
 

  

 

Recombinant gonadotropins in meagre 

(Argyrosomus regius): In-vivo effect on sexually 

undifferentiated fish. 

Alumno: Álvaro González Cid 

Tutor IRTA: Neil Duncan 

Tutor UCV: Ignacio Giménez Nebot 

Año académico: 2020-2021 



Recombinant gonadotropins in meagre (Argyrosomus 

regius): In-vivo effect on sexually undifferentiated fish. 

 
  



Recombinant gonadotropins in meagre (Argyrosomus 

regius): In-vivo effect on sexually undifferentiated fish. 

 

Contents 
Abstract ......................................................................................................................................... 1 

Resumen ....................................................................................................................................... 2 

1. Introduction .......................................................................................................................... 3 

1.1. Meagre (A. regius) biology and perspectives in aquaculture ..................................... 3 

1.2. Fish gonadotropins and their receptors ...................................................................... 5 

1.3. Steroidogenesis in teleosts .......................................................................................... 8 

1.4. Oogenesis and spermatogenesis in teleosts .............................................................. 10 

1.5. Fish recombinant gonadotropins ............................................................................... 14 

2. Objectives ........................................................................................................................... 24 

2.1. General objective ........................................................................................................ 24 

2.2. Specific objectives ...................................................................................................... 24 

3. Material and methods ........................................................................................................ 25 

3.1. Study animals and maintenance ................................................................................ 25 

3.2. Recombinant Gths production of A. regius ............................................................... 26 

3.3. Experimental setup, fish manipulation and samplings ............................................. 27 

3.4. Plasma steroid analysis .............................................................................................. 28 

3.5. Histological preparation ............................................................................................. 28 

3.6. Statistical analysis ....................................................................................................... 30 

4. Results ................................................................................................................................. 31 

4.1. Gonadosomatic and hepatosomatic index ................................................................ 31 

4.2. Estradiol ...................................................................................................................... 32 

4.3. Histological observations ........................................................................................... 33 

4.4. Sexual differentiation ................................................................................................. 36 

5. Discussion ........................................................................................................................... 37 

5.1. Gonadosomatic index ................................................................................................. 37 

5.2. Estradiol ...................................................................................................................... 37 

5.3. Histological observations ........................................................................................... 38 

5.4. Sexual differentiation ................................................................................................. 39 

6. Conclusion ........................................................................................................................... 45 

7. References .......................................................................................................................... 46 

 

  



Recombinant gonadotropins in meagre (Argyrosomus 

regius): In-vivo effect on sexually undifferentiated fish. 

 
 



Recombinant gonadotropins in meagre (Argyrosomus 

regius): In-vivo effect on sexually undifferentiated fish. 

 

1 
 

Abstract  

Meagre (Argyrosomus regius) is a teleost fish that has experienced an increase in Mediterranean 

aquaculture production in recent years. To improve productivity, it is necessary to establish a 

genetic selection program, but the generational interval in meagre is very high (2 and 3 years in 

males and females respectively). The objective of this survey is to evaluate the effect of specific 

A. regius single-chain recombinant gonadotropins (rGths) in prepubertal and sexually 

undifferentiated meagre. For this, 8 treatment groups were established, in which doses of 6, 12 

or 18 µg / kg of rFSH or rLH were injected weekly for 3 weeks. Results did not show significant 

differences in GSI, but they did in plasma E2. Furthermore, early gonadal development was 

induced with the appearance of oocytes and spermatids in localized regions, while 100% of the 

fish in the saline group remained sexually undifferentiated. Our results on sexual differentiation 

show that with rGths therapy 1) males sexually differentiate earlier than females; 2) there is a 

higher proportion of males; 3) there are intersex fish. This is the first report of the presence of 

intersex fish and a male skewed ratio in this species. In conclusion, rGths therapy represent a 

potential solution to reduce the generation interval in prepubertal meagre, but more studies are 

needed to know how its administration affects during the period of sexual differentiation. 

Keywords: Argyrosomus regius, meagre, prepubertal, recombinant gonadotropins, intersex, 

sexual differentiation. 
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Resumen 

La corvina (Argyrosomus regius) es un pez teleósteo que ha experimentado un incremento en la 

producción acuícola mediterránea en los últimos años. Para mejorar la productividad es 

necesario establecer un programa de selección genética, pero el intervalo generacional en la 

corvina es muy alto (2 y 3 años en machos y hembras respectivamente). El objetivo de este 

estudio es evaluar el efecto de las gonadotropinas recombinantes (rGths) de cadena simple 

específicas de A. regius en corvina juvenil y sexualmente indiferenciada. Para ello se 

establecieron 8 grupos de tratamiento, en los que se inyectaron semanalmente durante 3 

semanas dosis de 6, 12 o 18 µg / kg de rFSH o rLH. Los resultados no mostraron diferencias 

significativas en IGS, pero sí en E2 en plasma. Además, se indujo un desarrollo gonadal temprano 

con la aparición de ovocitos y espermátidas en regiones localizadas, mientras que el 100% de 

los peces del grupo salino permanecieron sexualmente indiferenciados. Nuestros resultados 

sobre diferenciación sexual demuestran que con un tratamiento de rGths, 1) los machos 

diferencian sexualmente antes que las hembras; 2) hay una mayor proporción de machos; 3) 

hay peces intersexuales. Este es la primera vez que se publica la presencia de peces intersexuales 

y una mayor proporción poblacional de machos en esta especie. En conclusión, un tratamiento 

con rGths representa una posible solución para reducir el intervalo generacional en la corvina 

juvenil, pero se necesitan más estudios para conocer cómo afecta su administración durante el 

período de diferenciación sexual. 

Palabras clave: Argyrosomus regius, corvina, juvenil, gonadotropinas recombinantes, 

intersexual, diferenciación sexual. 

  



Recombinant gonadotropins in meagre (Argyrosomus 

regius): In-vivo effect on sexually undifferentiated fish. 

 

3 
 

1. Introduction 

1.1. Meagre (A. regius) biology and perspectives in aquaculture 

Meagre (Argyrosomus regius) (Asso, 1801) is a marine and migratory teleost fish species which 

belongs to Sciaenidae family that can be found in the Mediterranean and Black Sea, and along 

the Eastern coast of the Atlantic Ocean (Kružić et al., 2016; Ramos-Júdez et al., 2019). This fish 

species is morphologically characterized by having a large head with small eyes, as well as large 

ctenoid scales with a grey colour. It has a terminal mouth with a yellow internal colour and a 

multitude of small sharp teeth. The lateral line is easily identifiable by the black spots it presents 

(Fig.1) (García, 2012). In addition, it has a large swim bladder with which it produces drumming 

sounds like other fish of the Sciaenidae family, which is why they are commonly referred to as 

"croakers" or "drums" (Duncan et al., 2013). 

 

Fig.1: Anesthetized meagre (Argyrosomus regius). (Photo by Álvaro González). 

 

This is a gonochoristic species that reaches sexual differentiation between 10 and 12 months of 

age, although it begins to differentiate at 5 months (Schiavone et al., 2012). Females are 

asynchronous (Gil et al., 2013) or group-synchronous spawners (Duncan et al., 2013) and in most 

cases fail to undergo maturation, ovulation and spawning in captivity (Duncan et al., 2018). 

Males have an unrestricted, cystic and lobular type testis (Gil et al., 2013) and undergo 

spermatogenesis and spermiogenesis, but often produce low volume with reduced quality of 

sperm (Duncan et al., 2012; Ramos-Júdez et al., 2019). For this reason, the use of synthetic 

agonist of gonadotropin-releasing hormone (GnRHa) is necessary to induce final oocyte 

maturation (FOM), ovulation and spawning in females, and to ensure adequate milt production 

in males (Fakriadis et al., 2020). Vitellogenesis begins in March, and oocytes reach the fully 

vitellogenic stage between April and June; the spermiating period, when fluid sperm can easily 

be extracted is between March and June (Mylonas et al., 2013) The sex-ratio population is 1:1 

(Gil et al., 2013). 
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The meagre has had an important increase in Mediterranean aquaculture in recent years for its 

good feed conversion ratio (FCR) (0,9-1,2) (Monfort, 2010) (1,8) (Duncan et al., 2013), fast 

growth rates reaching 1 kg per year, large size (above 2 m and 50 kg), capability to withstand 

diverse environmental conditions (Monfort, 2010; Duncan et al., 2013; Kružić et al., 2016), high 

resilience to stress factors (Monfort, 2010), low fat content (1,06 %) and of high nutritional value 

(Grigorakis et al., 2011) and high fecundity with GnRHa treatments, achieving up to 1.415.000 

eggs per kg (Duncan et al., 2012; Mylonas et al., 2016). 

For these reasons, A. regius Mediterranean production increased 6.6% in 2018 (APROMAR, 

2019) and 10,5% in 2019 (Fig.2), with the main producing countries being Egypt (32.000 t), Spain 

(3.650 t), Turkey (2.600 t) and Greece (1.800 t) (APROMAR, 2020); while the global fisheries 

production ranges from 5.000 t to 10.000 t per year (Monfort, 2010). In Spain there was an 

increase of 44,9% in 2019 compared to the previous year (APROMAR, 2020). 

 

Fig.2: Evolution of the Mediterranean production of meagre (A. regius) in tons, through aquaculture (light 

blue) and fishing (dark blue), in the period 1996 - 2018 (APROMAR, 2020). 

 

Selective breeding programmes enable an increase in production due to a higher growth rate, a 

reduction of production costs as a result of an improved FCR, a reduction in stress and mortality 

with better domestication and adaptivity to captivity, a raise in disease resistance and a better 

flesh quality (Gjedrem, 2000; Houston et al., 2020). A key factor of this process is the length of 

the generation interval (Houston et al., 2020); in A. regius sexual maturity is reached at two 

years old at 0.92 ± 0.08 kg in males, and three years old at 1.61 ± 0.09 kg in females (Schiavone 
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et al., 2012). One method that is being researched to reduce this generation interval is the 

isolation of the germ cells of the objective species at an early life stage and transplantation of 

these cells in a surrogate species with a shorter generation time (surrogate broodstock) 

(Houston et al., 2020). Nevertheless, some species possess low concentrations of germline stem 

cells in their genital glands and the efficiency of transplantation of germs cells can vary with the 

season (Yoshizaki and Yazawa, 2019; Goto and Saito, 2019). 

Another innovative alternative to reduce the generation interval could be the use of 

recombinant gonadotropins (rGths) to stimulate spermatogenesis and oogenesis in immature 

prepubertal fish. The role of Gths in reproduction has been examined as a hormone therapy to 

treat infertility and other reproduction-related problems (Molés et al., 2020).  

 

1.2. Fish gonadotropins and their receptors 

Reproduction in vertebrates is controlled by the brain-pituitary-gonad (BPG) axis (Burow et al., 

2019), which in turn is controlled by environmental factors (Fig.3) (Migaud et al., 2010). Within 

this system, the pituitary gonadotropins (Gths) and their receptors are the key to conveying the 

hormonal signals released by the BPG axis. Gths are two heterodimeric glycoproteins composed 

of a common alpha subunit and a specific beta subunit linked non-covalently (Schulz et al., 2001; 

Levavi-Sivan et al., 2010). They are synthesized and regulated by the pituitary gland through the 

main neuropeptide gonadotropin-releasing hormone (GnRH), in addition to others such as 

kisspeptines, dopamine (DA), gonadotropin-inhibitory hormone (GnIH), neuropeptide Y (NPY), 

serotonine, leptin, glutamate, ϒ-aminobutyric acid (GABA), norepinephrine (NA), secretoneurin, 

ghrelin and pituitary adenilate cyclase-activating peptide (PACAP) (Fig.3). These hypothalamic 

neurohormones act on the cells of the anterior lobe of the adenohypophysis (Levavi-Sivan et al., 

2010; Carrillo et al., 2012; Paullada-Salmerón et al., 2016). Gths can stimulate sexual steroids 

secretion (Fig.3), which in turn positively or negatively regulate gonadotropin secretion 

depending on the stage of gonadal development. Estrogens and aromatizable androgens 

stimulate β-LH synthesis in juveniles of various teleost species, while an increase in 17β-estradiol 

(E2) or testosterone (T) inhibits β-FSH synthesis in rainbow trout (Oncorhynchus mykiss) (Yaron 

and Levavi -Sivan, 2011), coho salmon (Oncorhynchus kisutch) (Dickey and Swanson, 1998) and 

Atlantic salmon (Salmo salar) (Borg et al., 1998). Otherwise, progestins stimulate β-FSH 

synthesis in zebrafish (Danio rerio) (Wang et al., 2016). In addition, it has been observed that in 

in-vitro studies, the gonadal peptides activin A and B stimulate β-FSH synthesis and reduce β-LH 
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synthesis, although in turn, they are regulated by follistatin and activin-binding protein (Levavi-

Sivan et al., 2010; Yaron and Levavi-Sivan, 2011). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3: Representative diagram of the brain pituitary-gonad (BPG) axis that controls the reproductive 

process in fish. GnRH, gonadotropin-releasing hormone; GnIH, gonadotropin-inhibitory hormone; NPY, 

neuropeptide Y; GABA, ϒ-aminobutyric acid; PACAP, pituitary adenilate cyclase-activating peptide; NA, 

norepinephrine/noradrenaline; DA, dopamine; E2, 17β-estradiol; T, testosterone. By Álvaro González. 

 

Follicle stimulating hormone (FSH) stimulates the early stages of gametogenesis, including 

spermatogenesis in males and oogenesis in females through the synthesis of 17β-estradiol (E2) 

and 11-ketotestosterone (11-KT) (Melamed et al., 1998) via the membrane-bound receptors 

Fshra, which belongs to the family of G-protein-coupled receptors (GPCRs). In males, Fshra can 

be expressed in Sertoli and Leydig somatic cells; and in females in the follicular somatic cells of 
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granulosa and theca as well as in connective tissue (Yaron and Levavi-Sivan, 2011; Chauvigné et 

al., 2012; Ozaki et al., 2019). 

Luteinizing hormone (LH) is related to the final oocyte maturation (FOM) and ovulation in 

females (Kwok et al., 2005), and the later stages of germ cell development and the 

differentiation of spermatids to spermatozoa in males (Chauvigné et al., 2012) by the production 

of maturation induction steroid (MIS) (Nagahama, 2008) through Lhcgrba membrane-bound 

receptors (GPCRs) activation. In males it is expressed in spermatids and in Leydig cells (Yaron 

and Levavi-Sivan, 2011; Chauvigné et al., 2012). García-Lópes et al., (2010) described the 

presence of Lhcgrba in Sertoli cells in zebrafish (D. rerio), being the first report of the presence 

of these receptors in Sertoli cells in vertebrates. In females, Lhcgrba are found in granulosa cells 

(Yaron and Levavi-Sivan, 2011). It has been observed that in some teleosts Fshra also respond 

to LH (Kobayashi et al., 2008; García-Lópes et al., 2010; Burow et al., 2019; Rajakumar and 

Senthilkumaran, 2020), but when there are peaks of this hormone as in the spawning season 

(Schulz et al., 2010). In rainbow trout (O. mykiss), Lhcgrba also responded to supraphysiological 

purified FSH, although at concentrations five times higher than LH (Sambroni et al., 2007). Both 

receptors can be expressed in non-gonadal tissues such as brain, gills, eyes, intestine, kidney or 

liver (Kwok et al., 2005; Kobayashi et al., 2008; Burow et al., 2019). 

In females, Fshra mRNA expression (fshra) is detectable at low levels in immature ovaries. Its 

expression increases during vitellogenesis reaching its maximum expression in the 

midvitellogenic stage and decreasing in the postovulatory follicle state. The expression of 

lhcgrba is detectable in the previtellogenesis stage, although there is an increase in transcription 

with the onset of vitellogenesis, reaching the peak of expression at the full-grown stage (Kwok 

et al., 2005; Kobayashi et al., 2008; Carrillo et al., 2012) or maturation / ovulation (Sambroni et 

al., 2007; Rocha et al., 2009). In males, the expression of fshra and lhcgrba was found in all testis 

stage, from immature to fully mature, although their expression increased during the transition 

to fully mature stage (spermiation) (Kusakabe, 2006; Sambroni et al., 2007; Maugars and 

Schmitz, 2007; Rocha et al., 2009; García-Lópes et al., 2009; Burow et al., 2019). In contrast, in 

Shortfinned eel (Anguilla australis) with hCG-induced spermatogenesis, fshra expression 

increased in early stages, while lhcgrba increased since spermatids were observed (Ozaki et al., 

2019). In Nile tilapia (O. niloticus) there is fshra and lhcgrba during sexual differentiation period 

(Yan et al., 2012). 
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1.3. Steroidogenesis in teleosts 

Sex steroids stimulate gametogenesis and are related to sex differentiation in different 

vertebrate taxa (Nakamura, 2010; Morohashi et al., 2013). Sexual steroidogenesis is regulated 

by Gths, and begins with the transport of cholesterol to the mitochondria by the steroidogenic 

acute regulatory protein (StAR), where it is converted to pregnenolone by the cholesterol side-

chain cleavage enzyme (P450scc / Cyp11a1). Pregnenolone is the precursor of various steroids, 

including E2, 11-KT, T, progestogens, and corticosteroids (Rajakumar and Senthilkumaran, 

2020). 

In females, gonadal steroidogenesis is explained according to the two-cell model described by 

Young et al. (1986), in which FSH-stimulated theca cells synthesize precursors for their 

subsequent transformation into estrogens and progestogens in granulosa cells when stimulated 

with LH (Fig.4). Nevertheless, LH and FSH have similar potencies in stimulating E2 production 

during early phases of oogenesis; yet, LH is more potent during later stages of the process (Cerdá 

et al., 2007). First, pregnenolone is transformed into progesterone in theca cells by the enzyme 

3β-hydroxy-steroid dehydrogenase (3β-HSD). Progesterone is converted back in theca cells to 

17α-hydroxy-progesterone by the action of the enzyme 17-hydroxylase (P450c17 / Cyp17). The 

synthesis of 3β-HSD is stimulated by FSH and LH (Nakamura et al., 2003). 

For E2 synthesis, 17α-hydroxy-progesterone is transformed into androstenedione by the 

enzyme P450c17 / Cyp17, which in turn is converted into T by the activity of the enzyme 17β-

hydroxy-steroid dehydrogenase (17β-HSD). Finally, T can be catalyzed to E2 by the enzyme 

cytochrome P450 aromatase (P450arom / Cyp19a) in granulosa cells (Nagahama et al., 1994; 

Young et al., 2005; Nakamura et al., 2005; Nagahama et al., 2008; Carrillo et al., 2012). The 

synthesis of P450arom / Cyp19a is stimulated by FSH (Rocha et al., 2009), LH and insulin growth 

factor I (IGF-I) (Kagawa et al., 2003; Nakamura et al., 2003; Montserrat et al., 2004). Its 

expression in the ovary increases during vitellogenesis (Chang et al., 2005). 

For progestogens synthesis, 17α-hydroxy-progesterone crosses the basement membrane and is 

converted in granulosa cells to MIS by the enzyme 20β-hydroxy-steroid dehydrogenase (20β-

HSD). This enzyme is synthesized in granulosa cells in response to LH. Two progestins have been 

identified that act as MIS in teleosts, 17α, 20β-dihydroxy-4-pregnen-3-one (DHP; 20βP) and 17, 

20β, 21-trihydroxy-4-pregnen- 3-one (20βS) (Young et al., 1986; Nagahama et al., 1994; Thomas 

et al., 2001; Tanaka et al., 2002; Carrillo et al., 2012); although any steroid capable of breaking 

down the germ vesicle (GBVD) such as 11-deoxycorticosterone (DOC) or T are also considered 

as MIS (Nagahama et al., 2008). In Sciaenidae family, 20βS was shown to act as MIS (Peter and 

Yu, 1997; Senthilkumaran et al., 2002; Fakriadis et al., 2020). 
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Therefore, E2 is produced during oocyte growth, and the progestins (DHP or 20βS) during 

maturation. The change in the steroidogenic pathway occurs in fish ovarian follicles immediately 

prior to oocyte maturation (Nagahama and Yamashita, 2008). This change could occur due to 

the cellular levels of the enzymes P450c17 and 3β-HSD, so that when P450c17 is dominant, the 

synthesis of E2 is favoured and vice versa (Sakai et al., 1994; Nakamura et al., 2005). 

 

Fig.4: Representative diagram of the two-cell model described by Young et al., (1986) for female gonadal 

steroidogenesis. P450scc, P450 side-chain cleavage; P450c17, 17-hydroxylase/C17-C20-lyase; 3β-HSD, 3β-

hydroxysteroid dehydrogenase; 17β-HSD, 17β-hydroxysteroid dehydrogenase; 20β-HSD, 20β-

hydroxysteroid dehydrogenase; P450arom, P450 aromatase (Luzbens et al., 2010). 

 

In males, gonadal steroidogenesis is not as well described as in females. The steroids required 

for spermatogenesis are E2, 11-KT, and DHP / 20βS. The P450arom / Cyp19a enzyme is 

expressed in the testis (Blázquez and Piferrer, 2004; Chang et al., 2005), allowing the synthesis 

of E2 from T. 

For androgens synthesis (11-KT and T), FSH and LH are equipotent in stimulating its production 

by upregulating expression of steroidogenic enzyme genes (Suzuki et al., 2019). However, LH is 

more potent in stimulating DHP / 20βS (Planas and Swanson, 1995; Kazeto et al., 2008). For the 

synthesis of 11-KT, androstenedione is converted into 11β-hydroxyandrostenedione (11β-OHA) 

by the enzyme 11β-hydroxylase (P45011β / Cyp11b) (Rajakumar and Senthilkumaran, 2015). 

Then, 17β-HSD converts 11β-OHA on 11β-hydroxytestosterone (11β-OHT). Furthermore, T can 

be converted to 11β-OHT by P45011β / Cyp11b (Kusakabe et al., 2003). Finally, the enzyme 11-
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beta-hydroxysteroid-dehydrogenase (11β-HSD) converts 11β-OHT into 11-KT (Fig.5) (Kusakabe 

et al., 2003; Ozaki et al., 2006; Suzuki et al., 2020). The steroid 11-KT stimulates its own 

production based on positive feedback, it enhanced cyp11b expression in testis (Ozaki et al., 

2019). Furthermore, an increase in 11-KT following hCG injection elevated testicular fshra mRNA 

levels augmenting FSH sensitivity in the testis (Ozaki et al., 2016). Progestin production is 

catalyzed by 20β-HSD from 17α-hydroxy-progesterone in Leydig cells, spermatogonia and 

spermatocytes (Sreenivasulu et al., 2012). The DHP / 20βS stimulates the synthesis of 11-KT by 

increasing the expression of 11β-HSD (Ozaki et al., 2006). 

 

Fig.5: Simplified pathways of biosynthesis of sex steroids and glucocorticoids in fish. CYP11A1, cholesterol 

side-chain cleavage enzyme (P450scc); 3β-HSD, 3β-hydroxysteroid dehydrogenase; 17β-HSD, 17β-

hydroxysteroid dehydrogenase; CYP19, P450 aromatase (P450arom); CYP17, 17-hydroxylase/C17-C20-

lyase (P450c17); 11β-HSD, 11-beta-hydroxysteroid-dehydrogenase, CYP11B, 11β-hydroxylase (P45011β) 

(Fernandino et al., 2013). 

 

1.4. Oogenesis and spermatogenesis in teleosts 

Spermatogenesis is the process during which immature diploid spermatogonia develop into 

mature, fertile haploid spermatozoa (Ozaki et al., 2019). In spermatogenesis there is a self-

renewal of spermatogonia stimulated by E2 released by Leydig cells. The steroid E2 interacts 

with its receptors on Sertoli cells (Miura et al., 1999), which synthesize spermatogonial stem-

cell renewal factor (Gonadal soma-derived growth factor; GSDF) (Fig.6) (Satawari et al., 2007; 

Yaron and Levavi -Sivan, 2011). Undifferentiated A spermatogonia (StgAund) have the capacity 
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for self-renewal, however, it is not clear whether differentiated A spermatogonia (StgAdiff) in 

teleosts have the capacity to return to a more undifferentiated state of development (StgAund) 

(Lacerda et al., 2014) ; although Huckins (1971) showed that in mammals they have this capacity. 

The secretion of 11-KT in Leydig cells stimulates in Sertoli cells the synthesis of mediators that 

regulate the proliferation of more differentiated spermatogonia cells (spermatogonia B; StgB) 

for their subsequent entry into meiosis (Schulz et al., 2010; Lacerda et al., 2014). Activin B and 

insulin growth factor I (IGF-I) are the mediators that stimulate differentiation to StgB, while anti-

Müllerian hormone (AMH) and eSRS21 inhibit it (Halm et al., 2007; Carrillo et al., 2012). 

Induction of meiosis (formation of spermatocytes to develop into spermatids) is stimulated by 

progestins (Miura et al., 2006; Yaron and Levavi-Sivan, 2011). Sperm maturation (capability of 

motility and fertilization) is also produced by DHP, which increases the pH of seminal plasma by 

increasing the cAMP content in sperm after activation of carbonic anhydrase (CA / eSR22) (Fig.6) 

(Miura and Miura, 2003). Spermiation (sperm are released into the lumen of the seminiferous 

tubule) is induced by DHP and 11-KT (Miura et al., 2006; Schulz et al., 2010). 

 

Fig.6: Endocrine mechanisms regulating spermatogenesis in the Japanese eel (Anguilla japonica). 11-KT, 

11-ketotestosterone; AMH, a peptide homologous to anti-Müllerian hormone; DHP, 17α,20β-dihydroxy-

4-pregnen-3-one; IGF-I, insulin-like growth factor I. Cells at the upper right corner depict the germ cells as 

the source of DHP acting upon themselves in a paracrine or autocrine manner. Modified from Yaron and 

Levavi-Sivan (2011). 
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Oogenesis is the formation, development and maturation of the female gamete and ovum 

(Arukwe and Goksøyr, 2003). In oogenesis there is mitotic renewal of oogonia stimulated by E2, 

while the induction of meiosis is stimulated by progestogens (Fig.7) (Miura et al., 2007; Luzbens 

et al., 2010). The expression of IGF-I has also been observed in oocytes and somatic cells at the 

onset of meiosis in Nile tilapia (Oreochromis niloticus) (Berishivili et al., 2006). The role of FSH in 

regulating the accumulation of cortical alveoli is currently unknown, however, the synthesis of 

cortical alveoli is related to an increase in plasma and pituitary FSH, Fshra, plasma E2, cyp19a 

mRNA, AMH, StAR mRNA and GSDF (Kwok et al., 2005; Rodríguez-Marí et al., 2005; Campbell et 

al., 2006). In the oocyte lipidation there is an accumulation of lipids from the precursor triacyl 

glyceride (TAG)-rich serum lipoprotein such as very-low-density lipoprotein (VLDL) (Hiramatsu 

et al., 2015). In rainbow trout (O. mykiss) VLDL is sufficient to induce lipidation, while in 

Shortfinned eel (A. australis) and Japanese eel (A. japonica) VLDL and 11-KT are required 

(Lokman et al., 2007; Endo et al., 2011). 

 

Fig.7: Stages of fish oogenesis and their endocrine regulation. DHP, 17α,20β-dihydroxy-4-pregnen-3-one; 

20βS, 17,20β, 21-trihydroxy-4-pregnen- 3-one; GVBD, germinal vesicle breakdown. Modified from Yaron 

and Levavi-Sivan (2011). 

 

Vitellogenesis begins with the synthesis of vitellogenin, a phosphoglycoprotein synthesized in 

the liver and regulated mainly by E2 (Fig.8) (Miura et al., 2007). After their release and transport 

into blood plasma, vitalogenins (Vtg) are incorporated into the oocyte through the Vtg receptor 

(Vtg-R) in the ovary, resulting in the formation of yolky eggs from oocytes (Cohen and Smith 

DHP/20βS 
DHP/20βS 
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2014). Yolk is a source of nutrients for embryogenesis and facilitates hydration in buoyant eggs 

(Kwon et al., 2001). 

The final maturation of the oocyte (FOM) is related to an increase in the synthesis of LH, Lhcgrba 

and MIS. MIS activates its receptors on the oocyte surface (GPCRs) reducing the levels of cAMP 

and protein kinase A (PKA), which in turn activates the maturation promoting factor (MPF) 

(Fig.8) (Nagahama et al., 1994; Nagahama et al., 2008; Luzbens et al., 2010). The MPF is activated 

by phosphorylation of the Cdc2 subunit on threonine 161 (T161) by cdk-activating kinase (CAK). 

Phosphorylation occurs when Cdc2 is bound to cyclin B, and induces GVBD and the continuation 

of meiosis (until now the oocyte was arrested in metaphase II by the activity of the Mos complex) 

(Nagahama et al., 2008; Carrillo et al., 2012). During ovulation, the oocyte is released from its 

follicle into the ovarian cavity or into the abdominal cavity (Luzbens et al., 2010). It is induced 

by MIS (Nagahama and Yamahita, 2008) and prostaglandins (PGs) (Fig.8) (Peter and Yu, 1997; 

Takahashi et al., 2013). In the hydration of the oocyte in pelagophil teleosts, water enters 

through the aquaporins due to the increase in osmotic pressure. This osmotic pressure is 

generated by free ions (K+, Cl-, NH4
+…) and free amino acids (FAAs) pool, product of the hydrolysis 

of vitalogenins (Finn et al., 2002; Cerdá et al., 2007). 

 

Fig.8: (a) an overview of the endocrine chain, brain–pituitary–gonadal axis (BPG axis) in model female fish 

during the vitellogenic phase. (b) An overview of the BPG axis during final oocyte maturation and 

ovulation. DA, dopamine; GnRH, gonadotropin-releasing hormone; MIS, maturation induction steroid; 

DHP, 17α,20β-dihydroxy-4-pregnen-3-one; 20βS, 17,20β, 21-trihydroxy-4-pregnen- 3-one; MPF, 

maturation promoting factor. Modified from Yaron and Levavi-Sivan (2011). 

MIS/PGs 
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1.5. Fish recombinant gonadotropins 

Recombinant hormones (rGths) have the advantage that they guarantee no cross-

contamination with other related glycoproteins and can be produced continuously without 

depending on the purification of the native hormones from fish pituitary glands, which is costly 

and time-consuming process (Levavi-Sivan et al., 2010). For the production of rGTHs, the 

isolated cDNA is cloned in expression vectors (plasmids or viruses) that are subcloned in 

heterologous prokaryotic or eukaryotic systems (Molés et al., 2020). There are several 

expression systems such as Escherichia coli (Hew et al., 1989; Cao et al., 2009), the yeast Pichia 

pastoris (Kamei et al., 2003; Kasuto and Levavi-Sivan, 2005; Sanchís-Benlloch et al., 2017; 

Nocillado et al., 2019), Drosophila S2 cells (Zmora et al., 2007; Kazeto et al., 2008), Chinese 

hamster ovary (CHO) cells (Chauvigné et al., 2012; Chauvigné et al., 2017; Ramos-Júdez et al., 

2019), silkworm larvae (Hayakawa et al., 2009; Kobayashi et al., 2010), the soil amoeba 

Dictyostelium discoideum (Vischer, 2003), Sf9 insect cells (Cui et al., 2007; Molés et al., 2011; 

Morita et al., 2004) and FreeStyle 293-F cells (Kazeto et al., 2019; Suzuki et al., 2019). The choice 

of the expression system depends on cost, hormone secretion, correctly folding and 

glycosylation, which is essential for the biological activity of the rGths (Levavi-Sivan et al., 2010). 

Baculovirus-infected insect cells produce higher amounts of rGths (Cui et al., 2007). However, 

post-transcriptional modification, as in P. pastoris, does not allow the production of complex 

products with terminal sialic acids, generating a reduction in the half-life of the protein (Levavi-

Sivan et al., 2008). CHO cells are able to produce glycosylated proteins with terminal sialic acids, 

which makes them excellent for in vivo administration (Molés et al., 2020), however CHO cells 

are expensive expression systems too (Cui et al., 2007). Silkworm larvae, soil amoeba, fish 

embryos or P. pastoris are less expensive (Morita et al., 2004; Levavi-Sivan et al., 2010). 

Prokaryotic expression systems (E. coli) are also less expensive, but they are not capable of 

performing N-glycosylations (Molés et al., 2020). 

For the expression of the dimer there are two possibilities: a) transfecting a single plasmid with 

a cDNA encoding both subunits joined by a linker (single-chain) (Cui et al., 2007), which is usually 

composed of histidine amino acids (Aizen et al., 2007a), the carboxy-terminal peptide (CTP) from 

the human (hCG) or equine chorionic gonadotropin (eCG) (Morita et al., 2004; Chauvigné et al., 

2017), three Gly-Ser pairs (or other variations of Gly- Ser) (Palma et al., 2019; Kazeto et al., 2019) 

or a synthetic N-linked glycosylation sequence (NCS) (Kim et al., 2012); b) co-transfecting two 

expression plasmids, one with the alpha subunit and the other with the beta subunit (Kobayashi 

et al., 2006). However, the fusion of the two monomers without a linker or the expression of the 
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two monomers separately usually generates misfolding, low yield in protein production or 

impaired bioactivity (Molés et al., 2020). 

The rGths have been successfully used in various fish species. Until now, at the steroidogenic 

level it has been tested in 18 species (Table 1), while at the level of gonadal development it has 

been tested in 16 species (Table 2). 
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Table 1: Review of publications where rGths have been used to stimulate steroid secretion. All significant data are compared to control groups unless otherwise indicated. 

The best results obtained from all the treatments used in each survey are shown. Recombinant hormones are species specific unless otherwise indicated. Data is displayed 

in chronological order of publication. E2, 17β-estradiol; T, testosterone; 11-KT, 11-ketotestosterone; OHA, 11β-hydroxyandrostenedione; SGv, vitellogenic stage of 

secondary growth; OM, maturation stage. 

Species Sex rGth Subunit construct Expression 
system 

Expression 
vector 

Steroidogenesis Reference 

Japanese eel (Anguilla 
japonica) 

Male rFSH Single-chain Yeast (Pichia 
pastoris) 

pPIC9K  Stimulation of E2 and 11-KT secretion while control did not 
stimulate steroid production (in-vitro) 

Kamei et al., 
2003 

African catfish 
(Clarias gariepinus) 

Male rGths Alone Amoeba 
(Dictyostelium 
discoideum) 

MB12n  Stimulation of OHA (in-vitro) Vischer, 2003 

Nile tilapia 
(Oreochromis 
niloticus) 

Male rLH Single-chain/alone 
(just βLH) 

Yeast (Pichia 
pastoris) 

pGEM-T 
Easy Vector 
and pPIC9K  

Single-chain gonadotropin showed a stimulation of 11-KT 
secretion (in-vitro) 
βLH did not show any stimulation of 11-KT secretion (in-vitro) 
 

Kasuto and 
Levavi-Sivan, 
2005 

Japanese eel (Anguilla 
japonica) 

Female rFSH Single-chain Yeast (Pichia 
pastoris) 

pPIC9K  Significant stimulation of E2 and T secretion (in-vitro) 
 

Kamei et al., 
2006 

Goldfish (Carrassius 
auratus) 

Both rGths Single-chain silkworm 
(Bombyx mori) 
larvae 

Pyng and 
baculovirus 

Significant increase in plasma concentration of E2 and T in 
females and males respectively 

Kobayashi et 
al., 2006 

Orange-spotted 
grouper (Epinephelus 
coioides) 

Female 
protogy
nous 

rLH Alone Sf9 insect cells pFastBacDu
al bacmid 
transfer 
vector and 
baculovirus 

Significant increase in E2 and T secretion compared with hCG 
treatment group (in vitro) 

Cui et al., 2007 

Rainbow trout 
(Oncorhynchus 
mykiss) 

Female rGths 
(Brachymysta
x lenok) 

Single-chain silkworm 
(Bombyx mori) 
larvae 

pYNG and 
baculovirus 

Stimulation of E2 and T secretion (in-vitro) 
No significant differences in E2 and T stimulation (in-vivo) 

Ko et al., 2007 
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Species Sex rGth Subunit construct Expression 
system 

Expression 
vector 

Steroidogenesis Reference 

Nile tilapia 
(Oreochromis 
niloticus) 

Both rFSH Single-chain Yeast (Pichia 
pastoris) 

pPIC9K  Stimulation of E2 and 11-KT secretion in ovarian and testes 
respectively (in-vitro) 
 

Aizen et al., 
2007b 

Channel catfish 
(Ictalurus punctatus) 

Both rGTHs Single-chain Drosophila S2 
cell line 

pMT Stimulation of E2 and OHA secretion in ovary and testes 
respectively (in-vitro) 
 

Zmora et al., 
2007 

Japanese eel (Anguilla 
japonica) 

Male rGths 
(Carrassius 
auratus) 

Single-chain silkworm 
(Bombyx mori) 
larvae 

pYNG and 
baculovirus 

Significant increase in plasma 11-KT concentration Hayakawa et 
al., 2008a 

Japanese eel (Anguilla 
japonica) 

Female rGths 
(Brachymysta
x lenok) 

- - - Significant increase in plasma E2 and T concentration Kim et al., 
2008 

Japanese eel (Anguilla 
japonica) 

Male rGths 
(Carrassius 
auratus) 

Single-chain silkworm 
(Bombyx mori) 
larvae 

pYNG and 
baculovirus 

No significant differences in plasma 11-KT concentration Hayakawa et 
al., 2008b 

Japanese eel (Anguilla 
japonica) 

Male rGths Alone Drosophila S2 
cell line 

pMT/V5-His  Significant increase in 11-KT secretion (in vitro) Kazeto et al., 
2008 

Zebrafish (Danio 
rerio) 

Male rGths - - - Stimulation of 11-KT and OHA secretion (in-vitro) 
Significant increase in plasma concentration of 11-KT 

García-Lópes 
et al., 2010 

Flatfish Senegalese 
sole (Solea 
senegalensis) 

Male rGths Single-chain CHO cells pcDNA3  Stimulation of T and 11-KT secretion (in-vitro) 
Significant increase in plasma T and 11-KT concentration 

Chauvigné et 
al., 2012 

Cinnamon clownfish 
(Amphiprion 
melanopus) 

Both rGths Single-chain Escherichia coli pYNG  Significant increase concentration of E2 (in vitro) Kim et al., 
2012 

Orange-spotted 
grouper (Epinephelus 
coioides) 

Female 
protogy
nous 

rFSH Single-chain/alone  Yeast (Pichia 
pastoris) 

pPICZαA Single-chain and alone rFSH showed stimulation of E2 and T (in-
vitro) 
Single-chain and alone rFSH showed a significant increase in 
plasma E2 and T concentration 

Chen et al., 
2012a 

Carp (Cyprinus carpio) Female rGths 
(Oreochromis 
niloticus) 

Single-chain silkworm 
(Bombyx mori) 
larvae 

pYNG and 
baculovirus 

Very low stimulation of E2 in early SGv stage oocytes (in-vitro) 
No significant stimulation of E2 in mid SGv stage oocytes 
Significant increase of E2 in post SGv stage oocytes 

Aizen et al., 
2012 
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Species Sex rGth Subunit construct Expression 
system 

Expression 
vector 

Steroidogenesis Reference 

Significant increase of E2 in OM stage oocytes 
No significant stimulation of DHP in early and mid SGv stage 
oocytes 
Significant increase of DHP in post SGv stage and OM stage 
oocytes 

Carp (Cyprinus carpio) Female rGths 
(Brachymistax 
lenok) 

Single-chain silkworm 
(Bombyx mori) 
larvae 

pYNG and 
baculovirus 

Very low stimulation of E2 in early SGv oocytes (in-vitro) 
No significant stimulation of E2 in mid SGv stage oocytes 
Significant increase of E2 in post SGv stage oocytes 
No significant stimulation of E2 in OM stage oocytes 
No significant stimulation of DHP in early, mid and post SGv 
stage, and OM stage oocytes 
 

Aizen et al., 
2012 

Carp (Cyprinus carpio) Female rGths 
(Anguilla 
japonica) 

Single-chain silkworm 
(Bombyx mori) 
larvae 

pYNG and 
baculovirus 

Very low stimulation of E2 in early SGv stage oocytes (in-vitro) 
Stimulation of E2 in mid SGv stage oocytes 
Significant increase of E2 in post SGv stage oocytes 
No significant stimulation of E2 in OM stage oocytes 
No significant stimulation of DHP in early and mid SGv stage 
oocytes 
Significant increase of DHP in post SGv stage and OM stage 
oocytes 

Aizen et al., 
2012 

European Sea Bass 
(Dicentrarchus 
labrax) 

Male rFSG Single-chain CHO cells pGEM-T 
Easy Vector 

Significant increase in plasma 11-KT concentration Mazón et al., 
2013 

Shortfinned eel 
(Anguilla australis) 

Both rFSH Alone Drosophila S2 
cell line 

pMT/V5-His  No significant differences in stimulation of E2, 11-KT, OHA, T 
and DHP (in-vitro) 

Reid et al., 
2013 

Russian sturgeon 
(Acipenser 
gueldenstaedtii) 

Both rGths Single-chain Yeast (Pichia 
pastoris) 

pPIC9K  Stimulation of E2 and 11-kt secretion in ovarian and testes 
respectively (in-vitro) 

Yom-Din et 
al., 2016 

Carp (Cyprinus carpio) Female rLH Single-chain Yeast (Pichia 
pastoris) 

pPIC9K  Significant increase in plasma concentration of E2 and DHP Aizen et al., 
2016 

European eel 
(Anguilla anguilla) 

Male rGths Single-chain CHO cells - Significant increase in plasma 11-KT and T concentration 
compared to the initial levels 

Peñaranda et 
al., 2017 

Yellowtail kingfish 
(Seriola lalandi)  

Both  rFSH Single-chain Yeast (Pichia 
pastoris) 

pPIC9K  Significant increase of E2 and 11-KT concentration compared to 
the control group in ovarian and testes respectively (in-vitro) 

Sanchís-
Benlloch et 
al., 2017 
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Species Sex rGth Subunit construct Expression 
system 

Expression 
vector 

Steroidogenesis Reference 

Significant increase in plasma E2 concentration in females and 
significant decrease in plasma concentration of 11-KT in males 
 

Flatfish Senegalese 
sole (Solea 
senegalensis) 

Male rGths Single-chain CHO cells pcDNA3  Significant increase in plasma 11-KT concentration  Chauvigné et 
al., 2017 

Spotted scat 
(Scatophagus argus) 

Both rGths Single-chain Escherichia coli pMD18-T  Significant increase in plasma concentration of E2 and 11-KT in 
females and males respectively 

Zhang et al., 
2018 

Japanese eel (Anguilla 
japonica) 

Male rGths Single-chain FreeStyle 293-
F cells 

pCAGGS  Significant increase in 11-KT secretion (in vitro) Suzuki et al., 
2019 

Brown-marbled 
grouper (Epinephelus 
fuscoguttatus) 

Female 
protogy
nous 

rFSH 
(Epinephelus 
lanceolatus) 

Single-chain Yeast (Pichia 
pastoris) 

pPIC9K  Significant increase in plasma concentration of E2 and T Palma et al., 
2019 

Flathead grey mullet 
(Mugil cephalus) 

Both  rGths Single-chain CHO cells pGEM-T 
Easy vector 

Significant increase in plasma concentration of E2 and 11-KT in 
females and males respectively 

Ramos-Júdez 
et al., 2020 
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Table 2: Review of publications in which rGths are used to stimulate gonadal development. All significant data are compared to control groups unless otherwise indicated. 

The best results obtained from all the treatments used in each survey are shown. Recombinant hormones are species specific unless otherwise indicated. Data is displayed 

in chronological order of publication. The terminology used for the germ cells maturation stages has been homogenized according to the terminology used in this survey. 

StgA, type A; StgB, type B spermatogonia; Spc, spermatocytes; Spd, spermatids; Spz, spermatozoa; PGcn, oocyte at primary growth of chromatin nucleolar stage; PGps, 

oocyte at perinucleolar stage of primary growth; SGca, cortical alveoli stage of secondary growth; SGv, vitellogenic stage of secondary growth; GVBD, germinal vesicle 

breakdown. Alone refers to the fact that the two subunits are not expressed together by a linker (single-chain). 

Species Sex rGth Subunit construct Expression 
system 

Expression 
vector 

Gonadal development stimulation Reference 

Japanese eel 
(Anguilla japonica) 

Male rFSH Single-chain Yeast (Pichia 
pastoris) 

pPIC9K  Increased in germ cell proliferation with the appearance of 
StgB, spc and spd; while control group just had StgA (in-vitro) 

Kamei et al., 
2003 

Goldfish (Carrassius 
auratus) 

Both rGths Single-chain silkworm 
(Bombyx 
mori) larvae 

pYNG and 
baculovirus 

Females were in vitellogenesis, and ovulation did not occur 
Induction of milt production while control group did not 

Kobayashi et al., 
2006 

Bitterling (Rhodeus 
ocellatus ocellatus) 

Female rGths 
(Carrassius 
auratus) 

Single-chain silkworm 
(Bombyx 
mori) larvae 

pYNG and 
baculovirus 

Induced ovulation  Kobayashi et al., 
2006 

Rainbow trout 
(Oncorhynchus 
mykiss) 

Female rGths 
(Brachymysta
x lenok) 

Single-chain silkworm 
(Bombyx 
mori) larvae 

pYNG and 
baculovirus 

Significant increase in GSI and follicular diameters 
Oocytes at early SGca stage were presented in treated females 
while control females presented oocytes at PGcn and PGps 
stages 

Ko et al., 2007 

Rainbow trout 
(Oncorhynchus 
mykiss) 

Female rGths 
(Brachymysta
x lenok) 

Single-chain silkworm 
(Bombyx 
mori) larvae 

pYNG and 
baculovirus 

No significant differences in GSI 
Significant increase in follicular diameters 
There was no induction of ovulation 

Park et al., 2007 

Goldfish (Carrassius 
auratus) 

Male rGths 
(Brachymysta
x lenok) 

Single-chain silkworm 
(Bombyx 
mori) larvae 

pYNG and 
baculovirus 

Induced milt production Ko et al., 2007 

Japanese eel 
(Anguilla japonica) 

Male rFSH Single-chain Yeast (Pichia 
pastoris) 

pPIC9K  More percentage of cysts of late StgB than control group (in-
vitro) 

Ohta et al., 
2007 

Japanese eel 
(Anguilla japonica) 

Male rGths 
(Carrassius 
auratus) 

Single-chain silkworm 
(Bombyx 
mori) larvae 

pYNG and 
baculovirus 

Significant increase in GSI  
Induced spermatogenesis, with the appearance cysts 
containing spz, while control group had StgB 

Hayakawa et 
al., 2008a 
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Species Sex rGth Subunit construct Expression 
system 

Expression 
vector 

Gonadal development stimulation Reference 

Induced milt production while control group did not 

Japanese eel 
(Anguilla japonica) 

Male rGths 
(Carrassius 
auratus) 

Single-chain silkworm 
(Bombyx 
mori) larvae 

pYNG and 
baculovirus 

No significant differences in GSI  
Induced spermatogenesis, with the appearance cysts 
containing spz, while control group had StgA 
There was no induction of milt production 

Hayakawa et 
al., 2008b 

Japanese eel 
(Anguilla japonica) 

Female rGths 
(Brachymysta
x lenok) 

- - - Significant increase in GSI  
Significant increase in follicular diameters 

Kim et al., 2008 

Japanese eel 
(Anguilla japonica) 

Both rGths Alone Drosophila S2 
cell line 

pMT/V5-His  No significant differences in GSI 
Oocytes at SGv stage were presented in treated females while 
control females presented oocytes at SGca stage 
Entire process of spermatogenesis was presented in treated 
group while control group presented StgA or StgB (in-vitro) 
Late StgB were presented in treated males while control males 
presented germ cells before proliferation  

Kazeto et al., 
2008 

Goldfish (Carrassius 
auratus) 

Male rGths  Single-chain silkworm 
(Bombyx 
mori) larvae 

pYNG and 
baculovirus 

Induced milt production Hayakawa et 
al., 2008b 

Bitterling (Rhodeus 
ocellatus ocellatus) 

Female rGths 
(Carrassius 
auratus) 

Single-chain silkworm 
(Bombyx 
mori) larvae 

pYNG and 
baculovirus 

Induced ovulation  Hayakawa et 
al., 2008b 

Japanese eel 
(Anguilla japonica) 

Both rGths Single-chain silkworm 
(Bombyx 
mori) larvae 

pYNG and 
baculovirus 

Significant increase in GSI  
Induction of GVBD of oocytes (in-vitro) 
Induced spermatogenesis with the appearance cysts containing 
spz, while control group had StgA 

Kobayashi et al., 
2010 
 

Orange-spotted 
grouper (Epinephelus 
coioides) 

Female 
protogy
nous 

rFSH Single-chain/alone  Yeast (Pichia 
pastoris) 

pPICZαA Single-chain and alone rFSH stimulated early ovarian 
development with the appearance of oocytes at PGcn and 
PGps, while control group had no oocytes 

Chen et al., 
2012a 

European Sea Bass 
(Dicentrarchus 
labrax) 

Male rFSH Single-chain CHO cells pGEM-T 
Easy Vector 

Increased in germ cell proliferation and cysts of spc and spd 
were observed, while control group presented just StgA. 
Furthermore, the treated groups had a Sertoli cell proliferation. 

Mazón et al., 
2013 

Medaka (Oryzias 
latipesr) 

Female rLH Single-chain CHO cells pEB Multi-
Neo vector 

Induced GVBD of oocytes (in-vitro) Ogiwara et al., 
2013 
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Species Sex rGth Subunit construct Expression 
system 

Expression 
vector 

Gonadal development stimulation Reference 

Japanese eel 
(Anguilla japonica) 

 rGths Single chain CHO cells pcDNA3.1  Induction of GVBD of oocytes (in-vitro) 
 

Kim et al., 2016 

Medaka (Oryzias 
latipesr) 

Female rLH - - - Induced ovulation (in-vitro) Takahashi et al., 
2013 

Zebrafish (Danio 
rerio) 

Male rGths Single-chain Drosophila S2 
cell line 

pMT  2-fold increase of the mitotic index of StgA Nóbrega et al., 
2015 

Carp (Cyprinus carpio) Female rLH Single-chain Yeast (Pichia 
pastoris) 

pPIC9K  Induced spawning while control group did not Aizen et al., 
2016 

European eel 
(Anguilla anguilla) 

Male rGths Single-chain CHO cells - Significant increase in GSI  
Induced spermiation in 80% of eels 

Peñaranda et 
al., 2017 

Yellowtail kingfish 
(Seriola lalandi) 

Female rFSH Single-chain Yeast (Pichia 
pastoris) 

pPIC9K  No significant differences in GSI 
Oocytes at early SGca were presented in treated females while 
control females presented oocytes at PGcn and PGps 
Spz in lumen of the lobules were presented just in treated 
males 

Sanchís-
Benlloch et al., 
2017 

Flatfish Senegalese 
sole (Solea 
senegalensis) 

Male rGths Single-chain CHO cells pcDNA3  Significant increase in GSI  
Enhanced spermatogenesis, reducing the number of Stg and 
progressively increasing the number of spc, spd and spz 
compared to the control group. Furthermore, the treated 
groups had a Leydig cell proliferation. 
Increased sperm production up to 7 times 

Chauvigné et 
al., 2017 

Spotted scat 
(Scatophagus argus) 

Both rGths Single-chain Escherichia 
coli 

pMD18-T  Late SGv oocytes were presented in treated females while 
control fish presented early SGv oocytes. Male fish presented 
more mature spd than control group. 

Zhang et al., 
2018 

Brown-marbled 
grouper (Epinephelus 
fuscoguttatus) 

Female 
protogy
nous 

rFSH 
(Epinephelus 
lanceolatus) 

Single-chain Yeast (Pichia 
pastoris) 

pPIC9K  No significant changes in GSI 
Oocytes at early SGca stage were presented in treated fish 
while control fish presented oocytes at PGcn and PGps (8 weeks 
of treatment) 
Stg were presented in treated fish while control fish presented 
oocytes at SGca stage (38 weeks of treatment) 

Palma et al., 
2019 

Shortfinned-eel 
(Anguilla australis) 

Female rFSH (Anguilla 
japonica) 

 Single-chain FreeStyle 293-
F cells 

pCAGGS  Significant increase in GSI  
Significant increase in follicular diameters 
Oocytes at SGca stage were presented in treated fish while just 
a few of oocyte at SGca stage were presented, mostly PGcn and 
PGps stage 

Tuan Nguyen et 
al., 2020 
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Species Sex rGth Subunit construct Expression 
system 

Expression 
vector 

Gonadal development stimulation Reference 

Flathead grey mullet 
(Mugil cephalus) 

Both rGths Single-chain CHO cells pGEM-T 
Easy vector 

Induced the entire process of gametogenesis in sexually 
immature male and females producing viable larvae. While 
control groups remained arrested as immature fish 

Ramos-Júdez et 
al., 2020 
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2. Objectives 

2.1. General objective 

Study the effect of different single-chain recombinant gonadotropin-based hormones therapies 

(rFSH or rLH) produced in CHO cells heterologous system in prepubertal and sexually 

undifferentiated meagre (A. regius). 

 

2.2. Specific objectives 

- Evaluate the effect of rGths therapy on the gonadosomatic index (GSI). 

- Evaluate the effect of rGths therapy on the synthesis of estradiol (E2). 

- Evaluate the effect of rGths therapy on gametogenesis at histological level. 

- Evaluate the effect of rGths therapy on sexual differentiation. 
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3. Material and methods 

The present experimental study has been approved by IRTA's Ethics Committee for Animal 

Experimentation and the Animal Experimentation Commission from the Local Government (Dpt. 

de Territori i Sostenibilitat from the Generalitat de Catalunya). The study was conducted in 

accordance with the European Union, Spanish and Catalan legislation for experimental animal 

protection (European Directive 2010/63/EU of 22 September on the protection of animals used 

for scientific purposes; Spanish Royal Decree 53/2013 of February 1st on the protection of 

animals used for experimentation or other scientific purposes; Boletín Oficial del Estado (BOE), 

2013; Catalan Law 5/1995 of June 21th, for protection of animals used for experimentation or 

other scientific purposes and Catalan Decree 214/1997 of July 30th for the regulation of the use 

of animals for the experimentation or other scientific purposes). 

 

3.1. Study animals and maintenance 

A total of 89 juvenile meagre fish (captivity reared fish) with approximately 10-months old of 

222 ± 36 g (mean ± SD) were obtained from the research centre Estação Piloto de Piscicultura 

de Olhão (EPPO) / Aquaculture Research Station (Olhão, Portugal), which is part of the Instituto 

Portugués do Mar e da Atmosfera / Portuguese institute for the Ocean and Atmosphere (IPMA) 

(Lisboa, Portugal). The meagre arrived in IRTA research facilities at Sant Carles de la Rápita 

(Tarragona, Spain) on the 26th November 2020. Each fish was implanted with a PIT tag (Trovan, 

Spain) for identification. Fish were fed to satiety five days a week with commercial feed 

(BroodFeed, Sparos, Portugal) and were kept under natural photoperiod. The mean 

temperature during the experiment was 16,1 ± 0,4°C based on previous experiments with 

meagre (Duncan et al., 2013). 

Juvenile fish were held in rectangular 10 m³ fiber glass tank (3 m × 3 m × 1.5 m depth) with a 

biomass of 15,1 kg connected to a recirculation system (IRTAmar®). 

Tanks were covered with a strong top net (multi-monofilament knotless nylon netting with 30 

mm mesh suitable for seine fishing, Badinotti, Milan, Italy) as descrived by Duncan et al. (2013) 

to avoid any impact damage as a result of meagre’s jump.  
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3.2. Recombinant Gths production of A. regius 

Argyrosomus regius single-chain recombinant gonadotropins were made by Rara Avis Biotec S.L. 

(Valencia, Spain). The pituitary gland was removed from a sacrificed fish and RNA was purified; 

subsequently, the alpha subunit of FSH and beta subunits of FSH and LH were sequenced, 

synthesizing the cDNA as a single-chain with the entire coding sequence of meagre βFSH or βLH 

followed by six His residues, the carboxyl-terminal 28 amino acid peptide hCGβ as a linker and 

the α subunit previously sequenced; rFSH` and rLH` had the same structure except the linker, 

which has a sequence that is protected intellectual property (Rara Avis Biotec S.L., Valencia, 

Spain) (Fig.9). The sequences were subcloned into the expression vector pcDNA3.1, which was 

transfected into CHO cells. For recombinant gonadotropins production, clones were cultured for 

8 days at 37°C in 225 cm3 flasks with 5% CO2 and Dulbecco modified Eagle medium (DMEM). 

After that, the medium was centrifuged at 15.000 rpm for 15 min and the supernatant 

(containing the recombinant gonadotropins) was purified by a chromatography nickel column 

for their affinity for histidine tags. Purified recombinant gonadotropins were released from the 

column with imidazole (the final concentration of imidazole was reduced with successive washes 

with phosphate-buffered saline). During this process rGTHs were concentrated to 12 µg/mL and 

stored in 1 mL vials at -80°C. 

 

 

 

 

 

 

 

 

 

 

Fig.9: Schematic representation of the structure of the single chain recombinant gonadotropins used in 

this study. HisR, histidine residues; CTP, carboxyl-terminal 28 amino acid peptide hCGβ (linker), and ?, 

protected linker. By Álvaro González. 
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3.3. Experimental setup, fish manipulation and samplings  

The experiment to investigate the effect of rFSH and rLH on immature fish was performed over 

3 weeks, from 15th of February to 8th of March. Ten groups of fish were stablished. All groups 

were made up of 8 fish, except for group 1 (21 fish) and groups 9 and 10, wich were made up of 

6 fish. All groups were injected intramusculary (constant concentration throughout the 

experiment). Group 1 (control) was sacrificed on the first day to know the initial gonadal 

development. Group 2 (saline) was injected with saline serum (ERN S.A.). Groups 3, 4 and 5 

received rFSH doses of 6, 12 and 18 µg kg-1 respectively. Groups 6, 7 and 8 received rLH doses of 

6, 12 and 18 µg kg-1 respectively. Group 9 (rFSH`) and group 10 (rLH`) included a new protected 

linker that differentiated these rGths from the rGths used in groups 3 – 8, which used a 

previously proven linker.  Throughout the experiment, 8 blood samples were drawn and 3 doses 

of hormone/ saline serum were injected in all groups (Fig.10). 

 

Fig.10: Shematic representation of the experimental set up. The effect of different doses of rGths (rFSH 

or rLH) on steroid production and gonadal development was tested over 3 weeks. The rGths treatments 

were administered once a week. The effect on the level of 17β-estradiol was measured on the first day of 

the experiment (control) and three days after the third treatment The effect on gonadal development 

(oogenesis and spermatogenesis) was tested at the end of the third week. By Álvaro González. 

 

Before any manipulation for blood extraction or hormone administration fish were 

anaesthetised with 90 mg L-1 tricaine methanesulfonate (MS-222; Sigma Aldrich) as in previous 

studies (Duncan et al., 2013; Chauvigné et al., 2017; Ramos-Júdez et al., 2020). Blood samples 

(400 µL) were collected from caudal vein with a syringe previously coated with lithium heparin 

(Deltalab S.L., Tarragona) to prevent coagulation during blood extraction. On days when blood 
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samples were taken and rGths administered the blood samples were taken immediately before 

hormone administration.  The blood was placed into a 1,5 mL eppendorf containing 5 μL lithium 

heparin, centrifuged at 3000 rpm for 5,5 min at 4˚C; and plasma was aliquoted 3 times (replicas 

for sex steroid hormones analysis) and stored at -80˚C.  

Fish were sacrificed by anaesthetic overdose (180 mg L-1 MS-222; Sigma Aldrich) followed by 

bled out and pithing to destroy the brain according to Directive 2010/63/EU guidelines. Gonads 

and liver were weighed to calculate for gonadosomatic index (GSI) and hepatosomatic index 

(HSI) (gonad and liver weight respectively divided by total body weight, expressed in 

porcentage). 

 

3.4. Plasma steroid analysis 

Levels of E2 were determined by commercial enzyme inmunosorbent assay (EIA, Cayman 

chemical company, USA) in all prepubertal fish. Before this analysis, free steroids were extracted 

from plasma with methanol. Firstly, the plasma samples were thawed at room temperature. 

Then, 100 µL of plasma was extracted and mixed with 500 µL of methanol (previously cooled to 

4˚C), subsequently centrifuged at 6000 rpm and 4˚C for 10 minutes. The supernatant was 

pipetted and the process was repeated with 250 µL of methanol. The resulting supernatant 

(about 750 µL) was allowed to incubate in the oven overnight at 37˚C. The pellet resulting from 

evaporation (steroids) was resuspended in 0,5 mL of Elisa buffer (1:5 dilution). 

 

3.5. Histological preparation 

Ovarian, testis and undifferentiated gonads biopsy samples were fixed in bouin`s fluid for 24 

hours at room temperature and mantained in ethanol 70% until being dehydrated through 

ethanol series. Dehydrated samples were oriented in the molds and embedded in paraffin. 

Immature fish samples were oriented to obtain a longitudinal section. Histological sections (3 

µm) (RM 2155, Leica) were stained with hematoxylin and eosin (Casa Álvarez, Spain). Gonadal 

tissue structure was observed under a light microscope (Leica DMLB, Houston, USA).  

Germ cells developmental stage was classified according to the relative size, appearance of 

structures and morphological changes. The gonadal development of prepubertal meagres was 

established by evaluating the presence of germ cells in six random optical areas at 20x 

magnification, although a maximum gonadal development was also established by evaluating 

the entire gonad due the low presence of sex specific germ cell stages of development. 
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Female germs cells were classified as: chromatin nucleolar stage of primary growth (PGcn) 

characterized by small oocytes with a large single nucleolus surrounded by a thin layer of 

citoplasm; perinuclear stage of primary growth (PGps) with a bigger oocyte due to the 

enlargement of the nucleus and the appearance of multiple nucleoli; cortical alveoli stage of 

secondary growth (SGca) characterized by the presence of small lipid droplets and cortical 

alveoli at the periphery of the cytoplasm; vitellogenic stage of secondary growth (SGv) with the 

initiation of the vitellogenesis and the presence of yolk globules; mature stage (OM) 

characterized by the coalescence of the lipid droplets and the yolk globules, the peripheral 

migration of the germinal vesicle (nucleus) and the dissolution of its membrane, and the 

hydration of the oocyte; ovulation stage (OV) when there is a unique large yolk globule and the 

size is maximum (West, 1990; Ramos-Júdez et al., 2020). 

Male germs cells were classified as: type A undifferentiated spermatogonia (StgAund) 

characterized by being the largest male germ cells and having a large nucleus in adittion to one 

or two nucleoli; type A differentiated spermatogonia (StgAdiff), smaller than StgAund and present 

in cysts in groups of 2 to 8 germs cells linked by cytoplasmic bridges; type B spermatogonia (StgB) 

with a smaller size than the previous cells and present in cysts in groups of 16 or more germs 

cells; spermatocyte (spc) characterized by an increase in cell and nucleus size with respect to 

StgB due to entry into meiosis (condensing chromosomes), moreover an increase in germs cells 

per cyst; spermatid (spd) with a significant reduction in cell size and increase of germs cells per 

cyst; and spermatozoa (spz) with the presence of a flagellum and reduction in cell size (Leal et 

al., 2009; Schulz et al., 2010; Lacerda et al., 2014). 

Gonad development was determined according to the criteria established by Gil et al., (2013) 

for wild specimens, adapted to the germ cell classification used in this study. Seven stages of 

development were described based on histological examination: a) Stage I (incompletely 

differentiated) when female fish present oogonia, PGcn and PGps. Males lack a well-defined 

tubular system with numerous espermatogonia b) Stage II (differentiated immature) in which 

female fish present oogonia, PGcn and PGps too, while male fish has numerous tubules filled 

with spermatogonia and some spermatogenic cysts in all developmental stages; c) Stage III 

(developing) with very few oogonia but abundant PGcn and PGps; SGca can be observe too. 

Spermatogenesis activity is generalised with numerous StgA and StgB, and spz present in some 

tubules; d) Stage IV (ripening) when there are oocytes at all stages of development, but 

postovulatory follicules are not seen; vitellogenic oocytes remain low (<30%). Males present 

cysts at all stages of development with spz in the majority of tubules, but not in all; e) Stage V 

(running) represent females with oocytes at all stages of development and postovulatory 
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follicules. Males present enlarged tubules and the sperm duct (vas deferens) full of spz; f) Stage 

VI (spent) with SGv, atretic and postovulatory follicules. Males have tubules and sperm duct full 

of spz; f) Stage VII (recovering) present oogonia, PGcn, PGps, corpus albicans (from atretic 

oocytes and postovulatory follicules), no SGv are present. Tubules of testes are full of StgA and 

StgB with residual spz at the lumen of tubules and sperm duct; f) Stage VIII (resting) represent 

females with oogonia, PGcn and PGps, and males with tubules full of StgA and StgB indicating 

the beginning of the resting period. 

 

3.6. Statistical analysis 

Shapiro-Wilk and Levene tests were used to check the normality of data distribution and 

variance homogeneity, respectively. A one-way repeated-measures analysis of variance 

(ANOVA) followed by the Holm-Sidak test for pairwise comparisons was used to compare the 

GSI and HSI between the immature meagre treatment groups. Differences in E2 secretion 

between the beginning and the end of the experiment and between treatments, a Two Way 

repeated measures ANOVA followed by the Holm-Sidak test were performed to compare plasma 

E2 concentration amongst treatments at the beginning and end of the experiment. The Chi-

square test was used to compare sex-ratio of immature meagres amongst the treatment groups. 

Analyses were performed using SigmaPlot version 12.0 (Systat Software Inc., Richmond, CA, 

USA). 
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4. Results 

4.1. Gonadosomatic and hepatosomatic index 

After three weeks of treatment with weekly intramuscular injections, no significant differences 

(P < 0.05) were found in GSI between group 2 (Saline) and the rest of the treatment groups. 

Slight differences, although significant (P < 0.05), were found between group 5 (FSH 18) and 

group 10 (LH` 12) (Fig.11). At HSI level, no significant differences were found between treatment 

groups (Fig.12). 

 

Fig.11: Effect of rGths treatments on GSI of immature meagre (A. regius) of 220 grams. Data are the mean 

± SD. “a” denote significant difference between treatment groups and saline group. “b” and “c” denote 

significant differences among treatment groups. P < 0.05. 

 

Fig.12: Effect of rGths treatments on HSI of immature meagre (A. regius) of 222 ± 36 grams. Data are the 

mean ± SD. 
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4.2. Estradiol 

Weekly injections of rGths during three weeks to prepubertal and sexually undifferentiated fish 

generated a significant increase in plasma E2 in all treatment groups considered (P < 0.05), while 

saline showed a slight decrease, although not significant between week 0 and week 3. However, 

there was no significant differences between treatment groups at the third week, including 

saline, maybe due to the small sample size considered. There were no significant differences 

among treatments at week 0 (Fig.13). 

Mean E2 levels in the treatment groups at the third week ranged between 2400 and 3600 pg / 

mL while in the saline group it was about 60 pg / mL. There was a direct relationship between 

the concentration of the rGths treatments and the plasma E2 level, although the differences 

were not significant. FSH` 12 was the most stimulated treatment group for the synthesis of E2 

from the groups considered. FSH 18 treatment group was more stimulating than FSH 12 and FSH 

6. 

 

 

Fig.13: Comparison plasma E2 levels of rGths treatment groups and saline prepubertal meagre (A. regius). 

Data was normalized. Data are the mean ± SD. “a”  denotes significant differences between week 0 and 

week 3. “b” denotes significant differences among groups at week 3. Treatment groups 7 (LH 12), 8 (LH 

18) and 10 (LH`12) were not considered for statistically study due to lack of data or small sample size. P < 

0.05. FSH 6 (n=8); FSH 12 (n=8); FSH 18 (n=8); FSH` 12 (n=6); LH 6 (n=4); Saline (n=2). 
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4.3. Histological observations  

In general, the gonad had somatic tissue on the outside and germ cells in the middle, with a 

space for the duct in the area of germ cells. The duct indicated sexual differentiation had 

initiated, but actually gonads had not completed differentiation. Moreover, most cells were 

completely undifferentiated either somatic cells or germ cells that could not be identified as 

oogonia or spermatogonia (Fig. 15A and B). Amongst the germ cell were isolated cells that had 

differentiated into either oocytes or spermatogonia B. These few cell we searched for to define 

male or female, however, differentiated had just initiated and was far from complete. 

 

Recombinant gonadotropins short-term therapy induced early gonad development with the 

appearance of oocytes at PGcn and PGps stage (Fig.15B and E), and the increase in the 

percentage of fish that presented spc and StgB compared to the control and saline groups. 

Group 1 (control) and group 2 (saline) did not show any oocyte development, while treatments 

with rFSH, rFSH` and rLH showed oocytes; specifically group 3 (FSH 6; 12.5%; n = 8), group 4 (FSH 

12; 12.5%; n = 8), group 7 (LH 12, 37.5%; n = 8) , group 8 (LH 18; 12.5%; n = 8) and group 9 (LH` 

12; 16.7%; n = 6) (Fig.14E). At level of male germ cells development, all treatment groups showed 

StgB (Fig.14B) (Fig.15E), and spc (Fig.14C) (Fig.15D) while saline did not. Treatment groups 3 (FSH 

6), 4 (FSH 12), 6 (LH 6) and 10 (LH`12) showed one fish with spd each, however, control group 

showed two fish with spd (n = 17) (Fig.14D) (Fig.15C) (4 fish from the control group were 

discarded due to the small amount of gonadal tissue). Fish with all completely undifferentiated 

gonadal tissue were found in group 1 (control; 88%), group 2 (saline; 100%), group 4 (FSH 12; 

62,5%) and group 8 (LH 18; 62,5%) (Fig.14A). 

The most satisfactory treatment to induce gonadal development was FSH 6 followed by FSH` 12 

and LH 12. FSH 6 treatment group showed 75% of the fish (n = 8) with some germ cells in the 

stages of spc, spd or oocytes. FSH 12, FSH 18 and LH 18 treatments showed less ovarian and 

testis development, each only had 37.5% of fish (n = 8) in these stages of germinal development. 

FSH` 12 treatment group (n = 6) presented 66.7% of fish with a development of spc, spd or 

oocyte; while the LH 12 treatment group (n = 8) accounted for 50% of the fish. Treatments with 

LH 6 (n = 8) and LH` 12 (n = 6) only showed one fish with some of the commented gonadal states. 

Germ cell development was highly localized, most of the gonadal tissue did not have any 

development and all fish were classified as Stage I (incompletely differentiated). In fact, all of 

them showed a large amount of Embryonic germ stem cells (EGSC) and connective tissue (CT) 

(Fig.15A,B and E). Actually, in groups 1 (control), 2 (saline), 6 (LH 6) and 10 (LH` 12) only EGCS, 
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oogonia or spermatogonia were found in the first six fields observed. The rest of the group 

showed more advanced stages of development.  

   

 

Fig.14: Comparison of the relative frequency of fish per treatment group that presented the 

developmental stage of A) Oogonia or spermatogonia; B) Spermatogonia B; C) Spermatocyte; D) 

Spermatid and E) Oocyte at chromatin nucleolar stage (PGcn) and perinucleolar stage (PGps). Control 

(n=17); Saline (n=8); FSH 6 (n=8); FSH 12 (n=8); FSH 18 (n=8); LH 6 (n=8); LH 12 (n=8); LH 18 (n=8); FSH` 12 

(n=6);  LH` 12 (n=6).  

A 

E 

D C 

B 



Recombinant gonadotropins in meagre (Argyrosomus 

regius): In-vivo effect on sexually undifferentiated fish. 

 

35 
 

 

 

 

 

Fig.15: Representative photomicrographs of histological sections of immature meagre stained with 
hematoxylin and eosin after three weeks of treatment. A) sexually undifferentiated fish; B) female fish; C) 
male fish; D) male fish; E) female fish; F) intersex fish. EGCS, Embryonic Germ Stem Cells; Oog/Stg, Oogonia 
or spermatogonia; Oog, oogonia; StgAund, type A undifferentiated spermatogonia; StgB, type B 
spermatogonia; Spc, spermatocytes; Spd, spermatids; PGps, oocyte at perinucleolar stage of primary 
growth; Ct, connective tissue. 
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4.4. Sexual differentiation  

Fish were sexed at cellular level because no difference was found in the morphology of the 

ovaries and testes in this stage of sexual differentiation, so fish that presented oocytes were 

classified as female, those that presented StgB or higher development stages were classified as 

males, those with both developed stages were classified as intersex, and those with all germ 

cells in a developmental stage lower than StgB or oocyte were classified as sexually 

undifferentiated. 

Gonadotropin treatment significantly altered the sex ratio, increasing the proportion of males 

and developing intersex fish (P < 0.05). The only treatment group that presented females was 

LH 12. All fish in saline treatment group and 88% of fish in control group (n = 17) were sexually 

undifferentiated due to low gonadal development. However, in all treatment groups, except LH 

12, no females were found, although oocytes were found (Fig.16). Fish that presented oocytes 

from the treatment groups FSH 6, FSH 12, FSH` 12 and LH 18 also presented male germ cells 

(StgB, spc or spd) (Fig.15F). The recombinant hormone that showed the most intersex fish was 

FSH (n = 30), with 10% fish; specifically, one fish from each treatment of FSH 6, FSH 12 and FSH` 

12 (Fig. 16). 

  

Fig.16: Comparison of the relative frequency of fish per treatment group that were classified as sexually 

undifferentiated, male, female or intersex based on the development of germ cells in the histological 

sections. 
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5. Discussion 

The present survey shows that the rGths produced by a CHO system are biologically active and 

their half-life is long enough to induce in vivo effects in prepubertal and sexually undifferentiated 

meagre (A. regius). Both gonadotropins, rFSH and rLH, were able to stimulate E2 secretion, the 

onset of meiosis in female germ cells, and the onset and resumption of meiosis in male germ 

cells. These findings demonstrate that there is fshra and lhcgrba expression in gonadal tissue at 

this stage of development, and single-chain rGths therapy could be a useful tool to induce 

gametogenesis in prepubertal fish.  

 

5.1. Gonadosomatic index 

In our study, no treatment group showed a significant increase in GSI. In contrast, recombinant 

gonadotropins therapy has increased it in various fish species, such as Japanese eel (A. japonica) 

(Kobayashi et al., 2010), European eel (A. anguilla) (Peñaranda et al., 2017) or Shortfinned eel 

(A. australis) (Tuan-Nguyen et al., 2020). However, the effectiveness of treatments on the gonad 

growth depends on the concentration of recombinant hormone, the initial stage of development 

or the duration of the experiment. In the Tuan-Nguyen et al. (2020) survey, only the group 

treated with the dose with the highest concentration of rFSH (500 µg / kg) for 3 weeks showed 

significant differences; while the doses of 20 µg / kg and 100 µg / kg did not show significant 

differences. Moreover, in contrast with our survey, all of them were sexually differentiated. 

Nevertheless, in our study, the treatment with the best histological result was the one with the 

lowest concentration of rFSH (6 µg / kg). This data may indicate that the doses used were correct, 

but fish were too young to response at GSI level.  

 

5.2. Estradiol 

Both FSH and LH were able to stimulate E2 secretion. All of our treatment groups showed 

significant differences in plasma E2 secretion between week 0 and week 3, while saline did not. 

The initial stage of development of fish was not enough to stimulate an increase in gonadal size, 

but actually it was enough to stimulate the synthesis of plasma E2; doses with less concentration 

are enough to stimulate its secretion. Similar results were obtained in Shortfinned eel (A. 

australis), in which 100 µg / kg rFSH treatment for 3 weeks did not show an increase in GSI, but 

showed an increase in E2 (Tuan-Nguyen et al., 2020).  
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5.3. Histological observations 

Data demonstrate that rGths treatments were effective in inducing early gonad development, 

although not enough to differentiate all germ cells. In females, gonad development was similar 

to that obtained with rFSH in Orange-spotted grouper (E. coioides), where control group resulted 

in an undifferentiated ovary, while treatment group in an ovary with oocytes in PGcn and PGps 

(Chen et al., 2012a). Both surveys studied the effects of rGths treatment on fish that had not 

reached sexual maturity (prepubertal or juvenile fish). However, the Orange-spotted grouper (E. 

coioides) is a protogyny hermaphroditic fish (sexually differentiated) (Liu and Mitcheson., 2009) 

(Chen et al., 2012a), while meagre (A. regius) is a gonochoristic fish that was at sexual 

differentiation period. Otherwise, in our experiment, males had a greater development of germ 

cells than females, with the resumption of meiosis and development of spermatids in some 

cases, while females initiated meiosis but did not reach SGca stage. In flathead grey mullet (M. 

cephalus) rFSH and rLH therapy induced the entire process of gametogenesis, however, 11 and 

5 weeks of treatment for females and males respectively and the combination of both 

gonadotropins were necessary. Furthermore, the initial stage of development in female germ 

cells were PGps or SGca (Ramos-Júdez et al., 2020). In giant grouper (E. fuscoguttatus) after 8 

weeks of treatment with a weekly injection of rFSH at 100 µg / kg, the oocyte in PGps stage 

developed to SGca (Palma et al., 2019). In Japanese eel (A. japonica) 5 weeks of treatment with 

a weekly injection of rFSH or rLH were able to develop spermatogonia into spermatids and 

spermatozoa respectively (Hayakawa et al., 2008). In Shortfinned eel (A. australis) the duration 

of the experiment was 3 weeks like in our survey; and weekly injections of rFSH developed 

oocytes to SGca from PGps, although there were some oocytes at SGca stage in initial control 

group (Tuan-Nguyen et al., 2020). This data demonstrates that at histological level there are 

differences depending on the initial stage of development and the duration of the treatment. 

 

Considering our results at plasma E2 level and at histological level with the onset of meiosis in 

germ cells of males and females, we can suggest that i) there was expression of fshra and lhcgrba 

in gonads during the period of sexual differentiation, ii) rFSH and rLH, both, were able to 

stimulate the synthesis of 11-KT, iii) rFSH and rLH, both, were able to stimulate the synthesis of 

progestin 20βS. 

i) There was fshra and lhcgrba expression in meagre (A. regius) tissue during the period of 

sexual differentiation, due to greater gonadal development and E2 secretion in the 

treatment groups than in the control and saline groups. In fact, in control and saline 



Recombinant gonadotropins in meagre (Argyrosomus 

regius): In-vivo effect on sexually undifferentiated fish. 

 

39 
 

groups the gonad in most cases remained undifferentiated and with a lower level of 

plasma E2, although not significant. This is in agreement with Baron et al. (2005), where 

there was expression of lhcgrba in female rainbow trout (O. mykiss) during the period 

of sexual differentiation; or as in the medaka (O. latipes), where fshra and lhcgrba 

expression was found in all testis stage (Burow et al., 2019). Moreover, in Nile tilapia (O. 

niloticus) there is fshra and lhcgrba in undifferentiated gonads during sexual 

differentiation period (Yan et al., 2012). 

ii) Studies in Japanese huchen (Hucho perryi) (Amer et al., 2001), Japanese eel (A. japonica) 

(Miura et al., 2006), Atlantic salmon (S. salar) (Chen et al., 2012b) or Nile tilapia (O. 

niloticus) (Liu et al., 2014) suggest that MIS 20βP induces entry into meiosis of germ 

cells. In our results, females and males treated with rFSH and rLH initiated meiosis, 

suggesting that both rGths were able to activate Lhcgrba for the synthesis of MIS 20βS. 

This was in accordance with the results obtained by Burow et al. (2019), where both 

rGths activated the Fshra and Lhcgrba receptors in medaka (O. latipes). 

iii) Otherwise, according to Miura and Miura (2003), 11-KT stimulates the differentiation of 

spermatogonia priors to initiation of meiosis. Our results suggest that both rFSH and rLH 

were able to stimulate the synthesis of 11-KT as it was reported before (Suzuki et al., 

2019). 

 

5.4. Sexual differentiation  

About sexual differentiation, our histological observations demonstrate that with recombinant 

gonadotropin treatment: 1) the onset on meiosis in female germ cells occurs at the same time 

as de appearance of the ovarian cavity 2) males sexually differentiate earlier than females; 3) 

there is a higher proportion of males during the stage of sexual differentiation, 4) there are 

intersex fish during the stage of sexual differentiation. This is the first report of a male skewed 

ratio and the presence of intersex fish in meagre during the stage of sexual differentiation 

In gonochoristic teleost fish such as meagre (A. regius), the first indicator of sexual identification 

is made according to the ovarian ontogeny. It depends on whether the ovarian lumen / ovarian 

cavity develops earlier or not than the entry into meiosis of the oogonia with the consequent 

development of the oocytes (Nakamura et al., 1998). In Olive flounder (Paralichthys olivaceus), 

Southern flounder (P. lethostigma), Nile tilapia (Oreochromis niloticus) or Blue tilapia (O. 

aureus), meiotic division occurs after the formation of the ovarian lumen, thus, it is used as the 

earliest recognizable sign of female differentiation (Liu and Mitcheson, 2009). In European eel 
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(A. anguilla), Silver-stripe round herring (Spratelloides gracilis) or Cichlasoma dimerus, meiotic 

division occurs before the formation of the ovarian lumen, so the appearance of oocytes is the 

earliest recognizable sign of female differentiation (Colombo and Grandi, 1995; Hatakeyama et 

al., 2005; Meijide et al., 2005). In Fathead minnow (Pimephales promelas), Viviparous eelput 

(Zoarces viviparus) or Roach (Rutilus rutilus), meiotic division of the oogonia and the formation 

of the ovarian lumen occurs at the same time (Van Aerle et al., 2004; Rasmussen et al., 2006; 

Paull et al., 2008). According to our results, in meagre (A. regius), meiosis of the oogonia occurs 

at the same time as the appearance of the ovarian lumen, as described by Schiavone et al. 

(2012). For this reason, oocyte development was used as a classification criterion for females. 

Moreover, according to Schiavone et al. (2012), females sexually differentiate earlier than males, 

and according to Gil et al. (2013), wild meagre has a population sex ratio of 1: 1. Both ideas are 

in disagreement with our results, in wich male sexually differentiate earlier than females and 

there is a male skewed ratio. The control group presented 2 males and 15 undifferentiated fish, 

the LH` 12 treatment group showed 1 male and 6 undifferentiated fish, the LH 6 treatment group 

showed 2 males and 6 undifferentiated fish, and the FSH 18 treated group had 3 males and 5 

undifferentiated fish. In addition, the rest of the treatments had males in a higher percentage 

than intersex fish. The only group that presented females was the one treated with LH 12, which 

showed 3 females, 1 male and 4 undifferentiated fish (Fig.16). We must consider that the 

population sample of Gil et al., (2013) was composed of completely sexually differentiated and 

wild individuals. 

Sex determination is defined as the forces that determine whether a fish will become a male or 

a female, whereas sex differentiation refers to molecular and cellular processes that make a 

bipotential gonadal primordium develop into a testis or ovary after sex has been determined 

(Devlin and Nagahama, 2002). The sex determination mechanisms in vertebrates include 

Genotypic Sex Determination (GSD) and Environmental Sex determination (ESD), or a 

combination of both (Nakamura et al., 1998; Sandra and Norma, 2009; Navarro-Martín et al., 

2011; Fernandino et al., 2013). Sex differentiation in egg-laying vertebrates is a hormone-

dependent process that involves complex interactions among a large network of genes (Baron 

et al., 2005), such as cyp19a or hsd11b. Exposure to exogenous hormones and endocrine 

disruptors throughout sex differentiation can alter the expression of these genes, causing 

alterations in the sex differentiation process that ultimately leads to reproductive abnormalities, 

including intersex (Abdel-Moneim et al. 2015). There are two hypotheses about the influence of 

steroids on the gonad, the first one maintains that the ovaries develop due to the action of 

estrogens, while the testes develop due to the action of androgens (Nakamura, 2010). The other 
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hypothesis proposes that the testes develop by inaction of Cyp19a / P450arom (Guiguen et al., 

2010). In any case, the balance between E2 and 11-KT have a key role on sexual differentiation 

processes (Sandra and Norma, 2009; Navarro-Martín et al., 2011; Bahamonde et al., 2013). Our 

results support the first hypothesis because treatment groups showed a male skewed ratio and 

an increase in E2 secretion, although not significant. Moreover, according to Kagawa et al. 

(2003), in Red seabream (Pagrus major), LH but not FSH, stimulated both aromatase activity and 

P450arom gene expression. This could explain why our treatment group 7 (LH 12) was the only 

one that presented females (37.5%; n = 8); however more data about E2 production in treatment 

groups would be necessary. 

Intersex is defined as the presence of male and female gonadal tissue in a gonochoristic species 

(Bahamonde et al., 2013). The presence of intersex fish during the stage of sexual differentiation 

can have four main reasons. The first is that the development of juvenile intersex is a passive 

phenomenon and perhaps it is an advantage to achieve a reproductive partner in severe 

ecological conditions, since it temporarily maintains bipotentiality to develop in ovary or testis 

(Tricas and Hiramoto, 1989; Sandra and Norma, 2009). The second possible cause is that there 

is a “basal rate” of intersex in the meagre species although it is rarely (Grim et al., 2007; Abdel-

Moneim et al., 2015). The third possible cause is that all the gonads develop initially as ovaries 

and that later half of them degenerate giving rise to testes (Juvenile hermaphroditism) (Deblin 

and Nagahama, 2002). The fourth possible cause is that some environmental factor has altered 

the normal development of sexual differentiation in this survey. Since the development of 

intersex fish during sexual differentiation and during adulthood has not been previously 

documented in meagre (A. regius) (Schiavone et al., 2012; Gil et al., 2013), and that the third 

possible cause is in disagreement with our results and those of previous studies, it is most likely 

that it is the fourth cause. Environmental factors include: a) pollution and exogenous steroids 

(endocrine-disrupting chemicals), b) temperature and other physical variables, and c) social 

interactions (Deblin and Nagahama, 2002). Although we should include d) recombinant 

gonadotropins treatment as a potential cause of intersex and male skewed sex ratio. 

a. The development of intersex fish as a consequence of endocrine-disrupting chemicals 

(EDCs) has been widely studied in freshwater and marine fish (Kavanagh et al. 2004; 

Barucca et al., 2006; Blazer et al., 2007; Vajda et al. 2008; Diaz de Cerio et al., 2012; 

Rochman et al., 2014; Bahamonde et al., 2014). However, prepubertal fish in our study 

do not come from the marine environment, so they should not have been affected by 

EDCs. Furthermore, they have not received a diet with a rich source of phytoestrogens 
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or any compound with any estrogenic or androgenic activity that can alter the process 

of sexual differentiation (Grim et al., 2007; Rzepkowska et al., 2014). 

b. Temperature is probably the most studied factor in ESD. It has been observed that in 

species with Temperature Sex Determination (TSD), high temperatures during the 

sexual differentiation process are associated with masculinization processes, 

intermediate ones with mixed-sex populations, and low temperatures with feminization 

processes (Strüssmann et al., 1997; Sandra and Norma, 2009). According to Fernandino 

et al. (2012), thermal stress of high temperatures during the period of sexual 

differentiation in TSD species generates an increase in cortisol levels, which in turn 

induces an increase in hsd11b levels (codes for the enzyme 11β-hsd), leading to a higher 

synthesis of 11-KT and a higher sex ratio of males. High temperatures also increase the 

methylation levels of the cyp19a promoter region in European seabass (D. labrax), 

which were found to be sexspecific and highly influenced by changes in temperature 

during early life stages, causing signs of masculinization as a result of the down-

regulation of the expression of this gene (Navarro-Martín et al., 2011). In medaka (O. 

latipes), which is a GSD species with XX / XY sex determination, it has been observed 

that a high temperature treatment or a cortisol treatment at intermediate temperatures 

during the period of sexual differentiation also increases the sex ratio of males, 

suppresses the expression of fshra and female-type proliferation of germ cells (by 

upregulating of amh) (Selim et al., 2009; Hayashi et al., 2010). In Japanese flounder 

(Paralichthys olivaceus) (GSD with XX / XY sex determination) and Silverside 

(Odontesthes bonariensis) (TSD), a high temperature treatment during sex 

differentiation period stimulates the synthesis of cortisol, which inhibits the expression 

of cyp19a, increasing the sex ratio of males (Hattori et al., 2009; Yamaguchi et al., 2010; 

Guiguen et al., 2010; Yang et al., 2020). Therefore, an increase in cortisol levels is related 

to masculinization processes due to cyp19a downregulation, increased synthesis of 11-

KT, reducing the number of PGC cells (Goikoetxea et al., 2017; Miller et al., 2018), or 

downregulation of fshra. 

Further studies are necessary to elucidate the sex determination mechanism in meagre 

(A. regius). In any case, our fish were kept around 16°C, which should not be too high 

temperature to induce strong thermal stress, compared to the average water 

temperature between the months of February and May in the Western Mediterranean 

and the Eastern Atlantic (data not shown) (MITMA, 2021). 
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c. Population density is one of the social factors that affect sexual differentiation 

(Fernandino et al., 2013). In Japanese eel (A. japonica) or European seabass (D. labrax), 

high population densities in captivity were related to the male-biased sex ratio (Davey 

and Jellyman, 2005; Saillant et al., 2006), and an increase in cortisol levels (Chiba et al., 

2002 cited in Fernandino et al., 2013). Prepubertal fish in our study were fished from 

the tank eight times in three weeks, and introduced into 300 dm3 tanks with a 

population density of 50.3 kg m-3. In addition, in each of these periods, blood extraction 

on hormone injection were performed. Is a possibility that intensive sampling during 

three weeks of the sexual differentiation period could increase cortisol levels and induce 

masculinization. 

d. Never before rGths have been injected into sexually undifferentiated fish, so little is 

known about how they can affect sexual differentiation of gonochoristic fish. In rainbow 

trout (O. mykiss) and Nile tilapia (O. niloticus) during the stage of sexual differentiation 

there is expression of βFSH and βLH (Baron et al., 2005; Yan et al., 2012), however, it is 

possible that the increase in the level of gonadotropins by supraphysiological doses 

during this period could affect the expression of one or more genes related to sexual 

differentiation. 

Sox transcriptional factors are characterized as Sry-related high-mobility group (HMG) 

box proteins. Sox genes have been reported to be involved in sex determination and 

differentiation, formation of neuronal system, gonad, eye, pancreas, and cartilage (Wei 

et al., 2016). Sox30 has been proven to be critical for mammalian and teleostean 

spermatogenesis. There is expression of sox30 in testes and ovary of carp (C. carpio) 

(Arumugam and Balasubramanian, 2020) and Nile tilapia (O. niloticus) (Han et al., 2010; 

Wei et al., 2016). In fact, in carp (C. carpio), sox30 expression is high during 

spermatogenesis and spawning / spermiation (Arumugam and Balasubramanian, 2020). 

In Nile tilapia (O. niloticus), sox30 expression was reported during sexual determination 

and differentiation period in ovary and testes (Han et al., 2010). These data support that 

Sox30 plays a key role in gonadal differentiation and testes development (Han et al., 

2010; Wei et al., 2016; Arumugam and Balasubramanian, 2020). Furthermore, sox30 

expression is influenced by gonadotropins. There is a substantial increase in sox30 

mRNA transcripts post-hCG induction, and hCG is proven to bind Lhcgrba (Arumugam 

and Balasubramanian, 2020). 

Taken together these results, we speculate that the increase in gonadotropin levels 

during the period of sexual differentiation with respect to basal secretion could increase 
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sox30 expression and alter sexual differentiation, however, there are no results that 

support this hypothesis. There are also other genes related to sexual differentiation such 

as sox3 (Takehana et al., 2014). 

Further studies are necessary to elucidate the possible alteration in gene expression by the 

administration of gonadotropins during the period of sexual differentiation. 
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6. Conclusion 

 

1.  Weekly intramuscular injections of specific Argyrosomus regius single-chain rGths for 3 

weeks in prepubertal and sexually undifferentiated meagre (A. regius) are not able to 

stimulate a significant increase in GSI comparing with saline group. 

 

2. Both rFSH and rLH are able to stimulate E2 secretion. 

 

 

3. Both FSH and LH are able to stimulate early gonadal development with the onset of 

meiosis in female germ cells, and the onset and resumption of meiosis in male germ 

cells.  

 

4. Our histological observations in sexual differentiation demonstrate that with 

recombinant gonadotropin treatment 1) the onset of meiosis in female germ cells occurs 

at the same time as de appearance of the ovarian cavity 2) males sexually differentiate 

earlier than females; 3) there is a higher proportion of males during the stage of sexual 

differentiation, 4) there are intersex fish during the stage of sexual differentiation.  

 

Further studies are necessary to elucidate what kind of sex determination mechanisms has the 

meagre, how the administration of exogenous gonadotropins can influence sexual 

differentiation during this period and, to evaluate the effect of rGths treatment with a longer 

therapy and in older fish. 
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