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 Birds are excellent environmental indicators and may indicate sustainability 

of the ecosystem; birds may be used to provide provisioning, regulating, and 

supporting services. Therefore, birdlife conservation-related researches 

always receive centre stage. Due to the airborne nature of birds and the 

dense nature of the tropical forest, bird identifications through audio may be 

a better solution than visual identification. The goal of this study is to find 

the most appropriate cepstral features that can be used to classify bird sounds 

more accurately. Fifteen (15) endemic Bornean bird sounds have been 

selected and segmented using an automated energy-based algorithm. Three 

(3) types of cepstral features are extracted; linear prediction cepstrum 

coefficients (LPCC), mel frequency cepstral coefficients (MFCC), 

gammatone frequency cepstral coefficients (GTCC), and used separately for 

classification purposes using support vector machine (SVM). Through 

comparison between their prediction results, it has been demonstrated that 

model utilising GTCC features, with 93.3% accuracy, outperforms models 

utilising MFCC and LPCC features. This demonstrates the robustness of 

GTCC for bird sounds classification. The result is significant for the 

advancement of bird sound classification research, which has been shown to 

have many applications such as in eco-tourism and wildlife management. 
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1. INTRODUCTION  

Birds play a significant role as pollinators or seed dispersers for the stability of the ecosystem, as 

well as playing a crucial role in maintaining a balanced population of predators and prey in the ecosystem. As 

such, birdlife conservation and species preservation-related projects are essential for a balanced ecosystem. 

Implementations of these types of project are demanding, requiring manual work, labour, and physically 

intensive processes. The emergent of modern and advanced techniques and technologies has somehow made 

environmental and biodiversity monitoring related researches easier and more feasible. Signal processing and 

machine learning techniques have been used by many researchers to facilitate demanding and complicated 

processes. Especially in dense vegetation, bioacoustics signal processing and pattern recognition algorithms 

have been used for the detection and identification of bird species [1]. 

To classify bird species according to their acoustic signals, it is necessary to explore the mechanics 

involved in the production of bird sounds, which utilises the bird’s unique vocal organ (the syrinx), an organ 

not found in any other animal [2]. Syrinx is a vibratory sound-generating organ [3], producing sound through 

coordinated activities of several muscles that are associated with it, as well as other organs such as the 

respiratory system. With the exception of vultures, a bird’s syrinx is normally located deep within the bird’s 

https://creativecommons.org/licenses/by-sa/4.0/
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chest [4]. This is the junction of two primary bronchi that joins traces of the respiratory system. Generally, a 

syrinx is composed of a paired set of strong muscles called syringeal, vibrating membranes called labia, 

several cartilages, and a vocal tract [5] surrounded by an air sac and connected to the air sac of the lungs [4]. 

The air sac maintains the inhaled air which is passing through the lungs and continuously supplies 

pressurised expiratory airflow. The syrinx uses all forced expiratory airflow that passes through it to produce 

vocal sounds. Air sacs, then, act as resonant chambers and play a major role in shaping the spectral 

composition of the emitted vocal sound [5]. 

Despite the fact that syrinx is used by every bird for its vocalisation, sounds produced by different 

species of bird may differ. This is due to the variations in structure, size and location of the syrinx of different 

bird species as well as its associated organs [4], which play significant roles in determining the frequency of 

the bird’s calls or songs [2], [6]. In the audio signal processing domain, the bird’s vocalisation s(t) can be 

considered as the output of a linear convoluted system. Excitation e(t) is associated with the expiratory 

airflow, originated from the respiratory system and associated organ activity. The dynamics of the syrinx 

may be modelled by impulse response h(t), which depends on the bird species. Since the goal is to recover 

information associated with vocal sound, the analysis requires isolation of h(t). However, as both excitation 

and impulse response are unknown, recovering h(t) is not as straightforward, with blind deconvolution 

required. Hence, homomorphic signal processing method is commonly used to retrieve the most vital 

information of the bird sounds, to allow classification of species. This signal processing method is applied in 

many signal processing applications such as speech recognition, deconvolution, and pitch detection [7]. 

Cepstral features are the most commonly derived features from the homomorphic signal processing 

method, and are compact representations of the spectrum which provide a smooth approximation based on 

logarithmic magnitude [7]. Linear prediction cepstral coefficients (LPCC), mel frequency cepstral 

coefficients (MFCC), gammatone frequency cepstral coefficients (GTCC), perceptual linear prediction (PLP) 

cepstral coefficient and greenwood function cepstral coefficients (GFCC) are some types of cepstral features 

[8]. Cepstral features have been primarily used for speaker identification and speech recognition [9], [10]. 

However, they have also been employed in applications related to audio retrieval such as singer 

identification, music classification, environmental sound recognition [11], pitch determination [8] of speech 

signals [12], and for identification of musical instruments [13]. 

Within the bird sound classification research, MFCC represents one of the most widely used cepstral 

feature for bird sound classification [14], [15]. Based on human perception of sound, frequency domain 

representations of original bird sounds are provided as input to the mel-scale filter bank to produce  

mel-spectrum, which are then converted to MFCC using cepstral analysis [16]. Each band of the MFCC 

contains a weighted sum representing the spectral magnitude in the corresponding channel [17]. The 

calculation of MFCC parameters is efficient and straightforward since it does not involve any tuning 

parameters. Lee et al. [18] use both static and dynamic two-dimensional MFCCs to extract features for their 

work. MFCCs have also been combined with other methods for feature extraction. For instance, Kogan and 

Margoliash [19] use both MFCC as well as linear predictive coding (LPC) for feature extraction, whilst a 

combination of three methods: binned frequency spectrum, MFCC, and LPC, have been used by Leng and 

Tran [20]. Other cepstral based methods include GFCCs with first and second derivatives [21], and power 

normalized cepstral coefficients (PNCC) [22]. 

Audio signal processing researchers have proven that despite the volume of works that have been 

done using MFCC features for classification purpose, a spectrum of improvement in classification accuracy 

can still be achieved by considering other cepstral features such as GTCC [23], [24] and LPCC [25], [26]. 

Especially for non-speech audio classification [11] and noisy environmental audio data, GTCCs have been 

shown to be more robust [9]. Furthermore, GTCCs have been shown to have a higher resolution at a low 

frequency than MFCC [27]. Since classification accuracy depends on the features in which the training and 

testing are done, feature extraction is one of the integral parts of applications related to classification. 

Numerous researches have been done in feature extraction and, consequently, classification, 

however, none of them has, thus far, specifically focused on finding the most suitable feature to classify bird 

sound. This paper focuses on finding the most robust cepstral features, specifically for bird sound 

classification purpose. LPCC, MFCC and GTCC features are extracted separately from bird sounds and 

classified using support vector machine (SVM). Results from the different features are then analysed to 

determine the most suitable features for the classification of bird sounds. 

The following section 2 discusses the research method, composed of data collection, pre-processing, 

feature extraction, along with the classification method. Section 3 presents classification results using the 

different features, with the most robust cepstral feature for bird classification subsequently discussed. The 

final section concludes the paper. 
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2. RESEARCH METHOD 

The general process adopted in this paper is shown in Figure 1. It has two main categories; feature 

extractions from the collected bird sounds, and classification prediction of unknown bird sounds using a  

pre-trained model. LPCC, MFCC, and GFCC are the different features extracted from the bird sounds, with 

SVM used as the classifier. Finally, classification results from the different types of feature are compared to 

determine the most robust cepstral feature for bird sounds. 

 

 

 
 

Figure 1. Adopted research method 

 

 

2.1.  Data collection and pre-processing 

Birds sounds have been collected from an online database called “Xeno-canto” [28], which contains 

bird sounds with negligible environmental noise. The data have been properly labelled and verified by 

experts and are employed for supervised classification. Collected data are divided into two sets: training and 

testing dataset. Energy-based automated segmentation [29] is performed on both data sets to remove 

unwanted silent intervals and detect relevant sounds only. 

 

2.2.  Feature extraction  

Feature extraction is a process of deriving the properties and characteristics of a signal that can be 

used for further analysis. A suitable feature mimics the properties of a signal in a much efficient way [8], 

with the ability to describe and represent the birds sound, and also has a significant impact on classification 

results. Three (3) types of cepstral features are extracted from both training and testing data sets: LPCC, 

MFCC and GTCC. 

 

2.2.1. Linear prediction cepstral coefficients (LPCC) 

The cepstrum possesses many advantages, such as source-filter separation, orthogonality, and 

compactness. These properties make cepstral coefficients robust and suitable for machine learning. On the 

other hand, linear prediction coefficients (LPCs) are too sensitive to numerical precision; hence it is desirable 

to transform LPC into the cepstral domain. The resultant transformed coefficients are referred to as LPCCs 

[8], which are adopted in this work. 

This feature is defined as the inverse Fourier transform (IFT) of the logarithmic magnitude of the 

linear prediction spectral complete envelope [30], and it provides a more robust and compact representation, 

which is especially useful for automatic speech recognition and speaker identification [25]. LPCC represents 
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the human vocal track efficiently, based on linear prediction [31]. Linear predictive analysis is used to 

estimate the nth sample by using the previous p sample; a linear combination is used as shown in (1). 

 

𝑠^(𝑛) = 𝑎1𝑠(𝑛 − 1) + 𝑎2𝑠(𝑛 − 2) + ⋯ 𝑎𝑝𝑠(𝑛 − 𝑝)  (1) 

 

Where, a1, a2, a3, … , ap are considered to be constants over a sound analysis frame and also known as LPC or 

predictor coefficients. These coefficients are used to estimate the sound samples. The difference between 

actual and predicted sound samples is its error and is given in (2) and (3). 

 

𝑒(𝑛) = 𝑠(𝑛) − 𝑠^(𝑛) (2) 

  

𝑒(𝑛) = 𝑠(𝑛) −∑𝑎𝑘 𝑠(𝑛 − 𝑘)

𝑝

𝑘=1

 (3) 

 

Where, s(n) is the sound signal, and e(n) is the error in prediction, s^(n) is a predicted sound signal, and aks 

are the LPCs. To compute a unique set of LPCs, the sum of squared differences between the actual and 

predicted sound samples could be determined and then minimised. Squared error is given as (4). 

 

𝐸𝑛 = ∑ [𝑠𝑛(𝑚) −∑𝑎𝑘𝑠𝑛(𝑚 − 𝑘)]

𝑝

𝑘=1

2

𝑚
 

(4) 

 

Where, the number of samples in an analysis frame can be denoted as m. The squared error can be minimised 

(error minimisation) by differentiating En with respect to each and every ak and then, setting the value to 

zero as shown in (5). 

 
𝜕𝐸𝑛
𝜕𝑎𝑘

= 0, 𝑓𝑜𝑟 𝑘 = 1,2,3… . , 𝑝 (5) 

 

After  ak are obtained, cepstral coefficients can be derived from the following recursion, 

 

𝐶0 = 𝑙𝑜𝑔𝑒𝑝   (6) 
  

𝐶𝑚 = 𝑎𝑚 +  ∑
𝑘

𝑚

𝑚−1

𝑘=1
𝐶𝑘𝑎𝑚−𝑘   𝑓𝑜𝑟 1 < 𝑚 < 𝑝 

  (7) 

 

Hence, Cm can be denoted as (8), 

 

𝐶𝑚 = ∑
𝑘

𝑚

𝑚−1

𝑘=𝑚−𝑝
𝐶𝑘𝑎𝑚−𝑘,    𝑓𝑜𝑟 𝑚>𝑝  

  (8) 

 

2.2.2. Mel frequency cepstral coefficients (MFCC) 

MFCCs represent the short-time power spectrum of an audio clip based on the discrete cosine 

transform of the log power spectrum on a nonlinear mel-scale [32]. In MFCCs, the frequency bands are 

equally spaced on the mel-scale, which closely mimic the human auditory system, making MFCCs to be 

common key features in various audio signal processing applications [8]. MFCCs are commonly computed 

on a warped frequency scale based on known human auditory perception. These frequencies are mapped onto 

a nonlinear Mel filter bank, transforming them onto the cepstral domain. 

To balance the spectrum of bird’s sounds that generally have steep roll-off, high frequency filtering 

is commonly used. The transfer function in (9) is the most used pre-emphasis filter, with the value of b, 

which controls the slope of the filter, usually selected between 0.4 and 1. 

 

𝐻(𝑧) = 1 − 𝑏𝑧−1    (9) 

 

The signal is further windowed using hamming window in order to smooth the edges and reduce the edge 

effect while taking the discrete Fourier transform (DFT). Then, each windowed frame is then converted into a 

magnitude spectrum DFT, with N taken as the number of points used in this conversion. 
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𝑋(𝑘) =  ∑ 𝑥(𝑛)𝑒
−𝑗2𝜋𝑛𝑘

𝑁

𝑁−1

𝑛=0

 ;  0 ≤ 𝑘 ≤ 𝑁 − 1 
(10) 

 

The magnitude spectrum is wrapped by twenty-six (N=26) overlapping triangular windows with 

centre frequencies equally distributed on the mel scale. Mel-scale attempts to mimic the nonlinear human ear 

perception of sound by being less discriminative at higher frequencies and more discriminative at lower 

frequencies. Based on this, human ears perceived frequency mel unit is measured, and the approximated mel 

from physical frequency is expressed as in (11). 

 

𝑓𝑚𝑒𝑙 = 2595𝑙𝑜𝑔10(1 + 
𝑓

100
)  

(11) 

 

Physical frequency is denoted by f, whilst fmel denotes the perceived frequency. By multiplying the 

magnitude spectrum with each of the triangular mel weighting filters, X(k) is computed. 

 

𝑠(𝑚) = ∑[|𝑋(𝑘)|2𝐻𝑚(𝑘)]

𝑁−1

𝑘=0

 ;  0 ≤ 𝑚 ≤ 𝑀 − 1 

(12) 

 

𝐻𝑚(𝑘) =  

{
  
 

  
 

0,                        𝑘 < 𝑓(𝑚 − 1) 

2(𝑘 − 𝑓(𝑚 − 1))

𝑓(𝑚) − 𝑓(𝑚 − 1)
 ,       𝑓(𝑚 − 1) ≤ 𝑘 ≤ 𝑓(𝑚)

2(𝑓(𝑚 + 1) − 𝑘)

𝑓(𝑚 + 1) − 𝑓(𝑚)
 ,      𝑓(𝑚) < 𝑘 ≤ 𝑓(𝑚 + 1)

0,                     𝑘 > 𝑓(𝑚 + 1)

 

(13) 

 

𝑐(𝑛) =  ∑ 𝑙𝑜𝑔10(𝑠(𝑚)) cos(
𝜋𝑛(𝑚 − 0.5)

𝑀

𝑀−1

𝑚=0

);          𝑛 = 0,1,2, … . 𝐶 − 1 
(14) 

 

M denotes the total number of triangular mel weighting filters, and X(k) is the mel spectrum of the 

magnitude spectrum. As expressed in (13), Hm(k) is the weight given to the kth energy spectrum bin 

contributing to the mth output band with m ranging between 0 to M-1. The mel spectrum is usually 

represented in a log scale, and then, to derive cepstral features from log-mel power-spectrum, discrete cosine 

transform (DCT) is applied. 

Since the syrinx has a smooth structure, energy levels in adjacent bands are likely to be correlated; 

this results in a signal with a frequency peak corresponding to the pitch of the signal and several formats 

representing low-frequency peaks in the cepstral domain. Generally, the first few MFCCs encompass most of 

the signal information, and thus, by truncating the higher-order DCT components, the system can be made 

more robust. Cepstral coefficients c(n) can then be represented by (14), where C is the number of MFCCs. 

Traditional MFCC systems use only 8-13 cepstral coefficients, with the 0th coefficient often excluded as it 

represents the average log-energy of the input signal, which only carries little speaker-specific information 

[33]. 

 

2.2.3. Gammatone frequency cepstral coefficients (GTCC)  

In recent years, GTCCs have been shown to be more robust to noise in many automatic speech 

recognition (ASR) systems [23], [24] and noisy environmental sound-related research [9]. GTCCs are based 

on gammatone (GT) filter banks; these filter banks give cochleagram as the output, which is the  

frequency-time representation of the sound signal. The extraction process of GTCCs is similar to that of 

MFCCs, except for the mel-filter bank, which has been replaced by a gammatone filter bank [8]. 

Gammatone cepstral coefficients (GTCCs) are a biologically inspired modification employing 

gammatone filters with equivalent rectangular bandwidth bands [23]. There are designed to simulate the 

process of a human auditory system with frequency resolution feature and filtering characteristics of the 

cochlear basilar membrane. Gammatone filters are a linear approximation of the filtering function performed 

by the cochlea in the inner ear, with the ear’s frequency analysing sub-bands more delicate at higher 

frequencies. In fact, GTCC is a modification of the MFCC but uses GT filters, with equivalent rectangular 

bandwidth (ERB) bands [11]. A Gammatone filter with a centre frequency fc is defined as (15): 
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𝑔(𝑡) = 𝑎𝑡𝑛−1𝑒−2𝜋𝑏𝑡 cos(2𝜋𝑓𝑐 +  𝜑)   (15) 

 

where, t refers to the time, φ is the phase (usually set to zero), the constant a controls the gain, and the value 

n defines the order of the filter. The attenuation factor of the ith filter is represented by the factor b, which is 

defined in (16). b determines the decay rate of the impulse response across the filter bandwidth. In contrast, 

the bandwidth of each filter is related to the human auditory critical band. 

 

𝑏 = 25.17(
4.37𝑓𝑐
1000

 + 1) 
(16) 

 

To obtain a representation similar to spectrograms, a set of gammatone filters, often referred to as 

channels with different centre frequencies, are used to create a gammatone filter bank. Gammatone filter 

bank emulates human hearing by simulating impulse response of the auditory nerve fibre, with its shape 

resembling a tone cos(2πfc +  φ) modulated with a gamma function e−2πbt [27]. All the three (3) cepstral 

feature coefficients: LPCC, MFCC and GTCC, are extracted from collected training and testing data in this 

work. To find the most robust cepstral feature to classify bird sounds, all the extracted features are then used 

for training and testing by the same machine learning (ML) algorithm separately. Classification results from 

using the different features are then compared to determine the best features for the classification of bird 

sounds. 

 

2.3.  Classification  

It has been proven that solutions to many existing issues can be solved by integrating audio signal 

processing techniques with ML algorithms [8]. In this work, a well-established supervised classifier called 

SVM [34], is used to train the model as well as to predict unknown bird sounds. The three different types of 

extracted cepstral features are separately used to train the SVM model, and consequently, the trained models 

are then used for testing. SVM is chosen due to its proven high accuracy results as well as statistical learning 

theory and structural risk minimisation properties [29]. SVM finds the best hyperplane, which can be 

described as the most significant margin between classes. In other words, it finds the data points which 

separate different classes accurately [35]. The polynomial kernel function (𝐾𝑓) can be denoted as (17) for 

order 𝑛, 

 

𝐾𝑓(𝑥𝑖 , 𝑥𝑗) = (𝑥𝑖
𝑇 , 𝑥𝑗 + 𝑐)

𝑛 (17) 

 

where, xi and xj are the vectors of two input space, and c is the constant that allows trade-off to influence the 

higher-order and lower order. The cubic kernel function is used i.e. n is set to 3, in this paper. 

 

 

3. RESULTS AND DISCUSSION 

Based on the above discussion, fifteen (i.e. C=15) endemic Bornean bird sounds have been collected 

from an online database, “Xeno-Canto” [28]. These sounds have been divided into a training dataset (with six 

hundred (600) samples) and a testing dataset (with hundred (100) samples). Forty (40) samples from each 

bird species are used for training, and ten (10) samples from each bird species for testing. Table 1 lists the 

different birds and their corresponding abbreviations.  

From both training and testing dataset, LPCC, MFCC, and GTCC features have been extracted. 

Thirteen coefficients (i.e. N=13) from each feature are extracted, with the individual extracted features used 

for training and then, testing; using SVM as the classification method. The predicted results are compared to 

find the most robust cepstral feature for bird sound classification. 

K-fold cross-validation is performed whilst training the model to prevent overfitting. The dataset is 

split into several folds, with accuracy of each fold estimated, to ensure that every observation from the 

original dataset has the chance of appearing during training. In this work, five (05) fold cross-validation has 

been used for training the model using GTCC, MFCC, and LPCC features separately. Figure 2 shows the 

classifier's performance per class whilst training using GTCC features with five-fold cross-validation. The 

row and column represent the output and targeted classes, respectively. The green percentage values on the 

far-right column and the bottom row represent the percentage of correctly classified entries in that row and 

column, respectively. On the other hand, red percentages give the percentage of correctly classified entries in 

that row and column, respectively. Overall, the classifier provides 89.3% training accuracy, with 10.7% 

wrong classifications. 
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Table 1. Names of the birds with the corresponding abbreviations used 

Bird No Bird Name Abbreviation 

1 Bornean Blue Flycatcher BBF 
2 Bushy Crested Hornbill BCH 

3 Black Copped White-eye BCW 

4 Bornean Spider Hunter BSH 
5 Bornean Tree Pie BTP 

6 Bornean Whistler BW 

7 Collared Kingfish CK 

8 Green Pitta GP 
9 Golden Whiskered Barbet GWB 

10 Hotted Pitta HP 
11 Malaysian Banded Pitta MBP 

12 Malaysian Pied Fantail MPF 

13 Rhinocerous Hornbill RH 
14 Savanna Nightjar SN 

15 White-Crowned Forktail WCF 

 

 

 

Figure 2. The performance of the classifier per class while training GTCC features with five-fold  

cross-validation. 

 

 

Figure 3 illustrates classification prediction accuracies for models separately trained and tested using 

the three (3) cepstral features. Using GTCC features results in the highest accuracy of 93.33% for all fifteen 

(15) birds, whilst using MFCC and LPCC features give 87.33% and 86.67% accuracies, respectively. Table 2 

lists the class-wise SVM prediction accuracies based on LPCC, MFCC and GTCC features. As a whole, the 

SVM model trained using GTCC predicts eight (8) bird species with 100% accuracy whilst models trained 

with MFCC and LPCC features predict only five (5) and one (1) bird species, respectively, with 100% 
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accuracy. Also, with the exception of MBP bird, the model utilising GTCC features predict all other birds 

more than 80% correctly. Further analysis has also shown that four (4) samples out of the hundred and fifty 

(150) test samples, have been predicted wrongly by all three (3) feature-based classification process. 

 

 

 
 

Figure 3. SVM prediction accuracy based on cepstral features 

 

 

Table 2. Class wise SVM prediction accuracy for cepstral features 
 

Bird Name 

Prediction Accuracy (%) 

LPCC MFCC GTCC 

BBF 70 90 100 
BCH 80 90 80 

BCW 80 90 100 

BSH 90 90 100 
BTP 90 90 90 

BW 90 70 90 

CK 90 90 100 
GP 90 90 90 

GWB 80 70 90 

HP 90 90 100 
MBP 90 70 70 

MPF 80 90 90 

RH 90 90 100 
SN 100 100 100 

WCF 90 100 100 

Average 

(%) 86.67 87.33 93.33 

 

 

Figure 4 depicts the confusion matrix for SVM classification, using GTCC features only. 

Specifically, for MBP bird, it can be seen that only 7 out of the 10 MBP bird sounds are predicted correctly, 

i.e. 70% accuracy, with three wrongly predicted bird sounds classified as BBF birds. BCH bird has a reported 

accuracy of 80%, with two BCH birds wrongly predicted as BW and MPF. Other birds report accuracies of 

90% and above. Also, from Figure 4, it can be seen that a total of 5 birds are wrongly predicted as BBF birds: 

3 MBP birds, 1 BTP bird and GWB bird. 

To understand more on the impacts of these features, GTCC, LPCC and MFCC have also been 

combined; and collectively used for training of SVM classification model. Figure 5 also shows the prediction 

accuracy of combined features, clearly showing that even though using combination of features provide 

significant improvements in accuracies when compared to MFCC and LPCC separately, these improvements 

are actually less than the model using GTCC features only. Using the LPCC feature alone produces 86.67%, 

but when combined with GTCC or MFCC separately, it produces 92.67% accuracy. However, when it 

combined with both GTCC and MFCC together, accuracy dropped slightly to 91.33%. Similarly, MFCC 

shows an approximately 5% increase in prediction accuracy when combined with GTCC and LPCC 

separately but reduces when all features are combined. However, the accuracy of GTCC is dropped whenever 

it is combined with other features. 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 Robust cepstral feature for bird sound classification (Murugaiya Ramashini) 

1485 

 
 

Figure 4. Confusion matrix of GTCC based SVM prediction 

 

 

 
 

Figure 5. SVM prediction accuracy based on combined cepstral features 

 

 

4. CONCLUSION 

Regardless of applications, a classifier requires robust and discriminatory features to give good 

classification accuracy. The challenge is to extract the most appropriate and suitable features for a particular 

purpose. Feature selection is an important process, requiring the extracted feature to be compact but, at the 

same time, capable of highlighting important characteristics of the signal. Ideally, the extracted features 
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should not require a lot of processing by reducing the size of the signal significantly whilst still able to 

describe and represent the signal entirely and accurately. Therefore, this work aims to find the most robust 

feature for bird sound classification. While investigating more on bird’s vocal track (syrinx), there are several 

common properties that can be found between human vocal track and speech processing, with that of bird 

sounds. Also, the literature has indicated that homomorphic signal processing method and its derivatives 

called cepstral features, particularly MFCC, is most suitable for the bird’s sounds analysis. As such, focus has 

been made to explore different cepstral features in this paper, in order to obtain the most robust cepstral 

feature for birds sound. 

The basic structure of any typical audio classification has several stages after data collection; the 

first stage is pre-processing, which is done on the audio signal for noise cancellation, silence reduction, and 

normalisation. In this work, fifteen (15) endemic Bornean birds’ sounds have been collected and segmented 

using automatic energy-based segmentation in order to remove silence and noise in the recording. Then, in 

the feature extraction stage, three (3) cepstral features, namely LPCC, MFCC, and GTCC, have been 

extracted from the segmented audio signal. Finally, six hundred (600) samples have been used for training, 

and a hundred and fifty (150) samples used for testing. SVM classifier is used in this work separately for 

each features types, both training and testing. It can be seen that GTCC feature-based classification 

outperforms the other two LPCC and MFCC based classifications, despite the fact that MFCC has been more 

widely used by many researchers over the years. Combining the three cepstral features does not increase the 

accuracy over using GTCC features only. The result is significant as it shows that using GTCC alone would 

give reasonably high accuracy (93.3%) for bird sound classification. However, there is still room for further 

improvement through the investigation of different properties of birds sound, combining GTCC with other 

signal features, and implementing the technique in real-time on portable multimedia devices, which may also 

give new directions to this work. 
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