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Abstract. Diagonalization is an “age old” technique from Linear Alge-
bra, and it has had significant applications in Pattern Recognition (PR)
and data pre-processing. By using the eigenvectors of the covariance ma-
trix of a single class as the basis vectors describing the feature space,
the transformed data can be rendered to have a diagonal covariance ma-
trix. If the covariance matrices of two classes are utilized, the covariance
matrix of transformed data of the first class can be the made the Iden-
tity, while that of the second can be diagonal, implying independence in
the case of Normally distributed data1. In all of the cases reported in
the literature, the entire covarince matrix is diagonalized, which is, com-
putationally, a very tedious and cumbersome process. In this paper, we
propose a radically different paradigm where we opt to render the trans-
formed data to be block diagonalized. In other words, the covariance of
the transformed data is made up of a predetermined number of block
matrices, implying that these corresponding features are assumed to be
correlated, while the others are assumed independent. Regression is now
done by getting the best value based on each of these sub-blocks and
averaging between them. This is essentially an ensemble machine, where
the sub-blocks lead to their own respective regression values, which are
then averaged to obtain the overall solution. This technique has been
used to analyze the survival rate of cancer patients depends on the type
of cancer, the treatments that the patient has undergone, and the sever-
ity of the cancer when the treatment was initiated. In our prima facie

study, we consider adenocarcinoma, a type of lung cancer detected in
chest Computed Tomography (CT) scans on the entire lung, and images
that are “sliced” versions of the scans as one progresses along the thoracic
region. The results that we have obtained using such a block diagonaliza-
tion are quite amazing. Indeed, they surpass the results obtained from
some of the well-established feature selection/reduction strategies.
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1 Similar diagonalizing schemes form the basis of the Principal Component Analysis
(PCA) and some feature selection/reduction etc. schemes.
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1 Introduction
There numerous ways by which one can reduce the dimensionality of a problem
when it concerns Pattern Recognition (PR) and classification. The question of
determining which features contain the most discriminating power is not easy
to resolve. The strategy that has been used for a few decades is to examine the
data by considering the eigenvalues and eigenvectors of the feature space, and by
projecting the data onto its most “prominent” eigenvectors. Similar principles
are, typically, used in designing feature selection and feature reduction methods.
Indeed, almost all of the acclaimed methods deal with the eigenvectors of the
covariance matrices of the classes. Since this matrix is symmetric and positive-
definite, the problem is less tedious, because the eigenvectors are orthogonal.

The problem, although easily stated, is rather complex because one has to
compute the eigenvectors of the covariance matrix of the entire feature space.
This is, usually, a very difficult problem, especially if the dimension of this space
is large. In this paper we resolve the problem in a completely different manner.
The paradigm that we advocate is the following: Rather than work with the
entire set of features, we split them into small blocks, which are then individually

diagonalized. The tacit assumption of invoking such a partitioning is that within
each of these small blocks, the intra-block features are correlated, but also that
the inter-block features are uncorrelated. Resolving the problem in this manner
leads to a block diagonal matrix. Observe that with such a modelling philosophy,
the PR-related processing is much easier because the inversion of these block
diagonal matrices involves block diagonal operations, and to achieve this, we
only have to work with matrices of much smallers sizes.

The specifics of the partitioning, the block diagonalization and the subse-
quent regression, are detailed in the body of the paper. As far as we know,
such a block diagonalization paradigm has not been proposed or applied in the
PR or regression literature. In particular, we have used these techniques in a
regression analysis, by which we can predict the survival times of lung cancer
patients based on various features of the tumor. The results that we have ob-
tained surpass the results obtain by invoking the best-known feature selection
and reduction techniques.

1.1 Contributions of this Paper

The contributions of this paper can be summarized as follows:

– The fundamental contribution of this paper is to demonstrate the advan-
tages of utilizing a “block diagonalization” paradigm, instead of invoking a
diagonalization process of the entire feature space;

– Rather than achieve a regression analysis based on the entire set of features,
we have shown that we can perform such an analysis on the various subsets
of the data (each obtained from the block diagonalized submatrices);

– The overall regression will then be obtained by combining the results of the
regression analysis of the blocks. Observe that this is equivalent to merging
the concept of “ensemble” machines with the latter “block diagonalization”
phase;
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– Although a lot of work has been done when it concerns the diagnosis of lung
cancer, the work related to the survival times and their correlation to the
size/shape of the tumor is relatively unexplored. In an earlier paper [10], we
had shown that by a regression analysis, we can predict the survival times
based on various features of the tumor. This paper builds on those results
to use ensemble machines and block-diagonal phenomena.

– While these results have been proven to be relevant for our lung cancer
scenario, we believe that these phenomena are also valid for other tumor-
based cancers, and hope that other researchers can investigate the relevance
of the same hypothesis for their application domains.

2 Diagonalization and Block Diagonalization

2.1 Diagonalization
To initiate discussions, we submit a few brief paragraphs about the phenomenon
of diagonalization. A square matrix A is referred to as being “diagonalizable”if it
is similar to a diagonal matrix. In other words, there exists an invertible matrix
P and a diagonal matrix D, such that P−1AP = D, which equivalently implies
that A = PDP−1. Diagonalization is the process of finding the above P and D.

Diagonalizable matrices are especially easy for computations. One can raise
a diagonal matrix D to a power by simply raising the diagonal entries to that
power, and the determinant of a diagonal matrix is simply the product of all its
diagonal entries. Such computations generalize easily due to A = PDP−1.

The process of diagonalization is implicitly related to the set of A’s eigenvec-
tors {e1, e2, . . . ed}, and its respective eigenvalues, {λ1, λ2, . . . λd}. Indeed, if A
can be diagonalized, the diagonalizing matrix P contains the eigenvectors of A
as columns, where the ith column is the ith eigenvector, e

i
, and the correspond-

ing diagonal entry is the respective eigenvalue, λi. The invertibility of P also
suggests that the eigenvectors of A are linearly independent and form a basis of
A, which is the necessary and sufficient condition for diagonalizability. Thus,

P−1AP = Λ, or AP = PΛ, (1)

where, P = [e
1
, e

2
, . . . , e

d
], and Λ is the d×d diagonal matrix, Diag[λ1, λ2, . . . , λd].

Diagonalization is a fundamental phenomenon in PR and classification, where
A is the covariance matrix of the underlying distribution, and since this is always
positive-definite and symmetric, the eigenvectors are orthogonal, implying that:

PTAP = Λ. (2)

Similar diagonalizing schemes form the basis of the Principal Component Anal-
ysis (PCA) and some feature selection/reduction etc. schemes.

If the covariance matrices of two classes are utilized, the covariance matrix
of transformed data of the first class can be made Identity, while that of the sec-
ond can be diagonal, implying independence in the case of Normally distributed
data. Geometrically, a diagonalizable matrix is an inhomogeneous dilation (or
anisotropic scaling) - it scales the space, as does a homogeneous dilation, but by
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a different factor along each eigenvector axis, the factor given by the correspond-
ing eigenvalue. For most applications, the matrices are diagonalized numerically
using computer software, and numerous packages exist to accomplish this.

2.2 Invoking Block Diagonalization and Ensemble Regression

We shall now show how we can use a non-traditional eigenvector matrix to
further enhance the accuracy of the scheme, and also simultaneously minimize
the computations.

The monumental task associated with a covariance matrix of large dimensions
is to obtain its eigenvalues and eigenvectors. While this is surely advantageous,
the task is daunting especially when we deal with a feature space whose dimen-
sionality is greater than 100. It would have been meaningful if we were working
with simultaneous diagonalization where we tried to diagonalize or whiten data
from two classes. In our case, however, since the problem we tackle is regression
(rather than classification), we are dealing with only a single class which makes
the problem less cumbersome.

In our application domain [9], [10], the dimensionality of the feature vector
is 110. Computing the eigenvalues and eigenvectors of such a large matrix is,
certainly, time consuming. The novel contribution in this section is that we
advocate dividing the feature vector into multiple sub-vectors, for example, 5
sub-vectors. We are now faced with a problem of getting 5 sets of eigenvectors,
each of dimension 22, which is a significantly smaller problem. Of course, this
leads us to an approximated world in which the features within these subspaces
are correlated, but it leads to a model in which the features outside of these
blocks are assumed to be uncorrelated. This, in turn, leads to the concept of
a block diagonal matrix, as displayed in Figure 1, where the blocks, Bn where
n = 1...5, represents the subset of features chosen (i.e., 5 sets of 22-dimensional
vectors), and all other elements outside of the blocks are set to zero.

Fig. 1: Block diagonal matrix.

Our task now, is to diagonalize each of these blocks within the block diagonal
approximation, and to choose a subset of their prominent eigen-directions, deter-
mined by the corresponding largest eigenvalues. For example, if we extracted the
5 principal eigen-directions in each of these blocks, the 110-vector space would
reduce to 5 blocks of 5 features each, i.e., a feature vector of dimension 25.

Regression is now done by getting the best “regressed” value based on each
of these sub-blocks and averaging between them. The reader will observe that
this is essentially an ensemble machine, where the 5 blocks lead to their own
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respective regression values, which are then averaged to obtain the overall solu-
tion. Although this involves computations that are significantly less than working
with the 110-dimensional space, the results that we have obtained are actually
marginally superior. This seems to be paradoxical but the reason for this is prob-
ably because the higher dimensional world tries to impose a dependence on the
various variables when, in fact, there may not be such an explicit dependence.

3 Predicting Survival Times for Lung Cancer

Problem Domain: Research in computer vision in medicine has advanced to
focus on automatic segmentations, feature extraction and classification for the
presence of specific diseases or pathologies. CAD systems are divided into two
sub-categories, computer-aided detection (CADe) and computer-aided diagnosis
(CADx). Both branches are being actively researched, with CADe being more fo-
cused on computationally-efficient early detection with a higher sensitivity and
low false-positive rate, and CADx being more focused on the lesions’ charac-
terization and classification. The most famous use-case for such an application
is the detection (or classification) of a nodule being cancerous. However, if we
can push this envelope one step further and are able to judge the severity of a
nodule, the prognosis and determination of treatment plans can be adjusted to
yield a greater chance of success. The results we have obtained [10] deal with
the cancer treatments done on 60 patients2 at varying levels of severity and with
a spectrum of survival rates. For patients who survived up to 24 months, the
average relative error is as low as 9%, which we believe is very significant.

This research is the continuation of previous work of the authors as part
of a Masters program thesis study, whereby the foundation is the evaluation of
a cancer nodule through computation of 2D features in the Chest Computed
Tomography (CT) scan. In this work, we aim to evaluate the cancer nodule as a
single entity in its 3D form rather than “slices” as 2D images. Furthermore, we
evaluate the feature sets of the 3D cancer nodules through the lens of various
feature reduction and feature elimination techniques, with the most extensive
analysis on the process of diagonalization.

Aspects of Lung Cancer: Apart from folklore, the statistics about cancer
are disheartening. The American Cancer Society (ACS) estimated their annual
statistics for 2018, based on collected historical data [17]. Lung cancer is now
the second leading type of cancer for newly diagnosed patients, behind breast
cancer, and it has the highest mortality rate out of all cancer sites. The ACS
projected 234,030 new cases of lung cancer. They also forecasted that 154,050
deaths would be caused by lung cancer. However, cancers diagnosed at an early
phase, such as Stage 1, can be treated with surgery and radiation therapy with
an 80% success rate. The low survival rate of lung cancer patients is primarily
because of the late diagnosis, which results in ineffective treatment due to the
growth and stage of the cancer.

2 Understandably, it is extremely difficult to obtain training and testing data for this
problem domain! Thus, both authors gratefully acknowledge the help given by Drs.
Thornhill and Inacio, from the University of Ottawa, in providing us with the dataset.
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The most common tests to detect lung cancer include (but are not limited to)
sputum cytology, chest X-rays, computed tomography (CT) scans, and biopsies.
The emerging domain of radiomics is the field of study that extracts quantitative
measures of tumor phenotypes from medical images using data-characterization
algorithms. These features are explored to uncover disease characteristics that
are not visible to the naked eye, but which can then be used for further prognosis
and treatment plans. Many researchers have begun focusing on the engineering
of feature sets through implementation of radiomic analysis [8], [16]. Our goal,
however, is that of predicting the survival rate of lung cancer patients once they

have been diagnosed, and the result of this study is to demonstrate that a lot
of this information resides in the 3D shape of the tumor. Our hope is that our
study can provide insight into the severity of the cancer, and can additionally,
aid in formulating the treatment plans so as to increase the chances of survival.

3.1 Brief Literature Review

Apart from the mathematical foundations of diagonalization highlighted above,
the main objective of the application domain of this research is to explore and
investigate the existence of relations between statistical measures with regards
to the texture and shape of a nodule classified as adenocarcinoma (a type of
cancer) to the survival time of the patient post-diagnosis. The task at hand is a
regression problem, instead of the more traditional classification problem.

When considering the applications of ML in healthcare, classification prob-
lems have been the dominant area of focus such that the presence, or lack thereof,
of a specified anatomical structure can be stated. However, transforming the con-
text of the application to a regression domain can enable a critical advancement
in CAD systems. By suggesting a survival time for a given patient, the trajectory
of the illness and treatment plan can be evaluated at a deeper level. Through
a more extensive literature review, discussed in more detail in Chapter 2 of the
thesis3 [9], we have identified a significant gap in such regression analyses.

We aim to engineer a prognostic feature set based on quantitative measure-
ments that are not visible with a simple glance or reading of the scan, and aspire
to reduce the inherent subjectivity and variability when evaluating medical re-
ports with such measures. It is important to note that our focus is heavily on
the construction of the feature set, rather than the customization of regression
models that have been used as testing thresholds. With this in mind, we also
adjust the focus to form a valuable feature set through applying various block-
diagonalization-based feature elimination and reduction techniques.

3.2 Data Source

We have used the publicly available data from The Cancer Imaging Archive4

(TCIA), a service which hosts an archive of data for de-identified medical im-
ages of cancer. The dataset used for this work is the “LungCT-Diagnosis” data

3 Unfortunately, due to space limitations, a comprehensive review is not possible. It
is found in [9] and can be provided to interested readers if requested.

4 More information can be found at https://www.cancerimagingarchive.net/.
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[11] on TCIA, uploaded in 2014. The set consists of CT scans for 61 patients
that have been diagnosed with adenocarcinoma, a type of lung cancer, with
the number of images totalling up to about 4, 600 over all the scans. However,
considering only images that have the presence of a cancer nodule, the count re-
duces to approximately 450 images. With healthcare, we are constrained to work
with what we can obtain and what we are “provided” with, subject to privacy
considerations. As we will see, it suffices for the purpose of regression analyses.
Throughout the experiments and results explained in this paper, the condensed
dataset of 450 images, or 61 scans, has been consistently split into training and
testing data with a 70% and 30% split respectively. The dataset also includes the
clinical metadata, where the survival time of the patient associated with each
scan, is listed.

4 Fundamental Operations and Feature Sets

Computed Tomography (CT) Scans: The most common radiological imag-
ing technique incorporates CT scans where X-ray beams are used to take mea-
surements or images (i.e., “slices”) from different angles, as shown in Figure 2, as
the patient’s body moves through the scanner. Depending on the section thick-
ness and the associated reconstruction parameters, a scan can range anywhere
from 100 to over 500 sections or images [1]. The scan records different levels
of density and tissues which can be reconstructed to, non-invasively, create a
3-dimensional image of the human body.

(a) Axial Plane (b) Coronal Plane (c) Sagittal Plane

Fig. 2: Planes captured in a Computed Tomography (CT) scan.

High-resolution Computed Tomography (HRCT) is specifically used in de-
tecting and diagnosing diffuse lung diseases [7] and cancerous nodules, due to
its sensitivity and specificity. It enables the detection and analysis of feature
aspects such as morphological lesion characterization, nodule size measurement
and growth, as well as attenuation characteristics.

Nodule Segmentation: Rather than segmenting the entire lung region as
our Region of Interest (ROI), in this research, we segment only the cancerous
nodule in the “slices” where the presence of the tumor is observed. Similar to the
topic of lung segmentation, there is an abundance of published work discussing
the automation of so-called nodule segmentation and extraction [2], [15] and [19].
Since this is not the primary goal of our research, in our work, we opt to segment



8 T. J. Ghani and B. J. Oommen

the scans manually to obtain the nodules, as our focus is on the creation of an
informative feature set.

We made masks of the tumors using the ImageJ software5. This was done
by manually tracing a contour around the nodule on the images where it was
present, filling the shape as “white”, and clearing the background to “black”. The
images that did not contain the nodule were cleared to a “black” background.The
CT scans were reviewed, and the segmentation of cancer tumors were validated
by a clinical doctor from the Ottawa Heart Institute.

We achieved this by creating a mask for each scan in the dataset. This enabled
us to obtain a simpler implementation of the algorithm to achieve the ROI
extraction. For each scan, the respective segmentation mask was loaded and
all images were iterated. If a connected component was found (signifying the
presence of a nodule) in a mask image, the original image was multiplied against
the mask to precisely extract only the nodule. In this manner, we were able to
attain the 3D matrix of the nodule in a scan, which could be further used for
visualization and feature extraction.

3D Feature Set Compilation: Proceeding now with the work that we
did, the next stage included the exploration, compilation and modification of
a 3D feature set, which essentially implies that we considered the entire lung
as a single entity (or observation) as opposed to the images considered for the
2D feature sets alluded to in the previous sections. We used the Pyradiomics

library6, an open source Python package, for extracting radiomics7.
The main emphasis for this feature set was to compute measures in a 3D con-

sideration. Compared to the benchmark feature set, which contained quantifi-
cation measures of texture analysis in the 2D domain, this feature set included
recalculated texture analysis components in a 26-connectivity capacity, i.e., if
the centre pixel shares a face, edge or corner with another pixel. The radiomics
features extracted using the Pyradiomics library (defined in the Pyradiomics

documentation) are defined in sub-categories known as feature classes as:
– First Order Statistics: This feature class [9], [10], focused on computing

features that described the histogram of the nodule image, i.e., the grey-level
intensity distribution etc., amounting to a total of 19 features.

– 3D Shape-based: These 16 features [9], [10], unlike the rest of the feature
classes, computed the values from the mask of the given nodule as they were
independent of the grey level intensities. The Pyradiomics library built a
triangle mesh from the provided mask using the marching cubes algorithm.

– Grey Level Cooccurrence Matrix (GLCM): This matrix was computed
based on the probability function where the (i, j)th element represents the
number of times grey levels i and j appeared next to each other in the image,
and led to a total of 24 features [9], [10].

5 The ImageJ Software is a Java-based program developed at the National Institutes
of Health and the Laboratory for Optical and Computational Instrumentation.

6 Documentation is available at https://pyradiomics.readthedocs.io/en/latest/.
7 Radiomics is the field of study that extracts quantitative measures of tumor phe-
notypes from medical images using data-characterization algorithms. These features
are explored to uncover disease characteristics that are not visible to the naked eye.
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– Grey Level Run Length Matrix (GLRLM): This matrix captured grey
level runs, in which, a run refers to the number of consecutive pixels that
had the same grey level value. The GLRLM was quantified by individual
measures such as short run and long run emphasis, non-uniformity values,
run variance, etc., amounting to a total of 16 features [9], [10].

– Grey Level Size Zone Matrix (GLSZM): This matrix was similar to
the GLRLM, however, voxels of the same grey level intensity were taken into
consideration rather than just pixels. It was quantified by individual metrics
such as area and zone emphasis etc., amounting to 16 features [9], [10].

– Neighbouring Grey Tone Difference Matrix (NGTDM): This matrix
evaluated the difference between a pixel or voxel’s grey value and the values
of its neighbours. From it, we extracted to a total of 5 features [9], [10].

– Grey Level Dependence Matrix (GLDM): This matrix measured the
grey level dependencies in the image. From it, we extracted a total of 14
features, as explained in [9], [10].

5 Implementation and Results

Model Evaluation: To evaluate the performance of the tested regression mod-
els, we utilized two measures, namely the Mean Absolute Error (MAE), mea-
sured in months, and the Mean Relative Error (MRE), both of which are defined
in Eq. (3) and (4) respectively:

MAE =
1

n

n
∑

i=1

|yi − zi|, and (3)

MRE =
1

n

n
∑

i=1

|yi − zi|

zi
, where: (4)

– n is the number of test-set data points,
– yi is the predicted value (i.e., the expected survival time in months), and
– zi is the true value (i.e., the survival time in months).

The MAE is the average difference between the true values and the predicted
values. It provides an overall measure of the distance between the two values,
but it does not indicate the direction of the data (i.e., whether the result is an
under or over-prediction). Furthermore, this is also seen to be a scale-dependent
measure, as the computed values are heavily dependent on the scale of the data,
and can be influenced by outliers present in the data [5]. In order to circumvent
the scale-dependency, we also computed the MRE which introduces a relativity
factor by normalizing the absolute error by the magnitude of the true value. This
means that the MRE should, generally, consist of values in the range [0, 1].

As mentioned earlier, all regression tests were done on the data with a 70%
to 30% split of the data for training and testing, respectively.

Regression Results: The diagonalization technique applied to the dataset,
defined in Eq. (5), is a linear transformation that transforms a set of vectors,
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{X}, with a given covariance matrix to a new set of vectors, {Y }, with a co-
variance that is the Identity matrix. This indicates uncorrelated features with a
variance of 1 satisfying:

Y = WTX. (5)

The transformative factor here is defined by W , which is a d× d matrix such
that:

WTΣXW = Λ, and (6)

Λ =







λ1 . . . 0
. . .

0 . . . λd






, (7)

where λ1 . . . λn are the eigenvalues of the covariance matrix. It is important to
note that W also satisfies the following condition:

W−1 = WT . (8)

As mentioned, the context at hand is a regression problem and hence, we are
dealing with data from only a single class. Therefore, we implemented a simple
diagonalization rather than a simultaneous diagonalization of multiple classes.

We computed the covariance matrix of the scaled dataset, resulting in a
110 × 110 matrix. However, computing the eigenvalues and eigenvectors of the
covariance matrix was computationally complex and inefficient, resulting in
negligibly-small negative and complex eigenvalues8. To combat the inaccuracy of
these results, we broke down the 110-dimensional covariance matrix into five 22-
dimensional covariance matrices from which we could compute the eigenvalues.
This led to the resemblance of an ensemble-based model, as we transformed the
data five times with only the kth group of features extracted from the covariance
matrix. Running the regression models with selecting the corresponding trans-
formed features of the first d significant eigenvalues (where d is the number of
eigenvalues that have values above a threshold of 1.0), we took the average of
the five predictions and attained our final regressed prediction.

Table 1: Performance of Regression Models with Complete Baseline and PCA-Reduced
Feature Set.

Baseline PCA
Model MAE MRE MAE MRE

Linear Regression 34.41 1.95 14.83 0.78
kNN Regression 16.73 0.97 17.15 0.90

Gradient Boosting 14.76 0.85 18.36 1.00

Table 2 shows the regression results on the diagonalized data. Compared to
results from PCA (Table 1), there seems to be an overall improvement across
all models with gradient boosting improving the most, with a 20% decrease in
the MRE. Table 3 displays the regression results on the subset data where the
survival time was less than or equal to 24 months. As expected, all the regression

8 This was, of course, due to the computations involving very small quantities.
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Table 2: Performance of Regression Models with Block Diagonalized Reduced Feature
Set.

Model MAE MRE

Linear Regression 14.28 0.76
kNN Regression 15.41 0.83

Gradient Boosting 15.13 0.80

models improved greatly with an average decrease in the MAE of over 50%, and
the MRE reaching as low as 41% with gradient boosting.

Table 3: Performance of Regression Models with Block Diagonalized Reduced Feature
Set on Subset Data.

Model MAE MRE

Linear Regression 6.98 0.53
kNN Regression 6.10 0.42

Gradient Boosting 5.89 0.41

6 Conclusions and Future Work

In this paper, we discussed the domain of healthcare imaging for diagnostics
and the implementation of radiomics on CT scans, in particular, to predict the
survival rates of lung cancer patients. We explored the engineering of a feature set
based on 3D analyses and the related computations associated with the tumor.

We used Pyradiomics for the computation of the relevant features to both
shape and texture, in the 3D aspect. This resulted in a 110-dimensional feature
vector, which was subjected to feature selection and dimensionality reduction
using a novel block diagonalization scheme. We achieved an overall improve-
ment in performance from the baseline of the 3D feature set, with the greatest
difference in Linear Regression from an MRE of 1.95 to 0.76. Notably, all models
achieved better in a short term prediction with the 3D feature sets, enforcing
the results found in [10].

With regard to future work, the use of block diagonal strategies for other
PR and regressions methods is a fertile field. Besides, the further extension of
our research by computing actual 3D features which can be used to augment
the feature vector to the previously-computed 3D features through aggregation
of successive 2D slices, can surely be applied to other types of cancers.
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