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Abstract

The effects of nutrient and mechanical sensing on gut motility and intestinal metabolism in

lower vertebrates remains largely unknown. Here we present the transcriptome response to

luminal stimulation by nutrients and an inert bolus on nutrient response pathways and also

the response on gut motility in a stomachless fish with a short digestive tract; the ballan

wrasse (Labrus berggylta). Using an in vitro model, we differentiate how signals initiated by

physical stretch (cellulose and plastic beads) and nutrients (lipid and protein) modulate the

gut evacuation rate, motility patterns and the transcriptome. Intestinal stretch generated by

inert cellulose initiated a faster evacuation of digesta out of the anterior intestine compared

to digestible protein and lipid. Stretch on the intestine upregulated genes associated with

increased muscle activity, whereas nutrients stimulated increased expression of several

neuropeptides and receptors which are directly involved in gut motility regulation. Although

administration of protein and lipid resulted in similar bulbous evacuation times, differences

in intestinal motility, transit between the segments and gene expression between the two

were observed. Lipid induced increased frequency of ripples and standing contraction in the

middle section of the intestine compared to the protein group. We suggest that this differ-

ence in motility was modulated by factors [prepronociceptin (pnoca), prodynorphin (pdyn)

and neuromedin U (nmu), opioid neurotransmitters and peptides] that are known to inhibit

gastrointestinal motility and were upregulated by protein and not lipid. Our findings show

that physical pressure in the intestine initiate contractions propelling the bolus distally,

directly towards the exit, whereas the stimuli from nutrients modulates the motility to prolong

the residence time of digesta in the digestive tract for optimal digestion.

1. Introduction

Ingestion of food initiates a cascade of neural and hormonal signals that prepare the body, and

the digestive system in particular, for the tasks ahead and also continues to regulate digestion
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until the meal has been completely processed [1]. Digestion and absorption of nutrients are

mainly facilitated via chemical breakdown by digestive enzymes and aided by mechanical

forces through a combination of mixing and transport termed gut motility [1,2]. Gut motility

is a complex process that involve coordinated contraction and relaxation of smooth muscle in

the gut wall that is closely controlled with enteric neurons and where the typical rhythmic con-

tractile motility patterns are initiated and propagated by special pacemaker cells called the

Interstitial cells of Cajal [1,3].

The mixing and propulsion of gut contents along the alimentary tract and the evacuation of

unabsorbed and fecal matter can be observed and classified into various motility patterns [4].

Motility patterns fall into two main categories: i) non-propulsive contractions, such as segmen-

tation, and ii) propulsive contractions, such as peristalsis and migrating motor complexes

(MMCs) [2,3]. Each type of contraction plays a specific role, depending on its amplitude, prop-

agation distance and velocity. Segmentations [5–7], also called Standing contractions or sta-

tionary contractions, are a set of stationary and rhythmic contractions of the circular muscle,

which was first described by Cannon more than 100 years ago [8,9]. This contraction type par-

ticipates in the digestion (e.g. mixing ingesta with digestive juice) and absorption (i.e. exposing

digested gut contents to the absorptive epithelium) [4,9,10]. Propulsive contractions, also

referred to as peristalsis or propagating contractions, are a series of annular contractions that

produce force to propel luminal contents distally [4,9,11–13]. The propulsive contractions are

classified into two main sub-types based on their amplitude and velocity. Ripples are defined

as a set of rhythmic and shallow contractions, which propagate for a relatively short distance

and at high speed in either the anterograde or retrograde direction [14,15]. It has been sug-

gested that this type of contraction mixes the luminal content for digestion and absorption

rather than propelling it [15]. Another sub-type of propulsive contraction is characterized as a

series of high-amplitude contractions that propagate for a longer distance than ripples but at a

low velocity. In some fish studies these are called slow propulsive contractions [14,16,17],

while in studies of humans and other mammals, the accepted term is “high-amplitude propa-

gated contractions” [18,19]. These move luminal contents from one section to the next, thanks

to their high amplitude [18,20,21].

Post-prandial segmentation is stimulated and modulated by nutrients present in the gut

and the intestinal transit rate is slowed down. In contrast, the presence of inert/non-nutritive

ingesta in the intestinal lumen abolishes segmentation and stimulates propulsive contrac-

tions; thus, the intestinal evacuation rate increases to egest the indigested content [12,22–

26]. Motility patterns differ between feeding and fasting periods. In mammals, when the

stomach and intestine are emptied after a meal, the motility shifts to typical myoelectrical

patterns that consist of three or four phases, namely the MMCs. This contraction type is

made up of a sequence of contractile waves that clean and propel digestive waste, unabsorbed

particles and microbiota in the anal direction [13,27–29]. In fish, high frequency of standing

contractions with or without ripples, was observed in fed shorthorn sculpin, whereas when

the fish was fasting, slow propulsive contractions and retrograde ripples frequently occurred

[14].

As in other vertebrates, the gastrointestinal mucosa in fish encompasses a small number of

enteroendocrine cells (EEC) and sensory systems. Two components of the sensory system are

mechanoreceptors (sensory receptors that respond to mechanical pressure or distortion/

stretch) and chemoreceptors (receptors that bind a chemical substance and generate biological

signals) [30]. The gastrointestinal hormones/neuropeptides are involved in both local signaling

pathways in the enteric nervous system (intrinsic) within the alimentary tract and remote sig-

naling pathways that originate in or communicate with the central nervous system (extrinsic).

The enteric nervous system mainly regulates gut motility via afferent, efferent and
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interneurons that connect with smooth muscle layers of the gut wall and the parasympathetic

and sympathetic nervous systems [20,31].

The gut responds to nutrients, both physically (i.e. changes in gut motility induced by

luminal presence of food) and at the molecular level (i.e. changes in gut tissue expression of

genes related to digestion, absorption and metabolism), as have been well described in mam-

mals [12,22,23,32–36]. The impact of nutrient on control of food intake and energy metabo-

lism has been widely investigated in fish [37–43], and has been reviewed by Conde-Sieira

and Soengas [44]. However, it is virtually unknown how the presence of a nutritional or

physical (inert/non-nutritional) meal in the gut affect motility and intestinal epithelium

metabolism in fish, except for a study on motility patterns in fed and starved sculpin (Myoxo-
cephalus scorpius) [14]. The precent study aims to determine how different nutrients regulate

both gut motility and gene expression in the intestine. We analyzed changes in motility pat-

terns of isolated whole gut preparations from juvenile ballan wrasse. A bolus of either a

nutrient (viscous protein or lipid) or a bolus of an inert suspension containing cellulose or

plastic beads were administered in vitro to the prepared intestines. Ballan wrasse does not

have a stomach, consequently the esophagus ends up in the foregut that has the shape of a

bulb. In the buccal cavity the intestine is suspended in a single loop. For the experiments pre-

sented here, the intestine was dissected out and the whole organ was used for the study (Fig

1). Differences in gene expression were compared between intestines administered with cel-

lulose versus empty intestines in order to isolate the effect of a mechanical stimulus. Intes-

tines administered with either protein or lipid were compared to cellulose to investigate the

effects of chemical stimuli on enterocyte metabolism, excluding the effect of stretch. We also

described postprandial motility patterns as responses to administration of the compounds in

juvenile ballan wrasse intestines.

2. Materials and methods

2.1. Treatments

Six treatment mixtures (mix) were prepared, four contained nutrients: intact lipid (IL), hydro-

lyzed lipid (HL), intact protein (IP), hydrolyzed protein (HP), and two with inert matter: cellu-

lose (CL) and plastic beads (PB). Intact lipid mix was made by stirring a mixture of 80% (by

volume) cod liver oil (Møllers Tran, containing omega-3-fatty acids and Vitamin D, see

Table 2 in Helland et al., [45] for FFA profile), 15% phosphate-buffered saline (PBS) pH = 8,

and 5% Tween 20 (TWEEN1 20, P9416 Sigma Aldrich) to obtain the same viscosity as the

hydrolyzed lipid mix. To make 5 mL hydrolyzed lipid mix, we incubated 4 mL cod liver oil

with 3.5 mg lipase (Lipase from Pseudomonas cepacia—62309 Sigma Aldrich,�30 U/mg) dis-

solved in 750 μL PBS (pH = 8) at 40˚C for 5 hours. The pH of the mix was maintained at

around 8 by titrating with 5 M NaOH during incubation. The mix was then incubated at 80 ˚C

for 2 hours to deactivate the lipase before mixing with 250 μL Tween. 20. Five mL of intact pro-

tein diet was prepared by combining 2 g casein (Casein from bovine milk, C7078, Sigma) with

4 mL 100 mM NH4HCO3 and 1 mL 1 mM HCl. Hydrolyzed protein mix was prepared by

incubating 5 mL intact protein diet with 43.7 mg trypsin (Trypsin Powder, Porcine 1:250,

85450C, Sigma Aldrich) at 37 ˚C for 20 hours, followed by 80 ˚C for 2 hours for enzyme deacti-

vation. Five mL of hydrolyzed protein mixture was freshly mixed with 100 μL protease inhibi-

tor [Protease/Phosphatase Inhibitor Cocktail (100X) #5872, Cell Signaling Technology, Inc,

The Netherlands] before administration of the bolus into the intestine. Cellulose mix was cre-

ated using 0.5 mg cellulose (Cellulose microcrystalline powder, 435236 Sigma Aldrich) in 1.5

mL H2O, adding a tiny amount of Brillant Blue (Brilliant Blue R, B7920 Sigma-Aldrich) as a

color maker. These five mixes were made and stored at– 20 ˚C for use within a week. The
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Fig 1. Experimental design and data analysis. The whole intestine and its parts; esophagus, bulbous (Segment 1), mid intestine (Segments 2 and 3) and hind gut

(Segment 4). Experiment 1 analyzed the effects of a nutrient or inert bolus on gut motility. Each intestine was administered a bolus into the anterior lumen of one of the

five mixtures (IL, HL, IP, HP, and CL) or one plastic bead (PB) before mounting in an individual glass tube containing oxygenated Ringer’s solution. A time-lapse

series of images of the intestines was captured at intervals of 3.5 frame s-1 for 14.5 h.①, every tenth frame was subtracted from the original videos (3.5 frames s-1) to

obtain 0.35 frame s-1 videos and②, intestinal diameters along the intestine on each image frame were measured using NIS-Elements Confocal 4.51.01 software.③, the

data of intestinal diameter was used to calculate bulbous emptying time (BET). Based on BET, times for six sub-periods were defined to select the frames to be in step

④. A standard recovery period of 20 min. was used after mounting the intestines to the glass tube. The period analyzed was from 0 h on the horizontal axis of the

Diameter and Time graph, which was set at the 21st min. after the recovery period until 14 h. The sub-period t1 was the first 30 min. after the recovery period; t2 for 30

min. between the 0 h and the BET; t3 for the last 30 min. before the BET; t4, t5 and t6 were the first, middle, and last 30 min., respectively, of the period after the BET

until 14 hours after the 0h point.④, every third frame was subtracted from the original videos for the six sub-periods.⑤, intestinal diameter was measured on the

video frames for each sub-period (t1 –t6) and this data was used to analyze motility patterns in⑥. Experiment 2 was to collect gut tissue samples for gene expression

analysis. Three nutrient bolus types (HL, HP, CL) were selected for this experiment. The isolated intestines were administrated an intraluminal bolus of three selected

diets and incubated in Ringer’s solution for 1 h before tissue samples of the bulbous were collected⑦ and analyzed for RNA sequencing⑧. S1 –S4, Segments 1–4 of

the intestines.

https://doi.org/10.1371/journal.pone.0247076.g001
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premade mixes were thawed and warmed up at 14 ˚C before being administered as a single

bolus into the intestines. The plastic beads were rinsed in ddH2O before being administered.

2.2. Animals and tissue preparation

Ballan wrasse juveniles were supplied by a commercial fish farm (Marine Harvest Labrus,

Øygarden, near Bergen, Norway) (see Animal and Tissue Preparation in [17]). Fish weighing

20–30 g were transferred from the Marine Harvest farm to the Institute of Marine Research

(Bergen, Norway) laboratory and were fasted for one day prior to the experiments.

On the day of the trial, the fish were anesthetized in 0.05 mg/mL neutralized tricaine metha-

nesulfonate (MS222) dissolved in sea water prior to euthanized spinal cord lesion using a scal-

pel and removal of the intestine. The eviscerated intestine included esophagus and anus with

the surrounding skin, leaving the whole intestine intact. Eviscerated intestines (5–9 cm length)

were immediately immersed in Ringer’s solution (pH = 7) according to Le et al. [17]. The

luminal content was gently flushed out with Ringer’s solution. The intestines were then admin-

istered a single bolus of one of the five mixes (IL, HL, IP, HP, and CL as described in section

Treatments) or one plastic bead (2–3 mm diameter and 20–30 mg weight) to mimic ingestion

of a meal of 0.1% body weight [46]. The prepared intestines were rapidly mounted in individ-

ual glass tubes containing 25 mL oxygenated Ringer’s solution at 14 ˚C. Thereafter, the intes-

tines were carefully stretched out longitudinally inside the tube with the oral opening closed

and the anus open according to Le et al. [17] and incubated for 14h for experiment one and 1h

for experiment 2 (Fig 1) below.

2.3. Experiment 1: Description of motility patterns

2.3.1. Image acquisition. Based on our observations, regular motility was present in the

intestines within 10–20 min. after they had been mounted in the medium. Thus, the activity of

the intestines was recorded for a total of 14 hours after a 20-min.-acclimatation period to

examine the effects of the different nutrients on intestinal motility. The 14-hour duration was

chosen for Experiment 1 according to the reported in vivo passage rate of ballan wrasse juve-

niles, in which ingested feed took 10–14 h to pass through the alimentary tract [46]. A time-

lapse series of images of intestines was captured during the experiment using a camera (Nikon

DS-Fi3) with a macro lens (Nikon, AF Micro-Nikkor 60mm f/2.8D), at a resolution of

1024×768 pixels. The capture of the time-lapse series was controlled with the NIS-Elements

Confocal 4.51.01 software and captured 3.5 frames s-1. In this experiment, we used six treat-

ments (IL, HL, IP, HP, CL, and PB) with six replicates, and six intestines were processed in

parallel in each video. The videos were then used to determine the time at which the adminis-

tered bolus was transferred from the bulbous—Segment 1 to the downstream intestinal sec-

tions and also to examine the intestinal motility patterns (Experiment 1, Fig 1)

2.3.2 Time of emptying the bulbous (Segment 1). The bulbous is a morphologically dis-

tinct feature of the anterior gut of the ballan wrasse, with an expanded diameter relative to

more posterior regions (Fig 1). Here we defined the time of emptying the bulbous (bulbous

emptying time—BET) as the time at which Segment 1 propelled the bolus to the next section

and reduced its average diameter to its minimum value. First, we measured the diameters

along the intestines during 14 h of each trial. The method used to quantify changes in width

along the whole length of the intestines over time has been fully described in Le et al. [17].

Briefly, every tenth frame was extracted from the original videos (3.5 frames s-1) to obtain 0.35

frame s-1 videos (① in Fig 1) and calibrated for length and time before being analyzed using

the NIS-Elements Confocal 4.51.01 software. A threshold for intensity was manually selected

to cover the whole intestinal area on each frame. Background noise, generated by air bubbles
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and equipment accessories, was removed using the “restrictions” functions in the Nis-Element

software, whereby the size of the intestine is defined on the basis of pixel recognition and the

program removes items in images outside of the intestine. The diameter of the intestine was

measured at every one pixel using the function “Automated measurement” in the NIS-Ele-

ments software and a diameter-matrix was produced. The diameter-matrix, which is a numeri-

cal array of gut diameters along the intestine for 14 hours was used to generate spatio-

temporal (ST) maps and to calculate the average width of Segment 1. In this study, we defined

the four ballan wrasse intestine segments as the average ratios of segment length/total intestine

length for Segment 1 (bulbous), Segment 2, Segment 3, and Segment 4 (hindgut), i.e. 0.39,

0.23, 0.23, and 0.15, respectively, according to the morphological description by Le et al. [46]

(on Fig 1) and Le et al. [17]. The average width of Segment 1 (AW1) in each frame in the

14-hour video was calculated as the mean value of diameters at the pixels covering a length of

39% of the anterior intestine. The 5th percentile value of the AW1 for 14 hours (α) was defined

using “quantile” function in R [quantile (data of AW1 in 14 h, 0.05)]. The empty bulbous was

assumed to represent an average width which was equal to or smaller than α and named as

“bulbous emptying width—BEW”. The BEW values occurred at various points in time during

the 14-hour period. Thus, the bulbous emptying time (BET) was defined as the time when the

first BEW value occurred after starting to record the treatments.

BET was first examined in three fish using intestinal diameters which were measured at five

interval values of 3.5, 1.2, 0.7, 0.35, and 0.02 frames s-1 for 14 hours. The results for BET evalu-

ated in the videos at equal or more than 0.35 frames s-1 did not differ. The ST maps con-

structed from videos at 0.35 frames s-1 represented well the pattern of change in intestinal

width. Thus, we measured intestinal diameter in 14-hour videos at 0.35 frames s-1 in order to

examine BET. All BETs were verified on the time-lapse videos and the ST maps.

2.3.3. Analysis of motility patterns. Gut motility patterns were analyzed for two defined

periods: period I was from 0 h (i.e. 20 min. after the insertion of a bolus) to BET, Bulbus emp-

tying time, and period II was from BET to 14h post-starting point. Motility patterns in each

period were analyzed from three 30 min. sub-periods based on the experimental design in

[14,47]. The first sub-period (t1, Fig 1) was the first 30 min. of the recording. The second was

the 30 min. halfway between 0 h and the BET (t2, Fig 1). The third covered the last 30 min.

before the BET (t3, Fig 1). Contractions defined within the three sub-periods t1 –t3 were used

to analyze motility patterns (frequency, amplitude, duration, propagation direction, distance,

and velocity) for period I, when ingesta remained at the bulbous (Segment 1). The fourth (t4),

fifth (t5) and sixth (t6) sub-periods (Fig 1) were the first, middle, and last 30 min., respectively,

of the period after the BET until 14 hours after the 0-h point. For the intestines that had a BET

less than or equal to 1.5 hours, all frames within 0 h and BET were selected for the analysis of

motility patterns.

Video frames for each intestine were extracted for six (or four for a BET of less than 1.5

hours) sub-periods and at intervals of 1.2 frames s-1 (according to the test by Le et al. [17]).

Intestinal diameters were measured along the intestines (as mentioned in the section Time of
emptying the bulbous (Segment 1), above) for analysis of motility patterns. The classification

builds on our previous study where we characterized the motility patterns of ballan wrasse

intestines into three types of contractions; standing contractions, ripples, and slow propulsive

contractions [17]. Standing contractions are contractions propagating a distance equal to

or< 1.0 mm. Contractions with a propagating distance longer than 1.0 mm were evaluated as

ripples or slow propagating contractions. To differ between ripples and slow propagating con-

tractions a linear correlation model was applied to find the regression between intestinal posi-

tion (response vector) and time (a series of terms which specifies a linear predictor for

intestinal position). Ripples were defined as contractions which have a coefficient of
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determination (R2) of the linear curve� 0.8, based on the description of D’Antona et al. [15]

and Brijs et al. [14]. Slow propagating contractions, which propagate at a slow velocity, were

defined with R2 < 0.8. Propagating velocity (mm s−1) was the absolute value of the slope of the

linear curve. Propagating direction for ripples and slow propagating contractions were also

identified from the slope, as slope> 0 for anterograde (oral toward anal) direction and

slope< 0 for retrograde (anal toward oral) direction.

We defined the types of contractions and their parameters (i.e. frequency, amplitude, prop-

agating direction, distance, duration, and velocity) as described by Le et al. [17]. Frequency of

contractions (contractions per min at every mm length of intestine—cpm) and propagation

direction (the proportion of contractions, propagating in either anterograde or retrograde

direction, compared to the total number of contractions) in each period were calculated based

on the total number of contractions that occurred within the three sub-periods in each intesti-

nal segment. The remaining parameters (amplitude, distance, duration, and velocity) were pre-

sented as a median of the data set of all contractions during the three sub-periods.

2.3.4. Data analysis. There were no differences in either motility patterns or emptying

time between IP and HP or HL and IL. Furthermore, the analysis of free fatty acids and amino

acids in the feces collected from intestines after 14 hours did not show a significant difference

in nutrient composition between intact and hydrolyzed treatments (S1 and S2 Figs). We there-

fore pooled the data from IP and HP into a group named “protein” and IL and HL into a

group “lipid”; and omitted one damaged intestine adminstered HL. BET and motility patterns

were thus analyzed for four groups of nutrient boli (protein n = 12, lipid n = 11, cellulose

n = 6, and plastic bead n = 6) for two periods (I and II) in four intestinal segments. One-way

ANOVA followed by Tukey HSD were used to evaluate the effect of the four bolus treatments

on time for BET. A linear mixed models (lme) analysis followed by Tukey HSD were used to

compare the frequencies of each contraction type between the four treatment groups and the

two defined periods. Amplitude, propagating distance and direction of each contraction type

(continuous proportions ranging from 0 to 1) were treated as quasi-binomial response vari-

ables and compared, taking treatment or period as predictor variables for each intestinal seg-

ment using a generalized linear mixed models (glmmPQL) (R, version 3.4.2 released 2017-09-

28, within R studio interphase (version 1.1.383) for Windows. Duration and velocity were

treated as exponential variables in glmmPQL models. The lme and glmmPQL models included

individual fish IDs as a random factor and the response variables (contraction parameters) as

repeated measurements. Changing the contrast where each treatment/period became the

intercept of the model was applied to determine the variation in parameter between the four

treatments or between the two periods. Kruskal-Wallis test followed by dunnTest (FSA pack-

age) was used to compare the parameters (amplitude, duration and velocity) between the three

types of contractions. Differences were treated as significant at p< 0.05 for all tests in this

study. Amplitude, duration, propagation distance, and velocity are presented as median ± s.e.

m., and other data as mean ± s.d.

2.4. Experiment 2: Transcriptome sequencing

The analysis of Experiment 1 showed that there was no difference in BET and motility between

the intact (IL or IP) and pre-digested (HL or HP) bolus. Nor were there differences in the com-

position of the free fatty acids or amino acids in the feces collected from intestines during the

14 hours between the intact and hydrolyzed treatments (see S1 and S2 Figs). We therefore

selected HL, HP and CL diets to examine the transcriptomic effects of digestible and indigest-

ible bolus content. We also analyzed gene expression in the empty intestines as control. The

HL and HP were employed to examine how the gut responds to a nutrient bolus compared to
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the non-nutritive matter. The indigestible CL was used to evaluate the mechanical effects

induced by the physical presence of a bolus on gut activity compared to control and to separate

the effects of stretching to that of nutrients in the HL and HP groups. As size of bolus effects

peristalsis [48], the intestines administered a bolus of 0.1% body weight, according to Le et al.
[48] of one of three nutrient bolus types (HL, HP, or CL) and empty intestines were incubated

in Ringer’s solution for one hour before tissue samples for transcriptomic analysis were col-

lected. Segment 1 was selected for transcriptomic analysis because it is the main site for diges-

tion [48]. The first segment of the anterior part (about 40% of the total gut length) was cut off,

opened by incision and gently washed with Ringer’s solution. The rest of the gut was dis-

carded. Three pieces of tissue (around 20 mg each) were cut transversely from three parts of

the first segment and placed in RNAlater1 (Sigma-Aldrich, Missouri, USA) for later RNA

extraction (Experiment 2, Fig 1).

2.4.1. RNA sequencing. Total RNA was extracted and treated with BioRobot1 EZ1 and

RNA Tissue Mini Kit (Qiagen, Hilden, Germany) as previously described by Le, Shao (48).

RNA quantity and integrity were validated using a NanoDrop ND-1000 UV—vis Spectropho-

tometer (NanoDrop Technologies, Wilmington, USA) and Agilent 2100 Bioanalyzer and RNA

6000 Nano LabChip kit (Agilent Technologies, Palo Alto, USA) respectively. All samples had

260/230 and 260/280 ratios above 2.0 and 2.2 respectively. The average RNA integrity number

(RIN) of all samples was 7.9±0.7. Sequencing and library preparation were performed by the

Norwegian Sequencing Centre (www.sequencing.uio.no). DNA libraries were prepared as pre-

viously described by [46] using 90 ng total RNA input to the TruSeq Stranded mRNA Library

Prep Kit (Illumina, San Diego, California, USA). For multiplexing, standard Illumina adaptors

were used. The libraries were sequenced using the NextSeq Illumina platform (Illumina, San

Diego, California, USA) according to the manufacturer’s instructions, generating single end

75bp read libraries with an average library size of 25±6 million reads. Raw reads were submit-

ted to the gene expression omnibus https://www.ncbi.nlm.nih.gov/geo/ (accession number

GSE129459).

2.4.2. Differential gene expression analysis. Adaptor removing and quality trimming

was performed using the TrimGalore 0.4.2 wrapper tool and default parameters. Library qual-

ity was investigated using fastQC embedded in the TrimGalore wrapper (https://github.com/

FelixKrueger/TrimGalore). Each intestinal RNAseq library was mapped individually to the

labrus genome assembly (European Nucleotide Archive accession number: PRJEB13687,

http://www.ebi.ac.uk/ena/data/view/PRJEB13687) using the Hisat2 short read aligner version

2.0.4 [49] and the Ensembl gene annotation (Labrus_bergylta.BallGen_V1.95, 11/25/2018,

www.ensembl.org). Transcript abundance for the individual libraries was estimated using Fea-

tureCounts [50] of the Subread package (http://subread.sourceforge.net/). Differential expres-

sion analysis was performed using the Bioconductor R package (version 3.4.4) DESeq2

(version 1.18.1) [51]. Genes of which fewer than five samples had gene counts below or equal

to 10 reads were excluded from further analysis prior to normalization and differential expres-

sion analysis. Significantly expressed genes (p< 0.01) were used for further downstream anal-

ysis using the DAVID Bioinformatics Resources 6.8 (https://david.ncifcrf.gov/) with default

settings (GO, UP_KEYWORDS and KEGG pathway analysis). Heat maps for hierarchical

clustering of differentially expressed genes using multi/group comparison were embedded in

the Qlucore omics explorer software package version 3.2 (Qlucore AB, Lund, Sweden).

2.5 Ethics statement

"Ballan wrasse juveniles were supplied by a commercial fishfarm (Marine HarvestLabrus,

Øygarden, outside Bergen,Norway). The fish was reared in accordancewiththe Norwegian
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Animal Welfare Act of 12 December1974, no. 73, §§22 and 30,amended 19 June 2009. The

facility has a general permission to rear alldevelopmentalstages of Labrus berggylta, license

numberH ØN0038 provided by the NorwegianDirectorate offisheries (https://www.fiskeridir.

no/English)."

3. Results

3.1. Motility patterns

The wrasse intestines reacted to the presence of a bolus of nutrients via dynamic changes in

the intestinal diameter that reflected smooth muscle-driven contractions and relaxations of the

gut. Depending on propagation distance and velocity, the contractile activity was classified as

either standing contractions, ripples, or slow propulsive contractions. Standing contractions

are non-propulsive, while ripples and slow propulsive contractions are two subtypes of propul-

sive contractions. A Kruskal-Wallis test followed by dunnTest on our data set showed that

slow propulsive contractions had higher amplitudes and lasted longer than other contraction

types (slow propulsive contractions > ripples > standing contractions, p < 0.0001) (Table 1).

Ripples propagated for a shorter distance (p = 0.007) and at a higher velocity than slow propul-

sive contractions (p< 0.0001).

3.2. Effect of nutrients on the time for emptying bulbous (BET)

Six types of bolus were inserted into the isolated intestines in order to analyze gut motility.

However, since we were unable to completely block endogenous hydrolysis of intact protein

and intact lipid, as previously mentioned we pooled data from intact and hydrolyzed lipid

treatments into one group for lipid, and data from intact and hydrolyzed protein into one

group for protein. The bulbous (Segment 1) emptying time (BET) was 3.4±1.0 h in the lipid

treatment and 3.9±1.5 h in the protein group (mean±s.d.) (Fig 2). In contrast, it only took

between 0.6 and 2.5 h, with an average of 1.1±0.7 h, for a cellulose bolus to pass through Seg-

ment 1. The cellulose group had a faster BET than lipid (ANOVA, p = 0.003) and protein

(ANOVA, p< 0.001) (Fig 2). The BET for the plastic bead group was much more variable at

between 0.6 and 5.9 hours, and was not different from protein, lipid or cellulose groups.

Table 1. Parameters of three types of contractions.

Parameter Contraction type Min Median Max

Amplitude (%) Standing contraction 7.7 47.4a 77.9

Ripples 12.7 55.3b 79.0

Slow propulsive contraction 12.4 56.9c 81.3

Duration (s) Standing contraction 1.7 1.8a 23.4

Ripples 1.79 7.2b 258.2

Slow propulsive contraction 1.72 15.3c 506.6

Distance (%) Ripples 1.2 2.2a 16.6

Slow propulsive contraction 1.3 2.5b 16.1

Velocity (mm s-1) Ripples 0.04 0.22a 0.67

Slow propulsive contraction 0.001 0.04b 0.70

Data was collected in four segments of the intestines from a total of 35 individuals with n = 11 for lipid, n = 12 for protein, n = 6 for cellulose or plastic bead treatment in

the Experiment 1. Letters denote significant difference between contraction types for each parameter (Kruskal-Wallis test followed by dunnTest, p < 0.01). The min,

median and max values of each parameter and the statistic tests were calculated and analyzed from 606120 standing contractions, 99010 slow propulsive contractions

and 11978 ripples. The medians were presented instead of the means because the data had a right skewed distribution.

https://doi.org/10.1371/journal.pone.0247076.t001
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3.3. Effects of bolus composition on motility patterns

3.3.1. Segment 1 (the bulbous). Bolus composition had significant effects on frequency of

contractions on all three motility patterns (Fig 3). When cellulose was present in Segment 1

(period I), it induced more standing contractions (1.5±0.5 contractions per min. for every mm

gut length, cpm) compared to lipid (0.9±0.2 cpm) (lme, p = 0.03) and protein (0.64±0.05 cpm)

(lme, p = 0.001). The frequency of standing contractions in the plastic bead group was 0.9±0.4

cpm and tended to be lower than that in the cellulose group (lme, p = 0.08). However, the rate

of standing contractions in the plastic bead group was not different from that of the lipid and

protein treatments (Fig 3A). There was no difference between the lipid and protein group. The

presence of cellulose in Segment 1 also induced more propulsive contractions (0.26±0.11 cpm

for slow propulsive contractions and 0.08±0.02 cpm for ripples) compared with protein (0.09

±0.04 for slow propulsive contractions and 0.03±0.02 cpm for ripples) (lme, p< 0.05) (Fig 3B

and 3C). The frequency of slow propulsive contractions in Segment 1 of intestines adminis-

tered a lipid bolus did not differ from that in the protein group, but it was lower than in the cel-

lulose group (lme, p = 0.04) (Fig 3B). Ripples in the lipid group had a similar frequency to that

in the cellulose group but compared to the protein treatment the contraction types occurred at

a higher rate (lme, p = 0.04) (Fig 3C). The frequency of propulsive contractions in the plastic

bead treatments was not different from the three other groups (Fig 3B and 3C). After ingesta

left Segment 1 (period II), the frequency of all three contraction types declined in all four treat-

ments (lme, p< 0.01) (black asterisk, Fig 3A–3C).

The amplitudes of all contraction types in Segment 1 were not different between the four

treatments during periods I and II. With a bolus present in Segment 1 (period I) the amplitude

increased in all contraction types in both the lipid and protein groups (lme, p< 0.001). How-

ever, this was not observed in the cellulose group. The plastic bead induced an increase in

Fig 2. Evacuation time of Segment 1 (the bulbous). Analysis of intestines administered different boli (lipid, protein,

cellulose or plastic bead) in vitro. Black dots refer to individual intestines, blue stars to mean for each treatment. Letters

indicate significant differences in time to emptying of the bulbous between treatments (ANOVA followed by Tukey

HSD; n = 11 for lipid, n = 12 for protein, n = 6 for cellulose or plastic bead).

https://doi.org/10.1371/journal.pone.0247076.g002
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Fig 3. Motility parameters in Segment 1 (the bulbous). Contractions were analyzed in Segment 1 of the intestines when

a bolus (lipid, protein, cellulose or plastic bead) was administered into the lumen (period I) and after the bolus left

(period II) this segment. Frequency (mean±s.d.) of standing contractions (A), slow propulsive contractions (B) and

ripples (C). Amplitude (median±s.e.m.) of standing contractions (D), slow propulsive contractions (E) and ripples (F).

Proportion (mean±s.d.) of slow propulsive contractions (G) and ripples (H) which propagate to an anterograde direction.

Significant differences (p< 0.05) between the four bolus treatments within period I are annotated by Latin letters and no

differences within period II. Asterisks and brackets show a significant difference (p< 0.05) between periods. Data were

analyzed using linear mixed-effects models—lme test followed by Tukey HSD in R for (A–C); Generalized Linear Mixed

Models via PQL—glmmPQL test for (D–H), with n = 11 for lipid, n = 12 for protein, n = 6 for cellulose or plastic bead.

https://doi.org/10.1371/journal.pone.0247076.g003
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amplitude of standing contractions (lme, p = 0.0009) but no change in amplitude of propulsive

contractions (Fig 3D–3F).

As long as cellulose was present in Segment 1, 62.6±6.6% of the total slow propulsive con-

tractions and 68.4±9.4% of the total ripples propelled the bolus in an anterograde direction

(direction towards the anus). The percentage of anterograde slow propulsive contractions

tended to be higher in the cellulose group than in the protein group (glmmPQL, p = 0.06) (Fig

3G). After Segment 1 was empty, the proportion of anterograde slow propulsive contractions

in this segment was reduced in the lipid (glmmPQL, p = 0.007) and protein treatment groups

(glmmPQL, p = 0.01). However, this parameter did not change in the cellulose or the plastic

bead group (Fig 3G). The percentage of anterograde ripples decreased after ingesta left the bul-

bous in the cellulose treatment (glmmPQL, p = 0.01) but did not change in the three other

groups (Fig 3H).

3.3.2. Segment 2. The frequencies of the three contraction types in Segment 2 were not

affected by bolus composition in either period I or II. However, the rate of contractions in Seg-

ment 2 was reduced when the boli had left Segment 1 (lme, p< 0.05) (Fig 4A–4C). Standing

contractions and ripples had a higher amplitude in the plastic bead treatment compared to the

lipid and the protein groups (glmmPQL, p< 0.05) during the residence time in Segment 1.

The amplitude of contractions in the cellulose group did not differ from those of the three

remaining treatments during either period I or II. During period II the amplitude of ripples in

the lipid group was lower than in the plastic bead group (glmmPQL, p = 0.04) (Fig 4E). There

was no change in amplitude of contractions in period II compared to that in period I regarding

either bolus composition or contraction type. Propulsive contractions in an anterograde direc-

tion accounted for over 50% of the total propulsive contractions and the relative proportion of

these contractions was not affected by nutrient treatments. The percentage of anterograde

slow propulsive contractions in Segment 2 decreased after the plastic bead left Segment 1

(glmmPQL, p = 0.03) (Fig 4C).

3.3.3. Segment 3. Cellulose stimulated more standing contractions than protein in Seg-

ment 3 during period I (lme, p = 0.04) (Fig 5A). Bolus composition did not affect the frequency

of propulsive contraction types (Fig 5B and 5C). The frequencies of the three contraction types

diminished after the bolus left Segment 1 in all four treatment groups (Fig 5A–5C). The evacu-

ation of bolus from Segment 1 produced a decrease in amplitude of all contraction types in the

lipid and protein groups, and the amplitudes of contractions in these two groups were lower

than in the plastic bead group. Amplitude of contraction in the cellulose group did not differ

from the remaining groups either before or after ingesta left Segment 1 (Fig 5D–5F). The pro-

portion of anterograde propulsive contractions did not differ between the four bolus groups in

either period I or II (data not shown).

3.3.4. Segment 4 (the hindgut). As long as the boli was present in Segment 1, there were

no effects on the frequency of any of the three contraction types in Segment 4. The evacuation

of the boli out of Segment 1 suppressed the frequency of both non-propulsive and propulsive

contractions in Segment 4 (Fig 6A–6C) (lme, p< 0.01). The rate of occurrence of slow propul-

sive contractions in the cellulose group was lower than in the protein in period II (lme,

p< 0.05) (Fig 6B). The evacuation of ingesta out Segment 1 reduced the amplitude of standing

contractions in three groups, but not in the plastic bead group (Fig 6D); and amplitude of slow

propulsive contractions in the protein group (Fig 6E); amplitude of ripples in the lipid and

protein groups (Fig 6F).

3.3.5. Comparing motility between the four intestinal segments. The motility charac-

teristics (duration and propagation velocity) were not affected by bolus composition and did

not change between periods I and II (data not shown). Variation in frequency of contractions

and proportion of anterograde propulsive contractions between the four intestinal segments

PLOS ONE Physical and nutrient modulation of gut motility and transcriptome in fish

PLOS ONE | https://doi.org/10.1371/journal.pone.0247076 February 11, 2021 12 / 29

https://doi.org/10.1371/journal.pone.0247076


Fig 4. Motility parameters in Segment 2. Contractions were analyzed in Segment 2 of the intestines when a bolus (lipid,

protein, cellulose or plastic bead) was administered (period I) and after the bolus evacuated Segment 1 (period II).

Frequency (mean±s.d.) of standing contractions (A), slow propulsive contractions (B) and ripples (C). Amplitude

(median±s.e.m.) of standing contractions (D) and ripples (E). Proportion (mean±s.d.) of slow propulsive contractions (F)

which propagate to an antegrade direction. Significant differences (p< 0.05) between the four bolus treatments within

period I are annotated by Latin letters and differences within period II by Greek letters. Asterisks and brackets show a

significant difference (p < 0.05) between periods. Data were analyzed using linear mixed-effects models—lme test

followed by Tukey HSD in R for (A–C); Generalized Linear Mixed Models via PQL—glmmPQL test for (D–F), with

n = 11 for lipid, n = 12 for protein, n = 6 for cellulose or plastic bead.

https://doi.org/10.1371/journal.pone.0247076.g004
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Fig 5. Motility parameters in Segment 3. Contractions were analyzed in Segment 3 of the intestines when a nutrient

bolus (lipid, protein, cellulose or plastic bead) presented (period I) and after the bolus left (period II) Segment 1.

Frequency (mean±s.d.) of standing contractions (A), slow propulsive contractions (B) and ripples (C). Amplitude

(median±s.e.m.) of standing contractions (D), slow propulsive contractions (E) and ripples (F). Significant differences

(p< 0.05) between the four bolus treatments within period I are annotated by Latin letters and differences within period

II by Greek letters. Asterisks and brackets show a significant difference (p< 0.05) between periods. Data were analyzed

using linear mixed-effects models—lme test followed by Tukey HSD in R for (A–C); Generalized Linear Mixed Models

via PQL—glmmPQL test for (D–F), with n = 11 for lipid, n = 12 for protein, n = 6 for cellulose or plastic bead.

https://doi.org/10.1371/journal.pone.0247076.g005
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Fig 6. Motility parameters in Segment 4 (the hindgut). Contractions were analyzed in Segment 4 of the intestines when

a nutrient bolus (lipid, protein, cellulose or plastic bead) was presented (period I) and after the bolus leaves (period II)

Segment 1. Frequency (mean±s.d.) of standing contractions (A), slow propulsive contractions (B) and ripples (C).

Amplitude (median±s.e.m.) of standing contractions (D), slow propulsive contractions (E) and ripples (F). Significant

differences (p< 0.05) between the four bolus treatments within period I are annotated by Latin letters and differences

within period II by Greek letters. Asterisks and brackets show a significant difference (p< 0.05) between periods. Data

were analyzed using linear mixed-effects models—lme test followed by Tukey HSD in R for (A–C); Generalized Linear

Mixed Models via PQL—glmmPQL test for (D–F), with n = 11 for lipid, n = 12 for protein, n = 6 for cellulose or plastic

bead.

https://doi.org/10.1371/journal.pone.0247076.g006
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were affected by bolus composition during period I (before the bolus left Segment 1). Overall,

the frequencies of all contraction types in Segment 4 were lower than in the other three seg-

ments in all four treatment groups (Table 2).

3.4. Effects of diets on gene expression

Gene expression in Segment 1 of the intestines fed cellulose was compared to that of empty

intestines in order to elucidate the effect of stretch on gut activity. Effects of nutrient and

mechanical stimuli on gut metabolism were evaluated by analyzing differential gene expres-

sion in Segment 1 of the intestines between protein/lipid and cellulose groups.

3.4.1. Differential gene expression. Genes were filtered using multi/group comparison

(p< 0.01), which enables separation of the groups (protein, lipid, cellulose and empty) accord-

ing to gene expression. Hierarchical clustering revealed two major clusters, one including the

two “nutrient” treatments (protein and lipid) groups and one including empty intestines (con-

trol) and cellulose-fed (physical stimuli) intestines. A total of 296 genes were clustered for this

analysis (Fig 7). There were 178 genes that were differentially expressed (p< 0.01) in intestines

with a cellulose bolus compared to empty intestines. A total of 628 and 275 were differentially

expressed (p< 0.01) between protein versus cellulose, and lipid versus cellulose respectively

Table 2. Frequency and direction of contractions between the four intestinal segments.

Treatment Contraction type Frequency1 Anterograde direction2

Lipid Standing contraction S1 = S4 < S2 = S3 -

Slow propagating contraction S1 = S4 < S2 = S3 S1 > S2 = S3 = S4

Ripple S1 = S3 < S2

S2 > S3 > S4

S1 = S4

S1 > S2 = S3 = S4

Protein Standing contraction S1 = S2 = S3

S1 = S4

S2 = S3 > S4

-

Slow propagating contraction S1 = S4 > S2 = S3 S1 = S2 = S3 > S4

Ripple S1 = S4 > S2 = S3 S1 > S3 = S4

S1 = S2, S2 = S3

S2 > S4

Cellulose Standing contraction S1 > S2 = S4

S1 = S3 > S4

S2 = S3

-

Slow propagating contraction S1 = S2 = S3 > S4 S1 > S2 = S3 > S4

Ripple S1 = S2 = S3 > S4 S1 = S2 = S3 = S4

Plastic bead Standing contraction S1 = S2 = S3

S2 > S4

-

Slow propagating contraction S1 = S4 < S2

S1 = S3, S2 = S3

S1 = S2 = S3 = S4

Ripple S1 = S4 < S2

S1 = S3, S2 = S3

S1 = S2 = S3 = S4

Variation in frequency of contraction and proportion of contractions propagating in an anterograde direction in the four intestinal segments before ingesta (Lipid,

Protein, Cellulose, Plastic bead) left Segment 1 (the bulbous) (period I).
1 Frequency of contractions was analyzed using linear mixed models—lme.
2 Proportion of contraction propagating in an anterograde direction to the total sum of contractions was analyzed using generalized linear mixed models (glmmPQL).

S1, S2, S3, and S4: Segment 1 (the bulbous), Segments 2, Segment 3 and Segment 4 (the hindgut).

=: No difference (p > 0.05); < or >: Less than or greater than (p� 0.05).

N = 11 for lipid, 12 for protein, 6 for cellulose or plastic bead.

https://doi.org/10.1371/journal.pone.0247076.t002
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Fig 7. Nutrient and physical stimuli modulates the transcriptome in Segment 1. Hierarchical clustering of differentially expressed (p < 0.01) genes using

multi/group comparison embedded in the Qlucore omics explorer. N = 6 for intestines fed with protein or lipid or empty intestines, n = 7 for intestines fed

with cellulose.

https://doi.org/10.1371/journal.pone.0247076.g007
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(S1 Table). Fewer genes were found to be differentially expressed when protein or lipid were

administrated compared to the empty intestines.

In order to identify genes affected by the lipid and protein bolus, we sat the contrast against

cellulose in order to remove the effect of stretch. Looking at overlapping genes in the DE gene

lists, we found 490 genes affected by protein and 153 by lipid exclusively. We also found 135

genes to be unique for intestines administered cellulose when compared to the empty intes-

tines, while 43 genes were shared with protein and lipid vs cellulose treatments (Fig 8).

3.4.2. Pathway and functional annotation analysis. Pathway analyses were performed

using the differentially expressed genes of the different contrasts, including cellulose versus

empty, protein versus cellulose, and lipid versus cellulose. Enriched pathways related to cal-

cium were observed in the cellulose versus empty comparison (FDR< 5%) but not in protein

versus cellulose and lipid versus cellulose (Table 3).

The largest number of significantly enriched pathways and functional annotations was

observed for protein vs cellulose (FDR< 5%). Both the top enriched pathways (S2 Table) and

the largest cluster of pathways affected by protein (S3 Table) were related to the level of ribo-

somal activity. The neuropeptide signaling pathway, opioid receptor activity pathways, inflam-

matory response, cytokine activity and G-protein coupled peptide receptor activity were

among the many significantly enriched pathways upregulated by protein. Several of the path-

ways downregulated by protein were related to immune function, such as neutrophil chemo-

taxis, cellular response to interleukin-1, B cell receptor signaling pathway, and chemokine

signaling pathway.

Much fewer significantly enriched pathways were observed in the lipid versus cellulose

comparison. Similar to protein, genes involved in pathways related to ribosomal activity and

RNA processing were enriched by lipid. Inflammatory response was also found to be signifi-

cantly enriched by lipid (S3 Table). Comparison of the expression of common genes in intes-

tines between the protein and lipid groups found that inflammatory response, neuropeptide

Fig 8. Nutrient stimuli induces changes in gene expression in Segment 1. Venn diagram showing differentially

expressed genes (p < 0.01) in intestines administered a protein bolus (n = 6) versus cellulose (n = 7), lipid (n = 6)

versus cellulose, and cellulose versus empty groups following DESeq2 analysis of RNA seq data.

https://doi.org/10.1371/journal.pone.0247076.g008
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Table 3. Pathways related to muscle contraction and nutrient stimuli were regulated by diet bolus in Segment 1.

Term Count % p value FDR (%)

Cellulose versus empty—upregulation

Calcium 13 17.1 6.4e-05 0.08

GO:0005509~calcium ion binding 12 15.8 1.4e-04 0.18

Protein versus cellulose—upregulation

Secreted 59 19.5 1.8e-07 2.5e-04

GO:0008528~G-protein coupled peptide receptor activity 5 1.7 2.0e-04 0.29

GO:0007200~phospholipase C-activating G-protein coupled receptor signaling pathway 7 2.3 8.5e-04 1.41

Neuropeptide 6 2.0 3.4e-05 0.05

Opioid peptide 3 1.0 6.4e-04 0.85

GO:0005184~neuropeptide hormone activity 5 1.7 1.54e-03 2.19

GO:0001515~opioid peptide activity 3 1.0 1.67e-03 2.36

GO:0031628~opioid receptor binding 3 1.0 1.67e-03 2.36

GO:0006614~SRP-dependent cotranslational protein targeting to membrane 41 13.5 1.8e-46 2.97e-43

GO:0006364~rRNA processing 53 17.5 1.0e-45 1.70e-42

GO:0006413~translational initiation 44 14.5 4.0e-43 6.69e-40

GO:0019083~viral transcription 41 13.5 9.3e-43 1.56e-39

GO:0000184~nuclear-transcribed mRNA catabolic process, nonsense-mediated decay 41 13.5 1.6e-41 2.72e-38

Ribosomal protein 43 14.2 6.3e-38 8.51e-35

hsa03010:Ribosome 43 14.2 8.0e-38 9.85e-35

Ribonucleoprotein 47 15.5 1.2e-33 1.61e-30

GO:0003735~structural constituent of ribosome 43 14.2 4.5e-32 6.40e-29

GO:0005840~ribosome 38 12.5 8.7e-32 1.13e-28

GO:0022625~cytosolic large ribosomal subunit 28 9.2 4.1e-31 5.33e-28

GO:0006412~translation 44 14.5 7.8e-31 1.31e-27

GO:0044822~poly(A) RNA binding 68 22.4 3.2e-20 4.65e-17

GO:0022627~cytosolic small ribosomal subunit 16 5.3 5.7e-16 7.22e-13

GO:0003723~RNA binding 37 12.2 2.7e-12 3.91e-09

GO:0005925~focal adhesion 23 7.6 4.0e-07 5.19e-04

GO:0005829~cytosol 88 29.0 9.3e-07 1.21e-03

Lipid versus cellulose—upregulation

GO:0006364~rRNA processing 10 9.2 4.8e-06 7.28e-03

GO:0006413~translational initiation 8 7.3 1.6e-05 2.49e-02

GO:0006614~SRP-dependent cotranslational protein targeting to membrane 7 6.4 1.9e-05 2.92e-02

GO:0019083~viral transcription 7 6.4 5.2e-05 0.08

GO:0000184~nuclear-transcribed mRNA catabolic process, nonsense-mediated decay 7 6.4 7.3e-05 0.11

Ribosomal protein 7 6.4 4.4e-04 0.55

hsa03010:Ribosome 7 6.4 4.6e-04 0.55

GO:0022625~cytosolic large ribosomal subunit 5 4.6 5.7e-04 0.67

GO:0006412~translation 8 7.3 7.4e-04 1.12

Ribonucleoprotein 8 7.3 9.6e-04 1.20

GO:0003735~structural constituent of ribosome 7 6.4 1.86e-03 2.32

GO:0005840~ribosome 6 5.5 2.42e-03 2.79

The dashed borders separate clusters of the pathways which relate to the same physiological activity. FDR, False Discovery rate. N = 6 for intestines fed with protein or

lipid or empty intestines, n = 7 for intestines fed with cellulose.

https://doi.org/10.1371/journal.pone.0247076.t003
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signaling pathway and ribosome were common pathways for the two treatments. The enriched

pathways related to muscle contraction and nutrient stimuli are shown in Table 3.

As identified by the pathway analysis, several genes coding for neuropeptide precursors

were upregulated following protein and lipid treatment of the intestines (Table 4). None of

these genes were differentially affected by cellulose compared to empty intestines. Other rele-

vant neuropeptides such as proopiomelanocortin (pomc), neuropeptide Y (npy) and peptide

YY (pyy) were filtered out before differential expression analysis, due to their low transcrip-

tional levels.

4. Discussion

This study shows that lipid and protein were evacuated from the bulbous (Segment 1) on aver-

age of 3.4 to 3.9 h after they were administered into this section of ballan wrasse intestines in
vitro. We have previously shown that more than 90% of the ingesta left the bulbous 4 h after

the feed was administered in vivo [46]. This suggest that an in vitro approach gives comparable

results and provides an estimate of passage rate of ingested matter in the alimentary tract. This

points to the autonomous properties of the digestive tract that is maintained even when dis-

sected out of the body, and where many of the reflexes are local and function to optimize func-

tion (including motility) towards the digestive processes and where stimuli from the luminal

chemical and physical composition are key to maximize the outcome.

The non-nutritive and indigestible cellulose was eliminated from the bulbous (Segment 1)

more rapidly than protein and lipid. Slow propulsive contractions seem to play a key role in

propelling gut content since these may create a stronger force [18,20,21] and a longer propaga-

tion distance than other types of contraction [14]. In the present study, cellulose induced a

higher frequency of slow propulsive contractions than lipid and protein, resulting in a faster

evacuation of the bolus out of the bulbous. Moreover, over 60% of the cellulose-induced slow

propulsive contractions were in an anterograde direction in the bulbous; and this value tended

to be higher than that in protein and also tended to be higher than in the lipid group. This sug-

gests that the dominance of anterograde propulsive contractions aids in transferring gut con-

tents in the anal direction; hence, cellulose was propelled out of Segment 1 more rapidly than

protein.

Table 4. Genes coding for neuropeptides regulated by protein and lipid in Segment 1.

Protein vs Cellulose Lipid vs Cellulose

Gene_ID Gene_Name Fold change Significance Fold change Significance

ENSLBEG00000013097 prepronociceptin (pnoca) 1.9 � 1.5 -

ENSLBEG00000020351 neuromedin U (nmu) 2.5 � 1.3 -

ENSLBEG00000019489 tachykinin 3 (tac3) 2.4 �� 1.5 -

ENSLBEG00000015930 prodynorphin (pdyn) 1.6 � 1.5 -

ENSLBEG00000009804 neuropeptide B (npb) 4.0 ��� 2.2 �

ENSLBEG00000014300 proenkephalin (penk) 1.8 �� 1.5 �

ENSLBEG00000005406 cholecystokinin a receptor (cckar) 2.6 � 2.6 �

� p<0.01,

��p<0.001,

���p<0.0001,
- p � 0.01.

N = 6 for intestines fed with protein or lipid or empty intestines, n = 7 for intestines fed with cellulose.

https://doi.org/10.1371/journal.pone.0247076.t004
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Cholecystokinin (CCK), a key hormone in the control of digestion, is released when food is

present in the gut in both mammals [52–54] and fish [55–57]. CCK performs its functions

related to gastrointestinal motility and digestion mainly through Cholecystokinin A Receptor

(CCKAR) in mammals (reviewed by Staljanssens et al. [58]) and in fish [59–61]. We have pre-

viously found that in ballan wrasse, CCK works mainly through CCKA receptors to suppress

propulsive contractions, thus prolonging the residence of food in the bulbous for optimal

digestion [17]. In the present study, we found that the presence of either lipid or protein in the

lumen upregulated expression of cckar (CCKA receptor) which would be activated by CCK to

suppress slow propulsive contractions in Segment 1 to delay evacuation of the caloric ingesta

from the bulbous. In contrast, there was no change in cckar expression in the bulbous of intes-

tines administered cellulose compared to the empty intestines. Instead of activating CCKA

receptor to slow the rate of evacuation, cellulose generates a different motility pattern, with

increased frequency of propulsive contractions, predominantly anterograde slow propulsive

contractions that accelerate the elimination of the indigested content from Segment 1. The

upregulation of cckar expression in Segment 1 by lipid and protein may be linked to the lower

frequency of both ripples and slow propulsive contractions in this segment compared to Seg-

ment 2. Conversely, there was no difference in the frequency of these contraction types

between the three first segments in intestines fed with cellulose, which showed lower expres-

sion of cckar than those fed with lipid or protein.

Compared to cellulose, lipid and protein induced an increase in gene expression of penk
and npb which suppress food intake [62–64]. This suggests that the presence of a caloric bolus

in the gastrointestinal lumen stimulates enterocytes to secrete and send satiety signals to the

central nervous system to inhibit feeding intake [65–67].

Lipid and protein had similar evacuation rates from the bulbous, and both were slower

than cellulose. However, it appeared that the response of ballan wrasse intestines to the luminal

presence of lipid somewhat differed from that of protein in the bulbous, with regard to both

motility patterns and gene expression. Compared to protein, intestines fed lipid generated

more ripples, which were suggested to have a function in mixing rather than propelling gut

content [15], to facilitate digestion. We have previously shown that protein digestion is more

efficient than lipid digestion in the ballan wrasse bulbous (70% and 50% accordingly) in vivo
[46]. We suggest that the lower digestibility of lipid compared to protein, modulates the intesti-

nal peristalsis to facilitate lipid digestion. Further demonstrated by increased retrograde con-

tractions in Segment 2 in order to propel the partly digested lipid bolus back to Segment 1, the

main site of digestion and absorption in the ballan wrasse intestine [46]. Protein digestion is

efficient in the bulbous [46], and Segments 2 and 3 will not be stimulated to generate high fre-

quencies of standing contractions for mixing and digesting [68] the already well-digested con-

tent received from the previous section. Also, intestines given a protein- bolus apparently will

not increase anterograde contractions (i.e. the proportion of anterograde slow propulsive con-

tractions and ripples did not differ between the three first segments) to propel the well-

digested protein back towards the bulbous.

Although similar evacuation rates in vitro, the in vivo difference in digestibility in the bul-

bous between lipid (50%) and protein (70%) [46] may explain the observed difference in regu-

lation of some pathways between these two groups. Pathways related to regulation of opioid

peptide and neuropeptides were enriched in the bulbous by protein but not by lipid. Preprono-

ciceptin (PNOCA) and prodynorphin (PDYN) are prepropeptides which are proteolytically

processed to form the various secreted opioid neurotransmitters including dynorphins,

enkephalins, endorphins, endomorphins and nociceptin [69,70]. Most of these opiates, such as

nociceptin, inhibit gastrointestinal motility [71,72]. The gut-brain peptide neuromedin U

(NMU) slows down gastric motility and emptying [73]. The upregulation of pnoca, pdyn and
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nmu in the bulbous of ballan wrasse intestines fed protein (compared to cellulose) might be

related to the lower frequency of all three contraction types in the protein than the cellulose

group. Also, the expression of these three genes was altered by protein, but not by lipid (com-

pared to cellulose), which might be related to the observed difference in motility patterns in

the two first segments between the lipid and protein groups.

In mammals, the presence of ingesta in the anterior part stimulates activity in the posterior

segments of the digestive tract [74,75], and the ingesta is mixed and small amounts of gut con-

tent are propelled gradually to the next section until the anterior part is empty [4,76]. Based on

this it is likely that the functional role of the high frequency of contractions observed in the

wrasse intestinal Segments 2 and 3 within period I was to optimize the digestive process for the

small amounts of ingesta which these segments received from the previous section. While the

three first segments were mixing ingesta, Segment 4 –the hindgut displayed a “cleaning” activ-

ity driven by the slow propulsive contractions to eliminate undigested particles and waste

from the previous meals and prepare for the remains of the current meal. When the bulbous

was empty (period II), the frequency of all contraction types diminished in Segment 1 due to

the absence of ingesta. In gastric vertebrates, the empty stomach will send hunger signals to

the brain [13,75,77]. However, it is unknown how hunger is regulated in agastric vertebrates.

This puzzle also includes the altricial gastric larval stages of fish that develop stomach only dur-

ing metamorphosis when they transform from larval to juvenile stages [78]. The frequency of

all contraction types was also lower in the midgut (Segments 2 and 3) after Segment 1 was

empty. This might be due to absorption of nutrients that did not require a high frequency of

contractions and/or an artificial effect when energetic metabolites were gradually diminished

after the long incubation time. However, peristaltic activity was observed in intestines incu-

bated for 48 hours.

Genes coding for calcium ion binding proteins were found to be enriched by administering

both nutritive or non-nutritive boli. One of these genes, TRPM4 (Transient Receptor Potential

Cation Channel Subfamily M Member 4), regulates smooth muscle contractions in a number

of organs, including the intestine [79]. This is probably related to the stretching effect induced

by the presence of food. While the non-caloric cellulose bolus only induced mechanical trans-

duction, the caloric lipid and protein led to changes in a number of pathways related to cell

activity. Most of the gastrointestinal hormones produced by enterocytes and other factors that

regulate the digestion and absorption are peptides or proteins [2,3]. Thus, protein and lipid

boli upregulated a wide range of pathways related to the activity of ribosomes which, being

protein factories [80,81] in enterocytes might be to produce materials for secretion of enzymes,

hormones, neurotransmitters and other components that are involved in the processes of

digestion and absorption.

The plastic beads, an unbreakable non-nutritive particle, induced either very short or an

extended residence time in the bulbous. We hypothesize that the presence of the hard beads in

the bulbous signal Segments 2 and 3 to generate high-amplitude standing contractions that

serve as a “physiological” brake [4] to delay the propulsion of the indigested meal to the distal

sections. Overall, the amplitude of contractions in the plastic bead group was higher than that

in other groups and this parameter did not differ between period I and II. This might be an

artificial effect where an unbreakable bolus maintains its volume and shape during its entire

transit through the intestinal tract. Because of the stability in volume and shape which results

in the reliable localization by video-scopy, beads have been widely used in studies of gastroin-

testinal transit and motility for several decades [82–88]. However, our results show that it is

important to consider that the transit time and motility patterns induced by the beads differ

significantly from the effect on these factors induced by a nutritious meal. Beads are therefore

not a good proxy for intestinal motility during digestion.
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5. Conclusions

In conclusion, presence of nutrient and physical stimuli in the intestinal lumen regulates both

motility patterns and gene expression to maximise digestion and absorption. The non-nutri-

tive cellulose only triggered a stretching effect, increasing propulsive contractions to rapidly

move the indigestible bolus from the bulbous towards the hindgut. In contrast, the nutritive

protein and lipid reduced the frequency of both non-propulsive and propulsive contractions

to prolong the residence of these nutrients in the bulbous, the main site of digestion in ballan

wrasse. Protein and lipid upregulate penk and npb, which are known to initiate satiety signals

to the central nervous system to suppress feeding. These nutrients also increased expression of

cckar, which is known to slow down the evacuation rate of the bulbous. Three other genes;

pnoca, pdyn and nmu, were upregulated by protein but not by lipid. This may be related to the

differences in signalling pathways and motility patterns observed between the two nutrient

groups.

Supporting information

S1 Fig. Protein gel electrophoresis of nutrient bolus and feces in Experiment 1. Lane 1, pro-

tein standard with multiple molecular weights (SDS-PAGE Molecular weight standards, Broad

Range, Cat.No 161–0317, BIO-RAD); lanes 2, 4, 6, 8, and 10, feces collected from five individ-

ual intestines at 14 h after fed a bolus of intact protein; lanes 3, 5, 7, and 9, feces collected from

four individual intestines at 14 h after fed a bolus of hydrolyzed protein; lanes 11 and 12,

hydrolyzed protein bolus. The samples (nutrient bolus and feces) were diluted 16 times in

dH20 before mixing equal amounts of sample with the sample buffer [in volume 9.5:0.5 of

Laemmi Sample buffer (BioRad, cat#161–0737) and β-mercapthoethanol (BioRad #161–

0710)]. The mixes of samples and buffer sample were heated 5 min, 95 ˚C. The samples and

MW-marker (BioRad#161–0375) were loaded into wells of precast 10% SDS-gels (BioRad

#456–1043) in Tris-glycine SDS Running Buffer (#1610772EDU, BioRad) using a BioRad

MiniProtean1Cell according to the manufacturers instruction. The electrophoresis was run

for 30 min. at a voltage of 200 V. The sorted proteins in the SDS-gels were incubated with fix-

ing solution (50% methanol and 10% glacial acetic acid in dH2O) overnight with gentle agita-

tion at room temperature before changing to a staining solution (50% methanol, 10% Glacial

acetic Acid, 0.1% Coomassie Brilliant Blue R-250). The staining process was run for 20 min.

and followed by destaining in a solution of 40% methanol and 10% glacial acetic acid changing

four times for 5, 30, 60, and 10 min. each. Amersham ECL™Western Blot Analysis System (#

170–5702620, GE Healthcare) and Chemi Chemiluminiscence Image Capture (Syngene, Cam-

bridge) were used to detect proteins. Signal strength of each specific band was calculated using

Gene Tools from Syngene, file version 4.03.10, Synoptics Ltd. The intact protein bolus was

made of casein (Casein from bovine milk, C7078, Sigma) which consists of proteins weighting

from 19000–23700 Da. The image shows that protein compositions in the feces between intact

and hydrolyzed protein were similar and they were similar to the protein compositions of the

hydrolyzed protein bolus. The presence of proteins weighting 6500–14400 Da in the feces in

the intact protein treatment suggests that the digestion of protein in the intestines was not suc-

cessful blocked by the protease inhibitor.

(TIF)

S2 Fig. Lipid composition in feces collected from the isolated intestines at 14 h after the

insert of a bolus in Experiment 1. FFA, free fatty acids; TAG, triacylglycerol. The composi-

tions of lipid were determined using chromatography with the 19:0 methyl ester as an internal

standard according to Lie and Lambertsen 1991 [89]. There was no difference in the
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proportions of free fatty acids in the feces collected from the intestines between the intact lipid

(IL) and hydrolyzed lipid (HL) groups [p> 0.05, generalized linear model (GLM)]. The feces

in HL group consisted of a lower proportion of triacylglycerol than the feces in IL group

(p< 0.05, GLM).

(TIF)

S1 Table. Differential gene expression analysis between treatment groups.

(XLSX)

S2 Table. Functional annotation enrichment analysis using DAVID.

(XLSX)

S3 Table. Functional annotation clustering using DAVID.

(XLSX)
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6. Gwynne RM, Thomas EA, Goh SM, Sjövall H, Bornstein JC. Segmentation induced by intraluminal fatty

acid in isolated guinea-pig duodenum and jejunum. J Physiology. 2004; 556: 557–569. https://doi.org/

10.1113/jphysiol.2003.057182 PMID: 14754993

7. Hennig GW, Gregory S, Brookes SJH, Costa M. Non-peristaltic patterns of motor activity in the guinea-

pig proximal colon. Neurogastroenterol Motil. 2010; 22: e207–e217. https://doi.org/10.1111/j.1365-

2982.2009.01453.x PMID: 20059762

8. Cannon WB. The Movements of the Intestines studied by Means of the Röntgen Rays. J Medical Res.
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43. Babaei S, Sáez A, Caballero-Solares A, Fernández F, Baanante IV, Metón I. Effect of dietary macronu-

trients on the expression of cholecystokinin, leptin, ghrelin and neuropeptide Y in gilthead sea bream

(Sparus aurata). Gen Comp Endocr. 2017; 240: 121–128. https://doi.org/10.1016/j.ygcen.2016.10.003

PMID: 27725144

44. Conde-Sieira M, Soengas JL. Nutrient Sensing Systems in Fish: Impact on Food Intake Regulation and

Energy Homeostasis. Frontiers in Neuroscience. 2017; 10: 232. https://doi.org/10.3389/fnins.2016.

00603 PMID: 28111540

45. Helland IB, Saugstad OD, Smith L, Saarem K, Solvoll K, Ganes T, et al. Similar Effects on Infants of n-3

and n-6 Fatty Acids Supplementation to Pregnant and Lactating Women. Pediatrics. 2001; 108: e82–

e82. https://doi.org/10.1542/peds.108.5.e82 PMID: 11694666

PLOS ONE Physical and nutrient modulation of gut motility and transcriptome in fish

PLOS ONE | https://doi.org/10.1371/journal.pone.0247076 February 11, 2021 26 / 29

https://doi.org/10.1113/expphysiol.1983.sp002757
http://www.ncbi.nlm.nih.gov/pubmed/6647742
https://doi.org/10.1152/ajpgi.1986.250.2.G213
http://www.ncbi.nlm.nih.gov/pubmed/3953800
https://doi.org/10.1152/ajpgi.00212.2015
http://www.ncbi.nlm.nih.gov/pubmed/26660537
https://doi.org/10.1038/nrgastro.2012.57
https://doi.org/10.1038/nrgastro.2012.57
http://www.ncbi.nlm.nih.gov/pubmed/22450306
https://doi.org/10.3389/neuro.21.003.2009
http://www.ncbi.nlm.nih.gov/pubmed/20582275
https://doi.org/10.1016/s1095-6433%2800%2900330-5
http://www.ncbi.nlm.nih.gov/pubmed/11246040
https://doi.org/10.1016/j.physbeh.2011.05.003
http://www.ncbi.nlm.nih.gov/pubmed/21557957
https://doi.org/10.1016/j.semcdb.2012.01.002
https://doi.org/10.1016/j.semcdb.2012.01.002
http://www.ncbi.nlm.nih.gov/pubmed/22248674
https://doi.org/10.1371/journal.pone.0107531
http://www.ncbi.nlm.nih.gov/pubmed/25216051
https://doi.org/10.1111/nmo.12425
http://www.ncbi.nlm.nih.gov/pubmed/25223619
https://doi.org/10.1152/ajpgi.00580.2006
https://doi.org/10.1152/ajpgi.00580.2006
http://www.ncbi.nlm.nih.gov/pubmed/17347449
https://doi.org/10.1017/S0007114515004535
http://www.ncbi.nlm.nih.gov/pubmed/26586314
https://doi.org/10.3389/fphys.2018.01209
http://www.ncbi.nlm.nih.gov/pubmed/30210366
https://doi.org/10.1016/j.ygcen.2017.10.010
https://doi.org/10.1016/j.ygcen.2017.10.010
http://www.ncbi.nlm.nih.gov/pubmed/29066289
https://doi.org/10.1152/ajpregu.00283.2017
https://doi.org/10.1152/ajpregu.00283.2017
http://www.ncbi.nlm.nih.gov/pubmed/29046316
https://doi.org/10.1016/j.fsi.2017.09.050
http://www.ncbi.nlm.nih.gov/pubmed/28964867
https://doi.org/10.1016/j.jnutbio.2017.08.015
http://www.ncbi.nlm.nih.gov/pubmed/29040838
https://doi.org/10.1016/j.ygcen.2016.10.003
http://www.ncbi.nlm.nih.gov/pubmed/27725144
https://doi.org/10.3389/fnins.2016.00603
https://doi.org/10.3389/fnins.2016.00603
http://www.ncbi.nlm.nih.gov/pubmed/28111540
https://doi.org/10.1542/peds.108.5.e82
http://www.ncbi.nlm.nih.gov/pubmed/11694666
https://doi.org/10.1371/journal.pone.0247076


46. Le HTMD, Shao X, Krogdahl Å, Kortner TM, Lein I, Kousoulaki K, et al. Intestinal Function of the Sto-

machless Fish, Ballan Wrasse (Labrus bergylta). Frontiers Mar Sci. 2019; 6: 140. https://doi.org/10.

3389/fmars.2019.00140
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