
c© 2010 Haohui Mai

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4826854?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DIAGNOSE NETWORK FAILURES VIA DATA-PLANE ANALYSIS

BY

HAOHUI MAI

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2010

Urbana, Illinois

Adviser:

Assistant Professor Samuel T. King

ABSTRACT

Diagnosing problems in networks is a time-consuming and error-prone pro-

cess. Previous tools to assist operators primarily focus on analyzing control

plane configuration. Configuration analysis is limited in that it cannot find

bugs in router software, and is harder to generalize across protocols since it

must model complex configuration languages and dynamic protocol behavior.

This paper studies an alternate approach: diagnosing problems through

static analysis of the data plane. This approach can catch bugs that are

invisible at the level of configuration files, and simplifies unified analysis of a

network across many protocols and implementations. We present Anteater, a

tool for checking invariants in the data plane. Anteater translates high-level

network invariants into boolean satisfiability problems, checks them against

network state using a SAT solver, and reports counterexamples if violations

have been found. Applied to a large campus network, Anteater revealed 23

bugs, including forwarding loops and stale ACL rules, with only five false

positives. Nine of these faults are being fixed by campus network operators.

ii

To my parents, for their love and support.

iii

ACKNOWLEDGMENTS

This thesis is derived from an earlier project, which I work with Ahmed Khur-

shid, Rachit Agarwal, Matthew Caesar, P. Brighten Godfrey and Samuel T.

King. I would like to thank them for their work devoted in this project.

iv

TABLE OF CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . vii

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 ARCHITECTURE . 4

CHAPTER 3 ANTEATER DESIGN 6
3.1 Modeling network policies . 7
3.2 Calculating reachability . 8
3.3 Loop detection, full reachability, and consistent routing 9
3.4 Handling packet transformations 10
3.5 Making Anteater practical . 12

CHAPTER 4 EXPRESSING INVARIANTS IN SLANG 17

CHAPTER 5 IMPLEMENTATION 20

CHAPTER 6 EVALUATION . 21
6.1 Bug finding in a deployed network 21
6.2 Applicability to router bugs 25
6.3 Performance evaluation . 26

CHAPTER 7 LIMITATIONS . 30

CHAPTER 8 RELATED WORK . 32

CHAPTER 9 CONCLUSIONS . 34

APPENDIX A PROOF OF NP-COMPLETENESS 35

REFERENCES . 36

v

LIST OF TABLES

3.1 Notation used in Chapter 3. 7

6.1 Summary of evaluation results of Anteater on our campus
network. 22

vi

LIST OF FIGURES

1.1 Overview of the Anteater architecture. 2

3.1 An example of a 3-node IP network. a) Network topology
and FIBs for routers A, B and C. FIBs are shown in
dashed boxes. b) The network graph modeling all policies
in a). Ovals represent networking equipment, Rounded
rectangles represent special vertices such as destinations,
labeled by lower case letters. The lower half of the graphs
shows the value of P for each edge in the graph. 13

3.2 An algorithm to calculate a boolean formula f representing
reachability from s to t for a network graph G. l is a
parameter controlling the maximum length of paths that
the user is interested in. 14

3.3 An algorithm to detect forwarding loops involving vertex
v in the network G. 14

3.4 An algorithm to check the connectivity invariants for ver-
tex v. 14

3.5 An algorithm to check whether the forwarding policy of u
and v is consistent. 15

3.6 An 3-node IP network augmented from Figure 3.1. The
new policy over (A,B) and (B,C) are shown in dashed boxes. 15

3.7 The execution process of algorithm when determining the
formula representing reachability from node A to node C
on the graph shown in Figure 3.6. 16

4.1 An example of SLang program and its evaluation process.
a) The topology of a 3−node network, being checked by
invariants of the absence of forwarding loop. b) SLang Pro-
gram to implement loop detection algorithm in Figure 3.3.
c) Evaluating Rule 3 in Figure 4.1 when running over the
network shown in Figure 4.1a). The annotation over the
edges shows the bindings introduced during the evaluation. . . 18

vii

6.1 a) The topology of the campus network. Ovals represent
routers. Solid lines represent connections. An oval with
dashed lines circles the location where a forwarding loop
is detected. b) Fragments of data-plane information in the
network. 23

6.2 Performance of Anteater when checking three invariants.
Run time is measured by wall-clock seconds. All experi-
ments are run under 16-way parallelism. 27

6.3 Scalability results of the forwarding loop invariant on UIUC
campus network. 28

6.4 Scalability results of the forwarding loop invariant on nine
generated AS-level networks. 29

viii

CHAPTER 1

INTRODUCTION

Modern enterprise networks are complex, incorporating hundreds or thou-

sands of network devices from multiple vendors performing diverse codepen-

dent functions such as routing, switching, and access control across physical

and virtual networks (VPNs and VLANs). As in any complex computer

system, enterprise networks are prone to a wide range of errors [1, 2, 3, 4,

5, 6, 7, 8], such as misconfigurations, software bugs, or unexpected inter-

actions across protocols. These errors can lead to oscillations, black holes,

faulty advertisements, or route leaks that ultimately cause disconnectivity

and security vulnerabilities.

Diagnosing problems in networks, however, remains a black art. Opera-

tors often rely on heuristics — sending probes, reviewing logs, even observing

mailing lists and making phone calls — that slow response to failures.1 To

address this, automated tools for network diagnostics [1, 9] analyze config-

uration files (i.e. control planes) constructed by operators. While useful,

these tools have two limitations stemming from their analysis of high-level

configuration files. First, configuration analysis cannot find bugs in router

software, which interprets and acts on those configuration files. Both com-

mercial and open source router software regularly exhibit bugs that affect

network availability or security [6], which have led to multiple high-profile

outages and vulnerabilities [4, 10, 11] . Second, configuration analysis must

model complex configuration languages and dynamic protocol behavior in

order to determine the ultimate effect of a configuration . As a result, these

tools generally focus on checking correctness of a single protocol, such as

1As one example, a Cisco design technote advises that “Unfortunately, there is no
systematic procedure to troubleshoot an STP issue. ... Administrators generally do not
have time to look for the cause of the loop and prefer to restore connectivity as soon as
possible. The easy way out in this case is to manually disable every port that provides
redundancy in the network. ... Each time you disable a port, check to see if you have
restored connectivity in the network.” [8]

1

Data-plane���

Information	

Invariants	

Checker	

SAT
Solving	

Diagnose
Report	

Firewalls	

VPN	

Routers	

…	

Global
Graph	

SAT Modeling	

Figure 1.1: Overview of the Anteater architecture.

BGP [1] or firewalls [12, 9]. It’s difficult for such diagnosis to reason about

interactions that span multiple protocols, as well as dealing with the di-

versity in configuration languages from different vendors making up typical

networks.

We take an alternative approach: diagnosing problems as close as possible

to the network’s actual behavior through formal analysis of data-plane states.

Data-plane analysis has two benefits.:

• it opens the opportunities to catch bugs that are invisible at the level

of configuration files, by checking the results of routing software rather

than its inputs.

• It becomes easier to perform unified analysis of a network across pro-

tocols and implementations. For example, it’s sufficient to model IP

forwarding tables, which is relatively simple, in order to model the

effects of IP routing protocols such as BGP, OSPF, and RIP.

This paper describes the design and evaluation of Anteater, a tool that per-

forms formal analysis of the data-plane state of network devices. Anteater

collects the network topology and the Forwarding Information Bases (FIBs)

of network devices, then performs analysis over the resulting network-wide

state to check invariants specified in a high-level query language, which we

call SLang. We provide a set of common invariants (including reachability

and loop detection), but SLang can encode a wide variety of checks. Anteater

compiles the query and data-plane state into an instance of a boolean satisfi-

ability problem (SAT), and uses a SAT solver [13] to perform analysis. If an

invariant is violated, Anteater provides a specific counterexample — such as

a packet header, FIB entries, and path that would cause a loop.

Anteater builds on the work of Xie, et al. [14], which introduced algorithms

to check reachability in IP networks with support for ACL policies. Anteater

2

differs in that it embodies a complete algorithmic design, and supports ar-

bitrary packet transformations(see discussions in Chapter 3). Moreover, we

demonstrate a working implementation and evaluate it on a real network. To

the best of our knowledge, Anteater is the first deployed data-plane analysis

tool.

We applied Anteater to a large campus network, analyzing the FIBs of

178 routers that support over 70, 000 end-user machines and servers, with

FIB entries inserted by a combination of BGP, OSPF, and static ACLs and

routes. Anteater revealed multiple faults in the network, including forwarding

loops and stale ACL rules. Several of these faults are being fixed by campus

network operators. For example, one detected forwarding loop between a

pair of routers was accidentally introduced after a network upgrade, and had

been present in the network for over a month. These results demonstrate the

utility of the approach of data-plane analysis.

The main contrinbutions of this paper are:

• A general, unified framework to systematically detect network problems

across multiple protocols via data-plane analysis.

• An algorithm computes network reachability with arbitrary packet trans-

formation, which requires no knowledge of the inverse function of the

transforamtion, and is capable of handling for looping paths opposed

to previous work [14].

• A proof showing that computing reachability with packet filters is ac-

tually NP-complete. It contrasts to the conjecture in [14] saying that

the problem can be solved in polynomial time.

• The evaluation with a production network conneting over 70, 000 end-

user machines and servers.

The rest of the paper organizes as follows. Chapter 3 describes the design

of Anteater. Chapter 4 discusses SLang, the high-level declarative language

to check network properties. We brief our implementation in Chapter 5,

and present our evaluation on Anteater in Chapter 6. Then we discuss the

limitation of Anteater in Chapter 7, and the related work in Chapter 8.

Finally we conclude in Chapter 9.

3

CHAPTER 2

ARCHITECTURE

This paper presents the design and implementation of Anteater. Our primary

goal is to detect and diagnose a broad, general class of network failures.

Anteater detects network problems by applying techniques of formal analysis

on the content of forwarding tables contained in routers, switches, firewalls,

and other networking equipment (Figure 1.1). Operators use Anteater to

check whether the network conforms to a set of invariants (i.e., correctness

conditions regarding the network’s forwarding behavior). Violations of these

invariants usually indicate a bug in the network. Here are a few examples of

invariants:

• Absence of forwarding loops. There exists no forwarding loops in the

network.

• Connectivity. All computers in the campus network are able to access

both the Intranet and the Internet, while respecting network policies

and service level agreements (SLAs).

• Consistency. The policies of two replicated routers should have the

same forwarding behavior. More concretely, the possible set of packets

that can reach the external network are the same in general cases.

Not all bugs can be detected with these three invariants. For example,

a network operator may want to check if any local computers can access

the external network without going through the firewall. To support more

sophisticated invariants, as well as the increasingly advanced nature of packet

forwarding (with technologies like OpenFlow, programmable NICs, header

rewriting, and transformation rules [15, 16, 17]), Anteater should support a

large and extensible class of queries.

To support more sophisticated invariants, Anteater allows expression of in-

variants in SLang, a declarative language we developed that allows operators

4

to tailor checks with network-specific knowledge.

Anteater checks these invariants through several steps. First, Anteater

collects the contents of FIBs from networking equipment through vtys (ter-

minals), SNMP, or control sessions maintained to routers [18, 19]. Second,

the operator creates new or selects from existing SLang invariants to be

checked against the network. Third, Anteater translates both the FIBs and

invariants into SAT problems, which are resolved by an off-the-shelf SAT

solver. Finally, if the results from the SAT solver indicate that the supplied

invariants are violated, Anteater will derive a counter example based on the

results to help diagnosis.

The rest of the this paper describes the design and implementation in

more detail, including writing invariants, translating the invariants and the

network into SAT problems.

5

CHAPTER 3

ANTEATER DESIGN

We cast network reachability and other network invariants as boolean satis-

fiability (SAT) problems. In this chapter we discuss our model for network

policies, our algorithms for detecting bugs using sets of boolean formulas and

a SAT solver, and our approaches for reducing Anteater’s runtime.

A SAT problem is a problem that evaluates a set of boolean formulas to

determine if there exists at least one variable assignment so that all formulas

evaluate to true. If such an assignment exists, then the set of formulas are

satisfiable, otherwise they are unsatisfiable. Although SAT is NP-complete,

specialized tools called SAT solvers use heuristics to solve SAT efficiently in

some cases [20]. Engineers use SAT solvers in a number of different prob-

lem domains, including model checking, hardware verification, and program

analysis.

We preface our discussion by noting that Anteater’s algorithm for con-

structing boolean formulas for reachability builds on that of Xie et al. [14].

Our most important contribution is our complete implementation applied to

a real network (§6). In addition, Anteater makes two algorithmic contribu-

tions:

• The algorithm presented in [14] computed reachability formulas over

sets of packets (in O(|V |3)) time, including in networks with packet

filters, it did not deal with evaluating these formulas, instead stating

an assumption that set operations take O(1) time. We show, however,

that computing reachability with packet filters is NP-complete (see

Appendix). This motivates our design of computing reachability in

terms of boolean formulas and testing them with a SAT solver.

• Our approach handles arbitrary packet transformations. It requires no

knowledge of the inverse function of the transformation, and it also

handles loopy paths compared to the algorithms in [14].

6

Symbol Description

G Network graph (V,E,P)

V Vertices (e.g., devices) in G

E Directed edges in G

P Policy function for edges

r[v][d][k] Boolean formula for reachability
from node v to node d in exactly
k hops

Table 3.1: Notation used in Chapter 3.

3.1 Modeling network policies

We use the notation shown in Figure 3.1 in the following discussion. A

network G is a 3-tuple G = (V,E,P), where V is the set of networking

devices and possible destinations, E is the set of directed edges representing

connections between vertices. P is a function defined on E to represent

general policies.

We introduce the notation var =width prefix to simplify our discussion.

This notation is a convenient way of writing a boolean formula saying that the

first width bits of the variable var is exactly the same as the ones in prefix.

For example, dst ip =24 10.1.3.0 is a boolean formula testing the equality

between the first 24 bits of dst ip and 10.1.3.0. The notion var 6=width prefix

is the negation of var =width prefix.

For each edge (u, v), we define P((u, v)) as the policy for packets traveling

from u to v, represented as a boolean formula over a symbolic packet. A

symbolic packet is a set of variables representing the values of fields, like the

MAC address, IP address, and port number in packet headers. A packet can

flow over an edge if only if it satisfies the corresponding boolean formulas. We

use this function to represent general policies including forwarding, packet

filtering, and transformations of the packet. P((u, v)) is the conjunction

(logical and) over all policies’ constraints on symbolic packets from node u

to node v.

It is easy to see how P((u, v)) can be used to represent a filter. For exam-

ple, in Figure 3.1 the filtering rule on edge (B,C) blocks all packets destined

to 10.1.3.128/25, thus P((B,C)) has dst ip 6=25 10.1.3.128 as a part of it.

Forwarding is represented as a constraint as well: P((u, v)) will be con-

strained to include only those symbolic packets that router u would forward

7

to router v. The sub formula dst ip =24 10.1.3.0 in P((B,C)) in Figure 3.1

is an example.

Packet transformations – for example, setting a quality of service bit, or

tunneling the packet by adding a new header – might appear different since

they intuitively modify the symbolic packet rather than just constraining it.

Somewhat surprisingly, we can represent transformations as constraints too,

after a trick that we defer to Section 3.4.

3.2 Calculating reachability

This section describes how Anteater calculates reachability, which we will

use as a building block for checking higher-level invariants.

We define the reachability problem from s to t as deciding whether there

exists a symbolic packet p and an s ; t path such that p satisfies all con-

straints P of the edges along the path. Similar to the algorithm presented

in [14], Figure 3.2 shows a dynamic programming algorithm to calculate a

boolean formula f representing reachability from s to t for a network graph

G, such that f is satisfiable if and only if the reachability problem from s to

t has a solution.

In Figure 3.2, r[v][d][k] is the boolean formula which represents the reacha-

bility from node v to node d in exactly k hops. The disjunction for calculating

r[v][d][i + 1] is to evaluate all paths leaving node v.

Depends on the nature of the problem, users might be interested in different

numbers of l. For the reachability problem, considering paths containing at

most n− 1 hops, where n is the number of network devices modeled in G, is

sufficient to cover all loop-free paths in G.

Consider how this algorithm works for determining the formula represent-

ing reachability from node A to node C in the graph shown in Figure 3.1.

It’s sufficient to set n equals to 3 as there are only 3 routers in Figure 3.1.

When the algorithm starts, Anteater initializes P as shown in Figure 3.1.

Also, Anteater initializes s to node A, t to Node C, n to 3, and r[u][v][0] to

true for all nodes u and v in the graph.

8

When the algorithm runs, Anteater sets r as follows:

r[A][C][1] = false

r[B][C][1]

= dst ip =24 10.1.3.0 ∧ dst ip 6=25 10.1.3.128

r[A][C][2]

= r[B][C][1] ∧ P(A,B)

= dst ip =24 10.1.3.0 ∧ dst ip 6=25 10.1.3.128 ∧

(dst ip =24 10.1.2.0 ∨ dst ip =24 10.1.3.0)

r[B][C][2] = false

The algorithm returns the formulas r[A][C][1] ∨ r[A][C][2] as the result. We

will use the formula as a building block for checking higher-level invariants

described in the next section.

3.3 Loop detection, full reachability, and consistent

routing

Using our basic reachability algorithm as a building block, we show how to

check three invariants: absence of forwarding loops, full reachability, and

consistency of routing policies between different routers.

Figure 3.3 shows Anteater’s algorithm for detecting forwarding loops which

involves vertex v in the network. The intuition behind the algorithm is to

add a shadow vertex v′ that is separate from v but has all of the exact same

incoming edges with the same edge policies. That way, v′ is reachable from v

if and only if the network has a forwarding loop involving v, thus loop(v,G)

is satisfiable when there exists a loop involving vertex v. The user can run

the algorithm over all vertices in the graph to detect forwarding loops in the

network.

Figure 3.4 shows Anteater’s algorithm for determining connectivity for ver-

tex v, i.e., whether v is able to access all possible destinations. The idea here

is to add a vertex d serving as a sink of all other vertices representing possible

destinations, and understanding the reachability between v and d would get

some insights on the connectivity for vertex v. In addition, our algorithm

9

also allows operators to specify lists of IP addresses that are intentionally not

reachable, but we omitted this from the algorithm we present in Figure 3.4

for simplicity.

Such a process is done through checking satisfiability of ¬c in Figure 3.4.

For each vertex u which represents external routers or destinations, the al-

gorithm puts no restrictions on edge (u, d). Hence if a packet can go from v

to u, then it must be able to go from v to d. c only evaluates to false when

it can’t reach d within n hops, where n is the number of network devices in

G. i.e., encountering a black holes or forwarding loops. Therefore, finding

an assignment such such that ¬c evaluates to true (i.e., testing satisfiability

of ¬c) would give an example that is unable to reach its destination.

Derived from the algorithm in Figure 3.4, Figure 3.5 shows Anteater’s al-

gorithm for checking whether the forwarding policy of two different vertices,

u and v, are consistent. More concretely, the set of destinations that u and v

can reach are the same, even though they could reach the same destination

through different path. The idea is to test whether their results on connec-

tivity checking are equivalent. This is done by testing satisfiability of (ru

xor rv). The formula evaluates to true when ru and rv evaluate to different

values, implying an inconsistent forwarding policy. Network engineer could

extract the information for further diagnosis.

3.4 Handling packet transformations

The discussion in earlier sections assumed that packets traversing the network

remain unchanged. However, numerous protocols employ mechanisms that

transform packets while they are in flight. For example, MPLS can add or

remove labels, border routers can mark packets to provide QoS services, and

packets can be tunneled through virtual links which involves prepending a

header. In this section, we give extensions to the algorithms discussed above

in order to handle deterministic packet transformations. For brevity, we

discuss the extension to the algorithm presented in Figure 3.2 (extensions to

the other algorithms follow trivially).

The basic idea is to model a packet transformation as a constraint between

the old and new packet. We replace each symbolic packet s with an array

(si), where si represents the state of the packet at the ith hop. Intuitively,

10

a packet transformation f(·) at hop i induces the constraint si+1 = f(si); a

hop at which there is no transformation induces the constraint si+1 = si.

We describe the algorithm in the context of an simplified example. Fig-

ure 3.6 augments the network in Figure 3.1 with two new policies over the

edges (A,B) and (B,C): the policy on edge (A,B) toggles t when t equals

to 0 or 1, otherwise t stays identical. The policy on edge (B,C) filters all

packets except t = 1.

The extension modifies the algorithm as follows. First, the policy func-

tion P now takes two additional parameters, s and s′, which are the sym-

bolic packets representing the states of the packets before and after flowing

through the edge. We define the net policy function as P|s,s′ . We also define

s(var) as the variable var in the symbolic packet s. The transformation is

expanded into boolean formulas over s and s′. For example, the sub formula

in Figure 3.6

(s(t) = 1 ∧ s′(t) = 0) ∨ (s(t) = 0 ∧ s′(t) = 1)

∨ (s(t) = s′(t) ∧ s(t) 6= 0 ∧ s(t) 6= 1)

models the transformation over t described above. Anteater adds identity

transformations (e.g. s(dst ip) = s′(dst ip)) for fields that are not involved

in the transformation.

Next, the extension uses an array of symbolic packets to model the state of

the packet at each hop. The extension needs to initialize n symbolic packets,

namely s0, s1, · · · , sn−1 at the beginning of the algorithm, and changes the

line that calculates the boolean formula (Line 5) into the following:

r[v][t][i + 1]←
∨

(v,u)∈E(G)

(
r[u][t][i] ∧ P (v, u)|si,si+1

)
As a reference, we present a run of the resulting algorithm to determine

the formula representing reachability from node A to node C in Figure 3.7.

For brevity, we simplified the results and only left the constraint on variables

in s2, which modeled the initial header of the packet exiting A. The result

reads only the packet satisfying the constraint dst ip =25 10.1.3.0 ∧ t = 0

which can go from node A to node C.

11

3.5 Making Anteater practical

The main challenge to making Anteater practical is solving SAT problems

efficiently. Anteater addresses the challenge using two approaches. First,

Anteater reduces the number of SAT queries required to check invariants.

Second, Anteater exploits parallelism when solving the problems.

Anteater tests the satisfiability by posing a query to the SAT solver. To

reduce the number of SAT queries for checking invariants, we optimize the

algorithms for the common case – invariant violations are uncommon – to

reduce the complexity of checking invariants. To determine whether a vertex

is able to reach the rest of the network, the connectivity algorithm poses

only one SAT query to check this invariant. If Anteater detects an invariant

violation, the network operator can use more detailed, but expensive, queries

to gather additional information.

To exploit the increasing parallelism of modern commodity processors,

we check invariants in parallel. The first source of parallelism is that each

of the invariants we check are independent and can be checked in parallel.

The second source of parallelism is that invariants on individual devices are

independent, allowing us to calculate invariants for each device in parallel,

even for the same invariant. These two sources of parallelism supply ample

opportunities to exploit parallelism to speed up processing.

12

A	

B	

C	
 A:	

10.1.1.0/24 -> DIRECT	

10.1.2.0/24 -> B	

10.1.3.0/24 -> B	

B:	

10.1.1.0/24 -> A	

10.1.2.0/24 -> DIRECT	

10.1.3.0/24 -> C	
C:	

10.1.1.0/24 -> B	

10.1.2.0/24 -> B	

10.1.3.0/24 -> DIRECT	

A	
 B	
 C	

10.1.1.0/24	
 10.1.2.0/24	
 10.1.3.0/24	

a	
 b	
 c	

B->C: 10.1.3.128/25 ->
DROP	

P((A, a)) = dst ip =24 10.1.1.0

P((A,B)) = dst ip =24 10.1.2.0 ∨ dst ip =24 10.1.3.0

P((B,A)) = dst ip =24 10.1.1.0

P((B, b)) = dst ip =24 10.1.2.0

P((B,C)) = dst ip =24 10.1.3.0 ∧ dst ip 6=25 10.1.3.128

P((C,B)) = dst ip =24 10.1.1.0 ∨ dst ip =24 10.1.2.0

P((C, c)) = dst ip =24 10.1.3.0

Figure 3.1: An example of a 3-node IP network. a) Network topology and
FIBs for routers A, B and C. FIBs are shown in dashed boxes. b) The
network graph modeling all policies in a). Ovals represent networking
equipment, Rounded rectangles represent special vertices such as
destinations, labeled by lower case letters. The lower half of the graphs
shows the value of P for each edge in the graph.

13

function reach(s,t,l,G)
r[u][v][0]← true, ∀u, v ∈ V (G).
for i = 0 to n− 2 do
for all v ∈ V (G) do

r[v][t][i + 1]←
∨

(v,u)∈E(G)

(r[u][t][i] ∧ P (v, u))

end for
end for
return

∨
1≤i≤n−1

r[s][t][i]

Figure 3.2: An algorithm to calculate a boolean formula f representing
reachability from s to t for a network graph G. l is a parameter controlling
the maximum length of paths that the user is interested in.

function loop(G)
n← the number of network devices in G
m← an empty hash map
for all v that represents a network device do
v′ ← a new vertex in V (G), m[v]← v′

for all (u, v) ∈ E(G) do
(u, v′)← a new edge in E(G)
E(G)← E(G) ∪ {(u, v′)}
P((u, v′))← P((u, v))

end for
Test satisfiability of reach(v, v′, n, G).

end for

Figure 3.3: An algorithm to detect forwarding loops involving vertex v in
the network G.

function connectivity(v, G)
n← the number of network devices in G
d← a new vertex in V (G)
for all u ∈ V (G)− {d} do
if u is a vertex either representing external routers or destinations then

(u, d)← a new edge in E(G)
P((u, d))← true.

end if
end for
c← reach(v, d, n, G)
Test satisfiability of ¬c.

Figure 3.4: An algorithm to check the connectivity invariants for vertex v.

14

function consistent forwarding(u, v,G)
n← the number of network devices in G
d← a new vertex in V (G)
for all w ∈ V (G)− {d} do
if w is a vertex either representing external routers or destinations then

(w, d)← a new edge in E(G)
P((w, d))← true.

end if
end for
ru ← reach(u, d, n, G)
rv ← reach(v, d, n, G)
Test satisfiability of (ru xor rv).

Figure 3.5: An algorithm to check whether the forwarding policy of u and v
is consistent.

A	
 B	
 C	

10.1.1.0/24	
 10.1.2.0/24	
 10.1.3.0/24	

a	
 b	
 c	

A->B:	

t=1-> t’ = 0	

t=0-> t’ = 1	

Others: identical	

B->C:	

10.1.3.128/25 -> DROP	

Only accept t=1	

P(A,B)|s,s′

= (s (dst ip) =24 10.1.2.0 ∨ s (dst ip) =24 10.1.3.0)

∧ s(dst ip) = s′(dst ip)

∧ ((s(t) = 1 ∧ s′(t) = 0) ∨ (s(t) = 0 ∧ s′(t) = 1)

∨ (s(t) = s′(t) ∧ s(t) 6= 0 ∧ s(t) 6= 1))

P(B,C)|s,s′

= s(dst ip) =24 10.1.3.0 ∧ s(t) = 1 ∧ s(t) = s′(t)

∧ s(dst ip) 6=25 10.1.3.128 ∧ s(dst ip) = s′(dst ip)

Figure 3.6: An 3-node IP network augmented from Figure 3.1. The new
policy over (A,B) and (B,C) are shown in dashed boxes.

15

r[A][C][2]

= r[B][C][1] ∧ P(A,B)|s1,s2

= s0(dst ip) =24 10.1.3.0 ∧ s0(t) = 1

∧s1(dst ip) 6=25 10.1.3.128 ∧ s0(t) = s1(t)

∧s0(dst ip) = s1(dst ip) ∧ s1(dst ip) = s2(dst ip)

∧(s1(dst ip) =24 10.1.2.0 ∨ s1(dst ip) =24 10.1.3.0)

∧((s1(t) = 1 ∧ s2(t) = 0) ∨ (s1(t) = 0 ∧ s2(t) = 1)

∨ (s1(t) = s2(t) ∧ s1(t) 6= 0 ∧ s1(t) 6= 1))

= s2(dst ip) =25 10.1.3.0 ∧ s2(t) = 0

r[B][C][2] = false

Figure 3.7: The execution process of algorithm when determining the
formula representing reachability from node A to node C on the graph
shown in Figure 3.6.

16

CHAPTER 4

EXPRESSING INVARIANTS IN SLANG

Anteater introduces SLang, a declarative, Prolog-like language, to simplify

the task of writing invariants in Anteater.

Figure 6.1c) is an example of a SLang program (which implements the

loop detection algorithm presented in Figure 3.3). A SLang program is con-

structed by a list of rules. A rule has the format head :- body, which reads

“head is true if body evaluates to true”. Both head and body contain a list

of atoms, separated by commas. An atom can take in a number of variables

to describe a particular fact. For example, the atom edge(u, v, g, p) in Rule

3 evaluates to true if and only if there is an edge between vertex u and v in

graph g, and the policy(i.e., P((u, v)) in Section 3) over the edge is p. We

define the list of atoms to evaluate to true if and only if each atom evaluates

to true in sequential order. A rule is called a fact rule when the head of a

rule is omitted; the first two rules in Figure 6.1c) are fact rules. As implied

by their names, fact rules are a collection of basic facts.

The user initiates the execution of a SLang program by posting a query. A

query has the format ?- body, meaning that the user is interested in the facts

described in body. SLang evaluates the query through a depth-first search

over all possibilities that body evaluates to true. The SLang engine tries

to evaluate the first element in body, if it’s not a known fact, it recursively

evaluates the atom until all atoms are reduced to facts, resulting in a solution

of the SLang program. When the engine finishes the recursions, it reports

all solutions to the user.

Figure 4.1b) implements the algorithm shown in Figure 3.3, which works

as follows: Rule 1 initializes Anteater, reads the FIB information, and stores

the resulting graph into g. Rule 2 implements the hash map m in Figure 3.3.

For each vertex v which represents a network device, it adds a corresponding

shadow vertex v′ into the graph and stores the relationship into the map m.

Rule 3 copies all information of incoming edges for v, by saying that for all

17

m(v,v’), edge(u,v,g,p)	

edge(u,v’,g,p)	

m(A,A’) ,	

edge(B,A,g, P((B,A))	

edge(B,A’,g, P((B,A))	

0	

1	

3	

4	

m(A,A’) ,	

edge(u,A,g,p)	

2	
 m(B,B’) ,	

edge(u,B,g,p)	

…	

1: :- anteater_init(g).	

2: m(v, v’) :- network_device(v), add_vertex(v’, g).	

3: +edge(u, v’, g, p) :- m(v,v’), edge(u,v,g,p).	

4: ?- m(v, v’), reach(v, v’, g, c), sat(c).	

A	
 B	
 C	

v<-A,v’<- A’	

u <- B	

Figure 4.1: An example of SLang program and its evaluation process. a)
The topology of a 3−node network, being checked by invariants of the
absence of forwarding loop. b) SLang Program to implement loop detection
algorithm in Figure 3.3. c) Evaluating Rule 3 in Figure 4.1 when running
over the network shown in Figure 4.1a). The annotation over the edges
shows the bindings introduced during the evaluation.

possible vertex u, if there is an edge from a vertex u to v with the policy p,

then add an edge from u to v′ with the same policy. The plus operator at the

beginning of the rule instructs SLang to evaluate the rules aggressively, i.e.,

copying the information of incoming edges before to continue. Rule 4 posts

a query to the SLang engine checking reachability between v and v′ for all

possible pairs of v and v′ in m. More concretely, it says for all possible pairs

of v and v′ defined in m, the result of reach(v,v′,g) (in Figure 3.2) is the

boolean formula c, and test satisfiability of c through evaluating the atom

sat(c). For more complex properties, the user can define atoms in C/C++

and invoke them in SLang through C/C++ binding of SLang.

Figure 4.1c) shows how SLang evaluates Rule 3 when running on the net-

work shown in Figure 4.1a). Recall Rule 3 tries to copy the information of

incoming edges of v into its shadow vertex v′. We assume v′ is shadow ver-

tex of v in the following discussion. The goal of evaluation is to infer new

facts about edge(u,v′,g,p) (i.e., reducing free variables u,v′,g,p into constants)

18

through the rule. At a high level, this is done through a depth-first search

over the search space: First, it replaces the head of the rule (edge(u,v′,g,p))

of the rule with its body, and recursively evaluates the body (Node 1). At

each stage of evaluation, it tries to bind an atom with free variables to atoms

with constant parameters that evaluate to true. For example, the engine dis-

covers m(A,A′) is true in the left sub tree, thus the engine binds v, v′ with

A, A′, then it continues the search from Node 2 with the above bindings.

Different ways of unification forms a new sub search tree in the space. The

engine goes deep into the search tree until it successfully reduces all variables

into constants, which is called a solution. For example, the engine discovers

that edge(B,A′,g,P((B,A))) evaluates to true at Node 4, effectively adding

a new edge from B to A′ with the policy P((B,A)) in graph g.

The evaluation process terminates when the SLang engine cannot discover

any new facts. In this example, the process terminates after it discovers all of

the following atoms are true: edge(B,A′,g,P((B,A))), edge(A,B′,g,P((A,B))),

edge(C,B′,g,P((C,B))), and edge(B,C ′,g,P((B,C))).

That way, the rule copies the information of incoming edges of v into its

shadow vertex for each v representing a network device.

19

CHAPTER 5

IMPLEMENTATION

We have implemented Anteater on Linux with about 4, 000 lines of codes,

along with roughly 400 lines of auxiliary scripts to canonicalize data-plane

information from Foundry, Juniper and Cisco routers into comma-separated

values format.

Anteater modifies YAP Prolog to compile and execute SLang programs.

SLang programs interact with Anteater through C/C++ bindings of YAP

Prolog.

Anteater prepares a global graph for checking the invariants: it parses

the FIB information for each network device, creates a local graph. Then it

translates packet forwarding, filtering and transformation policies into inter-

mediate representations, and merges them back into a global graph.

Anteater uses LLVM Intermediate Representation (IR) [21] as its inter-

mediate representation. Anteater translates network policies into LLVM IR.

Anteater implements the policy function P as a collection of functions in

LLVM IR. A SLang program invokes Anteater to generate the IR, after the

execution of the program, Anteater uses LLVM to perform a number of stan-

dard compiler optimizations, including inlining, const propagation, global

sub-expression elimination, and strength reduction at IR level.

After the optimization, Anteater translates the IR into the native format

of the Yices [13] SMT solver, then it invokes Yices to solves the SAT problem.

We let Yices to output the assignment when the SAT problem is satisfiable.

Anteater parses these results and reports them back to the user.

20

CHAPTER 6

EVALUATION

Our evaluation of Anteater consists of three components. First (§ 6.1),

to evaluate Anteater’s ability to find bugs in deployed systems, we apply

Anteater to the University of Illinois at Urbana-Champaign (UIUC) cam-

pus network. Our tests uncovered multiple faults, including forwarding

loops, traffic-blocking ACL rules that were no longer needed, and redundant

statically-configured FIB entries.

Second (§6.2), we evaluate how applicable Anteater is to detecting router

software bugs by classifying the reported effects of a random sample of bugs

from the Quagga Bugzilla database. We find that the majority of these bugs

have the potential to produce effects detectable by Anteater; we note, of

course, that a particular bug’s effects will not always be triggered in a live

deployment.

Third (§6.3), we conduct a performance and scalability evaluation of Anteater.

While far from ideal, Anteater is sufficiently fast to check static properties

in networks of up to 1,000 nodes.

6.1 Bug finding in a deployed network

To evaluate Anteater, we applied it to the University of Illinois at Urbana-

Champaign (UIUC) campus network. We collected the IP forwarding tables

and access control rules from 178 routers in the campus. The mean FIB size

was 1,627 entries, which were inserted by a combination of BGP, OSPF, and

static routing. We also inferred the network topology based on the data.1

We have implemented all invariants described in chapter 3, and report

their evaluation results on our campus network. We ran all experiments on

1In general, we expect topology to be a separate input. In this case, a network-wide
map was not available to us, and it was inferrable from the FIBs.

21

Invariants Loops
Reacha-
bility

Consistency

New alerts 9 17 2
Being fixed 9 0 0
Stale config. 0 13 1
False pos. 0 4 1

Table 6.1: Summary of evaluation results of Anteater on our campus
network.

a machine which has 48 GB of RAM and 2 2.4 GHz 4-core Intel Xeon X5530

CPUs. The machine ran the 64-bit version of CentOS 5. We used the 64-bit

version of Yices 1.0.28 [13] to solve SAT queries.

Figure 6.1 reports the number of violations we found with Anteater. The

row New alert shows the number of distinct violations detected by an in-

variant, as a bug might violate multiple invariants at the same time. For

example, a forwarding loop creating a black hole would violate both the in-

variants of forwarding loop and full reachability. We classified these alerts

into three categories. First, the row Being fixed means the alerts are con-

firmed as bugs and currently being fixed by our campus network operators.

Second, the row Stale configuration means that these alerts result from ex-

plicit and intentional configuration rules, but rules that are outdated and

no longer needed. Our campus network operators decided to not fix these

stale configurations immediately, but plan to revisit them during the next

major network upgrade. Third, False positive means that these alerts flag a

configuration that correctly reflected the operator’s intent and these alerts

are not bugs.

6.1.1 Forwarding loops

Anteater detects nine potential forwarding loops in the network. One of them

is shown in Figure 6.1 highlighted by a dashed circle. The loop involves two

routers: router node and router bypass-a. Router bypass-a sets up a static

route for 130.126.244.0/22 towards router node. At the same time, Router

node has a default route towards router bypass-a.

As shown in the FIBs, only parts of the prefix are going into the for-

warding loop. According to longest prefix match rules, packets destined to

22

Core	
 Core	

Dist	

bd 1	
 bd 2	
 bd 3	

…	
 Dist2	

Exit	

External
Network	

Firewall	

bypass-a	

bypass-b	
node	

bypass-a:	

S 130.126.244.0/22 -> node	

O 130.126.244.0/23 -> node	

S 0.0.0.0/0 -> bypass-b	

node:	

C 130.126.244.0/23 -> DIRECT	

S 0.0.0.0 -> bypass-a	

Figure 6.1: a) The topology of the campus network. Ovals represent
routers. Solid lines represent connections. An oval with dashed lines circles
the location where a forwarding loop is detected. b) Fragments of
data-plane information in the network.

130.126.244.0/23 from router bypass-a could reach the destination. Packets

destined to the prefix 130.126.244.0/22 except 130.126.244.0/23 would fall

into the forwarding loop.

Incidentally, all nine loops happen between these two routers. According

to the network operator, router bd 3 used to connect with router node di-

rectly, and node used to connect with the external network. It was a single

choke point to aggregate traffic so that the operator could deploy Intrusion

Detection and Prevention (IDP) devices at one single point. The IDP device,

however, was unable to keep up after the upgrade, and router bypass-a was

introduced to offload the traffic. As a side effect, the forwarding loops were

also introduced when the operator was migrating configuration.

These loops have been confirmed by the network operator and they are

currently being fixed.

6.1.2 Reachability

Anteater issues 17 unreachability alerts, scattered at routers at different levels

of hierarchy: one of them is due to the lack of default routes in the router;

23

three of them are due to blocking traffic towards unused IP spaces, the others

13 alerts are because the network blocks traffic towards end hosts.

We recognized that the first four alerts are legitimate operational practice

and classified them as false positives. Further investigation on the other

13 alerts shows that they are stale configuration entries: seven out of 13

are internal-used IP addresses that were used in the previous generation of

the network. The other six blocked IP addresses are external, and they are

related to security issues. For example, an external IP was blocked in April

2009 because the host made phishing attempts to the campus e-mail system.

The block was placed to defend against the attack without increasing the

load on the campus firewalls.

The operator confirmed that these 13 instances can be dated back as early

as September 2008 and they are unnecessary, and probably will be removed

during next major network upgrade.

6.1.3 Consistency

Based on our conversations with our campus network operators, we know that

campus routers in the same level of hierarchy should have identical policies,

hence we pick one representative router in the hierarchy and check the consis-

tency between this router and all other routers in the same level of hierarchy.

Anteater issues two new alerts: (1) The two core routers have different poli-

cies on IP prefix 10.0.3.0/24; (2) Some building routers has different policies

on the private IP address ranges 169.254.0.0/16 and 192.168.0.0/16.

Upon investigating the bug we found that one router exposes its web-

based management interface through 10.0.3.0/24. The other alert is due to a

legacy issue that could be dated back to early 90’s: according to the design

documents of the campus, 169.254.0.0/16 and 192.168.0.0/16 are intended

to be only used within one building. Usually each department has only

one building and these IP spaces were used in the whole department. As

some departments have spanned their offices across more than one building,

network operators had to maintain compatibility by allowing this traffic to

go one level higher in the hierarchy, and let the router at higher level to

connect them together by creating a virtual LAN for these buildings.

24

6.2 Applicability to router bugs

In addition to detecting bugs in router configurations, Anteater also detects

bugs in the router software itself when these bugs affect the data plane. To

test how effective Anteater would be at catching router software bugs, we

manually characterized 78 bugs randomly sampled from the Bugzilla repos-

itory [22] of Quagga [23], an open source software router (the same set of

bugs presented in [6]). These defects cannot be detected by configuration

checking tools, since they appear even with entirely correct configurations;

but Anteater can detect those bugs which affect the data plane.

We classified the bugs with the goal of determining how many could affect

the data plane, and what invariants Anteater would require to catch them.

Overall, 67 of the 78 bugs (86%) can produce data plane effects detectable

by Anteater. Below, we describe the categories and one representative bug

from each. (Note the categories, after the first, are not mutually exclusive.)

No data-plane effects: 11 bugs (14%). For example, in Bug 87 in the

Bugzilla database, the interactive terminal hangs when the show ip bgp

command is executed and the FIB has a large number of entries.

Detectable with unreachability / loops: 60 bugs (77%) / 46 bugs (59%),

respectively. For example, in Bug 122, the Zebra daemon of Quagga fails to

install routes received from the bgpd daemon into the kernel during heavy

load. But bgpd keeps announcing these routes, and hence the router an-

nounces routes that the kernel does not know about. If the kernel did not

previously have FIB entries for these particular prefixes, it would act as a

black hole. If it did previously have entries, these would be inconsistent with

the control plane announcements and thus can result in forwarding loops.

Thus, Bug 122 may be detected by either unreachability or loops.

Detectable with other predicates 64 bugs (82%): For example, Bug 416

causes a BGP session to remain active after it has been shut down at the

control plane. As a result, the router might have paths to IP prefixes that

operators intend to avoid, and packets might follow the path, which violates

the desired network policies. We reproduced this bug on a local Quagga

testbed and successfully detected it with Anteater, via a query to detect a

violation of the operator’s intent (that data should not flow across the given

link). This type of bug would not be detected by our standard unreachability

or loop invariants, yet it has a data plane effect that Anteater could discover

25

with an appropriate invariant. There are several ways Anteater could detect

this kind of bug in a practical deployment. First, if the affected router’s

reachability was intended to mirror that of another router, it could be de-

tected by a consistency check. Second, operators can code targeted queries

in SLang. In addition, an interesting direction for future work would be for

router command line tools to use Anteater as a way to assert that the op-

erator’s commands actually take effect in the data plane, so that operators

would not have to individually code queries.

Note that 25 bugs produced data plane effects due to a process crash or

deadlock, and therefore may be fairly easily detectable through simpler tests.

54% of the bugs produced data plane effects detectable by Anteater without

a process crash.

We note that a particular bug’s effects will not always be triggered in a

live deployment. However, the majority of these bugs have the potential to

produce effects detectable by Anteater, indicating that our approach may be

a promising method to detect software router bugs.

6.3 Performance evaluation

In this section we discuss Anteater’s runtime performance when we check for

loops, reachability, and consistent routing behavior for the 178 routers in the

UIUC campus network.

Figure 6.2 shows the running time of Anteater when checking our invariants

on the campus network. The running time of Anteater can be broken into

three parts: (a) compiling and executing the invariant checkers to generate

IR; (b) optimizing the IR with LLVM and generating SAT formulas; (c)

running Yices to resolve the SAT queries.

The characteristics of run-time behavior differ for the three invariants.

The invariant of forwarding loop spent most of the running time on solving

the SAT problems, yet performing optimization in the other two invariants

dominates the running time. The optimizer performs standard compiler opti-

mization to simplify the boolean formulas. It may not recognize all patterns

used in the forwarding loop invariants, leaving extra complexity for Yices.

26

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

Forwarding Loop Reachability Consistency
R

un
ni

ng
 ti

m
e

in
 se

co
nd

s
Invariants

IR Generation
Optimization

Code Generation
SAT Solving

Figure 6.2: Performance of Anteater when checking three invariants. Run
time is measured by wall-clock seconds. All experiments are run under
16-way parallelism.

6.3.1 Scalability

Our performance data on the UIUC campus network shows that Anteater is

a practical tool for large networks. In this section we show that Anteater is

likely to be able to handle larger networks as well. First, we show Anteater’s

scalability on our campus network by scaling down the network. Second,

we run Anteater on large networks by using data from the Rocketfuel [24]

project.

Figure 6.3 shows the scalability of Anteater when running the forwarding

loop invariant. We scaled down the number of vertices, and honored the

hierarchy of the network during the scaling because we always remove routers

at the lowest-level of hierarchy first during scaling. We also keep the graph

connected to model a realistic network.

Figure 6.4 shows our results for experiments on data from the Rocket-

fuel [24] project. We generated the topology of nine AS-level networks (1221,

1239, 1755, 2914, 3257, 3967, 4755, 6461, 7018) based on the data, and eval-

uated the performance of the forwarding loop invariant.

To evaluate how sensitive the invariant is to the complexity of FIB entries,

we define L as a parameter to control the complexity of FIBs and to test the

invariant with different values of L. Let l(r) to be the maximum number of

layers of nested prefixes for router r, and L is the average number over all l

27

 0

 500

 1000

 1500

 2000
 2500

 3000

 3500

 4000

 4500

2 18 49 73 100 122 146 178
R

un
ni

ng
 ti

m
e

in
 se

co
nd

s
Number of vertices

IR Generation
Optimization

Code Generation
SAT Solving

Figure 6.3: Scalability results of the forwarding loop invariant on UIUC
campus network.

for all routers.

For the largest network (AS-2914 with 1013 vertices), it takes six hours

to check the invariant. These results have a large degree of freedom: they

depend on the complexity of network topology and FIB information, and

the running time of Yices depends on both heuristics and random number

seeds. However, these results do indicate that Anteater might be capable of

handling large production networks.

28

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 200 400 600 800 1000 1200

R
un

ni
ng

 ti
m

e
in

 se
co

nd
s

Number of vertices

L=1
L=2

Figure 6.4: Scalability results of the forwarding loop invariant on nine
generated AS-level networks.

29

CHAPTER 7

LIMITATIONS

There are several limitations that restrict applicability of our work. First,

Anteater assumes that faults have a visible effect on the contents of forward-

ing state. This assumption may not always hold. Some hardware failures

(e.g., corrupting the contents of the packet during forwarding), and benign

configuration issues may not be visible from forwarding state of conventional

routers. However, we believe our design can detect an important and com-

mon set of faults in networks that affect forwarding plane state.

The current implementation of Anteater does not understand policies at

the application level nor latencies in the network. Policies at the application

level are a special case of handling multiple layers of protocols in Anteater,

when the mapping application and network layer is made available [25]. It is

possible to model network latency as a special case of packet transformation

by introducing a new variable to record the maximum latency along the

paths, and modifying it at each hop. Other work shows that SAT is capable

of model the arithmetic operations required by such a transformation [14].

When collecting snapshots of data plane information Anteater could miss

some bugs when information is incomplete. It is also possible that Anteater

would report problems that are only temporary, such as black holes and

transit loops during network convergence. Moreover, it could report false

positives when given an inconsistent snapshot. Collecting a consistent snap-

shot of the whole network could be an application of consistent snapshot

algorithms [26], or benefit from other next-generation infrastructures [27].

As Anteater primarily serves as a bug detection tool, our experience shows

that the requirement of consistent snapshots could be relaxed, as the time

required to take a snapshot is small compared to the average time between

changes of the FIBs in our campus network.

Anteater might need to acquire FIBs when network reachability is affected.

Fortunately, Anteater can make use of solutions available today, including

30

maintaining separately tunneled networks at the forwarding plane [18, 19] or

operating through out-of-band control circuits [28], in order to gather data

plane state.

31

CHAPTER 8

RELATED WORK

Static analysis of the data plane. The research most closely related to

Anteater performs static analysis of data-plane protocols. Xie et al. [14]

introduced algorithms to check reachability in IP networks with support for

ACL policies. Our core algorithm builds on [14], but that work assumed

constant-time set operations, which we have shown hides an NP-complete

problem, and did not fully handle protocols that modify packets; Anteater

contributes solutions to these problems (see discussion in §3). Moreover, we

demonstrate a working implementation and evaluate it on a real network,

showing usefulness of the data-plane analysis approach.

Bush and Griffin [29] gave a formal model of integrity (including con-

nectivity and isolation) of virtual private routed networks, and Hamed et

al. [30] designed algorithms and a system to identify policy conflicts in IPSec,

demonstrating bug-finding efficacy in a user study. In contrast, Anteater is

a general framework that can be used to check many protocols, and we have

demonstrated that it can find bugs in real deployed networks.

Static analysis of control-plane configuration. Analyzing configurations of

the control plane, including routers [1] and firewalls [12, 31, 9], can serve

as a sanity check prior to deployment. As discussed in the introduction,

configuration analysis has two disadvantages. First, it must simulate the

behavior of the control plane for the given configuration, making these tools

protocol-specific; indeed, the task of parsing configurations is non-trivial and

error-prone [32, 6]. Second, configuration analysis will miss non-configuration

errors (e.g., errors in router software and inconsistencies between the control

plane and data plane [33, 34, 6]).

However, configuration analysis has the potential to detect bugs before a

new configuration is deployed. Anteater can detect bugs only once they have

affected the data plane — though, as we have shown, there are subtle bugs

that fall into this category that Anteater can detect. Control-plane analysis

32

and Anteater are thus complementary.

Intercepting control-plane dynamics. Monitoring the dynamics of the control

plane can detect a broad class of failures [35, 36] with little overhead, but

may miss bugs that only affect the data plane. As above, the approach is

complementary to ours.

Traffic monitoring. Traffic monitoring is widely used to detect network

anomalies as they occur [37, 25, 38, 39, 40, 41]. Anteater’s approach is

complementary: it can provably detect or rule out certain classes of bugs,

and it can detect problems that are not being triggered by currently active

flows or that do not cause a statistical anomaly in aggregate traffic flow.

Programming languages for networks. Research on declarative network-

ing [42], language support for building distributed systems [43, 44], and de-

bugging distributed systems [45, 46] have shown the importance of language

support during construction and debugging of modern networks. These works

inspired us to design and implement SLang, a declarative, Prolog-like lan-

guage to enables operators to express network properties in a succinct way.

SAT solving in other settings. Work on model checking [47], hardware

verification [48] and program analysis [49, 50] often encounter problems that

are NP-Complete. In practice, they are often reduced into SAT problems

so that SAT solvers can solve them effectively in practice. Some research

has been proposed to interpret the unsatisfiability core of the reduced SAT

problem for diagnosis and problem localization [51]. These works inspired

our approach of using SAT solving to model and analyze data-plane behavior.

33

CHAPTER 9

CONCLUSIONS

We presented Anteater, an efficient, expressive and extensible framework to

diagnose network failures via data-plane analysis. Anteater collects data-

plane information from network devices, models forwarding-plane behavior

as instances of satisfiability problems, and leverages various formal analysis

techniques to systematically analyze the network. To our best knowledge,

Anteater is the first framework that is able to formally analyze cross-layer,

inter-component properties of a computer network.

We found Anteater to be useful for finding real bugs in large networks.

We ran Anteater on the UIUC campus network and found 23 bugs. Anteater

completed the analysis quickly and gave us concrete counterexamples that we

used to help our network operators repair the campus networks. Although

there were five false positives, in all of these cases the network operator was

able to determine quickly that these alerts were in fact benign. Overall, our

study suggests that debugging networks based on data-plane information and

using boolean satisfiability is a practical and effective way to debug today’s

complex network.

34

APPENDIX A

PROOF OF NP-COMPLETENESS

As pointed out in [14], the reachability algorithm terminates within O(V 3)

operations. According to Proposition 1 below, however, determining the

reachability between two vertices in the network is not in O(V 3), unless P =

NP:

Proposition 1. Determining reachability in a network with packet filters is

NP-Complete.

Proof. Given an instance of a 3-SAT problem with n variables x1, x2, · · · , xn

and k clauses Ci = x̂a ∨ x̂b ∨ x̂c, in which x̂j = xj or x̄j, ∀1 ≤ i ≤ k, 1 ≤
a, b, c, j ≤ n, construct a network G as the following:

1. A packet p being forwarded in G is a vector of n variables p = (x1, x2, · · · , xn).

2. Add k + 1 vertices v1, v2, · · · , vk+1 in G.

3. Add an edge ei = (vi, vi+1),∀1 ≤ i ≤ k.

4. Let the policy over edge ei to be Ci.

With the above construciton a packet p can flow through ei if Ci evaluates

to true under assignment p. Therefore, determining the reachability between

v1 and vk+1 corresponds to the answer to the 3-SAT problem.

Therefore, the problem is NP-Complete because 3-SAT is NP-Complete.

The key is that calculating the formulas representing the reachability and

determining the reachability are two different problems. To calculate general

reachability in a network, the use of SAT does not increase the complex-

ity. Furthermore, the use of SAT or similar techniques is required since the

problem is NP-Complete.

35

REFERENCES

[1] N. Feamster and H. Balakrishnan, “Detecting BGP configuration faults
with static analysis,” in Proc. USENIX NSDI, 2005.

[2] J. Wu, Z. M. Mao, J. Rexford, and J. Wang, “Finding a needle in a
haystack: Pinpointing significant BGP routing changes in an IP net-
work,” in Proc. USENIX NSDI, 2005.

[3] Renesys, “Longer is not always better,” http://www.renesys.com/blog/
2009/02/longer-is-not-better.shtml.

[4] J. Duffy, “BGP bug bites Juniper software,” Network World, December
2007.

[5] J. Evers, “Trio of Cisco flaws may threaten networks,” CNET News,
January 2007.

[6] Z. Yin, M. Caesar, and Y. Zhou, “Towards understanding bugs in open
source router software,” in ACM Computer Communication Review,
June 2010.

[7] R. Mahajan, D. Wetherall, and T. Anderson, “Understanding BGP mis-
configuration,” in Proc. ACM SIGCOMM, 2002.

[8] Cisco Systems Inc., “Spanning tree protocol problems and related de-
sign considerations,” http://www.cisco.com/en/US/tech/tk389/tk621/
technologies tech note09186a00800951ac.shtml, August 2005, document
ID 10556.

[9] L. Yuan, J. Mai, Z. Su, H. Chen, C.-N. Chuah, and P. Mohapatra,
“FIREMAN: A toolkit for FIREwall Modeling and ANalysis,” in Proc.
IEEE S&P, 2006.

[10] E. Zmijewski, “Reckless driving on the Internet,” http://www.renesys.
com/blog/2009/02/the-flap-heard-around-the-worl.shtml, February
2009.

[11] P. B. Godfrey, “What happened to the Internet on
Friday,” http://youinfinitesnake.blogspot.com/2010/08/
what-happened-to-internet-on-friday.html, August 2010.

36

[12] E. S. Al-Shaer and H. H. Hamed, “Discovery of policy anomalies in
distributed firewalls,” in Proc. IEEE INFOCOM, 2004.

[13] B. Dutertre and L. de Moura, “The Yices SMT solver,”
http://yices.csl.sri.com/tool-paper.pdf, SRI International, August
2006.

[14] G. G. Xie, J. Zhan, D. A. Maltz, H. Zhang, A. Greenberg, G. Hjalmtys-
son, and J. Rexford, “On static reachability analysis of IP networks,” in
Proc. IEEE INFOCOM, 2005.

[15] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, and S. Shenker, “OpenFlow: Enabling innovation in campus
networks,” ACM Computer Communication Review, April 2008.

[16] “The all new 2010 Intel Core vPro processor family: Intelligence that
adapts to your needs (whitepaper),” 2010, ftp://download.intel.com/
products/vpro/whitepaper/crossclient.pdf.

[17] “JUNOS: MPLS fast reroute solutions, network operations guide,” 2007.

[18] M. Lasserre and V. Kompella, “Virtual private lan service (VPLS) using
label distribution protocol (LDP) signaling,” RFC 4762, January 2007.

[19] D. Farinacci, T. Li, S. Hanks, D. Meyer, and P. Traina, “Generic routing
encapsulation (GRE),” RFC 2784, March 2000.

[20] “SAT-Race 2010,” http://baldur.iti.uka.de/sat-race-2010.

[21] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in Proc. CGO, 2004.

[22] Quagga Routing Suite, “Bugzilla main page,” https://bugzilla.quagga.
net/.

[23] Quagga Routing Suite, http://www.quagga.net.

[24] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topologies
with rocketfuel,” in Proc. ACM SIGCOMM, 2002.

[25] Cisco Systems Inc., “Cisco IOS netflow,” http://www.cisco.com/en/US/
products/ps6601/products ios protocol group home.html.

[26] A. D. Kshemkalyani and M. Singhal, Distributed Computing: Principles,
Algorithms, and Systems, 1st ed. Cambridge University Press, May
2008. [Online]. Available: http://www.worldcat.org/isbn/0521876346

[27] J. P. John, E. Katz-Bassett, A. Krishnamurthy, T. Anderson, and
A. Venkataramani, “Consensus routing: The Internet as a distributed
system,” in Proc. USENIX NSDI, 2008.

37

[28] “Out-of-band management,” September 2010, http://en.wikipedia.org/
wiki/Out-of-band management.

[29] R. Bush and T. G. Griffin, “Integrity for virtual private routed net-
works,” in Proc. IEEE INFOCOM, 2003.

[30] H. Hamed, E. Al-Shaer, and W. Marrero, “Modeling and verification of
IPSec and VPN security policies,” in Proc. ICNP, 2005.

[31] Y. Bartal, A. Mayer, K. Nissim, and A. Wool, “Firmato: A novel firewall
management toolkit,” in Proc. IEEE S&P, 1999.

[32] Y. Mandelbaum, S. Lee, and D. Caldwell, “Adaptive parsing of router
configuration languages,” in Workshop INM, 2008.

[33] G. Goodell, W. Aiello, T. Griffin, J. Ioannidis, P. McDaniel, and A. Ru-
bin, “Working around BGP: An incremental approach to improving se-
curity and accuracy of interdomain routing,” in Proc. NDSS, 2003.

[34] Z. M. Mao, D. Johnson, J. Rexford, J. Wang, and R. Katz, “Scalable
and accurate identification of AS-level forwarding paths,” in Proc. IEEE
INFOCOM, 2004.

[35] A. Feldmann, O. Maennel, Z. Mao, A. Berger, and B. Maggs, “Locating
Internet routing instabilities,” in Proc. ACM SIGCOMM, 2004.

[36] X. Hu and Z. M. Mao, “Accurate real-time identification of IP prefix
hijacking,” in Proc. IEEE S&P, 2007.

[37] Nagios, http://www.nagios.org.

[38] D. Mauro and K. Schmidt, Essential SNMP. O’Reilly, 2005.

[39] F. Baccelli, S. Machiraju, D. Veitch, and J. Bolot, “The role of PASTA
in network measurement,” in Proc. ACM SIGCOMM, 2006.

[40] P. Tune and D. Veitch, “Towards optimal sampling for flow size estima-
tion,” in Proc. IMC, 2008.

[41] F. Silveira, C. Diot, N. Taft, and R. Govindan, “ASTUTE: Detecting a
different class of traffic anomalies,” in Proc. ACM SIGCOMM, 2010.

[42] B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis, T. Roscoe, and
I. Stoica, “Implementing declarative overlays,” in Proc. ACM SOSP,
2005.

[43] C. Killian, J. W. Anderson, R. Braud, R. Jhala, and A. Vahdat, “Mace:
Language support for building distributed systems,” in ACM PLDI,
2007.

38

[44] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
click modular router,” ACM Transactions on Computer Systems, vol. 18,
pp. 263–297, 2000.

[45] X. Liu, Z. Guo, X. Wang, F. Chen, X. Lian, J. Tang, M. Wu, M. F.
Kaashoek, and Z. Zhang, “D3S: Debugging deployed distributed sys-
tems,” in Proc. USENIX NSDI, 2008.

[46] P. Reynolds, C. Killian, J. L. Wiener, J. C. Mogul, M. A. Shah, and
A. Vahdat, “Pip: Detecting the unexpected in distributed systems,” in
Proc. USENIX NSDI, 2006.

[47] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic model check-
ing without BDDs,” in TACAS, 1999.

[48] A. Biere, E. M. Clarke, R. Raimi, and Y. Zhu, “Verifiying safety proper-
ties of a Power PC microprocessor using symbolic model checking with-
out BDDs,” in CAV, 1999.

[49] Y. Xie and A. Aiken, “Saturn: A scalable framework for error detec-
tion using boolean satisfiability,” ACM Transactions on Programming
Languages and Systems, vol. 29, no. 3, 2007.

[50] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and S. Pasupathy, “Sher-
Log: Error diagnosis by connecting clues from run-time logs,” in ASP-
LOS, 2010.

[51] I. Shlyakhter, R. Seater, D. Jackson, M. Sridharan, and M. Taghdiri,
“Debugging overconstrained declarative models using unsatisfiable
cores,” in IEEE/ACM ASE, 2003.

39

