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ABSTRACT

This doctoral dissertation research has developed models to facilitate in characterization,

analysis and monitoring of urban heat islands (UHI). Over the past few years there

has been evidence of mass migration of the population towards urban areas which has

led to the increase in the number of mega cities (cities with more than 10 million in

population) around the world. According to the UN in 2007 around 60% (from 40% in

2000) of world populations was living in urban areas. This increase in population density

in and around cities has lead to several problems related to environment such as air

quality, water quality, development of Urban Heat Islands (UHI), etc. The purpose of this

doctoral dissertation research was to develop a synergetic merger of remote sensing with

advancements in data mining techniques to address modeling and monitoring of UHI in

space and in time.

The effect of urban heat islands in space and over time was analyzed within this

research using exploratory and quantitative models. Visualization techniques including

animation were experimented with developing a mechanism to view and understand

the UHI over a city. Association rule mining models were implemented to analyze the

relationship between remote sensing images and geographic information system (GIS)

data. This model was implemented using three different remote sensing images i.e.,

Advanced Space borne Thermal Emission and Reflection Radiometer (ASTER), Landsat

and Moderate Resolution Imaging Spectroradiometer (MODIS). The effect of the spatial

resolution on the model and the phenomenon were analyzed in detail to determine

variables which strongly associate with land use land cover (LULC) in space and in time.



A non-parametric process convolution model was developed and was used to characterize

UHI from MODIS time series images. The resulting characterized images were used

to study the relationship between LULC and UHI. The behavior of UHI including its

movement and magnitude was analyzed in space and time.

The intellectual merits of these methods are two-fold; first, they will be a forerunner in

the development and implementation of association rule mining algorithm within remote

sensing image analysis framework. Second, since most of the existing UHI models are

parametric in nature; the non-parametric approach is expected to overcome the existing

problems within characterization and analysis. Parametric models pose problems (in

terms of efficiency, since the implementation of such models are time consuming and

need human intervention) while analyzing UHI effect from multiple imageries. These

proposed models are expected to aid in effective spatial characterization and facilitate in

temporal analysis and monitoring of UHI phenomenon.



v

ACKNOWLEDGMENTS

I would like to thank Dr. Weng who has helped me in both organizing my personal life

and my academic life from the day one. It has been a pleasure working with him.

I would also like to thank my family, especially my mom, dad, who have been

supportive during the three years of my study in USA and my wife who has been

supportive in the completion of my dissertation. Without their love none of this would

have been possible.

I would like to take this opportunity to thank Ajay, Andy, Brian, Heidi, Ryan, Todd,

Vijay and Xufei who made sure that my stay in USA was interesting and memorable. The

discussions ranging from rationale for my thesis to rationale for life did really help me

look at things more critically. Thank you guys.



vi

TABLE OF CONTENTS

COMMITTEE MEMBERS . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Research Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Knowledge Discovery within Spatial Datasets . . . . . . . . . . . . . . . . . 6

2.2 Geo-spatial Data Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Problems within Geo-spatial Data Mining . . . . . . . . . . . . . . . . . . . . 10

2.4 Models and Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Urban Heat Island Phenomenon . . . . . . . . . . . . . . . . . . . . . . . . . 13

Types of UHI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Causes of UHI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Effects of UHI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6 Urban Heat Island: Data, Models and Methods . . . . . . . . . . . . . . . . 31



Numerical/ empirical UHI models . . . . . . . . . . . . . . . . . . . . . . . . 32

Models based on measurements/instrument types . . . . . . . . . . . . . . 32

Scale and scalability of measurements and models . . . . . . . . . . . . . . . 34

Remote sensing of UHI: Problems and pitfalls . . . . . . . . . . . . . . . . . 38

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 DATA AND STUDY AREA. . . . . . . . . . . . . . . . . . . . . . . . 41

3.1 Study Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Remote sensing images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Pre-classified raster images . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Vector data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Census statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 Primary Information Generation . . . . . . . . . . . . . . . . . . . . . . . . . 48

Land use land cover (LULC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Land surface temperature -ASTER . . . . . . . . . . . . . . . . . . . . . . . . 49

Geometric correction - Landsat . . . . . . . . . . . . . . . . . . . . . . . . . . 50

LST generation and radiometric normalization - Landsat . . . . . . . . . . . 50

Scaled normalized difference vegetation index (SNDVI) . . . . . . . . . . . 52

Population density dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 UHI Analysis Models and Methods . . . . . . . . . . . . . . . . . . . . . . . 53

Exploratory data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Association rule mining using spatial datasets . . . . . . . . . . . . . . . . . 54

Descriptive analysis of UHI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61



5 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1 Visualization of UHI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Residential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Commercial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Roads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Open areas and water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Association Rule Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Data used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Results of classification and normalization . . . . . . . . . . . . . . . . . . . 77

Rules and knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3 MODIS LST Analysis Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Land surface temperature analysis . . . . . . . . . . . . . . . . . . . . . . . . 112

Urban heat island analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Space-Time analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Exploratory data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Association rule mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Descriptive analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.2 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Exploratory data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Association rule mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Descriptive analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.3 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185



ix

LIST OF TABLES

1 Data mining tasks and techniques . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Types of data mining models . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Equal interval and quantile classification schema for NDVI and LST derived

from ASTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4 Equal interval and quantile classification schema for NDVI and LST derived

from Landsat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Equal interval and quantile classification schema for NDVI and LST derived

from MODIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 Land cover as mapped over study area their abbreviation and detailed

description (NLCD, 2000) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7 Land use zoning as mapped over study area their abbreviation and detailed

description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8 Classification schema for population density . . . . . . . . . . . . . . . . . . 83

9 Classification schema for mean age of induviduals residing in that area . . 84

10 Classification schema for percentage of vacant housing . . . . . . . . . . . . 84

11 Classification schema for average household size . . . . . . . . . . . . . . . 84

12 Classification schema for average family size . . . . . . . . . . . . . . . . . . 85

13 Confidence of ASTER NDVI with respect to ASTER LST: Equal interval

algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

14 Confidence of ASTER NDVI with respect to ASTER LST: Quantile algorithm 87

15 Confidence of NLCD with respect to ASTER LST: Equal interval algorithm 88



16 Confidence of NLCD with respect to ASTER LST: Quantile algorithm . . . 89

17 Confidence of zoning with respect to ASTER LST: Equal interval algorithm 90

18 Confidence of zoning with respect to ASTER LST: Quantile algorithm . . . 91

19 Confidence of Landsat ETM+ NDVI with respect to LST: Equal interval

algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

20 Confidence of Landsat ETM+ NDVI with respect to LST: Quantile algorithm 96

21 Confidence of NLCD with respect to Landsat LST: Equal interval algorithm 97

22 Confidence of NLCD with respect to Landsat LST: Quantile algorithm . . . 98

23 Confidence of Zoning with respect to Landsat LST: Equal interval algorithm 99

24 Confidence of zoning with respect to Landsat LST: Quantile algorithm . . . 100

25 Confidence of MODIS NDVI with respect to MODIS LST: Equal interval

algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

26 Confidence of MODIS NDVI with respect to MODIS LST: Quantile algorithm104

27 Confidence of NLCD with respect to MODIS LST: Equal interval algorithm 105

28 Confidence of NLCD with respect to MODIS LST: Quantile algorithm . . . 106

29 Confidence of zoning with respect to MODIS LST: Equal interval algorithm 107

30 Confidence of zoning with respect to MODIS LST: Quantile algorithm . . . 108

31 Modeled day time location and intensity of UHI . . . . . . . . . . . . . . . . 135

32 Modeled night time location and intensity of UHI . . . . . . . . . . . . . . . 138

33 Selected results from the association mining algorithm . . . . . . . . . . . . 185

34 Daytime LST image characteristics: Before and after kernel convolution . . 202



xi

LIST OF FIGURES

1 Percentage of population in the urban areas . . . . . . . . . . . . . . . . . . 14

2 Urban and rural population of the world, 1950-2050 . . . . . . . . . . . . . 15

3 Illustration of the urban heat island processes . . . . . . . . . . . . . . . . . 18

4 Climate change and possible health impacts . . . . . . . . . . . . . . . . . . 29

5 Study area and its surrounding . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 Model describing the steps involved in the exploratory data analysis . . . . 55

7 Model describing the steps involved in the micro-analysis . . . . . . . . . . 58

8 Schema for image data mining . . . . . . . . . . . . . . . . . . . . . . . . . . 61

9 Urban heat analysis across residential areas- Part I . . . . . . . . . . . . . . 67

10 Urban heat analysis across residential areas- Part II . . . . . . . . . . . . . . 68

11 Urban heat analysis across commercial areas- Part I . . . . . . . . . . . . . . 70

12 Urban heat analysis across commercial areas- Part II . . . . . . . . . . . . . 71

13 Urban heat analysis over roads . . . . . . . . . . . . . . . . . . . . . . . . . . 73

14 Urban heat analysis over water bodies . . . . . . . . . . . . . . . . . . . . . . 74

15 Urban heat analysis over open areas . . . . . . . . . . . . . . . . . . . . . . . 75

16 Result from the sensitivity analysis of four classification algoirthms . . . . 78

17 Relationship between cloud cover and its effect on LST . . . . . . . . . . . . 111

18 Month wise number of images used for analysis . . . . . . . . . . . . . . . . 111

19 Average of mean and maximum daytime temperatures . . . . . . . . . . . . 112

20 Average of mean and maximum nighttime temperatures . . . . . . . . . . . 113



21 Variation in daytime mean and maximum LST . . . . . . . . . . . . . . . . . 114

22 Variation in nighttime mean and maximum LST . . . . . . . . . . . . . . . . 115

23 Average magnitude of daytime and nighttime LST . . . . . . . . . . . . . . . 116

24 Kernel convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

25 Diurnal characteristics of actual and modeled mean LST . . . . . . . . . . . 118

26 Diurnal characteristics of mean surface temperature . . . . . . . . . . . . . . 119

27 Average month wise diurnal variation in maximum surface temperature . 119

28 Illustration of positive heat island effect . . . . . . . . . . . . . . . . . . . . . 121

29 Illustration of negative heat island effect . . . . . . . . . . . . . . . . . . . . . 122

30 Comparison of MODIS cloud prone LST . . . . . . . . . . . . . . . . . . . . 123

31 Absence of heat island on LST with concentrated cloud cover . . . . . . . . 125

32 Monthwise distribution of UHI effect . . . . . . . . . . . . . . . . . . . . . . 126

33 Daytime temperature and NDVI for May and June . . . . . . . . . . . . . . 128

34 Nighttime temperature and NDVI for May and June . . . . . . . . . . . . . 129

35 Daytime temperature and NDVI for July and August . . . . . . . . . . . . . 130

36 Nighttime temperature and NDVI for July and August . . . . . . . . . . . . 132

37 Daytime temperature and NDVI for September and October . . . . . . . . . 133

38 Nighttime temperature and NDVI for September and October . . . . . . . . 134

39 Daytime UHI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

40 Daytime UHI along the north - south direction presented in 3D perspective 146

41 Daytime UHI along the east - west direction presented in 3D perspective . 146

42 Nighttime UHI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

43 Nighttime UHI along the north - south direction presented in 3D perspective148

44 Nighttime UHI along the east - west direction presented in 3D perspective 148

45 Centroids of UHI maximum temperature over Marion County . . . . . . . 151

46 Centroids of UHI intensity over Marion County . . . . . . . . . . . . . . . . 152

47 Centroids of UHI with intensity: A view from west . . . . . . . . . . . . . . 153



48 Centroids of UHI with intensity: A view from east . . . . . . . . . . . . . . 153



ABBREVIATIONS

ASTER Advanced Space borne Thermal Emission and Reflection Radiometer

ATLAS Advanced Thermal and Land Applications Sensor

AVHRR Advanced Very High Resolution Radiometer

BLUHI Boundary Layer Urban Heat Island

BUBBLE Urban Boundary Layer Experiment

CLUHI Canopy Layer Urban Heat Island

DN Digital Number

EDA Exploratory Data Analysis

EMR Electromagnetic Radiation

ENSO El Nino/ Southern Oscillation

EPA Environmental Protection Agency

ETM Enhanced Thematic Mapper

FOV Field of View

GI Geo-Information

GIS Geographical Information Science

IR Infrared

KDD Knowledge Discovery in Databases

LC Land Cover

LST Land Surface Temperature

LULC Land Use Land Cover

MAD Multivariate Alteration Detection

MODIS Moderate Resolution Imaging Spectroradiometer

NASA National Aeronautics and Space Administration

NDVI Normalized Difference Vegetation Index

NOAA National Oceanic and Atmospheric Administration



RASS Radio Acoustic Sounding System

RSL Roughness Sub-Layer

SNDVI Scaled Normalized Difference Vegetation Index

SODAR Sound Detection and Ranging

SSUHI Skin Surface Urban Heat Island

TB Terra Bytes

TIC Temporally Invariant Features

TIF Time-Invariant Features

TIR Thermal Infrared

TM Thematic Mapper

UBL Urban Boundary Layer

UCL Urban Canopy Layer

UHI Urban Heat Island

UN United Nations

UNEP United Nations Environment Program

USGS United States Geological Survey

VNIR Very Near Infrared

WHO World Health Organization



1

CHAPTER 1

INTRODUCTION

This research demonstrates models to facilitate in characterization, analysis and moni-

toring of urban heat islands (UHI). Over the past few years there has been evidence of

mass migration of the population towards urban areas which has led to an increase in the

number of mega cities (cities with more than 10 million in population) around the world.

According to the UN in 2007 around 60% (from 40% in 2000) of world populations are

living in urban areas. This increase in population density in and around cities has lead to

several problems related to environment such as air quality, water quality, development

of UHI, etc. The purpose of this doctoral dissertation research was to develop a synergetic

merger of remote sensing with the advancements in data mining techniques to address

modeling and monitoring of UHI in space and in time.

The central research question of this dissertation was to model UHI effectively and

to use these models to perform spatio-temporal analysis. The impetus of this research

was the rapid change in the LULC due to mass migration of people to the urban setting.

This has also led to concern among earth scientists of the impact of this change on the

environment.

The increase in urban population has led to rapid changes in the land use and land

cover within cities during recent years. In the United States of America (USA), the current

urban growth rate, based on 1990 and 2000 census figures, is approximately 12.5%, with

80% of population residing within urban areas. As cities continue to grow, to satisfy



various social and economic needs, urban sprawl creates unique problems related to land

use, transportation, agriculture, housing, pollution and development for policy makers.

Apart from such problems, it is also often observed that air temperatures in densely built

urban areas are higher than the temperatures of the surrounding rural country. Among

the urban-rural differences, the most notable and well documented is the increase in

temperature in urban areas. This phenomenon is known as ‘urban heat island’ (UHI)

effect.

The study of UHI has a lot of importance. UHI effect not only determines the relative

difference in temperature but also acts as one of the major factors influencing other

phenomena. Earlier research applications have demonstrated that UHI has impact on

natural ventilation and urban meteorology. Studies have also shown that UHI has a

strong influence on weather leading to anomalies in rainfall patterns and lightning. UHI

has negative impacts on aerosols, energy consumption, human health and biodiversity.

Apart from these impacts, UHI also plays a major role in the increase in pollution and

decrease in environmental conditions. Furthermore, there also exist links between land

use land cover (LULC) and temperature. Therefore, it becomes important for urban and

environmental researchers to understand, model, quantify and monitor the UHI effect.

1.1 Problem Statement

Within the last four decades, great progress has been made with the advent of space

programs associated with Earth observations. Several terra bytes (TB) of Earth science data

are being collected from various sensor platforms. Some of the data collected suggests

that skin temperatures (also known as surface temperature or land surface temperature)

for large areas can be mapped and studied more effectively by using satellite remote

sensing data in the infrared region as compared to ground based sensors. Even with

satellite measurement it is still difficult to generalize the magnitude, location, and spatial

distribution of the UHI for several reasons. These reasons are mainly attributed to the



shape, extent and layout of the city, besides the type and material of surrounding areas,

and resolution of imagery used to characterize the phenomenon. These factors not only

affect the spatial extent of the UHI but they also affect its magnitude.

Over the years, statisticians have developed several methods of generalization to over-

come the issue of characterizing surfaces in a spatial domain. While various approaches

of kriging and thin plate spline models have been used successfully for spatial process

estimation, they have the weakness of being global models, in which the variability of the

estimated process is the same throughout the domain. This failure to adapt to variability

of the unknown process is of particular importance in environmental, geophysical, and

other spatial datasets. Lastly, a single parametric model can be defined for the analysis

of a single image, but, it becomes difficult to apply the same over multi-temporal and

multi-sensor images in order to conduct a successful comparative analysis. This aspect

gets further complicated due to the changing nature of the land cover and land use and

also the uncertainty involved in the boundary between urban and rural areas.

Another major problem is the use of appropriate statistical analysis for quantifying

the relation between urban temperatures to other associated factors. The interactions

between the LULC and normalized differential vegetation index (NDVI) with UHIs have

been studied and quantified previously using linear statistical models and multivariate

analysis. These techniques are well established and are effective in analyzing quantitative

relationships between limited qualitative variables and general trends. However, these

techniques cannot be used to identify and quantify micro-level deviations within earth

science processes.

1.2 Research Objective

The primary objective of this dissertation was to study the effect of urban heat islands in

space and over time using both the exploratory and quantitative models. This primary

objective was achieved through systematic implementation of the following tasks:



1. Development of a visualization technique to study the characteristics of UHI across

a city.

2. Implementation of association rule mining models and analysis of the relationship

between remote sensing images and GIS data.

3. Implementation of non-parametric process convolution model to images from

MODIS to characterize UHI as a continuous function including both urban and rural

surfaces. Analysis of non-parametric model results with respect to LULC. Study

and identification of the effect of scale on the modeling and on the phenomenon.

4. Development of a method to automate the above process with minimal user inter-

vention i.e. a model for monitoring MODIS time series data set to study the change

in the UHI characteristics over time i.e., daily, weekly, monthly, seasonal and annual.

1.3 Hypotheses

Hypotheses that are addressed within this research are:

1. There will be minimal change in confidence of the association rules and associating

variables with relation to change in the type of the remote sensing image used

especially between ASTER and MODIS.

2. With an increase in the scale of the remote sensing images there will be a relative

decrease in the prediction capability of the association rule mining models.

Modeling for monitoring the phenomenon of UHI over time would have impact on

the quantified results especially the characteristic descriptors (center, spread, intensity,

etc.,) due to diurnal/seasonal effects, but otherwise the phenomenon of UHI will not

have a considerable change in its center and spread with respect to minimum change in

the LULC over time. This variation in UHI center should be within a particular land use



zoning, difference in spread should be within a county and change in intensity should be

well within the LST uncertainty limits.

1.4 Structure of the Thesis

Chapter 2 provides a brief introduction about the phenomenon of UHI and the current

state of modeling within the field of spatial science. This chapter also provides a review of

the existing problems in the field of data mining and geo-scientific models with reference

to the UHI phenomenon under study. The study area and the data that has been used

within this thesis are introduced in Chapter 3. The methods and the models that are

used within this research are described in Chapter 4. Chapter 5 discusses the results

obtained through exploratory data analysis, association rule mining and macro-analysis

of UHI phenomenon using MODIS. This chapter also discusses the effect of varying

scales (medium to low resolution images) on the method in general and UHI analysis in

specific. This chapter also discusses in detail the effect of a model at varying scale and the

behavior of the phenomenon over time. This will include day/ night, monthly, seasonal

and between years variation of the phenomenon over the city of Indianapolis and its

surrounding eight counties. Chapter 6 summarizes the discussions and conclusions of

this research.
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CHAPTER 2

BACKGROUND

This chapter explains data mining, UHI modeling and monitoring in detail. Section 2.2 of

this chapter describes data mining models. This section also differentiates between spatial

and non-spatial data mining and explains the importance of implementing such methods

within geo-spatial science. Section 2.3 provides a brief introduction to UHI explaining

the nature of this phenomenon. This sub-section explains the need for modeling and

monitoring of the phenomenon based on the cause and effect relationships associated

with other physical and social variables. Section 2.4 elaborates on various types of UHI

modeling within the urban context and an overview on the status of current research

within the field of heat island modeling and monitoring along with its problems. Section

2.5 discusses the types of heat island, their causes and effect. Section 2.6 lists data and

models that are currently being used for studying UHI.

2.1 Knowledge Discovery within Spatial Datasets

The amount of data that has been collected so far is immense and the number is increasing

on a daily basis (Kafatos et al., 1998). “The world produces between 1 and 2 Exabyte of

unique information per year, which is roughly 250 megabytes for every man, woman,

and child on earth. An exabyte is a billion gigabytes or 1018 bytes” (Lyman et al.,

2000). However, not enough is being done to analyze all data or to extract all possible

information. In general, people collect data for specific purposes but the collected data has



the opportunity to reveal much more information than its intended use. Unfortunately

much of the data available is generally used for a specific purpose and is not explored

beyond the intended purpose.

This problem of massive increase in data is evident in the field of remote sensing

where there have been various advancements in technology over the past several decades.

The quantities of remote sensing images (RSI) that are being collected every day from

satellites, aerial sensors, telescopes and other sensor platforms are immense. Majority of

data are archived before information can be extracted (Ding et al., 2003). Even though

remote sensing images have the ability to reveal much information in comparison to their

textual counterpart, it becomes very difficult or in some cases impossible for the human

mind to look at every image from massive storage, analyze it and assess its relationship

with the previous images of varying time stamps.

In order to overcome the above limitations the process of Knowledge Discovery in

Databases (KDD) has been developed and is currently being advanced by scientists and

business professionals alike. According to Heckel and Zendulka (2004), “The knowledge

discovery process can be defined as a nontrivial process of identifying valid, novel,

potentially useful and ultimately understandable patterns in data. Data mining is the

key step in the process where intelligent methods are applied in order to discover

knowledge in data”. Even though the process of KDD is vast as compared to data

mining and data mining is only a part of the whole process which deals with processing

of the data in a predefined efficient manner to find meaningful information, within

this study the term data mining will be used alternatively to KDD. In short, within

this study the term data mining means ‘the process of extracting previously unknown,

valid and actionable information from large databases’ (Cabena, 1998) or ‘the process of

searching and discovering valuable information and knowledge from large volumes of

data’ (Velickov et al., 2000).

Data mining initially started in late 1980’s as the computational capability of the



computers began to increase. Since its inception its major uses have proved to be in

the fields of defense, finance, marketing, stock prediction, fraud detection, etc., where

the amount of data collected is high and, at the same time, it is humanly impossible to

go through it manually and retrieve information. Data mining encompasses principles

and techniques from statistics, machine learning, pattern recognition, numeric search

and scientific visualization to accommodate the new data types and data volumes being

generated (Miller and Han, 2001). According to Groth (1999) “80% of the fortune 500

companies are involved in the process of data mining”.

There has been considerable development in the field of data mining on handling

market-basket (relational data bases) data sets but there have been limited developments

in the area of spatial databases which include image and vector datasets. Since a spatial

database is not the same as a non-spatial database, these data types are to be considered

as a special case of data mining.

2.2 Geo-spatial Data Mining

Knowledge mining from image and raster datasets can be viewed as a case of spatial

data mining. Table 1 illustrates some of the data mining tasks and techniques. According

to Koperski et al. (2002) most database research on the analysis of geospatial data has

concentrated on data retrieval, and on simple queries that involve spatial joins and spatial

selections. Such systems also perform analysis on single images. But when we deal with

large collections of remotely sensed images, current systems do not scale well. Therefore,

new algorithms and new indexing methods are needed to enable the analysis of the

spatial data provided by the sensor systems. According to Openshaw (1999) some of the

requirements in the tools for spatial data mining are as follows:

1. Serve basic spatial data exploratory needs,

2. Have the potential to create new insights, ideas, and hypotheses from the analysis,



3. Offer artistic impressions of pattern structure to stimulate the imagination,

4. Spot major unusual localized database patterns and detect empirical location-based

irregularities, and

5. Be easy to use and meet basic GIS ability criteria.

Conceptually what is stated above may appear simple, but the implementation of the

concepts within the spatial data mining systems are complex due to the inherent com-

plexity of the spatial data sets. Researches are being carried out at institutes, universities

and research laboratories to develop more efficient tools and techniques to assist spatial

data miners (Takahara et al., 2002).

Table 1

Data mining tasks and techniques (Miller and Han, 2001)

Type Task Technique
Segmentation Clustering: Determining a

finite set of implicit classes
that describes the data

Cluster analysis, Bayesian
classification and Decision
or Classification trees

Classification: mapping
data items into pre-defined
classes

Artificial neural networks

Dependency
analysis

Finding rules to predict the
value for some attribute
based on the value of the
other attribute

Bayesian networks and As-
sociation rules

Deviation and
outliner analy-
sis

Finding data items that ex-
hibit unusual deviations
from expectations

Clustering and other data
mining methods, outliner
detection

Trend detection Lines and curves summa-
rizing the database, often
over time

Regression and Sequential
pattern extraction

Generalization
and characteri-
zation

Compact descriptions of
the data

Summary rules and
Attribute-oriented induc-
tion



2.3 Problems within Geo-spatial Data Mining

Every spatial scientists’ dream is that geospatial analysis tools expand to become a

sophisticated spotter of patterns with the ability to suggest highly plausible hypotheses,

and with the capability to handle hundreds of different layers that may contain thousands

of millions of data points (Estiville-Castro and Lee, 2004). But the use of traditional

approaches within geospatial analysis often require significant manual intervention and

expertise in the field of statistics and geospatial analysis (Fayyad and Smyth, 1999). These

limitations of the conventional statistical methodologies incorporated within the existing

spatial analytical systems can lead to a variety of problems for knowledge extraction.

Further, spatio-temporal objects and relationships tend to be more complex than the

objects and their relationships in non-geographic databases. The diversity and limitation

in the techniques to analyze the spatial data contributes to the development of geographic

data mining (Openshaw, 1999). Furthermore, Uncertainty has long been recognized as

being important in geo-information (GI) science it is, however, still a problematical issue

(Foody, 2003).

Many of the current systems which are being developed in the area of geospatial data

mining are based on the developments in the market basket analysis. Ding et al. (2002)

extracted association rules from remote sensing imagery by considering set ranges of the

spectral bands to be items and the pixels to be transactions. Tešić et al. (2003) implemented

perceptual association rule to a image data set to prove the fact that presence of a crop A

near a Crop B leads to high yield and vice versa. These examples are very similar to that

of the market basket analysis where the analysis aims at finding a relationship such as if

customer A buys a product X, he/she also buys the product Y.

However, according to Brunsdon et al. (1999) “there is a major potential problem in

that if you use conventional data mining tools then you are implicitly forced to accept

the key assumption that geographical data is the same as any other data and that there



is nothing special about geographical information or indeed geographical analysis that

will prevent it being performed by conventional methods”. For example, if you provide

the spatial location information within many of the conventional data mining tools they

assume it as an attribute and not as the location element of an attribute. This basic error

in assumption would lead to less useful results.

Openshaw (1999) argues that what is needed now are new types of data mining tools

that can handle the special nature of spatial information and also capture the spirit and

essence of geography that a GIS inclined data miner would expect to have available. There

is an additional problem that needs to be dealt with. If you simply equate geographical

data mining with exploratory spatial analysis then maybe some analysts will be misled

into believing that this problem has already been solved. However this assumption

overlooks the massive difference between exploring a manageable small data set with

few variables and the need to perform the same process on massive databases (with

two or three orders of magnitude in most cases) and possibly high levels of multivariate

complexity.

The above mentioned problems gets further complicated due to the data types and

distinction between various geospatial datasets i.e. GIS and remote sensing data types

and the various domains that they cover. First, the imagery in itself is of no use, until

and unless, it is supported by the auxiliary alpha-numeric information which might

range from anything to everything depending upon the purpose. Many of the models

developed based on the market basket study may work well for GIS data but not remote

sensing images and vice versa. Secondly, a researcher from the domain of environmental

analysis would be least interested in the amount of minerals found in a place but the fact

that certain minerals are present there and their mining is taking place and is causing

environmental problems that might be of interest. Therefore, even though the domain

may not be directly related to a topic of study the information or data source may result

in interesting conclusions for such a topic. Therefore, models have to be developed such



that they can be used by analysts’ of indirectly related fields of study. Conversely, asking

the computer to find all such interesting patterns from a given set of remote sensing data

source might be expensive in terms of time (processing) as it is directly proportional to

amount of the images, the processor capacity and the location or the medium in which

data files are stored. Due to the nature of the image data sets, the size and type of

remote sensing images vary drastically from relational data structures. Thirdly, it is

not mandatory that the results obtained through the process of data mining are easily

interpreted by a remote sensing scientist. Since, there exists a possibility that the results

that are obtained may not be from the researchers area of expertise.

In order to overcome these problems it would be better if the researcher mines the

data to a certain extent, then analyses the results and subsequently guides further the

data mining process in a direction that may be of interest. This will save considerable

amount of processing time.

2.4 Models and Tools

The models within data mining can be broadly classified into two categories i.e. de-

scriptive modeling and predictive modeling (refer Table 2). Descriptive modeling is a

class of models that tend to summarize the data into meaningful information. Predictive

modeling is model that provides analytical projections based on sample sets (training

data). Some of the software tools which are available to facilitate the successful execution

of the above models within spatial data sets are Spatial Stats Module by S-Plus, Spatial

Module for R to assist in spatial prediction or pattern mining, Spatial Statistics Toolbox

for Matlab for computing simultaneous and conditional spatial auto regression and mixed

regression, Spatial Ecometrics Library for Matlab, Cluster SEER/Boundary Seer/ Space

Stat by TeraSeer for supporting spatial clustering, spatial autocorrelation analysis and

classification, NEM for Neighborhood clustering, GeoMiner by Systems Research labora-

tories for mining characteristic patterns, comparison & association patterns in geospatial



database and Spin by Leeds University for mining in Geo-referenced data (Zhang and

Zhang, 2002).

Table 2

Types of data mining models (Hand et al., 2001)

Predictive Models Descriptive Models
Classification Regression Probability distribution

and density functions
Perceptron Linear models
Linear discriminants Generalized linear

models
Nearest neighbor
methods

Non-parametric
‘Memory-Based’ local
models

Probabilistic model based
clustering using mixture
models

Tree models
Logistic discriminant
analysis

Artificial neural net-
works

Clustering algorithms

Native bayes

2.5 Urban Heat Island Phenomenon

Over the past few decades the world has experienced a sudden increase in migration.

This migration is not only of the number of people moving between continents and

countries due to the advancement in the transportation but also in the number of people

moving from the rural areas to the urban areas due to changes in the economy and work

profile. Figure 1 shows the percentage of population in the urban areas during 2007 and

the projected values for the years 2025 and 2050. From the figure we can infer that in the

United States of America (USA), the current urban growth rate is approximately 12.5%

and 80% of population is residing within urban areas. From Figure 2 we can infer that if

the trend of migration of people towards the urban areas increases, then by 2010 more

than 50% of the world’s population will be living in urban localities.

This increase of the urban population has also led to rapid changes in the land use

and land cover within cities during recent years, causing problems related to traffic



Figure 1. Percentage of population in the urban areas



Figure 2. Urban and rural population of the world, 1950-2050 (source: United Nations,

Population Division, 2007)

congestion, increase in pollution, water supply and sanitation. These physical changes

affect the quality of the environment, contributing to other phenomenon such as increase

in air temperature. Scientiests have observed that air temperatures in densely built

urban areas are higher than the temperatures of the surrounding rural country. This

increase in temperatures within urban areas is known as the ’urban heat island’ (UHI)

phenomenon. According to Voogt (2005), UHI can be defined as “closed isotherms

indicating an area of the surface that is relatively warm; most commonly associated with

areas of human disturbance such as towns and cities. The physiographic analogy derives

from the similarity between the pattern of isotherms and height contours of an island on

a topographic map. Heat islands commonly also possess ‘cliffs’ at the urban-rural fringe

and a ‘peak’ in the most built-up core of the city”. The temperature differences strongly

vary at micro scale, both in rural and urban areas because of varying radiant load. For

example, a concrete surface may have a different radiant load as compared to water in a



lake. This could be observed both within the urban and the rural environment. But, the

thermal characteristics of the overall urban terrain constitute a basic factor in creating the

UHI effect which is not only observable at a micro level but also at the macro level.

Types of UHI

There has been a significant amount of research conducted using thermal measurement

data which support the idea that urban and suburban characteristics lead to the well

known UHI effect. UHI studies carried out over the past few years can be broadly

classified into two categories:

1. studies aimed at modeling UHI

2. studies demonstrating the cause and effect relationships

Based on the methods used to measure, modeling of UHI can be broadly classified

into three main categories (Grimmond, 2006; Oke, 1987). They are:

1. Canopy layer urban heat island (CLUHI)

2. Boundary layer urban heat island (BLUHI)

3. Skin surface urban heat island (SSUHI)

CLUHI phenomenon is formed due to the change in near surface air temperature

between the urban and rural setting. According to Voogt and Oke (2003) one can define

CLUHI as that layer of the urban atmosphere extending upwards from the surface to

approximately mean building height. There are various factors that influence the CLUHI,

such as building infrastructure and the underlying urban surface characteristics (Friedl,

2002). CLUHI are usually measured using readings taken either by weather stations or

data loggers placed within the study area. Even though the measuring of heat and air

turbulence within any area is generalized, the interactions between various elements



within urban surrounding involve meso-scale modeling of the phenomenon and its

associated processes (Chin et al., 2005).

Urban boundary layer heat islands can be defined as the layer above the buildings

and roof tops (refer Figure 3). A clearer definition of the urban boundary layer (UBL) is

provided by Arnfield (2003):

“the air layers immediately above horizontally uniform surface types with tall rough-

ness elements, conventional flux-profile relationships and Monin-Obukhov similarity

theory are likely to be invalid. In this layer, termed the roughness sublayer, flow consists

of the interacting wakes and plumes (of heat, humidity and pollutants) introduced by

individual roughness elements. At some height above the canopy, the blending effect of

turbulent mixing will erase the significance of individual roughness elements and create

a layer (the inertial sub layer, surface layer or constant-flux layer) in which turbulent

fluxes are constant with height, permitting measurement of landscape-scale energy bal-

ance fluxes and Reynolds stress. The roughness and overlying surface layer constitute

the lowest portion of the UB. The nature of the urban surface, with its rigid buildings

of different heights and physical characteristics, separated by trees, canyons and open

spaces, makes it particularly susceptible to the development of a roughness sub layer of

significant depth, perhaps several times the average building height”.

The heat island formed within this region can be broadly defined as the boundary

layer urban heat island (BLUHI). Even though scientists have defined the phenomenon

using numerical models (Atkinson, 2003), in order to quantitatively measure the BLUHI

one might need more specialized sensor platforms such as tall towers, radiosonde or

tethered balloon flights, or aircraft-mounted instruments (Voogt and Oke, 1998a). Due to

the complicated nature of the equipment, very few extensive studies have been carried

out to measure and model the BLUHI. One of the recent studies that has demonstrated

the boundary layer heat island analysis is the Basel UrBan Boundary Layer Experiment

(BUBBLE) which was carried out in the city of Basel, Switzerland (Rotach et al., 2005).



Figure 3. Illustration of the urban heat island processes (Voogt, 2005)



Within this study the researchers set up towers at several locations with their size being

at least twice that of surrounding obstacles. These were set up for a period of one month

to study air turbulence at various levels. This study conducted at such a detailed level

concluded by stating that on a closer look at temperatures at all sites, the nocturnal release

of storage heat results in a nocturnal urban heat island. The huge daytime intake of heat

by the density of building materials in the urban environment produces an urban cold

island (Rotach et al., 2005). This result was found to compliment similar air temperature

studies using weather station data demonstrated the presence of night-time heat island

within many cities (Bottyán and Unger, 2003; Fast et al., 2005; Kim and Baik, 2005).

Skin surface is defined as the surface of the objects on the ground as seen by any

remote sensing platform. The SSUHI can be defined as the heat island characterized

by images representing measurements as sensed by the sensors within the thermal

window of the electromagnetic spectrum. Due to the advent of the sensor platforms and

imaging technology in recent decades, there have been several studies examining SSUHI.

Lambin and Ehrlich (1996) investigated the use of Land Surface Temperature (LST) and

Normalized Difference Vegetation Index (NDVI) over the African continent. He used a

decade of Advanced Very High Resolution Radiometer (AVHRR) global area coverage

data to study the relationship between temperature and bio-physical characteristics. In a

similar study, Owen et al. (1998) modeled the regional scale climate impact of urbanization

using vegetation index and temperature data computed from AVHRR. In another study,

Gallo and Owen (1999) went a step further and analyzed the UHI effect using multi-sensor

approach employing AVHRR and Landsat images.

A number of other studies have considered UHI in other locales including Streutker

(2002) measured the growth of UHI in Houston, Texas using the split-window infrared

channels of AVHRR. Jung et al. (2005) used airborne hyperspectral imageries to study

the effect in Hungarian villages. Hung et al. (2006) assessed the UHI within Asian mega

cities using images from Aqua and Terra missions.



With the help of sensors, it also becomes convenient to analyze the cause and effect of

this phenomenon at a pixel-level using associated remote sensing and GIS information.

Xiao and Weng (2007) analyzed the effect of deforestation and change in land cover type

on the UHI effect in the Guizhou Province of southern China. Xiao et al. (2008) analyzed

the impact of bio-physical variables on land surface temperature and its characteristics.

Weng and Lu (2008) completed a sub-pixel analysis of the effect of urbanization on land

surface temperature. There have also been several studies conducted by scientists using

remotely sensed images to analyze the effect of surface temperature on other related

phenomena. Gillies et al. (1997) calculated the surface soil water content from the surface

radiant flux measurements obtained using an airborne sensor. Sobrino and Raissouni

(2000) analyzed the regional response of the soil-vegetation system to climate in arid zones

by applying theoretical models to obtain parameters such as Land Surface Temperature

(LST) and Normalized Difference Vegetation Index (NDVI) derived from AVHRR sensor.

Goward et al. (2002) used satellite-derived surface temperatures and biosphere model to

approximate soil moisture conditions on the ground. Weng and Yang (2006) used thermal

imagery and land use information to quantify atmospheric pollution. Voogt and Oke

(1998b) analyzed the effect of surface geometry on temperature. Kato and Yamaguchi

(2005) analyzed the heat balance during daytime and nighttime using Landsat Enhanced

Thematic Mapper (ETM+) and Advanced Spaceborne Thermal Emission and Reflection

Radiometer (ASTER) images.

Causes of UHI

Over the past decade UHI presence has been studied and documented for several cities

around the world. As the name suggests, the cause of phenomenon is urban landscape in

general, there are several bio-physical factors that contribute its presence and spread. In

a broader perspective every human being wants to live in a developed environment or

an environment where there is an easy access to resources and their benefits. With the



advent of technology and modern transportation systems, access to resources/benefits has

become easier and such facilities have been achieved in many cities within the developed

nations. However, ease in accessibility comes with the price of change in land use and

land cover. In this case it is not only the monetary price that one has to invest to achieve

such things but also other qualitative prices that one has to pay through the process. One

such price is the quality of the living environment.

According to Golany (1996), during the early years of development of a city "the design

without designer method was traditionally and fanatically passed from one generation to

another, versus our contemporary design style produced on the drafting table with little

or no observation of the diversified natural forces action on the field". The traditional

method of planning would be to include environmental considerations within the design.

But, the lack of such a process within the methodology has lead environmental scientists

to look back and analyze the various effects of natural and built forms within the urban

surrounding.

Weather

When we discuss UHI effect, we are essentially discussing a component of the boundary

layer, canopy layer or surface layer weather system. Similar to weather systems UHI

effects have a strong relationship with weather parameters such as wind and cloud. In

a smaller scale (individual building scale) experiment by Hall et al. (1999) many of the

meteorological and climate characteristics were analyzed. The research demonstrated

that aspect ratio, wind direction, wall thickness of buildings, presence of openings and

surface clutter have significant effects on the heating and cooling of the surfaces, often

altering them by orders of magnitude. Apart from such spatial arrangements the study of

UHI in Athens by Mihalakakou et al. (2004) demonstrated that synoptic-scale circulation

is a predominant input parameter, affecting the heat island intensity considerably and on

a much larger scale. In this study it was demonstrated that high pressure ridge mostly

favor heat island phenomenon whereas, intense northerly winds are responsible for its



nonappearance.

Size and spread of the urban sprawl

According to de Schiller and Evans (1996) “The ability to design with urban microclimates

depends on the architects’ and planners’ skills to identify significant variations in the

regional climate in urban areas, develop awareness of the possible future modifications

produced by changes in the urban tissue and its potential during the process at different

scales of applications”. City forms such as size, geometry and the materials used in the

construction of urban spaces define the UHI effects characteristics. For example two cities

with ’X’ amount of population but differing urban geometry, allocation of spaces and the

type of construction material used would have two entirely different UHIs.

Scherer et al. (1999) demonstrated this behavior and came up with criteria to effectively

maintain natural ventilation within a city environment, reduce risks of hazards caused

by wind, to help transport fresh air and reduce air pollution in sensitive areas and to

reduce heat load while simultanously reducing negative effects of frost and cold stress.

These criteria were incorporated to help urban planners in addressing the issue of urban

climate within their planning process.

Streutker (2003) analyzed the presence of UHI in the city of Houston, Texas and quan-

tified it in terms of spatial spread and magnitude. In this study, the author demonstrated

that there is a inverse relationship in temperature profiles between urban areas and their

surrounding rural areas. Gaffin et al. (2006) documented the presence of UHI within the

city of New York, New York. Within their preliminary research they were able to identify

a linear correlation between air temperature and surface temperature heat islands. Weng

(2003) performed a similar analysis to establish the presence of heat island in Guangzhou,

China and to quantify the spatial distribution of surface radiant temperatures using

fractal analysis. In his study, the author, apart from analyzing the variation of UHI

intensity over different zones, demonstrated the changes in fractal dimensions in different

seasons. These changes were found to be caused by solar illumination and climatologic



conditions related to soil moisture and air temperature, topographic variation and spatial

arrangement and areal extent of different land cover types.

Geometry

The geometry of a building or any built form is also an important constituent of the much

larger UHI effect. According to the study performed by Hoyano et al. (1999) on sensible

heat flux from exterior surfaces of buildings it was demonstrated that the variation in

difference between surface temperature and air temperature is 20 - 30 C during the

day and 5 - 10 C at night in summer and winter respectively. The study also showed

that the difference between roof and air temperature was around 14 - 25 C depending

upon the time of the day. In yet another study by Lagouarde et al. (2004) using an

airborne TIR camera, the influence of time on UHI effect at a large scale was analyzed.

In this study, first four plots were obtained over the city centre at different dates and

times and subsequent data from these plots were used to illustrate a dependence on sun

illumination. From the results, all plots showed thermal ’hot spot’ effect with maximum

temperature observed when aiming at a surface opposite to the sun (with the sun behind).

Also, direction of the hot spot moved during the day and was consistent with the sun

displacement.

Function of the city

Quality of life aspects such as energy use, water use and pollution have a bilateral

relationship with the UHI effect. In one of the studies carried out by Grant and Wong

(1999) within the suburban neighborhood of Lafayette, Indiana, USA, the effect of canopy

layer and boundary layer air circulation with respect to the land surface temperature

(LST) was analyzed. In their study, they demonstrated the effect of air circulation on

air pollutants (especially oxidants) at various levels, thereby, establishing an indirect

relationship between temperature and air pollution levels within city. A study by Sarrat

et al. (2006) also demonstrated similar results, establishing an indirect relationship



between surface temperature and air pollution within an urban environment.

In spite of several studies related to quality of life it is very important for us to

understand the effect of these variables with respect to UHI effect. The main reason

is that even though some aspects of a particular variable may contribute to a decrease

in UHI effect but they may still contribute to an increase in hazardous phenomena. A

study byTaha (1997) demonstrated that the use of high albedo materials would lead to a

significant reduction in ozone (decrease of 12%) and a decrease in population- weighted

exposure to this pollutant. A similar study by Bretz et al. (1998) demonstrated that the use

of high albedo materials would favor in the mitigation of the UHI, leading to a substantial

decrease in energy demands. But in order to achieve high albedo within the urban

settings, some form of synthetic material may have to be used as a coating to existing

surfaces which might lead to other forms of health hazards. In some cases, the presence

of vegetation, especially trees in the suburban neighborhood, may reduce the summer air

conditioning demand. On the other hand, this dense vegetation canopy structure might

intercept the incoming solar energy during winter months, thereby increasing the winter

heating load (Simpson and McPherson, 1998).

Geography

The physical, human and environmental geography of a city including topography,

rural surroundings and climate are some of the criteria that have been long studied

in relation to UHI effect. These studies were carried out mainly because of two main

reasons. First, these parameters could be effectively quantified using statistics and second,

the collection and documentation of primary data was relitavely straightforward. The

primary parameter that defines much of urban space is its climate. The UHI phenomenon

may vary with respect to the local climate, which is generally controlled by the geographic

location of the city on Earth. For example, the UHI phenomenon in a tropical climate may

behave differently during different times than the UHI phenomenon in a non-tropical

setting.



A detailed study of the climatic variation, using a city’s available climatic data and

physical simulations of the thermal field in urban areas is presented in a study by de Assis

and Frota (1999). In their study, they demonstrated that the design requirements for

varying climatic regions during different seasons vary strongly and have to be taken into

account before arriving at any mitigation strategies. Local topography and location of the

main commercial and industrial sectors are also an important variable while analyzing

the UHI effect. In the analysis executed by Kim and Baik (2005) near the borderline of

Seoul, it was found that temperatures were relatively low in the city, except near the

southwestern and southeastern borderlines where several warm cores were observed.

These are the regions where urbanization is in progress and are pronounced by industrial

complexes, highly commercialized complexes with high-story buildings and heavy traffic.

Since the urban population distribution values are closely related to land-use zoning

within the USA, one can assume that this may contribute to the generation of anthro-

pogenic heat and thus towards the overall UHI effect. In order to analyze this hypothesis

Weng et al. (2006) analyzed effect of urban population by census block group and LST

measurements. The results of this study showed that population density from the 2000

Census is moderately positively correlated with LST (coefficient: 0.547) in the city of Indi-

anapolis, Indiana. From the above facts, one can conclude that the distribution of urban

vegetation may be an important intermediary between patterns of human settlement and

regional climate spatial variability.

Furthermore, research by Jenerette et al. (2007) was carried out to test the above

hypothesis. In their research they analyzed to identify relationships between surface

temperatures, regional climate, vegetation, and human settlement patterns in Phoenix,

AZ, USA region. The results of their study concluded that higher income neighborhoods

were associated with increased vegetation cover and higher density neighborhoods were

associated with decreased vegetation variability. Thus suggesting that the settlement

patterns in central Arizona influences regional climate through multiple pathways. These



pathways are further heterogeneously distributed throughout the city.

Effects of UHI

It is imperative to understand the UHI effect is evident in urbanized and urbanizing

regions. This presence of UHI within such environment poses several threats to human

life, plants, animals, regional climate and global climate patterns. These impacts can be

broadly classified into two classes i.e. effect on climate and effect on living environment.

Effect on climate

The UHI phenomenon affects both the regional and the global climatic patterns (Golden,

2004). The bias involved with the global models is far greater and is always an aspect

of discussion. All the same, strong conclusions resulting from some of the regional

experiments encourage environmental scientists to believe in the scale of UHI impacts.

In a research conducted by Chin et al. (2005) using a three dimensional mesoscale

model inferred that the urban canopy produces a nocturnal warming along the urban zone

with a maximum value of 1.8 C and a corresponding hydrostatically induced negative

pressure anomaly zone at a level of 10 m above the ground. On further analysis Chin

et al. (2005) were able to identify that this warming is a result of weaker nighttime cooling

within the urban canopy due to urban heat release at night. Furthermore, research by

Ghiaus et al. (2006) arrived at a similar conclusion, stating that the UHI effect has a strong

negative influence on natural ventilation potential.

Anthropogenic heat is one of the significant parameters that affects energy balance

within urban surroundings ((Cenedese and Monti, 2003; Offerle et al., 2006). A drastic

change in this parameter during both summer and winter has considerable impact on

both local air circulation and latent heat flux which mainly contributes to evaporation and

therefore rainfall. There have been several studies that have demonstrated the impact of

UHI on weather leading researchers to speculate that UHI influences anomalies in rainfall

patterns and lightning (Childs and Raman, 2005; Gedzelman et al., 2003; Rozoff et al.,



2003). In a study by Lensky and Drori (2007) on cloud formation, they demonstrated

that temperature difference is greater for clouds that develop over more polluted and/or

warmer surfaces than those resulting from smoke and urban pollution and/or urban

heat island,. Furthermore, through a case study over Southeast Asia, Lensky and Drori

(2007) were able to demonstrate that the difference in temperatures are around 1 - 6 C for

tropical maritime clouds, 8 - 15 C for tropical clouds over land, 16 - 26 C for urban air

pollution, and 18 - 39 C for clouds ingesting smoke from forest fires. Furthermore, from

an experiment conducted by Mihalakakou et al. (2004) it was concluded that daytime

air temperature was a single input parameter that contributed between 24 and 31% of

regional climate models accuracy.

Therefore, based on the above results one can conclude that nighttime and daytime

estimations of urban air temperature is one of the predominant input parameters on urban

climatic conditions, thus emphasizing the importance of the heat island phenomenon

Livable environment

According to the world health organization (WHO) anthropogenic warming claims more

than 150,000 lives on an annual basis (refer Figure 4). According to Patz et al. (2005)

these heat related mortalities can be classified into two broad divisions. First, direct

heat related mortality and morbidity, and second a climate-mediated change on the

incidence of infectious diseases. The primary is mortality caused due to considerable

difference between temperature extremes especially between the mean and the maximum

during a particular period. This has more effect during early summer months when

people are in the process of getting familiar to higher temperatures. A sudden change

in the temperature during these days instead of gradual increase might affect many

who are less prepared for that change, especially old people. Such sudden increases

in temperatures are termed as heat waves (Souch and Grimmond, 2004). These effects

arise because of one or more meteorology-related factors such as an increase in number

of consecutive hot days, higher effective temperatures, increased humidity, stagnation,



accelerated photochemical smog, pollutant emissions, and particulate formation (Taha

et al., 2004). Such heat waves can cause severe thermal environmental stress leading to

health impediment and increased mortality. The worst such effect was experienced by

the people of Europe in the year 2003 which caused heat related mortality in tens of

thousands and property damages in billions due to the subsequent forest fires (UNEP,

2004).

According to an Environmental protection Agency (EPA) study in 2003 and Samenow

(2007), heat waves were much more severe in Western Europe than in countries to the

east. The studies found that temperature deviations were generally higher for maximum,

rather than minimum, temperatures. Of major European cities, Paris exhibited the

greatest deviations where the temperature increased to more than 17 C. Even though

the occurrence was a once in a lifetime event, according to the UN, projections indicate

that such extreme changes may be quite common in future climate scenarios. As urban

populations grow in the future, their vulnerability towards such heat-related mortality

would also be likely to grow.

Apart from heat waves, another effect which is evident in our everyday life is the

increase in pollution within urban centres. Even though the UHI phenomenon does

not contribute to an increase in the air pollution, it does substantially contribute to

its dispersion. The Department of Environment of Australia commissioned a study

to analyze wind patterns and their effect on air pollutants in south-east Queensland

air shed to analyze the significance of anthropogenic heat. From the results of their

experiments by Khan and Simpson (2001) inferred that anthropogenic heat in urban areas

can substantially affect the wind and temperature regime. Through their experiments they

were able to demonstrate that the meteorological conditions have strong correlation with

the extent and intensity of pollution. Furthermore, their model simulations identified

clear patterns of pollutant movement within a strong sea breeze during summer months.

Some of their simulation results demonstrated that in scenarios where the onshore sea



Figure 4. Climate change and possible health impacts (Source: WHO, 2003)



breeze is strong, then it would be capable of carrying pollutants as far as 100 km inland.

If analyzed in relevance to the experiment carried out by Childs and Raman (2005) to

realize the potential of bio-terrorism hazards, this projects a catastrophic scenario. The

authors further state that if any biological attacks do coincide with such environmental

conditions then the hazardous elements would travel to the entire city of Queensland

and in some cases extend to neighboring cities. This scenario was validated after the

September 11th attack, by Gedzelman et al. (2003) where they analyzed the dispersion of

debris (pollutants) after the attack within the city at various times of the day and night

for four months.

In a research Taha (1997) demonstrated that mitigating UHI has a positive effect on

mitigation of air pollution within that environment. In this study, the author analyzed

the effects within Salt Lake City, Baton Rouge, and Sacramento using both mesoscale

meteorological data and air quality modeling. The results of these simulations indicated

that for these three cities a decrease of 1 - 2 C in the UHI effect would lead to a drastic

decrease in air-pollution concentration.

Apart from heat related mortality, many prevalent human diseases are also linked to

climatic fluctuations. This includes, cardiovascular mortality and respiratory illnesses due

to heat waves, to altered transmission of infectious diseases and malnutrition from crop

failures. According to Patz et al. (2005), El Nino/Southern Oscillation (ENSO) has been

found to be related to incidences of malaria in South America, rift valley fever in east

Africa, dengue fever in Thailand, hantavirus pulmonary syndrome in the southwestern

USA, childhood diarrheal disease in Peru and cholera in Bangladesh. The authors further

state that “it is unclear at this stage whether global warming will significantly increase

the amplitude of ENSO variability, but if so, the regions surrounding Pacific ocean and

Indian ocean are expected to be most vulnerable to associated changes in health risks”.

There have also been instances of such heat fluctuations leading to an increase in

tornadoes and wind storms. On one hand, in the USA, air mass temperature contrast



leads to creation of a powerful jet stream in the upper atmosphere and this jet stream in

turn provides wind shear, which serves as a source of rotation for tornadoes (Halverson,

2006). On the other hand, in Europe, wind speeds have significantly increased over the

second half of the twentieth century (Pryor et al., 2005). Even though increase in wind

speeds has lead to an increase in wind energy generation in certain regions, this effect has

led to an overall increase in both the frequency and the amount of wind storms across

Europe.

Another dimension of the effect of UHI can be felt in terms of the economy and the

increase in consumption of both renewable and non-renewable energies. Guhathakurta

and Gober (2007), found that during summer months, especially during days when

the UHI effect is at its relative maximum water consumption within Phoenix, Arizona

increased by 60%. The authors demonstrated that for every 0.55 C increase in a census

tract’s low temperature, average water use in single-family unit increased by 1.7% or 290

gallons per month. Furthermore, a similar increase in warmer temperature during night

would increase water use by 681 gallons. A similar study conducted by Rosenzweig et al.

(2006) towards electricity consumption and the results demonstrated a strong association

between higher temperatures and an increase in electricity demand.

2.6 Urban Heat Island: Data, Models and Methods

There are various types of UHI models that have been developed over the past four

decades. These models vary based on the input data i.e. remote sensing instrument, type

of reading, details within the reading, the spatial resolution, spectral resolution, temporal

resolution and uncertainty of measurement.

“The study of urban weather and climate possesses a perspective that is almost unique.

So unlike other environments of interest, where it is sufficient to study the atmosphere for

its own sake or value, in urban areas there is interest to know about urban effects. This

means assessing possible changes to meteorological variables as an urban area grows or



develops over time, compared to what would have happened had the settlement not been

built. This is a question that is essentially unanswerable because the settlement has been

built, and even if it hadn’t the landscape may well have evolved into a different state than

the pre-existing one anyway. The assessment of urban effects is therefore fraught with

methodological difficulties and no ’truth’ is possible, only surrogate approximations”,

Oke (2006).

Numerical/ empirical UHI models

On a broad scale, the types of models could be distinguished as either numerical or

empirical (statistical). If the amount of data collected is exhaustive, or does possess the

potential to explain the phenomenon at hand, then empirical or statistical models are

sufficient. For large scale studies, such as in global climate simulations, numerical models

tend to be a better choice (Masson, 2006). For example, Balling and Brazel (1998) used

realistic surface temperature measurements derived from AVHRR to model temperature

patterns in Phoenix, Arizona, USA. Within this study empirical models including mean

and standard deviation were used to analyze the results. They inferred that tempera-

tures within residential and commercial areas varied by 2 C. Similarly, in another case

Kikegawaa et al. (2003) analyzed how this temperature difference corresponds with peak

energy demands. In order to simulate this they developed a numerical simulation system

adopting one-dimensional urban canopy meteorological model.

Models based on measurements/instrument types

Since most climate related information is collected by weather stations and local meteo-

rological laboratories. The temperature readings from weather stations/ towers are one

of the primary data used in UHI studies (Emeis and Schafer, 2006; Scheeringa, 2006).

Apart from the weather stations, scientists have also attempted modeling UHI using

profilers.Mihalakakou et al. (2002) tested for estimation of heat island intensity in Athens,



Greece using measurements from 23 temperature profilers. Hawkins et al. (2004) used a

denser network of temperature and humidity sensors to study the UHI effect in Phoenix,

Arizona. In both the above studies, the researchers were able to identify existence of one

UHI.

In an another study Khaikine et al. (2006) used microwave profilers to measure

temperatures up to 600m in height to determine boundary layer heat island within the

city of Moscow, Russia. The results of this study demonstrated the presence of two UHIs

one with a higher heat dome at all levels and another, with a low heat dome along with

cold air above (UBL and UCL). These deviations in measurements were attributed to

change in instrument type and the information collected.

Apart from profilers, there are several other remote sensors which are available to

scientists for studying the UHI phenomenon. Some of the instruments are;

SODAR (Doran et al., 2002)

Sound Detection and Ranging (SOSAR). These are also known as Rawinsondes. These

are used along with weather balloons to obtain profiles of winds, temperatures, and

humidity.

RASS (Doran et al., 2002)

Radio acoustic sounding systems (RASSs). A RASS is capable of measuring profiles of

virtual temperature up to heights in excess of 1 km above the surface, although perfor-

mance varies with ambient conditions. In this dissertation, RASS data, in conjunction

with measurements from tethered sondes, rawinsondes and surface instruments provide

information to construct a three-dimensional representation of the temperature structure.

Ceilometers (Emeis and Schafer, 2006)

These are instruments that use the optical backscattering principle to obtain measurements

of cloud heights and aerosol intensities. The main advantage of a ceilometer in comparison

to SODAR and RASS is that it can easily be used in urban areas, because it has no negative



impacts on its surroundings and it can measure up to several kilometers whereas the

SODAR are limited to a few.

Imaging sensors (Thermal infra red)

Imaging sensors are instruments (on board a satellite or aircraft) that record electromag-

netic radiation (EMR) that is reflected/ radiated from the objects on the earth’s surface.

The information recorded in the thermal infrared part of the spectrum is widely used

in understanding the UHI effect. For example, a study conducted by Gallo and Owen

(1999) demonstrated a variation of less than 40% between the temperature measurements

derived from AVHRR sensor (satellite) and ground based weather stations.

Scale and scalability of measurements and models within UHI research (Oke et al., 2004)

The concept of scale is very important to geography and variation in the scale can be

regarded as both strength and weakness of geography (Lam and Quattrochi, 1992). The

various scales that are of importance within UHI research are as follows:

Microscale

Urban microclimates are defined by dimensions of individual elements such as buildings,

trees, roads, streets, courtyards, gardens, etc., extending from less than one to hundreds

of meters. The aim of microscale measurements is to achieve climate observations free

of extraneous microclimate signals to characterize local climates. Avoiding anomalous

microclimate influences is hard to achieve.

Mesoscale

This scale quantifies the city’s influence on weather. Climate at the scale of a whole city

extends typically tens of kilometers. An essential difference between the climate of urban

areas and that of open-country sites is that the vertical exchanges of momentum, heat

and moisture occur in a layer of significant thickness - called the urban canopy layer

(UCL). The height of the UCL is approximately equivalent to the mean height of the main



roughness elements (buildings and trees). Microclimatic effects of individual surfaces

and obstacles persist for a short distance away from their source and they blend in the

horizontal and vertical directions by turbulence. The distance depends on the magnitude

of the effect, the wind speed and the stability. Effects may persist up to a few hundred

meters horizontally. In the vertical, individual element effects are discernable in the

roughness sub layer (RSL) up to blending height.

Local scale

This scale includes climatic effects of landscape features, such as topography, but excludes

microscale effects. In cities this means the climate of neighborhoods with similar types of

urban development (surface cover, size and spacing of buildings, activity). Typical scales

are one to several kilometers.

Other factors on which the scale and scalability of heat measurements depend are:

1. source (point or area) of the measurement

2. field of view (nadir or angular) of the sensor

3. resolution (high or low) of the sensor

4. radiometric characteristics of the sensor.

Sensor or image

Temperature readings from weather stations and readings measured using thermal

imaging sensors pose a unique problem within the urban meteorology. The readings from

weather stations are usually of high temporal resolution and of very sparse or low spatial

resolution. It is quite the opposite in the case of the thermal imaging sensors especially

AVHRR readings. In the study conducted by Gallo and Owen (1998) over a region of 41

km x 41 km, mean differences in satellite sensor-based predicted bias and observed bias

of the readings ranged from 0.04 C to 0.92 C for maximum and minimum temperature



bias respectively. This bias was also found to vary depending upon the location of the

sensors and their distribution.

Angular or nadir (Soux et al., 2004)

A sensor viewing an urban area from different points may ’see’ a different mix of surface

elements, i.e., different parts of the complete surface are obscured from certain views.

What is ’seen’, and hence the area from which a remote sensor with a given field-of-

view (FOV) acquires its input, is a combination of many surface facets, both sunlit and

shaded. This highly three-dimensional surface structure, in combination with varying

solar azimuth and altitude, leads to a directional variation of the measured radiance

(anisotropic radiance distribution, referred to as anisotropy). Soux et al. (2004) in their

research project ’SUM’ modeled to estimate the variation in temperature of roof, wall and

ground facets (sunlit or shaded) at different times of the day. The results showed that

in certain urban terrain a variation of +/- 3 C and +/- 5 C is possible with a change in

vertical and horizontal viewing angles respectively.

Spatial resolution

With the advent of sensor and satellite technology there are a range of satellite and terres-

trial instruments available to record information in the thermal part of the electromagnetic

radiation (EMR). Some of the previous researches conducted using low to high spatial

resolutions are:

Jin et al. (2005) used Moderate Resolution Imaging Spectroradiometer (MODIS) instru-

ment on board National Aeronautics and Space Administration (NASA) Terra satellite

measures. This instrument apart from recording thermal emissivity also records other

information such as surface spectral and radiative temperatures. These additional mea-

surements help provide a better understanding of the climate impact of urbanization

as well as our ability to specify the parameters needed by climate models to compute

impacts of urbanization. Satellite observations provide a basis for characterizing the



physical modifications that result from urbanization.

Stathopoulou et al. (2004) used National Oceanic and Atmospheric Administration’s

(NOAA) AVHRR images to model UHI in Greece. The main advantage of using this

sensor is its low cost and time-synchronous coverage of urban areas. Li et al. (2003)

used land surface temperature (Ts) derived from Landsat 5 Thematic Mapper (TM) and

Landsat 7 Enhanced Thematic Mapper (ETM) thermal band. The main advantage of

these images is the increase in resolution i.e. 120 m and 90 m of Landsat 5 and Landsat

7 respectively in comparison with 1 km and 250 m resolution of MODIS and NOAA/

AVHRR respectively. Instead of using conventional satellite remote sensing Lo et al. (1997)

researched the UHI effect using day and night airborne thermal infrared image data of 5m

spatial resolution acquired with the 15-channel (0.45 µm +/- 12.2 µm) Advanced Thermal

and Land Applications Sensor (ATLAS). The results demonstrated that high-resolution

thermal infrared images match the complexity of the urban environment. The main

disadvantage of using such sensor is the cost and time associated with collecting the data

and in performing the initial processing.

Models used for characterization

Apart from the various types of UHI models that have been proposed, one of the important

criteria that affect the outcome of results is the selection of an appropriate model for

calculation of land surface temperature from the remote sensing measurements (digital

numbers (DN)). Sobrino et al. (2004) in their research analyzed the effect of three of the

most common models (radiative transfer, mono-window algorithm and single-channel

algorithm) to retrieve the LST from thermal infrared data supplied by band 6 of the

Thematic Mapper (TM) sensor onboard the Landsat 5 satellite. The results demonstrated

that the minimum root mean square deviation (rmsd) for emissivity (0.009) and land

surface temperature (1 K) was by a single-channel algorithm. It should be noted that

these results would not prove true with a change in sensor platform and study area.



Intervals between measurements

UHI is a phenomenon that keeps changing constantly with time. A research conducted

by Akai et al. (2002) using RASS over Tokyo metropolitan area during end of February

2000, demonstrated a decrease in temperature within a short period of time (variability

between hours). This variation was caused due to cold airflow into the measurement

sites, and the occurrence of an inversion layer. They concluded their research by stating

that such rare meteorological phenomena are quite common within an urban terrain but

it requires detail measurements using sophisticated devices to detect and model such

changes. Hudischewskyj et al. (2001) investigated the variation of UHI between days

of the same season and concluded that a variation of 0.3 C between readings from 14th

and 15th July was observed. The more evident annual changes of UHI due to land use

and land cover (LULC) were discussed by Weng (2001) over Zhujiang delta, China and

demonstrated a difference of 3 C for urban or barren lands.

Remote sensing of UHI: Problems and pitfalls

Within the last four decades, great progress has been made in remote sensing with the

advent of space programs and sensors associated with Earth observations (Tan et al., 2002).

With differences in various data collection systems some researchers have demonstrated

that field measurements and remote sensing measurements show considerable agreement.

These studies reinforce the conclusions of other recent studies that have demonstrated

the compatibility of two-layer energy balance models with remote sensing observations

and, by extension, the viability of using thermal remote sensing to model surface energy

balance (Friedl, 2002).

Some researches also demonstrated that surfcae temperatures for large areas could be

mapped and studied more effectively by using satellite remote sensing data in the infrared

region as compared to ground based sensors (Stathopoulou et al., 2004). Furthermore,

even with satellite measurement, it is still difficult to generalize about the magnitude,



location, and spatial distribution of the UHI for several reasons. These reasons are mainly

attributed to the shape, extent and layout of the city, the type and material of surrounding

areas, and the resolution of imagery used to characterize the phenomenon (Arnfield,

2003). These factors not only affect the spatial extent of the UHI but they also affect its

magnitude.

Over the years, statisticians have developed several methods of generalization to

overcome the issue of characterizing surface in spatial domain. While various approaches

of kriging and thin plate spline models have been used successfully for spatial process

estimation, they have the weakness of being global models, in which the variability of the

estimated process is the same throughout the domain. This failure to adapt to variability,

or heterogeneity, in the unknown process is of particular importance in environmental,

geophysical, and other spatial datasets, in which domain knowledge suggests that in

most cases the phenomenon may be non-stationary (Paciorek and Schervish, 2006). Lastly,

a single parametric model can be defined for analysis of a single image, but, it becomes

difficult to apply the same over multi -temporal and multi-sensor images in order to

conduct a successful comparative analysis. This aspect gets further complicated due to

the changing nature of land cover and land use and also the fuzziness involved within

the boundary between urban and rural areas.

Another major problem is the use of appropriate statistical analysis for quantifying

the relation between urban temperatures to other associated factors. The interactions

between the LULC (Dousset and Gourmelon, 2003; Golden, 2004; Weng et al., 2004) and

NDVI (Eliasson, 1996; Gillies et al., 1997; Lo, 1995) with UHIs have been studied and

quantified using linear statistical models and multivariate analysis. These techniques

are well established but are effective in analyzing the quantitative relationship between

limited qualitative variables, general trend and not specific micro level deviations (Bottyán

and Unger, 2003).

This research attempts to address some of these problems stated above within the



field of UHI modeling and monitoring. This research intends to solve problems through

developing and experimenting with methods adopting techniques of data mining. The

methodology incorporates issues addressing both spatial and temporal resolution though

using data from varying sensor platforms.

2.7 Summary

To summarize, problems associated with UHI exist and are of serious concern. Even

though many algorithms have been developed for modeling there is a lack of systems for

continuous monitoring of UHI using remote sensing instrument. Based on inspiration

from recent developments, this research analyzes the UHI effect using both high temporal

(MODIS) and medium spatial resolution imagery (ASTER and Landsat) in modeling

the phenomenon for monitoring and analyzing UHI behavior in space and over time.

This research, explores the concept of implementing some of the data mining models

within the areas of UHI research to overcome some of the limitations described by earlier

researches. The next chapter describes the data and study area that will be taken as a

sample case for analysis.
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CHAPTER 3

DATA AND STUDY AREA

This chapter briefly explains about the nature of the study area that was taken as a case

to test the model and its results. Section 3.2 provides a description of the study area and

its geography. Section 3.3 discusses the data that were used within this study. In this

section, the data types were classified into four major types i.e., remote sensing images,

raster, vector and statistical or tabular data. These data types, along with their associated

datasets were also explained in detail.

3.1 Study Area

Indianapolis, Indiana, USA, was chosen as the study area (refer Figure 5). It possesses

several characteristics that make this area an appropriate choice for the study proposed.

Indianapolis has a single central city. Large urban areas in the vicinity have not influenced

its growth. The city is located on a flat plain and is relatively symmetrical, having

possibilities of expansion in all directions. Like many other American cities, Indianapolis

is rapidly increasing in population and in area. According to the 2000 Census, its

population is 791,926, making it Indiana’s most populous city and the 12th largest city in

the U.S. The U.S. Census July 1, 2004 estimate for the Consolidated City of Indianapolis is

794,160 and a metropolitan area population of 1,595,377. The larger combined statistical

area (an agglomeration called the Nine-County Region) has a population approaching

two million residents (1,939,349). Indianapolis is the third largest city in the Midwest after



Figure 5. (a) Depicts the state of Indiana and its counties, (b) The counties that are

adjacent to the Marion County and (c) False color composite of Landsat ETM+ October

2000

Chicago and Detroit and is one of only three major cities in the Midwest with a growth

rate above 5%. As of 2005, Marion County’s population is 863,133. The total area of the

nine counties is 7900 km2. The current expansion is occurring through encroachment

into adjacent agricultural and non-urban land. Certain decision-making forces, such as

density of population, distance to work, property value, and income structure, encourage

some sectors of metropolitan Indianapolis to expand faster than others.



3.2 Data

The datasets to be used in this study are classified into four categories based on their

nature and type as follows:

• Remote sensing images

• Pre-classified raster images

• Vector data

• Census statistics

Remote sensing images

In this research, satellite derived thermal infrared data were used instead of ground

based air surface temperature data. In spite of the advancement in ground sensors for

measuring the air temperature at a high temporal scale, it is satellite remote sensing

which helps in attaining high spatial resolution data of the land surface temperature.

Further, the number and spread of existing air surface temperature data loggers situated

in and around the study area were inadequate to cover the entire study area with the

precision necessary for a local study. Varying satellites acquire the scene differently due

to their sensor characteristics and each and every sensor is designed for specific purposes.

Therefore, within this study, varying remote sensing images were used to satisfy the

varying requirement of the proposed study. Higher resolution images such as aerial

photos (acquired on 2003) and ASTER were used for field study selection, exploratory

analysis and micro analysis of the LST.

The relatively lower resolution images of Landsat-TM (thematic mapper) and one

image from Landsat-ETM+ (enhanced thematic mapper) and Moderate Resolution Imag-

ing Spectroradiometer (MODIS) were used for analysis. Landsat missions are the oldest

for acquisition of multispectral data from satellite used for Earth resources and this



makes it the suitable choice for analyzing the spatial change over a long period of time

at medium resolution. The TM sensors on board Landsat were specifically designed for

quantitative analysis of the Earth’s land surfaces (Vogelmann et al., 2001). Further, since

the spectral window of Landsat TM, ETM+ and MODIS are around the similar ranges i.e.

10.4µm to 12.5µm in the case of Landsat and 10-15 m in the case of MODIS. These factors

make Landsat and MODIS images the best available resource for this study of UHI over

Indianapolis in space and over time. A total of two thousand nine hundred and twenty

two day and night images from MODIS between period 2003 - 2006 were used for the

analysis. Further care was taken that the amount of cloud cover was relatively limited in

all the images used.

Pre-classified raster images

Information extracted from remote sensing images in the form of pre-classified raster

datasets (NLCD and MODIS LST) was used along with the remote sensing images to

facilitate the temporal monitoring requirements of the proposed research. The rationale

for using these images are: (1) The images are currently available at no cost, (2) The time

frequency that is used for generating these image products satisfy the initial requirements

of this proposed project, (3) The 1991 and 2001 NLCD was useful for analyzing the

relation between the land cover and temperatures for the periods 1985, 1995 and 2000,

and (4) The daily day and night MODIS LST products was useful in studying the diurnal

and seasonal behavior of the UHI.

The U.S. Geological Survey (USGS), in cooperation with the U.S. Environmental

Protection Agency, have produced land cover dataset for the conterminous United States.

The NLCD is a component of the USGS Land Cover Characterization Program. The

NLCD contains 21 categories of land cover information and is currently distributed by

State as 30-meter resolution raster images in an Albers Equal-Area map projection (United

States Geological Survey, 2008).



The UHI effects are found in terms of surface temperature anomalies at both the

daytime and nighttime (Jin et al., 2005). Therefore the satellite-measured skin temperature

(Tskin) derived from long-wave bands that detect surface emissions will be highly useful

for UHI study. In this research, LST information will be derived from analysis of selected

bands collected from the MODIS satellite Terra sensor. The main rational for selecting the

MODIS imagery was its high temporal resolution. The MODIS LST team disseminates

the global daily day-time and night-time LST daily. The assumption was that, this data

will aid in understanding UHI on a spatial and temporal scale. MODIS is carried on the

NASA’s Terra satellite launched in May 2000 and later on the Aqua satellite. On Terra,

it measures the earth’s surface characteristics through seven solar and three thermal

spectral bands at 1030 LT and 2230 LT daily. The 36-band MODIS satellite scanner has

1km by 1km pixels at nadir for the thermal infrared bands. A daily LST map of both day

and night time temperatures are being developed and distributed. The present algorithm

is based on the work by Snyder et al. (1998). It employs the radiance and emissivity in

band-31 (10.8-11.3 µm) and band-32 (11.8-12.3 µm). The emissivity variation represents

approximately 70% of the globe-year land surface. The day/night LST algorithm is

generated from pair of daytime and nighttime L1B data using the seven thermal infrared

(TIR) bands, atmospheric temperature and water vapor (Wan 2006). The algorithm has

previously shown promising results in LST estimation (Dash et al., 2002).

Vector data

The vector datasets used in this study include road network layout (for determining the

influence of transportation and quantifying their contribution within the UHI effect),

zoning data (to study the impact of specific land use zones), state/county/district

boundaries and blocks/tracts/block group areas.



Census statistics

The 2000 United States census statistics of demographics as distributed by the U.S. Census

Bureau were used within this study. The rationale for using demographic data was to

study the influence of population density on the UHI effect.

3.3 Software

This research was carried out to demonstrate efficiency of models for the analysis of

UHI. At the time of research there was no software available which could execute all the

models. Therefore, multiple software were used to experiment different models. The

list of software which were used for running the selected models were ArcScene a GIS

software, R a statistical software, geospatial data acquisition library (GDAL) and Apriori

as developed by Christian Borgelt. The description of these software and their usages are

detailed within the Chapter Methods and Results.

3.4 Summary

To summarize, the city of Indianapolis was taken as a case for this research. The city is

located on a flat plain and is relatively symmetrical, having possibilities of expansion

in all directions. The population of the city has increased drastically over the past two

decades and this makes it a near perfect case to study the temporal change in the UHI

effect with respect to the change in the physical characteristics of the city. These factors,

along with several other characteristics, make the City of Indianapolis metro area an

appropriate choice for this research. Based on the availability, remote sensing images from

ASTER, Landsat and MODIS were used for analysis. The pre-classified raster images

include the daily, weekly and monthly data sets of MODIS LST and MODIS derived

NDVI data sets from 2003 to 2006. Vector information such as the road network and

zoning data has been used in tandem with census 2000 statistical information.



The forthcoming chapter describes the methodology that was adapted in this research.

Apart from describing the methods, the chapter also provides the information about the

rationale, underlying model, its parameters and the steps involved within execution.
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CHAPTER 4

METHODS

The methods section is divided into two sub-sections. The initial section will discuss the

methods that were implemented for generating the information from the base datasets.

The latter explains the models that were developed to extract knowledge from the

information.

4.1 Primary Information Generation

Information creation is the intermediate aspect of knowledge discovery. In this research,

varying information sources from the raw data have been developed with the intention

of studying their relative importance on the behavior of UHI in space and time. Some

of the variables which were extracted from the remotely sensed images are the LULC,

vegetation and surface temperature. The variables which were extracted from secondary

information sources were the population density grid and transportation buffer zones.

This research involves images of varying spatial and temporal resolution for modeling

and monitoring the UHI phenomenon. Therefore, to compare the results between these

images, base imagery becomes necessary. Within this research, ASTER 2000 image was

used as the base image for geometric correction. The rationale for selecting ASTER image

was its relatively higher spatial resolution in comparison with the rest of the images (e.g.,

Landsat 7) used in this study.

The procedures for the generation of the base information from the datasets are



described below:

Land use land cover (LULC)

The LULC data used within this study was developed from the ASTER 2000 image using

semi-automatic technique. I would like to thank Dr. Hua Liu who assisted us in ASTER

image acquisition and processing of land use and land cover classification. This data

set was created using unsupervised classification method (Iterative Self-Organizing Data

Analysis) and reclassification based on expert knowledge. Post classification smoothing

and image refinement were conducted to improve classification accuracy. (For further

information about the data set and its quality please refer to Liu and Weng (2008)).

Land surface temperature -ASTER

In this study, ASTER band 13 (10.25− 10.95µm) has been used to calculate the LST due

to the spectral width of this band being close to the peak radiation of the black-body

spectrum given off by urban surface within a study area (Lu and Weng, 2006). There

were two steps which were involved in the computation of LST. First, the conversion of

sensor derived spectral radiance to the at-sensor brightness temperature, i.e., considering

that the emitting source is a perfect black body. The second step is the conversion of the

black body temperature to spectral emissivity

The conversion formula for the first step as derived by Dash et al. (2002). The formula

used is as follows:

Tc =
C2

λcln
(

C1
λ5

c πLλ
+ 1
) (4.1)

Where Tc is the brightness temperature in Kelvin (K) from the central wavelength, Lλ

is the spectral radiance in Wm−3sr−1, λc is the sensor’s central wavelength, in this case the

central wavelength of the band 13 of the ASTER imagery, C1 is the first radiation constant

(3.74151 ∗ 10−16Wm−2sr−1µm−1), and C2 is the second radiation constant (0.0143879mK)



The resulting black body temperature imagery, Tc, has been corrected for the spectral

emissivity (ε). This was done using the LULC classification derived from ASTER data

(using optical and thermal bands). The LULC categories were then assigned an emissivity

value according to the scheme provide by Snyder et al. (1998).

The emissivity corrected LST has been computed using the following equation (Lu

and Weng, 2006):

LST =
Tc

1 +
(

λ∗Tc
ρ

)
lnε

(4.2)

Where λ is the wavelength of the emitted radiance (for which the peak response and

the average of the limiting wavelengths was used), ρ = h ∗ c/σ where, σ = Boltzmann

constant (1.38 ∗ 10−23 JK−1), h = Planck’s constant (6.626 ∗ 10−34 J.s) and c = velocity of

light (2.998 ∗ 108ms−1), which equals to 1.438 ∗ 10−2mK.

Geometric correction - Landsat

The geometric corrections of all the Landsat images (Landsat 5 and Landsat 7) were done

based on image to image geo-rectification. Since, the available Landsat images were of

correction level ‘systematic’. A geometrically corrected ASTER image of 15m resolution

has been used as a base image for the correction of individual time series images. Sample

points have been selected based on the user knowledge and from earlier field survey data.

The thermal infrared bands (TIR) within Landsat 5 and Landsat 7 have been resampled

to a constant resolution, i.e., to the spatial resolution of TIR band of Landsat 5 (120 m).

LST generation and radiometric normalization - Landsat

There were several different radiometric correction methods available. Choosing the right

method for this study was based on the available data and the task at hand. There are

several methods for absolute radiometric calibrations and relative radiometric calibrations.

The context of this study was to analyze the UHI effect for the same region from time



series images and to compare the results obtained. To acheive consistent images, relative

radiometric calibration using absolute normalization has been performed. The selection

of sample points, i.e., pseudo invariant features (PIF) in all the images is an important

task in the relative radiometric calibration process. Multivariate-alteration detection

(MAD) (Schroeder et al., 2006), post-correction evaluation index (Quadratic Difference

Index) (Paolini et al., 2006) and statistical selection of features using principle component

analysis (Du et al., 2002) were some of the few from the vast selection of methods available.

Some of them depended on field data and some purely depended on statistical models.

In this study, based on field data and knowledge of the area under study, a semi-statistical

approach (Haute, 1988) using temporally invariant features (TIC (Chen et al., 2005)) has

been implemented.

The initial normalization of the five imageries has been accomplished by converting

the digital numbers (DN) to exoatmospheric radiance or black body temperature (Weng

and Lu, 2008). The DN values of the Landsat 5 and Landsat 7 TIR band have been

converted to spectral radiance using Equation 4.3 adopted from Markham and Barker

(1985) and equation 4.4 adopted from Landsat user handbook.

Lλ = 0.0056322 ∗ DN + 0.1238 (4.3)

Lλ = 0.0370588 ∗ DN + 3.2 (4.4)

The spectral radiance of the TIR bands were then converted into blackbody tempera-

ture using equation 4.5 (Wukelic et al., 1989)

TB =
K2

ln
(

K1
Lλ

+ 1
) (4.5)

where TB is the effective at-satellite temperature in Kelvin (K), Lλ the spectral radiance

in Wm−2sr−1µm−1; and K1 and K2 are the pre-launch calibration constants. For Landsat-



5 TM images, K1 = 60.776 mWcm−2sr−1µm, K2 = 1260.56K and for Landsat-7 ETM+

images K1 = 1282.71 mWcm−2sr−1µm, K2 = 666.09K

After the conversion of the images to black body temperatures, time-invariant features

(TIFs) between images have been selected for normalization. Within this study, selection

of TIFs has been based on previous field survey, available building history and visual

examination of the true color and pseudo true color images over time. A single image

has been selected as ‘master’ and the rest have been considered as ‘dependent’ or ‘slave

images’. The final process then involved the extraction of the brightness component

(temperature values at TIF locations) from the ‘master’ and ‘slave images’. A simple

linear regression model has been developed from the scatter plot of the slave and master

image values for the same locations and this formula has been then used to convert the

‘slave’ image to match the ‘master’.

Scaled normalized difference vegetation index (SNDVI)

The SNDVI in this study has been calculated from the ASTER images using equation 4.6.

The resulting image has been scale transformed from scale -1 - 1 to 0 - 2. The assumption

was that by doing so it would help in increasing the efficiency of the processing. The

resulting image has been converted into categorical data of 10 classes using the algorithm

that best suited the model. This selection of the algorithm was based on sensitivity

analysis conducted over sample datasets.

NDVI =
NIR− R
NIR + R

(4.6)

Where, NIR and R refer to very near infrared bands VNIR-Band3N (B3) and VNIR-

Band2 (B2) respectively (within the ASTER image data set).



Population density dataset

The reason for inclusion of population data was to study the relation between population

density and LST. Population is one of the major factors that indicate urban sprawl.

Population is one of the reasons why UHI effect is proved to be more prominent in the

developed cities. The map of population zones along with block identifiers (by Indiana

Geological Survey) and population (2000 population census) were used in this study.

There were three levels of population data representing block, block group and tract level

data. Block group level population statistics (658 blocks within the Marion County/the

city proper of Indianapolis) have been selected for this study, since they were a more

detailed representation as compared to the other two. The assumption was that more

variation at a pixel level would improve the strength of relationships between the variables

of interest. The population map was converted into population density raster dataset

by dividing population by map area, i.e., block group population data divided by the

area of the specific block group. The resultant density raster has been further classified

into interval dataset. This selection has been based on the sensitivity analysis (similar to

the creation of SNDVI). Care has been taken that a constant model was used for all such

cases to reduce the variability within data generation.

4.2 UHI Analysis Models and Methods

In this research, three different models were used to study UHI. These were, an ex-

ploratory model (for realizing the existence of UHI within a region), micro model and

macro model (for quantifying the effect of UHI).

Exploratory data analysis

Exploratory data analysis (EDA) can be described as data-driven hypothesis generation

where an examination of the data is performed in search of structures that may indicate



deeper relationships between cases or variables using principles from cartography and/or

statistics (in this case cartography) (Klosgen and M.Zytkow, 2002). EDA contrasts

with hypothesis testing, which begins with a proposed model or a hypothesis and

undertakes statistical manipulations to determine the likelihood that the data arose from

such a model (Hand et al., 2001). Cartography as a discipline has a significant stake

in the evolving role of maps within systems for scientific visualization, within spatial

decision support systems, within hypermedia information access systems, and within

virtual reality environments. Further, ‘spatial analysis’ and ‘spatial simulation’ could be

considered prototypical components of scientific visualization (MacEachren and Kraak,

1997).

Visual representation of data and concepts are also indispensable materials in the

construction of scientific knowledge. Moreover, quantitative data about the environment,

once in short supply, now exceeds our capacity to learn from them. In this research, 3D

visualization through animation has been used as a method for exploratory analysis of the

UHI phenomenon. Figure 6 illustrates the process diagram of the data analysis. Although

cartographers have been interested in the potential of the animated maps for decades,

compared to static maps, animated maps have always been difficult to make, distribute

and access. The computer revolution has given cartographers the means to more easily

create animated maps and map users a way to view animated maps (Harrower, 2004).

Association rule mining using spatial datasets

In this research, the technique of association rule mining has been specially utilized to

study and understand the quantitative relationship between LULC patterns and other

environmental, physical and demographic data at a micro level. Even though the very

nature of urban LULC is dependent upon various influencing factors, the nature of

dependence between LULC and LST has proved to be strong. Therefore, the main

rationale of this research was to model, analyze and quantify this relationship. An



Figure 6. Model describing the steps involved in the exploratory data analysis

association rule is a relationship of the form X ≥ Y, where X and Y are sets of items. X

is called antecedent and Y the consequence. There are two primary measures, support

and confidence, used in assessing the quality of the rules. The goal of association rule

mining is to find all the rules with support and confidence exceeding user specified

thresholds (Ding et al., 2003).

The brief explanation of the terms support and confidence are as follows (modified

from Borgelt and Kruse (2002)):

Let T be the set of all transactions under consideration, i.e., let T be the set of all the

attributes (in this research LULC, population density, LST, NDVI, zoning and distance

to the major roads) which were recorded on an image υ. Let LC be a subset of a certain

type which contains a particular set of attributes. Then the support of type LC is the

percentage of pixels in T which cover similar attributes. For example, LC is a subset

which has the attributes: LULC = urban, temperature = 20◦C and distance = 400m from

the road network. Then if ε is the set of all pixels within the image T which contains all

the attributes of LC, then



support (LC) = (|ε| / |T|) ∗ 100% (4.7)

where |ε| and |T| are the number of pixels in ε and T, respectively.

The confidence of an association rule is the measure used to evaluate association rules.

The confidence of a rule R = A and B ⇒ C is the support of the set of all items that

appear in the rule divided by the support of the antecedent of the rule, i.e.

con f idence (R) = (support ({A, B, C}) / support ({A, B})) ∗ 100% (4.8)

The confidence of a rule is the number of cases in which the rule is correct relative to

the number of cases in which it is applicable. For example, let R = urban land cover and

distance from highway 400m belongs to 20◦C temperature. It means that, for a given pixel, if

LULC is urban and if its location is around 0− 400m from the major highways, then the

temperature value recorded for such region is 20◦C. It also means that for a given pixel,

if LULC is not urban, the location is not around 0− 400m or neither, then the rule is not

applicable, and does not say anything about the resulting temperature values. If the rule

is applicable, it means that the resulting temperature can be expected to be 20◦C. At the

same time, if the rule is found to be applicable, but the temperature is not as expected,

then the rule may not be correct. The interest is in how good the rule is, i.e., how often its

prediction for a given attribute type turns out a constant temperature. The rule confidence

measures the percentage of cases in which the rule is correct. It computes the percentage

relative to the number of cases in which the antecedent holds, since these are the cases in

which the rule makes a prediction that can be true or false. If the antecedent does not

hold, then the rule does not make a prediction, so these cases are excluded.

According to the support–confidence framework (Zhang and Zhang, 2002), and rules

of association by Silverstein et al. (1997), support of a rule can be enumerated as follows:

1. X ∩Y = ∅,



2. p (X ∪Y) ≥ minsupp,

3. p (Y|X) ≥ mincon f (e.g., con f (X → Y) ≥ mincon f ), and

4.
∣∣∣ p(X∪Y)

p(X)p(Y) − 1
∣∣∣

The valid association rule X → Y can be extracted to a valid rule of interest. The above

set of rules describe the method of extracting association rules, further conditions could

be added to generate positive association rules within which the confidence of the rules

are higher and negative association rules within which the confidence of the rules are

lower. An initial scenario was able to to find the positive relationship between objects (e.g.,

if LULC type A is present, then the temperature should be within range ’X’). The latter

helped find the negative relationship between objects (e.g., if LULC type A is present

then the temperature will most likely not be within range ’X’). This research was aimed

at extracting the parameters which have impact on LST with the main concentration has

been towards extracting positive association rules.

Figure 7 illustrates the process model of micro-anlayis that has been undertaken by

this research.

Descriptive analysis of UHI

The macro-analysis includes two main components. The first is the characterization of

the UHI from the infrared images and the second is the comparison of the characterized

urban heat effect with LULC. In this research, MODIS LST images have been used for

the time series analysis due to their relatively high temporal resolution (daily day and

night images) and Landsat 5 and Landsat 7 derived LST has been used for the analysis

of the relationship with LULC due to its relatively high spatial resolution and also its

availability over long time periods. Due to the large number of images that have been

used for this analysis a non-parametric process convolution(kernel convolution) model

has been used to characterize UHI from LST images.



Figure 7. Model describing the steps involved in the micro-analysis

There are several methods that are available to characterize the phenomenon over

the space. For example, filters, splines, surface interpolations, non-linear least square.

These well documented methods are readily available within many of the conventional

spatial analysis software. Two of the main drawbacks with these parametric approaches

are: 1) they are user dependent, and 2) they are image dependent. The above methods

are user dependent because they need users to provide them with initial parameters and

these mostly change over time and over space. The methods were also image dependent

because as the size of the image changes or as the distribution of no-data values within

the image change they tend to either fail or provide inconsistent results. In this research,

several MODIS images with varying degrees of cloud cover were analyzed using a non-

parametric process convolution approach. This approach is less user dependent. It also

provides the least variation in image characteristics.

Kernel smoothing refers to a general class of techniques for non-parametric estimation



of functions. The kernel is a smooth positive function w(z, h) which peaks at 0 and

decreases monotonically as z increases in size. The smoothing parameter h controls the

width of the kernel function, hence, the degree of smoothing applied to the data.

As the smoothing parameter increases, the resulting estimate misses some details and

as the smoothing parameter decreases, the estimator begins to track the data too closely

interpolating the observed points (Bowman and Azzalini, 1997).

One can define a Kernel as a function k that for all x, z ∈ X satisfies (Taylor and

Cristianini, 2004)

k (x, z) = 〈Œ (x) , Œ (z)〉 , (4.9)

where φ is a mapping from X to an (inner product) feature space F

Œ : x −→ Œ (x) ∈ F (4.10)

The degree of smoothing to be performed by the kernel is defined by its bandwidth, h.

The value of h increases as the degree of smoothing increases and vice versa. When the

value of h starts to decrease beyond a certain threshold, the degree of smoothing starts to

over fit the data points leading to interpolation between the values. Similarly, when h

starts to increase beyond a certain threshold it tends to over-fit the data, leading towards

a straight line. Therefore, the selection of a suitable bandwidth is very important for

capturing patterns. In this research the bandwidth has been selected through sensitivity

analysis of the parameter h on Landsat and MODIS images.

The process defined by the kernels have been convoluted to yield a single image in

time. The convolution of f and g could be written as f ∗ g. It is defined as the integral of

the product of the two functions after one is reversed and shifted.

(f ∗ g) (t) =
∫

f (ø) g (t− ø) dt (4.11)



If X and Y are two independent variables with probability densities f and g, then

the probability density of the sum X + Y is given by the convolution f ∗ g. For discrete

functions, one can use a discrete version of the convolution. It is given by equation 4.12.

(f ∗ g) (m) = ∑
n

f (n) g (m− n) (4.12)

Discrete kernel estimation of ψ(a,b) requires O(n2) kernel evaluations making the

computation very expensive for large sample sizes, especially remote sensing images. In

order to reduce the cost of computation IFourier transform methods have been used to

compute the required convolution. The discrete Fourier transform of a complex vector

z = (z0, . . . , zn−1) is the vector of Z = (Z0, . . . , ZN−1) where,

Zj =
N−1

∑
l=0

zle2ßilj/N, j = 0, . . . , N− 1 (4.13)

The vector z can be recovered from its Fourier transform, Z, by applying the inverse

discrete Fourier transform formula.

zl = N−1
N−1

∑
l=0

zle2ßilj/N, l = 0, . . . , N− 1 (4.14)

Discrete Fourier transforms and their inverses can be computed in O(NlogN) operations

using the fast Fourier transform(FFT) algorithm. The algorithm is fastest when N is highly

composite such as a power of 2. The discrete convolution of two vectors can be computed

quickly using the FFT by appealing to the discrete convolution theorem: multiply the

Fourier transforms of two vectors element-by-element and then invert the result to obtain

the convolution vector.

The above processes have resulted in a series of UHI images in space over time. In order

to analyze these images with respect to LULC in space and UHIs in time Kullback Leibler

divergence (Kullback and Leibler, 1951) has been used. In the work presenteed here,



Figure 8. The schema for mining series of images, from observation, through modeling

and analysis towards prediction

measures of divergence between MODIS time series images were calculated to analyze

seasonal behavior and annual variation of UHI. Figure 8 illustrates the flowchart of the

descriptive analysis from image correction through modeling, analysis to information

extraction.

The model also includes a series of analyses involving visualization techniques such

as animation and overlays to effectively understand the end results.

4.3 Summary

This chapter described in detail the data used, their preprocessing and the methodologies

that were adapted for the analysis of UHI. The primary information generation from the



data sets included land use land cover information from image dataset, generation of

land surface temperature from the image spectral information, radiometric normalization,

scaled normalization of associated information and geometric correction of spatial dataset.

Three models for UHI visualization, identification and extraction were later described

in detail. These models included exploratory data analysis, association rule mining of

spatial dataset and descriptive analysis of the UHI phenomenon using non-parametric

kernel convolution. The rationale and process involved within each models were ex-

plained using analogies, process diagrams, mathematical derivation and examples where

necessary.

The next chapter describes in detail the results obtained from each of these models

and their interpretation. This chapter also provides the discussions of the results with

respect to the real world scenario where necessary to enable broader impact of the study

and its possible applications.
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CHAPTER 5

RESULTS

This chapter explains the results obtained from the models detailed in chapter 4. This

chapter is divided into three sections based on the type of model used and their respective

results. Section 5.1 outlines the results obtained through visualization. Subsections within

this section shed light on the result of analysis over different land use land cover types

namely; residential, commercial, roads, open areas and water bodies. Section 5.2 presents

results of association rule mining model. Within this section the results are broadly

classified into three subsections. The first subsection describes the data used, while the

second and third subsections describe results of the classification schema and the mining

algorithm. This section also highlights the effect of image resolution on association mining

results. Section 5.3 describes results obtained from the implementation of non-parametric

kernel convolution model over MODIS time series images. The section is divided into

three subsections describing the results from analysis of land surface temperature, urban

heat island (UHI) and the effect of UHI in space and over time.

5.1 Visualization of UHI

3D modeling was used for visualization of thermal data with land cover data. ArcMap 9.1,

a product of ESRI (Environmental Systems Research Institute), was used for visualization

of results. In this research, experiments using Bertin’s visual variables such as position,

color (including transparency), shape and size (through 2.5D abstractions, since there was



no volume involved but will be referred to as 3D within this research) were carried out to

visualize and analyze the urban heat island effect.

In the resultant abstract model, computed land surface temperature was used as

base heights for an aerial photograph image drape. In other words, objects were given

heights not with respect to their actual elevation from the ground, but by the relative heat

radiated by them. Even though visually one would not be able to quantify the amount

of heat, one would be able to identify the relative difference in the surrounding land

cover types thereby facilitating a qualitative comparison. In this study, five land use types

namely Residential, Commercial, Water Bodies, Open lands and Roads were analyzed for

anomalies visually.

For a scientist, the desired outcome of visual thinking is scientific insight i.e., noticing

meaningful patterns or anomalies in data (DiBias et al., 1992). In this case, to analyze the

heat in and around downtown Indianapolis, cut and fill operations were performed to

various segments of the image subset and also to the subset as a whole. This analysis

is similar to hydrological modeling, where, given a city’s digital elevation model (DEM)

and varying flood height, the submergence level is simulated. In this research, instead of

using the DEM an abstract “terrain model” of temperature was used for analysis. Varying

degree of heat levels were used for the simulation and the relative temperature differences

for varying land cover types were analyzed. The amount of variation in heat radition by

objects relates to the presence/absence of heat islands.

In order to communicate the information to viewers a fly-by/ animation was created.

A fly-by is a sequence of views of a static surface or volume in which the view point

of the camera used for animation changes gradually. A track, including land use types

(which were analyzed during the visual thinking stage), was outlined and the camera

was maneuvered along this track thereby giving viewers a picture of the entire scene. The

scene provides the viewers with the visual information on influence of land cover types

and human activities in the formation of UHI. Due to the amount of memory (computer



processor) that was consumed for the process, certain compromises had to be made in

order to execute the model. After experimentation with the entire city of Indianapolis

(Marion County), Indiana, the time required for the software to refresh the screen in order

to run the animation and to display the image was too high. Therefore, the option of a

subset was chosen, where only a selected portion of the city encompassing downtown

and the neighboring areas to the west and east of the White River were selected and used

for the animation. Care was also taken that the selected subset comprised of all the five

land cover types under study, in order to make an effective analysis and comparison.

Furthermore, resolution of the aerial imagery was too high. Even with advancement in

terms of computing technology (Intel Pentium IV processor with 3.00 Ghz of processing

and 1 gigabyte of random access memory (RAM)) display of the subset in actual scale

was not possible. In order to overcome this problem the resolution of the aerial image

was scaled down to 1/3 of its original resolution for the animation and analysis. This

drastically reduced the quality of the presentation, but nevertheless buildings and other

objects were not difficult to identify. Even though the reduction in resolution proved to be

a compromise in the quality of the 3D model, it increased overall efficiency of the process.

One important aspect which has to be taken into consideration is that this research

addresses the relative temperature difference at the urban centre alone. Theoretically, the

mean, the minimum and the maximum temperature under discussion are relatively higher

than the mean, minimum and maximum temperature of the rural setting surrounding

the city of Indianapolis for the same day.

In spite of the well known phenomenon i.e., urban temperatures are relatively higher

than rural temperatures, this study attempted to shed more light on the UHI effect at the

macro and micro level. Overall urban temperature is a combined effect caused due to

the presence of vegetation (Weng, 2001), by the characteristics of the impervious material

(Quattrochi and Ridd, 1994) and their spatial distribution. All these aspects are clearly

identified through the 3D visualization and the cut and fill operation. The results obtained



by various land cover types such as residential, commercial, water bodies, open lands

and roads are discussed below. The maximum, minimum and mean temperatures for the

given subset were 283, 306 and 293 degree Kelvin respectively. Even though calculations

were made on the basis of actual recorded values in reality these values change altogether

on a day to day basis depending upon cloud cover and season. In order to overcome this,

relative temperature measurements (with respect to the minimum, maximum and mean

temperatures for each classes) were used for analysis.

Residential

Residential areas within this study were classified by the presence of low-rise buildings,

which are well spaced and have not so dense vegetation around them. Since heat within

most of the areas is also influenced by neighboring regions, two separate residential

areas were selected for analysis. One along the eastern side, near Interstate-70 and

another at the southeastern side of Indianapolis. Figure 9 and 10 depict residential areas

around downtown Indianapolis. From these two images and the result of the simulation

as illustrated in the Figures 9 (b) & (c) and 10 (b), (c) & (d) it was found that around

50% of the residential areas were within the mean temperature range. But in some

areas maximun heat was a degree Celsius more than the mean level. These areas are of

commercial buildings among the residential areas (refer Figures 9 and 10). It was also

noted that, at a macro level, irrespective of their high vegtation index, residential areas

which were closer to commercial buildings and open impervious parking spaces tend to

be influenced by the surrounding higher temperatures.

Commercial

Commercial areas within downtown Indianapolis are completely different from many

other commercial establishments found within the city mainly due to the structure

and type of buildings. The commercial class within this study also includes industrial



Figure 9. Figure (a) represents the aerial view of the residential area along eastern side of

Indianapolis close to Interstate–70. The arrow within the figure (a) at the right bottom

corner of the image shows the position of the camera from which the perspectives (b) and

(c) were captured. The figure (b) and (c) are the results of the simulation of heat level 19

and 21 C respectively. The yellow color depicts the varying levels of submergence for the

varying heat thresholds.



Figure 10. Figure (a) represents the aerial view of the residential area along eastern side

of Indianapolis close to Interstate–65. The arrow within the figure (a) at the bottom of the

image shows the position of the camera from which the perspectives (b), (c) and (d) were

captured. The figure (b), (c) and (d) are the results of the simulation of heat level 19, 21

and 23 C respectively. The yellow color depicts the varying levels of submergence for the

varying heat thresholds



structures. The overall heat level around downtown was 2◦C above the mean except

for the RCA dome at central Indianapolis. Due to the type of material, its color and

its structure, the dome has a radiant heat of 15◦C which was 5◦C less than the average

temperature. Furthermore, all sky scrapers around central Indianapolis were also found

to be cooler. The average temperatures recorded around these buildings were found to be

very near the global mean temperature. This is visualized in Figure 11 (c). The reason for

this anomaly was attributed to the roof type of these high-rise buildings (mostly slanting)

and also the fact that most of the buildings are relatively tall; therefore, the shadow cast by

these buildings prevents the heat from directly reaching the ground. These reductions in

the incident energy contribute mainly to the above effect. The RCA dome was also found

to radiate the least heat among the downtown commercial structures. The buildings

which were found to radiate the most heat, in downtown were commercial buildings

adjacent to the RCA dome (including the Circle center mall) and the Chevrolet motor

division on the west side of downtown and the White River. Apart from these regions,

there were several other commercial buildings and open parking areas which were found

to radiate relatively high heat. This aspect can be be seen in Figure 12 (b), (c) & (d).

From the above analysis it appears that the relative heat around commercial buildings

was 5− 7◦C higher than the global mean. Based on detailed analysis of the aerial image,

it could be inferred that roof type negatively affects the heat radiation budget of buildings,

whereas other aspects such as the location of air conditioning elements on roof tops

positively affects the radiation. Nevertheless, further detailed study along with field work

is required to analyze the exact reasons and influencing factors for high heat over these

selected regions which contribute to a great extent towards the overall cahrecter of UHI.

Apart from the study of UHI, the strong temperature difference observed between

residential and commercial areas could be used for land use classification. Further

analysis on the thermal behavior of buildings in combination with a DEM could lead to

the development of a robust land use classification technique, based on heat differential.



Figure 11. Figure (a) represents the aerial view of the commercial area in the downtown

Indianapolis. The arrow within the figure (a) at the bottom of the image shows the

position of the camera from which the perspectives (b), (c) and (d) were captured. The

figure (b), (c) and (d) are the results of the simulation of heat level 21, 23 and 25 C

respectively. The yellow color depicts the varying levels of submergence for the varying

heat thresholds



Figure 12. Figure (a) represents the aerial view of the entire subset of the imagery

(Indianapolis downtown). The figure (b), (c) and (d) are the results of the simulation

of heat thresholds at 21, 23 and 25 C respectively. The yellow color depicts the varying

levels of submergence for the varying heat thresholds. It can be observed that the level of

submergence is minimal at 294◦K and occupies both commercial and a few residential

areas. One can visualize from the simulation (b) that with an increase of 2◦C almost all

the residential, water bodies and road networks are covered and only the commercial

establishments are left out. With a further increase of 2◦C simulation (c) we can see only

the roof tops of most of the commercial buildings



Roads

Within this research, two road sections near downtown Indianapolis were analyzed. One

section was from interstate-70 and the other was from interstate-65. Figure 13 (a), (b), (c)

and (d) illustrate the road sections and the result of the simulations. The main reasons for

selecting interstates rather than streets were, first they were broad enough to be captured

by the ASTER TIR bands. Second, the probability of shadows from adjacent buildings

and trees would be almost negligible. There were a few major roads which were initially

analyzed but most of their sections were influenced by the heat of adjoining buildings

and it was difficult to differentiate the influence due to mixed pixel effect.

From the simulations of the major interstate sections within the city of Indianapolis,it

appears that the radiation of heat from highways is almost equivalent to that of the overall

mean heat level. It was also found that interstate-65 was 2◦C hotter than interstate-70.

The major reason for this could be difference in the construction materials used for the

sections analyzed (i.e., difference in radiation of heat between asphalt and reinforced

cement concrete). Further investigation and field work needs to be done to analyze this

discrepancy of radiation between these two interstate sections.

Open areas and water

Figure 14 and 15 qualitatively depict the heat radiation from the water bodies and open

areas respectively. From the analysis it was concluded that water bodies radiated the

least amount of heat with an average of 13◦C over the sections of White river. This is

10◦C less than the effect observed in central Indianapolis. Open areas on the other hand

were about the same as residential areas with a mean of 21◦C. On a detailed analysis it

became claer that structures near water bodies also show less heat and areas with green

vegetation radiate less heat. The amount of variation from normal temperatures is not a

constant factor, and a detailed analysis of each and every type of land cover and their



Figure 13. Figure (a) and (c) represents the perspective views of the interstate-70 and 65

respectively before the simulation. Figure (b) and (d) represents the section at a heat level

of 292◦K and 294◦K respectively



Figure 14. A 3D scene of the river front area along the White River on the southern side

of Indianapolis. From the image one can visualize the difference in the heat radiated by

the water bodies and the adjacent land covers such as buildings and vegetations.

association with their surrounding structures, needs to be analyzed in detail.

5.2 Association Rule Mining

Association rule mining over spatial dataset is a complex process riddled with uncertainty.

This is mainly due to non uniform representation of information at both spatial and

temporal scales. Furthermore, the complexity involved in linking raster datasets, which

exhibit uniformity of representation over an area, with vector datasets, which exhibit the

flexibility of representing objects of varying spatial scales, poses a challenge. In this re-

search, land surface temperature (LST) is derived from three different sensors namely, the

Enhanced thematic mapper (ETM+), the Moderate Resolution Imaging Spectroradiometer

(MODIS) and the Advanced Spaceborne Thermal Emission and Reflection Radiometer

(ASTER).Date from these sensors were used to test association rule mining model and to

analyze the effectiveness of this algorithm in understanding the relationship of UHI and

land use and land cover (LULC).



Figure 15. Figure (a) represents the aerial view of an open area on the south eastern

side of Indianapolis close to industrial area. The figure (b) and (c) are the results of the

simulation of heat level 19 and 21 C respectively. The yellow color depicts the varying

levels of submergence for the varying heat thresholds



Data used

The data used within this experiment can be broadly classified into two different categories

namely a) image or raster data set and b) vector data set. The image/ raster dataset used

for the study are as:

1. LST derived from ASTER at 30m resolution re-sampled to 15m, dated 05th April,

2004.

2. NDVI derived from ASTER at 15m resolution, dated 05th April, 2004.

3. LST derived from Landsat ETM+ at 60m resolution, resampled to 15m resolution

dated 12th April, 2003.

4. NDVI derived from Landsat ETM+ at 15m resolution, dated 12th April, 2003.

5. LST derived from MODIS at 1 km resolution, dated 20th June, 2004

6. NDVI derived from MODIS 1 km resolution, dated 25th June, 2004

7. National Land Cover Database (NLCD) at 16m resolution, developed and distributed

by United States Geological Survey, dated 2001

During designing of the experiment and before the collection of necessary datasets,

the rationale was to standardize temporal characteristics of the datasets to compare the

effect of spatial and spectral resolution on the characteristics of UHI. Unfortunately,

non-availability of information of uniform temporal characteristics led to variations in

the datasets. Nevertheless, in order to successfully compare the results from image

products, due consideration was taken to ensure that all images are from summer months

with minimal cloud cover. In this study, cloud cover of less than 10% was considered

acceptable.

Irrespective of efforts taken to standardize the temporal dimension of the datasets,

there were minor deviations in achieving this. The reasons for such deviation include a)



non-availability of cloud free images over the study area and b) irregularity or problems

with the sensor and image characteristics during the selected time period. The data

used within this experiment had variations in both spatial and temporal resolution of the

images used for this study. Therefore, normalization through classification was executed

over these dataset to minimize the effect of problems within the satellite images (e.g.

haze).

To complement the image data sets, vector datasets representing anthropogenic

characteristics of land use and land cover, such as zoning and demographics, were used

for analysis. The demographic information used for analysis included population density,

average households, average family size, percentage of houses or buildings that are

vacant within that area and the median age of the people living there. This information

was collected from the 2001 census and was assembled at the block group level. The

rationale for using demographic indicators was to analyze if there is a relationship

between demographics and urban land surface temperature.

Results of classification and normalization

LST as derived from three sensors represents the temperatures as rational values. In order

to successfully execute association mining, the rational data was converted into interval

data types. There are several classification algorithms which facilitate the conversion

of rational data types to interval data types. The most common of these classification

algorithms include natural breaks, equal intervals, quantiles and standard deviation. Each

of these algorithms has their set of advantages and disadvantages. Since, in this study,

one of the main rationales was to develop an algorithm to perform association rule mining

with minimal human intervention and to arrive at a method that could be replicated

irrespective of the spatial and temporal characteristics of the dataset, a sensitivity analysis

of the above algorithms was carried out. The results from the sensitivity analysis are

presented in the Figure 16.



Figure 16. Result from the sensitivity analysis of four classification algoirthms



From the results of the sensitivity analysis, it is evident that, distinct categorization

of LST over study area is possible through the quantile classification, whereas outliers

or small scale anomalies, which are inclusive of variations, are evident using the equal

interval classification. The remaining two classification techniques namely the natural

breaks and standard deviation, were not as useful as equal interval and quantile.

Based on the sensitivity analysis, in this research, the classification algorithms that

provided the two extreme representations of LST were considered for analysis. Further-

more, equal interval classification usually classifies the variation of temperature values by

equally distributing them, starting from minimum or 0◦C (whichever is lower) to maxi-

mum (within-image) degree C. On the other hand, quantile classification incorporates

the variation from minimum temperature to maximum temperature. The latter therefore

provides a relatively better classification of LST images in space and over time for a fixed

geographic location, while the equal interval classification may be of use while comparing

the temperature anomalies across varying geographic locations. For example, comparing

two cities.

LST and NDVI information derived from three sensors was classified separately using

both the equal interval and quantile algorithms. The numbers of classes were limited to

10 to avoid over fitting and under fitting of the results. The equal interval and quantile

classification schema for ASTER, Landsat ETM+ and MODIS are presented in Tables 3

through 5.

The NLCD 2000 and Land Zoning Map were used without any modification. The

classes which were evident within the study area, their abbreviations and their brief

descriptions are presented in Tables 6 and 7.

The demographic information, which was represented spatially at the block group

level, was normalized to a scale of 1 to 10. The number of classes was selected to

match the raster data classification. The normalization method was used for achiev-

ing maximum-minimum normalization, as mentioned in the chapter on methodology,



Table 3

Equal interval and quantile classification schema for NDVI and LST derived from ASTER

NDVI Temperature
Equal Interval Quantile Equal Interval Quantile

Class From To From To Class From To From To
1 -0.55 -0.43 -0.55 -0.43 1 0.00 4.15 0.00 14.10
2 -0.43 -0.31 -0.43 -0.31 2 4.15 8.31 14.10 15.56
3 -0.31 -0.18 -0.31 -0.18 3 8.31 12.47 15.56 16.40
4 -0.18 -0.06 -0.18 -0.06 4 12.47 16.62 16.40 17.07
5 -0.06 0.06 -0.06 0.06 5 16.62 20.78 17.07 17.66
6 0.06 0.18 0.06 0.18 6 20.78 24.94 17.66 18.28
7 0.18 0.30 0.18 0.30 7 24.94 29.09 18.28 18.98
8 0.30 0.42 0.30 0.42 8 29.09 33.25 18.98 19.84
9 0.42 0.54 0.42 0.54 9 33.25 37.41 19.84 21.14

10 0.54 0.67 0.54 0.67 10 37.41 41.56 21.14 41.56

Table 4

Equal interval and quantile classification schema for NDVI and LST derived from Landsat

NDVI Temperature
Equal Interval Quantile Equal Interval Quantile

Class From To From To Class From To From To
1 -1.00 -0.80 -1.00 -0.09 1 0.30 3.05 0.30 14.93
2 -0.80 -0.60 -0.09 -0.06 2 3.05 5.80 14.93 15.23
3 -0.60 -0.40 -0.06 -0.04 3 5.80 8.55 15.23 15.53
4 -0.40 -0.20 -0.04 -0.02 4 8.55 11.30 15.53 15.83
5 -0.20 0.00 -0.02 0.00 5 11.30 14.05 15.83 16.13
6 0.00 0.20 0.00 0.01 6 14.05 16.80 16.13 16.43
7 0.20 0.40 0.01 0.03 7 16.80 19.55 16.43 16.73
8 0.40 0.60 0.03 0.07 8 19.55 22.30 16.73 17.32
9 0.60 0.80 0.07 0.11 9 22.30 25.05 17.32 17.91

10 0.80 1.00 0.11 1.00 10 25.05 27.80 17.91 27.80



Table 5

Equal interval and quantile classification schema for NDVI and LST derived from MODIS

NDVI Temperature
Equal Interval Quantile Equal Interval Quantile

Class From To From To Class From To From To
1 -0.64 -0.49 -0.64 0.07 1 0.00 3.67 0.00 24.79
2 -0.49 -0.34 0.07 0.22 2 3.67 7.35 24.79 25.22
3 -0.34 -0.19 0.22 0.31 3 7.35 11.03 25.22 25.77
4 -0.19 -0.04 0.31 0.40 4 11.03 14.71 25.77 26.42
5 -0.04 0.11 0.40 0.47 5 14.71 18.39 26.42 27.38
6 0.11 0.26 0.47 0.53 6 18.39 22.07 27.38 28.44
7 0.26 0.41 0.53 0.59 7 22.07 25.75 28.44 29.45
8 0.41 0.56 0.59 0.64 8 25.75 29.43 29.45 30.35
9 0.56 0.71 0.64 0.69 9 29.43 33.11 30.35 31.61
10 0.71 0.86 0.69 0.86 10 33.11 36.79 31.61 36.79

with a modification to scale data between values of 1 to 10. The revised equation for

normalization is presented in Equation 5.1

Normalization =
Di −Min(D)

Max(D)−Min(D)
∗ (Max(R)−Min(R)) + Min(R) (5.1)

Where ‘D’ is the demographic variable for which the values range from i = 1, 2,...,N.

‘R’ is the range within which the normalized values of ‘D’ have to be scaled. here, the

range of normalized values were bounded between 1 and 10. Therefore, Max(R) = 10 and

Min(R) = 1. The classification schema of the demographic indicators are presented in

Tables 8 to 12.

The vector and raster data were integrated. Association rule mining algorithm ‘apriori’

as initially developed by (Borgelt and Kruse, 2002) was chosen for mining the association

within LST and other LULC indicators. A minimum support of 10 and confidence ranging

from 0 to 100 were selected as the initiation parameters. Minimum confidence of 0 was

chosen to identify negative association rules.



Table 6

Land cover as mapped over study area their abbreviation and detailed description (NLCD,

2000)

Abb LULC Class Description
BR Barren Land Barren areas of bedrock, desert pavement, scarps,

talus, slides, volcanic material, glacial debris, sand
dunes, strip mines, gravel pits and other accumula-
tions of earthen material

DE Deciduous Forest Areas dominated by trees generally greater than 5
meters tall, and greater than 20% of total vegetation
cover

DHI Developed, High In-
tensity

Includes highly developed areas where people reside
or work in high numbers

DLI Developed, Low In-
tensity

Includes areas with a mixture of less constructed ma-
terials and more vegetation

DMI Developed, Medium
Intensity

Includes areas with a mixture of more constructed
materials and less vegetation

EHW Emergent Wetlands Areas where perennial herbaceous vegetation accounts
for greater than 80 percent of vegetative cover and
the soil or substrate is periodically saturated with or
covered with water

EV Evergreen Forest Areas dominated by trees generally greater than 5
meters tall, and greater than 20% of total vegetation
cover

GR Grassland Areas dominated by grammanoid or herbaceous vege-
tation, generally greater than 80% of total vegetation

OS Developed, Open
Space

Includes areas with a mixture of some constructed
materials, but mostly vegetation in the form of lawn
grasses

OW Open Water All areas of open water, generally with less than 25%
cover of vegetation or soil

PA Pasture/Hay Areas of grasses, legumes, or grass legume mixtures
planted for livestock grazing or the production of seed
or hay crops, typically on a perennial cycle

RC Cultivated Crops Areas used for the production of annual crops, such
as corn, soybeans, vegetables, tobacco, and cotton,
and also perennial woody crops such as orchards and
vineyards

SS Shrub/Scrub Areas dominated by shrubs; less than 5 meters tall
with shrub canopy typically greater than 20% of total
vegetation

WW Woody Wetlands Areas where forest or shrub land vegetation accounts
for greater than 20 percent of vegetative cover and
the soil or substrate is periodically saturated with or
covered with water



Table 7

Land use zoning as mapped over study area their abbreviation and detailed description

Zone Type Abbreviation Area (Sq.Km)
Airport A 2.73
Commercial C 9.68
Central Business District CBD 0.45
Agriculture DA 18.51
Hospital HD 0.53
High Density Housing HDH 1.03
Historical Preservation HP 0.01
Industrial I 9.86
Low Density Housing LDH 42.96
Medium Density Housing MDH 4.33
Park PK 5.19
Special Uses SU 8.61
University UQ 0.38

Table 8

Classification schema for population density

Population Density
Classes

From To

1 0 472
2 472.1 1392.2
3 1392.3 2319.5
4 2319.6 3271
5 3271.1 4242.1
6 4242.2 5119.2
7 5119.3 8347.7
10 > 8347.7



Table 9

Classification schema for mean age of induviduals residing in that area

Mean Age Classes From To
1 0 0
3 19.3 23
4 23.1 31.3
5 31.4 40.2
6 40.3 49.1
7 49.2 62.3
8 62.4 67.7
9 67.8 80.4
10 > 80.5

Table 10

Classification schema for percentage of vacant housing

% Vacant Classes From To
1 0 10.00
2 10.01 20.00
3 20.01 30.00
4 30.01 40.00
5 40.01 50.00
6 50.01 60.00
7 60.01 70.00
8 70.01 80.00
9 80.01 90.00
10 90.01 100.00

Table 11

Classification schema for average household size

Household Size
Classes

From To

1 0 0
4 1 1.38
5 1.38 1.75
6 1.76 2.15
7 2.16 2.54
8 2.55 2.93
9 2.94 3.51
10 > 3.52



Table 12

Classification schema for average family size

Family Size Classes From To
1 0 0
5 2 2.3
6 2.31 2.81
7 2.82 3.32
8 3.33 3.84
9 3.84 4.6
10 > 4.6

Rules and knowledge

The association rule mining algorithm was executed using various combinations of the

dataset. The initial model was tested using LST (ASTER), NDVI (ASTER), LULC and

demographic indicators. Similarly, in succeeding experiments, LST and NDVI information

of ASTER was substituted with LST and NDVI information from Landsat and MODIS.

Within these initial experiments, the relationship between information from different

sensors was not tested. This helped identify sensitivity of the model towards spectral

information. In later experiments, the existence of relationships between information

from different sensors (ASTER, Landsat, and MODIS) was tested by using combinations

of dataset (LST and NDVI).

Due to the nature of the association rule mining algorithm, some of the rules that

were obtained as a part of the experiments did not necessarily include LST parameters

within their conditional statements. Such rules which may be of interest to urban research

community in general are therefore presented as part of this study. Since the primary

objective of this study was to analyze the relationship between urban heat (land surface)

and its associated LULC characteristics, further detailed analysis of the rules were not

carried out. The results are presented in the following sub-subsections in order of the

experiments that were conducted.



Table 13

Results from association mining presented as confusion matrix: Confidence of NDVI

with respect to LST. Classification of the ASTER NDVI and LST datasets were done using

equal interval algorithm

Tc/ NDVI 1 2 3 4 5 6 7 8 9 10
1 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
2 0% 0% 1% 2% 0% 0% 0% 0% 0% 0%
3 0% 63% 81% 40% 3% 2% 3% 1% 1% 3%
4 100% 33% 14% 35% 13% 22% 33% 29% 31% 37%
5 0% 4% 4% 17% 42% 58% 56% 64% 63% 57%
6 0% 0% 0% 4% 33% 17% 7% 6% 5% 3%
7 0% 0% 0% 1% 6% 1% 0% 0% 0% 0%
8 0% 0% 0% 1% 1% 0% 0% 0% 0% 0%
9 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

10 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Total 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

ASTER

In this scenario, ASTER-derived LST and NDVI information, which was classified into

10 classes based on equal interval and quantile classification techniques, was analyzed

with respect to land use land cover and demographic indicators to mine meaningful

relationships. The results obtained through this analysis are summarized in Tables 13 to

18.

Equal interval classification results, and their respective association rules, indicate

that low NDVI does not always correspond to low LST. In case of ASTER derived LST,

the association with NDVI is non-linear. Low NDVI, i.e., class 1 (range of -0.55 to -0.43),

demonstrated strong association with LST class 4 (range of 12.47 to 16.42 C), with a

confidence of 100%. While, NDVI classes 2 and 3 (range of -0.43 to -0.18) demonstrated

strong association with LST class 3 (range of 8.31 to 12.47 C), with a confidence of 63%

and 81% respectively. Similar patterns of low NDVI and high LST are also evident within

NDVI class 5 (range of -0.06 to 0.06). NDVI class 5 demonstrates association with LST



Table 14

Results from association mining presented as confusion matrix: Confidence of NDVI

with respect to LST. Classification of the ASTER NDVI and LST datasets were done using

quantile algorithm

Tc/ NDVI 1 2 3 4 5 6 7 8 9 10
1 22% 5% 6% 11% 18% 13% 7% 5% 4% 4%
2 6% 5% 8% 9% 12% 12% 11% 10% 10% 10%
3 4% 6% 9% 9% 9% 11% 11% 11% 12% 13%
4 4% 7% 9% 9% 9% 10% 12% 13% 13% 16%
5 4% 7% 9% 10% 9% 10% 12% 12% 13% 14%
6 5% 8% 10% 10% 9% 10% 12% 13% 13% 13%
7 6% 9% 11% 11% 10% 10% 12% 12% 12% 11%
8 7% 12% 13% 11% 10% 10% 11% 11% 10% 9%
9 11% 17% 15% 11% 9% 8% 9% 8% 8% 7%

10 30% 24% 11% 7% 5% 5% 5% 5% 5% 4%
Total 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

class 6 (range of 20.78 to 24.94 C), with a confidence of 33%. While, NDVI class 6 through

10 (range of 0.6 to 0.67) also demonstrate association with LST class 6 through 10 (20.78

to 41.56 C), with a confidence of 17%. In general, NDVI of class 6 through 10 associate

with LST class 5, with a support of 51% and confidence > 56%.

Results from association mining using quantile interval classified data demonstrate

no strong relationship between NDVI and LST classes. These results further strengthen

uncertainty of the relationship between NDVI and LST. This uncertainty was high in the

association between NDVI class 1 (range of -0.55 to -0.43) and LST. NDVI class 1, which

had a support of 10%, exhibited association with LST of classes 1 (range of 0 to 14 C) and

10 (range of 21.14 to 41.56 C), with a confidence of 22% and 30% respectively.

Irrespective of temperature ranges (which are usually subjected to climatic conditions

in space and over time), the classification gives a relative picture which can be used for

extrapolating or generalizing the relationships between indicators. In case of NDVI and

LST, association rules were not found to be linear, mainly due to the nature of vegetation.

For example, a crop can have poor health, and therefore low NDVI value, but can still



Table 15

Results from association mining presented as confusion matrix: Confidence of NLCD

with respect to LST. Classification of ASTER LST was done using equal interval algorithm.

Please refer Table 6 for the detailed description of the abbreviations

Tc BR DE DHI DLI DMI EHW EV
1 13% 62% 3% 1% 2% 64% 32%
2 11% 23% 3% 3% 3% 17% 32%
3 32% 7% 3% 6% 3% 5% 9%
4 29% 3% 4% 9% 4% 5% 8%
5 2% 2% 4% 11% 5% 2% 4%
6 4% 1% 5% 15% 7% 2% 6%
7 5% 1% 7% 17% 10% 1% 5%
8 1% 1% 9% 17% 16% 2% 3%
9 1% 0% 15% 13% 26% 2% 1%

10 3% 0% 47% 7% 27% 0% 0%
Total 100% 100% 100% 100% 100% 100% 100%

Tc GR OS OW PA RC SS WW
1 30% 8% 79% 7% 6% 71% 89%
2 23% 16% 9% 21% 14% 14% 6%
3 8% 16% 4% 24% 17% 6% 3%
4 11% 16% 2% 18% 17% 3% 0%
5 7% 13% 1% 12% 14% 2% 0%
6 10% 11% 1% 9% 11% 1% 1%
7 6% 8% 1% 4% 9% 0% 0%
8 1% 6% 1% 3% 5% 1% 0%
9 0% 4% 1% 1% 3% 1% 0%

10 4% 2% 0% 1% 2% 0% 0%
Total 100% 100% 100% 100% 100% 100% 100%



Table 16

Results from association mining presented as confusion matrix: Confidence of NLCD

with respect to LST. Classification of the ASTER LST was done using quantile algorithm.

Please refer Table 6 for the detailed description of the abbreviations

Tc BR DE DHI DLI DMI EHW EV
1 0% 0% 0% 0% 0% 0% 0%
2 0% 0% 0% 0% 0% 0% 0%
3 4% 21% 1% 0% 1% 38% 17%
4 56% 72% 9% 12% 7% 49% 60%
5 37% 7% 38% 78% 58% 12% 23%
6 3% 0% 40% 9% 31% 1% 0%
7 0% 0% 9% 0% 2% 0% 0%
8 0% 0% 2% 0% 0% 0% 0%
9 0% 0% 1% 0% 0% 0% 0%

10 0% 0% 0% 0% 0% 0% 0%
Total 100% 100% 100% 100% 100% 100% 100%

Tc GR OS OW PA RC SS WW
1 0% 0% 0% 0% 0% 0% 0%
2 0% 0% 1% 0% 0% 0% 0%
3 13% 2% 64% 1% 1% 18% 70%
4 50% 44% 27% 57% 41% 75% 28%
5 33% 52% 7% 41% 54% 6% 2%
6 3% 3% 0% 1% 3% 1% 0%
7 1% 0% 0% 0% 0% 0% 0%
8 0% 0% 0% 0% 0% 0% 0%
9 0% 0% 0% 0% 0% 0% 0%

10 0% 0% 0% 0% 0% 0% 0%
Total 100% 100% 100% 100% 100% 100% 100%



Table 17

Results from association mining presented as confusion matrix: Confidence of zoning

with respect to LST. Classification of the ASTER LST was done using equal interval

algorithm. Please refer Table 7 for the detailed description of the abbreviations

Tc / Zone A C CBD DA HD HDH HP
1 0% 0% 0% 0% 0% 0% 0%
2 0% 0% 0% 0% 0% 0% 0%
3 3% 1% 4% 3% 0% 2% 0%
4 27% 14% 6% 49% 11% 8% 0%
5 65% 49% 35% 46% 50% 67% 8%
6 4% 32% 49% 1% 37% 22% 92%
7 1% 3% 4% 0% 1% 0% 0%
8 0% 1% 1% 0% 0% 0% 0%
9 0% 0% 1% 0% 0% 0% 0%
10 0% 0% 0% 0% 0% 0% 0%

Total 100% 100% 100% 100% 100% 100% 100%
Tc / Zone I LDH MDH PK SU UQ

1 0% 0% 0% 0% 0% 0%
2 0% 0% 0% 0% 0% 0%
3 4% 2% 4% 21% 8% 3%
4 23% 24% 14% 39% 32% 17%
5 48% 67% 54% 35% 47% 52%
6 19% 7% 27% 5% 10% 27%
7 4% 0% 0% 0% 2% 1%
8 1% 0% 0% 0% 0% 0%
9 0% 0% 0% 0% 0% 0%
10 0% 0% 0% 0% 0% 0%

Total 100% 100% 100% 100% 100% 100%



Table 18

Results from association mining presented as confusion matrix: Confidence of zoning

with respect to LST. Classification of the ASTER LST was done using quantile algorithm.

Please refer Table 7 for the detailed description of the abbreviations

Tc / Zone A C CBD DA HD HDH HP
1 8% 3% 5% 12% 3% 4% 0%
2 8% 4% 2% 18% 3% 3% 0%
3 10% 5% 2% 18% 4% 3% 0%
4 13% 7% 1% 17% 5% 3% 0%
5 13% 7% 2% 13% 7% 3% 0%
6 16% 7% 4% 10% 8% 7% 0%
7 16% 8% 6% 6% 7% 17% 0%
8 7% 11% 8% 4% 11% 19% 0%
9 3% 17% 18% 2% 21% 26% 39%
10 5% 31% 50% 1% 30% 16% 61%

Total 100% 100% 100% 100% 100% 100% 100%
Tc / Zone I LDH MDH PK SU UQ

1 8% 6% 7% 38% 18% 10%
2 8% 9% 4% 11% 10% 5%
3 8% 9% 5% 8% 10% 5%
4 8% 10% 6% 8% 10% 3%
5 8% 11% 6% 7% 9% 5%
6 9% 13% 7% 7% 8% 5%
7 8% 14% 10% 6% 8% 9%
8 9% 14% 13% 6% 8% 15%
9 12% 11% 20% 6% 8% 24%
10 21% 4% 21% 4% 10% 20%

Total 100% 100% 100% 100% 100% 100%



provide sufficient roughness over the surface to prevent absorption or radiation of heat.

This phenomenon has been identified within the visual analysis, the results of which are

presented in the previous chapter. The results from this study indicate that recreational

grassland (e.g., parks) with relatively high NDVI exhibited association with high LST.

This may be due to the nature of the vegetation. Nevertheless, the areas that exhibit high

NDVI and also radiate relatively high temperatures have to be studied in detail. Such

study would aid in understanding the behavior of urban vegetation and radiant heat of

surfaces they occupy.

Land cover type, namely deciduous forest (DE), emergent wetlands (EW), open water

(OW), shrubs (SS) and woody wetlands (WW) demonstrated association with LST class 1

(range 0 to 4.15 C), with confidence greater than 60%. The woody wetlands were found to

be more strongly associated with LST (confidence of 89%) than open waters (confidence

of 79%). This variation between land cover elements may be due to their location within

the study space. The woody wetlands of Marion County are mostly situated in peri-

urban areas and are therefore less influenced by urban heat effect, whereas, open waters

(especially White River) that flow through the city are, in part influenced by urban

heat. Water depths in parts of the city are also considerably low, thereby contributing

to more heat radiation. Developed high intensity (DHI) areas demonstrated a strong

association with LST class 10 (range37.41 to 41.56 C), with a confidence of 47%, followed

by developed medium intensity (DMI) areas (confidence of 27%). Land cover classes

including pastures (PA), evergreen forest (EV) and grasslands (GR) demonstrated partial

association (confidence varying between 15 to 25%) with LST classes 2 to 5 (range of

4.15 to 20.78 ). Developed low intensity (DLI) along with DHI and DMI exhibited partial

association with LST classes 6 through 9 (range of 20.78 to 37.41 C). Barren land (BR)

demonstrated an association with LST class 3 and 4 (range of 12.47 to 16.62 C), with a

confidence of 51%. This indicates that much of the barren land radiates less heat than

developed spaces but more heat than forests, wetlands and water.



Association rules between land cover and LST classified using quantile algorithm were

similar to the results obtained from LST classified using equal interval algorithm, with

minor variation in LST ranges. The results demonstrated that open waters and woody

wetlands are associated with quantile LST class 1 (range of 14.10 to 15.56), with high

confidence intervals of 64% and 70% respectively. LST class 4 is associated with barren

lands (confidence of 56%), deciduous forests (72%), evergreen forests (60%), grasslands

(50%), pastures (57%) and shrubs (75%) with relatively high confidence. LST class 5

(range of 16.62 to 20.78 C) has association with developed medium intensity (confidence

of 58%), developed low intensity (78%), developed open space (52%) and cultivated crops

(54%). LST classes 5 and 6 (range of 16.62 to 24.94 C) are associated with developed high

intensity, with a confidence of 78%. From the above results, it is evident that antropogenic

changes have positive association with LST.

The association between zoning and LST can be broadly classified into two categories.

Categories which fall within LST classes 4 and 5 (range of 12.47 to 20.78 C), and classes 5

and 6 (range of 16.62 to 24.94 C). LST classes 4 and 5 are strongly associated with airport

(confidence of 92%), agricultural land (95%), low density housing (91%), industrial areas

(71%), parks (74%) and special uses (79%). The occurrence of agricultural land and airport

within the same classification is mainly a seasonal characteristic; since the image was

captured in the month of April, there is a small possibility of vegetation being present over

agricultural areas, making these areas barren or semi-barren. This could have been the

reason for high thermal radiation from agricultural zones in comparison with airport. LST

classes 5 and 6 demonstrated their association with commercial zones (81%), the central

business district (84%), hospitals (87%), high density housing (89%), medium density

housing (81%) and university area (79%). Areas which are under historical preservation

demonstrated association with LST class 6 (range of 20.78 to 24.94), with high confidence

of 92%.

The results obtained from quantile classification reiterated the results obtained from



experiments with equal interval classification. Central business districts and historical

preservation areas demonstrated a strong association with LST class 10 (range of 37.41

to 41.56 C), with a confidence of 50% and 61% respectively. Parks demonstrated an

association with low LST i.e., class 1 (range of 0 to 14.10 C), with a confidence of 38%.

LST class 4 (range of 12 to 16 C in equal interval classification) demonstrated associa-

tion with average family size of 2.82 to 3.32, with a high support (27.5%) and confidence

(84%). Furthermore, LST class 4 is strongly associated with low intensity developed

land, which includes areas with a mixture of constructed materials and vegetation, high

NDVI in the range of 0.18 to 3, high average household size, low vacant areas (less than

10%) and low population density, all with high confidence (> 80%). This indicates that

households with large family size generally prefer to stay in suburban areas or areas with

more open green spaces. These spaces have low radiative capacity and therefore may

contribute little to the local heat effect. Further, it appears that the majority of people who

have relatively large families living in areas with relatively low thermal radiation zones

are also those with a mean age of 31 to 40, with high confidence (91.5%). These areas

were also found to consist of buildings with very low vacancy rates, with high confidence

(91.3%). This may mean that most people with relatively large families prefer to live in

areas with relatively less thermal radiation. But it is also important to note that LULC

characteristics including the population density and building occupancy are based on

2001 data. These are more likely to change after the recent decline in the housing sector.

Highly developed areas, where people reside or work in high numbers, were found

to have a strong association (belong to) with the relatively higher land surface thermal

characteristics of class 5 (equal interval classification). This relationship exists with

support of 19.6% and confidence of 84.2%. These highly developed areas were also

mostly found to be composed of low density housing. LST class 5 (equal interval

classification) was found to have similar association characteristics with population

density, NDVI, average household size, average family size and zoning as class 4 (equal



Table 19

Results from association mining presented as confusion matrix: Confidence of NDVI with

respect to LST. Classification of the Landsat ETM+ NDVI and LST datasets were done

using equal interval algorithm

Tc/ NDVI 1 2 3 4 5 6 7 8 9 10
1 0% 0% 0% 0% 0% 0% 1% 1% 0% 0%
2 0% 0% 0% 0% 0% 0% 1% 2% 0% 0%
3 0% 0% 0% 0% 0% 0% 1% 1% 1% 0%
4 0% 0% 0% 0% 2% 0% 1% 4% 2% 1%
5 4% 0% 1% 4% 4% 1% 4% 17% 11% 7%
6 90% 31% 35% 84% 53% 82% 59% 46% 65% 63%
7 5% 62% 57% 9% 37% 16% 28% 24% 18% 26%
8 1% 7% 8% 3% 2% 0% 6% 5% 2% 3%
9 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

10 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Total 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

interval classification), with a confidence of above 80%.

Landsat

In this scenario, Landsat ETM+ derived LST and NDVI information which was classified

into 10 classes based on equal interval and quantile algorithms were analyzed in tandem

with LULC database and demographic indicators. A summary of the results obtained are

presented in Tables 19 to 24.

Similar to ASTER, the results from Landsat ETM+ LST and Landsat NDVI classes

generated using equal interval classification indicate that there is a non-linear relationship

between the two variables. Much of the study area (44.7%) is included under LST class 6

(range of 14 to 16 C) and NDVI class 6 (range of 0 to 0.2). This rule has a high confidence

of 82.2%. Due to the high support percentage of these two classes, their dominance was

also evident within the association mining rules that were derived. Many of the rules

that were obtained had a relationship which was indicative of either LST class 6 or NDVI

class 6 (equal interval classification). LST class 6 (range of 14.05 to 16.80 C) was found



Table 20

Results from association mining presented as confusion matrix: Confidence of NDVI with

respect to LST. Classification of the Landsat ETM+ NDVI and LST datasets were done

using quantile algorithm

Tc/ NDVI 1 2 3 4 5 6 7 8 9 10
1 14% 22% 12% 12% 13% 12% 10% 10% 13% 24%
3 7% 8% 9% 13% 15% 15% 16% 18% 24% 23%
4 5% 7% 8% 10% 11% 12% 14% 16% 18% 14%
5 5% 7% 9% 10% 11% 13% 15% 16% 14% 10%
6 5% 6% 8% 8% 10% 11% 12% 12% 10% 6%
7 7% 8% 11% 12% 13% 14% 14% 13% 10% 7%
8 12% 12% 17% 18% 17% 15% 13% 11% 8% 6%
9 14% 13% 16% 11% 8% 6% 4% 3% 2% 4%

10 31% 17% 10% 5% 3% 2% 2% 1% 1% 6%
Total 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

to be strongly associated with NDVI class 1 (range of -1 to -0.8), with a confidence of

90%. But NDVI classes especially classes 2 and 3 (range of -0.8 to -0.4) were found to be

associated with LST class 7 (range of 16.8 to 19.55 C), with a confidence of 62% and 57%

respectively. The remaining NDVI classes 4 through 10 were associated with LST classes

1 through 5, with a high confidence (more than 50% upto 84%). This indicates that NDVI

is not directly proportional to LST and may vary.

The association mining results from the dataset derived using quantile classification

further strengthens the above conclusion of non-linearity between LST and NDVI. Nev-

ertheless, there exists a weak link between the two variables. For example, the results

indicate that LST class 10 (range of 17.91 to 27.80 C) is positively associated with NDVI

class 1 (range of -1.0 to -0.09), with a confidence of 31%. Similarly, NDVI class 10 (range

of 0.11 to 1.0) is associated with LST classes 1 through 3 (temperature < 15.53 C). The

remaining NDVI and LST classes did not demonstrate an association (either positive or

negative).

The rules did highlight the presence of a relationship between LST and land cover



Table 21

Results from association mining presented as confusion matrix: Confidence of NLCD

with respect to LST. Classification of Landsat ETM+ LST was done using equal interval

algorithm. Please refer Table 6 for the detailed description of the abbreviations

Tc BR DE DHI DLI DMI EHW EV
1 0% 0% 0% 0% 0% 0% 0%
2 0% 0% 0% 0% 0% 0% 0%
3 0% 0% 0% 0% 0% 0% 0%
4 0% 0% 1% 0% 0% 1% 0%
5 32% 7% 4% 1% 2% 46% 12%
6 67% 92% 28% 62% 34% 49% 84%
7 1% 1% 55% 36% 62% 3% 4%
8 0% 0% 11% 0% 2% 1% 0%
9 0% 0% 1% 0% 0% 0% 0%

10 0% 0% 1% 0% 0% 0% 0%
Total 100% 100% 100% 100% 100% 100% 100%

Tc GR OS OW PA RC SS WW
1 0% 0% 0% 0% 0% 0% 0%
2 0% 0% 0% 0% 0% 0% 0%
3 0% 0% 0% 0% 0% 0% 0%
4 0% 0% 44% 0% 0% 0% 0%
5 14% 2% 43% 2% 3% 3% 52%
6 81% 90% 13% 96% 89% 95% 47%
7 2% 8% 1% 3% 7% 3% 0%
8 3% 0% 0% 0% 0% 0% 0%
9 0% 0% 0% 0% 0% 0% 0%

10 0% 0% 0% 0% 0% 0% 0%
Total 100% 100% 100% 100% 100% 100% 100%



Table 22

Results from association mining presented as confusion matrix: Confidence of NLCD with

respect to LST. Classification of Landsat ETM+ LST was done using quantile algorithm.

Please refer Table 6 for the detailed description of the abbreviations

Tc BR DE DHI DLI DMI EHW EV
1 56% 43% 8% 3% 4% 76% 50%
3 24% 33% 4% 6% 4% 12% 25%
4 13% 12% 4% 9% 5% 4% 9%
5 4% 6% 5% 12% 6% 3% 6%
6 2% 3% 4% 13% 6% 1% 4%
7 0% 2% 7% 19% 11% 1% 2%
8 1% 1% 12% 23% 21% 1% 3%
9 0% 0% 15% 10% 23% 1% 1%

10 0% 0% 40% 4% 20% 2% 0%
Total 100% 100% 100% 100% 100% 100% 100%

Tc GR OS OW PA RC SS WW
1 48% 15% 94% 24% 20% 24% 90%
3 29% 25% 3% 35% 23% 36% 8%
4 8% 19% 1% 19% 17% 19% 1%
5 6% 15% 1% 10% 14% 9% 0%
6 3% 10% 0% 5% 9% 5% 0%
7 1% 9% 0% 4% 8% 4% 0%
8 1% 6% 0% 2% 6% 2% 0%
9 1% 2% 0% 1% 1% 1% 0%

10 4% 1% 0% 0% 1% 0% 0%
Total 100% 100% 100% 100% 100% 100% 100%



Table 23

Results from association mining presented as confusion matrix: Confidence of zoning

with respect to LST. Classification of the Landsat ETM+ LST was done using equal interval

algorithm. Please refer Table 7 for the detailed description of the abbreviations

Tc A C CBD DA HD HDH HP
1 0% 0% 0% 0% 0% 0% 0%
2 0% 0% 0% 0% 0% 0% 0%
3 0% 0% 0% 0% 0% 0% 0%
4 0% 0% 1% 0% 0% 0% 0%
5 2% 2% 4% 4% 1% 3% 0%
6 88% 43% 19% 91% 43% 30% 0%
7 9% 50% 65% 5% 54% 66% 89%
8 1% 4% 10% 0% 3% 1% 11%
9 0% 0% 1% 0% 0% 0% 0%
10 0% 0% 1% 0% 0% 0% 0%

Total 100% 100% 100% 100% 100% 100% 100%
Tc I LDH MDH PK SU UQ
1 0% 0% 0% 0% 0% 0%
2 0% 0% 0% 0% 0% 0%
3 0% 0% 0% 0% 0% 0%
4 2% 0% 2% 11% 2% 0%
5 6% 2% 4% 7% 5% 6%
6 54% 69% 42% 68% 73% 44%
7 33% 29% 51% 14% 18% 48%
8 5% 0% 0% 0% 2% 2%
9 1% 0% 0% 0% 0% 0%
10 0% 0% 0% 0% 0% 0%

Total 100% 100% 100% 100% 100% 100%



Table 24

Results from association mining presented as confusion matrix: Confidence of zoning

with respect to LST. Classification of the Landsat ETM+ LST was done using quantile

algorithm. Please refer Table 7 for the detailed description of the abbreviations

Tc A C CBD DA HD HDH HP
1 16% 7% 7% 23% 5% 6% 0%
3 26% 7% 1% 27% 9% 3% 0%
4 19% 7% 3% 18% 9% 3% 0%
5 13% 7% 3% 14% 7% 5% 0%
6 8% 7% 3% 8% 6% 5% 0%
7 7% 9% 6% 6% 8% 12% 0%
8 4% 15% 14% 3% 15% 26% 0%
9 2% 16% 15% 1% 18% 26% 20%
10 3% 24% 48% 0% 24% 16% 80%

Total 100% 100% 100% 100% 100% 100% 100%
Tc I LDH MDH PK SU UQ
1 16% 7% 10% 35% 22% 16%
3 11% 11% 6% 22% 21% 8%
4 9% 11% 6% 11% 13% 4%
5 9% 13% 7% 8% 10% 5%
6 7% 12% 7% 5% 6% 7%
7 10% 16% 11% 6% 7% 11%
8 13% 18% 18% 7% 8% 21%
9 9% 8% 18% 4% 5% 16%
10 16% 3% 15% 2% 7% 13%

Total 100% 100% 100% 100% 100% 100%



classes. The results from LST equal interval classification indicate that LST classes 6 and 7

(range of 14.05 to 19.55 C) are associated with DHI, DMI and DLI land cover classes, with

confidence of 83 96% and 98% respectively. Further, LST class 6 (range of 14.05 to 16.80

C) exhibits strong association with deciduous forest (confidence of 92%), evergreen forest

(84%), grassland (81%), developed open spaces (90%), pastures (96%), rice crops (89%)

and shrubs (95%). Unlike the results from ASTER derived LST and land cover analysis,

open waters was found to be associated with lower temperatures (range of 8.55 to 14.5 C

with confidence of 87%) in comparison with woody wetlands (temperature range of 11.3

to 16.8 C with a confidence of 99%). Barren land and emergent wetlands were also found

to be associated with temperature ranges similar to those of woody wetlands (range of

11.3 to 16.8 C), with confidence of 99% and 95% respectively. The variation in the results

between the two dataset (ASTER and Landsat) may be due to the spectral characteristics

of the sensors and variation in land cover characteristics throughout the year. With the

lack of strong rules to support the LST relationship with NDVI, land cover characteristics

have to be studied in detail with respect to their radiative properties. Study of percentage

of mixed pixels within the derived information may also aid in developing generalized

rules for particular months/seasons within a year.

The results from the Landsat derived LST classified based on quantile classification

produced rules for two broad ranges of land cover classes. First, LST class 1 (range of 0.3

to 15.53 C) was strongly associated with barren land (with confidence of 80%), deciduous

forest (76%), emergent wetlands (88%), open water (97%) and woody wetlands (98%).

Second, developed high intensity areas were associated with LST class 10 (range of 17.91

to 27.80 C) with a confidence of 40%. The rest of the land cover classes demonstrated no

distinct relationships with LST.

Zoning class associations with equal interval classified LST can be broadly summarized

into three categories; zones which fall under LST class 6 (range of 14.05 to 16.80 C), class 7

(range of 16.80 to 19.55) and zones which fall in between classes 6 and 7. The zones which



are associated with LST class 6 are airport (with a confidence of 88%) and agricultural

land (91%). The zones which are associated with LST class 7 are historical preservation

areas. The zones which are more stringly associated with class 6 and less with class 7

are low density housing (confidence of 69% and 29% respectively), parks (68% and 14%)

and special uses (73% and 18%). The zones which are associated with class 7 more than

class 6 are commercial (class 6 confidence is 43% and class 7 confidence is 50%), central

business district (19% and 65%), hospital (43% and 54%), medium density housing (51%

and 42%) and universities (48% and 44%).

The results from quantile classification of LST with zoning areas did not add much to

the knowledge derived from the earlier experiments. The results indicate that LST class

10 is positively associated with historical preservation areas, with a confidence of 80%

and with central business district, with a confidence of 48%.

In general, LST was found to have strong association with land cover and demographic

variables. The association with agriculture, low intensity developed areas (which includes

areas with a mixture of constructed materials and vegetation), high intensity developed

areas (which includes highly developed areas where people reside or work in high

numbers), low density housing, high family size, high household size and low population

density, all with high confidence (>80%).

From the rules derived it appears that the temperatures in class 7 (range of 16.8 to

19.5) are the transition range. Within this range, the rules derived by rule mining show

an association with similar indicators as exhibited by LST class 6. However, the degrees

of association within these indicators varies with variation in LST. This variation was

prominent among demographic indicators such as family size and population density.

In 20% of the cases the associations of the indicators with LST were not constant. In

around 30% of the cases LST class 7 was associated with demographic characteristics

similar to that of LST class 6. Ultimately, in 50% of the cases the association with similar

indicators exhibit an inverse relationship with family size, median age and population



density. From these results, it appears that people in their mid 20s to early 30s have

relatively small family/household size and prefer to stay in highly populated areas. These

areas are usually towards the city center and have less tree cover, contributing to more

surface heat radiation. Furthermore, LST class 7 is associated with low, medium and high

intensity developed areas, which are mainly comprised of residential, commercial and

industrial structures. LST class 7 exhibits an association with commercial and industrial

spaces, with a confidence of 62% and 33% respectively. The developments along these

commercial and industrial areas are of medium intensity, with a mixture of constructed

materials and vegetation.

Overall, the rules indicate that population density is associated with LST. But, the

above association holds true only for temperatures within a certain range (low to medium).

Beyond specific ranges the relationships have weak confidence levels (below 10%) there-

fore reduce the possibility of generalizing many of the rules that were extracted.

MODIS

In this scenario, MODIS derived LST and NDVI information were classified (10 classes)

based on equal interval and quantile algorithms and then analyzed in tandem with LULC

and demographic indicators. The summarized results from MODIS analysis are presented

in Table 25 to 30.

Unlike ASTER and Landsat derived LST and NDVI information,the same attributes

derived from MODIS and classified using equal interval algorithm demonstrated an

association. Rules derived indicate the presence of a linear relationship between NDVI

and LST. Even though many of the NDVI classes were associated with more than one

LST class, in general low NDVI classes were associated with high LST classes and vice

versa. NDVI classes 1, 2 and 3 (range of -0.64 to -0.19) were associated with LST of class 9

(range of 33.11 to 36.79 C), with a confidence of 100%, 52% and 60% respectively. NDVI

classes 4, 5, 6 and 7 (range of -0.19 to 0.49) were associated with LST classes 8 and 9, with

confidence of 76%, 86%, 89% and 91% respectively. In this case, NDVI classes were more



Table 25

Results from association mining presented as confusion matrix: Confidence of NDVI with

respect to LST. Classification of the MODIS NDVI and LST datasets were done using

equal interval algorithm

Tc/ NDVI 1 2 3 4 5 6 7 8 9 10
1 0% 6% 4% 1% 0% 0% 0% 0% 0% 0%
7 0% 0% 0% 1% 1% 3% 7% 23% 60% 72%
8 0% 11% 17% 24% 27% 33% 47% 59% 39% 27%
9 100% 52% 60% 52% 59% 56% 46% 18% 2% 1%

10 0% 31% 19% 22% 12% 8% 1% 0% 0% 0%
Total 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Table 26

Results from association mining presented as confusion matrix: Confidence of NDVI with

respect to LST. Classification of MODIS NDVI and LST datasets were done using quantile

algorithm

Tc/ NDVI 1 2 3 4 5 6 7 8 9 10
1 1% 1% 3% 2% 5% 7% 3% 15% 26% 33%
2 0% 1% 2% 3% 3% 10% 15% 22% 24% 22%
3 1% 0% 1% 2% 6% 14% 19% 26% 14% 17%
4 1% 2% 4% 3% 8% 14% 20% 16% 16% 12%
5 1% 3% 4% 12% 16% 19% 23% 12% 13% 9%
6 8% 10% 13% 16% 15% 13% 12% 6% 5% 7%
7 14% 17% 22% 21% 17% 8% 2% 2% 2% 1%
8 17% 22% 18% 19% 15% 10% 2% 1% 0% 1%
9 20% 19% 20% 16% 13% 4% 2% 0% 0% 0%

10 37% 25% 14% 6% 2% 1% 0% 0% 0% 0%
Total 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%



Table 27

Results from association mining presented as confusion matrix: Confidence of NLCD

with respect to LST. Classification of MODIS LST was done using equal interval algorithm.

Please refer Table 6 for the detailed description of the abbreviations

Tc BR DE DHI DLI DMI EHW EV
1 0% 0% 0% 0% 0% 0% 2%
7 100% 23% 25% 22% 20% 13% 14%
8 0% 51% 42% 41% 42% 44% 43%
9 0% 23% 29% 33% 34% 39% 34%

10 0% 3% 4% 3% 4% 5% 8%
Total 100% 100% 100% 100% 100% 100% 100%

Tc GR OS OW PA RC SS WW
1 0% 0% 0% 0% 0% 0% 0%
7 52% 24% 24% 52% 60% 6% 7%
8 39% 41% 47% 32% 38% 73% 73%
9 9% 30% 24% 15% 2% 19% 19%

10 0% 4% 5% 0% 0% 2% 1%
Total 100% 100% 100% 100% 100% 100% 100%

associated towards LST class 9 than class 8. NDVI classes 8, 9 and 10 (range of 0.49 to

0.81) were associated with LST classes 7 and 8 (range of 22.07 to 29.43 C), with confidence

of 82%, 99% and 99% respectively. While NDVI class 8 was more associated with LST

class 8, NDVI classes 9 and 10 were more associated with LST class 7.

This inverse linear relationship between NDVI and LST was also evident in the

association mining results obtained through the quantile classification dataset. In this

case, even though the linear relationship was evident, each of the NDVI classes was

associated with more than one LST class. This prevented the derivation of generalized

rules (rules with high confidence) from the results. Nevertheless, NDVI class 1 (range

of -0.64 to 0.07) and class 10 (range of 0.69 to 0.86) were found to be highly (relative to

the rest of the NDVI classes) associated with LST class 10 (range of 31.69 to 36.79 C) and

class 1 (range of 0 to 24.79 C), with a confidence of 37% and 33% respectively.

Based on the results obtained from ASTER, Landsat and MODIS derived data one

can infer that NDVI is associated with LST, but the relationship is usually non-linear



Table 28

Results from association mining presented as confusion matrix: Confidence of NLCD

with respect to LST. Classification of MODIS LST was done using quantile algorithm.

Please refer Table 6 for the detailed description of the abbreviations

Tc BR DE DHI DLI DMI EHW EV
1 94% 10% 8% 6% 6% 3% 10%
2 0% 8% 9% 9% 7% 5% 4%
3 6% 5% 8% 8% 7% 4% 1%
4 0% 5% 8% 10% 8% 4% 3%
5 0% 7% 11% 11% 12% 11% 6%
6 0% 20% 12% 9% 10% 18% 24%
7 0% 19% 12% 12% 13% 10% 11%
8 0% 12% 10% 13% 11% 21% 17%
9 0% 6% 13% 12% 14% 10% 15%

10 0% 8% 10% 10% 11% 13% 9%
Total 100% 100% 100% 100% 100% 100% 100%

Tc GR OS OW PA RC SS WW
1 20% 6% 9% 31% 27% 1% 0%
2 31% 10% 10% 12% 14% 3% 6%
3 1% 9% 5% 11% 21% 2% 1%
4 13% 9% 2% 12% 16% 5% 4%
5 26% 10% 11% 6% 12% 8% 15%
6 0% 11% 24% 8% 6% 32% 42%
7 0% 11% 11% 5% 3% 27% 12%
8 0% 13% 9% 12% 2% 9% 11%
9 9% 10% 6% 3% 0% 5% 3%

10 0% 10% 14% 0% 0% 7% 6%
Total 100% 100% 100% 100% 100% 100% 100%



Table 29

Results from association mining presented as confusion matrix: Confidence of Zoning

with respect to LST. Classification of the MODIS LST was done using equal interval

algorithm. Please refer Table 7 for the detailed description of the abbreviations

Tc A C CBD DA HD HDH HP
1 0% 0% 0% 0% 0% 0% 0%
7 94% 28% 0% 47% 10% 0% 0%
8 6% 41% 9% 42% 37% 22% 0%
9 0% 27% 91% 9% 51% 75% 100%
10 0% 5% 0% 1% 1% 2% 0%

Total 100% 100% 100% 100% 100% 100% 100%
Tc I LDH MDH PK SU UQ
1 0% 0% 0% 1% 0% 0%
7 22% 20% 21% 9% 26% 0%
8 48% 40% 45% 66% 46% 20%
9 26% 36% 30% 25% 25% 78%
10 4% 4% 5% 0% 4% 1%

Total 100% 100% 100% 100% 100% 100%

in higher resolution images and tends to become linear with lower resolution images.

Furthermore, NDVI of a particular range was found not to exhibit similar thermal

absorption or radiation. The nature of the relationship between NDVI and LST was made

evident through the results of association mining algorithm. Nevertheless, a detailed

characteristic of different urban features will have to be mapped at both low and high

scale to generalize their thermal behavior.

Only three land cover classes were able to demonstrate clear rules in LST dataset

classified using equal interval algorithm. Barren lands demonstrated an association with

LST class 7 (range of 22.07 to 25.75 C), with a confidence of 100%. Woody wetlands

and shrubs exhibited an association with LST class 8 (range of 25.75 to 29.43 C), with a

confidence of 73% and 73% respectively. In case of the LST dataset which was classified

using the quantile algorithm, once again barren lands were found to be associated with

LST class 1 (range of 0.00 to 24.79 C), with a confidence of 94%. The other classes were

not found to exhibit any strong (confidence of more than 30%) association with any one



Table 30

Results from association mining presented as confusion matrix: Confidence of zoning

with respect to LST. Classification of the MODIS LST was done using quantile algorithm.

Please refer Table 7 for the detailed description of the abbreviations

Tc A C CBD DA HD HDH HP
1 44% 11% 0% 16% 0% 0% 0%
2 45% 8% 0% 14% 3% 0% 0%
3 5% 8% 0% 19% 8% 1% 0%
4 1% 9% 0% 15% 9% 3% 0%
5 3% 11% 0% 13% 6% 1% 0%
6 1% 10% 2% 7% 8% 1% 0%
7 1% 11% 7% 5% 20% 16% 0%
8 0% 8% 36% 6% 0% 19% 0%
9 0% 11% 55% 2% 1% 45% 100%
10 0% 12% 0% 2% 46% 13% 0%

Total 100% 100% 100% 100% 100% 100% 100%
Tc I LDH MDH PK SU UQ
1 8% 5% 3% 4% 8% 0%
2 6% 8% 6% 5% 10% 0%
3 10% 8% 13% 1% 8% 0%
4 9% 9% 8% 2% 7% 9%
5 12% 10% 11% 13% 11% 4%
6 13% 9% 10% 28% 16% 0%
7 14% 11% 15% 23% 13% 8%
8 9% 16% 9% 12% 10% 42%
9 7% 13% 10% 7% 8% 37%
10 13% 10% 13% 5% 10% 1%

Total 100% 100% 100% 100% 100% 100%



particular class of the LST. This lack of association between MODIS and NLCD dataset is

mainly due to the variation in resolution. MODIS LST has a spatial resolution of 1 km,

while NLCD posesses a resolution 16 m. These variations in resolution usually contain

mixed land cover pixels contributing to a single land surface temperature. The effects

of mixed pixels negate the possibility of extracting generalized association rules in such

mixed pixel cases.

The LST dataset and land use zoning demonstrated strong association rules in com-

parison with association of LST with land cover dataset. From the results it was evident

that agriculture areas are associated with LST class 7 (range of 28.44 to 29.45 C), with con-

fidence of 94%. Central business district and historical preservation areas are assoicaiated

with LST class 9 (range of 30.35 to 31.61), with a confidence of 91% and 100% respectively.

Areas zoned as industrial , LDH, MDH, parks and special uses had similar association

characteristics with LST classes 7 to 9 (range of 28.44 to 31.61 C), with more confidence in

association with class 8 (range of 29.45 to 30.35 C).

From the results of the analysis it was also evident that many of the rules (over 95%)

which were obtained using the association mining algorithm were for the temperature

range of 22 to 29 C. Upon a detailed analysis, it was evident that around 69% of the study

area exhibited a temperature characteristic of this range. This may be one of the primary

reasons why many of the rules had a bias towards this range. Within the classification

schema which was used for MODIS derived measurements this range fell within two

classes (classes 7 and 8) in the equal interval classification and LST classes 1 through 7 in

the case of quantile classification.

The results demonstrated similar knowledge characteristics as that of ASTER and

Landsat. Low population density and moderate temperature range (equal interval class 7)

exhibited association with large family size (with a confidence of 93.7%). This association

of large family size to a specific range of temperature (class 5) was also evident in the

rules derived using quantile classification.



5.3 MODIS LST Analysis Results

There were a total of 2,922 MODIS LST images analyzed for the study of UHI in and

around the city of Indianapolis. From this large dataset only a portion were suitable

for analysis as the area is prone to frequent cloud cover. Furthermore, the MODIS LST

algorithm has trouble characterizing surface temperature over areas which are subjected

to irregular snow or water cover. Care was taken so that the selected images have less

than 30% cloud cover. This is mainly because cloud cover was found to have a strong

negative relationship with LST. The relationship between cloud cover and temperature

variation is presented in Figure 17. Based on the above criterion, of the 2,922 images

only 242 daytime LST images and 200 nighttime LST images were selected for further

analysis. Therefore, it appears for Indianapolis on an average about 20% of MODIS LST

images can be used for UHI analysis. In spite of this generalized variation, the number of

images which are suitable for analysis varies considerably with respect to seasons. The

distribution of images selected for further analysis is presented in Figure 18.

From Figure 18, it is clear that the availability of cloud free images varies with respect

to the periods of rain and snow in the study region. The availability of well characterized

LST is little to none during the months of January and February when snow cover is high.

The summer showers also impact LST especially during the months of May, June and July.

For the city of Indianapolis and its surroundings, the best time to acquire LST images for

UHI analysis is the month of April followed by August to October.

The subset of images which were used for analysis indicate the mean and maximum

day time temperatures were lowest in the month of January and gradually increase to the

months of July to August, decreasing thereafter. In the case of nighttime temperatures,

the February mean and maximum temperatures were found to be lower than January

mean and maximum temperatures. Furthermore, unlike daytime temperatures peak night

time temperature was realized in the months of June and July. Figures 19 and 20 illustrate



Figure 17. Relationship between cloud cover and its effect on LST

Figure 18. Month wise number of images used for analysis



Figure 19. Average of mean and maximum daytime temperatures

the variation in average mean and maximum daytime and nighttime temperatures.

Land surface temperature analysis

The results from selected LST images indicated variation in their intensity. The varia-

tions in mean and maximum temperatures within the daytime and nighttime images

are presented in Figures 21 and 22. Daytime temperatures indicate that variations in

mean temperatures are greater than variations in maximum temperatures. Additionally,

except for winter months, the variation in maximum temperature (within each particular

month) is within one degree centigrade. On the other hand, variation in mean daytime

temperature is greater during the spring and summer months than in autumn and winter

months. The high variation during the month of April can be due to transition weather

experienced within the study area i.e., transition from winter to spring which may have

days of cold weather followed by pleasant weather. Such variations do impact the char-

acteristics of the LST. This is also apparent in LST observation through little variation



Figure 20. Average of mean and maximum nighttime temperatures

evident during the month of May. This occures because, by the end of April, the transition

from winter to spring is usually complete, therefore leading to little variation during

the month of May. In the case of June and July, these summer months have hot weather

followed by summer showers, including extreme conditions favoring tornados, along the

peri-urban areas of Indianapolis. Such weather does not last for a long, but contributes to

high variation in mean temperatures. This analysis indicates that such variations can lead

to an average temperature difference of over 12 C. The variation in mean temperature is

constant during the autumn months. This variation is within a range of 5.5 to 6.5 C, and

also exhibits a decreasing trend from August to October.

Nighttime temperatures exhibited less variation in comparison to daytime temper-

atures. While the maximum variations in temperatures are over 10 C in the case of

daytime LST, maximum variation in the nighttime mean and maximum temperatures

do not exceed 3.5 C. Maximum variation in nighttime temperatures is evident for the

month of April (3.4 C) followed by July and October. These months are also the transition



Figure 21. Variation in daytime mean and maximum LST

months between seasons i.e., from winter to spring, summer to autumn and autumn

to winter. The analysis indicates that nighttime temperature patterns are sensitive to

the change in seasons. The results also indicate that, unlike daytime temperatures,

mean and maximum nighttime temperatures exhibit similar variation patterns. Also, in

most months the variations in maximum nighttime temperature are higher than mean

nighttime temperatures.

The magnitude of daytime and nighttime LST for Marion County and its surrounding

regions is presented in Figure 23. It is evident that LST is higher during the daytime than

nighttime. This difference in temperature ranges between 2 to 17 C in case of daytime LST,

to 1.6 to 5 C in case of nighttime LST. The magnitude of temperature difference is highest

during June for daytime LST, and it is highest during the month of August for nighttime

LST. While the average magnitude is around 9.2 C, with a variation of 3.5 C for daytime

LST, the average magnitude is only 2.7 C, with variation of less than 1 C for nighttime



Figure 22. Variation in nighttime mean and maximum LST

LST. This magnitude may not necessary correspond to the magnitude of UHI but does

provide us with a range of possible variations over the study area irrespective of month,

season or year. A 17 C variation within the study area is a matter of concern. Vulnerable

populations (children below 6 and people aged above 65) are likely to experience severe

stress in these high magnitude heat pockets.

Urban heat island analysis

LST with minimum cloud cover MODIS images were used to characterize UHI using

the non-parametric kernel convolution model as described in the methods section. Non-

parametric modeling aided in filling data gaps which were present due to cloud cover, and

also aided in characterizing UHI spacially. The result of kernel convolution for an image

is presented in Figure 24. The results indicate that LST with minor variations decreases

the possibility of identifying the presence of UHI. The process of kernel convolution



Figure 23. Average magnitude of daytime and nighttime LST

aided in characterizing the image while maintaining its mean temperature. This process

demonstrates the effectiveness of an algorithm in identifying the presence of phenomenon

by exaggerating or smoothing background noise where necessary. The degree of such

smoothing can be controlled by users based on their knowledge and understanding of

the phenomena of interest. This degree of smoothing varies from 0 to 100, where 0 is

likely to produce an image similar to the original LST and the number 100 is likely to

produce an image where variation within the image is equal to the mean.

Kernel convolution did manage to maintain the mean temperature of the LST im-

ages while characterizing the heat island through reducing/exaggerating the variations

between maximum and minimum temperatures. Figure 25 illustrates the diurnal charac-

teristics of mean LST before and after convolution; it appears that the variation in the

actual and modeled mean temperature is minimal.

Figure 26 illustrates the diurnal characteristics of Mean LST after kernel convolution.

The results indicate that variation in mean nighttime temperature exhibits a strong pattern



Figure 24. From Top to bottom and left to right represents the stages in Kernel Convolu-

tion for 23 February 2006 MODIS LST. The top left image represents the actual images

with minor variation in its LST. The top right image illustrates the intermediate process

in characterization. The bottom image represents the final image after characterization

using kernel convolution.



Figure 25. Diurnal characteristics of actual and modeled mean LST

of increase from April to August, and a gradual decrease thereafter. Such patterns were

not evident for mean daytime temperatures. Mean daytime temperatures does decline

during the months of January through March and between October through December.

But, this reduction in temperature does not follow a pattern, as in the case of nighttime

mean surface temperature. This may be due to the effect of other disturbances on surface

temperature during daytime.

Figure 27 illustrates the diurnal variation in pattern for maximum surface temper-

atures, i.e., difference between the daytime and nighttime maximum temperatures for

selected images. Within the span of four years only limited number of cloud free daytime

and nighttime LST were available. The analysis of such modeled LST images indicates

that there is an average difference of 14 C between the maximum daytime and maximum

nighttime temperatures across all seasons. The diurnal temperature is high during the

month of April where the difference is around 18 C and is minimum during July where

the difference is around 10 C. It should be noted that corresponding day and night images

were not available for the months of January, February and December.

Kernel convolution process does have its limitations. One such limitation is the

sensitivity of parameterization to the local mean (in this case mean LST). Variation in



Figure 26. Diurnal characteristics of mean surface temperature

Figure 27. Average month wise diurnal variation in maximum surface temperature



mean temperature will have an impact on the model results. Therefore, the algorithm

may not be best suitable for characterizing UHI over a large area. In such cases, presence

of more than one heat island, and drastic variation of temperatures within the region, may

have impact on results. Therefore, the process of kernel convolution should be limited to

smaller regions. Nevertheless, the resulting image and the subsequent conversion of UHI

into suitable Gaussian bi-variant functions will be valuable to scientists in compressing

information and comparing the effect in space and over time.

Results from the characterization of UHI for Marion County and its surrounding

areas can be classified into three categories based on the results obtained from kernel

convolution. The results from kernel convolution led to LST being characterized as

positive heat islands, negative heat islands and absence of heat islands.

Positive heat islands are those where the central core of the island is hotter than its

surroundings. This is similar to the typical heat island phenomenon. Figure 28 illustrates

such a heat island with examples from the results of positive heat island effect for Marion

County and its surroundings. In these images one can observe the presence of UHI in the

north of Marion County. The presence of one UHI is evident in the northern part of the

County.

Negative heat islands are those where the central core of the island is colder than

the surrounding areas. This is similar to inverse heat island effect, where temperature

gradually increases from the core of an island to its surrounding. In this case, the mean

temperature is higher than the core of the heat island and therefore, the magnitude is

usually lower than the mean. Such areas can also be defined as cold zones, i.e., areas

within the urban zone where temperature is usually lower than average for the city.

Figure 29 illustrates the presence of negative heat islands within the study area.

These negative heat islands may also be caused by an error within the MODIS LST

algorithm. In most images, the MODIS algorithm is designed to identify cloud cover

within the land surface and denote such areas as ’no-data’. In spite of the efficiency of the



Figure 28. Illustration of positive heat island effect as characterized by kernel convolution

method



Figure 29. Illustration of negative heat island effect as characterized by kernel convolution

method



Figure 30. Comparison of MODIS cloud prone LST before convolution and after convolu-

tion

algorithm in identifying and differentiating cloud prone areas within most images, the

algorithm failed in classifying clouds that were scattered over the 1 km pixel area yielding

a mixed pixel effect. The extent of variation in LST (as modeled by MODIS algorithm)

depends upon the spread and intensity of cloud cover. This leads the algorithm to assign

a probable temperature values to regions which exceed the possible range. For example,

there are instances where temperature values for Marion County and its surroundings

are less than 0 C even during Spring and Summer months. An example of such a case of

cloud cover before convolution and after convolution is presented in Figure 30.

From the Figure 30, it is evident that the kernel convolution method managed to

smooth values in areas which have relatively low temperatures based on their surrounding

values. But, the result of such smoothing did not aid the desired characterization of UHI.

As with the spatial filters of specified dimension, the kernel convolution method is also

influenced by the size of cloud cover within the image and uncertainty within LST as

modeled by MODIS for a particular region.



It was also evident from this analysis that once the percent cloud cover within a

certain region increases beyond a certain threshold, the characterization of LST becomes

meaningless. The exact percentage of cloud cover that could lead to such results could

not be ascertained in this study due to lack of sufficient data. Nevertheless, it is evident

from these results that it is not only percent cloud cover that impacts results, but, it is

also the distribution of that cloud cover. Figure 31 illustrates the effect of concentrated

cloud cover (cloud cover not evenly distributed over space) on UHI characterization.

Figure 32 illustrates the number of images which were classified into the three different

categories after kernel convolution. From the results, it is evident that the presence or

absence of heat island does not have any correlation with either month or season but

is only proportional to the number of relatively cloud-free images which were used for

analysis.

The largest number of images which have well defined UHI effect are from the months

of August and September, wherein due to minimal percentage cloud cover more than 10

images are available over a four year span. Apart from these two months, for the rest of

the months from April to December the number of cloud free images on an average is of

one image per month per year. The Figure 31 highlights the low probability of acquiring a

cloud-free image during the months of January, February, March and December, showing

that the average number of images that were acquired over a four year period is less

than one per month per year. These limitations prevent the detailed analysis of UHI

with respect to months and seasonality in this studuy area. Nevertheless, the extent of

MODIS images that would be available in the near future (over one decade) will allow

the possibility of a detailed analysis of the phenomenon.

This problem can be overcome by identifying the cloud prone pixels in space and

populating these cloud prone areas with realistic temperature values for that particular

time (day, month or season). This could be achieved by the following means: a) populating

temperature values within LST based on real-time ground observation, b) knowledge



Figure 31. Absence of heat island on LST with concentrated cloud cover



Figure 32. Monthwise distribution of number of positive, negative and absence of UHI

within selected relatively cloud free LST images

of the behavior of MODIS algorithm for the study area based on observation over

time (especially using 100% cloud-free data), c) populating the possible cloud covered

areas with indicative values based on average LST from observations over time, or d)

substituting the regions exceeding standard variation using indicative temperature values

based on associated land use or land cover parameters.

In this study, since options (a), (b) and (c) were not feasible due to the lack of required

data, option (d) was explored using normalized differential vegetation index (NDVI)

as one of the indicative parameters. In general, LST is inversly proportional to NDVI.

Therefore, an attempt was made to correlate the monthly average NDVI with the monthly

average LST to identify patterns that could be used to populate cloud-prone areas.

Month-wise temperature analysis was carried out for characterized surface tempera-

ture. The results were also compared with NDVI to identify the existence of any strong

correlation with respect to the UHI effect. Since the NDVI is more prominent for the study

area between the months of May through October, the image statistics of characterized



surface temperature from these months were used. In order to identify annual variations

the temperature and NDVI characteristics were distinguished based on their month and

year of acquisition. NDVI for the year 2003 was not available, therefore NDVI results from

the years 2004, 2005 and 2006 are presented in this research. The results of the analysis

for daytime and nighttime surface temperatures are presented in Figures 33 through 38.

The analysis of May and June daytime modeled surface temperature characteristics

with respect to NDVI indicate no strong correlation. NDVI for the month of May was

found to be almost constant for all three years (2004-06), with the mean being lower than

0.5 while in the case of June the mean is within the range of 0.55 to 0.6. Also, the standard

deviations of NDVI values are higher for May while they are relatively low for June. The

mean temperatures for early summer months, i.e., May and June, show a relatively varied

picture, with May 2004 exhibiting maximum variation. The result of temperature analysis

indicates that the mean and maximum temperatures are low in the years with maximum

variation.

Nighttime temperature analysis indicates a similar mean and maximum temperature

across all years except May 2004. The results also indicate that the difference between

the average of mean nighttime temperature and average of maximum nighttime tem-

perature is very low for May and June. Additionally, the ranges of variations evident

within nighttime temperatures for a given month are high in comparison with daytime

temperatures. This variation is higher in June than May. The reason for high variation

in surface temperatures could be the use of central air conditioning systems. These

air conditioning systems are usually located on the rooftops and generate more heat

contributing to the high variation. Nevertheless, a detailed analysis of such variation has

to be studied using ground survey techniques to understand the cause of such variation,

especially for nighttime surface temperatures.

Similar to May and June, the months of July and August indicate a relatively higher

NDVI with little variation. There is also some evidence of increase in outliers in July and



Figure 33. From left to right and top to bottom are box plots representing the distribution

of mean daytime surface temperature, maximum daytime surface temperature and NDVI

for the months of May and June respectively



Figure 34. From left to right and top to bottom are box plots representing the distribution

of mean nighttime surface temperature, maximum nighttime surface temperature and

NDVI for the months of May and June respectively



Figure 35. From left to right and top to bottom are box plots representing the distribution

of mean daytime surface temperature, maximum daytime surface temperature and NDVI

for the months of July and August respectively



August. The mean and average temperatures for the months of July and August were

found to be similar. The temperature profile September correlates with July and August.

While the temperature profiles for October correlate more closely with May, exhibiting

more variation, but yet maintaining monthly average temperature across all years.

In general, from the analysis of daytime temperature it is evident that maximum

variation in the average maximum temperature was during the month of May and

minimum variation in the average maximum temperature was in the month of October.

The months of July to September exhibited maximum temperatures in varying years.

In the case of nighttime temperatures, August and September were found to exhibit

maximum variation. Average maximum nighttime temperatures were in the months of

July, August and September and the minimum nighttime temperatures were observed in

October.

Space-Time analysis

The spatio temporal pattern of UHI was analyzed using a four dimensional visualization

technique. This visualization was done using ArcScene. In this analysis ASTER false color

composite (FCC) of band (3, 2, 1) was used as a base image along the x and y plane of the

visualization interface. The months from January to December were projected along the z

plane. The result from the model derived UHIs, i.e., the center of UHI was plotted onto

this x, y and z plane while colors and sizes were used to represent the fourth dimensions,

i.e., the intensity of UHI. This technique provided a visual understanding of the behavior

and intensity of UHI in space and in time. The results obtained from this analysis are

presented in Tables 31 to 32.



Figure 36. From left to right and top to bottom are box plots representing the distribution

of mean nighttime surface temperature, maximum nighttime surface temperature and

NDVI for the months of July and August respectively



Figure 37. From left to right and top to bottom are box plots representing the distribution

of mean daytime surface temperature, maximum daytime surface temperature and NDVI

for the months of September and October respectively



Figure 38. From left to right and top to bottom are box plots representing the distribution

of mean nighttime surface temperature, maximum nighttime surface temperature and

NDVI for the months of September and October respectively



Table 31

Modeled day time location and intensity of UHI

Date Lat Long Mean Temp Max Temp Intensity

3-Apr-03 578515.4 4424080.1 13.1 25.9 13

26-Apr-03 573200.5 4421954.1 22.1 24.5 2

27-Apr-03 574263.5 4421954.1 21.8 25.1 3

5-May-03 573200.5 4426206.0 23.9 26.9 3

13-May-03 574263.5 4420891.2 18.3 24.1 6

20-Jun-03 575326.4 4420891.2 27.1 30.0 3

27-Jun-03 577452.4 4416639.3 30.2 33.0 3

16-Jul-03 575326.4 4425143.1 25.9 28.9 3

17-Jul-03 578515.4 4434709.8 27.5 32.7 5

19-Jul-03 574263.5 4424080.1 29.1 33.5 4

25-Jul-03 574263.5 4423017.1 26.2 29.9 4

18-Aug-03 573200.5 4423017.1 28.2 32.4 4

19-Aug-03 573200.5 4421954.1 27.1 31.0 4

20-Aug-03 574263.5 4420891.2 29.7 33.9 4

23-Aug-03 574263.5 4421954.1 29.0 32.8 4

25-Aug-03 571074.6 4436835.7 29.7 33.3 4

5-Sep-03 574263.5 4430457.9 0.4 27.0 27

6-Sep-03 572137.5 4424080.1 23.6 28.3 5

18-Sep-03 573200.5 4421954.1 26.1 28.2 2

20-Sep-03 571074.6 4420891.2 23.2 25.5 2

21-Sep-03 579578.3 4437898.7 25.7 27.9 2

24-Sep-03 572137.5 4420891.2 24.5 26.6 2

12-Oct-03 574263.5 4420891.2 22.5 23.9 1



Table 31 – continued from previous page

Date Lat Long Mean Temp Max Temp Intensity

15-Oct-03 574263.5 4420891.2 17.4 18.4 1

19-Nov-03 581704.3 4426206.0 12.4 13.2 1

23-Mar-04 568948.6 4416639.3 9.7 15.6 6

5-Apr-04 572137.5 4414513.3 12.0 18.3 6

28-Apr-04 572137.5 4412387.4 13.9 24.7 11

3-May-04 573200.5 4417702.3 16.8 19.7 3

28-May-04 570011.6 4412387.4 1.9 27.7 26

31-May-04 574263.5 4421954.1 16.1 25.1 9

19-Jun-04 567885.7 4423017.1 21.2 26.9 6

20-Jun-04 574263.5 4423017.1 25.7 29.4 4

23-Jun-04 576389.4 4426206.0 26.6 30.2 4

15-Jul-04 573200.5 4425143.1 13.2 31.8 19

28-Jul-04 573200.5 4426206.0 26.7 32.1 5

6-Aug-04 575326.4 4426206.0 19.8 28.6 9

10-Sep-04 573200.5 4421954.1 29.0 31.5 2

19-Sep-04 577452.4 4423017.1 27.7 29.6 2

2-Dec-04 571074.6 4406009.6 7.4 8.2 1

3-Mar-05 576389.4 4420891.2 3.2 7.7 4

24-Mar-05 574263.5 4417702.3 14.1 15.2 1

4-Apr-05 568948.6 4413450.4 20.7 26.0 5

8-Apr-05 574263.5 4423017.1 21.0 22.6 2

4-May-05 571074.6 4423017.1 18.6 22.6 4

6-May-05 570011.6 4424080.1 15.4 27.3 12

29-May-05 571074.6 4423017.1 19.7 31.5 12

31-May-05 573200.5 4425143.1 16.8 28.2 11



Table 31 – continued from previous page

Date Lat Long Mean Temp Max Temp Intensity

16-Jun-05 576389.4 4421954.1 26.5 29.8 3

17-Jun-05 580641.3 4437898.7 23.0 28.9 6

29-Jul-05 573200.5 4423017.1 26.4 33.6 7

21-Aug-05 573200.5 4425143.1 30.3 35.7 5

2-Sep-05 573200.5 4425143.1 28.2 31.4 3

3-Sep-05 575326.4 4441087.6 27.8 31.1 3

4-Sep-05 573200.5 4425143.1 27.3 30.8 3

11-Sep-05 571074.6 4423017.1 29.9 32.3 2

13-Sep-05 570011.6 4425143.1 30.1 32.9 3

29-Sep-05 574263.5 4419828.2 19.9 21.5 2

1-Oct-05 576389.4 4420891.2 11.6 27.2 16

26-Jan-06 574263.5 4420891.2 5.9 7.0 1

23-Feb-06 573200.5 4418765.2 9.3 10.4 1

18-Mar-06 571074.6 4414513.3 4.0 11.2 7

4-Apr-06 573200.5 4423017.1 16.0 17.9 2

9-Apr-06 574263.5 4423017.1 19.8 21.6 2

18-Apr-06 574263.5 4423017.1 23.5 26.3 3

19-Apr-06 576389.4 4421954.1 21.6 25.8 4

23-Apr-06 572137.5 4418765.2 22.7 26.4 4

27-Apr-06 575326.4 4426206.0 11.1 25.2 14

20-May-06 575326.4 4425143.1 25.2 28.2 3

23-May-06 572137.5 4419828.2 23.3 28.3 5

3-Jun-06 574263.5 4425143.1 27.4 30.6 3

5-Jun-06 564696.7 4419828.2 17.9 31.9 14

14-Jun-06 570011.6 4427269.0 20.6 32.9 12



Table 31 – continued from previous page

Date Lat Long Mean Temp Max Temp Intensity

5-Jul-06 575326.4 4425143.1 25.5 29.6 4

7-Jul-06 576389.4 4423017.1 29.7 33.3 4

15-Jul-06 579578.3 4433646.8 29.7 32.8 3

4-Aug-06 572137.5 4423017.1 27.5 32.2 5

12-Aug-06 577452.4 4431520.9 27.1 30.9 4

15-Aug-06 573200.5 4424080.1 27.8 32.2 4

16-Aug-06 575326.4 4427269.0 15.8 30.0 14

20-Aug-06 573200.5 4419828.2 25.9 30.2 4

6-Sep-06 576389.4 4427269.0 24.9 29.0 4

9-Sep-06 574263.5 4423017.1 23.6 30.5 7

25-Sep-06 579578.3 4420891.2 21.3 24.0 3

27-Sep-06 574263.5 4418765.2 25.0 26.8 2

6-Oct-06 575326.4 4419828.2 18.4 20.1 2

7-Oct-06 578515.4 4416639.3 21.4 22.6 1

13-Oct-06 574263.5 4418765.2 12.3 13.5 1

22-Nov-06 571074.6 4419828.2 8.8 11.0 2

23-Nov-06 575326.4 4416639.3 10.6 12.4 2

Table 32

Modeled night time location and intensity of UHI

Date Lat Long Mean Temp Max Temp Intensity

15-Apr-03 575326.4 4427269.0 9.0 13.8 4.8

16-Apr-03 573200.5 4434709.8 8.6 15.2 6.6



Table 32 – continued from previous page

Date Lat Long Mean Temp Max Temp Intensity

23-May-03 575326.4 4427269.0 8.3 9.3 1.0

24-May-03 573200.5 4418765.2 5.2 10.1 4.9

2-Jun-03 573200.5 4419828.2 9.1 10.2 1.2

10-Jun-03 572137.5 4423017.1 14.4 15.7 1.3

21-Jun-03 572137.5 4426206.0 12.8 14.3 1.5

22-Jun-03 572137.5 4423017.1 14.3 15.6 1.4

17-Jul-03 572137.5 4424080.1 11.2 17.6 6.4

20-Jul-03 572137.5 4420891.2 17.6 18.8 1.2

25-Jul-03 574263.5 4428332.0 16.2 17.4 1.2

29-Jul-03 565759.7 4435772.8 11.5 17.1 5.7

30-Jul-03 571074.6 4424080.1 16.3 17.8 1.6

1-Aug-03 573200.5 4424080.1 17.8 20.0 2.2

13-Aug-03 571074.6 4425143.1 7.7 16.4 8.7

17-Aug-03 562570.8 4419828.2 10.1 21.6 11.5

19-Aug-03 573200.5 4426206.0 15.7 17.8 2.0

20-Aug-03 571074.6 4420891.2 15.1 17.5 2.3

21-Aug-03 574263.5 4420891.2 19.3 20.8 1.5

24-Aug-03 570011.6 4419828.2 15.9 18.0 2.1

25-Aug-03 573200.5 4427269.0 17.2 20.0 2.8

28-Aug-03 573200.5 4425143.1 11.5 22.2 10.6

5-Sep-03 570011.6 4419828.2 11.6 12.5 0.9

6-Sep-03 572137.5 4421954.1 13.2 14.6 1.4

7-Sep-03 572137.5 4424080.1 13.3 14.9 1.6

11-Sep-03 573200.5 4425143.1 17.6 19.1 1.5

17-Sep-03 574263.5 4426206.0 13.8 15.5 1.7



Table 32 – continued from previous page

Date Lat Long Mean Temp Max Temp Intensity

18-Sep-03 573200.5 4427269.0 13.7 15.4 1.7

20-Sep-03 573200.5 4428332.0 3.3 10.4 7.1

21-Sep-03 572137.5 4425143.1 6.9 9.5 2.5

24-Sep-03 573200.5 4427269.0 10.1 11.6 1.4

26-Sep-03 573200.5 4425143.1 7.3 8.8 1.5

9-Oct-03 571074.6 4424080.1 10.7 11.9 1.1

13-Oct-03 573200.5 4424080.1 8.2 9.4 1.2

3-Nov-03 574263.5 4436835.7 12.4 13.9 1.4

20-Nov-03 577452.4 4430457.9 5.3 6.2 1.0

3-Jun-04 566822.7 4414513.3 11.4 12.4 1.0

7-Jun-04 573200.5 4426206.0 15.1 17.9 2.8

23-Jun-04 574263.5 4427269.0 8.4 14.6 6.2

24-Jun-04 575326.4 4429394.9 15.0 17.8 2.8

30-Jun-04 571074.6 4411324.4 7.7 15.3 7.7

1-Jul-04 573200.5 4425143.1 2.4 17.9 15.5

16-Jul-04 571074.6 4424080.1 16.7 18.3 1.6

18-Jul-04 572137.5 4427269.0 15.1 18.2 3.0

28-Jul-04 573200.5 4424080.1 12.8 14.1 1.2

1-Aug-04 572137.5 4424080.1 13.6 19.1 5.5

2-Aug-04 577452.4 4428332.0 3.6 16.4 12.8

7-Aug-04 572137.5 4425143.1 12.6 14.5 1.9

9-Aug-04 573200.5 4428332.0 14.6 18.0 3.3

16-Aug-04 568948.6 4425143.1 11.7 14.5 2.8

22-Aug-04 566822.7 4419828.2 13.2 15.1 1.9

23-Aug-04 573200.5 4423017.1 17.4 18.3 1.0



Table 32 – continued from previous page

Date Lat Long Mean Temp Max Temp Intensity

31-Aug-04 573200.5 4421954.1 14.8 16.2 1.4

2-Sep-04 572137.5 4426206.0 16.4 18.1 1.7

10-Sep-04 571074.6 4425143.1 14.2 15.5 1.3

11-Sep-04 571074.6 4426206.0 15.3 17.2 1.9

13-Sep-04 574263.5 4423017.1 15.4 18.7 3.3

15-Sep-04 578515.4 4421954.1 12.3 19.0 6.7

18-Sep-04 573200.5 4426206.0 11.2 13.2 2.0

20-Sep-04 573200.5 4426206.0 11.9 14.1 2.2

26-Sep-04 573200.5 4421954.1 12.7 14.1 1.4

27-Sep-04 572137.5 4421954.1 11.6 13.2 1.6

30-Sep-04 573200.5 4423017.1 7.2 9.2 2.1

1-Oct-04 574263.5 4426206.0 8.5 10.1 1.6

4-Oct-04 576389.4 4434709.8 7.1 9.5 2.4

6-Nov-04 576389.4 4436835.7 2.7 3.9 1.2

16-Apr-05 575326.4 4431520.9 6.4 8.6 2.2

20-Apr-05 573200.5 4433646.8 11.8 15.0 3.2

1-May-05 568948.6 4419828.2 3.3 4.7 1.4

6-May-05 572137.5 4424080.1 6.6 8.0 1.5

7-May-05 574263.5 4421954.1 4.0 10.7 6.7

17-May-05 572137.5 4420891.2 7.9 9.0 1.1

29-May-05 573200.5 4421954.1 10.6 11.8 1.2

31-May-05 572137.5 4426206.0 13.6 14.6 1.0

17-Jun-05 572137.5 4421954.1 13.0 14.1 1.1

18-Jun-05 574263.5 4421954.1 12.2 14.2 2.0

19-Jun-05 572137.5 4424080.1 14.4 15.7 1.3



Table 32 – continued from previous page

Date Lat Long Mean Temp Max Temp Intensity

23-Jun-05 572137.5 4420891.2 17.4 18.3 0.8

4-Jul-05 572137.5 4404946.6 17.3 19.1 1.7

9-Jul-05 573200.5 4427269.0 17.3 19.2 1.9

10-Jul-05 573200.5 4426206.0 16.0 18.4 2.4

23-Jul-05 572137.5 4425143.1 21.5 23.2 1.7

29-Jul-05 574263.5 4424080.1 11.8 17.1 5.3

30-Jul-05 572137.5 4424080.1 17.5 19.0 1.4

31-Jul-05 574263.5 4429394.9 17.0 19.7 2.7

4-Aug-05 580641.3 4423017.1 0.1 20.8 20.8

10-Aug-05 570011.6 4429394.9 12.6 21.8 9.1

17-Aug-05 572137.5 4421954.1 17.7 19.2 1.5

28-Aug-05 580641.3 4423017.1 0.3 18.2 17.8

1-Sep-05 574263.5 4427269.0 15.9 17.2 1.3

2-Sep-05 574263.5 4419828.2 17.4 18.5 1.1

4-Sep-05 572137.5 4427269.0 15.1 17.0 1.9

5-Sep-05 575326.4 4431520.9 15.4 17.6 2.1

6-Sep-05 573200.5 4426206.0 16.1 17.8 1.7

11-Sep-05 573200.5 4426206.0 18.6 20.1 1.5

12-Sep-05 573200.5 4425143.1 17.4 18.6 1.1

13-Sep-05 573200.5 4427269.0 18.1 19.5 1.4

18-Sep-05 573200.5 4425143.1 14.0 15.7 1.7

22-Sep-05 574263.5 4427269.0 13.9 17.1 3.3

1-Oct-05 572137.5 4426206.0 9.8 11.2 1.4

6-Oct-05 571074.6 4428332.0 17.3 18.2 1.0

8-Oct-05 573200.5 4417702.3 2.8 9.3 6.5



Table 32 – continued from previous page

Date Lat Long Mean Temp Max Temp Intensity

15-Oct-05 574263.5 4427269.0 11.1 12.3 1.2

5-Apr-06 576389.4 4428332.0 2.7 3.8 1.1

9-Apr-06 573200.5 4423017.1 1.1 2.6 1.5

10-Apr-06 572137.5 4423017.1 2.7 4.1 1.4

24-Apr-06 572137.5 4419828.2 9.9 11.1 1.2

27-Apr-06 573200.5 4425143.1 4.3 5.8 1.5

3-May-06 572137.5 4425143.1 10.5 11.1 0.6

21-May-06 573200.5 4425143.1 9.8 10.8 1.0

23-May-06 572137.5 4426206.0 8.4 9.9 1.5

5-Jun-06 573200.5 4424080.1 13.2 14.5 1.3

6-Jun-06 574263.5 4424080.1 8.5 16.1 7.6

8-Jun-06 573200.5 4419828.2 17.3 18.1 0.8

30-Jun-06 575326.4 4426206.0 15.9 17.3 1.4

6-Jul-06 573200.5 4424080.1 14.2 15.9 1.7

7-Jul-06 572137.5 4425143.1 15.2 16.8 1.6

17-Jul-06 571074.6 4425143.1 22.6 24.6 2.0

19-Jul-06 568948.6 4425143.1 18.8 22.3 3.5

23-Jul-06 575326.4 4417702.3 16.0 17.3 1.2

24-Jul-06 572137.5 4423017.1 17.4 19.1 1.8

5-Aug-06 571074.6 4421954.1 18.6 19.4 0.8

13-Aug-06 572137.5 4415576.3 16.1 17.6 1.4

16-Aug-06 571074.6 4424080.1 17.2 18.5 1.3

21-Aug-06 571074.6 4421954.1 15.8 17.5 1.8

4-Sep-06 572137.5 4421954.1 8.3 14.1 5.8

7-Sep-06 574263.5 4424080.1 8.7 16.7 8.0



Table 32 – continued from previous page

Date Lat Long Mean Temp Max Temp Intensity

8-Sep-06 572137.5 4428332.0 14.0 16.3 2.3

15-Sep-06 574263.5 4429394.9 10.2 15.6 5.4

16-Sep-06 572137.5 4426206.0 14.6 16.2 1.6

17-Sep-06 573200.5 4427269.0 15.7 17.0 1.2

26-Sep-06 573200.5 4425143.1 10.3 11.0 0.8

29-Sep-06 568948.6 4418765.2 4.3 5.3 1.0

2-Oct-06 572137.5 4426206.0 13.5 15.0 1.5

7-Oct-06 571074.6 4423017.1 7.7 9.1 1.5

8-Oct-06 571074.6 4427269.0 6.6 8.2 1.6

From the results it was observed that, the UHI derived from the MODIS data was

contrary to the expectation that land cover of a certain type would radiate relative heat

given a constant temperature. From earlier analysis by Rajasekar and Weng (2009a)

using high resolution LST images, minor variation in the UHI centers was evident. This

variation was attributed to the change in land use and land cover. But unlike the results

from high resolution image analysis, in this study, the variation in UHI centers were more

than 5 kilometers. Additionally, this variation in the centers of UHI is evident in both

daytime and nighttime surface temperatures and does not have a pattern corresponding

to either month or season. This variation could be either due to the effect of scattered

cloud-cover, especially near the actual center of UHI, leading to a shift. This variation

in UHI centers could also be due to the nature of the sensor. Regarding the latter, since

spatial resolution of MODIS LST is 1 km x 1 km, there are more chances of mixed pixel

effects and subsequent dilution of actual surface temperature.



Figure 39. Daytime UHI projected over the ASTER false color composite (FCC)



Figure 40. Daytime UHI along the north - south direction presented in 3D perspective

Figure 41. Daytime UHI along the east - west direction presented in 3D perspective



Figure 42. Nighttime UHI projected over the ASTER FCC



Figure 43. Nighttime UHI along the north - south direction presented in 3D perspective

Figure 44. Nighttime UHI along the east - west direction presented in 3D perspective



Figures 39 through 41 make it evident that the change in center of UHI for daytime

images across all months are greater along the North-South direction rather than East-

West direction. One of the main reasons for such occurrences could be the clear variation

in the land use and land cover pattern to the North of Indianapolis.

The city of Indianapolis has been undergoing rapid development and therefore

expansion, over the last decade. There is evidence of a slow transition whereby peri-urban

areas become urban and surrounding rural areas slowly sub-urbanize. This development

has also brought about land cover transition in and around the city. Such land cover

transition, especially from pervious surfaces (less heat radiation) to impervious surfaces

(relatively more heat radiation) is greater to the northern part of the city. There are many

reasons for expansion of the city northwards rather than to along the south, one being

the proximity to Chicago. On one hand the northern part of the city is rich in forested

areas on both the East and West. On the other hand, there are also two lakes present in

the northeast and northwest of the city (refer Figure 39). These conditions, along with the

land cover restriction and high real estate prices compared with the regional economy,

make these places less attractive for rapid development. The restriction in land cover,

presence of forested lands and water bodies lead to a relatively cooler surface temperature

in northwestern and northeastern parts of Indianapolis, in comparison to central and

northern areas of the city. Therefore, there is evidence of high variation in the location of

the centre of UHI along the North-South in comparison with East-West direction. Similar

variation is also evident with nighttime UHI (refer Figure 42).

The results of the daytime analysis indicate that variation in UHI magnitude is high

during spring, summer and autumn months. The magnitude of UHI is particularly larger

during summers, while, results from nighttime UHI analysis indicate that there are less

variations in UHI magnitudes across all seasons. More than 50% of the nighttime UHI

has a magnitude of 1-2 C. During autumn, especially in the months of September and

October, there is increased variation in the magnitude of daytime UHI ranging from 1 C



to over 13 C, whereas such clear transitions are not evident for the nighttime UHI.

To further understand the locations of UHIs, the centroids of the heat islands were

projected onto a high resolution visible imagery as provided by Google Earth and

visualized. The centroids of the UHIs were classified into categories based on their

intensity. Within the 3D representation the x, y and z were substituted with the location

parameter (x, y) and intensity values (z) to analyze the characteristics of UHIs. The results

from this analysis are presented in Figures 45 through 48. The results indicate the absence

of a correlation between the UHI centroids and the month/seasons. This is probabiliy

due to the fact that many of the images which were suitable for analysis are from late

spring to early fall. Much of the variation in LULC observations around Marion County

is experienced during winters and early spring. Most of the images from these seasons

were not used for the analysis due to the presence of cloud cover in excess of 30%.

From the results it is evident that most of modeled UHIs had their centroids located

to the North of Interstate-69. Some of the earlier studies carried out by Rajasekar and

Weng (2009b); Weng et al. (2011) focusing on implementation of non-parametric modeling

on medium resolution images such as Landsat and ASTER indicate the presence of the

center of UHI close to Interstate-65. An analysis of MODIS imagery elucidates that only

one scenario, in the month of December, exhibited similarity to the results from medium

resolution images.

The variations in results presented in this study are likely to be due to two reasons.

First, the change in resolution, i.e., from 15 m in the case of medium resolution images

to 1 km in case of MODIS, has an effect on the characteristics of UHI. It is possible to

capture the micro characteristics of the urban landscape with the increase in resolution

(i.e., decrease in scale). Nevertheless, the use of medium resolution imagery may limit the

extent of the study area (Rajasekar and Weng, 2009b). Second, the change in the centroids

of UHI from medium resolution images could be due to the inclusion of a larger area,

which may have influenced the characteristics of the UHI. While using low resolution



Figure 45. Centroids of UHI maximum temperature: A representation over Marion

County



Figure 46. Centroids of UHI intensity: A representation over Marion County



Figure 47. Centroids of UHI with intensity: A view from west of Marion County. The

red centroids are of UHI intensity > 8 C, the orange centroids are of UHI intensity > 4 to

8 and the yellow centroids are of UHI intensity 0 to 4. The numbers displayed within the

image correspond to the month in which the LST was acquired (Image source: Google)

Figure 48. Centroids of UHI with intensity: A view from east of Marion County. The red

centroids are of UHI intensity > 8 C, the orange centroids are of UHI intensity > 4 to 8

and the yellow centroids are of UHI intensity 0 to 4 C. The numbers displayed within the

image correspond to the month in which the LST was acquired (Image source: Google)



images the possibility of capturing micro variations in the surface heat signature is

drastically reduced. This uncertainty coming from mixed pixels is complimented by

the option of covering a larger area. Depending upon the study area, the use of low

resolution images such as MODIS may provide us with a better understanding of the

phenomenon at a broad scale.

Even though this research concentrated on the theory of modeling UHI and used

MODIS LST as case, a detailed analysis of MODIS LST with respect to the study area is

required for further understanding the behavior of UHI in space and over time

5.4 Summary

In this research, varying information sources from the raw data have been developed

to analyze the behavior of UHI in space and over time. Three main data sets that were

extracted from the remotely sensed images are LULC, vegetation and surface temperature.

The variables which were extracted from secondary information include population

density grid. This research analyzed images of varying spatial and temporal resolution

for modeling and monitoring the UHI phenomenon.

The techniques of Bertin’s visual variables were effective in identifying urban regions

which contribute to the heat island effect. In spite of advancements in the field of personal

computing, the time required for the software to run the animation was too high, making

these techniques less efficient for personal computing based analysis. The land use and

land cover that were analyzed within this study included residential areas, commercial

areas, roads, open areas and water bodies. The results indicate that urban land cover

has a significant effect on temperature profiles. The results indicate that, even though

land surface temperature is based on the capacity of the surface to absorb and radiate

heat, the presence or absence of certain land cover elements within a defined space will

have an effect on its radiation profile. For example, it was noted that at a macro level,

that residential areas which were closer to commercial buildings and open impervious



parking spaces tend to be influenced by the surrounding higher temperature irrespective

of their green surrounding. This can also be due to the mixed pixel effects but the degree

of influence needs to be analyzed in much detail.

In this research, association rule mining algorithm was successfully modified to in-

clude spatial information. Additionally, in order to compare different spatial datasets

representing the same region over space but from different time, a standardization proce-

dure was developed and implemented. In this study LST as derived from three sensors

were converted into interval data for use within the association mining algorithm. This

was made possible through quantile classification of the data sets. To have a deeper

insight , the results from quantile classification were compared with equal interval classi-

fication results to throw light on the effect of classification on the results of association

mining algorithm. The association rule mining algorithm was executed by considering

various permutations and combinations of datasets. The initial model was experimented

using LST and NDVI information from ASTER in relation to the land use land cover

and demographic indicators. Similarly, the succeeding models were experimented taking

into consideration the LST and NDVI information from Landsat and MODIS in relation

with land use land cover and demographic indicators. The results indicate that while

generalization of rules is possible using low resolution images specific rules could only

be extracted using medium resolution images. On the other hand, attempts to extract

specific rules will lead to low support of the rules due to the complexity of the urban

terrain.

Within the macro model, a total of 2922 MODIS LST images were considered for

analysis. From this large image set only a portion was suitable for analysis as the area

was prone to frequent cloud cover. The LST with minimum cloud cover (< 30%) was used

for characterizing UHI using the non-parametric kernel convolution model as described

within the section on methodology. The non-parametric modeling aided in characterizing

the UHI in space. The kernel convolution process does have its limitations. One such



limitation is the sensitivity of parameterization algorithm to the local mean (in this case

mean LST). Variation in mean temperature will have an impact on the model results.

Therefore, the algorithm may not be best suitable for characterizing UHI over a large

area. Results from characterization of UHI for Marion County and its surrounding areas

were classified into three categories. They were positive heat islands, negative heat islands

and absence of heat islands. The characterized LST images were then analyzed with

respect to monthly average NDVI to identify patterns. Due to the low resolution of LST

and possible mixed pixel effect no strong correlation between LST and NDVI was evident.

Nevertheless, when a similar approach is carried for medium to high resolution images

the possibility of a correlation is likely to exist. From the analysis of daytime temperatures

it was evident that maximum variation in the average maximum temperature was during

the month of May and minimum variation in the average maximum temperature is in the

month of October. The months of July to September exhibited maximum temperatures

sometimes, but were not constant across time. In the case of nighttime temperatures, the

months of August and September were found to exhibit the maximum variation. The

average maximum nighttime temperatures were found to be in the months of July, August

and September and the minimum nighttime temperatures were observed in the month of

October. The results obtained were then analyzed for spatio temporal patterning of UHI

using visualization techniques. It was evident from the results that changes in center of

UHI for daytime images across all months are more along the North-South direction

in comparison to the East-West direction. One of the main reasons for such an occurrence

could be the clear variation in the land use and land cover pattern along the North

of Indianapolis. The results from the daytime analysis indicate that variation in UHI

magnitude is high during the spring, summer and autumn months. The magnitude of

UHI is more during the summers. While, results from nighttime UHI analysis indicate

that there are less variations in nighttime UHI magnitude across all seasons. More than

50% of the nighttime UHI has a magnitude of range 1-2 C. During autumn, especially



in the months of September and October, there are indications of high variation in the

magnitude of daytime UHI ranging from 1 C to over 13 C, whereas such clear transitions

are not evident within the nighttime UHI.

The next chapter briefly summarizes conclusions, describes the significance of this

research and its possible contribution to the academia. A section within the chapter

also outlines future research possibility using methodologies experimented with in this

research.
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CHAPTER 6

CONCLUSION

The effect of urban heat islands in space and in time was analyzed within this research

using exploratory and quantitative models. Visualization techniques including animation

was experimented with to develop a mechanism to view and understand the UHI over

a city. Association rule mining models were implemented to analyze the relationship

between remote sensing images and GIS data. This model was implemented using three

different remote sensing images i.e., ASTER, Landsat and MODIS. The effect of the spatial

resolution on the model and the phenomenon were analyzed in detail to determine

variables which strongly associate with LULC in space and in time. Non-parametric

process convolution model was developed and was used to characterize UHI from MODIS

time series images. The resulting characterized images were used to study the relationship

between LULC and UHI. This chapter highlights the outcomes of the research, its key

contribution to the scientific community and discusses the way forward.

This chapter is divided into three sections. Section 6.1 summarizes the results and

their conclusion. Section 6.2 provides an overview of the research and discusses the

problems and pitfalls that were experienced during the course of this research. This

section also provides possible options to avoid such problems if the elements of this

research need to be replicated. Section 6.3 of this chapter provides the future research

direction. This section first highlights the possible research that could be carried out

within the urban heat island framework using the models and methodologies that were



developed within this research. The later part of this section highlights the application

of the theoretical frameworks which were developed on other applications and research

agendas in the field of spatial science.

6.1 Conclusion

Exploratory data analysis

Within exploratory analysis, maximum, minimum and mean temperatures obtained for

land cover types such as residential, commercial, water bodies, open lands and roads were

analyzed. A thermal image was superimposed over high resolution true color composite

image to create a false three-dimensional composite. In this image, colors of objects in the

image were true color and their extrusion along third dimension was done using LST.

Results indicate that around 50% of residential areas are in mean temperature range..

In spite of their green surroundings residential areas that were near to commercial

buildings and open impervious parking spaces had higher surface temperatures.

Commercial buildings within downtown Indianapolis exhibited more heat and RCA

Dome had the least skin temperature in that area. This can be attributed to the color and

structure of the roof and the material used for its construction. Open parking areas also

exhibited relatively high temperature. Skin temperature around downtown was found

to be above local mean except for the RCA dome at central Indianapolis. Additionally,

all sky scrapers around central Indianapolis exhibited temperature lesser than mean

temperature of Marion County due to their roof type. Also most of these buildings are

relatively tall therefore the shadow cast by them limits the sun’s heat from reaching the

ground. Detailed analysis of the aerial image helped conclude that roof type negatively

affects heat radiation budget of buildings, while air conditioning elements over roof tops

positively affects the radiation.

Road sections and water bodies near the downtown Indianapolis were analyzed.



Water bodies exhibited less heat and the temperature profile of roads were equivalent to

mean heat level (Marion County). It was deduced that the location of roads and material

used for construction are key indicators which affect radiation.

Association rule mining

An algorithm to extract association information from spatial dataset (inclusive of raster

and vector data) was developed and implemented. In this analysis, the datasets used were

normalized to facilitate comparison. The LST was derived from three different sensors

namely ASTER, Landsat and MODIS. This was considered for analysis along with land

use land cover (raster) and demographic information (vector).

In order to successfully execute the association mining, rational data were converted

into interval data types. Sensitivity analysis brought out results that the clearest clas-

sification of the LST images was possible through quantile classification. While equal

interval classification made the outliers or small scale anomalies which are inclusive

of variations evident.. Natural breaks and standard deviations classifications were also

experimented with but they did not demonstrate satisfactory results. The numbers of

classes were limited to 10 to avoid over fitting and under fitting of results. NLCD 2000

and Land Zoning Map were used without much modification. Demographic information

was normalized to a scale of 1 to 10 to match the raster data classification.

Results from the analysis of ASTER derived information indicate that association of

LST with NDVI is not linear. This can be due to the nature of vegetation cover. A crop can

have a poor health therefore a low NDVI but can still provide sufficient roughness over

its surface to prevent absorption or radiation of heat. Land cover type namely deciduous

forest (DE), emergent wetlands (EW), open water (OW), shrubs (SS) and woody wetlands

(WW) were found to be associated with low LST. The woody wetlands were found to be

more strongly associated with low LST than open waters. Land cover classes including

pastures (PA), evergreen forest (EV), grasslands (GR), and developed low intensity (DLI)



along with developed medium/high intensity demonstrated partial association with Low

LST.

ASTER-derived LST was found to be strongly associated with land use including

airport, agriculture, low density housing, industrial, park and special uses. The occurrence

of agriculture and airport within the same classification is mainly a seasonal characteristic.

LST of higher temperature were found to be associated with commercial zones, central

business district, hospitals, high-density housings, medium-density housings, university

and historical preservations.

Demographic indicators especially medium family size was found to be associated

with higher LST. Also, low to medium-LST demonstrated a strong association with the

following indicators namely low-intensity developed land which includes areas with a

mixture of constructed materials and vegetation, high NDVI in the range of 0.18 to 3.00,

high average household size, low vacant areas (less than 10%) and low-population density.

This infers that households with large family size generally prefer to stay in suburban

areas or areas with more open space or areas with high green space. These spaces have

low radiation capacity and therefore may contribute little to the local heat effect. It was

also found that majority of people who have relatively large family size and living in

areas with relatively low-thermal radiation zones were people with mean age range of 31

to 40. These areas were also found to be consisting of fully occupied buildings with high

confidence (91.3%). Highly-developed areas (NLCD) where people reside or work in high

numbers are found to have strong association with relatively higher land surface thermal

characteristics. This relationship exists with support of around 19.6% and confidence of

84.2%. These highly-developed areas (NLCD) were also found to be mostly composed of

low-density housing (Zone).

The results from the Landsat ETM+ derived LST and NDVI information indicated

similar characteristics as that of ASTER. Additional association rules captured using

Landsat data include the association of LST with DHI, DMI and DLI land cover classes



with confidence of 83%, 96% and 98% respectively. LST was found to exhibit a strong

association with deciduous forest (confidence of 92%), evergreen forest (84%), grassland

(81%), developed open spaces (90%), pastures (96%), crops (89%) and shrubs (95%).

Barren land and emergent wetlands were also found to be associated with temperature

ranges similar to that of woody wetlands with confidence of 99% and 95% respectively.

The mining algorithm aided in capturing the association of Landsat derived LST

with vegetation, high intensity developed, low density housing, high family size, high

household size and low population density with high confidence (>80%). Degrees of

association of indicators varied with variation in LST. This variation was more evident

within demographic indicators such as average family size, average household and

population density. In 20% of the cases, associations of indicators with LST were not

constant. In around 50% of the cases, association of LST with family size, household size,

median age and high population density were found to exhibit an inverse relationship.

From these results, it was inferred that people who are in their mid 20s to early 30s

have relatively small family/household size prefer to stay in highly populated areas.

These areas are usually towards the city center and are composed of less tree cover

thereby contributing to more radiation. Overall the rules indicate that population density

is associated with LST. But, this association holds true only for temperatures within a

certain range (low to medium). Beyond specific ranges the existence of relationships have

weak confidence levels (below 10%) therefore reducing the possibility of generalizing

many of the rules that were extracted.

The variation in results from ASTER and Landsat derived LST may be due to the

spectral characteristics of the sensors. Since there is a lack of strong rules to support the

LST with NDVI, in future studies land cover characteristics have to be studied in detail

with respect to their radiation properties and possible percentage of mixed pixels within

the derived information to arrive at generalized rules for particular months/seasons

within a year.



Unlike ASTER and Landsat, the LST and NDVI information derived from MODIS

demonstrated association. Rules derived indicate the presence of a linear relationship

between NDVI and LST. Even though many of the NDVI classes were associated with

more than one LST classes, in general low NDVI classes were associated with high LST

classes and vice versa with confidence ranging between 76

The inverse linear relationship between MODIS derived NDVI and LST was also

evident within the association mining results obtained through the quantile classification

dataset. In this case, even through a linear relationship was evident; the association of

each of the NDVI classes was evident with more than one LST class. Based on the results

obtained from ASTER, Landsat and MODIS data one can infer that NDVI is associated

with LST but the relationship is usually non-linear in high resolution images and tends to

become linear with the lower resolution images. Furthermore, the NDVI of a particular

range were not found to exhibit similar thermal absorption or radiation characteristics.

The nature of the relationship between NDVI and LST was made evident through the

results of the association mining algorithm. Nevertheless, a detailed characteristic of

different urban features will have to be mapped at both low and high scales to generalize

their thermal behavior.

The LST dataset and land use zoning were able to demonstrate strong association

rules in comparison with the land cover dataset. From the results it was evident that

agriculture zone was associated with medium LST with confidence of 94%. Central

business district and historical preservation areas exhibited association with high LST

with a confidence of 91% and 100% respectively.

Descriptive analysis

Total of 2,922 MODIS LST images were analyzed for the study of UHI in and around the

city of Indianapolis. From this large image set only a portion was suitable for analysis as

the area was prone to frequent cloud cover. Further, the MODIS algorithm has trouble



characterizing LST over areas which are covered with snow or water cover. Therefore it

was ensured that the images selected for analysis did not exceed a maximum of 30

The availability of cloud free images varied within the study area. This situation was

the worst for the months of January and February when the snow cover is usually high.

Summer showers also have an impact on LST especially during the months of May, June

and July. For the city of Indianapolis and its surrounding, the best time to acquire the

LST image for UHI analysis are the months of April followed by August to October.

The results from selected LST indicate a variation in the intensity. The variations

in mean and maximum temperatures were evident within the daytime and nighttime

images. The results from daytime temperatures indicate that the variations in mean

temperatures are greater than the variations in maximum temperatures. Variation in the

mean daytime temperature is more during spring and summer months in comparison

with autumn and winter months.

The results from the nighttime temperatures exhibited less variation in comparison to

results from daytime temperatures. In the case of nighttime LST, maximum variation was

evident for the month of April followed by July and October. These are transition months

between seasons i.e. from winter to spring, summer to autumn and autumn to winter.

From the results, it can be inferred that the nighttime temperature patterns are sensitive

to the change in seasonal temperatures.

It was also evident from the results that the magnitudes of LST temperature difference

are higher during daytime in comparison with nighttime. The magnitude of temperature

difference is highest during June for daytime LST and it is highest during the month of

August for nighttime LST. The average magnitude is around 9.2 C with a variation of 3.5

for daytime LST and the average magnitude is 2.7 C with variation of less than 1 C for

nighttime LST. This magnitude may not be necessarily corresponding to the magnitude

of UHI but provides us with a range of variation possible over the study area irrespective

of the month, season or year. The variation in temperature is a matter of concern as old



people and children are vulnerable to these variations. They are likely to experience

severe stress in these high magnitude heat pockets.

The process of kernel convolution aided in characterizing the image while maintaining

its mean temperature. This process demonstrates the effectiveness of the algorithm to

identify the presence of UHI phenomenon by exaggerating and smoothing the background

noise where necessary. The degree of such smoothing can be controlled by the users based

on their knowledge and understanding of the phenomenon. This degree of smoothing

varies from 0 to 100, where 0 is likely to produce an image similar to the original LST

and the number 100 is likely to produce an image where the variation within the image

is equal to the mean. The results from the convolution maintained the mean temperature

of the LST images while characterizing the heat island through reducing/exaggerating

the variation between the maximum and minimum temperatures.

Analysis of modeled LST exhibited an average difference of 14 C between maximum

daytime and maximum nighttime temperatures across all seasons. The diurnal tem-

perature is highest during the months of April where the difference is around 18 C

and is least during the July where the difference is around 10 C. It should be noted

that corresponding day and night images were not available for the months of January,

February and December.

Results from kernel convolution helped characterize LST as positive heat islands,

negative heat islands and absence of heat islands. Positive heat islands are heat islands

where the central core of the island is hotter than its surroundings. Negative heat islands

are heat islands where the central core of the island is colder than the surrounding. From

the results it is evident that the presence of heat island or absence of heat island does not

have any correlation with either the month or the season but is only proportional to the

number of relatively cloud free images which were used for analysis.

Analysis of May and June daytime modeled surface temperature characteristics with

respect to NDVI indicates that no strong correlation exists. Results from nighttime tem-



perature analysis indicate that difference between average of mean nighttime temperature

and average of maximum nighttime temperature is very low for May and June. Further-

more, variations evident within nighttime temperatures for a given month are higher

in comparison to daytime temperature. This variation is higher for June in comparison

with May. One of the possible reasons for much variation in surface temperatures could

be due to use of air conditioning systems (centralized systems which are located on the

roof of buildings) contributing to skin temperature. In general, from analysis of daytime

temperature, the highest variation in average maximum temperature was evident for the

month of May and least variation in average maximum temperature was during month

of October. In the case of nighttime temperatures, the months of August and September

were found to exhibit maximum variation. Average maximum nighttime temperatures

were found to be in the months of July, August and September and minimum nighttime

temperatures were observed in the month of October.

The spatio-temporal pattern of the UHI was analyzed using a four-dimensional

visualization technique. This visualization was done using Arc Scene. The result from the

model derived UHIs i.e. the center of the UHI was plotted and colors, sizes were used to

represent the fourth dimension i.e the intensity of UHI. This technique provided a visual

understanding of the behavior and intensity of UHI in space and in time.

The changes in center of UHI for daytime images across all months are more along

the North-South direction in comparison to the East-West direction. One of the main

reasons for such occurrences could be the clear variation in land use and land cover

pattern along the North of Indianapolis. The city of Indianapolis has been undergoing

rapid development. These developments have brought about land cover transition in

and around the city. Land cover transition especially from pervious surfaces (less heat

radiation) to impervious surfaces (relatively more heat radiation) is more along the

northern part of the city in comparison to its southern Part. There are many reasons for

the expansion of the city northwards rather than along the south. One of the reasons



is proximity to Chicago. The northern part of the city is rich in forested areas on both

east and west also, there are also two lakes present in the northeast and northwest

of the city. These conditions along with land cover restrictions and high real estate

prices in comparison to the regional economy make these places less attractive for rapid

development. The restriction in land cover, presence of forested lands and water bodies

lead to relatively cooler surface temperature in comparison to the central and northern

areas of the city. Therefore, there are evidences of high variation in the location of UHI

along the North-South in comparison with East-West direction. Similar variation is also

evident within nighttime UHI.

The spatio-temporal analysis of UHI including its magnitude and distribution aided in

visualizing the behavior of the phenomenon over space and time. The results indicate that

during autumn, especially in the months of September and October, there are variation in

the magnitude of daytime UHI ranging from 1 C to over 13 CO ; while, the results from

nighttime UHI analysis indicates no such seasonal dependence exists. More than 50% of

the nighttime UHI has a magnitude of range 1-2 C. Such spatio-temporal knowledge has

the potential to be extended further and can be used for various applications including

land use land cover planning, building design and city planning.

6.2 Discussions

Exploratory data analysis

This dissertation has aided in addressing the issue of UHI not only with respect to

bio-physical dimensions but also from the human environment interaction perspective.

The latter is more relevant to the current scenario with increase in the overall energy

consumption and its demand. Other factors such as quality of the environment especially

the increase in pollution within urban areas adds to the existing stress. The association

study which was researched upon as a part of this study would aid in addressing certain



indirect relationships of UHI with respect to other phenomena. The models developed

within this research are expected to aid environmental scientists in examining the UHI

phenomenon not only at a local level but also at a global level.

The method developed using abstract modeling is an effective means for dissemination

of UHI information to the local users. It can be used in future to help users to have a

virtual walk over the city of Indianapolis and relate to the difference in heat radiated by the

various familiar landmarks around the downtown Indianapolis. Later, the presentation

can be further improved upon by displaying parallel information (along with the current

one) of depicting the city with actual terrain elevation; this would facilitate the common

public in relating to the places and objects.

Association rule mining

The association mining algorithms extended to the spatial data sets have the potential

to extract knowledge from nominal, ordinal, interval and ratio data sets. Nevertheless,

selection of appropriate classification type has an effect on the results. In this study several

classification types were explored before using quantile and equal interval classification

for the study of UHI. The use of similar classification methods may prove to be effective

in understanding the association within spatial data, but there are likely chances that

other methods of classification may also prove to be more effective depending upon the

data that needs to be analyzed, this could be the possibility of further research.

In this study, vector information was converted to raster information for standardizing

input data sets. Such rules can also be executed for vector datasets only where such

conversion may not be necessary. It is to be noted that normalization is the key to

association mining of the spatial data sets. There is possibility of high variation in

radiance/ reflectance of elements over space in time. This problem was address through

normalization of the indicators. Normalization has ensured effective comparison of the

elements in this study, while opening scope of further comparisons in future research.



Also, in case of spatial data analysis the relationship between support and confidence

was found to be inversely proportional. This was mainly due to the high variation in land

use land cover within urban sprawl. In this study, as a sample case, the Aprori algorithm

for information mining was used. This algorithm was selected based on its effectiveness

in capturing the support and confidence within the given data set. But, other algorithms

of association mining can also be explored in future and they may prove to be equally

effective depending upon the objective of the study.

The rules obtained were inferred and discussed within this study based on a com-

prehensive knowledge of the study area. Such inferences are required to rationalize and

throw light on the support and confidence obtained for any given data sets. Lack of

comprehensive knowledge of the study area may lead to an inability to extract knowledge

from the support and confidence information. Even though much of the process can

be automated, the rationalization of the information obtained to generate knowledge

about the urban phenomenon still depends upon scientist expertise. Therefore, there is a

strong need for the identification and documentation of the mixed pixel effects. This can

only be documented through ground verification with respect to indentified rules. Such

documentation might provide urban scientists with rich source of information to base

their knowledge extraction processes. Due to the complexity of the urban terrain with

variation in the type of construction materials used within the built environment, the

process of ground verification and contextualizing the information will be a continuous

process.

Descriptive analysis

Number of images that can be obtained from MODIS sensor is quite large. LST image

product of MODIS aids in UHI monitoring. Daytime and nighttime image products

also provide an option of studying diurnal characteristics of UHI. But unfortunately, the

presence of clouds, water on ground and snow cover (depending upon geographical area)



will pose problem in continuous monitoring of UHI. In this research, characterization

of negative heat island effect and absence of heat island in observed images was mostly

due to the presence of scattered clouds, water on ground and snow cover. In this study,

high variation was identified during months of April. This can be due to the seasonal

transition i.e. transition from winter to spring where there could be days of cold weather

followed by pleasant weather. Such variations might impact the characteristics of the

LST. For Indianapolis, the transition from winter to spring is usually complete by April

end. This led to little variation during the month of May. In case of June and July, these

are summer months which are characterized by summer showers including extreme

conditions favoring tornados along the periurban areas of Indianapolis. Such weather

does not last for long time but contributes to high variation in the mean temperatures.

The results indicate that such variations can lead to an average temperature difference of

over 12 C.

Contrary to the expectation that land cover of certain type would radiate relative heat

given a constant temperature, UHI derived from MODIS data did vary spatially. From

earlier analysis using high resolution LST there was evidence of minor variation in center

of UHI. This variation was attributed to change in land use and land cover. But unlike

results from high resolution image analysis, variation in center of UHI has been more

than 5 kilometers in case of MODIS. This variation in center of UHI is evident in both

daytime and nighttime surface temperature and does not have a pattern corresponding

to either the month or the season. Therefore, this variation could be either due to the

scattered effect of cloud on certain areas, especially near the actual center of UHI leading

to the shift or this could be due to the nature of the sensor. Regarding the later, since

MODIS LST is of 1 km x 1 km resolution there are more chances of mixed pixel effect

and subsequent dilution of the actual surface temperature. The mixed pixel effect and

the low resolution of the MODIS LST product are some of the reasons for not being able

to establish its relationship with the associated NDVI product from MODIS. ct are some



of the reasons for not being able to establish its relationship with the associated NDVI

product from MODIS.

Overall this research aided in effective characterization of UHI and its spatio-temporal

analysis. Research achievements include (1) an association rule mining algorithm for

quantitative analysis of the relationship between Land Surface Temperature (LST) and

bio-physical parameters, (2) a non-parametric process convolution model to effectively

characterize and analyze UHI and (3) a technique to visualize the urban heat. The

intellectual merits of these methods are two-fold; first, it will be a forerunner in the

development and implementation of association rule mining algorithm within remote

sensing image analysis framework. Second, since most of the existing UHI models are

parametric in nature, this non-parametric approach is expected to overcome many existing

problems within characterization and analysis. The parametric models pose problems (in

terms of efficiency, since the implementation of such models is time consuming and needs

human intervention) while analyzing UHI effect from multiple imageries. These proposed

models are expected to aid in effective spatial characterization, facilitate temporal analysis

and monitoring of UHI phenomenon.

6.3 Future Research

The application of methods developed can range from research within the urban heat

island framework to research within spatial science in general. Listed below are different

areas of future research that are possible using the methods which were experimented

and discussed within this research.

Further directions for research within the UHI framework include the ground verifica-

tion of results that were obtained through this study. Much of the association relationships

that were established within this study are based on satellite measurements and other

secondary source of information. Even though most of the discussions in this study

are based on the proficient knowledge of the study area there is need for verification of



satellite derived land surface temperature with actual readings from different elements

on the ground. This would help in identifying the extent of variation within satellite

derived LST at varying scale and in quantification of mixed pixel effects.

Within this study the urban heat island effect was analyzed for the city of Indianapolis,

Indiana in space and over time. There is need for such analysis across all major cities

across the world. The possibility for automation through using a non-parametric approach

can be exploited to study the phenomenon across space and time for cities within United

States and elsewhere. Functional description of the phenomenon can be useful in

comparing qualitative and quantitative aspects of the phenomenon between any two

cities. This will throw light on UHI research and help streamlining the mitigating efforts.

Visualization and cut-fill techniques which were discussed within this research are

models that could be used for knowledge dissemination activities such as education

and city wide awareness generation programs. While numerical models and heat island

quantification methods can help research scientists in understanding the phenomenon,

visualization techniques such as animation are some of the best methods to enable

the dissemination of the identified knowledge to concerned stakeholder (who may not

understand scientific language) for actions. In this case, such techniques could be used for

educating students, citizens, urban managers and urban administrators in understanding

and locating the UHI effect within their cities.

The broad range of research which is currently being carried out in the area of urban

heat island study concentrates on the effect of radiant heat of different materials based

on the tests conducted within laboratories or controlled environment. Such research aids

in identifying elements that are required to cool a particular building or an area. On

the other hand, these types of research do not address the urban heat island effect on

a larger scale i.e. at city level. The collective behavior of all urban elements behaves in

a different manner with respect to their relative position in space and time as opposed

to the behavior of an individual element. The non-parametric model developed and



discussed within this research context could be useful in identifying the behavior of urban

space as a whole and could aid in better planning of urban land use and land cover to

minimize the urban heat island effect.

Researches have been carried out to study relationships between energy consumption

pattern of a city and its demographic variation. The methods discussed within this

research could be extended further to analyze the relationship between energy consump-

tion, demographic variation and urban heat island effect. The results from such study

can help urban managers and policy makers to relook at the design of a city in order to

conserve energy especially during peak summers.

The past two decades have been termed as the decades of urbanization especially

within developing countries by the United Nations. The rapid migrations of people

from rural areas to urban centers have contributed to phenomenal growth within cities.

Such rapid growth has lead to change in land use and land cover, especially, as much

of the peri-urban areas are being converted into urban areas. Such changes are difficult

to track by urban managers. The situation gets complicated with much of the urban

spaces being defined based on political or administrative boundaries rather than envi-

ronmental boundaries. Such demarcations make it difficult for bringing about policy

level intervention to address land use and land cover change. On a parallel front, there is

also much confusion within the research community regarding the classification of urban

sprawl. One solution to the above mentioned problem could be creation of environmental

boundaries to monitor the changes. The non-parametric kernel convolution model can

therefore aid urban researchers in automated classification of the urban sprawl with

respect to their heat signatures since surface temperatures can be associated to land use

and land cover change.

Broader applications of the models discussed within this research are also possible

for areas beyond the UHI framework. The method of association rule mining for spatial

datasets discussed within this research can have wide areas of applications within spatial



science including quantification of relationships between spatial datasets especially nom-

inal data types. The non-parametric kernel convolution models which were discussed

with respect to UHI phenomenon can be used for characterizing and modeling other con-

tinuous phenomenon such as air pollution within cities in space and over time. A range

of such modeling can be used for hazard risk modeling especially to study the extent of

dispersion of chemical/nuclear hazards. The characterization and functional transforma-

tion of images has a great amount of application in the areas of data compression and

timely information extraction.
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APPENDIX

The below set of lists indicate the selected (confidence over 80%) results from Associa-

tion mining Algorithm

Table 33

Selected results from the association mining algorithm

Association Rules

General Rules obtained

ATE6 <- ATQ10 (10.2/100735, 8.9/87148, 86.5, 7.594, 0.0)

ATE5 <- ATQ6 (10.2/100726, 10.2/100726, 100.0, 1.788, 0.0)

ATE5 <- ATQ7 (10.4/102279, 10.4/102279, 100.0, 1.788, 0.0)

ATE5 <- ATQ8 (10.4/102233, 10.4/102233, 100.0, 1.788, 0.0)

ANE7 <- ANQ7 (10.3/100986, 10.3/100986, 100.0, 2.582, 0.0)

ANE7 <- ANQ5 (11.0/107780, 11.0/107780, 100.0, 2.582, 0.0)

LTE6 <- LNQ8 (10.9/106713, 9.1/89130, 83.5, 1.252, 0.0)

LTE6 <- LTQ5 (11.0/107972, 11.0/107972, 100.0, 1.499, 0.0)

LTE6 <- LTQ7 (11.4/112526, 11.4/112526, 100.0, 1.499, 0.0)

LTE6 <- LTQ4 (11.5/113156, 11.5/113156, 100.0, 1.499, 0.0)

LTE6 <- LTQ3 (14.5/142583, 14.5/142583, 100.0, 1.499, 0.0)

LTE7 <- LTQ8 ATE5 (10.4/101758, 10.4/101758, 100.0, 3.654, 0.0)

LTE7 <- LTQ8 (13.2/130229, 13.2/130229, 100.0, 3.654, 0.0)

LNE5 <- LNQ3 (10.4/102465, 10.4/102465, 100.0, 1.947, 0.0)

LNE5 <- LNQ4 (10.5/102826, 10.5/102826, 100.0, 1.947, 0.0)

LNE6 <- LNQ8 (10.9/106713, 10.9/106713, 100.0, 2.239, 0.0)

LNE5 <- LNQ5 (12.4/121894, 12.4/121894, 100.0, 1.947, 0.0)
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Association Rules

LNE6 <- LNQ7 (12.8/125336, 12.8/125336, 100.0, 2.239, 0.0)

LNE6 <- LNQ7 LTE6 (10.2/100044, 10.2/100044, 100.0, 2.239, 0.0)

MTE8 <- MTQ6 (10.8/105932, 10.8/105932, 100.0, 2.392, 0.0)

MTE8 <- MTQ5 (10.8/106177, 10.8/106177, 100.0, 2.392, 0.0)

MTE8 <- MTQ7 (11.4/111713, 10.4/102680, 91.9, 2.199, 0.0)

MTE9 <- MTQ8 (11.4/111646, 11.4/111646, 100.0, 3.554, 0.0)

MNE8 <- MNQ5 (10.1/98936, 8.6/84892, 85.8, 3.636, 0.0)

MNE8 <- MNQ6 (10.2/99787, 10.2/99787, 100.0, 4.238, 0.0)

MNE7 <- MNQ4 (11.2/109752, 11.2/109752, 100.0, 5.156, 0.0)

LTE6 <- ATQ4 (10.1/99764, 9.3/91066, 91.3, 1.369, 0.0)

LTE6 <- ATQ6 (10.2/100726, 8.3/81497, 80.9, 1.213, 0.0)

LNE5 <- ANQ2 (10.7/104917, 8.7/85458, 81.5, 1.586, 0.0)

LNE5 <- CO (14.6/143496, 12.1/119043, 83.0, 1.615, 0.0)

LTE6 <- DA (14.7/144951, 13.4/131655, 90.8, 1.362, 0.0)

LNE6 <- ANE8 (18.8/184954, 15.5/152667, 82.5, 1.848, 0.0)

LTE6 <- ANE8 (18.8/184954, 15.1/148881, 80.5, 1.207, 0.0)

LTE6 <- ATE4 (27.5/270101, 24.8/243673, 90.2, 1.353, 0.0)

LTE6 <- LO (27.8/273198, 25.0/245706, 89.9, 1.348, 0.0)

LTE6 <- LNE6 (44.7/438967, 36.7/360870, 82.2, 1.233, 0.0)

ATE5 <- LTQ7 (11.4/112526, 9.3/91075, 80.9, 1.447, 0.0)

LTE6 <- LNQ8 LNE6 (10.9/106713, 9.1/89130, 83.5, 1.252, 0.0)

LTE6 <- ATQ6 ATE5 (10.2/100726, 8.3/81497, 80.9, 1.213, 0.0)

ATE5 <- LTQ7 LTE6 (11.4/112526, 9.3/91075, 80.9, 1.447, 0.0)

LNE6 <- ANE8 ATE5 (12.0/118412, 10.0/98397, 83.1, 1.861, 0.0)

LTE6 <- ANE8 LNE6 (15.5/152667, 13.0/128087, 83.9, 1.258, 0.0)
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LNE6 <- ANE8 LTE6 (15.1/148881, 13.0/128087, 86.0, 1.927, 0.0)

LTE6 <- MNE8 LNE6 (10.2/100212, 8.4/82620, 82.4, 1.236, 0.0)

LTE6 <- MNE9 LNE6 (12.5/122623, 10.5/103054, 84.0, 1.260, 0.0)

LTE6 <- MTE7 ANE7 (10.0/98531, 8.1/79530, 80.7, 1.210, 0.0)

LTE6 <- MTE7 LNE6 (12.9/127003, 11.2/109844, 86.5, 1.297, 0.0)

LTE6 <- ATE4 ANE7 (12.9/127292, 12.2/119877, 94.2, 1.412, 0.0)

LTE6 <- ATE4 MTE8 (11.2/109953, 10.2/100411, 91.3, 1.369, 0.0)

LTE6 <- ATE4 LNE6 (14.1/138771, 13.4/131962, 95.1, 1.426, 0.0)

LTE6 <- ATE4 LNE5 (12.5/122687, 10.7/105331, 85.9, 1.287, 0.0)

LTE6 <- ANE7 LNE6 (18.5/181980, 15.0/147926, 81.3, 1.219, 0.0)

LTE6 <- LDH LNE6 (22.9/225520, 18.4/180641, 80.1, 1.201, 0.0)

LTE6 <- MTE8 LNE6 (18.0/177063, 14.6/143081, 80.8, 1.212, 0.0)

LTE6 <- ANE8 LNE6 ATE5 (10.0/98397, 8.2/80627, 81.9, 1.229, 0.0)

LTE6 <- ATE4 LO (12.2/119521, 11.6/113548, 95.0, 1.424, 0.0)

LTE6 <- LO ANE7 (11.4/111685, 10.3/101053, 90.5, 1.357, 0.0)

LTE6 <- LO LDH (12.0/118262, 10.9/106708, 90.2, 1.353, 0.0)

LTE6 <- LO MTE8 (11.5/112631, 10.3/101123, 89.8, 1.346, 0.0)

LTE6 <- LO LNE6 (19.8/194389, 18.2/179158, 92.2, 1.382, 0.0)

LTE6 <- LO ATE5 (14.4/141875, 12.7/125129, 88.2, 1.322, 0.0)

LTE6 <- LO LNE6 ATE5 (10.7/104703, 9.6/94535, 90.3, 1.354, 0.0)

ATE5 <- HI LDH (19.6/192183, 16.5/161818, 84.2, 1.506, 0.0)

ATE5 <- HI LDH LNE6 (11.6/113550, 9.8/96107, 84.6, 1.514, 0.0)

ATE5 <- HI LDH LTE6 (12.2/119479, 10.2/99974, 83.7, 1.496, 0.0)

ATE5 <- HI LNE6 LTE6 (12.0/117630, 9.7/95254, 81.0, 1.448, 0.0)
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Association Rules

ASTER

AF7 <- ATE4 (27.5/270101, 23.1/226859, 84.0, 1.092, 0.0)

AF7 <- ATE4 LO (12.2/119521, 10.1/98790, 82.7, 1.075, 0.0)

AF7 <- ATE4 MA5 (16.6/162965, 15.2/149079, 91.5, 1.190, 0.0)

AF7 <- ATE4 ANE7 (12.9/127292, 10.9/107564, 84.5, 1.099, 0.0)

AF7 <- ATE4 AH8 (14.0/137539, 13.9/136149, 99.0, 1.287, 0.0)

AF7 <- ATE4 AH8 V1 (12.6/124336, 12.6/124047, 99.8, 1.297, 0.0)

AF7 <- ATE4 AH8 MA5 (10.8/105773, 10.7/105267, 99.5, 1.294, 0.0)

AF7 <- ATE4 PD1 (15.1/148200, 13.5/133014, 89.8, 1.167, 0.0)

AF7 <- ATE4 PD1 V1 (12.1/119038, 11.7/115306, 96.9, 1.260, 0.0)

AF7 <- ATE4 PD1 MA5 (10.6/104685, 9.9/97261, 92.9, 1.208, 0.0)

AF7 <- ATE4 V1 (19.2/188661, 17.5/172175, 91.3, 1.187, 0.0)

AF7 <- ATE4 V1 MA5 (12.3/120788, 11.8/115696, 95.8, 1.246, 0.0)

AH8 <- ATE4 V1 MA5 (12.3/120788, 10.0/97907, 81.1, 1.928, 0.0)

AH8 <- ATE4 PD1 V1 AF7 (11.7/115306, 9.6/94007, 81.5, 1.939, 0.0)

AH8 <- ATE4 V1 MA5 AF7 (11.8/115696, 10.0/97907, 84.6, 2.013, 0.0)

V1 <- ATE4 PD1 (15.1/148200, 12.1/119038, 80.3, 1.405, 0.0)

V1 <- ATE4 AH8 (14.0/137539, 12.6/124336, 90.4, 1.582, 0.0)

V1 <- ATE4 PD1 MA5 (10.6/104685, 8.7/85980, 82.1, 1.437, 0.0)

V1 <- ATE4 PD1 AF7 (13.5/133014, 11.7/115306, 86.7, 1.517, 0.0)

V1 <- ATE4 AH8 MA5 (10.8/105773, 10.0/97907, 92.6, 1.620, 0.0)

V1 <- ATE4 AH8 AF7 (13.9/136149, 12.6/124047, 91.1, 1.594, 0.0)

V1 <- ATE4 AH8 MA5 AF7 (10.7/105267, 10.0/97907, 93.0, 1.627, 0.0)

ATE5 <- HI LDH (19.6/192183, 16.5/161818, 84.2, 1.506, 0.0)
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ATE5 <- HI ANE7 AF7 (10.6/104520, 8.6/84087, 80.5, 1.439, 0.0)

ATE5 <- HI LDH V1 (10.9/106804, 9.0/88724, 83.1, 1.486, 0.0)

ATE5 <- HI LDH MA5 (11.3/111152, 9.6/94700, 85.2, 1.524, 0.0)

ATE5 <- HI LDH AF7 (15.4/151267, 13.0/127460, 84.3, 1.507, 0.0)

AF7 <- ANE8 ATE5 (12.0/118412, 9.7/94928, 80.2, 1.042, 0.0)

AF7 <- AH7 ATE5 (19.1/187922, 17.0/167054, 88.9, 1.156, 0.0)

AF7 <- PD2 ATE5 (22.5/221568, 18.2/179325, 80.9, 1.052, 0.0)

AF7 <- PD1 ATE5 (19.4/190637, 15.7/154773, 81.2, 1.056, 0.0)

AF7 <- AH8 ATE5 (23.1/227415, 21.8/214016, 94.1, 1.224, 0.0)

AF7 <- ATE5 V1 (30.9/303901, 26.2/257187, 84.6, 1.100, 0.0)

AF7 <- ATE5 MA5 (32.5/319732, 28.4/279442, 87.4, 1.136, 0.0)

AF7 <- HI PD2 ATE5 (11.1/109405, 9.1/89031, 81.4, 1.058, 0.0)

AF7 <- HI ATE5 V1 (12.0/118279, 9.8/96786, 81.8, 1.064, 0.0)

AF7 <- HI ATE5 MA5 (13.4/131688, 11.5/112765, 85.6, 1.113, 0.0)

AF7 <- AH7 PD2 ATE5 (10.9/106767, 9.5/92983, 87.1, 1.132, 0.0)

AF7 <- AH7 LDH ATE5 (10.3/101400, 9.0/88508, 87.3, 1.135, 0.0)

AF7 <- AH7 ATE5 MA5 (11.4/111805, 10.7/105556, 94.4, 1.228, 0.0)

AF7 <- V2 ATE5 MA5 (10.9/106952, 9.5/93004, 87.0, 1.131, 0.0)

AF7 <- PD2 LDH ATE5 (13.2/129756, 10.8/106493, 82.1, 1.067, 0.0)

AF7 <- PD2 ATE5 V1 (12.7/125038, 10.7/105418, 84.3, 1.096, 0.0)

AF7 <- PD2 ATE5 MA5 (12.5/123239, 11.3/111540, 90.5, 1.177, 0.0)

AF7 <- ANE7 ATE5 V1 (12.4/122348, 10.5/103252, 84.4, 1.097, 0.0)

AF7 <- ANE7 ATE5 MA5 (12.8/126310, 11.3/110777, 87.7, 1.140, 0.0)

AF7 <- LDH AH8 ATE5 (10.9/107078, 10.1/99352, 92.8, 1.207, 0.0)

AF7 <- LDH ATE5 V1 (15.8/155298, 13.2/130196, 83.8, 1.090, 0.0)
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AF7 <- LDH ATE5 MA5 (15.9/156318, 13.7/134884, 86.3, 1.122, 0.0)

AF7 <- PD1 ATE5 V1 MA5 (10.2/100550, 9.6/94286, 93.8, 1.219, 0.0)

AF7 <- AH8 ATE5 V1 MA5 (13.1/129245, 13.1/129245, 100.0, 1.300, 0.0)

AF7 <- PD1 AH8 ATE5 (12.0/117488, 11.8/116383, 99.1, 1.288, 0.0)

AF7 <- PD1 ATE5 V1 (14.4/141721, 12.9/126481, 89.2, 1.161, 0.0)

AF7 <- PD1 ATE5 MA5 (13.3/130556, 12.0/118424, 90.7, 1.180, 0.0)

AF7 <- AH8 ATE5 V1 (16.8/165003, 16.6/162978, 98.8, 1.284, 0.0)

AF7 <- AH8 ATE5 MA5 (16.5/162130, 16.2/158962, 98.0, 1.275, 0.0)

AF7 <- ATE5 V1 MA5 (19.3/190110, 17.5/171841, 90.4, 1.175, 0.0)

AF7 <- PD1 AH8 ATE5 V1 (11.1/108840, 11.0/108109, 99.3, 1.292, 0.0)

AF7 <- PD1 AH8 ATE5 MA5 (10.0/98508, 10.0/98134, 99.6, 1.295, 0.0)

AH8 <- PD1 ATE5 V1 MA5 (10.2/100550, 9.2/90134, 89.6, 2.132, 0.0)

AH8 <- PD1 ATE5 MA5 AF7 (12.0/118424, 10.0/98134, 82.9, 1.971, 0.0)

AH8 <- PD1 ATE5 V1 AF7 (12.9/126481, 11.0/108109, 85.5, 2.033, 0.0)

V1 <- AH8 ATE5 MA5 AF7 (16.2/158962, 13.1/129245, 81.3, 1.423, 0.0)

V1 <- PD1 ATE5 AF7 (15.7/154773, 12.9/126481, 81.7, 1.430, 0.0)

V1 <- PD1 AH8 ATE5 MA5 (10.0/98508, 9.2/90134, 91.5, 1.601, 0.0)

V1 <- PD1 AH8 ATE5 AF7 (11.8/116383, 11.0/108109, 92.9, 1.625, 0.0)

V1 <- PD1 AH8 ATE5 (12.0/117488, 11.1/108840, 92.6, 1.621, 0.0)

MA5 <- PD1 AH8 ATE5 AF7 (11.8/116383, 10.0/98134, 84.3, 1.452, 0.0)

MA5 <- PD1 AH8 ATE5 V1 AF7 (11.0/108109, 9.2/90134, 83.4, 1.435, 0.0)

MA5 <- PD1 AH8 ATE5 (12.0/117488, 10.0/98508, 83.8, 1.443, 0.0)

MA5 <- PD1 AH8 ATE5 V1 (11.1/108840, 9.2/90134, 82.8, 1.426, 0.0)

Landsat
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Association Rules

LTE6 <- DA (14.7/144951, 13.4/131655, 90.8, 1.362, 0.0)

LTE6 <- LO (27.8/273198, 25.0/245706, 89.9, 1.348, 0.0)

LTE6 <- LNE6 (44.7/438967, 36.7/360870, 82.2, 1.233, 0.0)

AF7 <- LTE6 (66.7/655610, 54.7/537622, 82.0, 1.066, 0.0)

LTE6 <- DA PD1 (10.8/106481, 9.8/96594, 90.7, 1.360, 0.0)

LTE6 <- DA V1 (12.5/122856, 11.4/112015, 91.2, 1.367, 0.0)

V1 <- DA LTE6 (13.4/131655, 11.4/112015, 85.1, 1.489, 0.0)

AF7 <- DA LTE6 (13.4/131655, 12.4/122376, 93.0, 1.209, 0.0)

LTE6 <- DA AF7 (13.6/133918, 12.4/122376, 91.4, 1.370, 0.0)

V1 <- MA6 LTE6 (13.0/127675, 11.2/109709, 85.9, 1.503, 0.0)

LTE6 <- LO PD2 (14.1/138254, 12.8/125380, 90.7, 1.360, 0.0)

LTE6 <- LO LDH (12.0/118262, 10.9/106708, 90.2, 1.353, 0.0)

LTE6 <- LO PD1 (10.5/103120, 9.5/93863, 91.0, 1.365, 0.0)

LTE6 <- LO AH8 (11.0/107809, 10.0/98081, 91.0, 1.364, 0.0)

LTE6 <- LO LNE6 (19.8/194389, 18.2/179158, 92.2, 1.382, 0.0)

LTE6 <- LO V1 (17.6/172889, 16.0/157454, 91.1, 1.365, 0.0)

LTE6 <- LO MA5 (15.1/148463, 13.6/134080, 90.3, 1.354, 0.0)

AF7 <- LO LTE6 (25.0/245706, 20.3/199374, 81.1, 1.055, 0.0)

LTE6 <- LO AF7 (22.3/219361, 20.3/199374, 90.9, 1.363, 0.0)

LTE6 <- AH7 LNE6 (15.8/155432, 12.7/125096, 80.5, 1.207, 0.0)

AF7 <- AH7 LTE6 (20.3/199615, 18.4/181146, 90.7, 1.180, 0.0)

LTE6 <- PD2 LNE6 (21.5/211378, 17.8/175165, 82.9, 1.242, 0.0)

AF7 <- PD2 LTE6 (26.9/264594, 21.9/215636, 81.5, 1.060, 0.0)

LTE6 <- LDH LNE6 (22.9/225520, 18.4/180641, 80.1, 1.201, 0.0)
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AF7 <- LDH LTE6 (27.8/273294, 23.2/228319, 83.5, 1.086, 0.0)

LTE6 <- PD1 AH8 (24.6/242282, 20.1/198008, 81.7, 1.225, 0.0)

LTE6 <- PD1 LNE6 (16.0/157191, 14.3/140384, 89.3, 1.339, 0.0)

LTE6 <- PD1 V1 (30.1/296095, 24.6/241638, 81.6, 1.224, 0.0)

AF7 <- PD1 LTE6 (31.2/306913, 26.8/263042, 85.7, 1.114, 0.0)

LTE6 <- AH8 LNE6 (18.8/184715, 16.1/158717, 85.9, 1.288, 0.0)

LTE6 <- AH8 V1 (32.6/320583, 26.6/261918, 81.7, 1.225, 0.0)

V1 <- AH8 LTE6 (31.5/309625, 26.6/261918, 84.6, 1.480, 0.0)

AF7 <- AH8 LTE6 (31.5/309625, 30.9/303595, 98.1, 1.275, 0.0)

LTE6 <- LNE6 V1 (28.5/279805, 24.4/240018, 85.8, 1.286, 0.0)

LTE6 <- LNE6 MA5 (25.2/247380, 21.1/207228, 83.8, 1.256, 0.0)

AF7 <- LNE6 LTE6 (36.7/360870, 30.5/300003, 83.1, 1.081, 0.0)

LTE6 <- LNE6 AF7 (36.5/358358, 30.5/300003, 83.7, 1.255, 0.0)

AF7 <- LNE5 LTE6 (27.4/269615, 22.1/217363, 80.6, 1.048, 0.0)

AF7 <- V1 LTE6 (43.3/425435, 38.5/378231, 88.9, 1.156, 0.0)

AF7 <- MA5 LTE6 (40.3/396349, 36.3/356383, 89.9, 1.169, 0.0)

LTE6 <- DA PD1 AF7 (10.4/102377, 9.5/93026, 90.9, 1.362, 0.0)

AF7 <- DA V1 LTE6 (11.4/112015, 10.9/106893, 95.4, 1.241, 0.0)

LTE6 <- DA V1 AF7 (11.9/116873, 10.9/106893, 91.5, 1.371, 0.0)

V1 <- DA LTE6 AF7 (12.4/122376, 10.9/106893, 87.3, 1.528, 0.0)

AF7 <- MA6 V1 LTE6 (11.2/109709, 9.4/92522, 84.3, 1.097, 0.0)

LTE6 <- MA6 V1 AF7 (11.7/114972, 9.4/92522, 80.5, 1.207, 0.0)

V1 <- MA6 LTE6 AF7 (10.1/99010, 9.4/92522, 93.4, 1.635, 0.0)

LTE6 <- LO PD2 LNE6 (10.8/106057, 10.0/97959, 92.4, 1.385, 0.0)

AF7 <- LO PD2 LTE6 (12.8/125380, 10.5/103584, 82.6, 1.074, 0.0)
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LTE6 <- LO PD2 AF7 (11.5/113411, 10.5/103584, 91.3, 1.369, 0.0)

AF7 <- LO LDH LTE6 (10.9/106708, 9.0/88913, 83.3, 1.083, 0.0)

LTE6 <- LO AH8 AF7 (10.7/105314, 9.8/96112, 91.3, 1.368, 0.0)

LTE6 <- LO LNE6 V1 (12.6/123693, 11.7/114983, 93.0, 1.394, 0.0)

LTE6 <- LO LNE6 MA5 (10.5/103590, 9.7/95831, 92.5, 1.387, 0.0)

AF7 <- LO LNE6 LTE6 (18.2/179158, 14.9/146051, 81.5, 1.060, 0.0)

LTE6 <- LO LNE6 AF7 (16.0/157491, 14.9/146051, 92.7, 1.390, 0.0)

AF7 <- LO V1 LTE6 (16.0/157454, 14.0/137972, 87.6, 1.139, 0.0)

LTE6 <- LO V1 AF7 (15.3/150560, 14.0/137972, 91.6, 1.374, 0.0)

AF7 <- LO MA5 LTE6 (13.6/134080, 12.2/119892, 89.4, 1.163, 0.0)

LTE6 <- LO MA5 AF7 (13.5/132298, 12.2/119892, 90.6, 1.359, 0.0)

AF7 <- HI LDH LTE6 (12.2/119479, 10.0/98315, 82.3, 1.070, 0.0)

AF7 <- HI LNE6 LTE6 (12.0/117630, 9.8/96292, 81.9, 1.064, 0.0)

AF7 <- HI V1 LTE6 (10.6/104651, 9.0/88651, 84.7, 1.102, 0.0)

AF7 <- HI MA5 LTE6 (10.9/107069, 9.6/94324, 88.1, 1.146, 0.0)

LTE6 <- AH7 PD2 LNE6 (10.1/98893, 8.3/81139, 82.0, 1.230, 0.0)

AF7 <- AH7 PD2 LTE6 (11.9/117422, 10.5/103497, 88.1, 1.146, 0.0)

AF7 <- AH7 LNE6 LTE6 (12.7/125096, 11.5/112668, 90.1, 1.171, 0.0)

LTE6 <- AH7 LNE6 AF7 (14.1/138928, 11.5/112668, 81.1, 1.216, 0.0)

AF7 <- AH7 MA5 LTE6 (11.5/113498, 11.0/108507, 95.6, 1.243, 0.0)

AF7 <- V2 MA5 LTE6 (11.2/110031, 9.5/92926, 84.5, 1.098, 0.0)

LTE6 <- PD2 LDH LNE6 (13.4/131707, 11.0/108518, 82.4, 1.235, 0.0)

AF7 <- PD2 LDH LTE6 (14.9/146866, 12.3/121114, 82.5, 1.072, 0.0)

LTE6 <- PD2 LNE6 V1 (13.7/134823, 11.6/113662, 84.3, 1.264, 0.0)

LTE6 <- PD2 LNE6 MA5 (11.2/110115, 9.3/91441, 83.0, 1.245, 0.0)
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AF7 <- PD2 LNE6 LTE6 (17.8/175165, 14.7/144267, 82.4, 1.071, 0.0)

LTE6 <- PD2 LNE6 AF7 (17.6/172521, 14.7/144267, 83.6, 1.254, 0.0)

AF7 <- PD2 V1 LTE6 (16.4/161336, 13.9/136410, 84.6, 1.099, 0.0)

AF7 <- PD2 MA5 LTE6 (14.4/141896, 13.3/130347, 91.9, 1.195, 0.0)

V1 <- LDH AH8 LTE6 (12.0/118297, 9.7/95397, 80.6, 1.411, 0.0)

AF7 <- LDH AH8 LTE6 (12.0/118297, 11.8/115717, 97.8, 1.272, 0.0)

LTE6 <- LDH LNE6 V1 (15.1/148508, 12.4/122079, 82.2, 1.233, 0.0)

AF7 <- LDH LNE6 LTE6 (18.4/180641, 15.5/152161, 84.2, 1.095, 0.0)

LTE6 <- LDH LNE6 AF7 (19.1/187555, 15.5/152161, 81.1, 1.216, 0.0)

AF7 <- LDH V1 LTE6 (18.7/183627, 16.4/161313, 87.8, 1.142, 0.0)

AF7 <- LDH MA5 LTE6 (16.0/157124, 14.3/140492, 89.4, 1.163, 0.0)

LTE6 <- PD1 AH8 V1 (22.9/225413, 19.2/188944, 83.8, 1.257, 0.0)

V1 <- PD1 AH8 LTE6 (20.1/198008, 19.2/188944, 95.4, 1.670, 0.0)

LTE6 <- PD1 AH8 MA5 (21.0/206482, 16.9/166542, 80.7, 1.209, 0.0)

MA5 <- PD1 AH8 LTE6 (20.1/198008, 16.9/166542, 84.1, 1.448, 0.0)

AF7 <- PD1 AH8 LTE6 (20.1/198008, 20.0/196774, 99.4, 1.292, 0.0)

LTE6 <- PD1 AH8 AF7 (24.4/240066, 20.0/196774, 82.0, 1.229, 0.0)

LTE6 <- PD1 LNE6 V1 (12.7/125228, 11.6/114111, 91.1, 1.366, 0.0)

V1 <- PD1 LNE6 LTE6 (14.3/140384, 11.6/114111, 81.3, 1.422, 0.0)

LTE6 <- PD1 LNE6 MA5 (10.9/106859, 9.8/95944, 89.8, 1.346, 0.0)

AF7 <- PD1 LNE6 LTE6 (14.3/140384, 12.5/122709, 87.4, 1.137, 0.0)

LTE6 <- PD1 LNE6 AF7 (13.8/135777, 12.5/122709, 90.4, 1.355, 0.0)

AF7 <- PD1 LNE5 LTE6 (15.2/149035, 12.9/126443, 84.8, 1.103, 0.0)

LTE6 <- PD1 V1 MA5 (21.5/211230, 17.6/173272, 82.0, 1.230, 0.0)

V1 <- PD1 MA5 LTE6 (22.0/215830, 17.6/173272, 80.3, 1.405, 0.0)
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AF7 <- PD1 V1 LTE6 (24.6/241638, 22.9/225538, 93.3, 1.214, 0.0)

LTE6 <- PD1 V1 AF7 (27.7/272013, 22.9/225538, 82.9, 1.243, 0.0)

V1 <- PD1 LTE6 AF7 (26.8/263042, 22.9/225538, 85.7, 1.500, 0.0)

AF7 <- PD1 MA5 LTE6 (22.0/215830, 20.0/196316, 91.0, 1.183, 0.0)

LTE6 <- AH8 LNE6 V1 (15.5/152673, 13.7/134961, 88.4, 1.325, 0.0)

V1 <- AH8 LNE6 LTE6 (16.1/158717, 13.7/134961, 85.0, 1.488, 0.0)

LTE6 <- AH8 LNE6 MA5 (13.6/134020, 11.8/116157, 86.7, 1.299, 0.0)

AF7 <- AH8 LNE6 LTE6 (16.1/158717, 15.9/156010, 98.3, 1.278, 0.0)

LTE6 <- AH8 LNE6 AF7 (18.3/180375, 15.9/156010, 86.5, 1.297, 0.0)

V1 <- AH8 LNE5 LTE6 (14.0/137649, 11.8/116121, 84.4, 1.476, 0.0)

AF7 <- AH8 LNE5 LTE6 (14.0/137649, 13.7/134681, 97.8, 1.272, 0.0)

LTE6 <- AH8 V1 MA5 (25.8/254043, 20.9/205926, 81.1, 1.215, 0.0)

V1 <- AH8 MA5 LTE6 (23.8/233509, 20.9/205926, 88.2, 1.543, 0.0)

AF7 <- AH8 V1 LTE6 (26.6/261918, 26.5/260633, 99.5, 1.294, 0.0)

LTE6 <- AH8 V1 AF7 (32.3/317931, 26.5/260633, 82.0, 1.229, 0.0)

V1 <- AH8 LTE6 AF7 (30.9/303595, 26.5/260633, 85.8, 1.502, 0.0)

AF7 <- AH8 MA5 LTE6 (23.8/233509, 23.6/231708, 99.2, 1.290, 0.0)

LTE6 <- LNE6 V1 MA5 (16.8/164994, 14.5/142553, 86.4, 1.295, 0.0)

AF7 <- LNE6 V1 LTE6 (24.4/240018, 21.6/212321, 88.5, 1.150, 0.0)

LTE6 <- LNE6 V1 AF7 (24.9/245227, 21.6/212321, 86.6, 1.298, 0.0)

AF7 <- LNE6 MA5 LTE6 (21.1/207228, 19.1/187921, 90.7, 1.179, 0.0)

LTE6 <- LNE6 MA5 AF7 (22.6/222591, 19.1/187921, 84.4, 1.266, 0.0)

AF7 <- LNE5 V1 LTE6 (17.2/169311, 15.5/152166, 89.9, 1.169, 0.0)

AF7 <- LNE5 MA5 LTE6 (17.6/173203, 15.6/153524, 88.6, 1.153, 0.0)

AF7 <- V1 MA5 LTE6 (27.6/271457, 25.8/253943, 93.5, 1.216, 0.0)



Table 33 – continued from previous page

Association Rules

PD1 <- DA V1 LTE6 AF7 (10.9/106893, 8.8/86476, 80.9, 1.958, 0.0)

AH8 <- DA V1 LTE6 AF7 (10.9/106893, 8.8/86317, 80.8, 1.921, 0.0)

AF7 <- LO LNE6 V1 LTE6 (11.7/114983, 10.2/100321, 87.2, 1.135, 0.0)

LTE6 <- LO LNE6 V1 AF7 (10.9/107580, 10.2/100321, 93.3, 1.398, 0.0)

AF7 <- PD2 LDH LNE6 LTE6 (11.0/108518, 9.1/89692, 82.7, 1.075, 0.0)

LTE6 <- PD2 LDH LNE6 AF7 (11.0/108275, 9.1/89692, 82.8, 1.242, 0.0)

AF7 <- PD2 LDH V1 LTE6 (10.4/101765, 8.7/85882, 84.4, 1.097, 0.0)

AF7 <- PD2 LNE6 V1 LTE6 (11.6/113662, 9.8/96305, 84.7, 1.102, 0.0)

LTE6 <- PD2 LNE6 V1 AF7 (11.6/113609, 9.8/96305, 84.8, 1.271, 0.0)

LTE6 <- PD2 LNE6 MA5 AF7 (10.3/101278, 8.6/84246, 83.2, 1.247, 0.0)

V1 <- LDH AH8 LTE6 AF7 (11.8/115717, 9.7/94921, 82.0, 1.435, 0.0)

AF7 <- LDH LNE6 V1 LTE6 (12.4/122079, 10.9/107376, 88.0, 1.144, 0.0)

LTE6 <- LDH LNE6 V1 AF7 (13.2/129669, 10.9/107376, 82.8, 1.242, 0.0)

AF7 <- LDH LNE6 MA5 LTE6 (10.0/98769, 9.2/90062, 91.2, 1.186, 0.0)

LTE6 <- LDH LNE6 MA5 AF7 (11.4/112309, 9.2/90062, 80.2, 1.202, 0.0)

AF7 <- LDH V1 MA5 LTE6 (11.0/107682, 10.1/98848, 91.8, 1.194, 0.0)

V1 <- PD1 AH8 LNE5 LTE6 (10.0/98347, 9.6/94264, 95.8, 1.677, 0.0)

AH8 <- PD1 LNE5 V1 LTE6 (11.7/114684, 9.6/94264, 82.2, 1.955, 0.0)

PD1 <- AH8 LNE5 V1 LTE6 (11.8/116121, 9.6/94264, 81.2, 1.965, 0.0)

MA5 <- PD1 AH8 LNE5 LTE6 (10.0/98347, 8.4/82564, 84.0, 1.445, 0.0)

AF7 <- PD1 AH8 LNE5 LTE6 (10.0/98347, 10.0/97988, 99.6, 1.296, 0.0)

LTE6 <- PD1 AH8 V1 MA5 (19.3/190011, 16.0/157666, 83.0, 1.244, 0.0)

MA5 <- PD1 AH8 V1 LTE6 (19.2/188944, 16.0/157666, 83.4, 1.437, 0.0)

V1 <- PD1 AH8 MA5 LTE6 (16.9/166542, 16.0/157666, 94.7, 1.656, 0.0)

AH8 <- PD1 V1 MA5 LTE6 (17.6/173272, 16.0/157666, 91.0, 2.164, 0.0)
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AF7 <- PD1 AH8 V1 LTE6 (19.2/188944, 19.1/188237, 99.6, 1.295, 0.0)

LTE6 <- PD1 AH8 V1 AF7 (22.8/224326, 19.1/188237, 83.9, 1.258, 0.0)

V1 <- PD1 AH8 LTE6 AF7 (20.0/196774, 19.1/188237, 95.7, 1.674, 0.0)

AH8 <- PD1 V1 LTE6 AF7 (22.9/225538, 19.1/188237, 83.5, 1.985, 0.0)

AF7 <- PD1 AH8 MA5 LTE6 (16.9/166542, 16.9/166015, 99.7, 1.296, 0.0)

LTE6 <- PD1 AH8 MA5 AF7 (20.9/205353, 16.9/166015, 80.8, 1.212, 0.0)

MA5 <- PD1 AH8 LTE6 AF7 (20.0/196774, 16.9/166015, 84.4, 1.452, 0.0)

AH8 <- PD1 MA5 LTE6 AF7 (20.0/196316, 16.9/166015, 84.6, 2.012, 0.0)

AF7 <- PD1 LNE6 V1 LTE6 (11.6/114111, 10.8/106470, 93.3, 1.213, 0.0)

LTE6 <- PD1 LNE6 V1 AF7 (11.9/116491, 10.8/106470, 91.4, 1.370, 0.0)

V1 <- PD1 LNE6 LTE6 AF7 (12.5/122709, 10.8/106470, 86.8, 1.518, 0.0)

AF7 <- PD1 LNE5 V1 LTE6 (11.7/114684, 11.0/108363, 94.5, 1.229, 0.0)

V1 <- PD1 LNE5 LTE6 AF7 (12.9/126443, 11.0/108363, 85.7, 1.499, 0.0)

AF7 <- PD1 LNE5 MA5 LTE6 (11.0/108230, 9.9/97635, 90.2, 1.173, 0.0)

AF7 <- PD1 V1 MA5 LTE6 (17.6/173272, 16.9/165896, 95.7, 1.245, 0.0)

LTE6 <- PD1 V1 MA5 AF7 (20.4/200817, 16.9/165896, 82.6, 1.239, 0.0)

V1 <- PD1 MA5 LTE6 AF7 (20.0/196316, 16.9/165896, 84.5, 1.479, 0.0)

LTE6 <- AH8 LNE6 V1 MA5 (11.8/116281, 10.4/102534, 88.2, 1.322, 0.0)

V1 <- AH8 LNE6 MA5 LTE6 (11.8/116157, 10.4/102534, 88.3, 1.544, 0.0)

AF7 <- AH8 LNE6 V1 LTE6 (13.7/134961, 13.7/134250, 99.5, 1.294, 0.0)

LTE6 <- AH8 LNE6 V1 AF7 (15.4/151581, 13.7/134250, 88.6, 1.328, 0.0)

V1 <- AH8 LNE6 LTE6 AF7 (15.9/156010, 13.7/134250, 86.1, 1.506, 0.0)

AF7 <- AH8 LNE6 MA5 LTE6 (11.8/116157, 11.7/115324, 99.3, 1.291, 0.0)

LTE6 <- AH8 LNE6 MA5 AF7 (13.5/132784, 11.7/115324, 86.9, 1.302, 0.0)

MA5 <- AH8 LNE5 V1 LTE6 (11.8/116121, 9.6/94788, 81.6, 1.405, 0.0)
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V1 <- AH8 LNE5 MA5 LTE6 (10.9/106904, 9.6/94788, 88.7, 1.551, 0.0)

AF7 <- AH8 LNE5 V1 LTE6 (11.8/116121, 11.8/115712, 99.6, 1.296, 0.0)

V1 <- AH8 LNE5 LTE6 AF7 (13.7/134681, 11.8/115712, 85.9, 1.503, 0.0)

AF7 <- AH8 LNE5 MA5 LTE6 (10.9/106904, 10.8/106035, 99.2, 1.290, 0.0)

AF7 <- AH8 V1 MA5 LTE6 (20.9/205926, 20.9/205926, 100.0, 1.300, 0.0)

LTE6 <- AH8 V1 MA5 AF7 (25.8/254043, 20.9/205926, 81.1, 1.215, 0.0)

V1 <- AH8 MA5 LTE6 AF7 (23.6/231708, 20.9/205926, 88.9, 1.555, 0.0)

AH8 <- V1 MA5 LTE6 AF7 (25.8/253943, 20.9/205926, 81.1, 1.929, 0.0)

AF7 <- LNE6 V1 MA5 LTE6 (14.5/142553, 13.5/132698, 93.1, 1.210, 0.0)

LTE6 <- LNE6 V1 MA5 AF7 (15.6/153053, 13.5/132698, 86.7, 1.300, 0.0)

AF7 <- LNE5 V1 MA5 LTE6 (12.1/118755, 11.4/111636, 94.0, 1.222, 0.0)

AH8 <- PD1 LNE5 V1 LTE6 AF7 (11.0/108363, 9.6/94100, 86.8, 2.066, 0.0)

PD1 <- AH8 LNE5 V1 LTE6 AF7 (11.8/115712, 9.6/94100, 81.3, 1.968, 0.0)

AF7 <- PD1 AH8 V1 MA5 LTE6 (16.0/157666, 16.0/157666, 100.0, 1.300, 0.0)

LTE6 <- PD1 AH8 V1 MA5 AF7 (19.3/190011, 16.0/157666, 83.0, 1.244, 0.0)

MA5 <- PD1 AH8 V1 LTE6 AF7 (19.1/188237, 16.0/157666, 83.8, 1.442, 0.0)

V1 <- PD1 AH8 MA5 LTE6 AF7 (16.9/166015, 16.0/157666, 95.0, 1.662, 0.0)

AH8 <- PD1 V1 MA5 LTE6 AF7 (16.9/165896, 16.0/157666, 95.0, 2.261, 0.0)

AF7 <- AH8 LNE6 V1 MA5 LTE6 (10.4/102534, 10.4/102534, 100.0, 1.300, 0.0)

LTE6 <- AH8 LNE6 V1 MA5 AF7 (11.8/116281, 10.4/102534, 88.2, 1.322, 0.0)

V1 <- AH8 LNE6 MA5 LTE6 AF7 (11.7/115324, 10.4/102534, 88.9, 1.556, 0.0)

MA5 <- AH8 LNE5 V1 LTE6 AF7 (11.8/115712, 9.6/94788, 81.9, 1.410, 0.0)

V1 <- AH8 LNE5 MA5 LTE6 AF7 (10.8/106035, 9.6/94788, 89.4, 1.564, 0.0)

AH8 <- LNE5 V1 MA5 LTE6 AF7 (11.4/111636, 9.6/94788, 84.9, 2.020, 0.0)



Table 33 – continued from previous page

Association Rules

MODIS

AF7 <- MTE7 (26.6/261789, 24.3/238419, 91.1, 1.184, 0.0)

MA5 <- MTE7 PD1 AH8 V1 (12.8/125730, 11.7/114539, 91.1, 1.568, 0.0)

V1 <- MTE7 PD1 AH8 MA5 (12.2/119506, 11.7/114539, 95.8, 1.677, 0.0)

AH8 <- MTE7 PD1 V1 MA5 (12.0/117747, 11.7/114539, 97.3, 2.314, 0.0)

PD1 <- MTE7 AH8 V1 MA5 (12.6/123391, 11.7/114539, 92.8, 2.247, 0.0)

AF7 <- MTE7 PD1 AH8 V1 (12.8/125730, 12.8/125730, 100.0, 1.300, 0.0)

V1 <- MTE7 PD1 AH8 AF7 (13.3/130697, 12.8/125730, 96.2, 1.683, 0.0)

AH8 <- MTE7 PD1 V1 AF7 (14.2/140045, 12.8/125730, 89.8, 2.136, 0.0)

PD1 <- MTE7 AH8 V1 AF7 (14.0/137150, 12.8/125730, 91.7, 2.219, 0.0)

AF7 <- MTE7 PD1 AH8 MA5 (12.2/119506, 12.2/119506, 100.0, 1.300, 0.0)

MA5 <- MTE7 PD1 AH8 AF7 (13.3/130697, 12.2/119506, 91.4, 1.574, 0.0)

AH8 <- MTE7 PD1 MA5 AF7 (13.6/134018, 12.2/119506, 89.2, 2.121, 0.0)

PD1 <- MTE7 AH8 MA5 AF7 (13.9/136546, 12.2/119506, 87.5, 2.118, 0.0)

AF7 <- MTE7 PD1 V1 MA5 (12.0/117747, 11.7/115460, 98.1, 1.275, 0.0)

MA5 <- MTE7 PD1 V1 AF7 (14.2/140045, 11.7/115460, 82.4, 1.419, 0.0)

V1 <- MTE7 PD1 MA5 AF7 (13.6/134018, 11.7/115460, 86.2, 1.507, 0.0)

PD1 <- MTE7 V1 MA5 AF7 (13.9/136988, 11.7/115460, 84.3, 2.040, 0.0)

AF7 <- MTE7 AH8 V1 MA5 (12.6/123391, 12.6/123391, 100.0, 1.300, 0.0)

MA5 <- MTE7 AH8 V1 AF7 (14.0/137150, 12.6/123391, 90.0, 1.549, 0.0)

V1 <- MTE7 AH8 MA5 AF7 (13.9/136546, 12.6/123391, 90.4, 1.581, 0.0)

AH8 <- MTE7 V1 MA5 AF7 (13.9/136988, 12.6/123391, 90.1, 2.143, 0.0)

PD1 <- MTE7 AH8 (15.8/155077, 13.3/130697, 84.3, 2.040, 0.0)

V1 <- MTE7 PD1 (17.2/169298, 15.1/148212, 87.5, 1.532, 0.0)
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MA5 <- MTE7 PD1 (17.2/169298, 13.9/136305, 80.5, 1.386, 0.0)

AF7 <- MTE7 PD1 (17.2/169298, 16.1/158603, 93.7, 1.218, 0.0)

V1 <- MTE7 AH8 (15.8/155077, 14.0/137401, 88.6, 1.550, 0.0)

MA5 <- MTE7 AH8 (15.8/155077, 13.9/136546, 88.1, 1.516, 0.0)

AF7 <- MTE7 AH8 (15.8/155077, 15.8/154826, 99.8, 1.298, 0.0)

AF7 <- MTE7 V1 (19.3/189407, 17.9/175757, 92.8, 1.207, 0.0)

AF7 <- MTE7 MA5 (19.4/190514, 18.8/184830, 97.0, 1.262, 0.0)

AF7 <- MNE9 MTE7 (15.9/156022, 14.5/142614, 91.4, 1.189, 0.0)

V1 <- MNE9 MTE7 PD1 (10.3/101730, 9.0/88922, 87.4, 1.529, 0.0)

AF7 <- MNE9 MTE7 PD1 (10.3/101730, 9.7/95647, 94.0, 1.223, 0.0)

AF7 <- MNE9 MTE7 V1 (11.8/115609, 11.0/107672, 93.1, 1.211, 0.0)

AF7 <- MNE9 MTE7 MA5 (11.4/111807, 11.0/108617, 97.1, 1.263, 0.0)

V1 <- MTE7 PD1 AH8 (13.3/130697, 12.8/125730, 96.2, 1.683, 0.0)

AH8 <- MTE7 PD1 V1 (15.1/148212, 12.8/125730, 84.8, 2.018, 0.0)

PD1 <- MTE7 AH8 V1 (14.0/137401, 12.8/125730, 91.5, 2.215, 0.0)

MA5 <- MTE7 PD1 AH8 (13.3/130697, 12.2/119506, 91.4, 1.574, 0.0)

AH8 <- MTE7 PD1 MA5 (13.9/136305, 12.2/119506, 87.7, 2.085, 0.0)

PD1 <- MTE7 AH8 MA5 (13.9/136546, 12.2/119506, 87.5, 2.118, 0.0)

AF7 <- MTE7 PD1 AH8 (13.3/130697, 13.3/130697, 100.0, 1.300, 0.0)

AH8 <- MTE7 PD1 AF7 (16.1/158603, 13.3/130697, 82.4, 1.960, 0.0)

PD1 <- MTE7 AH8 AF7 (15.8/154826, 13.3/130697, 84.4, 2.043, 0.0)

V1 <- MTE7 PD1 MA5 (13.9/136305, 12.0/117747, 86.4, 1.511, 0.0)

PD1 <- MTE7 V1 MA5 (14.4/141520, 12.0/117747, 83.2, 2.014, 0.0)

AF7 <- MTE7 PD1 V1 (15.1/148212, 14.2/140045, 94.5, 1.229, 0.0)

V1 <- MTE7 PD1 AF7 (16.1/158603, 14.2/140045, 88.3, 1.545, 0.0)
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AF7 <- MTE7 PD1 MA5 (13.9/136305, 13.6/134018, 98.3, 1.279, 0.0)

MA5 <- MTE7 PD1 AF7 (16.1/158603, 13.6/134018, 84.5, 1.455, 0.0)

MA5 <- MTE7 AH8 V1 (14.0/137401, 12.6/123391, 89.8, 1.546, 0.0)

V1 <- MTE7 AH8 MA5 (13.9/136546, 12.6/123391, 90.4, 1.581, 0.0)

AH8 <- MTE7 V1 MA5 (14.4/141520, 12.6/123391, 87.2, 2.074, 0.0)

AF7 <- MTE7 AH8 V1 (14.0/137401, 14.0/137150, 99.8, 1.298, 0.0)

V1 <- MTE7 AH8 AF7 (15.8/154826, 14.0/137150, 88.6, 1.550, 0.0)

AF7 <- MTE7 AH8 MA5 (13.9/136546, 13.9/136546, 100.0, 1.300, 0.0)

MA5 <- MTE7 AH8 AF7 (15.8/154826, 13.9/136546, 88.2, 1.518, 0.0)

AF7 <- MTE7 V1 MA5 (14.4/141520, 13.9/136988, 96.8, 1.259, 0.0)

AF7 <- MTE7 PD1 AH8 V1 MA5 (11.7/114539, 11.7/114539, 100.0, 1.300, 0.0)

MA5 <- MTE7 PD1 AH8 V1 AF7 (12.8/125730, 11.7/114539, 91.1, 1.568, 0.0)

V1 <- MTE7 PD1 AH8 MA5 AF7 (12.2/119506, 11.7/114539, 95.8, 1.677, 0.0)

AH8 <- MTE7 PD1 V1 MA5 AF7 (11.7/115460, 11.7/114539, 99.2, 2.360, 0.0)

PD1 <- MTE7 AH8 V1 MA5 AF7 (12.6/123391, 11.7/114539, 92.8, 2.247, 0.0)

AF7 <- MNE9 MTE8 (10.2/100296, 8.3/81395, 81.2, 1.055, 0.0)

AF7 <- LO MTE8 (11.5/112631, 9.4/92354, 82.0, 1.066, 0.0)

AF7 <- AH7 MTE8 (13.6/133606, 12.4/121518, 91.0, 1.183, 0.0)

AF7 <- PD2 MTE8 (17.5/172286, 14.9/146314, 84.9, 1.104, 0.0)

AF7 <- LDH MTE8 (16.0/156977, 12.9/127260, 81.1, 1.054, 0.0)

AF7 <- MTE8 AH8 (17.4/171315, 16.6/162737, 95.0, 1.235, 0.0)

AF7 <- MTE8 V1 (23.0/226348, 19.9/195353, 86.3, 1.122, 0.0)

AF7 <- MTE8 MA5 (24.0/236244, 20.7/203778, 86.3, 1.122, 0.0)

AF7 <- PD1 MTE8 V1 (10.9/107240, 9.7/95597, 89.1, 1.159, 0.0)

AF7 <- PD1 MTE8 MA5 (11.2/110034, 9.2/90399, 82.2, 1.068, 0.0)
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Association Rules

V1 <- MTE8 AH8 MA5 (12.6/123716, 10.1/99085, 80.1, 1.401, 0.0)

AF7 <- PD2 MTE8 V1 (10.5/102856, 9.0/88698, 86.2, 1.121, 0.0)

AF7 <- MTE8 AH8 V1 (12.8/125629, 12.6/124315, 99.0, 1.287, 0.0)

AF7 <- MTE8 AH8 MA5 (12.6/123716, 12.4/121711, 98.4, 1.279, 0.0)

AF7 <- MTE8 V1 MA5 (14.2/140054, 13.2/129690, 92.6, 1.204, 0.0)

AF7 <- MTE8 AH8 V1 MA5 (10.1/99085, 10.1/99085, 100.0, 1.300, 0.0)

V1 <- MTE8 AH8 MA5 AF7 (12.4/121711, 10.1/99085, 81.4, 1.424, 0.0)

AF7 <- MTE9 AH7 (10.0/98638, 8.5/83629, 84.8, 1.102, 0.0)

Table 34

Marion County and its surrounding eight Counties daytime LST image characteristics:

Before and after kernel convolution

Temperature Before (K) Temperature After (K)

Date Maximum Mean Maximum Mean %Cloud

1-Jan-03 268.0 47.1 81.0 40.0 82.1

2-Jan-03 0.0 0.0 3.4 0.4 100.0

3-Jan-03 0.0 0.0 0.0 0.0 100.0

4-Jan-03 272.8 235.7 258.0 203.2 13.0

5-Jan-03 0.0 0.0 0.0 0.0 100.0

6-Jan-03 276.3 93.1 202.7 84.7 66.0

7-Jan-03 0.0 0.0 3.4 0.4 100.0

8-Jan-03 0.0 0.0 4.0 0.5 100.0

9-Jan-03 283.3 280.3 281.6 279.8 0.5
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Temperature Before (K) Temperature After (K)

Date Maximum Mean Maximum Mean %Cloud

10-Jan-03 275.4 37.4 70.7 30.9 86.4

11-Jan-03 272.2 81.9 134.7 81.5 69.8

12-Jan-03 271.8 5.4 97.3 23.7 98.0

13-Jan-03 0.0 0.0 29.9 3.1 100.0

14-Jan-03 0.0 0.0 7.8 0.6 100.0

15-Jan-03 0.0 0.0 13.3 2.2 100.0

16-Jan-03 0.0 0.0 0.0 0.0 100.0

17-Jan-03 268.7 264.3 263.2 257.5 0.1

18-Jan-03 0.0 0.0 3.8 0.1 100.0

19-Jan-03 263.6 57.6 188.3 63.4 77.9

20-Jan-03 0.0 0.0 0.0 0.0 100.0

21-Jan-03 0.0 0.0 45.8 10.5 100.0

22-Jan-03 0.0 0.0 0.0 0.0 100.0

23-Jan-03 0.0 0.0 26.0 3.9 100.0

24-Jan-03 261.8 1.0 48.5 5.4 99.6

25-Jan-03 272.1 230.9 263.5 223.1 14.5

26-Jan-03 0.0 0.0 4.0 0.2 100.0

27-Jan-03 0.0 0.0 0.0 0.0 100.0

28-Jan-03 268.2 1.5 97.1 19.3 99.4

29-Jan-03 0.0 0.0 0.0 0.0 100.0

30-Jan-03 274.2 36.6 208.0 69.2 86.6

31-Jan-03 0.0 0.0 0.0 0.0 100.0

2-Feb-03 0.0 0.0 0.0 0.0 100.0

3-Feb-03 0.0 0.0 0.0 0.0 100.0
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Temperature Before (K) Temperature After (K)

Date Maximum Mean Maximum Mean %Cloud

4-Feb-03 0.0 0.0 0.0 0.0 100.0

5-Feb-03 276.1 130.8 158.8 122.0 52.4

6-Feb-03 0.0 0.0 0.0 0.0 100.0

7-Feb-03 271.2 132.4 239.2 131.7 50.6

8-Feb-03 271.4 50.5 209.7 65.2 81.3

9-Feb-03 273.2 4.6 70.7 11.2 98.3

10-Feb-03 0.0 0.0 0.0 0.0 100.0

11-Feb-03 268.8 265.3 265.1 258.4 0.2

12-Feb-03 268.2 28.1 115.6 41.1 89.5

13-Feb-03 274.0 201.7 246.7 185.5 25.9

14-Feb-03 0.0 0.0 0.0 0.0 100.0

15-Feb-03 0.0 0.0 0.0 0.0 100.0

16-Feb-03 0.0 0.0 0.0 0.0 100.0

17-Feb-03 0.0 0.0 0.0 0.0 100.0

18-Feb-03 0.0 0.0 0.0 0.0 100.0

19-Feb-03 0.0 0.0 0.0 0.0 100.0

20-Feb-03 279.2 271.2 273.4 261.4 1.7

21-Feb-03 0.0 0.0 0.0 0.0 100.0

22-Feb-03 0.0 0.0 0.0 0.0 100.0

23-Feb-03 0.0 0.0 6.4 0.3 100.0

24-Feb-03 0.0 0.0 6.1 1.1 100.0

25-Feb-03 261.8 7.9 22.5 8.0 97.0

26-Feb-03 0.0 0.0 3.2 0.1 100.0

27-Feb-03 0.0 0.0 0.0 0.0 100.0



Table 34 – continued from previous page

Temperature Before (K) Temperature After (K)

Date Maximum Mean Maximum Mean %Cloud

28-Feb-03 0.0 0.0 7.3 0.3 100.0

1-Mar-03 0.0 0.0 0.0 0.0 100.0

2-Mar-03 0.0 0.0 0.0 0.0 100.0

3-Mar-03 270.0 118.7 224.7 123.2 55.7

4-Mar-03 0.0 0.0 0.0 0.0 100.0

5-Mar-03 0.0 0.0 0.0 0.0 100.0

6-Mar-03 274.2 242.8 265.3 234.1 10.5

7-Mar-03 278.7 150.9 196.8 131.0 45.3

8-Mar-03 275.9 7.3 38.7 9.8 97.3

9-Mar-03 278.2 3.4 32.8 5.8 98.8

10-Mar-03 275.9 195.2 268.6 180.8 28.8

11-Mar-03 0.0 0.0 22.9 4.7 100.0

12-Mar-03 0.0 0.0 0.0 0.0 100.0

13-Mar-03 0.0 0.0 0.0 0.0 100.0

14-Mar-03 288.2 267.9 273.9 260.6 5.7

15-Mar-03 294.5 184.6 254.0 179.1 36.6

16-Mar-03 300.0 296.2 296.6 295.7 0.3

17-Mar-03 290.5 4.7 9.2 2.6 98.4

18-Mar-03 0.0 0.0 2.5 0.4 100.0

19-Mar-03 0.0 0.0 0.0 0.0 100.0

20-Mar-03 297.5 222.7 238.6 226.0 24.2

22-Mar-03 293.1 272.7 286.5 248.1 5.8

23-Mar-03 299.4 295.2 296.5 291.8 0.3

24-Mar-03 299.0 199.3 256.7 193.8 32.7
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Temperature Before (K) Temperature After (K)

Date Maximum Mean Maximum Mean %Cloud

25-Mar-03 0.0 0.0 52.6 6.2 100.0

26-Mar-03 0.0 0.0 6.3 1.0 100.0

27-Mar-03 291.5 37.2 84.8 40.4 87.1

28-Mar-03 0.0 0.0 0.0 0.0 100.0

29-Mar-03 0.0 0.0 0.0 0.0 100.0

30-Mar-03 0.0 0.0 7.0 1.2 100.0

31-Mar-03 292.5 273.4 275.1 254.5 5.1

1-Apr-03 299.5 296.1 297.0 296.2 0.0

2-Apr-03 300.5 183.3 259.3 177.7 38.4

3-Apr-03 303.8 296.6 298.8 296.0 1.0

4-Apr-03 291.4 7.4 12.1 7.0 97.4

5-Apr-03 0.0 0.0 0.0 0.0 100.0

6-Apr-03 0.0 0.0 0.0 0.0 100.0

7-Apr-03 0.0 0.0 0.0 0.0 100.0

11-Apr-03 297.7 294.1 295.2 294.0 0.0

12-Apr-03 302.7 291.9 294.8 290.2 1.8

13-Apr-03 299.8 296.4 297.0 296.4 0.0

14-Apr-03 305.3 256.5 281.6 251.0 14.7

15-Apr-03 303.7 289.1 298.8 287.2 3.4

16-Apr-03 300.3 18.6 112.5 34.6 93.8

17-Apr-03 0.0 0.0 0.1 0.0 100.0

18-Apr-03 298.6 276.9 280.7 252.8 6.2

19-Apr-03 0.0 0.0 4.0 0.2 100.0

20-Apr-03 0.0 0.0 7.4 0.6 100.0
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Temperature Before (K) Temperature After (K)

Date Maximum Mean Maximum Mean %Cloud

21-Apr-03 0.0 0.0 0.0 0.0 100.0

22-Apr-03 0.0 0.0 0.0 0.0 100.0

23-Apr-03 301.4 290.0 292.1 286.0 1.9

24-Apr-03 0.0 0.0 0.0 0.0 100.0

25-Apr-03 0.0 0.0 0.0 0.0 100.0

26-Apr-03 302.3 296.0 297.5 295.9 0.0

27-Apr-03 301.5 297.2 298.1 297.1 0.0

28-Apr-03 303.7 143.6 253.0 139.0 51.8

29-Apr-03 302.9 298.1 295.7 273.6 0.0

30-Apr-03 0.0 0.0 22.7 4.8 100.0

1-May-03 0.0 0.0 0.0 0.0 100.0

2-May-03 0.0 0.0 0.0 0.0 100.0

3-May-03 299.1 194.9 218.4 190.2 33.7

4-May-03 0.0 0.0 0.0 0.0 100.0

5-May-03 304.1 298.3 299.8 297.5 0.0

6-May-03 301.8 156.1 262.1 153.3 47.6

7-May-03 0.0 0.0 6.0 0.7 100.0

8-May-03 0.0 0.0 0.6 0.0 100.0

9-May-03 302.4 12.5 13.4 9.0 95.8

10-May-03 0.0 0.0 0.0 0.0 100.0

11-May-03 289.3 12.0 53.6 19.3 95.8

12-May-03 297.5 197.5 276.6 191.0 32.5

13-May-03 301.2 295.9 297.1 295.7 0.0

14-May-03 0.0 0.0 0.3 0.0 100.0
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Temperature Before (K) Temperature After (K)

Date Maximum Mean Maximum Mean %Cloud

15-May-03 297.2 12.5 51.3 18.2 95.7

16-May-03 299.8 41.1 144.4 54.7 86.1

17-May-03 0.0 0.0 0.0 0.0 100.0

18-May-03 0.0 0.0 0.0 0.0 100.0

19-May-03 0.0 0.0 0.0 0.0 100.0

20-May-03 0.0 0.0 0.0 0.0 100.0

21-May-03 301.8 180.6 226.8 169.7 38.7

22-May-03 300.5 248.5 281.4 237.2 15.9

23-May-03 302.6 141.8 238.5 134.4 52.5

24-May-03 301.0 225.4 277.3 206.9 24.0

25-May-03 0.0 0.0 0.0 0.0 100.0

26-May-03 301.5 21.4 66.5 28.9 92.8

27-May-03 301.5 20.1 78.2 31.6 93.3

28-May-03 0.0 0.0 0.0 0.0 100.0

29-May-03 297.5 212.7 255.5 171.3 27.5

30-May-03 0.0 0.0 0.0 0.0 100.0

31-May-03 0.0 0.0 0.0 0.0 100.0

1-Jun-03 304.5 247.0 277.3 238.8 16.3

2-Jun-03 0.0 0.0 0.0 0.0 100.0

3-Jun-03 0.0 0.0 0.0 0.0 100.0

4-Jun-03 294.3 3.9 56.3 11.5 98.7

5-Jun-03 302.5 292.8 295.2 287.2 1.3

6-Jun-03 0.0 0.0 0.1 0.0 100.0

7-Jun-03 294.7 3.3 43.4 8.6 98.9
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Temperature Before (K) Temperature After (K)

Date Maximum Mean Maximum Mean %Cloud

8-Jun-03 0.0 0.0 0.0 0.0 100.0

9-Jun-03 302.1 113.3 176.9 123.1 62.0

10-Jun-03 0.0 0.0 0.0 0.0 100.0

11-Jun-03 0.0 0.0 4.0 0.7 100.0

12-Jun-03 0.0 0.0 0.0 0.0 100.0

13-Jun-03 302.5 102.1 126.3 92.7 65.7

14-Jun-03 0.0 0.0 0.0 0.0 100.0

15-Jun-03 305.3 6.6 92.5 22.6 97.8

16-Jun-03 0.0 0.0 8.3 1.0 100.0

17-Jun-03 307.7 105.8 203.0 108.2 65.1

19-Jun-03 0.0 0.0 0.0 0.0 100.0

20-Jun-03 308.7 301.8 303.0 301.4 0.1

21-Jun-03 310.0 273.9 300.9 276.0 9.8

22-Jun-03 315.6 305.2 306.5 302.3 0.9

23-Jun-03 309.7 241.9 297.2 259.4 20.3

26-Jun-03 0.0 0.0 0.0 0.0 100.0

27-Jun-03 312.7 305.5 306.0 304.9 0.0

28-Jun-03 307.7 149.6 228.5 147.2 50.8

29-Jun-03 312.6 258.9 296.9 230.8 15.9

30-Jun-03 302.2 25.5 96.8 39.0 91.5

1-Jul-03 308.0 46.7 179.3 72.8 84.7

2-Jul-03 302.5 18.5 94.8 36.6 93.8

3-Jul-03 311.1 91.0 171.1 92.3 70.3

4-Jul-03 305.4 75.8 226.5 99.4 75.0
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Temperature Before (K) Temperature After (K)

Date Maximum Mean Maximum Mean %Cloud

5-Jul-03 302.0 179.3 280.5 162.6 40.0

6-Jul-03 305.6 140.2 233.1 146.7 53.5

7-Jul-03 0.0 0.0 5.7 0.6 100.0

8-Jul-03 306.5 26.3 113.6 44.6 91.3

9-Jul-03 260.3 1.0 43.9 8.8 99.6

10-Jul-03 297.4 2.2 40.2 8.5 99.2

11-Jul-03 300.5 174.5 274.7 193.7 40.9

12-Jul-03 306.8 223.0 257.5 217.0 25.7

13-Jul-03 306.3 200.1 230.5 203.6 33.1

14-Jul-03 307.3 270.7 297.1 269.6 10.5

15-Jul-03 0.0 0.0 0.0 0.0 100.0

16-Jul-03 307.1 300.3 301.8 299.9 0.0

17-Jul-03 313.4 303.8 305.4 303.6 0.2

18-Jul-03 0.0 0.0 0.0 0.0 100.0

19-Jul-03 314.1 303.8 306.4 303.5 0.0

20-Jul-03 301.4 47.5 152.5 59.6 84.1

21-Jul-03 0.0 0.0 0.4 0.0 100.0

22-Jul-03 303.3 161.8 204.2 162.1 45.5

23-Jul-03 293.0 18.4 73.9 17.8 93.7

24-Jul-03 313.5 289.3 301.3 291.1 4.0

25-Jul-03 308.0 301.0 302.8 300.6 0.0

26-Jul-03 303.9 14.8 200.8 48.6 95.1

27-Jul-03 297.8 76.6 127.7 81.8 74.1

28-Jul-03 0.0 0.0 0.0 0.0 100.0
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Temperature Before (K) Temperature After (K)

Date Maximum Mean Maximum Mean %Cloud

29-Jul-03 308.5 286.7 298.7 291.0 4.6

30-Jul-03 311.1 290.6 299.6 291.9 3.6

31-Jul-03 311.1 280.0 291.6 279.1 7.3

1-Aug-03 302.3 216.1 293.6 231.2 27.9

2-Aug-03 0.0 0.0 9.8 1.6 100.0

3-Aug-03 299.5 110.9 159.9 111.0 62.6

4-Aug-03 306.3 175.5 221.2 174.6 41.6

5-Aug-03 305.6 234.3 265.5 236.8 21.8

6-Aug-03 301.8 46.0 156.8 53.6 84.6

7-Aug-03 308.3 273.6 294.9 274.7 9.5

8-Aug-03 300.0 13.5 100.6 22.5 95.5

9-Aug-03 0.0 0.0 3.8 0.5 100.0

10-Aug-03 270.5 33.9 45.3 27.8 87.2

11-Aug-03 306.4 188.0 232.3 169.7 37.4

12-Aug-03 299.3 86.3 188.5 98.2 70.7

13-Aug-03 298.6 0.6 107.5 12.5 99.8

14-Aug-03 302.8 144.3 243.6 149.6 51.9

15-Aug-03 301.4 73.3 204.3 77.1 75.5

16-Aug-03 307.4 207.2 255.8 211.5 31.3

17-Aug-03 296.0 4.8 147.2 44.5 98.4

18-Aug-03 312.4 303.1 305.3 302.7 0.0

19-Aug-03 308.8 302.4 304.0 301.8 0.0

20-Aug-03 314.3 305.1 306.9 304.6 0.1

21-Aug-03 305.6 200.4 294.4 209.9 33.7
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Temperature Before (K) Temperature After (K)

Date Maximum Mean Maximum Mean %Cloud

22-Aug-03 0.0 0.0 57.2 5.3 100.0

23-Aug-03 311.9 303.9 305.8 303.5 0.0

24-Aug-03 304.3 261.9 295.8 268.7 12.7

25-Aug-03 312.8 303.1 305.9 303.6 0.8

26-Aug-03 308.7 300.7 301.6 300.8 0.7

27-Aug-03 307.7 209.0 297.8 199.8 30.8

28-Aug-03 303.6 192.5 285.3 207.5 36.1

29-Aug-03 0.0 0.0 28.0 2.1 100.0

30-Aug-03 0.0 0.0 3.5 0.2 100.0

31-Aug-03 0.0 0.0 0.0 0.0 100.0

1-Sep-03 0.0 0.0 0.0 0.0 100.0

2-Sep-03 0.0 0.0 0.0 0.0 100.0

3-Sep-03 305.2 31.1 231.6 61.2 89.6

4-Sep-03 298.9 123.0 144.5 116.4 58.0

5-Sep-03 305.8 279.8 299.2 276.4 6.2

6-Sep-03 306.7 298.8 301.2 298.2 0.1

7-Sep-03 297.3 10.8 199.2 51.1 96.3

8-Sep-03 301.7 79.3 136.1 66.1 73.1

9-Sep-03 303.3 228.9 263.6 225.1 23.4

10-Sep-03 307.0 263.6 290.2 259.6 12.5

11-Sep-03 300.1 245.6 293.5 257.9 17.4

12-Sep-03 307.0 296.5 298.2 293.5 1.4

13-Sep-03 304.4 273.9 291.7 277.4 8.4

14-Sep-03 300.0 7.9 37.1 10.0 97.3
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Temperature Before (K) Temperature After (K)

Date Maximum Mean Maximum Mean %Cloud

15-Sep-03 303.4 278.3 285.2 274.7 6.3

16-Sep-03 307.3 298.1 300.8 299.4 1.0

17-Sep-03 306.9 282.2 299.1 282.1 6.3

18-Sep-03 304.7 300.1 301.2 299.9 0.0

19-Sep-03 0.0 0.0 0.0 0.0 100.0

20-Sep-03 302.4 297.5 298.5 297.1 0.0

21-Sep-03 305.3 298.5 300.5 299.0 0.5

22-Sep-03 294.0 35.9 126.2 58.6 87.7

23-Sep-03 300.1 246.5 274.5 259.6 16.4

24-Sep-03 303.5 298.7 299.6 298.4 0.0

25-Sep-03 294.1 233.3 282.0 221.3 19.5

26-Sep-03 0.0 0.0 0.7 0.0 100.0

27-Sep-03 297.2 291.6 293.0 292.0 0.5

28-Sep-03 0.0 0.0 3.8 0.3 100.0

29-Sep-03 289.5 113.3 116.6 103.8 60.3

30-Sep-03 295.7 281.8 291.2 281.8 3.3

1-Oct-03 294.2 271.4 287.2 266.9 6.4

2-Oct-03 293.7 284.3 286.8 284.0 1.6

3-Oct-03 0.0 0.0 0.0 0.0 100.0

4-Oct-03 0.0 0.0 10.4 0.8 100.0

5-Oct-03 297.0 64.2 144.1 52.5 78.1

6-Oct-03 298.1 295.1 295.5 295.0 0.0

7-Oct-03 301.5 296.2 297.5 296.5 0.5

8-Oct-03 302.5 287.0 298.2 289.5 4.0
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Temperature Before (K) Temperature After (K)

Date Maximum Mean Maximum Mean %Cloud

9-Oct-03 0.0 0.0 0.0 0.0 100.0

10-Oct-03 0.0 0.0 6.9 1.0 100.0

11-Oct-03 301.0 229.6 263.9 222.4 22.9

12-Oct-03 300.8 296.2 296.9 296.0 0.0

13-Oct-03 298.6 296.3 296.9 296.0 0.0

14-Oct-03 0.0 0.0 0.0 0.0 100.0

15-Oct-03 293.5 290.7 291.4 290.7 0.1

16-Oct-03 297.0 267.3 291.3 265.4 8.7

17-Oct-03 0.0 0.0 47.0 9.0 100.0

18-Oct-03 294.0 275.4 282.6 271.2 5.2

19-Oct-03 298.7 295.4 295.6 295.3 0.0

20-Oct-03 294.5 11.8 139.4 41.7 95.9

21-Oct-03 0.0 0.0 0.0 0.0 100.0

22-Oct-03 288.1 53.8 74.1 49.5 81.2

23-Oct-03 294.0 286.9 288.5 284.1 1.3

24-Oct-03 292.3 288.7 290.1 287.9 0.4

25-Oct-03 0.0 0.0 0.0 0.0 100.0

26-Oct-03 289.8 285.0 286.8 277.5 0.4

27-Oct-03 0.0 0.0 7.5 1.2 100.0

28-Oct-03 0.0 0.0 0.0 0.0 100.0

29-Oct-03 286.2 284.1 284.2 282.6 0.0

30-Oct-03 295.7 293.0 293.3 292.9 0.1

31-Oct-03 0.0 0.0 0.0 0.0 100.0

1-Nov-03 0.0 0.0 0.8 0.1 100.0
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Temperature Before (K) Temperature After (K)

Date Maximum Mean Maximum Mean %Cloud

2-Nov-03 298.2 164.1 226.1 167.1 44.5

3-Nov-03 297.2 196.0 274.9 188.7 33.7

4-Nov-03 299.4 296.6 297.1 296.8 0.0

5-Nov-03 0.0 0.0 0.0 0.0 100.0

6-Nov-03 0.0 0.0 0.1 0.0 100.0

7-Nov-03 0.0 0.0 0.0 0.0 100.0

8-Nov-03 280.0 10.3 100.8 26.7 96.3

9-Nov-03 284.6 282.6 282.8 282.5 0.0

10-Nov-03 286.2 52.5 106.1 50.5 81.5

11-Nov-03 0.0 0.0 0.0 0.0 100.0

12-Nov-03 269.3 0.8 26.2 3.4 99.7

13-Nov-03 282.8 279.3 280.2 276.9 0.5

14-Nov-03 0.0 0.0 0.0 0.0 100.0

15-Nov-03 0.0 0.0 2.4 0.5 100.0

16-Nov-03 0.0 0.0 0.0 0.0 100.0

17-Nov-03 0.0 0.0 41.7 11.8 100.0

18-Nov-03 0.0 0.0 0.0 0.0 100.0

19-Nov-03 288.4 285.4 286.2 285.6 0.2

20-Nov-03 289.8 240.8 285.1 246.1 15.8

21-Nov-03 289.7 26.5 130.5 38.9 90.8

22-Nov-03 290.3 152.4 224.8 154.4 46.8

23-Nov-03 0.0 0.0 12.6 1.5 100.0

24-Nov-03 0.0 0.0 0.0 0.0 100.0

25-Nov-03 0.0 0.0 0.0 0.0 100.0
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26-Nov-03 283.0 38.9 222.3 63.7 86.1

27-Nov-03 0.0 0.0 2.4 0.2 100.0

28-Nov-03 0.0 0.0 0.0 0.0 100.0

29-Nov-03 0.0 0.0 0.5 0.0 100.0

30-Nov-03 283.6 245.1 281.6 238.6 12.9

1-Dec-03 281.8 279.2 279.8 279.4 0.2

2-Dec-03 0.0 0.0 35.0 3.4 100.0

3-Dec-03 0.0 0.0 0.0 0.0 100.0

4-Dec-03 0.0 0.0 0.0 0.0 100.0

5-Dec-03 0.0 0.0 0.0 0.0 100.0

6-Dec-03 280.8 162.9 226.4 141.2 41.7

7-Dec-03 278.7 93.8 170.2 85.2 66.1

8-Dec-03 0.0 0.0 0.5 0.1 100.0

9-Dec-03 0.0 0.0 0.0 0.0 100.0

10-Dec-03 270.7 27.9 41.0 19.4 89.6

11-Dec-03 0.0 0.0 0.0 0.0 100.0

12-Dec-03 274.9 28.2 81.9 33.8 89.7

13-Dec-03 0.0 0.0 0.0 0.0 100.0

14-Dec-03 0.0 0.0 0.0 0.0 100.0

15-Dec-03 0.0 0.0 0.0 0.0 100.0

16-Dec-03 0.0 0.0 0.0 0.0 100.0

25-Dec-03 274.8 48.5 226.8 76.9 82.3

26-Dec-03 279.3 206.0 253.2 212.4 25.7

27-Dec-03 280.9 278.5 280.0 278.8 0.2
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28-Dec-03 285.3 101.9 180.8 102.4 63.9

29-Dec-03 0.0 0.0 0.0 0.0 100.0

30-Dec-03 277.9 159.6 242.1 163.0 42.2

31-Dec-03 282.5 280.7 281.0 280.6 0.0

1-Jan-04 0.0 0.0 0.8 0.1 100.0

2-Jan-04 0.0 0.0 0.0 0.0 100.0

3-Jan-04 279.5 8.7 30.6 9.2 96.9

4-Jan-04 277.1 21.9 69.8 29.7 91.9

5-Jan-04 0.0 0.0 0.0 0.0 100.0

6-Jan-04 264.8 1.5 23.7 5.4 99.4

7-Jan-04 271.8 6.7 26.1 7.3 97.5

8-Jan-04 0.0 0.0 0.0 0.0 100.0

9-Jan-04 0.0 0.0 0.0 0.0 100.0

10-Jan-04 273.6 208.5 246.8 198.7 23.4

11-Jan-04 0.0 0.0 0.0 0.0 100.0

12-Jan-04 0.0 0.0 0.0 0.0 100.0

13-Jan-04 0.0 0.0 57.8 13.5 100.0

14-Jan-04 278.6 271.1 273.7 269.0 2.0

15-Jan-04 0.0 0.0 5.1 0.9 100.0

16-Jan-04 261.4 4.2 16.5 3.1 98.4

17-Jan-04 0.0 0.0 0.0 0.0 100.0

18-Jan-04 0.0 0.0 0.0 0.0 100.0

19-Jan-04 271.6 50.8 177.2 63.8 81.3

20-Jan-04 0.0 0.0 0.0 0.0 100.0
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21-Jan-04 0.0 0.0 0.0 0.0 100.0

22-Jan-04 270.7 12.5 52.0 21.2 95.4

23-Jan-04 0.0 0.0 0.0 0.0 100.0

24-Jan-04 0.0 0.0 6.9 0.8 100.0

25-Jan-04 0.0 0.0 3.6 1.0 100.0

26-Jan-04 0.0 0.0 0.0 0.0 100.0

27-Jan-04 265.2 26.2 98.9 35.1 90.0

28-Jan-04 264.9 58.0 198.3 68.8 77.9

29-Jan-04 0.0 0.0 0.0 0.0 100.0

30-Jan-04 0.0 0.0 0.2 0.0 100.0

31-Jan-04 262.0 183.9 240.1 166.1 28.8

1-Feb-04 0.0 0.0 0.0 0.0 100.0

2-Feb-04 0.0 0.0 3.0 0.3 100.0

3-Feb-04 0.0 0.0 0.0 0.0 100.0

4-Feb-04 273.5 91.4 115.0 81.9 66.4

7-Feb-04 0.0 0.0 0.0 0.0 100.0

8-Feb-04 0.0 0.0 0.0 0.0 100.0

9-Feb-04 0.0 0.0 50.9 5.0 100.0

10-Feb-04 277.7 263.3 273.0 264.2 3.8

11-Feb-04 277.0 236.3 263.3 233.6 13.9

12-Feb-04 273.4 114.4 159.9 122.1 57.9

13-Feb-04 0.0 0.0 0.0 0.0 100.0

14-Feb-04 275.7 114.5 165.6 99.5 58.2

15-Feb-04 277.3 6.5 119.1 25.0 97.6
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16-Feb-04 269.9 1.5 5.8 1.3 99.4

17-Feb-04 0.0 0.0 0.0 0.0 100.0

18-Feb-04 0.0 0.0 0.0 0.0 100.0

19-Feb-04 284.6 14.2 30.7 12.1 95.0

20-Feb-04 0.0 0.0 0.0 0.0 100.0

21-Feb-04 0.0 0.0 0.0 0.0 100.0

22-Feb-04 283.8 111.2 179.7 112.8 60.5

23-Feb-04 0.0 0.0 0.0 0.0 100.0

24-Feb-04 0.0 0.0 0.0 0.0 100.0

25-Feb-04 282.7 280.0 280.4 279.6 0.1

26-Feb-04 285.3 271.9 277.0 265.4 3.3

27-Feb-04 287.3 283.9 284.8 284.1 0.3

28-Feb-04 289.0 222.2 262.6 209.0 22.2

29-Feb-04 0.0 0.0 6.1 0.4 100.0

1-Mar-04 0.0 0.0 0.0 0.0 100.0

2-Mar-04 0.0 0.0 6.9 0.6 100.0

3-Mar-04 0.0 0.0 0.0 0.0 100.0

4-Mar-04 0.0 0.0 0.0 0.0 100.0

5-Mar-04 293.6 289.9 291.0 289.4 0.4

6-Mar-04 0.0 0.0 26.0 2.7 100.0

7-Mar-04 287.6 202.4 238.8 196.7 28.8

8-Mar-04 0.0 0.0 0.3 0.0 100.0

9-Mar-04 0.0 0.0 23.3 3.2 100.0

10-Mar-04 287.3 103.6 208.2 113.6 63.6
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11-Mar-04 290.5 286.1 287.3 286.6 0.4

12-Mar-04 278.6 60.6 235.6 74.8 78.1

13-Mar-04 287.6 251.6 281.1 242.1 11.4

14-Mar-04 0.0 0.0 0.2 0.0 100.0

15-Mar-04 292.6 239.2 241.5 224.1 17.2

16-Mar-04 0.0 0.0 4.2 0.4 100.0

17-Mar-04 0.0 0.0 0.0 0.0 100.0

18-Mar-04 0.0 0.0 0.0 0.0 100.0

19-Mar-04 285.5 0.3 115.4 12.7 99.9

20-Mar-04 293.3 13.2 16.3 9.5 95.5

21-Mar-04 0.0 0.0 0.0 0.0 100.0

22-Mar-04 287.2 270.4 282.1 259.1 4.5

23-Mar-04 291.2 288.4 288.6 287.5 0.1

24-Mar-04 293.8 2.2 21.0 4.7 99.2

25-Mar-04 0.0 0.0 16.9 3.2 100.0

26-Mar-04 0.0 0.0 0.0 0.0 100.0

27-Mar-04 291.2 0.8 1.6 0.6 99.7

28-Mar-04 297.0 25.4 106.3 46.4 91.4

29-Mar-04 0.0 0.0 0.0 0.0 100.0

30-Mar-04 0.0 0.0 0.0 0.0 100.0

31-Mar-04 0.0 0.0 22.0 3.0 100.0

1-Apr-04 289.9 158.3 153.3 123.1 44.5

2-Apr-04 286.4 1.6 60.5 12.2 99.4

3-Apr-04 291.9 149.3 227.3 147.0 47.9
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4-Apr-04 290.6 159.3 222.7 148.1 44.4

5-Apr-04 296.5 290.7 291.3 289.9 0.4

6-Apr-04 295.2 248.7 276.1 216.3 14.9

7-Apr-04 301.0 115.8 193.7 118.0 60.5

8-Apr-04 297.3 294.0 294.3 291.3 0.0

9-Apr-04 297.2 161.0 254.1 159.7 45.2

10-Apr-04 0.0 0.0 96.3 15.3 100.0

11-Apr-04 0.0 0.0 0.0 0.0 100.0

12-Apr-04 0.0 0.0 0.0 0.0 100.0

13-Apr-04 0.0 0.0 0.0 0.0 100.0

14-Apr-04 300.1 289.4 291.6 286.3 2.2

15-Apr-04 298.3 119.2 172.1 105.1 59.6

16-Apr-04 306.2 251.7 281.1 244.0 16.8

17-Apr-04 307.2 264.0 303.8 249.4 12.8

18-Apr-04 305.6 151.4 211.5 145.4 49.6

19-Apr-04 0.0 0.0 0.0 0.0 100.0

20-Apr-04 0.0 0.0 0.0 0.0 100.0

21-Apr-04 0.0 0.0 0.0 0.0 100.0

22-Apr-04 0.0 0.0 0.0 0.0 100.0

23-Apr-04 0.0 0.0 6.7 1.2 100.0

24-Apr-04 0.0 0.0 0.0 0.0 100.0

25-Apr-04 297.2 43.0 97.7 38.4 85.4

26-Apr-04 297.9 240.6 286.0 240.0 18.2

27-Apr-04 291.5 61.7 172.3 78.7 78.5
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28-Apr-04 302.1 297.9 297.7 296.1 0.1

29-Apr-04 291.9 4.9 79.9 18.7 98.3

30-Apr-04 301.7 79.5 124.6 82.9 73.3

1-May-04 0.0 0.0 2.8 0.2 100.0

2-May-04 0.0 0.0 2.9 0.4 100.0

3-May-04 297.7 292.0 292.7 291.5 0.0

21-May-04 296.0 1.4 30.5 5.8 99.5

22-May-04 0.0 0.0 0.0 0.0 100.0

23-May-04 0.0 0.0 0.5 0.0 100.0

24-May-04 294.0 30.7 125.1 58.8 89.4

25-May-04 0.0 0.0 2.0 0.1 100.0

26-May-04 294.1 28.9 118.3 35.9 90.1

27-May-04 300.9 81.8 200.6 84.1 72.6

28-May-04 307.5 300.4 300.7 298.0 0.0

29-May-04 308.2 294.1 300.1 292.0 2.3

30-May-04 0.0 0.0 2.3 0.2 100.0

31-May-04 302.2 296.8 298.0 296.5 0.0

1-Jun-04 310.8 296.1 303.8 285.5 2.0

2-Jun-04 299.2 176.1 258.9 185.8 40.4

3-Jun-04 304.1 93.8 191.1 98.8 68.7

4-Jun-04 301.5 104.9 146.3 93.2 64.6

5-Jun-04 303.3 49.1 88.5 51.2 83.6

6-Jun-04 304.2 97.2 197.6 76.8 67.6

7-Jun-04 304.8 194.7 281.7 203.1 35.5
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8-Jun-04 311.5 196.4 248.7 213.4 35.8

9-Jun-04 0.0 0.0 34.6 4.7 100.0

10-Jun-04 0.0 0.0 0.0 0.0 100.0

11-Jun-04 295.5 12.0 45.1 18.4 95.9

12-Jun-04 0.0 0.0 0.0 0.0 100.0

13-Jun-04 297.6 7.2 89.1 21.4 97.5

14-Jun-04 306.4 269.4 294.6 276.1 10.8

15-Jun-04 0.0 0.0 4.5 0.5 100.0

16-Jun-04 294.3 98.0 160.4 80.3 66.1

17-Jun-04 305.3 77.1 141.0 77.3 74.4

18-Jun-04 298.4 64.9 167.3 68.8 78.0

19-Jun-04 311.0 298.0 299.8 297.5 1.0

20-Jun-04 309.8 300.4 302.4 300.1 0.1

21-Jun-04 299.3 12.3 132.9 32.9 95.8

22-Jun-04 0.0 0.0 8.5 1.9 100.0

23-Jun-04 308.9 300.7 303.0 300.6 0.2

24-Jun-04 310.8 300.6 302.3 301.2 1.0

25-Jun-04 0.0 0.0 0.0 0.0 100.0

26-Jun-04 311.9 268.0 289.3 274.2 11.1

27-Jun-04 304.7 204.5 291.1 218.6 31.8

28-Jun-04 302.8 13.7 171.8 32.0 95.5

29-Jun-04 308.1 273.5 297.3 248.0 9.1

30-Jun-04 312.5 301.8 303.6 302.3 0.8

1-Jul-04 313.7 268.6 302.6 275.1 12.0
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2-Jul-04 302.4 190.6 252.1 204.4 36.2

3-Jul-04 0.0 0.0 0.0 0.0 100.0

4-Jul-04 297.8 73.4 214.5 88.4 75.2

5-Jul-04 310.6 217.0 261.4 232.4 28.3

6-Jul-04 304.2 195.1 265.9 186.5 35.0

7-Jul-04 303.7 102.9 193.2 109.9 65.4

8-Jul-04 303.1 114.1 127.7 91.6 61.7

9-Jul-04 298.7 3.4 30.3 8.8 98.9

10-Jul-04 0.0 0.0 11.1 3.3 100.0

11-Jul-04 294.5 6.1 53.5 20.8 97.9

12-Jul-04 306.5 105.3 189.9 105.4 65.1

13-Jul-04 307.8 239.5 291.3 222.1 20.9

14-Jul-04 309.0 251.3 286.2 254.5 16.4

15-Jul-04 312.1 301.4 304.6 298.7 0.3

16-Jul-04 306.0 249.6 276.4 236.7 17.1

17-Jul-04 306.9 244.3 282.2 238.4 18.7

18-Jul-04 294.8 14.2 20.9 10.4 95.2

19-Jul-04 309.8 257.5 294.5 265.1 14.7

20-Jul-04 299.8 119.2 257.9 148.8 59.9

21-Jul-04 0.0 0.0 0.0 0.0 100.0

22-Jul-04 303.9 192.6 277.5 214.4 35.7

23-Jul-04 303.8 111.8 225.4 119.8 62.4

24-Jul-04 302.3 17.2 105.6 31.5 94.2

25-Jul-04 0.0 0.0 2.1 0.3 100.0
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26-Jul-04 0.0 0.0 0.0 0.0 100.0

27-Jul-04 293.1 13.3 89.3 47.2 95.5

28-Jul-04 311.2 302.3 304.9 301.8 0.0

29-Jul-04 0.0 0.0 1.6 0.1 100.0

30-Jul-04 0.0 0.0 0.0 0.0 100.0

31-Jul-04 303.5 130.0 201.9 117.5 56.4

1-Aug-04 304.5 165.3 238.2 172.0 44.8

2-Aug-04 310.3 283.2 299.4 279.4 6.5

3-Aug-04 300.2 50.7 164.6 72.8 82.9

4-Aug-04 296.8 11.7 18.3 7.7 96.0

5-Aug-04 305.2 289.3 296.1 288.3 2.9

6-Aug-04 309.9 299.0 301.3 297.9 0.2

7-Aug-04 309.5 297.1 298.1 296.7 0.9

8-Aug-04 304.4 76.9 149.9 95.7 74.1

9-Aug-04 304.8 89.3 131.1 79.4 70.0

10-Aug-04 302.2 253.9 291.9 248.3 14.4

11-Aug-04 294.0 13.5 34.8 17.9 95.4

12-Aug-04 296.3 64.6 154.4 70.8 77.8

13-Aug-04 302.2 131.1 181.5 110.1 55.7

14-Aug-04 292.2 16.1 76.0 36.2 94.4

15-Aug-04 309.3 272.6 287.7 276.1 9.1

16-Aug-04 297.8 43.5 102.5 51.9 85.1

17-Aug-04 304.3 181.0 267.0 195.3 39.5

18-Aug-04 302.4 12.5 118.7 29.4 95.8
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19-Aug-04 298.8 74.5 247.5 99.5 74.9

20-Aug-04 0.0 0.0 0.0 0.0 100.0

21-Aug-04 303.9 296.5 297.4 296.8 0.7

22-Aug-04 310.0 299.7 300.8 299.9 0.8

23-Aug-04 307.4 246.1 271.3 250.9 18.1

24-Aug-04 299.1 14.9 69.9 31.5 95.0

25-Aug-04 0.0 0.0 8.9 1.3 100.0

26-Aug-04 0.0 0.0 0.0 0.0 100.0

27-Aug-04 293.6 1.1 24.1 3.9 99.6

28-Aug-04 293.7 4.0 69.9 10.7 98.6

29-Aug-04 0.0 0.0 17.5 1.2 100.0

30-Aug-04 300.3 72.6 138.9 91.9 75.4

31-Aug-04 308.4 278.6 297.8 274.7 7.4

1-Sep-04 307.7 219.0 252.9 226.5 26.7

2-Sep-04 306.9 296.8 299.4 298.1 1.4

3-Sep-04 300.7 38.1 77.8 46.8 87.1

4-Sep-04 298.4 1.7 60.3 18.1 99.4

5-Sep-04 309.3 208.7 239.7 222.4 30.9

6-Sep-04 301.6 42.9 238.0 74.7 85.7

7-Sep-04 304.5 199.8 270.0 180.6 33.1

8-Sep-04 0.0 0.0 11.8 0.5 100.0

9-Sep-04 300.4 66.9 94.8 73.3 77.4

10-Sep-04 309.6 303.3 304.4 303.0 0.0

11-Sep-04 299.2 57.2 145.9 69.2 80.7
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12-Sep-04 309.3 183.4 230.3 204.1 39.1

13-Sep-04 300.8 139.9 269.9 147.5 53.1

14-Sep-04 306.5 81.5 165.4 92.7 72.9

15-Sep-04 301.5 75.1 216.7 110.4 74.9

16-Sep-04 0.0 0.0 0.0 0.0 100.0

17-Sep-04 301.7 241.4 295.6 237.5 18.6

18-Sep-04 302.8 160.6 292.8 172.9 45.6

19-Sep-04 306.7 301.5 302.6 301.5 0.2

20-Sep-04 304.5 301.2 301.6 300.8 0.0

21-Sep-04 309.6 304.9 305.2 304.2 0.0

22-Sep-04 307.6 304.2 305.0 304.1 0.0

23-Sep-04 309.7 303.4 304.1 303.1 0.7

24-Sep-04 0.0 0.0 4.7 1.0 100.0

25-Sep-04 302.5 59.7 222.3 76.4 79.7

26-Sep-04 302.2 172.7 274.4 172.3 42.0

27-Sep-04 302.1 229.3 276.5 228.0 23.4

28-Sep-04 305.3 299.1 300.6 298.6 0.7

29-Sep-04 296.1 111.6 261.8 120.3 61.9

30-Sep-04 302.5 234.3 273.2 230.0 21.1

1-Oct-04 302.0 102.7 113.2 81.9 65.4

2-Oct-04 0.0 0.0 0.5 0.1 100.0

3-Oct-04 300.3 297.4 298.0 297.1 0.0

4-Oct-04 299.2 145.3 255.3 147.3 50.9

5-Oct-04 299.6 295.2 296.2 295.0 0.4
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6-Oct-04 300.8 298.1 298.0 296.9 0.0

7-Oct-04 301.2 157.3 222.2 149.9 46.5

8-Oct-04 0.0 0.0 0.0 0.0 100.0

9-Oct-04 295.6 19.4 42.2 15.1 93.4

10-Oct-04 298.9 284.7 295.4 284.8 3.7

11-Oct-04 295.0 22.2 80.2 27.7 92.3

12-Oct-04 295.8 3.4 36.4 4.5 98.9

13-Oct-04 0.0 0.0 2.2 0.4 100.0

14-Oct-04 0.0 0.0 0.0 0.0 100.0

15-Oct-04 0.0 0.0 0.0 0.0 100.0

16-Oct-04 0.0 0.0 4.0 0.9 100.0

17-Oct-04 290.8 280.4 288.7 264.6 2.9

18-Oct-04 0.0 0.0 0.0 0.0 100.0

19-Oct-04 0.0 0.0 0.0 0.0 100.0

20-Oct-04 0.0 0.0 0.0 0.0 100.0

21-Oct-04 293.2 29.1 32.4 17.7 90.0

22-Oct-04 295.5 268.1 284.3 251.7 8.5

23-Oct-04 0.0 0.0 0.0 0.0 100.0

24-Oct-04 294.6 292.7 293.0 292.6 0.0

25-Oct-04 298.2 295.6 296.1 295.7 0.2

26-Oct-04 0.0 0.0 0.0 0.0 100.0

27-Oct-04 0.0 0.0 0.0 0.0 100.0

28-Oct-04 291.1 36.6 126.2 38.8 87.3

29-Oct-04 294.9 7.0 95.9 18.2 97.6
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30-Oct-04 299.0 296.1 296.8 296.2 0.1

31-Oct-04 0.0 0.0 0.5 0.0 100.0

1-Nov-04 0.0 0.0 6.9 1.8 100.0

2-Nov-04 0.0 0.0 0.0 0.0 100.0

3-Nov-04 0.0 0.0 0.0 0.0 100.0

4-Nov-04 0.0 0.0 0.0 0.0 100.0

5-Nov-04 287.9 275.5 283.7 278.2 3.6

6-Nov-04 291.9 290.2 290.4 290.1 0.0

7-Nov-04 292.5 254.8 287.7 263.6 11.9

8-Nov-04 287.7 104.0 111.7 87.4 63.4

9-Nov-04 286.1 239.6 262.5 241.6 15.5

10-Nov-04 289.4 48.8 82.2 45.0 83.0

11-Nov-04 0.0 0.0 0.0 0.0 100.0

12-Nov-04 283.2 111.9 242.3 150.1 60.0

13-Nov-04 284.8 283.1 283.4 283.1 0.0

14-Nov-04 282.0 105.3 135.0 98.6 62.3

15-Nov-04 0.0 0.0 0.0 0.0 100.0

16-Nov-04 0.0 0.0 0.0 0.0 100.0

17-Nov-04 0.0 0.0 0.0 0.0 100.0

18-Nov-04 0.0 0.0 3.0 0.3 100.0

19-Nov-04 0.0 0.0 3.9 0.3 100.0

20-Nov-04 0.0 0.0 0.0 0.0 100.0

21-Nov-04 0.0 0.0 29.7 5.0 100.0

22-Nov-04 284.9 2.4 14.6 2.7 99.1
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Temperature Before (K) Temperature After (K)

Date Maximum Mean Maximum Mean %Cloud

23-Nov-04 0.0 0.0 0.0 0.0 100.0

24-Nov-04 268.6 63.3 159.7 61.7 75.9

25-Nov-04 280.5 244.4 270.2 230.4 12.4

26-Nov-04 0.0 0.0 0.0 0.0 100.0

27-Nov-04 0.0 0.0 0.0 0.0 100.0

28-Nov-04 0.0 0.0 0.0 0.0 100.0

29-Nov-04 252.9 1.7 2.7 1.3 99.3

30-Nov-04 0.0 0.0 0.0 0.0 100.0

1-Dec-04 281.2 279.0 277.9 267.0 0.2

2-Dec-04 282.6 281.2 281.2 281.0 0.0

3-Dec-04 282.3 203.4 272.4 209.6 27.5

4-Dec-04 280.6 111.2 135.6 73.0 60.1

5-Dec-04 283.9 136.7 259.1 184.9 51.5

6-Dec-04 0.0 0.0 0.0 0.0 100.0

7-Dec-04 288.4 23.0 32.6 19.9 91.7

8-Dec-04 285.4 235.0 279.4 235.6 17.0

9-Dec-04 0.0 0.0 0.0 0.0 100.0

10-Dec-04 0.0 0.0 0.9 0.1 100.0

11-Dec-04 0.0 0.0 0.0 0.0 100.0

12-Dec-04 0.0 0.0 0.1 0.0 100.0

13-Dec-04 0.0 0.0 0.5 0.0 100.0

14-Dec-04 273.7 48.8 86.6 39.1 82.1

15-Dec-04 276.5 267.2 272.1 255.8 2.7

16-Dec-04 0.0 0.0 0.0 0.0 100.0
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Temperature Before (K) Temperature After (K)

Date Maximum Mean Maximum Mean %Cloud

17-Dec-04 279.1 225.9 249.7 202.8 18.6

18-Dec-04 0.0 0.0 16.2 3.7 100.0

19-Dec-04 267.0 45.5 91.8 56.6 82.8

20-Dec-04 0.0 0.0 0.0 0.0 100.0

21-Dec-04 279.9 162.0 229.6 159.8 41.8

22-Dec-04 0.0 0.0 0.0 0.0 100.0

23-Dec-04 267.0 238.5 236.2 208.7 9.7

24-Dec-04 0.0 0.0 0.0 0.0 100.0

25-Dec-04 0.0 0.0 0.0 0.0 100.0

26-Dec-04 265.8 1.5 149.7 32.7 99.4

27-Dec-04 262.9 55.4 165.7 60.1 78.8

28-Dec-04 0.0 0.0 16.0 1.9 100.0

29-Dec-04 276.7 33.6 159.9 52.8 87.8

30-Dec-04 0.0 0.0 0.0 0.0 100.0

31-Dec-04 0.0 0.0 0.0 0.0 100.0

1-Jan-05 0.0 0.0 0.0 0.0 100.0

2-Jan-05 0.0 0.0 0.6 0.0 100.0

3-Jan-05 0.0 0.0 0.0 0.0 100.0

4-Jan-05 0.0 0.0 0.0 0.0 100.0

5-Jan-05 0.0 0.0 0.0 0.0 100.0

6-Jan-05 0.0 0.0 0.0 0.0 100.0

7-Jan-05 0.0 0.0 0.0 0.0 100.0

8-Jan-05 0.0 0.0 0.0 0.0 100.0

9-Jan-05 275.1 27.7 38.1 21.5 89.9
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Temperature Before (K) Temperature After (K)

Date Maximum Mean Maximum Mean %Cloud

10-Jan-05 0.0 0.0 0.0 0.0 100.0

11-Jan-05 0.0 0.0 0.2 0.0 100.0

12-Jan-05 0.0 0.0 0.0 0.0 100.0

13-Jan-05 0.0 0.0 1.3 0.1 100.0

14-Jan-05 275.2 90.5 163.6 84.9 67.0

15-Jan-05 275.1 66.9 86.3 51.4 75.6

16-Jan-05 263.9 9.2 62.8 15.7 96.5

17-Jan-05 266.8 209.3 230.9 192.8 20.4

18-Jan-05 265.7 105.2 198.1 117.9 59.8

19-Jan-05 0.0 0.0 0.0 0.0 100.0

20-Jan-05 0.0 0.0 5.0 0.4 100.0

22-Jan-05 0.0 0.0 0.0 0.0 100.0

23-Jan-05 266.8 210.9 229.2 210.5 20.4

24-Jan-05 273.6 147.2 179.6 113.4 45.8

25-Jan-05 277.3 168.1 236.1 164.8 38.9

26-Jan-05 0.0 0.0 0.0 0.0 100.0

27-Jan-05 273.0 11.0 151.3 25.9 95.9

28-Jan-05 0.0 0.0 0.0 0.0 100.0

29-Jan-05 0.0 0.0 9.5 1.2 100.0

30-Jan-05 277.1 22.6 178.2 42.7 91.8

31-Jan-05 0.0 0.0 0.0 0.0 100.0

1-Feb-05 280.0 174.0 229.4 170.9 37.3

2-Feb-05 0.0 0.0 0.0 0.0 100.0

3-Feb-05 282.5 239.7 270.5 229.0 14.3
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Temperature Before (K) Temperature After (K)

Date Maximum Mean Maximum Mean %Cloud

4-Feb-05 284.0 181.4 277.3 172.1 35.7

5-Feb-05 286.4 283.0 283.6 274.9 0.1

6-Feb-05 0.0 0.0 0.0 0.0 100.0

7-Feb-05 0.0 0.0 0.0 0.0 100.0

8-Feb-05 0.0 0.0 0.0 0.0 100.0

9-Feb-05 262.5 7.7 13.4 6.3 97.1

10-Feb-05 0.0 0.0 0.0 0.0 100.0

11-Feb-05 276.8 21.4 183.7 35.4 92.2

12-Feb-05 284.1 72.9 238.9 102.2 74.1

13-Feb-05 0.0 0.0 0.0 0.0 100.0

14-Feb-05 0.0 0.0 0.0 0.0 100.0

15-Feb-05 291.8 188.7 280.6 199.6 34.7

16-Feb-05 280.3 5.0 17.5 7.3 98.2

17-Feb-05 278.8 121.8 165.3 118.3 55.9

18-Feb-05 278.0 26.2 144.8 46.9 90.5

19-Feb-05 282.3 109.9 222.4 128.1 60.6

20-Feb-05 0.0 0.0 0.0 0.0 100.0

21-Feb-05 0.0 0.0 0.0 0.0 100.0

22-Feb-05 0.0 0.0 0.0 0.0 100.0

23-Feb-05 0.0 0.0 0.0 0.0 100.0

24-Feb-05 0.0 0.0 2.3 0.3 100.0

25-Feb-05 0.0 0.0 0.0 0.0 100.0

26-Feb-05 286.2 246.6 278.1 248.5 13.0

27-Feb-05 0.0 0.0 0.0 0.0 100.0
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Temperature Before (K) Temperature After (K)

Date Maximum Mean Maximum Mean %Cloud

28-Feb-05 0.0 0.0 0.2 0.0 100.0

1-Mar-05 0.0 0.0 0.0 0.0 100.0

2-Mar-05 280.4 142.7 201.4 129.7 48.5

3-Mar-05 283.5 280.0 280.7 280.0 0.2

4-Mar-05 0.0 0.0 0.0 0.0 100.0

5-Mar-05 0.0 0.0 0.0 0.0 100.0

6-Mar-05 287.8 45.2 166.9 63.9 84.2

7-Mar-05 0.0 0.0 0.0 0.0 100.0

8-Mar-05 0.0 0.0 4.0 0.4 100.0

9-Mar-05 283.2 11.7 78.7 28.3 95.8

10-Mar-05 0.0 0.0 0.0 0.0 100.0

11-Mar-05 0.0 0.0 0.0 0.0 100.0

12-Mar-05 0.0 0.0 0.0 0.0 100.0

13-Mar-05 281.0 18.9 25.5 14.9 93.2

14-Mar-05 286.6 53.4 217.3 80.2 81.3

15-Mar-05 284.2 257.9 282.4 259.5 8.7

16-Mar-05 291.3 250.8 269.4 249.1 12.5

17-Mar-05 291.8 118.4 225.7 134.4 59.2

18-Mar-05 0.0 0.0 25.9 7.1 100.0

19-Mar-05 272.6 6.4 10.9 4.3 97.6

20-Mar-05 0.0 0.0 0.0 0.0 100.0

21-Mar-05 283.1 0.5 9.2 1.4 99.8

22-Mar-05 0.0 0.0 0.0 0.0 100.0

23-Mar-05 0.0 0.0 0.1 0.0 100.0
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Temperature Before (K) Temperature After (K)

Date Maximum Mean Maximum Mean %Cloud

24-Mar-05 290.5 287.8 288.2 287.6 0.0

25-Mar-05 0.0 0.0 0.0 0.0 100.0

26-Mar-05 0.0 0.0 0.0 0.0 100.0

27-Mar-05 0.0 0.0 0.0 0.0 100.0

28-Mar-05 289.5 27.9 159.0 33.9 90.2

29-Mar-05 296.6 246.8 273.3 243.7 15.5

30-Mar-05 300.1 229.6 286.5 244.2 22.3

31-Mar-05 0.0 0.0 13.0 1.0 100.0

1-Apr-05 0.0 0.0 0.0 0.0 100.0

2-Apr-05 285.0 23.9 163.8 44.1 91.6

3-Apr-05 297.9 262.2 278.6 260.9 10.6

4-Apr-05 301.5 298.7 299.0 298.3 0.0

5-Apr-05 302.8 101.5 192.4 119.0 66.0

6-Apr-05 0.0 0.0 0.0 0.0 100.0

7-Apr-05 0.0 0.0 0.0 0.0 100.0

8-Apr-05 299.8 294.5 295.5 294.5 0.1

9-Apr-05 299.2 221.5 278.8 224.6 24.7

10-Apr-05 307.1 239.1 261.3 228.4 20.5

11-Apr-05 0.0 0.0 0.0 0.0 100.0

12-Apr-05 0.0 0.0 0.0 0.0 100.0

13-Apr-05 289.8 0.3 140.1 29.9 99.9

14-Apr-05 299.5 281.1 290.2 270.6 4.5

15-Apr-05 303.6 297.4 299.1 297.4 0.2

16-Apr-05 303.8 300.3 301.5 300.2 0.0
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Temperature Before (K) Temperature After (K)

Date Maximum Mean Maximum Mean %Cloud

17-Apr-05 308.2 275.8 295.5 271.6 8.5

18-Apr-05 306.5 303.3 304.0 303.3 0.0

19-Apr-05 308.0 212.8 255.6 208.3 29.6

20-Apr-05 303.4 65.2 250.5 110.1 78.2

21-Apr-05 0.0 0.0 0.0 0.0 100.0

22-Apr-05 0.0 0.0 0.0 0.0 100.0

23-Apr-05 0.0 0.0 0.3 0.0 100.0

24-Apr-05 283.5 1.1 92.5 13.3 99.6

25-Apr-05 295.9 287.8 289.6 288.6 0.6

26-Apr-05 0.0 0.0 0.0 0.0 100.0

27-Apr-05 286.1 15.2 52.7 24.8 94.6

28-Apr-05 0.0 0.0 0.0 0.0 100.0

29-Apr-05 0.0 0.0 0.0 0.0 100.0

30-Apr-05 291.9 8.4 65.1 11.4 97.1

1-May-05 292.4 54.6 171.4 64.8 81.1

2-May-05 0.0 0.0 6.9 2.9 100.0

3-May-05 297.3 257.0 270.9 250.1 11.9

4-May-05 299.4 294.1 295.5 293.9 0.4

5-May-05 306.0 227.2 274.7 215.1 24.2

6-May-05 305.7 295.8 300.2 294.3 1.8

7-May-05 295.0 1.1 66.2 12.5 99.6

8-May-05 308.3 212.4 285.9 221.6 29.4

9-May-05 300.5 27.6 172.2 46.2 90.7

10-May-05 312.3 300.3 303.3 300.5 1.8
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Temperature Before (K) Temperature After (K)
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11-May-05 302.5 15.7 129.9 29.2 94.8

12-May-05 296.2 6.4 37.6 8.7 97.8

13-May-05 302.8 232.8 286.9 227.5 22.3

14-May-05 0.0 0.0 0.0 0.0 100.0

15-May-05 0.0 0.0 0.0 0.0 100.0

16-May-05 292.0 3.6 27.4 5.9 98.8

17-May-05 299.4 116.9 156.3 113.0 60.1

18-May-05 298.1 117.2 252.1 117.9 60.2

19-May-05 0.0 0.0 0.0 0.0 100.0

20-May-05 295.1 1.7 51.2 11.6 99.4

21-May-05 0.0 0.0 13.8 2.8 100.0

22-May-05 305.3 292.2 298.7 293.4 2.5

23-May-05 304.4 155.4 251.4 155.6 48.1

24-May-05 304.6 251.8 279.9 242.4 15.7

25-May-05 300.3 125.4 215.4 119.0 57.8

26-May-05 304.7 25.2 96.6 38.1 91.6

27-May-05 303.2 151.1 238.6 152.6 49.5

28-May-05 307.6 137.3 152.8 126.0 54.2

29-May-05 310.7 300.7 304.4 299.8 1.5

30-May-05 0.0 0.0 16.5 2.4 100.0

31-May-05 311.9 295.6 301.1 295.1 2.9

1-Jun-05 0.0 0.0 0.0 0.0 100.0

2-Jun-05 0.0 0.0 0.0 0.0 100.0

3-Jun-05 0.0 0.0 21.9 3.3 100.0
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Date Maximum Mean Maximum Mean %Cloud

4-Jun-05 309.4 126.4 205.0 122.0 58.4

5-Jun-05 309.1 204.3 265.7 184.6 33.2

6-Jun-05 313.5 199.9 292.8 224.8 35.2

7-Jun-05 312.0 38.8 130.0 53.5 87.3

8-Jun-05 302.5 1.7 61.8 16.3 99.4

9-Jun-05 311.3 15.1 98.2 26.1 95.1

10-Jun-05 0.0 0.0 11.9 2.8 100.0

11-Jun-05 0.0 0.0 0.6 0.0 100.0

12-Jun-05 270.1 16.5 20.2 9.6 93.8

13-Jun-05 309.4 242.2 289.5 244.7 20.5

14-Jun-05 308.1 301.6 300.7 287.7 0.6

15-Jun-05 304.4 55.3 183.5 71.7 81.5

16-Jun-05 308.7 301.3 302.8 301.1 0.0

17-Jun-05 309.5 297.9 300.4 296.8 1.4

18-Jun-05 302.0 50.7 70.3 43.5 83.0

19-Jun-05 298.1 12.7 173.8 25.0 95.7

20-Jun-05 309.3 96.6 181.3 125.1 68.0

21-Jun-05 307.0 205.9 282.7 205.9 32.1

22-Jun-05 315.1 173.8 288.7 176.4 43.8

23-Jun-05 313.5 307.1 307.8 306.6 0.2

24-Jun-05 305.9 68.7 241.9 92.9 77.4

25-Jun-05 312.4 251.9 298.0 245.8 18.4

26-Jun-05 305.5 86.6 202.1 93.0 71.4

27-Jun-05 313.0 165.8 184.9 138.5 46.3
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28-Jun-05 296.8 18.7 86.8 30.1 93.7

29-Jun-05 306.6 88.1 209.3 117.4 71.0

30-Jun-05 297.5 27.2 92.6 36.1 90.8

1-Jul-05 308.4 14.1 187.9 47.5 95.3

2-Jul-05 310.0 233.1 259.0 234.6 22.6

3-Jul-05 311.8 248.9 284.4 250.1 18.2

4-Jul-05 301.7 8.2 84.6 17.9 97.3

5-Jul-05 0.0 0.0 25.0 6.0 100.0

6-Jul-05 312.9 236.1 285.3 231.9 22.9

7-Jul-05 293.1 2.2 62.8 12.5 99.2

8-Jul-05 313.4 194.6 267.3 210.4 36.3

9-Jul-05 311.8 61.6 260.5 95.6 79.6

10-Jul-05 309.7 132.3 243.2 153.4 56.2

11-Jul-05 0.0 0.0 0.0 0.0 100.0

12-Jul-05 0.0 0.0 0.0 0.0 100.0

13-Jul-05 0.0 0.0 0.0 0.0 100.0

14-Jul-05 0.0 0.0 0.0 0.0 100.0

15-Jul-05 297.8 2.0 10.1 2.5 99.3

16-Jul-05 279.8 2.1 8.8 2.7 99.2

17-Jul-05 0.0 0.0 2.7 0.2 100.0

18-Jul-05 303.4 115.7 204.2 130.2 61.4

19-Jul-05 306.5 111.3 238.3 146.7 63.0

20-Jul-05 303.2 89.0 188.7 115.7 70.3

21-Jul-05 304.5 183.5 253.6 195.4 38.7
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22-Jul-05 313.2 226.7 280.3 217.0 25.3

23-Jul-05 302.2 166.2 279.8 172.6 44.7

24-Jul-05 305.3 172.9 275.0 178.7 42.5

25-Jul-05 310.9 231.7 297.8 244.7 24.1

26-Jul-05 304.3 184.9 286.7 202.5 38.7

27-Jul-05 303.5 79.7 189.6 79.6 73.1

28-Jul-05 302.5 104.0 218.5 113.5 65.0

29-Jul-05 313.3 303.9 306.5 303.3 0.0

30-Jul-05 302.9 263.3 296.2 269.3 12.0

31-Jul-05 314.7 305.5 305.6 304.5 0.1

1-Aug-05 310.9 287.6 300.9 291.7 5.5

2-Aug-05 315.8 305.9 305.5 304.8 0.5

3-Aug-05 315.3 291.0 304.5 293.7 4.9

4-Aug-05 303.7 141.6 280.0 146.9 52.9

5-Aug-05 0.0 0.0 0.0 0.0 100.0

6-Aug-05 0.0 0.0 0.0 0.0 100.0

7-Aug-05 310.7 250.3 289.2 250.1 17.5

8-Aug-05 299.3 58.6 240.1 81.0 80.3

9-Aug-05 311.4 274.6 296.8 278.7 9.9

10-Aug-05 301.7 28.7 201.9 60.3 90.4

11-Aug-05 303.7 183.1 267.7 160.3 39.2

12-Aug-05 308.5 245.2 300.6 254.0 19.4

13-Aug-05 299.0 12.7 157.1 48.6 95.7

14-Aug-05 0.0 0.0 0.1 0.0 100.0
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15-Aug-05 0.0 0.0 0.0 0.0 100.0

16-Aug-05 0.0 0.0 0.3 0.0 100.0

17-Aug-05 308.3 288.0 299.6 282.3 4.4

18-Aug-05 0.0 0.0 0.0 0.0 100.0

19-Aug-05 302.3 44.9 246.8 83.5 84.7

20-Aug-05 302.2 82.4 160.0 67.6 72.5

21-Aug-05 315.0 305.7 308.5 305.1 0.0

22-Aug-05 307.7 300.5 302.1 299.7 0.0

23-Aug-05 305.8 227.2 280.9 225.5 23.3

24-Aug-05 306.9 270.2 299.0 270.0 9.1

25-Aug-05 313.5 303.1 304.3 303.0 0.6

26-Aug-05 0.0 0.0 0.2 0.0 100.0

27-Aug-05 302.3 16.4 57.6 19.9 94.5

28-Aug-05 310.2 173.6 217.3 155.4 41.7

29-Aug-05 296.6 5.0 13.5 3.9 98.3

30-Aug-05 0.0 0.0 0.0 0.0 100.0

31-Aug-05 301.9 290.8 293.7 285.9 2.0

1-Sep-05 308.4 267.1 299.7 267.8 11.4

2-Sep-05 308.9 302.5 304.3 302.2 0.0

3-Sep-05 310.9 301.7 303.1 301.5 0.3

4-Sep-05 309.6 301.8 303.7 301.5 0.1

5-Sep-05 305.3 290.5 298.5 283.7 3.2

6-Sep-05 310.6 302.1 301.9 301.2 0.4

7-Sep-05 305.4 266.3 287.4 253.9 11.4
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8-Sep-05 307.1 240.3 280.4 238.7 20.5

9-Sep-05 304.1 170.3 263.9 200.3 43.3

10-Sep-05 308.8 277.7 300.5 281.5 8.2

11-Sep-05 309.5 304.0 305.3 303.8 0.0

12-Sep-05 310.7 284.3 303.2 288.4 6.7

13-Sep-05 309.7 304.4 305.8 304.1 0.0

14-Sep-05 0.0 0.0 6.2 0.8 100.0

15-Sep-05 0.0 0.0 0.0 0.0 100.0

16-Sep-05 0.0 0.0 7.7 1.1 100.0

17-Sep-05 304.7 188.1 274.1 194.0 36.9

18-Sep-05 302.3 216.2 252.1 199.3 27.2

19-Sep-05 298.0 123.8 201.9 110.0 58.0

20-Sep-05 0.0 0.0 0.0 0.0 100.0

21-Sep-05 302.8 73.9 260.1 90.6 75.4

22-Sep-05 305.4 287.9 300.9 267.7 4.5

23-Sep-05 0.0 0.0 0.0 0.0 100.0

24-Sep-05 293.6 1.7 4.2 1.4 99.4

25-Sep-05 0.0 0.0 0.0 0.0 100.0

26-Sep-05 0.0 0.0 11.4 1.5 100.0

27-Sep-05 302.9 299.2 299.6 298.9 0.0

28-Sep-05 304.1 299.1 299.9 299.3 0.3

29-Sep-05 298.0 293.9 294.5 293.7 0.0

30-Sep-05 299.0 294.4 295.4 294.6 0.3

1-Oct-05 304.1 299.3 300.2 294.3 0.1
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2-Oct-05 0.0 0.0 15.0 4.5 100.0

3-Oct-05 306.5 299.5 299.3 280.3 0.9

4-Oct-05 304.4 289.8 301.8 284.9 4.0

5-Oct-05 307.1 294.7 302.1 298.0 2.7

6-Oct-05 300.3 187.6 234.6 154.0 36.7

7-Oct-05 296.5 229.3 273.9 237.4 21.6

8-Oct-05 293.8 23.3 168.5 39.2 92.0

9-Oct-05 293.1 144.5 252.0 150.0 50.2

10-Oct-05 288.3 0.3 1.5 0.3 99.9

11-Oct-05 0.0 0.0 0.0 0.0 100.0

12-Oct-05 0.0 0.0 0.0 0.0 100.0

13-Oct-05 294.6 5.3 30.5 8.2 98.2

14-Oct-05 300.4 292.5 296.3 293.9 1.4

15-Oct-05 299.9 296.5 297.1 296.4 0.1

16-Oct-05 295.1 125.7 261.3 122.5 57.1

17-Oct-05 298.0 177.7 285.3 197.2 39.6

18-Oct-05 300.1 297.4 298.6 297.2 0.0

19-Oct-05 300.9 233.7 292.1 254.5 20.9

20-Oct-05 0.0 0.0 0.0 0.0 100.0

21-Oct-05 0.0 0.0 0.0 0.0 100.0

22-Oct-05 289.0 50.0 154.8 51.3 82.6

23-Oct-05 0.0 0.0 0.0 0.0 100.0

24-Oct-05 0.0 0.0 10.0 1.9 100.0

25-Oct-05 283.3 1.3 50.4 12.6 99.5
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26-Oct-05 0.0 0.0 78.6 11.0 100.0

27-Oct-05 279.6 0.5 9.8 2.1 99.8

28-Oct-05 287.7 99.8 177.6 106.1 65.1

29-Oct-05 291.0 289.4 289.9 289.3 0.0

30-Oct-05 289.1 220.4 263.1 214.5 22.9

31-Oct-05 0.0 0.0 15.4 5.2 100.0

1-Nov-05 287.5 16.8 28.1 16.0 94.1

2-Nov-05 292.6 290.6 290.8 290.5 0.0

3-Nov-05 289.3 60.9 77.8 36.9 78.6

4-Nov-05 293.9 214.6 239.2 181.3 25.9

5-Nov-05 0.0 0.0 15.4 1.6 100.0

6-Nov-05 287.1 4.9 23.8 5.3 98.3

7-Nov-05 0.0 0.0 0.1 0.0 100.0

8-Nov-05 291.5 0.8 10.6 1.2 99.7

9-Nov-05 0.0 0.0 1.8 0.1 100.0

10-Nov-05 285.3 213.3 276.0 219.8 24.6

11-Nov-05 286.3 129.0 214.5 137.1 54.6

12-Nov-05 292.6 290.7 291.1 290.6 0.1

13-Nov-05 291.7 133.3 228.6 130.8 54.0

14-Nov-05 287.4 232.8 261.3 210.4 18.5

16-Nov-05 0.0 0.0 0.0 0.0 100.0

17-Nov-05 275.2 26.9 117.5 52.6 90.2

18-Nov-05 280.0 163.3 231.4 159.5 41.1

19-Nov-05 281.1 1.1 110.1 27.6 99.6
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20-Nov-05 286.9 239.1 278.1 219.0 15.9

21-Nov-05 0.0 0.0 0.0 0.0 100.0

22-Nov-05 0.0 0.0 2.7 0.6 100.0

23-Nov-05 0.0 0.0 0.0 0.0 100.0

24-Nov-05 277.3 99.1 186.0 92.6 64.0

25-Nov-05 277.0 102.5 136.2 88.6 62.8

26-Nov-05 0.0 0.0 0.0 0.0 100.0

27-Nov-05 262.9 39.5 81.8 29.3 84.8

28-Nov-05 0.0 0.0 2.0 0.2 100.0

29-Nov-05 0.0 0.0 0.0 0.0 100.0

30-Nov-05 277.6 21.1 102.6 28.4 92.3

1-Dec-05 257.3 0.5 17.5 5.1 99.8

2-Dec-05 273.4 44.0 112.5 51.6 83.7

3-Dec-05 0.0 0.0 0.0 0.0 100.0

4-Dec-05 0.0 0.0 0.0 0.0 100.0

5-Dec-05 271.4 14.8 90.8 22.7 94.5

6-Dec-05 267.3 1.8 52.7 5.8 99.3

7-Dec-05 272.6 124.0 180.1 120.3 54.3

8-Dec-05 0.0 0.0 0.0 0.0 100.0

9-Dec-05 0.0 0.0 0.0 0.0 100.0

10-Dec-05 269.8 108.2 156.0 103.2 59.6

11-Dec-05 272.1 9.0 51.7 13.4 96.7

12-Dec-05 273.8 270.0 267.1 255.1 0.2

13-Dec-05 0.0 0.0 0.0 0.0 100.0
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14-Dec-05 0.0 0.0 0.0 0.0 100.0

15-Dec-05 0.0 0.0 0.0 0.0 100.0

16-Dec-05 274.1 78.4 86.6 62.5 71.1

17-Dec-05 274.7 191.4 247.6 181.8 29.6

18-Dec-05 264.8 213.5 255.9 205.4 18.8

19-Dec-05 266.1 237.2 251.7 214.8 9.9

20-Dec-05 270.6 261.4 263.3 249.7 2.3

21-Dec-05 273.6 212.9 243.8 190.1 21.5

22-Dec-05 272.0 26.6 149.6 43.1 90.2

23-Dec-05 276.6 74.3 165.3 65.8 72.9

24-Dec-05 0.0 0.0 0.0 0.0 100.0

25-Dec-05 0.0 0.0 0.0 0.0 100.0

26-Dec-05 0.0 0.0 0.0 0.0 100.0

27-Dec-05 282.1 279.9 280.9 279.0 0.2

28-Dec-05 0.0 0.0 0.0 0.0 100.0

29-Dec-05 0.0 0.0 0.0 0.0 100.0

30-Dec-05 0.0 0.0 0.0 0.0 100.0

31-Dec-05 0.0 0.0 0.0 0.0 100.0

1-Jan-06 0.0 0.0 0.0 0.0 100.0

2-Jan-06 0.0 0.0 0.0 0.0 100.0

3-Jan-06 0.0 0.0 0.0 0.0 100.0

4-Jan-06 283.2 3.8 118.9 18.8 98.7

5-Jan-06 0.0 0.0 0.0 0.0 100.0

6-Jan-06 0.0 0.0 0.0 0.0 100.0
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7-Jan-06 279.7 275.6 276.5 276.0 0.6

8-Jan-06 0.0 0.0 0.0 0.0 100.0

9-Jan-06 0.0 0.0 0.0 0.0 100.0

10-Jan-06 0.0 0.0 0.0 0.0 100.0

11-Jan-06 0.0 0.0 0.0 0.0 100.0

12-Jan-06 284.8 283.2 283.5 283.1 0.0

13-Jan-06 0.0 0.0 0.0 0.0 100.0

14-Jan-06 0.0 0.0 8.5 2.5 100.0

15-Jan-06 274.8 7.5 57.4 20.4 97.3

16-Jan-06 283.8 277.2 280.4 277.4 1.4

17-Jan-06 0.0 0.0 0.0 0.0 100.0

18-Jan-06 0.0 0.0 0.0 0.0 100.0

19-Jan-06 283.0 175.5 265.3 190.5 37.5

20-Jan-06 0.0 0.0 0.0 0.0 100.0

21-Jan-06 0.0 0.0 37.5 3.5 100.0

22-Jan-06 0.0 0.0 0.0 0.0 100.0

23-Jan-06 282.3 262.3 279.9 239.3 6.4

24-Jan-06 281.2 276.6 279.3 276.1 0.9

25-Jan-06 276.8 4.7 51.9 14.7 98.3

26-Jan-06 281.9 279.5 280.0 279.4 0.0

27-Jan-06 278.0 7.4 111.2 22.4 97.3

28-Jan-06 288.1 45.7 114.6 41.2 84.0

29-Jan-06 0.0 0.0 8.2 0.7 100.0

30-Jan-06 0.0 0.0 0.0 0.0 100.0
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31-Jan-06 0.0 0.0 0.0 0.0 100.0

1-Feb-06 0.0 0.0 0.0 0.0 100.0

2-Feb-06 0.0 0.0 0.0 0.0 100.0

3-Feb-06 0.0 0.0 0.0 0.0 100.0

4-Feb-06 0.0 0.0 0.0 0.0 100.0

5-Feb-06 0.0 0.0 0.0 0.0 100.0

6-Feb-06 275.0 265.4 271.2 262.3 2.5

7-Feb-06 273.6 41.3 151.8 63.9 84.8

8-Feb-06 281.1 55.3 148.4 62.3 80.1

9-Feb-06 0.0 0.0 15.6 1.1 100.0

10-Feb-06 279.0 12.6 74.5 20.7 95.5

11-Feb-06 0.0 0.0 0.2 0.0 100.0

12-Feb-06 0.0 0.0 1.0 0.1 100.0

13-Feb-06 276.1 78.7 130.2 64.0 70.9

14-Feb-06 284.3 257.3 279.5 263.5 8.7

15-Feb-06 0.0 0.0 1.0 0.0 100.0

16-Feb-06 0.0 0.0 0.0 0.0 100.0

17-Feb-06 277.9 1.3 9.0 3.1 99.5

18-Feb-06 0.0 0.0 14.7 2.1 100.0

19-Feb-06 275.7 45.2 103.6 49.2 83.5

20-Feb-06 279.4 252.4 267.2 239.5 8.9

21-Feb-06 0.0 0.0 95.8 21.9 100.0

22-Feb-06 0.0 0.0 1.2 0.1 100.0

23-Feb-06 284.9 282.9 283.4 282.8 0.0
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24-Feb-06 284.5 277.7 279.6 274.1 1.2

25-Feb-06 282.9 265.4 275.5 252.3 5.6

26-Feb-06 283.9 168.9 228.5 172.2 39.8

27-Feb-06 0.0 0.0 7.1 0.7 100.0

28-Feb-06 284.6 2.7 103.6 25.9 99.1

1-Mar-06 0.0 0.0 5.5 0.7 100.0

2-Mar-06 0.0 0.0 40.2 8.5 100.0

3-Mar-06 283.5 1.1 15.3 1.9 99.6

4-Mar-06 286.4 281.9 282.6 279.5 0.9

5-Mar-06 0.0 0.0 0.0 0.0 100.0

6-Mar-06 0.0 0.0 0.0 0.0 100.0

7-Mar-06 286.8 149.9 224.6 160.6 47.2

8-Mar-06 0.0 0.0 0.0 0.0 100.0

9-Mar-06 0.0 0.0 0.0 0.0 100.0

10-Mar-06 0.0 0.0 0.0 0.0 100.0

11-Mar-06 0.0 0.0 3.8 0.3 100.0

12-Mar-06 293.8 17.4 49.7 19.4 94.0

13-Mar-06 0.0 0.0 74.3 13.8 100.0

14-Mar-06 286.7 274.2 282.5 277.6 3.2

15-Mar-06 289.7 285.7 286.6 286.0 0.3

16-Mar-06 287.2 7.0 117.5 25.0 97.5

17-Mar-06 290.3 285.2 286.3 285.6 0.5

18-Mar-06 286.2 283.9 284.2 283.5 0.0

19-Mar-06 290.9 106.5 253.4 122.0 62.8
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20-Mar-06 0.0 0.0 0.0 0.0 100.0

21-Mar-06 0.0 0.0 1.2 0.0 100.0

22-Mar-06 279.5 266.9 273.3 269.6 3.3

23-Mar-06 0.0 0.0 6.9 1.0 100.0

24-Mar-06 0.0 0.0 0.0 0.0 100.0

25-Mar-06 0.0 0.0 8.9 1.1 100.0

26-Mar-06 291.9 214.4 230.4 189.9 25.5

27-Mar-06 282.9 3.2 60.9 13.1 98.9

28-Mar-06 0.0 0.0 0.1 0.0 100.0

29-Mar-06 0.0 0.0 1.1 0.1 100.0

30-Mar-06 299.5 236.6 273.1 237.1 20.0

31-Mar-06 0.0 0.0 2.1 0.2 100.0

1-Apr-06 0.0 0.0 0.0 0.0 100.0

2-Apr-06 0.0 0.0 1.7 0.1 100.0

3-Apr-06 0.0 0.0 0.0 0.0 100.0

4-Apr-06 293.9 289.8 290.8 289.7 0.0

5-Apr-06 295.6 292.1 292.6 291.1 0.0

6-Apr-06 0.0 0.0 0.0 0.0 100.0

7-Apr-06 297.8 277.1 284.0 267.0 5.7

8-Apr-06 291.9 273.0 281.3 264.6 4.9

9-Apr-06 298.3 293.5 294.5 293.4 0.0

10-Apr-06 297.8 186.1 247.7 182.6 36.4

11-Apr-06 292.4 5.2 71.0 27.7 98.2

12-Apr-06 300.1 206.4 265.8 197.1 30.6
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13-Apr-06 308.0 262.4 291.0 262.3 13.4

14-Apr-06 0.0 0.0 0.0 0.0 100.0

15-Apr-06 304.5 126.1 228.8 136.2 58.0

16-Apr-06 301.1 132.8 283.8 156.0 55.4

17-Apr-06 0.0 0.0 103.5 14.4 100.0

18-Apr-06 303.8 298.0 299.3 297.8 0.0

19-Apr-06 302.8 297.9 298.8 297.8 0.0

20-Apr-06 0.0 0.0 0.0 0.0 100.0

21-Apr-06 0.0 0.0 0.0 0.0 100.0

22-Apr-06 307.3 271.2 293.2 269.8 9.8

23-Apr-06 303.7 297.2 299.4 297.4 0.7

24-Apr-06 301.9 204.5 256.0 208.5 30.8

25-Apr-06 0.0 0.0 0.0 0.0 100.0

26-Apr-06 294.8 277.2 286.8 279.1 4.6

27-Apr-06 304.8 289.2 297.8 289.1 3.4

28-Apr-06 302.8 299.0 300.4 298.8 0.0

29-Apr-06 0.0 0.0 0.0 0.0 100.0

30-Apr-06 0.0 0.0 0.0 0.0 100.0

1-May-06 0.0 0.0 0.2 0.0 100.0

2-May-06 296.7 76.5 116.2 72.8 73.9

3-May-06 0.0 0.0 0.5 0.0 100.0

4-May-06 295.5 4.2 44.7 11.4 98.6

5-May-06 299.7 72.2 206.9 100.1 75.5

6-May-06 305.1 287.7 295.0 282.9 3.6
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7-May-06 299.1 126.6 236.9 133.8 56.6

8-May-06 306.0 193.1 266.4 169.9 35.5

9-May-06 0.0 0.0 1.6 0.1 100.0

10-May-06 0.0 0.0 0.0 0.0 100.0

11-May-06 0.0 0.0 0.0 0.0 100.0

12-May-06 0.0 0.0 0.0 0.0 100.0

13-May-06 0.0 0.0 0.0 0.0 100.0

15-May-06 0.0 0.0 0.0 0.0 100.0

16-May-06 0.0 0.0 0.2 0.0 100.0

17-May-06 301.7 226.0 289.3 223.3 24.0

18-May-06 0.0 0.0 60.0 8.8 100.0

19-May-06 300.3 258.3 293.3 237.2 12.5

20-May-06 308.1 299.6 301.1 299.3 0.0

21-May-06 298.6 162.6 279.6 166.5 44.6

22-May-06 306.6 235.1 280.4 237.4 21.5

23-May-06 306.1 299.4 301.3 299.1 0.6

24-May-06 0.0 0.0 2.3 0.3 100.0

25-May-06 300.5 34.4 180.1 53.0 88.4

26-May-06 301.2 15.8 30.9 20.1 94.7

27-May-06 0.0 0.0 0.0 0.0 100.0

28-May-06 301.8 10.0 160.2 33.2 96.7

29-May-06 315.1 261.0 303.0 267.6 15.6

30-May-06 291.3 7.3 39.2 14.1 97.4

31-May-06 306.5 15.0 135.0 30.7 95.1
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1-Jun-06 0.0 0.0 6.7 0.8 100.0

2-Jun-06 0.0 0.0 0.0 0.0 100.0

3-Jun-06 310.2 300.0 303.5 300.7 0.8

4-Jun-06 307.4 284.1 292.3 280.4 5.3

5-Jun-06 312.7 298.7 304.9 297.4 1.9

6-Jun-06 309.4 221.2 279.0 218.1 27.0

7-Jun-06 304.5 39.5 82.4 43.5 86.8

8-Jun-06 0.0 0.0 22.9 3.9 100.0

9-Jun-06 0.0 0.0 3.3 0.3 100.0

10-Jun-06 0.0 0.0 0.0 0.0 100.0

11-Jun-06 0.0 0.0 0.0 0.0 100.0

12-Jun-06 302.8 148.0 196.6 159.1 50.3

13-Jun-06 302.3 92.0 179.5 120.5 68.8

14-Jun-06 313.0 298.1 305.6 298.3 2.5

15-Jun-06 301.0 103.4 263.0 127.9 65.4

16-Jun-06 310.0 49.0 170.1 64.7 83.8

17-Jun-06 0.0 0.0 10.5 2.3 100.0

18-Jun-06 0.0 0.0 0.0 0.0 100.0

19-Jun-06 305.7 202.3 291.0 192.8 33.0

20-Jun-06 0.0 0.0 0.0 0.0 100.0

21-Jun-06 307.8 29.8 138.6 62.5 90.2

22-Jun-06 302.8 43.6 178.2 68.6 85.5

23-Jun-06 0.0 0.0 0.0 0.0 100.0

24-Jun-06 304.7 240.5 298.8 232.0 20.2
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25-Jun-06 310.9 225.3 277.0 195.4 25.9

26-Jun-06 296.3 8.7 147.7 46.2 97.1

27-Jun-06 306.9 252.4 289.5 242.9 16.3

28-Jun-06 310.3 278.6 299.7 276.8 8.0

29-Jun-06 302.9 138.5 244.5 174.8 53.5

30-Jun-06 313.2 280.9 302.6 275.4 7.7

1-Jul-06 300.9 65.4 168.3 76.3 78.0

2-Jul-06 312.0 118.2 271.5 137.8 61.2

3-Jul-06 303.8 97.1 268.8 120.5 67.8

4-Jul-06 0.0 0.0 0.3 0.0 100.0

5-Jul-06 308.5 300.5 302.5 300.3 0.1

6-Jul-06 310.3 299.7 302.2 300.5 0.9

7-Jul-06 313.5 304.5 306.3 304.2 0.1

8-Jul-06 306.8 301.2 301.7 300.5 0.0

9-Jul-06 312.5 186.3 282.9 189.0 38.9

10-Jul-06 0.0 0.0 85.2 15.7 100.0

11-Jul-06 0.0 0.0 0.0 0.0 100.0

12-Jul-06 0.0 0.0 0.0 0.0 100.0

13-Jul-06 301.5 39.4 120.0 57.2 86.8

14-Jul-06 0.0 0.0 7.9 0.5 100.0

15-Jul-06 312.8 304.3 305.4 304.0 0.3

16-Jul-06 317.2 260.7 291.1 256.2 14.5

17-Jul-06 307.9 286.1 301.0 287.4 5.7

18-Jul-06 311.1 191.2 285.7 191.0 37.2
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19-Jul-06 310.7 295.7 302.4 297.3 2.9

20-Jul-06 0.0 0.0 0.0 0.0 100.0

21-Jul-06 0.0 0.0 3.8 0.1 100.0

22-Jul-06 301.7 115.7 215.6 121.5 61.0

23-Jul-06 311.0 300.7 300.8 299.8 0.7

24-Jul-06 304.5 248.2 295.6 256.0 17.0

25-Jul-06 312.8 291.9 302.7 275.5 4.2

26-Jul-06 0.0 0.0 0.0 0.0 100.0

27-Jul-06 297.5 5.6 10.4 3.8 98.1

28-Jul-06 303.1 96.3 185.7 113.1 67.8

29-Jul-06 304.5 6.6 69.5 14.5 97.8

30-Jul-06 309.2 219.7 292.1 228.0 27.6

31-Jul-06 303.5 143.7 267.7 159.3 52.3

1-Aug-06 313.5 291.8 300.0 292.9 4.5

2-Aug-06 305.3 241.3 297.1 252.7 20.0

3-Aug-06 0.0 0.0 0.0 0.0 100.0

4-Aug-06 311.3 302.1 305.2 302.0 0.2

5-Aug-06 313.2 296.6 302.9 298.1 1.6

6-Aug-06 309.9 126.3 265.3 152.5 58.0

7-Aug-06 0.0 0.0 58.2 5.0 100.0

8-Aug-06 300.0 3.9 55.9 9.7 98.7

9-Aug-06 0.0 0.0 0.0 0.0 100.0

10-Aug-06 0.0 0.0 0.0 0.0 100.0

11-Aug-06 0.0 0.0 0.3 0.0 100.0
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12-Aug-06 311.2 301.1 303.5 301.1 0.4

13-Aug-06 309.6 295.4 299.7 285.7 2.3

14-Aug-06 0.0 0.0 0.0 0.0 100.0

15-Aug-06 311.3 302.9 305.1 302.5 0.0

16-Aug-06 309.5 294.4 302.7 292.5 2.5

17-Aug-06 293.8 1.9 46.2 10.4 99.3

18-Aug-06 0.0 0.0 0.0 0.0 100.0

19-Aug-06 303.9 158.6 221.6 151.6 47.2

20-Aug-06 309.2 301.5 303.2 300.9 0.0

21-Aug-06 312.5 172.5 282.6 205.0 42.9

22-Aug-06 0.0 0.0 0.0 0.0 100.0

23-Aug-06 0.0 0.0 0.0 0.0 100.0

24-Aug-06 297.0 13.3 144.6 24.3 95.5

25-Aug-06 296.7 66.1 193.2 74.1 77.6

26-Aug-06 0.0 0.0 31.7 2.9 100.0

27-Aug-06 0.0 0.0 1.8 0.2 100.0

28-Aug-06 0.0 0.0 0.4 0.0 100.0

29-Aug-06 0.0 0.0 0.0 0.0 100.0

30-Aug-06 300.5 21.4 57.4 27.4 92.8

31-Aug-06 0.0 0.0 0.0 0.0 100.0

1-Sep-06 0.0 0.0 0.0 0.0 100.0

2-Sep-06 299.4 52.7 130.4 49.7 82.1

3-Sep-06 301.7 277.8 293.9 275.4 5.9

4-Sep-06 0.0 0.0 0.0 0.0 100.0
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5-Sep-06 300.5 88.1 105.0 67.8 70.2

6-Sep-06 307.5 299.8 301.8 299.4 0.2

7-Sep-06 307.3 296.3 297.3 293.1 1.4

8-Sep-06 305.2 291.4 298.7 294.0 2.9

9-Sep-06 308.9 301.8 303.4 301.2 0.2

10-Sep-06 300.6 258.8 295.6 253.0 12.9

11-Sep-06 304.9 90.9 149.1 97.6 69.5

12-Sep-06 0.0 0.0 0.0 0.0 100.0

13-Sep-06 292.5 10.8 18.1 7.8 96.3

14-Sep-06 296.7 65.8 130.3 62.4 77.6

15-Sep-06 304.7 298.9 298.6 296.5 0.1

16-Sep-06 295.8 28.7 202.7 64.0 90.2

17-Sep-06 301.7 121.3 253.3 131.4 59.5

18-Sep-06 0.0 0.0 0.8 0.1 100.0

19-Sep-06 0.0 0.0 53.2 6.2 100.0

20-Sep-06 298.7 128.6 181.9 118.5 55.9

21-Sep-06 295.7 272.2 289.1 264.0 6.7

22-Sep-06 0.0 0.0 0.0 0.0 100.0

23-Sep-06 0.0 0.0 0.0 0.0 100.0

24-Sep-06 291.5 1.1 40.7 4.6 99.6

25-Sep-06 300.8 296.1 297.0 295.9 0.1

26-Sep-06 299.9 295.0 296.2 293.4 0.5

27-Sep-06 303.7 299.0 299.8 298.8 0.0

28-Sep-06 289.2 57.6 113.6 49.0 79.9



Table 34 – continued from previous page

Temperature Before (K) Temperature After (K)

Date Maximum Mean Maximum Mean %Cloud

29-Sep-06 297.0 256.9 290.5 250.4 12.2

30-Sep-06 296.1 151.4 210.7 138.8 48.3

1-Oct-06 302.1 297.1 298.2 297.5 0.4

2-Oct-06 302.6 237.8 296.0 254.8 20.2

3-Oct-06 297.8 51.7 121.3 50.1 82.4

4-Oct-06 303.8 183.6 258.1 172.1 38.7

5-Oct-06 0.0 0.0 0.0 0.0 100.0

6-Oct-06 296.4 292.4 293.1 292.2 0.0

7-Oct-06 298.3 295.3 295.6 295.0 0.0

8-Oct-06 301.5 296.8 297.6 296.6 0.2

9-Oct-06 301.3 246.0 287.5 243.5 17.0

10-Oct-06 299.2 61.7 190.9 62.9 79.2

11-Oct-06 286.4 15.5 31.0 14.9 94.2

12-Oct-06 280.4 50.9 76.8 51.8 81.6

13-Oct-06 288.9 286.1 286.5 285.9 0.0

14-Oct-06 289.8 287.6 287.8 287.5 0.0

15-Oct-06 0.0 0.0 1.2 0.1 100.0

16-Oct-06 0.0 0.0 0.0 0.0 100.0

17-Oct-06 292.7 14.1 83.2 25.9 95.2

18-Oct-06 0.0 0.0 2.7 0.4 100.0

19-Oct-06 0.0 0.0 0.0 0.0 100.0

20-Oct-06 284.7 5.6 70.8 20.7 98.0

21-Oct-06 289.8 180.2 244.7 189.7 37.4

22-Oct-06 0.0 0.0 0.0 0.0 100.0
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Temperature Before (K) Temperature After (K)

Date Maximum Mean Maximum Mean %Cloud

23-Oct-06 0.0 0.0 7.3 0.9 100.0

24-Oct-06 288.5 240.3 254.4 228.7 15.6

25-Oct-06 289.2 125.7 241.5 130.3 56.2

26-Oct-06 0.0 0.0 0.0 0.0 100.0

27-Oct-06 0.0 0.0 0.0 0.0 100.0

28-Oct-06 285.2 282.6 282.6 281.6 0.1

29-Oct-06 291.0 288.3 288.6 288.2 0.0

30-Oct-06 288.9 16.8 105.7 36.7 94.1

31-Oct-06 0.0 0.0 0.0 0.0 100.0

1-Nov-06 0.0 0.0 0.0 0.0 100.0

2-Nov-06 282.7 259.1 272.2 260.6 7.6

3-Nov-06 284.1 280.8 281.3 280.9 0.2

4-Nov-06 0.0 0.0 0.4 0.0 100.0

5-Nov-06 0.0 0.0 6.0 1.0 100.0

6-Nov-06 0.0 0.0 0.0 0.0 100.0

7-Nov-06 0.0 0.0 0.0 0.0 100.0

8-Nov-06 0.0 0.0 0.0 0.0 100.0

9-Nov-06 293.6 286.4 289.9 285.7 1.7

10-Nov-06 293.2 60.2 128.4 75.2 79.3

11-Nov-06 0.0 0.0 0.0 0.0 100.0

12-Nov-06 0.0 0.0 0.6 0.0 100.0

13-Nov-06 0.0 0.0 0.0 0.0 100.0

14-Nov-06 280.7 1.1 2.0 0.9 99.6

15-Nov-06 0.0 0.0 0.0 0.0 100.0
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Temperature Before (K) Temperature After (K)

Date Maximum Mean Maximum Mean %Cloud

16-Nov-06 0.0 0.0 0.0 0.0 100.0

17-Nov-06 0.0 0.0 0.0 0.0 100.0

18-Nov-06 284.6 166.3 208.9 154.5 41.2

19-Nov-06 0.0 0.0 0.0 0.0 100.0

20-Nov-06 282.0 196.6 256.7 201.6 29.9

21-Nov-06 284.3 273.0 274.8 257.6 3.2

22-Nov-06 285.3 283.1 284.0 282.9 0.3

23-Nov-06 287.3 285.2 285.4 284.7 0.0

24-Nov-06 288.7 286.4 287.9 286.6 0.2

25-Nov-06 284.6 1.1 38.8 8.3 99.6

26-Nov-06 0.0 0.0 0.0 0.0 100.0

27-Nov-06 0.0 0.0 0.0 0.0 100.0

28-Nov-06 289.0 34.2 48.8 27.1 88.1

29-Nov-06 0.0 0.0 0.0 0.0 100.0

30-Nov-06 0.0 0.0 2.9 0.5 100.0

1-Dec-06 0.0 0.0 0.0 0.0 100.0

2-Dec-06 278.9 135.9 223.0 129.2 50.9

3-Dec-06 0.0 0.0 2.8 0.4 100.0

4-Dec-06 272.7 4.6 7.6 4.4 98.3

5-Dec-06 276.3 232.6 241.5 220.4 15.3

6-Dec-06 0.0 0.0 0.8 0.0 100.0

7-Dec-06 271.4 1.8 16.9 4.9 99.3

8-Dec-06 271.7 211.4 257.7 202.9 21.8

9-Dec-06 278.2 229.0 245.8 212.6 17.1
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Temperature Before (K) Temperature After (K)

Date Maximum Mean Maximum Mean %Cloud

10-Dec-06 282.7 273.7 276.8 264.4 2.7

11-Dec-06 0.0 0.0 0.0 0.0 100.0

12-Dec-06 0.0 0.0 0.0 0.0 100.0

13-Dec-06 283.9 232.1 257.0 234.1 17.8

14-Dec-06 282.3 22.3 164.6 40.2 92.0

15-Dec-06 282.8 272.1 276.7 260.6 3.3

16-Dec-06 0.0 0.0 0.0 0.0 100.0


