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ABSTRACT 

 Human operators can perform better with the use of an automated diagnostic aid than 

without the use of an aid in a signal detection task.  This experiment aimed to determine whether 

any differences existed among graded aids—automated diagnostic aids that use a scale of 

confidence levels reflecting a spectrum of probabilistic information or uncertainty when making 

a judgment—that enabled better human detection performance, and either binary or graded aid 

produced better learning.  Participants performed a visual search framed as a medical decision 

making task.  Stimuli were arrays of random polygons (“cells”) generated by distorting a 

prototype shape.  The target was a shape more strongly distorted than the accompanying 

distracters.  A target was present on half of the trials.  Each participant performed the task with 

the assistance of either a binary aid, one of three graded aids, or no aid.  The aids’ sensitivities 

were the same (d′ = 2); the difference between the aids lay in the placement of their decision 

criteria, which determines a tradeoff between the aid’s predictive value and the frequency with 

which it makes a diagnosis.  The graded aid with 90% reliability provided a judgment on the 

greatest number of trials, the graded aid with 94% reliability gave a judgment on fewer trials, and 

the third graded aid with 96% reliability gave a judgment on the least number of trials.  The 

binary aid with 84% reliability gave a judgment on each trial.  All aids improved human 

detection performance, though the graded aids trended towards improving performance more 

than the binary aid.  The binary and graded aids did not produce significantly better or worse 

learning than did unaided performance.  The binary and graded aids did not significantly help 

learning, but they certainly did not worsen human detection performance when compared to the 

unaided condition.  These results imply that the decision boundaries of a graded alert might be 

fixed to encourage appropriate reliance on the aid and improve human detection performance, 
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and indicate employing either a graded or binary automated aid may be beneficial to learning in a 

detection task.   
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CHAPTER 1: INTRODUCTION 

 In complex task domains such as aviation, military, and nuclear power operation, 

operators must monitor system behavior and make frequent safety-critical decisions.  These 

decisions depend on a diagnosis of the state of the environment, often while the operator is 

overwhelmed with a multiple tasks or external stressors such as fatigue or time pressure.  Under 

such circumstances, automated diagnostic aids can reduce operator workload and improve 

system reliability; the aid’s processing capabilities integrated with a human’s cognitive 

capabilities can produce a human-automation system that performs better than either the human 

or automation alone (Mosier & Skitka, 1996; Parasuraman, 1987; Sorkin, Hays, & West, 2001).   

 However, aids may not always improve human performance.  In some cases, while meant 

to decrease the human’s workload, the automation may add to it (Kirlik, 1993; Parasuraman & 

Riley, 1997; Woods, 1995).  Additionally, the reliability of the aid and the ways in which users 

perceive automation can also affect its efficacy (Lee & Moray, 1992; Lee & See, 2004).  

Contingent on the context, the automated aid should be designed to engender appropriate 

reliance in order to optimize human-automation performance.  The current study examines an 

aspect of automated diagnostic aid’s design, the placement of response criteria, likely to affect 

the behavior of human users.        

  

 

 

 

 

 



 

2 

CHAPTER 2: LITERATURE REVIEW 

 Automated aids can enhance human performance in a variety of ways, facilitating 

information acquisition, information and system analysis, decision making, action execution, 

learning a task, and detection performance in a visual search task (Glover, Prawitt, & Spilker, 

1997; Parasuraman, Sheridan, & Wickens, 2000; Riley, 1997; Sheridan, 2002).  However, the 

benefits of automated aids to human performance are not guaranteed, and aids often fail to 

improve human performance in the ways expected by designers (Parasuraman & Riley, 1997).  

These failures generally take one of two forms depending on the aid’s reliability:  complacency 

and disuse.  The users’ perception of the automation’s reliability shapes the tendency toward 

complacency, appropriate use, or disuse (Singh, Molloy, & Parasuraman, 1993a, 1993b; 

Parasuraman & Riley, 1997).  Complacency occurs when users rely on an aid more than they 

should.  Initially, users tend to have a positive perception of an automated aid, believing that it 

will outperform them, even when they are told that the aid is not perfect (Dzindolet, Peterson, 

Pomranky, Pierce, & Beck, 2003; Wiegmann, 2002).  This perception can persist until the aid 

commits an error and can engender complacency in the human operator, a tendency to over trust 

and unquestionably rely on the aid.  In one scenario, for instance, a pilot inappropriately trusted 

cockpit automation and failed to notice that the autopilot was failing (Sparaco, 1995).  Here, the 

user over-trusted the automation and acted complacently (i.e., complying with each decision 

made by the aid).  Complacency does not pose a problem as long as the aid is perfect.  However, 

when relying on an imperfect aid, complacency will result in performance decrements.  An 

operator behaving complacently is less likely to check the aid’s decision; therefore, any mistakes 

made by the automation will be missed by the operator (Singh et al., 1993a).  One study 

compared the behavior of users assisted either by perfect automation or imperfect automation.  
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Participants who were assisted with perfect automation behaved complacently, relying 

completely on the automation without sampling any other available information.  The 

participants who were assisted by imperfect automation did not act as complacently as the 

alternative group.  Those who behaved complacently made a greater number of commission 

errors, erroneous decisions to agree with the automation’s diagnosis even when the aid was 

incorrect.  When the imperfect automation failed, participants who caught the error looked at 

other information whereas those who failed to catch the aid’s error neglected to examine other 

information (Bahner, Huper, & Manzey, 2008).   

 On the other hand, when an aid is susceptible to failure, people may begin to distrust it 

even if the failures occur infrequently, believing it does not work.  In this case, users may rely 

upon the aid less than they should (Maltz & Meyer, 2001; Wiegmann & Cristina, 2000; 

Wiegmann, Rich, & Zhang, 2001), an effect described as disuse (Parasuraman & Riley, 1997).  

As an example, consider smoke detectors.  Smoke detectors are designed to use a low detection 

threshold, such that even small amounts of smoke will activate the alarm.  As a result, users 

perceive smoke detectors to be unreliable and, thus, disuse them (Parasuraman & Riley, 1997).  

Furthermore, when users believe they have detected a signal that the aid neglected to detect, they 

no longer trust the aid and disuse it despite being told that the aid would outperform them 

(Dzindolet et al., 2003).  Users in this situation begin to ignore the aid’s diagnoses altogether 

even though they know their joint performance with the aid is better than the performance of the 

human alone (Wiegmann & Cristina, 2000).  Disuse obviously can compromise performance of 

the human-automation system.  For example, in a study comparing user agreement rates—how 

often participants agree with an aid’s diagnosis in light of that aid’s reliability—participants who 

agreed with the aid most of the time were about as accurate as the aid was reliable (i.e., 
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participants were 80% accurate when assisted by an aid that was 80% reliable) and performed 

better than the group who agreed with the aid less often (Wiegmann, 2002).  In general, the 

frequency of automation errors determines the user’s trust in the automation (Lee & Moray, 

1994).  However, the perceived unreliability of an automated aid, as determined by the number 

of errors it makes, can be exacerbated by a common user assumption that an aid should perform 

flawlessly (Dzindolet, Pierce, Beck, & Dawe, 1999).   

 Previous studies have found a reliability threshold below which an aid appears to lose all 

value to the human operator (Rovira, McGarry, & Parasuraman, 2007).  According to Wickens 

and Dixon (2007), unaided performance is better than performance assisted by an aid of any 

reliability below 0.70, and thus users completely lose trust in the automation and find it useless if 

its reliability is below 0.70.  As long as an aid has a high reliability—that is, reliability above the 

.70 threshold—it will enable performance better than unaided performance (Skitka, Mosier, & 

Burdick, 1999).  But, an aid whose reliability is nearly perfect may elicit complacency while 

users distrust an aid with a lower reliability.  Hence, there may be a possibility of a quadratic 

effect in which an aid with near-perfect reliability is better than both an aid with lower reliability 

and an aid with higher reliability.           

  A user’s current workload level can also influence his or her willingness to utilize an 

automated aid (Parasuraman & Riley, 1997; Sorkin & Woods, 1985).  When a human operator’s 

workload increases, automation can potentially offset the attendant costs and even allow the 

operators to attend to other tasks (Parasuraman, Molloy, & Singh, 1993).  But, there is mixed 

evidence for this effect.  In a study where participants were tasked with tracking, monitoring, and 

managing tasks, for example, participants were told they could use automation for the tracking 

task.  Surprisingly, the data gave no evidence of increased automation use during periods of high 
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workload (Harris, Hancock, & Arthur, 1993).  Under some circumstances, automation may 

actually add to users’ workload.  For instance, automated tasks in the cockpit may require the 

aircrew to monitor the automation because it, too, can make mistakes or fail (Chambers & Nagel, 

1985).  Workload may also increase if the human is required to engage or disengage an aid 

(Kirlik, 1993).  The time necessary to engage or disengage the automation—which adds 

additional time before the user can begin the next task—may deter people from using it at all, 

especially when the cost of engagement transcends the benefits. 

 As mentioned, aviation accidents and other catastrophic events can result from users’ 

misguided use or disuse of an automated aid (Mosier & Skitka, 1996).  Therefore, an aid’s 

design must foster appropriate use if it is to be effective in supporting human detection 

performance (e.g., Rovira et al., 2007).  In safety-critical situations such as airport luggage 

screening, the costs of a missing signal can be great.  The automation’s design should recognize 

this with a liberal shift of beta, decreasing the miss rate.  But, in doing so, the aid becomes false-

alarm prone (Parasuraman & Riley, 1997).  Too many false alarms may cause users to ignore the 

aid and lose trust (Gupta, Bisantz, & Singh, 2002; Horowtiz & Dingus, 1992), which can be 

catastrophic when the aid alerts the user to a true target. 

 However, factors beyond the aid’s design—costs and payoffs, rewards and punishments, 

knowledge, and other factors idiosyncratic to an individual user—influence automation use (Lee 

& See, 2004).  In the airport luggage screening example, screeners might be punished for every 

piece of luggage containing a weapon or suspicious object that they failed to pull off the belt for 

inspection.  To decrease his miss rate, a user might decrease the judgment parameter, beta.  On 

the other hand, due to the rare occurrence of a weapon in a piece of luggage, screeners may 
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increase their response threshold.  In doing so, they are conservatively choosing which pieces of 

luggage they will manually inspect.   

 When users have information about the reasons the aid might make a mistake, they have 

greater trust in the aid when compared to users who lack the knowledge of the aid’s imperfection 

(Dzindolet et al., 2003).  An understanding of the way in which the aid works—how it makes a 

decision—fosters better trust in an automated aid.  Users relied on an aid of lower reliability as 

much as an aid with higher reliability when this information was provided to them.  But, the cost 

in doing so leads to inappropriate reliance on the aid whose reliability was lower.  Additionally, 

users increased their reliance on an aid when they were provided with information about how 

well they and their aid performed separately rather than providing them only with the aid’s 

diagnosis.  Participants who only see the aid’s diagnosis, without feedback on their own 

performance or the aid’s, may begin to rely on themselves only (e.g., participants will make a 

judgment on a particular experimental trial, view the aid’s judgment, and see that the aid is 

obviously wrong in its judgment).  

Graded vs. binary aids 

 The ideal solution might seemingly be to design all automated aids to be perfectly 

reliable, but this is impossible to do.  Diagnostic aids are designed to perform a signal detection 

task, and performance is limited by the strength of the signal (Green & Swets, 1966; Wickens & 

Hollands, 2000).  Since the strength of the signal is often beyond a designer’s control, other 

techniques—for example, manipulations of an aid’s interface design—may be the only way to 

improve performance of a human-automation system.  One way to improve aid utilization might 

be to employ graded aids.  Graded alerts render diagnoses on a scale of confidence levels, 

reflecting a spectrum of probabilistic information or uncertainty (Bisantz, Finger, Seong, & 
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Llinas, 1999), when making a judgment about the state of the environment.  They can provide a 

judgment to the user with an associated level of certainty (e.g., high confidence, low confidence, 

and a neutral standing in a three-level graded aid), or can convey the urgency of a situation on a 

spectrum ranging from completely safe (target absent) to imminent danger (target present) with 

judgments in the middle to express some danger.  Confidence ratings can be derived, as in the 

standard signal detection model, by dividing the evidence axis into three or more regions using 

multiple response criteria, rather than simply dividing the evidence axis with a single response 

criterion into regions corresponding to yes and no judgments.  The potential benefit of using a 

graded aid is that it provides extra information to users about the state of the system, allowing 

them to make a better informed decision (Sorkin, Kantowitz, & Kantowitz, 1988; Woods, 1995).  

Additionally, when users must attend to several tasks or have a high workload, this extra 

information about the likelihood of a target allows can help users decide where best to allocate 

their attention (e.g., if the graded aid conveys a high likelihood of danger, the user may decide to 

attend to avoiding the danger whereas the user may decide to continue attending to the current 

task should the aid convey a low likelihood of the target).   

 Unfortunately, studies testing the value of graded aids relative to binary aids have 

produced ambiguous results.  Some evidence has endorsed the use of graded aids.  In a study 

examining decision making during the interaction between people and an integrative cockpit 

display, for example, participants who used a likelihood alert made more accurate decisions than 

those who used a binary aid, especially with a high workload (Bustamante, 2008).  In another 

study, Andre and Cutler (1998) use graded aids in a navigation task during which an operator 

was asked to come as close as possible to a target without actually hitting it.  The target’s 

location was estimated with a circle that encased the target, and the circle’s size changed as a 
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function of the uncertainty with regard to the target’s location.  The circle helped operators to 

avoid hitting the target because it provided them with a level of uncertainty regarding the target’s 

location.  Gupta et al. (2002) used auditory graded alerts in a simulated driving task:  in the 

binary-aid condition, each alert was equally loud to convey a potential skid or collision, but in 

the graded-aid condition, alerts differed in loudness depending on the urgency of the situation.  

Driving performance was better when graded alerts were used not only because they provided 

drivers with information about the likelihood of a skid or a collision, but also because the binary 

alert caused drivers to react very quickly, accelerating the car right after the alarm.     

 Other work, unfortunately, has found less value to graded aids.  In one case, three 

different levels of a false alarm-prone alarm and a miss-prone alarm were provided, and each one 

differed with regard to the level of imminent danger such that the lowest grade of the alert was 

the word “OK” inside of a green box (Clark, Peyton, & Buastamante, 2009).  A binary aid was 

used for comparison; only two grades—target-present or target-absent—were provided.  The 

likelihood alert fostered better decision making, but only with the false alarm-prone aid because 

the miss-prone aid reduced operator reliance (Clark et al., 2009).  The likelihood alert in this 

study fostered better trust as is reflected by the increase in user response to correct judgments 

made by the aid.  Other work found that people relied more on a binary, false alarm-prone aid 

than on a likelihood, false alarm-prone aid (Stanton, Ragsdale, & Bustamante, 2009), and some 

studies have found no benefits at all for graded alerts (Wickens & Colcombe, 2007).   

 Why have studies’ graded aids produced somewhat contradictory findings?  One aspect 

of a graded aid’s design that might affect operator performance is the separation between 

response criteria used to divide the evidence axis into different confidence levels.  The current 

experiment illustrates this possibility, using two response criteria to separate the signal detection 
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evidence axis into regions corresponding to yes, no, and uncertain diagnoses.  Evidence values 

that fall above both response criteria produce confident yes (target-present) diagnoses and those 

that fall below both criteria produce confident no (target-absent) diagnoses.  The evidence values 

that fall between the two response criteria are rendered as uncertain judgments.  The separation 

between criteria influences the number of diagnoses rendered by the aid and the confidence with 

which each diagnosis is made (Figure 1).  A diagnosis that falls above the two response criteria 

that are separated by many standard deviations will be extremely accurate as compared to a 

diagnosis that falls just above the criteria that are separated by fewer standard deviations.  This is 

because the area under the signal curve is small when the criteria are placed further apart from 

one another, and the diagnosis is made at the very end of the curve where the probability of noise 

is nearly zero.  McCarley (2009) found evidence for a role of criterion placement in determining 

the value of graded alerts.  Participants in his experiment were more willing to use the graded aid 

than the binary aid in a simulated baggage screening task.  However, they were more willing to 

use a graded aid that rendered a judgment more often than an aid of equal sensitivity that gave a 

judgment less often.  This result suggests that the placement of an aid’s response criteria is an 

important factor in designing an aid that will foster appropriate use and improve human detection 

performance.  The current study explores this issue further, providing a comparison among three 

graded aids of varying response criteria to determine if any differences exist among them and if 

an optimal response exists. 

Skill acquisition with graded and binary aids      

   An unavoidable concern in providing human operators with automated aids is the 

possibility of the aid’s failure.  Having the assistance of an automated aid, while often useful, 

might hurt people’s ability to perform a task unaided (Wickens & Hollands, 2000), or to develop 
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skills in the unaided task (Glover et al., 1997).  As a result, performance may suffer if the aid 

fails or otherwise becomes unavailable to the operator (Goh, Wiegmann, & Madhavan, 2005).  

On the other hand, some research has found that once an automated aid was removed from the 

experiment, performance of operators who had previous experience with an automated aid was 

better than those who did not have experience with one (Goh et al., 2005).  The same work 

suggests that using automated cueing to direct people’s attention to a possible target improves 

detection performance and can be used as a training mechanism for visual search tasks such as 

luggage screening.    

 As yet, there is a lack of research exploring how differences in the effects of graded aids 

and binary aids on human users’ learning in a signal detection task.  Graded aids might produce 

poorer learning than binary aids because graded aids do not provide a recommendation as often 

as the binary aids (e.g., feedback on 82% of the task may be less useful than feedback on the 

entire task).  Feedback provided on a proportion of the task does not give as much guidance and, 

hence, may not produce learning nearly as well as learning produced from the feedback provided 

during the entire task.  Alternatively, too much assistance (providing a recommendation all of the 

time) may worsen learning because users may rely on the recommendations and fail to check 

their performance (Schmidt & Bjork, 1992).  The users may fail to learn the task, rendering the 

binary aid useless for learning.  Users will develop longer-lasting skills when they are allowed to 

make their own mistakes during training rather than complying with the aid on every trial.  The 

graded aids might produce better learning since they provide a recommendation on only some of 

the trials.  Schmidt and Bjork (1992) suggest some feedback during training to improve the 

user’s performance, but not too much where the user does not learn.    

 



 

11 

CHAPTER 3: EXPERIMENT 

3.1. Introduction 

   The purpose of this study was to determine where the response criteria of the graded 

aids need to be placed for best performance and whether graded aids produce greater learning 

effects than binary aids.  Participants completed a signal detection task framed as a medical 

decision making task, in which they were instructed to search a sample of simulated human cells 

on the computer screen for an abnormal-looking cell.  Some participants received an automated 

diagnosis regarding the presence or absence of an abnormality, while the other participants 

completed the task unassisted.  Four forms of automated aids were employed.  All four were 

equal-variance Gaussian signal detection systems (MacMillan & Creelman, 2005) with a d′ of 2.  

One provided a binary judgment, making a target-absent or target-present diagnosis on each of 

the 200 experimental trials.  This aid possessed a single response criterion that was placed at the 

point of unbiasedness, in the center of the signal and signal plus noise distributions.  The other 

three automated aids each made graded judgments, offering either a confident target-absent, a 

confident target-present, or a neutral diagnosis each trial.  One graded aid had two response 

criteria that were separated by 0.75 standard deviations, position equal distances to either side of 

the point of unbiasedness, such that the aid provided a diagnosis on 82% of all trials with a 

predictive value of .90 (i.e., diagnoses were 90% accurate).  On the remaining 18% of the trials 

the aid gave a neutral diagnosis, forcing the participant to effectively perform the task unassisted.  

The second graded aid had two response criteria separated by 1.5 standard deviations, again 

centered about the point of unbiasedness, generating a diagnosis on 64% of all trials with a 

predictive value of 0.94; on the remaining 36% of the trials the aid gave a neutral diagnosis.  The 

final graded aid had two response criteria separated by 2.25 standard deviations, centered on the 
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point of unbiasedness, generating a diagnosis on 47%, of all the trials with a predictive value of 

0.96; on the remaining 53% of the trials, the aid gave a neutral diagnosis.  During the first 150 

(aid-present) trials, aided participants worked with their assigned automated aid.  During the last 

50 (aid-absent) trials, aided participants were stripped of their assigned aid and left to perform 

the task unaided.        

3.2. Methodology 

3.2.1. Participants 

 One hundred and fifteen undergraduate students (mean age = 19.54, 45 males) at the 

University of Illinois participated for course credit.    

3.2.2. Stimuli 

 Stimuli were images of random polygons generated using Posner and Keele’s (1968) 

prototype-distortion procedure (see Smith, Redford, Gent, & Washburn, 2005, for use of similar 

stimuli in a visual search task).  Each stimulus image contained five filled polygons, drawn in 

gray with 50% transparency.  Each polygon was drawn at a random location, and individual 

items were free to overlap.  All five polygons within an image were distortions of the same 

prototype.  Two versions of each stimulus image were created, a target-absent version and a 

target-present version.  Within the target-absent image, all five polygons were moderate (level 2; 

Posner & Keele, 1968) distortions of a common prototype.  Within the target-present image, one 

polygon was distorted from the prototype more highly (level 7.7) than the other four.  Aside from 

this difference, the target-absent and target present versions of an image were identical.  In total, 

200 pairs of target-present/target-absent images were generated, each pair using a different 

prototype.   
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3.2.3. Procedure 

  After reading and signing a consent form, participants read instructions on the computer 

before performing the 200-trial visual search task.  The instructions asked each participant to 

imagine that he or she was a doctor screening cell samples for abnormalities.  The instructions 

explained that the participant would see a sample of five objects each trial, and defined an 

abnormality as an object that differed in shape from the other objects.  Participants were 

instructed that an abnormality would be present on 50% of all trials, and because of random 

variation in shape, normal cells would occasionally appear to be abnormal and abnormal cells 

would occasionally appear to be normal.  Instructions in the aided conditions also explained that 

the participant would perform the task with the assistance of a computerized aid and warned 

participants that the aid is imperfect.  The instructions also told participants that because the aid 

uses sensors that are different from the human visual system, it may detect some targets that 

users miss and miss some targets that users might detect.     

 The participant initiated each trial with a key press.  The trial began with a 200 ms text 

message from the aid (“ABNORMAL,” “NORMAL,” or “Waiting for sample…”), followed by a 

200 ms blank screen and a two-second presentation of the stimulus image (see Figure 2).   After 

the stimulus image was removed, the participant was prompted to report whether he or she had 

detected an abnormality, pressing “1” on the keyboard to report “no” and “3” to report “yes.”  

Afterwards, he or she was asked to provide a 1 to 3 confidence rating—where 3 represents high 

confidence—on his or her judgment.  There were a total of 200 trials.  The stimulus image for 

each trial was selected randomly without replacement from the set of 150 target-absent/target-

present pairs, and the target-present image was presented with a probability of .50 each trial.   
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3.2.4. Design 

 Each participant was randomly assigned to one of five experimental conditions (unaided 

control; binary aid; graded aid with separation of 0.75 SD; graded aid with separation of 1.5 SD; 

graded aid with separation of 2.25 SD); each condition had 23 participants.  To analyze learning 

effects, data were broken into aid-present (trials 26-150) and aid-absent blocks (trials 151-200) 

and then compared; the first 25 trials were treated as practice and excluded from analysis.   

3.3. Results 

3.3.1 Analysis 

  Raw data were transformed into S prime values.  S prime is a nonparametric measure of 

sensitivity that is more reliable than d′ and more sensitive than the area under the ROC 

(Balakrishnan, 1998).  It is similar to d′ in that it estimates the mean differences between the two 

signal and signal plus noise distributions, but it doesn’t assume a normal distribution for these 

two curves (MacMillan & Creelman, 2005).  Because it is more sensitive, the S prime values 

were obtained before analyses.  Data values of the area under the ROC curve and the S prime 

data values were consistent.   

3.3.2 Aid-assisted Trials  

 Data were submitted to a univariate ANOVA with automated aid condition as a between-

subjects factor.  The F-test was significant for trials 26 through 150 when participants in the 

aided conditions had the opportunity to use the aid, F(4,110) = 5.20, p = .001 (refer to Figure 3).  

Orthogonal contrasts were constructed to make the following planned comparisons: mean of all 

automation aided conditions versus mean of the unaided condition; mean graded aid conditions 

to mean of the binary aid condition; linear effects of separation between criteria for the graded 

aids, and quadratic effects for graded aids.  The first contrast was constructed to determine if all 
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automated aids were better than the unaided condition.  Because the experimental interest lied in 

performance differences between the two kinds of automated aids—binary and graded—the 

second contrast looked to see whether graded aids improved human detection performance better 

than the binary aid.  One of the experimental goals was to find the best response criteria 

placement for best graded aid performance, so the third contrast looked at any linear differences 

among these aids:  perhaps as the two response criteria move farther apart from one another, for 

example, performance worsens.  Alternatively, perhaps there is an optimal amount of response 

criteria separation such that performance of aids whose criteria were closer together or farther 

apart were worse; this was the question addressed by the fourth contrast.  The only statistically 

significant contrast compared all automated aids to no aid, F(1,110) = 17.01, p < .001, r =.36, 

where r (effect size) is the simple correlation between subject scores and the coefficients of the 

groups to which they belong (Rosenthal, Rosnow, & Rubin, 2000).  The second contrast was not 

significant, F(4,110) = 2.08, p = .15, r = .13, and there were no linear, F(4,110) = 1.58, p = .21, r 

= .11, or quadratic effects, F(4,110) = 0.16, p = .69, r = .03. 

 Because users may rely differently upon graded aids that differ in predictive value, it is 

important to examine the frequency with which people relied upon each of the aids.  Agreement 

rates for trials on which the aid rendered a diagnosis served as a measure of how criterion 

placement affected the participant’s willingness to act on an aid’s judgments.  This would 

determine if participants assisted by an aid with a higher predictive value agreed with the aid 

when it made a correct diagnosis more often than participants assisted by an aid with lower 

predictive value.  Data from trials in which the aid gave a correct diagnosis and the participant 

agreed with the aid were submitted to a univariate ANOVA with automated aid condition as a 

between-subjects factor.  The same planned orthogonal contrasts used to compare all of the aid-
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assisted trials were used to compare the graded aids to the binary aid and test for linear and 

quadratic effects.  Although the results are not significant (all ps > .05), participants trended 

towards trusting the graded aids more than the binary aids.  There were not sufficient data to 

examine performance for neutral-judgment trials in the automation-aided conditions; the binary 

aid renders a diagnosis on every trial, the aids with 0.75 standard deviations and 1.5 standard 

deviations separating their response criteria made a diagnosis on most of the trials. 

 A pair of additional analyses was conducted to ensure that potential effects of aid format 

were not obscured by variance due to learning throughout the course of an experimental session.  

Although automation-assisted participants were given a description of the aids before beginning 

the experimental task, they might have required a significant number of trials to familiarize 

themselves with the aids’ behavior and to establish and calibrate their trust in the aids’ 

judgments.  Their willingness and ability to properly utilize the aids might therefore have 

changed over the course of the experimental session.  To minimize the variance due to learning, 

an analysis repeated the analyses described above, but using only the last 50 of the aid-assisted 

trials.  The pattern of results was the same as that seen in the analysis trials 26-150.        

3.3.3 Unassisted Trials  

 The F-test for trials 151-200 when the automated aids were taken away from participants 

is not significant, although all automated aids performed better than no aid (Figure 4).  All of the 

automated aids produced performance that was numerically better than the unaided condition, 

and the graded conditions were not significantly different from the binary condition.  However, 

the graded aids did not hinder learning.   
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3.4. Discussion 

 Generally, detection performance was better when humans were assisted by automated 

aids than without assistance as shown by the first contrast.  The lack of statistical significance for 

the second contrast comparing all graded aids to the binary aid suggests that the binary aid 

performed as equally well as the graded aids, although the graded aids trended toward 

significance.  The third contrast tested for linear effects of the graded alerts while the fourth 

contrast tested for quadratic effects.  Neither contrast was statistically significant.  This suggests 

that none of the graded aids improved human performance more than the others:  there was no 

linear trend such that the graded aid whose response criteria were separated by 0.75 standard 

deviations improved human performance the most, followed by the aid whose criteria were 

separated by 1.5 standard deviations and, lastly, the aid whose criteria were separated by 2.25 

standard deviations (which would have improved human performance the least).  Likewise, there 

was not an optimal criteria separation such that the aid whose criteria were separated by 1.5 

standard deviations showed the greatest improvement to human performance while the 

remaining two aids showed the least improvement to human performance.   

 Additionally, automated aids may improve learning.  Detection performance was better 

for users who were previously assisted by an aid than for users who have only performed the task 

manually.  Although none of the aids were significantly better than the unaided condition, the 

aids trended toward significance, suggesting that any kind of automated aid may help learning 

and certainly does not hinder performance.   

 The similarity of the last 50 aid-assisted trials to all 125 aid-assisted trials suggests that 

participants utilized the aid similarly throughout the aid-assisted trials.  Had the participants 

taken a number of trials to figure out how to use the aid or decided to disuse the aid at a given 
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point in the experiment, there would have been a pattern of effects across all trials, and the last 

50 aid-assisted trials would have shown different effects from the total (150) number of trials.   
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CHAPTER 4: GENERAL DISCUSSION 

 Past work has produced contradictory evidence for the benefits of graded diagnostic 

automation as compared to automation producing binary judgments.  The current experiment 

asked whether the placement of the graded automation’s response criteria would modulate the 

automation’s effectiveness as an aid to human decision makers.  The results show that the 

assistance of an automated aid, binary or graded, can improve human performance in a signal 

detection task.  However, graded aids trended toward improving performance more than the 

binary aid.  These results imply that participants were using the graded aids similarly.  Because 

the participants trended towards agreeing with the graded aids when the aids were correct more 

often than the binary aid when it was correct, the additional information provided by each graded 

aid—a range of diagnoses rather than a single, yes or no diagnosis—may have helped the 

participants more, though the effects fell shy of statistical reliability.   

 In other circumstances, or by other measures, graded automated alerts may offer more 

substantial benefits over binary aids.  Although the current experiment did not measure 

workload, past work has found that graded aids can reduce workload (Stanton, Ragsdale, & 

Bustamante, 2009).  This may be an important benefit even if the graded aid does not improve 

detection performance, per se.  In a true medical scenario, for instance, a physician who must 

examine a sample of human cells may want automated assistance if he has a high patient load or 

feels fatigued from long hours.  Operators who must maintain vigilance in a monitoring task such 

as air traffic control, screening luggage at the airport, or screening human cells for abnormalities 

might also be best to use a graded alert (Clark, Peyton, & Bustamante, 2009), since it provides 

information about how likely a target is to appear.  Alternatively, there may be conditions under 

which binary aids would be more useful than graded aids, for example, under high time stress.  
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When it gives a neutral judgment, the graded aid requires the human operator to make the 

decisions on her own, which might slow down performance.  Under high time stress, it might 

therefore be useful to give a binary recommendation, assuming that the binary judgments are 

sufficiently reliable.  By analogy, status displays—those providing information regarding the 

status of the system to the human—may be more useful in certain scenarios than command 

displays—those ordering the human to perform a particular action (Wickens & Hollands, 2000).  

A status display is better than a command display if the information provided is not reliable.  

However, a command display is better than a status display when the human is under high time 

stress, because the command display makes a decision that the human would otherwise need to 

make.   

 Learning may benefit from the use of an automated aid, either binary or graded.  As 

evidenced by the current experiment, experience performing the task with an aid produced 

improvements in unaided performance that were at least as good as the improvements seen from 

unaided practice on the task.  Perhaps the reason is that participants used the aid’s assistance to 

process and make a diagnosis from the information given to them and learn to differentiate 

between abnormal and normal cells to detect the abnormalities as suggested by Goh et al. (2005).  

More notably, the graded aids produced learning roughly as strong as that resulting from the 

binary aids.  Providing a substantial number of neutral diagnoses during the learning trials thus 

did not seem to make the graded aids less effective in helping the human operators develop skill 

in the detection task.       

 Perhaps the way in which the automated aids’ presented their diagnoses in the current 

experiment shaped the way the participants used the aids and their ability to detect abnormalities.  

Thus, a potential follow-up study could look at the differences between text message diagnoses 
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and cued location diagnoses.  The text message diagnoses in the current experiment served as an 

indirect cue, alerting the user to the possibility of an abnormality in the image (Goh, Wiegmann, 

& Madhavan, 2005) without drawing attention to the specific object that was the high-likelihood 

target.  Perhaps a direct cue, highlighting or placing a ring around the one likely target, would 

change user behavior and detection performance.  A direct cue may cause attentional tunneling 

(Maltz & Shinar, 2004), but may be more helpful than an indirect cue since it provides further 

information about the anomaly’s location.  Previous research has found that users had greater 

reliance and better performance when assisted by a direct cue as opposed to a text message 

despite equal reliability (Wiegmann, McCarley, Kramer, & Wickens, 2006).  Another study 

investigated the use of binary and graded direct-cue aids in a search task (St. John & Manes, 

2002).  The graded version of the direct cue provided a range of information to the user about the 

likelihood of a target in a particular location, which would direct the user’s search.  However, 

this aid was only beneficial when it was reliable, and the graded direct-cue aids complicated the 

user’s search path.  However beneficial the direct cue, factors such as target salience and the 

frequency with which a user expects to see a target will affect detection performance (Yeh & 

Wickens, 2001).    

 Alternatively, perhaps the automated aids’ judgments biased the participants’ judgments 

before they had the opportunity to view the stimuli in the current study, and presenting the 

stimuli before the aid’s judgments might change user behavior and performance.  Perhaps the 

graded aids will be significantly better than the binary aid in improving human detection 

performance because the human will have made her own judgment and use the graded aid 

merely as confirmation with an associated level of confidence.  The user might render the binary 

aid useless because it neglects to provide likelihood information and serves only as a 
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confirmation or contradiction to the user’s judgment.  Therefore, a future study could look at the 

differences in user behavior as the order of information changes (e.g., presenting the image of 

cells first before providing the aid’s diagnosis).  There is evidence that the way in which 

information is provided affects an operator’s decision bias such that operators recalled the most 

recently presented information best (Ashton & Ashton, 1990; Perrin, Barnett, Walrath, & 

Grossman, 2001).  However, Balzer and colleagues (1992) found that when the aid’s diagnosis 

was presented after users made a diagnosis themselves, the aid does not significantly improve the 

user’s detection performance.  But, this study employed a binary aid.  Perhaps assistance in the 

form of likelihood information will improve detection performance.    

 The current research was designed to investigate the differences between three graded 

aids to determine the optimal response criterion for signal detection performance and which form 

of automated aid, binary or graded, would produce better learning using a simulated medical 

scenario.  Although the evidence for an optimal criteria placement was weak, this research 

indicated that automation-assisted performance is better than unaided performance in a signal 

detection task and in learning.  This has implications for designing training tasks or for the use of 

automation in a learning scenario.  The decision to use a binary versus a graded aid will be 

dependent upon the context of its use as supported by previous research.   
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APPENDIX A: FIGURES AND TABLES 

Figure 1. The difference in accuracy of a diagnosis for an aid whose response criteria are 

separated by fewer standard deviations (left) compared to an aid whose response criteria are 

separated by more standard deviations (right).  The red sphere represents a diagnosis made by an 

automated aid.   
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Figure 2. The experimental procedure sequence of events. 
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Figure 3. Group means for each aided condition during assisted trials (trials 26-150). 
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Figure 4. Group means for each aided condition during unassisted trials (trials 151-200). 

 

 

 

 

 

 

 

 


