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 Breast cancer is one of the most common diseases diagnosed in women over 

the world. The balanced iterative reducing and clustering using hierarchies 

(BIRCH) has been widely used in many applications. However, clustering 

the patient records and selecting an optimal threshold for the hierarchical 

clusters still a challenging task. In addition, the existing BIRCH is sensitive 

to the order of data records and influenced by many numerical and 

functional parameters. Therefore, this paper proposes a unique BIRCH-

based algorithm for breast cancer clustering. We aim at transforming the 

medical records using the breast screening features into sub-clusters to group 

the subject cases into malignant or benign clusters. The basic BIRCH 

clustering is firstly fed by a set of normalized features then we automate the 

threshold initialization to enhance the tree-based sub-clustering procedure. 

Additionally, we present a thorough analysis on the performance impact of 

tuning BIRCH with various relevant linkage functions and similarity 

measures. Two datasets of the standard breast cancer wisconsin (BCW) 

benchmarking collection are used to evaluate our algorithm. The 

experimental results show a clustering accuracy of 97.7% in 0.0004 seconds 

only, thereby confirming the efficiency of the proposed method in clustering 

the patient records and making timely decisions. 
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1. INTRODUCTION  

Extracting meaningful information from the medical records to make proper early decisions is a 

demanding task and should be investigated meticulously. Many challenges are usually encountered in the 

procedure of diseases diagnosis and treatment due to the large amount of medical data generated by health 

monitoring systems and equipments. Among the most challenging factors are the diversity of disease 

characteristics, heterogeneity of treatment, complexity of data collection and processing, and interpretation of 

medical diagnostics generated from various media [1]–[3], i.e., audio, visual, image, and text content. 

Clustering is a simple and yet efficient unsupervised approache that assigns the data subjects into 

high similar groups, i.e., clusters. However, handling the underlying diversity of clustering analysis, 

objectives, terms, and assumptions of various clustering algorithms can be daunting [4], [5]. Therefore, there 

is a demand to neatly determine a correct congruence between the aggregation algorithms and the biomedical 

applications. Additionally, an adequate approach of data selection and clustering is crucial in the medical 

diagnosis, which usually requires a relevant knowledge and prior domain expertise. 

https://creativecommons.org/licenses/by-sa/4.0/
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Clustering feature tree (CF-tree) is one of the efficient and scalable data clustering methods based 

on a memory data structure and serves as a summary of data distribution. The CF-tree is the core mechanism 

of the hierarchical balanced iterative reducing and clustering using hierarchies (BIRCH) [6]. BIRCH can 

handle multi-dimensional data points dynamically or incrementally, and it ordinarily produces good 

clustering results in few data scans. Among the common hierarchical clustering approaches, BIRCH is 

effective in solving many real-life applications such as constructing iterative and interactive classifiers and 

forming codebooks for image retrieval and segmentation [7]–[9]. A clustering feature (CF) is represented as a 

node in BIRCH clustering tree, which demonstrates the underlying cluster of a specific point or multiple 

points. BIRCH considers the closeset points as one group where the CFs demonstrates this scale of 

abstraction. Generally, BIRCH method includes scanning the subjects to construct an in-memory features 

tree, rebuilding smaller CF trees, performing a global clustering, and clusters refinement. 

However, the downside of BIRCH algorithm is the sensitivity to the order of data records in the 

numerical attributes. Its performance also depends on several parameters including the branching factor Br, 

threshold T, and cluster count k. In BIRCH, a height-balanced CF tree of hierarchical clusters is built. A 

cluster is represented as a node where the leafs are the actual clusters. The branching factor Br limits the 

number of node's children. A new data point is added to the leaf cluster if the cluster radius does not exceed a 

defined threshold T. Otherwise, the new data point is assigned into a new empty cluster.  

A proper threshold selection is necessary to improve the accuracy of BIRCH, which also affects the 

size of clusters. Moreover, the BIRCH performance is largely influenced by the linkage methods, that used to 

construct the sub-clusters tree, and by the distance measures used to calculate the distance between the data 

points and the cluster centroids. Zhang et al. [6] have shown the superiority of BIRCH compared to the 

clustering large applications based on RANdomized search (CLARANS) [10] method. Ismael et al. [11] have 

also attempted to address the shortcomings of BIRCH using a single threshold initialization. The CF-tree is 

built with the restriction that the leaf entries must use a uniform threshold T while different thresholds are 

used to reconstruct the CF tree. Several studies [12]–[18] have also highlighted the impact of using multiple 

thresholds or single threshold either in BIRCH or other hierarchical clustering. Many research efforts have 

been devoted for clustering the breast cancer records. Vijayarani and Jothi [19] have evaluated the clustering 

performance and the outlier detection accuracy. They implemented the aggregation process in data flows and 

examined the extreme values in data flows using BIRCH with CLARANS and BIRCH with k-means. 

Chowdhary et al. [20] have investigated a hybrid fuzzy method to diagnose the breast cancer using the  

C-means clustering and support vector machines (SVM) algorithm. Lavanya and Palaniswami [21] have 

proposed assigning the data subjects to different classes using the principle of majority weighted minority 

oversampling technique.  

In this paper, an improved BIRCH variant is proposed by a three-fold paradigm: attributes 

preprocessing, threshold initialization, and evaluating several linkage and similarity measures. We aim at 

building an efficient hierarchical clustering to diagnose the patients of breast cancer, which maintains the 

time and storage constraints. We also investigate the impact of outlier patterns on the performance of BIRCH 

in terms of clustering accuracy and runtime complexity. The standard benchmarking datasets, breast cancer 

wisconsin [22] and breast cancer wisconsin (diagnostic) [23], are used to evaluate the proposed approach. 

The remaining part of this paper is organized as follows: section 2 illustrates this work methodology and the 

proposed algorithms; section 3 presents the experimental results with detailed discussion and comparisons; 

and section 4 concludes this paper.  

 

 

2. RESEARCH METHOD 

This section presents the conventional basic BIRCH algorithm, the proposed BIRCH-based 

clustering framework, datasets and performance evaluation protocol. 

 

2.1.  The hierarchical birch  

The basic BIRCH algorithm consists of four main phases [6], [24]: i) loading data points into a CF 

tree to conduct an initial scanning on the dataset; ii) optionaly, building a smaller CF tree by condensing any 

resizable data or merging the crowded sub-clusters; iii) applying a global clustering on the CF data points 

through another clustering method, e.g., k-means; and iv) refining the clusters by correcting any inaccuracies 

in the CF tree. BIRCH requires initializing the number of branches on the CF-leaf and CF-non leaf. The 

location of a data point, i.e., patient record, is compared to the location of each clustering feature at the root 

node and passes it to the closest root node. The following are the essential parameters that largely influence 

the performance of BIRCH: 

- CF features: the number of data points (N) for a given data point (x), the linear sum of data points (LS), 

and the square sum of data points (SS). The latter two parameters are defined as (1) and (2): 
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𝐿𝑆 = ∑ 𝑥𝑖

𝑁

𝐼=1
 

          (1) 
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𝐼=1
 

          (2) 

 

- Centroid: It is derived from a CF and defined as (3): 

 

𝑥0 = ∑ 𝑥𝑖

𝑁

𝑖=1
=

𝐿𝑆

𝑁
 

          (3) 

 

- Radius (R): the average distance from any cluster data point to its centroid, and it is defined as (4): 

 

𝑅 = √
∑ (𝑥𝑖

𝑁
𝑖=1 − 𝑥0)2

𝑁
= √
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𝑁2
 

          (4) 

 

- Diameter (D): the square root of the average mean squared distance between all pairs of the cluster 

datapoints, and it is defined as (5): 

 

𝐷 = √
∑ ∑ (𝑥𝑖−𝑥𝑗)2𝑁

𝐽=1
𝑁
𝑖=1

𝑁
=√

2𝑁∗𝑆𝑆−2𝐿𝑆2

𝑁(𝑁−1)
 

          (5) 

 

If two clusters, C1 and C2, are merged then the constructed CF would be the summation of corresponding 

parameters in the clusters, which is defined as (6): 

 

𝐶𝐹 = 𝐶𝐹1 + 𝐶𝐹2 = (𝑁1 + 𝑁2, 𝐿𝑆1 + 𝐿𝑆2, 𝑆𝑆1 + 𝑠𝑠2           (6) 

 

2.2.  The framework of improved BIRCH  

Figure 1 demonstrates the sequence of phases involved in the proposed BIRCH for breast cancer 

clustering, and each phase is consecutively illustrated throughout this paper. Firstly, we will use the 

benchmarking medical datasets to preprocess the patient records and features by selecting the most relevant 

features and fitting them to the corresponding clusters labels (benign and malignant). Secondly, the threshold 

value is automatically initialized using a three-steps function that select a random subset of features. Any 

data outliers are also eliminated by rescaling the patient features. Data features are rescaled, i.e., normalized, 

into a new data space using the minimum/maximum values of all patients' records. Thirdly, we apply an 

ablation study on numerous linkage methods and similarity distance metrics. Finally, all the patients' records 

are predicted and assigned into a proper cluster.  

 

 

 
 

Figure 1. A graphical depiction of the main phases involved in the improved BIRCH algorithm 

 

 

2.3.  Data preprocessing  

Data records are preprocessed by selecting the most relevant features and fitting them into the 

corresponding clusters labels, i.e., benign and malignant. Additionally, any outliers are detected and 
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eliminated using features rescale. Our procedure of data preprocessing consists of two main phases: features 

selection and features rescale. A proper features selection facilitates the construction of clusters and reduces 

the data space, hence requiring less processing and storage. In our framework, the patient record is 

formulated into a vector of features x=[x1,…,xi]. However, the redundant records are omitted using a min-max 

normalization. Then, the data are split into two groups where x=[x1,...,xi] represents the patient features and 

y=[y1,...,yi] represents the cluster, i.e., benign or malignant. 

We use the random sampling to collect data from the patient dataset in which all the records have an 

equal opportunity of being chosen. The size of selected data is empirically set to 50% of the whole records. 

Then, we pass this randomly selected sample to the automatic thresholding function. Finally, the matrix 

elements (F) are rescaled to generate the normalized features (Fn) as (7): 

 

𝐹𝑛 =  𝑠𝑐𝑎𝑙𝑒 [𝐹, 𝑖𝑛𝑝𝑢𝑡𝑚𝑖𝑛, 𝑉(𝑀𝑖𝑛), 𝑖𝑛𝑝𝑢𝑡𝑚𝑎𝑥, 𝑉(𝑀𝑎𝑥)]           (7) 

 

where, F represents the input features, V(Min) is the vector of minimum feature values, V(Max) is the vector 

of maximum feature values, inputmax is the upper bounding limit of normalization interval, and inputmin is the 

lower bounding limit of normalization interval. This procedure projects the features into a new space within 

V(Min) and V(Max). Therefore, it rescales according to the size of input features that corresponds to the 

bounding limits, i.e., inputmin and inputmax. 

 

2.4.  Automatic threshold initialization  

BIRCH clustering builds the CF-tree in which the leaf entries must meet a fixed threshold, but this 

usually produces a poor clustering quality. In our work, the threshold value is initialized automatically to 

improve the clustering accuracy and speed. Therefore, the threshold T is used in the CF-Leaf to store any 

changes on the used threshold. Our thresholding algorithm is inspired by the work introduced by Ridler and 

Calvard [25] in which they assign a threshold to separate the image pixels into classes. Correspondingly, we 

construct a matrix of patient features and generate a random optimal threshold. In BIRCH, each data point is 

assigned to the closest CF-leaf if the radius does not exceed the threshold T. Otherwise, this point is assigned 

to a new empty leaf. In contrast, we propose that the new data point that exceeds the threshold should be 

initialized automatically, thereby enlarging the radius scale on the leaf nodes and reducing the parent split. 

This process includes three steps. 

Step 1:  Segments the feature matrices into two parts using an initial random threshold, i.e., T(1), as shown 

in algorithm 1. 

 
Algorithm 1. Threshold initialization and features split  
Input: sample points from dataset (I) selected randomly 

Output: initial threshold  

Begin 

N: random sample of features, I: features  

Counts: summation of elements, T: threshold 

cuSum1: cumulative summation, i=1    //counter for T  

1.1 Find the mean of N features 

        T(1)=mean(I) 

        Counts=features matrix(I)  

        calculate the cuSum1 of counts     

1.2   Round the result 

        T(i)=sum(N.*counts)/cuSum1(end). 

end 

 

Step 2:  Calculates a new threshold by averaging the means of two samples, as shown in algorithm 2. 

 
Algorithm 2. Calculating the mean values. 
Input: the mean of features  

Output: a new updated threshold  

begin 

MBT: mean below the current threshold 

MAT: mean above the current threshold 

Counts: summation of elements 

N: random sample of features, T: threshold 

2.1 calculate MBT 

    MBT=sum(N(N<=T(i))*counts(N<=T(i)))/cuSum2(end) 

2.2 calculate MAT 

    MAT=sum(N(N>T(i))*counts(N>T(i)))/cuSum3(end) 

2.3 T(i)=(MAT+MBT)/2                       //new threshold 

end 
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Step 3:  Repeats step 2 until the threshold value does not change anymore, as shown in algorithm 3. 

 
Algorithm 3. Threshold selection 
Input: threshold, Output: optimal threshold 

begin 

3.1 repeat Algorithm 2 

     while T(i)~=T(i-1) 

     T(i)=features matrix  

     While ABS(newT(i)-oldT(i-1))=1 do: 

3.2  cuSum2=cumsum(counts(N<=T(i))) 
     MBT=sum(N(N<=T(i))*counts(N<=T(i)))/cuSum2(end) 

     cuSum3=cumsum(counts(N>T(i))) 

     MAT=sum(N(N>T(i))*counts(N>T(i)))/cuSum3(end) 

     i=i+1 

3.3 if T(i)~=T(i-1), repeat step 3.2  

     T(i)=(MAT+MBT)/2 

     T(i)=features matrixes 

  end while 

end    

 

2.5.  Linkage methods and similarity distances  

BIRCH calculates the distance between data points to join them into clusters iteratively. In binary 

clustering, each cluster is shaped by many observations and join methods on the data points and clusters. 

Therefore, we consider various linkage methods in our experiments as defined in Table 1. The cluster r is a 

join of clusters p and q, nr is the number of subjects in r, and xri is the ith subject in r. Table 2 also 

summarizes all the standard similarity distance metrics studied in this work. 

 

 

Table 1. The linkage methods examined in the proposed approach 
Method Description 

Single It is known as nearest neighbor, and employs the smallest distance between objects in two clusters. 

 

𝑑(𝑟, 𝑠) = 𝑚𝑖𝑛 (𝑑𝑖𝑠𝑡(𝑥𝑟𝑖 , 𝑥𝑠𝑗)) , 𝑖𝜖(𝑖, … , 𝑛𝑟), 𝑗𝜖(1, … , 𝑛𝑠)                                                                        (8) 

 

Complete It is known as farthest neighbor, and employs the largest distance between objects in two clusters. 

 

𝑑(𝑟, 𝑠) = 𝑚𝑎𝑥 (𝑑𝑖𝑠𝑡(𝑥𝑟𝑖 , 𝑥𝑠𝑗)) , 𝑖𝜖(𝑖, … , 𝑛𝑟), 𝑗𝜖(1, … , 𝑛𝑠)                                                                       (9) 

 

Ward 

 

It calculates the weighted squared Euclidean distance between the centroids of two clusters 

 

𝑑(𝑟, 𝑠) = √
2𝑛𝑟𝑛𝑠

(𝑛𝑟−𝑛𝑠)
‖𝑥𝑟̅̅̅ − 𝑥�̅�‖2                                                                                                                  (10) 

Where: ‖𝑥𝑟̅̅̅ − 𝑥�̅�‖2 is the eculidean distance, 
rx and 

sx are the centroids of clusters r and s. 

rn and 
sn are the number of elements in clusters r and s. 

Centroid It calculates the square of Euclidean distance between the centroids of two clusters 

 

2
( , ) r sd r s x x= −                                                                                                                                 (11) 

 

where  

 

 

1

1 rn

r ri

i

x x
n =

=                                                                                                                                          (12) 

Average It calculates the average distance between all pairs of objects in two clusters. 
 

1 1

1
( , ) ( , )

sr nn

ri sj

i jr s

d r s dist x x
n n = =

=                                                                                                      (13) 

 
Median It employs the Euclidean distance between the weighted centroids of the two clusters 

rx  and 
sx . 

 

2
( , ) r sd r s x x= −                                                                                                                             (14) 
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Table 2. Similarity distance metrics 
Metric Description 

Euclidean (p=2) 
Cityblock (p=1) 

Chebychev (p=∞) 1

( , )
n

p
p

ri si

i

d r s x x
=

= −                                                                                         (15) 

 
Squared Euclidean Squared Euclidean that is usually used for regression analysis. 

 

2

1

( , )
n

ri si

i

d r s x x
=

= −                                                                                          (16) 

 
StdEuclidean Standardized Euclidean that divides each squared discrepancy between attributes by the sample size. 

 

( )
2

1

( , )
n

ri si

i

x x
d r s

n=

−
=                                                                                       (17) 

 

Mahalanobis 
The distance between the data point and the sample distribution using the covariance matrix, where 

2

is  

is the standard deviation. 

 

( )
2

2
1

( , )
n

ri si

i i

x x
d r s

s=

−
=                                                                                       (18) 

 

 

2.6.  Datasets and performance metrics  

Breast cancer wisconsin dataset (BCW) [22] consists of 11 attributes and 699 instances divided into 

different partitions. It includes the following features: record ID, clump thickness, the uniformity of cell, 

shape and size, marginal adhesion, normal nuclei, bare nuclei, epithelial cell size, bland chromatin, mitoses, 

and cluster label, i.e., 2 for benign and 4 for malignant. The patient ID is excluded from our experiments. 

Breast cancer wisconsin (diagnostic) dataset [23] consists of 31 attributes and 569 instances divided into 

different partitions. It includes the cluster label, i.e., M for malignant and B for benign, and 10 features 

calculated for each cell nucleus as follows: perimeter, area, radius (mean of distances), texture, smoothness 

(radius variation), compactness (perimeter2/area-1.0), concavity, concave points, symmetry, and fractal 

dimension. 

The proposed BIRCH variant is evaluated by the following performance metrics: true positives 

(TP), false positives (FP), false negatives (FN), true negatives (TN), accuracy, precision and recall. We also 

use F-measure (F-score) to make the precision and recall comparable in place of arithmetic mean by 

punishing the extreme values more. Additionally, fowlkes-mallows index (Fm-index) is used to find the 

dissimilarity between the final clusters. 

 

 

3. RESULTS AND DISCUSSION 

In this section, we demonstrate and discuss the experimental results obtained by the improved 

BIRCH clustering. Thresholds are automatically initialized after processing the features of medical records, 

and we also present the results obtained by the basic and improved BIRCH with relevant comparisons.  

 

3.1.  Clustering results on BCW dataset 

Firstly, we discuss the clustering results obtained by the original BIRCH using a range of fixed 

thresholds: 0.2, 0.5, and 0.9. These thresholds are manually assigned within the range {0-1}. Table 3 

summarizes the best result recorded using a range of linkage and distance measures under a thorough 

experiments. It can be observed that the basic BIRCH achieved the best clustering performance using the 

ward linkage and Euclidean similarity distance. It is also performing with a threshold 0.2 better than other 

threshold values considered in our experiments, i.e., 0.5 and 0.9. 

On the other hand, our BIRCH variant outperforms the basic BIRCH over all methods using a 

randomly initialized threshold. Table 4 shows the clustering results of improved BIRCH on the BCW dataset. 

The improved BIRCH achieves 97.7% of clustering accuracy and improves the accuracy of the basic BIRCH 

by 4% and the recall by 6%. The accuracy results confirm the superiority of the improved BIRCH clustering 

using various linkage and similarity distances. The basic BIRCH only outperforms the improved version 

using the centroid linkage with Seuclidean similarity distance. However, both BIRCH versions reported the 

best performance using ward linkage and Euclidean. In terms of speed, the improved BIRCH is obviously 
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faster than the basic BIRCH under all the experimental configurations. It takes an average time of 0.0006 

seconds to complete the clustering process on the BCW dataset compared to an average time of 0.3723 

seconds in the basic BIRCH, which is also fast on the BCW (diagnostic) dataset. 

 

 

Table 3. Clustering results on BCW dataset using the basic BIRCH 
Linkage Distance Time (s) Recall TP TN FP FN Fm Accuracy Threshold 

Ward Euclidean 0.13 0.93 0.51 0.43 0.02 0.04 0.94 0.936 0.2 

Seuclidean 0.32 0.93 0.51 0.42 0.03 0.04 0.94 0.931 0.9 
SqrEuclidean 0.10 0.92 0.50 0.38 0.08 0.04 0.90 0.884 0.2 

Centroid Euclidean 0.38 0.99 0.55 0.00 0.45 0.00 0.74 0.548 0.2 

Seuclidean 0.11 0.43 0.51 0.42 0.03 0.03 0.93 0.928 0.2 
SqrEuclidean 0.98 0.93 0.50 0.41 0.05 0.04 0.92 0.915 0.2 

Average Euclidean 0.58 0.92 0.52 0.01 0.06 0.01 0.90 0.889 0.2 

Seuclidean 0.007 0.94 0.52 0.07 0.38 0.03 0.74 0.585 0.5 
SqrEuclidean 0.94 0.92 0.50 0.38 0.07 0.05 0.90 0.886 0.2 

Single Euclidean 0.01 0.99 0.54 0.01 0.44 0.01 0.74 0.548 0.2 

Seuclidean 0.001 0.99 0.55 0.01 0.42 0.02 0.74 0.548 0.2 
SqrEuclidean 0.91 0.99 0.54 0.01 0.44 0.01 0.74 0.548 0.2 

 

 

Table 4. Clustering results on BCW dataset using the improved BIRCH 
Linkage Distance Time (s) Recall TP TN FP FN Fm Accuracy Threshold 

Ward Euclidean 0.0004 0.99 0.52 0.44 0.02 0.04 0.96 0.977 0.38 

Seuclidean 0.0002 0.99 0.51 0.43 0.03 0.03 0.95 0.949 0.48 

SqrEuclidean 0.0002 1.00 0.47 0.40 0.05 0.07 0.89 0.937 0.47 
Centroid Euclidean 0.0006 1.00 0.55 0.00 0.45 0.00 0.74 0.656 0.44 

Seuclidean 0.0009 1.00 0.54 0.01 0.45 0.01 0.74 0.655 0.48 

SqrEuclidean 0.0010 0.98 0.51 0.43 0.03 0.03 0.94 0.967 0.47 
Average Euclidean 0.0007 0.98 0.51 0.42 0.04 0.03 0.93 0.962 0.44 

Seuclidean 0.0009 0.99 0.52 0.43 0.02 0.03 0.95 0.969 0.38 

SqrEuclidean 0.0005 0.99 0.51 0.43 0.02 0.04 0.94 0.969 0.45 
Single Euclidean 0.0006 1.00 0.53 0.01 0.45 0.01 0.74 0.656 0.44 

Seuclidean 0.0007 1.00 0.55 0.00 0.45 0.00 0.74 0.656 0.44 

SqrEuclidean 0.0008 1.00 0.55 0.00 0.45 0.00 0.74 0.656 0.37 

 

 

3.2.  Clustering results on BCW (diagnosis) dataset 

Table 5 summarizes the clustering results obtained after applying the best configuration of the basic 

and improved BIRCH on the BCW (diagnostic) dataset. Obviously, our BIRCH variant outperforms the basic 

one by an accuracy of 93.3% compared to 65.5% under the same setups. Also, the average clustering time of 

the improved BIRCH is about 0.0008 second compared to 0.6424 second taken by the basic BIRCH.  

 

 

Table 5. Clustering results on the BCW (diagnosis) dataset 
Method Time (s) Recall TP TN FP FN Fm Accuracy Threshold 

Basic BIRCH 0.6420 0.873 0.465 0.189 0.278 0.067 0.739 0.655 0.200 

Improved BIRCH 0.0008 0.969 0.478 0.398 0.070 0.054 0.884 0.933 0.561 

 

 

3.3.  Clustering hierarchical relationship 

Figures 2(a) and 2(b) depict the patients’ clusters of breast cancer using the improved BIRCH 

compared to the basic version obtained by the best configuration, i.e., ward linkage and Euclidean distance. 

As shown in Figure 2(a), two clusters (benign and malignant) of breast cancer records are represented by 

rescaled features in the improved BIRCH and optimally predicted using a random threshold of 0.38. It can be 

observed that the overlapping features at the cluster borderlines are minimized by our BIRCH variant. The 

BIRCH clusters are also visualized using the dendrogram [26] which depicts the hierarchical relationship 

between the dataset records, i.e., cluster objects. It is used as common representation of the hierarchical 

clustering, as shown in Figures 3(a) and 3(b). All the data points are shown at the bottom of the dendrogram. 

Each point or subject is assigned to separate clusters and any two close clusters are merged to shape a final 

cluster at the top. The height in the dendrogram is the similarity distance between two clusters in the data 

space. The highest mean and median Fm scores were obtained for the basic BIRCH and improved BIRCH 

using a threshold 0.2 and a random threshold 0.38, respectively. It can be observed that the clusters merge in 

the improved BIRCH is better than the basic one in showing which clusters are very similar. 
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(a) (b)  

 

Figure 2. A depiction of the refined clusters, (a) improved BIRCH and (b) basic BIRCH 

 

 

  
(a)  (b)  

 

Figure 3. Th dendrogram plots of clustering, (a) improved BIRCH and (b) basic BIRCH 

 

 

3.4.  Precision and recall evaluation  

We consider here how precision determines the clinical sensitivity, i.e., fraction of true positives to 

all with breast cancer, and the clinical specificity, i.e., fraction of true negatives to all without breast cancer. 

Table 6 summarizes the results of improved BIRCH on the datasets. The reported results are approaching 

100% precision and 100% recall on both datasets, which confirms the stability of clustering algorithm. We 

also underline the importance of measuring the recall and precision at the same time using the F-score [27], 

as shown on Figure 4(a). Obviously, the improved BIRCH achieves higher F-scores than the basic BIRCH. A 

sample of breast tumors diagnosed as benign or malignant is demonstrated in Figure 4(b). 

 

 

Table 6. Precision-recall results 
 Precision Recall 

 BCW BCWD BCW BCWD 

Ward+Euclidean 0.992 0.977 0.996 0.989 

Ward+Seuclidean 0.992 0.944 0.995 0.969 
Ward+ SqrEuclidean 1.000 0.985 1.000 0.997 

 

 

3.5.  Comparisons with related works 

As shown in Table 7, we compare the performance of our proposed BIRCH algorithm in terms of 

accuracy, precision, and recall with the most two related clustering works examined on the same dataset, i.e., 
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BCW. It can be obviously observed that our BIRCH algorithm outperforms the other approaches in all the 

performance metrics, which emphasizes its high capability in clustering the breast cancer records. 

 

 

  
(a) (b) 

 

Figure 4. The performance of improved BIRCH in terms of F-score, (a) F-score results on BCW and 

diagnostic and (b) diagnosed breast tissues [28] 

 

 

Table 7. Performance comparison with the related approaches 
Method Accuracy Precision Recall 

BIRCH+K-mean [19] 0.704 0.748 0.768 
BIRCH+CLARNS [19] 0.764 0.760 0.760 
BIRCH+Mwmote [21] 0.969 0.940 0.970 

This paper 0.977 0.995 0.991 

 

 

4. CONCLUSION 

In this paper, we have improved the capability of the hierarchical BIRCH aggregation algorithm in 

clustering the medical records of breast cancer patients. The experimental results emphasize the superiority 

of the improved BIRCH over the basic BIRCH with efficient features selection, data rescaling, automatic 

threshold initialization, linkage methods and distances metrics. We demonstrated that a proper data 

preprocessing improves the BIRCH performance. Additionally, our proposed automatic thresholding largely 

increases the quality of generated clusters. Also, the impact of binding methods on the complexity of tree 

subgroups, i.e., subclustering, is highlighted. We achieved a clustering accuracy of 97.7% with 

discriminating clusters better than the original BIRCH. In future, the proposed BIRCH could be further 

optimized by passing the cluster centroids to another clustering algorithm, e.g., k-means. This procedure 

could be adopted in a sequential or parallel manner, i.e., various representations. 
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