Fe oo u. We are required to show that
w4, ©m is a homomorphism, for all ¢ € {1,2}.

F(ma,)oFmop = F(ma,)oFmoFeoyopu
= F(ma,omoe)oyop

F(fi)oyonu
a;o fiop

Q; OTY, OMOEO |4

o oTy, omoidp

= 0Ty, O0m

The other direction of this theorem is already proven in [54]. O

Recall that in the following theorem, C is an (£, mono)-category

Theorem 7.4.9. Suppose C is a category in which M-morphisms are ezactly monos. An
mono-subobject m : R — Ay X Ag is an A-M bisimulation between Ay and Ao, if and
only if there is a 2-source {f; : P — Ai}ie{l,Z} i Cp such that its underlying 2-source
in C is a mono source and m is its graph.
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Proof. Let m : R — Ay x Ag be an M-subobject in C. Suppose {f; : P — Ai}icq1,2)
is a 2-source in Cp such that its underlying 2-source in C is a mono-source and m is its
graph (i.e., there is an £-morphism e such that [f1, fa] = moe is a decomposition of the
C-morphism [f1, fo] in (£, M)-factorization system of C, see definition 7.4.5). Then by
diagram 7.4.2 we have m4, omoe = f; for each i € {1,2}. Since m : R — A; X Ay is
mono, by part 1 of lemma 2.10.4 {74, o m};cqy 2} is @ mono source in C too. So by part
2 of lemma, 2.10.4, e is mono. Hence e is an isomorphism in C. The rest of this proof is
the same as what we have done in theorem 7.4.8.

O

7.4.2. Largest A-M bisimulation

Definition 7.4.10. Let A1 = (A1, 1) and As = (A2, ag) be two arbitrary coalgebras in
Cp. Given a family {m; : R; — A; x As};cr of A-M bisimulations between A; and As.

We define the supremum of the family {m;}ics (in symbol: \/m;) as the M-union of
iel
the underlying M-subobjects of {m;};cr in C.

Definition 7.4.11. Let R := {m; : R; — A; x As}icr be the family of all A-M

bisimulations between coalgebras A; and Ay and let R be non-empty. We call \/ m; the
i€l
largest A-M bisimulation between A; and Ag iff \/ m; is an A-M bisimulation between
i€l
Aj and Ay. The largest A-M bisimulation between A; and Aj (if it is exist, i.e. if

\/ m; is an A-M bisimulation between A; and Aj) is denoted by ~ 4, 4,. We shall drop
i€l
the label A4, Ao, if it is clear from the context.

It follows from [I1] that the supremum of a family (m; : R; — A; X A2)ier of A-M
bisimulations need not to be an A-M bisimulation. As a consequence the largest A-M
bisimulation need not exist. If it exists, it is determined up to isomorphism. In [11], the
authors have concentrated on the category of coalgebras for the P-Vietoris functor Vp
(see section 3.2) over the category of Stone spaces. The following example, which is a
simplified version of example 4.6 in |1 1] brings this matter to light. Notice that in this
example, we consider the category Top as an (epi, regular mono)-category.

Example 7.4.12. Given discrete spaces T' = {t1;, to; | i € w}, U = {u14, ug; | i € w}
and V = {vy;, vo; | i € w}. Let Too := T U {too}, Uso := U U{teo} and Vi :=V U{vs0 }
be the Alexandroff compactification of T', U and V, respectively. It means, O is an open
subset of Ty iff O is an open subset of T or O = (T'—C)U{t~} where C' is a finite subset
of T' (similarly for Uy and V). Now consider X as the topological sum T, + Uso + Vio.
Define the binary relation R C X x X as

R := {(tli,uli), (th’,’uli) | 1 € w} U {(tgz’,u%), (tzi,vgi) | 1€ w} U {(too,uoo), (too,voo)}
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7. Coalgebras over (€, M)-categories

Let a be the structure map defined by R, i.e., for each x, 2’ € X, we have

¥ €a(z) < (z,2/) €R

Clearly « is a well-defined map from X to V(X) (because () is finite for each z € X).
The following diagram gives a picture of (X, «).

U Teo Vo (7.4.3)
U, oty; oU1;
o U; oto; °V;
®Uno YOS L JISS

It is easy to see that « is continuous. Now let (X', &') be an isomorphic copy of (X, «).
If P={pi,qi,ri,si | i €w} is the set of proposition letters, define the valuation maps
¥: X — P(P)and ¢ : X' — P(P) as

o J(uy) =9 (u),;) :=p; foralliecw,

Hvy) =¥ (v);) :=¢ forallie€ w,

o J(ug;) = (vh,) :=r; forallie€w,

V(vg;) = V' (ufy;) :==s; foralliecw,

ﬂ(tli) = ﬁ(t%) = 19’(15/12) = Q?l(tlm) =0 forallie w,

o D(too) = Duse) = Ivee) = V(th,) = V() = 7' (vh,) := 0.

o0

The following picture shows how to the various proposition letters are satisfied for the
elements of X and X'.
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X: .tli .tQi

N N

oUL; U1 o U; V2

@ )

D @

'u,u 'Uii 'Ulzi '”éi

NS NS

X' .tlli .t/2i

The valuation maps ¥ : X — P(P) and ¢ : X’ — P(P) are continuous maps (con-
sider P(P) as the topological space mentioned in definition 3.2.1, one can see that for
all i € w, the subsets 9711 p;), 97 (1 @), 9~ 1(1 ;) and 9~1(1 s;) are open in X,
similarly for ). Then X = (X, ap) and X’ = (X', a/p) (where ap(z) = (a(z),9(z))
and o/p(2’) = (/(2'),9(a)) for any € X and 2’ € X') are coalgebras for P-Vietoris
functor Vp (because ap is continuous iff o and o are continuous, similarly for o).

Claim. The supremum of a family of A-M bisimulations between X and X’ does not need
to be an A-M bisimulation.

Proof. Let
B = {(toc: the): (tso, ), (v, vo) )
By = {(t1i,t};), (u1i, ul;), (vii,v};) | i € w}
By = {(tai,th;), (ugi, v5;), (vai, uby;) | i € w}

Step 1: By, By and Bsg are discrete spaces with respect to the subspace topology gener-
ated by the product topology on X x X’. Now, we want to show that the topological
embeddings ¢t : By — X X X', 19 : By — X x X’ and 13 : B3 — X x X’ are A-M
bisimulations. For each j € {1,2,3}, define a map §; : B — V(B;) by

Bi(x,a") = (a(z) x o'(2'))N B;.

Since for every = € X and 2’ € X', the subsets a(x) and o/(z’) are finite, ; (j € {1,2,3})
is well-defined. Regarding the continuity of 8 (j € {1,2,3}), notice that 31, B2 and S3
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are maps from discrete spaces (we should recall that every map from a discrete space is
continuous). Now, consider function 5} : B; — Vp(B;) as

Bpla,a’) = (B(z,2),9(x))

where j € {1,2,3}. Obviously, ng (j € {1,2,3}) is continuous and makes the following
diagram commute,

X OLj T x1OLj

X Bj X’
: [ :
. /
VP(X) VP(FXOLJ') VP(B] VP(WX/OLJ‘) VP(X )

where mx and 7y are projections maps from X x X’ to X and X', respectively). Thus
for each j € {1,2,3}, the map ¢; is an A-M bisimulation between X and &”.

Step 2: Now counsider the set B = B; U By U Bs. Provide B with the subspace topology
generated by the inclusion map ¢ : B — X x X', It is easy to see that ¢ is the supremum
of the family {1}jc(12,3)- We claim that ¢ is not an A-M bisimulation between X
and X’. Suppose for contradiction that ¢ is an A-M bisimulation, i.e., there exists a
continuous map Sp : B — Vp(B) such that 7x ot and 7x/ o+ are homomorphisms
in Topy,. In this case Sp is unique (because the projection maps mx ov : B — X
and mxs 01 : B — X' are mono in Top and the functor Vp preserves monos) and if
p: B — V(B) is the composition of fp : B — V(B) x P(P) with the first projection
m : V(B) x P(P) — V(B) (i.e., 8 = w1 o Bp), then it is not hard to see that for each
(x,2') € B,

B(z,z") = (a(z) xd(z'))NB. (7.4.4)

In order to check the continuity of Bp, it suffices to check the continuity of 5. Therefore,
we need to show that /3 is not continuous. We know that the set Uy, x UL, is an open
subset of X x X', then C':= (Us x UL) N B is open in B. Obviously, C' = {(uy;,u};) |
i € wU{(too, ')} Now, by assumed continuity of 3, the set 371({C)) must be an open
subset of B. However, according to equation 7.4.4 we can see 3~ 2((C)) = {(t1;,t;;) |
i € w} U{(too, )} which is not an open subset of B. The reason is that for every open
neighborhood O of the pair (to, t5,) we have O N (B — B71((C))) # 0. This gives us the
desired contradiction and proves the claim.

O

One may have this question that: when does the largest A-M bisimulation between
two coalgebras exist and how can we find it. As it is mentioned by Kurz in [15], there are
two ways to obtain the largest A-M bisimulation between F-coalgebras in Cp. In fact
the both strategies help us to find a coalgebra structure on the supremum of the family
of all A-M bisimulations between arbitrary coalgebras A; and A,.

In the rest of this part, we try to list these strategies as some theorems and corollaries.
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7.4. A-M Bisimulation

To convenient, in the sequel of this part we assume that A; = (A1, 1) and Az = (A, ag)
are the fixed coalgebras in Cp.

First strategy: Largest bisimulation via right invertible morphisms

This strategy can be used in the case that in the base category C of our coalgebras the
E-morphisms are right invertible. It means if the category C satisfies the conditions A2
and A3 as well as A1 and A4 (see remark 7.1.10), then:

Theorem 7.4.13. Suppose C is a category in which each E-morphism is a retraction,
then the supremum of each collection of A-M bisimulations between Ay and A is an A-M
bisimulation.

Proof. Let R = {m; : Rj — A; x As};cj be a collection of A-M bisimulations between
A; and Ay. Consider the following diagram (taken from Kurz [15], section 1.1):

< -FE (7.4.5)

Y

j Hmj A1 X A2 *>7Ti Az

where S := > R; with canonical injections {e; : R; — S}jcs is a sum of the family
jeJ
{Rj}jes in C; Ay x Ay with canonical projections {m; : A1 x A2 — Ai}icqi2) is a
product of the family {A;};cq1,2) in C; the morphism ¢ : S — Ay x A is the unique
morphism such that m; = qoe;, and m o e is a decomposition of ¢ in the (£, M)-
factorization system of C. Notice that \/ m; (i.e., supremum of R) is the M-morphism
jeJ
m: E — A; x Ay in diagram 7.4.5 (by theorem 2.12.3). We need to show for each
i € {1,2} the morphism m; om : E — A; is a homomorphism in Cr. Since R is
a collection of A-M bisimulations, the morphisms {m; o m; : Rj — Ai}ic(1,2}, jes are
homomorphisms in Cr. Then by diagram 7.4.5, the morphisms{m; 0 goe;}ic(1 2}, jes are
homomorphisms in Cp. It means in the following digram the outer rectangle commutes.

q

iy

= FE n A1><A2

S ‘ A
L |
(S

) e PB) T Ay x )T F(A)

1

(€73

(
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Then for each i € {1,2} and for each j € J we have

ajomjoqoe; = F(m)oFmoFeoFejof;
= F(m)oF(moe)oF(ej)op;
= F(ﬂ'z) o F(q) o F(ej) e} Bj‘
Notice that there is a unique structure v : S — F'(S) that makes the canonical injections
{ej}jes into Cp-homomorphisms (see lemma 7.3.1). Then
ajomiogoe; = F(m)oF(q)oF(e;)op;
— Fm)oFlg)oroe.
Since {e;}jes is an epi sink, we have o; o m; 0 ¢ = F(m;) o F'(q) o y. So, for each
i € {1,2} the morphisms{m; o ¢} c; are homomorphisms in Cr. Now we need to find a
structure p : E — F(E) that makes the morphisms {m; om : B — A;};c(1 2y into the
homomorphisms in Cr. By assumption e is a retraction in C and consequently it has
a right inverse p (i.e., e o u = idg). Define the structure p as p := Feo~you. We are
required to show that m; o m is a homomorphism, for all ¢ € {1,2}.
F(mj))oFmop = F(m)oFmoFeoyopu
= F(m)oF(moe)oyopu
F(mi)o F(q)oyopu
QOT;0qO U

QOT; 0MOeo

a; oM, omoidg

= Q; 0Om; om.

Corollary 7.4.14. If in C, E-morphisms are retractions, then the largest A-M bisimu-
lation between Ay and Ag exists.

To see an application of the first strategy, one should study Gumm [31]. He has used this
strategy to show that in the categories of coalgebras over Set, the union of a family of A-
M bisimulations (union of underlying sets) is always an A-M bisimulation, in particular,
the largest A-M bisimulation between two coalgebras always exists.

Second strategy: Largest bisimuation via functors weakly preserve
pullbacks

The second way can be efficient whenever the base category C has pullbacks and the C-
endofunctor F' weakly preserves them. It means if the category C satisfies the conditions
A1, A2, A3 and A4, then:
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Theorem 7.4.15. Suppose C has pullbacks and the C-endofunctor F weakly preserves
them. Then the supremum of the collection of all A-M bisimulations between coalgebras
Ay and Ay is an A-M bisimulation.

Proof. Let R = {m; : Rj — A; x As},cs be the collection of all A-M bisimulations
between A; and Ay. Consider the following diagram

mj

Ay (7.4.6)

Rj?SﬁG[flafﬂTAl X Ag

f2 T2

Az

where S := > R; with canonical injections {e; : R; — S}jcs is a sum of the family
jeJ
{R;}jes in C; Ay x Az with canonical projections {m; : A1 x A2 — A;};eq1,2y is a product
of the family {4;};cq1,2) in C; for each i € {1,2} the morphism f; : S — A, is the unique
morphism such that f; oe; = m; om; for each j € J, and m o e is a decomposition of
the unique morphism [f1, fo] : S — A; x Ay in the (£, M)-factorization system of
C (see definition 7.4.5). Notice that \/ m; (i.e., supremum of R) is the M-morphism
jed

m : G[f1, fa] — A X Ag in diagram 7.4.6. We need to show for each i € {1,2} the
morphisms m;om : G[f1, fa] — A; is a homomorphism in Cr. Notice that the morphisms
{mi o mj}icq1,2), jes are homomorphisms in Cp (because {m; : R; — A1 X Aa}jes
is a family of A-M bisimulations between A; and Ajp). Also, the morphisms {e;};cs
are homomorphisms in Cp (see remark 7.3.3, part (1)). Then according to equation
fioej =mom; (where i € {1,2} and j € J) and part (1) of lemma 7.1.9, we conclude
that {f; : S — Aji}ic(1,2) are homomorphisms in Cr. Now, suppose C' with morphisms
g1 : A1 — C and g2 : Ay — C'is a pushout of the 2-source {f; : S — Az’}z’e{m} in
Cr (by theorem 7.3.1, it exists). So

giomomoe = g¢y0fi
= g20 fo
= goomomoe.

Since e is epi, we have g1 o m1 o m = gg o g o m. Now consider (B, p1, p2) as a pullback
of g1 and g9 in C (by assumption, it exists). One can see that (G[f1, fo], 71 0 m, T2 0m)
is a competitor for (B, p1, p2) in C. As a consequence, there is an unigue morphism
q : G[f1,f2] — B such that p;oq = m; om for all « € {1,2}. Due to part (2) of
lemma 2.10.4, ¢ is a monomorphism in C (notice that by remark 2.18.3 and lemma
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2.10.4, {pi}ief1,2y and {m; o m};eqy,9y are mono-sources). On the other hand (B, p1, p2)
is a competitor for the product (4; x A, 71, m2) in C. So, there is a unique morphism
k:B — Ay X Ay with 7m; o k = p;. By lemma 2.10.4, k£ is a monomorphism in C. We
claim that k is an M-morphism in C. To check this claim, let m’oe’ (wheree’ : B — E
and m’ : E — A; x As) be a decomposition of k in (€, M)-factorization system of C.
It suffices to show that ¢’ is an isomorphism in C. Notice that m; o m’ o ¢’ = p; (because
m;ok = p;). Consequently, gjomiom’oe’ = goompom/oe’ (because g1 op; = gaops). Since
e’ is epi, we have gjomom’ = gaompom/. Therefore, (E, {m;om'};cq1,93) is a competitor
for (B, p1, p2). Hence, there is a unique map h : E — B such that p;oh = m; om/. We
prove that h is a left inverse of ¢’. For each i € {1,2}, we have

!/ / / /
mom oe ohoe = p;ohoe

/ /
= mom oeg.

Since {7 }icq1,2) is @ monosource, we have m/oe’ohoe’ = m'oe’. Also, since m' is mono,
we conclude that ¢’ o hoe’ =¢€'. From m/ o e’ = k we obtain that €’ is mono (because k
is mono). Then hoe =idp. Now, since ¢’ is epi and a section, it is an isomorphism.
Now since F weakly preserves pullbacks, there exists a structure 8 : B — F'B that
makes p; and ps into a homomorphism in Cp. Then & : B — A x A is an A-M
bisimulation between F-coalgebras A; and Ay in Cg. To complete this proof, it suffices
to show that the unique morphism ¢ : G|[f1, fo] — B is an isomorphism in C.

Since k : B — A1 X As is an A-M bisimulation between F-coalgebras A; and As, there
is a morphism ¢ : B — G| f1, f2] such that m ot = k (because m is a supremum of all
A-M bisimulations between A; and As). Since m is mono, ¢ is unique. We claim that ¢
is a right inverse for ¢q. To show this claim, notice that

motroqgotr = kogqgolt
= Mol

= k.

So by uniqueness of ¢, we have 1t o go+t = ¢. Since ¢ is mono (lemma 2.2.13), it is
concluded that g o ¢« = idg. Now, since every right invertable monomorphisms is an
isomorphism, it is concluded that ¢ is an isomorphism in C. We need to find an F-
coalgebra structure p : G[f1, fa] — F(G[f1, f2]) which makes the morphisms {m; o
m : G[f1, fa] — Ai}icq1,2) into the homomorphisms in Cr. By assumption ¢ is an
isomorphism in C and consequently Fg is an isomorphism in C too (functors preserve
isomorphisms). Define the structure p as p := (Fq)™' o B oq.

O

Corollary 7.4.16. If F weakly preserves pullback, then the largest A-M bisimulation
between A; and As exists.
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Remark 7.4.17. Suppose C is a category with pullbacks. Theorem 7.4.15 and its corollary
provides us with a way to check whether a C-endofunctor F' weakly preserves pullbacks or
not. According to this theorem, a C-endofunctor F' does not weakly preserve pullbacks, if
we can find two coalgebras A; and Ag in Cp and a family {m;};c; of A-M bisimulations
between them such that its supremum is not an A-M bisimulation. Consequently, we can
say that a C-endofunctor F' does not weakly preserve pullbacks, if there are two coalgeb-
ras A; and As in Cp such that the largest A-M bisimulation between them does not exist.

Remark 7.4.18. Due to example 7.4.12, there are two coalgebras A; and Ay in Topy,
and a family {m;};c; of A-M bisimulations between them such that its supremum is not
an A-M bisimulation. So by the previous remark, we can say that the P-Vietoris functor
Vp over the category Top does not weakly preserve pullbacks.

7.4.3. Transforming A-M bisimulations between categories of coalgebras

Let C be an (€, M)-category and C" an (€', M’)-category. Suppose U is a functor from
C to €’ and F and G are endofunctors over C and C’, respectively. Assume there is
a natural transformation p : UF — GU. Now under this hypothesis, we discuss the
connection between A-M bisimulations in Cp with these structures in (C’G.

We have the following lemma and theorem:

Lemma 7.4.19. Suppose L = (L,p) and A = (A,«a) are two coalgebras in Cp. If
the morphism f : (L,p) — (A,«a) is a homomorphism in Cg then Uf : (UL,ur, o
Up) — (UA,paoUa) is a homomorphism between coalgebras UL = (UL, ur, oUp) and
UA=(UA,pusoUa) in C.
Proof. Consider the diagram below:

vrL—2-va

Up Ua

vrL YL ura

229 HnA

The top part of this rectangle is commutative because f is a homomorphism and every
functor preserves commutative diagrams. The bottom of this diagram is also commutat-
ive because u is a natural transformation. O

As a consequence, we obtain that the structure U : Cp — C[; which associates each
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coalgebra A = (A,«) in Cp to the coalgebra UA = (UA, pa o Ua) in Cj, and each
homomorphism f in Cg to the homomorphism U f in C,, is a functor.

Theorem 7.4.20. Suppose U(f) € M’ for each M-morphism f € M. Then, if the
M-subobject j : R — Ay X Ag is an A-M bisimulation between coalgebras A; = (A1, 1)
and Az = (A2, ) in Cp, then Uj : UR — U(A1 X Ag) is an A-M bisimulation between
coalgebras (UAl,uAl oUay) and (UAs, fia, © Uag) in Cg,.

Proof. According to definition 7.4.1 and lemma 7.4.19, it is clear. O

7.5. Coalgebraic modal logic

We now intend to develop a modal logic for arbitrary coalgebras over Top. Our goals
will be to design a language (i.e., a set of formulas) for an arbitrary Top-endofunctor F'
and a semantics providing a meaning for each formula with respect to the F-coalgebras
over Top. The idea of this chapter comes from Pattinson [57] where the author has
developed a modal logic for coalgebras constructed by a Set-endofunctor 7', via a set
of predicate liftings (i.e natural transformations X : 2(7) — 2(5)oT" where 2(7) is the
contravariant powerset functor over the category Set). However, our presentation here
is based on Gumm [37], where instead of working with predicate liftings the author has
employed the Yoneda lemma® to look at subsets of T'(2), instead. We try to define a
language for a Top-endofunctor F' via a modal similarity type A for F' (a set of clopen
subsets of F(2) where 2 := {0,1} is a discrete space). The works of Cirstea et. al [20],
Kupke and Pattinson [48], Schroder [64], Schroder and Mossakowski [65] and Schroder
and Pattinson [66] are the other references for the notions discussed in this chapter.

Definition 7.5.1. Given a Top-endofunctor F. A modal similarity type A for F is
a set of clopen subsets of F'(2) where 2 := {0, 1} is a discrete space (note that A can be
any subset of the set {C' C F(2) | C is a clopen subset of F'(2)}).

Throughout this section we assume that F': Top — Top is a fixed endofunctor on Top
and A is a fixed modal similarity type for F.

“Yoneda lemma says that for any Set-endofunctor T', there is a bijective function between the set
Nat (207),2(7)0T) (i.e, the set of all natural transformations X : 207 — 2(7)oT", where 2(7) is the
contravariant powerset functor) and the set (2(7)0T)(2). This is denoted by

Nat (27,2707 = (207007 (2).
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7.5.1. Syntax and semantics

Definition 7.5.2. A logic for F-coalgebras with respect to A consists of two parts
language and semantics determined as follows:

1. (Language) A set of A-formulas defined by the following grammer:

p =T
| e
| p1Ap
|  [Cle for C e A

The truth functional connectives V (Yor”) and implications ¢ — 1, and equi-
valences ¢ <— 1 are defined as usual. We denote the set of all A-formulas by
L(A).

2. (Semantics) For each F-coalgebra X = (X,«) and x € X, the binary relation
Fx € X x L(A) is defined inductively as

rEx T <= true
TEx @ = zFyop
l'izx p1 N\ Py = 33):)( p1andx ):X ©2

which gives the standard interpretation of the A-formulas obtained by the boolean con-
ectives, and for the A-formula [C)y we put

zEy [Clp 1= (Fp¥oa)(z)eC. (7.5.1)

In order for Fp? and hence the semantics of [C]p in equation 7.5.1 to be defined,
we must verify by induction that for each A-formula ¢ the characteristic function ¢* :
X — 2 (defined by p*(x) :=if (v =x @) lelse0) is a continuous map, i.e. the set

lel® :={zeX | x kx ¢} (7.5.2)

is a clopen subset of X. For the base case ¢ = T, and for the Boolean connectives —¢
and @1 A @9, this is obvious. Suppose ¢ is an arbitrary element of L(A) such that oV is
continuous, then ([C]¢)? = Fp? o a is continuous as well. Now, we use this to give a
meaning to the A-formula [A]p:

Then for each A-formula ¢, the set

l[Clell* = {z € X | z Ex [Cle}

is clopen (because z =y [Clp iff z € (Fp? o a)~1(C) and we know that Fo® o a is
continuous). Notice that we can replace ||¢||* by ||¢]|, if it is clear from the context.
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7. Coalgebras over (€, M)-categories

Definition 7.5.3. We say that a A-formula ¢ is valid in an F-coalgebra X = (X, «) (in
symbols: =y @) iff 2 |=x ¢, for each z € X, ie. if |¢]] = X. As an example =y T,
for every coalgebra X = (X, «). If ¥ be a subset of L(A), we say that ¥ is valid in a
coalgebra X (in symbols: =y X) iff Fx ¢, for each ¢ € X.

If X = (X, ) is an F-coalgebra, then for each z € X, we define

[z = {pelp|zFx o} (7.5.3)

Example 7.5.4. Consider F' as the Vietoris functor V which associates to each to-
pological space X the set of all compact subsets K C X (see definition 3.2.1). Then
F(2) = V(2) = {0,{0},{1},{0,1}}. Notice that by definition of the Vietoris topology
(see definition 3.2.1) the sets

Co = [{1}] = {0,{1}}
and
Co == {1} = {{1},{0,1}}
are clopen subsets of F'(2). Take A := {Cp, C¢}. According to equation 7.5.1, for each
¢ € L(A) and every F-coalgebra X = (X, ) we have

rEx [Colp <= Vt€a(z).t Ex ¢

and
rEx [Colp <= Tt ea(r).t Ex ¢

Remark 7.5.5. The reader will have noticed that we do not include propositional letters
in the language of L(A). In order to extend a given coalgebraic modal logic for F' with a
set P of propositional letters, consider the Top-endofunctor F'(—) := F(—) x P(P) where
P(P) is the set of all subsets of P equipped with the topology generated by a subbase
containing all clopens of the form 1 p = {u C P | p € u} (note that F’ associates
each topological space X to the product space F(X) x P(P) and sends every continuous
function f : X — Y to the continuous map F'f xidpp) : F(X)xP(P) — F(Y)xP(P)
defined by (Ff x idppy)(K, M) = ((Ff)(K), M), for all K € F(X) and all M C P).
Extend the modal similarity type A by adding the clopen subsets {C), := F'(2)x T p}pep.
Now, if p € P is a fixed element, then for every ¢ € L(A) and each F’-coalgebra
X = (X, a) we have

7 x (Gl e (F'p¥oa)(a) € G,
= F'o*(a(x)) € C,
— (Fe™ x idp(p))(a(z)) € Cp
— (Fo* x idpp))(a(z)) € F(2)x Tp

by the definition of F’ on morphisms
mp(p)(a(w)) €T p

(mp(p) 0 @) () €T p

1y
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7.5. Coalgebraic modal logic

(here mp(py denotes the projection F(X) x P(P) — P(P)). Hence we conclude that

z Fx [Cplp < p € (mpp) 0 )(2)

Therefore, for every ¢, ¢ € L(A) we have

Gl = ICplel™*

Hence we can write the propositional letter p € P in place of [Cp)p, with the expected
meaning (see also [64] and [65]).

Definition 7.5.6. Let X = (X,a) and Y = (Y, 3) be F-coalgebras. Elements x € X
and y € Y are called modally equivalent, and we write x ~xy v, if they satisfy the
same A-formulas, i.e. if for all ¢ € L(A) we have

rExe = yEye.

We drop the index and write x ~ vy, if it is clear from the context.

Lemma 7.5.7. Let X = (X,«a) and Y = (Y,f) be F-coalgebras. Then the relation
~C X xY is closed in X XY (the product of X and Y in Top).

Proof. 1t is suffices to show that the complement of =~ is an open subset of X x Y.
Suppose (z,y) ¢~ . Then there exists a A-formula ¢ such that x Fx ¢ and y Ey .
Let U be the set || ¢ [|* x || =¢ ||¥. Clearly U is an open subset of X x Y such that
(xz,y) € U. Also it is obvious that UN ~= (). Thus we found an open neighborhood of
(x,y) contained in the complement of ~. This means that = is closed. O

The next lemma comes from [39]:

Lemma 7.5.8. Let X = (X,«a) and Y = (Y, ) be F-coalgebras. If elements v € X and
y €Y are A-M bisimilar then they are modally equivalent.

Proof. Suppose elements x € X and y € Y are A-M bisimilar. Then by remark 7.4.2
there is an A-M bisimulation ¢ : R — X XY between coalgebras X’ and ) and an element
r € R such that mx o (r) = x and my o «(r) = y (here mx and 7y are respectively the
canonical projection from X x Y to X and Y'). We need to prove for each ¢ € L(A) the

following diagram commutes.
TXOL Ty oL

X<—R——Y

2
We prove this, by induction over the construction of A-formulas. For the base case ¢ = T,
and for the Boolean connectives - and @1 A s, this is obvious. Suppose the claim is

(7.5.4)
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7. Coalgebras over (€, M)-categories

true for ¢, so the diagram 7.5.4, is commutative. Applying the functor F' on diagram
7.5.4, and using the fact that + : R — X X Y is an A-M bisimulation, we obtain the
following commutative diagram:

2
X TXxOL R Ty OL
|k

X

Y

»

F(2)
From this we obtain that
(Feroa)(z) = (Fe*oa)(rxou)(r)
= (Fe*oaomyxou)(r)
= (Fe¥oaomyou)(r)
= (ngy oa)(my ou)(r)
= (FYoa)(y).

Thus for each clopen subset C' C F(2) we have
(Fe¥ 0 a)(z) € C 4= (Fp¥ oa)(y) € C
Then by equation 7.5.1, we conclude that z Ex [Clp iff y =y [Cle. O
In general the converse of the previous lemma does not hold. The following example

borrowed from [11] makes this issue more clear. Notice that in this example we consider
Top as an (epi, regular mono)-category.

Example 7.5.9. Let (X, ) and (X', ') be V-coalgebras mentioned in example 7.4.12.
Let Y and Y’ be the topological sums X + {a} and X’ + {a’}, respectively. Define the
maps v: Y — V(YY) and v/ : Y — V(Y”) as follows

e v(z) = a(x) and v/ (2') = o/ (2) for each z € X and 2’ € X/,
e v(a) =Ty and v/(a') = T.,.
We define the valuation maps pu: Y — P(P) and ¢/ : Y/ — P(P) by

e u(x) =9Y(x) and p(z') =¥ (2) for each x € X and 2/ € X/,
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7.5. Coalgebraic modal logic

o ula) = p'(a') =0,

where ¢ : X — P(P) and ¢ : X’ — P(P) are the valuation maps defined in ex-
ample 7.4.12. It is easy to see that the transition maps v and +' and also the valuation
maps p and g/ are continuous maps. Then Y = (Y,vp) and V' = (Y',7}p) (where

ve(y) == (v(y), w(y)) and vp(y') == (V' (¥'), n(y')) for every y € Y and ¢/ € Y') are
V p-coalgebras.

Claim. The points a and a' are modally equivalent, but not A-M bisimilar.

Proof. We prove this claim by contradiction. Assume a and a’ are A-M bisimilar. Then
by remark 7.4.3, there is an inclusion of subspace ¢/ : B’ — Y x Y’ such that 7y o/ and
myr o ¢/ are homomorphisms between coalgebras Y and )’ and (a,a’) € B'. By lemma
7.5.8, we conclude that a and o’ are modal equivalence. On the other hand, by lemma
7.4.20, U/ : U(B") — U(Y xY') (where U is the forgetful functor from Top to Set) is
an A-M bisimulation between Pp-coalgebras (U(Y),ny o Uvyp) and (U(Y'),nyr o Uvp)
(because n : UV — PU such that for each topological space A the morphism 74 is
the inclusion of subset, is a natural transformation). Then by example 7.4.4, U(B’) is a
Kripke bisimulation between corresponding Kripke models. Then U(B’) = {(a,d')} U B
where B is the subset of X x X’ mentioned in example 7.4.12. Now, by the same
argument which has been explained for ¢ : B — X x X’ in example 7.4.12, we conclude
that /' : B" — Y x Y’ is not an A-M bisimulation. O

We say that our logic has Hennessy-Milner property if A-M bisimilarity coincides with
modal equivalence. In this case we call these kind of logics H-M logics.

Definition 7.5.10. Let X =(X, ) and Y =(Y, 3) be two coalgebras for the T'op-endofunctor
F,andlet z € X and y € Y. We say that x and y are behaviorally equivalent (in symbols
xVux yy), if there exists a F- coalgebra Z =(Z, ) and homomorphisms f : X — Z and
g:Y — Z such that f(x) = g(y).

Remark 7.5.11. 1t follows immidiatly from lemmas 7.4.6 and 7.5.8 that bihaviorally equi-
valent elements are modally equivalent.
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8. Terminal Coalgebras

In the theory of coalgebras, the terminal coalgebra is of special importance, provided
it does exist, (see [15] and [62]). As it is mentioned in [35], one can not guarantee the
existence of the terminal coalgebras. If it is exists, it is unique up to isomorphism and
its elements can be interpreted as behaviors.

In this chapter we discuss the existence and the structure of terminal objects in the
categories of coalgebras for the C-endofunctors D x (—) (Black-boxes) and D x (—)*
(automata) where C is a category with object D and products. The idea of this chapter
was discovered by Gumm [39].

Before starting this section, we recall that an F-coalgebra T = (T,7) is called a
terminal coalgebra in Cp, if each F-coalgebra A = (A, «) admits precisely one homo-
morphism 7: A — T in Cp.

8.1. Terminal Black box

In this part we want to show that in any category C with object D and products, the
terminal coalgebra for the C-endofunctor D x (—)¢ (product of the constant functor D
and the identity functor (—)c¢) exists, and it is based on D* (the w—fold product of D in
C). Recall that X — D x X is the object part of the functor D x (—)c. On morphisms
f: X — Y it is defined uniquely by D x f :=idp X f in the following diagram,

X / Y

e I
idDXf

Dx X ——DxY
D

(see lemma 2.15.8). To start with, let D“ with canonical projections (p;)icw be the
w—fold product of D in C, then one easily checks:

Lemma 8.1.1. There are a unique morphism o : D* — D x D“ such that (D, ) is a
D x (—)-coalgebra.
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8. Terminal Coalgebras

Proof. Assume now that D with canonical projections (p;)ie, is the w—fold power of
D. Then D% with the family (p;+1)iew 18 a competitor to the product, yielding a unique
morphism ¢ : D¥ — D such that

Di+1 = D; © t (811)

for all ¢ € w. Next, D“ with
h :=po (8.1.2)

and ¢ is a competitor to D x D yielding the product morphism (h,t) : D¥ — D x D%,
which can be considered a D x (—)c-coalgebra.

Pi+1
pY 2t p
/ N\

/ AN
/ AN

Theorem 8.1.2. (D%, (h,t)) is the terminal D x (—)-coalgebra.
The proof is split into two lemmas

Lemma 8.1.3. Let (A,«a) be an arbitrary D x (—) -coalgebra with o = (a, 1) where
ag:A— D and a1 : A — A. Any coalgebra homomorphism ¢ : A — D“ must satisfy
for each i € w:

piop =ago (o) (8.1.3)

Proof. We show this by induction, using the homomorphism diagram:

For ¢ = 0 the claim is obvious, since h = pg.
For the inductive step, we calculate

Pi+10¢p = pioloy
bioyoay
aoo(al)ioal
i1

= apo ()
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Lemma 8.1.4. The equations p; o ¢ := g o (o)’ define a unique coalgebra morphism
p:A— D%,

Proof. The morphism «ag o (a1)’ : A — D turn A into a competitor to the product D%,
which yields the unique morphism ¢. To show that ¢ is indeed a homomorphism between
D x (—)c-coalgebras, we must show that this ¢ makes the previous diagram commute,
so we calculate:

how=pyop=ago(a)’=a

and for all i:

piotoypy = pir10@
= qpo (al)i—H
= Oéoo(al)iom

= Pbiocpoa

from which top = poay, since the projections p; are jointly mono. Thus ¢ is a coalgebra
morphism, which is unique by the previous lemma. O

8.2. Terminal Automaton

Let ¥ be a set and X* the set of all finite words' over ¥. In this part we want to show
that in any category C with object D and products, the terminal coalgebras for the
functor D x (—)* (product of the constant functor D and the power functor (—)* on
C) exists, and it is based on D*" (the ¥*—fold product of D in C). Before starting, we
should recall that X + D x X* is the object part of a functor D x (—)*. On morphisms
f: X — Y itis defined uniquely by D x f* :=idp x f* in the following diagram, where
for e € X, we let m. be the projection to the e-th component:

X ! Y
Dx xS pyT
D

We denote the empty word? by ¢, and given e € ¥ and w € ¥*, we denote by e.w
the word obtained by prefixing e to w. Now, let D¥" with projections (py)wes+ be the
>*—fold product of D in C, then one easily checks:

Lemma 8.2.1. There is a unique morphism o : D> — D x (D*")* such that (D", a)
is a D x (—)*-coalgebra.

!Every finite sequence of elements from ¥ is called a finite word over X.
2The empty word is the unique sequence in ¥ of length 0.
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Proof. Assume that D" with projections (py)wes+ is the X*—fold product of D. Then
for each e € ¥ the same object D> but with the family (pe.)wes+ is a competitor to
the product, yielding a unique morphism t. : D*" — D*" such that

Peaw = Pw O Le (821)

for all w € ¥*. Next, D¥" with p. and t = (t.)eex is a competitor to D x (D¥")>
yielding the product morphism (p.,t) : D*" — D x (D*")*, which can be considered a
D x (—)*-coalgebra.

DE* Pe.w _D

7/ N\

AN
/ (pizt) AN Pw

Theorem. (D>, (p.,t)) is the terminal D x (—)>-coalgebra.

The proof is split into two lemmas. Given an arbitrary D x (—)-coalgebra (4, a)

with a = (ap, (®e)eex), where ag : A — D and a, : A — A, we can define inductively
morphism «a,, : A — A for each word w € ¥* by

e = 1idy

Qe Qg O Cle

With this definition, we have

Lemma. Let (A, ) be an arbitrary D x (—=)* -coalgebra with o = (v, (e )ees)), where

ag:A— D and ap : A — A. Any coalgebra homomorphism ¢ : A — D> must satisfy
for each word w € ¥*:
Pw O P = Qg O Qyy (8.2.2)

Proof. We show this by induction, using the homomorphism diagram:

D = D
QOT TPE
A—% p¥

g

A—*. D>

For w = ¢ the claim is obvious, since p. o ¢ = ag = agotda = ag © .
For the inductive step, we assume the condition for w € ¥* and calculate for an arbitrary
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e € X

DewO@P = DPywoOoleop
Pw © PO Qe

Q) O Qi O Qe

= 0O Q¢ -
O

Lemma. The equations {p, © ¢ = ap 0 aufwes+ define a unique coalgebra morphism
0:A— D>,

Proof. The morphisms ag o ay, : A — D turn A into a competitor to the product D",
which yields the unique morphism ¢ : A — D¥ satisfying the equation. To show that
¢ is indeed a morphism of D x (—)*-coalgebras, we must show that this ¢ makes the
previous diagram commute for each e € 3, so we calculate:
Peop=0apoae =g
and for all w € ¥*:
PwOte®©Y = Pew O

Qp O Qe g

QQ O Qy © Qe

= PwoPo

from which t, o ¢ = ¢ o e, since the projections p,, are jointly mono. Thus ¢ is a
coalgebra morphism, which is unique by the previous lemma. O
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9. Vietoris models and Vietoris frames

The aim of this section is to introduce the notion of Vietoris structures. These notions
were introduced for the first time by Esaki in [24]. We also discuss the coalgebraic
perspective of these structures. Our presentation in this chapter is based on [11].
Throughout this section, let P be a fixed set of propositional letters.

First we give an auxiliary definition needed to study the concept of Vietoris structures
and their properties.

Definition 9.0.1. Given a binary relation R C X x Y and a subset V C Y, define
e R(z)={ye€ X | zRy},
o (R)(V)={ze X | JyeV.zRyj,
e [RI(V)={zeX |VyeY. xRy =ycV}
Then
o (R)(V)={zeX| R(z)nV #0},
o [R|(V)={z e X | R(x) S V}.
Obviously,
e [R|(V) =X — (R)(Y — V), and
o (R)V)=X - [R|(Y - V).

Suppose X and Y are topological spaces and R C X xY a binary relation. We say that
R is a compact binary relation if for each x € X the set R(x) is a compact subset of Y.

Definition 9.0.2. (Vietoris model) Generally speaking, a Vietoris model is a Kripke
model X = (X, Ry, =x) (called the underlying Kripke model) with a topology 7 on X
such that:

1. Vz € X. Ry(z) is compact (i.e., Ry is a compact binary relation).
2. YU € 7. (Rx)(U) is open.

3. YU € 7.[Ry](U) is open.
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9. Vietoris models and Vietoris frames
4. Vp € Pl|p|* € 7 and (X — [p||*) € 7, where [p|* = {z | = Fx p}.

Vietoris frames are Vietoris models with P = {) (i.e., a Vietoris frame is a Kripke frame
X = (X, Ry) with a topology 7 on X such that the conditions (1), (2) and (3) hold).

Lemma 9.0.3. In a Vietoris model X = (X, Ry, Ex), if C is closed in X, then so are
(Rx)(C) as well as [Rx](C).
Proof. Suppose C is a closed subset of X. According to definition 9.0.1, we have
(Ry)(C) =X — [Ry](X — C) and [Rx](C) = X — (Rx)(X — C). Since X is a Vietoris
model and since X — C' is open, [Rx|(X —C) and (Ry)(X — C) are open. Consequently,
(Rx)(C) and [Rx](C) are closed.

[

Lemma 9.0.4. If X = (X, Ry, =x) is a Vietoris model, then ||¢|| is a clopen (closed
and open) subset of X, for each ¢ € Lp.

Proof. We prove this claim by induction over the construction of formulas.
Base case : ||p||* is clopen, for each p € P (by part (4) in the definition of Vietoris
models).

Inductive step : Suppose ||p1||* and ||2||* are clopen for 1, w2 € Lp. So

o [[or A2 = [ler]|F N 2] is clopen.

e ||mp1||¥ = X — |1 is clopen

o |[Op1||* = {z € X | Rx(z) C ||¢1]|*} = [Rx]([|l¢1]|?) is clopen (by definition 9.0.2
and lemma 9.0.3).

o [[0@1[* = [|=O=1 [ = X — O~ ||,

9.1. Vietoris homomorphisms

Definition 9.1.1. (Vietoris homomorphism) Suppose that X = (X, Ry, =x) and
Y = (Y, Ry, =y) are two Vietoris models, then a map f: X — Y is called a Vietoris
homomorphism from X to ), if f is a continuous Kripke homomorphism between under-
lying Kripke models.

Remark 9.1.2. Vietoris structures together with Vietoris homomorphisms form a cate-
gory which we shall call V'S.
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9.2. Vietoris structures as coalgebras over Top

In the following, we will see that Vietoris structures can be presented as V p-coalgebras
over Top. Before starting, we should recall the P-Vietoris functor Vp : Top — Top
(see 3.2.1), where P is the set of propositions letters. Recall that for each topologi-
cal space X, the Vietoris space V(X) is the set of all compact subsets of X with the
topology generated by a subbase consisting all sets [U] := {K € V(X)|K C U} and
(U) :={K € V(X)| KNU # (0} where U is any open subset of X (see 3.2). Let P(P)
be the set of all subsets of P equipped with the topology generated by a subbase con-
taining all clopens of the form 1 p := {u C P | p € u}, where p € P. The endofunctor
Vp : Top — Top associates to each topological space X, the product space V(X) xP(P)
and sends every continuous function f: X — Y to the continuous function V f X idpp)
given by (Vf x idppy))(K, M) = (f[K], M) (for all K € V(X) and all M C P).

Notice that if X is an arbitrary topological space and R C X x X a compact binary
relation on X, then R : X — V(X) defined by R(z) := {y € X | xRy} (for each
x € X) is a map (because R(z) € V(X) for each z € X). Then, we have the following
lemmas:

Lemma 9.2.1. Let X be a fized topological space and R C X x X a compact binary
relation on X. For every open subset U C X, we have:

o R7Y([U]) = [R](U); and
o RTI((U)) = (R)(V).

Proof. Assume U C X is open. So

RY[U)) = {zeX | R(z) €U}
= {zeX | Rx)CU}

= [R](U).
Also
R'(U) = {zeX | R(x) e (U)}
= {zeX | R(z)NU # 0}
— {eeX | e (RU)}

(R)(U).
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9. Vietoris models and Vietoris frames

Lemma 9.2.2. Let X be a fized topological space and R C X x X a compact binary
relation on X. The map R : X — V(X)) is continuous iff for each open subset U C X,
the subsets [R](U) and (R)(U) are open subsets of X.

Proof. By remark 1.3.3, R is continuous iff R~1([U]) and R~1((U)) are open in X (where
U is an open subset of X'). According to the previous lemma, for each open subset U C X
the set R~1([U]) (resp. R~1({U))) is open in X iff [R](U) (resp. (R)(U)) is open in X.
Then the claim is trivial. O

As a consequence of the previous lemma we have the following corollary:
Corollary 9.2.3. Vietoris frames are the same as V-coalgebras on Top.

In order to identify Vietoris models as Vp-coalgebras over Top, let X be a topological

space and =C X X P be a binary relation. Let P(P) be the set of all subsets of P

equipped with the topology generated by a subbase containing all clopens of the form
tp={uCP|pecu}

where p € P. Define a map ¢ : X — P(P) by ¥9(x) ={p € P |  E p}. Now we have:

Lemma 9.2.4. ¥ is continuous iff for each p € P the set {x € X |  F p} is a clopen
subset of X.

Proof. By remark 1.3.3, we know that 1 is continuous iff 9~1(1 p) is a clopen subset of
X, for each p € P. On the other hand

0N tp) = V{uC P | peu})
= {reX|ped(r)}
= {zeX|zFp}

So ¥~1(1 p) is a clopen subset of X, if and only if {x € X | z & p} is clopen in X, for
each p € P. ]

Lemma 9.2.5. A Kripke model X = (X, Ry, =x) with a topology T on X, is a Vietoris
model iff

1. Rx(x) is compact, for each x € X, and

2. Ry : X — V(X)) defined by Ry(z) := {y € X | x Ry y} is a continuous map,
and

3. Yy : X — P(P) coded by Yx(x) ={p € P | x E=x p} is a continuous map.
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Proof. Lemmas 9.2.2 and 9.2.4 yield both directions of our claim. O

Now, suppose X = (X, Ry, [Fx) is a Kripke model and let Ry : X — V(X) and
Yx : X — P(P) be maps defined by the binary relations Ry and =y, respectively (see,
conditions (2) and (3) in the previous lemma). Suppose a : X — V(X) x P(P) is a
map defined by a(x) := (Rx(z),%x(z)) for any z € X. Obviously, « is continuous iff
Ry and 9y are continuous. Therefore each Vietoris model X = (X, Ry, Ex) can be
represented as a Vp-coalgebra (X, ) and vice versa. Our finding in this subsection can
be summarized as the following theorem:

Theorem 9.2.6. Vietoris models are the same as V p-coalgebras on Top.

The following theorem shows that each Vietoris homomorphism between Vietoris mod-
els is a homomorphism between corresponding V p-coalgebras and vice versa.

Theorem 9.2.7. Given Vietoris models X =(X, Ry, =x) and Y =(Y, Ry, =y). A con-
tinuous map f : X — Y is a Vietoris homomorphism iff f is a homomorphism between
corresponding V p-coalgebras.

Proof. Let f : X — Y be a continuous map. By definition 9.1.1 f is a Vietoris
homomorphism between X and ) then iff it is a Kripke homomorphism between the
underlying Kripke structures which means the conditions (1), (2) and (3) in definition
6.1.16 hold. This means the following diagram commutes

idp(p)

P(P) P(P) (9.2.1)
o oy
X ! y
R Ry
V(X) —Dyy)

where Ry and Yy (resp. Ry and v¥y) be the maps obtained by the binary relations
Ry and Eux (resp. Ry and [=y), respectively (see, conditions (2) and (3) in the pre-
vious lemma). So we can conclude that f is a homomorphism between V p-coalgebras
corresponded to the Vietoris models X and ). ]

We can combine the previous two theorms to a theorem as follows:
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9. Vietoris models and Vietoris frames

Theorem 9.2.8. Vp-coalgebras with coalgebra homomorphisms are the same as Vietoris
models with continuous Kripke-homomorphisms.

9.3. Compact Kripke models and Vietoris models

In this subsection we will discuss the connection between Vietoris structures and compact
Kripke structures (see definition 6.2.2). In fact, by forgetting the topologies of Vietoris
structures we will obtain an ordinary Kripke structure which is also compact. This for-
getting can be formalized as a functor Ug from the category V'S (the category of Vietoris
structures together with Vietoris homomorphisms) to the category K.S (the category of
Kripke structures together with Kripke homomorphisms) which can be factored through
the forgetful functor Ug : V.S — CKS and the inclusion functor J : CKS — KS
(where CK S is the category of compact Kripke structures with Kripke homomorphisms
between them). On the other hand, given a Kripke model X=(X, Ry, =x). By equip-
ping the set X with a special topology m called X-modal topology (see definition 9.3.1),
we will obtain a new structure g = (Xo, Ry, Fx) called X-modal model (see definition
9.3.1). In case that X is a compact Kripke model, it will be shown that X7 is a Vietoris
model (see theorem 9.3.5). Then, we can define a functor g : CKS — VS which
associates each compact Kripke model X to the Vietoris model Ag. We will see that the
functor Fg is a right adjoint to the functor Ux (see theorem 9.3.7). We can present these
functors in one picture as follows:

VS KS
% /
F J
Y NCKS

Definition 9.3.1. (X-modal topology, X-modal model) For each Kripke model
X=(X, Ry, E=x), we define X -modal topology 73 on the set X as a topology generated
by a base consisting of all opens as follows:

lell* = {z € X | v f=x ¢}

where ¢ € Lp.
Denote by X5 the topological space obtained by equipping the set X with the X-modal

topology 7. Thus each open subset O in Xp is of the form |J ||¢||* for some subset
peEX

¥ C Lp. Consequently each closed subset C' in Xq is of the shape [ |||/t for some
peEX
subset X C Lp.

For every Kripke model X =(X, Ry, =x), we call the triple Ao = (Xg, Ry, =x) the
X-modal model.
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9.3. Compact Kripke models and Vietoris models

Lemma 9.3.2. For each compact Kripke model X =(X, Rx,Fx), the X-modal model
Xo = (Xo, Ry, Ex) is a Vietoris model.

Proof. Let O = |J |l¢||* be an arbitrary open subset of Xp. Hence
peX

(R)(0) = {zeX|R(x)NO#0}
= {ze X |R@)n({Jllell) # 0}
pEX
= {zeX[3pcXrix Op}

= JIoel*

peED

which is a union of open sets. Similarly

[R)(0) = {re X |R(x) CO}

- {zre X |R(z) C [Jlel*}
peD

X'is compact

= {zeX 3% € S.R@)C | llel™}
fin
pEXg

= {xEX\EIEofg S.xlry O(\ ¢}

pEXo
= U Vol

EoEPf(Z) ©EX

which is open, as well. Clearly for each p € P, the sets |[p||* and X — ||p||"* are clopen
subsets of X (see definition 9.3.1). Next we have to show R(x) is compact subset of

X for each x € X. Assume |J [¢||* is an open cover of R(z). So x Fx O(V ¢)
peY peX
and by assumption there is a finite subset ¥y C ¥ such that « =x O( \/ ¢). Then
pEXQ

R(x) < U lel*. O
I

Lemma 9.3.3. Suppose X =(X, Ry, =x) and Y =(Y, Ry, =y) are compact Kripke mod-
els and f : X — Y a function. Then f is a Kripke homomorphism iff it is a Vietoris
homomorphism between Vietoris models Xg and )g.

Proof. Suppose f is a Vietoris homomorphism between Vietoris models X5 and Vg, then
it is continuous and a Kripke homomorphism between underlying Kripke models X and
Y (by definition 9.1.1). Conversely, let f be a Kripke homomorphism between X and

Y. We just need to show that f is continuous. Let O = |J ||¢|]” be an arbitrary open
pES
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9. Vietoris models and Vietoris frames

subset of Y. Hence

fH0) = U el
pED
= U dlel?)
IS
corollary 6.1.18
= Ullel®
peX
which is an union of open sets in Xp. O

Remark 9.3.4. As a corollary of the previous lemma, we can define a functor Fg :
CKS — VS which associates to each compact Kripke structure X=(X, Ry, |=x) the
corresponding X-modal model X5 = (Xg, Rx, Ex). The functor Fq is called the modal
functor. If X =(X, Ry, =x) and Y =(Y, Ry, =y) are arbitrary compact Kripke models,
then for each Kripke homomorphism f : X — Y we define F(f) := f.

Theorem 9.3.5. Suppose X =(X, Rx, Fx) is a Kripke model. The following conditions
are equivalent:

1. X is compact.
2. X is the underlying Kripke model of a Vietoris model.

3. X is the underlying Kripke model of a Vp-coalgebra.

Proof. Suppose X =(X, Ry, =x) is a Kripke model, then:
1=2 follows from lemma 9.3.2.
2<3 is corollary 9.2.6.
2=1: Suppose X =(X, Ry, Fx) is the underlying Kripke model of a Vietoris model
and z =y O( \/ @) where ¥ is a subset of Lp. Then R(z) € |J ||¢||*. By lemma 9.0.4,
peY

pEX
the right hand side is union of open sets, thus by compactness of R(x) there is a finite
subset 9 C ¥ with R(z) € | |[|¢||* which means x = O( V ). O
PEXD IS

Remark 9.3.6. As a fairly direct corollary of theorem 9.3.5, we can define a forgetful
functor Ug : V.S — C'K S which assigns to each Vietoris model X = (X, Ry, Fx) its
underlying compact Kripke model and to each Vietoris homomorphism f: X — Y (be-
tween Vietoris structures X = (X, Ry, =x) and Y = (Y, Ry, =y)) the same morphism
between the underlying Kripke structures, i.e., Uo(f) := f.

Lemma 9.3.7. The modal functor Fg : CKS — V.S s a right adjoint to the functor
Uco: VS — CKS.
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9.3. Compact Kripke models and Vietoris models

Proof. For each Vietoris model X = (X, Ry, =x), the Vietoris structure FoUc(X) is
the X-modal model generated by its underlying compact Kripke model, i.e.

FoUc(X) = (Xo, Ry, [=x)-

The morphism ny : X — FoUc(X) defined as the identity map on the underlying
set X” is a Vietoris homomorphism from X to FoUc(X) (to see the continuity of ny
notice that since X' is a Vietoris model, ||¢||?* is clopen in X, for each modal formula
¢, see lemma 9.0.4). Moreover, for each compact Kripke model Y = (Y, Ry, =y), we
have Y = UcFa(Y). Then the morphism &y : UoF(Y) — Y defined as "the identity
map on the underlying set Y” is a Kripke homomorphism. We can easily check that

idyg(x) = Sue(x) © Uc(nx) and idz,y) = Fo(Sy) o nr,)- O
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10. Terminal Vietoris model

Let P be a fixed set of propositional letters and Lp be the set of modal formulas con-
structed inductively over P. In this chapter, we will show that the category of Vietoris
models has a terminal object. In fact the result of this chapter is a straightforward
consequence of the works of Abramsky [I| and Venema et. al. [I1]. In [11], the authors
have determined (X¢, R® =°) as a terminal object in the category of descriptive models.
Here X¢ is the collection of all maximal consistent sets of formulas over Lp (the set of
modal formulas constructed inductively over P) equipped with a topology generated by
the clopen sets of the form ¢ = {u € X¢ | ¢ € u}. The binary relation R® C X¢ x X¢
is defined by u R iff {$¢ | ¢ € v} C w and the relation F°C X€¢ x P is given by
ulESp <= peunh.

In this work, we replace the collection of all maximal consistent sets over Lp, by the set of
all Kripke-ultrafilters (in symbol: ) over Lp, and we will show that the $f-Modal model
induced by the Kripke-Ultrafilter model 4 = (U, Ry, ) (where the binary relation Ry
on U is defined by u Ry v iff { | Op € u} C v and the relation =¢C U x P is given by the
equation u =g p <= p € uN P) is a terminal object in the category of Vietoris models.
Throughout this section, we assume that the set of propositional letters P is non-empty
and countable. The set P may be finite (in which case, P = {p1, p2,ps, ..., Pn}, for some
n € N) or countably infinite (in which case, P = {p1,p2,ps,...}). We first review the
background materials needed to understand the theorems and lemmas of this chapter.

10.1. Preliminary
In this section we define the notions of tautology and deducibility in terms of Kripke

structures.

Definition 10.1.1. (Kripke tautology) A modal formula ¢ € Lp is called a Kripke
tautology (in symbol: |= ¢) if for each Kripke model X = (X, Ry, Ex) we have Ex ¢
(i.e., ¢ is valid in Kripke model X’). We denote by KT the set of all Kripke tautologies.

Example 10.1.2. For every ¢, ¥ € Lp, the following formulas are Kripke tautologies.

L. (p — ) «— (mp V),
2. T — OT;

3. O «— s

199



10. Terminal Vietoris model

4. O(p — ¢) — Op — Oy,

5. (Op AOy) — O(e A ).

In the next remark, we give some statements which can be easily proved by using the
definition of Kripke tautology and semantics of formulas defined in subsection 6.1.3. For
more details we refer to [73].

Remark 10.1.3. According to the definition of Kripke tautology, the following statements
hold.

1. If = ¢ and = 1) then = (p A1)

2. If = ¢ and |= ¢ — 1 then |= 1.

3. f o — ¢ and =Y — ¢ then = ¢ — ¢.

4. IfEp—vYand Ex — dthen EpAx — YA ¢.
5. If = ¢ then = Ogp.

6. If = 0(p —> ) and |= Op then = 0.

7. If = Op and = Ot then = O(p Ath).

Definition 10.1.4. (Kripke deducibility) Suppose ¢ € Lp and ¥ is a subset of Lp.
We say ¢ is deducible from ¥ and we write,

Yk

iff there is a finite sequence @1, @9, ..., o, of members of 3 such that the formula,

(1 A2 A e Apn) —>
is a Kripke tautology.

Lemma 10.1.5. Suppose 3 is a non-empty subset of Lp, then the following statements
hold.

1.YF1l<<=VpelpXlF .
2.VpeLp. (EFp<=XU{-p}F1).

Proof. Let X be a subset of Lp.
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10.2. Kripke-Ultrafilters

(1): Assume ¥ F L, then there is a finite subset ¥y C ¥ such that = A ¢ — L
(i.e., A\ @ — L is a Kripke tautology). Also we know that = L ﬁzza for each
Y € }bjfo Then by part (3) in remark 10.1.3, = A\ ¢ — ¢ for each ¢ € Lp.
Hence by definition 10.1.4, for each ¢ € Lp we half/izgl F . For the converse, set

= 1.
(2): Let ¢ € Lp be arbitrary.
EU{_\(p}l—J_ — ¥y C Z.EQU{ﬁgp}l—J_

firTite

= T € S (A VA FL
finite HET0

= TN € Tk ANv—y
finite HET0
— Xk

10.2. Kripke-Ultrafilters

Here, we introduce the notions of Kripke-Filters and Kripke-Ultrafilters and some of their
properties.

Definition 10.2.1. (Kripke-Filter) A Kripke-Filter on Lp is a subset F' C Lp which
has the following properties:

1. TeF,
2.peF and vy e F = p ANy € F, and
3. peFand Fpop— 1 = ¢ eF.

Lemma 10.2.2. For each Kripke-Filter F' on Lp and each modal formula ¢ € Lp, the
following statement holds:
Fro<pckF

Proof. We have,

def 10,1.4

Frop = o1, o €EF. EI AN ANpn —> @
in def 10.2.
O in el 021 gy e P ey —s o
(3) in def 10.2.1 cF
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10. Terminal Vietoris model

Lemma 10.2.3. If u C Lp is a Kripke-Filter, then
O Mu:={pecLp | Opcu}
is a Kripke-Filter on Lp.

Proof. Let v C Lp be a Kripke-Filter. We should prove that (0~ 'u satisfies the three
conditions in definition 10.2.1.

1. We know that T € w and = T — OT. Then by (3) in definition 10.2.1 we have
OT € u. Hence T € 0w,

2. Suppose @, ¥ € O tu. Then Oy, Oy € u and consequently o A Chp € u (u is
a Kripke-Filter). Since (Op A Oy) — O(¢ A1) is a Kripke tautology, by (3) in
definition 10.2.1 we have (¢ A v) € u. Therefore p A1 € O 1w,

3. Assume ¢ € Oty and = ¢ — 9. So Oy € u and |= Op — (), respectively.
Then by (3) in definition 10.2.1 we have ()¢ € u. This gives ¢ € O .

O]

Definition 10.2.4. (Kripke-Ultrafilter) A Kripke-Filter F is called a Kripke-Ultrafilter
on Lp if for every element ¢ € Lp, either ¢ € F or ~¢p € F'. We denote by U the set of
all Kripke-Ultrafilters over Lp.

Example 10.2.5. Suppose X = (X, Ry, Ex) is a Kripke model. It is easy to see that
for each x € X, the set ||z|| = {¢ € Lp | x Ex ¢} is a Kripke-Ultrafilter on Lp.

10.3. Kripke-Ultrafilter lemma

The idea for the proof of the following lemma is borrowed from the proof of Lindenbaum’s
lemma in Zalta [73]. Before starting this subsection, recall that ¥ C Lp is called a proper
subset if ¥ # Lp.

Lemma 10.3.1. (Kripke-Ultrafilter lemma) Let > C Lp be a non-empty proper
subset of Lp such that ¥ ¥ L. Then there is a Kripke-Ultrafilter F' containing 3.

Proof. Let @1, 2, ... be a listing of all modal formulas in Lp. We define the set I’ as the
union of an infinite sequence of sets Fy, Fi,... of modal formulas, as follows:

Fo = X

F,U{pn}t i F,Fopn
F,U{—¢,} else

F = UFn

n>0

Foi (10.3.1)
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10.3. Kripke-Ultrafilter lemma

Notice that by this construction we have:

FyCF C...CF,CFu1C... (10.3.2)

Moreover, the sets F' and F,, (n € N) satisfy the following properties:

Propertyl: F, ¥ 1 for each n > 0. We prove this claim by induction over n. For
n = 0 we have Fy ¥ L (because by assumption ¥ ¥ 1). Now, let F,, ¥ L for an arbitrary
n > 0. We need to show that F,11 ¥ L. We show this by contradiction. So assume
Foi1 L. Then

case 1: F,, b ¢y, so Fp1 = F, U{pn} b L. Then F, - -, (by part (2) of lemma
10.1.5). Thus F,, - L which is a contradiction with the induction hypothesis.

case 2: F, ¥ ¢y, s0 Fyy1 = F,, U {~p,} ¥ L (by part (2) of the lemma 10.1.5). This
gives a contradiction with assumption F, 41 - L.

Property2: F ¥ L. To see this, assume F' = 1, then by definition 10.1.4, we have
Iy € F.YXgk L (10.3.3)

finite
We can find an element n € N such that Xy C F), (since X is finite, we can find a finite

subset K C N such that ¥y C |J Fi. Let n be the largest element in K. Then by
keK
equation 10.3.2, we conclude that 3¢ C F,,). Then, by 10.3.3, we obtain that F,, - L.

This is a contradiction with property 1.
Now, it suffices to show that F'is a Kripke-Ultrafilter on Lp. We prove this claim step
by step.
Step 1 : By the construction of F' and claim 2, for each modal formula ¢ we conclude
that either ¢ € F' or ~¢p € F.
Step 2 : By step 1 and property 2, we obtain that T € F.
Step 3 : Let ¢, b € F, we have to show that ¢ Ay € F. It is enough to show that
F, ¥ =(p N) for each n > 0. We prove this by contradiction. Suppose F,, - = (¢ A )
for some n > 0. Then F' = —=(¢Av). Also we have F' = ¢ A1 (because ¢, ¢ € F'). Hence
F F L and this is a contradiction with property 2.
Step4 : It must be proven that if ¢ € F and = ¢ — 4, then ¢» € F. We need to
show that ) ¢ F. Assume —) € F, then F' F —). On the other hand since ¢ € F, we
have ¢ € F;, (for some n > 0). So from ¢ € F, and |= ¢ — 1, we have F;, - ¢ and
consequently F' F 1. Hence F' - ¢ A =, i.e., FF I L, but this is a contradiction with
property 2.

O

Remark 10.3.2. For each subset ¥ C Lp with ¥ ¥ 1, we denote by Uy, the set of all
Kripke-Ultrafilters over Lp which contains X. According to the lemma 10.3.1, Us, # ().

Now, as a direct corollary of lemma 10.3.1, we have:
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Corollary 10.3.3. For each non-empty proper subset 2 of Lp, the following statement
holds:
ShLl<=Us=0.

Proof. Suppose X F L. If Uy # (), then there is a Kripke-Ultrafilter u C Lp such
that ¥ C w. Then v F L and consequently L€ u (by lemma 10.2.2). This gives a
contradiction, because u is a Kripke-Ultrafilter. Conversely, let Us, = 0. If ¥ ¥ L,
then by lemma 10.3.1, there is a Kripke-Ultrafilter v C Lp with ¥ C w. But it is a
contradiction with the assumption Us; = 0. O

Corollary 10.3.4. Let ¢ be an element of Lp, and > o non-empty proper subset of Lp
such that ¥ ¥ ¢. Then there is a Kripke-Ultrafilter u with ¥ U {—p} C u.

Proof. Suppose X ¥ ¢, then due to lemma 10.1.5, ¥ U {—¢} ¥ L. So by lemma 10.3.1,
there is an Kripke-Ultrafilter u with ¥ U {-¢} C w. O

10.4. Kripke-Ultrafilter model

In the sequel, we will introduce a Kripke model constructed over U (the set of all Kripke-
Ultrafilters over Lp). We call this Kripke model as Kripke-Ultrafilter model. The
original motivation to define this construction comes from the notion of the canonical
models defined for normal logics, see [13], [14], [19] and [61]. By proving Truth lemma
for the Kripke-Ultrafilter model, we will show that the modal equivalence relation on this
structure is same as the equality relation between subsets.

Definition 10.4.1. The Kripke-Ultrafilter model is a triple & = (U, Ry, F=y) where,
e U{ is the collection of all Kripke-Ultrafilters over Lp.

e Ry CU x U is a binary relation defined as

URyv < Vo € Lp.ldpeu = pew
for each u, v € U.
o =yC U x P is a binary relation defined by
ulEyp <= pcunP

for each w € U and p € P.

We should recall that Ry(u) = {v € X | uRyv} for each Kripke-Ultrafilter u € Y. In
the sequel, we usually write v € Ry(u) instead of u Ry v.
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10.4. Kripke-Ultrafilter model

Remark 10.4.2. According to the definition of Ry, one can see that
v € Ry(u) <= O 'uCuw

where O~ lu = {¢p € Lp | Op € u}.

Lemma 10.4.3. Given u € U, then for each ¢ € Lp,

o €0y <= Vv e Ry(u). ¢ €.
Proof. Fix ¢ € Lp:
(=): It will be obtained by remark 10.4.2.

(«—=): Suppose ¢ ¢ O~ u. Since by lemma 10.2.3, 0~ 'u is a Kripke-Filter on Lp, it
follows from lemma 10.2.2 that O 'u ¥ ¢ and then by corollary 10.3.4 there
is a Kripke-Ultrafilter v such that O~ 'u U {—p} C v. By remark 10.4.2, we
have v € Ry(u), then by assumption ¢ € v and this gives a contradiction
(because v is a Kripke-Ultrafilter) .

Truth lemma

Lemma 10.4.4. (Truth lemma) For each formula ¢ € Lp and for every Kripke-
Ultrafilter w € U :

pEU <= ulEgyp

Proof. By induction over the construction of the modal formulas:
Here we ignore the inductive steps for the Boolean operations.
Base case : For any p € P, and for any v € U:

PEU <= ulyp
Inductive step : It remains to show that the claim holds also for Clp, $op.

Inductive hypothesis : Suppose the claim holds for the formula ¢. It means for every
Kripke-ultrafilter u € U, we have:

pEU <= ulkgyp
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Casellp :

Definitionof 0~ tu
f f

Up eu pelO

lemma 10.4.3
<

VoelU.v e Rylu) = pew

Inductive hypothesi
nAuctingpothests v e Y.v € Ry(u) = v =y ¢

semantic of O u ):Ll Dtp

Regarding ¢, notice that $o = —O-op.

Corollary 10.4.5. Let v € U, then for each ¢ € Lp,

Qo €u <= Fv € Ry(u).p € v.

Proof. We have

<>SO cu Truth lemma u }:LI <>(P
semaptic ol O 5, ¢ Ry(u). ¢ € v.

Corollary 10.4.6. Suppose u,v € U, then the following statements hold:

L Ry(u) = N [l
Opcu

2. umyv < u=v (where ~ is the modal equivalence relation on i1).

Proof. (1) For each Kripke-Ultrafilter v € Ry (u) we have

remark 10.4.2
<

v € Ry(u) {peLlp | Opecu} Cu

Truthlemma 1
&L ve ) llel

Opecu

(2) It follows immediately from the Truth lemma.

206
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10.5. Y-Modal model as a Vietoris Model

In this part, we try to prove that g = (Ug, Ry, Fy), the Y-modal model (see definition
9.3.1) induced by the Kripke-Ultrafilter model % = (U, Ry, =), is a Vietoris model. We
check this claim in three steps:

Step 1: Compactness of Ry, i.e.

o Vu € U.Ry(u) is a compact subset of Un.

Step 2: Continuity of Ry, i.e.
e YO C Un.(Ry)(U) is an open subset of Ur, and

open

e VYO C Un.[Ry](U) is an open subset of Un.

open
Step 3: Continuity of =y, i.e.

e Vp c P.|p||*is a clopen subset of Uq.

Compactness of Ry

In the first, we need to prove the following lemma:
Lemma 10.5.1. Ug is a compact space.

Proof. 1t suffices to show that every family of closed subsets in Ug which satisfies the
F.I.P property has a non-empty intersection (see theorem 1.6.4). Each closed subset of
Un is of the form [ [|o||* for some ¥ C Lp (see definition 9.3.1). Hence to show that

peY
Un is compact, we need to prove for every ¥ C Lp if () |l¢||* = 0 then there is a finite
peEX
subset Y9 C ¥ such that [ ||¢|* = 0. So,
P€g
m ||<P”u -0 corollar:y>10.3.3 YE |
pEX
Def " I, C NNk L
finite
corollary 10.3.3 §(
= M el =0
PEX
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Lemma 10.5.2. Assume u € U, then Ry(u) is a compact subset of Un.

Proof. Tt is easy to check that Uy is a Hausdorff space (if u, v € U are two Kripke-
ultrafilters with v # v, then there is a modal formula ¢ € Lp such that ¢ € u and
- € v, consequently u € [l¢|[* and v € ||—p||* and we know that |¢|[* N ||-¢||* # 0).
By lemma 10.5.1, U is a compact Hausdorff space. Since in a compact Hausdorff space
a subset is compact if and only if it is closed (see theorem 1.6.6), it suffices to show that
for each u € U the set Rg(u) is closed in Un. According to part (1) of corollary 10.4.6,
Ry (u) is the intersection of a family of closed subsets of Un. So it is closed. O

Continuity of Ry

Lemma 10.5.3. Given an open subset O of Un. The following statements:

1. (Ry)(O) is an open subset of Un.

2. [Ry](O) is an open subset of Un.

Proof. Suppose O is an open subset of Un, then O = J ||¢||** for some ¥ C Lp.

peY
So:
(Ry)(0) - {uel | Ry(u) N O # 0}
_ {uetd | Ry(w) N (| llell*) # 0}
IS
= {uel|IveRy(u).ve U HSDHM}
peY
= {uelt|3veRy(u).3p €S.ve o'}
Truthzlemma {u cu ’ Ju € Rﬂ(u) ng c . (NS U}
corollag/ 10.4.5 {u cu ’ Elgo ey, <><P e u}
= Ulowl
peEX
and
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10.6. Homomorphism lemmas

[Ry)(O) = {u el | Ry(u) C O}
= {uel|Ru(w) < Jlel*}
peY
lemma _10.5.2 {uel| 3%, ‘g’ Y. Ry(u) C U H@Hu}
finite PESY

_ el |3%g C B.Ry(u)C | \/ |}

finite w0

= fueu |35y € 2.0\ ¢ cu}
finite
SN

= U 1acy el

Yo EPf (E) PpEX

Regarding the trivial open sets U and ), we should check (Ry) (|| T|[*) and (Ry() (|| L||*),

respectively. O

Continuity of =
Lemma 10.5.4. For each p € P, the set ||p||* is a clopen subset of Un.

Proof. Notice that Ug is the set U along with the U/-Modal topology (i.e., the topology
generated by a base which consists of all clopens as ||¢||" = {u € U | u =y ¢} where
¢ € Lp, see definition 9.3.1). Then for each p € P the set ||p|[* is a clopen subset of
Un. O

10.6. Homomorphism lemmas

In the previous subsection we already saw that U = (Ug, Ry, Fy) i.e., the U-Modal
model induced by the Kripke model LI, is a Vietoris model. We will now prove something
rather stronger, namely that 47 is a terminal object in the category of Vietoris models.

Lemma 10.6.1. Let X = (X, Ry, =x) be an arbitrary Vietoris model. Then the map
v : X — Un defined by \x(x) := ||z|| (for each x € X ) is the unique Vietoris homo-
morphism from X to Ug.

Proof. Regarding the continuity of !y, since for every ¢ € Lp the set ||| is a clopen
subset of X (see lemma 9.0.4), !y is continuous. To prove that !y is a Kripke homomor-
phism between the underlying Kripke structures of X and 4, we need to show that the
set

G(lx) ={(z, llz]) | = € X}
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10. Terminal Vietoris model

(i.e., the graph of ly) is a Kripke bisimulation.
1. For each x € X and p € P, we have

zExp = p € |z
= pE|z||nP
by the definition of =y (see, definition 10.4.1)
A ]| = p-

2. It remains to check that for each x € X the following statements hold:

a) Yy € Rx (). [ly[l € Ru([lz[]);
b) Yv € Ry(||z]])- Jy € Rx(z).'x(y) = v;

(a): Suppose y € Ry (z). Then for each modal formula ¥ € Lp such that x = Oy
we have y = 1. So we have {¢ | Ov € ||z||} C ||ly||. Hence by remark 10.4.2,

]| Rec[ly|| and consequently [ly|| € Ryu(l[z]])-

(b): Assume v € Ry(||lz]|). We have to find an element y € Ry(z) such that
lx(y) = |ly|| = v. Let v # ||y|| for each y € Rx(x). Hence for each y € Ry(z),
there is ¢, € Lp such that ¢, € v and y E=x —¢, and then Ry(z) C

U Il=eyll*. Since for any y € Ry (z), the set |-, ||*

yERx ()

is clopen in X

and since Ry (x) is compact, there are y1, ..., yn, € Rx(z) such that Ry(z) C

n
U =y |- So for each y € Rx(z), there exists i < n such that y =x ¢y,
i=1

n
Thus, for every y € Ry (x), we have y =x \/ ~py,. Hence z =x O(
=1

1=

n
Therefore, \/ —~¢,, € v. So there is i < n such that ~¢,, € v. Thisis a

=1
contradiction with ¢,, € v for each i <n.

It remains to show that !y is unique. Suppose g : X — Upg is another Vietoris homo-
morphism from X to 4. It suffices to prove that !y (z) = g(z), for each z € X. Since
Kripke bisimilar elements are modally equivalent, for each modal formula ¢ € Lp we

have

lx(z) Fup = akEx ¢ <= g(x) Fuy

Hence by lemma 10.4.4, for every formula ¢ € Lp we have

p €lx(z) = p € g(2).
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Remark 10.6.2. Let X =(X, Ry, [=x) and Y =(Y, Ry, =y) be two Vietoris models and
let x € X and y € Y. We say that x and y are behaviorally equivalent (in symbols
xVx,yy), if there exists an Vietoris model Z =(Z,~,}=z) and Vietoris homomorphisms
f:X — Zand g:Y — Z such that f(z) = g(y). According to lemma 10.6.1, we can
see that two elements x and y in the Vietoris models X and ) are behaviorally equivalent
iff !x(z) =!y(y). Therefore x and y are behaviorally equivalent iff they are modally
equivalent. This remark is not a new result and has been discussed by Venema, Fontaine
and Bezhanishvili for descriptive models (see [11]), and also by Kurz and Pattinson for
canonical models (see [16]).
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11. Vietoris bisimulation

As it has been shown in example 7.4.12, in the category of Vietoris coalgebras the supre-
mum of a family of A-M bisimulations need not be an A-M bisimulation. As a cosequence,
the largest A-M bisimulation may not exist. Besides, in example 7.5.9, we can see that
A-M bisimilarity is different from modal equivalence and consequently different from be-
havioral equivalence. To overcome these shortcomings of A-M bisimilarity, in this section
we want to study a different concept of bisimilarity between Vietoris models called Vi-
etoris bisimulation. The notion of Vietoris bisimulation was introduced for the first time
by Venema, Fontaine and Bezhanishvili in [1 1], between descriptive models. They proved
that Vietoris bisimilarity coincides with Kripke bisimilarity, with behavioral equivalence
and with modal equivalence, but not with A-M bisimilarity. In this chapter, we try to
check these results for Vietoris structures. Morover, we try to find a connection between
Vietoris homomorphisms and Vietoris bisimulations.

Without loss of generality, in this part we will make use of lemma 9.2.5 and we present
Vietoris models as triples X = (X, Ry, ¥x) where Ry and ¥y are continuous maps from
X to V(X) and P(P), respectively (i.e., Ry : X — V(X) and dx : X — P(X)).

11.1. The concept of Vietoris bisimulation

Definition 11.1.1. (Vietoris bisimulation) Let X = (X, Ry,Vx) and Y = (Y, Ry, Vy)
be Vietoris models and suppose that B C X xY. We say that B is a Vietoris bisimulation
if B is a closed set in the product topology and a Kripke bisimulation of the underlying
Kripke models.

We say that two points x € X and y € Y are Vietoris bisimilar if there is a Vietoris

bisimulation B between Vietoris models X and Y with (x,y) € B. Clearly Vietoris
bisimilar elements are Kripke bisimilar.

11.2. Some properties of Vietoris bisimulations

Lemma 11.2.1. Let X = (X, Rx,Vx) and Y = (Y, Ry, Jy) be Vietoris models.

1. The empty relation ) C X x Y is a Vietoris bisimulation.

2. The converse of a Vietoris bisimulation between X and ) is a Vietoris bisimulation
between ) and X.
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11. Vietoris bisimulation

Proof. Given Vietoris models X = (X, Ry,dx) and Y = (Y, Ry, ¥y).

(1) This is trivial.

(2) Suppose B is a Vietoris bisimulation between Vietoris models X and ). So B
is closed in X x Y and it is a Kripke bisimulation between the underlying Kripke
models. By lemma 6.1.11, B! is also a Kripke bisimulation between the underlying
Kripke models, so it is enough to show that B~! is closed. Due to lemma 1.7.13,
it is clear. O

In general the following statements do not hold:
e The relation composition of two Vietoris bisimulations is a Vietoris bisimulation.
e The diagonal Ax is a Vietoris bisimulation.

To find some evidences for these negative points of the Vietoris bisimulations, we start
from the second one. We can see that for each topological apace X, the diagonal Ax
is closed in X x X iff X is an Hausdorff space (see lemma 1.5.5). The following lemma
shows that in the category of Vietoris models over HTop (the category of Hausdorff
spaces with continuous maps), the diagonal Ay is always a Vietoris bisimulations.

Lemma 11.2.2. Let X = (X, Ry, Vx) be a Vietoris model, then the diagonal Ax is a
Vietoris bisimulation iff X is a Hausdorff space.

Proof. This is concluded immediately from corollary 1.5.5 and lemma 6.1.11. O

Corollary 11.2.3. Let X = (X, Rx,9x) be a Vietoris model in which X is a compact
Hausdorff space. Then the diagonal Ax is a Vietoris bisimulation.

To show that in general the relation composition of two Vietoris bisimulations need not
be a Vietoris bisimulation, in the next example we show that the composition of two
closed relations between non-compact spaces need not be closed.

Example 11.2.4. Consider the set of real numbers R with the standard topology and
the set of natural numbers Nt with the discrete topology. Define a : R — V(R)
as a(z) = {x}.The structure « is continuous. Also define 8 : NT — V(N*) by
B(n) := {n}. The structure B is continuous, too. Then X := (R,a) and Y := (N, 5)
are Vietoris frames. Let R = {(1,n) | n € N*} be a binary relation between R and
NT. Define v: R — V(R) as v(z,y) := (a(z),8(y)) for each (z,y) € R. It is easy to
see that (R,~) is a Kripke bisimulation between corresponding underlying Kriple frames
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to X and ). From example 1.7.14, we know that the binary relation R is closed in
R x NT. Hence R is a Vietoris bisimulation between X and )). Then by lemma 11.2.1,
R~ is a Vietoris bisimulation between ) and X. Now, consider the relation composition
RoR™ ' ={(1,1) | n e NT}. By example 1.7.14, Ro R™! is not a closed subset of
R x R and consequently it is not a Vietoris bisimulation.

The next lemma shows that in the category of Vietoris models over compact spaces
the compositions of two Vietoris bisimulations is also a Vietoris bisimulation.

Lemma 11.2.5. Let X = (X, R/\/,ﬁ/y), y = (Y, Ry,??y) and Z = (Z7 Rg,ﬁz) be Vi-
etoris models such that X, Y and Z are compact spaces. If Ry and Ry are Vietoris
bistmulations between Vietoris models X and Y and Vietoris models Y and Z, respec-

tively, then their relation composition Ry o Ry is also a Vietoris bisimulation between X
and Z.

Proof. We know that Ry o Ry is a Kripke bisimulation between the underlying Kripke
models of X and Z. Also, by lemma 1.7.15, Ry o Ro is a closed subset of X x Z.
O

Corollary 11.2.6. Let X = (X,Rx,ﬁ)(), y = (}/,Ry,l?y) and Z = (Z,Rz,ﬁz) be
Vietoris models such that X, Y and Z are compact Hausdorff spaces. If R1 and Ry
are Vietoris bisimulations between Vietoris models X and Y and Vietoris models Y and

Z, respectively, then their relation composition R o Ry is also a Vietoris bisimulation
between X and Z.

11.3. Vietoris bisimulations and Vietoris homomorphisms

Our plan in this part is to find some characterizations of Vietoris homomorphisms and
Vietoris bisimulations. In order to achieve this goal we generalize definition 6.1.16 and
also we prove lemma 6.1.19 (originally stated by Rutten in [62] for Kripke models) for
Vietoris homomorphisms and Vietoris bisimulations between Vietoris models over com-
pact Hausdorff spaces (see theorems 11.3.1 and 11.3.2).

Theorem 11.3.1. (Characteristic Theorem for Vietoris homomorphism) Let
X = (X,Rx,0x) and Y = (Y, Ry, Vy) be Vietoris models in which the underlying spaces
X and Y are compact Hausdorff spaces. Then a map f: X — Y is a Vietoris homo-
morphism between Vietoris models X and Y if and only if its graph

G(f) = Az, f(x)) | z € X}

1s a Vietoris bistmulation between Vietoris models X and ).
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11. Vietoris bisimulation

Proof. Indeed

f is a Vietoris homomorphism
definition 9.1.1
<~

f is continuous and a Kripke homomorphism between the underlying Kripke models
corollary 1.6.10 and definition 6.1.16
<~

G(f) is closed and a Kripke bisimulation between the underlying Kripke models
definitjon 11.1.1

G(f) is a Vietoris bisimulation

Notice that the conditions "being Hausdorff” and "compactness” for the space Y play the
key roles to prove theorem 11.3.1. For more details see remarks 1.5.4 and 1.6.9.

Theorem 11.3.2. (Canonical Vietoris bisimulation Theorem) Let X = (X, R,Vx),
Y=(Y,5,9y) and Z = (Y, T,9z) be Vietoris models such that X, Y and Z are compact
Hausdorff spaces. If px : Z — X and ¢y : Z — Y are Vietoris homomorphisms,
then,

(ox, ov)Z] = {(px(2),0v(2)) | 2 € Z}

is a Vietoris bisimulation between X and Y, and each Vietoris bisimulation is of this
shape.

Proof. 1t is easy to see that (px, py)[Z] = G(px) 1oG(py). By theorem 11.3.1, G(py)
and G(pyx) are Vietoris bisimulations, and by parts (2) of lemma 11.2.1, G(px)~! is
a Vietoris bisimulation too. Now, due to corollary 11.2.6, (¢x,¢y)[Z] is a Vietoris
bisimulation between X and ). O

Theorem 11.3.2 does not hold if we omit the condition "compactness of the spaces X
and Y” from our assumptions. By giving an example, we make this issue more clear.
Consider the Vietoris frames X := (R,a) and ) := (N1, 3) defined in example 11.2.4.
It is easy to see that the function f : N* — R defined by f(n) := 1 is a Vietoris
homomorphism. According to theorem 11.3.1 G(f) = {(%,n) | n € NT} is a Vietoris
bisimulation between X and ). Then by parts (2) of lemma 11.2.1, G(f)~! is a Vietoris
bisimulation between J and X. Notice that G(f)™' o G(f) = {(%,2) | n € N*} is not
a closed relation and consequently it is not Vietoris bisimulation.
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11.4. From Kripke bisimulation to Vietoris bisimulation

The aim of this section is to find a stronger connection between two types of bisimulations
in the category of Vietoris structures. In order to achieve this goal, in theorem 11.4.4
we will prove that for every two Vietoris models, the closure of each Kripke bisimulation
between the underlying Kripke models is a Vietoris bisimulation. This claim originally
dates back to an article by Venema, Fontaine and Bezhanishvili, see [11]. They prove
this claim as a theorem for the category of descriptive models, and as a corollary of
this theorem they have shown that the largest Vietoris bisimulation (with respect to the
inclusion of subsets) between two descriptive models exists and it is the closure of the
largest Kripke bisimulation between the underlying Kripke models.

Our givens in theorem 11.4.4 are two Vietoris models X =(X, Ry,9x) and Y =(Y, Ry, Jy),
a Kripke bisimulation B between underlying Kripke models, and a pair (z,y) in B (the
topological closure of B with respect to the product topology on X x Y). We need to
prove that for each a € Ry (z), there is an element b € Ry(y) such that (a,b) € B. What
we want to do here is to find a net 7 := (a;,b;) es in B which converges to (a,b). The
key tools used here are topological concepts stated in theorem 1.7.12.

We will find the net 7 in two steps which are proven as two auxiliary lemmas 11.4.1 and
11.4.3, respectively.

To start, let X be a topological space, then:

Lemma 11.4.1. Given a net k : T — V(X) converging to K € V(X) and a € K.
Then there are a directed set D (see definition 1.7.1), a converging map ¢ : D — T (see
definition 1.7.3) and a net 7 : D — X (see definition 1.7.5) such that 7(d) € (ko ¢)(d)
foralld e D and limT = a.

Proof. The set D = {(i,U) | i € Z,U € No(a), k(i) € (U)} with an order defined
as (1,U) < (4,V) : <= 1 < j AU DV is directed. Indeed, if (i,U) and (j,V) are
elements in D, we can choose first W C U NV and then A € Z such that A > ¢, A > j
and k(\) € (W). So (,U) < (A, W) and (4,V) < (A\,W). Define a map ¢ : D — 7 as
©(4,U) :=i. Then ¢ is monotone and cofinal in Z, hence ko ¢ : D — V(X)) is a subnet
of k and therefore converges to K.

In the next step, by the axiom of choice, we are able to find a map 7: D — X such that
7(i,U) € (ko) (i,U)NU, for each (i,U) € D. So 7(i,U) € k(i)NU, for each (i,U) € D.
We should show that the net 7: D — X converges to a. Given any V' € Mp(a), we have
ac€VNK,so KNV #{, which means that K € (V). Since x converges to K we have

YV € No(a).Jiy € Z.Yi > iy.k(i) € (V) (11.4.1)

Then for each V' € 9Mp(a), there is an element iy € Z such that (iy, V) € D. For each
(t, W) > (iy,V) we have i > iy and W C V., and so 7(i, W) € k(i) "W C V. This
asserts that 7 converges to a. O
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Corollary 11.4.2. Suppose that o : X — V(X) is a continuous function. Given a net
kI — X which converges to x € X. For each a € a(x), then there erists a subnet
o0:D — X of k and elements aq € a(o(d)) for all d € D, such that o — x and aq — a.

Lemma 11.4.3. Given a net k: I — V(X) converging to K and a net 7: I — X such
that 7(1) € k(i) for all i € I. Then there is a subnet o : D — X of 7 with o — a € K
for some a € K.

Proof. 1t is enough to show that 7 : I — X has an accumulation point in K. For each
x € K such that z is not an accumulation point of 7 : I — X, there exists an open
neighborhood U, of = and i, € I such Vi > i,.7(i) ¢ U,. Assuming that no x € K
is an accumulation point, the collection of all U,, with x € K yields an open cover for
the compact set K. Let Uy,,...,U,, be a finite subcover and U := U?Zl Ug,. Choose
iU > igyy - iz, then for every ¢ > iy we have 7(i) € U 2 K.

On the other hand, K C U, i.e. K € [U]. Since K — K, we have that eventually
k(i) C U, from which it follows that eventually 7(i) € U. So there is d € I such that
Vi > d.7(1) € U. For i > iy, d we have the contradiction 7(i) € U and 7(i) € U. O

Theorem 11.4.4. Suppose X =(X, Rx,x) and Y =(Y, Ry,Jy) are Vietoris models.
If B is a Kripke-Bisimulation between underlying Kripke models, then its closure B is a
Vietoris bisimulation.

Proof. Assume B C X x Y is a bisimulation. Since B is closed, it suffices to show that
B is a Kripke bisimulation, too. Given (z,y) € B. By part (3) in theorem 1.7.12, there
exists a net (z;,y;)ics converging to (z,y) with (x;,y;) € B for each ¢ € I. It follows that
(x;)ier converges to x and (y;);er converges to y. We need to check the following three
steps:

L dx(x) = 9y(y);
2. Ya € Rx(x).3b € Ry(y). (a,b) € B;

3. Vb € Ry(y).3a € Rx(x). (a,b) € B;

Step 1: Since Jx : X — P(P) and ¥y : Y — P(P) are continuous, (Vx(z;))ier
converges to Yy (x) in P(P) and likewise (Uy(y;))icr converges to vy(y) in
P(P). As (x;,y;) € B for each i € I, we have 9x(x;) = Vy(y;) for every i € I.
Then by uniqueness of limit in the Hausdorff space P(P), it is concluded that
D(z) = Dy (y).

Step 2: Since Ry : X — V(X) and Ry : Y — V(Y) are continuous, (Rx(z;))ier
converges to Ry (x) in V(X) and likewise (Ry(y;))icr converges to Ry(y) in
V(Y). Now by lemma 11.4.1 we can find a converging map ¢ : D — Z and a
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net 7: D — X such that 7(d) € (Rx(7y(q)))aep for all d € D and lim 7 = a.
Since ¢ is converging, we also have that the subnet (x,(q))dsep converges to
x and the subnet (y,(q))aep converges to y.

Now just concentrating on the mentioned subnets, forgetting the ¢, we can state that we
have

1. anet (x;)jcs converging to x

2. anet (y;);jes converging to y

3. each (z;,y;) € B

4. anet (a;)jes with a; € Ry (zx;) converging to a
5. the net (Ry(y;))jes converging to Ry(y).

From 3 and 4, for each j € J we find b; € Ry(y;) such that (a;,b;) € B. With 5 and
lemma 11.4.3, we find a subnet (b,(;))jes of (bj)jes converging to some b € Ry(y). Also

(CLT(j))je{ converges to a, hence (a,(;),br(j))jes converges to (a,b) which proves that

(a,b) € B.
Step 3: It will be proven by a symmetric argument.

O

Corollary 11.4.5. In the category of Vietoris models, Kripke bisimilar elements are
Vietoris bisimailar.

Proof. Let X = (X, Rx,¥x) and Y = (Y, Ry,Jy) be Vietoris models and = € X and
y € Y Kripke bisimilar elements. Then there is a Kripke bisimulation B between the
underlying Kripke models with (x,y) € B and so (z,y) € B. By lemma 11.4.4, B is a
Vietoris bisimulation, so x € X and y € Y are Vietoris bisimilar. ]

11.5. Hennessy-milner property for the Vietoris models

Let X = (X,Rxy,9x) and Y = (Y, Ry,vy) be Vietoris models. Then the following
lemmas hold:

Lemma 11.5.1. The modal equivalence relation ~C X X Y between X and ), is a
Kripke bisimulation between the underlying Kripke models.

Proof. According to theorem 9.3.5, the underlying Kripke models of X and ), are com-
pact. Then from Compact Hennessy-Milner theorem (see 6.2.10), we have that =~ C X xY
is a Kripke bisimulation between the underlying Kripke models. O
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Corollary 11.5.2. (Vietoris Hennessy-Milner theorem) The modal equivalence
relation ~ C X x Y is a Vietoris bisimulation between X and ).

Proof. According to lemmas 11.5.1 and 7.5.7, this claim holds. O

Corollary 11.5.3. The modal equivalence relation ~C X X Y 14s the largest Vietoris
bisimulation between X and Y with respect to the inclusion of subsets.

Proof. According to the Vietoris Hennessy-Milner theorem, = is a Vietoris bisimulation
between X and ). Now, Suppose B is a Vietoris bisimulation between Vietoris models
X and ), then B is a Kripke bisimulation between the underlying Kripke structures.
Since the underlying Kripke structures are compact structures (theorem 9.3.5), ~ is the
largest Kripke bisimulation (corollary 6.2.11), and then we have B Cs. O

Corollary 11.5.4. Vietoris bisimilar elements are modally equivalent elements.

We finish this section by stating that the notions of Vietoris bisimilarity, Kripke bisimi-
larity, behavioral equivalence, modal equivalence, all coincide.

Theorem 11.5.5. Let x and y be elements in the Vietoris models X and ), respectively.
Then the following are equivalent:

1. z and y are behaviorally equivalent
2. x and y are Kripke bisimilar
3. x and y are Vietoris bisimilar

4. z and y are modally equivalent

Proof. The equivalence 1 <= 4 is concluded by remark 10.6.2. The implication 4 <= 3
follows from corollaries 11.5.2 and 11.5.4. The equivalence 2 <= 3 will be obtained by
definition of the vietoris bisimulations and corollary 11.4.5. O
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Conclusion and future direction of
research

In this thesis we tried to show that, besides Set, the category Top forms an interesting
base category for coalgebras.

We introduced some endofunctors on Top, in particular, the Vietoris functor V and
the P-Vietoris functor Vp (where P is a set of propositional letters) that can be con-
sidered as the topological versions of the powerset functor P and the Kripke functor
Pp, respectively. We proved that these two functors preserve monos and regular monos.
However, there are Top-endofunctors that do not preserve monos and regular monos.
As an example, we mentioned the path functor Ily. It was also shown that the Vietoris
functor V does not preserve products. We think, it will also be interesting to investigate
whether the Vietoris functor preserves closed embedding.

Besides, by considering three inequivalent topologies on the two elements set 2 := {0, 1},
we defined four topological versions of the neighbourhood functor 227 on Set. Now, an
open question for future research is whether the clopen neighbourhood functor preserves
monos and regular monos. We also like to know whether this functor preserves products.
One can pose these questions for other Top-endofunctors studied here.

By introducing the notions of extension (up to isomorphism) and lifting (up to iso-
morphism) of functors, we exhibited relationships between Set-endofunctors and Top-
endofunctors. We showed that a Top-endofunctor F is a lifting of a Set-endofunctor T
up to isomorphism if and only if F' preserves monos and epis. We gave a strategy to lift a
special class of Set-endofunctors to the category Top. As an application, we obtained a
Top-endofunctor T as a lifting of the Set-endofunctor T := (—)2—(—) + 1 that helped us
to provide some counterexamples required in this work. Besides, we studied a strategy
to extend the powerset functor P and the finite powerset functor P, to CUM!. Now,
it would be worthwhile to investigate what connections are between limits in Topr and
limits in Setp, where F is an extension (up to isomorphism) or a lifting (up to isomor-
phism) of the Set-endofunctor T to Top. For some related work, see Balan et. al. [9]
and Worrel [71].

In order to give a motivation to study coalgebras over Top, in particular Vietoris coal-
gebras, we introduced the notion of compact Kripke structure and we found that in the
class of compact Kripke structures, the notions of behavioral equivalence, modal equiv-
alence and Kripke bisimilarity all coincide. Our definition of compact Kripke structure
coincides with the notion of modally saturated structures introduced in Fine [27].
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We further contributed to the theory of coalgebras over the category of topological spaces
by discussing some basic definitions, examples and theorems for coalgebras over a base
category C with the same properties as the category Top. We used the categories Set
and Top as base categories in our examples. The concept of union of M-subcoalgebras
was described and it was shown that the union of a family of M-subcoalgebras need not
be an M-subcoalgebra. As one of our main results in this step, we proved that if the
base category C is M-well powered with sums then the preservations of M-morphisms
by a C-endofunctor F' gives rise to the existence of equalizers in Cp. In that case, we
constructed the equalizers of two morphisms f, g in Cg via union of a special family of
M-subcoalgebras of their domains. As an example, we mentioned that if we consider
Top as an (epi, regular mono)-category then the equalizers of parallel morphisms in the
categories T'opy and Topy, exist. Thus a natural question for future work is whether
the categories Topy and Topy, have products. It will also be interesting to investigate
whether these categories are complete. For some related work, see Hofmann [12].

Based on the notion of A-M bisimulation known by Aczel and Mendler in [2], we define
a concept of the largest A-M bisimulation, and by giving an example from Venema et.
al. [11], it was shown that the largest A-M bisimulation need not always exist. Two
strategies were proposed to answer the questions of when does the largest A-M bisim-
ulation between two coalgebras exist and how we can find it. As an application of the
second strategy, we obtain a way to check whether a C-endofunctor F weakly preserves
pullbacks or not. In this way, we found that the Vietoris functor on T'op does not weakly
preserve pullbacks. We briefly generalized the notion of modal logic for coalgebras over
Top by defining a language for a Top-endofunctor F' via a modal similarity type A for
F'| that is a set of clopen subsets of F'(2) where 2 := {0,1} is a discrete space.

In order to study terminal objects in the categories of coalgebras over other base cate-
gories than Set, we discussed the existence and the construction of terminal objects in
the categories of coalgebras for the C-endofunctors D x (—) (black-boxes) and D x (—)*
(automata) where C is a category with object D and products. We proved that if ¥ is
a set and X* is the set of all finite words over ¥, then in any category C with object D
and product, a terminal coalgebra for the functor D x (—)* exists, and it is based on
D" (¥*-fold product of D in C).

Finally, in order to provide an interesting example of coalgebras over the category Top, we
introduced the notion of Vietoris structures as a generalization of the notion of descrip-
tive structures defined in [11]. We saw that Vietoris frames and models are respectively
coalgebras for the functors V and Vp over the category Top. It was proven that each
compact Kripke model X=(X, Ry, Ex) together with X-modal topology over X can be
seen as a Vietoris model and consequently it is a Vp-coalgebra. This yields an adjunc-
tion between the categories V.S (category of Vietoris structure) and CK.S (category of
compact Kripke structures). Now, two interesting questions for future research are then
how to generalize the notion of compactness of a Kripke structure to a coalgebra (X, «)
in Setr with respect to the given logic for T-coalgebras in Gumm [37], and under what
conditions on the Set-endofunctor 7" we can guarantee that each coalgebra (X, «) in Setr
is compact. Another question that would be worthwhile to investigate is whether each
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11.5. Hennessy-milner property for the Vietoris models

compact T-coalgebra in Setp can be modified to a coalgebra on the category Top, i.e.
whether we can find a Top-endofunctor F' such that each compact T-coalgebra (X, «)
together with a special topology on X is a coalgebra for the Top-endofunctor F'.
Looking to find a terminal object in the category of Vietoris models, we defined the no-
tion of a Kripke-ultrafilter on Lp (the set of modal formulas over P). By using Kripke-
Ultrafilter lemma and Truth lemma it was proven that g = (Ug, Ry, F=u) (the U-Modal
model induced by the Kripke-Ultrafilter model &l = (U, Ry, =y ) given in definition 10.4.1)
is a Vietoris model. We argued that Y5 is a terminal object in the category of Vietoris
models.

As has been shown in example 7.4.12, in the category of Vietoris-coalgebras the supre-
mum of a family of A-M bisimulations need not be an A-M bisimulation. As a con-
sequence, the largest A-M bisimulation need not exist. Besides, in example 7.5.9, we
saw that A-M bisimilarity is different from modal equivalence and consequently different
from behavioral equivalence. To overcome these shortcomings of A-M bisimilarity, we
studied a different concept of bisimilarity between Vietoris models called Vietoris bisim-
ulation. It was explained that the class of Vietoris models with the notion of Vietoris
bisimulation provides a complete semantic for modal logic in the sense that Vietoris
bisimilarity, behavioral equivalence, modal equivalence, all coincide. Moreover, we gave
some characterizations of Vietoris homomorphisms and Vietoris bisimulations between
Vietoris models over compact Hausdorff spaces. As one of our main results in this work,
we proved that the closure of a Kripke bisimulation between underlying Kripke models
of two Vietoris models is a Vietoris bisimulation.

Now, a general task for future work is to investigate the open questions mentioned in [11]
that unfortunately, largely remained unanswered in this thesis. In particular, it would
be interesting to understand the relation between bisimulation for other functor pairs
than Vietoris and powerset. One starting point for such an investigation is with the
work of Enqvist et. al. [23] on bisimulations for coalgebras over the category of Stone
spaces. In that paper the authors associated to each Set-endofunctor T' a Stone com-
panion T : Stone —» Stone, by making use of the Moss-style V-modality mentioned
in [55]. They introduced a notion of bisimulation, called neighbourhood bisimulation,
between coalgebras for the endofunctor T over Stone. They showed that neighbourhood
bisimilarity coincides with behavioral equivalence and modal equivalence. We think it is
also interesting to check our results for two functors F' : Top — Top and T : Set— Set
that are related by a natural transformation n : UF — TU (where U is the forgetful
functor from Top to Set). We would like to introduce a notion of bisimulation, namely
F-bisimulation, between F-coalgebras on Top, and show that the topological closure
of an A-M bisimulation between two T-coalgebras in Setr is always an F-bisimulation.

223






Reference

1]

2]

3]

[4]

[5]

[6]

7]

8]

9]

[10]

[11]

S. Abramsky. A cook’s tour of the finitary non-well-founded sets. In S. Artemov et
alii, editor, We Will Show Them: Essays in honour of Dov Gabbay, vol. 1, pages 1-18.
College Publications (2005) (this is basically a paper version of an invited talk given
at the 1988 British Colloquium on Theoretical Computer Science in Edinburgh).
199

P. Aczel and N. Mendler. A final coalgebra theorem. In D. H. Pitt et al, editor,
Category Theory and Computer Science, Springer, LNCS 389 (1989) 357-365. 5, 8,
13, 15, 82, 138, 222

J. Adamek, H. Herrlich and G. E. Strecker. Abstract and Concrete Categories:
The Joy of Cats. Online Edition (2004). Available at: http://katmat.math.uni-
bremen.de/acc/acc.pdf. 13, 14, 47, 50, 51, 52, 53, 55, 56, 57, 58, 61, 64, 66, 67,
68, 69, 70, 71, 72, 77, 78, 81, 82, 83, 85, 86, 88, 90

J. Adamek and V. Trnkovi. Automata and Algebra in Categories. Mathematics and
its Applications, Springer Netherlands, Band 37 (1990). 47

J. Addmek, H. P. Gumm and V. Trnkova. Presentation of Set functors: A coalgebra
perspective. Journal of Logic and Computation, 20 (5) (2010) 991-1015. 47

C. Areces and R. I. Goldblatt, editor. Advances in Modal Logic 7, papers from
the seventh conference on "Advances in Modal Logic,” held in Nancy (France) in
September 2008. College Publications (2008). 127

S. Awodey. Category Theory. Oxford University Press, second edition (2010). 47,
48, 73, 75

J. Barwise and L. Moss. Vicious Circles. Center for the Study of Language and
Information, Stanford University (1996). 13

A. Balan and A.Kurz. Finitary Functors: From Set to Preord and Poset. Algebra
and Coalgebra in Computer Science, Springer, LNCS 6859 (2011) 85-99. 5, 7, 107,
221

M. Barr. Terminal coalgebras in well-founded set theory. Theoretical Computer Sci-
ence, Elsevier, 114 (1993) 299-315. 41, 93, 104, 105

N. Bezhanishvili, G. Fontaine and Y.Venema. Vietoris bisimulation, Journal of Logic
and Computation, 20 (5) ( 2010) 1017-1040. 6, 8, 13, 14, 15, 16, 95, 165, 178, 189,
199, 211, 213, 217, 222, 223

225


http://katmat.math.uni-bremen.de/acc/acc.pdf
http://katmat.math.uni-bremen.de/acc/acc.pdf

REFERENCE

[12]

226

L. Birkedal, K. Stgvring and J. Thamsborg. The category-theoretic solution of recur-
sive metric-space equations. Theoretical Computer Science, 411 (2010) 4102-4122.
41, 57,75, 115

P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge Tracts in
Theoretical Computer Science, Cambridge University Press, 53 (2001). 204

P. Blackburn, J. Van Benthem and F. Wolter. Hand book of Modal Logic. Studies
in Logic And Practical Reasoning, Elsevier, First edition, Volume 3 (2007). 204

M. Bonsangue, J. Rutten and A. Silva. An algebra for Kripke polynomial coalgebras.
24th Annual IEEE Symposium on Logic in Computer Science (2009) 49-58. 82

F. Borceux. Handbook of categorical algebra. Cambridge University Press (1994).
76

H. Bourlés. On the closed graph theorem and the open mapping theorem. Available
at: https://arxiv.org/abs/1411.5500. 30

J. Brazas. The topological fundamental group and free topological groups. Topology
Appl. 158 (2011) 779-802. 98

B. F. Chellas. Modal logic: an introduction. Cambridge University Press (1980). 204

C. Cirstea, A. Kurz, D. Pattinson, L. Schroder and Y. Venema. Modal Logics are
coalgebraic. The Computer Journal, 54 (2011) 31-41. 174

S. P. Crampe and P. Ribenboim. Ultrametric spaces and logic programming. Journal
of Logic Programming, 42 (2000) 59-70. 19, 44

S. P. Crampe and P. Ribenboim. Generalized ultrametric spaces 1. Abh. Math. Sem.
Uni. Hamburg, 66 (1996) 55-73. 19, 44

S. Engvist and S. Sourabh. Generalized Vietoris Bisimulations. Available at:
https://arxiv.org/abs/1412.4586. 223

L. Esakia. Topological Kripke models. Soviet Mathematics Doklady, 15 (1974) 147-
151. 13, 189

R. V. Fuller. Relations among continuous and various non-continuous functions.
Pacific journal of mathematics, 25 (3) (1968), 494-509. 27

K. Fine. Normal forms in modal logic. Notre Dame Journal of Formal Logic, 16 (2)
(1975) 229-237. 127

K. Fine. Some connections between elementary and modal logic. In S. Kanger, edi-
tor, Proceedings of the Third Scandinavian Logic Symposium, pages 15-31, North-
Holland (1975). 5, 7, 127, 133, 221


https://arxiv.org/abs/1411.5500
https://arxiv.org/abs/1412.4586

[28]

[29]

[36]

[37]

[38]

REFERENCE

R. Goldblatt. Saturation and the Hennessy-Milner property. In Ponse et al. [58],
pages 107-129. 127, 133, 136

R. I. Goldblatt and S.K. Thomason. Axiomatic classes in propositional modal logic.
In J. Crossley, editor, Algebra and Logic, Lecture Notes in Mathematics, Springer-
Verlag, 450 (1974) 163-173. 127, 133

H. P. Gumm. Elements of the general theory of coalgebras. LUATCS 99, Rand
Afrikaans University, Johannesburg, South Africa (1999). 13, 47, 54, 80, 127, 141

H. P. Gumm. Universelle Coalgebra. In Th. Ihringer: Allgemeine Algebra. Berliner
Studienreihe zur Mathematik, Band 10, Heldermann Verlag, Berlin (2003). 5, 7, 13,
70, 82, 83, 141, 148, 161, 170

H. P. Gumm. Functors for coalgebras, Algebra Universalis, 45 (2001) 135-147. 141

H. P. Gumm and T. Schroder. Coalgebraic structure from weak limit preserving
functors. Electronic Notes in Theoretical Computer Science, 33 (2000) 113-133. 5,
7, 141

H. P. Gumm and T. Schrider. Types and coalgebraic structure. Algebra Universalis,
53 (2005) 229-252. 141

H. P. Gumm and T. Schriéder. Products of coalgebras. Algebra Universalis, 46
(2001), 163 - 185. 152, 181

H. P. Gumm and T. Schréder. Coalgebras of boundedtype. Mathematical Structures
in Computer Science, 12 (2002) 565-578. 141

H. P. Gumm. Universal coalgebras and their logics. AJSE-Mathematics, 1 (2009)
105-130. 127, 132, 174, 222

H. P. Gumm. State base systems are coalgebras. Cubo - Matematica Educational,
5 (2) (2003) 239-262. 13, 127

H. P. Gumm. Personal communication, Philipps University, Marburg, Germany
(2018). 131, 133, 134, 135, 177, 181

V. Goranko and M. Otto. Model theory of modal logic. In: P. Blackburn et al. (eds.)
Handbook of Modal Logic. Elsevier, Amsterdam (2006). 133, 134, 136

M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency.
Journal of the Association for Computing Machinery (1985). 127, 131, 132

D. Hofmann, R. Neves and P. Nora. Limits in categories of Vietoris coalgebras.
Mathematical structures in computer science, 29 (2019) 552-587. 5, 7, 14, 222

M. J. Hollenberg. Hennessy-Milner classes and process algebra, In Ponse et al. [58],
pages 187-216. 127, 133

227



REFERENCE

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

228

B. Jacobs and J. Rutten. A tutorial on (Co)algebras and (Co)induction. EATCS
Bulletin, 62 (1997) 222-259. 141

A. Kurz. Logics for coalgebra and applications to computer science. PhD thesis,
Ludwig Maximilians University of Munchen (2000). 13, 161, 168, 169, 181

A. Kurz and D. Pattinson. Coalgebraic modal logic of finite rank. Mathematical
Structures in Computer Science, 15 (2005) 453-473. 13, 211

C. Kupke, A. Kurz, and Y. Venema. Stone coalgebras. Theoretical Computer Sci-
ence, 327 (1-2) (2004) 109 — 134. 14, 95

C. Kupke, D. Pattinson. Coalgebraic semantics of modal logics: An overview. The-
oretical Computer Science, Elsevier, 412 (2011) 5070-5094. 174

J. L. Kelley. General topology. Springer-Verlag, New York (1991). 19, 20, 22, 31,
32, 33, 34

X. Liu. Semantic foundation of the tagged signal model. PhD thesis, University of
California at Berkeley (2005). 41, 115

V. A. Lemin. Finite ultrametric spaces and computer science, Categorical perspec-
tives, Trends in Mathematics, (2001) 219-241. 115

A. J. Lemin. Spectral decomposition of ultrametric spaces and topos theory. Topol-
ogy Proceedings, 26 (2001-2002) 721-739. 44

S. Mac Lane. Categories for the Working Mathematician. Springer-Verlag, Second
edition (1991). 47

J. P. Mavoungou and C. Nkuimi-Jugnia. More existence theorems for limits in the
category of coalgebras of an endofunctor. Unpublished (1991). 47, 73, 149, 164

L. Moss. Coalgebraic logic. Annals of Pure and Applied Logic, 96 (1999) 277-317.
13, 223

J. R. Munkres. Topology: a first course. Prentice-Hall, Inc., Englewood Cliffs, N.J.,
(1975). 19, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 38, 39, 40

D. Pattinson. Coalgebraic modal logic: soundness, completeness and decidability of
local consequence. Theoretical Computer Science, 309(2-3) (2003) 177-193. 13, 174

A. Ponse, M. de Rijke, and Y. Venema. editors. Modal Logic and Process Algebra.
A Bisimulation Perspective. Stanford University, CSLI Publications, 53 (1995). 227

P. Ribenboim. The new theory of ultrametric spaces. Periodica Math, Hung, 66
(1996) 55-73. 19, 44



[60]

[61]

[62]

[63]

[64]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

REFERENCE

L. Ribes and P. Zalesskii. Profinite Groups. Ergebnisse der Mathematik und ihrer
Grenzgebiete, 3. Folge / A Series of Modern Surveys in Mathematics, Springer,
Berlin, Heidelberg, 40 (2010). 62

M. de Rijke. Extending Modal Logic. PhD thesis, ILLC, University of Amsterdam
(1993). 204

J. J. M. M. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer
Science, Elsevier, 249 (2000), 3-80. 5, 7, 13, 15, 127, 130, 133, 141, 143, 144, 152,
161, 181, 215

J. J. M. M. Rutten. Elements of generalized ultrametric domain theory. Theoretical
Computer Science, 170 (1-2) (1996), 349-381. 57, 115

L. Schréder. Expressivity of coalgebraic modal logic: The limits and beyond. Theo-
retical Computer Science, Elsevier, 390 (2008) 230-247. 174, 177

L. Schréder and T. Mossakowski. Coalgebraic Modal Logic in CoCASL. In: José
Luiz Fiadeiro (Ed.), Recent Trends in Algebraic Development Techniques, WADT
2006, Lecture Notes in Computer Science, Springer, 4409 (2007) 128-142. 174, 177

L. Schroder and D. Pattinson. Coalgebraic Correspondence Theory. In: ong, L. (ed.),
FOSSACS 2010, Lecture Notes in Computer Science, Springer, 6014 (2010) 328-342.
174

M. B. Smyth. Topology. In: S. Abramsky, D. Gabbay, T.S.E. Maibaum (Eds.),
Handbook of Logic in Computer Science, Oxford University Press, 1 (1992) 641-
751. 44, 75, 115

Y. Venema. Algebras and coalgebras. In P. Blackburn, J. van Benthem, and F.
Wolter, editors, Handbook of Modal Logic, Studies in Logic and Practical Reasoning,
Elsevier, 3 (2006) 331-426. 141

Y. Venema and J. Vosmaer. Modal logic and Vietoris Functor, in 'Leo Esakia on
Duality in Modal and Intuitionistic Logics’, Springer Netherlands, 4 (2014) 119-153.
95

I. D. Viglizzo. Coalgebras on measurable spaces. PhD thesis, Department of Math-
ematics, Indiana University (2005). 14

J. B. Worrell. On the final sequence of a finitary set functor. Theoretical Computer
Science, Elsevier, 338 (2005) 184-199. 115, 221

J. B. Worrell. On coalgebras and final semantics. PhD thesis, University of Oxford
(2000). 115

E. N. Zalta. Basic Concepts in Modal Logic. Center for the Study
of Language and Information, Stanford University (1995). Available at:
http://mally.stanford.edu/notes.pdf. 200, 202

229


http://mally.stanford.edu/notes.pdf




List of symbols

Set theory

xRy

r —RY

set of natural numbers with 0

set of real numbers

closed interval in R, i.e. [a,b] :={z €R | a <z <b}

open interval in R, i.e. (a,b):={z €R | a <z <b}

half open interval in R, i.e. [a,0):={zx € R | a < x < b}

equivalence class of z modulo 0, i.e. [z]g :={y | (z,y) € 0}

factor projection map X — X/o defined by my(x) := [z]p

diagonal of X, ie., Ax :={(z,z) | v € X}

complement of a subset A C X in X, ie, A“=X—-A={z € X | x ¢ A}

intersection of the sets {X;}ier, ie. X :={z | Vie .z € X;}

el
union of the sets {X;}ier, ie. UX;:={z | Jiel.ze X;}
el
disjoint union of the sets {X;}ier, ie. WX, := J{(i,2) | z € Xi}
i€l i€l

image of O under f,i.e., f(O):={y€Y | Iz € O. f(z) =y}
preimage of V under f,ie., f~Y(V):={z € X | f(z) € V}
graph of a function f, ie., G(f) == {(z, f(z)) | z € X}
image of f,ie.,imf:={yeY | Jx € X. f(x) =y}

kernel of £, i.e., ker f:={(z,2') € X x X | f(z) = f(2)}

relation composition, i.e.

RoS:={(z,z) e X xZ | yeY.(z,y) € R A (y,2) € S}
pair (x,y) is an element in the binary ralation R

ie. xRy
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List of symbols

Topology theory

By(x)
RUED
No(x)
™

Qs

Ve

A

Xp

X

open ball of radius » > 0 around x, definition 1.8.1

set of all neighborhoods of an element € X, definition 1.1.2

set of all open neighborhoods of an element z € X, definition 1.1.2
X-modal topology, definition 9.3.1

quotient topology induced by f, example 1.4.7

interior of a subset A C X, definition 1.1.2

closure of a subset A C X, definition 1.1.2

set X with the discrete topology, definition 1.1.1

set X with the indiscrete topology, definition 1.1.1

Category theory

Cop
Cr
CHTop

CKS

CUM

CUM?!

EC
KS
Poset
Preord
Set
Stone

Top

232

dual category, definition 2.1.8
category of F-coalgebras over the category C, definition 7.1.6

category of compact Hausdorff spaces with continuous functions, exam-
ple 2.1.7

category of compact Kripke structures with Kripke homomorphisms, re-
mark 6.2.9

category of complete ultrametric spaces and non-expansive maps, exam-
ple 2.1.3

category of complete 1-bounded ultrametric spaces and non-expansive
maps, example 2.1.3

empty category, example 2.1.3

category of Kripke structures with Kripke homomorphisms, remark 6.1.20
category of posets with monotone maps, example 2.1.3

category of preordered sets with monotone maps, example 2.1.3
category of sets and functions, example 2.1.3

category of Stone spaces and continuous functions, example 2.1.3

category of topological spaces with continuous functions, example 2.1.3



Vs

idy
go f
cod( f)

dom( f)
HOm@(A, B)

Mor(C)
0b(C)
X+Y

X xY
A

icl

[T4

iel

List of symbols

category of Vietoris structures with Vietoris homomorphisms, remark
9.1.2

identity morphism on an object X, definition 2.1.1
composition g after f, definition 2.1.1

codomain of f, definition 2.1.1

domain of f, definition 2.1.1

class of all morphisms in a category C with domain A and codomain B,
remark 2.1.2

class of morphisms in a category C, remark 2.1.2

class of objects in a category C, remark 2.1.2

sum of objects X and Y in a category C, definition 2.5.2
product of objects X and Y in a category C, definition 2.5.1

sum of objects in a category, definition 2.5.2

product of objects in a category, definition 2.5.1

Universal coalgebra

o (X)

power functor, example 2.15.5

contravariant powerset functor, example 2.16.3

powerset functor, example 2.16.1

extention of the powerset functor on CUM?, corollary 5.3.4
finite powerset functor, example 2.16.1

extention of the finite powerset functor on CUM!, corollary 5.3.6
Kripke functor, example 7.1.2

Vietoris functor, section 3.2

P-Vietoris functor, product functor V(—) x P(P), definition 3.2.1
modal functor from the category CK S to the category V'S, remark 9.3.4

path functor, section 3.4

Hompey(—, %) contravariant Homr,y, functor, lemma 3.6.1
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List of symbols

Homre (X, —)
Uc

Uc

Ft

i+ F

Fy oIy

F1><F2

~xy
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covariant Homr,, functor, lemma 3.5.1

forgetful functor from Cp to C, remark 7.1.7
forgetful functor from V'S to CK S, remark 9.3.6
positive functor of a functor F, section 3.8

sum of functors F} and F5, lemma 2.15.8
composition of functors F} and Fs, lemma 2.15.8
product of functors F; and Fy, lemma 2.15.8
X-modal model, definition 9.3.1
Kripke-Ultrafilter model, definition 10.4.1
$l-modal model, section 10.5

elements x and y are behaviorally equivalent
- w.r.t Kripke structures, definition 6.2.12
- w.r.t coalgebras, definition 7.5.10

modal equivalence relation between X and )Y
- w.r.t Kripke structures, definition 6.1.8
- w.r.t coalgebras, definition 7.5.6

largest A-M bisimulation between X and )
- w.r.t Kripke structures, remark 6.1.12
- w.r.t coalgebras, definition 7.4.11

true formula (top), definition 6.1.2

false formula (bottom), definition 6.1.4

modal operator diamond on modal formulas, definition 6.1.2
modal operator box on modal formulas, definition 6.1.2

conjunction of modal formulas, definition 6.1.2
disjunction of modal formulas, definition 6.1.2

set of all A-formulas, definition 7.5.2

set of modal formulas over P, definition 6.1.2



Fx @

37):2(%0

Us,

formula ¢ is deducible from X, definition 10.1.4
formula ¢ is a Kripke tautology, definition 10.1.1

set of modal formulas X is valid in X
- w.r.t Kripke structures, definition 6.1.3
- w.r.t coalgebras, definition 7.5.3

formula ¢ is valid in X
- w.r.t Kripke structures, definition 6.1.3
- w.r.t coalgebras, definition 7.5.3

formula ¢ is valid in the element z of X
- w.r.t Kripke structures, definition 6.1.3
- w.r.t coalgebras, definition 7.5.3

set of all valid formulas in an element x
- w.r.t Kripke structures, equation 6.1.1
- w.r.t coalgebras, equation 7.5.3

set of all element x in a model X valid in the formula ¢
- w.r.t Kripke structures, equation 6.1.2
- w.r.t coalgebras, equation 7.5.2

set of all Kripke-Ultrafilters over Lp, definition 10.2.4

List of symbols

set of all Kripke-Ultrafilters over Lp which contains the set X, remark

10.3.2
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Index

(€, M)-category, 69 cocomplete category, 86
A-formulas, 175 cocone, 85

C-object, 47 coequalizer, 63

E-coimage, 73 cofinal map, 31

M-graph, 162 colimit, 85

M-image, 73 colimit sink, 85

M-morphism, 73 colimits-preservation, 87
M-subcoalgebra, 144 compact binary relation, 189
M-subobject, 73 compact Hausdorfl space, 29, 36, 215
M-union, 73 compact Kripke structure, 134
M-well powered, 73 compact space, 28, 207

4 -modal model, 207 compact-open topology, 76

X -modal model, 194 competitor, 85

X -modal topology, 194 complete category, 86
1-bounded ultrametric space, 41 complete metric space, 38

A complete ultrametric space, 116

concrete category, 80

accumulation point, 33 cone, 84

A-M bisimulation, 160 congruence relation, 133

arrow, 47 constant functor, 77
B constant path, 97
base, 22 contravariant functor, 81
behaviorally equivalent, 138 contravariant powerset functor, 82, 174
black boxes, 141 converging map, 31
coproduct, 56
C covariant functor, 77
canonical bisimulation theorem, 133 covariant Homr,, functor, 98, 100
cartesian closed category, 75
category, 47 D
Cauchy sequence, 38 dense, 20
clopen, 19 dense function, 21
clopen neighborhood functor, 101 diagonal, 27, 70, 162
closed function, 21 diagram of type I, 84
closed neighborhood functor, 101 directed set, 31
closed set, 19 discrete functor, 77
closure of a subset, 20 discrete topology, 20
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disjoint union, 57
dual property, 49

E

empty category, 48
endofunctor, 77

epi, H2

epl preserving, 83

epi reflecting, 84

epi sink, 69
epimorphism, 52
epi-transformation, 88
equalizer, 63
eventually, 33
exponential object, 74
extension, 107
extension up to isomorphism, 107

F

factorization system, 69, 70
faithful functor, 80
F-coalgebra, 141

F-coalgebra structure, 141
final topology, 25

finite intersection property (F.I.P), 28
finite powerset functor, 82
forgetful functor, 81
frequently, 33

full neighborhood functor, 101
full subcategory, 49

functor, 77

G
graph of f, 27, 133

H

Hausdorff space, 26
Hennessy-Milner theorem, 132
H-M logic, 179

homeomorphic spaces, 22
homeomorphism, 22, 50
homomorphism, 142

I
identity functor, 77
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indiscrete functor, 77
indiscrete topology, 20
initial object, 56

initial topology, 23
injective function, 50, 51
interior of a subset, 20
inverse limit, 60

inverse system, 60
isomorphism, 50

K

Kripke bisimulation, 130
Kripke deducibility, 200
Kripke frames, 127

Kripke homomorphism, 132, 137

Kripke model, 127

Kripke polynomial functors, 82
Kripke tautology, 199
Kripke-Filter, 201
Kripke-Ultrafilter, 202
Kripke-Ultrafilter model, 204

L

largest A-M bisimulation, 165
largest topology, 20, 25

left adjoint, 89

length of a sequence, 32
lifting, 107

lifting up to isomorphism, 107
limit, 84

limit point of a subset, 20
limit preserving, 87

limit source, 84

limits of a net, 33

locally compact, 31

logic, 175

loop, 97

M

metric space, 37

metric topology, 37
metrizable space, 37

modal formula, 127

modally equivalent, 130, 177



modally saturated, 134
mono, 52

mono preserving, 83
mono reflecting, 84
mono source, 68
monomorphism, 52
monotonic map, 31
mono-transformation, 88
morphism in category, 47

N

natural transformation, 88
negation normal form, 129
neighborhood functor, 82
neighborhood of an element z, 20
net, 32

non-expansive, 117, 118
non-expansive map, 44

O

open ball, 37

open function, 21

open neighborhood, 20

open neighborhood functor, 101
open set, 19

orthogonal, 70

P

parallel morphisms, 63
partition, 45, 115
path, 97

path functor, 97
path-components, 98
path-connected, 98
polynomial functor, 80
polynomial functors on Top, 93
power functor, 78
powerset functor, 82
product, 56

product topology, 25
property, 49

pullback, 64

pushout, 65
P-Vietoris functor, 95
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Q
quotient map, 26

quotient topology, 26

R

regular epi, 67

regular epimorphism, 67
regular mono, 67

regular monomorphism, 67
relation composition, 36
retraction, 50

retraction preserving, 83
right adjoint, 89

S

section, 50

section preserving, 83

semantic, 128

sequence, 32

Sierpinski topology, 100

sink, 25, 64

small coequalizer, 86, 153

small colimit, 86

small diagram, 152

small equalizer, 86

small limit, 86

small product, 86

small pushout, 153

small sum, 86, 153

smallest topology, 20, 24

source, 23, 65

standard topology, 22

subbase, 22

subcategory, 49

subnet, 32

subspace inclusion, 24

subspace topology, 24

sum, 56

supremum, 165

supremum of a family of A-M bisimulations,
165

surjective function, 50, 51

T
terminal coalgebra, 181
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topological retraction, 51
topological space, 19

topology, 19

totally bounded metric space, 38
transition map, 127

Truth lemma, 205

Tychonoff’s Theorem, 31

U
ultrametric space, 41
union of M-subcoalgebras, 154

Vv

validity, 128

validity map, 127

Vietoris bisimilar, 213
Vietoris bisimulation, 213
Vietoris frame, 190

Vietoris functor, 94

Vietoris homomorphism, 190
Vietoris model, 189

Vietoris polynomial functors, 97
Vietoris topology, 94

w
weak limit, 85
weakly limit preserving, 87
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