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Abstract

Minimally invasive abdominal surgery (laparoscopy) is performed using long, slender in-

struments inserted through multiple small incisions in the patient’s abdominal wall. This

results in less post–operative pain, shorter hospital stays, and a quicker return to normal

activities for the patient compared to conventional open surgery; however, the use of small

entry incisions provides only limited access to the surgical site compared to conventional

open surgery. Robotic systems have been developed that overcome some limitations with

laparoscopic surgery. The systems, however, are very high cost, provide limited benefit to

the patient, and do not completely address limited access issues and the need for multiple in-

cisions. New techniques, such as single–port laparoscopic and natural orifice surgery, reduce

the number of entry incisions but still provide only limited access to the surgical site. An

innovative solution that potentially overcomes both limitations is to insert miniature robotic

assistants entirely inside the abdominal cavity through a single incision where they can be

readily relocated as needed. Previous work has demonstrated that a family of fixed–base

and modular, wireless, intracorporeal, mobile robots can successfully monitor physiological

conditions, perform biopsies, staple and clamp tissue, and provide visual feedback within

the abdominal cavity. Current robots do not have the ability to store or dispense liquids

such as hemostatic agents. The use of hemostatic agents, such as fibrin sealants, instead of

mechanical or electrical means of hemostasis alleviates the extensive training required for

laparoscopic suturing, the nerve damage accompanying staples or tacks, and the need for a

relatively large energy source for electrocautery tools and harmonic scalpels. An incorporeal

robot capable of carrying and delivering liquids would combine the advantages of incorporeal

mobile robots and liquid hemostatic agents. The main focus of this thesis is the develop-

ment of a liquid delivery payload for a family of incorporeal robotic assistants. Included
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in this development is a method for mixing two liquids stored inside the robot as they are

dispensed, which is needed for dual compound liquids such as fibrin sealants. Finally, two

improvements to the design of the control electronics are presented that allow for more rapid

robot deployment and provide the ability for point of use changes to the embedded control

software.
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Chapter 1

Background on Minimally Invasive Surgery

Various robotic systems developed in the 1990s were designed to help in minimally invasive

surgery, a type of surgery where in which incisions are made in a patient’s body, instead of the

long incisions associated with conventional surgery that require many stitches to close and

often result in a long recovery time for the patient. A familiar example of minimally invasive

surgery is the laparoscopic appendectomy–removal of an appendix through a small incision

made near the belly button. Although current robotic systems used in minimally invasive

surgery are greatly improved over the earlier systems, they still require multiple incisions

and provide only limited access to the surgical site. For this thesis, three modifications

to a system of intracorporeal, miniature, surgical robotic devices were designed and tested

to address the need for a liquid drug delivery payload, improved power management, and

more rapid embedded software updates. The main modification involved the development

and testing of a liquid drug delivery payload. The two other modifications involved changes

to the robot main circuit board to allow turning the robot on or off from the exterior of

the robot body using a magnet and to provide the ability for point of use changes to the

embedded control software. Chapters 1–4 of the thesis provide background information on

minimally invasive surgery, intracorporeal robotic systems, hemostatic techniques, and liquid

mixing devices. Chapters 5–9 discuss the development and testing of the liquid drug delivery

payload. Chapter 10 discusses the development of the two improvements to the robot main

control board.
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1.1 Minimally Invasive Surgery

Minimally invasive surgery (MIS) involves medical procedures performed through one or

more short incisions. This is in contrast to one long incision typically used in open surgery

[1]. Using one or more short incisions is beneficial because it results in reduced patient

trauma and morbidity, and allows for more rapid recovery compared to conventional surgery

[1]–[3]. Laparoscopic surgery is MIS in the abdominal cavity using slender, long instruments

for tissue manipulation and an endoscope for visualization of the surgical environment. The

advantages of laparoscopic procedures over conventional procedures are less post–operative

pain, shorter hospital stays, and quicker return to normal activities [4]–[6]. For example,

patients who undergo laparoscopic appendectomy, cholecystectomy (gall bladder removal),

antireflux surgery, or gastric bypass surgery are 72% less likely to experience surgical–site

infections than those who undergo an open procedure [7].

Even though laparoscopic procedures have many advantages for the patient, one disad-

vantage for the surgeon is the limited access to the surgical site provided by the use of small

entry incisions and one disadvantage for the patient is the need to use multiple incisions for

a procedure. The limited access to the surgical site results in reduced perception, dexterity,

and degrees of motion for the surgeon compared to conventional open surgery [8]. Because

multiple incisions are used for a procedure, there is opportunity to further reduce patient

trauma by reducing the number of incisions.

Procedures such as single–port laparoscopic surgery and natural orifice surgery are being

developed to reduce the number of entry incisions made in the abdominal wall; however,

these approaches still do not address limited access to the surgical site. To help return lost

perception, dexterity, and degrees of motion to the surgeon in laparoscopic surgery, improved

tools and robotic assistants are being developed.
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1.2 Improvements to Laparoscopic Surgery

1.2.1 Single–Port Laparoscopic Surgery

Laparoscopic techniques can vary widely but multiple small incisions are commonly made

to complete a procedure. An endoscope is inserted through one incision while other instru-

ments such as graspers or scissors use other ports [1]. An emerging concept is single–port

or single–incision laparoscopic surgery. To reduce the trauma to surrounding tissue com-

pared to conventional laparoscopy, all of the laparoscopic instruments enter the abdominal

cavity through the same incision [9]. Most current devices designed to facilitate single–port

laparoscopy consist of a large sheath containing multiple ports for insertion of laparoscopic

instruments [9]. The sheath is placed through the incision that is usually located at the

umbilicus.

Surgeons undergo additional training and need to learn new techniques for single–port

laparoscopic surgery versus conventional laparoscopic surgery. Because multiple instruments

are inserted through a relatively short incision, a significant portion of the learning curve is

dedicated to placement of the surgeon’s hands [9]. Some solutions to this problem include

using articulated instruments, rotating instrument handles, variable length instruments, and

tools with multiple end–effectors [9]. However, these solutions are still constrained by the

small entry incision.

1.2.2 Natural Orifice Surgery

A technique in development aimed at completely eliminating abdominal wall incisions is

natural orifice translumenal endoscopic surgery (NOTES). NOTES is a MIS technique in

which a flexible endoscope is passed through the mouth, anus, urethra, or vagina to gain

access to the abdominal cavity [10]. For example, in a cholecystectomy, a surgeon would

insert a tube through the mouth and down the esophagus, make an incision in the stomach

or digestive tract, locate and cut the gallbladder, and remove it through the mouth [11].

NOTES is still in the early stages of investigation but it offers the possibility of being

performed without general anesthesia because no skin incisions are made and the tools
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and equipment are portable and require only high–level disinfection instead of sterilization

[10]. However, this technique is not yet clinically relevant and still uses a laparoscopic port

to determine if the procedure can be performed safely. For example, a clinical study of 14

NOTES operations identified that three cases abandoned a NOTES approach because severe

inflammation or adhesion was found during the initial examination through a laparoscopic

port [12]. Limited access to the surgical site is also still present in NOTES because the

endoscope is passed through a natural orifice.

1.2.3 Improved Tools

Next generation robotics are currently being developed that improve mobility and reduce

complexity and cost. For example, a prototype laparoscopic robot has been built and tested

by the Medical Robotics Group at the University of California–Berkeley that provides force

and tactile feedback for telesurgical applications [13], [14]. Intelligent microsurgical instru-

ments that electronically cancel tremor in handheld surgical tools are being developed by

the Carnegie Mellon University’s Robotics Institute [15], [16]. Also, at the Bio–Robotics

Laboratory at the University of Washington, new endoscopic tools with force and tactile

feedback are being developed [17]. However, these devices are still limited by the entry

incisions and do not reduce the number of required incisions in the abdominal wall.

1.2.4 Robotic Systems

The use of robotic systems in surgery has helped to increase the surgeon’s perception, dex-

terity, and degrees of freedom compared to conventional MIS. LARS and AESOP were the

first robotic systems developed during the 1990s to assist during minimally invasive abdom-

inal surgery [18], [19]. Currently, the da Vinci surgical system from Intuitive Surgical is the

most commonly used robot for MIS. It allows for 3D visualization, seven degrees of free-

dom, elimination of tremors, motion scaling, improved dexterity and ergonomic position [8].

The advantages and disadvantages of conventional laparoscopic surgery and robot–assisted

surgery are summarized in Table 1.1.
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Table 1.1: Advantages and Disadvantages of Conventional Laparoscopic Surgery and
Robot–Assisted Surgery [8]

Conventional Laparoscopic Robot–assisted

Advantages Well–developed technology 3–D visualization
Affordable and ubiquitous Improved dexterity
Proven efficacy Seven degrees of freedom

Elimination of physiologic tremors
Ability to scale motions
Tele–surgery
Ergonomic position

Disadvantages Loss of touch sensation Absence of touch sensation
Loss of 3–D visualization Very expensive
Compromised dexterity High start–up cost
Limited degrees of motion Unproven benefit
Amplification of physiologic tremors

Even though the da Vinci is the most commonly used surgical robotic system, it is cumber-

some, fills a large operating room [20], and is often too costly to justify its use [8], [21], [22].

For example, a case–matched study of 50 patients who underwent robotic–assisted laparo-

scopic cholecystectomy and 50 who underwent conventional laparoscopic cholecystectomy

identified that skin–to–skin operation time and hospital stay were similar. However, at a

cost of $7985, the robotic–assisted laparoscopic cholecystectomy was $1, 730 more expensive

than conventional laparoscopic cholecystectomy. The main reasons robotic–assisted laparo-

scopic cholecystectomy is more expensive are the higher purchase, annual maintenance, and

consumable costs with the robotic system [21]. Table 1.2 shows the differences between the

purchase and maintenance costs of the da Vinci robotic system and conventional laparoscopic

equipment.

Table 1.2: Purchase and Maintenance Costs of da Vinci Robotic System and Conventional
Laparoscopic Equipment [21]

Purchase (US$) Annual Maintenance (US$)

da Vinci Robotic System 1,275,000 127,500
Laparoscopic Equipment 72,250 4,250

Approaches that insert a robotic device entirely inside the body are also a focus of current
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work on MIS. One tool is an imagining device in the form of a pill that is swallowed and

passively moves through the gastrointestinal (GI) track returning thousands of images [23],

[24]. Because this pill requires a natural process to advance through the GI track, it cannot

be focused to a specific location and the precise locations of the images are unknown. A

hybrid locomotion system for a GI track capsule has also been developed and tested. This

capsule contains an internal magnet that allows it to be guided in the lower GI tract by

an endoscopist using an external magnetic field. Three on–board legs can be actuated by

a small permanent magnet direct current motor to dislodge the capsule if it becomes stuck

[25]. A real–time wireless camera system is currently being developed to be integrated with

this hybrid locomotion system.

Miller et al. have described an in vivo stereoscopic imaging system as a proof–of–concept

design [26]. Based on this concept, a stereoscopic, insertable, remotely controlled camera

with digital zoom, picture–in–picture, and marked instrument tracking capability has been

design and tested in a porcine model by Fowler et al. [27].

Finally, a miniature mobile robot called the Heartlander robot has been developed that

can adhere to and move across the surface of the beating heart using vacuum pressure [28].

It has successfully deployed injection needles, pacing leads, and ablation catheters in porcine

hearts [29], [30].

1.2.5 Limitations of Improvements to Laparoscopic Surgery

Single–port laparoscopic and natural orifice surgery reduce the number of incisions made in

the abdominal wall, which results in less patient trauma. However, single–port laparoscopy

using conventional laparoscopic tools further reduces access to the surgical site compared to

conventional laparoscopy because only one incision is made versus multiple incisions. Natural

orifice surgery may eventually eliminate the need to make any incisions in the abdominal

wall; however, current procedures still use an incision for safety and also further reduce

access to the surgical site compared to conventional laparoscopy. Robotic systems such as

the da Vinci system return lost perception, dexterity, and degrees of freedom to the surgeon;

however, this comes at a very high cost and is of limited benefit to the patient compared to
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traditional laparoscopic surgery. Finally, in vivo devices such as GI tract capsules and the

Heartlander robot cannot operate in the open environment of the insufflated abdomen and,

therefore, cannot be used for laparoscopic surgery. Due to these limitations with single-port

laparoscopy, NOTES, and current robotic systems, another approach to laparoscopic surgery

is needed.

1.3 Incorporeal Robotic Assistants

An innovative solution that potentially overcomes the limitations associated with laparo-

scopic surgery and the drawbacks of large and expensive robotic systems is to insert minia-

ture, incorporeal robotic assistants entirely inside the abdominal cavity through a single

laparoscopic port. Because the devices are completely inside the abdominal cavity, they are

unconstrained by entry incisions and can be arbitrarily repositioned. A family of fixed–base

and mobile robots have been used to enhance visualization of the surgical field, [31], [32],

and to obtain tissue samples during a single–port liver biopsy in a porcine model [33]. In ad-

dition, camera robots were tested by three NASA astronauts and a surgeon in a submersible

habitat 20 m underwater [34]. These tests suggest that incorporeal robots could be used

in place of standard laparoscopic equipment without loss of performance, can be deployed

effectively in remote and harsh environments, and telementoring can be used to build upon

basic skills for more complex procedures [34]. The applications of incorporeal robots are

not limited to laparoscopic surgery. An incorporeal robot performed endoscopic transgastric

abdominal exploration, demonstrating its ability to be used in natural orifice surgery [35].

The robots mentioned above all relied on tethers for power, control, and data transmission

and each was designed for a specific task. A new family of incorporeal robots has been

developed that eliminates tethers by using wireless communication and an on–board power

supply. Also, the robots have a modular design that allows for rapid development of different

payloads without modifying the power and control portion of the robot. The current types

of payloads include a biopsy grasper, a stapler and clamp, and physiological sensors that

have been tested in ex vivo and in vivo settings [36]. The tetherless design enables the

surgeon to easily relocate the robots inside the abdominal cavity without interference from

7



one another. In addition, multiple robots used for vision and task assistance can be inserted

through a single port. These features alleviate access problems with single–port laparoscopic

surgery and reduce patient trauma compared to procedures using multiple entry incisions.

Eventually, non–medically trained personal could carry and deploy these types of low–cost

and easily transportable robotic devices at the scene of an accident or injury.
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Chapter 2

Background on Incorporeal Robots

2.1 Modular Robot Design

The most recent version of the incorporeal robot was designed to be modular and builds on

earlier fixed–base and mobile robots [33], [37], [38]. It has two cylindrical bodies that fit

together and slide inside two wheels. The body has an outer diameter of 16 mm and is about

100 mm long. Each wheel has an outer diameter of 20 mm and is actuated by a permanent

magnet direct current (PMDC) motor that is connected to the wheel through a pair of

transmission gears. The robot’s movements and actions are controlled by an operator using

a remote control that sends wireless commands to a circuit board inside the robot body.

Inside one of the cylindrical bodies there is dedicated payload space that allows robots with

a variety of tools to be developed by only changing the payload body. Each payload body

can be interchanged and connected to the second cylindrical body, the control body, that

houses the main control board and battery. This type of interchangeability is the basis for

the modular design. A schematic of the robot without an internal payload is shown in Figure

2.1. Overall, the design of the modular robot has three main components: the control body,

the payload body, and the wheels [36].

Figure 2.1: Schematic of Base Robot Design [36] ( c© 2009 IEEE)
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2.1.1 Control Body

The control body, shown to the left of the tail in Figure 2.1, is the power plant and brains

of the robot. It houses the battery, the control circuit board, and a wheel motor. A lithium

organic cell battery (Tadiran TLM–1520MP) with a 185 mAh capacity powers the robot and

can last for two hours with all of the motors running continuously. The control circuit board

is a custom designed, four–layer, double surface mount, printed circuit board containing a

microprocessor, a multichannel motor driver, and an RF transceiver.

The microprocessor (PIC16LF767) is an 8–bit, low–power chip that features 11 10–bit

ADC channels, three pulse–width modulation (PWM) outputs, an internal oscillator, and

power management functions. These features provide for a small footprint and low power

consumption while allowing for the connection to multiple sensors and the independent

control of three different motors. The main function of the microprocessor (MCU) is to

communicate with peripherals, such as the motor driver, RF transceiver, and various sensors.

Connected to the microprocessor with a three–wire serial interface, the motor driver

(Toshiba TB6557FLG) provides up to four voltage controlled and two constant current

H–bridge outputs. The current design of the main control board makes three of the voltage

controlled H–bridge outputs available. Each wheel motor is connected to one of the outputs

with the third available for a payload motor if needed.

Wireless communication to the control board is implemented with a 2.4 GHz ISM band

RF transceiver (Nordic nRFA2401) and a single–ended, 50 Ohm chip antenna (LINX ANT–

2.45–CHP). In Burst Mode, it is capable of error–checked data rates of up to 1 Mbps.

The transceiver also supports 125 receive/transmit channels, which enables simultaneous

communication with multiple robots using the same chip without interference between robots

[36]. A photograph of each side of the main control board is shown in Figure 2.2.

2.1.2 Payload Body

The cylindrical payload body, shown to the right of the tail in Figure 2.1, is dedicated for

different types of payloads. Therefore, it contains a wheel motor and mostly payload space.

The robot body is designed in a way that allows the control side to remain almost unchanged
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(a)

(b)

Figure 2.2: Main Control Board: (a) Front and (b) Back
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for different types of payloads.

2.1.3 Wheels

As shown in Figure 2.1, the two body halves of the modular robot are connected at the center

and rest inside two wheels. Each wheel is connected to its respective wheel motor through

two spur gears and a bearing assembly. The first spur gear is secured to the shaft of the wheel

motor and meshes with a second spur gear attached to the bearing assembly. Each wheel is

then fastened to the bearing assembly to complete the mechanical connection. The wheel

motors are 6–mm diameter, PMDC motors manufactured by MicroMo with an attached

256:1 ratio gearhead. A tail between the gap of the wheels prevents counter–rotation when

the robot is driving around. Usually, the tail feature is incorporated into the payload design.

The current wheel design is a result of previous analytical modeling, experimental testing,

and finite element analysis. Each wheel is 20 mm in diameter, 0.375 mm thick, and has nine

helical grousers. The helical grousers are spaced 7 mm apart with a pitch angle of 10.6◦.

This configuration allows for smooth motion because at least two grousers are in surface

contact at all times [38].

2.2 Current Payloads

Several different payloads currently exist for the modular robot. Each of these payload bodies

can function using the same control body by only switching wire connections. The current

payloads consist of a sensor package, a biopsy mechanism, and a stapling and clamping

mechanism. A robot equipped with a camera also exists but uses a slight variation of the

robot body.

2.2.1 Sensor

The modular robot is able to monitor local conditions inside the insufflated abdomen using

a sensor payload. This payload is a circuit board containing temperature, pressure, and
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relative humidity sensors. It is placed in the payload body and connects to the control body

via a six–wire flexible printed circuit (FPC) cable. The sensor data are interpreted by the

microprocessor and relayed wirelessly to a receiver module that can display the data on a

laptop computer.

2.2.2 Biopsy

Previous designs of the biopsy payload resembled a traditional cable–operated laparoscopic

biopsy grasper in that they both use a “grasp and tear” method to obtain a tissue sample.

However, this design was inconsistent in obtaining a tissue sample because the robots could

not generate enough traction to tear the tissue. The current design of the biopsy mechanism

is capable of severing the tissue and then storing the sample in its jaws. As shown in Figure

2.3, a motor in the payload region actuates the biopsy jaws using a linkage assembly for

mechanical advantage. A leadscrew is glued to the motor shaft and as it rotates, a leadnut

advances, pushing the linkage. The linkage advances a collar to close the biopsy jaws and

sever the tissue.

Maximum forces that can be applied by the linkage mechanism were tested to quantify

the capabilities of the biopsy payload. When the jaws are completely open, the linkage

is fully retracted and can apply a maximum of 7.3 N to the collar. In the fully extended

configuration, jaws closed, the linkage can apply a maximum of 13.2 N to the collar [36].

2.2.3 Staple and Clamp

With minor modifications to the biopsy payload, a stapling or clamping robot can be con-

structed. The same actuation mechanism is used but the sharp biopsy jaws are replaced

with rounded and slightly longer ones. These alternate jaws can hold a staple and deliver it

to a specific location when the linkage is actuated. When the robot is not carrying a staple,

the jaws can be used as a clamping tool. Recent porcine experiments have demonstrated

the capability of the clamping payload by closing off a severed blood vessel between its jaws.

Figure 2.4 is a photograph showing the biopsy and staple/clamp jaws.
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(a) (b)

Figure 2.3: Schematic of Biopsy Payload: (a) Top View and (b) Side View [36] ( c© 2009
IEEE)

(a) (b)

Figure 2.4: Photographs of (a) Biopsy Jaw and (b) Staple Jaw [36] ( c© 2009 IEEE)
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2.2.4 Ceiling Camera

To provide visual feedback of the operating environment, a modular robot with a camera

payload is held at the ceiling of the abdominal wall (Figure 2.5(a)). A magnetic handle placed

external to the patient holds the robot to the ceiling of the abdominal wall and allows for a

panning motion. This payload has a 6.35–mm digital color CMOS sensor (MT9V125) with

640x480 resolution that can output video data in either NTSC or PAL formats. Three LEDs

provide illumination for the camera. An outer housing replaces the wheels with this payload

giving the robot the ability to tilt about its cylindrical axis. This is the only robot that has

a tether to the exterior of the insufflated abdomen; however, it is only used for transmitting

video data because a wireless video transmitter was unavailable at the time. The ceiling pan

and tilt robot receives commands wirelessly and receives power from the on–board battery.

(a)

(b)

Figure 2.5: (a) Schematic of Ceiling Camera Robot with Magnetic Handle and (b)
Photograph of Robot [36] ( c© 2009 IEEE)
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2.3 Need for Liquid Drug Delivery Payload

The current robot family has several payloads; however, there is not a payload designed to

carry and deliver liquid drugs. Two examples of liquid drugs used in conventional surgery

and MIS are tissue sealants such as BioGlue and Evicel. These biosurgical compounds

have been used as adjuncts or replacements for mechanical means of controlling bleeding or

wound closing [39]. Suturing and knot tying used for mechanical fixation, wound closing, and

achieving hemostasis require extensive retraining and practice for use in laparoscopic surgery

[40]. Therefore, new approaches have been developed such as using staples or titanium tacks

in place of sutures in applications such as securing a peritoneal mesh when reinforcing a

hernia defect. However, many of these alternatives have been accompanied by nerve damage

and chronic pain [41], [42].

Fibrin tissue sealants have the ability to be used as both a hemostat and a tissue adhesive.

For example, during a study with 100 laparoscopic partial nephrectomies, fibrin tissue sealant

was compared with suture bolstering and it was found that, in certain situations, hemostasis

could be achieved with fibrin sealant alone [43]. Another study found the combined use of

fibrin glue and Gelfoam alone to be an effective method to achieve hemostasis in the repair

of a collecting system injury [44]. An incorporeal robot capable of carrying and delivering a

fibrin tissue sealant would combine the advantages of the incorporeal robot family and fibrin

tissue sealants.

The main focus of this thesis was on the development and testing of a dual–component,

liquid drug delivery payload. There are three main design requirements of this type of

payload:

1. A sealed chamber that can separately store two different liquids,

2. A mechanism to dispense the liquids in the chamber, and

3. An ability to mix the two liquids stored in the chamber before they are dispensed (e.g.,

if fibrin sealant is used).

The work done to address these challenges is presented in Chapters 5–9. In addition, Chapter

10 presents improvements to the design of the main circuit board that address problems seen
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repeatedly during previous experiments.

The modular robots have performed successfully in several in vivo porcine models. Their

ability to maneuver in the abdominal environment has been demonstrated with a single

robot and with several robots simultaneously. In addition, each payload has been tested

to show it can perform its specific task. However, immediately before every experiment,

each modular robot required about 30 minutes of assembly time. This is because there was

no method to control the on/off state of the robots except for physically soldering wires to

the main control board. This last minute assembly prevents the robots from being tested

immediately before an experiment, prevents quick deployment and use, and is an inefficient

use of battery power. Therefore, a method for better power management is needed. The

work done to address this is presented in Chapter 10 of this thesis.

The modular design of the robots allows for different payload configurations without chang-

ing the control body design. In the case of the sensor, biopsy, and staple and clamp payloads,

they all shared the same software as well. The software was written for the microprocessor

in such a way that it would detect what type of payload was being used and run the appro-

priate code. This approach was successful but the microprocessor needed to be programmed

with the correct software before it was soldered to the main control board. If errors existed

in the software or if additional functionality was to be added, a new circuit board had to be

used. Therefore, a method is needed to modify the software a posteriori. The work done to

address this is also presented in Chapter 10 of this thesis.

17



Chapter 3

Background on Hemostatic Techniques

As with open surgery, uncontrolled bleeding during laparoscopic surgery can cause signifi-

cation complications. Furthermore, unmanageable bleeding during minimally invasive pro-

cedures is the most common indication for reverting to traditional open surgery [45]. One

possible application of an incorporeal robot with a liquid drug delivery payload is to as-

sist with hemostasis. Available hemostatic techniques can be grouped into three categories:

mechanical, energetic, and tissue sealants.

3.1 Mechanical

The traditional method to treat bleeding is with sutures or mechanical compression. Suture

techniques used in open surgery have been adopted and modified for use in laparoscopy

[46]. Mechanical compression with cotton gauze is the first method used for hemostasis by

many surgeons in open surgery and MIS [47]. In addition to these techniques, hemoclips

and staples are both used in MIS to control bleeding from blood vessels [46], [47].

3.2 Energetic

Similar to hemoclips and staples, energetic methods of achieving hemostasis are primarily

used for dissection, adhesiolysis, and division of vascular structures [47]. Instruments used

in these methods include an electrocautery, an ultrasonic or harmonic scalpel, an argon

beam coagulator, and a laser. A bipolar electrocautery allows for simultaneous dissection

and coagulation of tissue. Electrical current flows between the jaws of grasping instruments

that thermally severs the tissue. Damage to surrounding tissue is minimized when using
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a biopolar device versus a monopolar device [46]. An argon beam coagulator combines an

inert gas jet with an electrocautery device. The argon gas jet clears blood and debris from

the site allowing for more effective hemostasis [48]. An ultrasonic or harmonic scalpel uses

high frequency ultrasound to cut and coagulate tissue. At a frequency of 25 kHz, tissue

dissection occurs and at frequencies greater than 55 kHz, coagulation occurs as well [46].

Lasers provide the ability to simultaneously dissect and coagulate tissue; however, their

application causes significant tissue vaporisation and spreading of liquid [46]. The Holmium

laser has been used in several procedures; however, clinical data is very limited and lasers

remain mostly experimental in laparoscopy [46], [49].

3.3 Tissue Sealants

Fibrin glues are the most common tissue sealants used in laparoscopy [46]. Fibrin glue is

a two–component mixture of thrombin and fibrinogen that combine to form a solid fibrin

matrix [50]. The two individual components make up the last stages of the clotting cascade

and have hemostatic and adhesive properties resulting in improved hemostasis when used to

control bleeding compared to other tissue sealants such as gelatin matrix. Currently, fibrin

tissue sealants are administered through a long needle with a dual–lumen adapter. The

components are stored separately until immediately before use and are mixed as they pass

through the dual–lumen adapter [46], [47]. Also, the components are all biodegradable and

disappear from the body within 3 to 4 weeks [50].

Gelatin matrix is a bovine derived, two–component tissue sealant consisting of thrombin

and gelatin matrix granula. After the components are mixed in a syringe before application,

the matrix can be used for up to two hours [49]. Also, after application, it can be compressed

with a surgical sponge without sticking and will only cause coagulation where fibrinogen is

present at the bleeding location [50].

Oxidized regenerated methylcellulose is a tissue fleece (i.e., a mesh scaffold) that can be

applied on surfaces with minimal bleeding [46], [49]. The fleece is sutured or secured with

fibrin glue to the site and applies local compression along with supporting local hemostasis

of the cellulose tissue [46].
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3.4 Application to Incorporeal Robots

Fibrin sealants have advantages over mechanical and energetic methods of hemostasis. As

discussed in Section 2.3, there are several problems associated with mechanical methods of

hemostasis in laparoscopic surgery. For example, suturing requires extensive retraining, and

nerve damage has accompanied the use of staples and tacks. Energetic means of hemostasis

require a relatively large energy source, as with electrocautery tools and harmonic scalpels,

and can damage surrounding tissue. Studies have shown that hemostasis can be achieved

with fibrin sealant alone, with fibrin sealant as a suture bolster, or with fibrin sealant and

another tissue sealant [43], [44].

An incorporeal robot capable of carrying and delivering a fibrin tissue sealant combines the

advantages of the incorporeal robot family and fibrin tissue sealants. The two components

of a fibrin sealant need to be stored separately inside the robot and then mixed before it is

dispensed. Therefore, in addition to a method for storing and dispensing liquids, a method

for mixing liquids needs to be incorporated into the payload design. As discussed in Section

2.3, the main focus of this thesis was the development and testing of a payload that can

store, dispense, and mix liquids. A method for mixing liquids is discussed in Chapter 4. The

methods developed for successfully storing and dispensing liquids are discussed in Chapter

5, and the testing of mixing performance is discussed in Chapters 6 and 7.
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Chapter 4

Background on Static Mixing Devices

4.1 Static Mixers

In passive mixing, liquids flow over stationary fins or blades that disrupt the flow and induce

mixing. Devices used to passively mix liquids are called static or motionless mixers and have

become standard in process industries. Advantages of static mixers, compared to active

mixers, include their small space requirement, low equipment cost, no power requirement

except for pump, lack of moving parts, and good mixing at low shear rates [51].

Two common static mixers are the Kenics KM helical mixer and the SMX mixer, shown in

Figure 4.1. The helical mixer consists of alternating right–hand and left–hand 180◦ twisted

elements and the SMX mixer has multiple sections of blades arranged in an “X” pattern

with each section rotated 90◦. The Kenics KM helical mixer is designed for both laminar

and turbulent flow regimes with liquid–liquid or gas–liquid mixtures [52]. The SMX mixer

is designed for highly viscous, laminar flows [53].

(a) (b)

Figure 4.1: Common Static Mixers: (a) Kenics KM Mixer from Chemineer [52] ( c© 2010
Chemineer) and (b) SMX Mixer from Sulzer Chemtech [53] ( c© 2010 Sulzer Chemtech Ltd)
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4.2 Evaluation of Static Mixers

Static mixers are usually evaluated based on the additional pressure drop the mixing elements

cause relative to an empty pipe and the degree of mixing achieved [51], [54]. The additional

pressure drop is a non–dimensional number called the Z–factor and is defined by Equation

4.1,

Z =
Pressure drop in a pipe with static mixer

Pressure drop in a pipe without static mixer
. (4.1)

The degree of mixing is usually determined using statistical methods. A common pa-

rameter used is the coefficient of variation (COV) [51], [55], which represents the degree of

homogeneity at a given time and tells the relative deviations from the mean. To describe

the COV in more detail, consider a two–component mixture with the concentration of com-

ponent 1 and component 2 denoted by c1 and c2, respectively. The mean concentration c̄1

over N sampling regions is given by Equation 4.2, where c1,i denotes the concentration at

sampling region i,

c̄1 =
1

N

N∑
i=1

c1,i. (4.2)

The standard deviation of concentration s1 is given by Equation 4.3,

s1 =

√√√√ 1

N − 1

N∑
i=1

(c1,i − c̄1)2, (4.3)

and finally the coefficient of variation is give by Equation 4.4,

COV =
s1
c̄1
. (4.4)

The COV ranges from zero to infinity, with an ideally homogeneous mixture having a value

of zero. However, this parameter does not indicate a threshold that should be achieved

during the mixing process. For example, a COV value of 0.05 is used as a rule–of–thumb

to estimate fully mixed conditions, but for different mixing processes a range of values are

used [56].
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Another method to evaluate mixing is based on the concept of intensity of segregation

from Danckwerts [57]. Again, consider a two–component mixture with the concentration

of component 1 and component 2 denoted by c1 and c2, respectively. The intensity of

segregation I is defined by Equation 4.5,

I =
σ2
c1

c̄1(1− c̄1)
, (4.5)

where σ2
c1

is the variance of the concentration and c̄1 is the mean concentration of component

1. The denominator in Equation 4.5 can be shown to be equal to a maximum variance

σ2
c1,max = c̄1(1− c̄1) [58] that is computed by considering the mixture components separately

[59], [60]. This leads to a segregation index that is normalized by a maximum value and is

given by Equation 4.6,

Is =
σ2
c1

σ2
c1,max

. (4.6)

A typical example for measuring the intensity of mixing is given by Equation 4.7,

IM = 1−
√
Is = 1− σc1

σc1,max

, (4.7)

and because Is is normalized, IM takes a value of 0 for completely segregated mixtures and

a value of 1 for the homogeneously mixed case [59]. This normalization allows for a more

intuitive interpretation of the mixedness of two liquids compared to the COV, which ranges

from zero to infinity.

4.3 Analysis Methods of Static Mixers

Several physical methods have been used to measure the concentration values needed to

evaluate static mixers. Pahl et al. [54] evaluated several static mixers by using a sugar

syrup (viscosity of η = 6 Pa·s) with 10% of the syrup made using NaOH. Nonuniform

distribution of NaOH led to conductivity differences in the syrup and were measured by

transversing an electrode at the mixer exit. Of the mixers tested, the Sulzer SMX required

the shortest length of hose to produce homogenization. Also, for laminar flow, the Kenics
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helicial mixer was calculated to have the smallest Z–factor of the group.

Another method used to study the performance of static mixers is Planar Laser Induced

Fluorescence (PLIF) [61], [62]. In PLIF, a fluorescent dye is injected upstream of the static

mixer and the dye concentration is measured at a downstream plane. To measure the

downstream concentration, a laser sheet illuminates a transparent section of pipe which

fluoresces the dye in that planar section. The intensity of fluorescence is related to the dye

concentration and images of the dye fluorescing are captured with a camera. The degree of

mixing can be calculated through analysis of the captured images.

A third method for measuring the degree of mixing is using two different color liquids

and analyzing the resulting color distribution in the mixture from images captured with a

camera. This is a common technique for evaluating micromixers. For example, water used as

the working fluid enters the experimental setup through two separate inlets. Water entering

through the first inlet is dyed black and water entering through the second inlet is undyed.

A camera is positioned above the mixer and images are captured at a transparent section

that is illuminated from beneath with a diffuse, even light source. The color intensity in the

image can then be analyzed to give a quantitative analysis of mixing [63], [64].

Detailed analysis on static mixers using physical experiments can be difficult due to com-

plex geometry of mixers and the extensive setup required for non–intrusive measurement

techniques. Their complicated geometry also makes detailed, analytical analysis almost

impossible. Therefore, numerical analysis called computation fluid dynamics (CFD) has

become a useful tool in studying static mixers. Usually, commercial CFD packages (e.g.,

Fluent) are used for the numerical analysis. Two methods for evaluating mixing in CFD

simulations are particle tracking with a single working fluid and species concentration of

two fluids. CFD simulation results for static mixers have been validated by comparisons to

experimental data. For example, Zalc et al. [65] used a particle tracking method to rate

mixing in CFD simulations of a SMX mixer and found good agreement with previously pub-

lished experimental data. In another example, Lee and Kwon [63] found good agreement of

mixing performance between a two–fluid species concentration CFD simulation and a color

dilution experiment for a micromixer.
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4.4 Application to Incorporeal Robots

Due to the small size of the static mixer used with the liquid drug delivery robot and the

relative ease of experimental setup, a color dilution method was used to evaluate mixing

during the physical experiments presented in Chapter 7 of this thesis. In addition, these

experimental results validated species concentration CFD simulations. Once validated, sim-

ulation was used to explore static mixing designs more quickly than could be done in physical

experiments. Details of the numerical simulations are described in Chapter 6.

The design of a liquid drug delivery payload could incorporate a static mixer to mix liquids

stored inside the payload body. Preliminary static mixer designs are shown in Section 6.1

that incorporate the mixer into a hose extending from the robot body.
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Chapter 5

Payload Concept and Verification

5.1 Concept

Based on the three general design requirements for having a liquid drug delivery payload:

1. A sealed chamber that can separately store two different liquids,

2. A mechanism to dispense the liquids in the chamber, and

3. An ability to mix the two liquids stored in the chamber before they are dispensed (if

fibrin sealant is used),

a prototype concept was designed. A region in the payload body between the wheel motor

and connection to the control body was hollowed out to create the liquid reservoir. To seal

the reservoir from the rest of the payload body, a syringe–like plunger was designed. A

PMDC motor in the payload region is used to actuate the plunger using a leadscrew and

leadnut assembly to expel liquid from the reservoir through small exit ports. The plunger is

split into two semi–circular heads to allow it to slide over a center divider. The center divider

bisects the reservoir and serves multiple purposes. First, it allows for separate storage of

two different liquids. The split design also prevents rotation of the plunger and constrains

its motion to translation. Finally, a slot in the center divider provides space to feed through

electrical wires that connect to the wheel and payload motors. From the resulting concept,

a 3D computer model was constructed, shown in Figure 5.1.

The payload body containing the bisected reservoir and the payload motor is a single piece

that has two charging ports (0.35 mm in diameter) that allow each reservoir compartment

to be filled separately using a 30–gage needle and syringe after the robot is fully assembled.
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(a) (b)

(c)

Figure 5.1: (a),(b) Overview and (c) Cut–away View of Liquid Delivery Payload Concept

Exit ports for the reservoir can be seen in Figure 5.1(b). A hose extending from these exit

ports helps deliver the liquid to a specific location. The hose can either be empty or have

internal fins to replicate a static mixer. The maximum usable volume of liquid is 1.7 ml;

however, this amount can vary slightly depending on the configuration of the hose used. This

amount of liquid is similar in volume to a standard 2.0 ml package of the fibrin sealant Evicel

[66]. In addition, the small size of the hose allows for the administration of the appropriate

dosage in the form of 0.1–0.2 ml drops [66] to produce a thin, even layer.

The syringe–like plunger and split reservoir concept described above was experimentally

tested before a complete prototype was built to verify that the payload motor could produce

an adequate push force to actuate the plunger, and to identify a plunger design that would

provide a leak–free seal.
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5.2 Dispensing Mechanism Testing

To actuate the plunger successfully, the payload motor needs to be powerful enough to

overcome resistance from the fluid–wall shear stress, the decrease in cross–sectional area

from reservoir entrance to exit, the friction between the plunger and reservoir walls, and

losses in the leadscrew and leadnut mechanism. The leadscrew and leadnut mechanism was

assumed to be part of the motor and, therefore, performance losses from it were included

into the performance of the motor.

5.2.1 Maximum Motor Push Force

The maximum push force that the payload motor could generate was measured using the

experimental setup shown in Figure 5.2. A 4–40 threaded stainless steel screw was cut to

create a leadscrew and mounted onto the motor shaft. The motor was secured in a stand

fabricated with rapid prototyping techniques using FullCure 720 Transparent material on an

Eden 350 3D printer. A threaded nylon stand–off was attached to each side of a load cell

(ELFM–T2E–25L) with one stand–off screwed onto the leadscrew and the second stand–off

allowed to slide through a mounting piece that was also rapid prototyped. Fastened to the

other end of the second stand–off, another stainless steel screw pressed against a 4–mm thick

aluminum plate that was held in place using a C–clamp. The motor was supplied with three

different voltage levels (3.0 V, 3.8 V, and 4.5 V) using a power supply, and the output of the

load cell was recorded at motor stall for each voltage level. These three levels span the range

the on–board battery can supply during operation. At each voltage level, three trials were

performed and the outputs were averaged to give a maximum push force from the motor

and leadscrew mechanism. The results of this test are shown in Figure 5.3.

5.2.2 Major and Minor Head Loss

The resistance generated from the fluid–wall shear stress and the decrease in cross–sectional

area from reservoir entrance to exit, referred to as major and minor head loss, respectively,

was estimated using conservation of mass and energy. A simplified schematic of the reservoir
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Figure 5.2: Setup for Measuring the Maximum Push Force of the Payload Motor

Figure 5.3: Maximum Push Force Test Results of 615 C 4.5 S Motor with 256:1 Gearhead
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used for these calculations is shown in Figure 5.4. Conservation of mass requires the mass

Figure 5.4: Simplified Schematic of Reservoir

flow rate ṁ1 through the cross–sectional area of the reservoir entrance A1 to equal the mass

flow rate ṁ2 through the cross–sectional area of the reservoir exit A2. The flow is assumed to

be uniform at sections (1) and (2), at constant pressure along section (1), and incompressible,

which results in Equation 5.3 for the exit velocity V2 based on the entrance velocity V1 and

ratio of cross–sectional areas:

ṁ1 = ṁ2 (5.1)

ρ1A1V1 = ρ2A2V2 (5.2)

V2 = V1
A1

A2

. (5.3)

This expression for V2 was used with the energy equation (5.4) to obtain the pressure drop

∆p = p1 − p2 across the simplified reservoir

p1
ρg

+
V 2
1

2g
=
p2
ρg

+
V 2
2

2g
+ hL, (5.4)

where hL = hL,major + hL,minor accounts for the major and minor head loss. For a constant

diameter, horizontal, and fully developed flow, the major head loss can be expressed as

hL,major = f
l

D

V 2
1

2g
, (5.5)
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where f is the friction factor, l is the reservoir length, and D is the reservoir diameter. For

fully developed laminar flow, the friction factor is only a function of the Reynolds number

and expressed as f = 64/Re. The Reynolds number inside the reservoir is defined as

Re =
ρV1D

µ
, (5.6)

where µ is the dynamic viscosity of the fluid. The Reynolds number inside the reservoir was

calculated to be 9 for water at 20◦C, indicating laminar flow. The minor loss for a sudden

contraction in diameter is shown in Equation 5.7,

hL,minor = KL
V 2
2

2g
, (5.7)

where KL is a loss coefficient that is a function of the area ratio [67]. Substituting Equations

5.3, 5.5, and 5.7 into the energy equation and solving for ∆p = p1 − p2 results in Equation

5.8 for the pressure drop across the reservoir.

∆p = V 2
1

ρ

2

[(
A1

A2

)2

(KL + 1) + f
l

D
− 1

]
(5.8)

The entrance velocity V1 = 0.6 mm/s was estimated by measuring the velocity of the plunger

when attached to the leadscrew. The area ratio was estimated by using dimensions from

the 3D concept model, and water was used as the working fluid (µ = 1.003 · 10−3 Pa·s

and ρ = 998.2 kg/m2). The resulting estimated pressure drop of ∆p = 0.24 Pa was then

multiplied by the entrance cross–sectional area to give the force required to push water

through the reservoir. A force of 3.8 ·10−5 N was calculated which is very small compared to

the 43 N motor stall push force produced at the minimum supply voltage (3.0 V). Repeating

this calculation using glycerin as the working fluid (µ = 0.799 Pa·s and ρ = 1259.9 kg/m2),

which is approximately 800 times as viscous as water, results in a required push force of

1.7 · 10−4 N which is also very small compared to the motor capabilities. Therefore, the

contribution of the loss generated by the fluid and geometry was neglected and the resistance

seen by the leadscrew mechanism must be mostly generated by the friction between the
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plunger and reservoir walls.

5.3 Plunger Seal and Actuation Testing

The resistance from the fluid was estimated to be negligible so it was assumed the resistance

seen by the motor and leadscrew mechanism must mostly be generated by friction between

the plunger and reservoir walls. Depending on the type of seal between the plunger and

reservoir walls, this resistance could be very small where it would not affect the motion of

the plunger or it could be very large where it would prevent the plunger from translating.

A seal that generates almost no friction usually has little interaction with the walls and,

therefore, has a high potential to leak. On the other hand, a leak–free seal usually has

high interaction with the walls, but if this interaction is too intense, the plunger would be

immovable by the payload motor. This means that a plunger design must be found that

allows for a leak–free seal but is easily translated by the payload motor.

5.3.1 Experimental Setup

To find a seal that meets this balance, an experiment was constructed and three different

plunger designs were tested. This experimental setup builds on the one used for the motor

push force test (Figure 5.2) but instead of pushing against a stationary plate, a plunger

translated inside a replica of the fluid reservoir. A photograph of the experimental setup is

shown in Figure 5.5 and the three different plunger designs are shown in Figure 5.6.

The replica reservoir, plunger design 1, cylindrical connectors, motor stand, and supports

were all fabricated using rapid prototyping techniques from FullCure 720 Transparent ma-

terial using an Eden 350 3D printer. Plunger designs 2 and 3 were also made from FullCure

720 but use a rubber–like material glued around the plunger head to form a seal between the

plunger and reservoir walls. Also made on the Eden 350 3D printer, this material is called

Tango Black and is shown in black in Figure 5.6. Plunger design 1 was sized slightly smaller

than the reservoir so that it would slide but still have wall contact. The rubber–like seal in

plunger designs 2 and 3 were sized slightly larger than the reservoir so that it would press
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Figure 5.5: Seal Design Experimental Setup

(a) (b) (c)

Figure 5.6: (a) Plunger Design 1, (b) Plunger Design 2, (c) Plunger Design 3
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against the reservoir walls.

Each plunger design was attached to the second connector with a screw and translated

along reservoir. The reservoir was filled with water during each test to observe the amount

of leakage with each design. The motor was supplied with the minimum voltage seen during

operation, 3.0 V. To measure the required push force, the output of the load cell was mea-

sured with a multimeter sampling at 6 Hz and recorded using a laptop computer that was

connected to the multimeter.

5.3.2 Experimental Results

Plunger design 1 leaked significantly during testing and, therefore, was not considered as a

design choice. At the start of testing plunger design 2, the seal material around the plunger

head immediately ripped and, therefore, was also not considered as a possibility. Plunger

design 3 provided a leak–free seal and did not fail. The required push force for this seal along

with the push force at motor stall are plotted in Figure 5.7. These test results show that

plunger design 3 provided the balance needed to have a leak–free seal and still be movable

by the motor and leadscrew mechanism. Due to the margin between the required push force

and maximum push force at the minimum voltage supply shown in Figure 5.7, a smaller

ratio gearhead could be used and still provide adequate push force. Because a smaller gear

ratio shortens the length of the gearhead, and the length of the payload body is determined

by the length of the reservoir and leadscrew motor, decreasing the length of the gearhead

will decrease the length of the payload body.

5.4 Final Plunger Design

The final plunger design used for subsequent work is a slight modification of plunger design

3 to make assembly easier. Instead of a rectangular extrusion as shown in Figure 5.6(c), the

plunger head was modified to have a flat backing surface and a small boss that extends into

the rubber seal. A 3D model of the final design is shown in Figure 5.8 and photographs of

the final design are show in Figure 5.9. The final design of the plunger head and payload
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Figure 5.7: Required Push Force of Plunger Design 3 and Push Force at Motor Stall with a
Motor Supply of 3.0 V

body were built from WaterClear Ultra 10122 material using stereolithography (SLA) rapid

prototyping techniques.
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(a) (b)

(c)

Figure 5.8: (a), (b) Final Plunger Design with Motor, (c) Cross–sectional View of Final
Plunger Design Inside Reservoir

(a) (b)

Figure 5.9: (a) and (b) Photographs of Payload Body with Final Plunger Design and Motor
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Chapter 6

Numerical Investigation

The fluid delivery payload needs a hose–like attachment at the reservoir exit ports to deliver

the liquid to a specific location and to provide a mixing mechanism. The hose interior can

have different configurations depending on the desired application. For example, when using

a single type of liquid, the hose interior can be empty. If two different liquids are used

that need to be mixed, such as a fibrin sealant, the hose can be made with internal fins

to represent a static mixer. The small size of the hose and capabilities of available rapid

prototyping techniques only allowed for simplified versions of commercial static mixers to

be incorporated into the hose. Prior to fabricating and testing different hose designs, CFD

simulations were performed using ANSYS Fluent 12.1 to predict the performance of the

different designs. This Chapter discusses simulations that were performed prior to testing

and Chapter 7 discusses experimental verification of the simulations.

6.1 Hose Designs

Three different hose designs were compared in preliminary simulations: a plain hose, a cross–

blade hose based on the SMX mixer from Sulzer Chemtech, and a hose with triangular

tabs based on the HEV mixer from Chemineer. The HEV style hose has triangular tabs

extruding from the walls and the SMX style hose has four sections of blades arranged in

an “X” pattern. Each section along the length of the hose is rotated 90◦ relative to the

previous section. These hose designs were chosen because they were possible to build with

SLA rapid prototyping techniques and they were expected to produce different degrees of

mixing relative to each other. The plain hose was expected to produce no mixing, the HEV

style hose was expected to produce low to moderate mixing, and the SMX style hose was
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expected to produce moderate to high mixing. As discussed in Chapter 4, the Sulzer SMX

required the shortest length of hose to produce homogenization. Each hose design with a

side wall cut–away and dimensions is shown in Figure 6.1.

6.2 Simulation Setup

For each hose design, the reservoir and the size of exit ports do not change. Therefore, to

reduce calculations, only the flow through hose was simulated. The continuity and Navier–

Stokes equations were solved numerically to obtain the flow field through the different hoses.

For incompressible fluids, the continuity equation reduces to

∇ ·V = 0, (6.1)

where ∇ represents the gradient operator and V is the velocity vector. For steady flow, the

Navier–Stokes equation reduces to

V · ∇V = −∇p
ρ

+ g + ν∇2V, (6.2)

where p is the fluid pressure, ρ is the fluid density, g is the acceleration vector due to gravity,

and ν is the kinematic viscosity of the fluid. The mixing in the fluid can be expressed by

the convective–diffusion equation,

(V · ∇)c = D∇2c, (6.3)

where c is the mass fraction and D is the binary diffusion coefficient. To solve these equations

numerically, the fluid region inside each hose was modeled and meshed with finite volume

elements using a target edge length of 0.1 mm. The automatic mesh tool in ANSYS 12.1

was used to apply a structured, hexagonal mesh wherever possible and tetrahedral elements

where hexagonal ones were not practical or possible. For example, the plain hose could be

meshed with only hexagonal elements but the SMX style hose contains some tetrahedral

elements due to the complicated geometry. Figure 6.2 shows an overview of the SMX style
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(a) (b)

(c)

Figure 6.1: Cut–away View of Hose Designs (All Dimensions in Millimeters): (a) Plain
Hose, (b) HEV Style Hose, (c) SMX Style Hose
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geometry and an enlarged view showing the mesh details.

The flow through the hose was modeled as laminar with two separate inlets and one outlet

using constant velocity and outflow boundary conditions, respectively. A laminar model was

chosen because the Reynolds number was estimated to be 70 for water in the plain hose.

Liquid flows from the reservoir compartments, through the hose, and then exits the robot.

Therefore, each inlet of the hose shown in Figure 6.2(a) represented the exit port of each

reservoir compartment. The hose inlet flow velocity of V1 = 17.6 mm/s was calculated using

the simplified reservoir schematic in Figure 5.4, Equation 5.3, and the estimated reservoir

entrance velocity of V2 =0.6 mm/s. Gravity was set in the negative Z–direction (Figure

6.2(a)). Water was used as both working fluids using a no–slip boundary condition with the

walls. To evaluate mixing in the hose, fluid entering through each inlet was defined separately

using the Species Transport model in Fluent which allows for the output of the mass fraction

of each fluid in each element. The mass fraction data were used as the concentration values

necessary to calculate a mixing efficiency according to Equation 4.7. This metric was used

because it rated mixing on a scale from 0% to 100%. A constant diffusion coefficient was

assumed and set to 10−9 m2/s, which is a typical value for the interdiffusion coefficient

of water. To reduce unphysical numerical diffusion, the high order discretization scheme

Third–Order MUSCL was used.

6.3 Preliminary Simulation Results

Each of the three hose designs were simulated and rated based on how mixed the two

fluids were at the outlet of the hose using Equation 4.7. The maximum standard deviation

σmax = 0.5 was determined by considering the completely unmixed case where half of the

elements have a mass fraction of 1 and half of the elements have a mass fraction of 0. The

standard deviation σ was calculated for each hose by measuring the mass fraction of the first

fluid defined as water in each element on the outlet surface. A standard deviation equal to

the maximum results in a 0% mixed solution and a standard deviation equal to 0 results in

a 100% mixed solution.

The mass fraction simulation results are shown in Figure 6.3. In these contour plots,
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(a)

(b)

Figure 6.2: Geometry and Mesh of SMX Style Hose: (a) Overview of Geometry and (b)
Enlarged View with Mesh
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red represents a mass fraction of 1 (i.e., a cell completely filled with the first fluid), blue

represents a mass fraction of 0 (i.e., a cell completely filled with the second fluid), and green

represents a mass fraction of 0.5 (i.e., a cell filled with 50% of the first fluid and 50% of

the second fluid). Therefore, the mass fraction simulation results for an ideal mixer would

show all red entering though the first inlet, all blue entering through the second inlet, and

all green exiting the hose. The results show low mixing of 2.0% for the plain hose and 6.4%

for the HEV hose, while 59.0% mixing for the two liquids was obtained at the end of the

SMX style hose. To verify the simulation results, an experiment was constructed, which is

discussed in Chapter 7.
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(a)

(b) (c)

Figure 6.3: Preliminary Simulation Results: (a) Plain Hose (2.0% Mixed), (b) HEV Hose
(6.4% Mixed), and (c) SMX Hose (59.0% Mixed)
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Chapter 7

Mixing Experiments

To confirm the guidance provided by the numerical simulations, an experiment was con-

structed to test the different hose designs. Due to the small size of the hose, a color dilution

method was used to measure the mixing efficiency of the hose designs. Another reason for

using this testing method was that it was less expensive and easier to set up than other

methods, such as PLIF (discussed in Section 4.3).

7.1 Experimental Setup

To measure the degree of mixing through each hose, the payload body was used with one

reservoir compartment filled with distilled water dyed with black food coloring and the

other compartment filled with plain distilled water. The motor was supplied with 4.0 V, a

typical voltage level seen by the motor during operation, and the plunger was then actuated

until the mixture reached the end of an open channel extension that was added onto the

hose. A digital camera mounted above the hose photographed the mixture in the extension

once the plunger was stopped. To determine mixing efficiency, the standard deviation of

blue channel pixel values from the RGB color image was calculated and used in Equation

4.7. The blue channel was chosen because there was a larger difference between the dyed

and undyed liquid pixel values for the blue channel than for the red or green channels. A

rectangular region in the open channel extension immediately after the hose exit was used

for the measurement. To calculate the maximum standard deviation for each hose, separate

photographs of only black dyed water and of only undyed water were used. The pixel values

in the measurement region of each photograph were extracted and assumed to be part of

the same photograph. The standard deviation of the combined pixel values was taken to
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give the maximum standard deviation. The payload body with the open channel extension

is shown in Figure 7.1.

Figure 7.1: Payload Body with SMX Hose and Open Channel Extension Used for Mixing
Experiments

The payload body and camera were both mounted in a stand that overhung a laptop com-

puter screen. The computer was opened to 180◦ and a blank Microsoft Powerpoint document

was set in presentation mode which provided diffuse and even illumination. To further dif-

fuse the light, a rectangular piece of white Delrin plastic was mounted just below the hose.

All overhead lights were switched off during testing. A schematic of the experimental setup

is show in Figure 7.2.

7.2 Modified Simulation Setup

In Chapter 6, preliminary simulation setup and results were discussed. The mixing efficien-

cies for those hose designs were calculated using a surface perpendicular to the bulk flow

direction, immediately at the end of each hose (outlet surface in Figure 6.2(a)). However,

the experiment calculates mixing efficiency based on a rectangular region parallel to the bulk
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Figure 7.2: Schematic of Experimental Setup

flow direction. In addition, the camera only captures a 2D photograph of the distribution of

the black dye whereas the simulation is able to produce mass fraction data in three dimen-

sions. Therefore, the simulation setup and mixing efficiency calculation region were slightly

modified to produce a situation closer to the experiment than the situation created by the

preliminary simulation setup.

To reproduce the mixing hose extension used in the experiment, an extension was also

added to the end of the hose in the simulation. An example of this extension is shown in

Figure 7.3. The hose orientation with respect to gravity, as shown in Figure 6.2, remained the

same for the modified simulation so that the simulation and experiment would be consistent.

To verify the simulation using the experimental setup described above, a similar measure-

ment needed to be taken in both the experiment and the simulation. To accomplish this, the

mass fraction data from the simulation were manipulated to reflect the measurement taken

by the camera in the experiment. First, a rectangular region at the beginning of the hose

extension similar in size to the region used in the experiment was selected. This region is

labeled in Figure 7.3 as the Measurement Region. Due to the mesh type and size used in the

simulation, mass fraction data were available at 0.1 mm increments in each direction inside

the measurement region. Next, at each (X,Y) location inside the measurement region, the

mass fraction data were averaged along the Z-direction. This type of averaging results in a
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Figure 7.3: SMX Style Hose with Extension used in the Modified Simulations

planar surface with a single mass fraction value at each (X,Y) location. Because the camera

in the mixing experiment captures a 2D representation of the distribution of black dye in

the hose extension and the mass fraction data from the simulation was manipulated to give

a 2D representation as well, these two measurements were assumed to be similar.

Using this modified setup, simulations were run using the plain hose, HEV style hose,

SMX style hose, and a double length SMX style hose. As in the preliminary simulations,

two liquids, both defined as water, were used as the working fluids for each hose. Because

one possible application of the liquid delivery payload is to deliver a fibrin sealant (which

has two different liquid components), additional simulations were run for the plain hose and

SMX style hose using water as the first liquid and a glycerin–water mixture as the second

liquid. A glycerin–water mixture was used to create the second liquid because its properties

were known [68]. A composition of 50% by volume glycerin and 50% by volume water was

chosen for the glycerin–water mixture and results in a liquid that has a density of 1129 kg/m3

and a dynamic viscosity of 4.66 · 10−3 Pa·s [68]. This composition was chosen because it was

easily applied in the experiment. Water has a similar vicosity to the thrombin solution and
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the viscosity of the fibrinogen solution in a typical fibrin sealant is 0.030 Pa·s.

7.3 Simulation and Experimental Results

The simulation and experimental results for the plain hose using water as both working fluids

are shown in Figure 7.4. Three trials with the plain hose are shown in Figure 7.4(b) along

with their associated standard deviation of pixel values for the blue channel. The yellow

rectangles in these photographs represent the measurement regions.

The simulation predicted almost no mixing with the plain hose because the two liquids

simply flow side–by–side through the hose. Only a very small amount of mixing occurred

at the two–liquid interface resulting in a mixing efficiency of 2.4%. In the experiment, the

same side–by–side flow pattern was observed. Averaging the standard deviations from the

three trials resulted in a mixing efficiency of 4.5% ± 1.3% for the plain hose (σmax = 37.0)

which is similar to the efficiency predicted by the simulation.

The HEV style hose was the second hose tested, and the simulation and experimental

results are shown in Figure 7.5. The simulation predicted a side–by–side flow structure

similar to that of the plain hose but with slightly more mixing at the two-liquid interface.

The predicted mixing efficiency was 6.0%. A similar flow structure was seen in the experiment

along with a similar mixing efficiency of 5.3% ± 1.5% (σmax = 33.5).

Figure 7.6 shows the simulation and experimental results for the third hose, the SMX style

hose. The simulation predicted stripe–like structures of commonly–valued mass fraction cells

and a mixing efficiency of 64.8%. The experimental results show similiar stripe–like features

and a similar mixing efficiency of 70.0% ± 0.8% (σmax = 46.0).

The fourth hose is also an SMX style hose; however, it is twice as long as the previous

SMX style hose. The plot in Figure 7.7(a) shows mostly green contours indicating a mass

fraction of 0.5 in many of the cells and a well mixed case. The predicted mixing efficiency

was 86.0%. The experiment also resulted in a well mixed case with a few faint streaks. The

mixing efficiency from the experiment was 87.5% ± 0.1% (σmax = 27.2).

In addition to using water as both working fluids, the plain hose and the SMX style hose

were simulated and tested using water as the first fluid and a glycerin–water mixture as the
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(a)

(b)

Figure 7.4: Plain Hose Results Using Water as Both Working Fluids: (a) Simulation and
(b) Experimental Results

49



(a)

(b)

Figure 7.5: HEV Hose Results Using Water as Both Working Fluids: (a) Simulation and
(b) Experimental Results

50



(a)

(b)

Figure 7.6: SMX Hose Results Using Water as Both Working Fluids: (a) Simulation and
(b) Experimental Results
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(a)

(b)

Figure 7.7: SMX Double Length Hose Results Using Water as Both Working Fluids: (a)
Simulation and (b) Experimental Results
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second fluid. In the experiment, the distilled water was dyed black and the glycerin–water

mixture was left clear.

The simulation and experimental results for the plain hose using water and the glycerin–

water mixture are shown in Figure 7.8. The contour plot from the simulation in Figure

7.8(a) shows almost no mixing with a distinct separation between the water and the glycerin–

water mixture. The water quickly floats to the top and the glycerin–water mixture quickly

sinks to the bottom of the hose. However, using the measurement method described in

Section 7.2, a mixing efficiency of 99.2% is predicted. The experiment showed a completely

uniform mixture resulting in a mixing efficiency of 93.0% which is similar to the simulation’s

prediction. However, taking a side–view photograph of the experiment (Figure 7.8(c)), the

same separated flow structure as predicted by the simulation can be seen, which is clearly

not approximately 95% mixed. In addition, if the standard deviation in the simulation was

calculated in the measurement region without averaging the mass fraction values along the

Z–direction (i.e., using every mass fraction value in the measurement region in 3D), the

mixing efficiency is predicted to be 8.0% which is much more reasonable considering the

flow structure. These results indicate that the experimental method used is not suitable

for measuring mixing between two different liquids. Because the camera captures a 2D

representation of the 3D distribution of black dye, the RGB pixel values in the image are

a line–of–sight average. If two liquids with different densities and viscosities are used in

the experiment, the less dense liquid is pushed on top of the more dense liquid forming a

layered structure. The camera takes a line–of–sight average of the layered structed and the

distrubition of black dye appears to be homogenous. Therefore, using two different liquids

with the existing experimental method gives an incorrect measurement of mixing efficiency.

A similar conclusion about the experimental method using two different liquids was

reached based on simulations and tests of the SMX style hose using water and the glycerin–

water mixture. The simulation and experimental results for this case are shown in Figure

7.9. Using the measurement method described in Section 7.2, a mixing efficiency of 92.4%

was predicted by the simulation. However, the contour plot of the simulation results showed

layers of commonly valued cells in the X–Y plane and did not appear to be well mixed.

The experiment showed similar results to the simulation with a mixing efficiency of 91.2%.
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(a)

(b) (c)

Figure 7.8: Plain Hose Results Using Water as the First Working Fluid and a
Glycerin–Water Mixture as the Second Fluid: (a) Simulation and (b) Experimental
Results; (c) Side View of Experimental Results
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Again, a side view of the hose showed a layered structure in the horizontal plane matching

the simulation’s prediction. As with the plain hose case, if the standard deviation in the

simulation was calculated without averaging along the Z–direction, a mixing efficiency of

31.8% was predicted which is also more reasonable considering the flow structure.

7.4 Discussion

An experiment was designed and carried out to validate the mixing efficiency results from

the numerical simulation. Four different cases were tested with water as both of the working

fluids, and two different cases were tested using water as the first working fluid and a glycerin–

water mixture as the second working fluid. In all four cases using water as both working

fluids, the simulation and experimental results were similar. In the two cases using water

and a glycerin–water mixture as the working fluids, the experimental method gave incorrect

results. However, the layered flow structure was visually similar in both the simulation and

experiment. Therefore, it was concluded that the simulation was providing accurate results.

Because the simulation results were validated by the physical experiments, different hose

designs could be explored using simulation alone and without performing time–consuming

and expensive experiments. Other designs for the mixing hose explored using simulation are

presented in Chapter 8.
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(a)

(b) (c)

Figure 7.9: SMX Style Hose Results Using Water as the First Working Fluid and a
Glycerin–Water Mixture as the Second Fluid: (a) Simulation and (b) Experimental
Results; (c) Side View of Experimental Results
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Chapter 8

Exploration of Mixing Hose Design

Results from the ANSYS Fluent 12.1 simulations were verified for six different cases and

discussed in Chapter 7. Because the simulation was experimentally validated, it was then

used to explore additional designs that might improve mixing in the hose. One possible

application of the liquid delivery payload is to assist with hemostasis by delivering a fibrin

sealant. Therefore, the following simulations used viscosities similar to those of the two

components in a typical fibrin sealant.

8.1 Simulation Setup

Two simple modifications were made to the simulation setup. First, the orientation of the

hose was rotated 90◦ about its long axis (i.e., gravity pointed in the negative Y–direction

instead of the negative Z–direction). In the previous simulations and the experiment, the

mixing hose was laid on its side to allow for a matching orientation between the simulation

and experiment. However, when an incorporeal robot is equipped with a liquid delivery

payload, the exit ports are orientated one above the other instead of side–by–side. Therefore,

the following simulations used the new orientation. Figure 8.1 shows the new orientation

used.

Second, water was still used as the first liquid but a different glycerin–water mixture

was used for the second liquid. This mixture was 70% by volume glycerin and 30% by

volume water, which resulted in a viscosity of 0.030 Pa·s [68]. Water has a similar vicosity

to the thrombin solution and the new glycerin–water mixture has a similar viscosity to the

fibrinogen solution in a typical fibrin sealant.
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Figure 8.1: SMX Style Hose in Rotated Orientation

8.2 Simulation Results

With the new hose orientation (Figure 8.1), the inlets are position one above the other and

the choice of inlet for the water component is important because gravity has a larger affect

on mixing than when the inlets are positioned side–by–side. The first two simulations were

run with the SMX style hose to determine which inlet the water component should enter

through. These results are shown in Figure 8.2. When water enters through Inlet 2, the

mixing efficiency at the hose outlet is 67.0%, which is more than double the mixing efficiency

when water enters though Inlet 1, 31.8%. Therefore, the water component was setup to enter

through Inlet 2 for the remaining simulations.

Next, the SMX style hose was compared with two different hose styles. The first hose style

has helical elements similar to the Kenics KM mixer (Figure 4.1(a)) and the second hose

has thin SMX style blades. The helical elements were cut to fit the same cross–sectional size

as the SMX style hose. The blade thickness of the SMX style hose was reduced to 0.4 mm

from 1.0 mm. Cut–away views of both hose designs are shown in Figure 8.3 and simulation

results are shown in Figure 8.4. The resulting mixing efficiencies for the helical hose and the
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(a)

(b)

Figure 8.2: Simulation Results for SMX Style Hose with Water Component Entering
Through: (a) Inlet 1 (31.8% Mixed) and (b) Inlet 2 (67.0% Mixed)
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thin SMX hose are 48.6% and 40.4%, respectively. With a mixing efficiency of 67.0%, the

original SMX style hose still performed better than the helical and thin SMX style hoses.

Another set of hose designs were simulated to see if they could perform better than the

original SMX style hose. These two hoses were a combination of helical elements and SMX

style blades. In the first hose of this new set, the helical–SMX hose, two helical elements were

followed by two SMX style blade elements. In the second hose, the SMX–helical hose, the

order of these elements were reversed compared to the helical–SMX hose. Cut–away views

of these hose designs are shown in Figure 8.5 and simulations results are shown in Figure

8.6. Both of these hose designs resulted in a very similar mixing efficiency and also did not

perform as well as the original SMX style hose. The mixing efficiencies for the helical–SMX

hose and the SMX–helical hose were 62.2% and 62.4%, respectively.

Of the new hose designs simulated, the SMX style hose produced the highest mixing

efficiency at the outlet. Therefore, it was recommended that this style hose be used when two

liquids need to be mixed before being dispensing. The next set of simulations investigated

how a faster or slower inlet velocity affected mixing through the SMX style hose. One

simulation was run with an inlet velocity of 70.4 mm/s and the other used an inlet velocity

of 8.8 mm/s corresponding to a factor of four increase and a factor of two decrease compared

to the original velocity used, respectively. The faster velocity simulates using a motor with a

64:1 instead of a 256:1 gearhead. The slower velocity simulates running the 256:1 gearhead

and motor at half of the speed used previously. The simulation results are shown in Figure

8.7. With a faster inlet velocity, a spot of darker blue remained at the top and a spot of

orange remained at the bottom of the hose outlet. With a slower inlet velocity, there was a

dark blue region at the bottom and a red region at the top of the hose outlet. The increase

in velocity appeared to help keep the more dense liquid (blue) at the top of the hose and the

decrease in velocity appeared to allow the more dense liquid to sink to the bottom of the

hose. Both of the resulting mixing efficiencies were lower than the mixing efficiency when

using a inlet velocity of 17.6 mm/s. The faster inlet velocity of 70.4 mm/s resulted in a

mixing efficiency of 65.4% and the slower inlet velocity of 8.8 mm/s resulted in a mixing

efficiency of 41.2%.

The simulation results showed that the SMX style hose with an inlet velocity of 17.6
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(a)

(b)

Figure 8.3: Cut–away View of Hose Designs: (a) Helical and (b) Thin SMX Style Hoses
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(a)

(b)

Figure 8.4: Simulation Results for: (a) Helical (48.6% Mixed) and (b) Thin SMX
Style(40.4% Mixed)
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(a)

(b)

Figure 8.5: Cut–away View of Hose Designs: (a) Helical–SMX and (b) SMX–Helical Hoses
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(a)

(b)

Figure 8.6: Simulation Results for: (a) Helical–SMX (62.2% Mixed) and (b) SMX–Helical
(62.4% Mixed)
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(a)

(b)

Figure 8.7: Simulation Results for: (a) Factor of Four Increase (65.4% Mixed) and (b)
Factor of Two Decrease in Inlet Velocity (41.2% Mixed)
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mm/s reached the highest mixing efficiency of the group at the hose outlet (67.0%). This

was considered good performance because the viscosities of the two fluids differ by a factor

of 30, and the hose is only 4.0 mm high, 2.8 mm wide, and 18.0 mm long. However, a

final simulation was run to explore whether mixing efficiency would improve by doubling

the length of the hose. The results in Figure 8.8 show an almost completely green–colored

outlet corresponding to a mxing efficiency of 90.0%.

Figure 8.8: Simulation Results for the Double Length, SMX Style Hose (90.0% Mixed)

8.3 Conclusions

Additional simulations were performed and rated based on mixing efficiency at the hose out-

let. All of these simulations used a rotated hose orientation with respect to the orientation

used in Chapter 7. The hose was rotated to match the actual orientation used when dis-

pensing liquid. Also, the second liquid component was changed to a glycerin–water mixture

with a viscosity of 0.030 Pa·s. The first liquid component remained water with a viscosity

of 0.001 Pa·s.
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Using the SMX style hose, it was found that if the second liquid component entered

through Inlet 1 instead of Inlet 2, the mixing efficiency increased from 31.8% to 67.0%.

Using this inlet setup, four additional hose designs were simulated. The simulation results

for these hoses showed lower mixing efficiencies than for the SMX style hose. Then, taking

the SMX style hose as the best performer of the group, two simulations were run using

an increased and a decreased inlet velocity. Increasing the inlet velocity by a factor of

four or decreasing the inlet velocity by a factor of two resulted in a lower mixing efficiency.

Therefore, the SMX style hose using an inlet velocity of 17.6 mm/s was considered to perform

well especially considering its small size. If a mixing efficiency higher than 67.0% is desired,

it was shown that doubling the length of the SMX style hose resulted in a mixing efficiency

of 90.0%. The high mixing efficiency produced by the SMX style hose confirms the third

payload design criteria from Section 2.3 was met.
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Chapter 9

Porcine Model Testing

9.1 Test Setup

Two incorporeal robots with a fluid delivery payload and SMX style hose were assembled, the

reservoir compartments were filled with liquid, and then shipped to the Advanced Medical

Technologies Laboratory at the University of Colorado to be tested in an in vivo porcine

model. After arrival at the University of Colorado, the filled robots were stored for five

days prior to testing. The purpose of porcine model testing was to demonstrate the sealing,

dispensing, and mixing capabilities of the liquid delivery payload. Because the robots were

assembled and filled before being shipped, tape was placed over the hose ends and charging

ports prior to shipping to prevent leakage through the open orifices. The liquid used in the

robots was made by diluting 1 ml of paint into 180 ml of water. Black paint was used for

the first compartment and white paint was used for the second compartment. This mixture

was used to provide a color contrast to the internal organs and tissue of the porcine. Also,

the white and black liquids would mix to from a gray liquid and a qualitative measure of

mixing could be determined. After five days of storage, the robots were placed into the

porcine where the plungers were actuated until all of the liquid inside of the reservoirs were

expelled.

9.2 Test Results

Upon arrival at the University of Colorado, the robots were inspected and found to be leak–

free. In addition, there was no leakage during the five days prior to the test. These findings

further confirmed that the payload design is indeed leak–free. Once inside the animal, the
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plungers were actuated and liquid was successfully expelled from the reservoirs onto the

internal organs. However, the expelled liquid was clear instead of black or white because

the paint and water had separated during storage prior to testing. A photograph of the

incorporeal robot with a liquid delivery payload during the porcine model test is shown in

Figure 9.1.

Figure 9.1: Photograph of Incorporeal Robot with Liquid Delivery Payload During Porcine
Test

9.3 Discussion

The results from the in vivo porcine model confirmed the first and second payload design

criteria from Section 2.3 were met. Because the robots were found to be leak–free after

shipping and five days of storage, the first design criteria of a sealed chamber had been met.

In addition, the robots successfully dispensed liquid from the reservoir onto the porcine

organs confirming that the second design criteria had been met.
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Chapter 10

Main Control Board Update

10.1 Hall Effect Switch

As discussed in Section 2.3, initial designs of the modular robots required about 30 minutes

of assembly immediately prior to use because the only way to turn the robot on or off was

by soldering wires to the main control board. This last minute assembly prevents the robots

from being tested immediately before an experiment, is a potential source of last minute

failures, prevents quick deployment and use, and is an inefficient use of battery power.

To solve these problems, the main control board was re–designed and a Hall effect switch

(AH180–SNG–7) was incorporated to turn the robot on or off with a magnet held external

to the robot.

The main control board is small (30.4 mm by 11.2 mm) and was already filled with

components, so several redundant or unused components were removed or rearranged to

make space for the Hall effect switch. Labeled photographs of both sides of the main control

board before the modifications are shown in Figure 2.2. One of the two FPC connectors

and the external crystal oscillator were removed from the board. The package for the MCU

was replaced with a smaller one and was programed to use an internal crystal oscillator.

Also, the single–output voltage regulator was replaced with a dual–output voltage regulator

(TPS719285–285) so that the power connection for the MCU could be separate from the

one for the RF transceiver and the motor driver. A labeled electrical schematic showing the

implementation of the Hall effect switch and dual–output regulator is presented in Figure

10.1.

The dual–output regulator and the Hall effect switch are both powered directly by the

battery (V+ and V-). The output pin of the Hall effect switch (OUT) was connected to the
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Figure 10.1: Electrical Schematic Showing Implementation of Hall Effect Switch and
Dual–Output Regulator

first enable pin on the voltage regulator (EN1). Because the MCU’s power line (VCC1) was

connected to the corresponding output pin (OUT1) for EN1 on the voltage regulator, the

Hall effect switch controls the on/off state of the MCU. A general input/output (I/O) pin

on the MCU was connected to the second enable pin on the voltage regular (EN2) and the

power lines of the RF transmitter and motor driver (VCC2) were connected to the output

pin on the voltage regulator (OUT2) corresponding to EN2. When the MCU is powered on,

it can turn the RF transmitter and motor driver on or off by setting this I/O line high or

low. With this connection scheme, the entire control board (except the voltage regulator

and Hall effect switch) can be powered off by holding magnet near the Hall effect switch

when the robot is fully assembled. Without a magnet near the Hall effect switch, the MCU

is powered on and the state of the MCU’s I/O pin connected to EN2 controls the power to

the RF transceiver and the motor driver.

The addition of the Hall effect switch allows for assembly and testing prior to use and

storage at an extremely low power state. Through ex vivo testing, it was confirmed that

the redesign of the main control board and implementation of the Hall effect switch were

successful. During the course of these tests, a robot was powered on and off daily for a

period of two months. A programmed initialization routine tested the motors during the

power up procedure. Over the course of the two months, the robot continued to function

properly.
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10.2 In–Circuit Serial Programming

As discussed in Section 2.2, another limitation of the modular robot was that the correct

software had to be programmed to the MCU before soldering it to the main control board.

If errors existed in the code or if new functionality was to be added, a completely new board

had to be used. To overcome this problem, the dual–output voltage regulator was used

along with the remaining six–pin FPC connector to take advantage of the MCU’s in–circuit

serial programming (ICSP) capabilities. A voltage regulator with dual–outputs was needed

to separate the power pins on the MCU from those on the RF transceiver and motor driver.

This is because during ICSP, voltage levels are reached that are higher than the maximum

allowed on the RF transceiver and motor driver. Also, the pins attached to the six–pin FPC

connector were chosen carefully so that the sensor payload could still utilize this connector.

With the update to the main control board, it was verified through ex vivo testing that the

software for the microprocessor can now be changed by using the six–pin FPC connector. In

turn, this allows for immediate implementation of updated program code, greater flexibility

in the development of new payloads, and adoption of microprocessor features such as power

saving functions. Photographs and a full electrical schematic of the updated main control

board are shown in Figure 10.2 and Appendix A, respectively.
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(a)

(b)

Figure 10.2: Updated Main Control Board: (a) Front and (b) Back
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Chapter 11

Conclusions

Miniature, incorporeal robotic assistants represent a potentially innovative solution to the

limited access and multiple incision problems associated with minimally invasive abdomi-

nal surgery. Previous work had demonstrated that a family of fixed–base and a family of

modular, wireless incorporeal mobile robots could successfully operate within the abdominal

cavity. However, the family of modular robots did not have a payload with the ability to

store and dispense liquids.

The main focus of this thesis was the development of a liquid drug delivery payload for

this family of robotic assistants. Included in the development was a method for mixing two

liquids stored inside the robot as they are dispensed, which is needed for dual compound

liquids such as fibrin sealants. In addition, two improvements to the current design of the

main circuit board were presented that allow for more rapid robot deployment and provide

the ability for point of use changes to the embedded control software.

Based on the three general design requirements for having a liquid drug delivery payload:

1. A sealed chamber that can separately store two different liquids,

2. A mechanism to dispense the liquids in the chamber, and

3. An ability to mix the two liquids stored in the chamber before they are dispensed (e.g.,

if fibrin sealant is used),

a prototype concept was designed, built, and tested. A liquid reservoir built into the robot

payload body was shown to be leak–free through bench–top and porcine model testing. The

motor, 256:1 gearhead, and leadscrew mechanism for the liquid delivery payload were shown

to be more than adequate to actuate the plunger while keeping a leak–free seal. Different
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hoses were attached to the reservoir that could simply deliver liquid or could also mix two

liquids stored in the reservoir as they are dispensed. A static mixer was incorporated into

the hose to provide this mixing. A color dilution experiment was set up and conducted to

verify mixing results from ANSYS Fluent 12.1 CFD simulations. Once verified, additional

configurations were explored using simulation, and an SMX style hose design was found to

produce the highest degree of mixing of the group tested. Two incorporeal robots with a

liquid delivery payload and SMX style mixing hose were assembled, shipped to the University

of Colorado, and tested in a porcine model. After shipping and five days of storage, the robots

were found to be leak–free. The robots successfully dispensed liquid from the reservoirs to

the internal organs of the porcine.

Finally, the robot’s main circuit board was redesigned. A Hall effect switch was added that

allowed an external magnet to disconnect power from the robot. This improvement allows

for assembly and testing prior to use, and long–term storage at an extremely low power

state. Also with the redesign of the circuit board, in–circuit serial programing capabilities

were added. This improvement allows for immediate implementation of updated embedded

control software, greater flexibility in the development of new payloads, and adoption of

microprocessor features such as power saving functions. Through ex vivo testing, it was

confirmed that the redesign of the main control board, implementation of the Hall effect

switch, and implementation of in–circuit serial programming were successful.
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Appendix A

Main Control Board Schematic
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Figure A.1: Full Electrical Schematic of Updated Main Control Board
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