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ABSTRACT 

Internet of Things (IoT) is a fast-growing technological trend, which is expected to revolutionize 

the world by changing the way we do things. IoT is a concept that encourages all the electronic 

devices to connect to the internet and interact with each other. By connecting all these devices to 

the internet, new markets can be created, productivity can be improved, operating costs can be 

reduced and many other benefits can be obtained. In IoT architecture, often sensors and 

aggregators collect data and send to a cloud server for analyzing via the traditional cloud-server 

model. This client-server architecture is not adequate to fulfill the growing requirements of IoT 

applications because this model is subjected to cloud latency.  

This research proposed a distributed computing model called Distributed Shared Optimization 

(DSO) to eliminate the delay caused by cloud latency. DSO is based on swarm intelligence 

where algorithms are built by modeling the behaviors of biological agents such as bees, ants, and 

birds. Mobile Ad-hoc Network (MANET) is used as the platform to build distributed computing. 

The infrastructure-less and leader-less features of MANET make it the ideal candidate to build 

IoT with swarm intelligence. To test the theory, this research also built a simulation program and 

conducted multiple simulations on both DSO and client-server models. The simulation data was 

analyzed by descriptive statistics and One-Way ANOVA. This research found that there is a 

significant difference in computing time between DSO and client-server models. Further, 

Multiple-Regression technique was conducted on DSO simulation data to identify the effect 

sensors and data had towards DSO computing time.  
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PREFACE 

The purpose of this dissertation is to propose a distributed computing mechanism in IoT 

environment that can model swarm intelligence behaviors. The results of this study can be 

applied to build efficient data processing IoT applications.  
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CHAPTER 1 

 

INTRODUCTION 

Internet of Things (IoT) is a concept that refers to the collection of devices (things) that 

are connected to the internet and interact with each other. Identification numbers, names or 

addresses could identify each device. In IoT theory, any type of device can be connected to the 

internet. Those IoT devices can be either home environment devices such as television, 

microwave, and coffee maker or large machines such as jet engines and factory machinery 

(Verma, 2016). By connecting all the devices to the internet, information flows to every device 

seamlessly. Figure 1 describes this concept that all the devices are connected to the internet and 

each other. IoT can also be considered as a global network that allows communication from 

human to human, human to things and things to things (Madakam et al., 2015). This creates a 

major breakthrough in productivity because many actions can be completed without much 

human interaction. 

Applications of IoT are countless. For example, in a home environment, a smart 

refrigerator can track the expiry dates of food items through sensors and could place an order to 

the grocery shop if the level goes below a certain limit. In a similar way, home appliances, 

security cameras, doors, temperature monitors and personal computers can be connected to the 

internet to provide automated home operations. For elders, IoT applications could provide 

assisted living through sensors monitoring their health and home safety. In the event of an 
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emergency, first responders, through sensors, could be called automatically. 

IoT applications are not just limited to home environments. When cars, traffic signals, 

street lamps and roads are connected to the internet, smart decisions can be made to avoid traffic 

congestion. For example, personal calendar planning applications can retrieve real-time traffic 

data through sensors in the streets to determine the best time to travel. Similarly, a city’s waste, 

water, and power can be managed efficiently through IoT. This concept leads to smart cities and 

smart grids. 

 

Figure 1. Internet of Things Overview. 

The concept of IoT is very broad. In general, IoT structure can be broken into four major 

layers: sensors, communication, computation and service (Chen, 2012). Sensors collect data. 

Communication units send this data to computation units for processing. Based on the data 

analysis, services take action. It is not necessary to have a device for each layer. One or two 
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devices can function all four components of IoT. For example, a mobile phone could act both as 

a sensor and a communication unit to send data to the cloud server, which could act as both 

computation and service units.  

By connecting anything to the internet, IoT creates enormous amounts of data. Cisco’s 

Fourth Annual Global Cloud Index Study estimates the data generated by IoT will reach 403 

Zeta bytes per year in 2018 (Cisco, 2016). A zeta byte is a trillion of gigabytes and this amount is 

expected to increase exponentially in the following years when IoT applications become more 

popular. Usually, sensors generate raw data that passes to cloud servers via aggregators. For an 

efficient IoT application, large amounts of data must be continuously transferred to the cloud 

while cloud servers continuously conduct analysis and process on that data. The efficiency of 

transferring and processing huge amounts of data depends on the communication channel from 

device to internet and computation capability of cloud servers.  

The success of IoT applications relies on how quickly cloud servers can interpret raw 

data to meaningful information and complete the action to fulfill the purpose. Although client-

server architecture is widely considered in implementing IoT applications, it is not always the 

best fit to address the growing demand in IoT. The major concern in using client-server 

architecture in IoT applications is the impact of cloud latency. The term cloud latency refers to 

the time delay in sending a request to the cloud and receiving the response. There are many 

factors that affect cloud latency. One notable factor that causes cloud latency is the number of 

multi-hopping required to travel from device to server. Cloud server locations are spread around 

the world in many different geographical locations. Data packets need to hop multiple servers 

around the world to reach the target cloud server from the device. Each hopping process could 

delay the overall operation.  
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Cloud latency is a major concern in cloud-based businesses. The cost of cloud latency is 

very high. According to Sharp (2012), a half-second delay could cause Google’s traffic drop by 

20% and a tenth of a second delay could cause Amazon’s sales to drop by 1%. 

In certain IoT applications, receiving quick responses from the cloud is very critical. 

Applications in transport and healthcare industries are time sensitive. A good example of this 

scenario can be found in self-driving cars. There are numerous sensors built in self-driving cars 

to identify and analyze the surrounding environments. According to Google, one gigabyte of data 

is generated for every second their self-driving car travels (Rijmenam, 2016). Based on the 

massive amount of data collected from sensors, decisions must be made instantly. When the self-

driving car is traveling at high speeds, any time delay in the decision-making is very critical. 

Waiting on cloud servers to receive some decisions creates latency and may result in the failure 

of the purpose of the application. Therefore, the common model in IoT that depends on cloud 

servers to respond for every action is not adequate to serve time-sensitive applications. To better 

utilize the computing power of cloud servers, the focus must be on mainly processing machine 

learning and artificial intelligence techniques rather than interpreting raw data sent from sensors.  

This research identified the time delay issue with the traditional cloud-server model and 

proposed the distributed computing model to eliminate time delay in latency. The proposed 

model conducted computing locally between sensors rather than sending raw data to cloud 

servers. As a side impact, this distributed computing model also helps to offload computing 

resources from cloud servers to sensors.  
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Problem Statement 

The problem this research addressed is that client-server model causes delays in time-

sensitive IoT applications. The main reason for this problem to exist is the cloud latency which 

delays the response to reach the devices. This problem underscores the need for distributed 

computing in the IoT environment; however, there is no efficient distributed computing model to 

reduce response time delay in IoT computing.  

 

Research Theory 

IoT networks span across various types of devices. IoT applications often require 

smartphones, wireless sensors, RFID, and Bluetooth enabled devices to join together to perform 

data gathering and information processing. Mostly the sensors in IoT are mobile and 

continuously change their positions. This pattern is highly visible in vehicular networks where 

sensors in cars collect data of the environment. In these cases, collected data must be sent to 

aggregators so they can be passed to cloud servers. Mobile Ad-hoc Networks (MANET) can 

perform this type of continuous data collecting and presenting functionalities profoundly. 

MANET is a collection of self-organizing wireless nodes that are functioning without any 

centralized administration (Songfan et al., 2015). MANETs do not require communication 

infrastructure to function. There is no centralized server in MANET. Nodes in MANET can join 

together to create a network on demand. Because no infrastructure needs to be built, MANETs 

can be deployed easily with short notice. This infrastructure-less feature makes MANET an ideal 

candidate to implement IoT applications. This research uses MANET to model sensors in IoT. 

MANET nodes are interconnected with each other. This pattern is diagramed in Figure 2. 

Because MANET does not have a centralized server to route the communication, each node in 
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MANET act as both the end node and router. Since nodes in MANET can join and leave the 

network at any time, the topology is subjected to continuous change. Because of this agility, 

communication routing from one node to another node is difficult (Kandari, 2011); however, 

there are protocols in place to handle this challenge. In certain cases, swarm intelligence is 

applied to build algorithms and protocols in MANET environments.  

 

Figure 2. Mobile Ad-hoc Network (MANET) 

Swarm intelligence describes the study of how a group of relatively simple agents 

through their collective interaction accomplish tasks that are far beyond the capabilities of a 

single agent. Swarm intelligence techniques are inspired by bee swarms, ant colonies, and bird 

flocks. This is a form of decentralized intelligence in which no central authority makes a decision 

or directs agents. Each individual agent follows simple rules and cooperates with other agents in 

the environment in order to complete the tasks. Decentralized control, collaborative learning, and 

high exploration ability are the main characteristics of this intelligence model. In this 

intelligence, all the members function autonomously and act upon their available information. 
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From that available information, they are able to decide their behavior and take appropriate 

actions. 

A good example of swarm intelligence is the colony of ants. Ant colonies are generally 

social insect societies, which present a highly structural social organization. As a result of this 

organization, ant colonies can accomplish complex tasks that far exceed the individual 

capabilities of a single ant. Ant algorithms are derived from the observation of real ant behavior 

and use these models as a source of inspiration for the solution of optimization and distributed 

control problems. Ant Colony Optimization is a technique that finds the shortest path to a target 

using the concepts of how ants find food in the shortest path to their colony (Dorigo and Stutzle, 

2004). A foraging ant deposits chemical pheromone on the ground, which increases the 

probability other ants will follow the same path. Over the time, the pheromone trail will 

evaporate. The longer paths take longer time for ants to travel and the pheromones have a higher 

probability to evaporate. In contrast, shorter paths will take a shorter time for ants to travel and 

the pheromone trail will stay active throughout the time needed to travel. Therefore, ants as 

collective agents choose to travel the trail that contains the most active pheromones. This 

specific behavior shows indirect communication can help to achieve self-organization. This 

original idea has evolved to solve a wider class of numerical and computer science problems.  

Similar to ants, birds have a flocking behavior in which they achieve tremendous 

coordination among member agents without a permanent centralized figure. Without a 

designated leader, bird flocks fly to the desired destination and stay away from dangers. Figure 3 

shows a diagram where birds are flying with coordination. From an outsider’s perspective, bird 

flocks seem to have a leader. In reality, there is no leader in the flock and all the members are 

following simple basic rules to achieve the coordination.  
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Figure 3. Birds Flocking 

Scientists explored this flocking behavior and proposed a flocking model that has three 

rules (Su et al., 2009):  

1) Separation: Avoiding collision with nearby agents. 

2) Alignment: Matching velocity with nearby agents.  

3) Cohesion: Staying close to nearby agents. 

 

Using these three simple rules, birds accomplish flying long distances. This research is 

intended to propose a distributed computing model called Distributed Shared Optimization 

(DSO) based on the flocking theory for IoT applications. This approach is similar to how the ant 

colony optimization (ACO) technique is used widely in technology systems such as MANET 

routing to find the shortest path. In this research, flocking theory based DSO is used to employ 
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distributed computing in MANET based IoT applications. The flocking theory concept of agents 

coordinating without a centralized figure fits with the requirements of IoT applications and the 

topology of MANET.  

 

Statement of Purpose 

The purpose of this research is to reduce the computing time in IoT applications by 

proposing a distributed computing model based on swarm intelligence. MANET framework was 

selected to build the proposed model because of its infrastructure-less and dynamic 

characteristics. Similarly, swarm intelligence theory was selected to develop the algorithms for 

the model because of its ability to complete complex tasks without a centralized figure.  

 

Statement of Significance 

This research contributes to the body of knowledge in IoT architecture, MANET 

framework, and network management. The concept of IoT is relatively new and there is a 

growing demand for applications based on IoT. However, traditional client-server models are 

producing longer response delay due to cloud latency. Therefore, there is a need for IoT sensors 

to conduct computing in a distributed way locally without the interaction from cloud servers. 

This research provides value to the future IoT applications by improving the computing time and 

offloading the work from cloud servers. 
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Research Goals and Objectives 

The main goal of this research is to reduce the computing delay from cloud servers in IoT 

applications. To achieve this goal, this research proposes a swarm intelligence based distributed 

computing model using MANET topology and specifically applying flocking theory to 

implement the distributed computing model. 

Therefore, this research is guided by the following research objectives: 

1. Reducing the delay caused by cloud latency by introducing distributed computing to IoT 

environment. 

2. Proposing swarm intelligence-based model called Distributed Shared Optimization 

(DSO) to assist distributed computing. 

 

Organization of the Research 

 This research is organized in the following manner: 

1. Proposing a flocking theory-based algorithm for distributed computing in IoT 

applications.  

2. Building a simulation tool that implements the prototype of the distributed computing 

model as well as the client-server model. 

3. Testing the algorithm’s theory in the built prototype of the simulation tool. 

4. Running simulations in both the distributed model and the client-server model of the tool.  

5. Applying simulation data to a statistical model to identify how the proposed model 

affects the computing time of the application. 

6. Applying the test data to the statistical model to identify the relationship between IoT 

application components such as the number of sensors and size of data.  



                                                                 11 

 

Research Questions 

The research questions of this study are as follows: 

Q1: Does the proposed swarm intelligence based Distributed Shared Optimization (DSO) 

model reduce the total computing time of the application? 

Q2: How does the number of sensors affect the computing time of the distributed 

computing model? 

Q3: How does the size of data being processed affect the computing time of the 

distributed computing model? 

Q4: How do both sensors and the size of data being processed together affect the 

computing time of the distributed computing model? 

 

 

Hypotheses 

In the process of finding answers to the research questions, the following hypotheses 

were established.  

Null Hypotheses 

H01: There is no difference in computing time of the application when the proposed distributed 

computing model is used.  

µcomputing time of DSO model = µcomputing time of client-server model.   

H02: There is no relationship between the number of sensors and the computing time in 

distributed computing model. 
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H03: There is no relationship between the size of data being processed and computing time in 

distributed computing model.  

H04: There is no relationship with computing time by the combination of sensors and the size of 

data being processed together in distributed computing model.  

 

Alternative Hypotheses 

HA1: There is a difference in computing time of the application when the proposed distributed 

computing model is used. 

µcomputing time with proposed distributed computing model ≠ µcomputing time without proposed distributed computing model. 

HA2: There is a relationship between the number of sensors and computing time in distributed 

computing model. 

HA3: There is a relationship between the size of data being processed and computing time in 

distributed computing model.  

HA4: There is a relationship with computing time by the combination of sensors and the size of 

data being processed together in distributed computing model. 

 

Statement of Methodology 

 This research is conducted in two phases. The purpose of the first phase is to develop the 

proposed distributed computing model called Distributed Shared Optimization based on flocking 

theory. MANET architecture is used as the platform for this model. The first phase also included 

the development process of the simulation tool to test the theory. In the second phase, this 

research employs a quasi-experimental design to find the answers to the research questions. 
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 In the quasi-experimental design, the MANET simulator executions were conducted in 

two sets. One set is the experimental group and the other set is the control group. The treatments 

are the number of data processing attempts via MANET nodes in the environment.  

Data Collection 

Both experimental group and control group had 40 simulations. In each simulation, the 

same treatment was given to both groups. That means both groups received an equal number of 

MANET nodes and an equal size of data to compute in each simulation. The resulting total 

computing time for each simulation is collected. 

Independent variables: Number of sensors/nodes, Size of the data (bits).  

Dependent variable: Computing time. (Total time is taken by the nodes/sensors to 

complete processing the given data.) 

Data Analysis 

 This research employs quantitative research methods to analyze the data collected from 

simulations. Analysis of Variance (ANOVA) is used to analyze and identify the relationship 

between variables. Through the data analysis, the answers to the research questions are 

understood. 

 

Assumptions 

Following assumptions were made in this research.  

• The proposed distributed computing model based on flocking theory assumes the 

distance covered by flocks is similar to data processed by distributed MANET nodes.  

• MANET nodes in the simulator are sensors. In other words, each node in the simulator 

has a single sensor and a processor.  
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• MANET simulation tool represents the real-world MANET implementation for IoT 

applications. 

• The number of simulations executed in the research is adequate to conduct data analysis 

and derive the conclusion.  

• Computing process and data type specified in the simulation tool represents the real 

world IoT applications.   

 

Limitations 

This research has the following known limitations.  

• The number of sensors and size of the data are the only influencing factors considered in 

the distributed computing in MANET for IoT. Any other factors are considered outside 

the scope of this research.  

• The results of the research are limited to the number of simulations conducted.  

• The standard statistical limitations of ANOVA apply to this research as well. 

 

Definitions of Terms 

The following list of terms illustrates the technical terminology used in this research.  

ABC: Artificial Bee Colony is a swarm intelligence based algorithm that models bees’ 

behavior of finding food sources to find the optimum solution. 

ACO: Ant Colony Optimization is a swarm intelligence based algorithm that finds the 

shortest path to a destination in a similar way to how ants forage for food. 

ANOVA: A statistical analysis that tests the means of two or more populations are equal.  
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Bluetooth: A communication protocol that allows devices to communicate using radio 

transmissions within a certain range.  

Flocking Theory: A part of swarm intelligence studies which models the self-organized, 

decentralized, collective behavior of birds like agents.  

DSO: Distributed Shared Optimization is a swarm intelligence based theoretical model 

proposed by this research to optimize distributing computing in MANET platform.  

IDE: Integrated Development Environment is a development tool that can be used to 

develop software programs.  

IoT: Internet of Things is a concept with an emphasis on connecting all the devices to the 

internet. 

MANET: Mobile Ad-hoc Network is a self-configuring, infrastructure-less, de-

centralized mobile network.    

NFC: Near Field Communication is communication protocol that enables two devices to 

communicate using electromagnetic waves when they are in very close proximity. 

PSO: Particle Swarm Optimization is a swarm intelligence based algorithm that follows 

bird flocking behavior to find the optimum solution.  

Swarm Intelligence: A collective, decentralized, self-organized behavior of biological 

and artificial agents.   

t-test: A statistical analysis to compare the means of two populations.  
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CHAPTER 2 

 

LITERATURE REVIEW 

This chapter provides the summary of the available literature in the research area. First, 

the literature related to the technologies of IoT and MANET is discussed. Then the available 

research literature in swarm intelligence-based protocols and algorithms are explored in detail. 

 

Internet of Things (IoT) 

The concept of Internet of Things (IoT) was derived by enhancing everyday physical 

things by adding an electronic device that can provide intelligence and connectivity to the 

internet (Kopetz, 2011). Everyday physical things could be anything we use in our daily life. In a 

home environment, they can be the television, microwave, alarm clock or refrigerator. On a 

farm, the things could be farm resources such as machinery and equipment. In transportation, 

they can be cars, trains, streetlights, traffic signals, etc. The idea is to allow any physical thing to 

intelligently gather and share data through the internet. The ever-reducing cost and size of 

electronic devices are making this concept to become real at a faster pace.   

Many different technologies are used to implement connectivity between devices and the 

internet in IoT. Radio Frequency Identification (RFID), Wireless Fidelity (Wi-Fi), Bluetooth, 

and Near Field Communication (NFC) are a few of these technologies (Madakam, 2015). NFC 

uses electromagnetic waves to communicate while Bluetooth uses radio transmission. The main 
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advantage of NFC over Bluetooth based devices is the ability of NFC to connect devices without 

pairing (Shah & Yaqoob, 2016). Internet Protocol (IPv6) is used for internet connectivity in IoT. 

IPv6 can support up to 2128 unique addresses. Since IoT allows any daily life physical thing to be 

connected to the internet, the demand for unique physical addresses is very high. IPv6 can satisfy 

this demand.   

Even though many technologies are used in IoT, very few standards are in practice. In 

order to specify some formal descriptions about IoT, the National Institute of Standards and 

Technology (NIST) has published a document in 2016 (Voas, 2016). This publication specified 

building blocks or primitives of IoT in which larger systems can be built. The NIST’s list of IoT 

primitives is Sensor, Aggregator, Communication Channel, External Utility, and Decision 

Trigger. 

1. Sensor: The purpose of the sensors is to measure physical properties such as location, 

sound, weight, light, movement, etc. Sensors could directly connect to the internet or 

could connect to aggregators.  

2. Aggregator: Aggregators are basically software implementations that could transform 

raw data to aggregated data. This functionality is an important step in big data. 

3. Communication Channel: This is the medium the data can be transmitted. This 

includes the physical aspect as well as virtual aspects such as protocols and software 

implementations. 

4. External Utility: This could be either software or hardware components. Cloud 

services are examples of external utilities.  

5. Decision Trigger: Decision trigger implements the final result that the IoT application 

is intended for.    
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Chen et al. (2015) described the idea of distributed computing in IoT using video sensing 

network. In their research, they also elaborated two case studies to show the impact of distributed 

computing. Through their case studies, they argued that the computing power of the sensors 

determines the required bandwidth from sensors to aggregators. Similarly, the computing power 

of aggregators determines the required bandwidth from aggregators to the cloud servers. Thus, 

the bottleneck of IoT flow is the communication channel from sensors and aggregators to cloud 

servers. Therefore, conducting most of the computing on sensors and aggregators could avoid 

these bottlenecks and would lead to efficient networks. Due to the recent advancement of silicon 

technology, more computing power can be embedded into sensors and aggregators. By 

increasing computing power in sensors and aggregators, most of the computation can be done in 

sensors and aggregators and less workload could be required by cloud servers.  

In an effort to bring the distributed concept to IoT, Cardozo et al. (2016), proposed 

architecture to conduct distributed sensing in IoT. They also implemented a case study in an 

agricultural area to evaluate the functionalities of the proposed architecture. Their proposal was 

the solution to bridge the gap between high-level IoT applications and the management of 

physical devices in gathering sensor data. Their solution provided a middleware to support data 

acquisition and management to IoT devices. This middleware architecture is managed by rules 

and driven by events. In their solution, they have implemented a rules engine to perform the 

treatments in the shortest possible time.  

 

MANET and IoT 

MANET provides a dynamic platform for IoT devices to connect and communicate. In 

MANET, mobile nodes can communicate without any fixed infrastructure like cellular networks. 
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MANET also does not have any centralized servers to coordinate the nodes. Without the 

infrastructure and centralized server, nodes in MANET directly establish the peer-to-peer type of 

connections with neighboring nodes within their transmission range. To deliver data packets 

outside the transmission range, mobile nodes use the multi-hop principle (Dowla, 2004). In 

multi-hop, source nodes use a series of intermediate nodes to relay the data packets to the 

destination node. Therefore, all the mobile nodes in MANET framework are required to store 

and forward the data packets of other nodes. Because of this nature, MANET nodes are 

considered both the router and the host in the network.  

In MANET, nodes are free to join and leave the network at any given time. Also, nodes 

can freely move their locations. Therefore, the topology of MANET changes unpredictably in the 

environment (Umamaheswari & Radhamani, 2012). This autonomous and infrastructure-less 

nature of MANET makes it the ideal candidate to implement IoT sensors. 

The concept of combining MANET and IoT is gaining momentum in the research fields. 

Many types of research have been done in MANET based IoT such as providing distributed 

medium access control to IoT-enabled MANETs (Ye & Zhuang, 2016). 

 

Cloud Latency 

Cloud computing offers numerous benefits such as flexibility, elasticity, and scalability to 

IoT applications. Usually, IoT sensors gather data and send to an aggregator in the environment. 

The aggregator then passes data to cloud servers for data processing. Upon the completion of 

data processing, results or any instructions to take actions could be sent back to the aggregator.  

Cloud computing provides economical, highly efficient and fault tolerant services to the end 

users. In the current setup, a cloud is a group of interconnected computers where all the entities 
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are interconnected through the internet (Srivastava & Singh, 2016). Data is stored across 

multiple servers in the cloud and can be retrieved from anywhere in the world. While cloud 

computing gave the flexibility to access data from anywhere, it also introduces latency to retrieve 

such data. Cloud latency is a term used to describe the time delay to get a response from cloud 

servers.  

Bali and Khurana (2013) provided few reasons for cloud latency to occur. Mainly, cloud 

latency is caused by the combination of propagation delay, congestion delay, node delay and 

processing delay. Propagation delay is the time taken for the head of a signal to travel from 

source to destination. Congestion delay is related to congestion caused by a node when it is 

carrying more data than it can handle. Processing delay is the time taken by routers to process the 

data.  

In the current cloud setups, destination points are not fixed. That means a request from 

the source may have to travel across the planet through various communication channels and 

links to reach the destination. Therefore, it is very common that the requests to the cloud might 

experience many congestion, propagation, and processing delays. The cloud latency varies 

depending on the number of routers and servers a request needs to hop.  

Besides the network causes, virtualization and big data can also add delay to cloud 

responses. In the current cloud architecture, it is very popular to run servers on virtualized 

machines. This adds another layer of delay when requests are required to travel through a series 

of virtual servers (Strom & Zwet, 2015). In big data environments, applications employ 

computing in servers distributed across the world. Although this pattern produces flexibility and 

efficiency, it also introduces another layer of cloud latency to pass data between servers that are 

geographically distanced (Strom & Zwet, 2015). The massive amount of big data stored in the 
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cloud must be analyzed and queried quickly to return the response. Often, those massive queries 

take considerable time. When IoT aggregators send data to process, the response from the cloud 

is subjected to cloud latency due to the above reasons.  

 

Swarm Intelligence based Framework 

Swarm intelligence is a methodology to solve numerical optimization problems by 

modeling biological swarm behaviors (Gui et al., 2016). Algorithms and protocols were 

developed based on swarm intelligence to solve real-world technical problems. 

Karaboga (2005) proposed that two fundamental concepts are required to determine 

whether a behavior is based on swarm intelligence. These concepts are self-organization and 

division of labor. Self-organization is a set of mechanisms that establish basic rules to interact 

between agents of the system. These rules also ensure the agents of the system to purely act on 

local information without any knowledge of the global pattern. Division of labor is the property 

that ensures specialized agents perform different tasks simultaneously. This property is important 

in distributed computing frameworks because simultaneous tasks performed by coordinated 

agents are more efficient than sequential tasks performed by uncoordinated agents in the 

traditional systems.  

This research studies the following frameworks to develop the proposed Distributed 

Shared Optimization model.  

1. Ant Colony Optimization 

2. Particle Swarm Optimization. 

3. Artificial Bee Colony. 
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Ant Colony Optimization (ACO) 

Ant Colony Optimization is a methodology proposed by Dorigo & Stutzle (2004) to solve 

optimization problems by modeling the ants’ behavior for foraging food. In real life, ants 

establish the shortest path from the food source to their nest. Ants release a type of chemical 

called pheromones to the immediate environment for communication with other ants. This 

chemical substance evaporates as the time increases (Hlaing & Khine, 2011).  

 

Figure 4. Ant Colony Optimization – All Paths 

At the beginning, ants search for food in random order. Figure 4 shows ants moving from 

the nest to the food in different paths. As they travel through the paths, they release pheromones 

to the immediate environment and other ants can follow that route (Hlaing & Khine, 2011). Ants 

also have the tendency to choose the shortest path. As many ants began to choose the shortest 

path, the shortest path becomes high in pheromone density. On the other hand, pheromones in 
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other longer paths, which are then less traveled, begin to evaporate. This prompts more ants to 

choose the shortest path based on the pheromone density as it is shown in Figure 5.     

 

Figure 5. Ant Colony Optimization – Shortest Path 

ACO is widely used as a MANET routing protocol (Roy et al., 2012). In MANETs, the 

network topology constantly changes due to the mobility of the nodes. It is challenging to send 

data through multi-hoping when the nodes are changing their position. ACO is used in these 

situations to find the shortest path from the source to the destination node. ACO adopts positive 

feedback and self-organization (Liu et al., 2014).  

There exist many implementations of ACO for MANET. Gunes et al. (2002) described a 

routing algorithm based on ACO. In their routing algorithm, they established two agents called 

forward ant and backward ant. The purpose of forwarding ant is to establish a pheromone track 

from source to destination node. In contrast, backward ant establishes a pheromone track from 

destination to the source node. These ants have a small packet with a unique sequence number. 

Each node is able to identify packets based on the source address and the sequence number. At 
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the beginning, a sender node broadcasts forward ant to all the neighboring nodes and 

neighboring nodes relay the forward ant to their neighbor nodes. When each node receives the 

forward ant packet, it creates a record in the routing table. This routing table entry contains 

pheromone values which determine the number of hops the forward ant needed to reach the 

node. When the forward ant reaches the destination node, it is destroyed and the backward ant is 

created to send back to the sender. When a backward ant reaches the sender, the sender has the 

information about the shortest path to send packets. This algorithm dynamically creates routing 

paths in MANET and establishes the shortest paths for effective communication.  

Particle Swarm Optimization 

Kennedy & Eberhart (1995) proposed Particle Swarm Optimization (PSO), which is a 

simple and effective algorithm based on swarm intelligence. PSO models leaderless animal 

groups such as bird flocking and fish schooling to guide the particles towards an optimized 

solution (Wahab et al., 2015). In bird flocking and fish schooling, everyone moves randomly to 

find food. One of the members should be closer to the food and the rest of them will move closer 

to that member. Through this continuous communication and coordination, the flock achieves its 

desired destination.  

Bird flocking behavior has three simple mechanisms (Su et al., 2009). They are 

alignment, cohesion, and separation. Figure 6 describes these behaviors in graphical form. 

Alignment is the behavior that maintains speed with other flock mates and moving towards the 

direction where others are moving. Cohesion is a behavior that causes an agent to move towards 

the center of the mass, which is the average position of other flock mates within a radius. 

Separation is similar to cohesion but separation allows an agent to steer away from other flock 
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mates to avoid a collision if the average position becomes too close. Using these three simple 

guidelines, birds flock towards the desired destination.  

 

Figure 6. Flocking Behaviors 

PSO models these flocking behaviors by considering a swarm of particles in the 

problem’s search space. Each particle in the swarm represents a potential solution to the main 
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problem. The objective is to fly through the problem’s search space until it finds the best 

solution. Each particle’s direction and distance are calculated by a velocity equation. By moving 

towards the particle that represents the optimal solution, the solution to the problem will 

eventually be found (Rini et al., 2011). Each particle’s movement is guided by its local best-

known position. There is a global best-known position that is updated continuously based on the 

local best-known position of all the particles. Upon knowing the global best-known position, all 

the particles move towards the global best-known position. This process is continued until 

finding the best solution for the problem (Chung, 2005). This is similar to how birds follow the 

direction of one member who has the knowledge of the food until the entire flock reaches the 

destination. But the knowledge of the food doesn’t rely on one specific member. As the flock 

moves around the search space, any member could become the closest member to the solution 

and its local best becomes the global best.  

Figure 7 describes a generic implementation of PSO in the form of pseudo code. PSO 

algorithm is easier to implement and fewer parameters are required to be set. Further, PSO is 

widely used in networking, machine learning, image processing and signal processing (Wahab et 

al., 2015).   
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Figure 7. Particle Swarm Optimization – Pseudo Code 

Artificial Bee Colony 

Karaboga (2005) proposed Artificial Bee Colony (ABC), which is one of the recent 

algorithms in swarm intelligence. ABC models the behavior of honeybees when they seek a food 

source. The bees are categorized into three groups based on the tasks they do.  

i) Scouts: They are responsible for exploring the surroundings of the beehive to look 

for a food source.  

ii) Worker Bees: They exploit the food source and carry information about the food 

source such as distance and location with them. 

iii) Onlookers: They look for food sources from the information shared by workers 

and other bees in the nest.  

The important process in a bee colony is the exchange of information between bees. 

Biologically, this information is exchanged between bees through a special type of dancing. 
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Based on the type of dance, bees determine whether to incorporate or abandon a food source 

(Crawford et al., 2014). 

ABC algorithm mimics this bee behavior to find the optimum solution. In ABC, the 

solution to the optimization problem is represented by the position of the food source. An 

artificial bee moves in the search area to find food sources using the information from its 

previous experiences and its fellow bees. Some artificial bees fly randomly until they find a food 

source. When they find a food source, they update the position of the food source and delete the 

previous food source position if the new position is more accurate than the previous positions 

(Crawford et al., 2014). They repeat this process until they find the best solution or until they 

reach the maximum iterations allowed. Thus, the pseudo code of ABC algorithm is similar to 

Figure 8. 

 

Figure 8. Artificial Bee Colony – Pseudo Code 

ABC is easy to implement and very flexible. It requires two control parameters. They are 

the number of maximum cycles and the size of the colony. Adding and removing a bee can be 

done easily without making major modifications to the implementation. ABC is widely used in 

networking, scheduling and image processing (Wahab et al., 2015). 
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CHAPTER 3 

 

METHODOLOGY 

This chapter discusses the research methodology of this study. The purpose of this 

experimental quantitative research was to propose and understand a distributed computing model 

based on swarm intelligence that could reduce the total computing time in IoT applications. 

Therefore, this research was conducted in two phases; phase one was to propose the new model 

and phase two was to conduct statistical analysis to understand the model. In that sense, the first 

phase developed DSO algorithm and a simulation program. The purpose of the simulation 

program was to test DSO in MANET platform. The second phase was involved with collecting 

data from simulation and conducting statistical analysis to find answers to research questions.  

 

Restatement of Purpose 

 The purpose of this research was to propose a distributed computing model for IoT 

applications based on swarm intelligence using mobile ad hoc networks (MANET) as the 

platform. 

Thus, this research proposed a distributed computing model called Distributed Shared 

Optimization (DSO) based on flocking behaviors of birds.  
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Distributed Shared Optimization  

Distributed Shared Optimization (DSO) is an optimization framework to support 

distributed computing in IoT applications based on flocking theory of swarm intelligence. DSO 

models the behaviors of birds flocking to mechanisms in distributed computing. Flocking theory 

lists three simple behaviors in biological agents to coordinate their moving process. These three 

behaviors are Cohesion, Alignment, and Separation (Su et al., 2009). This research implemented 

three distributed computing mechanisms from these three flocking behaviors. Table 1 describes 

three flocking behaviors and their corresponding distributed computing mechanisms proposed by 

this research.  

Table 1 

Flocking Rules and corresponding DSO Mechanisms 

 
Flocking 
Theory Rules 

 
Rule Description 

 
DSO Mechanism 

 
Cohesion 

 
Moving towards the center of the mass 
of nearby agents. 

 
A node joining the distributed 
computing framework. 

 
Alignment 

 
Maintaining the same speed and moving 
towards the same direction of others. 

 
Maintaining distributed 
computing with other nodes by 
sharing the workload. 

 
Separation 

 
Steering away from other flock mates to 
avoid a collision. 

 
A node leaving the distributed 
computing framework and 
notifying others. 

 

DSO maintains a global table in a distributed framework that holds the information about 

each node in MANET and its availability to participate in distributed computing. A copy of this 

table is maintained at every node in MANET so all the nodes know which nodes are available to 

process distributed computing and which are not. This is an important aspect of DSO because 
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MANET nodes join or leave the network anytime without the coordination of a centralized 

server. Therefore, distributed computing needs to know which nodes are available and which 

nodes are not. When a node joins the network, the global table is updated with the new node’s 

information. Similarly, when a node leaves the network, the global table is updated to reflect the 

unavailability of that node.   

DSO implements three simple mechanisms from flocking theory rules. Cohesion in 

flocking theory suggests an agent fly towards the center of the mass of nearby agents. This rule is 

essential in joining together with rest of the flock. In DSO, cohesion implies updating the global 

table when a node joins the network. Through this process, the new node allows the rest of the 

nodes to know that it is available for distributed processing and is willing to share the workload.  

Separation is another flocking rule that allows an agent to steer away from the rest of the 

flock mates to avoid a collision. In DSO, separation is implemented as the process of a node to 

steer away from MANET. When the node leaves MANET, it notifies the global table about the 

departure. This would trigger the rest of the nodes in the distributed computing to take necessary 

actions to manage the workload with available nodes. The leaving node’s workload can also be 

transferred to another node in the distributed computing framework.  

Alignment is a flocking behavior that encourages agents to maintain the same speed as 

the rest of the flock and move towards the direction where everyone else is heading. DSO 

models this behavior to encourage nodes to share computing workload of nearby nodes and 

compute towards rest of the nodes. Figure 9 describes this sharing process in detail.  
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Figure 9. DSO – Functionality 

 As it is shown in Figure 9, when node A needs to compute a task, it checks the global 

table to see the nearby nodes that are available for distributed computing. In this case, node A 

sees node B and C are available for distributed computing. Therefore, the task is divided into 

thirds to process by nodes A, B and C. Numerically, node A gets approximately 34% of the task 

while nodes B and C get 33% each.  

 Upon receiving distributed tasks to compute, nodes B and C will check their global tables 

to see if there are any nodes available to share the process. Since node B does not have any nodes 

connected in that network other than node A, node B begins to process its computing task. Node 

C has two more nodes (D and E) connected in the network besides node A. Therefore, node C’s 

given computing task of approximately 33% is divided into thirds to share among nodes C, D 
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and E. So, nodes C, D, and E get approximately 11% of the task each to compute. This sharing 

process continues until the main task becomes a manageable size in nodes or until a specified 

number of sharing processes are completed. Figure 10 describes the flow of the DSO model.  
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Figure 10. Flowchart of DSO 
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As figure 10 suggests, the overall flow of DSO is based on distributing and sharing the 

computing task. At first, the sensors in the environments are initialized along with the global 

table that holds the distributed computing availability of each node. DSO implementation is 

better served by recursive functionality. When each node needs to process a task, it checks its 

neighboring nodes for any available computing space by checking the global table. If any 

neighboring nodes with available computing space are found, the computing task will be divided 

among all the nodes. Upon receiving the computing task, each neighboring node updates the 

global table about their new availability and looks for their neighboring nodes to share the task. 

In this way, the computing task is divided into smaller chunks until the task becomes manageable 

to compute faster by all the nodes. In certain environments where there are too many sensors and 

too small of tasks, it is not efficient to divide and share too many times. In those cases, it is 

recommended to fix the maximum number of dividing and sharing in the environment. Figure 11 

shows the pseudo code for DSO processing. 

 

 

Figure 11. Pseudo Code for DSO 
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Research Design 

 This research proposed the theory of the DSO model to reduce the total computing time 

in IoT applications. In order to investigate the effects of this model, a statistical analysis was 

conducted. For the purpose of this statistical analysis, a network simulator was built to conduct 

simulations for both DSO and client-server models. This network simulator was able to produce 

a MANET platform with a given number of sensors. The functionality of the simulator was to 

process the given size of data on the built MANET platform. Both the DSO and client-server 

models were executed in the simulator for various configurations.   

Research Questions 

 This research was intended to find answers to the following research questions. 

Q1: Does the proposed swarm intelligence based Distributed Shared Optimization (DSO) 

model reduce the total computing time of the application? 

Q2: How does the number of sensors affect the computing time of DSO model? 

Q3: How does the size of data being processed affect the computing time of DSO model? 

Q4: How do both sensors and the size of data being processed together affect the 

computing time of the distributed computing model? 

Hypotheses 

 In order to find answers to the research questions, this research constructed the following 

hypotheses. 

Null Hypotheses 

H01: There is no difference in computing time of the application when the proposed distributed 

computing model is used.  
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µcomputing time of DSO model = µcomputing time of client-server model.   

H02: There is no relationship between the number of sensors and the computing time in the 

distributed computing model. 

H03: There is no relationship between the size of data being processed and computing time in the 

distributed computing model.  

H04: There is no relationship with computing time by the combination of sensors and the size of 

data being processed together in distributed computing model.  

 

Alternative Hypotheses 

HA1: There is a difference in computing time of the application when the proposed distributed 

computing model is used. 

µcomputing time with proposed distributed computing model ≠ µcomputing time without proposed distributed computing model. 

HA2: There is a relationship between the number of sensors and computing time in the distributed 

computing model. 

HA3: There is a relationship between the size of data being processed and computing time in the 

distributed computing model.  

HA4: There is a relationship with computing time by the combination of sensors and the size of 

data being processed together in distributed computing model. 

Research Methodology 

 This research is a quantitative experimental research that employed both control group 

and experimental group. In both groups, the same number of sensors and the same size of data 
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were given in each simulation. In the control group, the client-server model was implemented but 

the treatment of the DSO model was absent. In the experimental group, the DSO model was 

implemented. In total, 40 simulations were executed where each simulation consisted the same 

number of sensors and size of data. Each simulation was built with randomly created MANET 

nodes where distances between nodes were varied. Each simulation contained 12 nodes and 2500 

bits of data to process. From the simulations, the total computing time in each model, their 

corresponding number of sensors and processed data sizes were all recorded.  

 Data collected from simulations were subjected to statistical analysis to determine the 

answers to research questions. One-way ANOVA was conducted to identify if there is any 

significant difference in computing time between DSO and client-server models. With 

subsequent research findings, multiple regression analysis was executed in DSO model’s data to 

explore any significant relationship between the number of sensors and the data sizes on the 

computing time. In order to find the relationship between sensors and computing time in DSO, 

each simulation was implemented with the constant data size of 2500 bits and the number of 

sensors was incremented in every attempt. Similarly, to find the relationship between data size 

and DSO computing time, the number of sensors was kept at a constant level of 12 and the data 

size was incremented in every attempt.  

Instrumentation   

This research first explored the available network simulators to implement DSO. As part 

of this exploration process, two network simulators were configured and analyzed. First, this 

research configured OMNeT++ and planned to conduct testing for DSO. Figure 12 shows the 

basic configuration of two network nodes.  
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Figure 12. OMNeT++ Simulator 

OMNeT++ is a discrete event simulator that supports many different network models 

(Varga & OpenSim, 2016). For specialty networks such as MANET, there are frameworks built 

in open source. Through the configuration, this research learned that MANET framework from 

OMNeT++ cannot be directly used to support big data processing. A significant programming 

effort was required to enhance the current MANET framework to support big data processing. 

Also, OMNeT++ uses NED language to define network modules. However, NED language does 

not provide flexibility to construct a new framework like DSO.  

Due to the above shortcomings in OMNeT++ simulation, this research moved to explore 

Riverbed Modeler as a potential simulator tool for DSO. Riverbed Modeler provides easy to use 
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network simulation for many different network structures. However, the academic version of 

Riverbed Modeler allows up to 20 mobile nodes to construct a network. This is a restricting 

factor in this research because having 20 mobile nodes in DSO simulation is an inadequate 

model to test the theory. However, Riverbed Modeler can be used to validate other network 

simulators.  

 

Figure 13. Riverbed Modeler Simulator 

After extensive analysis of both the simulators, this research found both the simulators 

were not suitable for implementing DSO. This exploration highlighted the need for a specialized 
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simulator that can implement DSO and provide test data. The following table shows the side by 

side comparison of tested simulators and DSO simulator.  

Table 2 

Simulator comparison 

 OMNet++ Riverbed Modeler DSO Simulator 

Big data support No No Yes 

Ability to connect to 
external engines such 
as Spark 

No No Yes 

Programming language 
limitations 

NED (A topology 
description language)  

Proto-C (Enhanced 
version of C/C++) 

C# (Very flexible) 

Mobile Node limitation No limit Maximum 20 
mobile nodes are 
allowed in 
academic version. 

No limit 

Support No support Limited support Homegrown 
solution 

Open source Yes No (Academic 
version available 
with limited 
features) 

Yes 

Time required to 
incorporate a new 
framework to the 
simulator 

Approximately 8 
months  

Approximately 1 
year.  

Approximately 4 
weeks 

Level of configuration 
required to run a 
simulation 

Very high (Needed to 
configure Mac and 
Windows libraries) 

Relatively less 
configuration 
required 

Very less. (No 
overhead 
configuration 
because it runs 
exclusively for 
DSO) 
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This research built a DSO simulator to conduct both DSO and client-server simulations. 

This simulator is capable of producing a given number of MANET nodes for simulation. The 

procedure of the simulation was to process certain size of data in a given method. The simulator 

can be configured to run either DSO or the client-server model. The size of the data can also be 

configured on the simulator. The purpose of this simulator was to conduct data processing 

simulation in a MANET platform using either DSO or the client-server method. Figure 14 shows 

the simulator when it was built with 40 sensor nodes and was ready to process 4000 bits of data. 

In this figure, both DSO and client-server models were executed and their corresponding 

computing times were displayed. According to the figure, the DSO model took approximately 

5.166 seconds while the client-server model took 1 minute and 39.427 seconds. This simulator 

also provides individual computing time of each sensor node in DSO model. For troubleshooting 

purposes, neighboring nodes for each MANET node were also provided.  

This simulator builds MANET nodes in a random order according to the number of 

sensors entered in the text box. When the ‘Build MANET’ button is clicked, random MANET 

nodes are placed on the 920x580 pixel plane and neighboring nodes are connected to each other. 

This simulator assumes each MANET node’s coverage is 150-pixel length on all the sides and 

any neighboring nodes within that vicinity get connected together. Besides sensor nodes, the 

simulator adds one aggregator to the plane. The aggregator’s purpose is to aggregate data 

gathered from the sensor nodes and to transmit to the cloud servers. For identification purposes, 

the aggregator is coded in red and sensor nodes are coded in blue. For troubleshooting purposes, 

the simulator also displays the nodes and the list of their neighboring nodes in a grid view.    
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Figure 14. DSO Simulator 

Software components of this simulator tool were built using .NET technologies. C# was 

used as the programming language and Visual Studio 2015 was used as the IDE platform. Multi-

Threading was applied in DSO implementation to simulate real-world distributed computing. 

The entire source code of this simulator is given in Appendix B.  

For simulation purposes, this research took an assumption that to process each bit of data, 

one millisecond of computing time is required. This procedure closely simulated the real-world 

applications. Therefore, this simulator spent one millisecond of computing time for every data bit 

given.  

DSO simulation begins when the ‘DSO’ button is clicked. According to the theory, a 
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global table is initialized. This global table contains every node in that environment and the list 

of neighboring nodes of each node. Every simulation begins with Node 0. In the DSO model, 

Node 0 first checks its available neighboring nodes from the global table. Based on the 

availability, it divides the data to equal bytes among neighboring nodes, including itself. If the 

data cannot be equally divided between nodes, Node 0 takes one byte more for computation and 

the rest will be divided among the neighboring nodes. Upon sending divided data to neighboring 

nodes, Node 0 begins computing its own share of data. At the same time, neighboring nodes 

begin sharing their portion of the data among their neighbors. Sharing and processing occur 

recursively through all the nodes in the environment. This process continues until the sharing 

portion of the data becomes 50 bytes. If the sharing portion of the data is less than 50 bytes, the 

sharing node processes the entire portion instead of sharing among neighboring nodes. This limit 

is enforced because sharing too little data is not efficient enough in the DSO model. In real-

world applications, MANET nodes can begin processing their portion of data parallel to each 

other. In order to simulate this parallel processing, this simulation implemented multi-threading 

in which each node’s computing is a separate programming thread and all the threads are 

independent of the rest of the threads. Therefore, each node’s parallel computing occurs at the 

same time.    

The client-server simulation begins when the ‘Client-Server’ button is clicked. In the 

client-server model, Node 0 sends entire data to the aggregator. Since node sensors are created 

randomly, each simulation might have Node 0’s and aggregator’s positions in various places of 

the 920x580 pixel plane. The data travels from Node 0 to the aggregator through multi-hoping 

neighboring nodes. This functionality is the characteristic of the MANET platform. Once the 

aggregator receives the data, it sends the data to the cloud servers for computing. In that time, the 



                                                                 45 

 

given cloud latency is applied to the processing time. Cloud latency can also be configured on 

the simulation tool. At the end of the simulation, the total computing time is displayed for the 

DSO model and the client-server model.  

Instrument Validation 

 This research took extensive effort to validate the simulator’s functionality. The goal of 

the validation process was to ensure the MANET simulation in DSO simulator aligns with 

industry standards. In order to run validation, this research selected Riverbed Modeler as the 

industry standard simulation tool. Riverbed Modeler’s MANET model was configured to 

measure the bit rate through a selected node.  

 

Figure 15. Validation Simulation – Riverbed Modeler 
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 As it is shown in Figure 15, MANET model in Riverbed Modeler was configured with 4 

nodes. The mobile node’s distance from other nodes was randomly changed and the bit rate of 

the mobile node was collected for each distance. This bit rate data was statistically compared 

with DSO simulator node’s bit rate data.  Figure 16 shows DSO simulator’s MANET model with 

4 nodes and bit rate data. DSO simulator’s MANET model was also randomly changed with 

various distances and the bit rate through the mobile node was measured.  

 

Figure 16. Validation Simulation – DSO Simulator 

 Bit rates from both Riverbed Modeler and DSO Simulator were collected and tabulated in 

Appendix A. Following hypotheses were considered to understand both the groups.  

Ho = Population variances of both the groups are equal.  
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HA = Population variances of both the groups are not equal.  

 

Collected data was subjected to Independent Samples T-Test. Table 3 shows the results 

from T-Test.  

Table 3 

Independent Samples Test for Validation 

  
 

F Sig. t Sig. (2-
tailed) 

Mean 
Difference 

Std. Error 
Difference 

BitRate Equal 
variances 
assumed 

0.003 0.954 -0.165 0.870 -3.275 19.80658 

 Equal 
variances 
not assumed 

  -0.165 0.870 -3.275 19.80658 

 

According to Table 3, the p-value is 0.954 which is greater than 0.05. Therefore, the null 

hypothesis was accepted and alternative hypothesis was rejected. That means both groups are 

very similar in their bit rate variances. This test validated that the DSO simulator provides the 

similar bit rate and network functionality as Riverbed Modeler when the configurations were 

made identically.   

Data Collection 

 The network simulation tool was executed for 40 different cases and the data was 

recorded in Microsoft Excel. Each simulation case contained the same number of sensors and 

sizes of data.  12 sensors and 2500 bits of data were maintained in all 40 simulation cases. In 

each simulation case, sensors were placed randomly with various distances between them. Each 

simulation case was also ensured that one aggregator node was placed along with a given 
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number of sensors. Because sensors nodes were coded in blue and aggregator nodes were coded 

in red, it was possible to visually validate that the aggregator node was connected to at least one 

sensor node in the environment. This validation is important because the aggregator must be 

connected to one of the sensors in the environment of the client-server model in order to send the 

data to the cloud.  

The data collection process also involved setting the cloud latency for the simulation. 

This research used Cedexis’s (Cedexis, 2016) cloud services report for the US region to 

determine the value for cloud latency. Figure 17 shows the top 20 cloud platforms and their 

latency durations. This report was generated according to the data available on December 03rd of 

2016. Using this report, this research took the median of the top 20 cloud latencies in the US and 

used it in this simulation. The median of top 20 cloud latencies in the US is 65 milliseconds. 

Therefore, this simulation was set to run based on a cloud latency of 65 milliseconds. When the 

simulation in the client-server model was executed, the data sent from aggregator to cloud server 

waited for 65 milliseconds to simulate cloud latency.   
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Figure 17. Cedexis Cloud Services Report – US 

Upon visual validation of sensors and aggregators, both DSO and client-server models 

were executed and the corresponding variables of interest were recorded.  Table 4 describes each 

variable of interest.  
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Table 4 

Variable of Interests 

Variable Type Measure Range 

Type (Model) Categorical Number 1 and 2 

Sensors Continuous Number 4 – 35 

Data Size Continuous Bits 600 – 6800 

Computing Time Continuous Seconds 0.836 – 34.527 

 

 This research used IBM SPSS Statistics version 24 for data analysis. Therefore, data 

gathered from simulations were initially recorded in Microsoft Excel and then transferred to 

SPSS for analysis. Figure 18 shows the first 10 records of data from SPSS.  
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Figure 18. Data in SPSS 

 The Variable Type is a categorical variable, which denotes whether the simulation model 

is DSO or client-server. In order to present the variable to statistical analysis, the Variable Type 

was coded to 1 and 2. In that coding, 1 means DSO and 2 means client-server.  

Statistical Analysis 

 To find the answer to the first research question, one-way analysis of variance (ANOVA) 

method was conducted on the variables of interests. Similarly, to find the answers to the second 

third, and fourth research questions, Multiple Regression was applied to the variables of 

interests. Independent variables of this research were Type, Sensors, and Data Size. The 

dependent variable of this research was Computing Time. Prior to the analysis, assumptions of 

ANOVA were satisfied.  
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CHAPTER 4 

 

RESULTS 

 This chapter describes the results of the experiments conducted by this research. The 

main purpose of this quantitative research study was to propose the distributed computing model 

to eliminate delay from cloud latency. In that purpose, this research proposed DSO model which 

uses swarm intelligence techniques to conduct computing locally. Also, this research 

implemented the simulation tool to test the proposed model. Through significant number of 

simulations, data regarding sensors, data size and computing time were gathered. These data 

were subjected to statistical analysis in order to understand the answers to the research questions.    

 The simulation tool was built to run both DSO and client-server models. As input 

parameters, the number of sensors and the size of data were entered. Based on these values, a 

MANET platform was constructed in the tool and both DSO and client-server models were 

executed. The total computing time for each model was measured. These values were recorded in 

Microsoft Excel spreadsheet initially for review purposes. After careful review, collected data 

were entered into IBM SPSS Statistics software version 24.  
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Descriptive Analysis 

  Following sections provide descriptive analysis for both DSO model and client-server 

models.  

Descriptive Analysis - DSO Model 

 Table 5 and Table 6 show the descriptive data for DSO model.  

Table 5 

DSO Model – Descriptive Analysis I 

 Number of 
Records 

Range Minimum Maximum 

Computing 
Time 
(Seconds) 

40 2.449 1.569 4.018 

 

Table 6  

DSO Model – Descriptive Analysis II 

 Mean Standard 
Deviation 

Variance 

Computing 
Time 
(Seconds) 

2.87885 0.403436 0.163 

 

In total, 40 simulations were conducted in DSO model. Each simulation was conducted 

with 12 sensors. The data size was also kept at a constant level of 2500 bits. 

Hence, the shortest computing time recorded for DSO model was 1.569 seconds. The 

longest computing time recorded was 4.018 seconds. The range of computing time in all 40 

simulations was 2.449 seconds. The mean for DSO Model’s computing time was 2.87885 

seconds. Also, the standard deviation and variance for computing time of DSO Model were 
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0.403436 and 0.163 respectively. Figure 19 describes the frequency distribution of computing 

time of DSO model.  

 
Figure 19. Frequency Distribution of Computing Time of DSO model. 

 

Descriptive Analysis – Client-Server Model 

 Client-Server model was also subjected to 40 simulations. Each simulation was identical 

to DSO model’s simulation. Table 7 and Table 8 show the descriptive data of client-server model 

simulation.  
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Table 7  

Client-Server Model – Descriptive Analysis I 

 Number of 
Records 

Range Minimum Maximum 

Computing 
Time 
(Seconds) 

40 21.626 12.901 34.527 

 

Table 8  

Client-Server Model – Descriptive Analysis II 

 Mean Standard 
Deviation 

Variance 

Computing 
Time 
(Seconds) 

25.75830 5.682394 32.290 

 

The number of sensors used in these simulations was 12. The data size used was 2500 

bits. These numbers are identical to DSO simulation. The main difference in descriptive statistics 

between DSO and client-server models was found in computing time. The shortest computing 

time recorded for the client-server model was 12.901 seconds. The longest computing time 

recorded was 34.527 seconds. The range of computing time in all 40 simulations was 21.626 

seconds. The mean for client-server model’s computing time was 25.75830 seconds. 

Additionally, the standard deviation and variance for computing time of client-server model were 

5.682394 and 32.290 respectively. Figure 20 describes the frequency distribution of computing 

time of client-server model.  
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Figure 20. Frequency Distribution of Computing Time of Client-Server model. 

 
 The comparison of means from both DSO and client-server models provided a clear view 

of the computing time. The mean of DSO model’s computing time was 2.87885 seconds and the 

mean of client-server model’s computing time was 25.75830 seconds. This showed the time 

taken to compute in DSO model is significantly lower than the time taken to compute in a client-

server model. Further, comparing standard deviations in computing time of both DSO and client-

server model revealed that client-server model had significantly higher standard deviation and 

variance. That indicated client-server model’s computing time readings were spread out from 
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mean significantly compared to the computing time in DSO model.  

One-way ANOVA 

 Besides descriptive analysis, this research also used one-way ANOVA to determine 

whether there are any statistically significant differences in the means of computing time 

between DSO and client-server models. ANOVA is able to determine the degree of differences 

among multiple means without increasing the Type I error.  In research, Type I error (alpha) is a 

false rejection of null hypothesis when the null hypothesis is actually true. Similarly, Type II 

error is incorrectly not rejecting a null hypothesis when the null hypothesis is actually false. This 

research sets the Type I error to 0.05. That means this study has 95% confident not to reject a 

true null hypothesis. Table 9 displays ANOVA computations for computing time between DSO 

and client-server models.  

 

Table 9 

ANOVA Table for Computing Time 

 Sum of 
Squares 

df Mean Square F Sig. 

Between 
Groups 

10469.385 1 10469.385 645.215 .000 

Within Groups 1265.642 78 16.226   

Total 11735.027 79    

 

In this ANOVA test, the sum of squares of computing time between groups was 

10469.385. Since degrees of freedom (df) between groups is 1, the mean square was also 
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10469.385. Sum of squares within groups was 1265.642. In this case, the degrees of freedom (df) 

within groups was 78. Therefore, the mean square was 16.226 (calculated by 1265.642/78). The 

total sum of squares was 11735.027. Finally, this ANOVA test produced F-score 645.215 with a 

p-value of 0.000. (The complete p-value is 1.815E-39).  

The Test of Homogeneity of Variances tests the equality of the variances in the groups. 

Table 10 describes the output from Test of Homogeneity of Variances. According to Table 10, a 

p-value of this test is 0.000 which is less than the alpha designated for this test. Therefore, the 

variances are not equal.  

Table 10 

Test of Homogeneity of Variances 

Levene 
Statistic 

df1 df2 Sig. 

113.194 1 78 .000 

 

Figure 21 shows the graphical representation of the difference between mean in DSO and 

client-server models. It was observed DSO model’s computing time mean was more than 20 

seconds less than the client-server model’s computing time mean.    
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Figure 21. Means of DSO and Client-Server models 
 
Hypotheses and Research Question Analysis 
 
Null Hypotheses and alternative hypotheses are restated below. 

H01: There is no difference in computing time of the application when the proposed distributed 

computing model is used.  

µcomputing time of DSO model = µcomputing time of client-server model.   

HA1: There is the difference in computing time of the application when the proposed distributed 

computing model is used. 
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µcomputing time with proposed distributed computing model ≠ µcomputing time without proposed distributed computing model. 

The p-value in this research from ANOVA calculation is 1.815E-39. This p-value is 

significantly less than the alpha level of this research which is 0.05. Therefore, the null 

hypothesis is rejected and the alternative hypothesis is accepted. Thus, there is a statistically 

significant difference in computing time means between DSO and client-server models.  

Through this statistical analysis, first research question of this research was answered. 

The research question and the answer were given below.  

 Q1: Does the proposed swarm intelligence based Distributed Shared Optimization (DSO) 

model reduce the total computing time of the application? 

A1: Yes. The computing time taken by DSO model is significantly less than the 

computing time taken by client-server model.  

Multiple Linear Regression 

 Second and third research questions examined the relationship of variables in DSO 

model. For the purpose of finding answers to these two questions, multiple regression analysis 

was conducted in DSO model variables. Multiple-regression technique helps to predict a variable 

from one or more independent variables. Therefore, multiple linear regression was conducted to 

predict computing time from sensors and data size in DSO model.  

Sensor-Computing Time Analysis 

 First linear regression analysis was conducted in sensors data to predict the computing 

time in DSO model.  
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Table 11 

Linear Regression results for Sensors and Computing time 

R R2 Adjusted R2 Standard Error 
of the Estimate 

F Change Sig. F 
Change 

0.243 0.059 0.27 9.251 1.876 0.181 

 

 The multiple correlation coefficient R shows the correlation between computing time and 

the number of sensors. The R-value of 0.243 indicates a weaker correlation between computing 

time and the number of sensors. R-squared indicates how close the data are to the regression line. 

An R-squared value of 0.059 shows that 5.9% of data points are closer to the regression line. 

Adjusted R2 is a modified R2 that was adjusted based on the predictors and subjects in the model 

(Frost, 2013). The adjusted R2 value is 0.27 which is not close to R2 indicates there was a 

significant change in R2. The standard error of the estimate shows the variability of computing 

time around the regression line. This measure of standard error of the estimate 9.251 is the 

standard deviation of the data points distributed around the regression line. The ANOVA 

conducted to test the significance of R2 indicates that significance of F(1.876) is 0.181 which is 

greater than 0.05.  

 Figure 22 displays the scatter plot for depended variable computing time in DSO model. 

Through the visual assessment, it was observed that most of the residuals were falling between 

+2 and -2. That indicates that residuals were almost standardized. Another observation noted was 

that scatter plots were not concentrated towards a specific point.  
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Figure 22. Scatter Plot from Sensor-Computing Time Regression 

Figure 23 shows P-P Plot of Computing Time resulted from regression with Sensors in 

DSO Model. Through the visual assessment, it was determined the data points were mostly 

distributed around the regression line. However, it was also observed that in some areas the 

variance was higher compared to the rest of the points in the graph.  
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Figure 23. P-P Plot from Sensor-Computing Time Regression. 
 

Table 12 describes the relationship between computing time and the number of sensors.  

Table 12 

Coefficients Table from Sensor-Computing Time Regression 

 B Standard 
Error 

t Sig. 

Constant 2.324 0.235 9.883 0.000 

Sensors 0.015 0.011 1.370 0.181 
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 The coefficient table from regression technique revealed t = 1.370 and p = 0.181. Since 

this p-value is greater than 0.05, Sensors are not significant predictors to predict computing time 

in DSO models.  Therefore, the second null hypothesis was accepted and the second alternative 

hypothesis was rejected.  

Thus,  

H02: There is no relationship between the number of sensors and the computing time in 

distributed computing model. 

was accepted and  

HA2: There is a relationship between the number of sensors and computing time in 

distributed computing model. 

was rejected. 

Through the evaluation of the second hypothesis, the second research question was also 

answered. 

Q2: How does the number of sensors affect the computing time of the distributed 

computing model? 

A2: There is a weaker relationship between the number of sensors and computing time in 

DSO model. Further, the affection of the number of sensors on computing time cannot be 

stated in an equation. 

Further, this research conducted an extensive experiment to understand the limitation of 

sensors on DSO mechanism. In that procedure, sensors were added incrementally to the 

simulation model until the tool breaks. The computing time from each iteration was recorded and 

tabulated in Appendix A. The recorded data were analyzed to understand the impact of sensors. 

Figure 24 shows the graph obtained from the sensors incremental process.  
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Figure 24. Sensor Limit on Simulation Tool. 
 
 According to the graph obtained in Figure 24, the computing time ranged between 2.5 

seconds and 8 seconds regardless of the number of sensors applied. During this experiment, the 

data size was kept at a constant level of 5000 bits. This graph also explained the effect of sensors 

on DSO mechanism. There was no pattern observed between the number of sensors and DSO 

mechanism. When the number of sensors was increased systematically, computing time did not 

show a steady increase or decrease. This procedure proved there was no observable pattern 

between sensors and computing time in DSO mechanism.  
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 Another observation from this experiment was the breaking point of the simulation tool. 

When the number of sensors reached 155, the simulation tool was unable to continue the process. 

It is not the limitation of DSO mechanism. This is a limitation of the simulation tool which 

heavily depends on the hosting computer’s resources. During this specific experiment, the 

hosting computer’s resources reached the maximum limit and that restricted the simulation tool 

not to proceed beyond 155 sensors.   

Data Size-Computing Time Analysis 

Second linear regression analysis was conducted in data size to predict the computing 

time in DSO model.  

Table 13 

Linear Regression results for Data Size and Computing time 

R R2 Adjusted R2 Standard Error 
of the Estimate 

F Change Sig. F 
Change 

0.985 0.969 0.968 0.306467 951.598 0.000 

 

Correlation coefficient R’s value of 0.985 indicates a strong correlation between 

computing time and data size. R-squared indicates how close the data are to the regression line. 

An R-squared value of 0.969 shows that 96.9% of data points are closer to the regression line. 

The adjusted R2 value is 0.968 which is very close to R2. This indicates there was no significant 

change in R2 based on the predictors and subjects in the model. The measure of standard error of 

the estimate 0.306467 is the standard deviation of the data points distributed around the 

regression line8]8. The ANOVA conducted to test the significance of R2 indicates that 

significance of F=951.598 is 0.000 which is less than 0.05.  



                                                                 67 

 

The scatter plot described in Figure 25 shows the data points from the regression analysis 

on data size and computing time in DSO model. The visual assessment on the plot revealed that 

residuals were standardized because all the residuals were falling between +2 and -2. However, it 

was also observed that data points on the scatter plot were concentrated towards -2. Also, the 

data points were scattered and spread towards +2.  

 
Figure 25. Scatter Plot from Data Size-Computing Time Regression 

Figure 26 shows P-P Plot of Computing Time resulted from the regression with data size 

in DSO Model. The visual assessment showed the data points were distributed around the 
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regression line. However, it was also observed that some data points had greater variances from 

the regression line.  

 
 
Figure 26. P-P Plot from Data Size-Computing Time Regression. 
 

The relationship between computing time and data size was described in Table 14.  
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Table 14 

Coefficients Table from Data Size-Computing Time Regression 

 B Standard 
Error 

t Sig. 

Constant 0.501 0.121 4.130 0.000 

Data Size 0.001 0.000 30.848 0.000 

 

The coefficient table from regression technique revealed t = 30.848 and p = 0.000. Since 

this p-value is less than 0.05, data size was a significant predictor to predict computing time in 

DSO models.  Therefore, the third null hypothesis was rejected and the third alternative 

hypothesis was accepted.  

 

Thus,  

H03: There is no relationship between the size of data being processed and computing 

time in distributed computing model. 

was rejected and  

HA3: There is a relationship between the size of data being processed and computing time 

in distributed computing model. 

was accepted. 

Through the evaluation of the third hypothesis, the third research question was also answered. 

Q3: How does the size of data being processed affect the computing time of the 

distributed computing model? 
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A3: There is a strong relationship between the data size and computing time in DSO 

model. Further, the affection of data size on computing time can be stated as 

Computing Time = 0.001 x (Data Size) + 0.501 

Sensors-Data Size-Computing Time Analysis 

 This research also conducted multiple regression on all three variables of DSO namely 

sensors, data size and computing time. The purpose was to understand the effect of both sensors 

and data size together on computing time of DSO model.  

Table 15 

Multiple Regression results for Sensors, Data Size and Computing time 

R R2 Adjusted R2 Standard Error 
of the Estimate 

F Change Sig. F 
Change 

0.958 0.918 0.916 0.625979 337.547 0.000 

 

 The R-value of 0.958 indicated a strong correlation between computing time and the 

combination of the number of sensors and data size. The standard error of the estimate 0.625979 

is relatively higher compared to data size only regression model. However, this value is less than 

the value from sensor only regression model. The ANOVA conducted to test the significance of 

R2 indicates that significance of F(337.547) is 0.000 which is less than 0.05.  

The scatter plot described in Figure 27 shows the data points from the regression analysis 

on sensors, data size and computing time in DSO model. The visual assessment on the plot 

revealed that residuals were standardized because all the residuals were falling between +2 and -

2. Another observation made was the pattern of data points where more data points were 

concentrated on the top part of the plot.  
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Figure 27. Scatter Plot from Sensors-Data Size-Computing Time Regression 

Figure 28 shows P-P Plot of Computing Time resulted from the regression with sensors 

and data size in DSO Model. The visual assessment showed the data points were distributed 

around the regression line. This pattern was somewhat similar to the P-P Plot obtained from data 

size regression.  
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Figure 28. P-P Plot from Sensors-Data Size-Computing Time Regression 

The overall model showed a strong relationship. However, coefficient table provided 

more details to understand the impact on computing time by the combination of sensors and data 

size together.  
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Table 16 

Coefficients Table from Sensors-Data Size-Computing Time Regression 

 B Standard 
Error 

t Sig. 

Constant 0.473 0.248 1.908 0.066 

Data Size 0.001 0.000 18.372 0.000 

 

The coefficient table from regression technique revealed for data size t = 18.372 and p = 

0.000. This p-value is less than 0.05 alpha value. Hence, the coefficient table removed sensors 

from the final table because data size is highly correlated compared to sensors. If that happens, 

SPSS automatically drops the lesser correlated variable. That shows data size is a more accurate 

predictor of computing time compared to sensors. In other words, when both variables were 

applied in prediction, the regression model indicated a strong relationship. This relationship was 

obtained by removing sensors from the model. However, the strength of this relationship is 

relatively less compared to the strength of the relationship when data size alone was applied. 

Therefore, the fourth null hypothesis was rejected and the fourth alternative hypothesis was 

accepted. 

Thus,  

H04: There is no relationship with computing time by the combination of sensors and the 

size of data being processed together in distributed computing model. 

was rejected and  

HA4: There is a relationship with computing time by the combination of sensors and the 

size of data being processed together in distributed computing model. 
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was accepted. 

Through the evaluation of the fourth hypothesis, the fourth research question was answered. 

Q4: How do both sensors and the size of data being processed together affect the 

computing time of the distributed computing model? 

A4: The combination of sensors and the size of data being processed does statistically 

affect the computing time in distributed computing model. Although, sensors were not 

used as the predictor, the combination of both sensors and data sizes has an impact on 

DSO mechanism. Further, the affection by the combination of data size and sensor on 

computing time can be stated as 

Computing Time = 0.001 x (Data Size) + 0.473 
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CHAPTER 5 

 

CONCLUSIONS AND RECOMMENDATIONS 

 This research proposed a distributed computing model to reduce the delay caused by 

cloud latency in IoT applications. Also, this research prepared a simulation program for the 

distributed model and investigated how various parameters affect the performance of the model. 

This chapter focuses on the research conclusions and limitations and recommendations for future 

research in this area.  

Conclusions on the Research Hypotheses and Questions 

 This research primarily raised four research questions to find the performance of DSO 

model in reducing computing time. Each research question was supported by a hypothesis to 

conduct research analysis. The following section describes each research question, supported 

hypothesis, and research conclusion.  

Research Question 1 

Does the proposed swarm intelligence based Distributed Shared Optimization (DSO) 

model reduce the total computing time of the application? 

Null Hypothesis 1 

 There is no difference in computing time of the application when the proposed distributed 

computing model is used. 

Alternative Hypothesis 1 
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 There is a difference in computing time of the application when the proposed distributed 

computing model is used. 

Conclusion 1 

 ANOVA analysis indicated that there was a significant difference in computing time 

between DSO and client-server models. Further, the mean of DSO model’s computing time was 

2.87885 milliseconds and the mean of client-server model’s computing time was 25.75830 

milliseconds. This was 88.82% reduction in computing time by DSO when only sensors and data 

size were considered as influencing factors. Therefore, DSO model reduces the computing time 

of IoT significantly. 

Research Question 2 

 How does the number of sensors affect the computing time of the distributed computing 

model? 

Null Hypothesis 2 

 There is no relationship between the number of sensors and the computing time in 

distributed computing model. 

Alternative Hypothesis 2 

 There is a relationship between the number of sensors and computing time in distributed 

computing model. 

Conclusion 2 

 Linear regression analysis on the sensor data of DSO model indicated no relationship 

between computing time and sensor count. Both the multiple regression correlation coefficient 

(R) value and the coefficient of determination (R2) value revealed a very weak correlation 

between computing time and the number of sensors. Also, when the sensors and computing time 
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values were analyzed in a graph, there was no clear pattern was revealed. Further analyzing the 

coefficient table asserted number-of-sensors is not a reliable predictor of computing time in IoT 

environment.  

Research Question 3 

 How does the size of data being processed affect the computing time of the distributed 

computing model? 

Null Hypothesis 3 

 There is no relationship between the size of data being processed and computing time in 

distributed computing model. 

Alternative Hypothesis 3 

 There is a relationship between the size of data being processed and computing time in 

distributed computing model. 

Conclusion 3 

Linear regression analysis on the data sizes of DSO model indicated a strong linear 

relationship between computing time and data sizes. Both the multiple regression correlation 

coefficients (R) value and the coefficient of determination (R2) value revealed a strong 

correlation between computing time and size of the data. Further analyzing the coefficient table 

asserted data size is a reliable predictor of computing time in IoT environment. The impact of 

data size on the DSO model can be expressed by the equation shown below.  

Computing Time = 0.001 x (Data Size) + 0.501 

Research Question 4 

 How do both sensors and the size of data being processed together affect the computing 

time of the distributed computing model? 
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Null Hypothesis 4 

 There is no relationship with computing time by the combination of sensors and the size 

of data being processed together in distributed computing model. 

Alternative Hypothesis 4 

 There is a relationship with computing time by the combination of sensors and the size of 

data being processed together in distributed computing model. 

Conclusion 4 

 Multiple regression analysis on both the data sizes and the number-of-sensors of 

DSO model indicated a strong linear relationship between computing time and the combination 

of sensors and data sizes. Both the multiple regression correlation coefficient (R) value and the 

coefficient of determination (R2) value revealed a strong correlation between computing time and 

the combination of both sensors and size of the data. However, analyzing the coefficient table 

revealed this strong relationship was obtained by considering only data size values. Because the 

relationship between data size and computing time was very strong, the relationship from sensors 

was negligible. Overall, the combination of number of sensors and size of the data can be used as 

predictors of computing time even though data size’s influence is much greater than the sensor’s 

influence.  

 

Discussion of Significant Results 

 The demand for IoT applications is increasing exponentially in the recent past. As the 

demand increases, requirements for effective IoT applications also grow. One of the growing 

requirements in IoT ecosystem is the need for short response time for time sensitivity 

applications. Traditionally, data from IoT sensors are sent to cloud for processing. The response 
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from the cloud is sent back to IoT application. Cloud latency plays a major role in determining 

the response time for IoT applications. In North America, the average cloud latency is 65 

milliseconds. In time-sensitive applications such as IoT devices in self-driving cars, every 

millisecond is crucial for decision-making. Therefore, there is a need for reducing the delay 

caused by cloud latency in IoT applications.  

This research proposed distributed computing in IoT environment to reduce the delay 

caused by cloud latency. Through distributed computing, data processing can be conducted in the 

IoT environment instead of sending data to the cloud. In order to construct distributed 

computing, this research proposed a swarm intelligence based distributed system called DSO. In 

DSO model, IoT sensors function in a way similar to how biological agents such as ants, birds, 

and bees function in a swarm. DSO specifically modeled birds flocking to simulate distributed 

computing. Bird flocking follows three basic procedures called alignment, cohesion, and 

separation. Using these three guidelines, birds are able to fly towards a target destination as a 

group. DSO uses these three guidelines to process data as a group and reaches the goal of 

completing the computing. This research also proposed the algorithm for DSO that can be 

employed in IoT environments.  

In order to test the proposed DSO model, this research built a simulation program that 

simulates a MANET based IoT environment. In this simulation program, both DSO and client-

server models were employed and functionality was recorded. Through the statistical analysis 

using gathered data, this research identified the computing time was reduced when DSO model 

was employed. The reduction of computing time was 88.82%. This is a significant reduction 

where client-server model’s computing time was reduced to below half when DSO model was 

employed. By conducting computing in the local environment, DSO did not use cloud resources. 
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This eliminated the need to experience cloud latency. The processing burden of data is shared by 

IoT sensors in the local environment. Therefore, DSO allows parallel processing which also 

reduces the time significantly. Because of the technological advancements in the hardware, it 

was possible to build sensors that could do the complicated processing. From the cost 

perspective, it is also affordable to construct sensors that have the high processing power.  

Further, this research identified the relationship between sensors, data sizes and 

computing time in DSO. The number of sensors did not influence the computing time. Based on 

conventional knowledge, there should be a relationship between the number of sensors involved 

and processing data. However, this research did not identify any relationship between sensors 

and computing time in DSO. Because of this revelation, this research assumed there was another 

factor related to the sensors which was influencing the computing time severely. After analyzing 

the network setups, this research assumed the distance between the sensors could be the factor 

that was influencing the computing time. However, the distance between the sensors was not 

considered as a factor in this research. Therefore, this research recommends the distance between 

sensors must be considered in the future researches of DSO.  

 Hence, this research identified a strong relationship between data size and computing 

time. The relationship between data size and computing time is given below.   

 Computing Time = 0.001 x (Data Size) + 0.501 

 A strong relationship was identified between computing time and data size. This equation 

allowed to estimate the computing time based on data required to process at a given time. 

Through this equation, researchers could identify the computing time for various data sizes in 

order to understand the processing scope of DSO.  
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 Interestingly, this research also found that the combination of both sensors and data size 

can be used as an estimator to find computing time but it was mainly influenced by data size. 

Because the influence of data size is much greater than the influence by the sensors, the resulting 

impact can only consider data size. Further research is required to understand more about this 

combination.  

 

Limitation of the Research 

 One of the main limitation of this research is the simulation tool’s scope in MANET 

construction. The simulation tool was designed to build the MANET nodes in a two-dimensional 

(2D) panel. Thus, the nodes were randomly placed based on x and y-axis distances. Also, the 

neighboring nodes connections were established based on x any y-axis distances. Therefore, the 

data gathered from simulations were based on x and y-axis distances only. This could have 

limited the calculations. It would be beneficial to expand the simulation tool to construct 

MANET nodes in three-dimensional (3D) with x, y, and z-axes to denote the distances.  

 Another limitation of this study is the hosting computing of the simulation tool. Even 

though the simulation was designed to conduct parallel processing for DSO, the efficiency of the 

parallel processing depends on the hosting computer’s resources. A high processing powered 

CPU with a large volume of RAM would provide more accurate results. This research was 

conducted in a 2.8 GHz Processor with 8 GB RAM. This configuration was enough to run the 

simulation for this study. However, in the event of conducting more simulation cases for a large 

volume of data, it is desirable to add more hardware resources to the simulation hosting 

computer.   
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 The final limitation of this research is the adaptability from simulation to real-time 

environments. The data and calculations were proving the efficiency of DSO theory in a 

simulated environment. The results could be slightly different when MANET is constructed in a 

real environment to conduct the research. The results from the real environment could be 

affected by external factors such as weather. The scope of this research did not include the 

external factors that could affect the research calculations. Future researches can be conducted to 

measure the effects of external factors to DSO. 

  

Applications of DSO 

 The main application of DSO will be in the technology of self-driving cars. In the 

functionality of self-driving cars, there are thousands of sensors around the vehicle to understand 

the environment. The gathered data about the environment are often sent to cloud systems to 

interpret for reliable information. This information is critical to making the decisions in the self-

driving vehicle. The requests made to the cloud systems are subjected to cloud latency. Since 

cloud systems could be anywhere in the globe, there is not much control in reducing the cloud 

latency by sending requests only to those servers that are closer to the vehicle. In the present 

infrastructure of cloud architecture, it is almost impossible to reduce the cloud latency by 

limiting the servers the request needs to hop to get to the target server. Any delay in certain 

response could lead to the major catastrophic event in self-driving vehicles.  

In these situations, employing DSO in self-driving vehicles could reduce the latency 

tremendously. By distributing the processing to the neighboring nodes, self-driving vehicles 

could avoid sending requests to the cloud. Even though some requests need absolute access to 

the cloud, most of the requests can be diverted to process in the local environment. Technology 
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advancements are producing sensors with higher processing powers. Therefore, distributing the 

workload among IoT sensors is becoming more possible.  

Another application of DSO is enabling self-sustainable networks that are independent of 

cloud access. At the time of growing concerns about privacy, there is a need to run applications 

without accessing many interactions with the cloud. By employing DSO, even home networks 

with IoT can share most of the processes within the network and reserve cloud access for 

absolutely necessary actions. As IoT implementations are growing in the smart city and smart 

grid solutions, the application of not depending too much on cloud servers off-loads huge 

network traffic off from the infrastructures. 

 

Risks in DSO Mechanism 

The main concern in implementing DSO in IoT applications is the over usage of 

resources in sensors. The primary task of the sensors is sensing data but not computing data. 

Many resources such as memory and computing power are allocated for sensing purpose only. 

However, DSO allocates some part of memory and computing power to compute the data. The 

concern is whether this allocation would affect the performance of sensor’s primary task. With 

the advancement of sensor technology, newer sensors are produced with high memory and 

power. The cost of the sensors also going down as the technology of the sensors improves. 

Therefore, the concern about resource allocation will not be an issue in the future 

implementations. Another similar concern is the power consumption of numerous sensor 

devices. If the overall power consumption of all the sensors exceeds a certain level, the IoT 

environment could be subjected to power interruption. However, these sensors consume the 
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relatively very small amount of power compared to large cloud servers. Therefore, power 

consumption will be very less when computing is conducted through IoT sensors. 

Another risk in DSO mechanism is the handling of sensitive data. In the cloud-server 

model, the sensitive data needs to travel only to the cloud server from a device. Therefore, the 

security risk is only in one area. In DSO mechanism, the data is distributed and processed in each 

sensor. Therefore, the risk of being breached is very high and that risk is scattered all around the 

IoT environment.  

 

Restricting Factors of DSO 

 DSO mechanism heavily depends on the physical network obstructions. Since IoT 

environment could be scattered in any geographical area, the sensors are subjected to physical 

interruptions such as natural disasters and accidents. In the client-server model, most of the time 

the data resides in the cloud. Therefore, the data is safe when natural disasters occur. In DSO 

model, the data is scattered around IoT sensors in the physical environment. This characteristic 

exposes the continuity of DSO function to greater risk.  

Another restricting factor is the distance between sensors. Since this is a MANET based 

IoT environment, the sensors are mobile. Due to the constant movement of sensors, the data 

transfer between sensors could vary in time. Also, when the distance exceeds the reachability of 

other IoT sensors, the data transmission could be interrupted.    

 Security of IoT sensors also restricts certain environments’ ability to participate in DSO. 

Because DSO depends on the sharing characteristic of each sensor in the network, if individual 

sensors are programmed not to participate in data process, DSO of that environment will be 

greatly affected. Since IoT development is in its early stages, not many sensors are highly 
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secured. However, this pattern will change when IoT applications become more common. At that 

time, sensors will have very high security to protect data breach. Even passing through security 

levels will add another layer of time delay in overall computing time. 

The final restricting factor is the type of sensors used in DSO environment. The advanced 

sensors have high memory and processing power while most of the sensors in the current market 

do not have such resources. The success of DSO mechanism depends on the ability of sensors to 

process a large volume of data. This requirement requires high-powered advanced sensors. Even 

though increasingly advanced sensors are produced at a lower cost, the current market is still 

below the expectation.   

 

Recommendations for Future Research 

 This research provided significant implications for the future studies. Since this research 

simulation of DSO is limited to two-dimensional setup, the main recommendation for future 

researchers is to enhance the simulation to three-dimensional setup. It is important to see how 

three-dimensional simulation setup impacts the results in DSO’s functionality. By focusing on 

three-dimensional simulation, the results would be much closer to real IoT environment. Besides 

the three-dimensional enhancement, the simulation tool can be expanded in the following ways 

to examine DSO theory in a more closer way. 

• Simulation tool’s minimum data size can be allowed to set by the user. In that way, 

various simulations with different minimum data size can be tested.	

• Expanding the simulation tool to run on multiple computers in a distributed method. This 

enhancement will bring the simulation tests closer to real-world IoT environments.	
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• Connecting the simulation tool with big data processing engines such as Spark to 

measure the time taken for big data queries.   	

• Tool output can be enhanced to provide graphs to understand the patterns.  	

Apart from the enhancements to the simulation tool, this research can be modified to use 

real-world environment instead of using simulation environment. The simulation environment 

was built to mimic real-world environment. However, some external factors such as weather 

were not accounted for transmission happening from remote locations. Therefore, it is 

recommended to conduct this research by reading data from actual sensors built on MANET. 

Also, this research strongly recommends including security measures in the future research 

designs. The security measures may change the computing time data significantly.  

 

Summary 

 This research began the task of proposing a distributed computing model for IoT to 

reduce the computing time. Cloud latency was the main cause for delaying computing time. This 

research proposed DSO as a framework for reducing the computing time by conducting 

computing among IoT sensors. As the proof of this theory, this research conducted an 

experimental design to test DSO theory on MANET. A simulation tool was built to assist the 

experiment. The gathered data from the experiment were subjected to statistical analysis. From 

the statistical analysis, this research concluded that there is a significant computing time 

reduction in DSO model compared to the traditional cloud structure such as client-server model. 

Based on this conclusion, this research proposes the distributed computing among IoT devices as 

an alternative to depending on cloud servers for all the actions. The massive amount of data 
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produced by IoT sensors can be processed in the local environment instead of sending to the 

cloud server. This approach will produce very effective and faster computations in time-critical 

devices such as self-driving cars. As a future recommendation, big data processing engines can 

also be implemented in the local environment to speed up this process.   
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APPENDIX A: SIMULATION DATA 

Validation Data: (Riverbed Modeler – 1, DSO Simulator – 2) 

Group (Riverbed 
Modeler / DSO 
Simulator) 

Bit Rate (Bits/Sec) 

1 587.97 

1 752.32 

1 587.20 

1 504.83 

1 587.20 

1 362.69 

1 391.87 

1 481.09 

1 550.14 

1 412.54 

1 493.25 
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1 366.46 

1 235.07 

1 151.49 

1 257.97 

1 336.45 

1 477.89 

1 339.52 

1 176.70 

1 195.90 

2 361.82 

2 508.74 

2 554.77 

2 464.12 

2 552.01 

2 500.75 

2 413.81 
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2 444.37 

2 524.57 

2 490.69 

2 469.94 

2 493.62 

2 465.84 

2 557.22 

2 450.26 

2 471.63 

2 534.67 

2 460.47 

2 446.92 

2 472.79 
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Data taken from DSO and Client-Server Models to test and compare DSO performance. 

Model 
(DSO = 1; 
Client-
Server = 2) 

Sensors Data Size Computing Time 

1 12 2500 2.556 

1 12 2500 2.845 

1 12 2500 2.631 

1 12 2500 2.879 

1 12 2500 2.623 

1 12 2500 2.882 

1 12 2500 3.191 

1 12 2500 3.117 

1 12 2500 3.003 

1 12 2500 3.286 

1 12 2500 3.174 

1 12 2500 2.271 

1 12 2500 3.289 
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1 12 2500 2.596 

1 12 2500 2.524 

1 12 2500 2.851 

1 12 2500 2.616 

1 12 2500 2.959 

1 12 2500 4.018 

1 12 2500 3.315 

1 12 2500 3.459 

1 12 2500 3.008 

1 12 2500 2.751 

1 12 2500 3.276 

1 12 2500 2.973 

1 12 2500 2.918 

1 12 2500 2.877 

1 12 2500 2.713 

1 12 2500 2.827 
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1 12 2500 3.023 

1 12 2500 2.901 

1 12 2500 3.164 

1 12 2500 1.569 

1 12 2500 2.431 

1 12 2500 3.022 

1 12 2500 3.379 

1 12 2500 2.703 

1 12 2500 2.651 

1 12 2500 2.265 

1 12 2500 2.618 

2 12 2500 29.341 

2 12 2500 28.881 

2 12 2500 23.809 

2 12 2500 20.912 

2 12 2500 28.896 
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2 12 2500 29.117 

2 12 2500 12.901 

2 12 2500 21.559 

2 12 2500 26.623 

2 12 2500 28.931 

2 12 2500 15.655 

2 12 2500 18.242 

2 12 2500 31.613 

2 12 2500 29.047 

2 12 2500 18.174 

2 12 2500 26.311 

2 12 2500 29.056 

2 12 2500 33.768 

2 12 2500 22.771 

2 12 2500 18.623 

2 12 2500 21.119 
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2 12 2500 32.352 

2 12 2500 31.513 

2 12 2500 23.422 

2 12 2500 31.499 

2 12 2500 18.336 

2 12 2500 27.252 

2 12 2500 21.073 

2 12 2500 29.204 

2 12 2500 28.768 

2 12 2500 18.361 

2 12 2500 34.506 

2 12 2500 17.899 

2 12 2500 20.935 

2 12 2500 34.527 

2 12 2500 28.886 

2 12 2500 29.171 
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2 12 2500 31.782 

2 12 2500 26.599 

2 12 2500 28.898 

 

Data were taken from DSO simulation to test the effect of sensors on DSO mechanism. 

Sensors Data Size Computing Time 

4 2500 2.983 

5 2500 2.549 

6 2500 2.132 

7 2500 3.248 

8 2500 2.306 

9 2500 1.605 

10 2500 1.771 

11 2500 2.432 

12 2500 2.951 

13 2500 2.965 

14 2500 2.359 
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15 2500 1.641 

16 2500 1.988 

17 2500 2.963 

18 2500 3.884 

19 2500 3.022 

20 2500 2.951 

21 2500 2.025 

22 2500 2.793 

23 2500 2.214 

24 2500 2.555 

25 2500 2.481 

26 2500 3.064 

27 2500 2.953 

28 2500 2.228 

29 2500 1.951 

30 2500 2.498 
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31 2500 1.913 

32 2500 3.373 

33 2500 3.107 

34 2500 3.561 

35 2500 3.209 

 

Data were taken from DSO simulation to test the limit of sensors on simulation tool. 

Sensors Data Size (Bits) Computing Time 
(Seconds) 

5 5000 5.162 

10 5000 4.908 

15 5000 7.005 

20 5000 4.688 

25 5000 6.261 

30 5000 5.139 

35 5000 4.943 

40 5000 4.386 



 105 

45 5000 4.858 

50 5000 5.271 

55 5000 4.593 

60 5000 4.181 

65 5000 2.879 

70 5000 5.148 

75 5000 6.025 

80  5000 5.976 

85 5000 7.392 

90 5000 6.016 

95 5000 5.208 

100 5000 6.361 

105 5000 4.823 

110 5000 5.448 

115 5000 7.808 

120 5000 6.442 
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125 5000 3.329 

130 5000 4.876 

135 5000 5.975 

140 5000 5.147 

145 5000 6.891 

150 5000 7.792 

155 5000 0.000 

 

Data were taken from DSO simulation to test the effect of data size on simulation tool. 

Sensors Data Size (Bits) Computing Time 
(Seconds) 

12 600 0.836 

12 800 1.165 

12 1000 1.067 

12 1200 1.268 

12 1400 1.483 

12 1600 2.015 
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12 1800 2.476 

12 2000 2.419 

12 2200 2.668 

12 2400 2.796 

12 2600 3.015 

12 2800 3.058 

12 3000 3.401 

12 3200 3.604 

12 3400 3.581 

12 3600 3.829 

12 3800 3.566 

12 4000 4.182 

12 4200 4.603 

12 4400 4.961 

12 4600 4.429 

12 4800 5.292 
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12 5000 5.232 

12 5200 4.707 

12 5400 4.977 

12 5600 5.814 

12 5800 5.236 

12 6000 6.067 

12 6200 6.682 

12 6400 6.427 

12 6600 6.089 

12 6800 6.243 

 

Data taken from DSO simulation to test effect of both sensors and data size on simulation tool. 

Sensors Data Size (Bits) Computing Time 
(Seconds) 

4 600 1.968 

5 800 0.966 

6 1000 1.197 
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7 1200 1.344 

8 1400 1.586 

9 1600 1.831 

10 1800 2.378 

11 2000 3.453 

12 2200 2.601 

13 2400 3.005 

14 2600 3.267 

15 2800 3.276 

16 3000 3.862 

17 3200 4.098 

18 3400 4.578 

19 3600 5.251 

20 3800 4.835 

21 4000 5.578 

22 4200 6.216 
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23 4400 3.615 

24 4600 4.985 

25 4800 5.613 

26 5000 5.926 

27 5200 6.548 

28 5400 6.988 

29 5600 6.362 

30 5800 7.952 

31 6000 6.849 

32 6200 7.915 

33 6400 7.065 

34 6600 6.642 

35 6800 7.738 
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APPENDIX B: SOURCE CODE OF DSO SIMULATOR 

File: Simulator.cs 

using System; 

using System.Collections.Generic; 

using System.ComponentModel; 

using System.Data; 

using System.Drawing; 

using System.Linq; 

using System.Text; 

using System.Threading.Tasks; 

using System.Threading; 

using System.Windows.Forms; 

using System.Diagnostics; 

 

namespace DSO_Simulation 

{ 

    public partial class Simulator : Form 

    { 

        Graphics drawArea; 

        Pen blackPen = new Pen(Color.Black); 
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        List<Node> nodes = new List<Node>(); 

        Dictionary<string, Node> dictNode = new Dictionary<string, Node>(); 

        DataTable dtGlobalTable = new DataTable(); 

        Node aggregator = new Node(); 

        int cloudLatency = 0; 

        double bitRatePerSecond = 0; 

        double nodeDistance = 0; 

        bool aggregatorReached = false; 

 

        BackgroundWorker backgroundworker = new BackgroundWorker(); 

        BackgroundWorker backgroundworkerCloud = new BackgroundWorker(); 

        BackgroundWorker backgroundworkerValidation = new BackgroundWorker(); 

        delegate void SetTextCallback(string[] strArray); 

 

        static Stopwatch stopwatch; 

        static Stopwatch overallStopWatch; 

        static Stopwatch cloudStopWatch; 

        static Stopwatch validationStopWatch; 

 

        static readonly Object lockObj = new Object(); 

 

        public Simulator() 

        { 
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            InitializeComponent(); 

            drawArea = drawingArea.CreateGraphics(); 

            stopwatch = new Stopwatch(); 

            overallStopWatch = new Stopwatch(); 

            cloudStopWatch = new Stopwatch(); 

            validationStopWatch = new Stopwatch(); 

 

            drawArea.Clear(Color.White); 

 

            dtGlobalTable.Columns.Add("NodeName", typeof(String)); 

            dtGlobalTable.Columns.Add("Node", typeof(Node)); 

            dtGlobalTable.Columns.Add("NeighborNodes", typeof(List<Node>)); 

            dtGlobalTable.Columns.Add("ConnectionVisited", typeof(bool)); 

            dtGlobalTable.Columns.Add("ComputingVisited", typeof(bool)); 

            dtGlobalTable.Columns.Add("AggregatorPathVisited", typeof(bool)); 

 

            backgroundworker.DoWork += new DoWorkEventHandler(DSO_Computing); 

            backgroundworker.ProgressChanged += new 

ProgressChangedEventHandler(Progress_Changed); 

            backgroundworker.RunWorkerCompleted += new 

RunWorkerCompletedEventHandler(background_RunWorkerCompleted); 

            backgroundworker.WorkerReportsProgress = true; 
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            backgroundworkerCloud.DoWork += new 

DoWorkEventHandler(MultiHopTransferToAggregator); 

            backgroundworkerCloud.ProgressChanged += new 

ProgressChangedEventHandler(Cloud_Progress_Changed); 

            backgroundworkerCloud.RunWorkerCompleted += new 

RunWorkerCompletedEventHandler(Cloud_background_RunWorkerCompleted); 

            backgroundworkerCloud.WorkerReportsProgress = true; 

 

            backgroundworkerValidation.DoWork += new 

DoWorkEventHandler(MultiHopTransferForValidation); 

            backgroundworkerValidation.ProgressChanged += new 

ProgressChangedEventHandler(Validation_Progress_Changed); 

            backgroundworkerValidation.RunWorkerCompleted += new 

RunWorkerCompletedEventHandler(Validation_background_RunWorkerCompleted); 

            backgroundworkerValidation.WorkerReportsProgress = true; 

        } 

 

        private void btnRun_Click(object sender, EventArgs e) 

        { 

            int iSensors = 0; 

            Int32.TryParse(txtSensors.Text, out iSensors); 

 

            if(iSensors <= 0) 
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            { 

                MessageBox.Show("Please enter a valid Number of Sensors"); 

                return; 

            } 

 

            SolidBrush blueBrush = new SolidBrush(Color.DarkBlue); 

            SolidBrush redBrush = new SolidBrush(Color.DarkRed); 

            Random random = new Random(); 

 

            //--------------------------------------------------------------------------- 

            //Create Sensor Nodes 

            //--------------------------------------------------------------------------- 

            int x_max_width = (iSensors * 20) + 100; 

            if (x_max_width > 920) 

            { 

                x_max_width = 920; 

            } 

            int y_max_length = (iSensors * 30); 

            if(y_max_length > 580) 

            { 

                y_max_length = 580; 

            } 

            for (int i = 0; i < iSensors; i++) 
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            { 

                Node node = new Node(); 

                node.Name = i.ToString(); 

                node.X_axis = random.Next(1, x_max_width); 

                node.Y_axis = random.Next(1, y_max_length); 

 

                drawArea.FillPolygon(blueBrush, DrawNode(node.X_axis, node.Y_axis)); 

 

                nodes.Add(node); 

            } 

 

            //------------------------------------------------------------------------------- 

            //Add Aggregator to the environment 

            //------------------------------------------------------------------------------- 

            aggregator.Name = "A"; 

            aggregator.X_axis = random.Next(1, x_max_width); 

            aggregator.Y_axis = random.Next(1, y_max_length); 

            drawArea.FillPolygon(redBrush, DrawNode(aggregator.X_axis, 

aggregator.Y_axis)); 

            nodes.Add(aggregator); 

 

            //------------------------------------------------------------------------------------ 
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            //Finding neighboring nodes that are within 150 points range and fill the global 

table 

            //------------------------------------------------------------------------------------ 

            FillGlobalTable(150); 

 

            DrawConnections("0", ""); 

        } 

 

        private void FillGlobalTable(int range) 

        { 

            for (int i = 0; i < nodes.Count; i++) 

            { 

                List<Node> tempList = new List<Node>(); 

                IList<string> neighborNodeList = new List<string>(); 

                for (int j = 0; j < nodes.Count; j++) 

                { 

                    if (i != j) 

                    { 

                        if (Math.Abs(nodes[i].X_axis - nodes[j].X_axis) <= range && 

Math.Abs(nodes[i].Y_axis - nodes[j].Y_axis) <= range) 

                        { 

                            tempList.Add(nodes[j]); 

                            neighborNodeList.Add(nodes[j].Name); 
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                        } 

                    } 

                } 

                DataRow drNew = dtGlobalTable.NewRow(); 

                drNew["NodeName"] = nodes[i].Name; 

                drNew["Node"] = nodes[i]; 

                drNew["NeighborNodes"] = tempList; 

                drNew["ConnectionVisited"] = false; 

                drNew["ComputingVisited"] = false; 

                drNew["AggregatorPathVisited"] = false; 

 

                dtGlobalTable.Rows.Add(drNew); 

 

                string strNeighborNodeList = ""; 

                foreach (Node tnode in tempList) 

                { 

                    strNeighborNodeList += tnode.Name + ","; 

                } 

                nodes[i].NeighborList = string.Join(",", neighborNodeList); 

                dictNode.Add(nodes[i].Name, nodes[i]); 

 

                dgvNeighbors.Rows.Add(new string[] { nodes[i].Name, strNeighborNodeList 

}); 
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            } 

        } 

 

        private Point[] DrawNode(int middleX, int middleY) 

        { 

            //Size of Node is 20 points in X axis, 30 points in Y axis 

            return new Point[] { new Point(middleX-10, middleY+15), new Point(middleX, 

middleY-15), new Point(middleX+10, middleY+15) }; 

        } 

 

        private void btnReset_Click(object sender, EventArgs e) 

        { 

            drawArea.Clear(Color.White); 

            dtGlobalTable.Clear(); 

            nodes.Clear(); 

            dgvResults.Rows.Clear(); 

            dgvNeighbors.Rows.Clear(); 

            dictNode.Clear(); 

 

            txtDSOResult.Text = ""; 

            txtClientServerResult.Text = ""; 

            txtBitPerSec.Text = ""; 

            txtNodeDistance.Text = ""; 
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            aggregatorReached = false; 

        } 

 

        private void DrawConnections(string currentNodeName, string previousNodeName) 

        { 

            //----------------------------------------------------------- 

            //Check the global table for neighboring nodes 

            //----------------------------------------------------------- 

            DataRow drRow = (from Row in dtGlobalTable.AsEnumerable() 

                            where Row.Field<string>("NodeName") == currentNodeName 

                            select Row).FirstOrDefault<DataRow>();  

           

            List<Node> lstNeighborNodes = drRow.Field<List<Node>>("NeighborNodes"); 

            Node currentNode = drRow.Field<Node>("Node"); 

 

            //---------------------------------------------------------------------- 

            //Setting the flag to reflect the current node is visited for connection 

            //---------------------------------------------------------------------- 

            drRow["ConnectionVisited"] = true; 

 

            List<Node> neighborNodesToBeVisited = new List<Node>(); 

            //------------------------------------------------- 
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            //Find each neighboring node to draw a connection 

            //------------------------------------------------- 

            foreach (Node neighborNode in lstNeighborNodes) 

            { 

                //------------------------------------------------------------------------ 

                //First find if the neighboring node already got connection established. 

                //------------------------------------------------------------------------ 

                DataRow drNeighborRow = (from dRow in dtGlobalTable.AsEnumerable() 

                                         where dRow.Field<string>("NodeName") == 

neighborNode.Name 

                                         select dRow).FirstOrDefault<DataRow>(); 

 

                if(drNeighborRow.Field<bool>("ConnectionVisited") == false) 

                { 

                    //---------------------------------------------------------------------- 

                    //This node hasn't established connection yet, so new connection will be  

                    //created and ConnectionVisited property will be set to true.  

                    //----------------------------------------------------------------------- 

                    drawArea.DrawLine(blackPen, currentNode.X_axis, currentNode.Y_axis, 

neighborNode.X_axis, neighborNode.Y_axis); 

 

                    //---------------------------------------------------------------------------------- 
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                    //Qualified Neighbor nodes are added to the list so they can be recursively 

visited 

                    //---------------------------------------------------------------------------------- 

                    neighborNodesToBeVisited.Add(neighborNode); 

                }    

            } 

 

            //--------------------------------------------------------------------- 

            //Now recursively visit available neighboring nodes to establish connection 

            //--------------------------------------------------------------------- 

            foreach (Node neighborToBeVisited in neighborNodesToBeVisited) 

            { 

                DrawConnections(neighborToBeVisited.Name, currentNodeName); 

            } 

        } 

 

        private void MultiHopTransferToAggregator(object sender, DoWorkEventArgs e) 

        { 

            string data = BuildData(); 

            if(data == "") 

            { 

                return; 

            } 
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            //-------------------------------------------- 

            //Find the 0 node from global table 

            //-------------------------------------------- 

            DataRow[] drRows = dtGlobalTable.Select("NodeName='0'"); 

            if(drRows.Length >0) 

            { 

                Node currNode = drRows[0].Field<Node>("Node"); 

                MultiHoptoAggregator("0", data, currNode, 0); 

            } 

 

             

        } 

 

        private void MultiHoptoAggregator(string nodeName, string data, Node prevNode, 

double sumTransferTime) 

        { 

            if (!aggregatorReached) 

            { 

                //-------------------------------------------- 

                //Find the node from global table 

                //-------------------------------------------- 

                DataRow[] drRows = dtGlobalTable.Select("NodeName='" + nodeName + "'"); 
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                if (drRows.Length > 0) 

                { 

                    drRows[0]["AggregatorPathVisited"] = true; 

                    Node currNode = drRows[0].Field<Node>("Node"); 

 

                    double bit_RatePerSecond = 0; 

                    double distance = GetDistance(currNode, prevNode); 

                    double transferTime = GetTransferTime(distance, data, out 

bit_RatePerSecond); 

                    sumTransferTime += transferTime; 

 

                    //------------------------------------------------------------ 

                    //First check if the node is Aggregator. If so, begin sending 

                    //to cloud.  

                    //------------------------------------------------------------ 

                    if (nodeName == "A") 

                    { 

                        //--------------------------------------------------------------- 

                        //Sleep for total transfer time to simulate the bit transfer time 

                        //--------------------------------------------------------------- 

                        Thread.Sleep(Convert.ToInt32(Math.Round(sumTransferTime))); 
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                        //------------------------------------------------------------- 

                        //Send to cloud for processing. Thread sleeps for latency time. 

                        //------------------------------------------------------------- 

                        Thread.Sleep(cloudLatency); 

 

                        ProcessData(data); 

                        aggregatorReached = true; 

                        cloudStopWatch.Stop(); 

 

                    } 

                    else 

                    { 

                        //--------------------------------------------------------- 

                        //Select all the neighbor nodes and recursively move if any  

                        //one of them not visited yet. 

                        //--------------------------------------------------------- 

                        List<Node> neighborNodes = 

drRows[0].Field<List<Node>>("NeighborNodes"); 

 

                        foreach (Node n in neighborNodes) 

                        { 

                            //--------------------------------------------------------- 

                            //Check if this node was already visited; if not, it will be 
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                            //recursively sent. 

                            //--------------------------------------------------------- 

                            bool visited = (from drQRow in dtGlobalTable.AsEnumerable() 

                                            where drQRow["NodeName"].ToString() == n.Name 

                                            select 

drQRow.Field<bool>("AggregatorPathVisited")).FirstOrDefault<bool>(); 

 

                            if (visited == false) 

                            { 

                                MultiHoptoAggregator(n.Name, data, currNode, sumTransferTime); 

                            } 

                        } 

                    } 

                } 

            } 

        } 

 

        //-------------------------------------------------------- 

        //Finds the direct distance between nodes based on both of  

        //their x and y axis.  

        //-------------------------------------------------------- 

        private double GetDistance(Node currNode, Node prevNode) 

        { 
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            double distance = 0; 

 

            //----------------------------------------------------- 

            //Find the absolute x and y distance between the nodes 

            //----------------------------------------------------- 

            int x_distance = Math.Abs(currNode.X_axis - prevNode.X_axis); 

            int y_distance = Math.Abs(currNode.Y_axis - prevNode.Y_axis); 

 

            distance = Math.Sqrt(Math.Pow(x_distance, 2) + Math.Pow(y_distance, 2)); 

            return distance; 

        } 

 

        //---------------------------------------------------------- 

        //Finds the bit transfer time from one node to another. 

        //---------------------------------------------------------- 

        private double GetTransferTime(double distance, string data, out double 

bitRate_perSecond) 

        { 

            bitRate_perSecond = Find_BitRate(distance); 

            double transferTime_millisecond = ((1000 / bitRate_perSecond) * data.Length); 

            return transferTime_millisecond; 

        } 
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        //------------------------------------------------------- 

        //Finds the bit rate of the node. 

        //------------------------------------------------------- 

        private double Find_BitRate(double distance) 

        { 

            //------------------------------------------------------- 

            //Based on Riverbed Modeler's MANET simulation, following 

            //equation was derived to calculate the transfer time. 

            //------------------------------------------------------- 

            double bitRate_perSecond = 1030.095 - (0.823 * distance); 

            return bitRate_perSecond; 

        } 

        /// <summary> 

        /// Builds the data bases on the size given. Size is in bytes 

        /// and it is considered one byte is equal to one character in  

        /// the string.  

        /// </summary> 

        /// <param name="dataSize"></param> 

        /// <returns></returns> 

        private string BuildData() 

        { 

            int dataSize = 0; 

            int.TryParse(txtSizeofData.Text, out dataSize); 
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            if(dataSize == 0) 

            { 

                MessageBox.Show("Enter a valid data size"); 

                return ""; 

            }  

            string data = ""; 

            for(int i = 0; i<dataSize; i++) 

            { 

                data += "0"; 

            } 

 

            return data; 

        } 

        private void btnDSO_Click(object sender, EventArgs e) 

        { 

            stopwatch.Reset(); 

            stopwatch.Start(); 

             

            object[] parameters = new object[] { "0", ""}; 

            backgroundworker.RunWorkerAsync(parameters); 

             

        } 
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        private void DSO_Computing(object sender, DoWorkEventArgs e) 

        { 

            string data = BuildData(); 

            

            stopwatch.Reset(); 

            stopwatch.Start(); 

 

            overallStopWatch.Reset(); 

            overallStopWatch.Start(); 

            //---------------------------------------------------------- 

            //Get the '0' node. Process starts with '0' node. 

            //---------------------------------------------------------- 

            DataRow[] drNeighborRows = dtGlobalTable.Select("NodeName='0'"); 

 

            if(drNeighborRows.Length > 0) 

            { 

                 

                drNeighborRows[0]["ComputingVisited"] = true; 

                List<Node> lstNeighborNodes = 

drNeighborRows[0].Field<List<Node>>("NeighborNodes"); 

                Node currNode = drNeighborRows[0].Field<Node>("Node"); 
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                //------------------------------------------------------------- 

                //Build distributed data with neighboring nodes 

                //------------------------------------------------------------- 

                string currentNodeData = ""; 

                if (data.Length >= 50) 

                { 

                    Dictionary<Node, string> dso_information = 

DistributeData(lstNeighborNodes, data, out currentNodeData); 

 

                    Parallel.ForEach(dso_information, (nodeDataPair) => 

Computing(nodeDataPair,currNode)); 

                } 

                else 

                { 

                    currentNodeData = data; 

                } 

 

                //-------------------------------------------------------------- 

                //Now compute the current node 

                //-------------------------------------------------------------- 

                ProcessData(currentNodeData); 

                stopwatch.Stop(); 
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                //----------------------------------------------- 

                //Get Neighboring Node list for debug information 

                //----------------------------------------------- 

                Node currentNode; 

                dictNode.TryGetValue("0", out currentNode); 

                string[] strArray = { drNeighborRows[0].Field<Node>("Node").Name, 

currentNodeData.Length.ToString(), stopwatch.Elapsed.ToString(), currentNode.NeighborList }; 

                this.SetText(strArray); 

            } 

             

        } 

 

        public void Computing(KeyValuePair<Node,string> nodeDataPair, Node 

previousNode) 

        { 

            stopwatch.Reset(); 

            stopwatch.Start(); 

            Node n = nodeDataPair.Key; 

            string data = nodeDataPair.Value; 

            //---------------------------------------------------------------------------------------- 

            //Find all the neighbors who are available for computing (based on 

computingvisited flag 

            //---------------------------------------------------------------------------------------- 
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            DataRow[] drRows = dtGlobalTable.Select("NodeName='" + n.Name + "'"); 

 

            if(drRows.Length > 0) 

            { 

                List<Node> lstNeighborNodes = new List<Node>(); 

                string currentNodeData = ""; 

                Dictionary<Node, string> dso_neighborInformation = new Dictionary<Node, 

string>(); 

                lock (lockObj) 

                { 

                    drRows[0]["ComputingVisited"] = true; 

                } 

 

                Node currNode = drRows[0].Field<Node>("Node"); 

                double bit_RatePerSecond = 0; 

                double distance = GetDistance(currNode, previousNode); 

                double transferTime = GetTransferTime(distance, data, out 

bit_RatePerSecond); 

 

                //------------------------------------------------------------ 

                //Let it sleep the transfer time to simulate the actual transfer  

                //time. 

                //------------------------------------------------------------ 
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                Thread.Sleep(Convert.ToInt16(Math.Round(transferTime))); 

 

                //--------------------------------------------------------------- 

                //If the data to processed is less than 50 bytes, we don't have to  

                //distribute because it is more efficient to process in a single node 

                //than distributing to tiny pieces. 

                //---------------------------------------------------------------- 

                if (data.Length >= 50) 

                { 

                    lock (lockObj) 

                    { 

                        lstNeighborNodes = drRows[0].Field<List<Node>>("NeighborNodes"); 

 

                        dso_neighborInformation = DistributeData(lstNeighborNodes, 

data.ToString(), out currentNodeData); 

                    } 

                    Parallel.ForEach(dso_neighborInformation, (neighborNodeDataPair) => 

Computing(neighborNodeDataPair, currNode)); 

                } 

                else 

                { 

                    currentNodeData = data; 

                } 
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                //------------------------------------------------- 

                //No neighbor nodes are found. So compute the data 

                //------------------------------------------------- 

                ProcessData(currentNodeData); 

                stopwatch.Stop(); 

 

                Node currentNode; 

                dictNode.TryGetValue(n.Name, out currentNode); 

 

                string[] strArray = { n.Name, currentNodeData.Length.ToString(), 

stopwatch.Elapsed.ToString(), currentNode.NeighborList }; 

                this.SetText(strArray); 

            } 

        } 

 

        private Dictionary<Node, string> DistributeData(List<Node> lstNeighborNodes, 

string data, out string currentNodeData) 

        { 

            //-------------------------------------------------------- 

            //Find which neighboring nodes are available for computing 

            //and assign them for computing 

            //-------------------------------------------------------- 

            List<Node> availableNodesForComputing = new List<Node>(); 
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            foreach (Node neighborNode in lstNeighborNodes) 

            { 

                //--------------------------------------------------------- 

                //If the neighbor node is Aggregator, it will skip because 

                //aggregators are not participating in computing. 

                //--------------------------------------------------------- 

                if (neighborNode.Name != "A") 

                { 

                    DataRow[] drAvailableNode = dtGlobalTable.Select("NodeName='" + 

neighborNode.Name + "' and ComputingVisited=false"); 

                    if (drAvailableNode.Length > 0 && drAvailableNode[0] != null) 

                    { 

                        Node nd = drAvailableNode[0].Field<Node>("Node"); 

                        availableNodesForComputing.Add(nd); 

 

                        //---------------------------------------------------------------------------------------- 

                        //Flag will be set to visited so distribution will happen accordingly. If flag 

is not set  

                        //here other threads would be using these neighboring nodes for 

distribution. 

                        //----------------------------------------------------------------------------------------

- 
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                            drAvailableNode[0]["ComputingVisited"] = true; 

                       // } 

                    } 

                } 

            } 

 

            List<string> dataSegments = new List<string>(); 

            

            int totalNodes = availableNodesForComputing.Count() + 1; 

            int DataSegmentLength = data.Length / totalNodes; 

 

            if ((data.Length % totalNodes) == 0) 

            { 

                //------------------------------------------------------- 

                //Data can be equally distributed. First segment is for 

                //the current node to process and the remaining segments are 

                //for neighbor nodes to process. 

                //-------------------------------------------------------             

                int startIndex = 0; 

                currentNodeData = data.Substring(startIndex, DataSegmentLength); 

                startIndex += DataSegmentLength; 

 

                while((startIndex+DataSegmentLength) <= data.Length) 
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                { 

                    dataSegments.Add(data.Substring(startIndex, DataSegmentLength)); 

                    startIndex += DataSegmentLength; 

                } 

            } 

            else 

            { 

                //------------------------------------------------- 

                //Data segments can not be equally distributed 

                //so we will put the first segment to have +1 and  

                //rest will be equal segments 

                //------------------------------------------------- 

                int firstDataSegmentLength = DataSegmentLength + 1; 

                int startIndex = firstDataSegmentLength; 

 

                currentNodeData = data.Substring(0, firstDataSegmentLength); 

 

                while ((startIndex + DataSegmentLength) <= data.Length) 

                { 

                    dataSegments.Add(data.Substring(startIndex, DataSegmentLength)); 

                    startIndex += DataSegmentLength; 

                } 

            } 
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            Dictionary<Node, string> neighborNodesData = new Dictionary<Node, string>(); 

            int counter = 0; 

            foreach(Node node in availableNodesForComputing) 

            { 

                neighborNodesData.Add(node, dataSegments[counter++]); 

            } 

 

            return neighborNodesData; 

        } 

 

        /// <summary> 

        /// Process the data incoming by changing the characters to 'x' and  

        /// pauses for the size of the incoming data.  

        /// </summary> 

        /// <param name="data"></param> 

        private void ProcessData(string data) 

        { 

            char[] dataArray = data.ToCharArray(); 

            for (int i = 0; i < dataArray.Length; i++) 

            { 

                dataArray[i] = '1'; 

            } 
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            //---------------------------------------------------------- 

            //This simulation considers one millisecond to process a byte 

            //and takes the data size of the time to pause to simulate  

            //the processing. 

            //---------------------------------------------------------- 

            Thread.Sleep(data.Length); 

        } 

 

        private void SetText(string[] textArray) 

        { 

            if(this.btnReset.InvokeRequired) 

            { 

                SetTextCallback d = new SetTextCallback(SetText); 

                this.Invoke(d, new object[] { textArray }); 

            } 

            else 

 

            { 

                dgvResults.Rows.Add(textArray); 

            } 

        } 

        private void Progress_Changed(object sender, ProgressChangedEventArgs e) 
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        { 

            btnReset.Text = e.ProgressPercentage.ToString(); 

             

        } 

 

        private void background_RunWorkerCompleted(object sender, 

RunWorkerCompletedEventArgs e) 

        { 

            overallStopWatch.Stop(); 

 

            Node aggNode = new Node(); 

            dictNode.TryGetValue("A", out aggNode); 

 

            if(aggNode == null) 

            { 

                MessageBox.Show("No network found. Please build MANET."); 

                return; 

            } 

            string[] strArray = { "A", "-", "-", aggNode.NeighborList }; 

            this.SetText(strArray); 

 

            string[] strTotArray = { "Total", "-", overallStopWatch.Elapsed.ToString(), "-" }; 

            this.SetText(strTotArray); 
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            txtDSOResult.Text = overallStopWatch.Elapsed.ToString(); 

        } 

 

        private void Cloud_Progress_Changed(object sender, ProgressChangedEventArgs e) 

        { 

            //btnReset.Text = e.ProgressPercentage.ToString(); 

 

        } 

 

        private void Validation_Progress_Changed(object sender, 

ProgressChangedEventArgs e) 

        { 

            //btnReset.Text = e.ProgressPercentage.ToString(); 

 

        } 

 

        private void Cloud_background_RunWorkerCompleted(object sender, 

RunWorkerCompletedEventArgs e) 

        { 

            cloudStopWatch.Stop(); 

            txtClientServerResult.Text = cloudStopWatch.Elapsed.ToString(); 

        } 
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        private void Validation_background_RunWorkerCompleted(object sender, 

RunWorkerCompletedEventArgs e) 

        { 

            validationStopWatch.Stop(); 

            txtClientServerResult.Text = validationStopWatch.Elapsed.ToString(); 

            txtBitPerSec.Text = bitRatePerSecond.ToString(); 

            txtNodeDistance.Text = nodeDistance.ToString(); 

        } 

 

        private void btnClientServer_Click(object sender, EventArgs e) 

        { 

            int.TryParse(txtLatency.Text, out cloudLatency); 

            if(cloudLatency == 0) 

            { 

                MessageBox.Show("Cloud Latency should be set to non zero"); 

            } 

            cloudStopWatch.Reset(); 

            cloudStopWatch.Start(); 

 

            backgroundworkerCloud.RunWorkerAsync(); 

        } 

 

        private void MultihopToAggregator(object sender, DoWorkEventArgs e) 
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        { 

            string data = BuildData(); 

 

            cloudStopWatch.Reset(); 

            cloudStopWatch.Start(); 

 

            //---------------------------------------------------------- 

            //Get the '0' node. Process starts with '0' node. 

            //---------------------------------------------------------- 

            DataRow[] drNeighborRows = dtGlobalTable.Select("NodeName='0'"); 

 

            if (drNeighborRows.Length > 0) 

            { 

 

                drNeighborRows[0]["ComputingVisited"] = true; 

                List<Node> lstNeighborNodes = 

drNeighborRows[0].Field<List<Node>>("NeighborNodes"); 

                Node currNode = drNeighborRows[0].Field<Node>("Node"); 

 

                //Dictionary<Node, string> dso_information = 

DistributeData(lstNeighborNodes, data, out currentNodeData); 
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                Parallel.ForEach(lstNeighborNodes, (neighborNode) => 

Multihop(neighborNode, currNode, data)); 

            } 

 

        } 

 

        public void Multihop(Node currNode, Node previousNode, string data) 

        { 

            //---------------------------------------------------------------------------------------- 

            //Find all the neighbors who are available for computing (based on 

computingvisited flag 

            //---------------------------------------------------------------------------------------- 

            DataRow[] drRows = dtGlobalTable.Select("NodeName='" + currNode.Name + "' 

and ComputingVisited=false"); 

 

            if (drRows.Length > 0) 

            { 

                List<Node> lstNeighborNodes = new List<Node>(); 

                 

                lock (lockObj) 

                { 

                    drRows[0]["ComputingVisited"] = true; 

                } 
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                lstNeighborNodes = drRows[0].Field<List<Node>>("NeighborNodes"); 

                 

                double bit_RatePerSecond = 0; 

                double distance = GetDistance(currNode, previousNode); 

                double transferTime = GetTransferTime(distance, data, out 

bit_RatePerSecond); 

 

                //------------------------------------------------------------ 

                //Let it sleep the transfer time to simulate the actual transfer  

                //time. 

                //------------------------------------------------------------ 

                Thread.Sleep(Convert.ToInt16(Math.Round(transferTime))); 

 

                if (currNode.Name != "A") 

                { 

                    Parallel.ForEach(lstNeighborNodes, (neighborNode) => 

Multihop(neighborNode, currNode, data)); 

                } 

                else 

                { 

                    //------------------------------------------- 

                    //Wait for simulating cloud latency 
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                    //------------------------------------------- 

                    Thread.Sleep(cloudLatency); 

 

                    //------------------------------------------- 

                    //Wait for processing data 

                    //------------------------------------------- 

                    Thread.Sleep(data.Length); 

 

                    cloudStopWatch.Stop(); 

                } 

                 

            } 

        } 

        private void btnValidation_Click(object sender, EventArgs e) 

        { 

            SolidBrush blueBrush = new SolidBrush(Color.DarkBlue); 

            Random random = new Random(); 

            for (int i = 0; i < 4; i++) 

            { 

                Node node = new Node(); 

                node.Name = i.ToString(); 

                node.X_axis = random.Next(1, 920); 

                node.Y_axis = random.Next(1, 580); 
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                drawArea.FillPolygon(blueBrush, DrawNode(node.X_axis, node.Y_axis)); 

 

                nodes.Add(node); 

            } 

 

            FillGlobalTable(700); 

            DrawConnections("0", ""); 

        } 

        private void btnRunValidation_Click(object sender, EventArgs e) 

        { 

            validationStopWatch.Reset(); 

            validationStopWatch.Start(); 

 

            backgroundworkerValidation.RunWorkerAsync(); 

        } 

        private void MultiHopTransferForValidation(object sender, DoWorkEventArgs e) 

        { 

            string data = BuildData(); 

            if (data == "") 

            { 

                return; 

            } 
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            //-------------------------------------------- 

            //Find the 0 node from global table 

            //-------------------------------------------- 

            DataRow[] drRows = dtGlobalTable.Select("NodeName='0'"); 

            if (drRows.Length > 0) 

            { 

                Node currNode = drRows[0].Field<Node>("Node"); 

                Validation_MultiHop("0", data, currNode); 

            } 

 

 

        } 

 

        /// <summary> 

        /// This method is called when validation process is running.  

        /// </summary> 

        /// <param name="nodeName"></param> 

        /// <param name="data"></param> 

        /// <param name="prevNode"></param> 

        private void Validation_MultiHop(string nodeName, string data, Node prevNode) 

        { 

            //-------------------------------------------- 

            //Find the node from global table 
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            //-------------------------------------------- 

            DataRow[] drRows = dtGlobalTable.Select("NodeName='" + nodeName + "'"); 

 

            if (drRows.Length > 0) 

            { 

                drRows[0]["AggregatorPathVisited"] = true; 

                Node currNode = drRows[0].Field<Node>("Node"); 

 

                double bit_RatePerSecond = 0; 

                double distance = GetDistance(currNode, prevNode); 

                double transferTime = GetTransferTime(distance, data, out 

bit_RatePerSecond); 

 

                //------------------------------------------------------------ 

                //Let it sleep the transfer time to simulate the actual transfer  

                //time. 

                //------------------------------------------------------------ 

                Thread.Sleep(Convert.ToInt16(Math.Round(transferTime))); 

 

                //------------------------------------------------------------ 

                //First check if the node is Aggregator. If so, begin sending 

                //to cloud.  

                //------------------------------------------------------------ 
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                if (nodeName == "3") 

                { 

                    bitRatePerSecond = bit_RatePerSecond; 

                    nodeDistance = distance;                 

                    ProcessData(data); 

                } 

                else 

                { 

                    //--------------------------------------------------------- 

                    //Select all the neighbor nodes and recursively move if any  

                    //one of them not visited yet. 

                    //--------------------------------------------------------- 

                    List<Node> neighborNodes = 

drRows[0].Field<List<Node>>("NeighborNodes"); 

 

                    foreach (Node n in neighborNodes) 

                    { 

                        //--------------------------------------------------------- 

                        //Check if this node was already visited; if not, it will be 

                        //recursively sent. 

                        //--------------------------------------------------------- 

                        bool visited = (from drQRow in dtGlobalTable.AsEnumerable() 

                                        where drQRow["NodeName"].ToString() == n.Name 
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                                        select 

drQRow.Field<bool>("AggregatorPathVisited")).FirstOrDefault<bool>(); 

 

                        if (visited == false) 

                        { 

                            Validation_MultiHop(n.Name, data, currNode); 

                        } 

                    } 

                } 

            } 

 

        } 

    } 

 

    public class Node 

    { 

        public string Name = ""; 

        public int X_axis = 0; 

        public int Y_axis = 0; 

        public string NeighborList = ""; 

    } 

} 

//--------------------------------------------------------------------------------------------------------- 
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File: Simulator.Designer.cs 

 

namespace DSO_Simulation 

{ 

    partial class Simulator 

    { 

        /// <summary> 

        /// Required designer variable. 

        /// </summary> 

        private System.ComponentModel.IContainer components = null; 

 

        /// <summary> 

        /// Clean up any resources being used. 

        /// </summary> 

        /// <param name="disposing">true if managed resources should be disposed; otherwise, 

false.</param> 

        protected override void Dispose(bool disposing) 

        { 

            if (disposing && (components != null)) 

            { 

                components.Dispose(); 

            } 

            base.Dispose(disposing); 
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        } 

 

        #region Windows Form Designer generated code 

 

        /// <summary> 

        /// Required method for Designer support - do not modify 

        /// the contents of this method with the code editor. 

        /// </summary> 

        private void InitializeComponent() 

        { 

            this.lblSensors = new System.Windows.Forms.Label(); 

            this.txtSensors = new System.Windows.Forms.TextBox(); 

            this.txtSizeofData = new System.Windows.Forms.TextBox(); 

            this.lblSizeofData = new System.Windows.Forms.Label(); 

            this.btnRun = new System.Windows.Forms.Button(); 

            this.drawingArea = new System.Windows.Forms.PictureBox(); 

            this.btnReset = new System.Windows.Forms.Button(); 

            this.btnDSO = new System.Windows.Forms.Button(); 

            this.dgvResults = new System.Windows.Forms.DataGridView(); 

            this.Node = new System.Windows.Forms.DataGridViewTextBoxColumn(); 

            this.DataSize = new System.Windows.Forms.DataGridViewTextBoxColumn(); 

            this.Time = new System.Windows.Forms.DataGridViewTextBoxColumn(); 

            this.NeighborsList = new System.Windows.Forms.DataGridViewTextBoxColumn(); 
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            this.btnClientServer = new System.Windows.Forms.Button(); 

            this.txtLatency = new System.Windows.Forms.TextBox(); 

            this.lblLatency = new System.Windows.Forms.Label(); 

            this.groupBox1 = new System.Windows.Forms.GroupBox(); 

            this.lblNodeDistance = new System.Windows.Forms.Label(); 

            this.txtNodeDistance = new System.Windows.Forms.TextBox(); 

            this.lblBitPerSec = new System.Windows.Forms.Label(); 

            this.txtBitPerSec = new System.Windows.Forms.TextBox(); 

            this.lblClientServerResult = new System.Windows.Forms.Label(); 

            this.lblDSOResult = new System.Windows.Forms.Label(); 

            this.txtClientServerResult = new System.Windows.Forms.TextBox(); 

            this.txtDSOResult = new System.Windows.Forms.TextBox(); 

            this.dgvNeighbors = new System.Windows.Forms.DataGridView(); 

            this.NodeName = new System.Windows.Forms.DataGridViewTextBoxColumn(); 

            this.NeighborList = new System.Windows.Forms.DataGridViewTextBoxColumn(); 

            this.btnValidation = new System.Windows.Forms.Button(); 

            this.btnRunValidation = new System.Windows.Forms.Button(); 

            ((System.ComponentModel.ISupportInitialize)(this.drawingArea)).BeginInit(); 

            ((System.ComponentModel.ISupportInitialize)(this.dgvResults)).BeginInit(); 

            this.groupBox1.SuspendLayout(); 

            ((System.ComponentModel.ISupportInitialize)(this.dgvNeighbors)).BeginInit(); 

            this.SuspendLayout(); 

            //  
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            // lblSensors 

            //  

            this.lblSensors.AutoSize = true; 

            this.lblSensors.Location = new System.Drawing.Point(21, 21); 

            this.lblSensors.Name = "lblSensors"; 

            this.lblSensors.Size = new System.Drawing.Size(80, 13); 

            this.lblSensors.TabIndex = 0; 

            this.lblSensors.Text = "No. of Sensors:"; 

            //  

            // txtSensors 

            //  

            this.txtSensors.Location = new System.Drawing.Point(101, 19); 

            this.txtSensors.Name = "txtSensors"; 

            this.txtSensors.Size = new System.Drawing.Size(32, 20); 

            this.txtSensors.TabIndex = 1; 

            //  

            // txtSizeofData 

            //  

            this.txtSizeofData.Location = new System.Drawing.Point(101, 46); 

            this.txtSizeofData.Name = "txtSizeofData"; 

            this.txtSizeofData.Size = new System.Drawing.Size(32, 20); 

            this.txtSizeofData.TabIndex = 3; 

            //  
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            // lblSizeofData 

            //  

            this.lblSizeofData.AutoSize = true; 

            this.lblSizeofData.Location = new System.Drawing.Point(1, 48); 

            this.lblSizeofData.Name = "lblSizeofData"; 

            this.lblSizeofData.Size = new System.Drawing.Size(93, 13); 

            this.lblSizeofData.TabIndex = 2; 

            this.lblSizeofData.Text = "Size of Data (bits):"; 

            //  

            // btnRun 

            //  

            this.btnRun.Location = new System.Drawing.Point(8, 158); 

            this.btnRun.Name = "btnRun"; 

            this.btnRun.Size = new System.Drawing.Size(132, 30); 

            this.btnRun.TabIndex = 7; 

            this.btnRun.Text = "Build MANET"; 

            this.btnRun.UseVisualStyleBackColor = true; 

            this.btnRun.Click += new System.EventHandler(this.btnRun_Click); 

            //  

            // drawingArea 

            //  

            this.drawingArea.Location = new System.Drawing.Point(163, 11); 

            this.drawingArea.Name = "drawingArea"; 
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            this.drawingArea.Size = new System.Drawing.Size(920, 580); 

            this.drawingArea.TabIndex = 8; 

            this.drawingArea.TabStop = false; 

            //  

            // btnReset 

            //  

            this.btnReset.Location = new System.Drawing.Point(8, 256); 

            this.btnReset.Name = "btnReset"; 

            this.btnReset.Size = new System.Drawing.Size(132, 30); 

            this.btnReset.TabIndex = 9; 

            this.btnReset.Text = "Reset"; 

            this.btnReset.UseVisualStyleBackColor = true; 

            this.btnReset.Click += new System.EventHandler(this.btnReset_Click); 

            //  

            // btnDSO 

            //  

            this.btnDSO.Location = new System.Drawing.Point(8, 190); 

            this.btnDSO.Name = "btnDSO"; 

            this.btnDSO.Size = new System.Drawing.Size(132, 30); 

            this.btnDSO.TabIndex = 10; 

            this.btnDSO.Text = "DSO"; 

            this.btnDSO.UseVisualStyleBackColor = true; 

            this.btnDSO.Click += new System.EventHandler(this.btnDSO_Click); 
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            //  

            // dgvResults 

            //  

            this.dgvResults.ColumnHeadersHeightSizeMode = 

System.Windows.Forms.DataGridViewColumnHeadersHeightSizeMode.AutoSize; 

            this.dgvResults.Columns.AddRange(new 

System.Windows.Forms.DataGridViewColumn[] { 

            this.Node, 

            this.DataSize, 

            this.Time, 

            this.NeighborsList}); 

            this.dgvResults.Location = new System.Drawing.Point(295, 596); 

            this.dgvResults.Name = "dgvResults"; 

            this.dgvResults.Size = new System.Drawing.Size(448, 155); 

            this.dgvResults.TabIndex = 13; 

            //  

            // Node 

            //  

            this.Node.HeaderText = "Node"; 

            this.Node.Name = "Node"; 

            this.Node.ReadOnly = true; 

            //  

            // DataSize 
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            //  

            this.DataSize.HeaderText = "Data Size (Bytes)"; 

            this.DataSize.Name = "DataSize"; 

            this.DataSize.ReadOnly = true; 

            //  

            // Time 

            //  

            this.Time.HeaderText = "Time"; 

            this.Time.Name = "Time"; 

            this.Time.ReadOnly = true; 

            //  

            // NeighborsList 

            //  

            this.NeighborsList.HeaderText = "Neighbors List"; 

            this.NeighborsList.Name = "NeighborsList"; 

            this.NeighborsList.ReadOnly = true; 

            //  

            // btnClientServer 

            //  

            this.btnClientServer.Location = new System.Drawing.Point(8, 223); 

            this.btnClientServer.Name = "btnClientServer"; 

            this.btnClientServer.Size = new System.Drawing.Size(132, 30); 

            this.btnClientServer.TabIndex = 14; 
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            this.btnClientServer.Text = "Client-Server"; 

            this.btnClientServer.UseVisualStyleBackColor = true; 

            this.btnClientServer.Click += new System.EventHandler(this.btnClientServer_Click); 

            //  

            // txtLatency 

            //  

            this.txtLatency.Location = new System.Drawing.Point(101, 72); 

            this.txtLatency.Name = "txtLatency"; 

            this.txtLatency.Size = new System.Drawing.Size(32, 20); 

            this.txtLatency.TabIndex = 15; 

            //  

            // lblLatency 

            //  

            this.lblLatency.AutoSize = true; 

            this.lblLatency.Location = new System.Drawing.Point(1, 73); 

            this.lblLatency.Name = "lblLatency"; 

            this.lblLatency.Size = new System.Drawing.Size(100, 13); 

            this.lblLatency.TabIndex = 16; 

            this.lblLatency.Text = "Cloud Latency (ms):"; 

            //  

            // groupBox1 

            //  

            this.groupBox1.Controls.Add(this.lblNodeDistance); 



 162 

            this.groupBox1.Controls.Add(this.txtNodeDistance); 

            this.groupBox1.Controls.Add(this.lblBitPerSec); 

            this.groupBox1.Controls.Add(this.txtBitPerSec); 

            this.groupBox1.Controls.Add(this.lblClientServerResult); 

            this.groupBox1.Controls.Add(this.lblDSOResult); 

            this.groupBox1.Controls.Add(this.txtClientServerResult); 

            this.groupBox1.Controls.Add(this.txtDSOResult); 

            this.groupBox1.Location = new System.Drawing.Point(749, 596); 

            this.groupBox1.Name = "groupBox1"; 

            this.groupBox1.Size = new System.Drawing.Size(332, 133); 

            this.groupBox1.TabIndex = 17; 

            this.groupBox1.TabStop = false; 

            this.groupBox1.Text = "Results"; 

            //  

            // lblNodeDistance 

            //  

            this.lblNodeDistance.AutoSize = true; 

            this.lblNodeDistance.Location = new System.Drawing.Point(32, 106); 

            this.lblNodeDistance.Name = "lblNodeDistance"; 

            this.lblNodeDistance.Size = new System.Drawing.Size(130, 13); 

            this.lblNodeDistance.TabIndex = 7; 

            this.lblNodeDistance.Text = "Validation Node Distance:"; 

            //  
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            // txtNodeDistance 

            //  

            this.txtNodeDistance.Location = new System.Drawing.Point(168, 103); 

            this.txtNodeDistance.Name = "txtNodeDistance"; 

            this.txtNodeDistance.Size = new System.Drawing.Size(100, 20); 

            this.txtNodeDistance.TabIndex = 6; 

            //  

            // lblBitPerSec 

            //  

            this.lblBitPerSec.AutoSize = true; 

            this.lblBitPerSec.Location = new System.Drawing.Point(22, 77); 

            this.lblBitPerSec.Name = "lblBitPerSec"; 

            this.lblBitPerSec.Size = new System.Drawing.Size(141, 13); 

            this.lblBitPerSec.TabIndex = 5; 

            this.lblBitPerSec.Text = "Validation Bit Rate (bit/Sec):"; 

            //  

            // txtBitPerSec 

            //  

            this.txtBitPerSec.Location = new System.Drawing.Point(168, 74); 

            this.txtBitPerSec.Name = "txtBitPerSec"; 

            this.txtBitPerSec.Size = new System.Drawing.Size(100, 20); 

            this.txtBitPerSec.TabIndex = 4; 

            //  
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            // lblClientServerResult 

            //  

            this.lblClientServerResult.AutoSize = true; 

            this.lblClientServerResult.Location = new System.Drawing.Point(13, 48); 

            this.lblClientServerResult.Name = "lblClientServerResult"; 

            this.lblClientServerResult.Size = new System.Drawing.Size(149, 13); 

            this.lblClientServerResult.TabIndex = 3; 

            this.lblClientServerResult.Text = "Client-Server Computing Time:"; 

            //  

            // lblDSOResult 

            //  

            this.lblDSOResult.AutoSize = true; 

            this.lblDSOResult.Location = new System.Drawing.Point(50, 18); 

            this.lblDSOResult.Name = "lblDSOResult"; 

            this.lblDSOResult.Size = new System.Drawing.Size(112, 13); 

            this.lblDSOResult.TabIndex = 2; 

            this.lblDSOResult.Text = "DSO Computing Time:"; 

            //  

            // txtClientServerResult 

            //  

            this.txtClientServerResult.Location = new System.Drawing.Point(168, 45); 

            this.txtClientServerResult.Name = "txtClientServerResult"; 

            this.txtClientServerResult.Size = new System.Drawing.Size(100, 20); 
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            this.txtClientServerResult.TabIndex = 1; 

            //  

            // txtDSOResult 

            //  

            this.txtDSOResult.Location = new System.Drawing.Point(168, 15); 

            this.txtDSOResult.Name = "txtDSOResult"; 

            this.txtDSOResult.Size = new System.Drawing.Size(100, 20); 

            this.txtDSOResult.TabIndex = 0; 

            //  

            // dgvNeighbors 

            //  

            this.dgvNeighbors.ColumnHeadersHeightSizeMode = 

System.Windows.Forms.DataGridViewColumnHeadersHeightSizeMode.AutoSize; 

            this.dgvNeighbors.Columns.AddRange(new 

System.Windows.Forms.DataGridViewColumn[] { 

            this.NodeName, 

            this.NeighborList}); 

            this.dgvNeighbors.Location = new System.Drawing.Point(12, 596); 

            this.dgvNeighbors.Name = "dgvNeighbors"; 

            this.dgvNeighbors.Size = new System.Drawing.Size(249, 155); 

            this.dgvNeighbors.TabIndex = 18; 

            //  

            // NodeName 
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            //  

            this.NodeName.HeaderText = "Node"; 

            this.NodeName.Name = "NodeName"; 

            this.NodeName.ReadOnly = true; 

            //  

            // NeighborList 

            //  

            this.NeighborList.HeaderText = "Neighbors"; 

            this.NeighborList.Name = "NeighborList"; 

            this.NeighborList.ReadOnly = true; 

            //  

            // btnValidation 

            //  

            this.btnValidation.Location = new System.Drawing.Point(8, 289); 

            this.btnValidation.Name = "btnValidation"; 

            this.btnValidation.Size = new System.Drawing.Size(132, 30); 

            this.btnValidation.TabIndex = 19; 

            this.btnValidation.Text = "Build Validation"; 

            this.btnValidation.UseVisualStyleBackColor = true; 

            this.btnValidation.Click += new System.EventHandler(this.btnValidation_Click); 

            //  

            // btnRunValidation 

            //  
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            this.btnRunValidation.Location = new System.Drawing.Point(8, 322); 

            this.btnRunValidation.Name = "btnRunValidation"; 

            this.btnRunValidation.Size = new System.Drawing.Size(132, 30); 

            this.btnRunValidation.TabIndex = 20; 

            this.btnRunValidation.Text = "Run Validation"; 

            this.btnRunValidation.UseVisualStyleBackColor = true; 

            this.btnRunValidation.Click += new 

System.EventHandler(this.btnRunValidation_Click); 

            //  

            // Simulator 

            //  

            this.AutoScaleDimensions = new System.Drawing.SizeF(6F, 13F); 

            this.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font; 

            this.ClientSize = new System.Drawing.Size(1093, 741); 

            this.Controls.Add(this.btnRunValidation); 

            this.Controls.Add(this.btnValidation); 

            this.Controls.Add(this.dgvNeighbors); 

            this.Controls.Add(this.groupBox1); 

            this.Controls.Add(this.lblLatency); 

            this.Controls.Add(this.txtLatency); 

            this.Controls.Add(this.btnClientServer); 

            this.Controls.Add(this.dgvResults); 

            this.Controls.Add(this.btnDSO); 
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            this.Controls.Add(this.btnReset); 

            this.Controls.Add(this.drawingArea); 

            this.Controls.Add(this.btnRun); 

            this.Controls.Add(this.txtSizeofData); 

            this.Controls.Add(this.lblSizeofData); 

            this.Controls.Add(this.txtSensors); 

            this.Controls.Add(this.lblSensors); 

            this.Name = "Simulator"; 

            this.Text = "Distributed Shared Optimization Simulator"; 

            ((System.ComponentModel.ISupportInitialize)(this.drawingArea)).EndInit(); 

            ((System.ComponentModel.ISupportInitialize)(this.dgvResults)).EndInit(); 

            this.groupBox1.ResumeLayout(false); 

            this.groupBox1.PerformLayout(); 

            ((System.ComponentModel.ISupportInitialize)(this.dgvNeighbors)).EndInit(); 

            this.ResumeLayout(false); 

            this.PerformLayout(); 

        } 

        #endregion 

        private System.Windows.Forms.Label lblSensors; 

        private System.Windows.Forms.TextBox txtSensors; 

        private System.Windows.Forms.TextBox txtSizeofData; 

        private System.Windows.Forms.Label lblSizeofData; 

        private System.Windows.Forms.Button btnRun; 
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        private System.Windows.Forms.PictureBox drawingArea; 

        private System.Windows.Forms.Button btnReset; 

        private System.Windows.Forms.Button btnDSO; 

        private System.Windows.Forms.DataGridView dgvResults; 

        private System.Windows.Forms.DataGridViewTextBoxColumn Node; 

        private System.Windows.Forms.DataGridViewTextBoxColumn DataSize; 

        private System.Windows.Forms.DataGridViewTextBoxColumn Time; 

        private System.Windows.Forms.Button btnClientServer; 

        private System.Windows.Forms.TextBox txtLatency; 

        private System.Windows.Forms.Label lblLatency; 

        private System.Windows.Forms.GroupBox groupBox1; 

        private System.Windows.Forms.Label lblClientServerResult; 

        private System.Windows.Forms.Label lblDSOResult; 

        private System.Windows.Forms.TextBox txtClientServerResult; 

        private System.Windows.Forms.TextBox txtDSOResult; 

        private System.Windows.Forms.DataGridViewTextBoxColumn NeighborsList; 

        private System.Windows.Forms.DataGridView dgvNeighbors; 

        private System.Windows.Forms.DataGridViewTextBoxColumn NodeName; 

        private System.Windows.Forms.DataGridViewTextBoxColumn NeighborList; 

        private System.Windows.Forms.Button btnValidation; 

        private System.Windows.Forms.Button btnRunValidation; 

        private System.Windows.Forms.Label lblBitPerSec; 

        private System.Windows.Forms.TextBox txtBitPerSec; 
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        private System.Windows.Forms.Label lblNodeDistance; 

        private System.Windows.Forms.TextBox txtNodeDistance; 

    } 

} 

 


