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RESUMEN: 

El epitelio pigmentario de la retina (RPE) es esencial para la visión. Como parte 

de la barrera hematorretiniana (BRB) su papel principal es el mantenimiento de la 

homeostasis de la retina y coroides. El alcohol se ha convertido en la droga adictiva 

más aceptada por la sociedad causando problemas de salud, sociales y económicos. El 

estrés oxidativo (OS) inducido por etanol (EtOH) genera toxicidad celular aumentando 

la aparición de especies reactivas del oxígeno (ROS) que activan respuestas en el 

organismo como pueden ser inflamación y muerte celular. El enzima citocromo p450 

2E1 (CYP2E1) tiene una alta afinidad por  el EtOH. Su actividad es la principal fuente de 

ROS durante la oxidación del EtOH por las células. A pesar de que el CYP2E1 ha sido 

identificado en el RPE humano y que podría jugar un papel fundamental en la función 

del ciclo visual del RPE, no se conoce nada sobre su regulación y la respuesta celular 

que desencadena. Nuestro objetivo fue estudiar el rol del CYP2E1 en el RPE, en 

respuesta al tratamiento con EtOH. 

Fueron empleadas células ARPE-19, hRPE y hiPSC-RPE como modelos de RPE. 

Simultáneamente al EtOH, se realizaron tratamientos con DAS (inhibidor específico del 

CYP2E1) y con NAC (como antioxidante) para bloquear el efecto del EtOH en las 

células. Se realizaron estudios de  viabilidad y citotoxicidad con EthD-1, calcein y XTT. 

El ROS intracelular y los aniones superóxido fueron cuantificados usando sondas 

fluorescentes (DCF y DHE respectivamente). Los marcadores de estrés celular, 

angiogénesis e inflamación fueron determinados con kits de expresión proteica. La 

integridad de la función de la barrera formada por el RPE se determinó midiendo la 

resistencia eléctrica transepitelial (TER) y el estado de las uniones intercelulares por 

inmunofluorescencia (IF).  Se utilizaron western blot (WB), qPCR, IF y ELISA para 

cuantificar la expresión del CYP2E1 y los principales factores y moléculas liberadas por 

el RPE.  La actividad del CYP2E se midió mediante HPLC.  

El EtOH aumentó los niveles ROS en las células del RPE, dando lugar a la muerte 

celular por apoptosis. Provocó una disfunción del RPE disminuyendo la integridad de 

las uniones intercelulares y modificando el perfil de expresión y liberación de factores 

de crecimiento, inflamación y angiogénesis. El EtOH aumentó la expresión del CYP2E1. 

El uso de DAS y NAC revirtió el daño causado en la células del RPE revelando que el 

CYP2E1 en el RPE estaría regulado por el OS. Finalmente, la presencia del CYP2E1 

refuerza el papel protector del RPE y sugiere otros roles diferentes del CYP2E1 

relacionados con la degeneración del RPE.   

 

PALABRAS CLAVE: Epitelio pigmentario de la retina; Barrera hematorretiniana; Etanol; 

Estrés oxidativo; Citocromo p450 2E1. 
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ABSTRACT: 

The retinal pigment epithelium (RPE) is essential for the vision. As a part of 

blood retinal barrier (BRB) its main role is the retinal and choroid homeostasis 

maintenance. Alcohol has become the more socially accepted addictive drug, it can 

result in a health, social and economic problems. Oxidative stress (OS) induced by 

ethanol (EtOH), generates reactive oxygen species (ROS) activating inflammation and 

cell death process. Cytochrome p450 2E1 (CYP2E1) enzyme has a high EtOH affinity. Its 

catalytic activity results in the production of large amounts of ROS during EtOH 

oxidation. In spite of CYP2E1 has been identify in human RPE and could be implicated 

in a RPE visual cycle, nothing is known about its regulation and implication in cellular 

response. Our aim was study the role of CYP2E1 in RPE, triggered by EtOH treatment.  

ARPE-19, hRPE y hiPSC-RPE cells were used as a RPE cellular models. Cells were 

treated at the same time with EtOH, DAS (specific inhibitor of CYP2E1), and NAC (as 

antioxidant) to block the EtOH cellular effects. Cell viability and cytotoxicity studies 

were carried out by EthD-1, calcein and XTT. Intracellular ROS and superoxide anions 

were quantified using fluorescence probes (DCF and DHE respectively). Cell stress, 

angiogenic and inflammation biomarkers were determined by proteome profile arrays. 

The integrity of RPE barrier function was determined measuring transepithelial 

electrical resistance (TER) and intercellular junctions state by immunofluorescence (IF). 

Western blot (WB), qPCR, IF and ELISA was assayed to quantify CYP2E1 expression and 

also the main molecules and factors released by RPE. The activity of CYP2E1 was 

measured by HPLC.  

EtOH increased the formation of ROS in RPE cells triggering cell death by 

apoptosis. EtOH induced RPE dysfunction decreasing intercellular junctions integrity 

and modifying the release and expression profile of inflammation, angiogenesis and 

growth factors. EtOH treatment induced CYP2E1 expression. The use of DAS and NAC 

reverted RPE cellular damage, this revealed that CYP2E1 is regulated by OS. Finally, the 

presence of CYP2E1 reinforces the protective role of RPE and strongly suggests 

additional CYP2E1 roles related to vision. 

 

KEYWORDS: Retinal pigment epithelium; Blood retinal barrier; Ethanol; Oxidative 

stress; Cytochrome p450 2E1. 
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1. ANATOMICAL STRUCTURE OF HUMAN EYE 

 

 One of the most valuable senses for humans is the sight. Among the several 

vision-related structures, the eye can be considered the most important, as it is 

responsible of the first step on a complicated process. The human eye presents an 

organized and complex structure with a high level of specialization and it is also 

considered an immunological privileged organ (1). It has developed molecular and 

cellular mechanisms to limit the immune response in order to preserve the sight. 

 In a lateral section of the ocular globe, three layers can be observed: The 

external tunica, the media tunica and the sensorial internal tunica. The external tunica 

is constituted by collagen and also includes the cornea on the anterior part. The cornea 

extends back to the sclera, a dense fibrous and opaque tissue that surrounds the 

ocular globe until it reaches the optic nerve. The media tunica, which is mainly 

vascular, is also known as uvea. This layer is composed of the iris in the anterior part, 

the ciliary body in the center, and the choroid in the posterior part, which is in contact 

with the retina, figure 1 (2). 

 

Figure 1. Human eye anatomy. In the image it is possible to distinguish the different parts of the human 

eye pointed with arrows. Obtained from Tian J, et al. 2013 (2). 

 

 In addition, the eye is divided in three different compartments or chambers: 

1. The anterior chamber, located between the cornea and the iris, contains the 

aqueous humor. 

2. The posterior chamber, between the iris, ciliary body, and crystalline, contains the 

aqueous humor. 

3. The vitreous chamber, between the crystalline and the retina, contains a gelatin 

mass called vitreous humor or vitreous body. 



 The extraocular muscles give the ability to rotate the eyeball in the orbits and 

allow the image to be focused at all times on the fovea of the central retina (3). 

 

 

1.2. THE RETINA 

 

 The retina is a prolongation of the central nervous system (CNS). As figure 2 

shows (3), it derives from the neural tube and it is formed during development of the 

embryo, from optic vesicles outpounching from two sides of the developing neural 

tube (2). The primordial optic vesicles fold back upon themselves to form the optic 

cup, with the inside of the cup becoming the retina and the outside remaining a single 

monolayer of epithelium, which is known as the retinal pigment epithelium (RPE), (3). 

Initially both walls of the optic cup are just one cell, but the cells of the inner wall 

divide themselves to form a neuroepithelial layer composed by many cells: the retina. 

 

 

Figure 2. Embryonic origin of the retina. Necessary and complex stpes for the formation of the retina 

and RPE.  Obtained and modified from http://webvision.med.utah.edu/ (3). 

 

 The retina is a very complex anatomical and functional tissue because it is here 

where the analysis of the light information process starts (4). Besides, about the 80% 

of all sensorial information comes from the retina. The retina extends over the back of 

the eyeball, from the inner surface to the ciliary body. It is in contact with the vitreous 

body internally and with the choroid externally (4). 

 This part of the eye is composed of ten layers, figure 3 (5): Inside out we can 

find the RPE; the photoreceptor outer segments (POS); the photoreceptor inner 

segments (IS); the external limiting membrane (ELM); the photoreceptor outer nuclear 

layer (ONL); the outer plexiform layer (OPL), where photoreceptor cells synapse with 

interneurons; the inner nuclear layer (INL), containing bipolar, amacrine and horizontal 

cells; the inner plexiform layer (IPL), where interneurons synapse with the ganglion cell 

layer (GCL); the nerve fiber layer (NFL); and the inner limiting membrane (ILM). 



Introduction 

 

9 

 

 The inner layers of the retina are often cited as a neural retina. It consists of 

seven main types of neurons: photoreceptors (rod and cones), bipolar cells, horizontal 

cells, amacrine cells, retinal ganglion cells and Müller cells, figure 3 (5). The neural 

retina transforms light into electrical impulses through the optic nerve. The non-neural 

retina, that includes RPE and Bruch´s membrane, maintains the integrity of the retina 

and is part of the barrier between the choroid and the retina, known as external blood-

retinal barrier (BRB). 

 

Figure 3. Retinal histology. Cellular composition and distribution of human retinal layers. Obtained and 

modified from http://www.retinareference.com/anatomy/ (5). 

 

1.3. THE CHOROID 

 

 The choroid consists of blood vessels, melanocytes, fibroblasts, resident 

immunocompetent cells, and connective tissue. It is located between the retina and 

the sclera, being the main blood supply source to the outer part of retina (6). Thicker in 

the posterior part of the eye, it reaches the middle portion of the eye where it 

becomes the ciliary body (7). The choroid is the major blood supply to the outer retina. 

Choroid circulation presents fenestrated capillaries with especially large pores. These 

fenestrations present high permeability not only for glucose but for other low 

molecular weight molecules (7). Additionally, the choroid presents another set of 

functions such as light absorption, thermoregulation through heat dissipation, retinal 

position adjustments, changes in choroid thickness, intraocular pressure modulation 

by vasomotor control blood flow, and drainage of aqueous on the anterior chamber 

through the uveoscleral pathway (8).  



2. THE RETINAL PIGMENT EPITHELIUM  

2.1. EMBRYONIC ORIGIN AND ANATOMY 

 

 The RPE is essential for the proper development of the retina. For this purpose, 

the RPE was found to secrete factors promoting photoreceptor survival and 

differentiation. The correct development of the retina appears to be dependent on the 

genes involved in the proper development of RPE (9).  

 After the invagination of the optic cup, two layers opposed to each other and 

separated by a thin remnant of lumen are still able to differentiate into the RPE or 

neural retina. The following developmental steps depend on the interaction of the 

retina and the RPE. The maturation of the RPE begins with the activation of the 

tyrosinase promoter, which marks the onset of melanogenesis (3).  

 Several factors were found to be essential for the determination of RPE 

differentiation.  In its early development, before the formation of the two layers, the 

region destined to form the anterior parts of the eye express cellular retinol binding 

protein (CRBP), cellular retinaldehyde binding protein (CRABP), and several enzymes in 

the retinal metabolism pathway. The embryonic retina anlage releases retinoic acid. 

RPE cells, in turn, express receptors for retinoic acid (RAR-β2), CRBP, and CRABP (9).  

 From that point onwards, neuroectodermal cells begin to differentiate into the 

RPE as figure 4 shows (9). The RPE basement membrane and the basement membrane 

of the endothelium form Bruch’s membrane. 

  The  expression  of  the transcription factors e.g. homeodomain-containing 

transcription factor (OTX2) and microphthalmia-associated  transcription  factor  

(MITF) appear  to be the critical initial steps of the determination and differentiation  

of  the  RPE (9). 

 The RPE was described in 1861 by Rudolf von Kölliker and since then, many 

researchers have devoted their efforts to get to know its anatomy and describe its 

function (10). It is a simple cuboidal epithelium of pigmented cells with 

neuroectodermal origin. The RPE presents a regular hexagonal form with intercellular 

tight junctions (TJ) (6).  
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Figure 4. Embryonic origin of the RPE. The arrows indicate how neuroepithelium designated to become 

the RPE and neuroepithelium designated to become retina move into an opposed position. Obtained 

and modified from Strauss O. 2005 (9). 

  

 The inner limit, also known as apical membrane, interdigitates with POS. The 

outer one, or basolateral membrane, faces the Bruch's membrane, separating the RPE 

from the choroid fenestrated capillaries, figure 5 (11). In the apical side, long microvilli 

are directly in contact with the outer photoreceptor segments. In this side, the RPE 

cells can form tight junctions, gap junctions or macula adherens.  

 

 

Figure 5. Anatomy of the RPE. RPE barrier is formed by TJs. RPE is separated from choriocapillaris by 

Bruch’s membrane. On the apical side, POS outer segment are phagocytosed by RPE cells. Obtained 

from Sonoda S, et al. 2009 (11). 

 

 



2.2. RPE FUNCTIONS 

 

 The RPE is one of the most metabolically active tissues in the human body, 

figure 6 (12). Despite not being directly involved in vision, the loss of the RPE leads to 

secondary photoreceptor and choroid atrophy. Functional RPE alterations typically 

lead to retina degeneration and decreased visual acuity, eventually leading to 

blindness (9-12). 

 2.2.1. Blood retinal barrier (BRB) component 

 The RPE and Bruch's membrane form the outer BRB while the inner one 

consists of a group of endothelial cells (13). The BRB consists of a restrictive 

physiological barrier that regulates the passage of ions, proteins, and the water flow 

that goes in and out of the retina.  

 

Figure 6. RPE functions. Schematic drawing with principal RPE functions: Viscual cycle, paracrine 

secretion, transport through Bruch’s membrane and POS disk clearance.  Obtained from Toops KA, et al. 

2014 (12). 

 

 The presence of TJ between the RPE cells and the vascular endothelium is 

essential to control the molecular transport through the BRB and to prevent the entry 

of toxic molecules or plasma components in the retina. Therefore, it is essential for the 

retina integrity and its maintenance for a normal visual function (12).  

 In addition, the RPE stabilizes the ionic concentration in the subretinal space, 

figure 6 (12) which results crucial for photoreceptors excitability, helping to the eye 

immune response by the secretion of immunosuppressive factors (6). 
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 2.2.2. Transepithelial transport 

 The RPE has an active transport of ions modulating the extracellular 

environment balance of the outer retina. The numerous pleats in the basal and apical 

area increase the RPE surface facilitating active transport (9). The transport occurs in 

two directions, from the blood to the photoreceptors (subretinal space) and from the 

photoreceptors to the blood. 

From the blood to the photoreceptors: The RPE provides nutrients such as 

glucose, retinol, ascorbic acid and fatty acids from the blood to the 

photoreceptors, figure 6. This transport is vital for the visual cycle (12), during 

the phagocytosis of the outer segments on photoreceptors. Delivery of organic 

acids, such as docosahexaenoic (DHA), to the photoreceptors is another 

important function. DHA is an omega-3 type fatty acid that cannot be 

synthesized by the nervous tissue, but it is essential for the structure of the 

photoreceptors. In addition to its role on the functional RPE integrity, DHA acid 

is a neuroprotectin D1 (NPD1) precursor that protects the RPE against oxidative 

stress (OS) (14). 

From the photoreceptors to the blood: Amounts of water are accumulated in 

the subretinal space because of the high metabolic activity of neurons and 

photoreceptors. Moreover, the intraocular pressure generates a movement of 

water from the vitreous body to the retina. These two processes require the 

constant removal of water from the inner layer of the retina towards the 

choroid. The RPE is capable of promoting the flow of ions and water from the 

subretinal space (at the apical side) into the blood (basolateral side). This 

transport is carried out by the energy provided from the Na +/K+ ATPase pump. 

This water within the retina is carried by Müller glia, while the water present in 

the subretinal space is removed through the RPE. The transport of metabolic 

products requires an efficient pH regulation, such as the HCO3- transport 

system (15). 

 

 2.2.3. Light absorption and photooxidation protection  

 The retina is constantly exposed to large amounts of light and oxygen (16,17) 

leading to photooxidation and generating reactive oxygen species (ROS) (18). The RPE 

is essential to counteract the retinal OS by two mechanisms: On the one hand, light 

absorption and filtration, and on the second hand, by the production of antioxidant 

molecules, proteins or vitamins (6). 

 



 To carry out the first functions, the RPE presents two pigments that absorb and 

filter light: lipofuscin (outer segments) and melanin (in RPE melanosomes). Melanin is 

in the apical side of the cell, while the lipofuscin is located in the basal area (19). 

Melanin absorbs light and eliminates free radicals, helping photoreceptors and RPE to 

prevent the photooxidative damage (17). There is an inverse relationship between 

melanin and lipofuscin in the human eye. Lipofuscin levels are increased by age and 

cell damage, being a marker of senility or disease (20).  

 

 2.2.4. The visual cycle 

 The visual process in the retina begins when light is absorbed by photoreceptor 

visual pigments. The visual pigments, rhodopsin and opsin, are integral membrane 

proteins located in the highly specialized outer segments of rods and cones, 

respectively. The light-sensitive chromophore, 11-cis-retinal, is covalently attached to 

opsin by a specific lysine residue located in one of the seven transmembrane alpha 

helical segments. The capture of a single photon results in the isomerization from 11-

cis-retinal to all-trans-retinal, and the formation of photoactive visual pigment that 

decays through a number of conformational intermediates, figure 7 (21). 

 The visual cycle starts with the circulation of vitamin A (all-trans-retinol) on the 

blood stream. Once vitamin A is incorporated to RPE cells, all-trans-retinol is converted 

to retinyl ester through the activity of the lecithin retinol acyl transferase enzyme. The 

resulting all-trans-retinyl ester represents a form of vitamin A storage. All-trans-retinyl 

ester is converted to 11-cis-retinol by RPE65. Finally, 11-cis-retinol is oxidized by 11-cis-

specific retinol dehydrogenase to form the visual chromophore, 11-cis-retinal (21). 

 The visual chromophore is transferred to rod and cone outer segments where it 

combines with opsins, giving as a restult visual pigments (e.g., rhodopsin). Light 

activation of rhodopsin initiates visual transduction processes and liberates all-trans-

retinal as a photoproduct. Reduction of all-trans-retinal, via all-trans-retinal 

dehydrogenase, produces all-trans-retinol, which is transferred back to the RPE for 

recycling. The continued activity of RPE65 in the light state ensures sustained levels of 

rhodopsin, closure of ion channels through transducin activation, and reduced oxygen 

demand (Figure 7) (22). Rhodopsin is converted by photoabsorption to meta-

rhodopsin, and the latter is reconverted to rhodopsin by light. It is well known that 

rhodopsin can be formed from opsin only when 11-cis-retinal is present (22). 

 The photoisomerization of the retinal released during the degradation of meta-

rhodopsin is catalyzed by an unknown isomerase and this photoisomerization is 

stereospecifically directed toward the formation of 11-cis-Retinal. Retinal is also 

reduced in the reaction catalyzed by all-trans-retinal specific retinol dehydrogenases 

and also alcohol dehydrogenases (ADH) (23). 
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 On the other hand, retinal in turn is rapidly oxidized to retinoic acid by different 

dehydrogenases including mitochondrial aldehyde degydrogenase (ALDH). Then, 

retinoic acid is metabolized to 4-Hydroxy-retinoic acid, 4-Oxo-retinoic acid, and 5,6-

Epoxy-retinoic acid. Finally the oxidation of retinoic acid to 4-Hydroxy-retinoic acid is 

catalyzed by cytochrome P-450 enzymes, including the CYP2E1 isoform (23 ,24). 

 

 

Figure 7.Visual cycle. Schematic drawing of the visual cycle steps. Obtained 

from Bavik C, et al. 2015 (22) 

 

 2.2.5. Photoreceptor outer segment phagocytosis 

 POS phagocytosis of is a highly complex process involving the RPE. 

Mechanistically, this RPE-related phagocytosis (RPE-POS) belongs to a non-

inflammatory clearance phagocytosis pathway aimed to remove apoptotic cells and 

debris. (25, 26). This RPE-POS is a renewal mechanism, where the RPE microvilli is able 

to phagocyte the POS. Just important molecules, such as the retinal ones, are 

redelivered to photoreceptors. In order to maintain photoreceptors’ excitability, POS 

are newly built at the connecting cilia from the inner segments (27). Because of 

photooxidation, POS are continuously exposed to ROS. Inefficient RPE lysosomal 

function causes accumulation of debris in RPE that result in toxic for cells (26). 

 



 2.2.6. Essential proteins and factors secretion 

 RPE secrete a host of growth factors and structure-related proteins. These 

secretions result in extreme relevance supporting photoreceptor survival, as well as in 

maintenance of the retinal blood supply (28). The polarized nature of the RPE is 

essential for the health of the eye, not only regarding nutrient and waste transport, 

but also in the synthesis and directional secretion of proteins required to maintain 

retinal homoeostasis and a good function (28). 

 High levels of particular growth factors and structural proteins beneficial in one 

compartment can be detrimental in the other. Maintaining the correct concentrations 

of particular factors, in the correct location and timing, is therefore of critical 

importance for retinal health (9). 

 The choroid is also capable of secreting angiogenic factors such as vascular 

endothelial growth factor (VEGF) and extravasation related molecules. Directly related 

to neovascularization (NV) changes, some matrix metalloproteinases (MMPs) and 

MMPs inhibitors (TIMPs) can be also synthesized (7). On this line, choroidal defects 

cause degenerative changes on the retina (8). 

 The table 1 lists some of this essential proteins and factors released by RPE. 

Nevertheless it is important to emphasize by their function the following: 

- Fibroblast growth factor (FGF): There are around 19 members of the FGF family. 

They can participate in different processes such as inflammation and epithelial tissue 

regeneration (29). 

- Heparin-binding epidermal growth factor (HB-EGF): In the eye, HB-EGF plays  a  

central  role  in  the stimulation  of  cell growth  as  the  proliferation-stimulatin action 

of various growth factors and agonists of G protein coupled  receptors  depends  on  

the  transactivation  of receptor  tyrosine  kinases,  specially  of  the  epidermal growth 

factor receptor (EGFR) (30). This factor represents an autocrine/paracrine migration. 

HB-EGF activates at least three signal transduction pathways in RPE cells: Proliferation 

(mitogenic activity), migration and secretion of VEGF. Finally, it has an indirect role in 

the choroidal NV (CNV) via influence on VEGF expression (29). 

- Hepatocytes growth factor (HGF): Is a growth factor involved in growth, motility and 

morphogenesis.  It provides protection to RPE cells under OS (29). HGF partially blocks 

the induction of cell death by apoptosis activation up-regulating cellular redox status 

and by inhibiting caspase-3- dependent cell death (31). 

- Transforming growth factor β1 (TGF-β1): It is a peptide analog of EGF (32). It can be 

presented as three isoforms; TGF-β1, TGF-β2, and TGF-β3. Each isoform is encoded by 

a distinct gene and is expressed in both a tissue-specific and a developmentally 
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regulated fashion. TGF-β1 messenger RNA (mRNA) is expressed in endothelial, 

hematopoietic, and connective-tissue cells (33). 

 It is a multifunctional cytokine with different cellular effects. It can either 

stimulate or inhibit cell proliferation, stimulate or inhibit cell differentiation, and other 

critical processes for cell function, e.g. deposition of extracellular matrix (ECM) and 

apoptosis. For this reason, it is involved in numerous diseases such as tumorigenesis; 

angiogenesis development; fibrotic disease of kidney, lung, and liver and even 

atherosclerosis (33). Regarding TGF-β1 signaling, it is well known that its activation in 

RPE cells can also be caused by various stimuli including: environmental stress, pro-

inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α), interleukins 

(ILs) and lipopolysaccharides (LPS) (34).  

- MMPs and TIMPs: MMPs and TIMPs are apically secreted by the RPE. MMPs are a 

family of at least 20 zinc endopeptidases (35) and play a crucial role in the ECM 

turnover throughout the body. Their activity is normally tightly regulated at several 

levels, including functional inhibition by TIMPs. It has been suggested that apically 

secreted MMPs/TIMPs could play a crucial role in the turnover and structural 

maintenance of the interphotoreceptor matrix, or also be involved in degrading the 

tips of POS, signaling their readiness for phagocytosis by RPE (28). MMPs and TIMPs 

are also present basally on the RPE, in the Bruch’s membrane (35). 

 MMP-2 and MMP-9 preferentially degrade basement membrane components 

such as type IV collagen, and the levels of these increase with aging (35). A second set 

of targets, for MMP activity, are growth factors. Matrix-bound VEGF seems to be 

mobilized by MMP, in particular MMP-9, whereas PEDF is a substrate for MMP-2 and 

MMP-9. On the other hand, OS has been shown to increase MMP-1 and MMP-3 

expression and secretion (35), this indicates potential basolateral secretion of MMPs. It 

is possible that the RPE are able to secrete certain MMPs/ TIMPs in opposite directions 

depending on external cues such as cytokine stimulation or signals from the ECM (28). 

 MMP activity was found PEDF as net result, the ratio of VEGF/PEDF was 

significantly altered, shifting the balance to pro-angiogenic state (30). Alternatively, 

MMPs/TIMPs present in Bruch’s membrane could be secreted by choroidal cells. 

Malfunctions in controlled, directional secretion of MMPs/ TIMPs could disrupt the 

balance of proteolytic activity on either side of the RPE, contributing to age-related 

changes in Bruch’s membrane (28). There is expression of MMP-1, MMP-3 and MMP-

9, located between the matrix and photoreceptor. MMP-2 participates in the 

phototoxic processes and its expression is increased upon exposure to light (36). 

 

 



 

 Table 1. Essential proteins and factors secreted by RPE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Summary table of proteins and factors by RPE and its release side.  Modified from Kay P, et al. 2013 (28). 

 

- VEGF: Was originally described as an angiogenic factor and helps conferring vascular 

permeability. Under physiological conditions, the RPE secretes low levels of VEGF and 

has been shown to act not only as a factor for endothelial cell survival, but also in 

other cell types such as photoreceptors and Müller cells (34). 

PROTEIN MAIN FUNCTION POLARITY 

Α/Β CRYSTALLIN Molecular chaperone, cytoprotection Apical 

BDNF Neurotrophic growth factor Unknown 

CFH Inhibitor of the complement pathway Unknown 

CNTF Neurotrophic growth factor Unknown 

CYSTATIN C Cysteine protease inhibitor Basal 

ENDOTHELIN I Vasoconstriction/vasodilation Basal 

FIBULIN 3 ECM protein involved in elastogenesis 

(fibulin 5) 

Unknown 

FGF 2 Growth factor involved in mitogenesis, 

angiogenesis and cell survival 

Unknown 

FGF 5 Growth factor involved in mitogenesis, 

angiogenesis and cell survival 

Basal 

HB-EGF Mitogenic growth factor Unknown 

HGF Growth factor involved in growth, 

motility and morphogenesis 

Unknown 

HYALURONAN Major component of ECM Apical 

IGF-I Growth factor involved in growth and 

development 

Unknown 

LIF Cytokine involved in differentiation Unknown 

MMP-2 Zinc-dependent endopeptidase 

involved in ECM degradation 

Apical 

MMP-9 Zinc-dependent endopeptidase 

involved in ECM degradation 

Unknown 

NGF Neurotrophic growth factor Unknown 

PEDF Growth factor with neurotrophic and 

anti-angiogenic properties 

Apical 

TGF-B Growth factor involved in proliferation 

and differentiation 

Apical 

TIMP-I Inhibitor of MMPs Apical 

TROPOELASTIN Involved in formation of elastin fibres 

(such as in Bruch’s membrane) 

Unknown 

VEGF Angiogenic growth factor Basal 
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 There are described different types of VEGF; VEGF-A, VEGF-B, VEGF-C (37). 

Among these, we find the most studied factor, and often referred to as VEGF is VEGF-

A. Differences in pre-mRNA splicing give rise to different isoforms, as the VEGF-A165 

isoform (38-41). The "downstream" VEGF signals occur by binding the tyrosine kinases 

receptor. These are the VEGF receptor 1 (VEGFR-1, also known as FLT-1), the VEGF 

receptor 2 (VEGFR-2, also known as KDR / Flk-1), and the VEGF receptor 3 (VEGFR-3) 

(37). 

 In the healthy RPE tissue, PEDF is secreted into the apical side, while VEGF 

secretion is performed in the basolateral side. Thus, PEDF acts on neurons and 

photoreceptors. Most of the secreted VEGF act on the endothelium of the choroid (28, 

37). Previous studies have shown that with age the RPE begins to lose its metabolic 

capacity and stress factors such as light, hypoxia and inflammation, which cause the 

pigment epithelial barrier to be compromised. Furthermore, these stressful stimuli 

lead to increased angiogenic factors (39). 

- Pigment epithelium derived factor (PEDF): Also known as serpin F1 (SERPINF1), is a 

multifunctional secreted protein. It is an important factor for the survival and function 

of the retina and ocular tissues, table 2 (42). This factor is secreted apicolaterally from 

the retinal pigment epithelium to act on photoreceptor morphogenesis and retinal 

neuroprotection.  

 Additionally, it is well established as a neurotrophic activity, PEDF has potent 

antiangiogenic properties that prevent neo-vascular invasion in the eye (43). Low 

levels of PEDF below the basal surface of the RPE may aid in preventing vascularization 

in this compartment as well. A delicate balance exists in the expression and 

concentration of PEDF and VEGF. Disrupting this balance can produce vascularization 

of the retina, whilst simultaneously decreasing photoreceptor support (28). 

 

 Table 2.  Effects of PEDF. 

CELL TYPE EFFECTS OF PEDF 

ENDOTHELIAL Inhibits formation of new vessels 

PHOTORECEPTORS Enhances development and survival 

NEURONS Protects against cell death 

RETINAL PIGMENT 

EPITHELIUM 

PEDF production high in young cells, 

decreases with age 

RETINOBLASTOMA 

TUMOR CELLS 

Stimulates differentiation to less 

malignant phenotype 

  

 Summary table of PEDF function in different ocular cells. Modified from Bouk N. 2002 (42). 

 

https://en.wikipedia.org/wiki/Protein


2.3. EXPERIMENTAL MODELS FOR RETINAL PIGMENT EPITHELIUM STUDIES 

 

 This thesis focuses on the RPE study and its dysfunction due to oxidative stress. 

For this aim it has been developed cellular models to use them in vitro experiments. 

 

 2.3.1. RPE cell lines 

 Because of the difficulty to study in human and animals retinal diseases and 

testing possible treatments, it is necessary to resort to in vitro studies. These offer 

certain advantages, such as the need for a smaller working space and cost reduction 

benefits. 

 There are different cell types and they can also be differentiated according to 

the techniques used for their generation. The most commonly used in laboratories are 

immortalized cell lines. On the other hand, research laboratories also can use primary 

cell cultures. Cell lines have an advantage, they have an increased or unlimited 

proliferative capacity showing a higher rate of renewal. Until today, there are a variety 

of RPE cell lines, but the hypothesis that experiments developed with cell lines mimic 

the physiology of  real RPE tissue does not seem very strong. It is possible to find 

different cell lines e.g.: H80HrPE-6, ARPE-19, D407 and RPE-340; some of these cellular 

transformation models are spontaneous, such as ARPE-19 cells (44). But others are 

immortalized, for example hTERT-RPE-1 is a line derived from cell line 340-RPE. Cell 

lines h1RPE-7 and h1RPE-116 were generated from a 50 years woman by SV40 T 

plasmid transfection. These cells do not have normal transepithelial electrical 

resistance (TER) and have been used in a few studies (45). 

 TER is a widely accepted quantitative technique to measure the integrity of 

tight junction dynamics in cell culture models of endothelial and epithelial monolayers. 

TER values are strong indicators of the integrity of the cellular barriers before they are 

evaluated for the transport of drugs or chemicals. TER measurements can be 

performed in real time without cell damage and generally are based on measuring 

ohmic resistance or measuring impedance across a wide spectrum of frequencies (46). 

 ARPE-19 is a RPE cell line that appeared spontaneously in 1986 derived from 

the normal eyes of a 19-year-old male. These cells express specific markers of RPE, like 

RPE65 and CRALBP (44). The ARPE-19 cells seem to present a normal phenotype and 

grow at a steady pace. Furthermore, they are capable of forming stable layers which 

exhibit morphological and functional polarity (44). ARPE-19 cells have been used in 

studies of OS (47), cell communication (48), study of cell toxicity drugs, autophagy (49), 

inflammation, and diseases such as age macular degeneration (AMD), diabetic 

retinopathy (RD) or retinitis pigmentosa (RP), among others (50). 
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 2.3.2. Primary cultures of RPE 

 When we obtain cells from a piece of tissue, we are talking about primary 

culture, and they could come from an animal or a human (hRPE). These are always 

going to be more real, as they can recreate a more faithful and cell physiology and 

environment. But these crops have large experimental limitations, and this fact 

coupled with the limited availability and heterogeneity among donors makes it difficult 

to work with them, emphasizing the value of cell lines.  

 There are different protocols to obtain these primary cultures, but in all of 

them it is necessary to use big pieces of tissue, which increases the difficulty to obtain 

them. Additionally, it is very important to consolidate a proper protocol that validates 

the primary culture, always making sure that the culture is not contaminated with 

others retinal cells. Knowing the limitations of cell lines, some of the experiments 

should be tested with both kind of cells at the same time.  

 

 2.3.3. Human Induced Pluripotent Stem Cells (hiPSC) 

 hiPSC are a type of pluripotent stem cells that can be generated directly from 

adult cells. The iPSC technology was pioneered by Shinya Yamanaka’s lab in Kyoto, 

Japan, who showed in 2006 that the introduction of four specific transcription factors 

could turn adult cells into pluripotent stem cells in mice (51). 

 There are different protocols to induce RPE cells from hiPSC. But recently 

Flores-Bellver M, describes a protocol to generate RPE cells from retinal cups (RC) 

(51).These retinal cups are produced in in vitro conditions with a specific protocol from 

hiPSC (52). Basically, this hiPSC-RPE could be like a primary culture because it is 

obtained from retinal cups generated by hiPSC, with the advantage that it is possible to 

generate them without needing a donation of human tissue (taking into account how 

complicated it is). 

 

 

 

 

 

 

 

 



3. OXIDATIVE STRESS  

 

 According to the definition, OS is a disturbance in the balance between the 

production of free radicals, ROS and antioxidant defenses (53). 

 

3.1. REACTIVE OXYGEN SPECIES GENERATION  

 

 Usually, an atom is composed of a central nucleus with pairs of electrons 

orbiting around it. However, some atoms and molecules have unpaired electrons and 

these are called free radicals. Free radicals are usually unstable and highly reactive as 

the unpaired electrons tend to form pairs with other electrons. An oxygen molecule 

(O2) undergoes a four-electron reduction when it is metabolized “in vivo”. During this 

process, reactive oxygen metabolites are generated by the excitation of electrons 

secondary to the addition of energy or interaction with transition elements (54). 

 ROS are derived from many sources including mitochondria, xanthine oxidase, 

uncoupled nitric oxide synthases and nicotinamide adenine dinucleotide phosphate 

(NADP) oxidase (NOX) (53). The oxygen metabolism, cell respiration, cell signaling and 

other homeostatic processes produce ROS within the cell, figure 8 (55). In addition to 

generalized oxidation resulting in cell dysfunction and cell death (necrosis or 

apoptosis). 

  If active oxygen species or free radicals are generated excessively or at 

abnormal sites, the balance between formation and removal is lost, resulting in OS. 

Consequently, active oxygen species and free radicals can attack molecules in 

biological membranes and tissues, thus inducing diseases. 

 

3.2. SOURCES OF ROS 

 

 In cells, various organelles can generate ROS. These include mitochondria, the 

endoplasmic reticulum (ER), particularly relevant for ER stress, and peroxisomes (as 

part of their role in metabolizing long-chain fatty acids (LCFAs). In addition, various 

enzymes, including oxidases and oxygenases, generate ROS as part of their enzymatic 

reaction cycles as hydrogen peroxide (H2O2), figure 8 (55). 
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Figure 8. Intracellular sources of ROS. All cellular organelles and enzymatic systems are susceptible to 

generate ROS. Particularly, ER and mitochondria are the major sources of ROS. Obtained from 

Holmstrom KM, et al. 2014 (55). 

 

 3.2.1. Mitochondria 

 Mitochondria generates ATP in an oxygen-dependent manner. Throughout this 

process, molecular oxygen can also undergo a one-electron reduction to generate a 

superoxide anion. The major sites of superoxide production are generally believed to 

be within complex I and complex III of the electron transport chain (55). 

 Similarly, other organelles such as the peroxisome and ER, can produce 

oxidants. The relative contribution of these additional sources of ROS varies according 

to cellular metabolism that can vary as well depending on the cell type (55). 

 

 3.2.2. NADPH oxidases  

 NOX is an enzyme family first described in the context of neutrophils. In this 

context, the major source of ROS generation is a flavin- and heme-containing protein 

complex that transfers electrons from cytosolic NADPH to molecular oxygen in order to 

deliberately produce superoxide anions. The catalytic subunit of this complex is 

commonly referred to as NOX2. NOX2 does not generate superoxide on its own; 

rather, its stimulation causes the recruitment of cytosolic factors. These cytosolic 

factors combine with the membrane-bound factors NOX2 and p22phox to generate 

the classic phagocyte response to stimulation known as the respiratory burst (55). 

 



 3.2.3. Cytochrome P450 enzymes 

 This superfamily of monooxygenases is in the ER microsomes. CYP450´s are 

highly conserved across species implying that, in addition to their function in the 

metabolism of xenobiotics, these enzymes possibly exert broader physiological 

functions in the haem-dependent oxidation of various metabolic intermediates (55). 

 Consistent with this view, the CYP450-2E1 or CYP2E1 isoenzyme has been 

implicated in a variety of diseases, possibly as a result of its capacity to produce high 

levels of ROS. In fact, CYP2E1 assumes an important role as a major component of the 

microsomal ethanol- (EtOH) oxidizing system (MEOS) (56, 57). This issue will be 

developed and expanded along this thesis. 

 

 

3.3. BIOMARKERS OF OXIDATIVE STRESS 

 

 The term biomarker has been defined by The National Institute of Health as “a 

characteristic that is objectively measured and evaluated as an indicator of normal 

biological processes, pathogenic processes, or pharmacological responses to a 

therapeutic intervention” (58). 

 Many markers have been proposed, including lipid peroxides, malondialdehyde 

(MDA), and 4-hydroxynonenal (4-HNE) as markers for oxidative damage to lipids; 

isoprostan as a product of the free radical oxidation of arachidonic acid; 8-oxoguanine 

(8-hydroxyguanine) and thymineglycol as indicators of oxidative damage to DNA; and 

various products of the oxidation of protein and amino acids including carbonyl 

protein, hydroxyleucine, hydrovaline, and nitrotyrosine (59). 

 

 3.3.1. Lipid peroxidation 

 Lipid peroxidation (LPO) is a free radical-related process that, in biological 

systems, may occur under enzymatic control or non-enzymatically. This later form is 

associated mostly with cellular damage as a result of OS, and a great variety of 

aldehydes are formed when lipid hydroperoxides break down. In other words, LPO can 

be described as a process under which oxidants, such as free radicals, attack lipids, 

especially polyunsaturated fatty acids (PUFAs), resulting in the oxidative degradation 

of them and, thereby producing cell damage (59). 
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 PUFAs are intensified in cells subjected to OS, and result in the generation of 

various bioactive compounds such as MDA, 4-HNE, propanal, and hexanal (49, 59). In 

fact, MDA and 4-HNE have been indirectly liked to the pathogenesis of several 

diseases. The main challenge in the field of pathological processes is that it is often 

difficult to determine whether these LPO-derived aldehydes are actually causing the 

disease or are a consequence of it (60).  

 

 3.3.2. Protein damage 

 Free radicals and non-radical ROS attack proteins leading to serious disorders of 

metabolism and cellular structure. ROS-associated protein modification can lead to 

loss of biological functions and to the change of protein forms. Modified proteins have 

increased sensitivity to intracellular proteolysis and they are quickly degraded by 

endogenous proteases, particularly by multi-catalytic system (60).  

  ROS can lead to oxidation of amino acid residue side chains, formation of 

protein-protein cross-linkages, and oxidation of the protein backbone, resulting in 

protein fragmentation. In the meantime, it has been shown that other forms of ROS 

may yield similar products and that transition metal ions can substitute for ⋅OH and O·̄2 

in some of the reactions (60). These changes can result in different secondary effects, 

including protein fragmentation, aggregation, and unfolding.  

 These processes are ordinarily connected with loss or change of protein activity 

and function. Increased oxidative damage of proteins results in (61): 

- An increased production of ROS. 

- A decreased capacity to scavenge ROS. 

- An increased sensitivity of damaged proteins to become oxidized as a 

consequence of transcriptional and translational errors. 

- Decreased levels or activities of the proteasome or proteases which degrade 

oxidized proteins.  

 

 3.3.3. DNA damage  

 Nucleic acids are particularly sensitive to oxidative damage. ROS can damage 

DNA by direct chemical attack of purine and pyrimidine bases and deoxyribose sugars 

and also by indirect mechanisms. 

 

 



 Mitochondrial DNA (mtDNA) is excessively sensitive under oxidative damage 

because mtDNA is close to the inner mitochondrial membrane, where ROS are formed. 

Damage of mtDNA can be potentially more important than nuclear DNA damage 

because all mitochondrial genes are expressed, whereas nuclear DNA includes a great 

number of un-transcribed sequences (61). At this point, mitochondrial chaperons, such 

as heat shock protein (HSP), have an important role. For example, mitochondria 

HSP60 is relevant to assist in folding linear amino acid chains into their respective 

three-dimensional structure and it is also implicated in mitochondrial protein import 

and macromolecular assembly (62). 

 A well-known transcriptor factor inducible by DNA damage under OS conditions 

is p53. It is a tumor suppressor protein and can activate DNA repair proteins when DNA 

has sustained damage (63). The critical event leading to the activation of p53 is the 

phosphorylation of its N-terminal domain, triggering the disruption with Mdm2-

binding (64). Recent reports show that the acetylation status of p53 plays a crucial role 

in the modulation of p53 levels and transcription factor activity.  Sirtuin-2 (SIRT-2), has 

a deacylase activity and can prevent deacetylation of p53, regulating its activation (64). 

Alike, CITED-2 can induce the acetylation of p53. This protein is induced by cytokines 

such as ILs, as its downregulation contributes to TGF-β- mediated cellular quiescence 

(65).  

 

3.4. ANTIOXIDANT DEFENSE 

 

 To counteract the large number of mechanisms producing ROS, the cell is 

equipped with various potent antioxidant defenses. These can be differentiated in 3 

groups: enzymatic, non-enzymatic and other exogenous antioxidants. 

 

 3.4.1. Enzymatic defense 

- Superoxide dismutase (SOD): Since superoxide is the primary ROS produced from a 

variety of sources, its dismutation by SOD is of primary importance for each cell. All 3 

forms of SOD, that is, CuZn- SOD, Mn-SOD, and EC-SOD, are widely expressed in the 

human lung. Mn-SOD is located in the mitochondria matrix. EC-SOD is primarily located 

in the ECM. H2O2 that is produced by the action of SODs or the action of oxidases is 

reduced to water by catalase (CAT) and the glutathione peroxidase (GSH-Px), (66).  

- Catalase: Is an enzyme which is present mainly in the peroxisomes of mammalian 

cells. CAT exists as a tetramer composed of 4 identical monomers, each of them 

contains a heme group at the active site. Degradation of H2O2 is accomplished via the 
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conversion between 2 conformations of catalase-ferricatalase (iron coordinated to 

water) and compound I (iron complexed with an oxygen atom). CAT also binds NADPH 

as a reducing equivalent to prevent oxidative inactivation of the enzyme (formation of 

compound II) by H2O2 as it is reduced to water (66). 

- GSH-Pxs: Are mainly cytosolic, but also present in mitochondria. GSH-Pxs are a family 

of tetrameric enzymes that contain the unique amino acid selenocysteine within the 

active sites and use low-molecular-weight thiols, such as GSH, to reduce H2O2 and lipid 

peroxides to their corresponding alcohols and water reducing glutathione (GSH) to 

form oxidized glutathione (GSSH) (66). 

- ALDH: The aldehyde dehydrogenase superfamily represents a group of enzymes that 

catalyze the NAD(P)+-dependent oxidation of a wide variety of aldehydes to their 

corresponding carboxylic acids (67). For example, MDA and 4-HNE are removed by 

detoxification reactions mediated by ALDH. In addition to their catalytic roles, ALDHs 

have been shown to possess non-catalytic roles, e.g. cavenging of hydroxy radicals by 

CYS sulfhydryl groups, protein-protein interaction. Also, members of the ALDH1, 

ALDH2, and ALDH3 families serve as lens and corneal crystallins (67). 

- Heme oxygenase-1 (HO-1): HO-1 is the rate limiting enzyme within the heme 

catabolism pathway resulting in the formation of biliverdin, carbon dioxide, and iron. 

Several results support the hypothesis that HO-1 induction plays an important role in 

cellular protection against oxidant injury and also maintaining cellular homeostasis 

(68). 

 

 3.4.2. Non-Enzymatic defense 

- GSH: It is a potent cellular reducing agent and an important substrate for the 

enzymatic antioxidant systems as well as a direct antioxidant. It is the most abundant 

cellular thiol antioxidant, which exhibits numerous and versatile functions and 

therefore protects cells against toxicity (69). GSH acts as a scavenger of peroxides and 

also serves as storage and transport for reduced sulfur. In such reactions, the thiol 

group is oxidized to form a disulfide bond between two molecules of GSH and the 

oxidized GSH is therefore designated as GSSG. GSSG can be reduced back to GSH by 

the NADPH dependent GSSG reductasa (69). 

- Vitamin C (ascorbate): Is the most abundant aqueous-phase antioxidant in blood and 

it is a critical water-soluble metabolite in the cell. It is essential for a range of 

physiological functions, including acting as an important enzyme co-factor and an 

efficient antioxidant, scavenging ROS and protecting cells from free radical-mediated 

oxidative damage and stress (70). 



- Vitamin E:  Lipid-soluble vitamin E is concentrated in the hydrophobic interior site of 

cell membrane and is the principal defense against oxidant-induced membrane injury. 

Vitamin E donates electron to peroxyl radical, which is produced during LPO. α-

Tocopherol is the most active form of vitamin E and it is the major membrane-bound 

antioxidant in cell. Vitamin E triggers apoptosis of cancer cells and inhibits free radical 

formation (66). 

 

 3.4.3. Other exogenous antioxidants  

 There are many other substances with antioxidant capacity which can be 

derived from the diet. For example, Vitamin A (retinol) is a fat-soluble vitamin from 

the group of carotenoids. It is rapidly oxidized in the presence of oxygen, transient 

metals, and light. As previously mentioned, vitamin A is also an important molecule for 

a correct visual cycle in RPE cells (22). 

 There are some other antioxidants with excellent properties commonly used as 

co-adjuvant therapies: N-acetylcysteine (NAC), and Diallyl Sulfide (DAS) as specific 

CYP2E1 inhibitor.  

- NAC: It has an optimal thiol redox state, which is of great importance to 

optimize the protective ability of cells to counterbalance OS and inflammation. 

It acts directly increasing intracellular GSH. Administration of NAC has been 

reported to be beneficial in other chronic clinical conditions, such as 

inflammatory diseases, HIV infection, diabetes and hepatic injuries (69). 

 

- DAS: Is an organosulfur compound typically found in garlic. It is a selective 

CYP2E1 inhibitor. Taking into account that CYP2E1 is one of the major ROS 

producers in the cells under xenobiotic metabolism, the use of this inhibitor 

could be essential to maintain the redox balance status. CYP2E1 is also induced 

in HIV, diabetic, and Parkinson patients, who regularly consume alcohol, 

analgesic drugs and other xenobiotics (71). Thus, DAS by inhibiting CYP2E1, has 

the potential to be used as a novel therapeutic in alcohol and analgesic drug 

users, as well as in HIV, diabetic, and Parkinson’s disease patients who suffer 

from liver toxicity and toxicity of other extra hepatic cells (71). 
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3.5. RPE ANTIOXIDANT DEFENSE  

 

 SOD, GPx, and CAT are key enzymes of the antioxidant RPE cell defense (6, 17). 

SOD, CAT and GPx activity is decreased in RPE cells after the addition of H2O2 

compared with control cells. Resveratrol treatment as antioxidant resulted in a 

significant increasing of the enzyme activity (72).  

 It was shown that a short-term exposure of nonadapted RPE cells to a higher 

H2O2 concentration had as a result a very severe decrease in CAT, GPx, and CuZnSOD 

activities. By contrast, MnSOD showed no adaptive behavior (72). In the same way, OS 

inducing by H2O2 increase the HO-1 expression in RPE cells. Besides, this study also 

relates the activation of nuclear factor erythroid-2 related factor-2 (Nrf2) and its 

interactions with antioxidant response elements (AREs), which mediated 

transcriptional induction of various antioxidants, including SOD, GSH-PX and HO-1 (73). 

 RPE cells have different response to OS depending on the damage or stimuli. 

For example, the oxidative damage caused by exposure of RPE cells to H2O2 was 

significantly reduced by vitamin C, vitamin E, and DHA, while hyperoxia-induced 

damage was decreased by vitamin E and DHA, but not vitamin C, and paraquat-

induced damage was not reduced by any of the three antioxidants (74). In addition, 

the RPE cell takes up DHA from the blood stream through the choriocapillaris. RPE 

have the capacity to synthesize NPD1 from DHA, and this NPD1 can modify the 

expression of the proteins that challenge cell survival (75). Under OS conditions NPD1, 

a DHA-derived mediator endogenously synthesized by neuroepithelium-derived RPE 

cells, is a modulator of signaling pathways that promote cell survival (75). 

 

 

3.6. RPE SIGNALING ACTIVATED BY OXIDATIVE STRESS 

 

 As we know, intense illumination from focal light, LPO from the degradation of 

rod outer segments, and high oxygen tension in the macular area, all provide 

conditions for OS to the RPE. ROS can induce expression of several genes involved in 

signal transduction in RPE cells. Activation of transcription factors via ROS is achieved 

by signal transduction cascades that transmit the information from outside to the 

inside of cell. Tyrosine kinase receptors, growth factor receptors, such EGFR, VEGFRs, 

and serine/threonine kinases such as mitogen activated protein kinases (MAPKs) are 

targets of ROS, figure 9 (76).  

 



 3.6.1. MAPKs signaling 

 MAPKs are a family of serine/threonine kinases which are strongly involved in 

OS. In mammalian cells, there are three well-defined subgroups of MAPKs: the 

extracellular signal-regulated kinases (ERKs), the c-Jun N-terminal kinases (JNKs), and 

the p38 MAPKs (77). Each of these kinases mediates different reactions (adaptive and 

apoptotic), integrating external signals in order to organize the appropriate response 

of the cell.  

 A number of cellular stimuli that induce ROS production in parallel can activate 

MAPK pathways in multiple cell types. But in general, ERKs are essentially an activated 

response to growth factors, while the JNKs and p38 MAPKs are more responsive to 

stress stimuli and inflammation, just like cytokines (77). Additionally, blockade of p38 

or ERK provides significant protection from retinal ischemic damage, suggesting a 

novel therapeutic role for MAPK inhibition in neuroprotection (78). And recently, Qiu 

Y, et al. (79) published that the activation of MAPK and nuclear factor КB (NFКB) plays 

vital roles in regulating proinflammatory genes in RPE cells. Also, combination of NFКB 

and p38 inhibitors abolishes VEGF secretion in RPE cells (80). 

 

Figure 9. ROS targets in RPE cells. Several pathways can be activated by ROS in RPE cells. The balance 

between survival (autophagy, increase of Bcl-2 and NPD1) and cell death processes (apoptosis, increase 

of ER stress, BRB disruption) is essential to maintain healthy the retinal tissue. Obtained from Mateos 

MV, et al. 2015 (76). 
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 Several pathways activated by OS are implicated in antioxidant defense. For 

example, NFКB activation is initiated by the signal-induced degradation of IκB proteins 

via activation of a kinase called the IκB kinase (IKK). With the degradation of IκB, the 

NF-κB complex is then freed to enter the nucleus where it can 'turn on' the expression 

of specific genes. NPD1 can indirectly inhibit NFКB activation in RPE cells (75). 

Additionally, NPD1 promotes RPE cell survival inhibiting low and repetitive OS-induced 

apoptosis by inducing the activation of PI3K/Akt and mTOR/p70S6K pathways (81). 

PI3K/Akt pathway has been proposed to protect RPE cells against the deleterious 

effects of OS. In Faghiri Z, et al. work (81), apoptosis was unaffected and 

phosphorylation of Akt, mTOR, and p70S6K occurred in a sustained manner, in low OS 

conditions. During repetitive OS, RPE showed a rapid increase, followed by a decrease 

of Akt, mTOR, and p70S6K expression and less than 50% of the cells showed apoptosis 

(81). 

 

 3.6.2. Apoptosis 

 Some evidence suggests that OS is involved in RPE cell death. Apoptosis is one 

of the mechanism than RPE cells can activate to control the retinal tissue damage (57). 

The intracellular machinery responsible for apoptosis depends on a family of proteases 

called caspases. Caspases are synthesized in the cell as inactive precursors, or 

procaspases, which are usually activated by cleavage at aspartic acids by other 

caspases. This activation can be triggered from outside or inside the cell, figure 10 (82). 

 

 

Figure 10. Apoptosis activation. Induction of apoptosis by either extracellular or intracellular stimuli. 

Obtained from Hector S, et al. 2009 (82). 



 The Bcl-2 family of intracellular proteins helps regulate the activation of 

procaspases. This family contains pro-apoptotic members (Bax, Bak, Bad, Bik, Bim, 

Noxa, and Puma) and anti-apoptotic members (Bcl-xL, Bcl-2, and Mcl-1). The release of 

cytochrome c (CYT-C) to the cytosol, mediated by Bax, activates a protein complex 

called "apoptosoma," which directly activates caspase-9, developing the apoptosis 

pathway. Bcl-2 inhibits apoptosis at least partly by blocking the release of CYT-C (82). 

The balance of anti- and pro-apoptotic proteins determines whether a cell lives or dies.  

 Another important family of intracellular apoptosis regulators is the inhibitor of 

apoptosis family. These proteins are thought to inhibit apoptosis in two ways: they 

bind to some procaspases to prevent their activation, and they bind to caspases to 

inhibit their activity (83). The intracellular cell death program is also regulated by 

extracellular signals, which can either activate apoptosis or inhibit it. These signal 

molecules mainly act by regulating the levels or activity of members of the Bcl-2 and 

IAP families (82).  

 There is an important apoptosis regulator in RPE cells; the bone morphogenetic 

protein 4 (BMP4). BMP4 mediates OS inducing senescence in vitro via Smad and p38 

pathways. BMP4 can also be either pro-angiogenic or anti-angiogenic, depending on 

the context of cell types and associated microenvironment. In the RPE, over-expression 

of BMP4 inhibits experimental CNV by modulating VEGF and MMP-9 (84). 

 There are many studies that support this affirmation. In 2007 Yang 

demonstrated the possible implication of caspase-8 levels to protect RPE cells from 

apoptosis in AMD (56). They also showed that exposure to hydrogen peroxide (H2O2) 

on RPE cells leads to transcription of Bax. Bax overexpression is accompanied by an 

increase of caspases (9 and 3) and OS, inducing Bax translocation to the mitochondria, 

which results in the release of apoptosis inducing factor (AIF) (85). 

 Another important apoptosis regulator in RPE cells is p53. This p53 pathway 

responds to stress signal which lead to cell cycle arrest, cell senescence or cellular 

apoptosis. p53 induces some proapoptotic proteins and suppresses the transcription of 

Bcl-2 and Bcl-xL. In humans RPE, the basal rate of p53-dependent apoptosis increases 

in an age-dependent manner. Moreover, H2O2 induces an elevation of p53 and 4-HNE 

increasing the level and phosphorylation of p53 in the RPE (63). 

 On the other hand, it has been shown that the addition of NPD1 protects 

human RPE cells in culture from OS injury (Figure 9) and also upregulates the 

expression of anti‐apoptotic proteins, such as Bcl‐2 and Bcl‐xL, and downregulates 

levels of pro‐apoptotic markers, such as Bax and Bad.  

 

https://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5049/
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The inhibition of caspase 3 and a diminished COX‐2 expression have also been shown 

to be triggered by NPD1 during OS events (76). 

 

 3.6.3. Necroptosis 

 For many years, apoptosis was considered to be the only form of regulated cell 

death, whereas necrosis was seen as an unregulated accidental cell death process. 

Regulated necrosis includes several cell-death modalities such as necroptosis (86).  

 Necroptosis is mediated by interacting with the protein kinase-3 receptor 

(RIPK3) and its substrate mixed lineage kinase like (MLKL), is the best-characterized 

form of regulated necrosis. During necrosis induction, RIP3 interacts with RIP1 to form 

a pro-necrotic complex (86). Some data demonstrates that RIPK-mediated 

programmed necrosis is a redundant mechanism of photoreceptor death in addition to 

apoptosis, and that simultaneous inhibition of RIP kinases and caspases is essential for 

effective neuroprotection (87). Besides, RIP3 has a critical role in inducing necrosis to 

the RPE and photoreceptors, as well as in sustaining retinal inflammation during retinal 

degeneration. This publication also suggests that necrotic pathways may be crucial in 

RPE cell death in AMD and in others retinal degenerative diseases associated with 

inflammation (88). 

 

 3.6.3. Autophagy 

 The study of this cellular pathway has been awarded with a Nobel prize in 

Physilogy or Medicine 2016 to Yoshinori Ohsumi. The concept emerged during the 

1960s, when researchers found that the cells could destroy their own content, 

membrane enclosing and sending the resulting vesicles to the lysosome, a cellular 

organelle responsible for recycling (89). 

 Cumulative evidence demonstrates that during OS, RPE can also trigger the 

activation of survival signaling pathways for self‐protection as well as for cell death 

prevention e.g. synthesis of neuroprotective compounds such as NPD1 or autophagy 

activation by the inhibition of PI3K‐Akt‐mTOR pathway has been reported in RPE cells 

(81). 

 In RPE cells, autophagy is involved in development, cell survival, melanin 

degradation, as well as in the degradation of toxic cellular components and damaged 

organelles (47). RPE cells maintain basal autophagy levels for cellular homeostasis, 

with variations, commonly observed in aged and damaged cells (47, 49). Autophagy 

plays an important role in the pathogenesis of blinding retinal diseases due to 

defective lysosomal-autophagic degradation in the RPE (90). Recently, several research 



groups showed advances in understanding the role that autophagy plays in RPE, AMD 

development (91) or glaucoma (92). 

 

 3.6.4. Release of cytokines  

 The release of cytokines and chemokines by cells of the immune system occurs 

in order to recruit other cells in the place where the damage has developed (93-95). 

There are proinflammatory cytokines such as interleukin 1, 2, 6, and 8 (IL-1, IL-2, IL-6, 

IL-8), together with TNF-α and also antiinflammatory such as IL-10 and IL-6. The first 

cytokines of the inflammatory cascade are TNF-α and IL-1β to stimulate the production 

of IL-6 (96). 

 ROS production is essential for the progression of an inflammatory process, this 

is produced by the same cells above mentioned, involved in carrying out the immune 

response. Therefore, we can say that the ROS acts as a signaling molecule and as a 

mediator of inflammation (96). In addition, it acts as secondary messenger modulating 

transcription factors in a variety of inflammatory signaling ways including MAPK, NFКB, 

and the signaling pathway JAK-STAT in different cell types (97). 

 There are studies that relate the production of ROS in the RPE specifically with 

inflammatory processes and release of VEGF. This has been studied in diseases such as 

DR and AMD (98, 99). Besides, taking into account the important role of VEGF in 

maintaining the RPE tissue stability, the imbalance of VEGF release can induce retinal 

damage.  

 Recently, Vatsyayan and collaborators (100), have published that the 

expression and function of VEGF in RPE cells is regulated by 4-HNE. On the other hand, 

NAC treatment in hyperglycemia rescued the severity of this CNV by inhibiting 

overexpression of p-STAT3 and VEGF in RPE cells (101). 

 

 3.6.5. MMPs activation 

 It has been observed the presence of MMPs, in particular MMP-1, MMP-3 and 

MMP-9, in the matrix located between the photoreceptor; subsequently it was 

confirmed that the presence of MMP-2 is increased upon exposure to light. The 

participation of these proteases is proved in the phototoxic processes (102).  
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 As mentioned before, overexpression of MMP-9 is implicated in CNV 

development via VEGF (84). On the other hand, PEDF-treated mice underwent a 

reduction in MMP activity reflecting a normalization of ocular VEGF levels (103).  

 

 3.6.6. TJ disruption 

 The TJ form a barrier for the movement of substances into the cellular space, 

limiting the passage of substances between the basement membrane and the 

basolateral membrane in RPE cells. Three transmembrane proteins in TJ have been 

identified: occludins, claudins and adhesion molecules. Among these, the occludin 

seems to be the most important and, therefore, it has been extensively characterized 

(104, 105). Occludin, binds to members of the family of zonula ocludens (ZO-1, ZO-2, 

ZO-3) (95, 106) through its C-terminal and interaction with these proteins appears to 

be crucial in the assembly of the TJ and in the maintenance of barrier function. Recent 

studies show that OS is capable of interfering with the integrity of the barrier because 

it affects negatively to TJ inducing, among other things, the dissociation between 

occludin and ZO-1 (76). On the other hand, there are studies that say that the 

expression of ZO-1 decreases under hypoxic conditions, figure 9 (76, 106). 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 



4. OXIDATIVE STRESS AND OCULAR DISEASES 

 

 Oxidative stress plays a central role in the most common eye diseases, including 

RP, AMD, and DR (107). As mentioned previously, the eye is one of the most 

metabolically active tissues and it is exposed to high levels of light and oxygenation. 

These characteristics favor the production of ROS in RPE and neural retina. Excessive 

accumulation of this species contributes to the retinal pathogenesis (17), leading to 

LPO processes, protein oxidation and DNA damage. These effects are related in turn to 

mitochondrial damage that can result in apoptosis or cell necrosis (108). 

 It has been shown that some retinal diseases can produce changes in the 

extracellular tissue environment, this increases OS, stimulating ROS production. 

Excessive accumulation of ROS is related to a decrease in the production of antioxidant 

enzymes (108). ROS formation also appears to be related to processes of hypoxia and 

inflammation (109), ischemia, EtOH consumption (73), actin reorganization, and cell 

migration (48). Furthermore, it has been observed that the onset of angiogenic activity 

mediated by inflammatory cells also appears related to ROS production (48). 

 

4.1. RETINITIS PIGMENTOSA 

 

 Retinitis pigmentosa is defined as an inherited retinal condition that gradually 

leads to visual field loss and retinal degeneration. RP results from harmful changes in 

any one of more than 50 genes limiting the cells function. It is considered a rare 

disorder that affects roughly 1 in 4,000 people (110). 

 The progressive rod degeneration is later followed by abnormalities in the 

adjacent RPE and the deterioration of cone photoreceptor cells. As peripheral vision 

becomes increasingly compromised, patients experience progressive "tunnel vision" 

and eventual blindness (111).  

 In 2005 Shen J and collaborators described in a pig model of RP the presence of 

acrolein- and 4-HNE-adducts on proteins like a specific indicator of LPO (112). Also, 

decreased oxygen consumption and hyperoxia in the outer retina, resulting in gradual 

cone cell death (112). This cell death could be caspase-independent apoptosis induced 

by OS (113). According to OS implication in the death of retinal cells, other research 

group published that antioxidants reduce cone cell death in RPE (114).  
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4.2. CHORIOCAPILLAR AND RETINAL MICROVASCULATURE ALTERATIONS  

 

 Ocular angiogenesis is a cause of severe worldwide visual loss and ocular 

morbidity. These include retinopathy of prematurity, DR, and AMD, which are leading 

causes of vision loss in children, working-age adults, and the elderly in the developed 

world (115). 

 In these CNV and retinal NV diseases the VEGF/VEGFR-2 axis promotes 

endothelial cell function and proliferation, leading to increased pathological neovessels 

in proliferative eye diseases (48). The evolution of CNV begins with a break or defect in 

Bruch’s membrane. This may be secondary to a traumatic break, a degenerative 

process, tissue traction and/or inflammation. When this occurs, choriocapillary 

endothelial cells, pericytes, fibrocytes and inflammatory cells are introduced into the 

sub-retinal pigment epithelium and/or sub-retinal spaces. There are inflammatory, 

angiogenic and ECM components of the CNV competing to induce or suppress the 

processes (116). 

 Several inflammatory subsystems have been implicated in CNV, including the 

complement system, cytokines, and chemokines (117). Pro-angiogenic factors that 

stimulate the proliferation of endothelial cells in CNV include VEGF, FGF and PDGF 

(116). PEDF is a naturally occurring anti-angiogenic protein. Interestingly, PEDF also 

exhibits anti-inflammatory properties by modulating macrophage activity (42). The 

MMPs and TIMPs are involved with pro- and anti-angiogenesis as well as pro- and anti- 

tissue degradation (28, 35).  

 We can describe all of this like a system with three general categories: 

inflammation, angiogenesis and proteolysis. These systems are interrelated and allow 

the initiation, maintenance and progress of CNV. In the case of NV, the principal 

promoter is the hypoxia. Numerous clinical and experimental observations have 

indicated that ischemia and hypoxia is the main cause for retinal NV (117). Hypoxia 

increases the accumulation of hypoxia inducible factor 1α (HIF-1α), a transcription 

factor, which can promote the expression and secretion of the VEGF. Exposure to 

hypoxia may also induce changes in the levels of OS in the body, generating an 

increase in ROS (118). It has been observed that HIF-1 is closely related to VEGF and 

this, in turn with different growth factors (EGF, TGF-α and β, IGF-1, FGF and PDGF), 

activates oncogenes as well as various cytokines (IL-1-α and IL-6), and the resale of 

nitric oxide (NO) (76). 

 One of the best characterized targets of HIF-1 is carbonic anhydrase 9 (CA9). It 

has been shown that CA9 contributes to the acidification of the extracellular 



environment during hypoxia, and low extracellular pH is associated with the 

angiogenic process. This makes CA9 a potential marker of hypoxia (119).   

 ROS production appears to be involved in the initiation of angiogenesis, and it 

also has a crucial role in triggering intracellular signals (120). Like inflammatory 

processes, it has been demonstrated that there is an increase of hypoxia markers in 

many retinal diseases that eventually trigger angiogenic processes. (98, 121). It has 

been demonstrated that not only VEGF can regulate angiogenesis process; there are 

different molecules and process involved (76, 89 120, 121). But other proteins not 

mentioned before are strongly associated with the regulation of angiogenesis. 

 Thrombospondin-1 (TSP-1) is a glycoprotein of ECM and it has multiple 

functional domains that have been attributed to different biological activities (122). 

These activities should be noted as a potent inhibitor of angiogenesis (123, 124).  

 Others endogenous inhibitors of angiogenesis are angiostatin, that it is resulting 

from the degradation of plasminogen and endostatin (collagen XVIII fragment). On the 

other hand, inhibitors of ECM e.g. tumstatin, vasoinhibin and vasostatin (125), can act 

as indirect inhibitors of angiogenesis. 

 AMD is a disease associated with age that gradually destroys sharp, central 

vision (110). The treatment and therapy for AMD is constantly evolving. In the past, the 

only way to seal leaking blood vessels in wet AMD was using a laser in a procedure. In 

2004, an even more effective type of treatment, called “Targeted Therapy” was 

developed. These treatments called anti-VEGF therapies have now revolutionized the 

treatment of wet AMD (112). But VEGF is not only the target for the treatments, it is 

necessary to take into account the important role of OS in this disease. 

 Previous studies demonstrate that OS induces VEGF liberation in RPE and 

endothelial cells (48). OS also promotes the NV and angiogenesis in different AMD 

models (126). Chronic elevated ROS level, OS, pathophysiological inflammation, and 

long stay hypoxia decrease the ability of RPE cells to remove damaged or 

nonfunctional proteins via the lysosomal clearance system, including macroautophagy 

(66). In addition, superoxide anions are involved in the regulation of cell adaptation to 

hypoxia via HIF-1α and are involved in the regulation of mitochondrial autophagy 

process (68). 

 The major cause of blindness in working age people is DR. It is a chronic and 

progressive complication in the course of diabetes mellitus type 1 or type 2. It is 

characterizes by gradual and progressive alterations in the retinal microvasculature, 

accompanied by damage of glia and neurons (127). Vision loss occurs from the 

breakdown of the BRB, resulting in macular edema, inner retinal and vitreous 

hemorrhages, and tractional retinal detachment (128).  
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 The role of OS in this disease is more complicated to define. This is a 

multifactorial disease and the excess of glucose in the blood does not only have 

damage in the retinal tissue. In RPE hyperglycemia, the levels of ROS are increased 

with a persistent mtDNA damage (129), releasing to cytokines and activating signaling 

pathway such as NFKB (130). Similar to AMD, DR triggers an inflammation response in 

the retinal tissue, resulting ultimately in an uncontrolled angiogenic process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5. ALCOHOL AND RETINAL DEGENERATION 

 

 Alcohol consumption is a risk factor that causes death worldwide. Its 

consumption can lead to more than 60 different diseases (131). In fact, alcohol 

dependence correlates with a broad spectrum of diseases, psychological, behavioral 

and social problems (132). Alcohol has become the more socially accepted addictive 

drug worldwide (133), and it can result in the damage and functional impairment of 

many organs of the body. 

 But this is not only a major health problem, it also is an economic burden, due 

to the increased and many costs that chronic diseases related with alcohol have. These 

alcohol related diseases go from heart disease (134), strokes (135), liver disease (136), 

cancer (137), chronic respiratory diseases (138) to neurodegenerative disease (139). It 

has been shown that acute and chronic EtOH increases ROS production in a variety of 

systems, cells, and different species, including humans (136).  

 

 

5.1. EtOH METABOLISM 

 

 The metabolism of alcohol, mainly referred as EtOH (CH3CH2OH), is closely 

linked with the stimulation of ROS generation and thus OS. The effects of EtOH on 

biological tissue depends on its concentration in blood over time (57). Elimination of 

absorbed EtOH occurs primarily through metabolism (98%), with small fractions (1-2%) 

excreted by breath, sweat, and urine (140). Although the main focus of EtOH-induced 

alterations is the liver, there are also clear indications of the existence of an 

extrahepatic oxidative EtOH metabolism in different organs.  

 EtOH exerts its deleterious effects metabolically via oxidative (producing 

acetaldehyde) and non-oxidative (formation of ethyl esters of fatty acids) pathways 

(141), involving free radical production and LPO (128, 142-144). 

 In cellular EtOH metabolism there are three enzymes responsible, figure 11 

(145). The principal EtOH-metabolizing enzymes are ADH in cytosol, but there are two 

others as well. One of them is CYP2E1 on microsomes, and CAT on peroxisomes. Both 

contribute to the metabolism of alcohol in specific circumstances, such as in high 

concentrations. The acetaldehyde produced by the EtOH oxidation is transformed to 

acetate by ALDH, which can be further metabolized through the tricarboxylic acid cycle 

to generate energy, although these metabolites can be deposited in the plasma (146).  
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Figure 11. EtOH metabolism. EtOH is metabolized to acetaldehyde by ADH, Catalase and CYP2E1. The 

activity of ALDH transform acetaldehyde in acetate. Obtained from Israel Y, et al. 2013 (145). 

 

 5.1.1. Alcohol dehydrogenase 

 ADH is a zinc-containing enzyme, consisting of two subunits of 40 kDa each. Its 

function is to oxidize endogenous alcohol and exogenous alcohols consumed in the 

diet. The enzyme has broad substrate specificity, oxidizing many primary or secondary 

alcohols. It is located in the cytosolic fraction of the cell. ADH is found in its highest 

amount in the liver, followed by the estomach, kidneys, nasal mucosa, testes, uterus 

(147), and also in RPE tissue (51). 

 To maintain effective rates of alcohol oxidation by ADH, it is important to 

regenerate NAD+ from the NADH produced by the ADH reaction, figure 11 (145). 

Under certain conditions, the rate of oxidation of alcohol can be limited by the 

reoxidation of NADH. The major system for reoxidizing NADH is the mitochondrial 

electron transfer system (145). 

 Alcohol oxidation is generally limited by the maximum capacity of ADH (147). 

To date, there are seven different ADH genes; Class I: ADH1A, ADH1B, ADH1C; Class II: 

ADH4; Class III: ADH5; Class IV: ADH6 and Class V: ADH7. All of these have been 

identified clustered together on the same chromosome.ADH1A, ADH1B and ADH1C 

genes encode the majority of the ADH enzymes that metabolize alcohol in the liver 

(148). Additionally ADH5, ADH7 were found in RPE cell line called ARPE-19 (51).  

  

 5.1.2. Catalase 

 Catalase (CAT) is capable of oxidizing EtOH in vitro in the presence of a 

hydrogen peroxide (H2O2)-generating system, such as the enzyme complex NADPH 

oxidase or the enzyme xanthine oxidase. Quantitatively, however, is considered a 

minor pathway of alcohol oxidation (149). 



 The increase in CAT activity following EtOH intake, and its effects in the CNS, 

are associated with weak ADH activity. This increase in CAT activity in the CNS may be 

an adaptive process induced by the increase in the hydrogen peroxide generated, as 

that which occurs in the CNS of animals exposed to high EtOH concentrations (147). In 

the same experiments with ARPE-19 cells, also the expression of catalase was found 

(51). 

 

 5.1.3. MEO System: CYP2E1 

 This is a system capable to metabolize EtOH on microsomes and sometimes in 

mitochondria. This system referred to as MEOS contains different members of the 

CYPP450 family. The CYP2E1 distribution in human body is well known, there is 

expression of this enzyme not only in liver, also in CNS (143), in the digestive system 

(150), heart (151), lung (152) and the eyes (51, 153, 154). The gene is located on 

chromosome 10q26.3 and is composed by 9 exons. 

 CYP2E1 is a P450 which has the highest activity for oxidizing alcohol to 

acetaldehyde. Besides, CYP2E1 can oxidize many other xenobiotic compounds 

including acetone, benzene, other alcohols and drugs (147). The Michaelis constant, 

Km of CYP2E1 for EtOH is 10-fold higher than the Km of ADH. Km is the substrate 

concentration at which the reaction rate is half of Vmax (the maximum rate achieved 

by the system, at saturating substrate concentration). At low alcohol concentrations, 

CYP2E1 may account for about 10% of the total alcohol oxidizing capacity of the liver. 

However in view of its higher Km, the relevance of CYP2E1 in EtOH oxidation increases 

as blood alcohol concentrations increase (147). 

 

5.2. CYP2E1 AND OXIDATIVE STRESS GENERATION 

 

 The generation of these ROS by CYP2E1 contributes to the OS observed after 

alcohol consumption. CYP2E1 is unique P450s found in humans will readily accept 

electrons and generate these ROS even in the absence of a substrate (155). The 

production of these ROS by CYP2E1 is referred to as an “uncoupled reaction”. Thus, in 

the presence or even in the absence of substrate, CYP2E1, with O2 and NADPH, it can 

produce ROS that may cause cell toxicity (155). In general, ROS are generated during 

P450 catalysis when either the ferrous oxy species decays to produce superoxide or 

the hydroperoxy form is protonated to release hydrogen peroxide. Collapse of these 

species could occur if electron or proton delivery is delayed or if the substrate is not 

positioned for attack. It has been proposed that during uncoupling, the substrate could 
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migrate away from the heme and the activated oxygen, thus allowing the oxygen to 

react in other ways (156).  

 The CYP2E1 catalytic activity results in the production of large amounts of 

reactive oxygen with intermediates such as the superoxide radical and hydrogen 

peroxide (146). Additionally the activity of CYP2E1 produces LPO products such as 4-

HNE and MDA (146). For this reason, the activation of CYP2E1 could be toxic for the 

cell, figure 12 (157). 

 

 

Figure 12. CYP2E1 and generation of oxidative stress. CYP2E1 activity increase the levels of OS 

producing ROS, increasing glucose levels and lipid peroxidation products. Obtained and modified from 

http://themedicalbiochemistrypage.org  (157) 

 

 5.2.1. CYP2E1 induction 

 CYP2E1 is induced in the liver and several extrahepatic tissues by small organic 

molecules such as EtOH, pyrazole, acetone, or isoniazide. Consequently, the tissue 

levels of this heme protein are significantly increased (158). 

 CYP2E1 can also be induced under a variety of metabolic or nutritional 

conditions. For example, CYP2E1 levels were elevated in chronically obsesses rats, also 

in rats in which the levels of CYP2E1 were increased by prolonged starvation (159). The 

most significant chemical inducer of CYP2E1 is EtOH, a compound which is also a 

substrate for the protein. Debate still exists as to the precise mechanism of CYP2E1 

induction by alcohol, with some reports indicating that EtOH stabilizes CYP2E1 in vitro 

and another group suggesting that EtOH induces CYP2E1 by increasing protein 

synthesis (159).  

http://themedicalbiochemistrypage.org/


 

 Induction of CYP2E1 expression by EtOH is complex and involves both 

transcriptional and post-transcriptional mechanisms (160, 161). EtOH, at very high 

levels can also increase CYP2E1 by a transcriptional mechanism and increase mRNA 

synthesis. Thus, multiple mechanisms can exist by which a cytochrome P450 such as 

CYP2E1 can be induced. In many cases, induction of a specific P450 by a chemical 

inducer requires binding of the inducer to a nuclear receptor, followed by 

translocation of the receptor-inducer complex into the nucleus and subsequent 

interaction and activation of the gene for the P450 (160). 

 

 5.2.2. CYP2E1 regulation 

 The regulation of CYP2E1 activity can be modulated at several levels, ranging 

from transcriptional to post-translational induction and inhibition. The net result is in 

fact not “induction” per se, but the accumulation of substrate-stabilized CYP2E1 (162).  

 The signaling pathways involved in CYP2E1 regulation by EtOH are unclear, 

especially in extra-hepatic cells. Jin M and collaborators demonstrate the strong 

evidence of the involvement of the PKC/JNK/SP1 pathway in EtOH-mediated 

regulation of CYP2E1 in astrocytes and monocytes (161). Their results are supported in 

recent monocytes studies (163). The OS generated by CYP2E1 activates the 

inflammatory pathways. This mechanism can regulate also CYP2E1 expression.  

 Previous studies have shown that anti-inflammatory cytokine IL-4 can induce 

CYP2E1 in hepatic cells through PKC pathway. In fact, the pro-inflammatory cytokines 

IL-1β, IL-6 and TNF-α down-regulate CYP2E1 gene expression (164). Abdel-Razzak and 

collaborators realized a complete study about possible transcriptional factors for 

CYP2E1. They found that there are several putative binding locations for transcription   

factors   e.g. AP-1 and NFКB (164).  Also nuclear factor 1 (NF-1) binding  sites  are  

found  in  CYP2E1  gene  promoter  region,  suggesting that CYP2E1 gene  expression  is  

also  regulated  by  NF-1 (165, 166). Most of them are known for their involvement in 

IL-4 response in other cell systems. IL-1β slightly inhibits CYP2E1 promoter activity 

through a sequence independent from the IL-4 responsive region. 

 NFКB is an important transcription factor that regulates a wide spectrum of 

genes including CYP450. NFКB can directly regulate the expression of CYP2E1 through 

binding to the promoter region. Also indirectly, it regulates the transcription of CYP 

genes through mutual repression with some nuclear receptors, and finally it can 

regulate the activity at post-transcriptional level by inducing heme oxygenase or by 

affecting the protein stability (167). 
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 On the other hand, ROS accumulation and a pro-oxidant environment 

generated by CYP2E1, trigger activation of transcription factors NFКB and AP-1 (168). 

In addition to the role of ROS in activating NFКB and AP-1, it is conceivable that 

carbonyls resulting from the LPO caused by EtOH may also play a role in modulating 

the DNA binding of NFКB and AP-1 (168).   

 Different CYP2E1 inhibitors have been described. On one side we find the 

endogenous cell inhibitors, and in the other side, the exogenous or drugs inhibitors. 

The first ones are proteins, transcriptional factors or molecules induced by cell 

signaling response under OS situations. The second ones are drugs or molecules that 

can block the CYP2E1 activity. There are many in this last group, but the most used in 

cellular and animal experiments are DAS, disulfiram or clomethiazole (CMZ), like 

synthetic antioxidants or drugs.  

 As previously mentioned, the regulation of CYP2E1 and the cell signaling 

implicated is a complex process that implicates a lot of cell signaling proteins, factors, 

processes and pathways, figure 13. For this reason it is still under investigation.  

 

 

Figure 13. Regulation of CYP2E1 and cell signaling involved. The increase of OS by CYP2E1 activity 

induced by EtOH, activates a ROS-induced MAPKs and cytokines pathways. That results in a CYP2E1 gene 

promoter activation increasing CYP2E1 expression as a positive feedback regulation.  
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 Alcohol consumption is a risk factor for death worldwide important because 

consumption of this leads to more than 60 different diseases (131). In fact, alcohol 

dependence correlates with a broad spectrum of diseases, psychological, behavioral 

and social problems (132). Alcohol has become more socially acceptable addictive drug 

worldwide (133), resulting in damage and functional impairment of many organs of the 

body. 

 As is mentioned before, alcohol-mediated upregulation of pro-inflammatory 

cytokines occurs through the MAPK pathway (ERK1/2, p-38, and JNK), which triggers 

the downstream activation of oxidant-sensitive transcription factors NFКB and AP-1 

(161-168). It has been demonstrated that low alcohol concentrations can increase 

cellular antioxidant defense to combat the OS. But high EtOH concentrations and 

consistent abuse can cause alcohol-induced toxicity and liver damage through the 

PKC/JNK pathway (161).  

 It has been also reported that the inhibition of CYP2E1 activity by DAS 

prevented the induction of collagen I gene expression in rat stellate cells 

overexpressing CYP2E1 (169). Also the same study demonstrate the MMP-2 and TGF-β 

induction by EtOH in a concentration dependent manner in hepatic stellate cells. The 

same occur with NFКB, the increase of this factor is accompanied by decrease of its 

inhibitor, IКBα. 

 Is well known that exposure to high EtOH treatment induce apoptosis in several 

tissues and cells (170-172). This EtOH, induces caspase-3 expression, not only in 

hepatocytes for example in RPE cells (170) and astrocytes (161). In addition, knocking 

down CYP2E1 expression through CYP2E1 siRNA abolished ethanol-induced caspase-3 

cleavage. The same occur with the use of DAS , vitamin C, as well as vitamin E 

suggesting that ethanol-induced apoptosis is mediated through ROS production (161).   

Similar results were found in our group in RPE cells under EtOH treatment using DAS 

and CMZ as an inhibitor (51).  This process could be activated because mitochondria 

appear to be among the critical cellular organelles damaged by CYP2E1-derived 

oxidants (159). On the other hand in neurons, EtOH induces apoptosis by inhibition of 

phosphatidylserine accumulation (173). 

 The role of LPO products in apoptosis activation, It has been well studied. And 

its ability to form protein adducts, and aggresomes is an important key in this process. 

For example 4-HNE can promote organelle and protein damage, apoptosis or necrosis 

programmed cell death at high or very high levels, respectively, and cells die.  

 



 These processes eventually lead to molecular cell damage which may facilitate 

development of various pathological states. High levels of 4-HNE can also react with 

proteins and/or DNA to form adducts resulting in a variety of cytotoxic and genotoxic 

consequences (47).  

 Autophagy has been identified as cytoprotector in nervous and liver cells under 

EtOH-induced toxicity. Oxidative-damaged mitochondria, a main source of ROS, seem 

to be removed by autophagy in order to guarantee cell survival. Autophagy can 

modulate CYP2E1-dependent ethanol toxicity. Inhibition of autophagy increased binge 

ethanol-induced steatosis in wild type and CYP2E1 knocking mice but not CYP2E1 

knockout mice (174). 

 In vitro inhibition of autophagy in CYP2E1-expressing HepG2 cells increases 

levels of active JNK that promote liver injury, suggesting that autophagy may also 

regulate the effects of CYP2E1 on JNK activation (175). CYP2E1 increase the activity of 

SOD, HO-1 and Nrf2. All of them protect the cells against oxidative stress.  In presence 

of DAS is possible to reduce their expression and also ROS (176). 

 There is another cytoprotective mechanism that is affect by OS induced by 

CYP2E1. They are ubiquitious and highly conserved proteins which their function is 

assistance in the correct folding of nascent and stress-accumulated misfolded proteins, 

HSPs (177). This kind of protein have been related with ethanol tolerance and neuronal 

adaptation. Studies have also shown that  acute  and  chronic  alcohol  induces  HSP  

activation  and  differentially  induces  HSP70  and  HSP90 to affect inflammatory 

cytokine production in macrophages (177).  
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 It is difficult to find studies that directly link the consumption of alcohol with 

retinal degeneration. There are some that classify different risks factors for retinal 

diseases prevalence, and at this point alcohol consumption could be one of them. For 

example heavy EtOH consumption has been associated with elevated intraocular 

pressure and glaucoma, cataract formation, AMD (178-179). In contrast with that, low 

or moderate alcohol consumption has a protective role in these same diseases (180).  

 Oxidative stress plays a crucial role in retinal degeneration and retinal diseases 

such as RP (113), RD (129) and AMD (48,127). It is also well known that EtOH increases 

OS production unleashing an inflammatory response (164) with NFКB as the main 

intermediary (125,126). The implication of CYP2E1 in pathological processes and 

diseases has been studied not only in EtOH abuse. It has been related with cancer 

(181), cirrhosis (182), with healthy problems induced by cigarette smoke (183), and 

also with neurodegeneration (184).  

 Focusing in ocular diseases, the relationship between ocular diseases and 

CYP2E1 is really clear; CYP2E1 is involved in visual cycle (24), but surprisingly few 

studies have been conducted on this respect. It has been described the CYP2E1 

presence and participation in blindness caused by methanol poisoning (185), in the 

pathogenesis of drug-induced retinopathy (186) and in retinal metabolism of ω-3-

Polyunsaturated fatty acids (187).  

 As already described, this enzyme is induced by EtOH, triggering the increase of 

intracellular ROS (155,157). It has also been described the implications of ROS in the 

RPE cellular response, loss of function and integrity (107,166) causing retinal 

degeneration. Taking together all this information, it is plausible to establish the 

hypothesis proposed herein that, oxidative stress generated by EtOH could be directly 

involved in the regulation of CYP2E1 in RPE.  
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 The current study is aimed at producing knowledge concerning mechanisms 

implicated in vision loss using ARPE-19 cells as in vitro model after EtOH exposure. 

Nowadays alcohol is one of the most commonly consumed drugs. This problem also 

increasingly affects young people. Blindness is a terrible disease with huge impacts 

both socially and economically. Hence, the purpose of this thesis is to find out the 

pathophysiological mechanisms involved in the deleterious effect of EtOH and EtOH-

induced OS on RPE and therefore in vision, that could also help understand this same 

mechanisms of other retinal diseases. 

 

The general and specific objectives: 

 

1. To evaluate ARPE-19 as a cellular model to study the effects of EtOH on RPE cells:  

 1.1 To generate primary cell culture of RPE from human tissue (hRPE). 

 1.2 To generate RPE cell culture from 3D retinal model generated from hiPSC 

 (hiPSC-RPE). 

 1.3 To generate mature ARPE-19 cells. 

 1.4 To evaluate the cytotoxicity of EtOH, in RPE all cellular models developed, 

 by XTT cell viability assay. 

 

2. To evaluate the OS dependent cellular response in ARPE-19 cells: 

 2.1 To study the OS biomarkers expression after acute EtOH exposure by 

 human cell stress array. 

 2.2 To characterize OS status measuring total of intracellular ROS by DCFH 

 fluorescence and superoxide anions by DHE fluorescence after different EtOH 

 concentrations treatment. 

 2.3 To relate the generated OS to cell death using XTT and DCFH fluorescence. 

 

 

 



3. To study ARPE-19 cell death process: 

 3.1 To characterize apoptosis activation, depending on EtOH concentration 

 used, by WB using specific apoptosis biomarkers such as Caspase-3, Bax, and 

 Bcl-2. 

 3.2 To evaluate plasma membrane integrity after EtOH treatment by 

 calcein/EthD-1 fluorescence. 

 

4. To evaluate the RPE barrier function:   

 4.1 To study the TJ integrity by ZO-1 immunofluorescence (IF) in ARPE-19 cells  

 and TER assay in mature ARPE-19 cells. Using different EtOH concentrations 

 treatment on ARPE-19 cells. 

 4.2 To characterize the profile of secreted molecules, growth factors and 

 proteins expression under non-lethal EtOH treatment by human proteome 

 profile array. 

 4.3 To characterize the expression of specific RPE growth factors such as PEDF 

 and VEGF by qPCR and its receptors VEGFR-1 and VEGFR-2 by WB, under non-

 lethal EtOH treatment. 

 4.4. To characterize the profile expression of MMPs, under non-lethal EtOH 

 treatment by ELISA. 

 4.5 To characterize the EtOH-induced NFКB expression modification and 

 activation by IF and WB. 

 

5. To corroborate CYP2E1 expression in all RPE cellular models by WB, IF and PCR 

using HEPG2 cells as a positive control of its expression. 

 

6. To monitor CYP2E1 induction in ARPE-19 cells: 

 6.1 To evaluate the time dependent EtOH-induced CYP2E1 expression by qPCR 

 and IF. 
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 6.2 To evaluate the concentration dependent EtOH-induced CYP2E1 expression 

 by qPCR, IF and WB. 

 6.3 To evaluate the enzymatic CYP2E1 activity induced by EtOH in ARPE-19 

 microsomes compared with HEPG2 microsomes by HPCL. 

 

7. To study the CYP2E1 implication in RPE cell death: 

 7.1 To monitor apoptosis activation when CYP2E1 is overexpressed by toxic 

 concentrations of EtOH, measuring Caspase-3, Bax and Bcl-2 by WB in ARPE-19 

 cells. 

 7.2 To describe the implication of CYP2E1 in ROS increase after EtOH treatment 

 using DAS like a selective CYP2E1 inhibitor (XTT, DCFH, and HPLC). 

 7.3 To characterize the EtOH-induced CYP2E1 expression, using DAS to block 

 the EtOH effect, by WB and qPCR. 

 7.4 To validate the cellular model replicating experiments with EtOH and DAS 

 treatment with hRPE, mature ARPE-19 and hiPSC-RPE (XTT, DCFH, and IF). 

 

8. To demonstrate the CYP2E1 implication in OS cellular response in RPE cells:  

 8.1 To study the OS biomarkers expression after acute EtOH exposure 

 combined with DAS treatment by human cell stress array in ARPE-19 cells. 

 8.2 To study the possible NFКB regulation by EtOH-induced CYP2E1 by IF and 

 WB. 

 

9. To investigate the CYP2E1 regulation in RPE cells: 

 9.1 To validate NAC as an antioxidant using EtOH treatment in ARPE-19 cells to 

 induce cell death and ROS (XTT, DCFH, and DHE). 

 9.2 To demonstrate that ROS generated by CYP2E1 modulates its self-

 expression, using DAS and NAC combined with EtOH, (WB). 

 9.3 To study the possible CYP2E1 regulation by EtOH –induced NFКB (IF and 

 WB) 
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1.  CELL CULTURE AND TREATMENTS 

 Human RPE cell line ARPE-19 was cultured according to supplier's protocol 

(American Type Culture Collection; ATCC) and were used from passages 18 to 20. 

 Human hepatocellular liver carcinoma (HEPG2-E47) cells were donated 

generously from the laboratory of Mª Carmen García-Ruiz, PhD (IIBB-CSIC, Barcelona, 

Spain), and cultured according to supplier's protocol (ATCC). HEPG2 cells were used as 

a positive control for CYP2E1 experiments (See figure 1 annexed). 

 Human RPE (hRPE) was obtained from human donors at the Fundación 

Oftalmológica Del Mediterráneo (FOM; Valencia, Spain) according with the Spanish 

regulations for the handling of human samples. Human RPE cells were isolated by 

collagenase and trypsin treatment as described previously (188). Briefly, after removal 

of the neural retina, sheets of RPE cells were washed with sterile phosphate-buffered 

saline (PBS; Sigma Aldrich) and then incubated with 1% collagenase (Thermo Fisher) in 

Dulbecco's modified Eagle's medium/nutrient mixture F12 (DMEM/F12; Thermo 

Fisher) at 37°C and 5% CO2 for 20 min.  

 Then, the cells were incubated with trypsin-EDTA solution (Thermo Fisher) in 

the same conditions as above for 10 min. Finally, cells were recovered by 

centrifugation and seeded in the same conditions used for ARPE-19 cells. Cells were 

used from passages 2 to 4. In these passages, cells maintained typical hexagonal 

morphology, did not lose pigmentation, and all were positively labeled with RPE65, 

specific RPE marker (see figure 2 annexed). 

 hiPSC-RPE cells were generated in Canto-Soler lab. Starting from RCs generated 

in this laboratory (52) the RPE tissue is attached at the tip of RCs were microdissected 

(51) Then, this hiPSC-RPE were seeded, after enzyme digestion with trypsin-EDTA, onto 

matrigel (Corning) -coated dishes. All hiPSC-RPE procedures were performed under the 

supervision and assistance of Miguel Flores Bellver PhD from Wilmer Eye Institute 

(Johns Hopkins University). 

 ARPE-19 and hRPE cells were cultured in DMEM/F12 supplemented with 5 mM 

2-[4-(2-hydroxyethyl)piperazin-1-yl] ethanesulfonic acid (HEPES; Thermo Fisher),  7.5% 

NaHCO3 (Thermo Fisher), 10% fetal bovine serum (FBS; Thermo Fisher) and 1% 

penicillin/streptomycin (Thermo Fisher). hiPSC-RPE cells were cultured in DMEM/F12 

(3:1) (Invitrogen) supplemented with 2% B27 nutrient (Sigma Aldrich) and 1% 

penicillin/streptomycin. All cells were maintained at 37°C and 5% CO2.  

 



 ARPE-19 cells and hRPE cells were cultured at a seeding density of 1 × 103 

cells/cm2 as a “common” density. 1 x 105 were used for hiPSC-RPE and ARPE-19 cells as 

a “high density” condition. After 2 days at 80% of confluence, cells were ready to use. 

In case of mature ARPE-19 cells, cells were maintained 2 months in the same 

conditions previously described but reducing serum content in the media to 1% (44). 

After this time, cells were treated as described below.  

 Cells were treated for 24 hours at different EtOH (Biosolve, Valkenswaard) 

concentrations. For CYP2E1 Inhibition, diallyl sulfide (DAS; Santa Cruz), a known 

selective CYP2E1 inhibitor (161), was added (20 mM in dimethyl sulfoxide [DMSO], 

0.1% in all samples) to the culture media without FBS. Moreover, cells were treated 

with 4 mM of an antioxidant N-acetylcysteine (NAC; Sigma Aldrich) (161). For both 

drugs, a viability assay was performed to select the used concentration, (See figure 3 

annexed). Pictures of RPE cells morphology were taken under phase-contrast 

microscopy (Eclipse Ti; Nikon) to assess the efficiency, correct growth and the effects 

of drugs treatments into the cells.  

 

2. CELLULAR PASSAGE AND MAINTENANCE  

 Because RPE are adherent cells, for a subculture to grow them, medium was 

aspirated, cells were rinsed with PBS. Following, trypsin-EDTA was added and cells 

were incubated at 37°C for 5 to 10 min for cell detachment.  

 To discard trypsin solution, a double volume of complete medium was added 

and cells were centrifuged for 5 min at 500 g. Cells were divided into different flasks at 

desired density, renewing it with fresh medium the next day.  

 

3. HEAT INACTIVATION OF FETAL BOVINE SERUM  

 Because FBS is an important supplement of all culture media used, heat 

inactivation FBS should be strictly monitored and performed using a repeatable 

procedure. FBS was heated to 56°C for 30 min in a water bath mixing every 10 min. 

After cooling it to room temperature (RT), FBS was aliquoted and stored at -20°C. 
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4. COUNTING CELLS 

 Cells were detached with trypsin-EDTA solution. Pellet was suspended in 

corresponding medium and counted using a Neubauer haemacytometer (Fisher). 10 μL 

of cells were mixed with 10 μL of 0.4% trypan blue solution (Thermo Fisher) to make a 

1:1 dilution. The cells were counted using the grid on the haemocytometer. The mean 

number of cells was calculated and multiplied by the dilution factor and then by 104 to 

scale the volume of the haemocytometer (0.1 mm3) to cells/mL. 

 

5. CELLULAR CRYOGENIC STORAGE  

 To freeze for future use, cells were detached using trypsin-EDTA as mentioned 

above. The detached cells were washed with complete medium and pelleted by 

centrifugation at 1200 xg for 3 min. The supernatant was aspirated and cells were 

resuspended in cryogenic solution (9:1 FBS: DMSO (v/v); Sigma Aldrich).  

 Approximately 1.5 x 106 cells were transferred with 1 ml cryogenic solution into 

each cryogenic vial (Thermo Fisher). They were stored in -80°C no more than 48 h into 

freezer container, then transferred (-150°C) for storage. Cells were thawed at 37°C in a 

water bath, then transferred to new tubes with complete medium, after that cells 

were centrifuged at 500 xg for 5 min. The medium was changed with fresh one and 

cells were placed into desired plate or flask and maintained at 37°C, 5% CO2. The 

medium was replaced next day, once cells had attached. 

 

6. XTT ASSAY 

 Sodium 3´-[1-phenylaminocarbonyl-3,4-tetrazolium]-bis(4-methoxy-6-nitro) 

benzene sulfonic acid hydrate, (XTT, Cell Proliferation Kit II; Roche) was used to 

determine cell viability as mitochondrial activity. RPE cells were seeded at 6 × 103 per 

well in a 96-cell culture well plate for 24 h. After washing step (twice with PBS) the XTT 

labeling reagent was mixed with electron coupling reagent. 0.3 mg/ml of XTT final 

solution was added to each well and incubated for 6 h at 37°C in 5% CO2. Then, 

absorbance was read at 550 nm by microplate reader (Victor, Perkin Elmer). 3 

independent experiments were carried out. Results were expressed as percentage 

relative to the control group. 

 

 



7. DETERMINATION OF ROS LEVELS 

 ROS levels were measured by two different fluorescent probes. Using 2-7-

dichlorodihydrofluorescein diacetate (H2DCFDA; Santa Cruz Biotechnology), for the 

total intracellular ROS.  Which is converted to a non-fluorescent derivative (H2DCF) by 

intracellular esterases. This molecule can be oxidized by ROS producing intracellular 

dichlorofluorescein (DCF), which is a fluorescent compound.  

 The other fluorescent probe used is dihydroethidium, (DHE; Thermo Scientific). 

Cytosolic DHE exhibits blue fluorescence; however, once this probe is oxidized to 

ethidium, it intercalates within DNA, staining the cell nucleus a bright fluorescent red. 

DHE is a superoxide indicator because is oxidized by superoxide anions to 2-

hydroxyethidium. 

 Cells were seeded in a 96 multiwell plate with same density as previously 

described in XTT assay. Cells were rinsed with PBS twice and then were incubated with 

15 µM of H2DCFDA for 15 min at 37°C. Total intracellular ROS production was 

measured by fluorescence multiplate reader (Victor X5; Perkin Elmer) excited at 485 

nm and read at 530 nm. Pictures were also recorded with fluorescence inverted 

microscope (Eclipse Ti; Nikon). Images were taken with the assistance of Daniel Pérez 

Cremades, from University of Valencia. 

 Superoxide anions were measured by incubating with 5 µM of DHE during 20 

min at 37°C. Then with a fluorescence multiplate reader excited at 518 nm and read at 

605 nm. Total of 3 independent experiments were carried out for both methods. 

Results were expressed as percentage relative to the control group. 

 

8. CELL STRESS BIOMARKERS MEASUREMENT 

 Human Cell Stress Array (R&D Systems) provides a rapid, sensitive tool to 

simultaneously detect the relative levels of different cell stress-related proteins in a 

single sample. Briefly, in this assay capture antibodies have been spotted in duplicate 

on nitrocellulose membranes. According to facture manual, 3 independent ARPE-19 

cells protein samples of each treatment group were pooled. Final amount of 100 µg of 

protein for each experimental group was mixed with biotinylated antibodies and 

incubated with the array overnight at 4°C with gentle agitation. The next day, after 

washing step to discard non bounded antibodies, a Streptavidin-HRP solution was 

incubated 2 h.  

 

 Chemiluminescent signal is produced in proportion to the amount of analyte 

bound. Chemiluminescence was detected in the same manner as in western blot. The 
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signal intensity was quantified by densitometry using ImageQuant TL (GE) software. 

Results were expressed as percentage relative to the control group using one of the 

markers, which was not affected by the treatment, HIF-2α, used as an internal control 

to standardize the results. 

 

 

9. VIABILITY/CYTOTOXICITY KIT 

 The LIVE/DEAD Viability/Cytotoxicity Assay Kit (Molecular Probes, Invitrogen, 

Thermo Fisher) provides a two-color fluorescence cell viability assay that is based on 

the  simultaneous determination of live and dead cells with two probes that measure 

recognized parameters of cell viability intracellular esterase activity and plasma 

membrane integrity.  

 The polyanionic dye calcein is well retained within live cells, producing an 

intense uniform green fluorescence in live cells (ex/em 495 nm/515 nm). EthD-1 enters 

cells with damaged membranes and undergoes a 40-fold enhancement of fluorescence 

upon binding to nucleic acids, thereby producing a bright red fluorescence in dead cells 

(ex/em ~495 nm/~635 nm). EthD-1 is excluded by the intact plasma membrane of live 

cells. 

 Briefly, cells were seeded in a 96 multiwell plate with same density as 

previously described in XTT assay. According to manufacturer protocol, cells were 

rinsed with PBS twice and then were cells were exposed for 30 min to calcein AM, to 

measures cell viability, and EthD-1, to measure cell death. Afterwards, cells were 

rinsed again and fluorescence pictures were recorded with ArrayScan VTI HCS Reader 

(Thermo Scientific) under the supervision and assistance of Natalia Vergara from 

Wilmer Eye Institute (Johns Hopkins University). Total of 3 independent experiments 

were carried out. Images showed in results section are a representative pictures.  

 

10. PROTEIN QUANTIFICATION 

 Protein quantification was carried out with Bicincroninc acid assay kit (BCA; 

Thermo Scientific). This method mainly depends on an alkaline medium, the peptide 

bonds of the proteins reduce Cu2+. The Cu+ ions produced, bind to two molecules of 

BCA and in doing so, they change the structure, so that it now absorbs light at 562 nm 

and appears purple.There is proportionality between color intensity and protein 

concentration.  



 To establish this relationship a known concentration of bovine serum albumin 

(BSA; Thermo Fisher) was used for standard curve. The absorbance was measured at 

550 nm with Victor X5 multilabel plate reader. Finally the samples absorbance values 

was calculated using standard curve where the protein concentration of each unknown 

sample was determined.  

 

11. WESTERN BLOT (WB) ANALYSIS 

 This technique, SDS-PAGE mode, allows separating the proteins under 

denaturing and reducing conditions allowing proteins to migrate only according to 

their molecular weight. For protein isolation, cells were scraped with ice-cold PBS and 

lysed with RIPA buffer (Sigma Aldrich) containing 50 mM Tris-HCl, pH 8.0, 150 mM 

sodium chloride, 1.0% Igepal CA-630 (NP-40), 0.5% sodium deoxycholate, 0.1% sodium 

dodecyl sulfate and Protease Inhibitor Cocktail (Sigma Aldrich).  

 Samples were sonicated 3 pulses during 10 seconds spacing after each pulse 

the samples on ice to avoid the protein degradation. The supernatant (proteins), after 

20 min at 4°C centrifugation, was collected.  

 For sample preparation, to equal amount of protein (25 mg) was added sample 

buffer with sodium dodecyl sulfate (SDS) and β-mercaptoethanol (See table 3, below). 

SDS acts breaking non-covalent bonds in the proteins, denaturing them and, by 

providing them with negative charge. β-mercaptoethanol, break the disulfide bonds, 

glycerol increases density and bromophenol blue gives blue color to the buffer. Later, 

samples were heated to 96 °C during 10 min to promote the denaturalization.Each 

sample was migrated on acrylamide/bisacrylamide (29:1; Thermo Fisher) gels. Gels 

were made manually using two acrylamide proportions. 4% acrylamide/bisacrylamide 

for stacking part of the gel and 12% for the resolving (the bottom part of the gel) (See 

table 3, below). Gels were prepared with SDS also. The acrylamide polymerization is 

catalyzed by the addition of (10 µl) N,N,N,N´-tetrametilen-diamina (TEMED; Sigma 

Aldrich) and (100 µl) 10% fresh ammonium persulfate (APS; Sigma Aldrich), to both 

stacking and resolving solution with acrylamide. 

 After electrophoresis, samples were electroblotted onto polyvinylidene 

difluoride membranes (PVDF; Millipore) by wet transfer with specific buffer (See table 

3, below). Subsequently membranes were blocked with blocking buffer (See table 3, 

below) during 30 min at RT. The antibody incubation was the next step. For this, the 

same buffer was used overnight at 4°C, with the addition of the specific antibody (See 

table 4, below). To corroborate the successful blotting, gels were stained with 

coomassie blue solution (Thermo Fisher).  



Materials and Methods 

 

61 

 

 To discard excess antibody, membranes were washed 3 times with T-TBS, after 

incubation. Subsequently, membranes were incubated 2 hours at RT with secondary 

antibodies horseradish peroxidase-conjugated (HRP; Dilution 1:10,000) prepared in T-

TBS. A stripping solution (Roche) was used, according to manufacturer’s protocol, to 

eliminate the attached antibodies in order to reuse the membranes. 

 Finally, the same antibody wash process mentioned before was applied. Bands 

were visualized with ECL (Pierce, Thermo Fisher) and detected with Image Quant LAS-

4000 mini (GE Healthcare). Protein levels were quantified by densitometry using 

ImageJ software (National Institutes of Health). Protein expression intensity was 

normalized to β-Actin or α-Tubulin. Total of 3 independent experiments were carried 

out. Results were expressed as percentage relative to the control group. 

 

12. IMMUNOFLUORESCENCE (IF) 

 After desired treatment, cells were rinsed 3 times with PBS during 5 min each. 

For fixing step, 2 different compounds were used; in case of NFКB antibody the fixation 

agent used was methanol during 20 min at -20°C. Additionally a positive control of P65 

NFКB nuclear translocation was used, ARPE-19 cells were exposed to 100 mM of H2O2 

(See figure 4 annexed).  

 The fixation method for the rest of antibodies was at RT during 10 min with 4% 

Paraformaldehyde (PFA) in PBS. Then, samples were rinsed with PBS as mentioned 

before. Subsequently, samples were blocked in blocking solution (See table 3, below) 

during 1h at RT. After a washing step, were incubated with primary antibody in the 

same blocking solution reducing the FBS at 1%.  The specific antibodies were incubated 

overnight at 4°C (See table 4, below). Afterward, cells were rinsed 3 times with PBS 

and incubated with fluorescent-conjugated secondary antibodies Alexa Fluor 555 and 

Alexa Fluor 488 (Dilution 1:500; Molecular Probes, Invitrogen, Thermo Fisher) for 2 h at 

RT.  

 Finally, F-Actin staining cells were incubated with Alexa Fluor 568 conjugated 

phalloidin (Thermo Fisher) during 10 min according to manufacturer’s protocol. At the 

same time, for DNA staining, cells were incubated with 4,6-diamidino-2-phenylindole 

(DAPI; Sigma Aldrich). After washing step, fluorescence images were recorded with 

fluorescence inverted microscope (Eclipse Ti; Nikon).  

 

 



 Images were taken with the assistance of Daniel Pérez Cremades from 

University of Valencia. Images were processed with Image J software (National 

Institutes of Health). Total of 3 independent experiments were carried out. Results 

were expressed as percentage relative to the control group. Images showed in results 

section are a representative pictures.  

 

13. TER MEASUREMENT 

 TER was measured with STX2/chopstick electrodes in mature ARPE-19 seeded 

in a transwell permeable inserts under the supervision and assistance of Marisol Cano 

PhD, from Wilmer Eye Institute (Johns Hopkins University). The total electrical 

resistance includes the ohmic resistance of the cell layer RTER, the cell culture medium 

RM, the semipermeable membrane insert RI and the electrode medium interface REMI 

(46) (See figure 5 annexed). To calculate the total TER blank measure   (well without 

cells) was taken into account. Values were obtained from 3 independent 

experiments.Results were expressed as percentage relative to the control group. 

 

14. REVERSE TRANSCRIPTION POLYMERASE CHAIN REACTION (RT-PCR) AND 

QUANTITATIVE RT-PCR (qRT-PCR) 

 hRPE tissue, ARPE-19, hRPE, HEPG2-E47 and hiPSC-RPE cells were incubated in 

RNA Protect (Qiagen, Hilden, Germany) to attenuate endogenous RNAse activity and 

mRNA synthesis, and scraped off the plate into a 1.5 mL tube. Cells then were 

centrifuged at 2,500 xg for 10 min and the pellet was resuspended in buffer RLT plus 

(RNeasy Plus Micro/Mini Kits; Qiagen) with 2-mercaptoethanol (1:100; Sigma Aldrich). 

RNA was harvested from the cells according to manufacturer's protocol (RNeasy 

Micro/Mini Kits; Qiagen). RT-PCR reactions were performed with SuperScript III First-

Strand Synthesis System (Life Technologies, Thermo Fisher) Gene-specific primers used 

are in table 5, below.  

 The amplified PCR products were electrophoresed on 1.6% (v/v) agarose gel 

prepared in with Tris/Borate/EDTA buffer (TBE), stained with Real Safe at 90 V for 35 

min. The same TBE was used like running buffer. Following electrophoresis, the 

agarose gel was exposed to UV light to visualize DNA.  

 For qRT-PCR, reactions were performed with Sybr Green Supermix (Applied 

Biosystems) and a LightCycler 480 II (Roche). Reactions of RT-PCR were run at either 30 

or 35 cycles, and all qRT-PCRs reactions were run at 40 cycles. Samples were run in 

triplicate. X‐fold change in mRNA levels was determined by applying 2−ΔΔCT method. 



Materials and Methods 

 

63 

 

ΔCt values were calculated using endogenous control genes: β-Actin and GAPDH. The 

geometric mean of both reference genes was used to standardize the results. Total of 

3 independent experiments were carried out. Results were expressed as percentage 

relative to the control group. 

 

15. ANGIOGENESIS AND INFLAMMATION BIOMARKERS MEASUREMENT 

 

 Human Angiogenesis Antibody Array (R&D Systems) provides a rapid, sensitive 

tool to simultaneously detect the relative levels of angiogenesis and inflammation-

related proteins in a single sample. Analytes include soluble growth and differentiation 

factors, ECM components, proteases, receptors, and signaling molecules.  

 

 As previously described in ROS biomarkers measurement, this array was carried 

out according to facture manual, 3 independent ARPE-19 cells protein samples of each 

EtOH treatment group were mixed as a pull. Final amount of 100 µg of protein was 

assayed using basic FGF, as an internal control to standardize the results. 

 

 

 

16. MMPs ELISA 

 

 The determination of MMPs (MMP-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-

9 and MMP-13) quantitatively was carried out by an ELISA kit, Mosaic ™ ELISA Human 

MMP Panel, (R & D Systems).  

 

 According to the manufacturer, the cellular supernatants (treatment culture 

medium) of the ARPE-19 cells were collected. The kit has a 96-well plate, each 

containing the 7 antibodies for each MMP.  

 

 The same amount of sample was deposited in a well containing fixed specific 

capture antibodies for each MMP. At the same time a standard curve of each MMP has 

been made. After washing step to eliminate non fixed material the well was then 

washed and HRP-conjugated detection antibodies were added to each well to form the 

“Sandwitch” (Antibody capture-MMP-Antibody-HRP).  

 

  

 

 Finally chemiluminescent signal was detected by CCD camera (ImageQuant LAS 

4000 Mini, GE). Signal intensity was quantified by densitometry using the ImageQuant 



TL (GE) software. Samples MMPs concentration values were calculated using each 

standard curve. Total of 3 independent experiments were carried out. Results were 

expressed in pg/ml and as percentage relative to the control group.  

 

 

17. MICROSOME ISOLATION  

 

 Microsomes from ARPE-19 and HEPG2 cells were prepared with minor 

modifications as described previously (189). The protocol used was developed for 

hepatocytes, for this reason HEPG2 cells were used as a positive control. Briefly, 0.05 

xg of cells were homogenized in 100 μL homogenization buffer (See table 3, below) 

with protease inhibitor cocktail. First, the homogenate was centrifuged at 600 xg for 3 

min at 4°C). The supernatant was transferred carefully to clean centrifuge tubes, 

diluted 2-fold with distilled water, and centrifuged again at 21,000 xg for 2 hours at 

4°C. The pellet was washed in 150 μL of wash buffer (See table 3, below) with 

protease inhibitor cocktail and centrifuged once more at 21,000 xg for 45 min at 4°C. 

The pellet then was resuspended in 100 μL of activity assay buffer (See table 3, below) 

and stored at −80°C until further use. 

 

 

 

18. CYP2E1 ACTIVITY ASSAY 

 

 Activity assay of CYP2E1 was determined by quantification of 4-nitrocatechol 

(4NC) formation (190) under the supervision and assistance of Daniel Lopez-Malo PhD, 

from Catholic University of Valencia. Preliminary experiments were conducted to 

determine linear metabolite formation kinetics with respect to time and microsomal 

protein concentration (See figure 6 annexed).  

 

 Microsomal incubation mixtures consisted of 100 μM p-nitrophenol (PNP; Acros 

Organics), activity assay buffer, cofactor-generating system (See table 3, below), and 2 

mg of microsomal protein in activity assay buffer at final volume of 0.5 mL. That 

amount of microsomes provides a good compromise microsome preparation time vs. 

activity observed. After a preincubation period of 1 minute at 37°C, the reaction was 

started by addition of microsomal protein and incubated at 37°C for 4 h mixing gently 

(to avoid microsomes precipitation) in a Thermomixer comfort (Eppendorf). The 

reaction was finished by addition of 20% ice-cold trichloracetic acid (TCA; Sigma) and 

centrifuged at 10,000 xg for 5 min at 4°C. Metabolite formation rate was calculated 

using known concentrations of 4NC (Acros Organics, Thermo Fisher) as calibration 

standards (0 –1000 nM) and dividing the amount of the metabolite formed by the 

incubation time and microsomal protein content (nmol/min.mg).  
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 To be sure that DAS concentration used blocked CYP2E1 activity, an inhibition 

assay was carried out. 2 mg of isolated ARPE-19 microsomes were used as described 

above with 2 different DAS concentrations; 10 mM and 20 mM, to quantify 4NC 

formation, (See results, figure 29D, chapter 4) A blank test by thermal denaturalization 

of the enzyme by heating it at 95 °C during 10 min was carried out. There is not 

appreciate signal at the 4NC retention time (See figure 7A annexed). A thoroughly 

study of a wide range of time and amount of microsome were done. There is an 

unambiguous peak 4NC retention time (tR = 3.27 min) (See figure 7B annexed).  

 The quantification of the metabolite formed was assayed by HPLC (See figure 

7C annexed) using a 1200 series chromatographic system (Agilent Technologies) 

equipped with a quaternary pump, automatic injection system, and a DAD UV-Vis 

detector. A Zorbax Eclipse Plus C-18 column (4.6 × 150 mm, 3.5 μm particle size; 

Agilent Technologies) was used, operated at room RT. Experimental conditions were 

based on previous reports (191, 192) absorbance was monitored at 334 nm. The 

mobile phase, delivered at a flow rate of 1.5 mL/min, consisted of 25% ACN, 0.1% TCA, 

and 74.9% Milli-Q water. The injection volume was 100 μL, the retention time for PNP 

was 3.27 min. The total running time was 8 min.  

 To corroborate our data the disappearance of the substrate (PNP) was also 

monitored (See figure 7D annexed).Total of 3 independent experiments were carried 

out. 

 

 

19. STATISTICAL ANALYSIS 

 Statistical analyses were performed by using Prism 5.04 software (GraphPad, 

San Diego, CA, USA), by means of 1- and 2-way ANOVA, and Student's t-test. 

Statistically significant differences were set at P<0.05.  

 

 

 

 

 

 



TABLES: 

 

 

Table 3. Buffers composition 

BUFFER COMPOSITION 

5x Sample Buffer 

(WB) 

10% SDS, 25% 2-mercaptoethanol, 50% glycerol, 

0.01% bromophenol blue, 0.5 M Tris-HC, pH 6.8 

Stacking Buffer 

(WB) 

0.5 M Tris-HCl, 10% SDS, 4% Acryl/Bis  pH 6.8 

Resolving Buffer 

(WB) 

1.5 M Tris-HCl, 10% SDS, 12% Acryl/Bis  pH 8.8 

 Running Buffer 

(WB) 

25 mM Tris-HCl, 190 mM glycine, 0.1% SDS; pH 8.3 

Transfer Buffer 

(WB) 

20% Methanol Running Buffer, pH 8.3 

TBS 20 mM Tris, 150 mM NaCl pH 7.5 

T-TBS 20 mM Tris, 150 mM NaCl, 0.1% Tween 20 pH 7.5 

Blocking Buffer 

(WB) 

3% BSA, in T-TBS 

Blocking Buffer (IC) 5% of FBS, 0.3% Triton X-100 in PBS 

TBE  0.1 M Tris, 0.09 M boric acid, 0.001 EDTA pH 8 

Homogenization 

buffer (MI) 

100 mM Tris-HCl buffer, 5 mM KCl, 1 mM DTT, 10 

mM EDTA, 5% glycerol, 25% sucrose pH 7.5 

Wash Buffer (MI) 20 mM Tris-HCl, 5 mM EDTA pH 7 

Activity assay 

buffer  (CA) 

50 mM potassium phosphate buffer pH = 6.8 

Cofactor 

generation system 

(CA) 

1.3 mM NADP, 3.3 mM D-glucose-phosphate, 3.3 

mM MgCl2; 4x10−4U D-glucose-6-phosphate 

dehydrogenase in 0.05 mM sodium citrate 

          MI: Microsome isolation; CA: CYP2E1 activity  
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Table 4: Antibodies specifications  

APPLICATION NAME DILUTION DISTRIBUTOR 

WB Caspase-3 1:500 Santa Cruz Biotech 

WB Bax 1:250 Santa Cruz Biotech 

WB Bcl-2 1:500 Santa Cruz Biotech 

WB VEGFR-1 1:250 Abcam 

WB VEGFR-2 1:250 Abcam 

WB/IC CYP2E1 1:250 Abcam 

WB/IC P65 NFКB 1:250/1:200 Santa Cruz Biotech 

WB β-Actin 1:500 Santa Cruz Biotech 

WB α- Tubulin 1:500 Santa Cruz Biotech 

IC RPE65 1:200 Abcam 

IC ZO-1 1:200 Abcam 

 

 

 Table 5. Primer sequences 

NAME FORWARD SEQUENCE REVERSE SEQUENCE 

β-Actin 5’-CATGTACGTTGCTATCCAGGC-3’ 5’-CTCCTTAATGTCACGCACGAT-3’ 

GAPDH 5’-TGAAGGTCGGAGTCAACGGAT-3’ 5’-TTCTCAGCCTTGACGGTGCCA-3’ 

CYP2E1 5’-CCTACATGGATGCTGTGGTG-3’ 5’-TGGGGATGAGGTATCCTCTG-3’ 

VEGF 5’-AGGAGGAGGGCAGAATCATCA-3’ 5’-CTCGATTGGATGGCAGTAGCT-3’ 

PEDF 5’-AACCTTACAGGGGCAGCCTT-3’ 5’-TGAGGGACACAGACACAGGG-3’ 
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1. EtOH INDUCES SIMILAR CYTOTOXICITY PATTERN IN DIFFERENT RPE CELLS 

 

 24 hours after different EtOH concentration treatments, ARPE-19 cells 

presented high resistance to EtOH toxicity. It was necessary 600 mM EtOH to find a 

significant cell death compared with control group (CTL), (p. value < 0.01), figure 14A. 

Besides, 1200 mM EtOH, was unable to reach the median lethal dose (LD 50), only 

40% of cell viability was significantly decreased (p. value < 0.001). 

 On the other hand, hRPE presented less resistance to EtOH toxicity. Significant 

differences on cell viability can be found at 400 mM EtOH compared with CTL, figure 

14B. However, cell death rate was similar than ARPE-19 cells at the same EtOH 

concentrations. As seen in figure 14A and 14B, hRPE cell viability at 800 mM and 1200 

mM EtOH were 82% and 59% respectively. ARPE-19 cells showed 80% and 64% 

respectively. 

 In order to check hRPE cells resistance to EtOH toxicity, these cells were 

compared with mature ARPE-19 cells (see the procedure on materials and methods, 

chapter 3). After 24 hours of 200 mM EtOH, mature ARPE-19 cells showed significant 

toxicity, compared with non-treated cells, (p. value < 0.01), figure 14C. As previously 

shown, the same cell response was observed when 800 and 1200 mM EtOH were 

compared. 

  The figure 14D shows how EtOH toxicity promotes the same cell viability 

profile in all the cellular models. Significant differences were found at 1200 mM EtOH 

when compared mature ARPE-19 cells versus immature ARPE-19 cells (p. value < 

0.05).  

 Finally ARPE-19 cells were compared with a novel model of RPE cells, RPE 

derived from hiPSC (see the procedure on materials and methods, chapter 3). Cells 

were treated, as described before.  

 Taking into account that hiPSC-RPE cells need different seeding density, ARPE-

19 cells were seeded at same conditions. Significant differences at 400 mM EtOH 

were observed in ARPE-19 cells seeded at high density, (20% of cell death, p. value < 

0.05) compared to CTL group. By contrast, hiPSC-RPE cells were more resistant, figure 

15B. Significant differences in cell death values were found at 800 mM EtOH (20% of 

cell death, p. value < 0.00001).  

200 mM EtOH did not promote same cytotoxic response in ARPE-19 and 

hiPSC-RPE cells, figure 15C. hiPSC-RPE cells were more resistant than ARPE-19 cells 

under higher ethanol concentration conditions.  
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Figure 14.  Cell viability in different RPE cell types and culture conditions. The cell viability assay 
were performed by XTT after 24 h of increasing EtOH concentrations treatment. ARPE-19 cells 
presented a high resistance to the toxic effect of EtOH (A). hRPE cells presented less resistance (B) 
and very similar behavior showed mature ARPE-19 cells (C). The same trend was observed comparing 
the three types of cells (D). Values are expressed as mean ± SEM (N=3). Statistical significance was 
determined by means of 1-and-2-way ANOVA, and Student's t-test. Statistically significant 
differences were set at *p<0.05 vs. CTL group. 

 



 After finding these differences, a comparison of cytotoxicity was carried out 

between hiPSC-RPE and the other studied cells. Figure 15D shows that mature ARPE-

19 cells response was more similar to hiPSC-RPE than immature ARPE-19 cells at high 

seeding density. Interestingly, the same response was found in hRPE cells, figure 15E. 

However, ARPE-19 at low seeding density showed the greatest similarity to hiPSC-

RPE, figure 15F.  

Finally, it is noticeable that cell seed density affects the cellular response to 

EtOH. High density ARPE-19 seeded cells, were less resistant to EtOH compared to 

low density ones, figure 15G. In addition there was a significant difference at 600 mM 

EtOH (p. value < 0.01). After considering these results, immature ARPE-19 cells 

seeded at low density were used to study EtOH-induced toxicity.  
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Figure 15. RPE-hiPSC cells as a RPE cell line. The cell viability assay by XTT after 24 h of EtOH treatment. 
ARPE-19 cells presented a lower resistance to EtOH (A). hiPSC-RPE cells presented more (B). The 
difference is showed in a comparative cell viability curve (C). Mature ARPE-19 (D) and hRPE were 
studied also (E). hiPSC-RPE and ARPE-19 comparative curve (F). Low vs. high cell seeding density of 
seeding in ARPE-19 cells (G). Values are expressed as mean ± SEM (N=3). Statistical significance was 
determined by means of 1-and-2-way ANOVA, and Student's t-test. Statistically significant differences 
were set at *p<0.05 vs. CTL group. 

 

 

 

 

 

 

 

 



2. EtOH ACTIVATES A ROS DEPENDENT CELLULAR RESPONSE IN RPE CELLS 

2.1. EtOH MODIFIES CELL STRESS BIOMARKERS EXPRESSION 

 

 The cell stress array revealed that 1200 mM EtOH  induced changes in the 

expression of cell stress biomarkers in ARPE-19 cells, figure 16. 

 Surprisingly, some of the cell stress biomarkers were increased or decreased 

after EtOH challenge. CA9, CYT-C, HSP60 and P-JNK PAN were increased, figure 16A. 

Whereas, CITED-2, SIRT-2, P21/CIP1, HIF-1α, P27, p-P53 and PON2  

(Paraoxonase/arylesterase 2) decreased, figure 16B. It should be noted that 

increased cell stress markers, CYT-C and HSP60, are involved in mitochondrial 

maintaining function. Additionally, CA9 and P-JNK PAN, are both implicated in cellular 

stress activation pathway (Figure 16A). In contrast, the survival-related biomarkers 

P21 and SIRT-2, were decreased (Figure 16B).  
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Figure 16. ARPE-19 cell stress profile after EtOH treatment. After 24 hours of EtOH treatment, the 
ARPE-19 cell survival and stress markers profile was increased (A) or decreased (B) depending on the 
concentrations used. Values are expressed as average of an N= 3 pooled samples. 

 

 

2.2. EtOH INDUCES ROS PRODUCTION IN A CONCENTRATION DEPENDENT MANNER 

 
 After considering previous results indicating that RPE cells are resistant to OS, 

the intracellular ROS production was measured as the same conditions of EtOH 

treatment during 24 h, figure 17. EtOH treatment significantly increased intracellular 

ROS in a concentration dependent manner in ARPE-19 cells, figure 17A. The 

quantification indicates that DCFH fluorescence levels were significantly increased (p. 

valor < 0.05) in all treated groups compared to non-treated group. This fact reflects 

the ‘redox state’ of the cell, figure 17B. On the same way, figure 17C shows this 

significant increase of ROS in hRPE cells under EtOH treatment.  

 Fitting with this, significant increases of superoxide anions (measured with 

DHE), were also observed. All EtOH treated groups increased the amount of 

superoxide anions in a dose-dependent manner, figure 17D. Superoxide anions are 

significantly increased in EtOH-treated groups, figure 17E. The positive correlation 

(R2=0.887) represented in figure 17F confirm the relationship between the increase 

of OS and cell death.  
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Figure 17. EtOH induces intracellular ROS. Total intracellular ROS measured with DCFH increased 
significantly in a concentration dependent manner after 24 hours of EtOH treatment in ARPE-19 
cells (A). The quantification of DCFH fluorescence reveals the same result in ARPE-19 cells (B), and 
hRPE (C). At the same way superoxide anions measured by DHE were increased in ARPE-19 (D). The 
increase of ROS was caused by the implication of superoxide anions in total of ROS production (E). 
There is a positive correlation between the increase of total intracellular ROS and the increase of 
cell death measured by XTT (F). Values are expressed as mean ± SEM (N=3). Statistical significance 
was determined by means of 1-and-2-way ANOVA, and Student's t-test. Statistically significant 
differences were set at *p<0.05 vs. CTL group. 
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3. EtOH TREATMENT INDUCES APOPTOSIS MARKERS IN ARPE-19 CELLS IN A 
CONCENTRATION-DEPENDENT MANNER 

 

 With the aim to understand which process is implicated in ARPE-19 cell death 

under EtOH treatment, the most important apoptosis markers were studied, figure 

18. The pro-apoptotic (Caspase-3 and Bax) and pro-survival (Bcl-2) markers were 

quantified by western blot 24 h after 200, 400 and 600 mM EtOH treatment. The 

figure 18A shows that 600 mM EtOH promoted significant increase, about 20% of 

Caspase-3 protein levels (p. value 0.01).  Similar results were found with the other 

pro-apoptotic marker Bax, at 400 mM and 600 mM EtOH (p. value < 0.01), figure 18B.  

 On the other hand, 400 mM and 600 mM EtOH significantly enhanced, even 

two-fold the basal expression of the pro-survival marker Bcl-2 (p. value < 0.05), figure 

18C.  

 Cell viability calcein-EthD-1 assay in ARPE-19 cells after EtOH treatment, 

confirmed previous results. As seen in figure 18D, increased EthD-1 (red dye) labelling 

(around 4%, indicate with arrows), can be observed at 600 mM EtOH treated cells. A 

decrease (around 16%) of the esterase activity (green dye) in all EtOH groups is also 

showed. 
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Figure 18. EtOH treatment induces apoptosis in ARPE-19 cells. Apoptotic markers in 
ARPE-19 after EtOH treatment during 24h were measured by WB. Exist and increase 
of Caspase-3 (A), Bax (B) and Bcl-2 (C) protein expression in a concentration dependent 
manner. Immunofluorescence with calcein and EthD-1 indicate loss of plasma 
membrane integrity with EtOH treatment (D). Protein expression was normalized by 
β-Actin.  Values are expressed as mean ± SEM (N=3). Statistical significance was 
determined by means of 1-and-2-way ANOVA, and Student's t-test. Statistically 
significant differences were set at *p<0.05 vs. CTL group. 

 

 

 

 

 

 

 

 



4. EtOH INDUCES CHANGES IN RPE BARRIER FUNCTION 

4.1. EtOH DECREASES INTERCELLULAR JUNCTIONS INTEGRITY IN ARPE-19 CELLS. 

 

ZO-1 is one of the most important proteins in tight junctions presents in RPE 

tissue. Considering the role of ZO-1 for the RPE barrier maintenance, an 

immunofluorescence against ZO-1 was performed. A significant decrease of ZO-1 

expression (in green) can be observed in figure 19A and 19B. Those differences are 

significantly decreased, in a concentration dependent manner, from 200 mM (p. 

value < 0.01) to 600 mM (p. value < 0.0001).  

 TER is a technique to measure the integrity of TJ in epithelial monolayers. TER 

values are strong indicators of the integrity of the cellular barriers. TER assay with 

mature ARPE-19 cells validated previous results, figure 19C. EtOH exposure 

promoted a significant decrease of cell membrane electrical resistance after 600 mM 

and 1200mM EtOH challenge (p. value 0.001, p. value < 0.0001 resp.).   
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Figure 19. EtOH decrease ARPE-19 barrier function. EtOH treatment during 24 hours decreases ZO-
1 expression in ARPE-19 cells (A). The immunofluorescence quantification shows a significant 
difference between EtOH treatment and control group (B). The TER assay showed the same also with 
high EtOH concentrations treatment (C). Values are expressed as mean ± SEM (N=3). Statistical 
significance was determined by means of 1-and-2-way ANOVA, and Student's t-test. Statistically 
significant differences were set at *p<0.05 vs. CTL group. 

 

 



4.2. EtOH MODIFIES THE PROTEOME PROFILE IN ARPE-19 CELLS   

4.2.1. PRO-INFLAMMATORY RELATED PROTEINS 

 

 Pro-inflammatory related protein detection is shown in figure 20 after 

different EtOH concentrations. EtOH promoted a differential protein expression on 

the RPE-related factors and RPE-released proteins. GM-CSF, IGFBP-1, IL-1β, MCP-1, 

MIP-1α, PTX-3, TIMP-1, TIMP-4, MMP-8 and MMP-9 protein expression was 

enhanced after EtOH, figure 20A. But nevertheless, other RPE-related factors and 

RPE-released proteins were decreased; Activin, Amphiregulin, DPPIV, EGF, FGF, IL-8, 

TGF-β1 and Prolactin), figure 20B. In this latter group, the EGF expression decreased 

about 80% compared to CTL. Similar results were found for Activin with a 50% 

decreased at 600 mM EtOH. 

 

4.2.2. ANGIOGENESIS RELATED PROTEINS 

 

 The same array was performed to detect agiogenic-related proteins in ARPE-

19 cells under EtOH treatment, figure 21.  

 All proteins showed changes in their expression profile under EtOH treatment. 

Some of them decreased their expression in a concentration dependent manner, 

figure 21A (End/Coll XVIII, FGF-7, HGF, PDGF-AB/BB, PF4 and VEGF). But 

nevertheless, others suffered an increased, figure 22B (HB-EGF, Vasohibin, uPA and 

VEGF-C). Surprisingly, the VEGF-C and uPA expression increased around 5-fold at 600 

mM of EtOH compared to each CTL groups.  

  In figure 21C and D are represented some proteins with a two-phase 

response. The profile expression is modified in term of EtOH concentration used. In 

all of these, 200 mM of EtOH was the inflection point.  ADMATS-1, PDGF-AA, IGFBP-

3, Serpin B5, PEDF and TSP-1, increased its expression in a concentrations above 200 

mM EtOH, figure 21C. On the other hand, Ang/Plasm, EG-VEGF, FGF-4, IGFBP-2, PD-

ECGF and PlGF showed a decreased, figure 21D.  
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Figure 21. ARPE-19 angiogenesis markers profile after EtOH treatment. After 24 hours of EtOH 

treatment, the ARPE-19 cell angiogenesis markers profile was decreased (A and C) or increased (B and 

D) depending on the concentrations used. Values are expressed as average of an N= 3 samples pooled. 

 

 

 

 



4.3. EtOH-INDUCED CHANGES IN VEGF AND PEDF EXPRESSION  

 

 One of the most important roles of the RPE is the release of growth factors 

for retinal maintenance. VEGF and PEDF are specific biomarkers of RPE barrier. Taking 

into account previous results, a study of their expression was carried out. The figure 

22A and 22B shows that EtOH treatment resulted on a significant decrease of VEGF 

and PEDF mRNA expression in ARPE-19 cells. Being statistically significant in case of 

PEDF (p. value < 0.05), figure 22B.  

 In contrast with this, both markers were overexpressed at 200 mM EtOH when 

compared with the CTL group. VEGF mRNA levels were significantly increased with 

200mM EtOH (p. value 0.0001), figure 22A and PEDF mRNA was overexpressed 

around 150% (p. value < 0.05), figure 22B. VEGF receptor proteins showed significant 

differences, figure 22C and 22D. VEGFR-1 decreased its expression in all EtOH treated 

groups (p. value < 0.001), figure 22C. In contrast, VEGFR-2 protein expression, figure 

22D, was increased at 200 mM EtOH followed by a significant reduction at higher 

EtOH concentrations (p. value < 0.05).  
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Figure 22. EtOH induces changes in ARPE-19 angiogenesis markers expression mRNA expression 
quantification by qPCR in ARPE-19 after EtOH treatment. Different VEGF (A) and PEDF (B) profile 
expression after different EtOH concentrations used. The same occurs with the protein expression 
measured by WB in VEGFR-1 (C) and VEGFR-2 (D). Gene expression of CYP2E1 was normalized by 
GAPDH gene expression. Protein expression was normalized by β-Actin. Values are expressed as 
mean ± SEM (N=3). Statistical significance was determined by means of 1-and-2-way ANOVA, and 
Student's t-test. Statistically significant differences were set at *p<0.05 vs. CTL group. 

 

 

4.4. EtOH-INDUCED CHANGES IN MPPs EXPRESSION  

 

 EtOH exposure promoted a significant change on MMPs expression in ARPE-

19 cells, (detected by ELISA). Figure 23B summarizes the MMPs values.  

 

 As seen in figure 23B, MMP-2 levels reached the highest value, 6.4 pg/ml at 

400 mM EtOH. All MMPs were grouped according to their cellular function. Among 

collagenases, figure 23C, MMP-8 shows a marked expression in a dose dependent 

manner. The figure 23D, represents the gelatinases family. MMP-2 and MMP-9 

increased their expression in all EtOH treated groups compared to control. Significant 

differences in MMP-2 protein expression could be set at 400 and 600 mM EtOH (p. 

values < 0.05 and 0.01 respectively). Nevertheless, MMP-9 exhibited these 

differences at 400 mM EtOH (p. value 0.05). 
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No significant differences were observed in the matrilysin MMP-7, figure 23E. 

Stromelysin MMP-3 expression was enhanced after EtOH treatment. Significant 

differences were observed in all EtOH concentrations used (p. value <0.01), figure 

23F. 
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Figure 23. MMPs expression in ARPE-19 cells under EtOH treatment. The levels of MMPs were 
measured with ELISA assay in a 96 multiwell plate and the expression was quantify by 
chemiluminescence (A). The MPPs quantification expressed the values in pg/ml (B). The relative 
MMPs expression after EtOH treatment were represented by their functional classification; 
collagenases (C), gelatinases (D), matrilysin (E) and stromelysin (F). Values are expressed as 
mean ± SEM (N=3). Statistical significance was determined by means of 1-and-2-way ANOVA, 
and Student's t-test. Statistically significant differences were set at *p<0.05 vs. CTL group. 

 



4.5. NFКB PROTEIN EXPRESSION IS MODIFIED BY ETOH 

 

 NFКB is one of the most important transcription factors that plays critical role 

in inflammation, angiogenesis and cell survival processes. 

 The figure 24A show the NFКB protein quantification by western blot. After 

24 hours of EtOH treatment, there is a significant increase of NFКB protein expression 

at 400 mM EtOH (p. value 0.05). However, 600 mM EtOH reduced its protein 

expression, below CTL levels (p. value < 0.05). 

 P65 NFКB immunofluorescence was carried out to identify nuclear 

translocation. To ensure that the experiment was successful, 100 mM of H2O2 was 

used as a positive control of p65 NFКB nuclear translocation, (see the procedure on 

materials and methods, chapter 3).  

Figure 24B shows, that NFКB (green dye) did not undergo nuclear 

translocation in none of the cases studied. On the other hand, its expression was 

modified by EtOH treatment.  
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Figure 24. NFКB profile expression in ARPE-19 after EtOH treatment. P65 NFКB protein expression 
analyzed by WB (A) There is not NFКB nuclear translocation (B). Protein expression was normalized by 
β-Actin. Values are expressed as mean ± SEM (N=3). Statistical significance was determined by means 
of 1-and-2-way ANOVA, and Student's t-test. Statistically significant differences were set at *p<0.05 
vs. CTL group. 

 

 

 

 

 

 

 

 

 



5. CYP2E1 IS PRESENT IN RPE CELLS  

 

 With the aim to study the implication of the CYP2E1 in the metabolism of EtOH 

in ARPE-19 cells. CYP2E1 protein expression was checked by western blot, figure 25A 

and immunofluorescence, figure 25B.  

 PCR was performed to confirm previous results, figure 25C. CYP2E1 mRNA 

from HepG2 was used as positive control of mRNA expression (see materials and 

methods, chapter 3). The same CYP2E1 gene-specific primer and antibodies 

recognized all CYP2E1 and mRNA studied forms (ARPE-19, hRPE, and hiPSC-RPE).  

 

 

 

Figure 25. CYP2E1 expression in RPE cells. CYP2E1 protein was detected in all cellular RPE 

models studied by WB (A) and immunofluorescence (B). Also CYP2E1 gene was detected in 

same cells (C). 
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6. ETOH INDUCES CYP2E1 EXPRESSION IN RPE CELLS  

 

 CYP2E1 is overexpressed (induced) by high EtOH levels or chronic EtOH 

exposure. In order to characterize the expression of CYP2E1 in RPE after ETOH 

challenge, EtOH concentration and duration of the treatment were analyzed, figure 

26. 

 

6.1. CYP2E1 IS INDUCED IN A TIME- AND CONCENTRATION-DEPENDENT MANNER  

 

 Figure 26A shows that CYP2E1 mRNA expression increased in a time 

dependent manner with a positive correlation (R2 = 0.99) at 600 mM EtOH. Higher 

ethanol levels (1200 mM) decreased this correlation (See figure 26A).  

 CYP2E1 expression was analyzed by using 600 mM and 1200 mM of EtOH 

during 24 hours. The results in figure 26C, revealed a significant increment of CYP2E1 

mRNA expression at 1200 mM EtOH (p. value < 0.01). Surprisingly, CYP2E1 protein 

levels were also significantly increased at 600 mM EtOH (p. value < 0.01), figure 26D. 

1200 mM EtOH resulted on the highest CYP2E1 mRNA and protein expression. When 

compared ARPE-19 to HEPG2 cells, under control conditions (figure 26E), ARPE-19 

cells presented significant lower CYP2E1 microsomal protein than the hepatic cell 

line.  

Interestingly, microsomal CYP2E1 protein activity was significantly increased 

in ARPE-19 cells after 1200 mM EtOH. This expression was similar to the CYP2E1 

activity from control levels in HEPG2 cells, the microsomal CYP2E1 protein activity 

was two-fold the control CYP2E1 ARPE-19 activity  (p. value < 0.05), figure 26E. 

CYP2E1 activity was performed by the formation of 4NC in microsomes from ARPE-

19 and HEPG2 cells (see the procedure on materials and methods, chapter 3). 
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Figure 26. CYP2E1 expression and activity is increased under EtOH treatment. CYP2E1 mRNA 
expression measured was increased in a time dependent manner (A). Protein expression by 
immunofluorescence (B). CYP2E1 mRNA by qPCR (C) also protein expression by WB (D). CYP2E1 
expression in ARPE-19 cells and HEPG2 microsomes by WB.  EtOH increase CYP2E1 activity (HPLC) in 
ARPE-19 compared with HEPG2 cells (E). Gene expression of CYP2E1 was normalized by β-Actin and 
CREBBP gene expression. Protein expression was normalized by β-Actin. Values are expressed as 
mean ± SEM (N=3). Statistical significance was determined by means of 1-and-2-way ANOVA, and 
Student's t-test. Statistically significant differences were set at *p<0.05 vs. CTL group. 
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7. CYP2E1 IS IMPLICATED IN RPE CELL DEATH  

 

 After considering that CYP2E1 mRNA remains unaltered at 600 mM EtOH in 
ARPE-19 cells. Higher EtOH challenges were assayed on ARPE-19 cells. 

 

7.1. APOPTOSIS PATHWAY IS ACTIVATED WITH CYP2E1 OVEREXPRESSION 

 

 Despite the differences in Caspase-3 expression at 600 and 800 mM EtOH 

figure 27A, the Bcl-2/Bax ratio was significantly increased, about 80% from CTL values 

at 600 mM EtOH (p. value < 0.01) with a marked decrease at 800 mM EtOH, figure 

27B.  

 Figure 27C, shows the regular ARPE-19 cells with a typical cellular 

morphology. Evident morphological alterations are evident after 800 mM EtOH 

exposure and dramatic changes in shape; refringency, and plate detachment in 1200 

mM EtOH-treated cells.  

 

 

 



 

 

 

Figure 27.  Apoptosis pathway activation in ARPE-19. Apoptosis markers were assayed, Caspase -3 
(A), Bax and Bcl-2 that were represented as a ratio (B). Cellular morphology under phase-contrast 
microscopy after EtOH treatment (C). Protein expression was normalized by β-Actin. Values are 
expressed as mean ± SEM (N=3). Statistical significance was determined by means of 1-and-2-way 
ANOVA, and Student's t-test. Statistically significant differences were set at *p<0.05 vs. CTL group. 
Scale bar: 100 μm. 
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7.2. DAS REDUCES ETOH-INDUCED ROS PRODUCTION IMPROVING CELL VIABILITY 

OUTCOME  

 

 CYP2E1 metabolic activity is the major ROS producer during EtOH metabolism. 

Then CYP2E1 inhibitor DAS was used. As shown in figure 28, the selective CYP2E1 

inhibition (20 mM DAS) is able to prevent the observed EtOH toxicity in RPE cells. 

 As described above, EtOH-induced intracellular ROS was significantly inhibited 

by DAS (p. value < 0.01) figure 28A. The use of DAS, led to a significant decrease on 

ROS formation in all treated groups. The effect of DAS, reached the basal values even 

below CTL group, figure 28A.  

 This CYP2E1 inhibition was accompanied by a significant increase in cell 

viability, figure 28B, without reaching the basal cell viability levels.  

 Phase-contrast microscopy images, seen in figure 28C, showed how 1200 mM 

EtOH promoted morphological alterations with much more evident refringency than 

control cells. Interestingly, DAS prevented those EtOH-induced morphological 

alterations. To confirm CYP2E1 activity inhibition after DAS treatment. ARPE-19 cells 

microsomes were incubated during 4 hours with  10 mM or 20 mM DAS. A significant 

inhibition of CYP2E1 activity could be observed with DAS (p. value < 0.01). figure 28D  
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Figure 28. CYP2E1 is involved in EtOH-induced OS in ARPE-19 cells. DAS inhibits the EtOH-induced 
ROS production (A). DAS inhibits the EtOH-induced cell viability loss (B). Phase-contrast microscopy 
images of ARPE-19 cells morphology after 24 hours of 1200 mM EtOH exposure and DAS treatment 
(C). 4NC formation by CYP2E1 under inhibitory DAS treatment (D).Values are expressed as mean ± SEM 
(N=3). Statistical significance was determined by means of 1-and-2-way ANOVA, and Student's t-test. 
Statistically significant differences were set at *p<0.05. Scale bar: 100 μM. 

 

 

7.3. DAS BLOCKS ETOH-INDUCED CYP2E1 mRNA AND PROTEIN EXPRESSION 

 

 The dramatic CYP2E1 protein overexpression observed at 1200 mM EtOH was  

significantly reduced by 20 mM DAS. (p. value < 0.05). Fitting with this fact, CYP2E1 

mRNA overexpression was also decreased, figure 29B. CYP2E1 activity was almost 

undetectable after DAS addition in control cells. DAS provoked a reduction on CYP2E1 

activity around 50% (p. value < 0.001), figure 29C.  
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Figure 29. DAS reduced CYP2E1 mRNA and protein expression. EtOH-induced CYP2E1 protein 
expression also was reduced after 20 mM DAS (A). DAS at 20 mM inhibited EtOH-induced CYP2E1 
mRNA expression to control levels (B). EtOH-induced CYP2E1 activity and the inhibitory effect of 
20 mM DAS (C). Gene expression of CYP2E1 was normalized by β-Actin and CREBBP gene 
expression. Protein expression was normalized by Tubulin. Values are expressed as mean ± SEM 
(N=3). Statistical significance was determined by means of 1-and-2-way ANOVA, and Student's t-
test. Statistically significant differences were set at *p<0.05 

 

7.4. hRPE, MATURE ARPE- AND hiPSC-RPE CELLS PRESENT SIMILAR RESPONSES TO 

ARPE-19 UNDER EtOH EXPOSURE  

 

 In agreement with previous data (See 1.1, figure 15B), EtOH-induced 

cytotoxicity was likely observed in all studied RPE cell types. CYP2E1 inhibition by DAS 

was used in all RPE cell models.  

 20 mM DAS restored cell viability in hRPE after EtOH-treatment to basal levels 

(CTL group, p. value < 0.01), Figure 30A. EtOH-induced ROS formation was also 

demonstrated in hRPE cells, figure 30B. Similarly, 20 mM DAS blocked 100% of this 

EtOH-dependent ROS formation. Furthermore, EtOH exposure promoted CYP2E1 

expression also in hRPE cells. The addition of DAS blocked this response. 

 Immunofluorescence against CYP2E1, figure 30C, showed a cytoplasmic 

location of CYP2E1 in hRPE cells. More CYP2E1-positive cells were labelled after 1200 

mM EtOH exposure. Notably, 20 mM DAS reduced the number of CYP2E1–positive 

cells. 
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Figure 30. hRPE  EtOH response. Human RPE cell viability (XTT assay) at 1200 mM of EtOH and 
DAS treatment (A). Inhibitory effect of DAS on EtOH-induced ROS production in hRPE cells, DCFH-
DA fluorescence, (B). Immunofluorescence of CYP2E1 on hRPE cells after 24 hours of 1200 mM 
EtOH exposure and DAS treatment (C). Values are expressed as mean ± SEM (N=3). Statistical 
significance was determined by means of 1-and-2-way ANOVA, and Student's t-test. Statistically 
significant differences were set at *p<0.05. Scale bars: 100 μm. 

 

 Conversely, 600 mM EtOH did not affect hiPSC-RPE and mature ARPE-19 cell 

viability. As expected, 20 mM DAS was ineffective in any case, figure 31.  

 

 

 

 

 

 



 

 

 

 

 

Figure 31. hiPSC-RPE and mature ARPE-19 cells EtOH response. HiPSC-RPE cell viability (XTT 
assay) (A) and mature ARPE-19 cells (B) at 600 mM of EtOH and 20 mM of DAS treatment (A). 
Inhibitory effect of DAS on EtOH-induced Values are expressed as mean ± SEM (N=3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Results 

 

113 

 

8. CYP2E1 IS IMPLICATED IN RPE CELL RESPONSE  

8.1. DAS MODIFIES EtOH-INDUCED CELL STRESS BIOMARKERS  

 

 The treatment with 20 mM DAS did not modify the EtOH-induced changes in 

the expression of CITED-2, SIRT-2, P21/CIP1, HIF-1α, P27, p-P53 and PON2, figure 

32A. However, Ethanol-induced biomarkers as CA9, CYT-C, HSP60 and P-JNK PAN 

were reduced after DAS exposure figure 32B. In these cases, CYP2E1 could be 

modulating cellular response against the OS generated by the EtOH. 

 

 

 

 

 

 

 

 

 



 

Figure 32. ARPE-19 cell stress profile after EtOH treatment. After 24 hours of EtOH treatment, the 

ARPE-19 cell survival and stress markers profile was decreased and DAS did not change the situation 

(A) Additionally in all OS markers studied 20 mM DAS modulated the EtOH cellular response (B). 

Values are expressed as average of an N= 3 samples pooled. 

 

8.2. NFKB IS REGULATED BY CYP2E1 

 

 With the aim to study the effect of CYP2E1 in APRE-19 cell stress response. 

ARPE-19 cells were treated with 4 µM of the antioxidant NAC. The figure 33 shows 

that CYP2E1 inhibition by DAS increased the expression of NFКB. On this line, NFКB 

quantification by western blot, figure 33A demonstrated higher NFКB levels in DAS 

treated cells compared to non-treated cells.  

 The use of NAC also reversed the effect of EtOH on NFkB. These data suggest 

that the expression of NFКB is regulated by CYPE21.  
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 The representative pictures on figure 33B showed an increase of NFКB 

expression with 20 mM DAS. These results were higher than NAC treated group. No 

NFКB activation was observed in any case. 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 

 

 

 

Figure 33. NFКB profile expression in ARPE-19 after EtOH and DAS treatment. Protein 
expression quantification by WB shows changes in NFКB profile expression blocking CYP2E1 
with DAS and NAC treatment (A). The immunofluorescence showed that there is an 
enhanced of NFКB expression, but there is not nuclear translocation (B). Protein expression 
was normalized by β-Actin. Values are expressed as mean ± SEM (N=3). Statistical 
significance was determined by means of 1-and-2-way ANOVA, and Student's t-test. 
Statistically significant differences were set at *p<0.05 vs. control group. 
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9. CYP2E1 REGULATION IN RPE CELLS 

9.1. INTRACELLULAR ROS IS REDUCED BY NAC IMPROVING CELL VIABILITY 

OUTCOME 

 

 The use of NAC attenuated EtOH-induced free radical damage, figure 34. 4 

µM NAC improved cell viability, figure 34A, and reduced ROS levels (p. value < 0.01), 

figure 34B. Even so, it was possible to decrease around 20% intracellular ROS 

compared with CTL cells. Superoxide anions levels were less reduced by NAC figure 

34C. The figure 34D shows that, superoxide anions did not represent the major free 

radicals increased in ARPE-19 cells under 600 mM EtOH treatment, however the use 

of NAC decreased almost all of them. 
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Figure 34. NAC decrease intracellular ROS. The cell viability assay (XTT) after 24 h 4 µM of NAC 
treatment (A). Total intracellular ROS (DCFH fluorescence) in ARPE-19 cells (B). At the same way 
superoxide anions measured by DHE (C). Superoxide anions versus the rest of free radical (D). Values 
are expressed as mean ± SEM (N=3). Statistical significance was determined by means of 1-and-2-
way ANOVA, and Student's t-test. Statistically significant differences were set at *p<0.05. 

 

9.2. ROS MODULATES CYP2E1 EXPRESSION 

 

 To understand the effect of ROS in the regulation of CYP2E1 protein 

expression. Western blot was assayed in ARPE-19 treated cells with 600 mM EtOH + 

20 mM  DAS or 4 µM NAC. As shown in figure 35, DAS and NAC promoted similar 

results.  

 NAC significantly decreased CYP2E1 protein expression (p. value < 0.001) 

around 150% compared to 600 mM EtOH. Also, there were not statistically significant 

differences between DAS and NAC. Blocking either the enzymatic CYP2E1 activity or 

the intracellular ROS reduced the EtOH-induced CYP2E1 overexpression in ARPE-19 

cells. 

 

 

 

 



 

 

 

 

Figure 35. ROS regulates CYP2E1 expression in ARPE-19 cells. CYP2E1 expression in ARPE-19 after 
EtOH treatment with 20 mM of DAS and 4 µM of NAC during 24h were measured by WB. Protein 
expression was normalized by β-Actin.  Values are expressed as mean ± SEM (N=3). Statistical 
significance was determined by means of 1-and-2-way ANOVA, and Student's t-test. Statistically 
significant differences were set at *p<0.05. 

 

 

 



Homologous neurons in the retina of mammals (right), 
insects (left) and cephalopods (center)

CHAPTER V



Discussion



Discussion 

 

121 

 

 Considering RPE as a restrictive physiological part of the BRB, in this thesis we 

propose that the RPE dysfunction, due to OS generated by alcohol consumption, can 

lead to an overall deterioration of the retina.  Any damage in the RPE will trigger 

damage to the retina or increasing the damage generated by other retinopathies. 

 Some epidemiological data support the suggestion that EtOH may affect the 

retina (193,194). Fitting with this, electroretinograms recorded from chronic EtOH-

treated rats showed that the b-wave amplitude was significantly diminished. B-wave 

amplitude is attributable to depolarizing bipolar cell activity and Müller cells (195).  

 The presence of CYP2E1 and ADH (196, 197) in ARPE-19, hRPE and hiPSC-RPE 

cells strongly supports the proposal of a direct EtOH metabolism in RPE. Cytochrome 

p450 2E1 represents the major EtOH detoxifying isoform that furthermore is induced 

by EtOH, but paradoxically it is poorly expressed in RPE cells in basal conditions (198). 

CYP2E1 induction by ROS strongly suggests additional roles for CYP2E1 related to vision 

and cellular signaling modulating by OS. Additionally, EtOH and LPO metabolites inhibit 

the conversion of all-trans-retinol to all-trans-retinal (199) affecting visual cycle.  

 Besides, it is possible to detect a two-phase response in the release of growth 

factors by RPE as well as of inflammatory and cell stress biomarkers. This fact is 

dependent on ROS levels and CYP2E1 expression, giving us the key to reinforce the 

protective and regulatory role of this outer BRB under toxic treatment.  

  

1. EtOH INDUCES SIMIAR CYTOTOXICITY PATTERN IN DIFFERENT RPE CELLS 

 

 Our first results reveal that ARPE-19 cells are an appropriate model for the 

study of cellular damage caused by EtOH-generated ROS (See results, figure 14 and 15, 

chapter IV). The EtOH cytotoxicity measured by XTT showed that there are not 

statistically significant citoxicity differences between ARPE-19 cells, RPE primary 

culture and mature ARPE-19 cells (Figure 14D). Alike, when ARPE-19 cells were 

compared with hiPSC-RPE cells, (Figure 15F) reinforces previous results.  

 EtOH represents an oxidative insult for our cells. In agreement with Brossas JY, 

et al. (200), 1200 mM EtOH exerts deleterious effects in ARPE-19 cells, hRPE cells and 

mature ARPE-19 cells (Figure 14A, 14B and 14C respectively). Surprisingly, hRPE cells 

show significant changes on cell viability already at 400 mM EtOH and mature ARPE-19 

cells at 200 mM. This suggests that both types of cells are more susceptible to EtOH 

damage than ARPE-19 cells, where significant changes were found at 600 mM EtOH.  



 As noted by Flores-Bellver M, et al. (49) and Bonet-Ponce L, et al. (47), sublethal 

EtOH concentrations (below 600 mM EtOH) promote cellular alterations in terms of 

mitophagy and protein aggregation in ARPE-19 cells. Interestingly, this autophagic 

response seems to be related to cell protection. 

 On the other hand, hiPSC-RPE showed higher resistance to EtOH toxicity, 800 

mM EtOH was required to detect cell death (Figure 15B). This fact suggests that hiPSC-

RPE cells are more similar to ARPE-19 cells, than the other ones. The finding that 

mature ARPE-19 and hRPE cells were more sensitive to EtOH than ARPE-19 cells 

confirms that, ARPE-19 cells are very resistant to OS (200, 201). Being a commercial 

cell line, this difference could be explained in terms of OS resistance. Although, under 

this OS insult, ARPE-19 cells preserved the RPE structural and functional 

characteristics. 

 Interestingly, 100 mM EtOH promotes cell damage in an astrocytes, (161) 

whereas 200 to 600 mM EtOH levels are needed in mature ARPE-19, hRPE and ARPE-

19, respectively, to decrease cell viability. Probably, the fact that RPE cells 

constitutively express ADH (202, 203) and CYP2E1, (Figure 25), might explain their 

resistance against xenobiotics and toxic agents, also EtOH. 

 The use of ARPE-19 as an RPE cellular model is extended in ophthalmology, 

cellular biology and physiology fields. Dunn KC, et al. (44), evidenced that ARPE-19 has 

structural and functional properties characteristic of RPE cells in vivo. Suggesting that 

this cell line will be valuable for in vitro studies of RPE physiology. Also, ARPE-19 cells 

have been used in studies about OS (48), cell signaling pathways (47), and 

inflammation diseases (50).  

 The present work demonstrates that in our EtOH toxicity study, ARPE-19 cells 

are an excellent model of RPE cells. The cells had the same cytotoxicity that the rest of 

RPE cells used.  

 Nevertheless, is relevant to keep in mind seeding and maintenance conditions 

developed in cell cultures. As Tian J, et al.  demonstrated (204,205), both conditions 

may affect cell responsiveness and survival. The ARPE-19 cells behavior, differed 

according to seeding density (Figure 15G). The same happened with mature cells, since 

they are the same ARPE-19 cells maintained for 2 months in culture. The fact of 

experiencing this maturity condition makes them more sensitive to EtOH treatment 

(Figure 14A versus 14C). 
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 One limitation of this study deals with the EtOH concentrations reaching the 

eye. Most probably, EtOH circulating levels will be lower than the initial concentrations 

used herein for cell cultures. Additionally, the presence of the choriocapillaris will 

affect the actual EtOH concentration finally reaching the eye. In this line, it is very 

interesting to note that vitreal EtOH levels are higher than those obtained from blood, 

(206) so it seems reliable that EtOH reaches the eye. As previously reported, 40 mM 

EtOH circulating blood levels significantly affected rat retina (142, 195, 207, 208). 

These EtOH levels are much lower than used initially for cell cultures (600 mM). 

Obviously, vaporization of EtOH in cultures is a significant phenomenon affecting the 

final EtOH concentration and, therefore, it is extremely difficult to confirm the actual 

EtOH concentration reaching the cultured cells (209).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2. EtOH ACTIVATES A ROS DEPENDENT CELLULAR RESPONSE IN RPE CELLS 

 

 The highest EtOH concentration used modified the cellular response in ARPE-19 

cells (See results, figure 16, chapter IV). 40% of cell death was found at 1200 mM 

EtOH, provoked an activation of stress response of these cells. 

 Among the increased markers, it is possible to emphasize their implication on 

mitochondria maintaining function and activation of ROS-dependent cellular signaling 

pathways (Figure 16A). Knowing that mitochondria is one of the organelle more 

sensible to ROS presence in ARPE-19 cells (210) it is plausible to note how CYT-C and 

HSP60 are increased under EtOH treatment. It is noteworthy that studies performed 

on Caco-2 cells (human intestinal epithelial cells) HSP60 expression increased 

significantly at the concentration of 4% (700 mM) of EtOH (62). In agreement with 

previously published we found an increase of HSP60 under high EtOH concentrations 

on ARPE-19 cells (Figure 16A). 

 Previous publications showed that there is an activation of MAPK due to OS 

also by alcohol (79,174). In either in vivo or in vitro models of alcoholic liver disease, an 

increase of gene expression of the MAPK pathway was found. For example, in human 

monocytes, acute alcohol exposure increased JNK phosphorylation (211). P-JNK PAN 

was also increased in ARPE-19 cells under EtOH treatment (Figure 16B).  

 In a different way, the fact that the transcription factor HIF-1α was decreased, 

could be affecting the regulation of RPE growth factors expression, as well as a cellular 

stress response (76). One of the most diminished proteins was CITED-2, involved in the 

modulation of p53-mediated apoptosis, which was also decreased. ARPE-19 cells 

shown similar behavior in studies by Korthagen NM, et al. (212). After stimulation of 

inflammation by treatment with TNF-α, they observed that among the downregulated 

genes were transcription factors implicated in ocular development (SIX3, PAX6) and 

modulation of p53-mediated apoptosis (CITED-2) (212). Our data may lead us to 

suppose that the overexpression of certain markers, in turn favors the decrease of pro-

apoptotic proteins. CITED-2 induces acetylation of p53 and enhances TNF-α induced 

apoptosis. Our results, once again reveal the specific downregulation of CITED-2 in 

ARPE-19 cells. This fact could be related to the resistance of these cells to the pro-

apoptotic effects of OS (212).  

 The inhibition of SIRT-2 has been suggested to be neuroprotective. Indeed, 

reduced SIRT-2 expression is associated with increased photoreceptor survival in flies, 

although it is not yet clear whether SIRT-2 activation has negative effects in aging 

retinas (213).  
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 SIRT-2 is also declining in our results. While studies of other groups showed 

that under conditions of OS, there is an increase of SIRT-2. Meléndez-García R, et al, 

(213), observed that prolactin maintains SIRT-2 levels contributing to RPE survival by 

reducing ROS levels. Conversely, under oxidizing conditions increased levels of SIRT-2, 

leading to RPE cell death (213). All of these results demonstrate that ARPE-19 cells 

could be activating different signaling pathways in response to the toxic effect of ROS 

generated by EtOH. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3. A ROS-DEPENDENT APOPTOSIS PATHWAY IS INDUCED BY EtOH 

 

 There are many reports that relate alcohol consumption with the increase of 

OS. Also there is a correlation  in alcoholic  patients  between  HNE  adducts, 

suggesting  that  the  latter  catalyze  LPO and   HNE   production (211). In addition, 

previous results in our group showed the increment of 4-HNE adducts and LPO in 

ARPE-19 cells under EtOH treatment (49). 

 The increase of ROS by EtOH treatment did grow significantly in RPE cells (See 

results, figure 17, chapter IV). 200 mM EtOH was enough to increase, almost 20%, 

intracellular ROS in ARPE-19 cells (Figure 17A and 17B) and hRPE cells (Figure 17C).  

 Superoxide anions did not represent the highest percentage of free radicals in 

the set of ROS produced by the cells. But they are the key, at higher EtOH 

concentrations, for the existence of significant differences (Figure 17E), coinciding with 

the concentrations that give rise to cell death.  

 In our cells, this increase of ROS generated by EtOH is directly related to cell 

death. (Figure 17F). As already observed Conde de la Rosa L, et al. (214), superoxide 

anions are responsible for the activation of caspase induced apoptosis in hepatocytes 

(214). In ARPE-19 cells there is an increase of apoptosis markers from 400 mM EtOH 

(Figure 18A).  Which could be explained by the increase of the superoxide anions in 

those experimental groups. 

 However, the fact that OS was increased at 200 mM and 400 mM EtOH is not a 

cause for cell death. As shown in other published works (48, 49, 210), sublethal levels 

of ROS provoked an increase of autophagy (as a pro-survival processes) in ARPE-19 

cells. This means that there is not cell death. In this way, after 400 mM EtOH, there is a 

greater increase of Bcl-2 (pro-survival) than Bax (pro-apoptotic) thus compensating the 

apoptosis activation (Figure 18B and 18C respectively). 

 Finally, it is important to remark that it is necessary a higher EtOH 

concentration than 600 mM during 24 h to loss plasma membrane integrity (Figure 

18D) and activate apoptosis pathway, causing cell death. 
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4. EtOH INDUCES RPE BARRIER DYSFUNCTION 

4.1. EtOH INCREASE RPE BARRIER PERMEABILTY 

 

 We should be aware that the increase of EtOH-mediated OS affects the 

permeability of the membrane (215-218).  As already mentioned in the previous 

section, alcohol damages the plasma membrane integrity in RPE cells. Further, 

intercellular junctions could be affected too.  

 The most common methods to explore the function of the RPE barrier are 

measuring TER and content of the main TJ protein, ZO-1 (219). Our results showed a 

decrease of ZO-1 expression, which was dependent on EtOH concentration used (See 

results, figure 19A and 19B, chapter IV). Other authors pointed out that increased OS 

increases the expression of ZO-1 in ARPE-19 cells (220). This difference may be due to 

their treatment with tunicamycin (TM) or thapsigargin (TG) which generates 

endoplasmic reticulum (ER) stress. Moreover, Yoshikawa T, et al. (220), observed that 

this barrier damage was accompanied by an increase of VEGF, something that our 

results did not show either, (Figure 22). 

 As expected, TER assay revealed that the epithelial resistance decreases 

considerably with EtOH treatment (Figure 19C). TER measurement is a useful task to 

evaluate the establishment of an epithelial barrier function based on the formation of 

TJ. Changes in TER measurements can be used, then, to probe the integrity and RPE 

barrier function as an early marker of RPE injury (221). 

  It should be noted that at 1200 mM EtOH we found a considerably lower 

number of cells due to the significant increase in cell death which contributes to this 

result. On the other hand, the TER decline showed at 1200 mM in ARPE-19 cells could 

be explained because several pro-inflammatory cytokines act decreasing TER, 

increasing the permeability and altering the expression or content of TJ molecules 

(106,107,220).  

 

 

 

 

 



4.2. EtOH MODIFIES THE PROFILE OF PROTEOME AND GROWTH FACTORS 

EXPRESSION 

 

 Inflammation and angiogenesis are the main responses presented in ocular 

diseases. In addition, these routes converge with each other. Namely, the activation of 

one depends on the other one (76, 98, 99). One of the RPE function is to maintain the 

correct concentrations of particular factors and proteins for retinal health (9, 28). 

Some of them are angiogenic factors (VEGF), inflammation biomarkers (ILs, TNF-α) 

even proteins involved in both processes (MMPs and TIMPs). It is important to have a 

complete pathway diagram to know how EtOH affects BRB function.  

 EtOH treatment modified the proteome profile in ARPE-19 cells (Figures 20-24). 

These results would be indicating that damage in the RPE barrier has occurred. Among 

different inflammation related proteins it should be noted that TIMP-1, TIMP-4 and 

MMP-8 and MMP-9 are enhanced in ARPE-19 cells after EtOH exposure (Figure 20A). 

As indicated, VEGF requires for its angiogenic action some enzymes like MMPs. TIMP-1 

and TIMP-4 are natural inhibitors of MMPs. A correct balance between these and 

MMPs is necessary for the ECM integrity maintenance. The modification of the 

components of the ECM gives rise to inflammatory reactions and participates in the 

secretion of MMPs (222). The expression of MMPs is low in healthy tissues and its 

expression is elevated during inflammatory, autoimmune, degenerative, neoplastic 

and angiogenic lesions (223).  

 The increase of ROS promotes also the expression of TGF-β1, which induces the 

activation of NFКB (224). Nevertheless, EtOH treatment decreased the TGF-β1 

expression in ARPE-19 cells (Figure 20B). In addition there was no NFКB activation, P65 

translocation to the nucleus was not detected (Figure 24). Its regulatory function in 

inflammation and angiogenic process is complicated and controversial. Since, it has 

been implicated in different signaling pathways (225, 226, 227). While some studies 

support its role as a tumorigenic suppressor, others claim to act by promoting tumor 

formation (228, 229).  

 200 mM EtOH seems to be a critical concentration. At this dose, there is a 

modification in the profile expression of some ILs such as IL-8 (Figure 20B) or IL-1β. It is 

possible to find a clear decrease of IL-1β protein expression at 200 mM EtOH, followed 

by an increase, comparing to CTL group (Figure 20A). Some studies affirm that VEGF 

interacts with IL-1β in the angiogenic and inflammatory response (230, 231). IL-1β is 

able to activate the expression of some MMPs (232), such as MMP-3 (233). In addition, 

other authors affirm that IL-1β could induce tumor progression, since it contributes to 

the increase of vascularization (234).  
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 Angiogenesis related proteins show clear modification after EtOH treatment 

too (Figure 21). HGF and FGF-7 were decreased at 600 mM EtOH (Figure 21A). HGF is 

secreted by the cells during inflammation process. Some studies show that it is able to 

promote the proliferation, activation and differentiation of endothelial and epithelial 

cells during angiogenesis, in intestine diseases (235, 236).  Our results manifest a clear 

HGF protein expression decrease at 400 and 600 mM EtOH. Thus would be contributing 

to decrease angiogenesis process. This data is in agreement with the VEGF results 

(Figure 21 and figure 22A). 

 The fact that FGF-7 is expressed under hypoxia conditions (237) excludes this 

phenomenon in the RPE response to EtOH. In addition, previous study establishes the 

relationship between the activation of some inflammatory cytokines with the decrease 

of FGF-7 in different types of neoplasms (230). Therefore, our results would be 

suggested that EtOH treatment directly activate an inflammation process leading a loss 

of RPE barrier function. 

 Another specific marker of RPE barrier function is VEGF. This growth factor 

requires the action of different enzymes, e.g. plasmin system and the MMPs to induce 

activation, migration and proliferation in endothelial cells getting a new capillary 

formation (235, 238, 239). The key enzyme for the cell-plasmin union to take place is 

uPA (240). uPA exerts its effect by joining uPAR. Also uPA and its homologue tPA, are 

able to convert plasminogen to plasmin, a protease responsible for degrading the ECM 

(124). It appears that uPAR is involved in pathological angiogenesis and, it has been 

shown that anti-uPAR antibodies are be able to blocking angiogenesis in cornea. In 

addition, uPA-uPAR binding activates MMPs, breaking components of the ECM (124).  

 Our results demonstrate an increase of uPA expression after EtOH exposure on 

ARPE-19 cells, (Figure 21B). This data, could be contradictory with VEGF results, 

however, it is possible that uPA is related to some VEGF alternative isoforms, such as 

VEGF-C, which it was increased in our results (Figure 21B). Also, MMPs were 

overexpressed after EtOH treatment (Figure 23).  

  Previous results from our group showed an increase of multivesicular bodies at 

80 mM EtOH. These release vesicles (exosomes) and acting as a cell communication 

system. 80 mM EtOH was enough to change their content stimulating angiogenesis in 

endothelial cells (54). According to these results, an increase of VEGF and VEGFR-2 was 

observed at 200 mM EtOH (Figure 22). In contrast, a significant decrease in VEGFR-1 

(Figure 22C) was observed in all groups treated with EtOH. Nevertheless as figures 21 

and 22 demonstrate, 600 mM EtOH turned out a significant decrease in VEGF-A mRNA 

and protein expression.  



 Several authors claim that VEGF overexpression induces VEGFR-2 in different 

diseases e.g. atherosclerosis (241) arthritis (242), diabetes (243), sepsis, psoriasis and 

vascular inflammation (244). In contrast with this, our results reveals a decrease of 

VEGFR-2 expression in EtOH dose manner (Figure 22C).  

 This fact could be explained because while 200 mM EtOH, the lowest 

concentration employed, did not cause a decrease in cell viability, it did increase ROS 

significantly. This ROS is enough to activate an inflammatory response and also VEGF 

expression. 600 mM EtOH promotes the activation of apoptosis cell death. This fact 

could be blocking the VEGF/VEGFR-2 pathway (245). 

 PEDF would counteract the effect of VEGF imbalance in RPE cells. PEDF is 

considered a potent neurotropic and anti-inflammatory protein that protects neurons 

of the retina and photoreceptors against cell death (246, 247). Also, it is one of the 

major regulators of angiogenesis released by RPE. PEDF is able to inhibit the VEGF 

effect (246, 248, 249). It acts by binding to VEGFR-2 or by promoting the proteolysis of 

VEGFR-2 by the activation of α-secretase (250, 251).   

 Our data show an increase of PEDF at 200 mM EtOH, followed by a significant 

fall in dose dependent manner (Figure 22B). These data do not appear to be in 

agreement with VEGF results. However, could be justified considering that, the 

increase of PEDF would be compensating the VEGF overexpression. Thereby, the BRB 

homeostasis could be restored. Another explanation could be that RPE cells release 

PEDF in their apical side, whereas VEGF is secreted in the basolateral side, in our 

experiments, ARPE-19 cells were not polarized.  

 As mentioned before, MMPs are characteristic proteins of chronic 

inflammatory diseases  (252) and also as a results to OS (253). MMP-1, MMP-2, MMP-

3, MMP-8 and MMP-9 are associated with ECM degradation in ocular diseases. In our 

results, its inhibitors, e.g. TIMP-1 were also highly elevated (Figure 20A), this could be 

explain as an attempt to maintain physiological homeostasis (254). Studies on mature 

RPE cells revealed that, under normal conditions these cells express MMP-1, MMP-2, 

MMP-3 and MMP-9 at low concentrations (255). Our results demonstrate an increase 

of MMP-3 and MMP-8 after EtOH treatment, figure 23. 

 Regarding MMP-2, it is possible to find studies indicating that it is involved in 

chronic inflammatory processes, contributing to the inhibition of the degradation of 

the ECM, blocking the effect of MMP-9 (253). Our results reinforce the claim that 

MMP-2 is constitutively expressed in RPE, despite the presence of a higher expression 

than the rest of MMPs (Figure 23B). Nevertheless, its expression did not present 

significant variations after EtOH exposure. 
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 The increase of MMP-3 expression observed after treatment (Figure 23F) would 

be related to ROS production and ECM degradation. Previous studies in cancer 

revealed the existence of a relationship between NFКB and ROS-induced MMP-3 (256). 

Also, elevated levels of this protein have been implicated in inflammatory diseases 

(257, 258, 259).  In the eye, MMP-3 expression is induced by ROS and it has the ability 

to degrade several collagen types, most of which are found in the ECM surrounding the 

RPE and the membrane Bruch (258).  

 MMP-9 has been implicated in ocular diseases such as AMD, as well as damage 

caused by ROS (35) and hypoxia (260). Thereby the increase of MMP-9 expression in 

ARPE-19 cells after EtOH treatment, (Figure 23D) could be explained by the increase of 

inflammatory markers. The increase of MMP-8 expression (Figure 23C), corroborates 

the activation of inflammation process, also in eye (261, 262, 263).  

 The activation of MMPs, promotes a signaling cascade involving different 

proteins such as mTOR, NFКB and p53 (263). These can be regulated by several 

cytokines among which we find growth factors such as TNFα and IL-β (222). There is 

also a relationship between the increase of MMP and the degradation of the TJ that 

mainly affects ZO-1 (264-267). This fact, leads us to consider that some of them are 

involved in cell signaling after EtOH treatment, orchestrating the entire cellular 

response. In addition, certain inflammatory cytokines can protect RPE from death due 

to OS (268). 

 NFКB is a transcription factor that plays a key role regulating inflammation-

induced angiogenesis. It comprises two subunits (p65 and p50), which upon activation 

translocate to the nucleus and activate the expression of genes associated with 

inflammation (269). Contrary to what we had expected, NFКB activation was not 

detected in ARPE-19.  Any group suffered the translocation of P65 subunit towards cell 

nucleus under OS conditions generated by EtOH, (Figure 24B).These results can be 

explained because there is a direct NFКB regulation by ROS. For example, direct 

oxidation of NFКB by H2O2-induced ROS inhibits its DNA binding ability and this ROS 

also regulates the phosphorylation of IКBα (270). Besides, IКBα induced by P65 

overexpression maintains NFКB in the cytoplasm (271). 

 The fact that, NFКB decreased at 600 mM EtOH is in agreement with the 

decrease of VEGF found in previous results. NFКB plays an important role in VEGF 

expression regulation in retina, constitutive VEGF secretion in the RPE/choroid seems 

to be regulated by the transcription factor NFКB (80).  

 

 



5. EtOH INDUCES CYP2E1 EXPRESSION IN RPE CELLS 

 

 The presence of CYP2E1 enzyme in ARPE-19, hRPE and hiPSC-RPE cells, confirm 

the idea of a local EtOH-metabolism in RPE. (See results, figure 25, chapter IV). Due to 

the obvious difficulties to obtain hRPE from donors and hiPSC-RPE cells, the present 

work has been performed mostly on ARPE-19 cells as a model to assess the direct 

effects of EtOH on RPE (apart from the hepatic metabolism). The existence of CYP2E1 

in all RPE cells studied reinforces the protective function of this tissue. Besides strongly 

suggests additional roles for CYP2E1 related to vision such as oxidation of retinoic acid 

to 4-Hydroxy-retinoic acid (23, 24). 

 It is of relevance, that 600 mM EtOH increases CYP2E1 mRNA expression in a 

time dependent manner with a linear correlation. Logically with the most toxic EtOH 

concentration (1200 mM) the linearity was lower. This fact fits with data shown in 

figures 26A and 26B, suggesting that weak to moderate CYP2E1 overexpression could 

be related to a detoxifying-protective role. Whereas, maintained CYP2E1 

overexpression (1200 mM EtOH) could be associated with EtOH-induced cellular 

toxicity (Figures 26C and 26D). In agreement with Badger TM, et al. (272), who 

reported hepatic CYP2E1 induction by EtOH, CYP2E1 mRNA expression was increased 

in a fast, progressive and maintained manner after EtOH exposure (600–1200 mM), in 

ARPE-19 cells. 

 CYP2E1 represents the major EtOH detoxifying isoform that furthermore is 

induced by EtOH, but paradoxically it is poorly expressed in RPE cells in basal 

conditions (198). As our results shown the induction of CYP2E1 with 1200 mM of EtOH, 

matched the activity with HEPG2 cells in basal conditions (Figure 26E). The presence 

and activity of CYP2E1 suggests that the RPE has a role on local EtOH metabolism, 

which is likely protective at low EtOH concentrations, whereas it is deleterious at 

higher ones. 
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6. CYP2E1 IS IMPLICATED IN RPE CELL DEATH  

 

 There is a close relationship between overexpression of CYP2E1 and apoptosis 

not only in hepatic tissue (273, 274). Zhang RH et al. (273), in their published work 

demonstrated that inhibiting CYP2E1 by DAS is possible to attenuate chronic alcohol 

intake-induced apoptosis (via caspase-3) (273). The adult male mice used were fed 

with a 4% EtOH in their diet for 6 weeks (273). According to this, we found an increase 

of caspase-3 expression in ARPE-19 under 600 mM and 800 mM EtOH. (See results, 

figure 27A, chapter IV).  

 Conversely, the most toxic amount of EtOH used that overexpressed CYP2E1, 

decrease caspase-3 expression. In this way, Perlman H, et al. (275), described that Bcl-

2 expression in synovial fibroblasts is essential for maintaining mitochondrial 

homeostasis and cell viability, and the increased Bcl-2 expression can downregulated 

casapse-3 activation (275). The increase of Bcl-2/Bax ratio, (Figure 27B) the 

unapparent morphological cellular changes (Figure 27C), and the lack of CYP2E1 

induction (at 600 mM EtOH) may well fit with our previous data, indicating that below 

600 mM EtOH a protective autophagy/mitophagy response is activated in ARPE-19 

cells (49, 210). This theory is in agreement with Chen G, et al. (276), who indicated the 

protective role of autophagy against EtOH exposure. 

 The results herein indicate that is possible to reduce intracellular ROS 

increasing cell viability by inhibiting CYP2E1 (Figures 28, 30 and 31). CYP2E1-derived 

ROS have been related directly to the inhibition of autophagy in liver, using a binge 

model of EtOH exposure in hepatic cell lines (277). Plausibly, EtOH-derived ROS are 

produced in a dose dependent manner leading to different autophagy related 

phenomena: from cell protection to cell death.  

 DAS as a competitive inhibitor of CYP2E1, which blocks ROS production by 

direct molecular interaction, decreasing its activity (Figure 28D). Indirectly, DAS could 

be inhibiting CYP2E1 transcription and translation (Figure 29). In agreement with this, 

it has been described that CYP2E1 gene transcription is ROS-mediated and 

consequently, CYP2E1 induction is accompanied by additional ROS production 

enhancing CYP2E1 transcription (161, 163).  

 

 

 



7. CYP2E1 INHIBITION MODIFIED THE EtOH - INDUCED CELLULAR RESPONSE 

 

 As previously mentioned, EtOH caused modifications in the proteome 

expression profile in ARPE19 cells. To reverse this phenomenon, 20 mM DAS treatment 

was enough, (See results, figure 32, chapter IV). 

 As well as results published demonstrated the relationship between acute and 

chronic alcohol and HSP activation (177, 278) we found functional link between the 

increase of HSP60 and CYP2E1 activation (Figure 32B). DAS improves RPE 

mitochondrial status under acute EtOH exposure, favoring ARPE-19 cells survival (279). 

This could be explained by the decrease of CYT-C expression with 20 mM DAS. 

 It should be noted that not all proteins that their expression was increased by 

the EtOH, saw reversed this effect by DAS treatment. NFKB expression was significantly 

reduced by EtOH in ARPE-19 cells. This effect was reversed inhibiting CYP2E1, even 

surpassing CTL levels, (Figure 33).  

 The fact that the use of the NAC as antioxidant, reverses the effect of EtOH on 

NFКB expression, (Figure 33) means that part of our results were due to OS generated 

by EtOH. However, the effects with DAS are much higher, indicating that somehow 

overexpression of CYP2E1 could be regulating NFКB.  

 Is well known that exist the hypothesis that NFКB could be regulated by OS. 

Also there are many reports that demostrate a possible relationship between CYP2E1 

and this transcription factor (167-169). DAS increased P65 NFКB protein expression 

surpassing the levels of control group. It is plausibly to hypothesize that CYP2E1 could 

be regulating VEGF expression through NFКB. 
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8. CYP2E1 IS REGULATED BY ROS 

 

 Previous authors demostrated that PKC/JNK/SP1 pathway is implicated in the 

regulation of CYP2E1 expression (161, 176). The use of DAS blocks its activation y and 

consequently the ROS-mediated positive feedback generated by CYP2E1.   

 Increasing ROS by CYP2E1 activity would trigger an activation of PKC/JNK/SP1 

pathway by a positive feedback loop increasing the expression of CYP2E1 in monocytes 

and astrocytes (161). Our data suggest same scenario in RPE cells (see results, figure 

32B, chapter IV). The use of NAC was able to decrease the OS generated by EtOH in 

the same way as the treatment with DAS, (Figure 34). This fact could be due because 

OS generated under EtOH treatment in ARPE-19 cells comes from the activity of 

CYP2E1. In addition same effects in terms of CYP2E1 protein expression were observed 

after NAC treatment (Figure 35). Both DAS and NAC were able to reduce enzyme 

overexpression in the same way. This reinforces the hypothesis that it is the OS itself 

that triggers an overexpression pathway of CYP2E1 (161). 

 In the previous section mentioned that CYP2E1 plays a fundamental role in the 

regulation of NFКB (72), but other researchers hypothesize the opposite.  (165-167). In 

our data we cannot discriminate if NFКB is regulating CYP2E1 expression or vice versa 

because we did not use any NFКB inhibitor. However we can affirm that there is a 

direct relationship between them. It would be interesting to continue investigating this 

relationship. CYP2E1 and NFKB are directly involve in the development of different 

inflammatory diseases (280, 281).  

 Further recent findings suggest that NFКB is an important transcriptional 

regulator of neuroinflammation in retinal diseases as a glaucoma (280) and diabetic 

retinopathy (281) coulding be a new immunomodulation strategy for retinal diseases.  

 In summary, EtOH exposure in RPE cells caused different response depending 

on OS generation. This translates into a biphasic response of some inflammation and 

angiogenesis biomarkers. That could be regulating cell signaling, impeding the correct 

blood retinal barrier homeostasis. CYP2E1 would play a key role in the generation of 

ROS and thus in the regulation of cellular response (Figure 36). 

 

 

 

 



 

 

 

 

Figure 36. EtOH induces a two-phase response in RPE cells. Low EtOH concentration treatment induces 

ROS production in RPE cells activating oxidative stress response inducing cell survival. High EtOH 

concentration treatment in RPE induces more ROS than the lower used inducing RPE dysfunction and 

cell death. 
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In view of the results presented it can be concluded that alcohol intake could 

trigger RPE dysfunction promoting the formerly proposed ‘alcoholic retinopathy’. 

Furthermore, it could even aggravate other retinal diseases by means of CYP2E1 

activation. The present data would provide a valuable future tool and a significant 

piece of information for the further understanding of the pathophysiological 

mechanism of retinal diseases. CYP2E1 would play an important role in the generation 

of oxidative stress and thus in the regulation of retinal response and cell signaling 

activation.  

 

1. ARPE-19 cells are an appropriate cellular model to study EtOH cytotoxicity in RPE. 

Seeding and culture conditions are important factors to consider. 

 

2. RPE cells are resistant to EtOH-induced oxidative stress showing degeneration 

features only when EtOH concentration is above 600 mM. 

 

3. Superoxide anions are the main species involved, in the significant increase of total 

intracellular ROS levels, at the highest EtOH concentrations used. 

 

4. Superoxide anions are involved in the activation of EtOH-induced apoptosis pathway 

in ARPE-19 cells. 

 

5. EtOH induces RPE barrier function degeneration, decreasing the integrity of 

intercellular junctions and modifying the expression profile of inflammatory and 

angiogenic factors in ARPE-19 cells. 

 

6. EtOH treatment breaks the blood retinal barrier homeostasis unbalancing VEGF and 

PEDF expression, inducing RPE degeneration.   

 

 7. CYP2E1 is expressed in all RPE cells studied. CYP2E1 gene transcription, protein 

expression and activity are enhanced after EtOH exposure in ARPE-19 cells. 



8. Inhibition of CYP2E1 with DAS, reverted oxidative stress damage and cell death in 

RPE cells. CYP2E1 is implicated in ARPE-19 cells apoptosis activation after EtOH 

exposure.  

 

9. The expression of the transcriptional factor NFКB is down-regulated by CYP2E1- 

induced oxidative stress in ARPE-19 cells.  The use of the antioxidant NAC reverted the 

values obtained after EtOH treatment. Nevertheless, treatment with DAS increased 

NFКB protein expression above baseline levels. 

 

10. EtOH-induced oxidative stress regulates CYP2E1 expression in ARPE-19 cells. The 

use of DAS and NAC put back the results of CYP2E1 expression induced by EtOH, in the 

same way. 

 



CHAPTER VII

Mammals retinal layers



References



References 

 

139 

 

1. Benhar I, London A, Schwartz M. The privileged immunity of immune privileged 

organs: the case of the eye. Frontiers in immunology. 2012;3:296. 

2. Tian J, Marziliano P, Baskaran M, Tun TA, Aung T. Automatic segmentation of the 

choroid in enhanced depth imaging optical coherence tomography images. Biomedical 

optics express. 2013;4(3):397-411. 

3. Helga Kolb EF, and Ralph Nelson. Webvision The Organization of the Retina and 

Visual System 1995. Available from: http://webvision.med.utah.edu/. 

4. Wiechers EG. El ojo: estructura y función.  Oftalmología en la práctica de la 

medicina general: Universidad Nacional Autónoma de México; 2009. p. 14. 

5. The retina reference. Available from: 

http://www.retinareference.com/anatomy/. 

6. Th ebaultS. "El epitelio pigmentario retiniano como componente de la barrera 

hematoretiniana: implicación en la retinopatía diabética"2011; 12. 

7. Nickla DL, Wallman J. The multifunctional choroid. Progress in retinal and eye 

research. 2010;29(2):144-68. 

8. Yun C, Oh J, Choi KE, Hwang SY, Kim SW, Huh K. Peripapillary choroidal thickness 

after intravitreal ranibizumab injections in eyes with neovascular age-related macular 

degeneration. BMC ophthalmology. 2016;16:25. 

9. Strauss O. The retinal pigment epithelium in visual function. Physiological 

reviews. 2005;85(3):845-81. 

10. Panda-Jonas S, Jonas JB, Jakobczyk-Zmija M. Retinal pigment epithelial cell count, 

distribution, and correlations in normal human eyes. American journal of 

ophthalmology. 1996;121(2):181-9. 

11. Sonoda S, Spee C, Barron E, Ryan SJ, Kannan R, Hinton DR. A protocol for the 

culture and differentiation of highly polarized human retinal pigment epithelial cells. 

Nature protocols. 2009;4(5):662-73. 

12. Toops KA, Tan LX, Lakkaraju A. A detailed three-step protocol for live imaging of 

intracellular traffic in polarized primary porcine RPE monolayers. Experimental eye 

research. 2014;124:74-85. 

13. Cunha-Vaz J, Bernardes R, Lobo C. Blood-retinal barrier. European journal of 

ophthalmology. 2011;21 Suppl 6:S3-9. 

http://webvision.med.utah.edu/
http://www.retinareference.com/anatomy/


14. Liu Y, Zhang D, Wu Y, Ji B. Docosahexaenoic acid aggravates photooxidative 

damage in retinal pigment epithelial cells via lipid peroxidation. Journal of 

photochemistry and photobiology B, Biology. 2014;140:85-93. 

15. Hamann S. Molecular mechanisms of water transport in the eye. International 

review of cytology. 2002;215:395-431. 

16. Nandakumar N, Buzney S, Weiter JJ. Lipofuscin and the principles of fundus 

autofluorescence: a review. Seminars in ophthalmology. 2012;27(5-6):197-201. 

17. Ozawa Y. Oxidative Stress in the RPE and Its Contribution to AMD Pathogenesis: 

Implication of Light Exposure. In: Nakazawa T KY, Harada T, editor. Neuroprotection and 

neuroregeneration for retinal diseases: Springer Japan; 2014. p. 239-53. 

18. Wright AF, Chakarova CF, Abd El-Aziz MM, Bhattacharya SS. Photoreceptor 

degeneration: genetic and mechanistic dissection of a complex trait. Nature reviews 

Genetics. 2010;11(4):273-84. 

19. Villegas-Perez MP. [Light exposure, lipofuscin and age-related macular 

degeneration]. Archivos de la Sociedad Espanola de Oftalmologia. 2005;80(10):565-8. 

20. Perusek L, Maeda T. Vitamin A derivatives as treatment options for retinal 

degenerative diseases. Nutrients. 2013;5(7):2646-66. 

21. Thompson DA, Gal A. Vitamin A metabolism in the retinal pigment epithelium: 

genes, mutations, and diseases. Progress in retinal and eye research. 2003;22(5):683-

703. 

22. Bavik C, Henry SH, Zhang Y, Mitts K, McGinn T, Budzynski E, et al. Visual Cycle 

Modulation as an Approach toward Preservation of Retinal Integrity. PloS one. 

2015;10(5):e0124940. 

23. Retinol Metabolism Covance Solution Made Real. Available from: 

http://cvd.pinpointdesign.com/map.php?mapid=881&item=9491. 

24. Muindi JF, Young CW. Lipid hydroperoxides greatly increase the rate of oxidative 

catabolism of all-trans-retinoic acid by human cell culture microsomes genetically 

enriched in specified cytochrome P-450 isoforms. Cancer research. 1993;53(6):1226-9. 

25. Bok D. The retinal pigment epithelium: a versatile partner in vision. Journal of 

cell science Supplement. 1993;17:189-95. 

http://cvd.pinpointdesign.com/map.php?mapid=881&item=9491


References 

 

141 

 

26. Sethna S, Chamakkala T, Gu X, Thompson TC, Cao G, Elliott MH, et al. Regulation 

of Phagolysosomal Digestion by Caveolin-1 of the Retinal Pigment Epithelium Is Essential 

for Vision. The Journal of biological chemistry. 2016;291(12):6494-506. 

27. Nguyen-Legros J, Hicks D. Renewal of photoreceptor outer segments and their 

phagocytosis by the retinal pigment epithelium. International review of cytology. 

2000;196:245-313. 

28. Kay P, Yang YC, Paraoan L. Directional protein secretion by the retinal pigment 

epithelium: roles in retinal health and the development of age-related macular 

degeneration. Journal of cellular and molecular medicine. 2013;17(7):833-43. 

29. Gerwins P, Skoldenberg E, Claesson-Welsh L. Function of fibroblast growth 

factors and vascular endothelial growth factors and their receptors in angiogenesis. 

Critical reviews in oncology/hematology. 2000;34(3):185-94. 

30. Hollborn M, Iandiev I, Seifert M, Schnurrbusch UE, Wolf S, Wiedemann P, et al. 

Expression of HB-EGF by retinal pigment epithelial cells in vitreoretinal proliferative 

disease. Current eye research. 2006;31(10):863-74. 

31. Jin M, Yaung J, Kannan R, He S, Ryan SJ, Hinton DR. Hepatocyte growth factor 

protects RPE cells from apoptosis induced by glutathione depletion. Investigative 

ophthalmology & visual science. 2005;46(11):4311-9. 

32. Sporn MB, Roberts AB, Wakefield LM, Assoian RK. Transforming growth factor-

beta: biological function and chemical structure. Science. 1986;233(4763):532-4. 

33. Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor beta in 

human disease. The New England journal of medicine. 2000;342(18):1350-8. 

34. Dvashi Z, Goldberg M, Adir O, Shapira M, Pollack A. TGF-beta1 induced 

transdifferentiation of rpe cells is mediated by TAK1. PloS one. 2015;10(4):e0122229. 

35. Bandyopadhyay M, Rohrer B. Matrix metalloproteinase activity creates pro-

angiogenic environment in primary human retinal pigment epithelial cells exposed to 

complement. Investigative ophthalmology & visual science. 2012;53(4):1953-61. 

36. Sánchez-Ramos Roda C. Filtros contra el efecto fototóxico del espectro visible en 

la retina: Experimentación animal.  Universidad Europea de Madrid; 2010. 

37. Yla-Herttuala S, Rissanen TT, Vajanto I, Hartikainen J. Vascular endothelial growth 

factors: biology and current status of clinical applications in cardiovascular medicine. 

Journal of the American College of Cardiology. 2007;49(10):1015-26. 



38. Choi HY, Jung J, Name SB, Lee JE, Byon IS, Seo JH. The effects of vascular 

endothelial growth factor (VEGF) on human orbital preadipocyte. Orbit. 2016;35(1):6-

10. 

39. Wang H, Geisen P, Wittchen ES, King B, Burridge K, D'Amore PA, et al. The role of 

RPE cell-associated VEGF(1)(8)(9) in choroidal endothelial cell transmigration across the 

RPE. Investigative ophthalmology & visual science. 2011;52(1):570-8. 

40. Sharma K, Sharma NK, Singh R, Anand A. Exploring the role of VEGF in Indian Age 

related macular degeneration. Annals of neurosciences. 2015;22(4):232-7. 

41. Courtenay MD, Cade W, Schwartz SG, Kovach JL, Agarwal A, Wang G, et al. Set-

based joint test of interaction between SNPs in the VEGF pathway and exogenous 

estrogen finds association with age-related macular degeneration. Investigative 

ophthalmology & visual science. 2014. 

42. Bouck N. PEDF: anti-angiogenic guardian of ocular function. Trends in molecular 

medicine. 2002;8(7):330-4. 

43. Subramanian P, Locatelli-Hoops S, Kenealey J, DesJardin J, Notari L, Becerra SP. 

Pigment epithelium-derived factor (PEDF) prevents retinal cell death via PEDF Receptor 

(PEDF-R): identification of a functional ligand binding site. The Journal of biological 

chemistry. 2013;288(33):23928-42.  

44. Dunn KC, Aotaki-Keen AE, Putkey FR, Hjelmeland LM. ARPE-19, a human retinal 

pigment epithelial cell line with differentiated properties. Experimental eye research. 

1996;62(2):155-69. 

45. Kuznetsova AV, Kurinov AM. Cell models to study regulation of cell 

transformation in pathologies of retinal pigment epithelium. Journal of ophthalmology . 

2014;2014:801787. 

46. Srinivasan B, Kolli AR, Esch MB, Abaci HE, Shuler ML, Hickman JJ. TEER 

measurement techniques for in vitro barrier model systems. Journal of laboratory 

automation. 2015;20(2):107-26. 

47. Bonet-Ponce L, Saez-Atienzar S, da Casa C, Sancho-Pelluz J, Barcia JM, Martinez-

Gil N, et al. Rotenone Induces the Formation of 4-Hydroxynonenal Aggresomes. Role of 

ROS-Mediated Tubulin Hyperacetylation and Autophagic Flux Disruption. Molecular 

neurobiology. 2016;53(9):6194-208. 

48. Atienzar-Aroca S, Flores-Bellver M, Serrano-Heras G, Martinez-Gil N, Barcia JM, 

Aparicio S, et al. Oxidative stress in retinal pigment epithelium cells increases exosome 



References 

 

143 

 

secretion and promotes angiogenesis in endothelial cells. Journal of cellular and 

molecular medicine. 2016;20(8):1457-66. 

49. Flores-Bellver M, Bonet-Ponce L, Barcia JM, Garcia-Verdugo JM, Martinez-Gil N, 

Saez-Atienzar S, et al. Autophagy and mitochondrial alterations in human retinal 

pigment epithelial cells induced by ethanol: implications of 4-hydroxy-nonenal. Cell 

death & disease. 2014;5:e1328. 

50. Kozlowski MR. The ARPE-19 cell line: mortality status and utility in macular 

degeneration research. Current eye research. 2015;40(5):501-9. 

51. Flores-Bellver M. Retinal Pigment Epithelium: A major role in retinal oxidative 

stress: Universidad Católica de Valencia; 2015. 

52. Zhong X, Gutierrez C, Xue T, Hampton C, Vergara MN, Cao LH, et al. Generation 

of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. 

Nature communications. 2014;5:4047. 

53. Sies H. Oxidative stress: a concept in redox biology and medicine. Redox biology. 

2015;4:180-3. 

54. Naito TYaY. What Is Oxidative Stress? . Japan Medical Association Journal. 

2002;45(7):5. 

55. Holmstrom KM, Finkel T. Cellular mechanisms and physiological consequences of 

redox-dependent signalling. Nature reviews Molecular cell biology. 2014;15(6):411-21. 

56. Koop DR, Morgan ET, Tarr GE, Coon MJ. Purification and characterization of a 

unique isozyme of cytochrome P-450 from liver microsomes of ethanol-treated rabbits. 

The Journal of biological chemistry. 1982;257(14):8472-80. 

57. Lieber CS, DeCarli LM. Hepatic microsomal ethanol-oxidizing system. In vitro 

characteristics and adaptive properties in vivo. The Journal of biological chemistry. 

1970;245(10):2505-12. 

58. Ho E, Karimi Galougahi K, Liu CC, Bhindi R, Figtree GA. Biological markers of 

oxidative stress: Applications to cardiovascular research and practice. Redox biology. 

2013;1:483-91. 

59. Ayala A, Munoz MF, Arguelles S. Lipid peroxidation: production, metabolism, and 

signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative 

medicine and cellular longevity. 2014;2014:360438. 



60. Berlett BS, Stadtman ER. Protein oxidation in aging, disease, and oxidative stress. 

The Journal of biological chemistry. 1997;272(33):20313-6. 

61. Eva Babusikova AE, Jozef Hatok, Dusan Dobrota and Jana Jurecekova Oxidative 

Changes and Possible Effects of Polymorphism of Antioxidant Enzymes in 

Neurodegenerative Disease, Neurodegenerative Diseases. Dr Uday Kishore (Ed), InTech. 

2013. 

62. Park SC, Lim JY, Jeen YT, Keum B, Seo YS, Kim YS, et al. Ethanol-induced DNA 

damage and repair-related molecules in human intestinal epithelial Caco-2 cells. 

Molecular medicine reports. 2012;5(4):1027-32. 

63. Sharma A, Sharma R, Chaudhary P, Vatsyayan R, Pearce V, Jeyabal PV, et al. 4-

Hydroxynonenal induces p53-mediated apoptosis in retinal pigment epithelial cells. 

Archives of biochemistry and biophysics. 2008;480(2):85-94. 

64. van Leeuwen IM, Higgins M, Campbell J, McCarthy AR, Sachweh MC, Navarro 

AM, et al. Modulation of p53 C-terminal acetylation by mdm2, p14ARF, and cytoplasmic 

SirT2. Molecular cancer therapeutics. 2013;12(4):471-80. 

65. Chou YT, Hsieh CH, Chiou SH, Hsu CF, Kao YR, Lee CC, et al. CITED2 functions as a 

molecular switch of cytokine-induced proliferation and quiescence. Cell death and 

differentiation. 2012;19(12):2015-28. 

66. Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and 

antioxidant defense. The World Allergy Organization journal. 2012;5(1):9-19. 

67. Jackson BC, Thompson DC, Charkoftaki G, Vasiliou V. Dead enzymes in the 

aldehyde dehydrogenase gene family: role in drug metabolism and toxicology. Expert 

opinion on drug metabolism & toxicology. 2015;11(12):1839-47. 

68. Pilat A, Herrnreiter AM, Skumatz CM, Sarna T, Burke JM. Oxidative stress 

increases HO-1 expression in ARPE-19 cells, but melanosomes suppress the increase 

when light is the stressor. Investigative ophthalmology & visual science. 2013;54(1):47-

56. 

69. de Andrade KQ, Moura FA, dos Santos JM, de Araujo OR, de Farias Santos JC, 

Goulart MO. Oxidative Stress and Inflammation in Hepatic Diseases: Therapeutic 

Possibilities of N-Acetylcysteine. International journal of molecular sciences. 

2015;16(12):30269-308. 

70. Yin J, Thomas F, Lang JC, Chaum E. Modulation of oxidative stress responses in 

the human retinal pigment epithelium following treatment with vitamin C. Journal of 

cellular physiology. 2011;226(8):2025-32. 



References 

 

145 

 

71. Rao PS, Midde NM, Miller DD, Chauhan S, Kumar A, Kumar S. Diallyl Sulfide: 

Potential Use in Novel Therapeutic Interventions in Alcohol, Drugs, and Disease 

Mediated Cellular Toxicity by Targeting Cytochrome P450 2E1. Current drug 

metabolism. 2015;16(6):486-503. 

72. Pintea DR A, Pop R Bunea A, Socaciu C, and Horst A. Diehl. Antioxidant Effect of 

Trans-Resveratrol in Cultured Human Retinal Pigment Epithelial Cells. Journal of Ocular 

Pharmacology and Therapeutics 2011;27(4):6. 

73. Fang Y, Su T, Qiu X, Mao P, Xu Y, Hu Z, et al. Protective effect of alpha-mangostin 

against oxidative stress induced-retinal cell death. Scientific reports. 2016;6:21018. 

74. Lu L, Hackett SF, Mincey A, Lai H, Campochiaro PA. Effects of different types of 

oxidative stress in RPE cells. Journal of cellular physiology. 2006;206(1):119-25. 

75. Bazan NG. Survival signaling in retinal pigment epithelial cells in response to 

oxidative stress: significance in retinal degenerations. Advances in experimental 

medicine and biology. 2006;572:531-40. 

76. Mateos MV, Tenconi PE, Giusto NM, Salvador GA. Inflammation and oxidative 

stress in retinal diseases: the role of intracellular signaling in the retinal pigment 

epithelium. International Journal of Ophthalmology and Clinical Research. 2015;2(3):7. 

77. Son Y, Kim S, Chung HT, Pae HO. Reactive oxygen species in the activation of MAP 

kinases. Methods in enzymology. 2013;528:27-48. 

78. Roth S, Shaikh AR, Hennelly MM, Li Q, Bindokas V, Graham CE. Mitogen-activated 

protein kinases and retinal ischemia. Investigative ophthalmology & visual science. 

2003;44(12):5383-95. 

79. Qiu Y, Tao L, Lei C, Wang J, Yang P, Li Q, et al. Downregulating p22phox 

ameliorates inflammatory response in Angiotensin II-induced oxidative stress by 

regulating MAPK and NF-kappaB pathways in ARPE-19 cells. Scientific reports. 

2015;5:14362. 

80. Klettner A, Westhues D, Lassen J, Bartsch S, Roider J. Regulation of constitutive 

vascular endothelial growth factor secretion in retinal pigment epithelium/choroid 

organ cultures: p38, nuclear factor kappaB, and the vascular endothelial growth factor 

receptor-2/phosphatidylinositol 3 kinase pathway. Molecular vision. 2013;19:281-91. 

81. Faghiri Z, Bazan NG. PI3K/Akt and mTOR/p70S6K pathways mediate 

neuroprotectin D1-induced retinal pigment epithelial cell survival during oxidative 

stress-induced apoptosis. Experimental eye research. 2010;90(6):718-25. 



82. Hector S, Prehn JH. Apoptosis signaling proteins as prognostic biomarkers in 

colorectal cancer: a review. Biochimica et biophysica acta. 2009;1795(2):117-29. 

83. Bruce Alberts AJ, Julian Lewis, Martin Raff, Keith Roberts, and Peter Walter. The 

Cell Cycle and Programmed Cell Death.  Molecular Biology of the Cell. 4 ed: New York: 

Garland Science; 2002. 

84. Xu J, Zhu D, Sonoda S, He S, Spee C, Ryan SJ, et al. Over-expression of BMP4 

inhibits experimental choroidal neovascularization by modulating VEGF and MMP-9. 

Angiogenesis. 2012;15(2):213-27. 

85. Ho TC, Yang YC, Cheng HC, Wu AC, Chen SL, Chen HK, et al. Activation of mitogen-

activated protein kinases is essential for hydrogen peroxide -induced apoptosis in retinal 

pigment epithelial cells. Apoptosis : an international journal on programmed cell death. 

2006;11(11):1899-908. 

86. Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation. Nature. 

2015;517(7534):311-20. 

87. Trichonas G, Murakami Y, Thanos A, Morizane Y, Kayama M, Debouck CM, et al. 

Receptor interacting protein kinases mediate retinal detachment-induced 

photoreceptor necrosis and compensate for inhibition of apoptosis. Proceedings of the 

National Academy of Sciences of the United States of America. 2010;107(50):21695-700. 

88. Murakami Y, Matsumoto H, Roh M, Giani A, Kataoka K, Morizane Y, et al. 

Programmed necrosis, not apoptosis, is a key mediator of cell loss and DAMP-mediated 

inflammation in dsRNA-induced retinal degeneration. Cell death and differentiation. 

2014;21(2):270-7. 

89. Onodera J, Ohsumi Y. Autophagy is required for maintenance of amino acid levels 

and protein synthesis under nitrogen starvation. The Journal of biological chemistry. 

2005;280(36):31582-6. 

90. Frost LS, Mitchell CH, Boesze-Battaglia K. Autophagy in the eye: implications for 

ocular cell health. Experimental eye research. 2014;124:56-66. 

91. Szatmari-Toth M, Kristof E, Vereb Z, Akhtar S, Facsko A, Fesus L, et al. Clearance 

of autophagy-associated dying retinal pigment epithelial cells - a possible source for 

inflammation in age-related macular degeneration. Cell death & disease. 

2016;7(9):e2367. 

92. Boya P, Esteban-Martinez L, Serrano-Puebla A, Gomez-Sintes R, Villarejo-Zori B. 

Autophagy in the eye: Development, degeneration, and aging. Progress in retinal and 

eye research. 2016;55:206-45. 



References 

 

147 

 

93. Medzhitov R. Origin and physiological roles of inflammation. Nature. 

2008;454(7203):428-35. 

94. Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in 

inflammation and tissue injury. Antioxidants & redox signaling. 2014;20(7):1126-67. 

95. Ashley NT WZ, Nelson RJ. . Inflammation: Mechanisms, Costs, and Natural 

Variation. ecolsysannualreviewsorg. 2012;43(1):21. 

96. Schindler R, Mancilla J, Endres S, Ghorbani R, Clark SC, Dinarello CA. Correlations 

and interactions in the production of interleukin-6 (IL-6), IL-1, and tumor necrosis factor 

(TNF) in human blood mononuclear cells: IL-6 suppresses IL-1 and TNF. Blood. 

1990;75(1):40-7. 

97. Armstrong AW, Voyles SV, Armstrong EJ, Fuller EN, Rutledge JC. Angiogenesis 

and oxidative stress: common mechanisms linking psoriasis with atherosclerosis. Journal 

of dermatological science. 2011;63(1):1-9. 

98. Blasiak J, Petrovski G. Oxidative stress, hypoxia, and autophagy in the 

neovascular processes of age-related macular degeneration. 2014;2014:768026. 

99. Wilkinson-Berka JL, Rana I, Armani R, Agrotis A. Reactive oxygen species, Nox and 

angiotensin II in angiogenesis: implications for retinopathy. Clinical science (London, 

England : 1979). 2013;124(10):597-615. 

100. Vatsyayan R, Lelsani PC, Chaudhary P, Kumar S, Awasthi S, Awasthi YC. The 

expression and function of vascular endothelial growth factor in retinal pigment 

epithelial (RPE) cells is regulated by 4-hydroxynonenal (HNE) and glutathione S-

transferaseA4-4. Biochemical and biophysical research communications. 

2012;417(1):346-51. 

101. Li X, Cai Y, Wang YS, Shi YY, Hou W, Xu CS, et al. Hyperglycaemia exacerbates 

choroidal neovascularisation in mice via the oxidative stress-induced activation of STAT3 

signalling in RPE cells. PloS one. 2012;7(10):e47600. 

102. Angosto MC Á-GJ. Metaloproteinasas, matriz extracelular y cáncer. Anales de la 

Real Academia Nacional de Farmacia. 2010;76(1):25. 

103. Haurigot V, Villacampa P, Ribera A, Bosch A, Ramos D, Ruberte J, et al. Long-term 

retinal PEDF overexpression prevents neovascularization in a murine adult model of 

retinopathy. PloS one. 2012;7(7):e41511. 



104. Kale G, Naren AP, Sheth P, Rao RK. Tyrosine phosphorylation of occludin 

attenuates its interactions with ZO-1, ZO-2, and ZO-3. Biochemical and biophysical 

research communications. 2003;302(2):324-9. 

105. Omri S, Omri B, Savoldelli M, Jonet L, Thillaye-Goldenberg B, Thuret G, et al. The 

outer limiting membrane (OLM) revisited: clinical implications. Clinical ophthalmology. 

2010;4:183-95. 

106. Krizbai IA, Bauer H, Bresgen N, Eckl PM, Farkas A, Szatmari E, et al. Effect of 

oxidative stress on the junctional proteins of cultured cerebral endothelial cells. Cellular 

and molecular neurobiology. 2005;25(1):129-39. 

107. Ferreira SM, Lerner SF, Brunzini R, Evelson PA, Llesuy SF. Oxidative stress markers 

in aqueous humor of glaucoma patients. American journal of ophthalmology. 

2004;137(1):62-9. 

108. Santosa S, Jones PJ. Oxidative stress in ocular disease: does lutein play a 

protective role? CMAJ : Canadian Medical Association journal = journal de l'Association 

medicale canadienne. 2005;173(8):861-2. 

109. Wakamatsu TH, Dogru M, Tsubota K. Tearful relations: oxidative stress, 

inflammation and eye diseases. Arquivos brasileiros de oftalmologia. 2008;71(6 

Suppl):72-9. 

110. Heath NEINIo. Facts About Retinitis Pigmentosa 2014. Available from: 

https://nei.nih.gov/health/pigmentosa/pigmentosa_facts. 

111. Openshaw A, Branham K, Heckenlively J. Understanding Retinitis Pigmentosa. In: 

Center UoMKE, editor. University of Michigan. 2008. p. 28. 

112. Shen J, Yang X, Dong A, Petters RM, Peng YW, Wong F, et al. Oxidative damage is 

a potential cause of cone cell death in retinitis pigmentosa. Journal of cellular 

physiology. 2005;203(3):457-64. 

113. Carmody RJ, Cotter TG. Oxidative stress induces caspase-independent retinal 

apoptosis in vitro. Cell death and differentiation. 2000;7(3):282-91. 

114. Komeima K, Rogers BS, Lu L, Campochiaro PA. Antioxidants reduce cone cell 

death in a model of retinitis pigmentosa. Proceedings of the National Academy of 

Sciences of the United States of America. 2006;103(30):11300-5. 

115. Tah V, Orlans HO, Hyer J, Casswell E, Din N, Sri Shanmuganathan V, et al. Anti-

VEGF Therapy and the Retina: An Update. Journal of ophthalmology. 2015;2015:627674. 



References 

 

149 

 

116. Grossniklaus HE, Kang SJ, Berglin L. Animal models of choroidal and retinal 

neovascularization. Progress in retinal and eye research. 2010;29(6):500-19. 

117. Wang H, Han X, Wittchen ES, Hartnett ME. TNF-alpha mediates choroidal 

neovascularization by upregulating VEGF expression in RPE through ROS-dependent 

beta-catenin activation. Molecular vision. 2016;22:116-28. 

118. Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell. 

2007;129(7):1261-74. 

119. van den Beucken T, Koritzinsky M, Niessen H, Dubois L, Savelkouls K, Mujcic H, et 

al. Hypoxia-induced expression of carbonic anhydrase 9 is dependent on the unfolded 

protein response. The Journal of biological chemistry. 2009;284(36):24204-12. 

120. Guilak F BD, Goldstein SA, Baaijens FPT. . Biomechanics and mechanobiology in 

functional tissue engineering. Journal of biomechanics. 2014;47(9):7. 

121. Plafker SM. Oxidative stress and the ubiquitin proteolytic system in age-related 

macular degeneration. Advances in experimental medicine and biology. 2010;664:447-

56. 

122. Jimenez Cuenca B. [Mechanism of inhibition of tumoral angiogenesis by 

thrombospondin-1]. Nefrologia : publicacion oficial de la Sociedad Espanola Nefrologia. 

2003;23 Suppl 3:49-53. 

123. Doll JA, Reiher FK, Crawford SE, Pins MR, Campbell SC, Bouck NP. 

Thrombospondin-1, vascular endothelial growth factor and fibroblast growth factor-2 

are key functional regulators of angiogenesis in the prostate. The Prostate. 

2001;49(4):293-305. 

124. Blasi F, Carmeliet P. uPAR: a versatile signalling orchestrator. Nature reviews 

Molecular cell biology. 2002;3(12):932-43. 

125. Martinez-Ezquerro JD, Herrera LA. Angiogénesis: VEGF/VEGFRs como blancos 

terapéuticos en el tratamiento contra el cáncer. In: (UNAM) UNAdM, editor. 

Cancerología. México 2006. p. 12. 

126. Al Gwairi O, Thach L, Zheng W, Osman N, Little PJ. Cellular and Molecular 

Pathology of Age-Related Macular Degeneration: Potential Role for Proteoglycans. 

2016;2016:2913612. 

127. Nita M, Grzybowski A. The Role of the Reactive Oxygen Species and Oxidative 

Stress in the Pathomechanism of the Age-Related Ocular Diseases and Other Pathologies 



of the Anterior and Posterior Eye Segments in Adults. Oxidative medicine and cellular 

longevity. 2016;2016:3164734. 

128. Frank RN. Diabetic retinopathy. The New England journal of medicine. 

2004;350(1):48-58. 

129. Madsen-Bouterse SA, Mohammad G, Kanwar M, Kowluru RA. Role of 

mitochondrial DNA damage in the development of diabetic retinopathy, and the 

metabolic memory phenomenon associated with its progression. Antioxidants & redox 

signaling. 2010;13(6):797-805. 

130. Chiu CJ, Taylor A. Dietary hyperglycemia, glycemic index and metabolic retinal 

diseases. Progress in retinal and eye research. 2011;30(1):18-53. 

131. Room R, Babor T, Rehm J. Alcohol and public health. Lancet. 

2005;365(9458):519-30. 

132. Guo R, Ren J. Alcohol and acetaldehyde in public health: from marvel to menace. 

International journal of environmental research and public health. 2010;7(4):1285-301. 

133. Baliunas DO, Taylor BJ, Irving H, Roerecke M, Patra J, Mohapatra S, et al. Alcohol 

as a risk factor for type 2 diabetes: A systematic review and meta-analysis. Diabetes care. 

2009;32(11):2123-32. 

134. George A, Figueredo VM. Alcohol and arrhythmias: a comprehensive review. 

Journal of cardiovascular medicine. 2010;11(4):221-8. 

135. Ohkubo T, Metoki H, Imai Y. Alcohol intake, circadian blood pressure variation, 

and stroke. Hypertension. 2009;53(1):4-5. 

136. Cederbaum AI, Lu Y, Wu D. Role of oxidative stress in alcohol-induced liver injury. 

Archives of toxicology. 2009;83(6):519-48. 

137. Seitz HK, Becker P. Alcohol metabolism and cancer risk. Alcohol research & health 

: the journal of the National Institute on Alcohol Abuse and Alcoholism. 2007;30(1):38-

41, 4-7. 

138. Morris MJ. Alcohol breath testing in patients with respiratory disease. Thorax. 

1990;45(10):717-21. 

139. Marinho V, Laks J, Engelhardt E, Conn D. Alcohol abuse in an elderly woman 

taking donepezil for Alzheimer disease. Journal of clinical psychopharmacology. 

2006;26(6):683-5. 



References 

 

151 

 

140. Holford NH. Clinical pharmacokinetics of ethanol. Clinical pharmacokinetics. 

1987;13(5):273-92. 

141. Bondy SC, Guo SX. Regional selectivity in ethanol-induced pro-oxidant events 

within the brain. Biochemical pharmacology. 1995;49(1):69-72. 

142. Bosch-Morell F, Martinez-Soriano F, Colell A, Fernandez-Checa JC, Romero FJ. 

Chronic ethanol feeding induces cellular antioxidants decrease and oxidative stress in 

rat peripheral nerves. Effect of S-adenosyl-L-methionine and N-acetyl-L-cysteine. Free 

radical biology & medicine. 1998;25(3):365-8. 

143. Ramachandran V, Watts LT, Maffi SK, Chen J, Schenker S, Henderson G. Ethanol-

induced oxidative stress precedes mitochondrially mediated apoptotic death of cultured 

fetal cortical neurons. Journal of neuroscience research. 2003;74(4):577-88. 

144. Sun AY, Chen YM, James-Kracke M, Wixom P, Cheng Y. Ethanol-induced cell 

death by lipid peroxidation in PC12 cells. Neurochemical research. 1997;22(10):1187-92. 

145. Israel Y, Rivera-Meza M, Karahanian E, Quintanilla ME, Tampier L, Morales P, et 

al. Gene specific modifications unravel ethanol and acetaldehyde actions. Frontiers in 

behavioral neuroscience. 2013;7:80. 

146. Hernandez JA, Lopez-Sanchez RC. Lipids and Oxidative Stress Associated with 

Ethanol-Induced Neurological Damage. 2016;2016:1543809. 

147. Cederbaum AI. Alcohol metabolism. Clinics in liver disease. 2012;16(4):667-85. 

148. Wall TL, Luczak SE, Hiller-Sturmhofel S. Biology, Genetics, and Environment: 

Underlying Factors Influencing Alcohol Metabolism. Alcohol research : current reviews. 

2016;38(1):59-68. 

149. Zakhari S. Alcohol metabolism and epigenetics changes. Alcohol research : 

current reviews. 2013;35(1):6-16. 

150. Yang SP, Medling T, Raner GM. Cytochrome P450 expression and activities in rat, 

rabbit and bovine tongue. Comparative biochemistry and physiology Toxicology & 

pharmacology : CBP. 2003;136(4):297-308. 

151. Zhang W, Lu D, Dong W, Zhang L, Zhang X, Quan X, et al. Expression of CYP2E1 

increases oxidative stress and induces apoptosis of cardiomyocytes in transgenic mice. 

The FEBS journal. 2011;278(9):1484-92. 



152. Ye XH, Song L, Peng L, Bu Z, Yan SX, Feng J, et al. Association between the CYP2E1 

polymorphisms and lung cancer risk: a meta-analysis. Molecular genetics and genomics 

: MGG. 2015;290(2):545-58. 

153. Nakamura K, Fujiki T, Tamura HO. Age, gender and region-specific differences in 

drug metabolising enzymes in rat ocular tissues. Experimental eye research. 

2005;81(6):710-5. 

154. Nakano M, Mohri T, Fukami T, Takamiya M, Aoki Y, McLeod HL, et al. Single-

Nucleotide Polymorphisms in Cytochrome P450 2E1 (CYP2E1) 3'-Untranslated Region 

Affect the Regulation of CYP2E1 by miR-570. Drug metabolism and disposition: the 

biological fate of chemicals. 2015;43(10):1450-7. 

155. Koop DR. Alcohol metabolism's damaging effects on the cell: a focus on reactive 

oxygen generation by the enzyme cytochrome P450 2E1. Alcohol research & health : the 

journal of the National Institute on Alcohol Abuse and Alcoholism. 2006;29(4):274-80. 

156. Porubsky PR, Meneely KM, Scott EE. Structures of human cytochrome P-450 2E1. 

Insights into the binding of inhibitors and both small molecular weight and fatty acid 

substrates. The Journal of biological chemistry. 2008;283(48):33698-707. 

157. King M. The Medical Biochemistry Page. Available from: 

http://themedicalbiochemistrypage.org/. 

158. Bansal S, Srinivasan S, Anandasadagopan S, Chowdhury AR, Selvaraj V, 

Kalyanaraman B, et al. Additive effects of mitochondrion-targeted cytochrome CYP2E1 

and alcohol toxicity on cytochrome c oxidase function and stability of respirosome 

complexes. The Journal of biological chemistry. 2012;287(19):15284-97. 

159. Lu Y, Cederbaum AI. CYP2E1 and oxidative liver injury by alcohol. Free radical 

biology & medicine. 2008;44(5):723-38. 

160. Cederbaum AI. Molecular mechanisms of the microsomal mixed function 

oxidases and biological and pathological implications. Redox biology. 2015;4:60-73. 

161. Jin M, Ande A, Kumar A, Kumar S. Regulation of cytochrome P450 2e1 expression 

by ethanol: role of oxidative stress-mediated pkc/jnk/sp1 pathway. Cell death & disease. 

2013;4:e554. 

162. Roberts BJ, Song BJ, Soh Y, Park SS, Shoaf SE. Ethanol induces CYP2E1 by protein 

stabilization. Role of ubiquitin conjugation in the rapid degradation of CYP2E1. The 

Journal of biological chemistry. 1995;270(50):29632-5. 

http://themedicalbiochemistrypage.org/


References 

 

153 

 

163. Rao PS, Kumar S. Chronic Effects of Ethanol and/or Darunavir/Ritonavir on U937 

Monocytic Cells: Regulation of Cytochrome P450 and Antioxidant Enzymes, Oxidative 

Stress, and Cytotoxicity. Alcoholism, clinical and experimental research. 2016;40(1):73-

82. 

164. Abdel-Razzak Z, Garlatti M, Aggerbeck M, Barouki R. Determination of 

interleukin-4-responsive region in the human cytochrome P450 2E1 gene promoter. 

Biochemical pharmacology. 2004;68(7):1371-81. 

165. Travis L. The regulation of CYP2E1 gene expression and its role in breast cancer: 

University of Manchester; 2012. 

166. Zangar RC, Davydov DR, Verma S. Mechanisms that regulate production of 

reactive oxygen species by cytochrome P450. Toxicology and applied pharmacology. 

2004;199(3):316-31. 

167. Zordoky BN, El-Kadi AO. Role of NF-kappaB in the regulation of cytochrome P450 

enzymes. Current drug metabolism. 2009;10(2):164-78. 

168. Roman J, Colell A, Blasco C, Caballeria J, Pares A, Rodes J, et al. Differential role 

of ethanol and acetaldehyde in the induction of oxidative stress in HEP G2 cells: effect 

on transcription factors AP-1 and NF-kappaB. Hepatology. 1999;30(6):1473-80. 

169. Szuster-Ciesielska A, Mizerska-Dudka M, Daniluk J, Kandefer-Szerszen M. Butein 

inhibits ethanol-induced activation of liver stellate cells through TGF-beta, NFkappaB, 

p38, and JNK signaling pathways and inhibition of oxidative stress. Journal of 

gastroenterology. 2013;48(2):222-37. 

170. Chen Q, Cederbaum AI. Cytotoxicity and apoptosis produced by cytochrome 

P450 2E1 in Hep G2 cells. Molecular pharmacology. 1998;53(4):638-48. 

171. Arfian N, Muflikhah K, Soeyono SK, Sari DC, Tranggono U, Anggorowati N, et al. 

Vitamin D Attenuates Kidney Fibrosis via Reducing Fibroblast Expansion, Inflammation, 

and Epithelial Cell Apoptosis. The Kobe journal of medical sciences. 2016;62(2):E38-44. 

172. Maurel DB, Boisseau N, Benhamou CL, Jaffre C. Alcohol and bone: review of dose 

effects and mechanisms. Osteoporosis international : a journal established as result of 

cooperation between the European Foundation for Osteoporosis and the National 

Osteoporosis Foundation of the USA. 2012;23(1):1-16. 

173. Akbar M, Baick J, Calderon F, Wen Z, Kim HY. Ethanol promotes neuronal 

apoptosis by inhibiting phosphatidylserine accumulation. Journal of neuroscience 

research. 2006;83(3):432-40. 



174. Wu D, AI Cederbaum. Inhibition of autophagy promotes CYP2E1-dependent 

toxicity in HepG2 cells via elevated oxidative stress, mitochondria dysfunction and 

activation of p38 and JNK MAPK. Redox biology. 2013;5(1):13. 

175. Schattenberg JM, Czaja MJ. Regulation of the effects of CYP2E1-induced 

oxidative stress by JNK signaling. Redox biology. 2014;3:7-15. 

176. Ahmad I, Shukla S, Singh D, Chauhan AK, Kumar V, Singh BK, et al. CYP2E1-

mediated oxidative stress regulates HO-1 and GST expression in maneb- and paraquat-

treated rat polymorphonuclear leukocytes. Molecular and cellular biochemistry. 

2014;393(1-2):209-22. 

177. Mandrekar P, Ambade A. Immunity and inflammatory signaling in alcoholic liver 

disease. Hepatology international. 2014;8 Suppl 2:439-46. 

178. Peragallo J, Biousse V, Newman NJ. Ocular manifestations of drug and alcohol 

abuse. Current opinion in ophthalmology. 2013;24(6):566-73. 

179. Adams MK, Chong EW, Williamson E, Aung KZ, Makeyeva GA, Giles GG, et al. 

20/20--Alcohol and age-related macular degeneration: the Melbourne Collaborative 

Cohort Study. American journal of epidemiology. 2012;176(4):289-98. 

180. Piermarocchi S, Tognetto D, Piermarocchi R, Masetto M, Monterosso G, Segato 

T, et al. Risk Factors and Age-Related Macular Degeneration in a Mediterranean-Basin 

Population: The PAMDI (Prevalence of Age-Related Macular Degeneration in Italy) 

Study--Report 2. Ophthalmic research. 2016;55(3):111-8. 

181. Ghanayem BI. Inhibition of urethane-induced carcinogenicity in cyp2e1-/- in 

comparison to cyp2e1+/+ mice. Toxicological sciences : an official journal of the Society 

of Toxicology. 2007;95(2):331-9. 

182. George J, Liddle C, Murray M, Byth K, Farrell GC. Pre-translational regulation of 

cytochrome P450 genes is responsible for disease-specific changes of individual P450 

enzymes among patients with cirrhosis. Biochemical pharmacology. 1995;49(7):873-81. 

183. Jimenez-Garza O, Baccarelli AA, Byun HM, Marquez-Gamino S, Barron-Vivanco 

BS, Albores A. CYP2E1 epigenetic regulation in chronic, low-level toluene exposure: 

Relationship with oxidative stress and smoking habit. Toxicology and applied 

pharmacology. 2015;286(3):207-15. 

184. Howard LA, Miksys S, Hoffmann E, Mash D, Tyndale RF. Brain CYP2E1 is induced 

by nicotine and ethanol in rat and is higher in smokers and alcoholics. British journal of 

pharmacology. 2003;138(7):1376-86. 



References 

 

155 

 

185. Hubacek JA, Pelclova D, Seidl Z, Vaneckova M, Klempir J, Ruzicka E, et al. Rare 

alleles within the CYP2E1 (MEOS system) could be associated with better short-term 

health outcome after acute methanol poisoning. Basic & clinical pharmacology & 

toxicology. 2015;116(2):168-72. 

186. Toler SM. Oxidative stress plays an important role in the pathogenesis of drug-

induced retinopathy. Experimental biology and medicine. 2004;229(7):607-15. 

187. Yanai R, Mulki L, Hasegawa E, Takeuchi K, Sweigard H, Suzuki J, et al. Cytochrome 

P450-generated metabolites derived from omega-3 fatty acids attenuate 

neovascularization. Proceedings of the National Academy of Science. 

2014;111(26):9603-8. 

188. Zhu M, Provis JM, Penfold PL. Isolation, culture and characteristics of human 

foetal and adult retinal pigment epithelium. Australian and New Zealand journal of 

ophthalmology. 1998;26 Suppl 1:S50-2. 

189. Abas L, Luschnig C. Maximum yields of microsomal-type membranes from small 

amounts of plant material without requiring ultracentrifugation. Analytical 

biochemistry. 2010;401(2):217-27. 

190. Chang TK, Crespi CL, Waxman DJ. Spectrophotometric analysis of human CYP2E1-

catalyzed p-nitrophenol hydroxylation. Methods in molecular biology. 2006;320:127-31. 

191. Elbarbry F, Wilby K, Alcorn J. Validation of a HPLC method for the determination 

of p-nitrophenol hydroxylase activity in rat hepatic microsomes. Journal of 

chromatography B, Analytical technologies in the biomedical and life sciences. 

2006;834(1-2):199-203. 

192. Tassaneeyakul W, Veronese ME, Birkett DJ, Gonzalez FJ, Miners JO. Validation of 

4-nitrophenol as an in vitro substrate probe for human liver CYP2E1 using cDNA 

expression and microsomal kinetic techniques. Biochemical pharmacology. 

1993;46(11):1975-81. 

193. Klein R, Lee KE, Gangnon RE, Klein BE. Relation of smoking, drinking, and physical 

activity to changes in vision over a 20-year period: the Beaver Dam Eye Study. 

Ophthalmology. 2014;121(6):1220-8. 

194. Li Z, Xu K, Wu S, Sun Y, Song Z, Jin D, et al. Alcohol consumption and visual 

impairment in a rural Northern Chinese population. Ophthalmic epidemiology. 

2014;21(6):384-90. 

 



195. Sancho-Tello M, Muriach M, Barcia J, Bosch-Morell F, Genoves JM, Johnsen-

Soriano S, et al. Chronic alcohol feeding induces biochemical, histological, and functional 

alterations in rat retina. Alcohol and alcoholism. 2008;43(3):254-60. 

196. Martras S, Alvarez R, Martinez SE, Torres D, Gallego O, Duester G, et al. The 

specificity of alcohol dehydrogenase with cis-retinoids. Activity with 11-cis-retinol and 

localization in retina. European journal of biochemistry. 2004;271(9):1660-70. 

197. Holmes RS, Popp RA, VandeBerg JL. Genetics of ocular NAD+-dependent alcohol 

dehydrogenase and aldehyde dehydrogenase in the mouse: evidence for genetic 

identity with stomach isozymes and localization of Ahd-4 on chromosome 11 near 

trembler. Biochemical genetics. 1988;26(3-4):191-205. 

198. Nakano M, Kelly EJ, Wiek C, Hanenberg H, Rettie AE. CYP4V2 in Bietti's crystalline 

dystrophy: ocular localization, metabolism of omega-3-polyunsaturated fatty acids, and 

functional deficit of the p.H331P variant. Molecular pharmacology. 2012;82(4):679-86. 

199. Khalighi M, Brzezinski MR, Chen H, Juchau MR. Inhibition of human prenatal 

biosynthesis of all-trans-retinoic acid by ethanol, ethanol metabolites, and products of 

lipid peroxidation reactions: a possible role for CYP2E1. Biochemical pharmacology. 

1999;57(7):811-21. 

200. Brossas JY, Tanguy R, Brignole-Baudouin F, Courtois Y, Torriglia A, Treton J. L-

DNase II associated with active process during ethanol induced cell death in ARPE-19. 

Molecular vision. 2004;10:65-73. 

201. Kurz T, Karlsson M, Brunk UT, Nilsson SE, Frennesson C. ARPE-19 retinal pigment 

epithelial cells are highly resistant to oxidative stress and exercise strict control over 

their lysosomal redox-active iron. Autophagy. 2009;5(4):494-501. 

202. Simon A, Hellman U, Wernstedt C, Eriksson U. The retinal pigment epithelial-

specific 11-cis retinol dehydrogenase belongs to the family of short chain alcohol 

dehydrogenases. The Journal of biological chemistry. 1995;270(3):1107-12. 

203. Suzuki Y, Ishiguro S, Tamai M. Identification and immunohistochemistry of retinol 

dehydrogenase from bovine retinal pigment epithelium. Biochimica et biophysica acta. 

1993;1163(2):201-8. 

204. Tian J, Ishibashi K, Honda S, Boylan SA, Hjelmeland LM, Handa JT. The expression 

of native and cultured human retinal pigment epithelial cells grown in different culture 

conditions. The British journal of ophthalmology. 2005;89(11):1510-7. 

205. Tian J, Ishibashi K, Handa JT. The expression of native and cultured RPE grown on 

different matrices. Physiological genomics. 2004;17(2):170-82. 



References 

 

157 

 

206. Honey D, Caylor C, Luthi R, Kerrigan S. Comparative alcohol concentrations in 

blood and vitreous fluid with illustrative case studies. Journal of analytical toxicology. 

2005;29(5):365-9. 

207. Johnsen-Soriano S, Bosch-Morell F, Miranda M, Asensio S, Barcia JM, Roma J, et 

al. Ebselen prevents chronic alcohol-induced rat hippocampal stress and functional 

impairment. Alcoholism, clinical and experimental research. 2007;31(3):486-92. 

208. Johnsen-Soriano S, Genoves JM, Romero B, Garcia-Delpech S, Muriach M, 

Sancho-Tello M, et al. [Chronic ethanol feeding induces oxidative stress in the rat retina: 

treatment with the antioxidant ebselen]. Archivos de la Sociedad Espanola de 

Oftalmologia. 2007;82(12):757-62. 

209. Eysseric H, Gonthier B, Soubeyran A, Bessard G, Saxod R, Barret L. There is not 

simple method to maintain a constant ethanol concentration in long-term cell culture: 

keys to a solution applied to the survey of astrocytic ethanol absorption. Alcohol. 

1997;14(2):111-5. 

210. Bonet-Ponce L, Saez-Atienzar S, da Casa C, Flores-Bellver M, Barcia JM, Sancho-

Pelluz J, et al. On the mechanism underlying ethanol-induced mitochondrial dynamic 

disruption and autophagy response. Biochimica et biophysica acta. 2015;1852(7):1400-

9. 

211. Yang L, Wu D, Cederbaum AI. CYP2E1, oxidative stress and MAPK signaling 

pathways in alcohol-induced hepatotoxicity. Journal of Biochemical and 

Pharmacological Research. 2014;2(2):16. 

212. Korthagen NM, van Bilsen K, Swagemakers SM, van de Peppel J, Bastiaans J, van 

der Spek PJ, et al. Retinal pigment epithelial cells display specific transcriptional 

responses upon TNF-alpha stimulation. The British journal of ophthalmology. 

2015;99(5):700-4. 

213. Melendez Garcia R, Arredondo Zamarripa D, Arnold E, Ruiz-Herrera X, Noguez 

Imm R, Baeza Cruz G, et al. Prolactin protects retinal pigment epithelium by inhibiting 

sirtuin 2-dependent cell death. EBioMedicine. 2016;7:35-49. 

214. Conde de la Rosa L, Schoemaker MH, Vrenken TE, Buist-Homan M, Havinga R, 

Jansen PL, et al. Superoxide anions and hydrogen peroxide induce hepatocyte death by 

different mechanisms: involvement of JNK and ERK MAP kinases. Journal of hepatology. 

2006;44(5):918-29. 



215. Laing JG, Chou BC, Steinberg TH. ZO-1 alters the plasma membrane localization 

and function of Cx43 in osteoblastic cells. Journal of cell science. 2005;118(Pt 10):2167-

76. 

216. Musch MW, Walsh-Reitz MM, Chang EB. Roles of ZO-1, occludin, and actin in 

oxidant-induced barrier disruption. American journal of physiology Gastrointestinal and 

liver physiology. 2006;290(2):G222-31. 

217. Fukui A, Naito Y, Handa O, Kugai M, Tsuji T, Yoriki H, et al. Acetyl salicylic acid 

induces damage to intestinal epithelial cells by oxidation-related modifications of ZO-1. 

American journal of physiology Gastrointestinal and liver physiology. 2012;303(8):G927-

36. 

218. Laing JG, Koval M, Steinberg TH. Association with ZO-1 correlates with plasma 

membrane partitioning in truncated connexin45 mutants. The Journal of membrane 

biology. 2005;207(1):45-53. 

219. Garcia-Ramirez M, Villarroel M, Corraliza L, Hernandez C, Simo R. Measuring 

permeability in human retinal epithelial cells (ARPE-19): implications for the study of 

diabetic retinopathy. Methods in molecular biology. 2011;763:179-94. 

220. Yoshikawa T, Ogata N, Izuta H, Shimazawa M, Hara H, Takahashi K. Increased 

expression of tight junctions in ARPE-19 cells under endoplasmic reticulum stress. 

Current eye research. 2011;36(12):1153-63. 

221. Thurman JM, Renner B, Kunchithapautham K, Ferreira VP, Pangburn MK, 

Ablonczy Z, et al. Oxidative stress renders retinal pigment epithelial cells susceptible to 

complement-mediated injury. The Journal of biological chemistry. 2009;284(25):16939-

47. 

222. Eichler W, Friedrichs U, Thies A, Tratz C, Wiedemann P. Modulation of matrix 

metalloproteinase and TIMP-1 expression by cytokines in human RPE cells. Investigative 

ophthalmology & visual science. 2002;43(8):2767-73. 

223. Abu El-Asrar AM, Mohammad G, Nawaz MI, Siddiquei MM, Van den Eynde K, 

Mousa A, et al. Relationship between vitreous levels of matrix metalloproteinases and 

vascular endothelial growth factor in proliferative diabetic retinopathy. PloS one. 

2013;8(12):e85857. 

224. Tobar N, Villar V, Santibanez JF. ROS-NFkappaB mediates TGF-beta1-induced 

expression of urokinase-type plasminogen activator, matrix metalloproteinase-9 and 

cell invasion. Molecular and cellular biochemistry. 2010;340(1-2):195-202. 



References 

 

159 

 

225. Benito-Almazan MJ. Papel del Factor de Crecimiento Transformante Beta (TGF-

β) y eficacia de las moléculas inhibidoras en la respuesta inflamatoria de la superficie 

ocular.  Universidad de Valladolid; 2012. 

226. Fang S, Pentinmikko N, Ilmonen M, Salven P. Dual action of TGF-beta induces 

vascular growth in vivo through recruitment of angiogenic VEGF-producing 

hematopoietic effector cells. Angiogenesis. 2012;15(3):511-9. 

227. Isenberg JS, Martin-Manso G, Maxhimer JB, Roberts DD. Regulation of nitric 

oxide signalling by thrombospondin 1: implications for anti-angiogenic therapies. Nature 

reviews Cancer. 2009;9(3):182-94. 

228. Principe DR, Doll JA, Bauer J, Jung B, Munshi HG, Bartholin L, et al. TGF-beta: 

duality of function between tumor prevention and carcinogenesis. Journal of the 

National Cancer Institute. 2014;106(2):djt369. 

229. Dobaczewski M, Chen W, Frangogiannis NG. Transforming growth factor (TGF)-

beta signaling in cardiac remodeling. Journal of molecular and cellular cardiology. 

2011;51(4):600-6. 

230. Andaluz A, Yeste M, Rodriguez-Gil JE, Rigau T, Garcia F, Rivera del Alamo MM. 

Pro-inflammatory cytokines: Useful markers for the diagnosis of canine mammary 

tumours? Veterinary journal. 2016;210:92-4. 

231. Szubert M, Suzin J, Duechler M, Szulawska A, Czyz M, Kowalczyk-Amico K. 

Evaluation of selected angiogenic and inflammatory markers in endometriosis before 

and after danazol treatment. Reproduction, fertility, and development. 2014;26(3):414-

20. 

232. Petrella BL, Armstrong DA, Vincenti MP. Interleukin-1 beta and transforming 

growth factor-beta 3 cooperate to activate matrix metalloproteinase expression and 

invasiveness in A549 lung adenocarcinoma cells. Cancer letters. 2012;325(2):220-6. 

233. Tian J, Chen JW, Gao JS, Li L, Xie X. Resveratrol inhibits TNF-alpha-induced IL-

1beta, MMP-3 production in human rheumatoid arthritis fibroblast-like synoviocytes via 

modulation of PI3kinase/Akt pathway. Rheumatology international. 2013;33(7):1829-

35. 

234. Badawi MA, Abouelfadl DM, El-Sharkawy SL, El-Aal WE, Abbas NF. Tumor-

Associated Macrophage (TAM) and Angiogenesis in Human Colon Carcinoma. Open 

access Macedonian journal of medical sciences. 2015;3(2):209-14. 



235. Tahara Y, Ido A, Yamamoto S, Miyata Y, Uto H, Hori T, et al. Hepatocyte growth 

factor facilitates colonic mucosal repair in experimental ulcerative colitis in rats. The 

Journal of pharmacology and experimental therapeutics. 2003;307(1):146-51. 

236. Visconti RP, Richardson CD, Sato TN. Orchestration of angiogenesis and 

arteriovenous contribution by angiopoietins and vascular endothelial growth factor 

(VEGF). Proceedings of the National Academy of Sciences of the United States of 

America. 2002;99(12):8219-24. 

237. Taylor KR, Rudisill JA, Gallo RL. Structural and sequence motifs in dermatan 

sulfate for promoting fibroblast growth factor-2 (FGF-2) and FGF-7 activity. The Journal 

of biological chemistry. 2005;280(7):5300-6. 

238. Kim M, Park HJ, Seol JW, Jang JY, Cho YS, Kim KR, et al. VEGF-A regulated by 

progesterone governs uterine angiogenesis and vascular remodelling during pregnancy. 

EMBO molecular medicine. 2013;5(9):1415-30. 

239. Arjaans M, Schroder CP, Oosting SF, Dafni U, Kleibeuker JE, de Vries EG. VEGF 

pathway targeting agents, vessel normalization and tumor drug uptake: from bench to 

bedside. Oncotarget. 2016;7(16):21247-58. 

240. Brooks RC, Hasley PB, Jasti H, Macpherson D. Update in general internal 

medicine: evidence published in 2011. Annals of internal medicine. 2012;156(9):649-53. 

241. Viita H, Markkanen J, Eriksson E, Nurminen M, Kinnunen K, Babu M, et al. 15-

lipoxygenase-1 prevents vascular endothelial growth factor A- and placental growth 

factor-induced angiogenic effects in rabbit skeletal muscles via reduction in growth 

factor mRNA levels, NO bioactivity, and downregulation of VEGF receptor 2 expression. 

Circulation research. 2008;102(2):177-84. 

242. Scaldaferri F, Vetrano S, Sans M, Arena V, Straface G, Stigliano E, et al. VEGF-A 

links angiogenesis and inflammation in inflammatory bowel disease pathogenesis. 

Gastroenterology. 2009;136(2):585-95.e5. 

243. Kunstfeld R, Hirakawa S, Hong YK, Schacht V, Lange-Asschenfeldt B, Velasco P, et 

al. Induction of cutaneous delayed-type hypersensitivity reactions in VEGF-A transgenic 

mice results in chronic skin inflammation associated with persistent lymphatic 

hyperplasia. Blood. 2004;104(4):1048-57. 

244. Leppanen P, Koota S, Kholova I, Koponen J, Fieber C, Eriksson U, et al. Gene 

transfers of vascular endothelial growth factor-A, vascular endothelial growth factor-B, 

vascular endothelial growth factor-C, and vascular endothelial growth factor-D have no 



References 

 

161 

 

effects on atherosclerosis in hypercholesterolemic low-density lipoprotein-

receptor/apolipoprotein B48-deficient mice. Circulation. 2005;112(9):1347-52. 

245. Yang Z, Mo X, Gong Q, Pan Q, Yang X, Cai W, et al. Critical effect of VEGF in the 

process of endothelial cell apoptosis induced by high glucose. Apoptosis: an 

international journal on programmed cell death. 2008;13(11):1331-43. 

246. He X, Cheng R, Benyajati S, Ma JX. PEDF and its roles in physiological and 

pathological conditions: implication in diabetic and hypoxia-induced angiogenic 

diseases. Clinical science. 2015;128(11):805-23. 

247. Zhang SX, Wang JJ, Gao G, Shao C, Mott R, Ma JX. Pigment epithelium-derived 

factor (PEDF) is an endogenous antiinflammatory factor. FASEB journal : official 

publication of the Federation of American Societies for Experimental Biology. 

2006;20(2):323-5. 

248. Becerra SP, Notario V. The effects of PEDF on cancer biology: mechanisms of 

action and therapeutic potential. Nature reviews Cancer. 2013;13(4):258-71. 

249. Zhang SX, Wang JJ, Gao G, Parke K, Ma JX. Pigment epithelium-derived factor 

downregulates vascular endothelial growth factor (VEGF) expression and inhibits VEGF-

VEGF receptor 2 binding in diabetic retinopathy. Journal of molecular endocrinology. 

2006;37(1):1-12. 

250. Ablonczy Z, Prakasam A, Fant J, Fauq A, Crosson C, Sambamurti K. Pigment 

epithelium-derived factor maintains retinal pigment epithelium function by inhibiting 

vascular endothelial growth factor-R2 signaling through gamma-secretase. The Journal 

of biological chemistry. 2009;284(44):30177-86. 

251. Johnston EK, Francis MK, Knepper JE. Recombinant pigment epithelium-derived 

factor PEDF binds vascular endothelial growth factor receptors 1 and 2. In vitro cellular 

& developmental biology Animal. 2015;51(7):730-8. 

252. Dufour A, Overall CM. Missing the target: matrix metalloproteinase antitargets 

in inflammation and cancer. Trends in pharmacological sciences. 2013;34(4):233-42. 

253. Chau KY, Sivaprasad S, Patel N, Donaldson TA, Luthert PJ, Chong NV. Plasma 

levels of matrix metalloproteinase-2 and -9 (MMP-2 and MMP-9) in age-related macular 

degeneration. Eye. 2007;21(12):1511-5. 

254. Kimura K, Orita T, Liu Y, Yang Y, Tokuda K, Kurakazu T, et al. Attenuation of EMT 

in RPE cells and subretinal fibrosis by an RAR-gamma agonist. Journal of molecular 

medicine. 2015;93(7):749-58. 



255. Juuti-Uusitalo K, Nieminen M, Treumer F, Ampuja M, Kallioniemi A, Klettner A, 

et al. Effects of Cytokine Activation and Oxidative Stress on the Function of the Human 

Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells. Investigative 

ophthalmology & visual science. 2015;56(11):6265-74. 

256. Cichon MA, Radisky DC. ROS-induced epithelial-mesenchymal transition in 

mammary epithelial cells is mediated by NF-kB-dependent activation of Snail. 

Oncotarget. 2014;5(9):2827-38. 

257. Sun S, Bay-Jensen AC, Karsdal MA, Siebuhr AS, Zheng Q, Maksymowych WP, et 

al. The active form of MMP-3 is a marker of synovial inflammation and cartilage turnover 

in inflammatory joint diseases. BMC musculoskeletal disorders. 2014;15:93. 

258. Kernt M, Hirneiss C, Wolf A, Liegl R, Rueping J, Neubauer A, et al. Indocyanine 

green increases light-induced oxidative stress, senescence, and matrix 

metalloproteinases 1 and 3 in human RPE cells. Acta ophthalmologica. 2012;90(6):571-

9. 

259. Kofla-Dlubacz A, Matusiewicz M, Krzystek-Korpacka M, Iwanczak B. Correlation 

of MMP-3 and MMP-9 with Crohn's disease activity in children. Digestive diseases and 

sciences. 2012;57(3):706-12. 

260. Bauer AT, Burgers HF, Rabie T, Marti HH. Matrix metalloproteinase-9 mediates 

hypoxia-induced vascular leakage in the brain via tight junction rearrangement. Journal 

of cerebral blood flow and metabolism : official journal of the International Society of 

Cerebral Blood Flow and Metabolism. 2010;30(4):837-48. 

261. Demeestere D, Dejonckheere E, Steeland S, Hulpiau P, Haustraete J, Devoogdt N, 

et al. Development and Validation of a Small Single-domain Antibody That Effectively 

Inhibits Matrix Metalloproteinase 8. Molecular therapy : the journal of the American 

Society of Gene Therapy. 2016;24(5):890-902. 

262. Dejonckheere E, Vandenbroucke RE, Libert C. Matrix metalloproteinase8 has a 

central role in inflammatory disorders and cancer progression. Cytokine & growth factor 

reviews. 2011;22(2):73-81. 

263. Craig VJ, Quintero PA, Fyfe SE, Patel AS, Knolle MD, Kobzik L, et al. Profibrotic 

activities for matrix metalloproteinase-8 during bleomycin-mediated lung injury. Journal 

of immunology. 2013;190(8):4283-96. 

264. Chen J, Crawford R, Xiao Y. Vertical inhibition of the PI3K/Akt/mTOR pathway for 

the treatment of osteoarthritis. Journal of cellular biochemistry. 2013;114(2):245-9. 



References 

 

163 

 

265. Feng S, Cen J, Huang Y, Shen H, Yao L, Wang Y, et al. Matrix metalloproteinase-2 

and -9 secreted by leukemic cells increase the permeability of blood-brain barrier by 

disrupting tight junction proteins. PloS one. 2011;6(8):e20599. 

266. Cao L, Wang H, Wang F. Amyloid-beta-induced matrix metalloproteinase-9 

secretion is associated with retinal pigment epithelial barrier disruption. International 

journal of molecular medicine. 2013;31(5):1105-12. 

267. Kim JY, Ko AR, Hyun HW, Kang TC. ETB receptor-mediated MMP-9 activation 

induces vasogenic edema via ZO-1 protein degradation following status epilepticus. 

Neuroscience. 2015;304:355-67. 

268. Juel HB, Faber C, Svendsen SG, Vallejo AN, Nissen MH. Inflammatory cytokines 

protect retinal pigment epithelial cells from oxidative stress-induced death. PloS one. 

2013;8(5):e64619. 

269. Prosser HC, Tan JT, Dunn LL, Patel S, Vanags LZ, Bao S, et al. Multifunctional 

regulation of angiogenesis by high-density lipoproteins. Cardiovascular research. 

2014;101(1):145-54. 

270. Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-kappaB signaling. 

Cell research. 2011;21(1):103-15. 

271. Scott ML, Fujita T, Liou HC, Nolan GP, Baltimore D. The p65 subunit of NF-kappa 

B regulates I kappa B by two distinct mechanisms. Genes & development. 

1993;7(7a):1266-76. 

272. Badger TM, Huang J, Ronis M, Lumpkin CK. Induction of cytochrome P450 2E1 

during chronic ethanol exposure occurs via transcription of the CYP 2E1 gene when 

blood alcohol concentrations are high. Biochemical and biophysical research 

communications. 1993;190(3):780-5. 

273. Zhang RH, Gao JY, Guo HT, Scott GI, Eason AR, Wang XM, et al. Inhibition of 

CYP2E1 attenuates chronic alcohol intake-induced myocardial contractile dysfunction 

and apoptosis. Biochimica et biophysica acta. 2013;1832(1):128-41. 

274. Xu Y, Feng Y, Li H, Gao Z. Ferric citrate CYP2E1-independently promotes alcohol-

induced apoptosis in HepG2 cells via oxidative/nitrative stress which is attenuated by 

pretreatment with baicalin. Food and chemical toxicology : an international journal 

published for the British Industrial Biological Research Association. 2012;50(9):3264-72. 

275. Perlman H, Georganas C, Pagliari LJ, Koch AE, Haines K, 3rd, Pope RM. Bcl-2 

expression in synovial fibroblasts is essential for maintaining mitochondrial homeostasis 

and cell viability. Journal of immunology. 2000;164(10):5227-35. 



276. Chen G, Ke Z, Xu M, Liao M, Wang X, Qi Y, et al. Autophagy is a protective 

response to ethanol neurotoxicity. Autophagy. 2012;8(11):1577-89. 

277. Wu D, Wang X, Zhou R, Yang L, Cederbaum AI. Alcohol steatosis and cytotoxicity: 

the role of cytochrome P4502E1 and autophagy. Free radical biology & medicine. 

2012;53(6):1346-57. 

278. Sidorik L, Kyyamova R, Bobyk V, Kapustian L, Rozhko O, Vigontina O, et al. 

Molecular chaperone, HSP60, and cytochrome P450 2E1 co-expression in dilated 

cardiomyopathy. Cell biology international. 2005;29(1):51-5. 

279. Corsetti G, Stacchiotti A, Tedesco L, D'Antona G, Pasini E, Dioguardi FS, et al. 

Essential amino acid supplementation decreases liver damage induced by chronic 

ethanol consumption in rats. International journal of immunopathology and 

pharmacology. 2011;24(3):611-9. 

280. Yang X, Hondur G, Tezel G. Antioxidant Treatment Limits Neuroinflammation in 

Experimental Glaucoma. Investigative ophthalmology & visual science. 

2016;57(4):2344-54. 

281. Kowluru RA, Mishra M, Kumar B. Diabetic retinopathy and transcriptional 

regulation of a small molecular weight G-Protein, Rac1. Experimental eye research. 

2016;147:72-7. 

 



ANNEX

Optic nerves cross-linking 
in lower vertebrates



Annexed Figures 

 

165 

 

 

 

 

        

 

Figure 1. HEPG2 as a positive control of CYP21E expression. Same primers used 
in PCR assay amplified same CYP2E1 sequence in RPE compared with HEPG2 cells. 

 

 

 

 

 

 

Figure 2. hRPE cells present RPE typical morphology and pigmentation (A). hRPE 
cells has a positive labeling of RPE65 in hRPE cells (B). 

 



               

Figure 3. Drugs toxicity assay. XTT was assayed to evaluate the NAC 
treatment toxicity (A) and DAS (B). None of the concentrations used 
resulted in significant cell death. Values are expressed as mean (N=3). 
Statistical significance was determined by ANOVA and t-Student analysis.  

 

 

Figure 4. NFКB Immunocytochemistry. 100 mM of H2O2 induces P65 NFКB 
translocation (A). On the other hand, 100 µM did not promote it (B) 
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 Figure 5. TER measurement with chopstick electrodes. Obtained and modified from 
Srinivasan B et al., 2015 (46). 

 

 
Figure 6. CYP2E1 activity. Time course of 4NC formation on microsomal-
CYP2E1 from ARPE-19 cells (A). Graphical representation of the CYP2E1 
activity versus different amounts of ARPE-microsomes, along 4 hours, (B). 
Values are expressed as mean. Activity of CYP2E1 was calculated by 4NC 
formation by the incubation time and microsomal protein content 
(nmol/min.mg). 



 
 
 
 
 
 
 

 

 

Figure 7. HPLC chromatogram of CYP2E1 activity. Blank chromatogram (A). 
Chromatogram corresponding to the time course of 16 h using 2 mg microsome (B). 
Overlapped chromatograms where it can be seen the apparition of the product 4NC (tR 
= 3.27 min) (C). Consumption of the product PNP (tR = 5.73 min), (D).  
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