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Abstract Plastic pollution is a widespread environmental problem that is currently one 

of the most discussed issues by scientists, policymakers and society at large. 
The potential ecotoxicological effects of plastic particles in a wide range of 
organisms have been investigated in a growing number of exposure studies 
over the past years. Nonetheless, many questions still remain regarding the 
overall effects of microplastics and nanoplastics on organisms from different 
ecosystem compartments, as well as the underlying mechanisms behind the 
observed toxicity. This chapter provides a comprehensive literature review on 
the ecotoxicological impacts of microplastics and nanoplastics in terrestrial 
and aquatic organisms in the context of particle characteristics, interactive 
toxicological effects, taxonomic gradients and with a focus on synergies with 
associated chemicals. Overall, a total of 220 references were reviewed for 
their ful"lment of speci"c quality criteria (e.g. experimental design, particle 
characteristics, ecotoxicological endpoints and "ndings), after which 175 were 
included in our assessment. The analysis of the reviewed studies revealed 
that organisms’ responses were overall in#uenced by the physicochemical 
heterogeneity of the plastic particles used, for which distinct differences were 
attributed to polymer type, size, morphology and surface alterations. On the 
other hand, little attention has been paid to the role of additive chemicals in 
the overall toxicity. There is still little consistency regarding the biological 
impacts posed by plastic particles, with observed ecotoxicological effects 
being highly dependent on the environmental compartment assessed and 
speci"c morphological, physiological and behavioural traits of the species 
used. Nonetheless, evidence exists of impacts across successive levels of 
biological organization, covering effects from the subcellular level up to the 
ecosystem level. This review presents the important research gaps concerning 
the ecotoxicological impacts of plastic particles in different taxonomical 
groups, as well as recommendations on future research priorities needed to 
better understand the ecological risks of plastic particles in terrestrial and 
aquatic environments.
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Chapter 7
Ecotoxicological Impacts of Micro- 
and Nanoplastics in Terrestrial 
and Aquatic Environments

Tânia Gomes, Agathe Bour, Claire Coutris, Ana Catarina Almeida, 
Inger Lise Bråte, Raoul Wolf, Michael S. Bank, and Amy L. Lusher

Abstract Plastic pollution is a widespread environmental problem that is currently 
one of the most discussed issues by scientists, policymakers and society at large. 
The potential ecotoxicological effects of plastic particles in a wide range of organ-
isms have been investigated in a growing number of exposure studies over the past 
years. Nonetheless, many questions still remain regarding the overall effects of 
microplastics and nanoplastics on organisms from different ecosystem compart-
ments, as well as the underlying mechanisms behind the observed toxicity. This 
chapter provides a comprehensive literature review on the ecotoxicological impacts 
of microplastics and nanoplastics in terrestrial and aquatic organisms in the context 
of particle characteristics, interactive toxicological effects, taxonomic gradients and 
with a focus on synergies with associated chemicals. Overall, a total of 220 refer-
ences were reviewed for their ful!lment of speci!c quality criteria (e.g. experimen-
tal design, particle characteristics, ecotoxicological endpoints and !ndings), after 
which 175 were included in our assessment. The analysis of the reviewed studies 
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revealed that organisms’ responses were overall in"uenced by the physicochemical 
heterogeneity of the plastic particles used, for which distinct differences were attrib-
uted to polymer type, size, morphology and surface alterations. On the other hand, 
little attention has been paid to the role of additive chemicals in the overall toxicity. 
There is still little consistency regarding the biological impacts posed by plastic 
particles, with observed ecotoxicological effects being highly dependent on the 
environmental compartment assessed and speci!c morphological, physiological 
and behavioural traits of the species used. Nonetheless, evidence exists of impacts 
across successive levels of biological organization, covering effects from the sub-
cellular level up to the ecosystem level. This review presents the important research 
gaps concerning the ecotoxicological impacts of plastic particles in different taxo-
nomical groups, as well as recommendations on future research priorities needed to 
better understand the ecological risks of plastic particles in terrestrial and aquatic 
environments.

7.1  Introduction

Plastic particles are a widespread environmental problem and possibly an important 
human health issue that has recently garnered signi!cant interest from scientists, 
policymakers, natural resource managers, media entities and the public (Prata et al. 
2021; Thompson et al. 2004). The complexity of plastic pollution follows a dynamic 
environmental cycle (Bank and Hansson 2019, 2021), which involves bidirectional 
"uxes across different ecosystem compartments including the atmosphere, hydro-
sphere, biosphere as well as terrestrial environments (Vince and Hardesty 2017; 
Windsor et al. 2019). There has been an outburst of research into plastic pollution in 
recent years, with research focusing on sources, presence and transport in the envi-
ronment (as presented in other chapters in this volume – e.g. Bank and Hansson 
2021; Kallenbach et al. 2021; Lundebye et al. 2021). Despite this, many questions 
remain regarding the ecotoxicology of plastic particles and their overall effect on 
wild populations of biota from different ecosystem compartments (de Sá et al. 2018; 
Galloway et al. 2017; GESAMP 2020; Law and Thompson 2014; Prakash et al. 
2020; VKM 2019).

Many of the challenges related to understanding the ecotoxicological conse-
quences of plastic particles are inherently linked to their complex nature as environ-
mental contaminants (Rochman et al. 2019). Microplastics are made up of different 
polymers and additives which can in"uence their impact on living organisms. 
Furthermore, microplastics can originate from many different sources. Some are 
speci!cally designed (primary microplastics), whereas others are formed through 
the breakdown of larger plastics (secondary microplastics) (Cole et al. 2011). The 
terminologies used to describe plastic particles can also hold signi!cant weight in 
terms of how data is interpreted. Microplastics are most commonly de!ned by their 
size, being less than 5 mm (GESAMP 2019), although de!nitions used across dif-
ferent research !elds does introduce inconsistencies, especially with reference to 
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their lower size limit (Hartmann et al. 2019). For the purpose of this chapter, we 
kept the de!nitions of microplastics as <5 mm in size (GESAMP 2019), even though 
much of the ecotoxicological data presented involved particles <1 mm in size. The 
lower size limit of microplastics is here de!ned as 1 μm, following the de!nition set 
by Hartmann et al. (2019) in reference to nanoplastics (1–1000 nm).

A wide array of impacts and toxic effects have been reported for both microplas-
tics and nanoplastics, and as a brief example, several studies have examined the 
direct and indirect effects of a broad range of size fractions on a range of different 
species. Effects observed include impacts on reproduction, population dynamics, 
oxidative stress, ingestion, physiology, feeding behaviour, metabolic and hepatic 
functions as well as interactions with other contaminants (e.g. Anbumani and 
Kakkar 2018; Haegerbaeumer et al. 2019; Kögel et al. 2020). However, the extent 
to which the available data is useful to interpreting consequences across different 
biological levels (cellular-organ-individual-population; Galloway et al. 2017) has 
been called into question (VKM 2019).

The potential risks of micro- and nanoplastics to the environment and biota 
health have been the subject of several recent reviews and risk assessments by inter-
national authorities including (i) the European Food Safety Authority (EFSA), 
Panel on Contaminants in the Food Chain (CONTAM) on the presence of nano- and 
microplastics in food (EFSA CONTAM Panel 2016); (ii) a technical paper from the 
Food and Agriculture Organization of the United Nations (FAO) on the status of 
knowledge on microplastics related to !sheries and aquaculture (Lusher et al. 2017); 
(iii) a scienti!c perspective on microplastics in nature and society (SAPEA 2019); 
(iv) an updated knowledge summary built on the foundations of the previous three 
reports (VKM 2019); and (v) an ecological and human health risk assessment con-
ducted by the Joint Group of Experts on the Scienti!c Aspects of Marine 
Environmental Protection (GESAMP 2020). During the VKM systematic assess-
ment (VKM 2019), publications were judged based on a set of criteria to assess their 
quality, and those with poor quality were excluded. The accepted papers were used 
to attempt conceptual human and environmental risk assessments; however, many 
uncertainties and knowledge gaps were identi!ed. One of the most signi!cant limi-
tations was that nano- and microplastics were treated as one entity, ignoring their 
physicochemical heterogeneity (Rochman et al. 2019). There was also a dispropor-
tionate representation between different species and different environmental com-
partments (marine, brackish, freshwater, terrestrial), which hampered the 
understanding of impacts in speci!c ecosystems. Much of the information available 
focused on species which are routinely used in standard test guidelines developed 
by the Organization for Economic Cooperation and Development (OECD) and the 
International Organization for Standardization (ISO).

Here we provide an overview and synthesis of microplastic and nanoplastic eco-
toxicology (2012- August 2019) in the context of particle characteristics (e.g. poly-
mer type, morphology, size fractions), interactive toxicological effects, taxonomic 
gradients and with a focus on other potential synergies with associated chemical 
compounds. The speci!c objectives of this chapter are to (1) synthesize the litera-
ture and scienti!c consensus regarding the ecotoxicity of microplastics and 
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nanoplastics and their potential relationships with other chemical compounds; (2) 
evaluate the effects of microplastic and nanoplastic concentrations, polymer type, 
size and morphology, experimental design, exposure time and pathways on ecotoxi-
cological endpoints; (3) identify critical data and knowledge gaps in microplastic 
and nanoplastic toxicity research; and (4) suggest approaches and guidelines for 
addressing the most pressing questions and for advancing microplastic and nano-
plastic ecotoxicity research.

7.2  Methods Used for Review Process

7.2.1  Overall Review Process

A comprehensive assessment of available published peer-reviewed literature was 
conducted up to August 2019 using the Web of Science, ScienceDirect, Scopus, 
PubMed and Google Scholar databases. The search was based on a combination of 
keyword terms, such as microplastic, nanoplastic, effects, toxicity, speci!c phylum/
sub-phylum and speci!c target organisms (e.g. !sh, crustaceans, bivalves, etc.), in 
any topic, title or keywords. Additional targeted searches were conducted from ref-
erences included in relevant peer-reviewed articles (including review papers), as 
well as relevant reports overlooked by the search engines used. Of the identi!ed 
references, only those focusing on studies reporting ecotoxicological effects were 
retained for further analysis. Studies only describing ingestion and egestion of plas-
tic particles without reporting toxicity assessment were excluded from the collected 
literature. The ingestion of nano- and microplastics by biota has been described in 
previous review articles (e.g. Collard et al. 2019; Wang et al. 2019b, 2020). Particles 
>5 mm were not included in this assessment. An overview of the review process can 
be found in Fig. 7.1.

7.2.2  Extraction and Compilation of Data

A total of 220 references containing relevant ecotoxicity data were selected for 
review, after which the following information was extracted and compiled in an 
EXCEL spreadsheet for subsequent analysis: (i) experimental design, (ii) group of 
organisms, (iii) particles used, (iv) ecotoxicological endpoints and (v) publication 
information.

In terms of experimental design, the information extracted was categorized 
according to (i) exposure time, as described by authors and converted into days; (ii) 
particle concentration, in mass and/or particle number; (iii) exposure regime, static, 
semi-static or "ow-through; (iv) replication, as number of independent replicate 
experiments or number of replicate exposure vessels; (v) use of controls, negative 
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control (no plastic, only exposure media), additive/preservative control (e.g. tween 
20, NaNO3), particle control (kaolin, clay, etc.) or chemical control (co-exposure 
with other contaminants); (vi) con!rmation of test concentration, nominal versus 
measured; (vii) exposure route, water, sediment/soil, food (e.g. inert pellets), prey 
(food chain) or others; and (viii) additional information, not included in the previ-
ous categories.

The types of organisms used in the studies reviewed were divided into the fol-
lowing taxonomic groups: Annelida, Arthropoda, Chordata, Cnidaria, 
Echinodermata, Mollusca, Nematoda, Phytoplankton and Rotifera. For each group, 
the following information was extracted: (i) taxonomic class; (ii) species, full Latin 
name; (iii) developmental stage, egg, embryo, larvae, juvenile, adult and others; (iv) 
feeding strategy, !lter feeder, deposit feeder, scavenger, suspension feeder, predator 
or others; (v) supply of food during exposure; (vi) environmental compartment, 
freshwater, seawater or soil/sediment; (vii) replication, number of organisms per 
endpoint determination; and (viii) ingestion, checked, yes or no. Toxicity studies on 
higher plants, bacteria and in vitro were not included in this review.

For information on the particles used, the following categories were chosen as 
the most representative in terms of physicochemical characteristics: (i) polymer 
type; (ii) particle morphology, spheres, !bres, fragments (same as irregular), pellets 
or others if missing; (iii) surface modi!cation, plain, COOH, NH2, others or not 
speci!ed; (iv) particle size; (v) co-exposure/mixture, yes or no in case of spiking 

Fig. 7.1 Schematics on the literature review search of references containing relevant ecotoxicity 
data regarding micro- and nanoplastics
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with chemicals; (vi) chemical details, chemical name and concentration used; (vii) 
characterization, only by the supplier and/or additional by the authors; and (viii) 
others, additional information on particles, e.g. "uorescence, density, etc. In terms 
of particle type, the following list of polymer types was used to classify the particles 
used in the selected studies, which include the main groups of polymer materials 
reported in PlasticsEurope (2019): polyethylene (PE), polyethylene terephthalate 
(PET), polystyrene (PS), polypropylene (PP), polyvinylchloride (PVC), polyamide 
(PA), acrylonitrile butadiene styrene (ABS), nylon, polycarbonate (PC), polyhy-
droxy butyrate (PHB), polylactic acid (PLA), polymethylmethacrylate (PMMA), 
polyoxymethylene (POM), styrene acrylonitrile (SAN), phenylurea-formaldehyde 
(PUF), proprietary polymer as well as not speci!ed (NS). High- and low-density PE 
were not differentiated but included in an overall PE group. To assess the impact of 
particle size (i.e. nanoplastic versus microplastic), one or more of the following size 
categories were used: < 0.05 μm, 0.05–0.099 μm, 0.1–0.99 μm, 1–9 μm, 10–19 μm, 
20–49 μm, 50–99 μm, 100–199 μm, 200–500 μm and > 500 μm.

The effects reported were categorized following the levels of biological organi-
zation as suggested by Galloway et al. (2017): subcellular (e.g. enzyme activity, 
gene expression, oxidative damage), cellular (e.g. apoptosis, membrane stability), 
organ (e.g. histology, energetic reserves), individual (e.g. mortality, growth), popu-
lation (e.g. reproduction, larval development) and ecosystem (e.g. behaviour, eco-
system function, community shifts). In cases where a large amount of data was 
generated in a speci!c study, detailed information on biological endpoints was also 
recorded, such as gene and protein expression data, enzymatic activities, histopa-
thology effects, etc. Presence or absence of signi!cant effects were recorded as yes 
or no, followed by the direction of the effect recorded as up (induction) and down 
(inhibition). Whenever disclosed, the ECx (concentration showing a x% effect), 
NOEC (no observed effect concentration) and LOEC (lowest observed effect con-
centration) values were also recorded.

Within the selected references, descriptions of experiments using different 
experimental conditions (e.g. time of exposure and concentration), two or more spe-
cies (e.g. life stages and route of exposure) or particles with different characteristics 
(e.g. polymer type, size, morphology) were considered as individual records and 
added as separate entries in the data matrix. For example, whenever the size distri-
bution for a given particle spanned more than one of the de!ned size categories, 
multiple entries were recorded, each corresponding to a size category. If a study 
included more than one species, a separate record was added for each species, each 
one with multiple entries dependent of the varying treatments used by the authors. 
Accordingly, the number of studies and corresponding entries presented in the 
results section represent the number of interactions of the classi!cation criteria 
recorded for each reference, and not the total number of publications reviewed.

After revision of the 220 references collected, 25 were excluded due to poor 
quality in one or more of the classi!cation criteria used. Examples were poor exper-
imental design, lack of information on particles used or particle characterization, 
inadequate data representation or conclusions not supported by data. The exclusion 
of these 25 references was based on expert judgement, and data entries pertaining to 

T. Gomes et al.

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207



these references were removed from the data matrix. The data matrix can be made 
available upon demand.

7.2.3  Evaluation and Scoring of Data Quality

The 195 references considered of acceptable quality were further evaluated and 
given a quality score based on the criteria presented in earlier publications. This was 
to ensure that the highest quality data generated through ecotoxicological studies 
was also the data that had the most impact in this analysis. Evaluation criteria were 
divided in three groups, experimental design, particle characterization and !ndings, 
as detailed in Table 7.1 (based on Connors et al. 2017; VKM 2019). Speci!cally:

 – “Experimental design” included the use of reference controls and chemical con-
trols, as well as replication within the test system. Maximum score = 3.

Table 7.1 Evaluation criteria used to score data quality of reviewed references (based on Connors 
et al. 2017; VKM 2019)

Criteria Description Scoring de!nition

Experimental 
design (0–3)

Use of reference 
controls

Use of reference particles other than plastic (e.g. kaolin, 
sand, etc.)

Use of chemical 
controls

Applies to vector studies only, where the particles are 
spiked with one or more chemicals, or when further 
characterization was carried out and results indicate the 
presence of chemicals on the particles. Otherwise, 1 
point should be automatically attributed

Replication in test 
system

Exposure replication of minimum 3; total number of 
individuals: Depends on the endpoint

Characterization 
(0–5)

Particle size Concentration range of particles used determined by 
authors (e.g. DLS, particle counter, etc.)

Particle charge Applies for nanoparticles only. If microparticles are 
used, 1 point should be automatically attributed

Polymer 
con!rmation

Con!rmation of polymer used in exposure system (e.g. 
FT-IR)

Chemical 
characterization

Applies for studies using spiked particles, particles 
obtained from the grinding of consumer goods, 
deployed particles, industrial particles (e.g. nurdles). 
Only in the case of particles obtained from a “trusted” 
supplier (e.g. Cospheric, sigma, etc.) and said to be 
“pristine”, 1 point should be automatically attributed

Test concentration 
con!rmation

Test concentration measured in exposure system and not 
nominal concentration used

Findings (0–1) Conclusions 
supported by the 
results

Accurate interpretation of the results without conjecture 
beyond experimental design
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 – “Particle characterization” included the reporting of particle size, particle charge, 
polymer con!rmation, chemical characterization and con!rmation of the test 
concentration. Maximum score = 5.

 – “Findings” included the assessment of whether the conclusions were supported 
by the results. Maximum score = 1.

For each time a criterion was met, 1 point was attributed, and references were 
categorized based on a quality score out of 9. References that scored 4 or less were 
excluded from further analysis and corresponding data entries removed from the 
data matrix. Of the 195 references scored, 20 were eliminated due to low score, in 
which 17 papers scored 4 points, 2 papers scored 3 points and 1 paper scored 2 
points. None of the papers scored either 1 or 9 points (Fig. 7.2).

7.2.4  Treatment of Extracted Data

Species sensitivity distributions (SSDs) were !tted for three relevant exposure 
routes: water exposure, sediment/soil exposure and food exposure. Ecotoxicity data 
for terrestrial, freshwater and marine compartments and species were extracted and 
summarized for use in the SSD model !tting. Information on polymer types and 
size classes were combined, and for this reason, studies using !bres were excluded 
from the SSDs. Ecotoxicity endpoints were limited to individual and population 
levels (Burns and Boxall 2018; Connors et al. 2017), and only NOECs and EC50 
values were included. When only acute NOEC or EC50 data was available, chronic 
NOEC values were extrapolated as proposed by Posthuma et al. (2019). When mul-
tiple NOEC values were available for the same species, the geometric mean of the 
NOECs was used to summarize the information. To allow the comparison of 

Fig. 7.2 Scoring of the 195 reviewed references. The number and % of references are only pre-
sented for those scored with 5 or more points
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ecotoxicological data from studies reporting different dose metrics, mass-based 
concentrations were converted to mg per litre (mg/L) and particle-based concentra-
tions converted to particles per litre (particles/L). In the case of studies where par-
ticles were added via sediment/soil or via food, concentrations were converted to 
mg per kg (mg/kg) of sediment/soil or food and particles per kg (particle/kg) of 
sediment or food. As several studies only reported concentrations in either mass or 
particle number, two SSDs were created per exposure route. Studies where none of 
the above dose metrics were employed were excluded from the SSD !tting. The 
SSDs were realized as Bayesian distributional regression models assuming a log-
normal data distribution (Ott 1990). All modelling was performed using statistical 
programming language R (R Core Team 2020) and its add-on package brms 
(Bürkner 2017, 2018). A total of 10,000 posterior draws were used to characterize 
each SSD. Where applicable, the value indicating the concentration at which 5% of 
the species are affected (hazard concentration, HC5) was extracted from the poste-
rior draws and summarized as average and 95% credible interval.

7.3  Results and Discussion

A key issue in understanding how microplastics and nanoplastics interact with the 
surrounding environment is their dynamic nature. The physicochemical properties 
of the parent material, including density, morphology, charge and size, are likely to 
in"uence particles’ physical behaviour in the environment, fate (e.g. presence in the 
water column or in sediments), potential to adsorb environmental contaminants 
(e.g. Trojan horse effect), bioavailability and potential toxicological impacts on 
organism health (e.g. de Sá et al. 2018; Galloway et al. 2017; Haegerbaeumer et al. 
2019; Kögel et al. 2020). The extensive literature review carried out showed that the 
responses of organisms to particle exposure were mostly dependent on particle 
characteristics as polymer type, size, morphology and surface alterations. However, 
it is possible that other factors were driving the observed impacts, as, for example, 
the presence of additive chemicals associated with the plastic particles, which are 
rarely considered in studies. A special emphasis has therefore been given to particle 
size, with a higher consensus in terms of increased internalization for smaller sized 
particles than larger ones and thus higher potential for toxic effects. A variety of 
experimental designs have been used to evaluate the effects of nanoplastics and 
microplastics in organisms, in which exposure time and particle concentration seem 
to be determinant for the induction of toxicity. Nonetheless, the observed effects 
were highly dependent on the environmental compartment assessed, in combination 
with speci!c morphological, physiological and behavioural traits of the species 
used, as, for example, developmental stage, trophic level and feeding strategy.

In terms of ecotoxicological effects, there is still little consensus regarding the 
biological impacts posed by plastic particles, as well as a limited understanding on 
the underlying toxic mechanisms causing the observed effects. This limited knowl-
edge on mechanistic toxicity data also makes it dif!cult to understand and 
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distinguish physical from chemical toxicological effects of plastic particles. And 
even though it is quite clear from wider literature that large particles (e.g. macro-
plastics) cause visible effects at the organism level (Kühn et al. 2015; Rochman 
2015), the direct and indirect physiological effects of the smaller plastic particles 
remain elusive. Based on this review, effects were found at different levels of bio-
logical organization in a range of organisms. However, many of these studies used 
standard ecotoxicity approaches based on OECD or ISO guidelines that do not con-
sider effects at the lower levels of biological organization such as cellular or subcel-
lular mechanisms, which may be more sensitive and have a higher impact on the 
physiological traits of organisms, especially in the long term. To a small degree, 
some of the reviewed studies highlighted that the combination of nanoplastics and 
microplastics with organic and inorganic contaminants also modify and potentiate 
their toxicity towards biological systems. Nonetheless, the effects of chemical addi-
tives present in plastic particles are also understudied, and it is still not clear if the 
presence of these additives rather than the polymeric composition of particles are 
the main driver of the adverse effects reported in organisms. Based on the 175 pub-
lications reviewed, a more general and detailed report of the main factors in"uenc-
ing particle toxicity towards the different groups of organisms are presented in the 
sections below.

7.3.1  General Overview of Information Extracted 
from Reviewed Publications

7.3.1.1  Polymer Type, Morphology, Surface and Size

Within the 175 reviewed publications, the most commonly used polymer type was 
PS (90 studies, 51%), followed by PE (62 studies, 35%), PVC (17 studies, 10%) and 
PET (11 studies, 6%). The remaining polymer types (acrylonitrile butadiene styrene 
[ABS], nylon, polyamide [PA], polycarbonate [PC], polyhydroxybutyrate [PHB], 
polylactic acid [PLA], poly(methyl methacrylate) [PMMA], polyoxymethylene 
[POM], polypropylene [PP], styrene acrylonitrile resin [SAN]) were used in less 
than 5% in the reviewed studies. The use of PS and PE as polymers of choice in 
exposure studies is consistent with the most commonly found polymers in the envi-
ronment, as PS, PE and PP are typically retrieved from surface waters and sedi-
ments (e.g. Koelmans et al. 2019 and references therein). Given that polymer type 
can in"uence the fate and behaviour of particles within test systems, in particular 
density and presence of chemical additives (e.g. Gallo et al. 2018), other polymers 
should be comprehensively assessed in order to build up knowledge regarding how 
their composition in"uence toxicity towards organisms.

Despite the prevalence of fragments, !bres and !lms in environmental samples 
due to degradation of larger pieces of plastic (see Burns and Boxall 2018; Kooi and 
Koelmans 2019; Phuong et al. 2016), the majority of studies focused on spherical 
particles (106 studies, 61%), with only 40 studies looking at the impacts of 
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fragments/irregular particles (23%) and even less focusing on the effects of !bres 
(13 studies, 7%). The main reason for the use of spherical particles is that they are 
easier to produce than the other morphological types (e.g. !bres, fragments, foams), 
especially in terms of suf!cient quantity within a certain size range. The irregular 
and non-standardized morphology of these particles also make them more dif!cult 
to characterize and track during exposure experiments, which results in poorly com-
parable ecotoxicity data. Nonetheless, irregularly shaped particles resulting from 
the fragmentation of larger plastic items or materials containing synthetic polymers 
as !bres have a higher environmental relevance and should be used more often in 
effects studies, especially in terms of increasing ecological relevance for advancing 
quantitative data to assess environmental risks.

Among the reported surface alterations, plain/pristine particles were used in 163 
publications out of the 175 (93%) studies reviewed. Of all the particles reported 
with surface alterations, the majority was for PS, with PS-COOH and PS-NH2 in the 
nano-size range being the most commonly used (10% and 9%, respectively). Particle 
surface chemistry, i.e. chemical groups and surface charge, was one of the main 
properties driving the behaviour of particles in the aquatic environment – this is 
particularly true for smaller sized particles – especially when it comes to stability, 
aggregation, mobility and sedimentation (e.g. Mudunkotuwa and Grassian 2011). In 
fact, particle surface charge, more so than polymer composition, has been suggested 
as the main driver behind behaviour and consequent toxicity of smaller sized plas-
tics (Lowry et al. 2012; Nel et al. 2009). Even though functionalized particles are 
commonly used as surrogates for naturally altered particles, their prevalence in the 
environment has been questioned. The presence of negatively charged PS-COOH 
has been suggested as widespread in the environment, although there is very little 
information on its fate in different environmental compartments. Similarly, the pres-
ence of PS-NH2 as a plastic degradation product in the environment has not yet been 
fully recognized/determined (Besseling et al. 2014).

An overview of the number of studies per particle type and size class is presented 
in Fig. 7.3. Of the size classes tested, most studies used particles smaller than those 
that can be detected with con!dence in environmental matrices (<100 μm, e.g. (de 
Ruijter et al. 2020). Sixty-!ve of the reviewed studies used particles with sizes in 
the range 1–9 μm (37%), followed by 43 studies with size in the range 20–49 μm 
(25%), 36 studies with sizes in the range 50–99 μm (21%) and 34 studies with sizes 
in the range 10–19 μm (19%). As for smaller size ranges, 39% of the reviewed pub-
lications used particles <1 μm (total 69 studies), with a predominance of particles 
within 0.1–0.99 μm. Regarding !bres, the size ranges used were between 362 and 
3000 μm in length and 41 and 3000 μm in diameter. In terms of size distribution per 
polymer type, for PS and PMMA a higher focus has been given to particles <10 μm, 
especially for PS in the nano-range size, as seen in Fig. 7.3. This is the opposite of 
PE, as well as the remaining polymers reported, where most particles used have a 
size range > 1 μm. Most of the studies comparing the effects of both nanoplastics 
and microplastics of the same polymer composition reported size-dependent effects, 
with an increase in toxicity with decreasing particle size (e.g. Jeong et al. 2016, 
2017; Lee et al. 2013; Lei et al. 2018a; Snell and Hicks 2011). Nonetheless, this 
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size-toxicity correlation seems to be species and phyla dependent. Irrespective of 
the potentially higher adverse effects imposed by smaller sized particles in organ-
isms, their detection in different environmental compartments and resulting uncer-
tainties in terms of natural concentrations remain an ongoing analytical challenge. 
Nonetheless, their presence in the environment as a consequence of fragmentation 
and degradation of plastic debris is widely accepted, having been proven under 
laboratory conditions (e.g. Lambert and Wagner 2016) and where their occurrence 
in the North Atlantic subtropical gyre has also been suggested (Ter Halle et al. 2017).

Even though particle ingestion and egestion were not considered in this review 
chapter, the selective size ingestion of micro- and nanoplastics has been reported for 
a range of aquatic organisms (e.g. bivalves, Ward et al. 2019). Accordingly, the size 
distribution of microplastics and nanoplastics used in ecotoxicological studies need 
to be appropriate for the species used, as this may in"uence exposure and particle- 
organism interactions.

Fig. 7.3 Overview of the number of studies per particle type and size class. Note: There can be 
more than one size class within a study for a speci!c particle. See Material and Methods section 
for more information on how particle size was categorized. ABS acrylonitrile butadiene styrene, PA 
polyamide, PC polycarbonate, PE polyethylene, PET polyethylene terephthalate, PHB polyhy-
droxy butyrate, PLA polylactic acid, PMMA polymethylmethacrylate, POM polyoxymethylene, 
PP polypropylene, PS polystyrene, PVC polyvinylchloride, SAN styrene acrylonitrile
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7.3.1.2  Experimental Conditions

Standard test protocol guidelines commonly used in toxicity testing of chemicals 
are not always suitable for testing of particles (e.g. Hermsen et al. 2018). Accordingly, 
ecotoxicity testing of nano- and microplastics often require modi!cations in experi-
mental design to address speci!c particle behaviour and/or characteristics, leading 
to a lack of standardization. The lack of standardized test protocols for plastic par-
ticles results in a multiplicity of experimental conditions, which limits consistency 
and result comparison and interpretation (Connors et al. 2017; VKM 2019).

Considering the absence of consistent particle quanti!cation in the environment 
in size ranges as small as those commonly used in ecotoxicological studies (Paul- 
Pont et al. 2018), the use of the so-called environmentally relevant doses of plastic 
particles also remains a challenge. Concentration range and units expressed in either 
mass or particle number are two of the main issues that have been highlighted 
related to the dosing of plastic particles in exposure systems. More than half of the 
publications reviewed reported particle concentrations in mass (minimum 7x10−7 
mg/L to maximum 12,500  mg/L), with the most commonly used concentration 
range of 1–100 mg/L (organisms exposed via water, 72% of studies). As for particle 
mass used in exposures via food (17% of studies) or sediment/soil (10% and 7% of 
studies, respectively), concentrations varied from 7x105 to 100 mg/kg food (most 
common 4000, 12,000, 100,000 mg/kg food) and 4x105 to 1 mg/kg sediment/soil 
(most common 1000 to 50,000 mg/kg sediment/soil). Few studies reported concen-
trations in terms of particle number, with concentrations ranging from 1 to 8x1015 
particles/L, 16 to 23x107 particles/kg sediment/soil and 3x105 to 1x108 particles/kg 
food. Therefore, it seems that the nano- and microplastics used in the reviewed pub-
lications have been tested in numbers several orders of magnitude higher than those 
currently detected in the natural environment. This is particularly true for the small 
sized plastics within a wide range of polymer types, where realistic concentrations 
are rarely available for sizes >10 μm and not available for sizes <10 μm (for more 
information on environmental data on plastic contamination, check Litter Database 
webpage: http://litterbase.awi.de/litter). In addition, the failure to provide particle 
concentrations in both mass and number complicates the comparison of effect data 
across published studies, confounding the ability to reach precise conclusions over 
exposure and risk.

Exposure time is another important aspect related to varying experimental condi-
tions used in nano- and microplastic ecotoxicological studies. The most commonly 
used exposure times in the reviewed studies were 48 h (27% studies), 24 h (18% 
studies), 96 h (17% studies) and 72 h (14% studies). These exposure durations are 
within those recommended in ecotoxicity guidelines for acute testing (e.g. OECD 
and ISO). In these tests, model organisms are normally exposed to high concentra-
tions of a test compound over a short period of time, after which effect endpoints 
such as mortality or development are commonly assessed. Even though several of 
these studies showed evidence of deleterious effects at high concentrations, there 
are still knowledge gaps – which are hidden by the present focus in acute ecotoxi-
cological testing, relating to limited environmental relevance. As exposure 
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concentration and duration are two major parameters in"uencing toxicity, results 
based on short-term and high exposure concentrations make it dif!cult to extrapo-
late data to a more realistic scenario of exposure to low concentrations over a long 
period of time. One of the main gaps in the reviewed studies was the underrepresen-
tation of long-term exposures at environmentally relevant concentrations and their 
consequent long-term effects at the organism and ecosystem levels (e.g. chronic 
exposure, whole life cycle, multi-generational effects). Long-term (or chronic) stud-
ies on the effects of nano- and microplastics were mostly carried out for 28 and 
21 days (11% studies each), followed by 14 days (10% studies). Only a very small 
percentage of studies have used an exposure period higher than 28 days, with only 
4 studies looking at ecotoxicological effects above 3 months of exposure (maximum 
240 days, i.e. 8 months). Long-term exposures carried out over more than 1 life 
stage or whole organism’s lifespan allow to focus on population-relevant adverse 
endpoints (e.g. reproduction), as well as other sublethal effects that might constitute 
more reliable endpoints for risk assessment and are therefore urgently needed.

7.3.1.3  Organisms Used in Ecotoxicological Studies

When it comes to environmental compartments, most test organisms used were 
from the marine environment (61%), followed by freshwater (31%) and terrestrial 
(8%) compartments, as presented in Fig. 7.4. Only 1 study reported the use of brack-
ish organisms (1%). This highlights that the effects of nano- and microplastics on 
terrestrial and freshwater ecosystems have been understudied and deserve further 
attention (e.g. Adam et al. 2019; Haegerbaeumer et al. 2019; Horton et al. 2017; 
Strungaru et al. 2019). These knowledge gaps are of particular concern, especially 
when terrestrial and freshwater environments are considered the main sources and 
transport pathways of plastic particles to the marine environment. Given that many 

Fig. 7.4 Number of species (total of 107) from each environmental compartment used in the 
reviewed references
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plastic particles are used and disposed on land, terrestrial environments will be sub-
ject to extensive pollution by particles of varying characteristics at high concentra-
tions, making terrestrial organisms at high risk of exposure. As for freshwater 
organisms, these will be directly affected by terrestrial runoff and other anthropo-
genic sources (e.g. wastewater treatment discharge, sewage sludge application), 
potentially containing high levels of plastic particles, as well as other associated 
contaminants (Adam et al. 2019; Horton et al. 2017 and references therein).

At the phylum level, Arthropoda was the most studied (34%, 59 publications), 
followed by Chordata (23%, 41 publications), Mollusca (21%, 36 publications), 
Phytoplankton (14%, 25 publications), Annelida (9%, 16 publications), Cnidaria 
and Echinodermata (2% each, 4 publications), Rotifera (2%, 3 publications) and 
!nally Nematoda (1%, 1 publication). The freshwater crustacean Daphnia magna 
(17% overall studies) was the most studied species, followed by the marine mussel 
Mytilus galloprovincialis and the freshwater zebra!sh Danio rerio (both with 6% of 
overall studies). In terms of developmental stage, most of the studies assessed 
effects in adult organisms (42%, 73 studies total) and a small percentage used juve-
niles or neonates (both with 14%, 25 studies). Very few studies have looked at whole 
cycle assessments, 3% of the total of reviewed publications, and those that did were 
only directed towards arthropods. In terms of feeding strategy, 32% of the species 
used were !lter feeders, followed by photosynthetic organisms (21%), predators 
(17%), detritivores (10%), grazers (9%), scavengers (8%) and deposit feeders (5%). 
Only one herbivore and one microbivore were used.

Even though the organisms used in the reviewed publications have different roles 
in terrestrial and aquatic food webs, there is still a lack of studies conducted on 
organisms other than !sh, small crustaceans and bivalves. Speci!cally, more studies 
on the effects of nano- and microplastics on organisms that are the basis of aquatic 
food chains should be conducted (e.g. planktonic species). These species have criti-
cal roles in ecosystem balance and might be at highest risk of exposure due to their 
feeding strategies and relative position in the water column. Moreover, small plastic 
particles are easily confused as food and ingested by planktonic species, thus serv-
ing as a route of transfer to secondary and tertiary consumers in food chains 
(Botterell et al. 2018). In addition, soil- and sediment-dwelling organisms are of 
major importance, as soil/sediment is considered the main sink for contaminants in 
the environment, increasing the likelihood of synergistic effects of plastic particles 
with other environmental contaminants (Adam et al. 2019; Horton et al. 2017 and 
references therein). Furthermore, targeted studies on species other than those com-
monly used in OECD and ISO guidelines should also be conducted, as the toxico-
logical and mechanistic effect data on these species might not provide suf!cient 
information into impacts on other ecologically relevant species. The same can be 
said in terms of transferring knowledge from marine to freshwater or terrestrial 
environment. Given the differences in habitat, physiological traits and feeding 
mechanisms, it is not clear as to what extent ecotoxicological effects on marine 
organisms can be applied to freshwater and terrestrial species within the same taxo-
nomical group and vice versa.
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7.3.1.4  Levels of Biological Organization

Most of the reviewed studies focused on the effects of nano- and microplastics at the 
individual level (133 studies, 40%), followed by the subcellular level (78 studies, 
23%). The population level has been addressed in 45 studies (14%), ecosystem in 
33 (10%), closely followed by the organ level with 30 studies (9%). Only 13 studies 
(4%) analysed effects at the cellular level. Within the individual endpoints, growth 
and mortality were the most studied (74 and 73 studies, respectively), while at the 
subcellular level, effects looking at alterations in gene expression (41 studies) were 
the most frequent, followed by oxidative stress (26 studies) and enzymatic activities 
(24 studies). Within population-related endpoints, the most determined were repro-
duction (21 studies) and larval development (16 studies). Within ecosystem, 29 
studies looked at behaviour and 22 looked at community shifts. As for organ level, 
most studies (17) looked at histopathological alterations, followed by nine studies 
looking at energy reserves. At the cellular level, eight studies looked at membrane 
stability, !ve at cell size and four at both cell number and cell complexity. When 
looking at the number of studies categorized by environmental compartment 
(Fig. 7.5), the majority of the studies for both freshwater and marine environments 
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covered endpoints at the individual level (75 and 72 studies, respectively), followed 
by effects at the subcellular level (29 and 42 studies, respectively). Impacts at the 
individual and cellular levels were also the most determined in terrestrial organisms 
(ten and 4 studies, respectively), while only one study covered individual endpoints 
in the brackish environment. Studies on effects at the cellular level were less com-
mon in freshwater and marine environments (two and ten studies, respectively), 
while no studies addressed this level of biological organization in terrestrial and 
brackish environments.

7.3.2  Ecotoxicological Effects

While a range of ecotoxicological effects caused by plastic particle exposure have 
been documented across several groups of organisms, there are still distinct research 
gaps concerning effects of both nano- and microplastics in speci!c taxonomical 
groups. In the following paragraphs, particle characteristics, exposure conditions 
and consequent ecotoxicological effects will be described for each taxonomical 
group considered in the present review: Phytoplankton, Cnidaria, Nematoda, 
Rotifera, Arthropoda, Annelida, Mollusca, Echinodermata and Chordata.

7.3.2.1  Phytoplankton

Phytoplankton include unicellular organisms such as microalgae that are at the bot-
tom of the aquatic food chain. Small disruptions of microalgae populations due to 
exposure to plastic particles may lead to serious repercussions at the ecosystem 
level, being thus imperative to characterize the risks/effects of plastic particles on 
this taxonomical group (Prata et al. 2019). Phytoplankton were evenly represented 
from marine and freshwater environments in the reviewed studies (12 and 13 stud-
ies, respectively). Exposure studies included 21 different species belonging to 8 
different classes (Bacillariophyceae, Chlorodendrophyceae, Chlorophyceae, 
Coscinodiscophyceae, Cyanophyceae, Dinophyceae, Prymnesiophyceae and 
Trebouxiophyceae). The most used class was Chlorophyceae (14 studies). 
Raphidocelis subcapitata, previously named as Pseudokirchneriella subcapitata, 
was the most used species with four studies. Six other species (Chaetoceros 
neogracile, Chlamydomonas reinhardtii, Chlorella pyrenoidosa, Dunaliella tertio-
lecta, Scenedesmus obliquus and Skeletonema costatum) had two studies each, 
while the remaining had only one publication.

A total of 7 different polymers were used across the 25 reviewed studies, with PS 
as the most studied polymer (15 studies). Five studies used PE, four used PVC, two 
used PP, while PMMA, proprietary polymer and PUF were represented by one 
study each. Most studied PS spheres (n = 12), while only two used PVC spheres. 
Regarding size, eight studies used PS particles ranging between 0.05 and 0.099 μm, 
and four used PS particles between 1 to 9 μm and 0.1 to 0.99 μm. There were two 
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studies on PE particles between 50 and 99 μm and PVC particles between 1 and 
9 μm. In terms of particle surfaces, plain PS particles (n = 7 studies) were the most 
used, followed by PS-COOH (n = 6) and PS-NH2 (n = 5).

All phytoplankton publications addressed effects at the individual level, with 
60% reporting effects. Growth was the most common endpoint (24 studies, 21 with 
effects), followed by pigment content (9 studies, 7 with observed effects), photosyn-
thesis and photosynthetic performance (8 studies, 7 with effects) and chlorophyll a 
content (1 study with signi!cant effects) (Baudrimont et al. 2020; Bellingeri et al. 
2019; Bergami et al. 2017; Besseling et al. 2014; Bhargava et al. 2018; Canniff and 
Hoang 2018; Casado et al. 2013; Chae et al. 2018; Gambardella et al. 2018; Garrido 
et al. 2019; González-Fernández et al. 2019; Lagarde et al. 2016; Liu et al. 2019; 
Long et al. 2017; Luo et al. 2019; Mao et al. 2018; Nolte et al. 2017; Prata et al. 
2018; Sendra et al. 2019; Seoane et al. 2019; Thiagarajan et al. 2019; Zhang et al. 
2017; Zhao et al. 2019; Zhu et al. 2019). At the cellular level, effects on membrane 
stability (four studies, three with effects), cell complexity (three studies, all with 
effects) and cell size (four studies, three with effects) were addressed in marine and 
freshwater species (González-Fernández et  al. 2019; Liu et  al. 2019; Mao et  al. 
2018; Sendra et al. 2019; Seoane et al. 2019). Nine studies looked at several effects 
at the subcellular level, including oxidative stress (six studies, all observing effects), 
lipid peroxidation (three studies, two with effects), reactive oxygen species (ROS) 
formation (one study, no effects), neutral lipid content (one study with effects), 
protein content (two studies with effects), DNA damage (one study with effects) and 
gene expression (one study with effects) (Bellingeri et al. 2019; González-Fernández 
et al. 2019; Lagarde et al. 2016; Liu et al. 2019; Mao et al. 2018; Sendra et al. 2019; 
Seoane et al. 2019; Thiagarajan et al. 2019; Zhu et al. 2019). Only one publication 
studied effects at the ecosystem level, such as bacteria concentration and commu-
nity shifts, with effects only reported for the latter (González-Fernández et al. 2019).

Overall, phytoplankton growth does not seem to be greatly impacted by micro- 
or nanoplastic exposure, for which little or no effects were reported for both fresh-
water and marine species. However, deleterious effects were seen at concentrations 
considered high. The lowest concentration at which effects on growth were reported 
was 0.001 mg/L for D. tertiolecta exposed to PS spheres (72 hrs, size range 0.1 to 
0.99 μm), even though complete growth inhibition was not achieved (Gambardella 
et  al. 2018). In this study, a dose-dependent growth inhibition was observed in 
exposed microalgae and associated with the use of energy sources in detoxi!cation 
processes, such as the generation of extracellular polysaccharides (Gambardella 
et al. 2018). Of the 25 reviewed studies, only 2 reported EC50 values for PS nano-
plastics: an EC50 value of 12.97  mg/L was recorded for the marine microalgae 
D. tertiolecta (size range 0.05–0.099  μm) (Bergami et  al. 2017), while EC50 of 
0.58 mg/L and 0.54 mg/L were obtained for freshwater microalga P. subcapitata 
(polyethyleneimine PS with different size ranges of 0.05–0.099 and 0.1–0.99 μm, 
respectively) (Casado et al. 2013). For sublethal effects, the consensus is that toxic-
ity in microalgae was in"uenced by size and surface chemistry of particles, with 
nanoplastics exerting stronger impairment than their micro-sized counterparts (e.g. 

T. Gomes et al.

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593



Bergami et al. 2017; Seoane et al. 2019; Zhang et al. 2017). PS nanoplastics, size 
range 0.05–0.99 μm, were found to induce oxidative stress in the form of ROS for-
mation (PS-NH2 and plain PS (González-Fernández et al. 2019; Sendra et al. 2019)), 
result in effects on protein and neutral lipid content, affect membrane stability, 
cause DNA damage (plain PS (Sendra et  al. 2019)), decrease pigment content 
including chlorophyll a (PS, PS-NH2 and PS-COOH (Besseling et  al. 2014; 
González-Fernández et al. 2019; Sendra et al. 2019)), alter cell size and complexity 
(PS-NH2 and plain PS (González-Fernández et al. 2019; Sendra et al. 2019)) as well 
as cause community shifts (PS-NH2 (González-Fernández et  al. 2019)) in both 
freshwater and marine microalgae. Furthermore, positively charged PS-NH2 have 
been shown to have higher interaction and toxicity than negatively charged 
PS-COOH and plain PS due to increased adhesion onto algal surfaces, with particle 
charge being recognized as the cause for the increased severity (Bergami et al. 2017; 
Chae et al. 2018; Nolte et al. 2017).

Overall, ecotoxicological data obtained for microalgae demonstrated that expo-
sure to nano- or microplastics caused a variety of cellular and biochemical effects, 
from altered expression of genes involved in metabolic pathways, to photosynthetic 
impairment and growth inhibition (e.g. Lagarde et al. 2016; Mao et al. 2018). The 
toxicity observed to microalgae seems to be dependent of many factors including 
particle size (Zhang et al. 2017), polymer type (Lagarde et al. 2016), surface chem-
istry (González-Fernández et al. 2019; Seoane et al. 2019), particle concentration 
(Mao et al. 2018), exposure time as well as targeted species (Long et al. 2017). 
Nonetheless, the environmental relevance and toxicity mechanisms of nano- and 
microplastics in microalgae remain unclear. This is mostly due to the determination 
of growth inhibition as the most common toxicological endpoint, in which the expo-
sure duration is too short, and it is not possible to clearly discriminate between 
direct toxic effects and indirect physical effects caused by particles. Limitations in 
the use of this method have also been highlighted in studies using nanomaterials, 
mostly related to particle interference with algal growth quanti!cation techniques 
(i.e. measurement chlorophyll a "uorescence) due to a shading effect (Handy et al. 
2012). The presence of particles in suspension can cause shading either by reducing 
the access of algae to light or by obstructing the "uorescence signal from the algae 
to the "uorescent detector. This shading effect will impact the accuracy of the mea-
sured "uorescence response, leading to an underestimation of chlorophyll a quanti-
!cation, thereby overestimating the overall toxic effect (Farkas and Booth 2017). In 
view of the important role that phytoplankton have in aquatic food webs, there is a 
need to develop better toxicological assays/endpoints with increased sensitivity that 
are able to reveal underlying toxic effects of plastic particles.

7.3.2.2  Cnidaria

The group Cnidaria is composed of aquatic organisms with basic body forms, swim-
ming medusae or sessile polyps, that inhabit both the freshwater and the marine 
environments, even though more predominant in the latter. Examples of cnidarians 
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are sea anemones, corals and jelly!sh. The cnidarians used in the reviewed publica-
tions were all coral species and exclusively from the marine environment. Nine 
species were represented across four studies, all from the class Anthozoa. Pocillopora 
damicornis was the only species used in more than one study. The eight other spe-
cies (Acropora formosa, A. humilis, A. millepora, Montastraea cavernosa, Orbicella 
faveolata, Pocillopora verrucosa, Porites cylindrica, P. lutea) were all used in sin-
gle studies. All Cnidaria species investigated were !lter feeders and were exposed 
to particles via water. Most studies were carried out on polyps (two studies).

Four studies have been carried out on Cnidaria investigating irregular fragments 
and beads composed of two polymer types. PE was used in three of the four studies 
(Hankins et al. 2018; Reichert et al. 2018; Syakti et al. 2019), while only one study 
used PS (Tang et al. 2018). Two studies used PE fragments (Reichert et al. 2018; 
Syakti et al. 2019), one used PE beads (Hankins et al. 2018), and the remaining 
study did not specify the morphology of PS particles used (Tang et al. 2018). In 
terms of size, one study focused on the smallest size category, 0.1 to 0.99 μm (Jia 
Tang et al. 2018); PE fragments were studied in the size range 20–49 μm (Reichert 
et al. 2018), 50–99 μm (Reichert et al. 2018; Syakti et al. 2019) and 100–199 μm 
(Reichert et  al. 2018; Syakti et  al. 2019); and one study used the size range 
200–500 μm (Syakti et al. 2019). PE beads were investigated in the size ranges 
50–99 μm, 100–199 μm, 200–500 μm and > 500 μm during a single study (Hankins 
et al. 2018).

The subcellular level was studied in one publication reporting effects on enzy-
matic activity and gene expression (Tang et al. 2018). At the individual level, two 
studies investigated and reported bleaching (Reichert et al. 2018; Syakti et al. 2019); 
one study investigated and reported effects on mucus production, tissue necrosis 
and growth (Reichert et al. 2018); one study investigated and reported mortality and 
tissue necrosis (Syakti et al. 2019); and one study investigated calci!cation but did 
not observe any effects (Hankins et al. 2018). Only one publication studied com-
munity shifts, although no effects were observed on symbiont density or symbiont 
chlorophyll content (Tang et al. 2018). Bleaching was the most common endpoint, 
with both studies detecting effects. No studies were found at the population level.

Regarding concentrations and particle size, only a single concentration (50 mg/L) 
and size (1–9  μm) was used to investigate subcellular-level effects (Tang et  al. 
2018). The effects of PS on enzymatic activity were investigated, where alterations 
in superoxide dismutase, alkaline phosphatase, catalase and glutathione S-transferase 
activity were observed throughout exposure. No effects were observed for pheno-
loxidase activity.

The reported effects at the individual level ranged from exposure to 50 mg/L to 
150 mg/L. Exposure to PE fragments increased mortality, bleaching and necrosis in 
A. formosa after 2 days of exposure at 50, 100 and 150 mg/L (size range 50 to 
500 μm (Syakti et al. 2019)), as well as in A. humilis, A. millepora, P. cylindrica, 
A. humilis, P. verrucosa and P. damicornis after 28-day exposure at 100 mg/L (size 
range 20 to 100 μm (Reichert et al. 2018)). Growth was also impaired across these 
species, but this was dependent on the size of particles used in the exposure. Mucus 
production only appeared to be affected in P. lutea also exposed to PE fragments 
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(100 mg/L, size range 20–100 μm) (Reichert et al. 2018). At the ecosystem level, 
the only observed effect was a community shift in chlorophyll content symbiont at 
12-hr exposure to PS 50 mg/L (Tang et al. 2018).

7.3.2.3  Nematoda

Nematodes, also called roundworms, are unsegmented worms found in almost 
every terrestrial and aquatic habitat. Only a single study addressed the effect of 
microplastics on nematodes (Judy et al. 2019). The nematode Caenorhabditis ele-
gans, which lives in the pore water of soils, was exposed to fragments larger than 
500 μm, produced by shredding consumer products (Judy et al. 2019). The exposure 
scenarios used organisms at the adult stage, exposed through contact with the soil 
solution, implying both dermal and trophic exposure to microplastics.

The effects of a single high concentration (5 g/kg soil dry weight) of three poly-
mer types (PE, PET, PVC) were assessed at the individual level (mortality and 
reproduction), after various contact time between soil and plastics (0, 3 and 
9  months). Increased mortality was only observed for PET incubated in soil for 
3 months, while decreased reproduction was only observed for PVC incubated in 
soil for 9 months (Judy et al. 2019).

7.3.2.4  Rotifera

Rotifers are organisms that are bilaterally symmetrical and have a microscopic size 
and unsegmented soft body, with a common distribution in both the freshwater and 
marine environments. As main components of zooplankton, these small organisms 
have an important ecological role in aquatic ecosystems. This taxonomic group was 
only represented by a single marine species, Brachionus plicatilis. Two develop-
mental stages of B. plicatilis were used in exposure studies, neonates (Gambardella 
et al. 2018; Manfra et al. 2017) and nauplii (Beiras et al. 2018), both exposed via 
water. All studies investigated the effect of microplastic spheres, either composed of 
PS (Beiras et al. 2018; Gambardella et al. 2018) or PE (Manfra et al. 2017). In terms 
of size, two studies looked at particles <0.05 μm (Gambardella et al. 2018; Manfra 
et al. 2017), one study looked at particles 0.05–0.099 μm (Manfra et al. 2017), and 
one study looked at 1–9 μm sized particles (Beiras et al. 2018). Two studies described 
the surface of the particles, Gambardella et al. (2018) used plain PS spheres, and 
Manfra et al. (2017) looked at both COOH and NH2 coated PS spheres.

All publications looked at individual-level effects, speci!cally mortality. No 
studies assessed subcellular or population-level effects and only one study consid-
ered ecosystem-level effects, speci!cally alterations in swimming speed 
(Gambardella et al. 2018). Neonates exposed to PS-NH2 spheres (0.001–50 mg/L) 
exhibited signi!cant mortality only when concentrations exceeded 10 mg/L (Manfra 
et al. 2017). On the other hand, PS-COOH spheres did not induce any effect at the 
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same concentrations (Manfra et al. 2017). In another study, nauplii exposed to PE 
spheres were only signi!cantly affected after 48 hrs of exposure, when concentra-
tions exceeded 1 mg/L (Beiras et al. 2018). Finally, PS spheres (<0.05 μm) only 
affected the swimming speed of neonates after 48-hr exposure (0.001–10 mg/L) 
(Gambardella et al. 2018).

7.3.2.5  Arthropoda

Arthropoda is the largest group of the animal kingdom, which includes invertebrate 
organisms that have an exoskeleton, a segmented body and jointed appendages. 
Arthropods are widely represented in every environmental compartment and include 
crustaceans, insects, isopods and amphipods, among others. Most of the studies 
conducted with Arthropoda (39 of 57) were in the freshwater environment, followed 
by 16 studies in the marine environment, 3 studies in terrestrial and only 1 in the 
brackish environment. Twenty-nine Arthropoda species from 5 classes, 
Branchiopoda, Entognatha, Hexanauplia, Insecta and Malacostraca, were studied: 
Acartia tonsa, Amphibalanus amphitrite, Artemia franciscana, Asellus aquaticus, 
Calanus !nmarchicus, Calanus helgolandicus, Carcinus maenas, Centropages typi-
cus, Ceriodaphnia dubia, Chironomus tepperi, Corophium volutator, Daphnia 
galeata, Daphnia magna, Daphnia pulex, Echinogammarus marinus, Eriocheir 
sinensis, Folsomia candida, Gammarus fossarum, Gammarus pulex, Hyalella 
azteca, Idotea emarginata, Lobella sokamensis, Nephrops norvegicus, Palaemonetes 
pugio, Parvocalanus crassirostris, Platorchestia smithi, Porcellio scaber, Talitrus 
saltator and Tigriopus fulvus. Fifteen of the species were Malacostraca, while there 
was only one study on Insecta (Chironomus tepperi; Ziajahromi et  al. 2018). 
Daphnia magna was by far the most used species (n = 29 publications), followed by 
Artemia franciscana (n = 4 publications). Overall, 14 species were from the marine 
environment, 11 from freshwater, 3 terrestrial and 1 from brackish water.

Most of the Arthropoda species were !lter/suspension feeders (6 species in 35 
studies). Nine studies used eight detritivores species, seven studies included seven 
grazer species, and four studies used four scavenger species. Deposit feeders (two 
species), !lter feeders (one species) and grazer and detritivores (one species) were 
represented by two publications each. Only one publication studied a predator spe-
cies, Eriocheir sinensis. Most studies were carried out on adults (27 studies) and 
neonates (23 studies), while juveniles (7 studies), nauplii (6 studies), larvae (2 stud-
ies) and 1-week-old organisms (1 study) were less studied. Five publications studied 
the whole cycle of D. magna and D. pulex. Filter/suspension feeders and predators 
were exposed via water (37 studies). On the other hand, detritivores were exposed 
via water (three studies), sediment (two studies), soil (two studies) and food (two 
studies). Grazers were also exposed via water (!ve studies), sediment and food, and 
deposit feeders were exposed via water and sediment. Lastly, scavenger organisms 
were only exposed via food (four studies).

Fourteen polymer types were studied using Arthropoda, in a total of 57 publica-
tions. PS was the most studied polymer, followed by PE (31 and 14 studies, 
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respectively). PET was represented by !ve publications, while PA, PMMA and PP 
had four each. Proprietary polymer and PVC had three and two studies, respec-
tively. All the other particle types (ABS, nylon, PC, PHB, POM and SAN) were 
represented by one study each. Most of the studies used spheres (30 and 11 using PS 
and PE, respectively), while the remaining particle shapes had less than 5 studies 
each. Regarding size, PS particles between 1–9 μm, 0.1–0.99 μm and 0.05–0.099 
were used in 13, 12 and 10 publications, respectively. Seven studies used PE parti-
cles between 20 and 49 μm. The remaining size classes were used in !ve or less 
studies. ABS, PC, PHB, POM and SAN were only studied within the size range 20 
to 49 μm. Regarding particle surface, PS-COOH was the most studied with seven 
publications, followed by PS plain and PS-NH2 with six studies each, all particles 
within the nano-scale. Particles with other surface modi!cations were used in !ve 
or less publications each.

Effects at the individual level (51 studies, corresponding to 89% of studies) were 
the most commonly determined in arthropods, followed by effects at the population 
(18 studies, 32% of studies) and subcellular, ecosystem and organ levels (11, 7 and 
5 studies, corresponding to 19%, 12% and 9% of studies). When comparing the dif-
ferent levels of biological organization, the percentage of reported effects was com-
parable to those reporting no effects. Gene expression was the most common 
endpoint determined within the subcellular level (Bergami et al. 2017; Fadare et al. 
2019; Gambardella et al. 2017; Heindler et al. 2017; Imhof et al. 2017; Lin et al. 
2019b; Liu et al. 2018, 2019; Tang et al. 2019; Yu et al. 2018; Zhang et al. 2019), 
followed by enzymatic activity and neurotoxicity (Gambardella et  al. 2017; Lin 
et al. 2019b; Yu et al. 2018) as well as oxidative stress (Lin et al. 2019b; Yu et al. 
2018; Zhang et al. 2019). Energy reserves (Cole et al. 2019; Cui et al. 2017; Kokalj 
et al. 2018; Weber et al. 2018) and alterations in hepatosomatic index (Yu et al. 
2018) were the endpoints targeted at the organ level. At the individual level, mortal-
ity (Au et al. 2015; Beiras et al. 2018; Bergami et al. 2016, 2017; Besseling et al. 
2014; Bhargava et al. 2018; Blarer and Burkhardt-Holm 2016; Booth et al. 2016; 
Bosker et al. 2019; Bruck and Ford 2018; Canniff and Hoang 2018; Casado et al. 
2013; Cole et al. 2015; Cui et al. 2017; Fadare et al. 2019; Gambardella et al. 2017; 
Gerdes et al. 2019; Gray and Weinstein 2017; Hämer et al. 2014; Horton et al. 2018; 
Imhof et al. 2017; Jemec et al. 2016; Kim et al. 2017; Kokalj et al. 2018; Lin et al. 
2019b; Liu et al. 2018; Ma et al. 2016; Mattsson et al. 2017; Nasser and Lynch 
2016; Ogonowski et al. 2016; Pacheco et al. 2018; Redondo-Hasselerharm et al. 
2018; Rehse et al. 2016, 2018; Rist et al. 2017; Tang et al. 2019; Tosetto et al. 2016; 
Ugolini et al. 2013; Vicentini et al. 2019; Weber et al. 2018; Wu et al. 2019a; Yu 
et al. 2018; Zhang et al. 2019, p. 201; Ziajahromi et al. 2017) and growth (Au et al. 
2015; Bergami et al. 2016; Besseling et al. 2014; Bruck and Ford 2018; Cole et al. 
2019; Gerdes et al. 2019; Hämer et al. 2014; Imhof et al. 2017; Jemec et al. 2016; 
Kokalj et al. 2018; Liu et al. 2019; Ogonowski et al. 2016; Pacheco et al. 2018; 
Redondo-Hasselerharm et  al. 2018; Rist et  al. 2017; Jinghong Tang et  al. 2019; 
Vicentini et al. 2019; Weber et al. 2018; Welden and Cowie 2016; Yu et al. 2018; 
Zhao et al. 2015; Zhu et al. 2018; Ziajahromi et al. 2017) were the most studied, 
alongside feeding behaviour (Blarer and Burkhardt-Holm 2016; Bruck and Ford 
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2018; Cole et al. 2013, 2019; Hämer et al. 2014; Kokalj et al. 2018; Ogonowski 
et al. 2016; Redondo-Hasselerharm et al. 2018; Rist et al. 2017; Straub et al. 2017; 
Watts et al. 2015; Weber et al. 2018; Welden and Cowie 2016; Zhu et al. 2018), 
development (Blarer and Burkhardt-Holm 2016; Ma et al. 2016; Straub et al. 2017), 
energy reserves (Watts et al. 2015; Welden and Cowie 2016), respiration rate (Cole 
et al. 2015) and gut microbial diversity (Zhu et al. 2018). Endpoints related to popu-
lation level included alterations in reproductive output (Au et al. 2015; Besseling 
et al. 2014; Bosker et al. 2019; Canniff and Hoang 2018; Cole et al. 2015; Cui et al. 
2017; de Felice et al. 2019; Heindler et al. 2017; Imhof et al. 2017; Liu et al. 2019; 
Ogonowski et al. 2016; Pacheco et al. 2018; Rist et al. 2017; Vicentini et al. 2019; 
Zhu et  al. 2018; Ziajahromi et  al. 2017, 2018), followed by larval development 
(Ziajahromi et al. 2018) and population size (Heindler et al. 2017). At the ecosystem 
level, only alterations in behaviour (e.g. swimming activity, phototactic response, 
distance and acceleration) were recorded upon exposure (Booth et al. 2016; Chae 
et al. 2018; de Felice et al. 2019; Frydkjær et al. 2017; Gambardella et al. 2017; Kim 
and An 2019; Lin et al. 2019b; Tosetto et al. 2016).

From the terrestrial species included in the ecotoxicological assessments 
reviewed, effects on feeding behaviour, growth, gut microbial diversity and repro-
duction were seen for F. candida in response to PVC (1000 mg/kg soil, size range 
80–250 μm) (Zhu et al. 2018). These effects were attributed to changes in soil struc-
ture due to the presence of microplastics that led to alterations in feeding behaviour 
and capacity to !nd high-quality food, thus in"uencing nutrient absorption (Zhu 
et al. 2018). Similar !ndings were found for L. sokamensis exposed to PE (1000 mg/
kg soil, size range 20–49 μm) and PS (4, 8 and 1000 mg/kg soil, size ranges 0.1–0.99, 
20–49 and 200–500  μm) (Kim and An 2019). In this study, springtails showed 
altered behaviour in response to microplastic movement into soil bio-pores, at lower 
concentrations and size ranges than those reported for F. candida (4 and 8 mg/kg 
soil for PS 0.1–0.99 μm compared to 1000 mg/kg soil PVC 80–250 μm). Both stud-
ies highlight that the behaviour of plastic particles in soil does not only affect the 
behaviour of soil-dwelling organisms and lead to high adverse effects (e.g. impaired 
growth and reproduction), but their presence can also have wider implications for 
effective management of soils (Kim and An 2019; Zhu et al. 2018).

Several biological endpoints have been determined in freshwater arthropods in 
response to both nano- and microplastics, with toxicity being dependent on polymer 
type (e.g. Au et al. 2015), particle size (e.g. de Felice et al. 2019), surface chemistry 
(e.g. Lin et al. 2019b) and time of exposure (e.g. Liu et al. 2019). As mentioned 
previously, the crustacean Daphnia sp. was the most used organism to assess the 
ecotoxicological effects of plastic particles via water exposure, for which acute and 
chronic toxicity has been reported for different particles. Adverse effects including 
mortality (LOEC 0.005 mg/L, PS spheres 10–19 μm (P. Zhang et al. 2019)), abnor-
mal development (adults LOEC 0.1 mg/L and offsprings LOEC 5 mg/L, PS spheres 
0.05–0.099  μm (Liu et  al. 2019 and Cui et  al. 2017, respectively)), swimming 
behaviour (LOEC 1 mg/L for PE fragments 10–19 μm, PS spheres 0.1–0.99 μm and 
PS-NH2 0.05–0.099 μm (Frydkjær et al. 2017; Lin et al. 2019b)) and reproductive 
output (LOEC 0.02 mg/L, proprietary polymer 1–9 μm (Pacheco et al. 2018)) were 
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the most commonly described. In terms of sediment exposure, the effects of PE at 
environmentally relevant concentration (500 particles/kg sediment, size range 
1–49 μm) were evaluated using the chironomid C. tepperi (Ziajahromi et al. 2018) 
after 5 and 10 days of exposure. The authors reported that exposure to PE negatively 
affected the survival, growth (i.e. body length and head capsule) and emergence of 
chironomids, with the observed effects being strongly dependent on particle size.

Ecotoxicological studies of marine arthropods showed that smaller sized plastic 
particles had a stronger impact, with surface chemistry playing a signi!cant role for 
the effects seen. This is the case of A. franciscana exposed to PS nanoplastics with 
different surface alterations, for which the lowest LOECs for different endpoints 
were recorded. Also, when comparing the long-term toxicity of PS-COOH and 
PS-NH2 (size range 0.05–0.099 μm), Bergami et al. (2017) observed a concentration- 
dependent mortality in brine shrimp after 14 days, with the latter showing a higher 
impact (EC50 = 0.83 mg/L). In addition, alteration in genes involved in moulting 
were also recorded at the lowest concentration tested of 0.01 mg/L, further suggest-
ing that the disruption of larval moulting and energy metabolism may play a role in 
the toxicity of nanoplastics towards arthropods. In another study by Gambardella 
et al. (2017), short-term exposure of A. franciscana and A. amphitrite to PS nano-
plastics (size range 0.1–0.99 μm) at low concentrations (0.001 to 10 mg/L) did not 
affect survival but impacted swimming behaviour, increased expression of catalase 
and inhibited acetylcholinesterase activity in exposed organisms. As only sublethal 
effects were observed, the authors highlight that behavioural responses seem to be 
more sensitive than mortality in plastic toxicity assessments, especially after short- 
term exposure.

Arthropoda was the most heterogeneous of the taxonomical groups assessed, 
including a wide range of species belonging to the terrestrial and aquatic compart-
ments with different developmental stages and feeding strategies. Several effects 
covering different levels of biological organization were reported, with impacts on 
feeding behaviour, growth, development, reproduction and lifespan being high-
lighted as the most signi!cant. These !ndings emphasize the need to perform long- 
term exposures covering whole cycle assessments to fully understand the magnitude 
and consequences of plastic particles to the aquatic environment. This is particu-
larly important for species belonging to zooplankton, an important food source for 
secondary consumers, as these represent a possible route by which plastic particles 
could enter food chains and be transferred up the trophic levels. In addition, a sig-
ni!cant impact on the lifespan of these organisms might have serious consequences 
in the balance of aquatic ecosystems (Botterell et al. 2018).

7.3.2.6  Annelida

The Annelida group is composed of segmented worms, such as earthworms, lug-
worms and leeches. Annelids can be found in all types of habitat, and one of their 
most important ecological roles is reworking of soils and sediments. The terrestrial 
environment was represented by nine studies (covering three species) and the 

7 Ecotoxicological Impacts of Micro- and Nanoplastics in Terrestrial and Aquatic…

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892



marine environment by seven studies (also covering three species). The marine 
environment was represented by three species belonging to the Polychaeta class: 
Arenicola marina (!ve studies), Hediste diversicolor (one study) and Perinereis 
aibuhitensis (one study). The terrestrial environment was represented by three spe-
cies of the Clitellata class: Eisenia fetida (!ve studies), Lumbricus terrestris (three 
studies) and Eisenia andrei (one study). All but one of the studies (where life stage 
was not speci!ed) used adult organisms. In the terrestrial environment, soil was 
spiked with microplastics in eight out of nine studies, the remaining study using 
spiked food (leaf litter). However, both dermal and trophic exposure can be expected 
from these two exposure scenarios, due to constant burrowing and feeding activity 
of the earthworms. For the aquatic environment, spiked sediment was also the main 
exposure scenario (six out of seven studies), with only one study using spiked water.

The most studied polymer type was PE (nine studies, Besseling et  al. 2017; 
Huerta Lwanga et al. 2016; Judy et al. 2019; Prendergast-Miller et al. 2019; Rillig 
et al. 2017; Rodríguez-Seijo et al. 2017; Rodríguez-Seijo et al. 2018a, b; Wang et al. 
2019a), followed by PS (!ve studies, Besseling et al. 2013; Cao et al. 2017; Leung 
and Chan 2018; Van Cauwenberghe et al. 2015; Wang et al. 2019a), PVC (four stud-
ies, Browne et al. 2013; Gomiero et al. 2018; Judy et al. 2019; Wright et al. 2013) 
and PET (one study, Judy et al. 2019). The morphology of the particles was not 
always provided by the authors, but when it was the case, spheres and fragments 
were the most common shapes, each covered by six studies. Interestingly in one 
study, characterization by scanning electron microscopy revealed that particles sold 
as spheres were in fact "akes (Cao et  al. 2017). Overall, particles ranging from 
below 1 μm to 5 mm were studied, with most studies focusing on particles above 
100 μm (12 out of 16 studies). When particles were prepared in the laboratory, the 
lowest and largest particle sizes were not always provided (e.g. Huerta Lwanga 
et al. 2016). None of the 16 studies on Annelida reported any surface characteriza-
tion or functionalization.

The individual level was assessed in all 16 studies on annelids, followed by sub-
cellular (9 studies), ecosystem (6 studies) and population (3 studies) levels. Only 
one study covered effects at the cellular and organ level. At the individual level, 
mortality and growth were the most studied endpoints (both covered by 10 studies), 
although being the least affected endpoints across species, environmental compart-
ments, polymer types and sizes. Mortality was never observed, except in one study 
with PS "akes at environmentally irrelevant concentrations (5 and 20 g/kg soil dry 
weight). Growth was rarely affected, and only at environmentally irrelevant concen-
trations for pristine plastic particles (from 10 g/kg PS "akes and from 4 g/kg PE 
spheres).

The lowest concentrations inducing effects at the subcellular level were observed 
for exposure to PE fragments (size classes 200–500 and > 500 μm), which increased 
protein, lipid and polysaccharide contents in earthworms at 62 mg/kg, decreased 
catalase activity at 125  mg/kg and increased lipid peroxidation at 250  mg/kg 
(Rodríguez-Seijo et al. 2017, 2018a). PS fragments of similar size (200–500 μm) 
were found to increase peroxidase activity in earthworms at 10 g/kg (the lowest 
concentration tested by Wang et  al. 2019a). In marine annelids, PVC fragments 
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(100–199 μm) induced in"ammation at 5 g/kg (the lowest concentration tested by 
Wright et al. (2013)).

At the ecosystem level, negative results were most frequently reported, e.g. no 
avoidance of PE !bres (40 × 400 μm) at up to 10 g/kg (Prendergast-Miller et al. 
2019) and PE, PET and PVC fragments (>500 μm) at 5 g/kg (Judy et al. 2019) by 
earthworms and no effect of PE spheres (particle size distribution ranging from 
<50 μm to >100 μm) at up to 12 g/kg on burrow formation by earthworms (Huerta 
Lwanga et al. 2016). The only effects seen were on the feeding activity of marine 
annelids, where PVC fragments (100–199 μm) at 10 and 50 g/kg increased the feed-
ing activity of Arenicola marina (Wright et al. 2013).

Overall, the data on the ecotoxicological effects of plastic particles on Annelida 
is very limited but seem to suggest a moderate to low risk to these organisms. One 
of the reasons could be linked to the ecological traits of annelids, adapted to con-
tinuously ingest vast amounts of non-nutritious particles, through their burrowing 
and feeding activities. It should also be noted that the absence of avoidance behav-
iour and detrimental effects on annelids make them ef!cient vectors of plastic par-
ticles not only to their predators but also to the whole ecological compartment, due 
to their intense bioturbation activity.

7.3.2.7  Mollusca

The Mollusca group includes several ecologically and commercially important !lter 
feeders (e.g. mussels and clams) that due to their habitat and feeding behaviour are 
likely to encounter plastic particles of varying sizes. Most of the studies for Mollusca 
focused on marine species (29 studies, 13 species), followed by freshwater (6 stud-
ies, 4 species) and terrestrial species (a single study, 1 species). The 17 species 
belonged to 2 classes, Bivalvia and Gastropoda: Abra nitida, Achatina fulica, 
Corbicula "uminea, Crassostrea gigas, Dreissena polymorpha, Ennucula tenuis, 
Meretrix meretrix, Mytilus edulis, Mytilus galloprovincialis, Mytilus sp., Ostrea 
edulis, Perna perna, Perna viridis, Pinctada margaritifera, Potamopyrgus antipo-
darum, Scrobicularia plana and Sphaerium corneum. The most commonly studied 
species was the mussel M. galloprovincialis (in 11 studies). Most of the species 
used were !lter feeding (13 species in 33 studies), followed by grazer species (2 
species in 2 studies), while only 1 study used deposit feeders (2 species). Most stud-
ies were carried out on adults (28 studies), with 7 studies using larvae, 4 studies 
embryos, 2 studies gametes and 1 study juveniles. Filter-feeding organisms were 
exposed mainly via water (28 studies) and 1 via water plus muddy sediment. For 
these organisms, two studies used exposure via food and two studies via sediment. 
The deposit feeders were exposed via sediment, while the grazers via food and soil.

For Mollusca, 36 studies looked at the effects of 9 different polymers, with PS 
being the most studied polymeric material (total 20 studies). Overall, 12 studies 
used PE and 4 studies used PVC and PET. There were two studies for PLA and two 
for proprietary polymer, while all the other polymers (PA, PC and PP) only had one 
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study each. Most of the studies were performed with PS spheres (n = 14), followed 
by PE and PS fragments (eight and three studies, respectively). Two studies used 
PET !bres and spheres of proprietary polymer, while the remaining morphologies 
only had one study each. Regarding size, the highest number of studies (12 in total) 
used PS particles between 1 and 9 μm. Studies with PE particles used size ranges of 
20–49 μm and 50–99 μm with !ve studies each, along with PS particles with sizes 
0.1–0.99 μm, 20–49 μm and 20–49 μm. All the other particle size distributions had 
less than !ve studies each. Only studies using PS particles reported particle surface 
information, for which four studies used PS-NH2, three studies used plain and 
COOH and one used PS with sulphate groups, where all particles were within the 
nano-scale. Most of the reviewed studies only reported effects for particles above 
1 μm, with only a small number showing impacts with particles within nano-range, 
more speci!cally PS and PE. This is the re"ection of the size-dependent threshold 
commonly associated with the particle-selection feeding behaviour characteristic of 
most of the species included in this taxonomical group (Van Cauwenberghe and 
Janssen 2014; Wegner et al. 2012).

In terms of levels of biological organization, effects at the subcellular (23 stud-
ies, with 18 reporting effects) and individual level (22 studies, with 12 reporting 
effects) were the most studied. There was only one study at an ecosystem level 
(reporting effects) but 11 analysing effects at the population level (7 with observed 
effects). Overall, 11 studies analysed effects on organs (with 6 reporting effects) and 
7 in cells (6 reporting effects). The most studied endpoint was related to impacts in 
feeding behaviour (15 studies), with 9 reporting signi!cant effects related to !ltra-
tion and ingestion rate, absorption and assimilation ef!ciency (Capolupo et  al. 
2018; Cole and Galloway 2015; Gardon et al. 2018; Green 2016; Guilhermino et al. 
2018; Oliveira et al. 2018; Revel et al. 2019; Rist et al. 2016, 2019; Rochman et al. 
2017; Santana et al. 2018; Song et al. 2019; Sussarellu et al. 2016; Wegner et al. 
2012; Woods et al. 2018). Endpoints related to oxidative stress were the second 
most common endpoint, with 14 studies, 8 of which showing impacts on lipid per-
oxidation, formation of reactive oxygen species and total oxyradical scavenging 
capacity (Avio et al. 2015; Brandts et al. 2018b; Gonçalves et al. 2019; González- 
Fernández et al. 2018; Guilhermino et al. 2018; Magni et al. 2018; Oliveira et al. 
2018; Paul-Pont et al. 2016; Revel et al. 2019; Ribeiro et al. 2017; Santana et al. 
2018; Song et al. 2019; Sussarellu et al. 2016; von Moos et al. 2012). In combina-
tion with oxidative stress, alteration in enzymatic activity was also one of the main 
endpoints determined in molluscs (reported in 12 studies), with 10 studies showing 
alterations to antioxidant enzymes (Avio et al. 2015; Brandts et al. 2018b; Franzellitti 
et  al. 2019; Gonçalves et  al. 2019; Guilhermino et  al. 2018; Magni et  al. 2018; 
Oliveira et al. 2018; Paul-Pont et al. 2016; Pittura et al. 2018; Revel et al. 2019; 
Ribeiro et al. 2017; Song et al. 2019). Alterations in gene expression were also a 
common endpoint in most of the reviewed studies (12 studies), with 10 reporting 
up- and downregulation of genes involved in different metabolic pathways as detox-
i!cation, immunity, apoptosis, energy reserves, etc. (Avio et al. 2015; Balbi et al. 
2017; Brandts et  al. 2018a; Capolupo et  al. 2018; Détrée and Gallardo-Escárate 
2017, 2018; Franzellitti et al. 2019; Paul-Pont et al. 2016; Pittura et al. 2018; Revel 
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et al. 2019; Rochman et al. 2017; Sussarellu et al. 2016). Histopathological altera-
tions were also included in some of these studies to understand the effects of particle 
ingestion in different organs (total nine studies), with !ve studies reporting altera-
tions in the gills and digestive glands of exposed organisms (Bråte et  al. 2018; 
Gardon et al. 2018; Gonçalves et al. 2019; Guilhermino et al. 2018; Paul-Pont et al. 
2016; Revel et al. 2019; Rochman et al. 2017; Song et al. 2019; von Moos et al. 
2012). Five out of eight studies reported signi!cant genotoxicity of the plastic par-
ticles used, expressed as DNA damage or micronuclei formation (Avio et al. 2015; 
Brandts et al. 2018a; Bråte et al. 2018; Magni et al. 2018; Pittura et al. 2018; Revel 
et al. 2019; Ribeiro et al. 2017; Santana et al. 2018). Seven studies also analysed the 
neurotoxicity of particles, with six reporting signi!cant alterations in acetylcholin-
esterase activity (Avio et al. 2015; Brandts et al. 2018a; Guilhermino et al. 2018; 
Magni et al. 2018; Oliveira et al. 2018; Pittura et al. 2018; Ribeiro et al. 2017). 
Several endpoints related to population effects were determined in molluscs, most 
of which related to fecundity (six studies, Gardon et al. 2018; González-Fernández 
et  al. 2018; Imhof and Laforsch 2016; Luan et  al. 2019; Sussarellu et  al. 2016; 
Tallec et  al. 2018), offspring viability (one study, Capolupo et  al. 2018), larval 
development (seven studies, Balbi et al. 2017; Beiras et al. 2018; Cole and Galloway 
2015; Luan et al. 2019; Rist et al. 2019; Sussarellu et al. 2016; Tallec et al. 2018) 
and juvenile development (one study, Imhof and Laforsch 2016). Of these end-
points, only those related to fecundity (e.g. fertilization yield, gamete quality hatch-
ing rate, etc.) and larval development showed a signi!cant effect. General health 
endpoints including growth (eight studies, Détrée and Gallardo-Escárate 2018; 
Gardon et al. 2018; Green 2016; Imhof and Laforsch 2016; Redondo-Hasselerharm 
et al. 2018; Rist et al. 2019; Santana et al. 2018; Song et al. 2019), energy reserves 
(!ve studies, Avio et al. 2015; Bour et al. 2018; Brandts et al. 2018a; Pittura et al. 
2018; von Moos et al. 2012), condition index (six studies, Bour et al. 2018; Revel 
et al. 2019; Ribeiro et al. 2017; Santana et al. 2018; Sussarellu et al. 2016; von Moos 
et al. 2012), respiration rate (three studies, Gardon et al. 2018; Green 2016; Rist 
et al. 2016) and scope for growth (one study, Gardon et al. 2018) were also included 
in several studies; however, these were the less sensitive endpoints, where only one 
to two studies reported a signi!cant effect.

Of the four freshwater species used in the studies reviewed, signi!cant impacts 
were only recorded for D. polymorpha exposed to PS (1–9  μm, LOEC 50000 
particles/L) (Magni et al. 2018) and C. "uminea following exposure to a proprietary 
polymer (1–9 μm, LOEC 0.13 mg/L) (Guilhermino et al. 2018; Oliveira et al. 2018), 
as well as PET, PE, PVC and PS fragments (Rochman et al. 2017). In the study by 
Rochman et al. (2017), C. "uminea was exposed to environmental concentrations 
and sizes of PET, PE, PVC and PS fragments (sizes range 50 to >500  μm) for 
28 days, after which histopathological alterations were recorded (LOEC 2.8 mg/L). 
The authors highlight that the effects observed in exposed clams were speci!c to the 
polymer type used.

Several ecotoxicological effects across the different levels of biological organi-
zation were recorded for marine molluscs. Interestingly, mortality was one of the 
least sensitive endpoints in organisms exposed either via sediment or water, even at 
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very high concentrations. Only Rist et al. (2016) reported substantial mortality in 
P. viridis exposed to PVC after 91 days of exposure (size range 1–49 μm, 2160 mg/L); 
however, no signi!cant statistical differences were found compared to the control 
condition. Mussels belonging to the genus Mytilus were the most used marine spe-
cies used in the reviewed studies, for which a wide range of biological endpoints 
were determined. The biological endpoints for which signi!cant effects were 
recorded included byssus production and immunity de!ciency (LOEC 0.025 mg/L, 
PE fragments >500 μm) (Green et al. 2019), mortality, concentration and phago-
cytic activity of circulation haemocytes, histopathological alterations, ROS produc-
tion and lipid peroxidation (LOEC 0.032  mg/L, PS spheres 1–9  μm) (Paul-Pont 
et  al. 2016), antioxidant enzymatic activity and genotoxicity (LOECs of 
0.000008  mg/L and 0.01  mg/L, respectively, mixture PE and PP fragments, 
200–500 μm) (Revel et al. 2019), feeding behaviour (LOEC 3000 particles/L, PET 
!bres 200 to >500 μm) (Woods et al. 2018), alterations in gene and protein expres-
sion, growth (LOEC 0.03 mg/L, PE and PLA fragments 1 to 50 μm) (Détrée and 
Gallardo-Escárate 2018), larval malformations (LOEC 0.00042 mg/L, PS spheres, 
1–9 μm) (Rist et al. 2019), lysosomal membrane stability (LOEC 1500 mg/L, PE 
and PS fragments size range from <0.05 to 99 μm) (Avio et al. 2015) and neurotox-
icity (LOEC 0.05 mg/L, PS spheres 0.1–0.99 μm) (Brandts et al. 2018b).

The gastropod A. fulica was the only terrestrial species in the ecotoxicological 
studies reviewed, for which effects were recorded following 28 days of exposure to 
PET !bres (length 1260 μm, diameter 76 μm) at concentrations ranging from 14 to 
710 mg/kg sediment (Song et al. 2019). The authors reported alterations in feeding 
behaviour (LOEC 14 mg/kg sediment) upon exposure that resulted in histopatho-
logical alterations in the gastrointestinal tract (LOEC 140 mg/kg sediment) and oxi-
dative stress in the liver (LOEC 710 mg/L).

Mollusca was the taxonomical group for which a wider range of biological end-
points were determined. Overall, the reviewed data highlighted that acute and 
chronic toxicity of plastic particles in molluscs seem to be dependent not only on 
particle characteristics such as polymer type (Avio et  al. 2015; Rochman et  al. 
2017), concentration range (Gardon et al. 2018; Rochman et al. 2017), particle size 
(Tallec et al. 2018) and surface chemistry (Cole and Galloway 2015; Luan et al. 
2019) but also on organism-speci!c traits such as developmental stage (Balbi et al. 
2017; Rist et al. 2019) and tissue analysed (Brandts et al. 2018b; Revel et al. 2019; 
Ribeiro et al. 2017). Furthermore, the reviewed !ndings further emphasize the need 
to conduct studies with freshwater and terrestrial species, especially when consider-
ing their higher risk of exposure to plastic particles. It is also worth mentioning that 
this taxonomical group includes many !lter-feeding species with a high tendency 
for particle retention, thus representing a possible source of transfer across higher 
trophic levels and potentially to humans.
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7.3.2.8  Echinodermata

Echinoderms are exclusively marine invertebrate species that have a widespread 
distribution throughout the ocean. These organisms inhabit a diverse array of cold 
water and tropical ecosystems including habitats from coastal, intertidal zones to 
offshore, as well as deep water areas. Common echinoderms include sea cucum-
bers, star!sh and sea urchins. Four microplastic ecotoxicology studies were 
reviewed for echinoderms representing the marine environment. Sea urchin species 
were used in all studies: Paracentrotus lividus was used in three studies (Beiras 
et al. 2018; Della Torre et al. 2014; Messinetti et al. 2018), while Tripneustes gra-
tilla was used in one study (Kaposi et al. 2014). Early life stages of sea urchins were 
used for all studies (larvae/embryo (Beiras et  al. 2018; Della Torre et  al. 2014; 
Messinetti et al. 2018)). All studies with echinoderms were performed via water 
exposure. Reviewed studies used PS (two studies) and PE (two studies) micropar-
ticles. Experimental studies on echinoderms varied with PS with two different sur-
face charges being used at the 40–50  nm size range and 10  μm PS spherical 
microparticles. PE of similar size ranges similar as natural food of zooplankton 
organisms (1–500  μm) were also used, as well commercial PE ranging from 10 
to 45 μm.

The individual level was studied in all four studies and one study included end-
points at the cellular level (Della Torre et al. 2014). The effects of carboxylated PS 
(PS-COOH) and amine PS (PS-NH2) nanoplastics were used to evaluate embryo-
toxicity in P. lividus, speci!cally disposition, embryo development and gene expres-
sion. No embryotoxicity was observed for PS-COOH which formed microaggregates 
and was anionic up to 50 μg/mL. However, PS-NH2, which was better dispersed and 
cationic, caused developmental defects (EC50 3.85 μg/mL 24 hours post fertilization 
and EC50 2.61 μg/mL 48 hours post fertilization). These !ndings suggest that sur-
face charge and particle aggregation dynamics in seawater in"uence embryotoxic-
ity. Collectively, the !ndings of Della Torre et al. (2014) highlight the importance of 
different aggregation states and surface properties of nanoplastics and how they lead 
to differences in uptake, exposure and disposition routes and overall impacts.

The effects of ingesting microplastics in larval T. gratilla were proportionally 
related to the concentration of PE microspheres and ingestion was reduced in the 
presence of biological fouling and phytoplankton food. An unrealistically high con-
centration of PE microspheres (300 spheres/mL) affected larval growth with no 
signi!cant effect on survival observed. Conversely, at environmentally realistic con-
centrations, there was little effect observed on growth or survival (Kaposi et al. 2014).

The planktotrophic larvae of P. lividus were utilized to evaluate the effects of PS 
microbeads on juvenile development. P. lividus larvae were able to ingest micro-
plastics, albeit at a lower rate, in comparison to the sessile !lter-feeding ascidian 
(Ciona robusta) juveniles. No effect of PS microbeads, at any concentration (con-
trol vs. 0.125, 1.25, 12.5 and 25 μg/mL), was observed on larval survival, whereas 
growth was negatively affected, with shorter larvae observed in the 25 μg/mL treat-
ment (Messinetti et al. 2018).
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7.3.2.9  Chordata: Fish

Marine and freshwater environments are evenly represented in !sh studies, with 19 
and 20 studies, respectively. Overall, 18 different species were used in !sh studies 
(Acanthochromis polyacanthus, Acanthurus triostegus, Bathygobius krefftii, 
Carassius carassius, Clarias gariepinus, Cyprinodon variegatus, Danio rerio, 
Dicentrarchus labrax, Lates calcarifer, Oncorhynchus mykiss, Oreochromis niloti-
cus, Oryzias latipes, Oryzias melastigma, Pimephales promelas, Pomatoschistus 
microps, Sparus aurata, Symphysodon aequifasciatus). The most commonly stud-
ied species is the zebra!sh D. rerio (12 studies, corresponding to 26% of studies). 
The European seabass (D. labrax) and the common goby (P. microps) are the most 
commonly studied marine species (six studies, 13% of studies each). Most studies 
were carried out on embryo/larvae (11 studies, 28% of studies) or juvenile (16 stud-
ies, 41% of studies) !sh, while studies on adult !sh only represent 18% of the stud-
ies (7 studies). Six studies did not report the developmental stage of the test species.

Fish exposure to microplastics was performed either directly via water (27 stud-
ies, 69% of studies) or via the trophic route (13 studies, 33% of studies). For the 
later, two main methods are found in the literature. The !rst method consists in 
exposing living prey to microplastics then feeding them to !sh (Cedervall et  al. 
2012; Mattsson et al. 2015, 2017; Skjolding et al. 2017; Tosetto et al. 2017). The 
second method consists in spiking arti!cial food with known concentrations of 
microplastics and feed it to !sh (Ašmonaitė et  al. 2018a, b; Caruso et  al. 2018; 
Granby et al. 2018; Jovanović et al. 2018; Mak et al. 2019; Mazurais et al. 2015; 
Rochman et al. 2013). While the !rst method is more representative of trophic inter-
actions in the environment, microplastic ingestion by living prey is not a controlled 
parameter, and spiking arti!cial food therefore offers better control of exposure 
concentrations. The numbers of studies reporting adverse effects, as well those 
reporting an absence of effect, are similar for marine and freshwater environments 
and for the different exposure routes. This suggests that these parameters are not 
likely to in"uence the occurrence of effects in !sh following exposure to 
microplastics.

More than 92% of studies conducted on !sh species used PS (45% = 18 studies) 
or PE (47.5% =15 studies) microplastics. Commercially available (micro)spheres 
are the most represented particle morphology and are used in 56% of the studies (22 
studies). Undetermined fragments are used in 46% of the studies (18 studies), and 
close to 13% of the studies (5 studies) did not disclose particle morphology. Four 
studies used microplastics produced by grinding larger plastic items (Caruso et al. 
2018; Choi et al. 2018; Lei et al. 2018b). A broad range of particle sizes have been 
tested, with the vast majority of studies using microplastics comprised between 0.1 
and 500 μm. Most studies investigating the effects of microplastics presenting dif-
ferent properties compared different particle sizes: 49% (19 studies) studied micro-
plastics presenting different sizes, while only one and two studies compared 
microplastic morphology and polymer type, respectively.

In !sh studies, the subcellular level is the most frequently studied level of bio-
logical organization (23 studies, 59% studies), followed by the individual, 
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ecosystem, organ and population levels, respectively (16, 16, 13 and 8 studies, 
respectively, corresponding to 41%, 41%, 33% and 21% of studies). For each orga-
nization level, all the studied endpoints were listed and sorted as “impacted” or “not 
impacted” following exposure to microplastics. For most organization levels, the 
numbers of endpoints not impacted are very close to the numbers of impacted end-
points. At cellular and subcellular levels, oxidative stress is the main endpoint stud-
ied (Ašmonaitė et al. 2018a; Chen et al. 2017; Choi et al. 2018; Ding et al. 2018; 
Ferreira et al. 2016; Karami et al. 2017; LeMoine et al. 2018; Luís et al. 2015; Mak 
et al. 2019; Oliveira et al. 2013; Rochman et al. 2013; Wang et al. 2019c), as well as 
lipid peroxidation (Barboza et al. 2018; Ding et al. 2018; Ferreira et al. 2016; Fonte 
et al. 2016; Oliveira et al. 2013; Wen et al. 2018a), immune and/or in"ammatory 
responses (Brandts et al. 2018a; Choi et al. 2018; Granby et al. 2018; Mazurais et al. 
2015), neurotoxicity (Barboza et al. 2018; Ding et al. 2018; Ferreira et al. 2016; 
Fonte et al. 2016; Luís et al. 2015; Oliveira et al. 2013; Rainieri et al. 2018), energy 
production (Barboza et al. 2018; Oliveira et al. 2013; Wen et al. 2018a), endocrine 
disruption (Wang et al. 2019c) and gut tight junctions proteins, as well as active 
transport through gut (Ašmonaitė et al. 2018b). At the organ level, most studies 
focus on histological changes (Ašmonaitė et al. 2018b; Choi et al. 2018; Jovanović 
et al. 2018; Karami et al. 2016, 2017; Lei et al. 2018b; Mak et al. 2019; Rainieri 
et al. 2018; Rochman et al. 2013; Wang et al. 2019c), but other endpoints were also 
studied, such as intestine permeability (Ašmonaitė et al. 2018b; Jovanović et al. 
2018), blood and plasma chemistry and metabolite concentrations (Jovanović et al. 
2018; Mattsson et al. 2015, 2017), brain weight and water content (Mattsson et al. 
2015, 2017), liver glycogen (Karami et al. 2016; Rochman et al. 2013), lipid metab-
olism (Cedervall et al. 2012) and gut microbiota (Caruso et al. 2018; Jin et al. 2018). 
Endpoints studied at the population level comprise !sh fecundity (e.g. number of 
eggs laid and hatching rate) (Cong et al. 2019; LeMoine et al. 2018; Wang et al. 
2019c), embryo survival and development (Batel et al. 2018; Pitt et al. 2018) and 
larval survival, development and behaviour (Chen et  al. 2017; Choi et  al. 2018; 
Malinich et al. 2018). Endpoints at the ecosystem levels relate to behaviour and 
include feeding behaviour (e.g. feeding time, foraging, predatory performance), 
environment exploration and !sh locomotion (Cedervall et  al. 2012; Choi et  al. 
2018; Critchell and Hoogenboom 2018; de Sá et al. 2015; Ferreira et al. 2016; Fonte 
et al. 2016; Guven et al. 2018; Jacob et al. 2019; Luís et al. 2015; Mak et al. 2019; 
Malinich et al. 2018; Mattsson et al. 2017; Pitt et al. 2018; Skjolding et al. 2017; 
Tosetto et al. 2017; Wen et al. 2018a). Contrary to the above-described levels of 
biological organization, for which the numbers of impacted and non-impacted end-
points are similar, at the individual level more studies report an absence of effects 
(11 studies) than the observation of adverse effects (3 studies) following microplas-
tic exposure. Mortality was reported for medaka larvae exposed to PS sphere 
(10  μm, 100,000 part./L) for 14  days (Cong et  al. 2019) and for juvenile goby 
exposed to PE spheres (1–5 μm, 184 μg/L) for 4 days (Fonte et al. 2016), and weight 
loss was observed in crucian carp exposed to PS nano-spheres via trophic chain for 
42 days (Cedervall et al. 2012). Other studies investigating !sh mortality, growth or 
body condition reported an absence of effect (Critchell and Hoogenboom 2018; 
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Ding et al. 2018; Granby et al. 2018; Jovanović et al. 2018; Karami et al. 2017; Lei 
et al. 2018b; LeMoine et al. 2018; Mazurais et al. 2015; Oliveira et al. 2013; Wen 
et al. 2018a, b;), and in one case reported mortality only at the highest concentration 
test (PMMA nano-spheres, 20 mg/L) (Brandts et al. 2018a).

7.3.3  Species Sensitivity Distributions

Species sensitivity distributions (SSDs) are a common approach used in environ-
mental protection, risk assessment and management practices to describe interspe-
cies sensitivity and estimate community-level risks for a speci!c stressor. An SSD 
is derived by !tting a selected statistical model, in this case a lognormal distribution, 
to available ecotoxicity effect data for species from different taxonomical groups, 
after which predictions of the % of species affected can be calculated (Posthuma 
et al. 2019). The SSD captures the interspecies variability, which can then be used 
to derive key risk assessment components, such as the concentration at which 5% of 
the species in an ecosystem can be affected. This key regulatory parameter is com-
monly known as the “hazardous concentration for 5% of the species” or HC5 and is 
normally used to derive environmental quality criteria standards (Besseling et al. 
2019; Burns and Boxall 2018 and references therein). Even though this approach is 
commonly used to assess the risk of other environmental chemicals, only recently it 
has been applied to both microplastic and nanoplastic data (Adam et  al. 2019; 
Besseling et al. 2019; Burns and Boxall 2018; Everaert et al. 2018; VKM 2019).

With the ecotoxicological data collected from the reviewed publications, three 
SSDs for microplastic were investigated for water, sediment/soil and food exposure 
routes, after which the HC5 corresponding to concentrations expressed in mass and 
particle number when available were estimated (Fig.  7.6). However, the lack of 
ecotoxicological data for species covering the different environmental compart-
ments limited the applicability of SSDs in this case, thus decreasing the overall 
success of the hazard assessment of microplastics and nanoplastics. SSDs are as 
robust as the quality of their ecotoxicological data, and usually at least 12 different 
species are considered a minimum for !tting an SSD (Posthuma et  al. 2019). 
Accordingly, even though a total of 107 species covering key taxonomical groups 
were comprehensibly assessed in the 175 publications reviewed, only 12–58 were 
used to build the SSDs. This represents a subset of the total data, depending on the 
availability of data for the exposure matrix (water or sediment/soil) and the expo-
sure quanti!cation (mass or particles).

As the total microplastic toxicity data on freshwater and marine environments is 
still limited, information collected on marine, freshwater and terrestrial species 
were combined according to exposure route (water, sediment/soil and food) to 
increase the number of feeding strategies and trophic levels included in the SSDs, 
thus increasing statistical power. No distinction was made between particle charac-
teristics due to insuf!cient data within a certain particle size and polymer type. In 
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addition, only data pertaining to individual and population levels were considered 
(e.g. mortality, growth, reproduction), for which both NOECs and EC50/LC50 values 
were used.

The poor standardization in terms of reporting of experimental conditions was 
another factor in"uencing the construction of SSDs. For example, the lack of infor-
mation on exposure concentrations expressed in mass and particle number further 
limited the usable data sets. Dose metrics were standardized to either mass- or 
particle- based concentrations. When it was not possible to perform this conversion, 
the studies were excluded from the SSD !tting. Most of the excluded studies were 
for exposure via food (e.g. !sh), leaving insuf!cient data available to construct 
SSDs, as only 6 and 3 data points were available (for mass concentration and 

Fig. 7.6 Species sensitivity distributions (SSDs) for (a) species exposed via the water phase with 
data divided by particle concentration expressed as mass (mg/L) (n = 58); (b) species exposed via 
the water phase with data divided by particle concentration expressed as particle number (million 
particles/L) (n = 31); and (c) species exposed via the sediment and soil phase with data shown only 
for particle concentration as mass number (mg/kg) (n = 12). The average SSDs are plotted as solid 
black lines, and the 95% credible interval as grey ribbon. The HC5 (concentration at which 5% of 
the species are affected) is represented as a red point in combination with the 95% credible inter-
vals. Taxonomic groups are represented in different colours, with the different habitats divided by 
shape and where size re"ects the number of studies included
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particle concentration, respectively). Overall, tentative SSDs re"ecting the com-
bined variability of species sensitivity, plastic properties and effect mechanisms 
were only constructed for water exposure as a function of particle dosage (both 
mass and number) and sediment/soil exposures as a function of particle dosage 
(mass only). Due to insuf!cient data, the particle-based sediment exposure route 
and the entire dietary exposure route were excluded from the SSD analyses. The 
SSD for mass-based water exposure was !tted to data from 101 studies, covering 58 
species across 7 taxonomic groups and 2 habitats. Its particle-based counterpart was 
!tted to data from 39 studies, covering 31 species across 7 taxonomic groups and 2 
habitats. For the mass-based sediment exposure route, the SSD was !tted to data 
from 17 studies, covering 12 species across 4 taxonomic groups and 3 habitats; note 
that in terms of species coverage, this is considered a minimum acceptable coverage.

The separately constructed SSDs for organisms exposed via water and sediment/
soil (expressed in mass and particle number) are shown in Fig. 7.6. Of the studies 
where concentrations were expressed by particle mass, microalgae species were the 
most and least sensitive species to exposure via the water phase (Fig. 7.6a). The 
most sensitive species was the marine microalgae C. neogracile (PS-NH2 spheres, 
<1 μm), (González-Fernández et al. 2019), while the most sensitive freshwater spe-
cies was the clam C. "uminea (proprietary polymer, 1–9 μm) (Oliveira et al. 2018). 

Fig. 7.6 (continued)
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The least sensitive freshwater species was M. "os-aquae (PVC and PP, 100–199 μm) 
(Wu et al. 2019b), while the cnidarian A. formosa was the least sensitive marine 
species (PE fragments, size range 50 to 500 μm (Syakti et al. 2019). The derived 
HC5 for this SSD was 28.9 μg/L (95% CI 7.94–79.1 μg/L). For the water exposure 
SSD built with data expressed in terms of particle number (Fig. 7.6b), the cnidarians 
M. cavernosa and O. faveolata were the most sensitive species (PE beads, >50 μm 
(Hankins et  al. 2018)), while the least sensitive was the freshwater microalgae 
Chlorella sp. (Thiagarajan et  al. 2019). The derived HC5 for this SSD was 41.6 
particles/L (95% CI 0.58–1176 particles/L). For exposures either via sediment or 
soil (Fig. 7.6c), the SSDs obtained for particle concentration in mass showed that 
the most sensitive species were the marine clams A. nitida and E. tenuis (PE frag-
ments >1 μm) (Bour et al. 2018), followed by the terrestrial annelid L. terrestris (PE 
spheres <1 to >500 μm) (Huerta Lwanga et al. 2016). The least sensitive species 
were the freshwater snail S. corneum (PS fragments >20 μm (Redondo-Hasselerharm 
et  al. 2018)) and the freshwater arthropod H. azteca (PE and PS fragments 
10–500 μm) (Au et al. 2015; Redondo-Hasselerharm et al. 2018). The derived HC5 
for this SSD was 11.3  mg/kg (95% CI 0.18–151  mg/kg). As mentioned above, 

Fig. 7.6 (continued)
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construction of an SSD for particle-based sediment exposure was not possible due 
to lack of suf!cient data.

The mass-based water exposure HC5 value (28.9 μg/L) obtained in the present 
review is higher than that previously reported for microplastics (0.08–5.4  μg/L) 
(Table 7.2). The main reason for this difference is the inclusion of a higher number 
of species covering multiple taxonomical groups. On the other hand, the particle 
number-based HC5 value was 41.6 particles/L, which is within the range provided 
by the VKM (2019) assessment. Even though this estimate included a larger data set 
(31 species) than other assessments, the number of studies that provide particle 
concentrations in number is still quite limited. No other HC5 values expressed in 
mg/kg exist in literature for comparison.

Even though the SSDs presented here are more robust as they are based on larger 
data sets and add to the existing SSDs in literature, several knowledge gaps still 
need to be addressed to reduce uncertainties and improve the robustness and rele-
vance of the obtained results (Besseling et al. 2019; Burns and Boxall 2018). For 
this reason, ecotoxicity testing of relevant particle sizes, shapes and polymer types, 

Table 7.2 – HC5 values obtained from species sensitivity distribution analysis collected from 
literature

HC5 (μg/L) HC5 (particles/L)
HC5 
(mg/kg) Notes References

28.9 
(7.94–79.1)

41.6 
(0.58–1176)

11.3a 
(0.18–
151)

Freshwater and marine species 
exposed to micro- and 
nanoplastics via water and 
sediment/soil

Present review

0.14 
(0.04–0.64)

71.6 
(3.45–1991)

– Freshwater and marine species 
exposed to micro- and 
nanoplastics

VKM (2019)

0.08 
(0.04–0.11)

740 (610–1300) – Freshwater species exposed to 
microplastics. 25–75 percentile 
was used instead of con!dence 
interval

Adam et al. 
(2019)

5.4 
(0.93–
31 mg/L)

5.97 × 1010 (1.6 
× 1010–22 × 1010)

– Marine and freshwater species 
exposed to nanoplastics

Besseling et al. 
(2019)

1.67 
(0.086–
32.6)

1015 
(101–10,223)

– Marine and freshwater species 
exposed to microplastics

– 64,000 – Marine and freshwater species 
exposed to microplastics (10 to 
5000 mm)

Burns and Boxall 
(2018)

– 33.3 
(0.36–13,943)

– Marine species exposed to 
microplastics

Everaert et al. 
(2018)

– 3214 
(3.3900–84,261)

– Marine species exposed via water 
and sediment to microplastics

Van 
Cauwenberghe 
(2016)

aNote that the HC5 value for mass-based sediment exposure is derived from a minimum of neces-
sary data and needs to be interpreted with caution
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standardized testing, improved reporting of experimental designs, methods and 
results, as well as a higher focus on freshwater and terrestrial compartments, need 
to be prioritized in order to enable a sound risk assessment of plastic particles in the 
environment.

7.3.4  Direct and Indirect Effects at the Ecosystem/
Community Level

Cascading effects through different levels of biological organization is a central 
paradigm of ecotoxicology: contaminant-induced subcellular changes, such as 
enzymatic activity or gene expression, can impact higher levels of organization and 
affect organism’s performance (e.g. locomotion, feeding, reproduction). These 
alterations might impact an entire population and could ultimately have conse-
quences at the ecosystem level. With that said, directly linking effects at the lowest 
levels of biological organization to impacts on ecosystems is extremely challenging 
for any environmental contaminant (Galloway et al. 2017). The data currently avail-
able on nano- and microplastic ecotoxicity does not allow !rm conclusions to be 
drawn about such links. However, certain endpoints observed at the individual level 
are indicators of potential indirect effects on other species and/or on the functioning 
of ecosystems. Such endpoints are therefore categorized as endpoints relevant at the 
ecosystem level. For example, behavioural changes at the individual level can affect 
prey-predator interactions (Fonte et al. 2016; Wen et al. 2018a) and impact entire 
trophic webs, or impaired burrowing activity of dwelling organisms can alter biotur-
bation and soil/sediment oxygenation (Green et  al. 2016). Changes in microbial 
activity can also result in altered essential ecosystem processes, such as nutrient 
cycling (e.g. nitrogen and carbon cycles) (Green et al. 2017).

Among the studies reviewed in this chapter, endpoints relevant at the ecosystem 
level were most studied on three taxonomical groups: Annelida, Arthropoda and 
Chordata. The recorded endpoints were related to behaviour: feeding activity 
(Besseling et al. 2013, 2017; Browne et al. 2013; Cedervall et al. 2012; Green et al. 
2016; Guven et al. 2018; Malinich et al. 2018; Mattsson et al. 2017; Wright et al. 
2013), burial and burrow formation (Booth et al. 2016; Huerta Lwanga et al. 2016), 
cast production (Green et  al. 2016; Prendergast-Miller et  al. 2019), locomotion 
(Chae et al. 2018; Choi et al. 2018; Critchell and Hoogenboom 2018; de Felice et al. 
2019; Frydkjær et al. 2017; Gambardella et al. 2017; Kim and An 2019; Lin et al. 
2019b; Mattsson et al. 2017; Pitt et al. 2018; Skjolding et al. 2017; Tosetto et al. 
2016, 2017; Ziajahromi et al. 2017), prey-predator interactions (de Sá et al. 2015; 
Ferreira et al. 2016; Fonte et al. 2016; Jacob et al. 2019; Luís et al. 2015; Mattsson 
et al. 2017; Wen et al. 2018a) and aggression (Critchell and Hoogenboom 2018). 
Studies focusing on such ecologically relevant endpoints are currently underrepre-
sented (16% of the reviewed studies), although the available data shows that these 
endpoints can be impacted by plastic particles, especially locomotion (Cedervall 
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et al. 2012; Choi et al. 2018; de Felice et al. 2019; Frydkjær et al. 2017; Kim and An 
2019; Lin et al. 2019b; Mattsson et al. 2017), feeding activity (Besseling et al. 2013, 
2017; Green et al. 2016; Guven et al. 2018; Mattsson et al. 2017; Wright et al. 2013) 
and prey-predator interactions (Fonte et al. 2016; Wen et al. 2018a).

Only a single study looked at the ecosystem-level effects on Cnidaria, more spe-
ci!cally on P. damicornis (Tang et al. 2018). The results obtained in this study sug-
gest that acute exposure to PS particles can activate stress responses at the individual 
level, repressing detoxi!cation and immune systems, which in turn can compromise 
the anti-stress capacity of exposed organisms. However, this study found a minimal 
impact in community shifts (symbiont density and chlorophyll content) in the short 
term. In a similar study, Reichert et al. (2018) suggested that species-speci!c effects 
might promote community shifts in coral reefs. For example, if growth, health and 
photosynthesis are affected, this might amplify the coral’s susceptibility to other 
stressors such as increased seawater temperatures, contributing to shifts in coral reef 
assemblages. Like cnidarians, only one study considered the effects of nanoplastics 
at the ecosystem level in phytoplankton (González-Fernández et  al. 2019). This 
study analysed the impact of PS-NH2 (50 nm) on a diatom (C. neogracile), which 
led to changes of the concentration of associated bacterial communities. It is impor-
tant to study effects following exposure to plastic particles in phytoplankton not 
only due to their susceptibility (as seen in the SSD) but also due to their importance 
in the ecosystem. As already stated, these organisms are at the base of the aquatic 
food web, and changes in their communities may disturb the productivity of an 
entire ecosystem (Prata et al. 2019). Moreover, particles may end up higher in the 
food web due to algae-particle interaction as the !rst step in the biomagni!cation 
(Nolte et al. 2017), as previously shown in other studies with suspension-feeding 
bivalves (Ward and Kach 2009). Finally, one study addressed the impacts of micro-
plastics on the health and biological functioning of oysters (O. edulis) and on the 
structure of associated macrofaunal assemblages using an outdoor mesocosm 
experiment (Green 2016). The author found that exposure to high concentrations of 
microplastic resulted in alterations of assemblage structure, diversity, abundances 
and biomasses of several taxa in vegetated oyster habitats, whose cascade effects 
can lead to signi!cant impacts in marine ecosystems.

Indirect, secondary effects are effects occurring on species not necessarily 
exposed to plastic particles but which are impacted by changes resulting from their 
direct exposure. In their mesocosm study, Green et al. (2016) exposed the lugworm 
A. marina to microplastics and observed a decrease in cast production, as well as 
decreased microbial biomass with increasing concentrations. One of the hypotheses 
discussed by the authors to explain the decreased microbial biomass was that 
reduced sand reworking by the worms would have resulted in less nutrients avail-
able in the sand to support primary productivity. No !rm conclusion about indirect 
effects of microplastics could be drawn from this study, as microplastics could have 
directly affected microbial communities, but this scenario is one of the potential 
examples of indirect microplastic effects. In another recent study, reduced survival 
and reproduction were observed for the terrestrial invertebrate Enchytraeus crypti-
cus following exposure to synthetic !bres (Selonen et  al. 2020). However, !bre 
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ingestion could not be con!rmed, and the authors hypothesized that the observed 
effects could be due to changes in environmental conditions, such as microbial 
activity and physicochemical properties of the soil, resulting from microplastic 
exposure. In both cases, the authors (Green et al. 2016; Selonen et al. 2020) present 
indirect effects of microplastics as a hypothesis, but investigating microplastic indi-
rect effects was not the main purpose of the study. Although highly ecologically 
relevant, studies on nano- and microplastic indirect effects are currently almost non- 
existent. Such studies are needed to help link effects at the organism level to impacts 
on the ecosystem level. Future studies should consider potential direct and indirect 
nano- and microplastic effects at the ecosystem level, to !ll these major gaps in the 
!eld of plastic ecotoxicology.

7.3.5  Interaction of Plastic Particles with Chemicals

The challenge of assessing the impact of plastic particles in the environment is fur-
ther complicated by the presence of chemicals, which can potentially pose addi-
tional hazards towards organisms. These chemicals comprise polymerization 
catalysts and additives, which are incorporated during production to endow plastics 
with speci!c characteristics (e.g. "ame retardants, plasticizers, antioxidants, UV 
stabilizers and pigments) (Gallo et al. 2018) and non-intentionally added substances 
(NIAS). Furthermore, chemicals already present in the environment (e.g. polycyclic 
aromatic hydrocarbons (PAHs) and metals) may also be incorporated/adsorbed by 
plastic surfaces depending on the polymer physico-chemical properties (e.g. Teuten 
et al. 2009).

Few studies have identi!ed nano- and microplastics as vectors for other contami-
nants (Trojan horse effect), and even fewer have focused on the presence and leach-
ing of chemical additives. Of the 175 references reviewed, 48 addressed these 
combined effects, with a focus on chemicals present in the environment, such as 
PAHs (e.g. benzo(a)pyrene (BaP), phenanthrene, "uoranthene, pyrene), polychlori-
nated biphenyls (PCBs), organophosphates (e.g. chlorpyrifos), metals (e.g. gold, 
mercury, cadmium, chromium and copper), metal nanomaterials (gold and titanium 
nanoparticles) and pharmaceuticals (roxithromycin, cefalexin, carbamazepine, "or-
fenicol, doxycycline and procainamide). Only a small percentage of these studies 
(12.5%) focused on chemicals known to be used as plastic additives (e.g. benzophe-
none, polybrominated diphenyl ethers (PBDEs), per"uorooctane sulfonates (PFOs), 
bisphenol A (BPA), triclosan), surfactants (e.g. nonylphenol) as well as chemical 
leachates extracted from plastic particles. In addition, the combined effects of plas-
tic particles with natural acidic organic polymers (e.g. palmitic acid, humic acid and 
fulvic acid) were also considered in some of the reviewed publications.

Most of these studies were conducted in arthropods (28%), followed by !sh 
(20%), molluscs (17%), phytoplankton (15% studies), annelids (9%), echinoderms 
(2%), nematodes (2%) and rotifers (2%). No studies on the combined effects of 
plastic particles and other contaminants were reported for cnidarians. Of the 57 

7 Ecotoxicological Impacts of Micro- and Nanoplastics in Terrestrial and Aquatic…

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469



studies reviewed for arthropods, 15 addressed the interaction between plastic parti-
cles and chemicals. These chemicals included benzophenone (Beiras et al. 2018), 
"uoranthene (Bergami et al. 2016, 2017; Horton et al. 2018; Vicentini et al. 2019), 
humic acid (Fadare et al. 2019; Wu et al. 2019a), PCBs (Gerdes et al. 2019; Lin 
et al. 2019a; Watts et al. 2015), phenanthrene (Ma et al. 2016), gold (Pacheco et al. 
2018), BPA (Rehse et al. 2018), PAHs (Tosetto et al. 2016), palmitic acid (Vicentini 
et al. 2019) and roxithromycin (Zhang et al. 2019). Several effects at the subcellular, 
individual and population levels were seen in arthropods upon exposure to nano- or 
microplastics combined with these chemicals. The most reported effects where 
impacts on reproduction, mortality, development and growth. Eleven studies con-
ducted on !sh used microplastics sorbed with chemicals. In seven of those, the 
tested microplastics were purposely spiked with chemicals, such as BaP (Batel et al. 
2018); antibiotics (Fonte et al. 2016); heavy metals such as mercury (Barboza et al. 
2018), cadmium (Lu et al. 2018) and chromium (Luís et al. 2015); gold nanoparti-
cles (Ferreira et al. 2016); and a cocktail of environmental contaminants comprising 
PCBs, PBDEs, PFOs and metals (Granby et al. 2018). Additionally, in four studies, 
the tested microplastics were deployed in environmental matrices (i.e. harbour, sew-
age ef"uent, urban bay), and further analyses con!rmed the presence of environ-
mental contaminants, such as surfactants and PAHs (Ašmonaitė et  al. 2018a, b; 
Rochman et al. 2013; Tosetto et al. 2017). Interestingly, for every level of biological 
organization covered in these !sh studies, the presence of chemicals sorbed on 
microplastics does not change the occurrence of adverse effects, indicating that 
microplastic-associated chemicals would play a minor role in microplastic effects. 
Studies on combined effects of micro- and nanoplastics and chemical exposure 
using molluscs included pyrene (Avio et al. 2015), carbamazepine (Brandts et al. 
2018b), "orfenicol (Guilhermino et al. 2018), mercury (Oliveira et al. 2018), "uor-
anthene (Paul-Pont et al. 2016; Rist et al. 2016), BaP (Pittura et al. 2018) and PCBs 
(Rochman et  al. 2017). Effects at the cellular and subcellular levels were often 
reported for this taxonomical group, followed by impacts at the organ and individ-
ual level. Additionally, in one of the studies reviewed, no effects were reported for 
M. galloprovincialis exposed to benzophenone (Beiras et  al. 2018). In the eight 
studies reported for phytoplankton, adverse effects of micro- and nanoplastics in 
combination with other contaminants were reported for metal mixtures (Baudrimont 
et  al. 2020), copper (Bellingeri et  al. 2019), titanium nanoparticles (Thiagarajan 
et al. 2019), fulvic and humic acid (Liu et al. 2019), chlorpyrifos (Garrido et al. 
2019), doxycycline and procainamide (Prata et al. 2018), triclosan (Zhu et al. 2019) 
as well as leachate mixtures (Luo et al. 2019). Overall, the documented effects in 
these studies included reduction in growth, oxidative stress, membrane stability and 
reduction in protein content and natural pigments. From the 16 studies conducted 
with annelids, !ve included co-exposure with contaminants, namely, PCBs 
(Besseling et al. 2013, 2017), chlorpyrifos (sprayed to the surface of PE spheres 
(Rodríguez-Seijo et al. 2018b)), BaP (Gomiero et al. 2018), nonylphenol, phenan-
threne, triclosan and PBDE-47 (sorbed to microplastics (Browne et al. 2013)). Of 
the effects found in annelids, alterations in behaviour (i.e. reduced feeding) were 
most commonly reported associated with exposure to PCBs (Besseling et al. 2013, 
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2017). Reduction in growth was also observed at lower concentrations when plastic 
particles were sprayed with chlorpyrifos (Rodríguez-Seijo et  al. 2018b) or co- 
exposed with PCBs (Besseling et  al. 2013). Of the reviewed studies for 
Echinodermata, only Beiras et al. (2018) utilized microplastics spiked with benzo-
phenone- 3, an organic, hydrophobic chemical found in cosmetic products, using 
P. lividus as a test organism. Even though ingestion of virgin and BP-3 spiked PE 
microplastics was observed at 1 and 10 mg/L, no acute toxicity was observed above 
concentrations considered environmentally relevant (low treatment = 20 μg/L and 
high concentration treatment = 200 ng/L) (Beiras et al. 2018). When it comes to 
nematodes, in the study by Judy et  al. (2019), microplastics were added to soil 
amended with municipal waste compost. The presence of trace metals was assessed 
in amended soils and in microplastics (PE, PET, PVC), and GC-MS analysis 
revealed the presence of phthalates in PVC, which could have accounted for the 
effects observed in exposed organisms. Only one study looked at combined effects 
of PE spheres and benzophenone using the rotifer B. plicatilis, for which no effects 
were reported (Beiras et al. 2018).

Overall, the studies reviewed on the joint toxicity of plastic particles and chemi-
cals (either adsorbed to particles or additives) showed that their interaction can elicit 
a wide range of biological responses in exposed organisms. In addition, chemicals 
associated to plastic particles can also in"uence their bioavailability and potential 
transfer through food chains, possibly causing effects at the ecosystem level. 
Nonetheless, these !ndings need to be interpreted with caution as most of these 
studies differ in how they approach vectoral transfer kinetics and exposure mecha-
nisms for chemicals under realistic natural conditions and thus overestimate the role 
of plastic particles as the delivery system of chemicals to organisms. The majority 
of these laboratory experiments use simpli!ed exposure settings, in which clean 
organisms placed in clean media/sediment/soil are exposed to plastic particles pre- 
treated with chemicals. These controlled exposure settings create conditions that 
promote rapid dissolution of the chemicals from the plastic particles into the sur-
rounding environmental compartment, which then become easily bioavailable to 
organisms through a more conventional exposure route (Diepens and Koelmans 
2018; Booth and Sørensen 2020). Under more environmentally relevant exposure 
scenarios, currently available data suggests that chemicals accumulated in organ-
isms are derived to a very small extent from ingested plastic particles, especially 
when compared to natural pathways of bioaccumulation as water, sediment and 
food (Koelmans et al. 2016; Besseling et al. 2017). For this reason, it is important to 
consider the relative importance of plastic particles as an exposure route for chemi-
cals in the context of other uptake pathways that may be more relevant under realis-
tic natural conditions (Lohmann 2017; Diepens and Koelmans 2018). To understand 
how plastic particles can act as vectors for other chemicals and what is the contribu-
tion that additives make to overall exposures, a thorough control of exposure mech-
anisms is therefore necessary. This will ensure that any observed biological effects 
are a consequence of exposure to the chemicals adsorbed and/or incorporated in the 
particles and not derived from their leaching, desorption and dissolution into envi-
ronmental compartments (Booth and Sørensen 2020; Gallo et  al. 2018; 
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Hermabessiere et al. 2017). In addition, there is a pressing need for studies address-
ing synergistic/antagonist effects following short- and long-term exposure to plastic 
particles in combination with contaminants of high concern, as well as studies on 
their cumulative effects in both terrestrial and aquatic species and potential biomag-
ni!cation throughout food chains. For further information on the impacts of envi-
ronmental contaminants and plastic additives in terrestrial and aquatic organisms, 
see reviews by Gallo et al. (2018) and Hermabessiere et al. (2017). For additional 
studies on the importance of exposure pathways for a range of chemicals present in 
plastic particles under natural conditions, the readers may refer to Koelmans et al. 
(2016), Lohmann (2017) and Diepens and Koelmans (2018).

7.4  Challenges and Future Directions

Exposure experiments focusing on the ecotoxicological effects of plastic particles 
in a wide range of organisms have increased exponentially over the past few years. 
A consensus from the reviewed literature is that plastic particles can impact organ-
isms across successive levels of biological organization, covering effects from the 
subcellular level up to the ecosystem level (Galloway et  al. 2017; VKM 2019). 
Nonetheless, our understanding on the mechanisms behind any toxic effects 
recorded is still minimal, partially due to a lack of attempt to link the physical and 
chemical properties of the particles being tested with the recorded toxic effects. 
Many of the reviewed studies relate to common chemical exposure endpoints rather 
than particle related endpoints, including how particles directly interact with the 
cellular environment and organisms, their uptake mechanisms, tissue distribution 
and subsequent impacts (e.g. tissue alterations due to in"ammation or other physi-
cal impacts). Accordingly, understanding and distinguishing the potential physical 
and chemical effects of plastic particles across the whole spectrum of biological 
levels is needed to improve environmental risk assessment of plastic pollution, as a 
means to ensure a better protection and mitigation of its impacts in the different 
environmental compartments.

The comparability of existing ecotoxicological data is being hampered by numer-
ous factors such as the use of wide array of experimental testing approaches, unre-
alistic environmental concentrations, lack of relevance in terms of particle 
characteristics (polymer type, shape or size), use of appropriate controls, incom-
plete/inadequate particle characterization (physico-chemical properties and chemi-
cal additives), variability in reporting units (e.g. in mass and/or particle number, % 
particles in food or sediment) and experimental conditions (e.g. exposure duration). 
Many of these limitations were found during the evaluation of data quality in the 
reviewed references, in which the use of appropriate controls, con!rmation of expo-
sure concentration and polymer type as well as presence of chemical leachates and 
particle size distributions were the most common issues. The ubiquitous nature of 
microplastic contamination, widespread geographical distribution, abundance and 
small size have also raised signi!cant concerns regarding their interactive effects 
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with chemicals, not only by increasing the bioavailability of contaminants in organ-
isms but also by eliciting common toxic effects. This is especially true when consid-
ering the potential risk of chemical accumulation in higher trophic levels including 
humans, as well modi!cations in population structure and ecosystem dynamics (e.g. 
negative effects at lower trophic levels) that may potentially result in a reduced 
productivity of the whole ecosystem. However, the role of plastic particles as the 
delivery system of chemicals to organisms is currently overestimated and additional 
data is required to understand the relative importance of exposure to chemicals 
(either adsorbed or additives) from particles compared to other exposure pathways 
(e.g. water and natural diet).

This overview is consistent with the tendencies observed by other authors, call-
ing into question the environmental relevance and proposed risks caused by nano-
plastic and microplastic exposure (e.g. Burns and Boxall 2018; de Ruijter et  al. 
2020; Kögel et al. 2020; VKM 2019). To determine if these plastic particles are in 
fact posing signi!cant risks to organisms, future work needs to focus on the devel-
opment of reporting guidelines to improve the reproducibility and comparability of 
plastic-related research, as highlighted by Connors et al. (2017) and Cowger et al. 
(2020). Several research priorities are thus recommended to better understand the 
ecological risks of plastic particles in the terrestrial and aquatic environments:

 1. Standardization. It is fundamental for ecotoxicological investigations to be 
comparable. A standardized approach from experimental design to reporting is 
required. To this end, quality assessments should be conducted throughout the 
whole duration of any laboratory studies (including concentrations and exposure 
conditions with quality assessment) to obtain reliable and comparable data.

 2. Environmental relevance. Researchers should endeavour to conduct experi-
ments which have relevance to current and future scenarios of plastic concentra-
tions and characteristics in the different environmental compartments. These 
include partially degraded and irregularly shaped particles commonly found in 
the environment, with varying polymer types, sizes and surface properties. As 
!bres and fragments are prevalent in environmental samples, these should be 
prioritized in future studies.

 3. Particle vs. chemical effect. The combination of particle and associated addi-
tives must be considered in ecotoxicological studies, such that it is possible to 
discriminate between effects derived from particles from those resulting from 
additive chemicals. Therefore, it is paramount that a thorough characterization of 
exposure materials is carried out, including the chemical pro!les of organic and 
metal additives. To really understand whether plastic particles are relevant carri-
ers for chemicals, environmentally realistic exposure settings also need to be 
taken into account when looking at particle-chemical interactions, more speci!-
cally leaching/desorption kinetics, chemical bioaccumulation from water/sedi-
ment/soil, natural diet and percentage of ingested particles.

 4. Ecosystem compartments. As highlighted throughout this chapter, there is dis-
proportion between the number of studies conducted on marine, freshwater and 
terrestrial biota. Moving forward, it is important to direct attention towards 
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freshwater and terrestrial ecosystems, as these are considered the main sources 
and transport pathways of plastic particles to the marine environment.

 5. Test species. Species utilized for ecotoxicological testing are generally focused 
on model organisms used for standard ecotoxicological testing. This originates a 
signi!cant knowledge gap on the effects of plastic particles in other species that 
have critical roles in ecosystem balance. Species considered at highest risk of 
exposure due to their feeding strategies and position in the water column need to 
be prioritized in terms of ecotoxicity testing, e.g. planktonic species not included 
in ISO and OECD guidelines. Species ecology and time spent in various environ-
mental compartments are also important considerations for choice of test spe-
cies, with particular emphasis on early developmental stages that have been 
shown to be highly susceptible to the impacts of plastic particles. Moreover, 
given that soil/sediment is considered the ultimate sink for plastic particles and 
other conventional contaminants, increased testing with suspension and deposit 
feeders is also warranted.

 6. Physiological perspective. Currently there is a lack of mechanistic understand-
ing of the effects of microplastics and nanoplastics on biota. Additional efforts 
are needed to understand the differences in physical and chemical behaviour of 
plastic particles compared to conventional contaminants. The direct and indirect 
interaction of nano- and microplastics within the cellular environment and organ-
isms, uptake mechanisms (size dependency), tissue distribution and impacts 
must therefore be comprehensibly assessed and linked to the physical and chem-
ical properties of the particles being used. Modi!cations in experimental design 
and proper characterization of the particles (e.g. presence of additives) can also 
assist to explain the underlying mechanisms responsible for the observed 
responses and help distinguish physical from chemical toxicological effects.

 7. Integrated and multi-level approaches. Long-term experiments with multiple 
species (e.g. model ecosystems) are required to examine effects with higher eco-
logical relevance. Therefore, small- and large-scale mesocosm experiments 
mimicking environmentally relevant scenarios and covering links from primary 
producers (e.g. microalgae) to top predators (e.g. !sh) are encouraged.
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